1991-01-01
The rate of filamentous actin (F-actin) depolymerization is proportional to the number of filaments depolarizing and changes in the rate are proportional to changes in filament number. To determine the number and length of actin filaments in polymorphonuclear leukocytes and the change in filament number and length that occurs during the increase in F-actin upon chemoattractant stimulation, the time course of cellular F-actin depolymerization in lysates of control and peptide- stimulated cells was examined. F-actin was quantified by the TRITC- labeled phalloidin staining of pelletable actin. Lysis in 1.2 M KCl and 10 microM DNase I minimized the effects of F-actin binding proteins and G-actin, respectively, on the kinetics of depolymerization. To determine filament number and length from a depolymerization time course, depolymerization kinetics must be limited by the actin monomer dissociation rate. Comparison of time courses of depolymerization in the presence (pointed ends free) or absence (barbed and pointed ends free) of cytochalasin suggested depolymerization occurred from both ends of the filament and that monomer dissociation was rate limiting. Control cells had 1.7 +/- 0.4 x 10(5) filaments with an average length of 0.29 +/- 0.09 microns. Chemo-attractant stimulation for 90 s at room temperature with 0.02 microM N-formylnorleucylleucylphenylalanine caused a twofold increase in F-actin and about a two-fold increase in the total number of actin filaments to 4.0 +/- 0.5 x 10(5) filaments with an average length of 0.27 +/- 0.07 microns. In both cases, most (approximately 80%) of the filaments were quite short (less than or equal to 0.18 micron). The length distributions of actin filaments in stimulated and control cells were similar. PMID:1918158
Assembly and Turnover of Short Actin Filaments by the Formin INF2 and Profilin*
Gurel, Pinar S.; A, Mu; Guo, Bingqian; Shu, Rui; Mierke, Dale F.; Higgs, Henry N.
2015-01-01
INF2 (inverted formin 2) is a formin protein with unique biochemical effects on actin. In addition to the common formin ability to accelerate actin nucleation and elongation, INF2 can also sever filaments and accelerate their depolymerization. Although we understand key attributes of INF2-mediated severing, we do not understand the mechanism by which INF2 accelerates depolymerization subsequent to severing. Here, we show that INF2 can create short filaments (<60 nm) that continuously turn over actin subunits through a combination of barbed end elongation, severing, and WH2 motif-mediated depolymerization. This pseudo-steady state condition occurs whether starting from actin filaments or monomers. The rate-limiting step of the cycle is nucleotide exchange of ADP for ATP on actin monomers after release from the INF2/actin complex. Profilin addition has two effects: 1) to accelerate filament turnover 6-fold by accelerating nucleotide exchange and 2) to shift the equilibrium toward polymerization, resulting in longer filaments. In sum, our findings show that the combination of multiple interactions of INF2 with actin can work in concert to increase the ATP turnover rate of actin. Depending on the ratio of INF2:actin, this increased flux can result in rapid filament depolymerization or maintenance of short filaments. We also show that high concentrations of cytochalasin D accelerate ATP turnover by actin but through a different mechanism from that of INF2. PMID:26124273
Roland, Jeremy; Berro, Julien; Michelot, Alphée; Blanchoin, Laurent; Martiel, Jean-Louis
2008-01-01
Actin dynamics (i.e., polymerization/depolymerization) powers a large number of cellular processes. However, a great deal remains to be learned to explain the rapid actin filament turnover observed in vivo. Here, we developed a minimal kinetic model that describes key details of actin filament dynamics in the presence of actin depolymerizing factor (ADF)/cofilin. We limited the molecular mechanism to 1), the spontaneous growth of filaments by polymerization of actin monomers, 2), the ageing of actin subunits in filaments, 3), the cooperative binding of ADF/cofilin to actin filament subunits, and 4), filament severing by ADF/cofilin. First, from numerical simulations and mathematical analysis, we found that the average filament length, 〈L〉, is controlled by the concentration of actin monomers (power law: 5/6) and ADF/cofilin (power law: −2/3). We also showed that the average subunit residence time inside the filament, 〈T〉, depends on the actin monomer (power law: −1/6) and ADF/cofilin (power law: −2/3) concentrations. In addition, filament length fluctuations are ∼20% of the average filament length. Moreover, ADF/cofilin fragmentation while modulating filament length keeps filaments in a high molar ratio of ATP- or ADP-Pi versus ADP-bound subunits. This latter property has a protective effect against a too high severing activity of ADF/cofilin. We propose that the activity of ADF/cofilin in vivo is under the control of an affinity gradient that builds up dynamically along growing actin filaments. Our analysis shows that ADF/cofilin regulation maintains actin filaments in a highly dynamical state compatible with the cytoskeleton dynamics observed in vivo. PMID:18065447
Yokota, Etsuo; Tominaga, Motoki; Mabuchi, Issei; Tsuji, Yasunori; Staiger, Christopher J; Oiwa, Kazuhiro; Shimmen, Teruo
2005-10-01
From germinating pollen of lily, two types of villins, P-115-ABP and P-135-ABP, have been identified biochemically. Ca(2+)-CaM-dependent actin-filament binding and bundling activities have been demonstrated for both villins previously. Here, we examined the effects of lily villins on the polymerization and depolymerization of actin. P-115-ABP and P-135-ABP present in a crude protein extract prepared from germinating pollen bound to a DNase I affinity column in a Ca(2+)-dependent manner. Purified P-135-ABP reduced the lag period that precedes actin filament polymerization from monomers in the presence of either Ca(2+) or Ca(2+)-CaM. These results indicated that P-135-ABP can form a complex with G-actin in the presence of Ca(2+) and this complex acts as a nucleus for polymerization of actin filaments. However, the nucleation activity of P-135-ABP is probably not relevant in vivo because the assembly of G-actin saturated with profilin, a situation that mimics conditions found in pollen, was not accelerated in the presence of P-135-ABP. P-135-ABP also enhanced the depolymerization of actin filaments during dilution-mediated disassembly. Growth from filament barbed ends in the presence of Ca(2+)-CaM was also prevented, consistent with filament capping activity. These results suggested that lily villin is involved not only in the arrangement of actin filaments into bundles in the basal and shank region of the pollen tube, but also in regulating and modulating actin dynamics through its capping and depolymerization (or fragmentation) activities in the apical region of the pollen tube, where there is a relatively high concentration of Ca(2+).
Identifying the dynamics of actin and tubulin polymerization in iPSCs and in iPSC-derived neurons
Magliocca, Valentina; Petrini, Stefania; Franchin, Tiziana; Borghi, Rossella; Niceforo, Alessia; Abbaszadeh, Zeinab; Bertini, Enrico; Compagnucci, Claudia
2017-01-01
The development of the nervous system requires cytoskeleton-mediated processes coordinating self-renewal, migration, and differentiation of neurons. It is not surprising that many neurodevelopmental problems and neurodegenerative disorders are caused by deficiencies in cytoskeleton-related genes. For this reason, we focus on the cytoskeletal dynamics in proliferating iPSCs and in iPSC-derived neurons to better characterize the underpinnings of cytoskeletal organization looking at actin and tubulin repolymerization studies using the cell permeable probes SiR-Actin and SiR-Tubulin. During neurogenesis, each neuron extends an axon in a complex and changing environment to reach its final target. The dynamic behavior of the growth cone and its capacity to respond to multiple spatial information allows it to find its correct target. We decided to characterize various parameters of the actin filaments and microtubules. Our results suggest that a rapid re-organization of the cytoskeleton occurs 45 minutes after treatments with de-polymerizing agents in iPSCs and 60 minutes in iPSC-derived neurons in both actin filaments and microtubules. The quantitative data confirm that the actin filaments have a primary role in the re-organization of the cytoskeleton soon after de-polymerization, while microtubules have a major function following cytoskeletal stabilization. In conclusion, we investigate the possibility that de-polymerization of the actin filaments may have an impact on microtubules organization and that de-polymerization of the microtubules may affect the stability of the actin filaments. Our results suggest that a reciprocal influence of the actin filaments occurs over the microtubules and vice versa in both in iPSCs and iPSC-derived neurons. PMID:29340040
Alarcon-Martinez, Luis; Yilmaz-Ozcan, Sinem; Yemisci, Muge; Schallek, Jesse; Kılıç, Kıvılcım; Can, Alp; Di Polo, Adriana; Dalkara, Turgay
2018-03-21
Recent evidence suggests that capillary pericytes are contractile and play a crucial role in the regulation of microcirculation. However, failure to detect components of the contractile apparatus in capillary pericytes, most notably α-smooth muscle actin (α-SMA), has questioned these findings. Using strategies that allow rapid filamentous-actin (F-actin) fixation (i.e. snap freeze fixation with methanol at -20°C) or prevent F-actin depolymerization (i.e. with F-actin stabilizing agents), we demonstrate that pericytes on mouse retinal capillaries, including those in intermediate and deeper plexus, express α-SMA. Junctional pericytes were more frequently α-SMA-positive relative to pericytes on linear capillary segments. Intravitreal administration of short interfering RNA (α-SMA-siRNA) suppressed α-SMA expression preferentially in high order branch capillary pericytes, confirming the existence of a smaller pool of α-SMA in distal capillary pericytes that is quickly lost by depolymerization. We conclude that capillary pericytes do express α-SMA, which rapidly depolymerizes during tissue fixation thus evading detection by immunolabeling. © 2018, Alarcon-Martinez et al.
Nomura, Kazumi; Hayakawa, Kimihide; Tatsumi, Hitoshi; Ono, Shoichiro
2016-03-04
Actin-interacting protein 1 (AIP1) is a conserved WD repeat protein that promotes disassembly of actin filaments when actin-depolymerizing factor (ADF)/cofilin is present. Although AIP1 is known to be essential for a number of cellular events involving dynamic rearrangement of the actin cytoskeleton, the regulatory mechanism of the function of AIP1 is unknown. In this study, we report that two AIP1 isoforms from the nematode Caenorhabditis elegans, known as UNC-78 and AIPL-1, are pH-sensitive in enhancement of actin filament disassembly. Both AIP1 isoforms only weakly enhance disassembly of ADF/cofilin-bound actin filaments at an acidic pH but show stronger disassembly activity at neutral and basic pH values. However, a severing-defective mutant of UNC-78 shows pH-insensitive binding to ADF/cofilin-decorated actin filaments, suggesting that the process of filament severing or disassembly, but not filament binding, is pH-dependent. His-60 of AIP1 is located near the predicted binding surface for the ADF/cofilin-actin complex, and an H60K mutation of AIP1 partially impairs its pH sensitivity, suggesting that His-60 is involved in the pH sensor for AIP1. These biochemical results suggest that pH-dependent changes in AIP1 activity might be a novel regulatory mechanism of actin filament dynamics. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
ER sheet persistence is coupled to myosin 1c–regulated dynamic actin filament arrays
Joensuu, Merja; Belevich, Ilya; Rämö, Olli; Nevzorov, Ilya; Vihinen, Helena; Puhka, Maija; Witkos, Tomasz M.; Lowe, Martin; Vartiainen, Maria K.; Jokitalo, Eija
2014-01-01
The endoplasmic reticulum (ER) comprises a dynamic three-dimensional (3D) network with diverse structural and functional domains. Proper ER operation requires an intricate balance within and between dynamics, morphology, and functions, but how these processes are coupled in cells has been unclear. Using live-cell imaging and 3D electron microscopy, we identify a specific subset of actin filaments localizing to polygons defined by ER sheets and tubules and describe a role for these actin arrays in ER sheet persistence and, thereby, in maintenance of the characteristic network architecture by showing that actin depolymerization leads to increased sheet fluctuation and transformations and results in small and less abundant sheet remnants and a defective ER network distribution. Furthermore, we identify myosin 1c localizing to the ER-associated actin filament arrays and reveal a novel role for myosin 1c in regulating these actin structures, as myosin 1c manipulations lead to loss of the actin filaments and to similar ER phenotype as observed after actin depolymerization. We propose that ER-associated actin filaments have a role in ER sheet persistence regulation and thus support the maintenance of sheets as a stationary subdomain of the dynamic ER network. PMID:24523293
ER sheet persistence is coupled to myosin 1c-regulated dynamic actin filament arrays.
Joensuu, Merja; Belevich, Ilya; Rämö, Olli; Nevzorov, Ilya; Vihinen, Helena; Puhka, Maija; Witkos, Tomasz M; Lowe, Martin; Vartiainen, Maria K; Jokitalo, Eija
2014-04-01
The endoplasmic reticulum (ER) comprises a dynamic three-dimensional (3D) network with diverse structural and functional domains. Proper ER operation requires an intricate balance within and between dynamics, morphology, and functions, but how these processes are coupled in cells has been unclear. Using live-cell imaging and 3D electron microscopy, we identify a specific subset of actin filaments localizing to polygons defined by ER sheets and tubules and describe a role for these actin arrays in ER sheet persistence and, thereby, in maintenance of the characteristic network architecture by showing that actin depolymerization leads to increased sheet fluctuation and transformations and results in small and less abundant sheet remnants and a defective ER network distribution. Furthermore, we identify myosin 1c localizing to the ER-associated actin filament arrays and reveal a novel role for myosin 1c in regulating these actin structures, as myosin 1c manipulations lead to loss of the actin filaments and to similar ER phenotype as observed after actin depolymerization. We propose that ER-associated actin filaments have a role in ER sheet persistence regulation and thus support the maintenance of sheets as a stationary subdomain of the dynamic ER network.
Kapustina, Maryna; Read, Tracy-Ann
2016-01-01
ABSTRACT Photoactivation allows one to pulse-label molecules and obtain quantitative data about their behavior. We have devised a new modeling-based analysis for photoactivatable actin experiments that simultaneously measures properties of monomeric and filamentous actin in a three-dimensional cellular environment. We use this method to determine differences in the dynamic behavior of β- and γ-actin isoforms, showing that both inhabit filaments that depolymerize at equal rates but that β-actin exists in a higher monomer-to-filament ratio. We also demonstrate that cofilin (cofilin 1) equally accelerates depolymerization of filaments made from both isoforms, but is only required to maintain the β-actin monomer pool. Finally, we used modeling-based analysis to assess actin dynamics in axon-like projections of differentiating neuroblastoma cells, showing that the actin monomer concentration is significantly depleted as the axon develops. Importantly, these results would not have been obtained using traditional half-time analysis. Given that parameters of the publicly available modeling platform can be adjusted to suit the experimental system of the user, this method can easily be used to quantify actin dynamics in many different cell types and subcellular compartments. PMID:27831495
Regulation of the Pollen-Specific Actin-Depolymerizing Factor LlADF1
Allwood, Ellen G.; Anthony, Richard G.; Smertenko, Andrei P.; Reichelt, Stefanie; Drobak, Bjorn K.; Doonan, John H.; Weeds, Alan G.; Hussey, Patrick J.
2002-01-01
Pollen tube growth is dependent on a dynamic actin cytoskeleton, suggesting that actin-regulating proteins are involved. We have examined the regulation of the lily pollen-specific actin-depolymerizing factor (ADF) LlADF1. Its actin binding and depolymerizing activity is pH sensitive, inhibited by certain phosphoinositides, but not controlled by phosphorylation. Compared with its F-actin binding properties, its low activity in depolymerization assays has been used to explain why pollen ADF decorates F-actin in pollen grains. This low activity is incompatible with a role in increasing actin dynamics necessary to promote pollen tube growth. We have identified a plant homolog of actin-interacting protein, AIP1, which enhances the depolymerization of F-actin in the presence of LlADF1 by ∼60%. Both pollen ADF and pollen AIP1 bind F-actin in pollen grains but are mainly cytoplasmic in pollen tubes. Our results suggest that together these proteins remodel actin filaments as pollen grains enter and exit dormancy. PMID:12417710
Pollen specific expression of maize genes encoding actin depolymerizing factor-like proteins.
Lopez, I; Anthony, R G; Maciver, S K; Jiang, C J; Khan, S; Weeds, A G; Hussey, P J
1996-01-01
In pollen development, a dramatic reorganization of the actin cytoskeleton takes place during the passage of the pollen grain into dormancy and on activation of pollen tube growth. A role for actin-binding proteins is implicated and we report here the identification of a small gene family in maize that encodes actin depolymerizing factor (ADF)-like proteins. The ADF group of proteins are believed to control actin polymerization and depolymerization in response to both intracellular and extracellular signals. Two of the maize genes ZmABP1 and ZmABP2 are expressed specifically in pollen and germinating pollen suggesting that the protein products may be involved in pollen actin reorganization. A third gene, ZmABP3, encodes a protein only 56% and 58% identical to ZmABP1 and ZmABP2, respectively, and its expression is suppressed in pollen and germinated pollen. The fundamental biochemical characteristics of the ZmABP proteins has been elucidated using bacterially expressed ZmABP3 protein. This has the ability to bind monomeric actin (G-actin) and filamentous actin (F-actin). Moreover, it decreases the viscosity of polymerized actin solutions consistent with an ability to depolymerize filaments. These biochemical characteristics, taken together with the sequence comparisons, support the inclusion of the ZmABP proteins in the ADF group. Images Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:8693008
Changes in actin dynamics are involved in salicylic acid signaling pathway.
Matoušková, Jindřiška; Janda, Martin; Fišer, Radovan; Sašek, Vladimír; Kocourková, Daniela; Burketová, Lenka; Dušková, Jiřina; Martinec, Jan; Valentová, Olga
2014-06-01
Changes in actin cytoskeleton dynamics are one of the crucial players in many physiological as well as non-physiological processes in plant cells. Positioning of actin filament arrays is necessary for successful establishment of primary lines of defense toward pathogen attack, depolymerization leads very often to the enhanced susceptibility to the invading pathogen. On the other hand it was also shown that the disruption of actin cytoskeleton leads to the induction of defense response leading to the expression of PATHOGENESIS RELATED proteins (PR). In this study we show that pharmacological actin depolymerization leads to the specific induction of genes in salicylic acid pathway but not that involved in jasmonic acid signaling. Life imaging of leafs of Arabidopsis thaliana with GFP-tagged fimbrin (GFP-fABD2) treated with 1 mM salicylic acid revealed rapid disruption of actin filaments resembling the pattern viewed after treatment with 200 nM latrunculin B. The effect of salicylic acid on actin filament fragmentation was prevented by exogenous addition of phosphatidic acid, which binds to the capping protein and thus promotes actin polymerization. The quantitative evaluation of actin filament dynamics is also presented. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Carlier, Marie-France; Laurent, Valérie; Santolini, Jérôme; Melki, Ronald; Didry, Dominique; Xia, Gui-Xian; Hong, Yan; Chua, Nam-Hai; Pantaloni, Dominique
1997-01-01
Actin-binding proteins of the actin depolymerizing factor (ADF)/cofilin family are thought to control actin-based motile processes. ADF1 from Arabidopsis thaliana appears to be a good model that is functionally similar to other members of the family. The function of ADF in actin dynamics has been examined using a combination of physical–chemical methods and actin-based motility assays, under physiological ionic conditions and at pH 7.8. ADF binds the ADPbound forms of G- or F-actin with an affinity two orders of magnitude higher than the ATP- or ADP-Pi– bound forms. A major property of ADF is its ability to enhance the in vitro turnover rate (treadmilling) of actin filaments to a value comparable to that observed in vivo in motile lamellipodia. ADF increases the rate of propulsion of Listeria monocytogenes in highly diluted, ADF-limited platelet extracts and shortens the actin tails. These effects are mediated by the participation of ADF in actin filament assembly, which results in a change in the kinetic parameters at the two ends of the actin filament. The kinetic effects of ADF are end specific and cannot be accounted for by filament severing. The main functionally relevant effect is a 25-fold increase in the rate of actin dissociation from the pointed ends, while the rate of dissociation from the barbed ends is unchanged. This large increase in the rate-limiting step of the monomer-polymer cycle at steady state is responsible for the increase in the rate of actin-based motile processes. In conclusion, the function of ADF is not to sequester G-actin. ADF uses ATP hydrolysis in actin assembly to enhance filament dynamics. PMID:9087445
Yu, Qin; Ren, Jing-Jing; Kong, Lan-Jing; Wang, Xiu-Ling
2018-01-01
During the opening and closing of stomata, guard cells undergo rapid and reversible changes in their volume and shape, which affects the adhesion of the plasma membrane (PM) to the cell wall (CW). The dynamics of actin filaments in guard cells are involved in stomatal movement by regulating structural changes and intracellular signaling. However, it is unclear whether actin dynamics regulate the adhesion of the PM to the CW. In this study, we investigated the relationship between actin dynamics and PM-CW adhesion by the hyperosmotic-induced plasmolysis of tobacco guard cells. We found that actin filaments in guard cells were depolymerized during mannitol-induced plasmolysis. The inhibition of actin dynamics by treatment with latrunculin B or jasplakinolide and the disruption of the adhesion between the PM and the CW by treatment with RGDS peptide (Arg-Gly-Asp-Ser) enhanced guard cell plasmolysis. However, treatment with latrunculin B alleviated the RGDS peptide-induced plasmolysis and endocytosis. Our results reveal that the actin depolymerization is involved in the regulation of the PW-CW adhesion during hyperosmotic-induced plasmolysis in tobacco guard cells.
Non-Straub type actin from molluscan catch muscle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shelud'ko, Nikolay S., E-mail: sheludko@stl.ru; Girich, Ulyana V.; Lazarev, Stanislav S.
We have developed a method of obtaining natural actin from smooth muscles of the bivalves on the example of the Crenomytilus grayanus catch muscle. The muscles were previously rigorized to prevent a loss of thin filaments during homogenization and washings. Thin filaments were isolated with a low ionic strength solution in the presence of ATP and sodium pyrophosphate. Surface proteins of thin filaments-tropomyosin, troponin, calponin and some minor actin-binding proteins-were dissociated from actin filaments by increasing the ionic strength to 0.6 M KCL. Natural fibrillar actin obtained in that way depolymerizes easily in low ionic strength solutions commonly used for themore » extraction of Straub-type actin from acetone powder. Purification of natural actin was carried out by the polymerization–depolymerization cycle. The content of inactivated actin remaining in the supernatant is much less than at a similar purification of Straub-type actin. A comparative investigation was performed between the natural mussel actin and the Straub-type rabbit skeletal actin in terms of the key properties of actin: polymerization, activation of Mg-ATPase activity of myosin, and the electron-microscopic structure of actin polymers. -- Highlights: •We developed method of repolymerizable invertebrate smooth muscle actin obtaining. •Our method does not involve use of denaturating agents, which could modify proteins. •Viscosity and polymerization rate of actin, gained that way, is similar to Straub one. •Electron microscopy showed that repolymerized mussel actin is similar to Straub one. •Repolymerized mussel actin has greater ATPase activating capacity, than Straub actin.« less
Pravin Kumar, R; Roopa, L; Sudheer Mohammed, M M; Kulkarni, Naveen
2016-12-01
Azadirachtin(A) (AZA), a potential insecticide from neem, binds to actin and induces depolymerization in Drosophila. AZA binds to the pocket same as that of Latrunculin A (LAT), but LAT inhibits actin polymerization by stiffening the actin structure and affects the ADP-ATP exchange. The mechanism by which AZA induces actin depolymerization is not clearly understood. Therefore, different computational experiments were conducted to delineate the precise mechanism of AZA-induced actin depolymerization. Molecular dynamics studies showed that AZA strongly interacted with subdomain 2 and destabilized the interactions between subdomain 2 of one actin and subdomains 1 and 4 of the adjacent actin, causing the separation of actin subunits. The separation was observed between subdomain 3 of subunit n and subdomain 4 of subunit n + 2. However, the specific triggering point for the separation of the subunits was the destabilization of direct interactions between subdomain 2 of subunit n (Arg39, Val45, Gly46 and Arg62) and subdomain 4 of subunit n + 2 (Asp286, Ile287, Asp288, Ile289, Asp244 and Lys291). These results reveal a unique mechanism of an actin filament modulator that induces depolymerization. This mechanism of AZA can be used to design similar molecules against mammalian actins for cancer therapy.
Cofilin Changes the Twist of F-Actin: Implications for Actin Filament Dynamics and Cellular Function
McGough, Amy; Pope, Brian; Chiu, Wah; Weeds, Alan
1997-01-01
Cofilin is an actin depolymerizing protein found widely distributed in animals and plants. We have used electron cryomicroscopy and helical reconstruction to identify its binding site on actin filaments. Cofilin binds filamentous (F)-actin cooperatively by bridging two longitudinally associated actin subunits. The binding site is centered axially at subdomain 2 of the lower actin subunit and radially at the cleft between subdomains 1 and 3 of the upper actin subunit. Our work has revealed a totally unexpected (and unique) property of cofilin, namely, its ability to change filament twist. As a consequence of this change in twist, filaments decorated with cofilin have much shorter ‘actin crossovers' (∼75% of those normally observed in F-actin structures). Although their binding sites are distinct, cofilin and phalloidin do not bind simultaneously to F-actin. This is the first demonstration of a protein that excludes another actin-binding molecule by changing filament twist. Alteration of F-actin structure by cofilin/ADF appears to be a novel mechanism through which the actin cytoskeleton may be regulated or remodeled. PMID:9265645
Side-binding proteins modulate actin filament dynamics
Crevenna, Alvaro H; Arciniega, Marcelino; Dupont, Aurélie; Mizuno, Naoko; Kowalska, Kaja; Lange, Oliver F; Wedlich-Söldner, Roland; Lamb, Don C
2015-01-01
Actin filament dynamics govern many key physiological processes from cell motility to tissue morphogenesis. A central feature of actin dynamics is the capacity of filaments to polymerize and depolymerize at their ends in response to cellular conditions. It is currently thought that filament kinetics can be described by a single rate constant for each end. In this study, using direct visualization of single actin filament elongation, we show that actin polymerization kinetics at both filament ends are strongly influenced by the binding of proteins to the lateral filament surface. We also show that the pointed-end has a non-elongating state that dominates the observed filament kinetic asymmetry. Estimates of flexibility as well as effects on fragmentation and growth suggest that the observed kinetic diversity arises from structural alteration. Tuning elongation kinetics by exploiting the malleability of the filament structure may be a ubiquitous mechanism to generate a rich variety of cellular actin dynamics. DOI: http://dx.doi.org/10.7554/eLife.04599.001 PMID:25706231
Ramabhadran, Vinay; Gurel, Pinar S.; Higgs, Henry N.
2012-01-01
INF2 (inverted formin 2) is a formin protein with unusual biochemical characteristics. As with other formins, the formin homology 2 (FH2) domain of INF2 accelerates actin filament assembly and remains at the barbed end, modulating elongation. The unique feature of INF2 is its ability to sever filaments and enhance depolymerization, which requires the C-terminal region. Physiologically, INF2 acts in the secretory pathway and is mutated in two human diseases, focal and segmental glomerulosclerosis and Charcot-Marie-Tooth disease. In this study, we investigate the effects of mutating two FH2 residues found to be key in other formins: Ile-643 and Lys-792. Surprisingly, neither mutation abolishes barbed end binding, as judged by pyrene-actin and total internal reflection (TIRF) microscopy elongation assays. The I643A mutation causes tight capping of a subset of filaments, whereas K792A causes slow elongation of all filaments. The I643A mutation has a minor inhibitory effect on polymerization activity but causes almost complete abolition of severing and depolymerization activity. The K792A mutation has relatively small effects on polymerization, severing, and depolymerization. In cells, the K792A mutant causes actin accumulation around the endoplasmic reticulum to a similar extent as wild type, whereas the I643A mutant causes no measurable polymerization. The inability of I643A to induce actin polymerization in cells is explained by its inability to promote robust actin polymerization in the presence of capping protein. These results highlight an important point: it is dangerous to assume that mutation of conserved FH2 residues will have equivalent effects in all formins. The work also suggests that both mutations have effects on the mechanism of processive elongation. PMID:22879592
Butkevich, Eugenia; Bodensiek, Kai; Fakhri, Nikta; von Roden, Kerstin; Schaap, Iwan A T; Majoul, Irina; Schmidt, Christoph F; Klopfenstein, Dieter R
2015-07-06
Actin filament organization and stability in the sarcomeres of muscle cells are critical for force generation. Here we identify and functionally characterize a Caenorhabditis elegans drebrin-like protein DBN-1 as a novel constituent of the muscle contraction machinery. In vitro, DBN-1 exhibits actin filament binding and bundling activity. In vivo, DBN-1 is expressed in body wall muscles of C. elegans. During the muscle contraction cycle, DBN-1 alternates location between myosin- and actin-rich regions of the sarcomere. In contracted muscle, DBN-1 is accumulated at I-bands where it likely regulates proper spacing of α-actinin and tropomyosin and protects actin filaments from the interaction with ADF/cofilin. DBN-1 loss of function results in the partial depolymerization of F-actin during muscle contraction. Taken together, our data show that DBN-1 organizes the muscle contractile apparatus maintaining the spatial relationship between actin-binding proteins such as α-actinin, tropomyosin and ADF/cofilin and possibly strengthening actin filaments by bundling.
Jiang, Yuxiang; Wang, Juan; Xie, Yurong; Chen, Naizhi; Huang, Shanjin
2017-12-01
Here, we show that Arabidopsis ADF10 plays an important role in shaping the overall organization of apical actin filaments by promoting their turnover and ordering. ADF10 severs and depolymerizes actin filaments in vitro and is distributed throughout the entire pollen tube. In adf10 mutants, severing and monomer dissociation events for apical actin filaments are reduced, and the apical actin structure extends further toward the tube base than in wild-type tubes. In particular, the percentage of apical actin filaments that form large angles to the tube growth axis is much higher in adf10 pollen tubes, and the actin filaments are more randomly distributed, implying that ADF10 promotes their ordering. Consistent with the role of apical actin filaments in physically restricting the movement of vesicles, the region in which apical vesicles accumulate is enlarged at the tip of adf10 pollen tubes. Both tipward and backward movements of small vesicles are altered within the growth domain of adf10 pollen tubes. Thus, our study suggests that ADF10 shapes the organization of apical actin filaments to regulate vesicle trafficking and pollen tube growth. © 2017. Published by The Company of Biologists Ltd.
Effects of basic calponin on the flexural mechanics and stability of F-actin.
Jensen, Mikkel Herholdt; Watt, James; Hodgkinson, Julie L; Gallant, Cynthia; Appel, Sarah; El-Mezgueldi, Mohammed; Angelini, Thomas E; Morgan, Kathleen G; Lehman, William; Moore, Jeffrey R
2012-01-01
The cellular actin cytoskeleton plays a central role in the ability of cells to properly sense, propagate, and respond to external stresses and other mechanical stimuli. Calponin, an actin-binding protein found both in muscle and non-muscle cells, has been implicated in actin cytoskeletal organization and regulation. In this work, we studied the mechanical and structural interaction of actin with basic calponin, a differentiation marker in smooth muscle cells, on a single filament level. We imaged fluorescently labeled thermally fluctuating actin filaments and found that at moderate calponin binding densities, actin filaments were more flexible, evident as a reduction in persistence length from 8.0 to 5.8 μm. When calponin-decorated actin filaments were subjected to shear, we observed a marked reduction of filament lengths after decoration with calponin, which we argue was due to shear-induced filament rupture rather than depolymerization. This increased shear susceptibility was exacerbated with calponin concentration. Cryo-electron microscopy results confirmed previously published negative stain electron microscopy results and suggested alterations in actin involving actin subdomain 2. A weakening of F-actin intermolecular association is discussed as the underlying cause of the observed mechanical perturbations. Copyright © 2011 Wiley Periodicals, Inc.
Mechanisms of the cytopathic action of actin-ADP-ribosylating toxins.
Aktories, K; Wegner, A
1992-10-01
Clostridium botulinum C2 toxin, Clostridium perfringens iota toxin, and Clostridium spiroforme toxin ADP-ribosylate actin monomers. Toxin-induced ADP-ribosylation disturbs the cellular equilibrium between monomeric and polymeric actin and traps monomeric actin in its unpolymerized form, thereby depolymerizing actin filaments and destroying the microfilament network. Furthermore, the toxins ADP-ribosylate gelsolin actin complexes. These modifications may contribute to the cytopathic action of the toxins.
Oxidation of F-actin controls the terminal steps of cytokinesis
Frémont, Stéphane; Hammich, Hussein; Bai, Jian; Wioland, Hugo; Klinkert, Kerstin; Rocancourt, Murielle; Kikuti, Carlos; Stroebel, David; Romet-Lemonne, Guillaume; Pylypenko, Olena; Houdusse, Anne; Echard, Arnaud
2017-01-01
Cytokinetic abscission, the terminal step of cell division, crucially depends on the local constriction of ESCRT-III helices after cytoskeleton disassembly. While the microtubules of the intercellular bridge are cut by the ESCRT-associated enzyme Spastin, the mechanism that clears F-actin at the abscission site is unknown. Here we show that oxidation-mediated depolymerization of actin by the redox enzyme MICAL1 is key for ESCRT-III recruitment and successful abscission. MICAL1 is recruited to the abscission site by the Rab35 GTPase through a direct interaction with a flat three-helix domain found in MICAL1 C terminus. Mechanistically, in vitro assays on single actin filaments demonstrate that MICAL1 is activated by Rab35. Moreover, in our experimental conditions, MICAL1 does not act as a severing enzyme, as initially thought, but instead induces F-actin depolymerization from both ends. Our work reveals an unexpected role for oxidoreduction in triggering local actin depolymerization to control a fundamental step of cell division. PMID:28230050
Contribution of actin filaments to the global compressive properties of fibroblasts.
Ujihara, Yoshihiro; Nakamura, Masanori; Miyazaki, Hiroshi; Wada, Shigeo
2012-10-01
Actin filaments are often regarded as tension-bearing components. Here, we examined the effects of actin filaments on global compressive properties of cells experimentally and numerically. Fibroblasts were harvested from the patellar tendon of a mature Japanese white rabbit and treated with cytochalasin D to depolymerize the actin filaments. Intact cells and cells with disrupted actin filaments were subjected to the compressive tests. Each floating cell was held between the cantilever and compressive plates and compressed by moving the compressive plate with a linear actuator to obtain a load-deformation curve under quasi-static conditions. The experimental results demonstrated that the initial stiffness of a cell with disrupted actin filaments decreased by 51%. After the experiments, we simulated the compressive test of cells with/without bundles of actin filaments. A bundle of actin filaments was modeled as a tension-bearing component that generates a force based on Hooke's law only when it was elongated. By contrast, if it was shortened, it was assumed to exert no force. The computational results revealed that the alignment of bundles of actin filaments significantly affected the cell stiffness. In addition, the passive reorientation of bundles of actin filaments perpendicular to the compression induced an increase in the resistance to the vertical elongation of a cell and thereby increased the cell stiffness. These results clearly indicated that bundles of actin filaments contribute to the compressive properties of a cell, even if they are tension-bearing components. Copyright © 2012 Elsevier Ltd. All rights reserved.
The Actin Depolymerizing Factor (ADF)/Cofilin Signaling Pathway and DNA Damage Responses in Cancer
Chang, Chun-Yuan; Leu, Jyh-Der; Lee, Yi-Jang
2015-01-01
The actin depolymerizing factor (ADF)/cofilin protein family is essential for actin dynamics, cell division, chemotaxis and tumor metastasis. Cofilin-1 (CFL-1) is a primary non-muscle isoform of the ADF/cofilin protein family accelerating the actin filamental turnover in vitro and in vivo. In response to environmental stimulation, CFL-1 enters the nucleus to regulate the actin dynamics. Although the purpose of this cytoplasm-nucleus transition remains unclear, it is speculated that the interaction between CFL-1 and DNA may influence various biological responses, including DNA damage repair. In this review, we will discuss the possible involvement of CFL-1 in DNA damage responses (DDR) induced by ionizing radiation (IR), and the implications for cancer radiotherapy. PMID:25689427
Tropomyosin inhibits ADF/cofilin-dependent actin filament dynamics.
Ono, Shoichiro; Ono, Kanako
2002-03-18
Tropomyosin binds to actin filaments and is implicated in stabilization of actin cytoskeleton. We examined biochemical and cell biological properties of Caenorhabditis elegans tropomyosin (CeTM) and obtained evidence that CeTM is antagonistic to ADF/cofilin-dependent actin filament dynamics. We purified CeTM, actin, and UNC-60B (a muscle-specific ADF/cofilin isoform), all of which are derived from C. elegans, and showed that CeTM and UNC-60B bound to F-actin in a mutually exclusive manner. CeTM inhibited UNC-60B-induced actin depolymerization and enhancement of actin polymerization. Within isolated native thin filaments, actin and CeTM were detected as major components, whereas UNC-60B was present at a trace amount. Purified UNC-60B was unable to interact with the native thin filaments unless CeTM and other associated proteins were removed by high-salt extraction. Purified CeTM was sufficient to restore the resistance of the salt-extracted filaments from UNC-60B. In muscle cells, CeTM and UNC-60B were localized in different patterns. Suppression of CeTM by RNA interference resulted in disorganized actin filaments and paralyzed worms in wild-type background. However, in an ADF/cofilin mutant background, suppression of CeTM did not worsen actin organization and worm motility. These results suggest that tropomyosin is a physiological inhibitor of ADF/cofilin-dependent actin dynamics.
Characterization of actin filament severing by actophorin from Acanthamoeba castellanii
1991-01-01
Actophorin is an abundant 15-kD actinbinding protein from Acanthamoeba that is thought to form a nonpolymerizable complex with actin monomers and also to reduce the viscosity of polymerized actin by severing filaments (Cooper et al., 1986. J. Biol. Chem. 261:477-485). Homologous proteins have been identified in sea urchin, chicken, and mammalian tissues. Chemical crosslinking produces a 1:1 covalent complex of actin and actophorin. Actophorin and profilin compete for crosslinking to actin monomers. The influence of actophorin on the steady-state actin polymer concentration gave a Kd of 0.2 microM for the complex of actophorin with actin monomers. Several new lines of evidence, including assays for actin filament ends by elongation rate and depolymerization rate, show that actophorin severs actin filaments both at steady state and during spontaneous polymerization. This is confirmed by direct observation in the light microscope and by showing that the effects of actophorin on the low shear viscosity of polymerized actin cannot be explained by monomer sequestration. The severing activity of actophorin is strongly inhibited by stoichiometric concentrations of phalloidin or millimolar concentrations of inorganic phosphate. PMID:1757465
Actin Filaments and Myosin I Alpha Cooperate with Microtubules for the Movement of LysosomesV⃞
Cordonnier, Marie-Neige; Dauzonne, Daniel; Louvard, Daniel; Coudrier, Evelyne
2001-01-01
An earlier report suggested that actin and myosin I alpha (MMIα), a myosin associated with endosomes and lysosomes, were involved in the delivery of internalized molecules to lysosomes. To determine whether actin and MMIα were involved in the movement of lysosomes, we analyzed by time-lapse video microscopy the dynamic of lysosomes in living mouse hepatoma cells (BWTG3 cells), producing green fluorescent protein actin or a nonfunctional domain of MMIα. In GFP-actin cells, lysosomes displayed a combination of rapid long-range directional movements dependent on microtubules, short random movements, and pauses, sometimes on actin filaments. We showed that the inhibition of the dynamics of actin filaments by cytochalasin D increased pauses of lysosomes on actin structures, while depolymerization of actin filaments using latrunculin A increased the mobility of lysosomes but impaired the directionality of their long-range movements. The production of a nonfunctional domain of MMIα impaired the intracellular distribution of lysosomes and the directionality of their long-range movements. Altogether, our observations indicate for the first time that both actin filaments and MMIα contribute to the movement of lysosomes in cooperation with microtubules and their associated molecular motors. PMID:11739797
Cook, Mandy; Bolkan, Bonnie J; Kretzschmar, Doris
2014-01-01
loechrig (loe) mutant flies are characterized by progressive neuronal degeneration, behavioral deficits, and early death. The mutation is due to a P-element insertion in the gene for the γ-subunit of the trimeric AMP-activated protein kinase (AMPK) complex, whereby the insertion affects only one of several alternative transcripts encoding a unique neuronal isoform. AMPK is a cellular energy sensor that regulates a plethora of signaling pathways, including cholesterol and isoprenoid synthesis via its downstream target hydroxy-methylglutaryl (HMG)-CoA reductase. We recently showed that loe interferes with isoprenoid synthesis and increases the prenylation and thereby activation of RhoA. During development, RhoA plays an important role in neuronal outgrowth by activating a signaling cascade that regulates actin dynamics. Here we show that the effect of loe/AMPKγ on RhoA prenylation leads to a hyperactivation of this signaling pathway, causing increased phosphorylation of the actin depolymerizating factor cofilin and accumulation of filamentous actin. Furthermore, our results show that the resulting cytoskeletal changes in loe interfere with neuronal growth and disrupt axonal integrity. Surprisingly, these phenotypes were enhanced by expressing the Slingshot (SSH) phosphatase, which during development promotes actin depolymerization by dephosphorylating cofilin. However, our studies suggest that in the adult SSH promotes actin polymerization, supporting in vitro studies using human SSH1 that suggested that SSH can also stabilize and bundle filamentous actin. Together with the observed increase in SSH levels in the loe mutant, our experiments suggest that in mature neurons SSH may function as a stabilization factor for filamentous actin instead of promoting actin depolymerization.
Multiple forms of Spire-actin complexes and their functional consequences.
Chen, Christine K; Sawaya, Michael R; Phillips, Martin L; Reisler, Emil; Quinlan, Margot E
2012-03-23
Spire is a WH2 domain-containing actin nucleator essential for establishing an actin mesh during oogenesis. In vitro, in addition to nucleating filaments, Spire can sever them and sequester actin monomers. Understanding how Spire is capable of these disparate functions and which are physiologically relevant is an important goal. To study severing, we examined the effect of Drosophila Spire on preformed filaments in bulk and single filament assays. We observed rapid depolymerization of actin filaments by Spire, which we conclude is largely due to its sequestration activity and enhanced by its weak severing activity. We also studied the solution and crystal structures of Spire-actin complexes. We find structural and functional differences between constructs containing four WH2 domains (Spir-ABCD) and two WH2 domains (Spir-CD) that may provide insight into the mechanisms of nucleation and sequestration. Intriguingly, we observed lateral interactions between actin monomers associated with Spir-ABCD, suggesting that the structures built by these four tandem WH2 domains are more complex than originally imagined. Finally, we propose that Spire-actin mixtures contain both nuclei and sequestration structures.
Du, Juan; Wang, Xue; Dong, Chun-Hai; Yang, Jian Ming; Yao, Xiao Jun
2016-01-01
Actin is a highly conserved protein. It plays important roles in cellular function and exists either in the monomeric (G-actin) or polymeric form (F-actin). Members of the actin-depolymerizing factor (ADF)/cofilin protein family bind to both G-actin and F-actin and play vital roles in actin dynamics by manipulating the rates of filament polymerization and depolymerization. It has been reported that the S6D and R98A/K100A mutants of actin-depolymerizing factor 1 (ADF1) in Arabidopsis thaliana decreased the binding affinity of ADF for the actin monomer. To investigate the binding mechanism and dynamic behavior of the ADF1-actin complex, we constructed a homology model of the AtADF1-actin complex based on the crystal structure of AtADF1 and the twinfilin C-terminal ADF-H domain in a complex with a mouse actin monomer. The model was then refined for subsequent molecular dynamics simulations. Increased binding energy of the mutated system was observed using the Molecular Mechanics Generalized Born Surface Area and Poisson-Boltzmann Surface Area (MM-GB/PBSA) methods. To determine the residues that make decisive contributions to the ADF1 actin-binding affinity, per-residue decomposition and computational alanine scanning analyses were performed, which provided more detailed information on the binding mechanism. Root-mean-square fluctuation and principal component analyses confirmed that the S6D and R98A/K100A mutants induced an increased conformational flexibility. The comprehensive molecular insight gained from this study is of great importance for understanding the binding mechanism of ADF1 and G-actin.
Wang, Xue; Dong, Chun-Hai; Yang, Jian Ming; Yao, Xiao Jun
2016-01-01
Actin is a highly conserved protein. It plays important roles in cellular function and exists either in the monomeric (G-actin) or polymeric form (F-actin). Members of the actin-depolymerizing factor (ADF)/cofilin protein family bind to both G-actin and F-actin and play vital roles in actin dynamics by manipulating the rates of filament polymerization and depolymerization. It has been reported that the S6D and R98A/K100A mutants of actin-depolymerizing factor 1 (ADF1) in Arabidopsis thaliana decreased the binding affinity of ADF for the actin monomer. To investigate the binding mechanism and dynamic behavior of the ADF1–actin complex, we constructed a homology model of the AtADF1–actin complex based on the crystal structure of AtADF1 and the twinfilin C-terminal ADF-H domain in a complex with a mouse actin monomer. The model was then refined for subsequent molecular dynamics simulations. Increased binding energy of the mutated system was observed using the Molecular Mechanics Generalized Born Surface Area and Poisson–Boltzmann Surface Area (MM-GB/PBSA) methods. To determine the residues that make decisive contributions to the ADF1 actin-binding affinity, per-residue decomposition and computational alanine scanning analyses were performed, which provided more detailed information on the binding mechanism. Root-mean-square fluctuation and principal component analyses confirmed that the S6D and R98A/K100A mutants induced an increased conformational flexibility. The comprehensive molecular insight gained from this study is of great importance for understanding the binding mechanism of ADF1 and G-actin. PMID:27414648
Actin filaments as tension sensors.
Galkin, Vitold E; Orlova, Albina; Egelman, Edward H
2012-02-07
The field of mechanobiology has witnessed an explosive growth over the past several years as interest has greatly increased in understanding how mechanical forces are transduced by cells and how cells migrate, adhere and generate traction. Actin, a highly abundant and anomalously conserved protein, plays a large role in forming the dynamic cytoskeleton that is so essential for cell form, motility and mechanosensitivity. While the actin filament (F-actin) has been viewed as dynamic in terms of polymerization and depolymerization, new results suggest that F-actin itself may function as a highly dynamic tension sensor. This property may help explain the unusual conservation of actin's sequence, as well as shed further light on actin's essential role in structures from sarcomeres to stress fibers. Copyright © 2012 Elsevier Ltd. All rights reserved.
Kommaddi, Reddy Peera; Das, Debajyoti; Karunakaran, Smitha; Nanguneri, Siddharth; Bapat, Deepti; Ray, Ajit; Shaw, Eisha; Bennett, David A; Nair, Deepak; Ravindranath, Vijayalakshmi
2018-01-31
Dendritic spine loss is recognized as an early feature of Alzheimer's disease (AD), but the underlying mechanisms are poorly understood. Dendritic spine structure is defined by filamentous actin (F-actin) and we observed depolymerization of synaptosomal F-actin accompanied by increased globular-actin (G-actin) at as early as 1 month of age in a mouse model of AD (APPswe/PS1ΔE9, male mice). This led to recall deficit after contextual fear conditioning (cFC) at 2 months of age in APPswe/PS1ΔE9 male mice, which could be reversed by the actin-polymerizing agent jasplakinolide. Further, the F-actin-depolymerizing agent latrunculin induced recall deficit after cFC in WT mice, indicating the importance of maintaining F-/G-actin equilibrium for optimal behavioral response. Using direct stochastic optical reconstruction microscopy (dSTORM), we show that F-actin depolymerization in spines leads to a breakdown of the nano-organization of outwardly radiating F-actin rods in cortical neurons from APPswe/PS1ΔE9 mice. Our results demonstrate that synaptic dysfunction seen as F-actin disassembly occurs very early, before onset of pathological hallmarks in AD mice, and contributes to behavioral dysfunction, indicating that depolymerization of F-actin is causal and not consequent to decreased spine density. Further, we observed decreased synaptosomal F-actin levels in postmortem brain from mild cognitive impairment and AD patients compared with subjects with normal cognition. F-actin decrease correlated inversely with increasing AD pathology (Braak score, Aβ load, and tangle density) and directly with performance in episodic and working memory tasks, suggesting its role in human disease pathogenesis and progression. SIGNIFICANCE STATEMENT Synaptic dysfunction underlies cognitive deficits in Alzheimer's disease (AD). The cytoskeletal protein actin plays a critical role in maintaining structure and function of synapses. Using cultured neurons and an AD mouse model, we show for the first time that filamentous actin (F-actin) is lost selectively from synapses early in the disease process, long before the onset of classical AD pathology. We also demonstrate that loss of synaptic F-actin contributes directly to memory deficits. Loss of synaptosomal F-actin in human postmortem tissue correlates directly with decreased performance in memory test and inversely with AD pathology. Our data highlight that synaptic cytoarchitectural changes occur early in AD and they may be targeted for the development of therapeutics. Copyright © 2018 Kommaddi et al.
Feedback Mechanisms in a Mechanical Model of Cell Polarization
Wang, Xinxin; Carlsson, Anders E.
2014-01-01
Directed cell migration requires a spatially polarized distribution of polymerized actin. We develop and treat a mechanical model of cell polarization based on polymerization and depolymerization of actin filaments at the two ends of a cell, modulated by forces at either end that are coupled by the cell membrane. We solve this model using both a simulation approach that treats filament nucleation, polymerization, and depolymerization stochastically, and a rate-equation approach based on key properties such as the number of filaments N and the number of polymerized subunits F at either end of the cell. The rate-equation approach agrees closely with the stochastic approach at steady state and, when appropriately generalized, also predicts the dynamic behavior accurately. The calculated transitions from symmetric to polarized states show that polarization is enhanced by a high free-actin concentration, a large pointed-end off-rate, a small barbed-end off-rate, and a small spontaneous nucleation rate. The rate-equation approach allows us to perform a linear-stability analysis to pin down the key interactions that drive the polarization. The polarization is driven by a positive-feedback loop having two interactions. First, an increase in F at one side of the cell lengthens the filaments and thus reduces the decay rate of N (increasing N); second, increasing N enhances F because the force per growing filament tip is reduced. We find that the transitions induced by changing system properties result from supercritical pitchfork bifurcations. The filament lifetime depends strongly on the average filament length, and this effect is crucial for obtaining polarization correctly. PMID:25313164
Dynamics of Actin Cables in Polarized Growth of the Filamentous Fungus Aspergillus nidulans
Bergs, Anna; Ishitsuka, Yuji; Evangelinos, Minoas; Nienhaus, G. U.; Takeshita, Norio
2016-01-01
Highly polarized growth of filamentous fungi requires a continuous supply of proteins and lipids to the hyphal tip. This transport is managed by vesicle trafficking via the actin and microtubule cytoskeletons and their associated motor proteins. Particularly, actin cables originating from the hyphal tip are essential for hyphal growth. Although, specific marker proteins have been developed to visualize actin cables in filamentous fungi, the exact organization and dynamics of actin cables has remained elusive. Here, we observed actin cables using tropomyosin (TpmA) and Lifeact fused to fluorescent proteins in living Aspergillus nidulans hyphae and studied the dynamics and regulation. GFP tagged TpmA visualized dynamic actin cables formed from the hyphal tip with cycles of elongation and shrinkage. The elongation and shrinkage rates of actin cables were similar and approximately 0.6 μm/s. Comparison of actin markers revealed that high concentrations of Lifeact reduced actin dynamics. Simultaneous visualization of actin cables and microtubules suggests temporally and spatially coordinated polymerization and depolymerization between the two cytoskeletons. Our results provide new insights into the molecular mechanism of ordered polarized growth regulated by actin cables and microtubules. PMID:27242709
Augustine, Robert C.; Pattavina, Kelli A.; Tüzel, Erkan; Vidali, Luis; Bezanilla, Magdalena
2011-01-01
The remodeling of actin networks is required for a variety of cellular processes in eukaryotes. In plants, several actin binding proteins have been implicated in remodeling cortical actin filaments (F-actin). However, the extent to which these proteins support F-actin dynamics in planta has not been tested. Using reverse genetics, complementation analyses, and cell biological approaches, we assessed the in vivo function of two actin turnover proteins: actin interacting protein1 (AIP1) and actin depolymerizing factor (ADF). We report that AIP1 is a single-copy gene in the moss Physcomitrella patens. AIP1 knockout plants are viable but have reduced expansion of tip-growing cells. AIP1 is diffusely cytosolic and functions in a common genetic pathway with ADF to promote tip growth. Specifically, ADF can partially compensate for loss of AIP1, and AIP1 requires ADF for function. Consistent with a role in actin remodeling, AIP1 knockout lines accumulate F-actin bundles, have fewer dynamic ends, and have reduced severing frequency. Importantly, we demonstrate that AIP1 promotes and ADF is essential for cortical F-actin dynamics. PMID:22003077
Self-assembly of actin monomers into long filaments: Brownian dynamics simulations
NASA Astrophysics Data System (ADS)
Guo, Kunkun; Shillcock, Julian; Lipowsky, Reinhard
2009-07-01
Brownian dynamics simulations are used to study the dynamical process of self-assembly of actin monomers into long filaments containing up to 1000 actin protomers. In order to overcome the large separation of time scales between the diffusive motion of the free monomers and the relatively slow attachment and detachment processes at the two ends of the filaments, we introduce a novel rescaling procedure by which we speed all dynamical processes related to actin polymerization and depolymerization up by the same factor. In general, the actin protomers within a filament can attain three different states corresponding to a bound adenosine triphosphate (ATP), adenosine diphosphate with inorganic phosphate (ADP/P), and ADP molecule. The simplest situation that has been studied experimentally is provided by the polymerization of ADP-actin, for which all protomers are identical. This case is used to unravel certain relations between the filament's physical properties and the model parameters such as the attachment rate constant and the size of the capture zone, the detachment rate and the probability of the detached event, as well as the growth rate and waiting times between two successive attachment/detachment events. When a single filament is allowed to grow in a bath of constant concentration of free ADP-actin monomers, its growth rate increases linearly with the free monomer concentration in quantitative agreement with in vitro experiments. The results also show that the waiting time is governed by exponential distributions and that the two ends of a filament undergo biased random walks. The filament length fluctuations are described by a length diffusion constant that is found to attain a constant value at low ADP-actin concentration and to increase linearly with this concentration. It is straightforward to apply our simulation code to more complex processes such as polymerization of ATP-actin coupled to ATP hydrolysis, force generation by filaments, formation of filament bundles, and filament-membrane interactions.
Haldeman, Brian D.; Brizendine, Richard K.; Facemyer, Kevin C.; Baker, Josh E.; Cremo, Christine R.
2014-01-01
Actin-myosin interactions are well studied using soluble myosin fragments, but little is known about effects of myosin filament structure on mechanochemistry. We stabilized unphosphorylated smooth muscle myosin (SMM) and phosphorylated smooth muscle myosin (pSMM) filaments against ATP-induced depolymerization using a cross-linker and attached fluorescent rhodamine (XL-Rh-SMM). Electron micrographs showed that these side polar filaments are very similar to unmodified filaments. They are ∼0.63 μm long and contain ∼176 molecules. Rate constants for ATP-induced dissociation and ADP release from acto-myosin for filaments and S1 heads were similar. Actin-activated ATPases of SMM and XL-Rh-SMM were similarly regulated. XL-Rh-pSMM filaments moved processively on F-actin that was bound to a PEG brush surface. ATP dependence of filament velocities was similar to that for solution ATPases at high [actin], suggesting that both processes are limited by the same kinetic step (weak to strong transition) and therefore are attachment-limited. This differs from actin sliding over myosin monomers, which is primarily detachment-limited. Fitting filament data to an attachment-limited model showed that approximately half of the heads are available to move the filament, consistent with a side polar structure. We suggest the low stiffness subfragment 2 (S2) domain remains unhindered during filament motion in our assay. Actin-bound negatively displaced heads will impart minimal drag force because of S2 buckling. Given the ADP release rate, the velocity, and the length of S2, these heads will detach from actin before slack is taken up into a backwardly displaced high stiffness position. This mechanism explains the lack of detachment-limited kinetics at physiological [ATP]. These findings address how nonlinear elasticity in assemblies of motors leads to efficient collective force generation. PMID:24907276
Kim, So Yeon; Gitai, Zemer; Kinkhabwala, Anika; Shapiro, Lucy; Moerner, W E
2006-07-18
The actin cytoskeleton represents a key regulator of multiple essential cellular functions in both eukaryotes and prokaryotes. In eukaryotes, these functions depend on the orchestrated dynamics of actin filament assembly and disassembly. However, the dynamics of the bacterial actin homolog MreB have yet to be examined in vivo. In this study, we observed the motion of single fluorescent MreB-yellow fluorescent protein fusions in living Caulobacter cells in a background of unlabeled MreB. With time-lapse imaging, polymerized MreB [filamentous MreB (fMreB)] and unpolymerized MreB [globular MreB (gMreB)] monomers could be distinguished: gMreB showed fast motion that was characteristic of Brownian diffusion, whereas the labeled molecules in fMreB displayed slow, directed motion. This directional movement of labeled MreB in the growing polymer provides an indication that, like actin, MreB monomers treadmill through MreB filaments by preferential polymerization at one filament end and depolymerization at the other filament end. From these data, we extract several characteristics of single MreB filaments, including that they are, on average, much shorter than the cell length and that the direction of their polarized assembly seems to be independent of the overall cellular polarity. Thus, MreB, like actin, exhibits treadmilling behavior in vivo, and the long MreB structures that have been visualized in multiple bacterial species seem to represent bundles of short filaments that lack a uniform global polarity.
Jiang, Chang-Jie; Weeds, Alan G.; Khan, Safina; Hussey, Patrick J.
1997-01-01
Actin depolymerizing factors (ADF) are stimulus responsive actin cytoskeleton modulating proteins. They bind both monomeric actin (G-actin) and filamentous actin (F-actin) and, under certain conditions, F-actin binding is followed by filament severing. In this paper, using mutant maize ADF3 proteins, we demonstrate that the maize ADF3 binding of F-actin can be spatially distinguished from that of G-actin. One mutant, zmadf3–1, in which Tyr-103 and Ala-104 (equivalent to destrin Tyr-117 and Ala-118) have been replaced by phenylalanine and glycine, respectively, binds more weakly to both G-actin and F-actin compared with maize ADF3. A second mutant, zmadf3–2, in which both Tyr-67 and Tyr-70 are replaced by phenylalanine, shows an affinity for G-actin similar to maize ADF3, but F-actin binding is abolished. The two tyrosines, Tyr-67 and Tyr-70, are in the equivalent position to Tyr-82 and Tyr-85 of destrin, respectively. Using the tertiary structure of destrin, yeast cofilin, and Acanthamoeba actophorin, we discuss the implications of removing the aromatic hydroxyls of Tyr-82 and Tyr-85 (i.e., the effect of substituting phenylalanine for tyrosine) and conclude that Tyr-82 plays a critical role in stabilizing the tertiary structure that is essential for F-actin binding. We propose that this tertiary structure is maintained as a result of a hydrogen bond between the hydroxyl of Tyr-82 and the carbonyl of Tyr-117, which is located in the long α-helix; amino acid components of this helix (Leu-111 to Phe-128) have been implicated in G-actin and F-actin binding. The structures of human destrin and yeast cofilin indicate a hydrogen distance of 2.61 and 2.77 Å, respectively, with corresponding bond angles of 99.5° and 113°, close to the optimum for a strong hydrogen bond. PMID:9275236
Colavin, Alexandre; Hsin, Jen; Huang, Kerwyn Casey
2014-01-01
The assembly of protein filaments drives many cellular processes, from nucleoid segregation, growth, and division in single cells to muscle contraction in animals. In eukaryotes, shape and motility are regulated through cycles of polymerization and depolymerization of actin cytoskeletal networks. In bacteria, the actin homolog MreB forms filaments that coordinate the cell-wall synthesis machinery to regulate rod-shaped growth and contribute to cellular stiffness through unknown mechanisms. Like actin, MreB is an ATPase and requires ATP to polymerize, and polymerization promotes nucleotide hydrolysis. However, it is unclear whether other similarities exist between MreB and actin because the two proteins share low sequence identity and have distinct cellular roles. Here, we use all-atom molecular dynamics simulations to reveal surprising parallels between MreB and actin structural dynamics. We observe that MreB exhibits actin-like polymerization-dependent structural changes, wherein polymerization induces flattening of MreB subunits, which restructures the nucleotide-binding pocket to favor hydrolysis. MreB filaments exhibited nucleotide-dependent intersubunit bending, with hydrolyzed polymers favoring a straighter conformation. We use steered simulations to demonstrate a coupling between intersubunit bending and the degree of flattening of each subunit, suggesting cooperative bending along a filament. Taken together, our results provide molecular-scale insight into the diversity of structural states of MreB and the relationships among polymerization, hydrolysis, and filament properties, which may be applicable to other members of the broad actin family. PMID:24550504
Colavin, Alexandre; Hsin, Jen; Huang, Kerwyn Casey
2014-03-04
The assembly of protein filaments drives many cellular processes, from nucleoid segregation, growth, and division in single cells to muscle contraction in animals. In eukaryotes, shape and motility are regulated through cycles of polymerization and depolymerization of actin cytoskeletal networks. In bacteria, the actin homolog MreB forms filaments that coordinate the cell-wall synthesis machinery to regulate rod-shaped growth and contribute to cellular stiffness through unknown mechanisms. Like actin, MreB is an ATPase and requires ATP to polymerize, and polymerization promotes nucleotide hydrolysis. However, it is unclear whether other similarities exist between MreB and actin because the two proteins share low sequence identity and have distinct cellular roles. Here, we use all-atom molecular dynamics simulations to reveal surprising parallels between MreB and actin structural dynamics. We observe that MreB exhibits actin-like polymerization-dependent structural changes, wherein polymerization induces flattening of MreB subunits, which restructures the nucleotide-binding pocket to favor hydrolysis. MreB filaments exhibited nucleotide-dependent intersubunit bending, with hydrolyzed polymers favoring a straighter conformation. We use steered simulations to demonstrate a coupling between intersubunit bending and the degree of flattening of each subunit, suggesting cooperative bending along a filament. Taken together, our results provide molecular-scale insight into the diversity of structural states of MreB and the relationships among polymerization, hydrolysis, and filament properties, which may be applicable to other members of the broad actin family.
Nucleus-associated actin in Amoeba proteus.
Berdieva, Mariia; Bogolyubov, Dmitry; Podlipaeva, Yuliya; Goodkov, Andrew
2016-10-01
The presence, spatial distribution and forms of intranuclear and nucleus-associated cytoplasmic actin were studied in Amoeba proteus with immunocytochemical approaches. Labeling with different anti-actin antibodies and staining with TRITC-phalloidin and fluorescent deoxyribonuclease I were used. We showed that actin is abundant within the nucleus as well as in the cytoplasm of A. proteus cells. According to DNase I experiments, the predominant form of intranuclear actin is G-actin which is associated with chromatin strands. Besides, unpolymerized actin was shown to participate in organization of a prominent actin layer adjacent to the outer surface of nuclear envelope. No significant amount of F-actin was found in the nucleus. At the same time, the amoeba nucleus is enclosed in a basket-like structure formed by circumnuclear actin filaments and bundles connected with global cytoplasmic actin cytoskeleton. A supposed architectural function of actin filaments was studied by treatment with actin-depolymerizing agent latrunculin A. It disassembled the circumnuclear actin system, but did not affect the intranuclear chromatin structure. The results obtained for amoeba cells support the modern concept that actin is involved in fundamental nuclear processes that have evolved in the cells of multicellular organisms. Copyright © 2016 Elsevier GmbH. All rights reserved.
Sengupta, Sonali; Mangu, Venkata; Sanchez, Luis; Bedre, Renesh; Joshi, Rohit; Rajasekaran, Kanniah; Baisakh, Niranjan
2018-05-31
Actin depolymerizing factors (ADFs) maintain the cellular actin network dynamics by regulating severing and disassembly of actin filaments in response to environmental cues. An ADF isolated from a monocot halophyte, Spartina alterniflora (SaADF2) imparted significantly higher level of drought and salinity tolerance when expressed in rice than its rice homologue OsADF2. SaADF2 differs from OsADF2 by a few amino acid residues, including a substitution in the regulatory phosphorylation site serine-6, which accounted for its weak interaction with OsCDPK6 (calcium dependent protein kinase), thus resulting in an increased efficacy of SaADF2 and enhanced cellular actin dynamics. SaADF2 overexpression preserved the actin filament organization better in rice protoplasts under desiccation stress. The predicted tertiary structure of SaADF2 showed a longer F-loop than OsADF2 that could have contributed to higher actin-binding affinity and rapid F-actin depolymerization in vitro by SaADF2. Rice transgenics constitutively overexpressing SaADF2 (SaADF2-OE) showed better growth, relative water content, and photosynthetic and agronomic yield under drought conditions than wild-type (WT) and OsADF2 overexpressers (OsADF2-OE). SaADF2-OE preserved intact grana structure after prolonged drought stress, whereas WT and OsADF2-OE presented highly damaged and disorganized grana stacking. The possible role of ADF2 in transactivation was hypothesized from the comparative transcriptome analyses, which showed significant differential expression of stress-related genes including interacting partners of ADF2 in overexpressers. Identification of a complex, differential interactome decorating or regulating stress-modulated cytoskeleton driven by ADF isoforms will lead us to key pathways that could be potential target for genome engineering to improve abiotic stress tolerance in agricultural crops. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
[Cytoskeletal actin and its associated proteins. Some examples in Protista].
Guillén, N; Carlier, M F; Brugerolle, G; Tardieux, I; Ausseil, J
1998-06-01
Many processes, cell motility being an example, require cells to remodel the actin cytoskeleton in response to both intracellular and extracellular signals. Reorganization of the actin cytoskeleton involves the rapid disassembly and reassembly of actin filaments, a phenomenon regulated by the action of particular actin-binding proteins. In recent years, an interest in studying actin regulation in unicellular organisms has arisen. Parasitic protozoan are among these organisms and studies of the cytoskeleton functions of these protozoan are relevant related to either cell biology or pathogenicity. To discuss recent data in this field, a symposium concerning "Actin and actin-binding proteins in protists" was held on May 8-11 in Paris, France, during the XXXV meeting of the French Society of Protistology. As a brief summary of the symposium we report here findings concerning the in vitro actin dynamic assembly, as well as the characterization of several actin-binding proteins from the parasitic protozoan Entamoeba histolytica, Trichomonas vaginalis and Plasmodium knowlesi. In addition, localization of actin in non-pathogen protists such as Prorocentrum micans and Crypthecodinium cohnii is also presented. The data show that some actin-binding proteins facilitate organization of filaments into higher order structures as pseudopods, while others have regulatory functions, indicating very particular roles for actin-binding proteins. One of the proteins discussed during the symposium, the actin depolymerizing factor ADF, was shown to enhance the treadmilling rate of actin filaments. In vitro, ADF binds to the ADP-bound forms of G-actin and F-actin, thereby participating in and changing the rate of actin assembly. Biochemical approaches allowed the identification of a protein complex formed by HSP/C70-cap32-34 which might also be involved in depolymerization of F-actin in P. knowlesi. Molecular and cellular approaches were used to identify proteins such as ABP-120 and myosin IB at the leading edge of E. histolytica. ABP-120 organizes F-actin in a network and myosin IB participates in the pseudopod formation. Similar approaches using T. vaginalis resulted in the discovery of an actin-binding protein that participate in the F-actin reorganization during adhesion of parasites to target cells. This protein is homologous to alpha-actinin from other eukaryotic cells. Finally, by using cell biology approaches, F-actin was observed in the cytoplasm as well as in the nucleus of Dinoflagellates. The recent developments in the molecular genetics of protozoa will provide new insights to understand the roles of actin-binding proteins during cytoskeleton activities.
Latrunculin B-induced plant dwarfism: Plant cell elongation is F-actin-dependent.
Baluska, F; Jasik, J; Edelmann, H G; Salajová, T; Volkmann, D
2001-03-01
Marine macrolides latrunculins are highly specific toxins which effectively depolymerize actin filaments (generally F-actin) in all eukaryotic cells. We show that latrunculin B is effective on diverse cell types in higher plants and describe the use of this drug in probing F-actin-dependent growth and in plant development-related processes. In contrast to other eukaryotic organisms, cell divisions occurs in plant cells devoid of all actin filaments. However, the alignment of the division planes is often distorted. In addition to cell division, postembryonic development and morphogenesis also continue in the absence of F-actin. These experimental data suggest that F-actin is of little importance in the morphogenesis of higher plants, and that plants can develop more or less normally without F-actin. In contrast, F-actin turns out to be essential for cell elongation. When latrunculin B was added during germination, morphologically normal Arabidopsis and rye seedlings developed but, as a result of the absence of cell elongation, these were stunted, resembling either genetic dwarfs or environmental bonsai plants. In conclusion, F-actin is essential for the plant cell elongation, while this F-actin-dependent cell elongation is not an essential feature of plant-specific developmental programs.
Kobayashi, Hiroaki; Yamada, Masahiro; Taniguchi, Mitsutaka; Kawasaki, Michio; Sugiyama, Tatsuo; Miyake, Hiroshi
2009-01-01
In C(4) plants, bundle sheath (BS) chloroplasts are arranged in the centripetal position or in the centrifugal position, although mesophyll (M) chloroplasts are evenly distributed along cell membranes. To examine the molecular mechanism for the intracellular disposition of these chloroplasts, we observed the distribution of actin filaments in BS and M cells of the C(4) plants finger millet (Eleusine coracana) and maize (Zea mays) using immunofluorescence. Fine actin filaments encircled chloroplasts in both cell types, and an actin network was observed adjacent to plasma membranes. The intracellular disposition of both chloroplasts in finger millet was disrupted by centrifugal force but recovered within 2 h in the dark. Actin filaments remained associated with chloroplasts during recovery. We also examined the effects of inhibitors on the rearrangement of chloroplasts. Inhibitors of actin polymerization, myosin-based activities and cytosolic protein synthesis blocked migration of chloroplasts. In contrast, a microtubule-depolymerizing drug had no effect. These results show that C(4) plants possess a mechanism for keeping chloroplasts in the home position which is dependent on the actomyosin system and cytosolic protein synthesis but not tubulin or light.
The Role of Structural Dynamics of Actin in Class-Specific Myosin Motility
Noguchi, Taro Q. P.; Morimatsu, Masatoshi; Iwane, Atsuko H.; Yanagida, Toshio; Uyeda, Taro Q. P.
2015-01-01
The structural dynamics of actin, including the tilting motion between the small and large domains, are essential for proper interactions with actin-binding proteins. Gly146 is situated at the hinge between the two domains, and we previously showed that a G146V mutation leads to severe motility defects in skeletal myosin but has no effect on motility of myosin V. The present study tested the hypothesis that G146V mutation impaired rotation between the two domains, leading to such functional defects. First, our study showed that depolymerization of G146V filaments was slower than that of wild-type filaments. This result is consistent with the distinction of structural states of G146V filaments from those of the wild type, considering the recent report that stabilization of actin filaments involves rotation of the two domains. Next, we measured intramolecular FRET efficiencies between two fluorophores in the two domains with or without skeletal muscle heavy meromyosin or the heavy meromyosin equivalent of myosin V in the presence of ATP. Single-molecule FRET measurements showed that the conformations of actin subunits of control and G146V actin filaments were different in the presence of skeletal muscle heavy meromyosin. This altered conformation of G146V subunits may lead to motility defects in myosin II. In contrast, distributions of FRET efficiencies of control and G146V subunits were similar in the presence of myosin V, consistent with the lack of motility defects in G146V actin with myosin V. The distribution of FRET efficiencies in the presence of myosin V was different from that in the presence of skeletal muscle heavy meromyosin, implying that the roles of actin conformation in myosin motility depend on the type of myosin. PMID:25945499
Requirements for Hirano Body Formation
Griffin, Paul; Piggott, Cleveland; Maselli, Andrew; Fechheimer, Marcus
2014-01-01
Hirano bodies are paracrystalline F-actin-rich structures associated with diverse conditions, including neurodegeneration and aging. Generation of model Hirano bodies using altered forms of Dictyostelium 34-kDa actin-bundling protein allows studies of their physiological function and mechanism of formation. We describe a novel 34-kDa protein mutant, E60K, with a point mutation within the inhibitory domain of the 34-kDa protein. Expression of E60K in Dictyostelium induces the formation of model Hirano bodies. The E60K protein has activated actin binding and is calcium regulated, unlike other forms of the 34-kDa protein that induce Hirano bodies and that have activated actin binding but lack calcium regulation. Actin filaments in the presence of E60K in vitro show enhanced resistance to disassembly induced by latrunculin B. Actin filaments in model Hirano bodies are also protected from latrunculin-induced depolymerization. We used nocodazole and blebbistatin to probe the role of the microtubules and myosin II, respectively, in the formation of model Hirano bodies. In the presence of these inhibitors, model Hirano bodies can form but are smaller than controls at early times of formation. The ultrastructure of model Hirano bodies did not reveal any major difference in structure and organization in the presence of inhibitors. In summary, these results support the conclusion that formation of model Hirano bodies is promoted by gain-of-function actin filament bundling, which enhances actin filament stabilization. Microtubules and myosin II contribute to but are not required for formation of model Hirano bodies. PMID:24632241
F-actin distribution and function during sexual development in Eimeria maxima.
Frölich, Sonja; Wallach, Michael
2015-06-01
To determine the involvement of the actin cytoskeleton in macrogametocyte growth and oocyst wall formation, freshly purified macrogametocytes and oocysts were stained with Oregon Green 514 conjugated phalloidin to visualize F-actin microfilaments, while Evans blue staining was used to detect type 1 wall forming bodies (WFB1s) and the outer oocyst wall. The double-labelled parasites were then analysed at various stages of sexual development using three-dimensional confocal microscopy. The results showed F-actin filaments were distributed throughout the entire cytoplasm of mature Eimeria maxima macrogametocytes forming a web-like meshwork of actin filaments linking the type 1 WFBs together into structures resembling 'beads on a string'. At the early stages of oocyst wall formation, F-actin localization changed in alignment with the egg-shaped morphology of the forming oocysts with F-actin microfilaments making direct contact with the WFB1s. In tissue oocysts, the labelled actin cytoskeleton was situated underneath the forming outer layer of the oocyst wall. Treatment of macrogametocytes in vitro with the actin depolymerizing agents, Cytochalasin D and Latrunculin, led to a reduction in the numbers of mature WFB1s in the cytoplasm of the developing macrogametocytes, indicating that the actin plays an important role in WFB1 transport and oocyst wall formation in E. maxima.
Sommer, Aniela; Hoeftberger, Margit; Hoepflinger, Marion C.; Schmalbrock, Sarah; Bulychev, Alexander; Foissner, Ilse
2015-01-01
Charasomes are convoluted plasma membrane domains in the green alga Chara australis. They harbor H+-ATPases involved in acidification of the medium, which facilitates carbon uptake required for photosynthesis. In this study we investigated the distribution of cortical microtubules and cortical actin filaments in relation to the distribution of charasomes. We found that microtubules and actin filaments were largely lacking beneath the charasomes, suggesting the absence of nucleating and/or anchoring complexes or an inhibitory effect on polymerization. We also investigated the influence of cytoskeleton inhibitors on the light-dependent growth and the darkness-induced degradation of charasomes. Inhibition of cytoplasmic streaming by cytochalasin D significantly inhibited charasome growth and delayed charasome degradation, whereas depolymerization of microtubules by oryzalin or stabilization of microtubules by paclitaxel had no effect. Our data indicate that the membrane at the cytoplasmic surface of charasomes has different properties in comparison with the smooth plasma membrane. We show further that the actin cytoskeleton is necessary for charasome growth and facilitates charasome degradation presumably via trafficking of secretory and endocytic vesicles, respectively. However, microtubules are required neither for charasome growth nor for charasome degradation. PMID:26272553
Immunodetection and intracellular localization of caldesmon-like proteins in Amoeba proteus.
Gagola, M; Kłopocka, W; Greebecki, A; Makuch, R
2003-09-01
Caldesmon immunoanalogues were detected in Amoeba proteus cell homogenates by the Western blot technique. Three immunoreactive bands were recognized by polyclonal antibodies against the whole molecule of chicken gizzard caldesmon as well as by a monoclonal antibody against its C-terminal domain: one major and two minor bands corresponding to proteins with apparent molecular masses of 150, 69, and 60 kDa. The presence of caldesmon-like protein(s) in amoebae was revealed as well in single cells after their fixation, staining with the same antibodies, and recording their total fluorescence in a confocal laser scanning microscope. Proteins recognized by the antibodies bind to filamentous actin. This was established by a cosedimentation assay in cell homogenates and by colocalization of the caldesmon-related immunofluorescence with the fluorescence of filamentous actin stained with rhodamine-labelled phalloidin, demonstrated in optical sections of single cells in a confocal microscope. Caldesmon is colocalized with filamentous actin in the withdrawn cell regions where the cortical actomyosin network contracts and actin is depolymerized, in the frontal zone where actin is polymerized again and the cortical cytoskeleton is reconstructed, inside the nucleus and in the perinuclear cytoskeleton, and probably at the cell-to-substratum adhesion sites. The regulatory role of caldesmon in these functionally different regions of locomoting amoebae is discussed.
Autism-like Deficits in Shank3-Deficient Mice Are Rescued by Targeting Actin Regulators.
Duffney, Lara J; Zhong, Ping; Wei, Jing; Matas, Emmanuel; Cheng, Jia; Qin, Luye; Ma, Kaijie; Dietz, David M; Kajiwara, Yuji; Buxbaum, Joseph D; Yan, Zhen
2015-06-09
Haploinsufficiency of the Shank3 gene, which encodes a scaffolding protein at glutamatergic synapses, is a highly prevalent and penetrant risk factor for autism. Using combined behavioral, electrophysiological, biochemical, imaging, and molecular approaches, we find that Shank3-deficient mice exhibit autism-like social deficits and repetitive behaviors, as well as the significantly diminished NMDA receptor (NMDAR) synaptic function and synaptic distribution in prefrontal cortex. Concomitantly, Shank3-deficient mice have a marked loss of cortical actin filaments, which is associated with the reduced Rac1/PAK activity and increased activity of cofilin, the major actin depolymerizing factor. The social deficits and NMDAR hypofunction are rescued by inhibiting cofilin or activating Rac1 in Shank3-deficient mice and are induced by inhibiting PAK or Rac1 in wild-type mice. These results indicate that the aberrant regulation of synaptic actin filaments and loss of synaptic NMDARs contribute to the manifestation of autism-like phenotypes. Thus, targeting actin regulators provides a strategy for autism treatment. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Foster, D Brian; Huang, Renjian; Hatch, Victoria; Craig, Roger; Graceffa, Philip; Lehman, William; Wang, C-L Albert
2004-12-17
Smooth muscle caldesmon binds actin and inhibits actomyosin ATPase activity. Phosphorylation of caldesmon by extracellular signal-regulated kinase (ERK) reverses this inhibitory effect and weakens actin binding. To better understand this function, we have examined the phosphorylation-dependent contact sites of caldesmon on actin by low dose electron microscopy and three-dimensional reconstruction of actin filaments decorated with a C-terminal fragment, hH32K, of human caldesmon containing the principal actin-binding domains. Helical reconstruction of negatively stained filaments demonstrated that hH32K is located on the inner portion of actin subdomain 1, traversing its upper surface toward the C-terminal segment of actin, and forms a bridge to the neighboring actin monomer of the adjacent long pitch helical strand by connecting to its subdomain 3. Such lateral binding was supported by cross-linking experiments using a mutant isoform, which was capable of cross-linking actin subunits. Upon ERK phosphorylation, however, the mutant no longer cross-linked actin to polymers. Three-dimensional reconstruction of ERK-phosphorylated hH32K indeed indicated loss of the interstrand connectivity. These results, together with fluorescence quenching data, are consistent with a phosphorylation-dependent conformational change that moves the C-terminal end segment of caldesmon near the phosphorylation site but not the upstream region around Cys(595), away from F-actin, thus neutralizing its inhibitory effect on actomyosin interactions. The binding pattern of hH32K suggests a mechanism by which unphosphorylated, but not ERK-phosphorylated, caldesmon could stabilize actin filaments and resist F-actin severing or depolymerization in both smooth muscle and nonmuscle cells.
Correlated waves of actin filaments and PIP3 in Dictyostelium cells.
Asano, Yukako; Nagasaki, Akira; Uyeda, Taro Q P
2008-12-01
Chemotaxis-deficient amiB-null mutant Dictyostelium cells show two distinct movements: (1) they extend protrusions randomly without net displacements; (2) they migrate persistently and unidirectionally in a keratocyte-like manner. Here, we monitored the intracellular distribution of phosphatidylinositol (3,4,5)-trisphosphate (PIP(3)) to gain insight into roles PIP(3) plays in those spontaneous motilities. In keratocyte-like cells, PIP(3) showed convex distribution over the basal membrane, with no anterior enrichment. In stalled cells, as well as in wild type cells, PIP(3) repeated wave-like changes, including emergence, expansion and disappearance, on the basal membrane. The waves induced lamellipodia when they approached the cell edge, and the advancing speed of the waves was comparable to the migration speed of the keratocyte-like cells. LY294002, an inhibitor of PI3 kinase, abolished PIP(3) waves in stalled cells and stopped keratocyte-like cells. These results together suggested that keratocyte-like cells are "surfing" on the PIP(3) waves by coupling steady lamellipodial protrusions to the PIP(3) waves. Simultaneous live observation of actin filaments and PIP(3) in wild type or stalled amiB(-) cells indicated that the PIP(3) waves were correlated with wave-like distributions of actin filaments. Most notably, PIP(3) waves often followed actin waves, suggesting that PIP(3) induces local depolymerization of actin filaments. Consistent with this idea, cortical accumulation of PIP(3) was often correlated with local retraction of the periphery. We propose that the waves of PIP(3) and actin filaments are loosely coupled with each other and play important roles in generating spontaneous cell polarity. Copyright 2008 Wiley-Liss, Inc.
Hernandez Reyes, Yenney; Provost, Chantale; Traesel, Carolina Kist; Jacques, Mario; Gagnon, Carl A
2018-02-01
Recently, the strong antiviral activity of an Actinobacillus pleuropneumoniae (App) culture supernatant against porcine reproductive and respiratory syndrome virus (PRRSV) was discovered. Following this finding, the objective of the present study was to understand how the App culture supernatant inhibits PRRSV replication in its natural targeted host cells, i.e. porcine alveolar macrophages (PAMs). Several assays were conducted with App culture supernatant-treated PRRSV-infected cell lines, such as PAM, St-Jude porcine lung and MARC-145 cells. RT-qPCR assays were used to determine the expression levels of type I and II IFN mRNAs, viral genomic (gRNA) and sub-genomic RNAs (sgRNAs). Proteomic, Western blot and immunofluorescence assays were conducted to determine the involvement of actin filaments in the App culture supernatant antiviral effect.Results/Key findings. Type I and II IFN mRNA expressions were not upregulated by the App culture supernatant. Time courses of gRNA and sgRNA expression levels demonstrated that the App culture supernatant inhibits PRRSV infection before the first viral transcription cycle. Western blot experiments confirmed an increase in the expression of cofilin (actin cytoskeleton dynamics regulator) and immunofluorescence also demonstrated a significant decrease of actin filaments in App culture supernatant-treated PRRSV-infected PAM cells. App culture supernatant antiviral activity was also demonstrated against other PRRSV strains of genotypes I and II. App culture supernatant antiviral effect against PRRSV takes place early during PRRSV infection. Results suggest that App culture supernatant antiviral effect may take place via the activation of cofilin, which induces actin depolymerization and subsequently, probably affects PRRSV endocytosis. Other experiments are needed to fully validate this latest hypothesis.
The nature of the globular- to fibrous-actin transition.
Oda, Toshiro; Iwasa, Mitsusada; Aihara, Tomoki; Maéda, Yuichiro; Narita, Akihiro
2009-01-22
Actin plays crucial parts in cell motility through a dynamic process driven by polymerization and depolymerization, that is, the globular (G) to fibrous (F) actin transition. Although our knowledge about the actin-based cellular functions and the molecules that regulate the G- to F-actin transition is growing, the structural aspects of the transition remain enigmatic. We created a model of F-actin using X-ray fibre diffraction intensities obtained from well oriented sols of rabbit skeletal muscle F-actin to 3.3 A in the radial direction and 5.6 A along the equator. Here we show that the G- to F-actin conformational transition is a simple relative rotation of the two major domains by about 20 degrees. As a result of the domain rotation, the actin molecule in the filament is flat. The flat form is essential for the formation of stable, helical F-actin. Our F-actin structure model provides the basis for understanding actin polymerization as well as its molecular interactions with actin-binding proteins.
The effects of near-UV radiation on elasmobranch lens cytoskeletal actin.
Zigman, S; Rafferty, N S; Scholz, D L; Lowe, K
1992-08-01
The role of near-UV radiation as a cytoskeletal actin-damaging agent was investigated. Two procedures were used to analyse fresh smooth dogfish (Mustelus canis) eye lenses that were incubated for up to 22 hr in vitro, with elasmobranch Ringer's medium, and with or without exposure to a near-UV lamp (emission principally at 365 nm; irradiance of 2.5 mW cm-2). These were observed histologically using phalloidin-rhodamine specific staining and by transmission electron microscopy. In addition, solutions of purified polymerized rabbit muscle actin were exposed to the same UV conditions and depolymerization was assayed by ultracentrifugation and high-pressure liquid chromatography. While the two actins studied do differ very slightly in some amino acid sequences, they would react physically nearly identically. The results showed that dogfish lenses developed superficial opacities due to near-UV exposure. Whole mounts of lens epithelium exhibited breakdown of actin filaments in the basal region of the cells within 18 hr of UV exposure. TEM confirmed the breakdown of actin filaments due to UV exposure. SDS-PAGE and immunoblotting positively identified actin in these cells. Direct exposure of purified polymerized muscle actin in polymerizing buffer led to an increase in actin monomer of approximately 25% in the UV-exposed solutions within 3-18 hr, whether assayed by ultracentrifugation or HPLC. The above indicates that elasmobranch lens epithelial cells contain UV-labile actin filaments, and that near-UV radiation, as is present in the sunlit environment, can break down the actin structure in these cells. Furthermore, breakdown of purified polymerized muscle actin does occur due to near-UV light exposure.(ABSTRACT TRUNCATED AT 250 WORDS)
Rounds, Caleb M.; Hepler, Peter K.; Winship, Lawrence J.
2014-01-01
In lily (Lilium formosanum) pollen tubes, pectin, a major component of the cell wall, is delivered through regulated exocytosis. The targeted transport and secretion of the pectin-containing vesicles may be controlled by the cortical actin fringe at the pollen tube apex. Here, we address the role of the actin fringe using three different inhibitors of growth: brefeldin A, latrunculin B, and potassium cyanide. Brefeldin A blocks membrane trafficking and inhibits exocytosis in pollen tubes; it also leads to the degradation of the actin fringe and the formation of an aggregate of filamentous actin at the base of the clear zone. Latrunculin B, which depolymerizes filamentous actin, markedly slows growth but allows focused pectin deposition to continue. Of note, the locus of deposition shifts frequently and correlates with changes in the direction of growth. Finally, potassium cyanide, an electron transport chain inhibitor, briefly stops growth while causing the actin fringe to completely disappear. Pectin deposition continues but lacks focus, instead being delivered in a wide arc across the pollen tube tip. These data support a model in which the actin fringe contributes to the focused secretion of pectin to the apical cell wall and, thus, to the polarized growth of the pollen tube. PMID:25037212
Barkó, Szilvia; Bugyi, Beáta; Carlier, Marie-France; Gombos, Rita; Matusek, Tamás; Mihály, József; Nyitrai, Miklós
2010-01-01
We characterized the properties of Drosophila melanogaster DAAM-FH2 and DAAM-FH1-FH2 fragments and their interactions with actin and profilin by using various biophysical methods and in vivo experiments. The results show that although the DAAM-FH2 fragment does not have any conspicuous effect on actin assembly in vivo, in cells expressing the DAAM-FH1-FH2 fragment, a profilin-dependent increase in the formation of actin structures is observed. The trachea-specific expression of DAAM-FH1-FH2 also induces phenotypic effects, leading to the collapse of the tracheal tube and lethality in the larval stages. In vitro, both DAAM fragments catalyze actin nucleation but severely decrease both the elongation and depolymerization rate of the filaments. Profilin acts as a molecular switch in DAAM function. DAAM-FH1-FH2, remaining bound to barbed ends, drives processive assembly of profilin-actin, whereas DAAM-FH2 forms an abortive complex with barbed ends that does not support profilin-actin assembly. Both DAAM fragments also bind to the sides of the actin filaments and induce actin bundling. These observations show that the D. melanogaster DAAM formin represents an extreme class of barbed end regulators gated by profilin. PMID:20177055
Cofilin1-dependent actin dynamics control DRP1-mediated mitochondrial fission
Rehklau, Katharina; Hoffmann, Lena; Gurniak, Christine B; Ott, Martin; Witke, Walter; Scorrano, Luca; Culmsee, Carsten; Rust, Marco B
2017-01-01
Mitochondria form highly dynamic networks in which organelles constantly fuse and divide. The relevance of mitochondrial dynamics is evident from its implication in various human pathologies, including cancer or neurodegenerative, endocrine and cardiovascular diseases. Dynamin-related protein 1 (DRP1) is a key regulator of mitochondrial fission that oligomerizes at the mitochondrial outer membrane and hydrolyzes GTP to drive mitochondrial fragmentation. Previous studies demonstrated that DRP1 recruitment and mitochondrial fission is promoted by actin polymerization at the mitochondrial surface, controlled by the actin regulatory proteins inverted formin 2 (INF2) and Spire1C. These studies suggested the requirement of additional actin regulatory activities to control DRP1-mediated mitochondrial fission. Here we show that the actin-depolymerizing protein cofilin1, but not its close homolog actin-depolymerizing factor (ADF), is required to maintain mitochondrial morphology. Deletion of cofilin1 caused mitochondrial DRP1 accumulation and fragmentation, without altering mitochondrial function or other organelles’ morphology. Mitochondrial morphology in cofilin1-deficient cells was restored upon (i) re-expression of wild-type cofilin1 or a constitutively active mutant, but not of an actin-binding-deficient mutant, (ii) pharmacological destabilization of actin filaments and (iii) genetic depletion of DRP1. Our work unraveled a novel function for cofilin1-dependent actin dynamics in mitochondrial fission, and identified cofilin1 as a negative regulator of mitochondrial DRP1 activity. We conclude that cofilin1 is required for local actin dynamics at mitochondria, where it may balance INF2/Spire1C-induced actin polymerization. PMID:28981113
Growing Actin Networks Form Lamellipodium and Lamellum by Self-Assembly
Huber, Florian; Käs, Josef; Stuhrmann, Björn
2008-01-01
Many different cell types are able to migrate by formation of a thin actin-based cytoskeletal extension. Recently, it became evident that this extension consists of two distinct substructures, designated lamellipodium and lamellum, which differ significantly in their kinetic and kinematic properties as well as their biochemical composition. We developed a stochastic two-dimensional computer simulation that includes chemical reaction kinetics, G-actin diffusion, and filament transport to investigate the formation of growing actin networks in migrating cells. Model parameters were chosen based on experimental data or theoretical considerations. In this work, we demonstrate the system's ability to form two distinct networks by self-organization. We found a characteristic transition in mean filament length as well as a distinct maximum in depolymerization flux, both within the first 1–2 μm. The separation into two distinct substructures was found to be extremely robust with respect to initial conditions and variation of model parameters. We quantitatively investigated the complex interplay between ADF/cofilin and tropomyosin and propose a plausible mechanism that leads to spatial separation of, respectively, ADF/cofilin- or tropomyosin-dominated compartments. Tropomyosin was found to play an important role in stabilizing the lamellar actin network. Furthermore, the influence of filament severing and annealing on the network properties is explored, and simulation data are compared to existing experimental data. PMID:18708450
Yuan, Baiyin; Wan, Ping; Chu, Dandan; Nie, Junwei; Cao, Yunshan; Luo, Wen; Lu, Shuangshuang; Chen, Jiong; Yang, Zhongzhou
2014-07-01
Actin dynamics are critical for muscle development and function, and mutations leading to deregulation of actin dynamics cause various forms of heritable muscle diseases. AIP1 is a major cofactor of the actin depolymerizing factor/cofilin in eukaryotes, promoting actin depolymerizing factor/cofilin-mediated actin disassembly. Its function in vertebrate muscle has been unknown. To investigate functional roles of AIP1 in myocardium, we generated conditional knockout (cKO) mice with cardiomyocyte-specific deletion of Wdr1, the mammalian homolog of yeast AIP1. Wdr1 cKO mice began to die at postnatal day 13 (P13), and none survived past P24. At P12, cKO mice exhibited cardiac hypertrophy and impaired contraction of the left ventricle. Electrocardiography revealed reduced heart rate, abnormal P wave, and abnormal T wave at P10 and prolonged QT interval at P12. Actin filament (F-actin) accumulations began at P10 and became prominent at P12 in the myocardium of cKO mice. Within regions of F-actin accumulation in myofibrils, the sarcomeric components α-actinin and tropomodulin-1 exhibited disrupted patterns, indicating that F-actin accumulations caused by Wdr1 deletion result in disruption of sarcomeric structure. Ectopic cofilin colocalized with F-actin aggregates. In adult mice, Wdr1 deletion resulted in similar but much milder phenotypes of heart hypertrophy, F-actin accumulations within myofibrils, and lethality. Taken together, these results demonstrate that AIP1-regulated actin dynamics play essential roles in heart function in mice. Copyright © 2014 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
Wang, Xiaojuan; Tanaka, Mine; Krstin, Sonja; Peixoto, Herbenya Silva; Wink, Michael
2016-07-12
Alkaloids, the largest group among the nitrogen-containing secondary metabolites of plants, usually interact with several molecular targets. In this study, we provide evidence that six cytotoxic alkaloids (sanguinarine, chelerythrine, chelidonine, noscapine, protopine, homoharringtonine), which are known to affect neuroreceptors, protein biosynthesis and nucleic acids, also interact with the cellular cytoskeleton, such as microtubules and actin filaments, as well. Sanguinarine, chelerythrine and chelidonine depolymerized the microtubule network in living cancer cells (Hela cells and human osteosarcoma U2OS cells) and inhibited tubulin polymerization in vitro with IC50 values of 48.41 ± 3.73, 206.39 ± 4.20 and 34.51 ± 9.47 μM, respectively. However, sanguinarine and chelerythrine did not arrest the cell cycle while 2.5 μM chelidonine arrested the cell cycle in the G₂/M phase with 88.27% ± 0.99% of the cells in this phase. Noscapine and protopine apparently affected microtubule structures in living cells without affecting tubulin polymerization in vitro, which led to cell cycle arrest in the G2/M phase, promoting this cell population to 73.42% ± 8.31% and 54.35% ± 11.26% at a concentration of 80 μM and 250.9 μM, respectively. Homoharringtonine did not show any effects on microtubules and cell cycle, while the known microtubule-stabilizing agent paclitaxel was found to inhibit tubulin polymerization in the presence of MAPs in vitro with an IC50 value of 38.19 ± 3.33 μM. Concerning actin filaments, sanguinarine, chelerythrine and chelidonine exhibited a certain effect on the cellular actin filament network by reducing the mass of actin filaments. The interactions of these cytotoxic alkaloids with microtubules and actin filaments present new insights into their molecular modes of action.
Stavropoulou, Konstantina; Adamakis, Ioannis-Dimosthenis S; Panteris, Emmanuel; Arseni, Ermioni-Makedonia; Eleftheriou, Eleftherios P
2018-03-01
Bisphenol A (BPA) is a widespread environmental pollutant, reportedly harmful to living organisms. In plant cells, BPA was shown to disrupt microtubule (MT) arrays and perturb mitosis, but its effects on filamentous actin (F-actin) have not been explored. Here we studied the effects of BPA on actin filaments (AFs) in meristematic root tip and leaf cells of Zea mays, by fluorescent labeling and confocal microscopy. Considering the typical dynamic interaction between MTs and AFs, the effects on these two essential components of the plant cytoskeleton were correlated. It was found that BPA disorganized rapidly AFs in a concentration- and time-dependent manner. The fine filaments were first to be affected, followed by the subcortical bundles, resulting in rod- and ring-like conformations. The observed differences in sensitivity between protodermal and cortex cells were attributed to the deeper location of the latter. Depolymerization or stabilization of MTs by relevant drugs (oryzalin, taxol) revealed that AF susceptibility to BPA depends on MT integrity. Developing leaves required harder and longer treatment to be affected by BPA. Ontogenesis of stomatal complexes was highly disturbed, arrangement of AFs and MT arrays was disordered and accuracy of cell division sequence was deranged or completely arrested. The effect of BPA confirmed that subsidiary cell mother cell polarization is not mediated by F-actin patch neither of preprophase band organization. On the overall, it is concluded that AFs in plant cells constitute a subcellular target of BPA and their disruption depends on their crosstalk with MTs. Copyright © 2017 Elsevier Ltd. All rights reserved.
Aktories, Klaus; Barth, Holger
2004-04-01
Clostridium botulinum C2 toxin is a member of the family of binary actin-ADP-ribosylating toxins. It consists of the enzyme component C2I, and the separated binding/translocation component C2II. Proteolytically activated C2II forms heptamers and binds to a carbohydrate cell surface receptor. After attachment of C2I, the toxin complex is endocytosed to reach early endosomes. At low pH of endosomes, C2II-heptamers insert into the membrane, form pores and deliver C2I into the cytosol. Here, C2I ADP-ribosylates actin at Arg177 to block actin polymerization and to induce depolymerization of actin filaments. The mini-review describes main properties of C2 toxin and discusses new findings on the involvement of chaperones in the up-take process of the toxin.
Takahashi, Maho; Umetsu, Kana; Oono, Yutaka; Higaki, Takumi; Blancaflor, Elison B; Rahman, Abidur
2017-03-01
2,4-Dichlorophenoxyacetic acid (2,4-D), a functional analogue of auxin, is used as an exogenous source of auxin as it evokes physiological responses like the endogenous auxin, indole-3-acetic acid (IAA). Previous molecular analyses of the auxin response pathway revealed that IAA and 2,4-D share a common mode of action to elicit downstream physiological responses. However, recent findings with 2,4-D-specific mutants suggested that 2,4-D and IAA might also use distinct pathways to modulate root growth in Arabidopsis. Using genetic and cellular approaches, we demonstrate that the distinct effects of 2,4-D and IAA on actin filament organization partly dictate the differential responses of roots to these two auxin analogues. 2,4-D but not IAA altered the actin structure in long-term and short-term assays. Analysis of the 2,4-D-specific mutant aar1-1 revealed that small acidic protein 1 (SMAP1) functions positively to facilitate the 2,4-D-induced depolymerization of actin. The ubiquitin proteasome mutants tir1-1 and axr1-12, which show enhanced resistance to 2,4-D compared with IAA for inhibition of root growth, were also found to have less disrupted actin filament networks after 2,4-D exposure. Consistently, a chemical inhibitor of the ubiquitin proteasome pathway mitigated the disrupting effects of 2,4-D on the organization of actin filaments. Roots of the double mutant aar1-1 tir1-1 also showed enhanced resistance to 2,4-D-induced inhibition of root growth and actin degradation compared with their respective parental lines. Collectively, these results suggest that the effects of 2,4-D on actin filament organization and root growth are mediated through synergistic interactions between SMAP1 and SCF TIR 1 ubiquitin proteasome components. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.
Actin depolymerization enhances adipogenic differentiation in human stromal stem cells.
Chen, Li; Hu, Huimin; Qiu, Weimin; Shi, Kaikai; Kassem, Moustapha
2018-05-01
Human stromal stem cells (hMSCs) differentiate into adipocytes that play a role in skeletal tissue homeostasis and whole body energy metabolism. During adipocyte differentiation, hMSCs exhibit significant changes in cell morphology suggesting changes in cytoskeletal organization. Here, we examined the effect of direct modulation of actin microfilament dynamics on adipocyte differentiation. Stabilizing actin filaments in hMSCs by siRNA-mediated knock down of the two main actin depolymerizing factors (ADFs): Cofilin 1 (CFL1) and Destrin (DSTN) or treating the cells by Phalloidin reduced adipocyte differentiation as evidenced by decreased number of mature adipocytes and decreased adipocyte specific gene expression (ADIPOQ, LPL, PPARG, FABP4). In contrast, disruption of actin cytoskeleton by Cytochalasin D enhanced adipocyte differentiation. Follow up studies revealed that the effects of CFL1 on adipocyte differentiation depended on the activity of LIM domain kinase 1 (LIMK1) which is the major upstream kinase of CFL1. Inhibiting LIMK by its specific chemical inhibitor LIMKi inhibited the phosphorylation of CFL1 and actin polymerization, and enhanced the adipocyte differentiation. Moreover, treating hMSCs by Cytochalasin D inhibited ERK and Smad2 signaling and this was associated with enhanced adipocyte differentiation. On the other hand, Phalloidin enhanced ERK and Smad2 signaling, but inhibited adipocyte differentiation which was rescued by ERK specific chemical inhibitor U0126. Our data provide a link between restructuring of hMSCs cytoskeleton and hMSCs lineage commitment and differentiation. Copyright © 2018 Elsevier B.V. All rights reserved.
Tu, Wei-Wei; Ji, Lin-Dan; Qian, Hai-Xia; Zhou, Mi; Zhao, Jin-Shun; Xu, Jin
2016-11-01
Tributyltin (TBT) has been widely used for various industrial purposes, and it has toxic effects on multiple organs and tissues. Previous studies have found that TBT could induce cytoskeletal disruption, especially of the actin filaments. However, the underlying mechanisms remain unclear. The aim of the present study was to determine whether TBT could induce microfilament disruption using HL7702 cells and then to assess for the total levels of various microfilament-associated proteins; finally, the involvement of the MAPK pathway was investigated. The results showed that after TBT treatment, F-actin began to depolymerize and lost its characteristic filamentous structure. The protein levels of Ezrin and Cofilin remained unchanged, the actin-related protein (ARP) 2/3 levels decreased slightly, and the vasodilator-stimulated phosphoprotein (VASP) decreased dramatically. However, the phosphorylation levels of VASP increased 2.5-fold, and the ratio of phosphorylated-VASP/unphosphorylated-VASP increased 31-fold. The mitogen-activated protein kinases (MAPKs) ERK and JNK were discovered to be activated. Inhibition of ERK and JNK not only largely diminished the TBT-induced hyperphosphorylation of VASP but also recovered the cellular morphology and rescued the cells from death. In summary, this study demonstrates that TBT-induced disruption of actin filaments is caused by the hyperphosphorylation of VASP through MAPK pathways. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1530-1538, 2016. © 2015 Wiley Periodicals, Inc.
The Cytoskeleton and Force Response Mechanisms
NASA Technical Reports Server (NTRS)
Allen, Philip Goodwin
2003-01-01
The long term aim of this project was to define the mechanisms by which cells sense and respond to the physical forces experienced at 1g and missing in microgravity. Identification and characterization of the elements of the cells force response mechanism could provide pathways and molecules to serve as targets for pharmacological intervention to mitigate the pathologic effects of microgravity. Mechanical forces experienced by the organism can be transmitted to cells through molecules that allow cells to bind to the extracellular matrix and through other types of molecules which bind cells to each other. These molecules are coupled in large complexes of proteins to structural elements such as the actin cytoskeleton that give the cell the ability to sense, resist and respond to force. Application of small forces to tissue culture cells causes local elevation of intracellular calcium through stretch activated ion channels, increased tyrosine phosphorylation and a restructuring of the actin cytoskeleton. Using collagen coated iron oxide beads and strong magnets, we can apply different levels of force to cells in culture. We have found that force application causes the cells to polymerize actin at the site of mechanical deformation and unexpectedly, to depolymerize actin across the rest of the cell. Observations of GFP- actin expressing cells demonstrate that actin accumulates at the site of deformation within the first five minutes of force application and is maintained for many tens of minutes after force is removed. Consistent with the reinforcement of the cytoskeletal structures underlying the integrin-bead interaction, force also alters the motion of bound magnetic beads. This effect is seen following the removal of the magnetic field, and is only partially ablated by actin disruption with cytochalsin B. While actin is polymerizing locally at the site of force application, force also stimulates a global reduction in actin filament content within the cells. We have examined the roles of several actin filament disassembly factors in the global reduction of cellular actin filaments. The calcium regulated actin filament severing protein gelsolin is not necessary for the increased actin turnover, as cells derived from gelsolin null and wildtype mice still show a reduction in total actin filament content. Instead, our work suggests that the actin binding protein cofilin may be important for these changes in actin dynamics. Cofilin binds to and enhances the disassembly of actin filaments. Using immunological methods, we observe transient changes in the phosphorylation state of cofilin upon force application that suggests that cofilin may mediate actin filament turnover. Early after force application, cofilin is transiently dephosphorylated, activating its actin disassembly activity. Subsequently, we find a hyper-phosphorylation of cofilin, rendering it inactive. This reduction in cofilin activity may explain the stability of the force induced actin structuttes. In testing this hypothesis, we aimed to generate cells that express the constituitively active kinase (LIM-kinase) that phosphorylates cofilin. lnidial attempts in the cell lines used for the our previous studies proved unsuccessful. While we prepare this work for pubication, we are continuing to study other cell lines and tissue sources to determine whether they show a reduction in F-actin content after force application.
Synthetic peptides that cause F-actin bundling and block actin depolymerization
Sederoff, Heike [Raleigh, NC; Huber, Steven C [Savoy, IL; Larabell, Carolyn A [Berkeley, CA
2011-10-18
Synthetic peptides derived from sucrose synthase, and having homology to actin and actin-related proteins, sharing a common motif, useful for causing acting bundling and preventing actin depolymerization. Peptides exhibiting the common motif are described, as well as specific synthetic peptides which caused bundled actin and inhibit actin depolymerization. These peptides can be useful for treating a subject suffering from a disease characterized by cells having neoplastic growth, for anti-cancer therapeutics, delivered to subjects solely, or concomitantly or sequentially with other known cancer therapeutics. These peptides can also be used for stabilizing microfilaments in living cells and inhibiting growth of cells.
Mutations in the cofilin partner Aip1/Wdr1 cause autoinflammatory disease and macrothrombocytopenia
Panopoulos, Athanasia D.; Stirzaker, Roslynn A.; Hacking, Douglas F.; Tahtamouni, Lubna H.; Willson, Tracy A.; Mielke, Lisa A.; Henley, Katya J.; Zhang, Jian-Guo; Wicks, Ian P.; Stevenson, William S.; Nurden, Paquita; Watowich, Stephanie S.; Justice, Monica J.
2007-01-01
A pivotal mediator of actin dynamics is the protein cofilin, which promotes filament severing and depolymerization, facilitating the breakdown of existing filaments, and the enhancement of filament growth from newly created barbed ends. It does so in concert with actin interacting protein 1 (Aip1), which serves to accelerate cofilin's activity. While progress has been made in understanding its biochemical functions, the physiologic processes the cofilin/Aip1 complex regulates, particularly in higher organisms, are yet to be determined. We have generated an allelic series for WD40 repeat protein 1 (Wdr1), the mammalian homolog of Aip1, and report that reductions in Wdr1 function produce a dramatic phenotype gradient. While severe loss of function at the Wdr1 locus causes embryonic lethality, macrothrombocytopenia and autoinflammatory disease develop in mice carrying hypomorphic alleles. Macrothrombocytopenia is the result of megakaryocyte maturation defects, which lead to a failure of normal platelet shedding. Autoinflammatory disease, which is bone marrow–derived yet nonlymphoid in origin, is characterized by a massive infiltration of neutrophils into inflammatory lesions. Cytoskeletal responses are impaired in Wdr1 mutant neutrophils. These studies establish an essential requirement for Wdr1 in megakaryocytes and neutrophils, indicating that cofilin-mediated actin dynamics are critically important to the development and function of both cell types. PMID:17515402
An epidermal plakin that integrates actin and microtubule networks at cellular junctions.
Karakesisoglou, I; Yang, Y; Fuchs, E
2000-04-03
Plakins are cytoskeletal linker proteins initially thought to interact exclusively with intermediate filaments (IFs), but recently were found to associate additionally with actin and microtubule networks. Here, we report on ACF7, a mammalian orthologue of the Drosophila kakapo plakin genetically involved in epidermal-muscle adhesion and neuromuscular junctions. While ACF7/kakapo is divergent from other plakins in its IF-binding domain, it has at least one actin (K(d) = 0.35 microM) and one microtubule (K(d) approximately 6 microM) binding domain. Similar to its fly counterpart, ACF7 is expressed in the epidermis. In well spread epidermal keratinocytes, ACF7 discontinuously decorates the cytoskeleton at the cell periphery, including microtubules (MTs) and actin filaments (AFs) that are aligned in parallel converging at focal contacts. Upon calcium induction of intercellular adhesion, ACF7 and the cytoskeleton reorganize at cell-cell borders but with different kinetics from adherens junctions and desmosomes. Treatments with cytoskeletal depolymerizing drugs reveal that ACF7's cytoskeletal association is dependent upon the microtubule network, but ACF7 also appears to stabilize actin at sites where microtubules and microfilaments meet. We posit that ACF7 may function in microtubule dynamics to facilitate actin-microtubule interactions at the cell periphery and to couple the microtubule network to cellular junctions. These attributes provide a clear explanation for the kakapo mutant phenotype in flies.
Actin cytoskeleton as a putative target of the neem limonoid Azadirachtin A.
Anuradha, Aritakula; Annadurai, Ramaswamy S; Shashidhara, L S
2007-06-01
Limonoids isolated from the Indian neem tree (Azadirachta indica) have been gaining global acceptance in agricultural applications and in contemporary medicine for their myriad but discrete properties. However, their mode of action is still not very well understood. We have studied the mode of action of Azadirachtin A, the major limonoid of neem seed extracts, using Drosophila melanogaster as the model system. Azadirachtin A induces moderate-to-severe phenotypes in different tissues in a dose-dependent manner. At the cellular level, Azadirachtin A induces depolymerization of Actin leading to arrest of cells and subsequently apoptosis in a caspase-independent manner. Azadirachtin A-induced phenotypes were rescued by the over-expression of Cyclin E in a tissue-dependent manner. Cyclin E, which caused global rescue of Azadirachtin A-induced phenotypes, also effected rearrangement of the actin filaments. These results suggest that probably actin is a target of Azadirachtin A activity.
Reconstitution of actin-based motility of Listeria and Shigella using pure proteins
NASA Astrophysics Data System (ADS)
Loisel, Thomas P.; Boujemaa, Rajaa; Pantaloni, Dominique; Carlier, Marie-France
1999-10-01
Actin polymerization is essential for cell locomotion and is thought to generate the force responsible for cellular protrusions. The Arp2/3 complex is required to stimulate actin assembly at the leading edge in response to signalling. The bacteria Listeria and Shigella bypass the signalling pathway and harness the Arp2/3 complex to induce actin assembly and to propel themselves in living cells. However, the Arp2/3 complex alone is insufficient to promote movement. Here we have used pure components of the actin cytoskeleton to reconstitute sustained movement in Listeria and Shigella in vitro. Actin-based propulsion is driven by the free energy released by ATP hydrolysis linked to actin polymerization, and does not require myosin. In addition to actin and activated Arp2/3 complex, actin depolymerizing factor (ADF, or cofilin) and capping protein are also required for motility as they maintain a high steady-state level of G-actin, which controls the rate of unidirectional growth of actin filaments at the surface of the bacterium. The movement is more effective when profilin, α-actinin and VASP (for Listeria) are also included. These results have implications for our understanding of the mechanism of actin-based motility in cells.
Syed, Aleem; Zhu, Qiaochu; Smith, Emily A
2018-01-01
Membrane diffusion is one of the key mechanisms in the cellular function of receptors. The signaling of receptors for advanced glycation end-products (RAGE) has been extensively studied in the context of several pathological conditions, however, very little is known about RAGE diffusion. To fill this gap, RAGE lateral diffusion is probed in native, cholesterol-depleted, and cytoskeleton-altered cellular conditions. In native GM07373 cellular conditions, RAGE has a 90% mobile fraction and an average diffusion coefficient of 0.3 μm 2 /s. When depolymerization of the actin cytoskeleton is inhibited with the small molecule jasplakinolide (Jsp), the RAGE mobile fraction and diffusion coefficient decrease by 22 and 37%, respectively. In contrast, depolymerizing the filamentous actin cytoskeleton using the small molecule cytochalasin D (CD) does not alter the RAGE diffusion properties. There is a 70 and 50% decrease in phosphorylation of extracellular signal-regulated kinase (p-ERK) when the actin cytoskeleton is disrupted by CD or Jsp, respectively, in RAGE-expressing GM07373 cells. Disrupting the actin cytoskeleton in GM07373 cells that do not express detectable amounts of RAGE results in no change in p-ERK. Cholesterol depletion results in no statistically significant change in the diffusion properties of RAGE or p-ERK. This work presents a strong link between the actin cytoskeleton and RAGE diffusion and downstream signaling, and serves to further our understanding of the factors influencing RAGE lateral diffusion.
Depolymerization dynamics of individual filaments of bacterial cytoskeletal protein FtsZ
Mateos-Gil, Pablo; Paez, Alfonso; Hörger, Ines; Rivas, Germán; Vicente, Miguel; Tarazona, Pedro; Vélez, Marisela
2012-01-01
We report observation and analysis of the depolymerization filaments of the bacterial cytoskeletal protein FtsZ (filament temperature-sensitive Z) formed on a mica surface. At low concentration, proteins adsorbed on the surface polymerize forming curved filaments that close into rings that remain stable for some time before opening irreversibly and fully depolymerizing. The distribution of ring lifetimes (T) as a function of length (N), shows that the rate of ring aperture correlates with filament length. If this ring lifetime is expressed as a bond survival time, (Tb ≡ NT), this correlation is abolished, indicating that these rupture events occur randomly and independently at each monomer interface. After rings open irreversibly, depolymerization of the remaining filaments is fast, but can be slowed down and followed using a nonhydrolyzing GTP analogue. The histogram of depolymerization velocities of individual filaments has an asymmetric distribution that can be fit with a computer model that assumes two rupture rates, a slow one similar to the one observed for ring aperture, affecting monomers in the central part of the filaments, and a faster one affecting monomers closer to the open ends. From the quantitative analysis, we conclude that the depolymerization rate is affected both by nucleotide hydrolysis rate and by its exchange along the filament, that all monomer interfaces are equally competent for hydrolysis, although depolymerization is faster at the open ends than in central filament regions, and that all monomer–monomer interactions, regardless of the nucleotide present, can adopt a curved configuration. PMID:22566654
Molecular requirements for actin-based lamella formation in Drosophila S2 cells
Rogers, Stephen L.; Wiedemann, Ursula; Stuurman, Nico; Vale, Ronald D.
2003-01-01
Cell migration occurs through the protrusion of the actin-enriched lamella. Here, we investigated the effects of RNAi depletion of ∼90 proteins implicated in actin function on lamella formation in Drosophila S2 cells. Similar to in vitro reconstitution studies of actin-based Listeria movement, we find that lamellae formation requires a relatively small set of proteins that participate in actin nucleation (Arp2/3 and SCAR), barbed end capping (capping protein), filament depolymerization (cofilin and Aip1), and actin monomer binding (profilin and cyclase-associated protein). Lamellae are initiated by parallel and partially redundant signaling pathways involving Rac GTPases and the adaptor protein Nck, which stimulate SCAR, an Arp2/3 activator. We also show that RNAi of three proteins (kette, Abi, and Sra-1) known to copurify with and inhibit SCAR in vitro leads to SCAR degradation, revealing a novel function of this protein complex in SCAR stability. Our results have identified an essential set of proteins involved in actin dynamics during lamella formation in Drosophila S2 cells. PMID:12975351
NASA Astrophysics Data System (ADS)
Soon, Thomas Tiong Kwong; Chean, Tan Wei; Yamada, Hikari; Takahashi, Kenta; Hozumi, Naohiro; Kobayashi, Kazuto; Yoshida, Sachiko
2017-07-01
An ultrasonic microscope is a useful tool for observing living tissue without chemical fixation or histochemical processing. Two-dimensional (2D) acoustic impedance microscopy developed in our previous study for living cell observation was employed to visualize intracellular changes. We proposed a brain tumor model by cocultivating rat glial cells and C6 gliomas to quantitatively analyze the effects of two types of anticancer drugs, cytochalasin B (CyB) and temozolomide (TMZ), when they were applied. We reported that CyB treatment (25 µg/ml, T = 90 min) significantly reduced the acoustic impedance of gliomas and has little effect on glial cells. Meanwhile, TMZ treatment (2 mg/ml, T = 90 min) impacted both cells equally, in which both cells’ acoustic impedances were decreased. As CyB targets the actin filament polymerization of the cells, we have concluded that the decrease in acoustic impedance was in fact due to actin filament depolymerization and the data can be quantitatively assessed for future studies in novel drug development.
Ziesemer, Sabine; Eiffler, Ina; Schönberg, Alfrun; Müller, Christian; Hochgräfe, Falko; Beule, Achim G; Hildebrandt, Jan-Peter
2018-04-01
Exposure of cultured human airway epithelial model cells (16HBE14o-, S9) to Staphylococcus aureus α-toxin (hemolysin A, Hla) induces changes in cell morphology and cell layer integrity that are due to the inability of the cells to maintain stable cell-cell or focal contacts and to properly organize their actin cytoskeletons. The aim of this study was to identify Hla-activated signaling pathways involved in regulating the phosphorylation level of the actin-depolymerizing factor cofilin. We used recombinant wild-type hemolysin A (rHla) and a variant of Hla (rHla-H35L) that is unable to form functional transmembrane pores to treat immortalized human airway epithelial cells (16HBE14o-, S9) as well as freshly isolated human nasal tissue. Our results indicate that rHla-mediated changes in cofilin phosphorylation require the formation of functional Hla pores in the host cell membrane. Formation of functional transmembrane pores induced hypophosphorylation of cofilin at Ser3, which was mediated by rHla-induced attenuation of p21-activated protein kinase and LIM kinase activities. Because dephosphorylation of pSer3-cofilin results in activation of this actin-depolymerizing factor, treatment of cells with rHla resulted in loss of actin stress fibers from the cells and destabilization of cell shape followed by the appearance of paracellular gaps in the cell layers. Activation of protein kinase A or activation of small GTPases (Rho, Rac, Cdc42) do not seem to be involved in this response.
Actin Turnover-Mediated Gravity Response in Maize Root Apices
Mancuso, Stefano; Barlow, Peter W; Volkmann, Dieter
2006-01-01
The dynamic actin cytoskeleton has been proposed to be linked to gravity sensing in plants but the mechanistic understanding of these processes remains unknown. We have performed detailed pharmacological analyses of the role of the dynamic actin cytoskeleton in gravibending of maize (Zea mays) root apices. Depolymerization of actin filaments with two drugs having different mode of their actions, cytochalasin D and latrunculin B, stimulated root gravibending. By contrast, drug-induced stimulation of actin polymerization and inhibition of actin turnover, using two different agents phalloidin and jasplakinolide, compromised the root gravibending. Importantly, all these actin drugs inhibited root growth to similar extents suggesting that high actin turnover is essential for the gravity-related growth responses rather than for the general growth process. Both latrunculin B and cytochalasin D treatments inhibited root growth but restored gravibending of the decapped root apices, indicating that there is a strong potential for effective actin-mediated gravity sensing outside the cap. This elusive gravity sensing outside the root cap is dependent not only on the high rate of actin turnover but also on weakening of myosin activities, as general inhibition of myosin ATPases induced stimulation of gravibending of the decapped root apices. Collectively, these data provide evidence for the actin turnover-mediated gravity sensing outside the root cap. PMID:19521476
On the properties of a bundle of flexible actin filaments in an optical trap.
Perilli, Alessia; Pierleoni, Carlo; Ciccotti, Giovanni; Ryckaert, Jean-Paul
2016-06-28
We establish the statistical mechanics framework for a bundle of Nf living and uncrosslinked actin filaments in a supercritical solution of free monomers pressing against a mobile wall. The filaments are anchored normally to a fixed planar surface at one of their ends and, because of their limited flexibility, they grow almost parallel to each other. Their growing ends hit a moving obstacle, depicted as a second planar wall, parallel to the previous one and subjected to a harmonic compressive force. The force constant is denoted as the trap strength while the distance between the two walls as the trap length to make contact with the experimental optical trap apparatus. For an ideal solution of reactive filaments and free monomers at fixed free monomer chemical potential μ1, we obtain the general expression for the grand potential from which we derive averages and distributions of relevant physical quantities, namely, the obstacle position, the bundle polymerization force, and the number of filaments in direct contact with the wall. The grafted living filaments are modeled as discrete Wormlike chains, with F-actin persistence length ℓp, subject to discrete contour length variations ±d (the monomer size) to model single monomer (de)polymerization steps. Rigid filaments (ℓp = ∞), either isolated or in bundles, all provide average values of the stalling force in agreement with Hill's predictions Fs (H)=NfkBTln(ρ1/ρ1c)/d, independent of the average trap length. Here ρ1 is the density of free monomers in the solution and ρ1c its critical value at which the filament does not grow nor shrink in the absence of external forces. Flexible filaments (ℓp < ∞) instead, for values of the trap strength suitable to prevent their lateral escape, provide an average bundle force and an average trap length slightly larger than the corresponding rigid cases (few percents). Still the stalling force remains nearly independent on the average trap length, but results from the product of two strongly L-dependent contributions: the fraction of touching filaments ∝〈L〉(O.T.) (2) and the single filament buckling force ∝〈L〉(O.T.) (-2).
Probing GFP-actin diffusion in living cells using fluorescence correlation spectroscopy.
Engelke, Hanna; Heinrich, Doris; Rädler, Joachim O
2010-12-22
The cytoskeleton of eukaryotic cells is continuously remodeled by polymerization and depolymerization of actin. Consequently, the relative content of polymerized filamentous actin (F-actin) and monomeric globular actin (G-actin) is subject to temporal and spatial fluctuations. Since fluorescence correlation spectroscopy (FCS) can measure the diffusion of fluorescently labeled actin it seems likely that FCS allows us to determine the dynamics and hence indirectly the structural properties of the cytoskeleton components with high spatial resolution. To this end we investigate the FCS signal of GFP-actin in living Dictyostelium discoideum cells and explore the inherent spatial and temporal signatures of the actin cytoskeleton. Using the free green fluorescent protein (GFP) as a reference, we find that actin diffusion inside cells is dominated by G-actin and slower than diffusion in diluted cell extract. The FCS signal in the dense cortical F-actin network near the cell membrane is probed using the cytoskeleton protein LIM and is found to be slower than cytosolic G-actin diffusion. Furthermore, we show that polymerization of the cytoskeleton induced by Jasplakinolide leads to a substantial decrease of G-actin diffusion. Pronounced fluctuations in the distribution of the FCS correlation curves can be induced by latrunculin, which is known to induce actin waves. Our work suggests that the FCS signal of GFP-actin in combination with scanning or spatial correlation techniques yield valuable information about the local dynamics and concomitant cytoskeletal properties.
Xie, Jinfu; Horton, Melanie; Zorman, Julie; Antonello, Joseph M.; Zhang, Yuhua; Arnold, Beth A.; Secore, Susan; Xoconostle, Rachel; Miezeiewski, Matthew; Wang, Su; Price, Colleen E.; Thiriot, David; Goerke, Aaron; Gentile, Marie-Pierre; Skinner, Julie M.
2014-01-01
Clostridium difficile strains producing binary toxin, in addition to toxin A (TcdA) and toxin B (TcdB), have been associated with more severe disease and increased recurrence of C. difficile infection in recent outbreaks. Binary toxin comprises two subunits (CDTa and CDTb) and catalyzes the ADP-ribosylation of globular actin (G-actin), which leads to the depolymerization of filamentous actin (F-actin) filaments. A robust assay is highly desirable for detecting the cytotoxic effect of the toxin and the presence of neutralizing antibodies in animal and human sera to evaluate vaccine efficacy. We describe here the optimization, using design-of-experiment (DOE) methodology, of a high-throughput assay to measure the toxin potency and neutralizing antibodies (NAb) against binary toxin. Vero cells were chosen from a panel of cells screened for sensitivity and specificity. We have successfully optimized the CDTa-to-CDTb molar ratio, toxin concentration, cell-seeding density, and sera-toxin preincubation time in the NAb assay using DOE methodology. This assay is robust, produces linear results across serial dilutions of hyperimmune serum, and can be used to quantify neutralizing antibodies in sera from hamsters and monkeys immunized with C. difficile binary toxin-containing vaccines. The assay will be useful for C. difficile diagnosis, for epidemiology studies, and for selecting and optimizing vaccine candidates. PMID:24623624
Tang, Jay X; Wen, Qi; Bennett, Andrew; Kim, Brian; Sheils, Catherine A; Bucki, Robert; Janmey, Paul A
2005-10-01
Bundles of F-actin and DNA present in the sputum of cystic fibrosis (CF) patients but absent from normal airway fluid contribute to the altered viscoelastic properties of sputum that inhibit clearance of infected airway fluid and exacerbate the pathology of CF. Previous strategies to remove these filamentous aggregates have focused on DNase to enzymatically depolymerize DNA to constituent monomers and gelsolin to sever F-actin to small fragments. The high densities of negative surface charge on DNA and F-actin suggest that the bundles of these filaments, which alone exhibit a strong electrostatic repulsion, may be stabilized by multivalent cations such as histones, antimicrobial peptides, and other positively charged molecules prevalent in airway fluid. This study reports that bundles of DNA or F-actin formed after addition of histone H1 or lysozyme are efficiently dissolved by soluble multivalent anions such as polymeric aspartate or glutamate. Addition of poly-aspartate or poly-glutamate also disperses DNA and actin-containing bundles in CF sputum and lowers the elastic moduli of these samples to levels comparable to those obtained after treatment with DNase I or gelsolin. Addition of poly-aspartic acid also increased DNase activity when added to samples containing DNA bundles formed with histone H1. When added to CF sputum, poly-aspartic acid significantly reduced the growth of bacteria, suggesting activation of endogenous antibacterial factors. These findings suggest that soluble multivalent anions have potential alone or in combination with other mucolytic agents to selectively dissociate the large bundles of charged biopolymers that form in CF sputum.
Watching Mobility Engendered by Actin Polymerization
NASA Astrophysics Data System (ADS)
Jee, Ah-Young; Granick, Steve; Tlusty, Tsvi
We have been investigating hydrodynamic flows engendered in molecular systems by active motion. In fact, active directed motion is ubiquitous as a transport mechanism within cells and other systems, sometimes by the action of molecular motors as they move along cytoskeletal filaments, sometimes by the polymerization and depolymerization of filament themselves. To probe this situation, we have employed fluorescence correlation spectroscopy (FCS) in the STED mode (stimulation emission-depletion), this super-resolution approach allowing us to investigate molecular mobility as averaged over a spectrum of space scales: from areas of the optical diffraction limit or larger, to regions as small as 30 40 nm. This comparison of FCS-STED measurements when the projected area investigated varies by a factor of >10, reveals remarkable scale dependence of the mobility that we infer.
Control of the actin cytoskeleton in root hair development.
Pei, Weike; Du, Fei; Zhang, Yi; He, Tian; Ren, Haiyun
2012-05-01
The development of root hair includes four stages: bulge site selection, bulge formation, tip growth, and maturation. The actin cytoskeleton is involved in all of these stages and is organized into distinct arrangements in the different stages. In addition to the actin configuration, actin isoforms also play distinct roles in the different stages. The actin cytoskeleton is regulated by actin-binding proteins, such as formin, Arp2/3 complex, profilin, actin depolymerizing factor, and villin. Some upstream signals, i.e. calcium, phospholipids, and small GTPase regulate the activity of these actin-binding proteins to produce the proper actin configuration. We constructed a working model on how the actin cytoskeleton is controlled by actin-binding proteins and upstream signaling in root hair development based on the current literature: at the tip of hairs, actin polymerization appears to be facilitated by Arp2/3 complex that is activated by small GTPase, and profilin that is regulated by phosphatidylinositol 4,5-bisphosphate. Meanwhile, actin depolymerization and turnover are likely mediated by villin and actin depolymerizing factor, which are stimulated by calcium. At the shank, actin cables are produced by formin and villin. Under the complicated interaction, the actin cytoskeleton is controlled spatially and temporally during root hair development. © 2012 Elsevier Ireland Ltd. All rights reserved.
Lovy-Wheeler, Alenka; Kunkel, Joseph G.; Allwood, Ellen G.; Hussey, Patrick J.; Hepler, Peter K.
2006-01-01
Lily (Lilium formosanum or Lilium longiflorum) pollen tubes, microinjected with a low concentration of the pH-sensitive dye bis-carboxyethyl carboxyfluorescein dextran, show oscillating pH changes in their apical domain relative to growth. An increase in pH in the apex precedes the fastest growth velocities, whereas a decline follows growth, suggesting a possible relationship between alkalinity and cell extension. A target for pH may be the actin cytoskeleton, because the apical cortical actin fringe resides in the same region as the alkaline band in lily pollen tubes and elongation requires actin polymerization. A pH-sensitive actin binding protein, actin-depolymerizing factor (ADF), together with actin-interacting protein (AIP) localize to the cortical actin fringe region. Modifying intracellular pH leads to reorganization of the actin cytoskeleton, especially in the apical domain. Acidification causes actin filament destabilization and inhibits growth by 80%. Upon complete growth inhibition, the actin fringe is the first actin cytoskeleton component to disappear. We propose that during normal growth, the pH increase in the alkaline band stimulates the fragmenting activity of ADF/AIP, which in turn generates more sites for actin polymerization. Increased actin polymerization supports faster growth rates and a proton influx, which inactivates ADF/AIP, decreases actin polymerization, and retards growth. As pH stabilizes and increases, the activity of ADF/AIP again increases, repeating the cycle of events. PMID:16920777
Pallavicini, Carla; Levi, Valeria; Wetzler, Diana E.; Angiolini, Juan F.; Benseñor, Lorena; Despósito, Marcelo A.; Bruno, Luciana
2014-01-01
The cytoskeleton is involved in numerous cellular processes such as migration, division, and contraction and provides the tracks for transport driven by molecular motors. Therefore, it is very important to quantify the mechanical behavior of the cytoskeletal filaments to get a better insight into cell mechanics and organization. It has been demonstrated that relevant mechanical properties of microtubules can be extracted from the analysis of their motion and shape fluctuations. However, tracking individual filaments in living cells is extremely complex due, for example, to the high and heterogeneous background. We introduce a believed new tracking algorithm that allows recovering the coordinates of fluorescent microtubules with ∼9 nm precision in in vitro conditions. To illustrate potential applications of this algorithm, we studied the curvature distributions of fluorescent microtubules in living cells. By performing a Fourier analysis of the microtubule shapes, we found that the curvatures followed a thermal-like distribution as previously reported with an effective persistence length of ∼20 μm, a value significantly smaller than that measured in vitro. We also verified that the microtubule-associated protein XTP or the depolymerization of the actin network do not affect this value; however, the disruption of intermediate filaments decreased the persistence length. Also, we recovered trajectories of microtubule segments in actin or intermediate filament-depleted cells, and observed a significant increase of their motion with respect to untreated cells showing that these filaments contribute to the overall organization of the microtubule network. Moreover, the analysis of trajectories of microtubule segments in untreated cells showed that these filaments presented a slower but more directional motion in the cortex with respect to the perinuclear region, and suggests that the tracking routine would allow mapping the microtubule dynamical organization in cells. PMID:24940780
On the properties of a bundle of flexible actin filaments in an optical trap
NASA Astrophysics Data System (ADS)
Perilli, Alessia; Pierleoni, Carlo; Ciccotti, Giovanni; Ryckaert, Jean-Paul
2016-06-01
We establish the statistical mechanics framework for a bundle of Nf living and uncrosslinked actin filaments in a supercritical solution of free monomers pressing against a mobile wall. The filaments are anchored normally to a fixed planar surface at one of their ends and, because of their limited flexibility, they grow almost parallel to each other. Their growing ends hit a moving obstacle, depicted as a second planar wall, parallel to the previous one and subjected to a harmonic compressive force. The force constant is denoted as the trap strength while the distance between the two walls as the trap length to make contact with the experimental optical trap apparatus. For an ideal solution of reactive filaments and free monomers at fixed free monomer chemical potential μ1, we obtain the general expression for the grand potential from which we derive averages and distributions of relevant physical quantities, namely, the obstacle position, the bundle polymerization force, and the number of filaments in direct contact with the wall. The grafted living filaments are modeled as discrete Wormlike chains, with F-actin persistence length ℓp, subject to discrete contour length variations ±d (the monomer size) to model single monomer (de)polymerization steps. Rigid filaments (ℓp = ∞), either isolated or in bundles, all provide average values of the stalling force in agreement with Hill's predictions Fs H = N f k B T ln ( ρ 1 / ρ 1 c) / d , independent of the average trap length. Here ρ1 is the density of free monomers in the solution and ρ1c its critical value at which the filament does not grow nor shrink in the absence of external forces. Flexible filaments (ℓp < ∞) instead, for values of the trap strength suitable to prevent their lateral escape, provide an average bundle force and an average trap length slightly larger than the corresponding rigid cases (few percents). Still the stalling force remains nearly independent on the average trap length, but results from the product of two strongly L-dependent contributions: the fraction of touching filaments ∝ (" separators=" < L >O . T .) 2 and the single filament buckling force ∝ (" separators=" < L >O . T .) - 2 .
Schudt, Gordian; Dolnik, Olga; Kolesnikova, Larissa; Biedenkopf, Nadine; Herwig, Astrid; Becker, Stephan
2015-10-01
Transport of ebolavirus (EBOV) nucleocapsids from perinuclear viral inclusions, where they are formed, to the site of budding at the plasma membrane represents an obligatory step of virus assembly. Until now, no live-cell studies on EBOV nucleocapsid transport have been performed, and participation of host cellular factors in this process, as well as the trajectories and speed of nucleocapsid transport, remain unknown. Live-cell imaging of EBOV-infected cells treated with different inhibitors of cellular cytoskeleton was used for the identification of cellular proteins involved in the nucleocapsid transport. EBOV nucleocapsids were visualized by expression of green fluorescent protein (GFP)-labeled nucleocapsid viral protein 30 (VP30) in EBOV-infected cells. Incorporation of the fusion protein VP30-GFP into EBOV nucleocapsids was confirmed by Western blot and indirect immunofluorescence analyses. Importantly, VP30-GFP fluorescence was readily detectable in the densely packed nucleocapsids inside perinuclear viral inclusions and in the dispersed rod-like nucleocapsids located outside of viral inclusions. Live-cell imaging of EBOV-infected cells revealed exit of single nucleocapsids from the viral inclusions and their intricate transport within the cytoplasm before budding at the plasma membrane. Nucleocapsid transport was arrested upon depolymerization of actin filaments (F-actin) and inhibition of the actin-nucleating Arp2/3 complex, and it was not altered upon depolymerization of microtubules or inhibition of N-WASP. Actin comet tails were often detected at the rear end of nucleocapsids. Marginally located nucleocapsids entered filopodia, moved inside, and budded from the tip of these thin cellular protrusions. Live-cell imaging of EBOV-infected cells revealed actin-dependent long-distance transport of EBOV nucleocapsids before budding at the cell surface. These findings provide useful insights into EBOV assembly and have potential application in the development of antivirals. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Xu, Xuehua; Gera, Nidhi; Li, Hongyan; Yun, Michelle; Zhang, Liyong; Wang, Youhong; Wang, Q. Jane; Jin, Tian
2015-01-01
Chemotaxis requires precisely coordinated polymerization and depolymerization of the actin cytoskeleton at leading fronts of migrating cells. However, GPCR activation-controlled F-actin depolymerization remains largely elusive. Here, we reveal a novel signaling pathway, including Gαi, PLC, PKCβ, protein kinase D (PKD), and SSH2, in control of cofilin phosphorylation and actin cytoskeletal reorganization, which is essential for neutrophil chemotaxis. We show that PKD is essential for neutrophil chemotaxis and that GPCR-mediated PKD activation depends on PLC/PKC signaling. More importantly, we discover that GPCR activation recruits/activates PLCγ2 in a PI3K-dependent manner. We further verify that PKCβ specifically interacts with PKD1 and is required for chemotaxis. Finally, we identify slingshot 2 (SSH2), a phosphatase of cofilin (actin depolymerization factor), as a target of PKD1 that regulates cofilin phosphorylation and remodeling of the actin cytoskeleton during neutrophil chemotaxis. PMID:25568344
Membrane-associated actin from the microvillar membranes of ascites tumor cells
1982-01-01
A membrane fraction (MF2) has been purified from isolated microvilli of the MAT-C1 subline of the 13762 rat mammary ascites adenocarcinoma under conditions which cause F-actin depolymerization. This membrane preparation contains actin as a major component, although no filamentous structures are observed by transmission electron microscopy. Membranes were extracted with a Triton X-100-containing actin-stabilizing buffer (S buffer) or actin-destabilizing buffer (D buffer). In D buffer greater than 90% of metabolically labeled protein and glycoprotein was extracted, and 80-90% of these labeled species was extracted in S buffer. When S buffer extracts of MF2 were fractionated by either gel filtration on Sepharose 6 B or rate-zonal sucrose density gradient centrifugation, most of the actin was found to be intermediate in size between G- and F-actin. In D buffer most of the MF2 actin behaved as G-actin. Extraction and gel filtration of intact microvilli in S buffer also showed the presence of the intermediate form of actin, indicating that it did not arise during membrane preparation. When [35S]methionine-labeled G-actin from ascites cells was added to S buffer extracts of MF2 and chromatographed, all of the radioactivity chromatographed as G-actin, indicating that the intermediate form of actin did not result from an association of G-actin molecules during extraction or chromatography. The results of this study suggest that the microvillar membrane fraction is enriched in an intermediate form of actin smaller than F-actin and larger than G-actin. PMID:6890066
Membrane-associated actin from the microvillar membranes of ascites tumor cells.
Carraway, K L; Cerra, R F; Jung, G; Carraway, C A
1982-09-01
A membrane fraction (MF2) has been purified from isolated microvilli of the MAT-C1 subline of the 13762 rat mammary ascites adenocarcinoma under conditions which cause F-actin depolymerization. This membrane preparation contains actin as a major component, although no filamentous structures are observed by transmission electron microscopy. Membranes were extracted with a Triton X-100-containing actin-stabilizing buffer (S buffer) or actin-destabilizing buffer (D buffer). In D buffer greater than 90% of metabolically labeled protein and glycoprotein was extracted, and 80-90% of these labeled species was extracted in S buffer. When S buffer extracts of MF2 were fractionated by either gel filtration on Sepharose 6 B or rate-zonal sucrose density gradient centrifugation, most of the actin was found to be intermediate in size between G- and F-actin. In D buffer most of the MF2 actin behaved as G-actin. Extraction and gel filtration of intact microvilli in S buffer also showed the presence of the intermediate form of actin, indicating that it did not arise during membrane preparation. When [35S]methionine-labeled G-actin from ascites cells was added to S buffer extracts of MF2 and chromatographed, all of the radioactivity chromatographed as G-actin, indicating that the intermediate form of actin did not result from an association of G-actin molecules during extraction or chromatography. The results of this study suggest that the microvillar membrane fraction is enriched in an intermediate form of actin smaller than F-actin and larger than G-actin.
Guerra, Caroline Rezende; Seabra, Sergio Henrique; de Souza, Wanderley; Rozental, Sonia
2014-01-01
Cryptococcosis by the encapsulated yeast Cryptococcus neoformans affects mostly immunocompromised individuals and is a frequent neurological complication in AIDS patients. Recent studies support the idea that intracellular survival of Cryptococcus yeast cells is important for the pathogenesis of cryptococcosis. However, the initial steps of Cryptococcus internalization by host cells remain poorly understood. Here, we investigate the mechanism of Cryptococcus neoformans phagocytosis by peritoneal macrophages using confocal and electron microscopy techniques, as well as flow cytometry quantification, evaluating the importance of fungal capsule production and of host cell cytoskeletal elements for fungal phagocytosis. Electron microscopy analyses revealed that capsular and acapsular strains of C. neoformans are internalized by macrophages via both ‘zipper’ (receptor-mediated) and ‘trigger’ (membrane ruffle-dependent) phagocytosis mechanisms. Actin filaments surrounded phagosomes of capsular and acapsular yeasts, and the actin depolymerizing drugs cytochalasin D and latrunculin B inhibited yeast internalization and actin recruitment to the phagosome area. In contrast, nocodazole and paclitaxel, inhibitors of microtubule dynamics decreased internalization but did not prevent actin recruitment to the site of phagocytosis. Our results show that different uptake mechanisms, dependent on both actin and tubulin dynamics occur during yeast internalization by macrophages, and that capsule production does not affect the mode of Cryptococcus uptake by host cells. PMID:24586631
Guerra, Caroline Rezende; Seabra, Sergio Henrique; de Souza, Wanderley; Rozental, Sonia
2014-01-01
Cryptococcosis by the encapsulated yeast Cryptococcus neoformans affects mostly immunocompromised individuals and is a frequent neurological complication in AIDS patients. Recent studies support the idea that intracellular survival of Cryptococcus yeast cells is important for the pathogenesis of cryptococcosis. However, the initial steps of Cryptococcus internalization by host cells remain poorly understood. Here, we investigate the mechanism of Cryptococcus neoformans phagocytosis by peritoneal macrophages using confocal and electron microscopy techniques, as well as flow cytometry quantification, evaluating the importance of fungal capsule production and of host cell cytoskeletal elements for fungal phagocytosis. Electron microscopy analyses revealed that capsular and acapsular strains of C. neoformans are internalized by macrophages via both 'zipper' (receptor-mediated) and 'trigger' (membrane ruffle-dependent) phagocytosis mechanisms. Actin filaments surrounded phagosomes of capsular and acapsular yeasts, and the actin depolymerizing drugs cytochalasin D and latrunculin B inhibited yeast internalization and actin recruitment to the phagosome area. In contrast, nocodazole and paclitaxel, inhibitors of microtubule dynamics decreased internalization but did not prevent actin recruitment to the site of phagocytosis. Our results show that different uptake mechanisms, dependent on both actin and tubulin dynamics occur during yeast internalization by macrophages, and that capsule production does not affect the mode of Cryptococcus uptake by host cells.
Ion-dependent Polymerization Differences between Mammalian β- and γ-Nonmuscle Actin Isoforms*
Bergeron, Sarah E.; Zhu, Mei; Thiem, Suzanne M.; Friderici, Karen H.; Rubenstein, Peter A.
2010-01-01
β- and γ-nonmuscle actins differ by 4 amino acids at or near the N terminus and distant from polymerization interfaces. β-Actin contains an Asp1-Asp2-Asp3 and Val10 whereas γ-actin has a Glu1-Glu2-Glu3 and Ile10. Despite these small changes, conserved across mammals, fish, and birds, their differential localization in the same cell suggests they may play different roles reflecting differences in their biochemical properties. To test this hypothesis, we established a baculovirus-driven expression system for producing these actins in isoform-pure populations although contaminated with 20–25% insect actin. Surprisingly, Ca-γ-actin exhibits a slower monomeric nucleotide exchange rate, a much longer nucleation phase, and a somewhat slower elongation rate than β-actin. In the Mg-form, this difference between the two is much smaller. Ca-γ-actin depolymerizes half as fast as does β-actin. Mixing experiments with Ca-actins reveal the two will readily co-polymerize. In the Ca-form, phosphate release from polymerizing β-actin occurs much more rapidly and extensively than polymerization, whereas phosphate release lags behind polymerization with γ-actin. Phosphate release during treadmilling is twice as fast with β- as with γ-actin. With Mg-actin in the initial stages, phosphate release for both actins correlates much more closely with polymerization. Calcium bound in the high affinity binding site of γ-actin may cause a selective energy barrier relative to β-actin that retards the equilibration between G- and F-monomer conformations resulting in a slower polymerizing actin with greater filament stability. This difference may be particularly important in sites such as the γ-actin-rich cochlear hair cell stereocilium where local mm calcium concentrations may exist. PMID:20308063
Actin dynamics mediates the changes of calcium level during the pulvinus movement of Mimosa pudica
Yao, Heng; Xu, Qiangyi
2008-01-01
The bending movement of the pulvinus of Mimosa pudica is caused by a rapid change in volume of the abaxial motor cells, in response to various environmental stimuli. We investigated the relationship between the actin cytoskeleton and changes in the level of calcium during rapid contractile movement of the motor cells that was induced by electrical stimulation. The bending of the pulvinus was retarded by treatments with actin-affecting reagents and calcium channel inhibitors. The actin filaments in the motor cells were fragmented in response to electrical stimulation. Further investigations were performed using protoplasts from the motor cells of M. pudica pulvini. Calcium-channel inhibitors and EGTA had an inhibitory effect on contractile movement of the protoplasts. The level of calcium increased and became concentrated in the tannin vacuole after electrical stimulation. Ruthenium Red inhibited the increase in the level of calcium in the tannin vacuole and the contractile movement of the protoplasts. However, treatment with latrunculin A abolished the inhibitory effect of Ruthenium Red. Phalloidin inhibited the contractile movement and the increase in the level of calcium in the protoplasts. Our study demonstrates that depolymerization of the actin cytoskeleton in pulvinus motor cells in response to electrical signals results in increased levels of calcium. PMID:19513198
Pallavicini, Carla; Levi, Valeria; Wetzler, Diana E; Angiolini, Juan F; Benseñor, Lorena; Despósito, Marcelo A; Bruno, Luciana
2014-06-17
The cytoskeleton is involved in numerous cellular processes such as migration, division, and contraction and provides the tracks for transport driven by molecular motors. Therefore, it is very important to quantify the mechanical behavior of the cytoskeletal filaments to get a better insight into cell mechanics and organization. It has been demonstrated that relevant mechanical properties of microtubules can be extracted from the analysis of their motion and shape fluctuations. However, tracking individual filaments in living cells is extremely complex due, for example, to the high and heterogeneous background. We introduce a believed new tracking algorithm that allows recovering the coordinates of fluorescent microtubules with ∼9 nm precision in in vitro conditions. To illustrate potential applications of this algorithm, we studied the curvature distributions of fluorescent microtubules in living cells. By performing a Fourier analysis of the microtubule shapes, we found that the curvatures followed a thermal-like distribution as previously reported with an effective persistence length of ∼20 μm, a value significantly smaller than that measured in vitro. We also verified that the microtubule-associated protein XTP or the depolymerization of the actin network do not affect this value; however, the disruption of intermediate filaments decreased the persistence length. Also, we recovered trajectories of microtubule segments in actin or intermediate filament-depleted cells, and observed a significant increase of their motion with respect to untreated cells showing that these filaments contribute to the overall organization of the microtubule network. Moreover, the analysis of trajectories of microtubule segments in untreated cells showed that these filaments presented a slower but more directional motion in the cortex with respect to the perinuclear region, and suggests that the tracking routine would allow mapping the microtubule dynamical organization in cells. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Skau, Colleen T; Courson, David S; Bestul, Andrew J; Winkelman, Jonathan D; Rock, Ronald S; Sirotkin, Vladimir; Kovar, David R
2011-07-29
Through the coordinated action of diverse actin-binding proteins, cells simultaneously assemble actin filaments with distinct architectures and dynamics to drive different processes. Actin filament cross-linking proteins organize filaments into higher order networks, although the requirement of cross-linking activity in cells has largely been assumed rather than directly tested. Fission yeast Schizosaccharomyces pombe assembles actin into three discrete structures: endocytic actin patches, polarizing actin cables, and the cytokinetic contractile ring. The fission yeast filament cross-linker fimbrin Fim1 primarily localizes to Arp2/3 complex-nucleated branched filaments of the actin patch and by a lesser amount to bundles of linear antiparallel filaments in the contractile ring. It is unclear whether Fim1 associates with bundles of parallel filaments in actin cables. We previously discovered that a principal role of Fim1 is to control localization of tropomyosin Cdc8, thereby facilitating cofilin-mediated filament turnover. Therefore, we hypothesized that the bundling ability of Fim1 is dispensable for actin patches but is important for the contractile ring and possibly actin cables. By directly visualizing actin filament assembly using total internal reflection fluorescence microscopy, we determined that Fim1 bundles filaments in both parallel and antiparallel orientations and efficiently bundles Arp2/3 complex-branched filaments in the absence but not the presence of actin capping protein. Examination of cells exclusively expressing a truncated version of Fim1 that can bind but not bundle actin filaments revealed that bundling activity of Fim1 is in fact important for all three actin structures. Therefore, fimbrin Fim1 has diverse roles as both a filament "gatekeeper" and as a filament cross-linker.
NASA Technical Reports Server (NTRS)
Borgstahl, G.; Lovelace, J.; Snell, E. H.; Bellamy, H.
2003-01-01
One of the remaining challenges to structural biology is the solution of modulated structures. While small molecule crystallographers have championed this type of structure, to date, no modulated macromolecular structures have been determined. Modulation of the molecular structures within the crystal can produce satellite reflections or a superlattice of reflections in reciprocal space. We have developed the data collection methods and strategies that are needed to collect and analyze these data. If the macromolecule's crystal lattice is composed of physiologically relevant packing contacts, structural changes induced under physiological conditions can cause distortion relevant to the function and biophysical processes of the molecule making up the crystal. By careful measurement of the distortion, and the corresponding three-dimensional structure of the distorted molecule, we will visualize the motion and mechanism of the biological macromolecule(s). We have measured the modulated diffraction pattern produced by the semicrystalline state of profilin:actin crystals using highly parallel and highly monochromatic synchrotron radiation coupled with fine phi slicing (0.001-0.010 degrees) for structure determination. These crystals present these crystals present a unique opportunity to address an important question in structural biology. The modulation is believed to be due to the formation of actin helical filaments from the actin beta ribbon upon the pH-induced dissociation of profilin. To date, the filamentous state of actin has resisted crystallization and no detailed structures are available. The semicrystalline state profilin:actin crystals provides a unique opportunity to understand the many conformational states of actin. This knowledge is essential for understanding the dynamics underlying shape changes and motility of eukaryotic cells. Many essential processes, such as cytokinesis, phagocytosis, and cellular migration depend upon the capacity of the actin microfilament system to be restructured in a controlled manner via polymerization, depolymerization, severing, cross-linking, and anchorage. The structure the semicrystalline state of profilin:actin will challenge and validate current models of muscle contraction and cell motility. The methodology and theory under development will be easily extendable to other systems.
Takáč, Tomáš; Šamajová, Olga; Pechan, Tibor; Luptovčiak, Ivan; Šamaj, Jozef
2017-09-01
Microtubule organization and dynamics are critical for key developmental processes such as cell division, elongation, and morphogenesis. Microtubule severing is an essential regulator of microtubules and is exclusively executed by KATANIN 1 in Arabidopsis In this study, we comparatively studied the proteome-wide effects in two KATANIN 1 mutants. Thus, shotgun proteomic analysis of roots and aerial parts of single nucleotide mutant fra2 and T-DNA insertion mutant ktn1-2 was carried out. We have detected 42 proteins differentially abundant in both fra2 and ktn1-2 KATANIN 1 dysfunction altered the abundance of proteins involved in development, metabolism, and stress responses. The differential regulation of tubulins and microtubule-destabilizing protein MDP25 implied a feedback microtubule control in KATANIN 1 mutants. Furthermore, deregulation of profilin 1, actin-depolymerizing factor 3, and actin 7 was observed. These findings were confirmed by immunoblotting analysis of actin and by microscopic observation of actin filaments using fluorescently labeled phalloidin. Results obtained by quantitative RT-PCR analysis revealed that changed protein abundances were not a consequence of altered expression levels of corresponding genes in the mutants. In conclusion, we show that abundances of several cytoskeletal proteins as well as organization of microtubules and the actin cytoskeleton are amended in accordance with defective microtubule severing. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
External stimulation strength controls actin response dynamics in Dictyostelium cells
NASA Astrophysics Data System (ADS)
Hsu, Hsin-Fang; Westendorf, Christian; Tarantola, Marco; Zykov, Vladimir; Bodenschatz, Eberhard; Beta, Carsten
2015-03-01
Self-sustained oscillation and the resonance frequency of the cytoskeletal actin polymerization/depolymerization have recently been observed in Dictyostelium, a model system for studying chemotaxis. Here we report that the resonance frequency is not constant but rather varies with the strength of external stimuli. To understand the underlying mechanism, we analyzed the polymerization and depolymerization time at different levels of external stimulation. We found that polymerization time is independent of external stimuli but the depolymerization time is prolonged as the stimulation increases. These observations can be successfully reproduced in the frame work of our time delayed differential equation model.
Microvillar Ca++ signaling: a new view of an old problem.
Lange, K
1999-07-01
Proceeding from the recent finding that the main components of the Ca++ signal pathway are located in small membrane protrusions on the surface of differentiated cells, called microvilli, a novel concept of cellular Ca++ signaling was developed. The main features of this concept can be summarized as follows: Microvilli are formed on the cell surface of differentiating or resting cells from exocytic membrane domains, growing out from the cell surface by elongation of an internal bundle of actin filaments. The microvillar tip membranes contain all functional important proteins synthesized such as ion channels and transporters for energy-providing substrates and structural components, which are, in rapidly growing undifferentiated cells, distributed over the whole cell surface by lateral diffusion. The microvillar shaft structure, a bundle of actin filaments, forms a dense cytoskeletal matrix tightly covered by the microvillar lipid membrane and represents an effective diffusion barrier separating the microvillar tip compartment (entrance compartment) from the cytoplasm. This diffusion barrier prevents the passage of low molecular components such as Ca++ glucose and other relevant substrates from the entrance compartment into the cytoplasm. The effectiveness of the actin-based diffusion barrier is modulated by various signal pathways and effectors, most importantly, by the actin-depolymerizing/reorganizing activity of the phospholipase C (PLC)-coupled Ca++ signaling. Moreover, the microvillar bundle of actin filaments plays a dual role in Ca++ signaling. It combines the function of a diffusion barrier, preventing Ca++ influx into the resting cell, with that of a high-affinity, ATP-dependent, and IP3-sensitive Ca++ store. Activation of Ca++ signaling via PLC-coupled receptors simultaneously empties Ca++ stores and activates the influx of external Ca++. The presented concept of Ca++ signaling is compatible with all established data on Ca++ signaling. Properties of Ca++ signaling, that could not be reconciled with the basic principles of the current hypothesis, are intrinsic properties of the new concept. Quantal Ca++ release, Ca(++)-induced Ca++ release (CICR), the coupling phenomen between the filling state of the Ca++ store and the activity of the Ca++ influx pathway, as well as the various yet unexplained complex kinetics of Ca++ uptake and release can be explained on a common mechanistic basis.
Enhancement of branching efficiency by the actin filament-binding activity of N-WASP/WAVE2.
Suetsugu, S; Miki, H; Yamaguchi, H; Obinata, T; Takenawa, T
2001-12-01
The actin-related protein (Arp) 2/3 complex is an essential regulator of de novo actin filament formation. Arp2/3 nucleates the polymerization of actin and creates branched actin filaments when activated by Arp2/3-complex activating domain (VCA) of Wiskott-Aldrich syndrome proteins (WASP family proteins). We found that the branching of actin filaments on pre-existing ADP filaments mediated by the Arp2/3 complex is twice as efficient when Arp2/3 was activated by wild-type neural WASP (N-WASP) or WASP-family verprolin-homologous protein (WAVE) 2 than when activated by the VCA domain alone. By contrast, there was no difference between wild-type N-WASP or WAVE2 and VCA in the branching efficiency on de novo filaments, which are thought to consist mainly of ADP-phosphate filaments. This increased branching efficiency on ADP filaments is due to the basic region located in the center of N-WASP and WAVE2, which was found to associate with ADP actin filaments. Actin filaments and phosphatidylinositol bisphosphate (PIP2) associate with N-WASP at different sites. This association of N-WASP and WAVE2 with actin filaments enhanced recruitment of Arp2/3 to the pre-existing filaments, presumably leading to efficient nucleation and branch formation on pre-existing filaments. These data together suggest that the actin filament binding activity of N-WASP and WAVE2 in the basic region increases the number of barbed ends created on pre-existing filaments. Efficient branching on ADP filaments may be important for initiation of actin-based motility.
How capping protein enhances actin filament growth and nucleation on biomimetic beads.
Wang, Ruizhe; Carlsson, Anders E
2015-11-25
Capping protein (CP), which caps the growing ends of actin filaments, accelerates actin-based motility. Recent experiments on biomimetic beads have shown that CP also enhances the rate of actin filament nucleation. Proposed explanations for these phenomena include (i) the actin funneling hypothesis (AFH), in which the presence of CP increases the free-actin concentration, and (ii) the monomer gating model, in which CP binding to actin filament barbed ends makes more monomers available for filament nucleation. To establish how CP increases the rates of filament elongation and nucleation on biomimetic beads, we perform a quantitative modeling analysis of actin polymerization, using rate equations that include actin filament nucleation, polymerization and capping, as modified by monomer depletion near the surface of the bead. With one adjustable parameter, our simulation results match previously measured time courses of polymerized actin and filament number. The results support a version of the AFH where CP increases the local actin monomer concentration at the bead surface, but leaves the global free-actin concentration nearly constant. Because the rate of filament nucleation increases with the monomer concentration, the increased local monomer concentration enhances actin filament nucleation. We derive a closed-form formula for the characteristic CP concentration where the local free-actin concentration reaches half the bulk value, and find it to be comparable to the global Arp2/3 complex concentration. We also propose an experimental protocol for distinguishing branching nucleation of filaments from spontaneous nucleation.
Dynamics and Regulation of RecA Polymerization and De-Polymerization on Double-Stranded DNA
Muniyappa, Kalappa; Yan, Jie
2013-01-01
The RecA filament formed on double-stranded (ds) DNA is proposed to be a functional state analogous to that generated during the process of DNA strand exchange. RecA polymerization and de-polymerization on dsDNA is governed by multiple physiological factors. However, a comprehensive understanding of how these factors regulate the processes of polymerization and de-polymerization of RecA filament on dsDNA is still evolving. Here, we investigate the effects of temperature, pH, tensile force, and DNA ends (in particular ssDNA overhang) on the polymerization and de-polymerization dynamics of the E. coli RecA filament at a single-molecule level. Our results identified the optimal conditions that permitted spontaneous RecA nucleation and polymerization, as well as conditions that could maintain the stability of a preformed RecA filament. Further examination at a nano-meter spatial resolution, by stretching short DNA constructs, revealed a striking dynamic RecA polymerization and de-polymerization induced saw-tooth pattern in DNA extension fluctuation. In addition, we show that RecA does not polymerize on S-DNA, a recently identified novel base-paired elongated DNA structure that was previously proposed to be a possible binding substrate for RecA. Overall, our studies have helped to resolve several previous single-molecule studies that reported contradictory and inconsistent results on RecA nucleation, polymerization and stability. Furthermore, our findings also provide insights into the regulatory mechanisms of RecA filament formation and stability in vivo. PMID:23825559
Belin, Brittany J; Lee, Terri; Mullins, R Dyche
2015-08-19
Actin filaments assemble inside the nucleus in response to multiple cellular perturbations, including heat shock, protein misfolding, integrin engagement, and serum stimulation. We find that DNA damage also generates nuclear actin filaments-detectable by phalloidin and live-cell actin probes-with three characteristic morphologies: (i) long, nucleoplasmic filaments; (ii) short, nucleolus-associated filaments; and (iii) dense, nucleoplasmic clusters. This DNA damage-induced nuclear actin assembly requires two biologically and physically linked nucleation factors: Formin-2 and Spire-1/Spire-2. Formin-2 accumulates in the nucleus after DNA damage, and depletion of either Formin-2 or actin's nuclear import factor, importin-9, increases the number of DNA double-strand breaks (DSBs), linking nuclear actin filaments to efficient DSB clearance. Nuclear actin filaments are also required for nuclear oxidation induced by acute genotoxic stress. Our results reveal a previously unknown role for nuclear actin filaments in DNA repair and identify the molecular mechanisms creating these nuclear filaments.
Dynamic actin filaments control the mechanical behavior of the human red blood cell membrane
Gokhin, David S.; Nowak, Roberta B.; Khoory, Joseph A.; de la Piedra, Alfonso; Ghiran, Ionita C.; Fowler, Velia M.
2015-01-01
Short, uniform-length actin filaments function as structural nodes in the spectrin-actin membrane skeleton to optimize the biomechanical properties of red blood cells (RBCs). Despite the widespread assumption that RBC actin filaments are not dynamic (i.e., do not exchange subunits with G-actin in the cytosol), this assumption has never been rigorously tested. Here we show that a subpopulation of human RBC actin filaments is indeed dynamic, based on rhodamine-actin incorporation into filaments in resealed ghosts and fluorescence recovery after photobleaching (FRAP) analysis of actin filament mobility in intact RBCs (∼25–30% of total filaments). Cytochalasin-D inhibition of barbed-end exchange reduces rhodamine-actin incorporation and partially attenuates FRAP recovery, indicating functional interaction between actin subunit turnover at the single-filament level and mobility at the membrane-skeleton level. Moreover, perturbation of RBC actin filament assembly/disassembly with latrunculin-A or jasplakinolide induces an approximately twofold increase or ∼60% decrease, respectively, in soluble actin, resulting in altered membrane deformability, as determined by alterations in RBC transit time in a microfluidic channel assay, as well as by abnormalities in spontaneous membrane oscillations (flickering). These experiments identify a heretofore-unrecognized but functionally important subpopulation of RBC actin filaments, whose properties and architecture directly control the biomechanical properties of the RBC membrane. PMID:25717184
Mirshamsi, Shirin; Laidlaw, Hilary A; Ning, Ke; Anderson, Erin; Burgess, Laura A; Gray, Alexander; Sutherland, Calum; Ashford, Michael LJ
2004-01-01
Background Leptin and insulin are long-term regulators of body weight. They act in hypothalamic centres to modulate the function of specific neuronal subtypes, by altering transcriptional control of releasable peptides and by modifying neuronal electrical activity. A key cellular signalling intermediate, implicated in control of food intake by these hormones, is the enzyme phosphoinositide 3-kinase. In this study we have explored further the linkage between this enzyme and other cellular mediators of leptin and insulin action on rat arcuate nucleus neurones and the mouse hypothalamic cell line, GT1-7. Results Leptin and insulin increased the levels of various phosphorylated signalling intermediates, associated with the JAK2-STAT3, MAPK and PI3K cascades in the arcuate nucleus. Inhibitors of PI3K were shown to reduce the hormone driven phosphorylation through the PI3K and MAPK pathways. Using isolated arcuate neurones, leptin and insulin were demonstrated to increase the activity of KATP channels in a PI3K dependent manner, and to increase levels of PtdIns(3,4,5)P3. KATP activation by these hormones in arcuate neurones was also sensitive to the presence of the actin filament stabilising toxin, jasplakinolide. Using confocal imaging of fluorescently labelled actin and direct analysis of G- and F-actin concentration in GT1-7 cells, leptin was demonstrated directly to induce a re-organization of cellular actin, by increasing levels of globular actin at the expense of filamentous actin in a PI3-kinase dependent manner. Leptin stimulated PI3-kinase activity in GT1-7 cells and an increase in PtdIns(3,4,5)P3 could be detected, which was prevented by PI3K inhibitors. Conclusions Leptin and insulin mediated phosphorylation of cellular signalling intermediates and of KATP channel activation in arcuate neurones is sensitive to PI3K inhibition, thus strengthening further the likely importance of this enzyme in leptin and insulin mediated energy homeostasis control. The sensitivity of leptin and insulin stimulation of KATP channel opening in arcuate neurones to jasplakinolide indicates that cytoskeletal remodelling may be an important contributor to the cellular signalling mechanisms of these hormones in hypothalamic neurones. This hypothesis is reinforced by the finding that leptin induces actin filament depolymerization, in a PI3K dependent manner in a mouse hypothalamic cell line. PMID:15581426
Chowdhury, H H; Popoff, M R; Zorec, R
1999-12-01
1. We measured membrane capacitance (Cm) in cultured rat melanotrophs pretreated with Clostridium spiroforme toxin (CST), which specifically depolymerizes cortical filamentous actin (F-actin). Phalloidin staining confirmed that CST treatment depolymerised the F-actin. 2. In control cells, cytosol dialysis with 1 microM Ca2+i increased Cm by 23 +/- 4 % (n = 11) relative to the resting Cm 400 s after the start of patch rupture. In CST-treated cells the increase in Cm was 32 +/- 5 % (n = 15), not significantly different from controls. The rate of Cm increase was affected transiently by CST treatment, peaking at 1 min after patch rupture. The maximal rate of Cm increase was 4.27 +/- 0.85 fF s-1 (n = 12; measured 200 s after the start of patch rupture) in controls and 8.0 +/- 1.35 fF s-1 (n = 23; measured 75 s after the start of patch rupture) in CST-treated cells (P < 0.01). 3. In control cells cytosol dialysis with 0 microM Ca2+i decreased Cm by 9 +/- 3 % (n = 7), in CST-treated cells Cm increased by 11 +/- 3 % (n = 7) relative to resting Cm 400 s after the start of cytosol dialysis. The rate of change in Cm remained constant (controls: -1 to -2 fF s-1; CST treatment: 1-2 fF s-1). 4. Transient and sustained effects of CST treatment on changes in Cm at high or low [Ca2+]i, respectively, suggest a distinct role of cytoskeleton in Ca2+-dependent and Ca2+-independent changes in Cm. Transient enhancement of the rate of Cm by CST is consistent with a barrier role of cytoskeleton in regulated exocytosis. The sustained effect of CST on Ca2+-independent changes in Cm suggests cytoskeletal involvement in endocytosis.
Geometrical and Mechanical Properties Control Actin Filament Organization
Ennomani, Hajer; Théry, Manuel; Nedelec, Francois; Blanchoin, Laurent
2015-01-01
The different actin structures governing eukaryotic cell shape and movement are not only determined by the properties of the actin filaments and associated proteins, but also by geometrical constraints. We recently demonstrated that limiting nucleation to specific regions was sufficient to obtain actin networks with different organization. To further investigate how spatially constrained actin nucleation determines the emergent actin organization, we performed detailed simulations of the actin filament system using Cytosim. We first calibrated the steric interaction between filaments, by matching, in simulations and experiments, the bundled actin organization observed with a rectangular bar of nucleating factor. We then studied the overall organization of actin filaments generated by more complex pattern geometries used experimentally. We found that the fraction of parallel versus antiparallel bundles is determined by the mechanical properties of actin filament or bundles and the efficiency of nucleation. Thus nucleation geometry, actin filaments local interactions, bundle rigidity, and nucleation efficiency are the key parameters controlling the emergent actin architecture. We finally simulated more complex nucleation patterns and performed the corresponding experiments to confirm the predictive capabilities of the model. PMID:26016478
NASA Astrophysics Data System (ADS)
Tsuda, Yuri; Yasutake, Hironori; Ishijima, Akihiko; Yanagida, Toshio
1996-11-01
Knowledge of the elastic properties of actin filaments is crucial for considering its role in muscle contraction, cellular motile events, and formation of cell shape. The stiffness of actin filaments in the directions of stretching and bending has been determined. In this study, we have directly determined the torsional rigidity and breaking force of single actin filaments by measuring the rotational Brownian motion and tensile strength using optical tweezers and microneedles, respectively. Rotational angular fluctuations of filaments supplied the torsional rigidity as (8.0 ± 1.2) × 10-26 Nm2. This value is similar to that deduced from the longitudinal rigidity, assuming the actin filament to be a homogeneous rod. The breaking force of the actin-actin bond was measured while twisting a filament through various angles using microneedles. The breaking force decreased greatly under twist, e.g., from 600-320 pN when filaments were turned through 90 degrees, independent of the rotational direction. Our results indicate that an actin filament exhibits comparable flexibility in the rotational and longitudinal directions, but breaks more easily under torsional load.
Filamentous actin organization in the unfertilized sea urchin egg cortex.
Henson, J H; Begg, D A
1988-06-01
We have investigated the organization of filamentous actin in the cortex of unfertilized eggs of the sea urchins Strongylocentrotus purpuratus and Lytechinus variegatus. Rhodamine phalloidin and anti-actin immunofluorescent staining of isolated cortices reveal a punctate pattern of fluorescent sources. Comparison of this pattern with SEM images of microvillar morphology and distribution indicates that filamentous actin in the cortex is predominantly localized in the microvilli. Thin-section TEM and quick-freeze deep-etch ultrastructure of isolated cortices demonstrates that this microvillar-associated actin is in a novel organizational state composed of very short filaments arranged in a tight network and that these filament networks form mounds that extend beyond the plane of the plasma membrane. Actin filaments within the networks do not exhibit free ends and make end-on attachments with the membrane only within the region of the evaginating microvilli. Myosin S-1 dissociable crosslinks, 2-3 nm in diameter, are observed between network filaments and between network filaments and the membrane. A second population of long, individual actin filaments is observed in close lateral association with the plasma membrane and frequently complexes with the microvillar actin networks. The filamentous actin of the unfertilized egg cortex may participate in establishing the mechanical properties of the egg surface and may function in nucleating the assembly of cortical actin following fertilization.
Appaduray, Mark A; Masedunskas, Andrius; Bryce, Nicole S; Lucas, Christine A; Warren, Sean C; Timpson, Paul; Stear, Jeffrey H; Gunning, Peter W; Hardeman, Edna C
2016-01-01
The actin cytoskeleton is a dynamic network of filaments that is involved in virtually every cellular process. Most actin filaments in metazoa exist as a co-polymer of actin and tropomyosin (Tpm) and the function of an actin filament is primarily defined by the specific Tpm isoform associated with it. However, there is little information on the interdependence of these co-polymers during filament assembly and disassembly. We addressed this by investigating the recovery kinetics of fluorescently tagged isoform Tpm3.1 into actin filament bundles using FRAP analysis in cell culture and in vivo in rats using intracellular intravital microscopy, in the presence or absence of the actin-targeting drug jasplakinolide. The mobile fraction of Tpm3.1 is between 50% and 70% depending on whether the tag is at the C- or N-terminus and whether the analysis is in vivo or in cultured cells. We find that the continuous dynamic exchange of Tpm3.1 is not significantly impacted by jasplakinolide, unlike tagged actin. We conclude that tagged Tpm3.1 may be able to undergo exchange in actin filament bundles largely independent of the assembly and turnover of actin.
Cortactin binding to F-actin revealed by electron microscopy and 3D reconstruction.
Pant, Kiran; Chereau, David; Hatch, Victoria; Dominguez, Roberto; Lehman, William
2006-06-16
Cortactin and WASP activate Arp2/3-mediated actin filament nucleation and branching. However, different mechanisms underlie activation by the two proteins, which rely on distinct actin-binding modules and modes of binding to actin filaments. It is generally thought that cortactin binds to "mother" actin filaments, while WASP donates actin monomers to Arp2/3-generated "daughter" filament branches. Interestingly, cortactin also binds WASP in addition to F-actin and the Arp2/3 complex. However, the structural basis for the role of cortactin in filament branching remains unknown, making interpretation difficult. Here, electron microscopy and 3D reconstruction were carried out on F-actin decorated with the actin-binding repeating domain of cortactin, revealing conspicuous density on F-actin attributable to cortactin that is located on a consensus-binding site on subdomain-1 of actin subunits. Strikingly, the binding of cortactin widens the gap between the two long-pitch filament strands. Although other proteins have been found to alter the structure of the filament, the cortactin-induced conformational change appears unique. The results are consistent with a mechanism whereby alterations of the F-actin structure may facilitate recruitment of the Arp2/3 complex to the "mother" filament in the cortex of cells. In addition, cortactin may act as a structural adapter protein, stabilizing nascent filament branches while mediating the simultaneous recruitment of Arp2/3 and WASP.
Actin Hydrophobic Loop (262-274) and Filament Nucleation and Elongation
Shvetsov, Alexander; Galkin, Vitold E.; Orlova, Albina; Phillips, Martin; Bergeron, Sarah E.; Rubenstein, Peter A.; Egelman, Edward H.; Reisler, Emil
2014-01-01
Summary The importance of actin hydrophobic loop 262-274 dynamics to actin polymerization and filament stability has been shown recently using a yeast actin mutant, L180C/L269C/C374A, in which the hydrophobic loop could be locked in a “parked” conformation by a disulfide bond between C180 and C269. Such a cross-linked G-actin does not form filaments, suggesting nucleation and/or elongation inhibition. To determine the role of loop dynamics in filament nucleation and/or elongation, we studied the polymerization of the cross-linked actin in the presence of cofilin - to assist with actin nucleation - and with phalloidin, to stabilize the elongating filament segments. We demonstrate here that together, but not alone, phalloidin and cofilin co-rescue the polymerization of cross-linked actin. The polymerization was also rescued by filament seeds added together with phalloidin but not with cofilin. Thus, loop immobilization via cross-linking inhibits both filament nucleation and elongation. Nevertheless, the conformational changes needed to catalyze ATP hydrolysis by actin occur in the cross-linked actin. When actin filaments are fully decorated by cofilin the helical twist of F-actin changes by ~ 5° per subunit. Electron microscopic analysis of filaments rescued by cofilin and phalloidin revealed a dense contact between opposite strands in F-actin, and a change of twist by ~ 1° per subunit, indicating either partial or disordered attachment of cofilin to F-actin and/or a competition between cofilin and phalloidin to alter F-actin symmetry. Our findings show an importance of the hydrophobic loop conformational dynamics to both actin nucleation and elongation and reveal that the inhibition of these two steps in the cross-linked actin can be relieved by appropriate factors. PMID:18037437
Kiuchi, Tai; Ohashi, Kazumasa; Kurita, Souichi; Mizuno, Kensaku
2007-01-01
Cofilin stimulates actin filament disassembly and accelerates actin filament turnover. Cofilin is also involved in stimulus-induced actin filament assembly during lamellipodium formation. However, it is not clear whether this occurs by replenishing the actin monomer pool, through filament disassembly, or by creating free barbed ends, through its severing activity. Using photoactivatable Dronpa-actin, we show that cofilin is involved in producing more than half of all cytoplasmic actin monomers and that the rate of actin monomer incorporation into the tip of the lamellipodium is dependent on the size of this actin monomer pool. Finally, in cofilin-depleted cells, stimulus-induced actin monomer incorporation at the cell periphery is attenuated, but the incorporation of microinjected actin monomers is not. We propose that cofilin contributes to stimulus-induced actin filament assembly and lamellipodium extension by supplying an abundant pool of cytoplasmic actin monomers. PMID:17470633
Actin Filament Polymerization Regulates Gliding Motility by Apicomplexan ParasitesV⃞
Wetzel, D.M.; Håkansson, S.; Hu, K.; Roos, D.; Sibley, L.D.
2003-01-01
Host cell entry by Toxoplasma gondii depends critically on actin filaments in the parasite, yet paradoxically, its actin is almost exclusively monomeric. In contrast to the absence of stable filaments in conventional samples, rapid-freeze electron microscopy revealed that actin filaments were formed beneath the plasma membrane of gliding parasites. To investigate the role of actin filaments in motility, we treated parasites with the filament-stabilizing drug jasplakinolide (JAS) and monitored the distribution of actin in live and fixed cells using yellow fluorescent protein (YFP)-actin. JAS treatment caused YFP-actin to redistribute to the apical and posterior ends, where filaments formed a spiral pattern subtending the plasma membrane. Although previous studies have suggested that JAS induces rigor, videomicroscopy demonstrated that JAS treatment increased the rate of parasite gliding by approximately threefold, indicating that filaments are rate limiting for motility. However, JAS also frequently reversed the normal direction of motility, disrupting forward migration and cell entry. Consistent with this alteration, subcortical filaments in JAS-treated parasites occurred in tangled plaques as opposed to the straight, roughly parallel orientation observed in control cells. These studies reveal that precisely controlled polymerization of actin filaments imparts the correct timing, duration, and directionality of gliding motility in the Apicomplexa. PMID:12589042
Compressive force generation by a bundle of living biofilaments
NASA Astrophysics Data System (ADS)
Ramachandran, Sanoop; Ryckaert, Jean-Paul
2013-08-01
To study the compressional forces exerted by a bundle of living stiff filaments pressing on a surface, akin to the case of an actin bundle in filopodia structures, we have performed particulate molecular dynamics simulations of a grafted bundle of parallel living (self-assembling) filaments, in chemical equilibrium with a solution of their constitutive monomers. Equilibrium is established as these filaments, grafted at one end to a wall of the simulation box, grow at their chemically active free end, and encounter the opposite confining wall of the simulation box. Further growth of filaments requires bending and thus energy, which automatically limit the populations of longer filaments. The resulting filament sizes distribution and the force exerted by the bundle on the obstacle are analyzed for different grafting densities and different sub- or supercritical conditions, these properties being compared with the predictions of the corresponding ideal confined bundle model. In this analysis, non-ideal effects due to interactions between filaments and confinement effects are singled out. For all state points considered at the same temperature and at the same gap width between the two surfaces, the force per filament exerted on the opposite wall appears to be a function of a rescaled free monomer density hat{ρ }_1^eff. This quantity can be estimated directly from the characteristic length of the exponential filament size distribution P observed in the size domain where these grafted filaments are not in direct contact with the wall. We also analyze the dynamics of the filament contour length fluctuations in terms of effective polymerization (U) and depolymerization (W) rates, where again it is possible to disentangle non-ideal and confinement effects.
NASA Astrophysics Data System (ADS)
Ory, Eleanor C.; Bhandary, Lekhana; E Boggs, Amanda; Chakrabarti, Kristi R.; Parker, Joshua; Losert, Wolfgang; Martin, Stuart S.
2017-04-01
The periphery of epithelial cells is shaped by opposing cytoskeletal physical forces generated predominately by two dynamic force generating systems—growing microtubule ends push against the boundary from the cell center, and the actin cortex contracts the attached plasma membrane. Here we investigate how changes to the structure and dynamics of the actin cortex alter the dynamics of microtubules. Current drugs target actin polymerization and contraction to reduce cell division and invasiveness; however, the impacts on microtubule dynamics remain incompletely understood. Using human MCF-7 breast tumor cells expressing GFP-tagged microtubule end-binding-protein-1 (EB1) and coexpression of cytoplasmic fluorescent protein mCherry, we map the trajectories of growing microtubule ends and cytoplasmic boundary respectively. Based on EB1 tracks and cytoplasmic boundary outlines, we calculate the speed, distance from cytoplasmic boundary, and straightness of microtubule growth. Actin depolymerization with Latrunculin-A reduces EB1 growth speed as well as allows the trajectories to extend beyond the cytoplasmic boundary. Blebbistatin, a direct myosin-II inhibitor, reduced EB1 speed and yielded less straight EB1 trajectories. Inhibiting signaling upstream of myosin-II contractility via the Rho-kinase inhibitor, Y-27632, altered EB1 dynamics differently from Blebbistatin. These results indicate that reduced actin cortex integrity can induce distinct alterations in microtubule dynamics. Given recent findings that tumor stem cell characteristics are increased by drugs which reduce actin contractility or stabilize microtubules, it remains important to clearly define how cytoskeletal drugs alter the interactions between these two filament systems in tumor cells.
Orlando, R A; Takeda, T; Zak, B; Schmieder, S; Benoit, V M; McQuistan, T; Furthmayr, H; Farquhar, M G
2001-08-01
During development, renal glomerular epithelial cells (podocytes) undergo extensive morphologic changes necessary for creation of the glomerular filtration apparatus. These changes include formation of interdigitating foot processes, replacement of tight junctions with slit diaphragms, and the concomitant opening of intercellular urinary spaces. It was postulated previously and confirmed recently that podocalyxin, a sialomucin, plays a major role in maintaining the urinary space open by virtue of the physicochemical properties of its highly negatively charged ectodomain. This study examined whether the highly conserved cytoplasmic tail of podocalyxin also contributes to the unique organization of podocytes by interacting with the cytoskeletal network found in their cell bodies and foot processes. By immunocytochemistry, it was shown that podocalyxin and the actin binding protein ezrin are co-expressed in podocytes and co-localize along the apical plasma membrane, where they form a co-immunoprecipitable complex. Selective detergent extraction followed by differential centrifugation revealed that some of the podocalyxin cosediments with actin filaments. Moreover, its sedimentation is dependent on polymerized actin and is mediated by complex formation with ezrin. Once formed, podocalyxin/ezrin complexes are very stable, because they are insensitive to actin depolymerization or inactivation of Rho kinase, which is known to be necessary for regulation of ezrin and to mediate Rho-dependent actin organization. These data indicate that in podocytes, podocalyxin is complexed with ezrin, which mediates its link to the actin cytoskeleton. Thus, in addition to its ectodomain, the cytoplasmic tail of podocalyxin also likely contributes to maintaining the unique podocyte morphology.
The evolution of compositionally and functionally distinct actin filaments.
Gunning, Peter W; Ghoshdastider, Umesh; Whitaker, Shane; Popp, David; Robinson, Robert C
2015-06-01
The actin filament is astonishingly well conserved across a diverse set of eukaryotic species. It has essentially remained unchanged in the billion years that separate yeast, Arabidopsis and man. In contrast, bacterial actin-like proteins have diverged to the extreme, and many of them are not readily identified from sequence-based homology searches. Here, we present phylogenetic analyses that point to an evolutionary drive to diversify actin filament composition across kingdoms. Bacteria use a one-filament-one-function system to create distinct filament systems within a single cell. In contrast, eukaryotic actin is a universal force provider in a wide range of processes. In plants, there has been an expansion of the number of closely related actin genes, whereas in fungi and metazoa diversification in tropomyosins has increased the compositional variety in actin filament systems. Both mechanisms dictate the subset of actin-binding proteins that interact with each filament type, leading to specialization in function. In this Hypothesis, we thus propose that different mechanisms were selected in bacteria, plants and metazoa, which achieved actin filament compositional variation leading to the expansion of their functional diversity. © 2015. Published by The Company of Biologists Ltd.
Oligomerization of coronin: Implication on actin filament length in Leishmania.
Srivastava, Rashmi; Prasadareddy Kajuluri, Lova; Pathak, Neelam; Gupta, Chhitar M; Sahasrabuddhe, Amogh A
2015-12-01
Coronin proteins bind with actin filaments and participate in regulation of actin-dependent processes. These proteins contain a coiled-coil domain at their C-terminus, which is responsible for their dimeric or trimeric forms. However, the functional significance of these oligomeric configurations in organizing the actin cytoskeleton is obscure. Here, we report that the Leishmania coronin exists in a higher oligomeric form through its coiled-coil domain, the truncation of which ablates the ability of Leishmania coronin to assist actin-filament formation. F-actin co-sedimentation assay using purified proteins shows that the coiled-coil domain does not interact with actin-filaments and its absence does not abrogate actin-coronin interaction. Furthermore, it was shown that unlike other coronins, Leishmania coronin interacts with actin-filaments through its unique region. These results provided important insights into the role of coronin oligomerization in modulating actin-network. © 2015 Wiley Periodicals, Inc.
The effect of propofol on plasma membrane ultrastructure in the intact cells
NASA Astrophysics Data System (ADS)
Jin, Weixiang; Pralle, Arnd
The mechanism of general anesthesia is still unknown. One drug used for human anesthesia, propofol, has been shown to interact with some ligand gated ion-channels, but also easily dissolves in the lipid bilayer and alters fluidity. Which mechanism dominates or even how anesthesia arises are unclear. We study the influence of propofol on plasma membrane (PM) ultrastructure in intact cells. In the PM, transient submicroscopic nanodomains form by interactions between lipid-acyl-chains or lipid head groups, stabilized by cholesterol. In addition, membrane cytoskeleton further regulates the nanodomains, which then regulate signaling. We study transient propofol effects on these domains from low to clinically relevant propofol concentrations by analyzing diffusion of GFP-tagged outer leaflet/inner leaflet membrane proteins. Using bimFCS we measure diffusion on multiple length scales simultaneously. We observe that at low propofol concentrations, the nanodomains trap GPI-mGFP less, consistent with studies showing that propofol decreases the phase transition temperature of membrane derived vesicles. Interestingly, at clinical relevant concentrations of propofol, the nanodomains trap GPI-mGFP more strongly. This is only observed at 37C. By inhibiting myosin activity or actin filaments (de-)polymerization, we find that the activity of actin filaments further alters the behavior of cholesterol nanodomains due to propofol. We compare the effect of propofol and its analog confirming specificity.
Human spire interacts with the barbed end of the actin filament.
Ito, Takuto; Narita, Akihiro; Hirayama, Tasuku; Taki, Masayasu; Iyoshi, Shohei; Yamamoto, Yukio; Maéda, Yuichiro; Oda, Toshiro
2011-04-22
Spire is an actin nucleator that initiates actin polymerization at a specific place in the cell. Similar to the Arp2/3 complex, spire was initially considered to bind to the pointed end of the actin filament when it generates a new actin filament. Subsequently, spire was reported to be associated with the barbed end (B-end); thus, there is still no consensus regarding the end with which spire interacts. Here, we report direct evidence that spire binds to the B-end of the actin filament, under conditions where spire accelerates actin polymerization. Using electron microscopy, we visualized the location of spire bound to the filament by gold nanoparticle labeling of the histidine-tagged spire, and the polarity of the actin filament was determined by image analysis. In addition, our results suggest that multiple spires, linked through one gold nanoparticle, enhance the acceleration of actin polymerization. The B-end binding of spire provides the basis for understanding its functional mechanism in the cell. Copyright © 2011 Elsevier Ltd. All rights reserved.
Actin filament curvature biases branching direction
NASA Astrophysics Data System (ADS)
Wang, Evan; Risca, Viviana; Chaudhuri, Ovijit; Chia, Jia-Jun; Geissler, Phillip; Fletcher, Daniel
2012-02-01
Actin filaments are key components of the cellular machinery, vital for a wide range of processes ranging from cell motility to endocytosis. Actin filaments can branch, and essential in this process is a protein complex known as the Arp2/3 complex, which nucleate new ``daughter'' filaments from pre-existing ``mother'' filaments by attaching itself to the mother filament. Though much progress has been made in understanding the Arp2/3-actin junction, some very interesting questions remain. In particular, F-actin is a dynamic polymer that undergoes a wide range of fluctuations. Prior studies of the Arp2/3-actin junction provides a very static notion of Arp2/3 binding. The question we ask is how differently does the Arp2/3 complex interact with a straight filament compared to a bent filament? In this study, we used Monte Carlo simulations of a surface-tethered worm-like chain to explore possible mechanisms underlying the experimental observation that there exists preferential branch formation by the Arp2/3 complex on the convex face of a curved filament. We show that a fluctuation gating model in which Arp2/3 binding to the actin filament is dependent upon a rare high-local-curvature shape fluctuation of the filament is consistent with the experimental data.
Mechanism of Cdc42-induced Actin Polymerization in Neutrophil Extracts
Zigmond, Sally H.; Joyce, Michael; Yang, Changsong; Brown, Kevin; Huang, Minzhou; Pring, Martin
1998-01-01
Cdc42, activated with GTPγS, induces actin polymerization in supernatants of lysed neutrophils. This polymerization, like that induced by agonists, requires elongation at filament barbed ends. To determine if creation of free barbed ends was sufficient to induce actin polymerization, free barbed ends in the form of spectrin-actin seeds or sheared F-actin filaments were added to cell supernatants. Neither induced polymerization. Furthermore, the presence of spectrin-actin seeds did not increase the rate of Cdc42-induced polymerization, suggesting that the presence of Cdc42 did not facilitate polymerization from spectrin-actin seeds such as might have been the case if Cdc42 inhibited capping or released G-actin from a sequestered pool. Electron microscopy revealed that Cdc42-induced filaments elongated rapidly, achieving a mean length greater than 1 μm in 15 s. The mean length of filaments formed from spectrin-actin seeds was <0.4 μm. Had spectrin-actin seeds elongated at comparable rates before they were capped, they would have induced longer filaments. There was little change in mean length of Cdc42-induced filaments between 15 s and 5 min, suggesting that the increase in F-actin over this time was due to an increase in filament number. These data suggest that Cdc42 induction of actin polymerization requires both creation of free barbed ends and facilitated elongation at these ends. PMID:9722612
Mechanism of Cdc42-induced actin polymerization in neutrophil extracts.
Zigmond, S H; Joyce, M; Yang, C; Brown, K; Huang, M; Pring, M
1998-08-24
Cdc42, activated with GTPgammaS, induces actin polymerization in supernatants of lysed neutrophils. This polymerization, like that induced by agonists, requires elongation at filament barbed ends. To determine if creation of free barbed ends was sufficient to induce actin polymerization, free barbed ends in the form of spectrin-actin seeds or sheared F-actin filaments were added to cell supernatants. Neither induced polymerization. Furthermore, the presence of spectrin-actin seeds did not increase the rate of Cdc42-induced polymerization, suggesting that the presence of Cdc42 did not facilitate polymerization from spectrin-actin seeds such as might have been the case if Cdc42 inhibited capping or released G-actin from a sequestered pool. Electron microscopy revealed that Cdc42-induced filaments elongated rapidly, achieving a mean length greater than 1 micron in 15 s. The mean length of filaments formed from spectrin-actin seeds was <0.4 micron. Had spectrin-actin seeds elongated at comparable rates before they were capped, they would have induced longer filaments. There was little change in mean length of Cdc42-induced filaments between 15 s and 5 min, suggesting that the increase in F-actin over this time was due to an increase in filament number. These data suggest that Cdc42 induction of actin polymerization requires both creation of free barbed ends and facilitated elongation at these ends.
Holohan, S-J P; Marston, S B
2005-06-01
The effect of applying an external load to actin filaments moving in the in vitro motility assay is studied. Bead-tailed actin filaments were made by polymerising actin onto 2.8 microm diameter Dynabeads conjugated with gelsolin-G actin. These were introduced into a motility cell coated with 100 microg/ml rabbit fast skeletal myosin in the presence of ATP and 0.5% methylcellulose. The motility cell was inserted between the pole-pieces of an electromagnet and the fluorescent beads and filaments were observed. The force-current relationship of the electromagnet was determined from the velocity of free beads in viscous solution and Stokes' equation. The magnet produced up to 6 pN force on the Dynabeads at 1 A. Many bead-tailed actin filaments stuck to the surface, but the beads that did move moved at the same speed as unloaded f-actin in the same cell. Bead-tailed filaments slowed down under an increasing magnetic load, eventually stalled and then slid backward under increasing load before detaching from the surface. Single-filament force-velocity curves were constructed and a stalling force of about 0.6 pN/mm of actin filament estimated.
Cofilin-2 controls actin filament length in muscle sarcomeres
Kremneva, Elena; Makkonen, Maarit H.; Skwarek-Maruszewska, Aneta; Gateva, Gergana; Michelot, Alphee; Dominguez, Roberto; Lappalainen, Pekka
2014-01-01
SUMMARY ADF/cofilins drive cytoskeletal dynamics by promoting the disassembly of ‘aged’ ADP-actin filaments. Mammals express several ADF/cofilin isoforms, but their specific biochemical activities and cellular functions have not been studied in detail. Here we demonstrate that the muscle-specific isoform cofilin-2 promotes actin filament disassembly in sarcomeres to control the precise length of thin filaments in the contractile apparatus. In contrast to other isoforms, cofilin-2 efficiently binds and disassembles both ADP- and ATP/ADP-Pi-actin filaments. We mapped surface-exposed cofilin-2-specific residues required for ATP-actin binding and propose that these residues function as an ‘actin nucleotide-state sensor’ among ADF/cofilins. The results suggest that cofilin-2 evolved specific biochemical and cellular properties allowing it to control actin dynamics in sarcomeres, where filament pointed ends may contain a mixture of ADP- and ATP/ADP-Pi-actin subunits. Our findings also offer a rationale for why cofilin-2 mutations in humans lead to myopathies. PMID:25373779
McCullough, Brannon R.; Blanchoin, Laurent; Martiel, Jean-Louis; De La Cruz, Enrique M.
2009-01-01
We determined the flexural (bending) rigidities of actin and cofilactin filaments from a cosine correlation function analysis of their thermally driven, two-dimensional fluctuations in shape. The persistence length of actin filaments is 9.8 µm, corresponding to a flexural rigidity of 0.040 pN µm2. Cofilin binding lowers the persistence length ∼5-fold to a value of 2.2 µm and the filament flexural rigidity to 0.0091 pN µm2. That cofilin-decorated filaments are more flexible than native filaments despite an increased mass indicates that cofilin binding weakens and redistributes stabilizing subunit interactions of filaments. We favor a mechanism in which the increased flexibility of cofilin-decorated filaments results from the linked dissociation of filament-stabilizing ions and reorganization of actin subdomain 2 and as a consequence promotes severing due to a mechanical asymmetry. Knowledge of the effects of cofilin on actin filament bending mechanics, together with our previous analysis of torsional stiffness, provide a quantitative measure of the mechanical changes in actin filaments associated with cofilin binding, and suggest that the overall mechanical and force-producing properties of cells can be modulated by cofilin activity. PMID:18617188
Cofilin-Linked Changes in Actin Filament Flexibility Promote Severing
McCullough, Brannon R.; Grintsevich, Elena E.; Chen, Christine K.; Kang, Hyeran; Hutchison, Alan L.; Henn, Arnon; Cao, Wenxiang; Suarez, Cristian; Martiel, Jean-Louis; Blanchoin, Laurent; Reisler, Emil; De La Cruz, Enrique M.
2011-01-01
The actin regulatory protein, cofilin, increases the bending and twisting elasticity of actin filaments and severs them. It has been proposed that filaments partially decorated with cofilin accumulate stress from thermally driven shape fluctuations at bare (stiff) and decorated (compliant) boundaries, thereby promoting severing. This mechanics-based severing model predicts that changes in actin filament compliance due to cofilin binding affect severing activity. Here, we test this prediction by evaluating how the severing activities of vertebrate and yeast cofilactin scale with the flexural rigidities determined from analysis of shape fluctuations. Yeast actin filaments are more compliant in bending than vertebrate actin filaments. Severing activities of cofilactin isoforms correlate with changes in filament flexibility. Vertebrate cofilin binds but does not increase the yeast actin filament flexibility, and does not sever them. Imaging of filament thermal fluctuations reveals that severing events are associated with local bending and fragmentation when deformations attain a critical angle. The critical severing angle at boundaries between bare and cofilin-decorated segments is smaller than in bare or fully decorated filaments. These measurements support a cofilin-severing mechanism in which mechanical asymmetry promotes local stress accumulation and fragmentation at boundaries of bare and cofilin-decorated segments, analogous to failure of some nonprotein materials. PMID:21723825
Nucleation of actin polymerization by gelsolin.
Ditsch, A; Wegner, A
1994-08-15
The time-course of assembly of actin with gelsolin was measured by the fluorescence increase of a fluorescent label covalently linked to actin. The actin concentrations ranged from values far below the critical concentration to values above the critical concentration of the pointed ends of actin filaments. If the concentration of actin was in the range of the critical monomer concentration (0.64 microM), the time-course of the concentration of actin assembled with gelsolin revealed a sigmoidal shape. At higher actin concentrations the time-course of association of actin with gelsolin approximated an exponential curve. The measured time-courses of assembly were quantitatively interpreted by kinetic rate equations. A poor fit was obtained if two actin molecules were assumed to bind to gelsolin to form a 1:2 gelsolin-actin complex and subsequently further actin molecules were assumed to polymerize onto the 1:2 gelsolin-actin complex toward the pointed end. A considerably better agreement between calculated and measured time-courses was achieved if additional creation of actin filaments by fast fragmentation of newly formed actin filaments by not yet consumed gelsolin was assumed to occur. This suggests that both polymerization of actin onto gelsolin and fragmentation of actin filaments contribute to formation of new actin filaments by gelsolin. Furthermore it could be demonstrated that below the critical monomer concentration appreciable amounts of actin are incorporated into gelsolin-actin oligomers.
Senetar, Melissa A; Foster, Stanley J; McCann, Richard O
2004-12-14
The I/LWEQ module superfamily is a class of actin-binding proteins that contains a conserved C-terminal actin-binding element known as the I/LWEQ module. I/LWEQ module proteins include the metazoan talins, the cellular slime mold talin homologues TalA and TalB, fungal Sla2p, and the metazoan Sla2 homologues Hip1 and Hip12 (Hip1R). These proteins possess a similar modular organization that includes an I/LWEQ module at their C-termini and either a FERM domain or an ENTH domain at their N-termini. As a result of this modular organization, I/LWEQ module proteins may serve as linkers between cellular compartments, such as the plasma membrane and the endocytic machinery, and the actin cytoskeleton. Previous studies have shown that I/LWEQ module proteins bind to F-actin. In this report, we have determined the affinity of the I/LWEQ module proteins Talin1, Talin2, huntingtin interacting protein-1 (Hip1), and the Hip1-related protein (Hip1R/Hip12) for F-actin and identified a conserved structural element that interferes with the actin binding capacity of these proteins. Our data support the hypothesis that the actin-binding determinants in native talin and other I/LWEQ module proteins are cryptic and indicate that the actin binding capacities of Talin1, Talin2, Hip1, and Hip12 are regulated by intrasteric occlusion of primary actin-binding determinants within the I/LWEQ module. We have also found that the I/LWEQ module contains a dimerization motif and stabilizes actin filaments against depolymerization. This activity may contribute to the function of talin in cell adhesion and the roles of Hip1, Hip12 (Hip1R), and Sla2p in endocytosis.
Arp2/3 Complex from Acanthamoeba Binds Profilin and Cross-links Actin Filaments
Mullins, R. Dyche; Kelleher, Joseph F.; Xu, James; Pollard, Thomas D.
1998-01-01
The Arp2/3 complex was first purified from Acanthamoeba castellanii by profilin affinity chromatography. The mechanism of interaction with profilin was unknown but was hypothesized to be mediated by either Arp2 or Arp3. Here we show that the Arp2 subunit of the complex can be chemically cross-linked to the actin-binding site of profilin. By analytical ultracentrifugation, rhodamine-labeled profilin binds Arp2/3 complex with a Kd of 7 μM, an affinity intermediate between the low affinity of profilin for barbed ends of actin filaments and its high affinity for actin monomers. These data suggest the barbed end of Arp2 is exposed, but Arp2 and Arp3 are not packed together in the complex exactly like two actin monomers in a filament. Arp2/3 complex also cross-links actin filaments into small bundles and isotropic networks, which are mechanically stiffer than solutions of actin filaments alone. Arp2/3 complex is concentrated at the leading edge of motile Acanthamoeba, and its localization is distinct from that of α-actinin, another filament cross-linking protein. Based on localization and actin filament nucleation and cross-linking activities, we propose a role for Arp2/3 in determining the structure of the actin filament network at the leading edge of motile cells. PMID:9529382
Rubenstein, Peter A; Wen, Kuo-Kuang
2005-10-01
Actin participates in many important biological processes. Currently, intensive investigation is being carried out in a number of laboratories concerning the function of actin in these processes and the molecular basis of its functions. We present a glimpse into four of these areas: actin-like proteins in bacterial cells, actin in the eukaryotic nucleus, the conformational plasticity of the actin filament, and finally, Arp2/3-dependent regulation of actin filament branching and creation of new filament barbed ends. IUBMB Life, 57: 683-687, 2005.
Wakabayashi, Katsuzo; Sugimoto, Yasunobu; Takezawa, Yasunori; Ueno, Yutaka; Minakata, Shiho; Oshima, Kanji; Matsuo, Tatsuhito; Kobayashi, Takakazu
2007-01-01
Strong evidence has been accumulated that the conformational changes of the thin actin filaments are occurring and playing an important role in the entire process of muscle contraction. The conformational changes and the mechanical properties of the thin actin filaments we have found by X-ray fiber diffraction on skeletal muscle contraction are explored. Recent studies on the conformational changes of regulatory proteins bound to actin filaments upon activation and in the force generation process are also described. Finally, the roles of structural alterations and dynamics of the actin filaments are discussed in conjunction with the regulation mechanism and the force generation mechanism.
Two-dimensional periodic texture of actin filaments formed upon drying
Honda, Hajime; Ishiwata, Shin’ichi
2011-01-01
We found that a solution of actin filaments can form a periodic texture in the process of drying on a flat glass surface in the air; the periodic texture was composed of smooth meandering bundles of actin filaments. We also found that a branched salt crystal grows in the space between the meandering bundles of actin filaments. The distance between the adjacent striae (striation period) in the resulting dried two-dimensional pattern of striation decreased from about 50 to 2 μm, as the ambient temperature was increased from 4 to 40°C at 1 mg/ml actin, and showed an increasing tendency from a few to several tens μm with the increase in the initial concentration of actin filaments from 0.6 to 2.0mg/ml at room temperature. As the speed of drying is increased at a certain temperature, the striation period was also found to decrease. We propose that the formation of the two-dimensional striation pattern of bundles of actin filaments is the result of condensation of proteins due to dehydration, and suggest that the solvent flow from the center to the periphery of the sample causes the meandering of actin filaments. PMID:27857588
Arasada, Rajesh; Sayyad, Wasim A.; Berro, Julien; Pollard, Thomas D.
2018-01-01
To internalize nutrients and cell surface receptors via clathrin-mediated endocytosis, cells assemble at least 50 proteins, including clathrin, clathrin-interacting proteins, actin filaments, and actin binding proteins, in a highly ordered and regulated manner. The molecular mechanism by which actin filament polymerization deforms the cell membrane is unknown, largely due to lack of knowledge about the organization of the regulatory proteins and actin filaments. We used high-speed superresolution localization microscopy of live fission yeast cells to improve the spatial resolution to ∼35 nm with 1-s temporal resolution. The nucleation promoting factors Wsp1p (WASp) and Myo1p (myosin-I) define two independent pathways that recruit Arp2/3 complex, which assembles two zones of actin filaments. Myo1p concentrates at the site of endocytosis and initiates a zone of actin filaments assembled by Arp2/3 complex. Wsp1p appears simultaneously at this site but subsequently moves away from the cell surface as it stimulates Arp2/3 complex to assemble a second zone of actin filaments. Cells lacking either nucleation-promoting factor assemble only one, stationary, zone of actin filaments. These observations support our two-zone hypothesis to explain endocytic tubule elongation and vesicle scission in fission yeast. PMID:29212877
Ducka, Anna M; Joel, Peteranne; Popowicz, Grzegorz M; Trybus, Kathleen M; Schleicher, Michael; Noegel, Angelika A; Huber, Robert; Holak, Tad A; Sitar, Tomasz
2010-06-29
Three classes of proteins are known to nucleate new filaments: the Arp2/3 complex, formins, and the third group of proteins that contain ca. 25 amino acid long actin-binding Wiskott-Aldrich syndrome protein homology 2 domains, called the WH2 repeats. Crystal structures of the complexes between the actin-binding WH2 repeats of the Spire protein and actin were determined for the Spire single WH2 domain D, the double (SpirCD), triple (SpirBCD), quadruple (SpirABCD) domains, and an artificial Spire WH2 construct comprising three identical D repeats (SpirDDD). SpirCD represents the minimal functional core of Spire that can nucleate actin filaments. Packing in the crystals of the actin complexes with SpirCD, SpirBCD, SpirABCD, and SpirDDD shows the presence of two types of assemblies, "side-to-side" and "straight-longitudinal," which can serve as actin filament nuclei. The principal feature of these structures is their loose, open conformations, in which the sides of actins that normally constitute the inner interface core of a filament are flipped inside out. These Spire structures are distant from those seen in the filamentous nuclei of Arp2/3, formins, and in the F-actin filament.
Ducka, Anna M.; Joel, Peteranne; Popowicz, Grzegorz M.; Trybus, Kathleen M.; Schleicher, Michael; Noegel, Angelika A.; Huber, Robert; Holak, Tad A.; Sitar, Tomasz
2010-01-01
Three classes of proteins are known to nucleate new filaments: the Arp2/3 complex, formins, and the third group of proteins that contain ca. 25 amino acid long actin-binding Wiskott-Aldrich syndrome protein homology 2 domains, called the WH2 repeats. Crystal structures of the complexes between the actin-binding WH2 repeats of the Spire protein and actin were determined for the Spire single WH2 domain D, the double (SpirCD), triple (SpirBCD), quadruple (SpirABCD) domains, and an artificial Spire WH2 construct comprising three identical D repeats (SpirDDD). SpirCD represents the minimal functional core of Spire that can nucleate actin filaments. Packing in the crystals of the actin complexes with SpirCD, SpirBCD, SpirABCD, and SpirDDD shows the presence of two types of assemblies, “side-to-side” and “straight-longitudinal,” which can serve as actin filament nuclei. The principal feature of these structures is their loose, open conformations, in which the sides of actins that normally constitute the inner interface core of a filament are flipped inside out. These Spire structures are distant from those seen in the filamentous nuclei of Arp2/3, formins, and in the F-actin filament. PMID:20538977
Actin kinetics shapes cortical network structure and mechanics
Fritzsche, Marco; Erlenkämper, Christoph; Moeendarbary, Emad; Charras, Guillaume; Kruse, Karsten
2016-01-01
The actin cortex of animal cells is the main determinant of cellular mechanics. The continuous turnover of cortical actin filaments enables cells to quickly respond to stimuli. Recent work has shown that most of the cortical actin is generated by only two actin nucleators, the Arp2/3 complex and the formin Diaph1. However, our understanding of their interplay, their kinetics, and the length distribution of the filaments that they nucleate within living cells is poor. Such knowledge is necessary for a thorough comprehension of cellular processes and cell mechanics from basic polymer physics principles. We determined cortical assembly rates in living cells by using single-molecule fluorescence imaging in combination with stochastic simulations. We find that formin-nucleated filaments are, on average, 10 times longer than Arp2/3-nucleated filaments. Although formin-generated filaments represent less than 10% of all actin filaments, mechanical measurements indicate that they are important determinants of cortical elasticity. Tuning the activity of actin nucleators to alter filament length distribution may thus be a mechanism allowing cells to adjust their macroscopic mechanical properties to their physiological needs. PMID:27152338
Actin kinetics shapes cortical network structure and mechanics.
Fritzsche, Marco; Erlenkämper, Christoph; Moeendarbary, Emad; Charras, Guillaume; Kruse, Karsten
2016-04-01
The actin cortex of animal cells is the main determinant of cellular mechanics. The continuous turnover of cortical actin filaments enables cells to quickly respond to stimuli. Recent work has shown that most of the cortical actin is generated by only two actin nucleators, the Arp2/3 complex and the formin Diaph1. However, our understanding of their interplay, their kinetics, and the length distribution of the filaments that they nucleate within living cells is poor. Such knowledge is necessary for a thorough comprehension of cellular processes and cell mechanics from basic polymer physics principles. We determined cortical assembly rates in living cells by using single-molecule fluorescence imaging in combination with stochastic simulations. We find that formin-nucleated filaments are, on average, 10 times longer than Arp2/3-nucleated filaments. Although formin-generated filaments represent less than 10% of all actin filaments, mechanical measurements indicate that they are important determinants of cortical elasticity. Tuning the activity of actin nucleators to alter filament length distribution may thus be a mechanism allowing cells to adjust their macroscopic mechanical properties to their physiological needs.
Energetics and kinetics of cooperative cofilin-actin filament interactions.
Cao, Wenxiang; Goodarzi, Jim P; De La Cruz, Enrique M
2006-08-11
We have evaluated the thermodynamic parameters associated with cooperative cofilin binding to actin filaments, accounting for contributions of ion-linked equilibria, and determined the kinetic basis of cooperative cofilin binding. Ions weaken non-contiguous (isolated, non-cooperative) cofilin binding to an actin filament without affecting cooperative filament interactions. Non-contiguous cofilin binding is coupled to the dissociation of approximately 1.7 thermodynamically bound counterions. Counterion dissociation contributes approximately 40% of the total cofilin binding free energy (in the presence of 50 mM KCl). The non-contiguous and cooperative binding free energies are driven entirely by large, positive entropy changes, consistent with a cofilin-mediated increase in actin filament structural dynamics. The rate constant for cofilin binding to an isolated site on an actin filament is slow and likely to be limited by filament breathing. Cooperative cofilin binding arises from an approximately tenfold more rapid association rate constant and an approximately twofold slower dissociation rate constant. The more rapid association rate constant is presumably a consequence of cofilin-dependent changes in the average orientation of subdomain 2, subunit angular disorder and filament twist, which increase the accessibility of a neighboring cofilin-binding site on an actin filament. Cooperative association is more rapid than binding to an isolated site, but still slow for a second-order reaction, suggesting that cooperative binding is limited also by binding site accessibility. We suggest that the dissociation of actin-associated ions weakens intersubunit interactions in the actin filament lattice that enhance cofilin-binding site accessibility, favor cooperative binding and promote filament severing.
Sarcomeric Pattern Formation by Actin Cluster Coalescence
Friedrich, Benjamin M.; Fischer-Friedrich, Elisabeth; Gov, Nir S.; Safran, Samuel A.
2012-01-01
Contractile function of striated muscle cells depends crucially on the almost crystalline order of actin and myosin filaments in myofibrils, but the physical mechanisms that lead to myofibril assembly remains ill-defined. Passive diffusive sorting of actin filaments into sarcomeric order is kinetically impossible, suggesting a pivotal role of active processes in sarcomeric pattern formation. Using a one-dimensional computational model of an initially unstriated actin bundle, we show that actin filament treadmilling in the presence of processive plus-end crosslinking provides a simple and robust mechanism for the polarity sorting of actin filaments as well as for the correct localization of myosin filaments. We propose that the coalescence of crosslinked actin clusters could be key for sarcomeric pattern formation. In our simulations, sarcomere spacing is set by filament length prompting tight length control already at early stages of pattern formation. The proposed mechanism could be generic and apply both to premyofibrils and nascent myofibrils in developing muscle cells as well as possibly to striated stress-fibers in non-muscle cells. PMID:22685394
Variability and Order in Cytoskeletal Dynamics of Motile Amoeboid Cells
NASA Astrophysics Data System (ADS)
Hsu, Hsin-Fang; Bodenschatz, Eberhard; Westendorf, Christian; Gholami, Azam; Pumir, Alain; Tarantola, Marco; Beta, Carsten
2017-10-01
The chemotactic motion of eukaryotic cells such as leukocytes or metastatic cancer cells relies on membrane protrusions driven by the polymerization and depolymerization of actin. Here we show that the response of the actin system to a receptor stimulus is subject to a threshold value that varies strongly from cell to cell. Above the threshold, we observe pronounced cell-to-cell variability in the response amplitude. The polymerization time, however, is almost constant over the entire range of response amplitudes, while the depolymerization time increases with increasing amplitude. We show that cell-to-cell variability in the response amplitude correlates with the amount of Arp2 /3 , a protein that enhances actin polymerization. A time-delayed feedback model for the cortical actin concentration is consistent with all our observations and confirms the role of Arp2 /3 in the observed cell-to-cell variability. Taken together, our observations highlight robust regulation of the actin response that enables a reliable timing of cell movement.
A Continuum Model of Actin Waves in Dictyostelium discoideum
Khamviwath, Varunyu; Hu, Jifeng; Othmer, Hans G.
2013-01-01
Actin waves are complex dynamical patterns of the dendritic network of filamentous actin in eukaryotes. We developed a model of actin waves in PTEN-deficient Dictyostelium discoideum by deriving an approximation of the dynamics of discrete actin filaments and combining it with a signaling pathway that controls filament branching. This signaling pathway, together with the actin network, contains a positive feedback loop that drives the actin waves. Our model predicts the structure, composition, and dynamics of waves that are consistent with existing experimental evidence, as well as the biochemical dependence on various protein partners. Simulation suggests that actin waves are initiated when local actin network activity, caused by an independent process, exceeds a certain threshold. Moreover, diffusion of proteins that form a positive feedback loop with the actin network alone is sufficient for propagation of actin waves at the observed speed of . Decay of the wave back can be caused by scarcity of network components, and the shape of actin waves is highly dependent on the filament disassembly rate. The model allows retraction of actin waves and captures formation of new wave fronts in broken waves. Our results demonstrate that a delicate balance between a positive feedback, filament disassembly, and local availability of network components is essential for the complex dynamics of actin waves. PMID:23741312
Stuttering Min oscillations within E. coli bacteria: a stochastic polymerization model
NASA Astrophysics Data System (ADS)
Sengupta, Supratim; Derr, Julien; Sain, Anirban; Rutenberg, Andrew D.
2012-10-01
We have developed a 3D off-lattice stochastic polymerization model to study the subcellular oscillation of Min proteins in the bacteria Escherichia coli, and used it to investigate the experimental phenomenon of Min oscillation stuttering. Stuttering was affected by the rate of immediate rebinding of MinE released from depolymerizing filament tips (processivity), protection of depolymerizing filament tips from MinD binding and fragmentation of MinD filaments due to MinE. Processivity, protection and fragmentation each reduce stuttering, speed oscillations and MinD filament lengths. Neither processivity nor tip protection were, on their own, sufficient to produce fast stutter-free oscillations. While filament fragmentation could, on its own, lead to fast oscillations with infrequent stuttering; high levels of fragmentation degraded oscillations. The infrequent stuttering observed in standard Min oscillations is consistent with short filaments of MinD, while we expect that mutants that exhibit higher stuttering frequencies will exhibit longer MinD filaments. Increased stuttering rate may be a useful diagnostic to find observable MinD polymerization under experimental conditions.
Quantitative Analysis of Filament Branch Orientation in Listeria Actin Comet Tails.
Jasnin, Marion; Crevenna, Alvaro H
2016-02-23
Several bacterial and viral pathogens hijack the host actin cytoskeleton machinery to facilitate spread and infection. In particular, Listeria uses Arp2/3-mediated actin filament nucleation at the bacterial surface to generate a branched network that will help propel the bacteria. However, the mechanism of force generation remains elusive due to the lack of high-resolution three-dimensional structural data on the spatial organization of the actin mother and daughter (i.e., branch) filaments within this network. Here, we have explored the three-dimensional structure of Listeria actin tails in Xenopus laevis egg extracts using cryo-electron tomography. We found that the architecture of Listeria actin tails is shared between those formed in cells and in cell extracts. Both contained nanoscopic bundles along the plane of the substrate, where the bacterium lies, and upright filaments (also called Z filaments), both oriented tangentially to the bacterial cell wall. Here, we were able to identify actin filament intersections, which likely correspond to branches, within the tails. A quantitative analysis of putative Arp2/3-mediated branches in the actin network showed that mother filaments lie on the plane of the substrate, whereas daughter filaments have random deviations out of this plane. Moreover, the analysis revealed that branches are randomly oriented with respect to the bacterial surface. Therefore, the actin filament network does not push directly toward the surface but rather accumulates, building up stress around the Listeria surface. Our results favor a mechanism of force generation for Listeria movement where the stress is released into propulsive motion. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Structural basis of thymosin-β4/profilin exchange leading to actin filament polymerization
Xue, Bo; Leyrat, Cedric; Grimes, Jonathan M.; Robinson, Robert C.
2014-01-01
Thymosin-β4 (Tβ4) and profilin are the two major sequestering proteins that maintain the pool of monomeric actin (G-actin) within cells of higher eukaryotes. Tβ4 prevents G-actin from joining a filament, whereas profilin:actin only supports barbed-end elongation. Here, we report two Tβ4:actin structures. The first structure shows that Tβ4 has two helices that bind at the barbed and pointed faces of G-actin, preventing the incorporation of the bound G-actin into a filament. The second structure displays a more open nucleotide binding cleft on G-actin, which is typical of profilin:actin structures, with a concomitant disruption of the Tβ4 C-terminal helix interaction. These structures, combined with biochemical assays and molecular dynamics simulations, show that the exchange of bound actin between Tβ4 and profilin involves both steric and allosteric components. The sensitivity of profilin to the conformational state of actin indicates a similar allosteric mechanism for the dissociation of profilin during filament elongation. PMID:25313062
Modeling of the motion of the actin filament on the myosin motility assays
NASA Astrophysics Data System (ADS)
Young, Yuan; Shelley, Mike
2007-11-01
In motility assays, cytoskeletal actin filaments (actin filaments) glide over a surface coated with motor proteins, and the different modes of motion provide a simple measure of the force exerted by the motor proteins (Bourdieu, 1995). Motivated by these experiments, we consider the actin filament as a slender, elastic filament immersed in Stokesian flow, driven by a tangential forcing that mimics the force by the motor proteins. We find qualitative agreement on several points between our analysis and simulations and experimental observations. Furthermore, we study the correlation between filament transport and the characteristics of motion with the spatial pattern of motor protein density.
Mondal, Hossain A.; Louis, Joe; Archer, Lani; Patel, Monika; Nalam, Vamsi J.; Sarowar, Sujon; Sivapalan, Vishala
2018-01-01
The actin cytoskeleton network has an important role in plant cell growth, division, and stress response. Actin-depolymerizing factors (ADFs) are a group of actin-binding proteins that contribute to reorganization of the actin network. Here, we show that the Arabidopsis (Arabidopsis thaliana) ADF3 is required in the phloem for controlling infestation by Myzus persicae Sülzer, commonly known as the green peach aphid (GPA), which is an important phloem sap-consuming pest of more than fifty plant families. In agreement with a role for the actin-depolymerizing function of ADF3 in defense against the GPA, we show that resistance in adf3 was restored by overexpression of the related ADF4 and the actin cytoskeleton destabilizers, cytochalasin D and latrunculin B. Electrical monitoring of the GPA feeding behavior indicates that the GPA stylets found sieve elements faster when feeding on the adf3 mutant compared to the wild-type plant. In addition, once they found the sieve elements, the GPA fed for a more prolonged period from sieve elements of adf3 compared to the wild-type plant. The longer feeding period correlated with an increase in fecundity and population size of the GPA and a parallel reduction in callose deposition in the adf3 mutant. The adf3-conferred susceptibility to GPA was overcome by expression of the ADF3 coding sequence from the phloem-specific SUC2 promoter, thus confirming the importance of ADF3 function in the phloem. We further demonstrate that the ADF3-dependent defense mechanism is linked to the transcriptional up-regulation of PHYTOALEXIN-DEFICIENT4, which is an important regulator of defenses against the GPA. PMID:29133373
Sliding movement of single actin filaments on one-headed myosin filaments
NASA Astrophysics Data System (ADS)
Harada, Yoshie; Noguchi, Akira; Kishino, Akiyoshi; Yanagida, Toshio
1987-04-01
The myosin molecule consists of two heads, each of which contains an enzymatic active site and an actin-binding site. The fundamental problem of whether the two heads function independently or cooperatively during muscle contraction has been studied by methods using an actomyosin thread1, superprecipitation2-4 and chemical modification of muscle fibres5. No clear conclusion has yet been reached. We have approached this question using an assay system in which sliding movements of fluorescently labelled single actin filaments along myosin filaments can be observed directly6,7. Here, we report direct measurement of the sliding of single actin filaments along one-headed myosin filaments in which the density of heads was varied over a wide range. Our results show that cooperative interaction between the two heads of myosin is not essential for inducing the sliding movement of actin filaments.
Yamashiro, Sawako; Gokhin, David S.; Kimura, Sumiko; Nowak, Roberta B.; Fowler, Velia M.
2012-01-01
Tropomodulins are a family of four proteins (Tmods 1–4) that cap the pointed ends of actin filaments in actin cytoskeletal structures in a developmentally regulated and tissue-specific manner. Unique among capping proteins, Tmods also bind tropomyosins (TMs), which greatly enhance the actin filament pointed-end capping activity of Tmods. Tmods are defined by a tropomyosin (TM)-regulated/Pointed-End Actin Capping (TM-Cap) domain in their unstructured N-terminal portion, followed by a compact, folded Leucine-Rich Repeat/Pointed-End Actin Capping (LRR-Cap) domain. By inhibiting actin monomer association and dissociation from pointed ends, Tmods regulate regulate actin dynamics and turnover, stabilizing actin filament lengths and cytoskeletal architecture. In this review, we summarize the genes, structural features, molecular and biochemical properties, actin regulatory mechanisms, expression patterns, and cell and tissue functions of Tmods. By understanding Tmods’ functions in the context of their molecular structure, actin regulation, binding partners, and related variants (leiomodins 1–3), we can draw broad conclusions that can explain the diverse morphological and functional phenotypes that arise from Tmod perturbation experiments in vitro and in vivo. Tmod-based stabilization and organization of intracellular actin filament networks provide key insights into how the emergent properties of the actin cytoskeleton drive tissue morphogenesis and physiology. PMID:22488942
A cellular mechanism for dendritic spine loss in the pilocarpine model of status epilepticus.
Kurz, Jonathan E; Moore, Bryan J; Henderson, Scott C; Campbell, John N; Churn, Severn B
2008-10-01
Previous studies have documented a synaptic translocation of calcineurin (CaN) and increased CaN activity following status epilepticus (SE); however, the cellular effect of these changes in CaN in the pathology of SE remains to be elucidated. This study examined a CaN-dependent modification of the dendritic cytoskeleton. CaN has been shown to induce dephosphorylation of cofilin, an actin depolymerization factor. The ensuing actin depolymerization can lead to a number of physiological changes that are of interest in SE. SE was induced by pilocarpine injection, and seizure activity was monitored by video-EEG. Subcellular fractions were isolated by differential centrifugation. CaN activity was assayed using a paranitrophenol phosphate (pNPP) assay protocol. Cofilin phosphorylation was assessed using phosphocofilin-specific antibodies. Cofilin-actin binding was determined by coimmunoprecipitation, and actin polymerization was measured using a triton-solubilization protocol. Spines were visualized using a single-section rapid Golgi impregnation procedure. The immunoreactivity of phosphocofilin decreased significantly in hippocampal and cortical synaptosomal samples after SE. SE-induced cofilin dephosphorylation could be partially blocked by the preinjection of CaN inhibitors. Cofilin activation could be further demonstrated by increased actin-cofilin binding and a significant depolymerization of neuronal actin, both of which were also blocked by CaN inhibitors. Finally, we demonstrated a CaN-dependent loss of dendritic spines histologically. The data demonstrate a CaN-dependent, cellular mechanism through which prolonged seizure activity results in loss of dendritic spines via cofilin activation. Further research into this area may provide useful insights into the pathology of SE and epileptogenic mechanisms.
Cao, Lingyan; Blanchoin, Laurent; Staiger, Christopher J.
2016-01-01
Actin filaments in plant cells are incredibly dynamic; they undergo incessant remodeling and assembly or disassembly within seconds. These dynamic events are choreographed by a plethora of actin-binding proteins, but the exact mechanisms are poorly understood. Here, we dissect the contribution of Arabidopsis (Arabidopsis thaliana) PROFILIN1 (PRF1), a conserved actin monomer-binding protein, to actin organization and single filament dynamics during axial cell expansion of living epidermal cells. We found that reduced PRF1 levels enhanced cell and organ growth. Surprisingly, we observed that the overall frequency of nucleation events in prf1 mutants was dramatically decreased and that a subpopulation of actin filaments that assemble at high rates was reduced. To test whether profilin cooperates with plant formin proteins to execute actin nucleation and rapid filament elongation in cells, we used a pharmacological approach. Here, we used Small Molecule Inhibitor of Formin FH2 (SMIFH2), after validating its mode of action on a plant formin in vitro, and observed a reduced nucleation frequency of actin filaments in live cells. Treatment of wild-type epidermal cells with SMIFH2 mimicked the phenotype of prf1 mutants, and the nucleation frequency in prf1-2 mutant was completely insensitive to these treatments. Our data provide compelling evidence that PRF1 coordinates the stochastic dynamic properties of actin filaments by modulating formin-mediated actin nucleation and assembly during plant cell expansion. PMID:26574597
Walsh, T P; Clarke, F M; Masters, C J
1977-01-01
The kinetic parameters of fructose bisphosphate aldolase (EC 4.1.2.13) were shown to be modified on binding of the enzyme to the actin-containing filaments of skeletal muscle. Although binding to F-actin or F-actin-tropomyosin filaments results in relative minor changes in kinetic properties, binding to F-actin-tropomyosin-troponin filaments produces major alterations in the kinetic parameters, and, in addition, renders them Ca2+-sensitive. These observations may be relevant to an understanding of the function of this enzyme within the muscle fibre. PMID:889571
Barua, Bipasha; Fagnant, Patricia M; Winkelmann, Donald A; Trybus, Kathleen M; Hitchcock-DeGregori, Sarah E
2013-04-05
Actin filament cytoskeletal and muscle functions are regulated by actin binding proteins using a variety of mechanisms. A universal actin filament regulator is the protein tropomyosin, which binds end-to-end along the length of the filament. The actin-tropomyosin filament structure is unknown, but there are atomic models in different regulatory states based on electron microscopy reconstructions, computational modeling of actin-tropomyosin, and docking of atomic resolution structures of tropomyosin to actin filament models. Here, we have tested models of the actin-tropomyosin interface in the "closed state" where tropomyosin binds to actin in the absence of myosin or troponin. Using mutagenesis coupled with functional analyses, we determined residues of actin and tropomyosin required for complex formation. The sites of mutations in tropomyosin were based on an evolutionary analysis and revealed a pattern of basic and acidic residues in the first halves of the periodic repeats (periods) in tropomyosin. In periods P1, P4, and P6, basic residues are most important for actin affinity, in contrast to periods P2, P3, P5, and P7, where both basic and acidic residues or predominantly acidic residues contribute to actin affinity. Hydrophobic interactions were found to be relatively less important for actin binding. We mutated actin residues in subdomains 1 and 3 (Asp(25)-Glu(334)-Lys(326)-Lys(328)) that are poised to make electrostatic interactions with the residues in the repeating motif on tropomyosin in the models. Tropomyosin failed to bind mutant actin filaments. Our mutagenesis studies provide the first experimental support for the atomic models of the actin-tropomyosin interface.
Axial rotation of sliding actin filaments revealed by single-fluorophore imaging
Sase, Ichiro; Miyata, Hidetake; Ishiwata, Shin’ichi; Kinosita, Kazuhiko
1997-01-01
In the actomyosin motor, myosin slides along an actin filament that has a helical structure with a pitch of ≈72 nm. Whether myosin precisely follows this helical track is an unanswered question bearing directly on the motor mechanism. Here, axial rotation of actin filaments sliding over myosin molecules fixed on a glass surface was visualized through fluorescence polarization imaging of individual tetramethylrhodamine fluorophores sparsely bound to the filaments. The filaments underwent one revolution per sliding distance of ≈1 μm, which is much greater than the 72 nm pitch. Thus, myosin does not “walk” on the helical array of actin protomers; rather it “runs,” skipping many protomers. Possible mechanisms involving sequential interaction of myosin with successive actin protomers are ruled out at least for the preparation described here in which the actin filaments ran rather slowly compared with other in vitro systems. The result also indicates that each “kick” of myosin is primarily along the axis of the actin filament. The successful, real-time observation of the changes in the orientation of a single fluorophore opens the possibility of detecting a conformational change(s) of a single protein molecule at the moment it functions. PMID:9159126
Axial rotation of sliding actin filaments revealed by single-fluorophore imaging.
Sase, I; Miyata, H; Ishiwata, S; Kinosita, K
1997-05-27
In the actomyosin motor, myosin slides along an actin filament that has a helical structure with a pitch of approximately 72 nm. Whether myosin precisely follows this helical track is an unanswered question bearing directly on the motor mechanism. Here, axial rotation of actin filaments sliding over myosin molecules fixed on a glass surface was visualized through fluorescence polarization imaging of individual tetramethylrhodamine fluorophores sparsely bound to the filaments. The filaments underwent one revolution per sliding distance of approximately 1 microm, which is much greater than the 72 nm pitch. Thus, myosin does not "walk" on the helical array of actin protomers; rather it "runs," skipping many protomers. Possible mechanisms involving sequential interaction of myosin with successive actin protomers are ruled out at least for the preparation described here in which the actin filaments ran rather slowly compared with other in vitro systems. The result also indicates that each "kick" of myosin is primarily along the axis of the actin filament. The successful, real-time observation of the changes in the orientation of a single fluorophore opens the possibility of detecting a conformational change(s) of a single protein molecule at the moment it functions.
Baker, Joseph L.; Courtemanche, Naomi; Parton, Daniel L.; ...
2014-12-04
Formins catalyze nucleation and growth of actin filaments. In this paper, we study the structure and interactions of actin with the FH2 domain of budding yeast formin Bni1p. We built an all-atom model of the formin dimer on an Oda actin filament 7-mer and studied structural relaxation and interprotein interactions by molecular dynamics simulations. These simulations produced a refined model for the FH2 dimer associated with the barbed end of the filament and showed electrostatic interactions between the formin knob and actin target-binding cleft. Mutations of two formin residues contributing to these interactions (R1423N, K1467L, or both) reduced the interactionmore » energies between the proteins, and in coarse-grained simulations, the formin lost more interprotein contacts with an actin dimer than with an actin 7-mer. Finally, biochemical experiments confirmed a strong influence of these mutations on Bni1p-mediated actin filament nucleation, but not elongation, suggesting that different interactions contribute to these two functions of formins.« less
Goldmann, W H; Hess, D; Isenberg, G
1999-03-01
We employed quasi-elastic light scattering and electron microscopy to investigate the influence of intact talin and talin tail fragment on actin filament dynamics and network structure. Using these methods, we confirm previous reports that intact talin induces cross-linking as well as filament shortening on actin networks. We now show that the effect of intact talin as well as talin tail fragment on actin networks is controlled by pH and ionic strength. At pH 7.5, actin filament dynamics in the presence of intact talin and talin tail fragment are characterized by a rapid decay of the dynamic structure factor and by a square root power law for the stretched exponential decay which is in contrast with the theory for pure actin solutions. At pH 6 and low ionic strength, intact talin cross-links actin filaments more tightly than talin tail fragment. Talin head fragment showed no effect on actin networks, indicating that the actin binding sites reside probably exclusively within the tail domain.
Glogauer, M; Ferrier, J; McCulloch, C A
1995-11-01
The ability to apply controlled forces to the cell membrane may enable elucidation of the mechanisms and pathways involved in signal transduction in response to applied physical stimuli. We have developed a magnetic particle-electromagnet model that allows the application of controlled forces to the plasma membrane of substrate-attached fibroblasts. The system allows applied forces to be controlled by the magnitude of the magnetic field and by the surface area of cell membrane covered with collagen-coated ferric beads. Analysis by single-cell ratio fluorimetry of fura 2-loaded cells demonstrated large calcium transients (50-300 nM) in response to the magnetic force applications. Experiments using either the stretch-activated channel blocker gadolinium chloride or ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid to eliminate external calcium ions, or addition of extracellular manganese ions, indicated that there was a calcium influx through putative stretch-activated channels. The probability of a calcium influx in single cells was increased by higher surface bead loading and the degree of cell spreading. Depolymerization of actin filaments by cytochalasin D increased the amplitude of calcium response twofold. The regulation of calcium flux by filamentous actin content and by cell spreading indicates a possible modulatory role for the cytoskeleton in channel sensitivity. Magnetic force application to beads on single cells provides a controlled model to study mechanisms and heterogeneity in physical force stimulation of cation-permeable channels.
Grantham, Julie; Ruddock, Lloyd W.; Roobol, Anne; Carden, Martin J.
2002-01-01
We have previously observed that subunits of the chaperonin required for actin production (type-II chaperonin containing T-complex polypeptide 1 [CCT]) localize at sites of microfilament assembly. In this article we extend this observation by showing that substantially substoichiometric CCT reduces the initial rate of pyrene-labeled actin polymerization in vitro where eubacterial chaperonin GroEL had no such effect. CCT subunits bound selectively to F-actin in cosedimentation assays, and CCT reduced elongation rates from both purified actin filament “seeds” and the short and stabilized, minus-end blocked filaments in erythrocyte membrane cytoskeletons. These observations suggest CCT might remain involved in biogenesis of the actin cytoskeleton, by acting at filament (+) ends, beyond its already well-established role in producing new actin monomers. PMID:12482199
Toward the Structure of Dynamic Membrane-Anchored Actin Networks
Weber, Igor
2007-01-01
In the cortex of a motile cell, membrane-anchored actin filaments assemble into structures of varying shape and function. Filopodia are distinguished by a core of bundled actin filaments within finger-like extensions of the membrane. In a recent paper by Medalia et al1 cryo-electron tomography has been used to reconstruct, from filopodia of Dictyostelium cells, the 3-dimensional organization of actin filaments in connection with the plasma membrane. A special arrangement of short filaments converging toward the filopod's tip has been called a “terminal cone”. In this region force is applied for protrusion of the membrane. Here we discuss actin organization in the filopodia of Dictyostelium in the light of current views on forces that are generated by polymerizing actin filaments, and on the resistance of membranes against deformation that counteracts these forces. PMID:19262130
Structure of the F–actin–tropomyosin complex
von der Ecken, Julian; Müller, Mirco; Lehman, William; Manstein, Dietmar J.; Penczek, Pawel A.; Raunser, Stefan
2015-01-01
Filamentous actin (F-actin) is the major protein of muscle thin filaments, and actin microfilaments are the main component of the eukaryotic cytoskeleton. Mutations in different actin isoforms lead to early-onset autosomal dominant non-syndromic hearing loss1, familial thoracic aortic aneurysms and dissections2, and multiple variations of myopathies3. In striated muscle fibres, the binding of myosin motors to actin filaments is mainly regulated by tropomyosin and troponin4,5. Tropomyosin also binds to F-actin in smooth muscle and in non-muscle cells and stabilizes and regulates the filaments there in the absence of troponin6. Although crystal structures for monomeric actin (G-actin) are available7, a high-resolution structure of F-actin is still missing, hampering our understanding of how disease-causing mutations affect the function of thin muscle filaments and microfilaments. Here we report the three-dimensional structure of F-actin at a resolution of 3.7 ångstroms in complex with tropomyosin at a resolution of 6.5ångstroms, determined by electron cryomicroscopy. The structure reveals that the D-loop is ordered and acts as a central region for hydrophobic and electrostatic interactions that stabilize the F-actin filament. We clearly identify the density corresponding to ADP and Mg2+ and explain the possible effect of prominent disease-causing mutants. A comparison of F-actin with G-actin reveals the conformational changes during filament formation and identifies the D-loop as their key mediator. We also confirm that negatively charged tropomyosin interacts with a positively charged groove on F-actin. Comparison of the position of tropomyosin in F-actin–tropomyosin with its position in our previously determined actin–tropomyosin–myosin structure8 reveals a myosin-induced transition of tropomyosin. Our results allow us to understand the role of individual mutations in the genesis of actin- and tropomyosin-related diseases and will serve as a strong foundation for the targeted development of drugs. PMID:25470062
Actin filaments participate in West Nile (Sarafend) virus maturation process.
Chu, J J H; Choo, B G H; Lee, J W M; Ng, M L
2003-11-01
West Nile (Sarafend) virus has previously been shown to egress by budding at the plasma membrane of infected cells, but relatively little is known about the mechanism involved in this mode of release. During the course of this study, it was discovered that actin filaments take part in the virus maturation process. Using dual-labeled immunofluorescence and immunoelectron microscopy at late infection (10 hr p.i.), co-localization of viral structural (envelope and capsid) proteins with actin filaments was confirmed. The virus structural proteins were also immunoprecipitated with anti-actin antibody, further demonstrating the strong association between the two components. Perturbation of actin filaments by cytochalasin B strongly inhibited the release of West Nile virus (approximately 10,000-fold inhibition) when compared with the untreated cells. Infectious virus particles were recovered after the removal of cytochalasin B. Further confirmation was obtained when nucleocapsid particles were found associated with disrupted actin filaments at the periphery of cytochalasin B-treated cells. Together, these results showed that actin filaments do indeed have a key role in the release of West Nile (Sarafend) virions. Copyright 2003 Wiley-Liss, Inc.
Kang, Hyeran; Bradley, Michael J.; McCullough, Brannon R.; Pierre, Anaëlle; Grintsevich, Elena E.; Reisler, Emil; De La Cruz, Enrique M.
2012-01-01
The assembly of actin monomers into filaments and networks plays vital roles throughout eukaryotic biology, including intracellular transport, cell motility, cell division, determining cellular shape, and providing cells with mechanical strength. The regulation of actin assembly and modulation of filament mechanical properties are critical for proper actin function. It is well established that physiological salt concentrations promote actin assembly and alter the overall bending mechanics of assembled filaments and networks. However, the molecular origins of these salt-dependent effects, particularly if they involve nonspecific ionic strength effects or specific ion-binding interactions, are unknown. Here, we demonstrate that specific cation binding at two discrete sites situated between adjacent subunits along the long-pitch helix drive actin polymerization and determine the filament bending rigidity. We classify the two sites as “polymerization” and “stiffness” sites based on the effects that mutations at the sites have on salt-dependent filament assembly and bending mechanics, respectively. These results establish the existence and location of the cation-binding sites that confer salt dependence to the assembly and mechanics of actin filaments. PMID:23027950
Fazal, Fabeha; Bijli, Kaiser M.; Minhajuddin, Mohd; Rein, Theo; Finkelstein, Jacob N.; Rahman, Arshad
2009-01-01
Activation of RhoA/Rho-associated kinase (ROCK) pathway and the associated changes in actin cytoskeleton induced by thrombin are crucial for activation of NF-κB and expression of its target gene ICAM-1 in endothelial cells. However, the events acting downstream of RhoA/ROCK to mediate these responses remain unclear. Here, we show a central role of cofilin-1, an actin-binding protein that promotes actin depolymerization, in linking RhoA/ROCK pathway to dynamic alterations in actin cytoskeleton that are necessary for activation of NF-κB and thereby expression of ICAM-1 in these cells. Stimulation of human umbilical vein endothelial cells with thrombin resulted in Ser3 phosphorylation/inactivation of cofilin and formation of actin stress fibers in a ROCK-dependent manner. RNA interference knockdown of cofilin-1 stabilized the actin filaments and inhibited thrombin- and RhoA-induced NF-κB activity. Similarly, constitutively inactive mutant of cofilin-1 (Cof1-S3D), known to stabilize the actin cytoskeleton, inhibited NF-κB activity by thrombin. Overexpression of wild type cofilin-1 or constitutively active cofilin-1 mutant (Cof1-S3A), known to destabilize the actin cytoskeleton, also impaired thrombin-induced NF-κB activity. Additionally, depletion of cofilin-1 was associated with a marked reduction in ICAM-1 expression induced by thrombin. The effect of cofilin-1 depletion on NF-κB activity and ICAM-1 expression occurred downstream of IκBα degradation and was a result of impaired RelA/p65 nuclear translocation and consequently, RelA/p65 binding to DNA. Together, these data show that cofilin-1 occupies a central position in RhoA-actin pathway mediating nuclear translocation of RelA/p65 and expression of ICAM-1 in endothelial cells. PMID:19483084
Fazal, Fabeha; Bijli, Kaiser M; Minhajuddin, Mohd; Rein, Theo; Finkelstein, Jacob N; Rahman, Arshad
2009-07-31
Activation of RhoA/Rho-associated kinase (ROCK) pathway and the associated changes in actin cytoskeleton induced by thrombin are crucial for activation of NF-kappaB and expression of its target gene ICAM-1 in endothelial cells. However, the events acting downstream of RhoA/ROCK to mediate these responses remain unclear. Here, we show a central role of cofilin-1, an actin-binding protein that promotes actin depolymerization, in linking RhoA/ROCK pathway to dynamic alterations in actin cytoskeleton that are necessary for activation of NF-kappaB and thereby expression of ICAM-1 in these cells. Stimulation of human umbilical vein endothelial cells with thrombin resulted in Ser(3) phosphorylation/inactivation of cofilin and formation of actin stress fibers in a ROCK-dependent manner. RNA interference knockdown of cofilin-1 stabilized the actin filaments and inhibited thrombin- and RhoA-induced NF-kappaB activity. Similarly, constitutively inactive mutant of cofilin-1 (Cof1-S3D), known to stabilize the actin cytoskeleton, inhibited NF-kappaB activity by thrombin. Overexpression of wild type cofilin-1 or constitutively active cofilin-1 mutant (Cof1-S3A), known to destabilize the actin cytoskeleton, also impaired thrombin-induced NF-kappaB activity. Additionally, depletion of cofilin-1 was associated with a marked reduction in ICAM-1 expression induced by thrombin. The effect of cofilin-1 depletion on NF-kappaB activity and ICAM-1 expression occurred downstream of IkappaBalpha degradation and was a result of impaired RelA/p65 nuclear translocation and consequently, RelA/p65 binding to DNA. Together, these data show that cofilin-1 occupies a central position in RhoA-actin pathway mediating nuclear translocation of RelA/p65 and expression of ICAM-1 in endothelial cells.
Ozyamak, Ertan; Kollman, Justin; Agard, David A.; Komeili, Arash
2013-01-01
It is now recognized that actin-like proteins are widespread in bacteria and, in contrast to eukaryotic actins, are highly diverse in sequence and function. The bacterial actin, MamK, represents a clade, primarily found in magnetotactic bacteria, that is involved in the proper organization of subcellular organelles, termed magnetosomes. We have previously shown that MamK from Magnetospirillum magneticum AMB-1 (AMB-1) forms dynamic filaments in vivo. To gain further insights into the molecular mechanisms that underlie MamK dynamics and function, we have now studied the in vitro properties of MamK. We demonstrate that MamK is an ATPase that, in the presence of ATP, assembles rapidly into filaments that disassemble once ATP is depleted. The mutation of a conserved active site residue (E143A) abolishes ATPase activity of MamK but not its ability to form filaments. Filament disassembly depends on both ATPase activity and potassium levels, the latter of which results in the organization of MamK filaments into bundles. These data are consistent with observations indicating that accessory factors are required to promote filament disassembly and for spatial organization of filaments in vivo. We also used cryo-electron microscopy to obtain a high resolution structure of MamK filaments. MamK adopts a two-stranded helical filament architecture, but unlike eukaryotic actin and other actin-like filaments, subunits in MamK strands are unstaggered giving rise to a unique filament architecture. Beyond extending our knowledge of the properties and function of MamK in magnetotactic bacteria, this study emphasizes the functional and structural diversity of bacterial actins in general. PMID:23204522
Pathway of actin filament branch formation by Arp2/3 complex revealed by single-molecule imaging
Smith, Benjamin A.; Daugherty-Clarke, Karen; Goode, Bruce L.; Gelles, Jeff
2013-01-01
Actin filament nucleation by actin-related protein (Arp) 2/3 complex is a critical process in cell motility and endocytosis, yet key aspects of its mechanism are unknown due to a lack of real-time observations of Arp2/3 complex through the nucleation process. Triggered by the verprolin homology, central, and acidic (VCA) region of proteins in the Wiskott-Aldrich syndrome protein (WASp) family, Arp2/3 complex produces new (daughter) filaments as branches from the sides of preexisting (mother) filaments. We visualized individual fluorescently labeled Arp2/3 complexes dynamically interacting with and producing branches on growing actin filaments in vitro. Branch formation was strikingly inefficient, even in the presence of VCA: only ∼1% of filament-bound Arp2/3 complexes yielded a daughter filament. VCA acted at multiple steps, increasing both the association rate of Arp2/3 complexes with mother filament and the fraction of filament-bound complexes that nucleated a daughter. The results lead to a quantitative kinetic mechanism for branched actin assembly, revealing the steps that can be stimulated by additional cellular factors. PMID:23292935
Characterization of mRNA-Cytoskeleton Interactions In Situ Using FMTRIP and Proximity Ligation
Jung, Jeenah; Lifland, Aaron W.; Alonas, Eric J.; Zurla, Chiara; Santangelo, Philip J.
2013-01-01
Many studies have demonstrated an association between the cytoskeleton and mRNA, as well as the asymmetric distribution of mRNA granules within the cell in response to various signaling events. It is likely that the extensive cytoskeletal network directs mRNA transport and localization, with different cytoskeletal elements having their own specific roles. In order to understand the spatiotemporal changes in the interactions between the mRNA and the cytoskeleton as a response to a stimulus, a technique that can visualize and quantify these changes across a population of cells while capturing cell-to-cell variations is required. Here, we demonstrate a method for imaging and quantifying mRNA-cytoskeleton interactions on a per cell basis with single-interaction sensitivity. Using a proximity ligation assay with flag-tagged multiply-labeled tetravalent RNA imaging probes (FMTRIP), we quantified interactions between mRNAs and β-tubulin, vimentin, or filamentous actin (F-actin) for two different mRNAs, poly(A) + and β-actin mRNA, in two different cell types, A549 cells and human dermal fibroblasts (HDF). We found that the mRNAs interacted predominantly with F-actin (>50% in HDF, >20% in A549 cells), compared to β-tubulin (<5%) and vimentin (11-13%). This likely reflects differences in mRNA management by the two cell types. We then quantified changes in these interactions in response to two perturbations, F-actin depolymerization and arsenite-induced oxidative stress, both of which alter either the cytoskeleton itself and mRNA localization. Both perturbations led to a decrease in poly(A) + mRNA interactions with F-actin and an increase in the interactions with microtubules, in a time dependent manner. PMID:24040294
Barth, Holger; Stiles, Bradley G
2008-01-01
Binary bacterial toxins are unique AB-type toxins, composed of two non-linked proteins that act as a binding/translocation component and an enzyme component. All known actin-ADP-ribosylating toxins from clostridia possess this binary structure. This toxin family is comprised of the prototypical Clostridium botulinum C2 toxin, Clostridium perfringens iota toxin, Clostridium difficile CDT, and Clostridium spiroforme toxin. Once in the cytosol of host cells, these toxins transfer an ADP-ribose moiety from nicotinamide-adenosine-dinucleotide onto G-actin that then leads to depolymerization of actin filaments. In recent years much progress has been made towards understanding the cellular uptake mechanism of binary actin-ADP-ribosylating toxins, and in particular that of C2 toxin. Both components act in a precisely concerted manner to intoxicate eukaryotic cells. The binding/translocation (B-) component forms a complex with the enzyme (A-) component and mediates toxin binding to a cell-surface receptor. Following receptor-mediated endocytosis, the enzyme component escapes from acidic endosomes into the cytosol. Acidification of endosomes triggers pore formation by the binding/translocation component in endosomal membranes and the enzyme component subsequently translocates through the pore. This step requires a host cell chaperone, Hsp90. Due to their unique structure, binary toxins are naturally "tailor made" for transporting foreign proteins into the cytosol of host cells. Several highly specific and cell-permeable recombinant fusion proteins have been designed and successfully used in experimental cell research. This review will focus on the recent progress in studying binary actin ADP-ribosylating toxins as highly effective virulence factors and innovative tools for cell physiology as well as pharmacology.
Tatavarty, Vedakumar; Kim, Eun-Ji; Rodionov, Vladimir; Yu, Ji
2009-11-09
Morphological changes in dendritic spines represent an important mechanism for synaptic plasticity which is postulated to underlie the vital cognitive phenomena of learning and memory. These morphological changes are driven by the dynamic actin cytoskeleton that is present in dendritic spines. The study of actin dynamics in these spines traditionally has been hindered by the small size of the spine. In this study, we utilize a photo-activation localization microscopy (PALM)-based single-molecule tracking technique to analyze F-actin movements with approximately 30-nm resolution in cultured hippocampal neurons. We were able to observe the kinematic (physical motion of actin filaments, i.e., retrograde flow) and kinetic (F-actin turn-over) dynamics of F-actin at the single-filament level in dendritic spines. We found that F-actin in dendritic spines exhibits highly heterogeneous kinematic dynamics at the individual filament level, with simultaneous actin flows in both retrograde and anterograde directions. At the ensemble level, movements of filaments integrate into a net retrograde flow of approximately 138 nm/min. These results suggest a weakly polarized F-actin network that consists of mostly short filaments in dendritic spines.
Boolean gates on actin filaments
NASA Astrophysics Data System (ADS)
Siccardi, Stefano; Tuszynski, Jack A.; Adamatzky, Andrew
2016-01-01
Actin is a globular protein which forms long polar filaments in the eukaryotic cytoskeleton. Actin networks play a key role in cell mechanics and cell motility. They have also been implicated in information transmission and processing, memory and learning in neuronal cells. The actin filaments have been shown to support propagation of voltage pulses. Here we apply a coupled nonlinear transmission line model of actin filaments to study interactions between voltage pulses. To represent digital information we assign a logical TRUTH value to the presence of a voltage pulse in a given location of the actin filament, and FALSE to the pulse's absence, so that information flows along the filament with pulse transmission. When two pulses, representing Boolean values of input variables, interact, then they can facilitate or inhibit further propagation of each other. We explore this phenomenon to construct Boolean logical gates and a one-bit half-adder with interacting voltage pulses. We discuss implications of these findings on cellular process and technological applications.
Structural Basis of Actin Filament Nucleation by Tandem W Domains
Chen, Xiaorui; Ni, Fengyun; Tian, Xia; Kondrashkina, Elena; Wang, Qinghua; Ma, Jianpeng
2013-01-01
SUMMARY Spontaneous nucleation of actin is very inefficient in cells. To overcome this barrier, cells have evolved a set of actin filament nucleators to promote rapid nucleation and polymerization in response to specific stimuli. However, the molecular mechanism of actin nucleation remains poorly understood. This is hindered largely by the fact that actin nucleus, once formed, rapidly polymerizes into filament, thus making it impossible to capture stable multisubunit actin nucleus. Here, we report an effective double-mutant strategy to stabilize actin nucleus by preventing further polymerization. Employing this strategy, we solved the crystal structure of AMPPNP-actin in complex with the first two tandem W domains of Cordon-bleu (Cobl), a potent actin filament nucleator. Further sequence comparison and functional studies suggest that the nucleation mechanism of Cobl is probably shared by the p53 cofactor JMY, but not Spire. Moreover, the double-mutant strategy opens the way for atomic mechanistic study of actin nucleation and polymerization. PMID:23727244
Actin Age Orchestrates Myosin-5 and Myosin-6 Runlengths
Zimmermann, Dennis; Santos, Alicja; Kovar, David R.; Rock, Ronald S.
2015-01-01
Summary Unlike a static and immobile skeleton, the actin cytoskeleton is a highly dynamic network of filamentous actin (F-actin) polymers that continuously turn over. In addition to generating mechanical forces and sensing mechanical deformation, dynamic F-actin networks serve as cellular tracks for myosin motor traffic. However, much of our mechanistic understanding of processive myosins comes from in vitro studies where motility was studied on pre-assembled and artificially stabilized, static F-actin tracks. In this work, we examine the role of actin dynamics in single-molecule myosin motility using assembling F-actin and the two highly processive motors, myosin-5 and myosin-6. These two myosins have distinct functions in the cell and travel in opposite directions along actin filaments [1–3]. Myosin-5 walks towards the barbed ends of F-actin, traveling to sites of actin polymerization at the cell periphery [4]. Myosin-6 walks towards the pointed end of F-actin [5], traveling towards the cell center along older segments of the actin filament. We find that myosin-5 takes 1.3 to 1.5-fold longer runs on ADP•Pi (young) F-actin, while myosin-6 takes 1.7 to 3.6-fold longer runs along ADP (old) F-actin. These results suggest that conformational differences between ADP•Pi and ADP F-actin tailor these myosins to walk farther toward their preferred actin filament end. Taken together, these experiments define a new mechanism by which myosin traffic may sort to different F-actin networks depending on filament age. PMID:26190073
Actin-filament disassembly: it takes two to shrink them fast.
Winterhoff, Moritz; Faix, Jan
2015-06-01
Actin-filament disassembly is indispensable for replenishing the pool of polymerizable actin and allows continuous dynamic remodelling of the actin cytoskeleton. A new study now reveals that ADF/cofilin preferentially dismantles branched networks and provides new insights into the collaborative work of ADF/cofilin and Aip1 on filament disassembly at the molecular level. Copyright © 2015 Elsevier Ltd. All rights reserved.
Computational model of polarized actin cables and cytokinetic actin ring formation in budding yeast
Tang, Haosu; Bidone, Tamara C.
2015-01-01
The budding yeast actin cables and contractile ring are important for polarized growth and division, revealing basic aspects of cytoskeletal function. To study these formin-nucleated structures, we built a 3D computational model with actin filaments represented as beads connected by springs. Polymerization by formins at the bud tip and bud neck, crosslinking, severing, and myosin pulling, are included. Parameter values were estimated from prior experiments. The model generates actin cable structures and dynamics similar to those of wild type and formin deletion mutant cells. Simulations with increased polymerization rate result in long, wavy cables. Simulated pulling by type V myosin stretches actin cables. Increasing the affinity of actin filaments for the bud neck together with reduced myosin V pulling promotes the formation of a bundle of antiparallel filaments at the bud neck, which we suggest as a model for the assembly of actin filaments to the contractile ring. PMID:26538307
Elucidating Key Motifs Required for Arp2/3-Dependent and Independent Actin Nucleation by Las17/WASP
Urbanek, Agnieszka N.; Smaczynska-de Rooij, Iwona I.
2016-01-01
Actin nucleation is the key rate limiting step in the process of actin polymerization, and tight regulation of this process is critical to ensure actin filaments form only at specific times and at defined regions of the cell. Arp2/3 is a well-characterised protein complex that can promote nucleation of new filaments, though its activity requires additional nucleation promotion factors (NPFs). The best recognized of these factors are the WASP family of proteins that contain binding motifs for both monomeric actin and for Arp2/3. Previously we demonstrated that the yeast WASP homologue, Las17, in addition to activating Arp2/3 can also nucleate actin filaments de novo, independently of Arp2/3. This activity is dependent on its polyproline rich region. Through biochemical and in vivo analysis we have now identified key motifs within the polyproline region that are required for nucleation and elongation of actin filaments, and have addressed the role of the WH2 domain in the context of actin nucleation without Arp2/3. We have also demonstrated that full length Las17 is able to bind liposomes giving rise to the possibility of direct linkage of nascent actin filaments to specific membrane sites to which Las17 has been recruited. Overall, we propose that Las17 functions as the key initiator of de novo actin filament formation at endocytic sites by nucleating, elongating and tethering nascent filaments which then serve as a platform for Arp2/3 recruitment and function. PMID:27637067
Actin-induced dimerization of palladin promotes actin-bundling
Vattepu, Ravi; Yadav, Rahul; Beck, Moriah R
2015-01-01
A subset of actin binding proteins is able to form crosslinks between two or more actin filaments, thus producing structures of parallel or networked bundles. These actin crosslinking proteins interact with actin through either bivalent binding or dimerization. We recently identified two binding sites within the actin binding domain of palladin, an actin crosslinking protein that plays an important role in normal cell adhesion and motility during wound healing and embryonic development. In this study, we show that actin induces dimerization of palladin. Furthermore, the extent of dimerization reflects earlier comparisons of actin binding and bundling between different domains of palladin. On the basis of these results we hypothesized that actin binding may promote a conformational change that results in dimerization of palladin, which in turn may drive the crosslinking of actin filaments. The proximal distance between two actin binding sites on crosslinking proteins determines the ultrastructural properties of the filament network, therefore we also explored interdomain interactions using a combination of chemical crosslinking experiments and actin cosedimentation assays. Limited proteolysis data reveals that palladin is less susceptible to enzyme digestion after actin binding. Our results suggest that domain movements in palladin are necessary for interactions with actin and are induced by interactions with actin filaments. Accordingly, we put forth a model linking the structural changes to functional dynamics. PMID:25307943
Tropomodulin Capping of Actin Filaments in Striated Muscle Development and Physiology
Gokhin, David S.; Fowler, Velia M.
2011-01-01
Efficient striated muscle contraction requires precise assembly and regulation of diverse actin filament systems, most notably the sarcomeric thin filaments of the contractile apparatus. By capping the pointed ends of actin filaments, tropomodulins (Tmods) regulate actin filament assembly, lengths, and stability. Here, we explore the current understanding of the expression patterns, localizations, and functions of Tmods in both cardiac and skeletal muscle. We first describe the mechanisms by which Tmods regulate myofibril assembly and thin filament lengths, as well as the roles of closely related Tmod family variants, the leiomodins (Lmods), in these processes. We also discuss emerging functions for Tmods in the sarcoplasmic reticulum. This paper provides abundant evidence that Tmods are key structural regulators of striated muscle cytoarchitecture and physiology. PMID:22013379
Barón-Mendoza, Isabel; García, Octavio; Calvo-Ochoa, Erika; Rebollar-García, Jorge Omar; Garzón-Cortés, Daniel; Haro, Reyes; González-Arenas, Aliesha
2018-06-06
Autism spectrum disorder (ASD) is a neurodevelopment disorder characterized by deficient social interaction, impaired communication as well as repetitive behaviors. ASD subjects present connectivity and neuroplasticity disturbances associated with morphological alterations in axons, dendrites, and dendritic spines. Given that the neuronal cytoskeleton and astrocytes have an essential role in regulating several mechanisms of neural plasticity, the aim of this work was to study alterations in the content of neuronal cytoskeletal components actin and tubulin and their associated proteins, as well as astrocytic proteins GFAP and TSP-1 in the brain of a C58/J mouse model of ASD. We determined the expression and regulatory phosphorylation state of cytoskeletal components in the prefrontal cortex, hippocampus, and cerebellum of C58/J mice by means of Western blotting. Our results show that autistic-like mice present: 1) region-dependent altered expression and phosphorylation patterns of Tau isoforms, associated with anomalous microtubule depolymerization; 2) reduced MAP2 A content in prefrontal cortex; 3) region-dependent changes in cofilin expression and phosphorylation, associated with abnormal actin filament depolymerizing dynamics; 4) diminished synaptopodin levels in the hippocampus; and 5) reduced content of the astrocyte-secreted protein TSP-1 in the prefrontal cortex and hippocampus. Our work demonstrates changes in the expression and phosphorylation of cytoskeletal proteins as well as in TSP-1 in the brain of the autistic-like mice C58/J, shedding light in one of the possible molecular mechanisms underpinning neuroplasticity alterations in the ASD brain and laying the foundation for future investigations in this topic. Copyright © 2018 Elsevier B.V. All rights reserved.
A Cellular Mechanism for Dendritic Spine Loss in the Pilocarpine Model of Status Epilepticus
Kurz, Jonathan E.; Moore, Bryan J.; Henderson, Scott; Campbell, John N.; Churn, Severn B.
2013-01-01
Purpose Previous studies have documented a synaptic translocation of calcineurin (CaN) and increased CaN activity following status epilepticus (SE), however the cellular effect of these changes in CaN in the pathology of SE remains to be elucidated. This study examined a CaN-dependent modification of the dendritic cytoskeleton. CaN has been shown to induce dephosphorylation of cofilin, an actin depolymerization factor. The ensuing actin depolymerization can lead to a number of physiological changes that are of interest in SE. Methods SE was induced by pilocarpine injection, and seizure activity was monitored by video-EEG. Subcellular fractions were isolated by differential centrifugation. CaN activity was assayed using a para-nitrophenol phosphate assay protocol. Cofilin phosphorylation was assessed using phosphocofilin-specific antibodies. Cofilin-actin binding was determined by co-immunoprecipitation, and actin polymerization was measured using a triton-solubilization protocol. Spines were visualized using a single-section rapid Golgi impregnation procedure. Results The immunoreactivity of phosphocofilin decreased significantly in hippocampal and cortical synaptosomal samples after SE. SE-induced cofilin dephosphorylation could be partially blocked by the pre-injection of CaN inhibitors. Cofilin activation could be further demonstrated by increased actin-cofilin binding and a significant depolymerization of neuronal actin, both of which were also blocked by CaN inhibitors. Finally, we demonstrated a CaN-dependent loss of dendritic spines histologically. Discussion The data demonstrate a CaN-dependent, cellular mechanism through which prolonged seizure activity results in loss of dendritic spines via cofilin activation. Further research into this area may provide useful insights into the pathology of SE and epileptogenic mechanisms. PMID:18479390
The actin-activated ATPase of co-polymer filaments of myosin and myosin-rod.
Stepkowski, D; Orlova, A A; Moos, C
1994-01-01
The actin activated ATPase of myosin at low ionic strength shows a complex dependence on actin concentration, in contrast with the simple hyperbolic actin activation kinetics of heavy meromyosin and subfragment-1. To investigate how the aggregation of myosin influences the actomyosin ATPase kinetics, we have studied the actin-activated ATPase of mixed filaments in which the myosin molecules are separated from each other by copolymerization with myosin rod. Electron microscopy of copolymer filaments, alone and bound to actin, indicates that the myosin heads are distributed randomly along the co-polymer filaments. The actin-activated ATPase of myosin decreases with increasing rod, approaching a plateau of about 30% of the control at a rod/myosin molar ratio of 4:1. The decrease in ATPase persists even at Vmax, the extrapolated limit at infinite actin, indicating that it is not due merely to the loss of cooperative actin binding. Furthermore, the actin dependence of the ATPase still shows a biphasic character like that of control myosin, even at rod/myosin ratio of 12:1, so this complexity is not probably due solely to the structural proximity of myosin molecules, but may involve a non-equivalence of myosin heads or myosin molecules in the filament environment. Images Figure 1 Figure 2 PMID:8198528
Force measurements by micromanipulation of a single actin filament by glass needles
NASA Astrophysics Data System (ADS)
Kishino, Akiyoshi; Yanagida, Toshio
1988-07-01
Single actin filaments (~7nm in diameter) labelled with fluorescent phalloidin can be clearly seen by video-fluorescence microscopy1. This technique has been used to observe motions of single filaments in solution and in several in vitro movement assays1-5. In a further development of the technique, we report here a method to catch and manipulate a single actin filament (F-actin) by glass microneedles under conditions in which external force on the filament can be applied and measured. Using this method, we directly measured the tensile strength of a filament (the force necessary to break the bond between two actin monomers) and the force required for a filament to be moved by myosin or its proteolytic fragment bound to a glass surface in the presence of ATP. The first result shows that the tensile strength of the F-actin-phalloidin complex is comparable with the average force exerted on a single thin filament in muscle fibres during isometric contraction. This force is increased only slightly by tropomyosin. The second measurement shows that the myosin head (subfragment-1) can produce the same ATP-dependent force as intact myosin. The magnitude of this force is comparable with that produced by each head of myosin in muscle during isometric contraction.
Cations Stiffen Actin Filaments by Adhering a Key Structural Element to Adjacent Subunits
2016-01-01
Ions regulate the assembly and mechanical properties of actin filaments. Recent work using structural bioinformatics and site-specific mutagenesis favors the existence of two discrete and specific divalent cation binding sites on actin filaments, positioned in the long axis between actin subunits. Cation binding at one site drives polymerization, while the other modulates filament stiffness and plays a role in filament severing by the regulatory protein, cofilin. Existing structural methods have not been able to resolve filament-associated cations, and so in this work we turn to molecular dynamics simulations to suggest a candidate binding pocket geometry for each site and to elucidate the mechanism by which occupancy of the “stiffness site” affects filament mechanical properties. Incorporating a magnesium ion in the “polymerization site” does not seem to require any large-scale change to an actin subunit’s conformation. Binding of a magnesium ion in the “stiffness site” adheres the actin DNase-binding loop (D-loop) to its long-axis neighbor, which increases the filament torsional stiffness and bending persistence length. Our analysis shows that bound D-loops occupy a smaller region of accessible conformational space. Cation occupancy buries key conserved residues of the D-loop, restricting accessibility to regulatory proteins and enzymes that target these amino acids. PMID:27146246
Olshina, Maya A; Angrisano, Fiona; Marapana, Danushka S; Riglar, David T; Bane, Kartik; Wong, Wilson; Catimel, Bruno; Yin, Meng-Xin; Holmes, Andrew B; Frischknecht, Friedrich; Kovar, David R; Baum, Jake
2015-07-18
Gliding motility in Plasmodium parasites, the aetiological agents of malaria disease, is mediated by an actomyosin motor anchored in the outer pellicle of the motile cell. Effective motility is dependent on a parasite myosin motor and turnover of dynamic parasite actin filaments. To date, however, the basis for directional motility is not known. Whilst myosin is very likely orientated as a result of its anchorage within the parasite, how actin filaments are orientated to facilitate directional force generation remains unexplained. In addition, recent evidence has questioned the linkage between actin filaments and secreted surface antigens leaving the way by which motor force is transmitted to the extracellular milieu unknown. Malaria parasites possess a markedly reduced repertoire of actin regulators, among which few are predicted to interact with filamentous (F)-actin directly. One of these, PF3D7_1251200, shows strong homology to the coronin family of actin-filament binding proteins, herein referred to as PfCoronin. Here the N terminal beta propeller domain of PfCoronin (PfCor-N) was expressed to assess its ability to bind and bundle pre-formed actin filaments by sedimentation assay, total internal reflection fluorescence (TIRF) microscopy and confocal imaging as well as to explore its ability to bind phospholipids. In parallel a tagged PfCoronin line in Plasmodium falciparum was generated to determine the cellular localization of the protein during asexual parasite development and blood-stage merozoite invasion. A combination of biochemical approaches demonstrated that the N-terminal beta-propeller domain of PfCoronin is capable of binding F-actin and facilitating formation of parallel filament bundles. In parasites, PfCoronin is expressed late in the asexual lifecycle and localizes to the pellicle region of invasive merozoites before and during erythrocyte entry. PfCoronin also associates strongly with membranes within the cell, likely mediated by interactions with phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2) at the plasma membrane. These data suggest PfCoronin may fulfil a key role as the critical determinant of actin filament organization in the Plasmodium cell. This raises the possibility that macro-molecular organization of actin mediates directional motility in gliding parasites.
Interaction of aldolase with actin-containing filaments. Structural studies.
Stewart, M; Morton, D J; Clarke, F M
1980-01-01
Electron micrographs of the paracrystals formed when fructose bisphosphate aldolase (EC 4.1.2.13) is added to actin-containing filaments were analysed by computer methods so that ultrastructural changes could be correlated with the various stoicheiometries of binding determined in the preceding paper [Walsh, Winzor, Clarke, Masters & Morton (1980) Biochem. J. 186, 89-98]. Paracrystals formed with aldolase and either F-actin or F-actin-tropomyosin have a single light transverse band every 38 nm, which is due to aldolase molecules cross-linking the filaments. In contrast, the paracrystals formed between aldolase and F-actin-tropomyosin-troponin filaments show two transverse bands every 38 nm: a major band, interpreted as aldolase binding to troponin, and a minor band, interpreted as aldolase cross-linking the filaments. The intensity of the minor band varies with Ca2+ concentration, being greatest when the Ca2+ concentration is low. A model for the different paracrystal structures which relates the various patterns and binding stoicheiometries to structural changes in the actin-containing filaments is proposed. Images PLATE 1 PMID:6892771
Gel-sol transition of the cytoplasm and its regulation
NASA Astrophysics Data System (ADS)
Janmey, Paul A.
1991-05-01
The cytoplasm of motile cells contains a dynamic system of filamentous protein polymers that endow the cell with elasticity permitting it to maintain its shape in the presence of mechanical forces encountered in vivo. Part of this cytoskeleton is composed of filaments of polymerized actin. Remodeling of this network is required for cell motility and cytoplasmic restructuring, and the reversible polymerization of actin per se has been suggested to cause morphologic changes such as cell ruffling and pseudopd extension. Changes in the degree of polymerization of acting and in the association of actin filaments into supramolecular structures are often associated with cell activation. Such activation is initiated by extracellular signals that bind to receptors which are often coupled by G-proteins to the production of intracellular second messangers. Cytoplasmic gel-sol transitions therefore can occur by formation and dissolution of actin networks, mediated by a variety of actin-binding proteins which are regulated by intracellular signalling molecules such as Ca2+ and polyphosphoinositides. The effects of three actin binding proteins: profilin, gelsolin and ABP (Tilamin) on the polymerization of actin and the viscoelasticity of the resulting networks measured in vitro suggest possible roles of these proteins in vivo. In particular, gelsolin, which activated by Ca2+ to sever and cap actin filaments, and released from filament ends by PIP2, appears to be a likely candidate for regulation of gel-sol transitions in response to cell activation. Recent results demonstrate that the hydrolysis of ATP that occurs following actin polymerization also influences the structure of the resulting filament. In addition being regulated by acting-binding proteins, the viscoelasticity of actin networks is also affected by the presence of the other two classes of cytoplasmic protein polymers, microtubules and intermediate filaments.
Rocket launcher mechanism of collaborative actin assembly defined by single-molecule imaging.
Breitsprecher, Dennis; Jaiswal, Richa; Bombardier, Jeffrey P; Gould, Christopher J; Gelles, Jeff; Goode, Bruce L
2012-06-01
Interacting sets of actin assembly factors work together in cells, but the underlying mechanisms have remained obscure. We used triple-color single-molecule fluorescence microscopy to image the tumor suppressor adenomatous polyposis coli (APC) and the formin mDia1 during filament assembly. Complexes consisting of APC, mDia1, and actin monomers initiated actin filament formation, overcoming inhibition by capping protein and profilin. Upon filament polymerization, the complexes separated, with mDia1 moving processively on growing barbed ends while APC remained at the site of nucleation. Thus, the two assembly factors directly interact to initiate filament assembly and then separate but retain independent associations with either end of the growing filament.
Rocket launcher mechanism of collaborative actin assembly defined by single-molecule imaging
Breitsprecher, Dennis; Jaiswal, Richa; Bombardier, Jeffrey P.; Gould, Christopher J.; Gelles, Jeff; Goode, Bruce L.
2013-01-01
Interacting sets of actin assembly factors work together in cells, but the underlying mechanisms have remained obscure. We used triple-color single molecule fluorescence microscopy to image the tumor-suppressor Adenomateous polyposis coli (APC) and the formin mDia1 during filament assembly. Complexes consisting of APC, mDia1, and actin monomers intiated actin filament formation, overcoming inhibition by capping protein and profilin. Upon filament polymerization, the complexes separated, with mDia1 moving processively on growing barbed ends while APC remained at the site of nucleation. Thus, the two assembly factors directly interact to initiate filament assembly, and then separate but retain independent associations with either end of the growing filament. PMID:22654058
Ishii, Shuya; Kawai, Masataka; Ishiwata, Shin'ichi
2018-01-01
The interaction between actin filaments and myosin molecular motors is a power source of a variety of cellular functions including cell division, cell motility, and muscular contraction. In vitro motility assay examines actin filaments interacting with myosin molecules that are adhered to a substrate (e.g., glass surface). This assay has been the standard method of studying the molecular mechanisms of contraction under an optical microscope. While the force generation has been measured through an optically trapped bead to which an actin filament is attached, a force vector vertical to the glass surface has been largely ignored with the in vitro motility assay. The vertical vector is created by the gap (distance) between the trapped bead and the glass surface. In this report, we propose a method to estimate the angle between the actin filament and the glass surface by optically determining the gap size. This determination requires a motorized stage in a standard epi-fluorescence microscope equipped with optical tweezers. This facile method is applied to force measurements using both pure actin filaments, and thin filaments reconstituted from actin, tropomyosin and troponin. We find that the angle-corrected force per unit filament length in the active condition (pCa = 5.0) decreases as the angle between the filament and the glass surface increases; i.e. as the force in the vertical direction increases. At the same time, we demonstrate that the force on reconstituted thin filaments is approximately 1.5 times larger than that on pure actin filaments. The range of angles we tested was between 11° and 36° with the estimated measurement error less than 6°. These results suggest the ability of cytoplasmic tropomyosin isoforms maintaining actomyosin active force to stabilize cytoskeletal architecture. PMID:29420610
NASA Astrophysics Data System (ADS)
Marshall Mccall, Patrick
Living cells are hierarchically self-organized forms of active soft matter: molecules on the nanometer scale form functional structures and organelles on the micron scale, which then compose cells on the scale of 10s of microns. While the biological functions of intracellular organelles are defined by the composition and properties of the structures themselves, how those bulk properties emerge from the properties and interactions of individual molecules remains poorly understood. Actin, a globular protein which self-assembles into dynamic semi-flexible polymers, is the basic structural material of cells and the major component of many functional organelles. In this thesis, I have used purified actin as a model system to explore the interplay between molecular-scale dynamics and organelle-scale functionality, with particular focus on the role of molecular-scale non-equilibrium activity. One of the most canonical forms of molecular-scale non-equilibrium activity is that of mechanoenzymes, also called motor proteins. These proteins utilized the free energy liberated by hydrolysis of ATP to perform mechanical work, thereby introducing non-equilibrium "active" stresses on the molecular scale. Combining experiments with mathematical modeling, we demonstrate in this thesis that non-equilibrium motor activity is sufficient to drive self-organization and pattern formation of the multimeric actin-binding motor protein Myosin II on 1D reconstituted actomyosin bundles. Like myosin, actin is itself an ATPase. However, nono-equilibrium ATP hydrolysis on actin is known to regulate the stability and assembly kinetics of actin filaments rather than generate active stresses per se. At the level of single actin filaments, the inhomogeneous nucleotide composition generated along the filament length by hydrolysis directs binding of regulatory proteins like cofilin, which mediate filament disassembly and thereby accelerate actin filament turnover. The concequences of this non-equilibrium turnover on the steady-state properties of collections of filaments remained unclear. Here, I reconstituted tunable, non-equilibrium actin turnover dynamics in entangled solutions of actin filaments as a model of the actin cortex of living cells. We found that this non-equilibrium turnover decouples solution mechanics from microstructure, enabling structurally indistinguishable materials to behave effectively as either viscous fluids or elastic gels. Additionally, we employed computer simulations to identify the dynamical regime in which actin turnover controls the effective viscosity of 2D cross-linked actin networks in the presence of motors. Additionally, I examine in this thesis the localization and self-assembly of actin filaments in condensed liquid phases called polyelectrolyte coacervates as a model membrane-less organelle. We find that concentration of actin through spontaneous partitioning preferentially to the coacervate phase accelerates the assembly of filaments. These filaments then localize to the coacervate-bulk interface, generating particles with visco-elastic shells surrounding liquid cores. In this case, the properties of the condensed phase enable regulation of actin assembly dynamics.
PHD3-mediated prolyl hydroxylation of nonmuscle actin impairs polymerization and cell motility
Luo, Weibo; Lin, Benjamin; Wang, Yingfei; Zhong, Jun; O'Meally, Robert; Cole, Robert N.; Pandey, Akhilesh; Levchenko, Andre; Semenza, Gregg L.
2014-01-01
Actin filaments play an essential role in cell movement, and many posttranslational modifications regulate actin filament assembly. Here we report that prolyl hydroxylase 3 (PHD3) interacts with nonmuscle actin in human cells and catalyzes hydroxylation of actin at proline residues 307 and 322. Blocking PHD3 expression or catalytic activity by short hairpin RNA knockdown or pharmacological inhibition, respectively, decreased actin prolyl hydroxylation. PHD3 knockdown increased filamentous F-actin assembly, which was reversed by PHD3 overexpression. PHD3 knockdown increased cell velocity and migration distance. Inhibition of PHD3 prolyl hydroxylase activity by dimethyloxalylglycine also increased actin polymerization and cell migration. These data reveal a novel role for PHD3 as a negative regulator of cell motility through posttranslational modification of nonmuscle actins. PMID:25079693
Wen, Kuo-Kuang; McKane, Melissa; Rubenstein, Peter A.
2013-01-01
Proper actin cytoskeletal function requires actin's ability to generate a stable filament and requires that this reaction be regulated by actin-binding proteins via allosteric effects on the actin. A proposed ionic interaction in the actin filament interior between Lys113 of one monomer and Glu195 of a monomer in the apposing strand potentially fosters cross-strand stabilization and allosteric communication between the filament interior and exterior. We interrupted the potential interaction by creating either K113E or E195K actin. By combining the two, we also reversed the interaction with a K113E/E195K (E/K) mutant. In all cases, we isolated viable cells expressing only the mutant actin. Either single mutant cell displays significantly decreased growth in YPD medium. This deficit is rescued in the double mutant. All three mutants display abnormal phalloidin cytoskeletal staining. K113E actin exhibits a critical concentration of polymerization 4 times higher than WT actin, nucleates more poorly, and forms shorter filaments. Restoration of the ionic bond, E/K, eliminates most of these problems. E195K actin behaves much more like WT actin, indicating accommodation of the neighboring lysines. Both Bni1 and Bnr1 formin FH1-FH2 fragment accelerate polymerization of WT, E/K, and to a lesser extent E195K actin. Bni1p FH1-FH2 dramatically inhibits K113E actin polymerization, consistent with barbed end capping. However, Bnr1p FH1-FH2 restores K113E actin polymerization, forming single filaments. In summary, the proposed ionic interaction plays an important role in filament stabilization and in the propagation of allosteric changes affecting formin regulation in an isoform-specific fashion. PMID:23653364
Leiomodin and tropomodulin in smooth muscle
NASA Technical Reports Server (NTRS)
Conley, C. A.
2001-01-01
Evidence is accumulating to suggest that actin filament remodeling is critical for smooth muscle contraction, which implicates actin filament ends as important sites for regulation of contraction. Tropomodulin (Tmod) and smooth muscle leiomodin (SM-Lmod) have been found in many tissues containing smooth muscle by protein immunoblot and immunofluorescence microscopy. Both proteins cofractionate with tropomyosin in the Triton-insoluble cytoskeleton of rabbit stomach smooth muscle and are solubilized by high salt. SM-Lmod binds muscle tropomyosin, a biochemical activity characteristic of Tmod proteins. SM-Lmod staining is present along the length of actin filaments in rat intestinal smooth muscle, while Tmod stains in a punctate pattern distinct from that of actin filaments or the dense body marker alpha-actinin. After smooth muscle is hypercontracted by treatment with 10 mM Ca(2+), both SM-Lmod and Tmod are found near alpha-actinin at the periphery of actin-rich contraction bands. These data suggest that SM-Lmod is a novel component of the smooth muscle actin cytoskeleton and, furthermore, that the pointed ends of actin filaments in smooth muscle may be capped by Tmod in localized clusters.
A dynamic formin-dependent deep F-actin network in axons
Ganguly, Archan; Tang, Yong; Wang, Lina; Ladt, Kelsey; Loi, Jonathan; Dargent, Bénédicte; Leterrier, Christophe
2015-01-01
Although actin at neuronal growth cones is well-studied, much less is known about actin organization and dynamics along axon shafts and presynaptic boutons. Using probes that selectively label filamentous-actin (F-actin), we found focal “actin hotspots” along axons—spaced ∼3–4 µm apart—where actin undergoes continuous assembly/disassembly. These foci are a nidus for vigorous actin polymerization, generating long filaments spurting bidirectionally along axons—a phenomenon we call “actin trails.” Super-resolution microscopy reveals intra-axonal deep actin filaments in addition to the subplasmalemmal “actin rings” described recently. F-actin hotspots colocalize with stationary axonal endosomes, and blocking vesicle transport diminishes the actin trails, suggesting mechanistic links between vesicles and F-actin kinetics. Actin trails are formin—but not Arp2/3—dependent and help enrich actin at presynaptic boutons. Finally, formin inhibition dramatically disrupts synaptic recycling. Collectively, available data suggest a two-tier F-actin organization in axons, with stable “actin rings” providing mechanical support to the plasma membrane and dynamic "actin trails" generating a flexible cytoskeletal network with putative physiological roles. PMID:26216902
Actin turnover maintains actin filament homeostasis during cytokinetic ring contraction
Palani, Saravanan; Sommese, Ruth; Kamnev, Anton; Hatano, Tomoyuki; Sivaramakrishnan, Sivaraj
2017-01-01
Cytokinesis in many eukaryotes involves a tension-generating actomyosin-based contractile ring. Many components of actomyosin rings turn over during contraction, although the significance of this turnover has remained enigmatic. Here, using Schizosaccharomyces japonicus, we investigate the role of turnover of actin and myosin II in its contraction. Actomyosin ring components self-organize into ∼1-µm-spaced clusters instead of undergoing full-ring contraction in the absence of continuous actin polymerization. This effect is reversed when actin filaments are stabilized. We tested the idea that the function of turnover is to ensure actin filament homeostasis in a synthetic system, in which we abolished turnover by fixing rings in cell ghosts with formaldehyde. We found that these rings contracted fully upon exogenous addition of a vertebrate myosin. We conclude that actin turnover is required to maintain actin filament homeostasis during ring contraction and that the requirement for turnover can be bypassed if homeostasis is achieved artificially. PMID:28655757
Diffusion rate limitations in actin-based propulsion of hard and deformable particles.
Dickinson, Richard B; Purich, Daniel L
2006-08-15
The mechanism by which actin polymerization propels intracellular vesicles and invasive microorganisms remains an open question. Several recent quantitative studies have examined propulsion of biomimetic particles such as polystyrene microspheres, phospholipid vesicles, and oil droplets. In addition to allowing quantitative measurement of parameters such as the dependence of particle speed on its size, these systems have also revealed characteristic behaviors such a saltatory motion of hard particles and oscillatory deformation of soft particles. Such measurements and observations provide tests for proposed mechanisms of actin-based motility. In the actoclampin filament end-tracking motor model, particle-surface-bound filament end-tracking proteins are involved in load-insensitive processive insertion of actin subunits onto elongating filament plus-ends that are persistently tethered to the surface. In contrast, the tethered-ratchet model assumes working filaments are untethered and the free-ended filaments grow as thermal ratchets in a load-sensitive manner. This article presents a model for the diffusion and consumption of actin monomers during actin-based particle propulsion to predict the monomer concentration field around motile particles. The results suggest that the various behaviors of biomimetic particles, including dynamic saltatory motion of hard particles and oscillatory vesicle deformations, can be quantitatively and self-consistently explained by load-insensitive, diffusion-limited elongation of (+)-end-tethered actin filaments, consistent with predictions of the actoclampin filament-end tracking mechanism.
Mueller, Jan; Pfanzelter, Julia; Winkler, Christoph; Narita, Akihiro; Le Clainche, Christophe; Nemethova, Maria; Carlier, Marie-France; Maeda, Yuichiro; Welch, Matthew D.; Ohkawa, Taro; Schmeiser, Christian; Resch, Guenter P.; Small, J. Victor
2014-01-01
Several pathogens induce propulsive actin comet tails in cells they invade to disseminate their infection. They achieve this by recruiting factors for actin nucleation, the Arp2/3 complex, and polymerization regulators from the host cytoplasm. Owing to limited information on the structural organization of actin comets and in particular the spatial arrangement of filaments engaged in propulsion, the underlying mechanism of pathogen movement is currently speculative and controversial. Using electron tomography we have resolved the three-dimensional architecture of actin comet tails propelling baculovirus, the smallest pathogen yet known to hijack the actin motile machinery. Comet tail geometry was also mimicked in mixtures of virus capsids with purified actin and a minimal inventory of actin regulators. We demonstrate that propulsion is based on the assembly of a fishbone-like array of actin filaments organized in subsets linked by branch junctions, with an average of four filaments pushing the virus at any one time. Using an energy-minimizing function we have simulated the structure of actin comet tails as well as the tracks adopted by baculovirus in infected cells in vivo. The results from the simulations rule out gel squeezing models of propulsion and support those in which actin filaments are continuously tethered during branch nucleation and polymerization. Since Listeria monocytogenes, Shigella flexneri, and Vaccinia virus among other pathogens use the same common toolbox of components as baculovirus to move, we suggest they share the same principles of actin organization and mode of propulsion. PMID:24453943
Mueller, Jan; Pfanzelter, Julia; Winkler, Christoph; Narita, Akihiro; Le Clainche, Christophe; Nemethova, Maria; Carlier, Marie-France; Maeda, Yuichiro; Welch, Matthew D; Ohkawa, Taro; Schmeiser, Christian; Resch, Guenter P; Small, J Victor
2014-01-01
Several pathogens induce propulsive actin comet tails in cells they invade to disseminate their infection. They achieve this by recruiting factors for actin nucleation, the Arp2/3 complex, and polymerization regulators from the host cytoplasm. Owing to limited information on the structural organization of actin comets and in particular the spatial arrangement of filaments engaged in propulsion, the underlying mechanism of pathogen movement is currently speculative and controversial. Using electron tomography we have resolved the three-dimensional architecture of actin comet tails propelling baculovirus, the smallest pathogen yet known to hijack the actin motile machinery. Comet tail geometry was also mimicked in mixtures of virus capsids with purified actin and a minimal inventory of actin regulators. We demonstrate that propulsion is based on the assembly of a fishbone-like array of actin filaments organized in subsets linked by branch junctions, with an average of four filaments pushing the virus at any one time. Using an energy-minimizing function we have simulated the structure of actin comet tails as well as the tracks adopted by baculovirus in infected cells in vivo. The results from the simulations rule out gel squeezing models of propulsion and support those in which actin filaments are continuously tethered during branch nucleation and polymerization. Since Listeria monocytogenes, Shigella flexneri, and Vaccinia virus among other pathogens use the same common toolbox of components as baculovirus to move, we suggest they share the same principles of actin organization and mode of propulsion.
Long-range self-organization of cytoskeletal myosin II filament stacks.
Hu, Shiqiong; Dasbiswas, Kinjal; Guo, Zhenhuan; Tee, Yee-Han; Thiagarajan, Visalatchi; Hersen, Pascal; Chew, Teng-Leong; Safran, Samuel A; Zaidel-Bar, Ronen; Bershadsky, Alexander D
2017-02-01
Although myosin II filaments are known to exist in non-muscle cells, their dynamics and organization are incompletely understood. Here, we combined structured illumination microscopy with pharmacological and genetic perturbations, to study the process of actomyosin cytoskeleton self-organization into arcs and stress fibres. A striking feature of the myosin II filament organization was their 'registered' alignment into stacks, spanning up to several micrometres in the direction orthogonal to the parallel actin bundles. While turnover of individual myosin II filaments was fast (characteristic half-life time 60 s) and independent of actin filament turnover, the process of stack formation lasted a longer time (in the range of several minutes) and required myosin II contractility, as well as actin filament assembly/disassembly and crosslinking (dependent on formin Fmnl3, cofilin1 and α-actinin-4). Furthermore, myosin filament stack formation involved long-range movements of individual myosin filaments towards each other suggesting the existence of attractive forces between myosin II filaments. These forces, possibly transmitted via mechanical deformations of the intervening actin filament network, may in turn remodel the actomyosin cytoskeleton and drive its self-organization.
Intermicrotubular actin filaments in the transalar cytoskeletal arrays of Drosophila.
Mogensen, M M; Tucker, J B
1988-11-01
Rabbit muscle myosin subfragment S1 decorates 6 nm diameter filaments in Drosophila wing epidermal cells in the arrowhead fashion characteristic of the binding of subfragment S1 to actin filaments. The filaments in question are concentrated between microtubules that are mostly composed of 15 protofilaments and form cell surface-associated transcellular bundles. There are indications that the majority of the actin filaments have the same polarity and that, like the microtubules, they may elongate from sites at the apical surfaces of the cells. The bundles of F actin and microtubules occur in dorsal and ventral epidermal cell layers of a wing blade. They are joined in dorso-ventral pairs by attachment desmosomes. These transalar cytoskeletal arrays may provide an example of a situation where actin filaments operate as stiffeners rather than active generators of force in conjunction with myosin. The arrays probably function as noncontractile pillars to maintain basal cell extensions and keep haemocoelic spaces open in the highly folded and expanding wing blades of late pupae.
An atomic model of the tropomyosin cable on F-actin.
Orzechowski, Marek; Li, Xiaochuan Edward; Fischer, Stefan; Lehman, William
2014-08-05
Tropomyosin regulates a wide variety of actin filament functions and is best known for the role that it plays together with troponin in controlling muscle activity. For effective performance on actin filaments, adjacent 42-nm-long tropomyosin molecules are joined together by a 9- to 10-residue head-to-tail overlapping domain to form a continuous cable that wraps around the F-actin helix. Yet, despite the apparent simplicity of tropomyosin's coiled-coil structure and its well-known periodic association with successive actin subunits along F-actin, the structure of the tropomyosin cable on actin is uncertain. This is because the conformation of the overlap region that joins neighboring molecules is poorly understood, thus leaving a significant gap in our understanding of thin-filament structure and regulation. However, recent molecular-dynamics simulations of overlap segments defined their overall shape and provided unique and sufficient cues to model the whole actin-tropomyosin filament assembly in atomic detail. In this study, we show that these MD structures merge seamlessly onto the ends of tropomyosin coiled-coils. Adjacent tropomyosin molecules can then be joined together to provide a comprehensive model of the tropomyosin cable running continuously on F-actin. The resulting complete model presented here describes for the first time (to our knowledge) an atomic-level structure of αα-striated muscle tropomyosin bound to an actin filament that includes the critical overlap domain. Thus, the model provides a structural correlate to evaluate thin-filament mechanics, self-assembly mechanisms, and the effect of disease-causing mutations. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Barrier role of actin filaments in regulated mucin secretion from airway goblet cells.
Ehre, Camille; Rossi, Andrea H; Abdullah, Lubna H; De Pestel, Kathleen; Hill, Sandra; Olsen, John C; Davis, C William
2005-01-01
Airway goblet cells secrete mucin onto mucosal surfaces under the regulation of an apical, phospholipase C/G(q)-coupled P2Y(2) receptor. We tested whether cortical actin filaments negatively regulate exocytosis in goblet cells by forming a barrier between secretory granules and plasma membrane docking sites as postulated for other secretory cells. Immunostaining of human lung tissues and SPOC1 cells (an epithelial, mucin-secreting cell line) revealed an apical distribution of beta- and gamma-actin in ciliated and goblet cells. In goblet cells, actin appeared as a prominent subplasmalemmal sheet lying between granules and the apical membrane, and it disappeared from SPOC1 cells activated by purinergic agonist. Disruption of actin filaments with latrunculin A stimulated SPOC1 cell mucin secretion under basal and agonist-activated conditions, whereas stabilization with jasplakinolide or overexpression of beta- or gamma-actin conjugated to yellow fluorescent protein (YFP) inhibited secretion. Myristoylated alanine-rich C kinase substrate, a PKC-activated actin-plasma membrane tethering protein, was phosphorylated after agonist stimulation, suggesting a translocation to the cytosol. Scinderin (or adseverin), a Ca(2+)-activated actin filament severing and capping protein was cloned from human airway and SPOC1 cells, and synthetic peptides corresponding to its actin-binding domains inhibited mucin secretion. We conclude that actin filaments negatively regulate mucin secretion basally in airway goblet cells and are dynamically remodeled in agonist-stimulated cells to promote exocytosis.
Multiscale Modelling for investigating single molecule effects on the mechanics of actin filaments
NASA Astrophysics Data System (ADS)
A, Deriu Marco; C, Bidone Tamara; Laura, Carbone; Cristina, Bignardi; M, Montevecchi Franco; Umberto, Morbiducci
2011-12-01
This work presents a preliminary multiscale computational investigation of the effects of nucleotides and cations on the mechanics of actin filaments (F-actin). At the molecular level, Molecular Dynamics (MD) simulations are employed to characterize the rearrangements of the actin monomers (G-actin) in terms of secondary structures evolution in physiological conditions. At the mesoscale level, a coarse grain (CG) procedure is adopted where each monomer is represented by means of Elastic Network Modeling (ENM) technique. At the macroscale level, actin filaments up to hundreds of nanometers are assumed as isotropic and elastic beams and characterized via Rotation Translation Block (RTB) analysis. F-actin bound to adenosine triphosphate (ATP) shows a persistence length around 5 μm, while actin filaments bound to adenosine diphosphate (ADP) have a persistence length of about 3 μm. With magnesium bound to the high affinity binding site of G-actin, the persistence length of F-actin decreases to about 2 μm only in the ADP-bound form of the filament, while the same ion has no effects, in terms of stiffness variation, on the ATP-bound form of F-actin. The molecular mechanisms behind these changes in flexibility are herein elucidated. Thus, this study allows to analyze how the local binding of cations and nucleotides on G-actin induce molecular rearrangements that transmit to the overall F-actin, characterizing shifts of mechanical properties, that can be related with physiological and pathological cellular phenomena, as cell migration and spreading. Further, this study provides the basis for upcoming investigating of network and cellular remodelling at higher length scales.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rebowski, Grzegorz; Namgoong, Suk; Boczkowska, Malgorzata
Actin filament nucleators initiate polymerization in cells in a regulated manner. A common architecture among these molecules consists of tandem WASP homology 2 domains (W domains) that recruit three to four actin subunits to form a polymerization nucleus. We describe a low-resolution crystal structure of an actin dimer assembled by tandem W domains, where the first W domain is cross-linked to Cys374 of the actin subunit bound to it, whereas the last W domain is followed by the C-terminal pointed end-capping helix of thymosin {beta}4. While the arrangement of actin subunits in the dimer resembles that of a long-pitch helixmore » of the actin filament, important differences are observed. These differences result from steric hindrance of the W domain with intersubunit contacts in the actin filament. We also determined the structure of the first W domain of Vibrio parahaemolyticus VopL cross-linked to actin Cys374 and show it to be nearly identical with non-cross-linked W-Actin structures. This result validates the use of cross-linking as a tool for the study of actin nucleation complexes, whose natural tendency to polymerize interferes with most structural methods. Combined with a biochemical analysis of nucleation, the structures may explain why nucleators based on tandem W domains with short inter-W linkers have relatively weak activity, cannot stay bound to filaments after nucleation, and are unlikely to influence filament elongation. The findings may also explain why nucleation-promoting factors of the Arp2/3 complex, which are related to tandem-W-domain nucleators, are ejected from branch junctions after nucleation. We finally show that the simple addition of the C-terminal pointed end-capping helix of thymosin {beta}4 to tandem W domains can change their activity from actin filament nucleation to monomer sequestration.« less
Molecular architecture of the Spire-actin nucleus and its implication for actin filament assembly.
Sitar, Tomasz; Gallinger, Julia; Ducka, Anna M; Ikonen, Teemu P; Wohlhoefler, Michael; Schmoller, Kurt M; Bausch, Andreas R; Joel, Peteranne; Trybus, Kathleen M; Noegel, Angelika A; Schleicher, Michael; Huber, Robert; Holak, Tad A
2011-12-06
The Spire protein is a multifunctional regulator of actin assembly. We studied the structures and properties of Spire-actin complexes by X-ray scattering, X-ray crystallography, total internal reflection fluorescence microscopy, and actin polymerization assays. We show that Spire-actin complexes in solution assume a unique, longitudinal-like shape, in which Wiskott-Aldrich syndrome protein homology 2 domains (WH2), in an extended configuration, line up actins along the long axis of the core of the Spire-actin particle. In the complex, the kinase noncatalytic C-lobe domain is positioned at the side of the first N-terminal Spire-actin module. In addition, we find that preformed, isolated Spire-actin complexes are very efficient nucleators of polymerization and afterward dissociate from the growing filament. However, under certain conditions, all Spire constructs--even a single WH2 repeat--sequester actin and disrupt existing filaments. This molecular and structural mechanism of actin polymerization by Spire should apply to other actin-binding proteins that contain WH2 domains in tandem.
1981-01-01
The ordered structure of the leading edge (lamellipodium) of cultured fibroblasts is readily revealed in cells extracted briefly in Triton X- 100-glutaraldehyde mixtures, fixed further in glutaraldehyde, and then negatively stained for electron microscopy. By this procedure, the leading edge regions show a highly organised, three-dimensional network of actin filaments together with variable numbers of radiating actin filament bundles or microspikes. The use of Phalloidin after glutaraldehyde fixation resulted in a marginal improvement in filament order. Processing of the cytoskeletons though the additional steps generally employed for conventional electron microscopy resulted in a marked deterioration or complete disruption of the order of the actin filament networks. In contrast, the actin filaments of the stress fiber bundles were essentially unaffected. Thus, postfixation in osmium tetroxide (1% for 7 min at room temperature) transformed the networks to a reticulum of kinked fibers, resembling those produced by the exposure of muscle F-actin to OsO4 in vitro (P. Maupin-Szamier and T. D. Pollard. 1978. J. Cell Biol. 77:837--852). While limited exposure to OsO4 (0.2+ for 20 min at 0 degrees C) obviated this destruction, dehydration in acetone or ethanol, with or without post-osmication, caused a further and unavoidable disordering and aggregation of the meshwork filaments. The meshwork regions of the leading edge then showed a striking resemblance to the networks hitherto described in critical point-dried preparations of cultured cells. I conclude that much of the "microtrabecular lattice" described by Wolosewick and Porter (1979. J. Cell Biol. 82:114--139) in the latter preparations constitutes actin meshworks and actin filament arrays, with their associated components, that have been distorted and aggregated by the preparative procedures employed. PMID:6799521
Structure of the Rigor Actin-Tropomyosin-Myosin Complex
Behrmann, Elmar; Müller, Mirco; Penczek, Pawel A.; Mannherz, Hans Georg; Manstein, Dietmar J.; Raunser, Stefan
2014-01-01
The interaction of myosin with actin filaments is the central feature of muscle contraction and cargo movement along actin filaments of the cytoskeleton. Myosin converts the chemical energy stored in ATP into force and movement along actin filaments. Myosin binding to actin induces conformational changes that are coupled to the nucleotide-binding pocket and amplified by a specialized region of the motor domain for efficient force generation. Tropomyosin plays a key role in regulating the productive interaction between myosins and actin. Here, we report the 8 Å resolution structure of the actin-tropomyosin-myosin complex determined by cryo electron microscopy. The pseudo-atomic model of the complex obtained from fitting crystal structures into the map defines the large actin-myosin-tropomyosin interface and the molecular interactions between the proteins in detail and allows us to propose a structural model for tropomyosin dependent myosin binding to actin and actin-induced nucleotide release from myosin. PMID:22817895
Probing actin polymerization by intermolecular cross-linking.
Millonig, R; Salvo, H; Aebi, U
1988-03-01
We have used N,N'-1,4-phenylenebismaleimide, a bifunctional sulfhydryl cross-linking reagent, to probe the oligomeric state of actin during the early stages of its polymerization into filaments. We document that one of the first steps in the polymerization of globular monomeric actin (G-actin) under a wide variety of ionic conditions is the dimerization of a significant fraction of the G-actin monomer pool. As polymerization proceeds, the yield of this initial dimer ("lower" dimer with an apparent molecular mass of 86 kD by SDS-PAGE [LD]) is attenuated, while an actin filament dimer ("upper" dimer with an apparent molecular mass of 115 kD by SDS-PAGE [UD] as characterized [Elzinga, M., and J. J. Phelan. 1984. Proc. Natl. Acad. Sci. USA. 81:6599-6602]) is formed. This shift from LD to UD occurs concomitant with formation of filaments as assayed by N-(1-pyrenyl)iodoacetamide fluorescence enhancement and electron microscopy. Isolated cross-linked LD does not form filaments, while isolated cross-linked UD will assemble into filaments indistinguishable from those polymerized from unmodified G-actin under typical filament-forming conditions. The presence of cross-linked LD does not effect the kinetics of polymerization of actin monomer, whereas cross-linked UD shortens the "lag phase" of the polymerization reaction in a concentration-dependent fashion. Several converging lines of evidence suggest that, although accounting for a significant oligomeric species formed during early polymerization, the LD is incompatible with the helical symmetry defining the mature actin filament; however, it could represent the interfilament dimer found in paracrystalline arrays or filament bundles. Furthermore, the LD is compatible with the unit cell structure and symmetry common to various types of crystalline actin arrays (Aebi, U., W. E. Fowler, G. Isenberg, T. D. Pollard, and P. R. Smith. 1981. J. Cell Biol. 91:340-351) and might represent the major structural state in which a mutant beta-actin (Leavitt, J., G. Bushar, T. Kakunaga, H. Hamada, T. Hirakawa, D. Goldman, and C. Merril. 1982. Cell. 28:259-268) is arrested under polymerizing conditions.
Direct observation of the actin filament by tip-scan atomic force microscopy
Narita, Akihiro; Usukura, Eiji; Yagi, Akira; Tateyama, Kiyohiko; Akizuki, Shogo; Kikumoto, Mahito; Matsumoto, Tomoharu; Maéda, Yuichiro; Ito, Shuichi; Usukura, Jiro
2016-01-01
Actin filaments, the actin–myosin complex and the actin–tropomyosin complex were observed by a tip-scan atomic force microscope (AFM), which was recently developed by Olympus as the AFM part of a correlative microscope. This newly developed AFM uses cantilevers of similar size as stage-scan AFMs to improve substantially the spatial and temporal resolution. Such an approach has previously never been possible by a tip-scan system, in which a cantilever moves in the x, y and z directions. We evaluated the performance of this developed tip-scan AFM by observing the molecular structure of actin filaments and the actin–tropomyosin complex. In the image of the actin filament, the molecular interval of the actin subunits (∼5.5 nm) was clearly observed as stripes. From the shape of the stripes, the polarity of the actin filament was directly determined and the results were consistent with the polarity determined by myosin binding. In the image of the actin–tropomyosin complex, each tropomyosin molecule (∼2 nm in diameter) on the actin filament was directly observed without averaging images of different molecules. Each tropomyosin molecule on the actin filament has never been directly observed by AFM or electron microscopy. Thus, our developed tip-scan AFM offers significant potential in observing purified proteins and cellular structures at nanometer resolution. Current results represent an important step in the development of a new correlative microscope to observe nm-order structures at an acceptable frame rate (∼10 s/frame) by AFM at the position indicated by the fluorescent dye observed under a light microscope. PMID:27242058
Prochniewicz, Ewa; Chin, Harvey F.; Henn, Arnon; Hannemann, Diane E.; Olivares, Adrian O.; Thomas, David D.; De La Cruz, Enrique M.
2010-01-01
SUMMARY We have used transient phosphorescence anisotropy (TPA) to detect the microsecond rotational dynamics of erythrosin iodoacetamide (ErIA)-labeled actin strongly bound to single-headed fragments of muscle myosin (muscle S1) and non-muscle myosin V (MV). The conformational dynamics of actin filaments in solution are markedly influenced by the isoform of bound myosin. Both myosins increase the final anisotropy of actin at sub-stoichiometric binding densities, indicating long-range, non-nearest neighbor cooperative restriction of filament rotational dynamics amplitude, but the cooperative unit is larger with MV than muscle S1. Both myosin isoforms also cooperatively affect the actin filament rotational correlation time, but with opposite effects; muscle S1 decreases rates of intrafilament torsional motion, while binding of MV increases the rates of motion. The cooperative effects on the rates of intrafilament motions correlate with the kinetics of myosin binding to actin filaments such that MV binds more rapidly, and muscle myosin more slowly, to partially decorated filaments than to bare filaments. The two isoforms also differ in their effects on the phosphorescence lifetime of the actin-bound ErIA; while muscle S1 increases the lifetime, suggesting decreased aqueous exposure of the probe, MV does not induce a significant change. We conclude that the dynamics and structure of actin in the strongly bound actomyosin complex is determined by the isoform of the bound myosin, in a manner likely to accommodate the diverse functional roles of actomyosin in muscle and non-muscle cells. PMID:19962990
Banan, A; Fitzpatrick, L; Zhang, Y; Keshavarzian, A
2001-02-01
Rebamipide (OPC-12759), a quinolone derivative, and OPC-6535, a thiazol-carboxylic acid derivative, are compounds with ability to protect gastrointestinal (GI) mucosal integrity against reactive oxygen metabolites (ROM). The underlying mechanism of OPC-mediated protection remains poorly understood. It is now established that ROM can injure the mucosa by disruption of the cytoskeletal network, a key component of mucosal barrier integrity. We, therefore, investigated whether OPC compounds prevent the oxidation, disassembly, and instability of the cytoskeletal protein actin and, in turn, protect intestinal barrier function against ROM. Human intestinal (Caco-2) cell monolayers were pretreated with OPC (-12759 or -6535) prior to incubation with ROM (H2O2) or HOCl). Effects on cell integrity (ethidium homodimer-1), epithelial barrier function (fluorescein sulfonic acid clearance), and actin cytoskeletal integrity (high-resolution laser confocal) were then determined. Cells were also processed for quantitative immunoblotting of G- and F-actin to measure oxidation (carbonylation) and disassembly of actin. In monolayers exposed to ROM, preincubation with OPC compounds prevented actin oxidation, decreased depolymerized G-actin, and enhanced the stable F-actin. Concomitantly, OPC agents abolished both actin cytoskeletal disruption and monolayer barrier dysfunction. Data suggest for the first time that OPC drugs prevent oxidation of actin and lead to the protection of actin cytoskeleton and intestinal barrier integrity against oxidant insult. Accordingly, these compounds may be used as novel therapeutic agents for the treatment of a variety of oxidative inflammatory intestinal disorders with an abnormal mucosal barrier such as inflammatory bowel disease.
Assembly and Function of the Actin Cytoskeleton of Yeast: Relationships between Cables and Patches
Karpova, Tatiana S.; McNally, James G.; Moltz, Samuel L.; Cooper, John A.
1998-01-01
Actin in eukaryotic cells is found in different pools, with filaments being organized into a variety of supramolecular assemblies. To investigate the assembly and functional relationships between different parts of the actin cytoskeleton in one cell, we studied the morphology and dynamics of cables and patches in yeast. The fine structure of actin cables and the manner in which cables disassemble support a model in which cables are composed of a number of overlapping actin filaments. No evidence for intrinsic polarity of cables was found. To investigate to what extent different parts of the actin cytoskeleton depend on each other, we looked for relationships between cables and patches. Patches and cables were often associated, and their polarized distributions were highly correlated. Therefore, patches and cables do appear to depend on each other for assembly and function. Many cell types show rearrangements of the actin cytoskeleton, which can occur via assembly or movement of actin filaments. In our studies, dramatic changes in actin polarization did not include changes in filamentous actin. In addition, the concentration of actin patches was relatively constant as cells grew. Therefore, cells do not have bursts of activity in which new parts of the actin cytoskeleton are created. PMID:9744880
Sousa, Duncan R.; Stagg, Scott M.; Stroupe, M. Elizabeth
2013-01-01
Tropomyosin is a key factor in the molecular mechanisms that regulate the binding of myosin motors to actin filaments in most eukaryotic cells. This regulation is achieved by the azimuthal repositioning of tropomyosin along the actin:tropomyosin:troponin thin filament to block or expose myosin binding sites on actin. In striated muscle, including involuntary cardiac muscle, tropomyosin regulates muscle contraction by coupling Ca2+ binding to troponin with myosin binding to the thin filament. In smooth muscle, the switch is the post-translational modification of the myosin. Depending on the activation state of troponin and the binding state of myosin, tropomyosin can occupy the blocked, closed, or open position on actin. Using native cryogenic 3DEM, we have directly resolved and visualized cardiac and gizzard muscle tropomyosin on filamentous actin in the position that corresponds to the closed state. From the 8-Å resolution structure of the reconstituted Ac:Tm filament formed with gizzard-derived Tm we discuss two possible mechanisms for the transition from closed to open state and describe the role Tm plays in blocking myosin tight binding in the closed state position. PMID:24021812
Clostridium difficile binary toxin CDT
Gerding, Dale N; Johnson, Stuart; Rupnik, Maja; Aktories, Klaus
2014-01-01
Binary toxin (CDT) is frequently observed in Clostridium difficile strains associated with increased severity of C. difficile infection (CDI). CDT belongs to the family of binary ADP-ribosylating toxins consisting of two separate toxin components: CDTa, the enzymatic ADP-ribosyltransferase which modifies actin, and CDTb which binds to host cells and translocates CDTa into the cytosol. CDTb is activated by serine proteases and binds to lipolysis stimulated lipoprotein receptor. ADP-ribosylation induces depolymerization of the actin cytoskeleton. Toxin-induced actin depolymerization also produces microtubule-based membrane protrusions which form a network on epithelial cells and increase bacterial adherence. Multiple clinical studies indicate an association between binary toxin genes in C. difficile and increased 30-d CDI mortality independent of PCR ribotype. Further studies including measures of binary toxin in stool, analyses of CDI mortality caused by CDT-producing strains, and examination of the relationship of CDT expression to TcdA and TcdB toxin variants and PCR ribotypes are needed. PMID:24253566
Le, Shimin; Chen, Hu; Zhang, Xinghua; Chen, Jin; Patil, K. Neelakanteshwar; Muniyappa, Kalappa; Yan, Jie
2014-01-01
Efficient bacterial recombinational DNA repair involves rapid cycles of RecA filament assembly and disassembly. The RecX protein plays a crucial inhibitory role in RecA filament formation and stability. As the broken ends of DNA are tethered during homologous search, RecA filaments assembled at the ends are likely subject to force. In this work, we investigated the interplay between RecX and force on RecA filament formation and stability. Using magnetic tweezers, at single molecular level, we found that Mycobacterium tuberculosis (Mt) RecX could catalyze stepwise de-polymerization of preformed MtRecA filament in the presence of ATP hydrolysis at low forces (<7 pN). However, applying larger forces antagonized the inhibitory effects of MtRecX, and a partially de-polymerized MtRecA filament could re-polymerize in the presence of MtRecX, which cannot be explained by previous models. Theoretical analysis of force-dependent conformational free energies of naked ssDNA and RecA nucleoprotein filament suggests that mechanical force stabilizes RecA filament, which provides a possible mechanism for the observation. As the antagonizing effect of force on the inhibitory function of RecX takes place in a physiological range; these findings broadly suggest a potential mechanosensitive regulation during homologous recombination. PMID:25294832
Periz, Javier; Whitelaw, Jamie; Harding, Clare; Gras, Simon; Del Rosario Minina, Mario Igor; Latorre-Barragan, Fernanda; Lemgruber, Leandro; Reimer, Madita Alice; Insall, Robert; Heaslip, Aoife; Meissner, Markus
2017-01-01
Apicomplexan actin is important during the parasite's life cycle. Its polymerization kinetics are unusual, permitting only short, unstable F-actin filaments. It has not been possible to study actin in vivo and so its physiological roles have remained obscure, leading to models distinct from conventional actin behaviour. Here a modified version of the commercially available actin-chromobody was tested as a novel tool for visualising F-actin dynamics in Toxoplasma gondii. Cb labels filamentous actin structures within the parasite cytosol and labels an extensive F-actin network that connects parasites within the parasitophorous vacuole and allows vesicles to be exchanged between parasites. In the absence of actin, parasites lack a residual body and inter-parasite connections and grow in an asynchronous and disorganized manner. Collectively, these data identify new roles for actin in the intracellular phase of the parasites lytic cycle and provide a robust new tool for imaging parasitic F-actin dynamics. DOI: http://dx.doi.org/10.7554/eLife.24119.001 PMID:28322189
Periz, Javier; Whitelaw, Jamie; Harding, Clare; Gras, Simon; Del Rosario Minina, Mario Igor; Latorre-Barragan, Fernanda; Lemgruber, Leandro; Reimer, Madita Alice; Insall, Robert; Heaslip, Aoife; Meissner, Markus
2017-03-21
Apicomplexan actin is important during the parasite's life cycle. Its polymerization kinetics are unusual, permitting only short, unstable F-actin filaments. It has not been possible to study actin in vivo and so its physiological roles have remained obscure, leading to models distinct from conventional actin behaviour. Here a modified version of the commercially available actin-chromobody was tested as a novel tool for visualising F-actin dynamics in Toxoplasma gondii. Cb labels filamentous actin structures within the parasite cytosol and labels an extensive F-actin network that connects parasites within the parasitophorous vacuole and allows vesicles to be exchanged between parasites. In the absence of actin, parasites lack a residual body and inter-parasite connections and grow in an asynchronous and disorganized manner. Collectively, these data identify new roles for actin in the intracellular phase of the parasites lytic cycle and provide a robust new tool for imaging parasitic F-actin dynamics.
Xiang, Xin
2017-12-11
Nuclear movement within a cell occurs in a variety of eukaryotic organisms including yeasts and filamentous fungi. Fungal molecular genetic studies identified the minus-end-directed microtubule motor cytoplasmic dynein as a critical protein for nuclear movement or orientation of the mitotic spindle contained in the nucleus. Studies in the budding yeast first indicated that dynein anchored at the cortex via its anchoring protein Num1 exerts pulling force on an astral microtubule to orient the anaphase spindle across the mother-daughter axis before nuclear division. Prior to anaphase, myosin V interacts with the plus end of an astral microtubule via Kar9-Bim1/EB1 and pulls the plus end along the actin cables to move the nucleus/spindle close to the bud neck. In addition, pushing or pulling forces generated from cortex-linked polymerization or depolymerization of microtubules drive nuclear movements in yeasts and possibly also in filamentous fungi. In filamentous fungi, multiple nuclei within a hyphal segment undergo dynein-dependent back-and-forth movements and their positioning is also influenced by cytoplasmic streaming toward the hyphal tip. In addition, nuclear movement occurs at various stages of fungal development and fungal infection of plant tissues. This review discusses our current understanding on the mechanisms of nuclear movement in fungal organisms, the importance of nuclear positioning and the regulatory strategies that ensure the proper positioning of nucleus/spindle. Published by Elsevier Ltd.
Single-Molecule Studies of Actin Assembly and Disassembly Factors
Smith, Benjamin A.; Gelles, Jeff; Goode, Bruce L.
2014-01-01
The actin cytoskeleton is very dynamic and highly regulated by multiple associated proteins in vivo. Understanding how this system of proteins functions in the processes of actin network assembly and disassembly requires methods to dissect the mechanisms of activity of individual factors and of multiple factors acting in concert. The advent of single-filament and single-molecule fluorescence imaging methods has provided a powerful new approach to discovering actin-regulatory activities and obtaining direct, quantitative insights into the pathways of molecular interactions that regulate actin network architecture and dynamics. Here we describe techniques for acquisition and analysis of single-molecule data, applied to the novel challenges of studying the filament assembly and disassembly activities of actin-associated proteins in vitro. We discuss the advantages of single-molecule analysis in directly visualizing the order of molecular events, measuring the kinetic rates of filament binding and dissociation, and studying the coordination among multiple factors. The methods described here complement traditional biochemical approaches in elucidating actin-regulatory mechanisms in reconstituted filamentous networks. PMID:24630103
Liquid droplets of cross-linked actin filaments
NASA Astrophysics Data System (ADS)
Weirich, Kimberly; Banerjee, Shiladitya; Dasbiswas, Kinjal; Vaikuntanathan, Suriyanarayan; Gardel, Margaret
Soft materials constructed from biomolecules self-assemble into a myriad of structures that work in concert to support cell physiology. One critical soft material is the actin cytoskeleton, a viscoelastic gel composed of cross-linked actin filaments. Although actin networks are primarily known for their elastic properties, which are crucial to regulating cell mechanics, the viscous behavior has been theorized to enable shape changes and flows. We experimentally demonstrate a fluid phase of cross-linked actin, where cross-linker condenses dilute short actin filaments into spindle-shaped droplets, or tactoids. Tactoids have shape dynamics consistent with a continuum model of liquid crystal droplets. The cross-linker, which acts as a long range attractive interaction, analogous to molecular cohesion, controls the tactoid shape and dynamics, which reports on the liquid's interfacial tension and viscosity. We investigate how the cross-linker properties and filament length influence the liquid properties. These results demonstrate a novel mechanism to control organization of the actin cytoskeleton and provide insight into design principles for complex, macromolecular liquid phases.
Fimbrin phosphorylation by metaphase Cdk1 regulates actin cable dynamics in budding yeast
Miao, Yansong; Han, Xuemei; Zheng, Liangzhen; Xie, Ying; Mu, Yuguang; Yates, John R.; Drubin, David G.
2016-01-01
Actin cables, composed of actin filament bundles nucleated by formins, mediate intracellular transport for cell polarity establishment and maintenance. We previously observed that metaphase cells preferentially promote actin cable assembly through cyclin-dependent kinase 1 (Cdk1) activity. However, the relevant metaphase Cdk1 targets were not known. Here we show that the highly conserved actin filament crosslinking protein fimbrin is a critical Cdk1 target for actin cable assembly regulation in budding yeast. Fimbrin is specifically phosphorylated on threonine 103 by the metaphase cyclin–Cdk1 complex, in vivo and in vitro. On the basis of conformational simulations, we suggest that this phosphorylation stabilizes fimbrin's N-terminal domain, and modulates actin filament binding to regulate actin cable assembly and stability in cells. Overall, this work identifies fimbrin as a key target for cell cycle regulation of actin cable assembly in budding yeast, and suggests an underlying mechanism. PMID:27068241
Tang, Haosu; Laporte, Damien; Vavylonis, Dimitrios
2014-01-01
The growth of fission yeast relies on the polymerization of actin filaments nucleated by formin For3p, which localizes at tip cortical sites. These actin filaments bundle to form actin cables that span the cell and guide the movement of vesicles toward the cell tips. A big challenge is to develop a quantitative understanding of these cellular actin structures. We used computer simulations to study the spatial and dynamical properties of actin cables. We simulated individual actin filaments as semiflexible polymers in three dimensions composed of beads connected with springs. Polymerization out of For3p cortical sites, bundling by cross-linkers, pulling by type V myosin, and severing by cofilin are simulated as growth, cross-linking, pulling, and turnover of the semiflexible polymers. With the foregoing mechanisms, the model generates actin cable structures and dynamics similar to those observed in live-cell experiments. Our simulations reproduce the particular actin cable structures in myoVΔ cells and predict the effect of increased myosin V pulling. Increasing cross-linking parameters generates thicker actin cables. It also leads to antiparallel and parallel phases with straight or curved cables, consistent with observations of cells overexpressing α-actinin. Finally, the model predicts that clustering of formins at cell tips promotes actin cable formation. PMID:25103242
Quantitative Analysis of Statics and Dynamics of Actin Cables in Fission Yeast
NASA Astrophysics Data System (ADS)
Yusuf, Eddy; Wu, Jian-Qiu; Vavylonis, Dimitrios
2010-03-01
The assembly of actin and tubulin proteins into long filaments and bundles, i.e. closely-packed filaments, underlies important cellular processes such as cell motility, intracellular transport, and cell division. Recent theoretical and experimental work has addressed the nonequilibrium dynamics of single microtubules within live cells [1]. Actin filaments usually form dense networks that prevents microscopic imaging of individual filaments or bundles. Here, we studied actin dynamics using fission yeast that has low-density actin cytoskeleton consisting of actin cables (actin bundles aligned along the long axis of the cell) and ``actin patches.'' Yeast cells expressing GFP-CHD were imaged by 3D confocal microscopy. Stretching open active contours [2] were used to segment and track individual actin cables. We analyzed their curvature distribution, the tangent correlation, and the temporal bending amplitude fluctuations. We contrast our findings to equilibrium fluctuating semiflexible polymers and to microtubules in cells. We calculate the important time and length scales for the actin cables. We also discuss our findings within the broad context of understanding actin assembly in cells. [1] C. P. Brangwynne et. al., Phys. Rev. Lett. 100, 118104 (2008) [2] H. Li et. al., Proc. of the IEEE Int'l Symposium on Biomedical Imaging: From Nano to Macro, ISBI'09
Oriented thick and thin filaments in amoeba proteus
Rinaldi, RA; Hrebenda, B
1975-01-01
Actin and myosin filaments as a foundation of contractile systems are well established from ameba to man (3). Wolpert et al. (19) isolated by differential centrifugation from Amoeba proteus a motile fraction composed of filaments which moved upon the addition of ATP. Actin filaments are found in amebas (1, 12, 13) which react with vertebrate heavy meromyosin (HMM), forming arrowhead complexes as vertebrate actin (3, 9), and are prominent within the ectoplasmic tube where some of them are attached to the plasmalemma (1, 12). Thick and thin filaments possessing the morphological characteristics of myosin and actin have been obtained from isolated ameba cytoplasm (18, 19). In addition, there are filaments exhibiting ATPase activity in amebas which react with actin (12, 16, 17). However, giant ameba (Chaos-proteus) shapes are difficult to preserve, and the excellent contributions referred to above are limited by visible distortions occurring in the amebas (rounding up, pseudopods disappearing, and cellular organelles swelling) upon fixation. Achievement of normal ameboid shape in recent glycerination work (15) led us to attempt other electron microscope fixation techniques, resulting in a surprising preservation of A. proteus with a unique orientation of thick and thin filaments in the ectoplasmic region. PMID:1141376
Oriented thick and thin filaments in Amoeba proteus.
Rinaldi, R A; Hrebenda, B
1975-07-01
Actin and myosin filaments as a foundation of contractile systems are well established from ameba to man (3). Wolpert et al. (19) isolated by differential centrifugation from Amoeba proteus a motile fraction composed of filaments which moved upon the addition of ATP. Actin filaments are found in amebas (1, 12, 13) which react with vertebrate heavy meromyosin (HMM), forming arrowhead complexes as vertebrate actin (3, 9), and are prominent within the ectoplasmic tube where some of them are attached to the plasmalemma (1, 12). Thick and thin filaments possessing the morphological characteristics of myosin and actin have been obtained from isolated ameba cytoplasm (18, 19). In addition, there are filaments exhibiting ATPase activity in amebas which react with actin (12, 16, 17). However, giant ameba (Chaos-proteus) shapes are difficult to preserve, and the excellent contributions referred to above are limited by visible distortions occurring in the amebas (rounding up, pseudopods disappearing, and cellular organelles swelling) upon fixation. Achievement of normal ameboid shape in recent glycerination work (15) led us to attempt other electron microscope fixation techniques, resulting in a surprising preservation of A. proteus with a unique orientation of thick and thin filaments in the ectoplasmic region.
Cell Elasticity Is Regulated by the Tropomyosin Isoform Composition of the Actin Cytoskeleton
Jalilian, Iman; Heu, Celine; Cheng, Hong; Freittag, Hannah; Desouza, Melissa; Stehn, Justine R.; Bryce, Nicole S.; Whan, Renee M.; Hardeman, Edna C.
2015-01-01
The actin cytoskeleton is the primary polymer system within cells responsible for regulating cellular stiffness. While various actin binding proteins regulate the organization and dynamics of the actin cytoskeleton, the proteins responsible for regulating the mechanical properties of cells are still not fully understood. In the present study, we have addressed the significance of the actin associated protein, tropomyosin (Tpm), in influencing the mechanical properties of cells. Tpms belong to a multi-gene family that form a co-polymer with actin filaments and differentially regulate actin filament stability, function and organization. Tpm isoform expression is highly regulated and together with the ability to sort to specific intracellular sites, result in the generation of distinct Tpm isoform-containing actin filament populations. Nanomechanical measurements conducted with an Atomic Force Microscope using indentation in Peak Force Tapping in indentation/ramping mode, demonstrated that Tpm impacts on cell stiffness and the observed effect occurred in a Tpm isoform-specific manner. Quantitative analysis of the cellular filamentous actin (F-actin) pool conducted both biochemically and with the use of a linear detection algorithm to evaluate actin structures revealed that an altered F-actin pool does not absolutely predict changes in cell stiffness. Inhibition of non-muscle myosin II revealed that intracellular tension generated by myosin II is required for the observed increase in cell stiffness. Lastly, we show that the observed increase in cell stiffness is partially recapitulated in vivo as detected in epididymal fat pads isolated from a Tpm3.1 transgenic mouse line. Together these data are consistent with a role for Tpm in regulating cell stiffness via the generation of specific populations of Tpm isoform-containing actin filaments. PMID:25978408
Structural and Biochemical Studies of Actin in Complex with Synthetic Macrolide Tail Analogues
Pereira, Jose H.; Petchprayoon, Chutima; Hoepker, Alexander C.; ...
2014-07-22
The actin filament-binding and filament-severing activities of the aplyronine, kabiramide, and reidispongiolide families of marine macrolides are located within the hydrophobic tail region of the molecule. Two synthetic tail analogues of aplyronine C (SF-01 and GC-04) are shown to bind to G-actin with dissociation constants of (285±33) and (132±13) nM, respectively. The crystal structures of actin complexes with GC-04, SF-01, and kabiramide C reveal a conserved mode of tail binding within the cleft that forms between subdomains (SD) 1 and 3. Our studies support the view that filament severing is brought about by specific binding of the tail region tomore » the SD1/SD3 cleft on the upper protomer, which displaces loop-D from the lower protomer on the same half-filament. With previous studies showing that the GC-04 analogue can sever actin filaments, it is argued that the shorter complex lifetime of tail analogues with F-actin would make them more effective at severing filaments compared with plasma gelsolin. In conclusion, structure-based analyses are used to suggest more reactive or targetable forms of GC-04 and SF-01, which may serve to boost the capacity of the serum actin scavenging system, to generate antibody conjugates against tumor cell antigens, and to decrease sputum viscosity in children with cystic fibrosis.« less
Covalent and non-covalent chemical engineering of actin for biotechnological applications.
Kumar, Saroj; Mansson, Alf
2017-11-15
The cytoskeletal filaments are self-assembled protein polymers with 8-25nm diameters and up to several tens of micrometres length. They have a range of pivotal roles in eukaryotic cells, including transportation of intracellular cargoes (primarily microtubules with dynein and kinesin motors) and cell motility (primarily actin and myosin) where muscle contraction is one example. For two decades, the cytoskeletal filaments and their associated motor systems have been explored for nanotechnological applications including miniaturized sensor systems and lab-on-a-chip devices. Several developments have also revolved around possible exploitation of the filaments alone without their motor partners. Efforts to use the cytoskeletal filaments for applications often require chemical or genetic engineering of the filaments such as specific conjugation with fluorophores, antibodies, oligonucleotides or various macromolecular complexes e.g. nanoparticles. Similar conjugation methods are also instrumental for a range of fundamental biophysical studies. Here we review methods for non-covalent and covalent chemical modifications of actin filaments with focus on critical advantages and challenges of different methods as well as critical steps in the conjugation procedures. We also review potential uses of the engineered actin filaments in nanotechnological applications and in some key fundamental studies of actin and myosin function. Finally, we consider possible future lines of investigation that may be addressed by applying chemical conjugation of actin in new ways. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Silveira, Paulo S P; Fredberg, Jeffrey J
2005-10-01
Length adaptation of the airway smooth muscle cell is attributable to cytoskeletal remodeling. It has been proposed that dysregulated actin filaments may become longer in asthma, and that such elongation would prevent a parallel-to-series transition of contractile units, thus precluding the well-known beneficial effects of deep inspirations and tidal breathing. To test the potential effect that actin filament elongation could have in overall muscle mechanics, we present an extremely simple model. The cytoskeleton is represented as a 2-D network of links (contractile filaments) connecting nodes (adhesion plaques). Such a network evolves in discrete time steps by forming and dissolving links in a stochastic fashion. Links are formed by idealized contractile units whose properties are either those from normal or elongated actin filaments. Oscillations were then imposed on the network to evaluate both the effects of breathing and length adaptation. In response to length oscillation, a network with longer actin filaments showed smaller decreases of force, smaller increases in compliance, and higher shortening velocities. Taken together, these changes correspond to a network that is refractory to the effects of breathing and therefore approximates an asthmatic scenario. Thus, an extremely simple model seems to capture some relatively complex mechanics of airway smooth muscle, supporting the idea that dysregulation of actin filament length may contribute to excessive airway narrowing.
Involvement of actin filaments in rhizoid morphogenesis of Spirogyra.
Yoshida, Katsuhisa; Shimmen, Teruo
2009-01-01
The role of actin filaments in rhizoid morphogenesis was studied in Spirogyra. When the algal filaments were severed, new terminal cells started tip growth and finally formed rhizoids. Actin inhibitors, latrunculin B and cytochalasin D, reversibly inhibited the process. A mesh-like structure of actin filaments (AFs) was formed at the tip region. Gd(3+) inhibited tip growth and decreased AFs in the tip region. Either a decrease in turgor pressure or lowering of the external Ca(2+) concentration also induced similar results. It was suggested that the mesh-like AF structure is indispensable for the elongation of rhizoids. A possible organization mechanism of the mesh-like AF structure was discussed.
NASA Astrophysics Data System (ADS)
Pierleoni, Carlo; Ciccotti, Giovanni; Ryckaert, Jean-Paul
2015-10-01
We consider a single living semi-flexible filament with persistence length ℓp in chemical equilibrium with a solution of free monomers at fixed monomer chemical potential μ1 and fixed temperature T. While one end of the filament is chemically active with single monomer (de)polymerization steps, the other end is grafted normally to a rigid wall to mimic a rigid network from which the filament under consideration emerges. A second rigid wall, parallel to the grafting wall, is fixed at distance L < < ℓp from the filament seed. In supercritical conditions where monomer density ρ1 is higher than the critical density ρ1c, the filament tends to polymerize and impinges onto the second surface which, in suitable conditions (non-escaping filament regime), stops the filament growth. We first establish the grand-potential Ω(μ1, T, L) of this system treated as an ideal reactive mixture, and derive some general properties, in particular the filament size distribution and the force exerted by the living filament on the obstacle wall. We apply this formalism to the semi-flexible, living, discrete Wormlike chain model with step size d and persistence length ℓp, hitting a hard wall. Explicit properties require the computation of the mean force f ¯ i ( L ) exerted by the wall at L and associated potential f ¯ i ( L ) = - d W i ( L ) / d L on a filament of fixed size i. By original Monte-Carlo calculations for few filament lengths in a wide range of compression, we justify the use of the weak bending universal expressions of Gholami et al. [Phys. Rev. E 74, 041803 (2006)] over the whole non-escaping filament regime. For a filament of size i with contour length Lc = (i - 1) d, this universal form is rapidly growing from zero (non-compression state) to the buckling value f b ( L c , ℓ p ) = /π 2 k B T ℓ p 4 Lc 2 over a compression range much narrower than the size d of a monomer. Employing this universal form for living filaments, we find that the average force exerted by a living filament on a wall at distance L is in practice L independent and very close to the value of the stalling force Fs H = ( k B T / d ) ln ( ρ ˆ 1 ) predicted by Hill, this expression being strictly valid in the rigid filament limit. The average filament force results from the product of the cumulative size fraction x = x ( L , ℓ p , ρ ˆ 1 ) , where the filament is in contact with the wall, times the buckling force on a filament of size Lc ≈ L, namely, Fs H = x f b ( L ; ℓ p ) . The observed L independence of Fs H implies that x ∝ L-2 for given ( ℓ p , ρ ˆ 1 ) and x ∝ ln ρ ˆ 1 for given (ℓp, L). At fixed ( L , ρ ˆ 1 ), one also has x ∝ ℓp - 1 which indicates that the rigid filament limit ℓp → ∞ is a singular limit in which an infinite force has zero weight. Finally, we derive the physically relevant threshold for filament escaping in the case of actin filaments.
Molecular architecture of the Spire–actin nucleus and its implication for actin filament assembly
Sitar, Tomasz; Gallinger, Julia; Ducka, Anna M.; Ikonen, Teemu P.; Wohlhoefler, Michael; Schmoller, Kurt M.; Bausch, Andreas R.; Joel, Peteranne; Trybus, Kathleen M.; Noegel, Angelika A.; Schleicher, Michael; Huber, Robert; Holak, Tad A.
2011-01-01
The Spire protein is a multifunctional regulator of actin assembly. We studied the structures and properties of Spire–actin complexes by X-ray scattering, X-ray crystallography, total internal reflection fluorescence microscopy, and actin polymerization assays. We show that Spire–actin complexes in solution assume a unique, longitudinal-like shape, in which Wiskott–Aldrich syndrome protein homology 2 domains (WH2), in an extended configuration, line up actins along the long axis of the core of the Spire–actin particle. In the complex, the kinase noncatalytic C-lobe domain is positioned at the side of the first N-terminal Spire–actin module. In addition, we find that preformed, isolated Spire–actin complexes are very efficient nucleators of polymerization and afterward dissociate from the growing filament. However, under certain conditions, all Spire constructs—even a single WH2 repeat—sequester actin and disrupt existing filaments. This molecular and structural mechanism of actin polymerization by Spire should apply to other actin-binding proteins that contain WH2 domains in tandem. PMID:22106272
Measuring the regulation of keratin filament network dynamics
Moch, Marcin; Herberich, Gerlind; Aach, Til; Leube, Rudolf E.; Windoffer, Reinhard
2013-01-01
The organization of the keratin intermediate filament cytoskeleton is closely linked to epithelial function. To study keratin network plasticity and its regulation at different levels, tools are needed to localize and measure local network dynamics. In this paper, we present image analysis methods designed to determine the speed and direction of keratin filament motion and to identify locations of keratin filament polymerization and depolymerization at subcellular resolution. Using these methods, we have analyzed time-lapse fluorescence recordings of fluorescent keratin 13 in human vulva carcinoma-derived A431 cells. The fluorescent keratins integrated into the endogenous keratin cytoskeleton, and thereby served as reliable markers of keratin dynamics. We found that increased times after seeding correlated with down-regulation of inward-directed keratin filament movement. Bulk flow analyses further revealed that keratin filament polymerization in the cell periphery and keratin depolymerization in the more central cytoplasm were both reduced. Treating these cells and other human keratinocyte-derived cells with EGF reversed all these processes within a few minutes, coinciding with increased keratin phosphorylation. These results highlight the value of the newly developed tools for identifying modulators of keratin filament network dynamics and characterizing their mode of action, which, in turn, contributes to understanding the close link between keratin filament network plasticity and epithelial physiology. PMID:23757496
Load Adaptation of Lamellipodial Actin Networks.
Mueller, Jan; Szep, Gregory; Nemethova, Maria; de Vries, Ingrid; Lieber, Arnon D; Winkler, Christoph; Kruse, Karsten; Small, J Victor; Schmeiser, Christian; Keren, Kinneret; Hauschild, Robert; Sixt, Michael
2017-09-21
Actin filaments polymerizing against membranes power endocytosis, vesicular traffic, and cell motility. In vitro reconstitution studies suggest that the structure and the dynamics of actin networks respond to mechanical forces. We demonstrate that lamellipodial actin of migrating cells responds to mechanical load when membrane tension is modulated. In a steady state, migrating cell filaments assume the canonical dendritic geometry, defined by Arp2/3-generated 70° branch points. Increased tension triggers a dense network with a broadened range of angles, whereas decreased tension causes a shift to a sparse configuration dominated by filaments growing perpendicularly to the plasma membrane. We show that these responses emerge from the geometry of branched actin: when load per filament decreases, elongation speed increases and perpendicular filaments gradually outcompete others because they polymerize the shortest distance to the membrane, where they are protected from capping. This network-intrinsic geometrical adaptation mechanism tunes protrusive force in response to mechanical load. Copyright © 2017 Elsevier Inc. All rights reserved.
Tension modulates actin filament polymerization mediated by formin and profilin
Courtemanche, Naomi; Lee, Ja Yil; Pollard, Thomas D.; Greene, Eric C.
2013-01-01
Formins promote processive elongation of actin filaments for cytokinetic contractile rings and other cellular structures. In vivo, these structures are exposed to tension, but the effect of tension on these processes was unknown. Here we used single-molecule imaging to investigate the effects of tension on actin polymerization mediated by yeast formin Bni1p. Small forces on the filaments dramatically slowed formin-mediated polymerization in the absence of profilin, but resulted in faster polymerization in the presence of profilin. We propose that force shifts the conformational equilibrium of the end of a filament associated with formin homology 2 domains toward the closed state that precludes polymerization, but that profilin–actin associated with formin homology 1 domains reverses this effect. Thus, physical forces strongly influence actin assembly by formin Bni1p. PMID:23716666
Bryan, Keith E.; Rubenstein, Peter A.
2009-01-01
Auditory hair cell function requires proper assembly and regulation of the nonmuscle gamma isoactin-rich cytoskeleton, and six point mutations in this isoactin cause a type of delayed onset autosomal dominant nonsyndromic progressive hearing loss, DFNA20/26. The molecular basis underlying this actin-dependent hearing loss is unknown. To address this problem, the mutations have been introduced into yeast actin, and their effects on actin function were assessed in vivo and in vitro. Because we previously showed that polymerization was unaffected in five of the six mutants, we have focused on proteins that regulate actin, in particular cofilin, which severs F-actin and sequesters actin monomers. The mutations do not affect the interaction of cofilin with G-actin. However, T89I and V370A mutant F-actins are much more susceptible to cofilin disassembly than WT filaments in vitro. Conversely, P332A filaments demonstrate enhanced resistance. Wild type actin solutions containing T89I, K118M, or P332A mutant actins at mole fractions similar to those found in the hair cell respond in vitro toward cofilin in a manner proportional to the level of the mutant present. Finally, depression of cofilin action in vivo by elimination of the cofilin-activating protein, Aip1p, rescues the inability to grow on glycerol caused by K118M, T278I, P332A, and V370A. These results suggest that a filament instability caused by these mutations can be balanced by decreasing a system in vivo that promotes increased filament turnover. Such mutant-dependent filament destabilization could easily result in hair cell malfunction leading to the late-onset hearing loss observed in these patients. PMID:19419963
Vascular disease-causing mutation R258C in ACTA2 disrupts actin dynamics and interaction with myosin
Lu, Hailong; Fagnant, Patricia M.; Bookwalter, Carol S.; Joel, Peteranne; Trybus, Kathleen M.
2015-01-01
Point mutations in vascular smooth muscle α-actin (SM α-actin), encoded by the gene ACTA2, are the most prevalent cause of familial thoracic aortic aneurysms and dissections (TAAD). Here, we provide the first molecular characterization, to our knowledge, of the effect of the R258C mutation in SM α-actin, expressed with the baculovirus system. Smooth muscles are unique in that force generation requires both interaction of stable actin filaments with myosin and polymerization of actin in the subcortical region. Both aspects of R258C function therefore need investigation. Total internal reflection fluorescence (TIRF) microscopy was used to quantify the growth of single actin filaments as a function of time. R258C filaments are less stable than WT and more susceptible to severing by cofilin. Smooth muscle tropomyosin offers little protection from cofilin cleavage, unlike its effect on WT actin. Unexpectedly, profilin binds tighter to the R258C monomer, which will increase the pool of globular actin (G-actin). In an in vitro motility assay, smooth muscle myosin moves R258C filaments more slowly than WT, and the slowing is exacerbated by smooth muscle tropomyosin. Under loaded conditions, small ensembles of myosin are unable to produce force on R258C actin-tropomyosin filaments, suggesting that tropomyosin occupies an inhibitory position on actin. Many of the observed defects cannot be explained by a direct interaction with the mutated residue, and thus the mutation allosterically affects multiple regions of the monomer. Our results align with the hypothesis that defective contractile function contributes to the pathogenesis of TAAD. PMID:26153420
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pereira, Jose H.; Petchprayoon, Chutima; Hoepker, Alexander C.
The actin filament-binding and filament-severing activities of the aplyronine, kabiramide, and reidispongiolide families of marine macrolides are located within the hydrophobic tail region of the molecule. Two synthetic tail analogues of aplyronine C (SF-01 and GC-04) are shown to bind to G-actin with dissociation constants of (285±33) and (132±13) nM, respectively. The crystal structures of actin complexes with GC-04, SF-01, and kabiramide C reveal a conserved mode of tail binding within the cleft that forms between subdomains (SD) 1 and 3. Our studies support the view that filament severing is brought about by specific binding of the tail region tomore » the SD1/SD3 cleft on the upper protomer, which displaces loop-D from the lower protomer on the same half-filament. With previous studies showing that the GC-04 analogue can sever actin filaments, it is argued that the shorter complex lifetime of tail analogues with F-actin would make them more effective at severing filaments compared with plasma gelsolin. In conclusion, structure-based analyses are used to suggest more reactive or targetable forms of GC-04 and SF-01, which may serve to boost the capacity of the serum actin scavenging system, to generate antibody conjugates against tumor cell antigens, and to decrease sputum viscosity in children with cystic fibrosis.« less
Tilney, L G
1975-02-01
When Limulus sperm are induced to undergo the acrosomal reaction, a process, 50 mum in length, is generated in a few seconds. This process rotates as it elongates; thus the acrosomal process literally screws through the jelly of the egg. Within the process is a bundle of filaments which before induction are coiled up inside the sperm. The filament bundle exists in three stable states in the sperm. One of the states can be isolated in pure form. It is composed of only three proteins whose molecular weights (mol wt) are 43,000, 55,000, and 95,000. The 43,000 mol wt protein is actin, based on its molecular weight, net charge, morphology, G-F transformation, and heavy meromyosin (HMM) binding. The 55,000 mol wt protein is in equimolar ratio to actin and is not tubulin, binds tenaciously to actin, and inhibits HMM binding. Evidence is presented that both the 55,000 mol wt protein and the 95,000 mol wt protein (possibly alpha-actinin) are also present in Limulus muscle. Presumably these proteins function in the sperm in holding the actin filaments together. Before the acrosomal reaction, the actin filaments are twisted over one another in a supercoil; when the reaction is completed, the filaments lie parallel to each other and form an actin paracrystal. This change in their packing appears to give rise to the motion of the acrosomal process and is under the control of the 55,000 mol wt protein and the 95,000 mol wt protein.
Assembly kinetics determine the architecture of α-actinin crosslinked F-actin networks.
Falzone, Tobias T; Lenz, Martin; Kovar, David R; Gardel, Margaret L
2012-05-29
The actin cytoskeleton is organized into diverse meshworks and bundles that support many aspects of cell physiology. Understanding the self-assembly of these actin-based structures is essential for developing predictive models of cytoskeletal organization. Here we show that the competing kinetics of bundle formation with the onset of dynamic arrest arising from filament entanglements and crosslinking determine the architecture of reconstituted actin networks formed with α-actinin crosslinks. Crosslink-mediated bundle formation only occurs in dilute solutions of highly mobile actin filaments. As actin polymerization proceeds, filament mobility and bundle formation are arrested concomitantly. By controlling the onset of dynamic arrest, perturbations to actin assembly kinetics dramatically alter the architecture of biochemically identical samples. Thus, the morphology of reconstituted F-actin networks is a kinetically determined structure similar to those formed by physical gels and glasses. These results establish mechanisms controlling the structure and mechanics in diverse semiflexible biopolymer networks.
Resemblance of actin-binding protein/actin gels to covalently crosslinked networks
NASA Astrophysics Data System (ADS)
Janmey, Paul A.; Hvidt, Søren; Lamb, Jennifer; Stossel, Thomas P.
1990-05-01
THE maintainance of the shape of cells is often due to their surface elasticity, which arises mainly from an actin-rich cytoplasmic cortex1,2. On locomotion, phagocytosis or fission, however, these cells become partially fluid-like. The finding of proteins that can bind to actin and control the assembly of, or crosslink, actin filaments, and of intracellular messages that regulate the activities of some of these actin-binding proteins, indicates that such 'gel sol' transformations result from the rearrangement of cortical actin-rich networks3. Alternatively, on the basis of a study of the mechanical properties of mixtures of actin filaments and an Acanthamoeba actin-binding protein, α-actinin, it has been proposed that these transformations can be accounted for by rapid exchange of crosslinks between actin filaments4: the cortical network would be solid when the deformation rate is greater than the rate of crosslink exchange, but would deform or 'creep' when deformation is slow enough to permit crosslinker molecules to rearrange. Here we report, however, that mixtures of actin filaments and actin-binding protein (ABP), an actin crosslinking protein of many higher eukaryotes, form gels Theologically equivalent to covalently crosslinked networks. These gels do not creep in response to applied stress on a time scale compatible with most cell-surface movements. These findings support a more complex and controlled mechanism underlying the dynamic mechanical properties of cortical cytoplasm, and can explain why cells do not collapse under the constant shear forces that often exist in tissues.
The assembly of MreB, a prokaryotic homolog of actin.
Esue, Osigwe; Cordero, Maria; Wirtz, Denis; Tseng, Yiider
2005-01-28
MreB, a major component of the bacterial cytoskeleton, exhibits high structural homology to its eukaryotic counterpart actin. Live cell microscopy studies suggest that MreB molecules organize into large filamentous spirals that support the cell membrane and play a key shape-determining function. However, the basic properties of MreB filament assembly remain unknown. Here, we studied the assembly of Thermotoga maritima MreB triggered by ATP in vitro and compared it to the well-studied assembly of actin. These studies show that MreB filament ultrastructure and polymerization depend crucially on temperature as well as the ions present on solution. At the optimal growth temperature of T. maritima, MreB assembly proceeded much faster than that of actin, without nucleation (or nucleation is highly favorable and fast) and with little or no contribution from filament end-to-end annealing. MreB exhibited rates of ATP hydrolysis and phosphate release similar to that of F-actin, however, with a critical concentration of approximately 3 nm, which is approximately 100-fold lower than that of actin. Furthermore, MreB assembled into filamentous bundles that have the ability to spontaneously form ring-like structures without auxiliary proteins. These findings suggest that despite high structural homology, MreB and actin display significantly different assembly properties.
Godin, Lindsay M.; Vergen, Jorge; Prakash, Y. S.; Pagano, Richard E.
2011-01-01
Alveolar epithelial type I cell (ATI) wounding is prevalent in ventilator-injured lungs and likely contributes to pathogenesis of “barotrauma” and “biotrauma.” In experimental models most wounded alveolar cells repair plasma membrane (PM) defects and survive insults. Considering the force balance between edge energy at the PM wound margins and adhesive interactions of the lipid bilayer with the underlying cytoskeleton (CSK), we tested the hypothesis that subcortical actin depolymerization is a key facilitator of PM repair. Using real-time fluorescence imaging of primary rat ATI transfected with a live cell actin-green fluorescent protein construct (Lifeact-GFP) and loaded with N-rhodamine phosphatidylethanolamine (PE), we examined the spatial and temporal coordination between cytoskeletal remodeling and PM repair following micropuncture. Membrane integrity was inferred from the fluorescence intensity profiles of the cytosolic label calcein AM. Wounding led to rapid depolymerization of the actin CSK near the wound site, concurrent with accumulation of endomembrane-derived N-rhodamine PE. Both responses were sustained until PM integrity was reestablished, which typically occurs between ∼10 and 40 s after micropuncture. Only thereafter did the actin CSK near the wound begin to repolymerize, while the rate of endomembrane lipid accumulation decreased. Between 60 and 90 s after successful PM repair, after translocation of the actin nucleation factor cortactin, a dense actin fiber network formed. In cells that did not survive micropuncture injury, actin remodeling did not occur. These novel results highlight the importance of actin remodeling in ATI cell repair and suggest molecular targets for modulating the repair process. PMID:21216977
NASA Astrophysics Data System (ADS)
Falzone, Tobias; Blair, Savanna; Robertson-Anderson, Rae
2014-03-01
The semi-flexible biopolymer actin is a ubiquitous component of nearly all biological organisms, playing an important role in many biological processes such as cell structure and motility, cancer invasion and metastasis, muscle contraction, and cell signaling. Concentrated actin networks possess unique viscoelastic properties that have been the subject of much theoretical and experimental work. However, much is still unknown regarding the correlation of the applied stress on the network to the induced filament strain at the molecular level. Here, we use dual optical traps alongside fluorescence microscopy to carry out active microrheology measurements that link mechanical stress to structural response at the micron scale. Specifically, we actively drive microspheres through entangled actin networks while simultaneously measuring the force the surrounding filaments exert on the sphere and visualizing the deformation and subsequent relaxation of fluorescent labeled filaments within the network. These measurements, which provide much needed insight into the link between stress and strain in actin networks, are critical for clarifying our theoretical understanding of the complex viscoelastic behavior exhibited in actin networks.
Izoré, Thierry; van den Ent, Fusinita
2017-01-01
A diverse set of protein polymers, structurally related to actin filaments contributes to the organization of bacterial cells as cytomotive or cytoskeletal filaments. This chapter describes actin homologs encoded by bacterial chromosomes. MamK filaments, unique to magnetotactic bacteria, help establishing magnetic biological compasses by interacting with magnetosomes. Magnetosomes are intracellular membrane invaginations containing biomineralized crystals of iron oxide that are positioned by MamK along the long-axis of the cell. FtsA is widespread across bacteria and it is one of the earliest components of the divisome to arrive at midcell, where it anchors the cell division machinery to the membrane. FtsA binds directly to FtsZ filaments and to the membrane through its C-terminus. FtsA shows altered domain architecture when compared to the canonical actin fold. FtsA's subdomain 1C replaces subdomain 1B of other members of the actin family and is located on the opposite side of the molecule. Nevertheless, when FtsA assembles into protofilaments, the protofilament structure is preserved, as subdomain 1C replaces subdomain IB of the following subunit in a canonical actin filament. MreB has an essential role in shape-maintenance of most rod-shaped bacteria. Unusually, MreB filaments assemble from two protofilaments in a flat and antiparallel arrangement. This non-polar architecture implies that both MreB filament ends are structurally identical. MreB filaments bind directly to membranes where they interact with both cytosolic and membrane proteins, thereby forming a key component of the elongasome. MreB filaments in cells are short and dynamic, moving around the long axis of rod-shaped cells, sensing curvature of the membrane and being implicated in peptidoglycan synthesis.
Szewczak-Harris, Andrzej; Löwe, Jan
2018-03-27
Low copy-number plasmid pLS32 of Bacillus subtilis subsp. natto contains a partitioning system that ensures segregation of plasmid copies during cell division. The partitioning locus comprises actin-like protein AlfA, adaptor protein AlfB, and the centromeric sequence parN Similar to the ParMRC partitioning system from Escherichia coli plasmid R1, AlfA filaments form actin-like double helical filaments that arrange into an antiparallel bipolar spindle, which attaches its growing ends to sister plasmids through interactions with AlfB and parN Because, compared with ParM and other actin-like proteins, AlfA is highly diverged in sequence, we determined the atomic structure of nonbundling AlfA filaments to 3.4-Å resolution by cryo-EM. The structure reveals how the deletion of subdomain IIB of the canonical actin fold has been accommodated by unique longitudinal and lateral contacts, while still enabling formation of left-handed, double helical, polar and staggered filaments that are architecturally similar to ParM. Through cryo-EM reconstruction of bundling AlfA filaments, we obtained a pseudoatomic model of AlfA doublets: the assembly of two filaments. The filaments are antiparallel, as required by the segregation mechanism, and exactly antiphasic with near eightfold helical symmetry, to enable efficient doublet formation. The structure of AlfA filaments and doublets shows, in atomic detail, how deletion of an entire domain of the actin fold is compensated by changes to all interfaces so that the required properties of polymerization, nucleotide hydrolysis, and antiparallel doublet formation are retained to fulfill the system's biological raison d'être.
NASA Astrophysics Data System (ADS)
Gurmessa, Bekele; Fitzpatrick, Robert; Valdivia, Jonathon; Anderson, Rae M. R.
Actin, the most abundant protein in eukaryotic cells, is a semi-flexible biopolymer in the cytoskeleton that plays a crucial structural and mechanical role in cell stability, motion and replication, as well as muscle contraction. Most of these mechanically driven structural changes in cells stem from the complex viscoelastic nature of entangled actin networks and the presence of a myriad of proteins that cross-link actin filaments. Despite their importance, the mechanical response of actin networks is not yet well understood, particularly at the molecular level. Here, we use optical trapping - coupled with fluorescence microscopy - to characterize the microscale stress response and induced filament deformations in entangled and cross-linked actin networks subject to localized mechanical perturbations. In particular, we actively drive a microsphere 10 microns through an entangled or cross- linked actin network at a constant speed and measure the resistive force that the deformed actin filaments exert on the bead during and following strain. We simultaneously visualize and track individual sparsely-labeled actin filaments to directly link force response to molecular deformations, and map the propagation of the initially localized perturbation field throughout the rest of the network (~100 um). By varying the concentration of actin and cross-linkers we directly determine the role of crosslinking and entanglements on the length and time scales of stress propagation, molecular deformation and relaxation mechanisms in actin networks.
Curved tails in polymerization-based bacterial motility
NASA Astrophysics Data System (ADS)
Rutenberg, Andrew D.; Grant, Martin
2001-08-01
The curved actin ``comet-tail'' of the bacterium Listeria monocytogenes is a visually striking signature of actin polymerization-based motility. Similar actin tails are associated with Shigella flexneri, spotted-fever Rickettsiae, the Vaccinia virus, and vesicles and microspheres in related in vitro systems. We show that the torque required to produce the curvature in the tail can arise from randomly placed actin filaments pushing the bacterium or particle. We find that the curvature magnitude determines the number of actively pushing filaments, independent of viscosity and of the molecular details of force generation. The variation of the curvature with time can be used to infer the dynamics of actin filaments at the bacterial surface.
Pure F-actin networks are distorted and branched by steps in the critical-point drying method.
Resch, Guenter P; Goldie, Kenneth N; Hoenger, Andreas; Small, J Victor
2002-03-01
Elucidation of the ultrastructural organization of actin networks is crucial for understanding the molecular mechanisms underlying actin-based motility. Results obtained from cytoskeletons and actin comets prepared by the critical-point procedure, followed by rotary shadowing, support recent models incorporating actin filament branching as a main feature of lamellipodia and pathogen propulsion. Since actin branches were not evident in earlier images obtained by negative staining, we explored how these differences arise. Accordingly, we have followed the structural fate of dense networks of pure actin filaments subjected to steps of the critical-point drying protocol. The filament networks have been visualized in parallel by both cryo-electron microscopy and negative staining. Our results demonstrate the selective creation of branches and other artificial structures in pure F-actin networks by the critical-point procedure and challenge the reliability of this method for preserving the detailed organization of actin assemblies that drive motility. (c) 2002 Elsevier Science (USA).
Yokota, Etsuo; Vidali, Luis; Tominaga, Motoki; Tahara, Hiroshi; Orii, Hidefumi; Morizane, Yosuke; Hepler, Peter K; Shimmen, Teruo
2003-10-01
In many cases, actin filaments are arranged into bundles and serve as tracks for cytoplasmic streaming in plant cells. We have isolated an actin-filament bundling protein, which is composed of 115-kDa polypeptide (P-115-ABP), from the germinating pollen of lily, Lilium longiflorum [Nakayasu et al. (1998) BIOCHEM: Biophys. Res. Commun. 249: 61]. P-115-ABP shared similar antigenicity with a plant 135-kDa actin-filament bundling protein (P-135-ABP), a plant homologue of villin. A full-length cDNA clone (ABP115; accession no. AB097407) was isolated from an expression cDNA library of lily pollen by immuno-screening using antisera against P-115-ABP and P-135-ABP. The amino acid sequence of P-115-ABP deduced from this clone showed high homology with those of P-135-ABP and four villin isoforms of Arabidopsis thaliana (AtVLN1, AtVLN2, AtVLN3 and AtVLN4), especially AtVLN4, indicating that P-115-ABP can also be classified as a plant villin. The P-115-ABP isolated biochemically from the germinating lily pollen was able to arrange F-actin filaments with uniform polarity into bundles and this bundling activity was suppressed by Ca2+-calmodulin (CaM), similar to the actin-filament bundling properties of P-135-ABP. The P-115-ABP type of plant villin was widely distributed in plant cells, from algae to land plants. In root hair cells of Hydrocharis dubia, this type of plant villin was co-localized with actin-filament bundles in the transvacuolar strands and the sub-cortical regions. Microinjection of the antiserum against P-115-ABP into living root hair cells caused the disappearance of transvaculor strands and alteration of the route of cytoplasmic streaming. In internodal cells of Chara corallina in which the P-135-ABP type of plant villin is lacking, the P-115-ABP type showed co-localization with actin-filament cables anchored on the intracellular surface of chloroplasts. These results indicated that plant villins are widely distributed and involved in the organization of actin filaments into bundles throughout the plant kingdom.
Mini-thin filaments regulated by troponin–tropomyosin
Gong, Huiyu; Hatch, Victoria; Ali, Laith; Lehman, William; Craig, Roger; Tobacman, Larry S.
2005-01-01
Striated muscle thin filaments contain hundreds of actin monomers and scores of troponins and tropomyosins. To study the cooperative mechanism of thin filaments, “mini-thin filaments” were generated by isolating particles nearly matching the minimal structural repeat of thin filaments: a double helix of actin subunits with each strand approximately seven actins long and spanned by a troponin–tropomyosin complex. One end of the particles was capped by a gelsolin (segment 1–3)–TnT fusion protein (substituting for normal TnT), and the other end was capped by tropomodulin. EM showed that the particles were 46 ± 9 nm long, with a knob-like mass attributable to gelsolin at one end. Average actin, tropomyosin, and gelsolin–troponin composition indicated one troponin–tropomyosin attached to each strand of the two-stranded actin filament. The minifilaments thus nearly represent single regulatory units of thin filaments. The myosin S1 MgATPase rate stimulated by the minifilaments was Ca2+-sensitive, indicating that single regulatory length particles are sufficient for regulation. Ca2+ bound cooperatively to cardiac TnC in conventional thin filaments but noncooperatively to cardiac TnC in minifilaments in the absence of myosin. This suggests that thin filament Ca2+-binding cooperativity reflects indirect troponin–troponin interactions along the long axis of conventional filaments, which do not occur in minifilaments. Despite noncooperative Ca2+ binding to minifilaments in the absence of myosin, Ca2+ cooperatively activated the myosin S1-particle ATPase rate. Two-stranded single regulatory units therefore may be sufficient for myosin-mediated Ca2+-binding cooperativity. Functional mini-thin filaments are well suited for biochemical and structural analysis of thin-filament regulation. PMID:15644437
Decidable and undecidable arithmetic functions in actin filament networks
NASA Astrophysics Data System (ADS)
Schumann, Andrew
2018-01-01
The plasmodium of Physarum polycephalum is very sensitive to its environment, and reacts to stimuli with appropriate motions. Both the sensory and motor stages of these reactions are explained by hydrodynamic processes, based on fluid dynamics, with the participation of actin filament networks. This paper is devoted to actin filament networks as a computational medium. The point is that actin filaments, with contributions from many other proteins like myosin, are sensitive to extracellular stimuli (attractants as well as repellents), and appear and disappear at different places in the cell to change aspects of the cell structure—e.g. its shape. By assembling and disassembling actin filaments, some unicellular organisms, like Amoeba proteus, can move in response to various stimuli. As a result, these organisms can be considered a simple reversible logic gate—extracellular signals being its inputs and motions its outputs. In this way, we can implement various logic gates on amoeboid behaviours. These networks can embody arithmetic functions within p-adic valued logic. Furthermore, within these networks we can define the so-called diagonalization for deducing undecidable arithmetic functions.
Cucurbitacin E as a new inhibitor of cofilin phosphorylation in human leukemia U937 cells.
Nakashima, Souichi; Matsuda, Hisashi; Kurume, Ai; Oda, Yoshimi; Nakamura, Seikou; Yamashita, Masayuki; Yoshikawa, Masayuki
2010-05-01
Cucurbitane-type triterpenes, cucurbitacins B and E, were reported to exhibit cytotoxic effects in several cell lines mediated by JAK/STAT3 signaling. However, neither compound inhibited phosphorylation of STAT3 in human leukemia (U937) cells at low concentrations. We therefore synthesized a biotin-linked cucurbitacin E to isolate target proteins based on affinity for the molecule. As a result, cofilin, which regulates the depolymerization of actin, was isolated and suggested to be a target. Cucurbitacins E and I inhibited the phosphorylation of cofilin in a concentration-dependent manner, and their effective concentrations having the same range as the concentrations at which they had cytotoxic effects in U937 cells. In addition, the fibrous-/globular-actin ratio was decreased after treatment with cucurbitacin E in HT1080 cells. These findings suggested that the inhibition of cofilin's phosphorylation increased the severing activity of cofilin, and then the depolymerization of actin was enhanced after treatment with cucurbitacin E at lower concentrations. 2010 Elsevier Ltd. All rights reserved.
1976-01-01
The role of calcium and magnesium-ATP on the structure and contractility in motile extracts of Amoeba proteus and plasmalemma- ectoplasm "ghosts" of Chaos carolinensis has been investigated by correlating light and electron microscope observations with turbidity and birefringence measurements. The extract is nonmotile and contains very few F-actin filaments and myosin aggregates when prepared in the presence of both low calcium ion and ATP concentrations at an ionic strength of I = 0.05, pH 6.8. The addition of 1.0 mM magnesium chloride, 1.0 mM ATP, in the presence of a low calcium ion concentration (relaxation solution) induced the formation of some fibrous bundles of actin without contracting, whereas the addition of a micromolar concentration of calcium in addition to 1.0 mM magnesium-ATP (contraction solution) (Taylor, D. L., J. S. Condeelis, P. L. Moore, and R. D. Allen. 1973. J. Cell Biol. 59:378-394) initiated the formation of large arrays of F-actin filaments followed by contractions. Furthermore, plasmalemma-ectoplasm ghosts prepared in the relaxation solution exhibited very few straight F-actin filaments and myosin aggregates. In contrast, plasmalemmaectoplasm ghosts treated with the contraction solution contained many straight F-actin filaments and myosin aggregates. The increase in the structure of ameba cytoplasm at the endoplasm-ectoplasm interface can be explained by a combination of the transformation of actin from a less filamentous to a more structured filamentous state possibly involving the cross-linking of actin to form fibrillar arrays (see above-mentioned reference) followed by contractions of the actin and myosin along an undetermined distance of the endoplasm and/or ectoplasm. PMID:6480
Correlative nanoscale imaging of actin filaments and their complexes
NASA Astrophysics Data System (ADS)
Sharma, Shivani; Zhu, Huanqi; Grintsevich, Elena E.; Reisler, Emil; Gimzewski, James K.
2013-06-01
Actin remodeling is an area of interest in biology in which correlative microscopy can bring a new way to analyze protein complexes at the nanoscale. Advances in EM, X-ray diffraction, fluorescence, and single molecule techniques have provided a wealth of information about the modulation of the F-actin structure and its regulation by actin binding proteins (ABPs). Yet, there are technological limitations of these approaches to achieving quantitative molecular level information on the structural and biophysical changes resulting from ABPs interaction with F-actin. Fundamental questions about the actin structure and dynamics and how these determine the function of ABPs remain unanswered. Specifically, how local and long-range structural and conformational changes result in ABPs induced remodeling of F-actin needs to be addressed at the single filament level. Advanced, sensitive and accurate experimental tools for detailed understanding of ABP-actin interactions are much needed. This article discusses the current understanding of nanoscale structural and mechanical modulation of F-actin by ABPs at the single filament level using several correlative microscopic techniques, focusing mainly on results obtained by Atomic Force Microscopy (AFM) analysis of ABP-actin complexes.
Wang, Yuh-Shuh; Motes, Christy M; Mohamalawari, Deepti R; Blancaflor, Elison B
2004-10-01
The visualization of green fluorescent protein (GFP) fusions with microtubule or actin filament (F-actin) binding proteins has provided new insights into the function of the cytoskeleton during plant development. For studies on actin, GFP fusions to talin have been the most generally used reporters. Although GFP-Talin has allowed in vivo F-actin imaging in a variety of plant cells, its utility in monitoring F-actin in stably transformed plants is limited particularly in developing roots where interesting actin dependent cell processes are occurring. In this study, we created a variety of GFP fusions to Arabidopsis Fimbrin 1 (AtFim1) to explore their utility for in vivo F-actin imaging in root cells and to better understand the actin binding properties of AtFim1 in living plant cells. Translational fusions of GFP to full-length AtFim1 or to some truncated variants of AtFim1 showed filamentous labeling in transient expression assays. One truncated fimbrin-GFP fusion was capable of labeling distinct filaments in stably transformed Arabidopsis roots. The filaments decorated by this construct were highly dynamic in growing root hairs and elongating root cells and were sensitive to actin disrupting drugs. Therefore, the fimbrin-GFP reporters we describe in this study provide additional tools for studying the actin cytoskeleton during root cell development. Moreover, the localization of AtFim1-GFP offers insights into the regulation of actin organization in developing roots by this class of actin cross-linking proteins. Copyright 2004 Wiley-Liss, Inc.
Preventive Effects of Poloxamer 188 on Muscle Cell Damage Mechanics Under Oxidative Stress.
Wong, Sing Wan; Yao, Yifei; Hong, Ye; Ma, Zhiyao; Kok, Stanton H L; Sun, Shan; Cho, Michael; Lee, Kenneth K H; Mak, Arthur F T
2017-04-01
High oxidative stress can occur during ischemic reperfusion and chronic inflammation. It has been hypothesized that such oxidative challenges could contribute to clinical risks such as deep tissue pressure ulcers. Skeletal muscles can be challenged by inflammation-induced or reperfusion-induced oxidative stress. Oxidative stress reportedly can lower the compressive damage threshold of skeletal muscles cells, causing actin filament depolymerization, and reduce membrane sealing ability. Skeletal muscles thus become easier to be damaged by mechanical loading under prolonged oxidative exposure. In this study, we investigated the preventive effect of poloxamer 188 (P188) on skeletal muscle cells against extrinsic oxidative challenges (H 2 O 2 ). It was found that with 1 mM P188 pre-treatment for 1 h, skeletal muscle cells could maintain their compressive damage threshold. The actin polymerization dynamics largely remained stable in term of the expression of cofilin, thymosin beta 4 and profilin. Laser photoporation demonstrated that membrane sealing ability was preserved even as the cells were challenged by H 2 O 2 . These findings suggest that P188 pre-treatment can help skeletal muscle cells retain their normal mechanical integrity in oxidative environments, adding a potential clinical use of P188 against the combined challenge of mechanical-oxidative stresses. Such effect may help to prevent deep tissue ulcer development.
Battikhi, Tulin; Lee, Wilson; McCulloch, Christopher A. G.; Ellen, Richard P.
1999-01-01
Human gingival fibroblasts (HGFs) degrade collagen fibrils in physiological processes by phagocytosis. Since Treponema denticola outer membrane (OM) extract perturbs actin filaments, important structures in phagocytosis, we determined whether the OM affects collagen phagocytosis in vitro by HGFs. Phagocytosis was measured by flow cytometric assessment of internalized collagen-coated fluorescent latex beads. Confluent HGFs pretreated with T. denticola ATCC 35405 OM exhibited an increase in the percentage of collagen phagocytic cells (phagocytosis index [PI]) and in the number of beads per phagocytosing cell (phagocytic capacity [PC]) compared with untreated controls. The enhancement was swift (within 15 min) and was still evident after 1 day. PI and PC of HGFs for bovine serum albumin (BSA)-coated beads were also increased, indicating a global increase in phagocytic processes. These results contrasted those for control OM from Veillonella atypica ATCC 17744, which decreased phagocytosis. The T. denticola OM-induced increase in bead uptake was eliminated by heating the OM and by depolymerization of actin filaments by cytochalasin D treatment of HGFs. Fluid-phase accumulation of lucifer yellow was enhanced in a saturable, concentration-dependent, transient manner by the T. denticola OM. Our findings were not due to HGF detachment or cytotoxicity in response to the T. denticola OM treatment since the HGFs exhibited minimal detachment from the substratum; they did not take up propidium iodide; and there was no change in their size, granularity, or content of sub-G1 DNA. We conclude that a heat-sensitive component(s) in T. denticola OM extract stimulates collagen phagocytosis and other endocytic processes such as nonspecific phagocytosis and pinocytosis by HGFs. PMID:10024564
Knupp, Carlo; Offer, Gerald; Ranatunga, K W; Squire, John M
2009-07-10
The key question in understanding how force and movement are produced in muscle concerns the nature of the cyclic interaction of myosin molecules with actin filaments. The lever arm of the globular head of each myosin molecule is thought in some way to swing axially on the actin-attached motor domain, thus propelling the actin filament past the myosin filament. Recent X-ray diffraction studies of vertebrate muscle, especially those involving the analysis of interference effects between myosin head arrays in the two halves of the thick filaments, have been claimed to prove that the lever arm moves at the same time as the sliding of actin and myosin filaments in response to muscle length or force steps. It was suggested that the sliding of myosin and actin filaments, the level of force produced and the lever arm angle are all directly coupled and that other models of lever arm movement will not fit the X-ray data. Here, we show that, in addition to interference across the A-band, which must be occurring, the observed meridional M3 and M6 X-ray intensity changes can all be explained very well by the changing diffraction effects during filament sliding caused by heads stereospecifically attached to actin moving axially relative to a population of detached or non-stereospecifically attached heads that remain fixed in position relative to the myosin filament backbone. Crucially, and contrary to previous interpretations, the X-ray interference results provide little direct information about the position of the myosin head lever arm; they are, in fact, reporting relative motor domain movements. The implications of the new interpretation are briefly assessed.
Analysis of the function of Spire in actin assembly and its synergy with formin and profilin.
Bosch, Montserrat; Le, Kim Ho Diep; Bugyi, Beata; Correia, John J; Renault, Louis; Carlier, Marie-France
2007-11-30
The Spire protein, together with the formin Cappuccino and profilin, plays an important role in actin-based processes that establish oocyte polarity. Spire contains a cluster of four actin-binding WH2 domains. It has been shown to nucleate actin filaments and was proposed to remain bound to their pointed ends. Here we show that the multifunctional character of the WH2 domains allows Spire to sequester four G-actin subunits binding cooperatively in a tight SA(4) complex and to nucleate, sever, and cap filaments at their barbed ends. Binding of Spire to barbed ends does not affect the thermodynamics of actin assembly at barbed ends but blocks barbed end growth from profilin-actin. The resulting Spire-induced increase in profilin-actin concentration enhances processive filament assembly by formin. The synergy between Spire and formin is reconstituted in an in vitro motility assay, which provides a functional basis for the genetic interplay between Spire, formin, and profilin in oogenesis.
Divergent regulation of the sarcomere and the cytoskeleton.
Schevzov, Galina; Fath, Thomas; Vrhovski, Bernadette; Vlahovich, Nicole; Rajan, Sudarsan; Hook, Jeff; Joya, Josephine E; Lemckert, Frances; Puttur, Franz; Lin, Jim J-C; Hardeman, Edna C; Wieczorek, David F; O'Neill, Geraldine M; Gunning, Peter W
2008-01-04
The existence of a feedback mechanism regulating the precise amounts of muscle structural proteins, such as actin and the actin-associated protein tropomyosin (Tm), in the sarcomeres of striated muscles is well established. However, the regulation of nonmuscle or cytoskeletal actin and Tms in nonmuscle cell structures has not been elucidated. Unlike the thin filaments of striated muscles, the actin cytoskeleton in nonmuscle cells is intrinsically dynamic. Given the differing requirements for the structural integrity of the actin thin filaments of the sarcomere compared with the requirement for dynamicity of the actin cytoskeleton in nonmuscle cells, we postulated that different regulatory mechanisms govern the expression of sarcomeric versus cytoskeletal Tms, as key regulators of the properties of the actin cytoskeleton. Comprehensive analyses of tissues from transgenic and knock-out mouse lines that overexpress the cytoskeletal Tms, Tm3 and Tm5NM1, and a comparison with sarcomeric Tms provide evidence for this. Moreover, we show that overexpression of a cytoskeletal Tm drives the amount of filamentous actin.
Assembly Kinetics Determine the Architecture of α-actinin Crosslinked F-actin Networks
Falzone, Tobias T.; Lenz, Martin; Kovar, David R.; Gardel, Margaret L.
2013-01-01
The actin cytoskeleton is organized into diverse meshworks and bundles that support many aspects of cell physiology. Understanding the self-assembly of these actin-based structures is essential for developing predictive models of cytoskeletal organization. Here we show that the competing kinetics of bundle formation with the onset of dynamic arrest arising from filament entanglements and cross-linking determine the architecture of reconstituted actin networks formed with α-actinin cross-links. Cross-link mediated bundle formation only occurs in dilute solutions of highly mobile actin filaments. As actin polymerization proceeds, filament mobility and bundle formation are arrested concomitantly. By controlling the onset of dynamic arrest, perturbations to actin assembly kinetics dramatically alter the architecture of biochemically identical samples. Thus, the morphology of reconstituted F-actin networks is a kinetically determined structure similar to those formed by physical gels and glasses. These results establish mechanisms controlling the structure and mechanics in diverse semi-flexible biopolymer networks. PMID:22643888
Actin–microtubule coordination at growing microtubule ends
López, Magdalena Preciado; Huber, Florian; Grigoriev, Ilya; Steinmetz, Michel O.; Akhmanova, Anna; Koenderink, Gijsje H.; Dogterom, Marileen
2014-01-01
To power dynamic processes in cells, the actin and microtubule cytoskeletons organize into complex structures. Although it is known that cytoskeletal coordination is vital for cell function, the mechanisms by which cross-linking proteins coordinate actin and microtubule activities remain poorly understood. In particular, it is unknown how the distinct mechanical properties of different actin architectures modulate the outcome of actin–microtubule interactions. To address this question, we engineered the protein TipAct, which links growing microtubule ends via end-binding proteins to actin filaments. We show that growing microtubules can be captured and guided by stiff actin bundles, leading to global actin–microtubule alignment. Conversely, growing microtubule ends can transport, stretch and bundle individual actin filaments, thereby globally defining actin filament organization. Our results provide a physical basis to understand actin–microtubule cross-talk, and reveal that a simple cross-linker can enable a mechanical feedback between actin and microtubule organization that is relevant to diverse biological contexts. PMID:25159196
Jaiswal, Richa; Stepanik, Vince; Rankova, Aneliya; Molinar, Olivia; Goode, Bruce L; McCartney, Brooke M
2013-05-10
Vertebrate APC collaborates with Dia through its Basic domain to assemble actin filaments. Despite limited sequence homology between the vertebrate and Drosophila APC Basic domains, Drosophila APC1 collaborates with Dia to stimulate actin assembly in vitro. The mechanism of actin assembly is highly conserved over evolution. APC-Dia collaborations may be crucial in a wide range of animal cells. Adenomatous polyposis coli (APC) is a large multidomain protein that regulates the cytoskeleton. Recently, it was shown that vertebrate APC through its Basic domain directly collaborates with the formin mDia1 to stimulate actin filament assembly in the presence of nucleation barriers. However, it has been unclear whether these activities extend to homologues of APC and Dia in other organisms. Drosophila APC and Dia are each required to promote actin furrow formation in the syncytial embryo, suggesting a potential collaboration in actin assembly, but low sequence homology between the Basic domains of Drosophila and vertebrate APC has left their functional and mechanistic parallels uncertain. To address this question, we purified Drosophila APC1 and Dia and determined their individual and combined effects on actin assembly using both bulk fluorescence assays and total internal reflection fluorescence microscopy. Our data show that APC1, similar to its vertebrate homologue, bound to actin monomers and nucleated and bundled filaments. Further, Drosophila Dia nucleated actin assembly and protected growing filament barbed ends from capping protein. Drosophila APC1 and Dia directly interacted and collaborated to promote actin assembly in the combined presence of profilin and capping protein. Thus, despite limited sequence homology, Drosophila and vertebrate APCs exhibit highly related activities and mechanisms and directly collaborate with formins. These results suggest that APC-Dia interactions in actin assembly are conserved and may underlie important in vivo functions in a broad range of animal phyla.
Microheterogeneity of actin gels formed under controlled linear shear.
Cortese, J D; Frieden, C
1988-10-01
The diffusion coefficients and fluorescence polarization properties of actin subjected to a known shear have been determined both during and after polymerization, using a modification of a cone-plate Wells-Brookfield rheometer that allows monitoring of samples with an epifluorescence microscope. Fluorescence polarization and fluorescence photobleaching recovery experiments using rhodamine-labeled actin as a tracer showed that under conditions of low shear (shear rates of 0.05 s-1), a spatial heterogeneity of polymerized actin was observed with respect to fluorescence intensity and the diffusion coefficients with actin mobility becoming quite variable in different regions of the sample. In addition, complex changes in fluorescence polarization were noted after stopping the shear. Actin filaments of controlled length were obtained using plasma gelsolin (gelsolin/actin molar ratios of 1:50 to 1:300). At ratios of 1:50, neither spatial heterogeneity nor changes in polarization were observed on subjecting the polymerized actin to shear. At ratios of approximately 1:100, a decrease on the intensity of fluorescence polarization occurs on stopping the shear. Longer filaments exhibit spatial micro-heterogeneity and complex changes in fluorescence polarization. In addition, at ratios of 1:100 or 1:300, the diffusion coefficient decreases as the total applied shear increased. This behavior is interpreted as bundling of filaments aligned under shear. We also find that the F-actin translational diffusion coefficients decrease as the total applied shear increases (shear rates between 0.05 and 12.66 s-1), as expected for a cumulative process. When chicken gizzard filamin was added to gelsolin-actin filaments (at filamin/actin molar ratios of 1:300 to 1:10), a similar decrease in the diffusion coefficients was observed for unsheared samples. Spatial microheterogeneity might be related to the effects of the shear field in the alignment of filaments, and the balance between a three-dimensional network and a microheterogeneous system (containing bundles or anisotropic phases) appears related to both shear and the presence of actin-binding proteins.
González-Jamett, Arlek M.; Guerra, María J.; Olivares, María J.; Haro-Acuña, Valentina; Baéz-Matus, Ximena; Vásquez-Navarrete, Jacqueline; Momboisse, Fanny; Martinez-Quiles, Narcisa; Cárdenas, Ana M.
2017-01-01
Upon cell stimulation, the network of cortical actin filaments is rearranged to facilitate the neurosecretory process. This actin rearrangement includes both disruption of the preexisting actin network and de novo actin polymerization. However, the mechanism by which a Ca2+ signal elicits the formation of new actin filaments remains uncertain. Cortactin, an actin-binding protein that promotes actin polymerization in synergy with the nucleation promoting factor N-WASP, could play a key role in this mechanism. We addressed this hypothesis by analyzing de novo actin polymerization and exocytosis in bovine adrenal chromaffin cells expressing different cortactin or N-WASP domains, or cortactin mutants that fail to interact with proline-rich domain (PRD)-containing proteins, including N-WASP, or to be phosphorylated by Ca2+-dependent kinases, such as ERK1/2 and Src. Our results show that the activation of nicotinic receptors in chromaffin cells promotes cortactin translocation to the cell cortex, where it colocalizes with actin filaments. We further found that, in association with PRD-containing proteins, cortactin contributes to the Ca2+-dependent formation of F-actin, and regulates fusion pore dynamics and the number of exocytotic events induced by activation of nicotinic receptors. However, whereas the actions of cortactin on the fusion pore dynamics seems to depend on the availability of monomeric actin and its phosphorylation by ERK1/2 and Src kinases, cortactin regulates the extent of exocytosis by a mechanism independent of actin polymerization. Together our findings point out a role for cortactin as a critical modulator of actin filament formation and exocytosis in neuroendocrine cells. PMID:28522963
Bacterial actin homolog ParM: arguments for an apolar, antiparallel double helix.
Erickson, Harold P
2012-09-28
The bacterial actin homolog ParM has always been modeled as a polar filament, comprising two parallel helical strands, like actin itself. I present arguments here that ParM may be an apolar filament, in which the two helical strands are antiparallel. Copyright © 2012 Elsevier Ltd. All rights reserved.
Actin Polymerization is Stimulated by Actin Crosslinking Protein Palladin
Gurung, Ritu; Yadav, Rahul; Brungardt, Joseph G.; Orlova, Albina; Egelman, Edward H.; Beck, Moriah R.
2016-01-01
The actin scaffold protein palladin regulates both normal cell migration and invasive cell motility, processes that require the coordinated regulation of actin dynamics. However, the potential effect of palladin on actin dynamics has remained elusive. Here we show that the actin binding immunoglobulin-like domain of palladin, which is directly responsible for both actin binding and bundling, also stimulates actin polymerization in vitro. Palladin eliminated the lag phase that is characteristic of the slow nucleation step of actin polymerization. Furthermore, palladin dramatically reduced depolymerization, slightly enhanced the elongation rate, and did not alter the critical concentration. Microscopy and in vitro crosslinking assays reveal differences in actin bundle architecture when palladin is incubated with actin before or after polymerization. These results suggest a model whereby palladin stimulates a polymerization-competent form of G-actin, akin to metal ions, either through charge neutralization or conformational changes. PMID:26607837
Technical advance: identification of plant actin-binding proteins by F-actin affinity chromatography
NASA Technical Reports Server (NTRS)
Hu, S.; Brady, S. R.; Kovar, D. R.; Staiger, C. J.; Clark, G. B.; Roux, S. J.; Muday, G. K.
2000-01-01
Proteins that interact with the actin cytoskeleton often modulate the dynamics or organization of the cytoskeleton or use the cytoskeleton to control their localization. In plants, very few actin-binding proteins have been identified and most are thought to modulate cytoskeleton function. To identify actin-binding proteins that are unique to plants, the development of new biochemical procedures will be critical. Affinity columns using actin monomers (globular actin, G-actin) or actin filaments (filamentous actin, F-actin) have been used to identify actin-binding proteins from a wide variety of organisms. Monomeric actin from zucchini (Cucurbita pepo L.) hypocotyl tissue was purified to electrophoretic homogeneity and shown to be native and competent for polymerization to actin filaments. G-actin, F-actin and bovine serum albumin affinity columns were prepared and used to separate samples enriched in either soluble or membrane-associated actin-binding proteins. Extracts of soluble actin-binding proteins yield distinct patterns when eluted from the G-actin and F-actin columns, respectively, leading to the identification of a putative F-actin-binding protein of approximately 40 kDa. When plasma membrane-associated proteins were applied to these columns, two abundant polypeptides eluted selectively from the F-actin column and cross-reacted with antiserum against pea annexins. Additionally, a protein that binds auxin transport inhibitors, the naphthylphthalamic acid binding protein, which has been previously suggested to associate with the actin cytoskeleton, was eluted in a single peak from the F-actin column. These experiments provide a new approach that may help to identify novel actin-binding proteins from plants.
Hu, S; Brady, S R; Kovar, D R; Staiger, C J; Clark, G B; Roux, S J; Muday, G K
2000-10-01
Proteins that interact with the actin cytoskeleton often modulate the dynamics or organization of the cytoskeleton or use the cytoskeleton to control their localization. In plants, very few actin-binding proteins have been identified and most are thought to modulate cytoskeleton function. To identify actin-binding proteins that are unique to plants, the development of new biochemical procedures will be critical. Affinity columns using actin monomers (globular actin, G-actin) or actin filaments (filamentous actin, F-actin) have been used to identify actin-binding proteins from a wide variety of organisms. Monomeric actin from zucchini (Cucurbita pepo L.) hypocotyl tissue was purified to electrophoretic homogeneity and shown to be native and competent for polymerization to actin filaments. G-actin, F-actin and bovine serum albumin affinity columns were prepared and used to separate samples enriched in either soluble or membrane-associated actin-binding proteins. Extracts of soluble actin-binding proteins yield distinct patterns when eluted from the G-actin and F-actin columns, respectively, leading to the identification of a putative F-actin-binding protein of approximately 40 kDa. When plasma membrane-associated proteins were applied to these columns, two abundant polypeptides eluted selectively from the F-actin column and cross-reacted with antiserum against pea annexins. Additionally, a protein that binds auxin transport inhibitors, the naphthylphthalamic acid binding protein, which has been previously suggested to associate with the actin cytoskeleton, was eluted in a single peak from the F-actin column. These experiments provide a new approach that may help to identify novel actin-binding proteins from plants.
14-3-3 coordinates microtubules, Rac, and myosin II to control cell mechanics and cytokinesis
Zhou, Qiongqiong; Kee, Yee-Seir; Poirier, Christopher C.; Jelinek, Christine; Osborne, Jonathan; Divi, Srikanth; Surcel, Alexandra; Will, Marie E.; Eggert, Ulrike S.; Müller-Taubenberger, Annette; Iglesias, Pablo A.; Cotter, Robert J.; Robinson, Douglas N.
2010-01-01
Summary Background During cytokinesis, regulatory signals are presumed to emanate from the mitotic spindle. However, what these signals are and how they lead to the spatiotemporal changes in the cortex structure, mechanics, and regional contractility are not well understood in any system. Results To investigate pathways that link the microtubule network to the cortical changes that promote cytokinesis, we used chemical genetics in Dictyostelium to identify genetic suppressors of nocodazole, a microtubule depolymerizer. We identified 14-3-3 and found that it is enriched in the cortex, helps maintain steady state microtubule length, contributes to normal cortical tension, modulates actin wave formation, and controls the symmetry and kinetics of cleavage furrow contractility during cytokinesis. Furthermore, 14-3-3 acts downstream of a Rac small GTPase (RacE), associates with myosin II heavy chain and is needed to promote myosin II bipolar thick filament remodeling. Conclusion 14-3-3 connects microtubules, Rac and myosin II to control several aspects of cortical dynamics, mechanics, and cytokinesis cell shape change. Further, 14-3-3 interacts directly with myosin II heavy chain to promote bipolar thick filament remodeling and distribution. Overall, 14-3-3 appears to integrate several critical cytoskeletal elements that drive two important processes cytokinesis shape change and cell mechanics. PMID:20951045
Ning, Wenxiu; Yu, Yanan; Xu, Honglin; Liu, Xiaofei; Wang, Daiwei; Wang, Jing; Wang, Yingchun; Meng, Wenxiang
2016-10-10
For adaptation to complex cellular functions, dynamic cytoskeletal networks are required. There are two major components of the cytoskeleton, microtubules and actin filaments, which form an intricate network maintaining an exquisite cooperation to build the physical basis for their cellular function. However, little is known about the molecular mechanism underlying their synergism. Here, we show that in Caco2 epithelial cells, noncentrosomal microtubules crosstalk with F-actin through their minus ends and contribute to the regulation of focal adhesion size and cell migration. We demonstrate that ACF7, a member of the spectraplakin family of cytoskeletal crosslinking proteins, interacts with Nezha (also called CAMSAP3) at the minus ends of noncentrosomal microtubules and anchors them to actin filaments. Those noncentrosomal microtubules cooperate with actin filaments through retrograde flow to keep their length and orientation perpendicular to the cell edge as well as regulate focal adhesion size and cell migration. Copyright © 2016 Elsevier Inc. All rights reserved.
Tratnjek, Larisa; Romih, Rok; Kreft, Mateja Erdani
2017-08-01
During differentiation, superficial urothelial cells (UCs) of the urinary bladder form the apical surface, which is almost entirely covered by urothelial plaques containing densely packed uroplakin particles. These urothelial plaques are the main structural components of the blood-urine permeability barrier in the urinary bladder. We have shown previously that endocytosis from the apical plasma membrane decreases during urothelial cell differentiation. Here, we investigated the role of actin filament and microtubule rearrangements in apical endocytosis of differentiating UCs cells using hyperplastic and normoplastic porcine urothelial models. Partially differentiated normal porcine UCs contained actin filaments in the subapical cytoplasm, while microtubules had a net-like appearance. In highly differentiated UCs, actin filaments mostly disappeared from the subapical cytoplasm and microtubules remained as a thin layer close to the apical plasma membrane. Inhibition of actin filament formation with cytochalasin-D in partially differentiated UCs caused a decrease in apical endocytosis. Depolymerisation of microtubules with nocodazole did not prevent endocytosis of the endocytotic marker WGA into the subapical cytoplasm; however, it abolished WGA transport to endolysosomal compartments in the central cytoplasm. Cytochalasin-D or nocodazole treatment did not significantly change apical endocytosis in highly differentiated UCs. In conclusion, we showed that the physiological differentiation-dependent or chemically induced redistribution and reorganization of actin filaments and microtubules impair apical endocytosis in UCs. Importantly, reduced apical endocytosis due to cytoskeletal rearrangements in highly differentiated UCs, together with the formation of rigid urothelial plaques, reinforces the barrier function of the urothelium.
Polymerization and oscillation stuttering in a filamentous model of the subcellular Min oscillation
NASA Astrophysics Data System (ADS)
Rutenberg, Andrew; Sengupta, Supratim; Sain, Anirban; Derr, Julien
2011-03-01
We present a computational model of the E. coli Min oscillation that involves polymerization of MinD filaments followed by depolymerization stimulated by filament-end zones of MinE. Our stochastic model is fully three-dimensional, and tracks the diffusion and interactions of every MinD and MinE molecule. We recover self-organized Min oscillations. We investigate the experimental phenomenon of oscillation stuttering, which we relate to the disruption of MinE tip-binding at the filament scale.
3D Filament Network Segmentation with Multiple Active Contours
NASA Astrophysics Data System (ADS)
Xu, Ting; Vavylonis, Dimitrios; Huang, Xiaolei
2014-03-01
Fluorescence microscopy is frequently used to study two and three dimensional network structures formed by cytoskeletal polymer fibers such as actin filaments and microtubules. While these cytoskeletal structures are often dilute enough to allow imaging of individual filaments or bundles of them, quantitative analysis of these images is challenging. To facilitate quantitative, reproducible and objective analysis of the image data, we developed a semi-automated method to extract actin networks and retrieve their topology in 3D. Our method uses multiple Stretching Open Active Contours (SOACs) that are automatically initialized at image intensity ridges and then evolve along the centerlines of filaments in the network. SOACs can merge, stop at junctions, and reconfigure with others to allow smooth crossing at junctions of filaments. The proposed approach is generally applicable to images of curvilinear networks with low SNR. We demonstrate its potential by extracting the centerlines of synthetic meshwork images, actin networks in 2D TIRF Microscopy images, and 3D actin cable meshworks of live fission yeast cells imaged by spinning disk confocal microscopy.
Polycation induced actin bundles.
Muhlrad, Andras; Grintsevich, Elena E; Reisler, Emil
2011-04-01
Three polycations, polylysine, the polyamine spermine and the polycationic protein lysozyme were used to study the formation, structure, ionic strength sensitivity and dissociation of polycation-induced actin bundles. Bundles form fast, simultaneously with the polymerization of MgATP-G-actins, upon the addition of polycations to solutions of actins at low ionic strength conditions. This indicates that nuclei and/or nascent filaments bundle due to attractive, electrostatic effect of polycations and the neutralization of repulsive interactions of negative charges on actin. The attractive forces between the filaments are strong, as shown by the low (in nanomolar range) critical concentration of their bundling at low ionic strength. These bundles are sensitive to ionic strength and disassemble partially in 100 mM NaCl, but both the dissociation and ionic strength sensitivity can be countered by higher polycation concentrations. Cys374 residues of actin monomers residing on neighboring filaments in the bundles can be cross-linked by the short span (5.4Å) MTS-1 (1,1-methanedyl bismethanethiosulfonate) cross-linker, which indicates a tight packing of filaments in the bundles. The interfilament cross-links, which connect monomers located on oppositely oriented filaments, prevent disassembly of bundles at high ionic strength. Cofilin and the polysaccharide polyanion heparin disassemble lysozyme induced actin bundles more effectively than the polylysine-induced bundles. The actin-lysozyme bundles are pathologically significant as both proteins are found in the pulmonary airways of cystic fibrosis patients. Their bundles contribute to the formation of viscous mucus, which is the main cause of breathing difficulties and eventual death in this disorder. Copyright © 2011 Elsevier B.V. All rights reserved.
Smith, Alyson S; Nowak, Roberta B; Zhou, Sitong; Giannetto, Michael; Gokhin, David S; Papoin, Julien; Ghiran, Ionita C; Blanc, Lionel; Wan, Jiandi; Fowler, Velia M
2018-05-08
The biconcave disk shape and deformability of mammalian RBCs rely on the membrane skeleton, a viscoelastic network of short, membrane-associated actin filaments (F-actin) cross-linked by long, flexible spectrin tetramers. Nonmuscle myosin II (NMII) motors exert force on diverse F-actin networks to control cell shapes, but a function for NMII contractility in the 2D spectrin-F-actin network of RBCs has not been tested. Here, we show that RBCs contain membrane skeleton-associated NMIIA puncta, identified as bipolar filaments by superresolution fluorescence microscopy. MgATP disrupts NMIIA association with the membrane skeleton, consistent with NMIIA motor domains binding to membrane skeleton F-actin and contributing to membrane mechanical properties. In addition, the phosphorylation of the RBC NMIIA heavy and light chains in vivo indicates active regulation of NMIIA motor activity and filament assembly, while reduced heavy chain phosphorylation of membrane skeleton-associated NMIIA indicates assembly of stable filaments at the membrane. Treatment of RBCs with blebbistatin, an inhibitor of NMII motor activity, decreases the number of NMIIA filaments associated with the membrane and enhances local, nanoscale membrane oscillations, suggesting decreased membrane tension. Blebbistatin-treated RBCs also exhibit elongated shapes, loss of membrane curvature, and enhanced deformability, indicating a role for NMIIA contractility in promoting membrane stiffness and maintaining RBC biconcave disk cell shape. As structures similar to the RBC membrane skeleton exist in many metazoan cell types, these data demonstrate a general function for NMII in controlling specialized membrane morphology and mechanical properties through contractile interactions with short F-actin in spectrin-F-actin networks.
Drosophila Spire is an actin nucleation factor.
Quinlan, Margot E; Heuser, John E; Kerkhoff, Eugen; Mullins, R Dyche
2005-01-27
The actin cytoskeleton is essential for many cellular functions including shape determination, intracellular transport and locomotion. Previous work has identified two factors--the Arp2/3 complex and the formin family of proteins--that nucleate new actin filaments via different mechanisms. Here we show that the Drosophila protein Spire represents a third class of actin nucleation factor. In vitro, Spire nucleates new filaments at a rate that is similar to that of the formin family of proteins but slower than in the activated Arp2/3 complex, and it remains associated with the slow-growing pointed end of the new filament. Spire contains a cluster of four WASP homology 2 (WH2) domains, each of which binds an actin monomer. Maximal nucleation activity requires all four WH2 domains along with an additional actin-binding motif, conserved among Spire proteins. Spire itself is conserved among metazoans and, together with the formin Cappuccino, is required for axis specification in oocytes and embryos, suggesting that multiple actin nucleation factors collaborate to construct essential cytoskeletal structures.
Structural basis for profilin-mediated actin nucleotide exchange
Porta, Jason C.; Borgstahl, Gloria E.O.
2015-01-01
Actin is a ubiquitous eukaryotic protein that is responsible for cellular scaffolding, motility and division. The ability of actin to form a helical filament is the driving force behind these cellular activities. Formation of a filament is dependent the successful exchange of actin’s ADP for ATP. Mammalian profilin is a small actin binding protein that catalyzes the exchange of nucleotide and facilitates the addition of an actin monomer to a growing filament. Here, crystal structures of profilin:actin have been determined showing an actively exchanging ATP. The structural analysis shows how the binding of profilin to the barbed end of actin causes a rotation of the small domain relative to the large domain. This conformational change is propagated to the ATP site and causes a shift in the nucleotide loops which in turn causes a repositioning of Ca2+ to its canonical position as the cleft closes around ATP. Reversing the solvent exposure of Trp-356 is also involved in cleft closure. In addition, secondary calcium binding sites were identified. PMID:22366544
NASA Astrophysics Data System (ADS)
Lee, Kent; Henze, Dean; Robertson-Anderson, Rae
2013-03-01
Actin is an important cytoskeletal protein involved in cell structure and motility, cancer invasion and metastasis, and muscle contraction. The intricate viscoelastic properties of filamentous actin (F-actin) networks allow for the many dynamic roles of actin, thus warranting investigation. Exploration of this unique stress-strain/strain-rate relationship in complex F-actin networks can also improve biomimetic materials engineering. Here, we use optical tweezers with fluorescence microscopy to study the viscoelastic properties of F-actin networks on the microscopic level. Optically trapped microspheres embedded in various F-actin networks are moved through the network using a nanoprecision piezoelectric stage. The force exerted on the microspheres by the F-actin network and subsequent force relaxation are measured, while a fraction of the filaments in the network are fluorescent-labeled to observe filament deformation in real-time. The dependence of the viscoelastic properties of the network on strain rates and amplitudes as well as F-actin concentration is quantified. This approach provides the much-needed link between induced force and deformation over localized regimes (tens of microns) and down to the single molecule level.
Young, Erica J; Aceti, Massimiliano; Griggs, Erica M; Fuchs, Rita A; Zigmond, Zachary; Rumbaugh, Gavin; Miller, Courtney A
2014-01-15
Memories associated with drugs of abuse, such as methamphetamine (METH), increase relapse vulnerability to substance use disorder. There is a growing consensus that memory is supported by structural and functional plasticity driven by F-actin polymerization in postsynaptic dendritic spines at excitatory synapses. However, the mechanisms responsible for the long-term maintenance of memories, after consolidation has occurred, are largely unknown. Conditioned place preference (n = 112) and context-induced reinstatement of self-administration (n = 19) were used to assess the role of F-actin polymerization and myosin II, a molecular motor that drives memory-promoting dendritic spine actin polymerization, in the maintenance of METH-associated memories and related structural plasticity. Memories formed through association with METH but not associations with foot shock or food reward were disrupted by a highly-specific actin cycling inhibitor when infused into the amygdala during the postconsolidation maintenance phase. This selective effect of depolymerization on METH-associated memory was immediate, persistent, and did not depend upon retrieval or strength of the association. Inhibition of non-muscle myosin II also resulted in a disruption of METH-associated memory. Thus, drug-associated memories seem to be actively maintained by a unique form of cycling F-actin driven by myosin II. This finding provides a potential therapeutic approach for the selective treatment of unwanted memories associated with psychiatric disorders that is both selective and does not rely on retrieval of the memory. The results further suggest that memory maintenance depends upon the preservation of polymerized actin. Copyright © 2014 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Akisaka, Toshitaka; Yoshida, Hisaho; Suzuki, Reiko; Takama, Keiko
2008-03-01
The organization of the cytoskeleton in the podosomes of osteoclasts was studied by use of cell shearing, rotary replication, and fluorescence cytochemical techniques. After shearing, clathrin plaques and particles associated with the cytoskeleton were left behind on the exposed cytoplasmic side of the membrane. The cytoskeleton of the podosomes was characterized by two types of actin filaments: relatively long filaments in the portion surrounding the podosome core, and highly branched short filaments in the core. Individual actin filaments radiating from the podosomes interacted with several membrane particles along the length of the filaments. Many lateral contacts with the membrane surface by the particles were made along the length of individual actin filaments. The polarity of actin filaments in podosomes became oriented such that their barbed ends were directed toward the core of podosomes. The actin cytoskeletons terminated or branched at the podosomes, where the membrane tightly adhered to the substratum. Microtubules were not usually present in the podosome structures; however, certain microtubules appeared to be morphologically in direct contact with the podosome core. Most of the larger clathrin plaques consisted of flat sheets of clathrin lattices that interconnected neighboring clathrin lattices to form an extensive clathrin area. However, the small deeply invaginated clathrin plaques and the podosomal cytoskeleton were located close together. Thus, the clathrin plaques on the ventral membrane of osteoclasts might be involved in both cell adhesion and the formation of receptor-ligand complexes, i.e., endocytosis.
Kadi, A; de Isla, N; Moby, V; Lacolley, P; Labrude, P; Stoltz, J F; Menu, P
2014-01-01
Nitric oxide is implicated in the target action of Nebivolol, a selective β1 adrenoceptor blocker used in hypertension treatment. As the Nitric Oxide (NO) production and the actin cytoskeleton are linked, the aim of this work was to study the involvement of actin cytoskeleton on mechanism of action of Nebivolol in cultured endothelial cells. We studied the effect of Nebivolol (200 μM) on actin filaments remodeling and its impact on NO production and eNOS activation. Results showed that Nebivolol perturbs actin filaments polymerization, increases NO production and eNOS activity between 30 minutes and 1 h. Stabilization of actin filaments with phalloïdine (50 μM) abolishes Nebivolol effects on eNOS activation and NO production. Furthermore, Rho-kinase activity decreased during the first hour of Nebivolol treatment, then increased after 3 h, while actin filaments repolymerized, eNOS activation and NO production decreased. In SMCs, Nebivolol induced a decrease in the Rho-kinase activity from 1 h until 24 h of incubation. In conclusion, we suggest that Nebivolol induced NO production in Endothelial Cells (ECs) via complementary actions between actin cytoskeleton remodeling inducing eNOS activation and Rho-kinase implication. The effect of Nebivolol on ECs occurs during the first hour, this effect on SMCs seems to be maintained until 24 h, explaining persisted action of Nebivolol observed in vivo.
Real-Time Dynamics of Emerging Actin Networks in Cell-Mimicking Compartments
Deshpande, Siddharth; Pfohl, Thomas
2015-01-01
Understanding the cytoskeletal functionality and its relation to other cellular components and properties is a prominent question in biophysics. The dynamics of actin cytoskeleton and its polymorphic nature are indispensable for the proper functioning of living cells. Actin bundles are involved in cell motility, environmental exploration, intracellular transport and mechanical stability. Though the viscoelastic properties of actin-based structures have been extensively probed, the underlying microstructure dynamics, especially their disassembly, is not fully understood. In this article, we explore the rich dynamics and emergent properties exhibited by actin bundles within flow-free confinements using a microfluidic set-up and epifluorescence microscopy. After forming entangled actin filaments within cell-sized quasi two-dimensional confinements, we induce their bundling using three different fundamental mechanisms: counterion condensation, depletion interactions and specific protein-protein interactions. Intriguingly, long actin filaments form emerging networks of actin bundles via percolation leading to remarkable properties such as stress generation and spindle-like intermediate structures. Simultaneous sharing of filaments in different links of the network is an important parameter, as short filaments do not form networks but segregated clusters of bundles instead. We encounter a hierarchical process of bundling and its subsequent disassembly. Additionally, our study suggests that such percolated networks are likely to exist within living cells in a dynamic fashion. These observations render a perspective about differential cytoskeletal responses towards numerous stimuli. PMID:25785606
Azimuthal phase retardation microscope for visualizing actin filaments of biological cells
NASA Astrophysics Data System (ADS)
Shin, In Hee; Shin, Sang-Mo
2011-09-01
We developed a new theory-based azimuthal phase retardation microscope to visualize distributions of actin filaments in biological cells without having them with exogenous dyes, fluorescence labels, or stains. The azimuthal phase retardation microscope visualizes distributions of actin filaments by measuring the intensity variations of each pixel of a charge coupled device camera while rotating a single linear polarizer. Azimuthal phase retardation δ between two fixed principal axes was obtained by calculating the rotation angles of the polarizer at the intensity minima from the acquired intensity data. We have acquired azimuthal phase retardation distributions of human breast cancer cell, MDA MB 231 by our microscope and compared the azimuthal phase retardation distributions with the fluorescence image of actin filaments by the commercial fluorescence microscope. Also, we have observed movement of human umbilical cord blood derived mesenchymal stem cells by measuring azimuthal phase retardation distributions.
Fazal, Fabeha; Minhajuddin, Mohd; Bijli, Kaiser M; McGrath, James L; Rahman, Arshad
2007-02-09
Activation of the transcription factor NF-kappaB involves its release from the inhibitory protein IkappaBalpha in the cytoplasm and subsequently, its translocation to the nucleus. Whereas the events responsible for its release have been elucidated, mechanisms regulating the nuclear transport of NF-kappaB remain elusive. We now provide evidence for actin cytoskeleton-dependent and -independent mechanisms of RelA/p65 nuclear transport using the proinflammatory mediators, thrombin and tumor necrosis factor alpha, respectively. We demonstrate that thrombin alters the actin cytoskeleton in endothelial cells and interfering with these alterations, whether by stabilizing or destabilizing the actin filaments, prevents thrombin-induced NF-kappaB activation and consequently, expression of its target gene, ICAM-1. The blockade of NF-kappaB activation occurs downstream of IkappaBalpha degradation and is associated with impaired RelA/p65 nuclear translocation. Importantly, thrombin induces association of RelA/p65 with actin and this interaction is sensitive to stabilization/destabilization of the actin filaments. In parallel studies, stabilizing or destabilizing the actin filaments fails to inhibit RelA/p65 nuclear accumulation and ICAM-1 expression by tumor necrosis factor alpha, consistent with its inability to induce actin filament formation comparable with thrombin. Thus, these studies reveal the existence of actin cytoskeleton-dependent and -independent pathways that may be engaged in a stimulus-specific manner to facilitate RelA/p65 nuclear import and thereby ICAM-1 expression in endothelial cells.
Actin and microtubule networks contribute differently to cell response for small and large strains
NASA Astrophysics Data System (ADS)
Kubitschke, H.; Schnauss, J.; Nnetu, K. D.; Warmt, E.; Stange, R.; Kaes, J.
2017-09-01
Cytoskeletal filaments provide cells with mechanical stability and organization. The main key players are actin filaments and microtubules governing a cell’s response to mechanical stimuli. We investigated the specific influences of these crucial components by deforming MCF-7 epithelial cells at small (≤5% deformation) and large strains (>5% deformation). To understand specific contributions of actin filaments and microtubules, we systematically studied cellular responses after treatment with cytoskeleton influencing drugs. Quantification with the microfluidic optical stretcher allowed capturing the relative deformation and relaxation of cells under different conditions. We separated distinctive deformational and relaxational contributions to cell mechanics for actin and microtubule networks for two orders of magnitude of drug dosages. Disrupting actin filaments via latrunculin A, for instance, revealed a strain-independent softening. Stabilizing these filaments by treatment with jasplakinolide yielded cell softening for small strains but showed no significant change at large strains. In contrast, cells treated with nocodazole to disrupt microtubules displayed a softening at large strains but remained unchanged at small strains. Stabilizing microtubules within the cells via paclitaxel revealed no significant changes for deformations at small strains, but concentration-dependent impact at large strains. This suggests that for suspended cells, the actin cortex is probed at small strains, while at larger strains; the whole cell is probed with a significant contribution from the microtubules.
Unterberger, Michael J; Holzapfel, Gerhard A
2014-11-01
The protein actin is a part of the cytoskeleton and, therefore, responsible for the mechanical properties of the cells. Starting with the single molecule up to the final structure, actin creates a hierarchical structure of several levels exhibiting a remarkable behavior. The hierarchy spans several length scales and limitations in computational power; therefore, there is a call for different mechanical modeling approaches for the different scales. On the molecular level, we may consider each atom in molecular dynamics simulations. Actin forms filaments by combining the molecules into a double helix. In a model, we replace molecular subdomains using coarse-graining methods, allowing the investigation of larger systems of several atoms. These models on the nanoscale inform continuum mechanical models of large filaments, which are based on worm-like chain models for polymers. Assemblies of actin filaments are connected with cross-linker proteins. Models with discrete filaments, so-called Mikado models, allow us to investigate the dependence of the properties of networks on the parameters of the constituents. Microstructurally motivated continuum models of the networks provide insights into larger systems containing cross-linked actin networks. Modeling of such systems helps to gain insight into the processes on such small scales. On the other hand, they call for verification and hence trigger the improvement of established experiments and the development of new methods.
Tobacco Arp3 is localized to actin-nucleating sites in vivo
Maisch, Jan; Fišerová, Jindřiška; Fischer, Lukáš; Nick, Peter
2009-01-01
The polarity of actin is a central determinant of intracellular transport in plant cells. To visualize actin polarity in living plant cells, the tobacco homologue of the actin-related protein 3 (ARP3) was cloned and a fusion with the red fluorescent protein (RFP) was generated. Upon transient expression of these fusions in the tobacco cell line BY-2 (Nicotiana tabacum L. cv. Bright Yellow 2), punctate structures were observed near the nuclear envelope and in the cortical plasma. These dots could be shown to decorate actin filaments by expressing RFP–ARP3 in a marker line, where actin was tagged by GFP (green fluorescent protein)–FABD (fimbrin actin-binding domain 2). When actin filaments were disrupted by latrunculin B or by prolonged cold treatment, and subsequently allowed to recover, the actin filaments reformed from the RFP–ARP3 structures, that therefore represented actin nucleation sites. The intracellular distribution of these sites was followed during the formation of pluricellular files, and it was observed that the density of RFP–ARP3 increased in the apex of the polarized, terminal cells of a file, whereas it was equally distributed in the central cells of a file. These findings are interpreted in terms of position-dependent differences of actin organization. PMID:19129161
Power transduction of actin filaments ratcheting in vitro against a load.
Démoulin, Damien; Carlier, Marie-France; Bibette, Jérôme; Baudry, Jean
2014-12-16
The actin cytoskeleton has the unique capability of producing pushing forces at the leading edge of motile cells without the implication of molecular motors. This phenomenon has been extensively studied theoretically, and molecular models, including the widely known Brownian ratchet, have been proposed. However, supporting experimental work is lacking, due in part to hardly accessible molecular length scales. We designed an experiment to directly probe the mechanism of force generation in a setup where a population of actin filaments grows against a load applied by magnetic microparticles. The filaments, arranged in stiff bundles by fascin, are constrained to point toward the applied load. In this protrusion-like geometry, we are able to directly measure the velocity of filament elongation and its dependence on force. Using numerical simulations, we provide evidence that our experimental data are consistent with a Brownian ratchet-based model. We further demonstrate the existence of a force regime far below stalling where the mechanical power transduced by the ratcheting filaments to the load is maximal. The actin machinery in migrating cells may tune the number of filaments at the leading edge to work in this force regime.
Actin-Binding Protein Requirement for Cortical Stability and Efficient Locomotion
NASA Astrophysics Data System (ADS)
Cunningham, C. Casey; Gorlin, Jed B.; Kwiatkowski, David J.; Hartwig, John H.; Janmey, Paul A.; Randolph Byers, H.; Stossel, Thomas P.
1992-01-01
Three unrelated tumor cell lines derived from human malignant melanomas lack actin-binding protein (ABP), which cross-links actin filaments in vitro and connects these filaments to plasma membrane glycoproteins. The ABP-deficient cells have impaired locomotion and display circumferential blebbing of the plasma membrane. Expression of ABP in one of the lines after transfection restored translocational motility and reduced membrane blebbing. These findings establish that ABP functions to stabilize cortical actin in vivo and is required for efficient cell locomotion.
Cdk1-dependent control of membrane-trafficking dynamics
McCusker, Derek; Royou, Anne; Velours, Christophe; Kellogg, Douglas
2012-01-01
Cyclin-dependent kinase 1 (Cdk1) is required for initiation and maintenance of polarized cell growth in budding yeast. Cdk1 activates Rho-family GTPases, which polarize the actin cytoskeleton for delivery of membrane to growth sites via the secretory pathway. Here we investigate whether Cdk1 plays additional roles in the initiation and maintenance of polarized cell growth. We find that inhibition of Cdk1 causes a cell surface growth defect that is as severe as that caused by actin depolymerization. However, unlike actin depolymerization, Cdk1 inhibition does not result in a massive accumulation of intracellular secretory vesicles or their cargoes. Analysis of post-Golgi vesicle dynamics after Cdk1 inhibition demonstrates that exocytic vesicles are rapidly mistargeted away from the growing bud, possibly to the endomembrane/vacuolar system. Inhibition of Cdk1 also causes defects in the organization of endocytic and exocytic zones at the site of growth. Cdk1 thus modulates membrane-trafficking dynamics, which is likely to play an important role in coordinating cell surface growth with cell cycle progression. PMID:22767578
Characterization of Two Classes of Small Molecule Inhibitors of Arp2/3 Complex
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nolen, B.; Tomasevic, N; Russell, A
2009-01-01
Polymerization of actin filaments directed by the actin-related protein (Arp)2/3 complex supports many types of cellular movements. However, questions remain regarding the relative contributions of Arp2/3 complex versus other mechanisms of actin filament nucleation to processes such as path finding by neuronal growth cones; this is because of the lack of simple methods to inhibit Arp2/3 complex reversibly in living cells. Here we describe two classes of small molecules that bind to different sites on the Arp2/3 complex and inhibit its ability to nucleate actin filaments. CK-0944636 binds between Arp2 and Arp3, where it appears to block movement of Arp2more » and Arp3 into their active conformation. CK-0993548 inserts into the hydrophobic core of Arp3 and alters its conformation. Both classes of compounds inhibit formation of actin filament comet tails by Listeria and podosomes by monocytes. Two inhibitors with different mechanisms of action provide a powerful approach for studying the Arp2/3 complex in living cells.« less
A structural study of F-actin - filamin networks
NASA Astrophysics Data System (ADS)
Ahrens-Braunstein, Ashley; Nguyen, Lam; Hirst, Linda
2010-03-01
The cell's ability to move and contract is attributed to the semi-flexible filamentous protein, F -actin, one of the three filaments in the cytoskeleton. Actin bundling can be formed by a cross-linking actin binding protein (ABP) filamin. By examining filamin's cross-linking abilities at different concentrations and molar ratios, we can study the flexibility, structure and multiple network formations created when cross-linking F-actin with this protein. We have studied the phase diagram of this protein system using fluorescence microscopy, analyzing the network structures observed in the context of a coarse grained molecular dynamics simulation carried out by our group.
Stokasimov, Ema; Rubenstein, Peter A.
2009-01-01
Actin can exist in multiple conformations necessary for normal function. Actin isoforms, although highly conserved in sequence, exhibit different biochemical properties and cellular roles. We used amide proton hydrogen/deuterium (HD) exchange detected by mass spectrometry to analyze conformational differences between Saccharomyces cerevisiae and muscle actins in the G and F forms to gain insight into these differences. We also utilized HD exchange to study interdomain and allosteric communication in yeast-muscle hybrid actins to better understand the conformational dynamics of actin. Areas showing differences in HD exchange between G- and F-actins are areas of intermonomer contacts, consistent with the current filament models. Our results showed greater exchange for yeast G-actin compared with muscle actin in the barbed end pivot region and areas in subdomains 1 and 2 and for F-actin in monomer-monomer contact areas. These results suggest greater flexibility of the yeast actin monomer and filament compared with muscle actin. For hybrid G-actins, the muscle-like and yeastlike parts of the molecule generally showed exchange characteristics resembling their parent actins. A few exceptions were a peptide on top of subdomain 2 and the pivot region between subdomains 1 and 3 with muscle actin-like exchange characteristics although the areas were yeastlike. These results demonstrate that there is cross-talk between subdomains 1 and 2 and the large and small domains. Hybrid F-actin data showing greater exchange compared with both yeast and muscle actins are consistent with mismatched yeast-muscle interfaces resulting in decreased stability of the hybrid filament contacts. PMID:19605362
Dual effect of pseudorabies virus growth factor (PRGF) displayed on actin cytoskeleton.
Urbancíková, M; Vozárová, G; Lesko, J; Golais, F
1999-10-01
Pseudorabies virus growth factor (PRGF) was shown to possess transforming activity as well as transformation repressing activity in in vitro systems. In order to better understand these phenomena we studied actin cytoskeleton and its alterations induced by PRGF using normal human fibroblasts VH-10 and transformed cell line HeLa. For specific detection of filamentous actin cells were stained with phalloidin conjugated with fluorescein isothiocyanate (FITC)-phalloidin. PRGF was applied to VH-10 cells for various length of time from 10 min up to 48 h. The effect was very fast and changes in actin filament composition could be detected already after 10 min. In comparison to untreated cells the staining of treated cells was more diffuse and a number of actin microfilaments in individual stress fibers became reduced. After 30 min thick short actin bundles appeared in the perinuclear region. A 24-h exposure resulted in a large reduction of actin bundles. After additional 24 h a partial restoration of actin cytoskeleton in cells was observed. In transformed HeLa cells PRGF induced opposite process than in normal cells: the number of filamentous actin structures increased. We hypothesise that PRGF may act as a transcription-like factor and may initiate changes in gene expression which consequently result in actin cytoskeleton alterations.
A novel role for WAVE1 in controlling actin network growth rate and architecture
Sweeney, Meredith O.; Collins, Agnieszka; Padrick, Shae B.; Goode, Bruce L.
2015-01-01
Branched actin filament networks in cells are assembled through the combined activities of Arp2/3 complex and different WASP/WAVE proteins. Here we used TIRF and electron microscopy to directly compare for the first time the assembly kinetics and architectures of actin filament networks produced by Arp2/3 complex and dimerized VCA regions of WAVE1, WAVE2, or N-WASP. WAVE1 produced strikingly different networks from WAVE2 or N-WASP, which comprised unexpectedly short filaments. Further analysis showed that the WAVE1-specific activity stemmed from an inhibitory effect on filament elongation both in the presence and absence of Arp2/3 complex, which was observed even at low stoichiometries of WAVE1 to actin monomers, precluding an effect from monomer sequestration. Using a series of VCA chimeras, we mapped the elongation inhibitory effects of WAVE1 to its WH2 (“V”) domain. Further, mutating a single conserved lysine residue potently disrupted WAVE1's inhibitory effects. Taken together, our results show that WAVE1 has unique activities independent of Arp2/3 complex that can govern both the growth rates and architectures of actin filament networks. Such activities may underlie previously observed differences between the cellular functions of WAVE1 and WAVE2. PMID:25473116
Tikoo, A; Cutler, H; Lo, S H; Chen, L B; Maruta, H
1999-01-01
For transforming normal fibroblasts to malignant cells, oncogenic Ras mutants such as v-Ha-ras require Rho family GTPases (Rho, Rac, and CDC42) that are responsible for controlling actin-cytoskeleton organization. Ras activates Rac through a PI-3 kinase-mediated pathway. Rac causes uncapping of actin filaments (F-actin) at the plus-ends, through phosphatidylinositol 4,5 bisphosphate (PIP2), and eventually induces membrane ruffling. Several distinct F-actin/PIP2-binding proteins, such as gelsolin, which severs and caps the plus-ends of actin filaments, or HS1, which cross-links actin filaments, have been shown to suppress v-Ha-Ras-induced malignant transformation when they are overexpressed. Interestingly, an F-actin cross-linking drug (photosensitizer) called MKT-077 suppresses Ras transformation. Thus, an F-actin capping/severing drug might also have an anticancer potential. This study was conducted to determine first whether Ras-induced malignant phenotype (anchorage-independent growth) is suppressed by overexpression of the gene encoding a large plus-end F-actin capping protein called tensin and second to test the anti-Ras potential of a unique fungal antibiotic (small compound) called chaetoglobosin K (CK) that also caps the plus-ends of actin filaments. DNA transfection with a retroviral vector carrying the tensin cDNA was used to overexpress tensin in v-Ha-Ras-transformed NIH 3T3 cells. All stable tensin transfectants rarely formed colonies in soft agar, indicating that tensin suppresses the anchorage-independent growth. The anti-Ras action of CK was determined by incubating the Ras-transformants in the presence of CK in soft agar. Two microM CK almost completely inhibited their colony formation, indicating that CK also suppresses the malignant phenotype. However, unlike tensin, CK causes an apoptosis of Ras-transformed NIH 3T3 cells and, less effectively, of normal NIH 3T3 cells, indicating that CK has an F-actin capping-independent side effect(s). CK-induced apoptosis is at least in part caused by CK-induced inhibition of the kinase PKB/AKT. However, a specific ICE/caspase-1 inhibitor called N1445 completely abolished the CK-induced apoptosis by reactivating PKB, but without affecting the CK-induced suppression of Ras transformation. Like the F-actin cross-linking drug MKT-077, the F-actin capping drug CK may be useful for the treatment of Ras-associated cancers if it is combined with the ICE inhibitor N1445, which abolishes the side effect of CK. Our observations that two distinct F-actin capping molecules (i.e., tensin and CK) suppress Ras-induced malignant phenotype strongly suggest, if not prove, that capping of actin filaments at the plus-ends alone is sufficient to block one of the Ras signaling pathways essential for its oncogenicity. This notion is compatible with the fact that Ras induces the uncapping of actin filaments at the plus-ends through the Rac/PIP2 pathway.
Demonstration of prominent actin filaments in the root columella
NASA Technical Reports Server (NTRS)
Collings, D. A.; Zsuppan, G.; Allen, N. S.; Blancaflor, E. B.; Brown, C. S. (Principal Investigator)
2001-01-01
The distribution of actin filaments within the gravity-sensing columella cells of plant roots remains poorly understood, with studies over numerous years providing inconsistent descriptions of actin organization in these cells. This uncertainty in actin organization, and thus in actin's role in graviperception and gravisignaling, has led us to investigate actin arrangements in the columella cells of Zea mays L., Medicago truncatula Gaertn., Linum usitatissiilium L. and Nicotianla benthamiana Domin. Actin organization was examined using a combination of optimized immunofluorescence techniques, and an improved fluorochrome-conjugated phalloidin labeling method reliant on 3-maleimidobenzoyl-N-hydroxy-succinimide ester (MBS) cross-linking combined with glycerol permeabilization. Confocal microscopy of root sections labeled with anti-actin antibodies revealed patterns suggestive of actin throughout the columella region. These patterns included short and fragmented actin bundles, fluorescent rings around amyloplasts and intense fluorescence originating from the nucleus. Additionally, confocal microscopy of MBS-stabilized and Alexa Fluor-phalloidin-labeled root sections revealed a previously undetected state of actin organization in the columella. Discrete actin structures surrounded the amyloplasts and prominent actin cables radiated from the nuclear surface toward the cell periphery. Furthermore, the cortex of the columella cells contained fine actin bundles (or single filaments) that had a predominant transverse orientation. We also used confocal microscopy of plant roots expressing endoplasmic reticulum (ER)-targeted green fluorescent protein to demonstrate rapid ER movements within the columella cells, suggesting that the imaged actin network is functional. The successful identification of discrete actin structures in the root columella cells forms the perception and signaling.
Determination of the myosin step size from mechanical and kinetic data.
Pate, E; White, H; Cooke, R
1993-01-01
During muscle contraction, work is generated when a myosin cross-bridge attaches to an actin filament and exerts a force on it through some power-stroke distance, h. At the end of this power stroke, attached myosin heads are carried into regions where they exert a negative force on the actin filament (the drag stroke) and where they are released rapidly from actin by ATP binding. Although the length of the power stroke remains controversial, average distance traversed in the drag-stroke region can be determined when one knows both rate of cross-bridge dissociation and filament-sliding velocity. At maximum contraction velocity, the average force exerted in the drag stroke must balance that exerted in the power stroke. We discuss here a simple model of cross-bridge interaction that allows one to calculate the force exerted in the drag stroke and to relate this to the power-stroke distance h traversed by cross-bridges in the positive-force region. Both the rate at which myosin can be dissociated from actin and the velocity at which an actin filament can be translated have been measured for a series of myosin isozymes and for different substrates, producing a wide range of values for each. Nonetheless, we show here that the rate of myosin dissociation from actin correlates well with the velocity of filament sliding, providing support for the simple model presented and suggesting that the power stroke is approximately 10 nm in length. PMID:8460156
Binding mode of cytochalasin B to F-actin is altered by lateral binding of regulatory proteins.
Suzuki, N; Mihashi, K
1991-01-01
The binding of cytochalasin B (CB) to F-actin was studied using a trace amount of [3H]-cytochalasin B. F-Actin-bound CB was separated from free CB by ultracentrifugation and the amount of F-actin-bound CB was determined by comparing the radioactivity both in the supernatant and in the precipitate. A filament of pure F-actin possessed one high-affinity binding site for CB (Kd = 5.0 nM) at the B-end. When the filament was bound to native tropomyosin (complex of tropomyosin and troponin), two low-affinity binding sites for CB (Kd = 230 nM) were created, while the high-affinity binding site was reserved (Kd = 3.4 nM). It was concluded that the creation of low-affinity binding sites was primarily due to binding of tropomyosin to F-actin, as judged from the following two observations: (1) a filament of F-actin/tropomyosin complex possessed one high-affinity binding site (Kd = 3.9 nM) plus two low-affinity binding sites (Kd = 550 nM); (2) the Ca2(+)-receptive state of troponin C in F-actin/native tropomyosin complex did not affect CB binding.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blom, Magdalena; Reis, Katarina; Heldin, Johan
RhoD belongs to the Rho GTPases, a protein family responsible for the regulation and organization of the actin cytoskeleton, and, consequently, many cellular processes like cell migration, cell division and vesicle trafficking. Here, we demonstrate that the actin cytoskeleton is dynamically regulated by increased or decreased protein levels of RhoD. Ectopic expression of RhoD has previously been shown to give an intertwined weave of actin filaments. We show that this RhoD-dependent effect is detected in several cell types and results in a less dynamic actin filament system. In contrast, RhoD depletion leads to increased actin filament-containing structures, such as corticalmore » actin, stress fibers and edge ruffles. Moreover, vital cellular functions such as cell migration and proliferation are defective when RhoD is silenced. Taken together, we present data suggesting that RhoD is an important component in the control of actin dynamics and directed cell migration. - Highlights: • Increased RhoD expression leads to loss of actin structures, e.g. stress fibers and gives rise to decreased actin dynamics. • RhoD knockdown induces various actin-containing structures such as edge ruffles, stress fibers and cortical actin, in a cell-type specific manner. • RhoD induces specific actin rearrangements depending on its subcellular localization. • RhoD knockdown has effects on cellular processes, such as directed cell migration and proliferation.« less
Gamma Interferon-Induced Guanylate Binding Protein 1 Is a Novel Actin Cytoskeleton Remodeling Factor
Ostler, Nicole; Britzen-Laurent, Nathalie; Liebl, Andrea; Naschberger, Elisabeth; Lochnit, Günter; Ostler, Markus; Forster, Florian; Kunzelmann, Peter; Ince, Semra; Supper, Verena; Praefcke, Gerrit J. K.; Schubert, Dirk W.; Stockinger, Hannes; Herrmann, Christian
2014-01-01
Gamma interferon (IFN-γ) regulates immune defenses against viruses, intracellular pathogens, and tumors by modulating cell proliferation, migration, invasion, and vesicle trafficking processes. The large GTPase guanylate binding protein 1 (GBP-1) is among the cellular proteins that is the most abundantly induced by IFN-γ and mediates its cell biologic effects. As yet, the molecular mechanisms of action of GBP-1 remain unknown. Applying an interaction proteomics approach, we identified actin as a strong and specific binding partner of GBP-1. Furthermore, GBP-1 colocalized with actin at the subcellular level and was both necessary and sufficient for the extensive remodeling of the fibrous actin structure observed in IFN-γ-exposed cells. These effects were dependent on the oligomerization and the GTPase activity of GBP-1. Purified GBP-1 and actin bound to each other, and this interaction was sufficient to impair the formation of actin filaments in vitro, as demonstrated by atomic force microscopy, dynamic light scattering, and fluorescence-monitored polymerization. Cosedimentation and band shift analyses demonstrated that GBP-1 binds robustly to globular actin and slightly to filamentous actin. This indicated that GBP-1 may induce actin remodeling via globular actin sequestering and/or filament capping. These results establish GBP-1 as a novel member within the family of actin-remodeling proteins specifically mediating IFN-γ-dependent defense strategies. PMID:24190970
Ostler, Nicole; Britzen-Laurent, Nathalie; Liebl, Andrea; Naschberger, Elisabeth; Lochnit, Günter; Ostler, Markus; Forster, Florian; Kunzelmann, Peter; Ince, Semra; Supper, Verena; Praefcke, Gerrit J K; Schubert, Dirk W; Stockinger, Hannes; Herrmann, Christian; Stürzl, Michael
2014-01-01
Gamma interferon (IFN-γ) regulates immune defenses against viruses, intracellular pathogens, and tumors by modulating cell proliferation, migration, invasion, and vesicle trafficking processes. The large GTPase guanylate binding protein 1 (GBP-1) is among the cellular proteins that is the most abundantly induced by IFN-γ and mediates its cell biologic effects. As yet, the molecular mechanisms of action of GBP-1 remain unknown. Applying an interaction proteomics approach, we identified actin as a strong and specific binding partner of GBP-1. Furthermore, GBP-1 colocalized with actin at the subcellular level and was both necessary and sufficient for the extensive remodeling of the fibrous actin structure observed in IFN-γ-exposed cells. These effects were dependent on the oligomerization and the GTPase activity of GBP-1. Purified GBP-1 and actin bound to each other, and this interaction was sufficient to impair the formation of actin filaments in vitro, as demonstrated by atomic force microscopy, dynamic light scattering, and fluorescence-monitored polymerization. Cosedimentation and band shift analyses demonstrated that GBP-1 binds robustly to globular actin and slightly to filamentous actin. This indicated that GBP-1 may induce actin remodeling via globular actin sequestering and/or filament capping. These results establish GBP-1 as a novel member within the family of actin-remodeling proteins specifically mediating IFN-γ-dependent defense strategies.
Bombardier, Jeffrey P.; Eskin, Julian A.; Jaiswal, Richa; Corrêa, Ivan R.; Xu, Ming-Qun; Goode, Bruce L.; Gelles, Jeff
2015-01-01
Precise control of actin filament length is essential to many cellular processes. Formins processively elongate filaments, whereas capping protein (CP) binds to barbed ends and arrests polymerization. While genetic and biochemical evidence has indicated that these two proteins function antagonistically, the mechanism underlying the antagonism has remained unresolved. Here we use multi-wavelength single-molecule fluorescence microscopy to observe the fully reversible formation of a long-lived ‘decision complex' in which a CP dimer and a dimer of the formin mDia1 simultaneously bind the barbed end. Further, mDia1 displaced from the barbed end by CP can randomly slide along the filament and later return to the barbed end to re-form the complex. Quantitative kinetic analysis reveals that the CP-mDia1 antagonism that we observe in vitro occurs through the decision complex. Our observations suggest new molecular mechanisms for the control of actin filament length and for the capture of filament barbed ends in cells. PMID:26566078
Whiteman, Ineka T; Gervasio, Othon L; Cullen, Karen M; Guillemin, Gilles J; Jeong, Erica V; Witting, Paul K; Antao, Shane T; Minamide, Laurie S; Bamburg, James R; Goldsbury, Claire
2009-10-14
In Alzheimer's disease (AD), rod-like cofilin aggregates (cofilin-actin rods) and thread-like inclusions containing phosphorylated microtubule-associated protein (pMAP) tau form in the brain (neuropil threads), and the extent of their presence correlates with cognitive decline and disease progression. The assembly mechanism of these respective pathological lesions and the relationship between them is poorly understood, yet vital to understanding the causes of sporadic AD. We demonstrate that, during mitochondrial inhibition, activated actin-depolymerizing factor (ADF)/cofilin assemble into rods along processes of cultured primary neurons that recruit pMAP/tau and mimic neuropil threads. Fluorescence resonance energy transfer analysis revealed colocalization of cofilin-GFP (green fluorescent protein) and pMAP in rods, suggesting their close proximity within a cytoskeletal inclusion complex. The relationship between pMAP and cofilin-actin rods was further investigated using actin-modifying drugs and small interfering RNA knockdown of ADF/cofilin in primary neurons. The results suggest that activation of ADF/cofilin and generation of cofilin-actin rods is required for the subsequent recruitment of pMAP into the inclusions. Additionally, we were able to induce the formation of pMAP-positive ADF/cofilin rods by exposing cells to exogenous amyloid-beta (Abeta) peptides. These results reveal a common pathway for pMAP and cofilin accumulation in neuronal processes. The requirement of activated ADF/cofilin for the sequestration of pMAP suggests that neuropil thread structures in the AD brain may be initiated by elevated cofilin activation and F-actin bundling that can be caused by oxidative stress, mitochondrial dysfunction, or Abeta peptides, all suspected initiators of synaptic loss and neurodegeneration in AD.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ben-Dov, Nadav; Korenstein, Rafi, E-mail: korens@post.tau.ac.il
Recently it has been shown that elevating proton concentration at the cell surface stimulates the formation of membrane invaginations and vesicles accompanied by an enhanced uptake of macromolecules. While the initial induction of inward membrane curvature was rationalized in terms of proton-based increase of charge asymmetry across the membrane, the mechanisms underlying vesicle formation and its scission are still unknown. In light of the critical role of actin in vesicle formation during endocytosis, the present study addresses the involvement of cytoskeletal actin in proton-induced uptake (PIU). The uptake of dextran-FITC is used as a measure for the factual fraction ofmore » inward invaginations that undergo scission from the cell's plasma membrane. Our findings show that the rate of PIU in suspended cells is constant, whereas the rate of PIU in adherent cells is gradually increased in time, saturating at the level possessed by suspended cells. This is consistent with pH induced gradual degradation of stress-fibers in adherent cells. Wortmannin and calyculin-A are able to elevate PIU by 25% in adherent cells but not in suspended cells, while cytochalasin-D, rapamycin and latrunculin-A elevate PIU both in adherent and suspended cells. However, extensive actin depolymerization by high concentrations of latrunculin-A is able to inhibit PIU. We conclude that proton-induced membrane vesiculation is restricted by the actin structural resistance to the plasma membrane bending. Nevertheless, a certain degree of cortical actin restructuring is required for the completion of the scission process. - Highlights: ► Acidification of cells' exterior enhances uptake of macromolecules by the cells. ► Disruption of actin stress fibers leads to enhancement of proton induced uptake. ► Extensive depolymerization of cellular actin attenuates proton-induced uptake.« less
Ji, Wei-ke; Hatch, Anna L; Merrill, Ronald A; Strack, Stefan; Higgs, Henry N
2015-01-01
While the dynamin GTPase Drp1 plays a critical role during mitochondrial fission, mechanisms controlling its recruitment to fission sites are unclear. A current assumption is that cytosolic Drp1 is recruited directly to fission sites immediately prior to fission. Using live-cell microscopy, we find evidence for a different model, progressive maturation of Drp1 oligomers on mitochondria through incorporation of smaller mitochondrially-bound Drp1 units. Maturation of a stable Drp1 oligomer does not forcibly lead to fission. Drp1 oligomers also translocate directionally along mitochondria. Ionomycin, a calcium ionophore, causes rapid mitochondrial accumulation of actin filaments followed by Drp1 accumulation at the fission site, and increases fission rate. Inhibiting actin polymerization, myosin IIA, or the formin INF2 reduces both un-stimulated and ionomycin-induced Drp1 accumulation and mitochondrial fission. Actin filaments bind purified Drp1 and increase GTPase activity in a manner that is synergistic with the mitochondrial protein Mff, suggesting a role for direct Drp1/actin interaction. We propose that Drp1 is in dynamic equilibrium on mitochondria in a fission-independent manner, and that fission factors such as actin filaments target productive oligomerization to fission sites. DOI: http://dx.doi.org/10.7554/eLife.11553.001 PMID:26609810
The availability of filament ends modulates actin stochastic dynamics in live plant cells
Li, Jiejie; Staiger, Benjamin H.; Henty-Ridilla, Jessica L.; Abu-Abied, Mohamad; Sadot, Einat; Blanchoin, Laurent; Staiger, Christopher J.
2014-01-01
A network of individual filaments that undergoes incessant remodeling through a process known as stochastic dynamics comprises the cortical actin cytoskeleton in plant epidermal cells. From images at high spatial and temporal resolution, it has been inferred that the regulation of filament barbed ends plays a central role in choreographing actin organization and turnover. How this occurs at a molecular level, whether different populations of ends exist in the array, and how individual filament behavior correlates with the overall architecture of the array are unknown. Here we develop an experimental system to modulate the levels of heterodimeric capping protein (CP) and examine the consequences for actin dynamics, architecture, and cell expansion. Significantly, we find that all phenotypes are the opposite for CP-overexpression (OX) cells compared with a previously characterized cp-knockdown line. Specifically, CP OX lines have fewer filament–filament annealing events, as well as reduced filament lengths and lifetimes. Further, cp-knockdown and OX lines demonstrate the existence of a subpopulation of filament ends sensitive to CP concentration. Finally, CP levels correlate with the biological process of axial cell expansion; for example, epidermal cells from hypocotyls with reduced CP are longer than wild-type cells, whereas CP OX lines have shorter cells. On the basis of these and other genetic studies in this model system, we hypothesize that filament length and lifetime positively correlate with the extent of axial cell expansion in dark-grown hypocotyls. PMID:24523291
Spatial distribution of filament elasticity determines the migratory behaviors of a cell
Harn, Hans I-Chen; Hsu, Chao-Kai; Wang, Yang-Kao; Huang, Yi-Wei; Chiu, Wen-Tai; Lin, Hsi-Hui; Cheng, Chao-Min; Tang, Ming-Jer
2016-01-01
ABSTRACT Any cellular response leading to morphological changes is highly tuned to balance the force generated from structural reorganization, provided by actin cytoskeleton. Actin filaments serve as the backbone of intracellular force, and transduce external mechanical signal via focal adhesion complex into the cell. During migration, cells not only undergo molecular changes but also rapid mechanical modulation. Here we focus on determining, the role of spatial distribution of mechanical changes of actin filaments in epithelial, mesenchymal, fibrotic and cancer cells with non-migration, directional migration, and non-directional migration behaviors using the atomic force microscopy. We found 1) non-migratory cells only generated one type of filament elasticity, 2) cells generating spatially distributed two types of filament elasticity showed directional migration, and 3) pathologic cells that autonomously generated two types of filament elasticity without spatial distribution were actively migrating non-directionally. The demonstration of spatial regulation of filament elasticity of different cell types at the nano-scale highlights the coupling of cytoskeletal function with physical characters at the sub-cellular level, and provides new research directions for migration related disease. PMID:26919488
14-3-3 Regulates Actin Filament Formation in the Deep-Branching Eukaryote Giardia lamblia
Xu, Jennifer; Steele-Ogus, Melissa; Alas, Germain C. M.
2017-01-01
ABSTRACT The phosphoserine/phosphothreonine-binding protein 14-3-3 is known to regulate actin; this function has been previously attributed to sequestration of phosphorylated cofilin. 14-3-3 was identified as an actin-associated protein in the deep-branching eukaryote Giardia lamblia; however, Giardia lacks cofilin and all other canonical actin-binding proteins (ABPs). Thus, the role of G. lamblia 14-3-3 (Gl-14-3-3) in actin regulation was unknown. Gl-14-3-3 depletion resulted in an overall disruption of actin organization characterized by ectopically distributed short actin filaments. Using phosphatase and kinase inhibitors, we demonstrated that actin phosphorylation correlated with destabilization of the actin network and increased complex formation with 14-3-3, while blocking actin phosphorylation stabilized actin filaments and attenuated complex formation. Giardia’s sole Rho family GTPase, Gl-Rac, modulates Gl-14-3-3’s association with actin, providing the first connection between Gl-Rac and the actin cytoskeleton in Giardia. Giardia actin (Gl-actin) contains two putative 14-3-3 binding motifs, one of which (S330) is conserved in mammalian actin. Mutation of these sites reduced, but did not completely disrupt, the association with 14-3-3. Native gels and overlay assays indicate that intermediate proteins are required to support complex formation between 14-3-3 and actin. Overall, our results support a role for 14-3-3 as a regulator of actin; however, the presence of multiple 14-3-3–actin complexes suggests a more complex regulatory relationship than might be expected for a minimalistic parasite. IMPORTANCE Giardia lacks canonical actin-binding proteins. Gl-14-3-3 was identified as an actin interactor, but the significance of this interaction was unknown. Loss of Gl-14-3-3 results in ectopic short actin filaments, indicating that Gl-14-3-3 is an important regulator of the actin cytoskeleton in Giardia. Drug studies indicate that Gl-14-3-3 complex formation is in part phospho-regulated. We demonstrate that complex formation is downstream of Giardia’s sole Rho family GTPase, Gl-Rac. This result provides the first mechanistic connection between Gl-Rac and Gl-actin in Giardia. Native gels and overlay assays indicate intermediate proteins are required to support the interaction between Gl-14-3-3 and Gl-actin, suggesting that Gl-14-3-3 is regulating multiple Gl-actin complexes. PMID:28932813
Quintá, Héctor R; Wilson, Carlos; Blidner, Ada G; González-Billault, Christian; Pasquini, Laura A; Rabinovich, Gabriel A; Pasquini, Juana M
2016-09-01
Axonal growth cone collapse following spinal cord injury (SCI) is promoted by semaphorin3A (Sema3A) signaling via PlexinA4 surface receptor. This interaction triggers intracellular signaling events leading to increased hydrogen peroxide levels which in turn promote filamentous actin (F-actin) destabilization and subsequent inhibition of axonal re-growth. In the current study, we demonstrated that treatment with galectin-1 (Gal-1), in its dimeric form, promotes a decrease in hydrogen peroxide (H2O2) levels and F-actin repolimerization in the growth cone and in the filopodium of neuron surfaces. This effect was dependent on the carbohydrate recognition activity of Gal-1, as it was prevented using a Gal-1 mutant lacking carbohydrate-binding activity. Furthermore, Gal-1 promoted its own active ligand-mediated endocytosis together with the PlexinA4 receptor, through mechanisms involving complex branched N-glycans. In summary, our results suggest that Gal-1, mainly in its dimeric form, promotes re-activation of actin cytoskeleton dynamics via internalization of the PlexinA4/Gal-1 complex. This mechanism could explain, at least in part, critical events in axonal regeneration including the full axonal re-growth process, de novo formation of synapse clustering, axonal re-myelination and functional recovery of coordinated locomotor activities in an in vivo acute and chronic SCI model. Axonal regeneration is a response of injured nerve cells critical for nerve repair in human spinal cord injury. Understanding the molecular mechanisms controlling nerve repair by Galectin-1, may be critical for therapeutic intervention. Our results show that Galectin-1; in its dimeric form, interferes with hydrogen peroxide production triggered by Semaphorin3A. The high levels of this reactive oxygen species (ROS) seem to be the main factor preventing axonal regeneration due to promotion of actin depolymerization at the axonal growth cone. Thus, Galectin-1 administration emerges as a novel therapeutic modality for promoting nerve repair and preventing axonal loss. Copyright © 2016 Elsevier Inc. All rights reserved.
A Prestressed Cable Network Model of the Adherent Cell Cytoskeleton
Coughlin, Mark F.; Stamenović, Dimitrije
2003-01-01
A prestressed cable network is used to model the deformability of the adherent cell actin cytoskeleton. The overall and microstructural model geometries and cable mechanical properties were assigned values based on observations from living cells and mechanical measurements on isolated actin filaments, respectively. The models were deformed to mimic cell poking (CP), magnetic twisting cytometry (MTC) and magnetic bead microrheometry (MBM) measurements on living adherent cells. The models qualitatively and quantitatively captured the fibroblast cell response to the deformation imposed by CP while exhibiting only some qualitative features of the cell response to MTC and MBM. The model for CP revealed that the tensed peripheral actin filaments provide the key resistance to indentation. The actin filament tension that provides mechanical integrity to the network was estimated at ∼158 pN, and the nonlinear mechanical response during CP originates from filament kinematics. The MTC and MBM simulations revealed that the model is incomplete, however, these simulations show cable tension as a key determinant of the model response. PMID:12547813
A prestressed cable network model of the adherent cell cytoskeleton.
Coughlin, Mark F; Stamenović, Dimitrije
2003-02-01
A prestressed cable network is used to model the deformability of the adherent cell actin cytoskeleton. The overall and microstructural model geometries and cable mechanical properties were assigned values based on observations from living cells and mechanical measurements on isolated actin filaments, respectively. The models were deformed to mimic cell poking (CP), magnetic twisting cytometry (MTC) and magnetic bead microrheometry (MBM) measurements on living adherent cells. The models qualitatively and quantitatively captured the fibroblast cell response to the deformation imposed by CP while exhibiting only some qualitative features of the cell response to MTC and MBM. The model for CP revealed that the tensed peripheral actin filaments provide the key resistance to indentation. The actin filament tension that provides mechanical integrity to the network was estimated at approximately 158 pN, and the nonlinear mechanical response during CP originates from filament kinematics. The MTC and MBM simulations revealed that the model is incomplete, however, these simulations show cable tension as a key determinant of the model response.
NASA Astrophysics Data System (ADS)
Quint, D. A.; Schwarz, J. M.
2008-03-01
The actin cytoskeleton is a morphologically-complex assembly of cross-linked F-actin filaments. The cytoskeleton provides rigidity for the cell within appropriate time scales so that it can change its shape to, for example, crawl along surfaces. In addition to cross-linking proteins, many other proteins are involved in the assembly of the actin cytoskeleton such as branching proteins, capping proteins, and severing proteins. Presumably these proteins work cooperatively toward the dynamic formation of rigidity. We will initially focus on the role of branching proteins. The F-actin filaments in lamellipodia---protrusions of the mobile edge of a crawling cell---have some overall orientation due to the branching. Branched filaments emerge at a 70 degree angle from the mother filament's growing end.^1 This overall orientation is modelled as an anisotropy in an effective medium theory determining the cytoskeleton's elasticity in the static regime. The potential for a splay rigid phase, in addition to a rigid phase, is also investigated. ^1T. M. Svitkina and G. G. Borisy, J. Cell Biol. 145, 1009 (1999).
Regulation of Contraction by the Thick Filaments in Skeletal Muscle.
Irving, Malcolm
2017-12-19
Contraction of skeletal muscle cells is initiated by a well-known signaling pathway. An action potential in a motor nerve triggers an action potential in a muscle cell membrane, a transient increase of intracellular calcium concentration, binding of calcium to troponin in the actin-containing thin filaments, and a structural change in the thin filaments that allows myosin motors from the thick filaments to bind to actin and generate force. This calcium/thin filament mediated pathway provides the "START" signal for contraction, but it is argued that the functional response of the muscle cell, including the speed of its contraction and relaxation, adaptation to the external load, and the metabolic cost of contraction is largely determined by additional mechanisms. This review considers the role of the thick filaments in those mechanisms, and puts forward a paradigm for the control of contraction in skeletal muscle in which both the thick and thin filaments have a regulatory function. The OFF state of the thick filament is characterized by helical packing of most of the myosin head or motor domains on the thick filament surface in a conformation that makes them unavailable for actin binding or ATP hydrolysis, although a small fraction of the myosin heads are constitutively ON. The availability of the majority fraction of the myosin heads for contraction is controlled in part by the external load on the muscle, so that these heads only attach to actin and hydrolyze ATP when they are required. This phenomenon seems to be the major determinant of the well-known force-velocity relationship of muscle, and controls the metabolic cost of contraction. The regulatory state of the thick filament also seems to control the dynamics of both muscle activation and relaxation. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Kumar, Nitin; Gardel, Margaret
Motor proteins in conjunction with filamentous proteins convert biochemical energy into mechanical energy which serves a number of cellular processes including cell motility, force generation and intracellular cargo transport. In-vitro experiments suggest that the forces generated by kinesin motors on microtubule bundles are extensile in nature whereas myosin motors on actin filaments are contractile. It is not clear how qualitatively similar systems can show completely different behaviors in terms of the nature of force generation. In order to answer this question, we carry out in vitro experiments where we form quasi 2D filamentous actomyosin networks and vary the length of actin filaments by adding capping protein. We show that when filaments are much shorter than their typical persistence length (approximately 10 microns), the forces generated are extensile and we see active nematic defect propagation, as seen in the microtubule-kinesin system. Based on this observation, we claim that the rigidity of rods plays an important role in dictating the nature of force generation in such systems. In order to understand this transition, we selectively label individual filaments and find that longer filaments show considerable bending and buckling, making them difficult to slide and extend along their length.
Liquid behavior of cross-linked actin bundles.
Weirich, Kimberly L; Banerjee, Shiladitya; Dasbiswas, Kinjal; Witten, Thomas A; Vaikuntanathan, Suriyanarayanan; Gardel, Margaret L
2017-02-28
The actin cytoskeleton is a critical regulator of cytoplasmic architecture and mechanics, essential in a myriad of physiological processes. Here we demonstrate a liquid phase of actin filaments in the presence of the physiological cross-linker, filamin. Filamin condenses short actin filaments into spindle-shaped droplets, or tactoids, with shape dynamics consistent with a continuum model of anisotropic liquids. We find that cross-linker density controls the droplet shape and deformation timescales, consistent with a variable interfacial tension and viscosity. Near the liquid-solid transition, cross-linked actin bundles show behaviors reminiscent of fluid threads, including capillary instabilities and contraction. These data reveal a liquid droplet phase of actin, demixed from the surrounding solution and dominated by interfacial tension. These results suggest a mechanism to control organization, morphology, and dynamics of the actin cytoskeleton.
Measurement and Analysis of in vitro Actin Polymerization
Doolittle, Lynda K.; Rosen, Michael K.; Padrick, Shae B.
2014-01-01
Summary The polymerization of actin underlies force generation in numerous cellular processes. While actin polymerization can occur spontaneously, cells maintain control over this important process by preventing actin filament nucleation and then allowing stimulated polymerization and elongation by several regulated factors. Actin polymerization, regulated nucleation and controlled elongation activities can be reconstituted in vitro, and used to probe the signaling cascades cells use to control when and where actin polymerization occurs. Introducing a pyrene fluorophore allows detection of filament formation by an increase in pyrene fluorescence. This method has been used for many years and continues to be broadly used, owing to its simplicity and flexibility. Here we describe how to perform and analyze these in vitro actin polymerization assays, with an emphasis on extracting useful descriptive parameters from kinetic data. PMID:23868594
TWISTED DWARF1 Mediates the Action of Auxin Transport Inhibitors on Actin Cytoskeleton Dynamics
Bailly, Aurelien; Zwiewka, Marta; Sovero, Valpuri; Ge, Pei; Aryal, Bibek; Hao, Pengchao; Linnert, Miriam; Burgardt, Noelia Inés; Lücke, Christian; Weiwad, Matthias; Michel, Max; Weiergräber, Oliver H.; Pollmann, Stephan; Azzarello, Elisa; Fukao, Yoichiro; Hoffmann, Céline; Wedlich-Söldner, Roland
2016-01-01
Plant growth and architecture is regulated by the polar distribution of the hormone auxin. Polarity and flexibility of this process is provided by constant cycling of auxin transporter vesicles along actin filaments, coordinated by a positive auxin-actin feedback loop. Both polar auxin transport and vesicle cycling are inhibited by synthetic auxin transport inhibitors, such as 1-N-naphthylphthalamic acid (NPA), counteracting the effect of auxin; however, underlying targets and mechanisms are unclear. Using NMR, we map the NPA binding surface on the Arabidopsis thaliana ABCB chaperone TWISTED DWARF1 (TWD1). We identify ACTIN7 as a relevant, although likely indirect, TWD1 interactor, and show TWD1-dependent regulation of actin filament organization and dynamics and that TWD1 is required for NPA-mediated actin cytoskeleton remodeling. The TWD1-ACTIN7 axis controls plasma membrane presence of efflux transporters, and as a consequence act7 and twd1 share developmental and physiological phenotypes indicative of defects in auxin transport. These can be phenocopied by NPA treatment or by chemical actin (de)stabilization. We provide evidence that TWD1 determines downstream locations of auxin efflux transporters by adjusting actin filament debundling and dynamizing processes and mediating NPA action on the latter. This function appears to be evolutionary conserved since TWD1 expression in budding yeast alters actin polarization and cell polarity and provides NPA sensitivity. PMID:27053424
Inhibition of Microtubule Depolymerization by Osmolytes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bachand, George D.; Jain, Rishi; Ko, Randy
Microtubule dynamics play a critical role in the normal physiology of eukaryotic cells as well as a number of cancers and neurodegenerative disorders. The polymerization/depolymerization of microtubules is regulated by a variety of stabilizing and destabilizing factors, including microtubule-associated proteins and therapeutic agents (e.g., paclitaxel, nocodazole). Here in this paper, we describe the ability of the osmolytes polyethylene glycol (PEG) and trimethylamine-N-oxide (TMAO) to inhibit the depolymerization of individual microtubule filaments for extended periods of time (up to 30 days). We further show that PEG stabilizes microtubules against both temperature- and calcium-induced depolymerization. Our results collectively suggest that the observedmore » inhibition may be related to combination of the kosmotropic behavior and excluded volume/osmotic pressure effects associated with PEG and TMAO. Lastly, taken together with prior studies, our data suggest that the physiochemical properties of the local environment can regulate microtubule depolymerization and may potentially play an important role in in vivo microtubule dynamics.« less
Inhibition of Microtubule Depolymerization by Osmolytes
Bachand, George D.; Jain, Rishi; Ko, Randy; ...
2018-04-24
Microtubule dynamics play a critical role in the normal physiology of eukaryotic cells as well as a number of cancers and neurodegenerative disorders. The polymerization/depolymerization of microtubules is regulated by a variety of stabilizing and destabilizing factors, including microtubule-associated proteins and therapeutic agents (e.g., paclitaxel, nocodazole). Here in this paper, we describe the ability of the osmolytes polyethylene glycol (PEG) and trimethylamine-N-oxide (TMAO) to inhibit the depolymerization of individual microtubule filaments for extended periods of time (up to 30 days). We further show that PEG stabilizes microtubules against both temperature- and calcium-induced depolymerization. Our results collectively suggest that the observedmore » inhibition may be related to combination of the kosmotropic behavior and excluded volume/osmotic pressure effects associated with PEG and TMAO. Lastly, taken together with prior studies, our data suggest that the physiochemical properties of the local environment can regulate microtubule depolymerization and may potentially play an important role in in vivo microtubule dynamics.« less
The bundling of actin with polyethylene glycol 8000 in the presence and absence of gelsolin.
Goverman, J; Schick, L A; Newman, J
1996-01-01
Actin filament and bundle formation occur in the cytosol under conditions of very high total macromolecular concentration. In this study we have utilized the inert molecule polyethylene glycol 8000 (PEG) as a means of simulating crowded conditions in vitro. Column-purified Ca-actin was polymerized in the absence and presence of gelsolin (to regulate mean filament lengths between 50 and 5000 mers) and PEG (2-8%) using various concentrations of KCl and/or 2 mM divalent cations. Bundling was characterized by the scattered light intensity and mean diffusion coefficients obtained from dynamic light scattering, as well as by fluorescence and phase-contrast microscopy. The minimum concentration of KCl required for bundling decreases both with increasing concentration of PEG at a fixed mean filament length, and with decreasing filament length at a fixed concentration of PEG. In the absence of divalent cation, bundling is reversible on dilution, as determined by intensity levels, diffusion coefficients, and microscopy. However, with either 2 mM Mg2+ or Ca2+ added, bundling is irreversible under conditions of higher PEG concentrations or longer filaments, indicating that osmotic pressure effects cannot fully explain actin bundling with PEG. Weaker divalent cation-binding sites on actin as well as disulfide bonds appear to be involved in the irreversible bundling. Images FIGURE 7 PMID:8874022
Heimsath, Ernest G.; Higgs, Henry N.
2012-01-01
Formin proteins are actin assembly factors that accelerate filament nucleation then remain on the elongating barbed end and modulate filament elongation. The formin homology 2 (FH2) domain is central to these activities, but recent work has suggested that additional sequences enhance FH2 domain function. Here we show that the C-terminal 76 amino acids of the formin FMNL3 have a dramatic effect on the ability of the FH2 domain to accelerate actin assembly. This C-terminal region contains a WASp homology 2 (WH2)-like sequence that binds actin monomers in a manner that is competitive with other WH2 domains and with profilin. In addition, the C terminus binds filament barbed ends. As a monomer, the FMNL3 C terminus inhibits actin polymerization and slows barbed end elongation with moderate affinity. As a dimer, the C terminus accelerates actin polymerization from monomers and displays high affinity inhibition of barbed end elongation. These properties are not common to all formin C termini, as those of mDia1 and INF2 do not behave similarly. Interestingly, mutation of two aliphatic residues, which blocks high affinity actin binding by the WH2-like sequence, has no effect on the ability of the C terminus to enhance FH2-mediated polymerization. However, mutation of three successive basic residues at the C terminus of the WH2-like sequence compromises polymerization enhancement. These results illustrate that the C termini of formins are highly diverse in their interactions with actin. PMID:22094460
Zhang, Chunhua; Mallery, Eileen L; Szymanski, Daniel B
2013-01-01
In plant cells the actin cytoskeleton adopts many configurations, but is best understood as an unstable, interconnected track that rearranges to define the patterns of long distance transport of organelles during growth. Actin filaments do not form spontaneously; instead filament nucleators, such as the evolutionarily conserved actin-related protein (ARP) 2/3 complex, can efficiently generate new actin filament networks when in a fully activated state. A growing number of genetic experiments have shown that ARP2/3 is necessary for morphogenesis in processes that range from tip growth during root nodule formation to the diffuse polarized growth of leaf trichomes and pavement cells. Although progress has been rapid in the identification of proteins that function in series to positively regulate ARP2/3, less has been learned about the actual function of ARP2/3 in cells. In this paper, we analyze the localization of ARP2/3 in Arabidopsis leaf pavement cells. We detect a pool of ARP2/3 in the nucleus, and also find that ARP2/3 is efficiently and specifically clustered on multiple organelle surfaces and associates with both the actin filament and microtubule cytoskeletons. Our mutant analyses and ARP2/3 and actin double labeling experiments indicate that the clustering of ARP2/3 on organelle surfaces and an association with actin bundles does not necessarily reflect an active pool of ARP2/3, and instead most of the complex appears to exist as a latent organelle-associated pool.
Morphological Modifications in Myofibrils by Suppressing Tropomyosin 4α in Chicken Cardiac Myocytes.
Toyota, Naoji; Fujitsuka, Chiaki; Ishibashi, Goushi; S Yoshida, Lucia; Takano-Ohmuro, Hiromi
2016-01-01
Tropomyosin (TPM) localizes along F-actin and, together with troponin T (TnT) and other components, controls calcium-sensitive muscle contraction. The role of the TPM isoform (TPM4α) that is expressed in embryonic and adult cardiac muscle cells in chicken is poorly understood. To analyze the function of TPM4α in myofibrils, the effects of TPM4α-suppression were examined in embryonic cardiomyocytes by small interference RNA transfection. Localization of myofibril proteins such as TPM, actin, TnT, α-actinin, myosin and connectin was examined by immunofluorescence microscopy on day 5 when almost complete TPM4α-suppression occurred in culture. A unique large structure was detected, consisting of an actin aggregate bulging from the actin bundle, and many curved filaments projecting from the aggregate. TPM, TnT and actin were detected on the large structure, but myosin, connectin, α-actinin and obvious myofibril striations were undetectable. It is possible that TPM4α-suppressed actin filaments are sorted and excluded at the place of the large structure. This suggests that TPM4α-suppression significantly affects actin filament, and that TPM4α plays an important role in constructing and maintaining sarcomeres and myofibrils in cardiac muscle.
Arima, Kengo; Tamaoki, Daisuke; Mineyuki, Yoshinobu; Yasuhara, Hiroki; Nakai, Tomonori; Shimmen, Teruo; Yoshihisa, Tohru; Sonobe, Seiji
2018-06-19
In plant cytokinesis, actin is thought to be crucial in cell plate guidance to the cortical division zone (CDZ), but its organization and function are not fully understood. To elucidate actin organization during cytokinesis, we employed an experimental system, in which the mitotic apparatus is displaced and separated from the CDZ by centrifugation and observed using a global-local live imaging microscope that enabled us to record behavior of actin filaments in the CDZ and the whole cell division process in parallel. In this system, returning movement of the cytokinetic apparatus in cultured-tobacco BY-2 cells occurs, and there is an advantage to observe actin organization clearly during the cytokinetic phase because more space was available between the CDZ and the distantly formed phragmoplast. Actin cables were clearly observed between the CDZ and the phragmoplast in BY-2 cells expressing GFP-fimbrin after centrifugation. Both the CDZ and the edge of the expanding phragmoplast had actin bulges. Using live-cell imaging including the global-local live imaging microscopy, we found actin filaments started to accumulate at the actin-depleted zone when cell plate expansion started even in the cell whose cell plate failed to reach the CDZ. These results suggest that specific accumulation of actin filaments at the CDZ and the appearance of actin cables between the CDZ and the phragmoplast during cell plate formation play important roles in the guidance of cell plate edges to the CDZ.
Feedback Interactions of Polymerized Actin with the Cell Membrane: Waves, Pulses, and Oscillations
NASA Astrophysics Data System (ADS)
Carlsson, Anders
Polymerized filaments of the protein actin have crucial functions in cell migration, and in bending the cell membrane to drive endocytosis or the formation of protrusions. The nucleation and polymerization of actin filaments are controlled by upstream agents in the cell membrane, including nucleation-promoting factors (NPFs) that activate the Arp2/3 complex to form new branches on pre-existing filaments. But polymerized actin (F-actin) also feeds back on the assembly of NPFs. We explore the effects of the resulting feedback loop of F-actin and NPFs on two phenomena: actin pulses that drive endocytosis in yeast, and actin waves traveling along the membrane of several cell types. In our model of endocytosis in yeast, the actin network is grown explicitly in three dimensions, exerts a negative feedback interaction on localized patch of NPFs in the membrane, and bends the membrane by exerting a distribution of forces. This model explains observed actin and NPF pulse dynamics, and the effects of several interventions including i) NPF mutations, ii) inhibition of actin polymerization, and iii) deletion of a protein that allows F-actin to bend the cell membrane. The model predicts that mutation of the active region of an NPF will enhance the accumulation of that NPF, and we confirm this prediction by quantitative fluorescence microscopy. For actin waves, we treat a similar model, with NPFs distributed over a larger region of the cell membrane. This model naturally generates actin waves, and predicts a transition from wave behavior to spatially localized oscillations when NPFs are confined to a small region. We also predict a transition from waves to static polarization as the negative-feedback coupling between F-actin and the NPFs is reduced. Supported by NIGMS Grant R01 GM107667.
Actin Out: Regulation of the Synaptic Cytoskeleton
Spence, Erin F.; Soderling, Scott H.
2015-01-01
The small size of dendritic spines belies the elaborate role they play in excitatory synaptic transmission and ultimately complex behaviors. The cytoskeletal architecture of the spine is predominately composed of actin filaments. These filaments, which at first glance might appear simple, are also surprisingly complex. They dynamically assemble into different structures and serve as a platform for orchestrating the elaborate responses of the spine during spinogenesis and experience-dependent plasticity. Multiple mutations associated with human neurodevelopmental and psychiatric disorders involve genes that encode regulators of the synaptic cytoskeleton. A major, unresolved question is how the disruption of specific actin filament structures leads to the onset and progression of complex synaptic and behavioral phenotypes. This review will cover established and emerging mechanisms of actin cytoskeletal remodeling and how this influences specific aspects of spine biology that are implicated in disease. PMID:26453304
Excited hydrogen bonds in the molecular mechanism of muscle contraction.
Bespalova, S V; Tolpygo, K B
1991-11-21
The mechanism of muscle contraction is considered. The hydrolysis of an ATP molecule is assumed to produce the excitation of hydrogen bonds A--H...B between electronegative atoms A and B, which are contained in the myosin head and actin filament. This excitation energy epsilon f depends on the interatomic distance AB = R and generates the tractive force f = -delta epsilon f/delta R, that makes atoms AB approach each other. The swing of the myosin head results in macroscopic mutual displacement of actin and myosin polymers. The motion of the actin filament under the action of this force is studied. The conditions under which a considerable portion of the excitation energy converts into the potential tension energy of the actin filament are analysed, and the probability of higher muscle efficiency existence is discussed.
Actin, microtubules, and vimentin intermediate filaments cooperate for elongation of invadopodia
Goldman, Robert D.; Louvard, Daniel
2010-01-01
Invasive cancer cells are believed to breach the basement membrane (BM) using specialized protrusions called invadopodia. We found that the crossing of a native BM is a three-stage process: invadopodia indeed form and perforate the BM, elongate into mature invadopodia, and then guide the cell toward the stromal compartment. We studied the remodeling of cytoskeleton networks during invadopodia formation and elongation using ultrastructural analysis, spatial distribution of molecular markers, and RNA interference silencing of protein expression. We show that formation of invadopodia requires only the actin cytoskeleton and filopodia- and lamellipodia-associated proteins. In contrast, elongation of invadopodia is mostly dependent on filopodial actin machinery. Moreover, intact microtubules and vimentin intermediate filament networks are required for further growth. We propose that invadopodia form by assembly of dendritic/diagonal and bundled actin networks and then mature by elongation of actin bundles, followed by the entry of microtubules and vimentin filaments. These findings provide a link between the epithelial to mesenchymal transition and BM transmigration. PMID:20421424
Jacques, Eveline; Lewandowski, Michal; Buytaert, Jan; Fierens, Yves; Verbelen, Jean-Pierre; Vissenberg, Kris
2013-01-01
The plant cytoskeleton plays a crucial role in the cells’ growth and development during different developmental stages and it undergoes many rearrangements. In order to describe the arrangements of the F-actin cytoskeleton in root epidermal cells of Arabidopsis thaliana, the recently developed software MicroFilament Analyzer (MFA) was exploited. This software enables high-throughput identification and quantification of the orientation of filamentous structures on digital images in a highly standardized and fast way. Using confocal microscopy and transgenic GFP-FABD2-GFP plants the actin cytoskeleton was visualized in the root epidermis. MFA analysis revealed that during the early stages of cell development F-actin is organized in a mainly random pattern. As the cells grow, they preferentially adopt a longitudinal organization, a pattern that is also preserved in the largest cells. In the evolution from young to old cells, an approximately even distribution of transverse, oblique or combined orientations is always present besides the switch from random to a longitudinal oriented actin cytoskeleton. PMID:23656865
HopW1 from Pseudomonas syringae disrupts the actin cytoskeleton to promote virulence in Arabidopsis.
Kang, Yongsung; Jelenska, Joanna; Cecchini, Nicolas M; Li, Yujie; Lee, Min Woo; Kovar, David R; Greenberg, Jean T
2014-06-01
A central mechanism of virulence of extracellular bacterial pathogens is the injection into host cells of effector proteins that modify host cellular functions. HopW1 is an effector injected by the type III secretion system that increases the growth of the plant pathogen Pseudomonas syringae on the Columbia accession of Arabidopsis. When delivered by P. syringae into plant cells, HopW1 causes a reduction in the filamentous actin (F-actin) network and the inhibition of endocytosis, a known actin-dependent process. When directly produced in plants, HopW1 forms complexes with actin, disrupts the actin cytoskeleton and inhibits endocytosis as well as the trafficking of certain proteins to vacuoles. The C-terminal region of HopW1 can reduce the length of actin filaments and therefore solubilize F-actin in vitro. Thus, HopW1 acts by disrupting the actin cytoskeleton and the cell biological processes that depend on actin, which in turn are needed for restricting P. syringae growth in Arabidopsis.
3D Actin Network Centerline Extraction with Multiple Active Contours
Xu, Ting; Vavylonis, Dimitrios; Huang, Xiaolei
2013-01-01
Fluorescence microscopy is frequently used to study two and three dimensional network structures formed by cytoskeletal polymer fibers such as actin filaments and actin cables. While these cytoskeletal structures are often dilute enough to allow imaging of individual filaments or bundles of them, quantitative analysis of these images is challenging. To facilitate quantitative, reproducible and objective analysis of the image data, we propose a semi-automated method to extract actin networks and retrieve their topology in 3D. Our method uses multiple Stretching Open Active Contours (SOACs) that are automatically initialized at image intensity ridges and then evolve along the centerlines of filaments in the network. SOACs can merge, stop at junctions, and reconfigure with others to allow smooth crossing at junctions of filaments. The proposed approach is generally applicable to images of curvilinear networks with low SNR. We demonstrate its potential by extracting the centerlines of synthetic meshwork images, actin networks in 2D Total Internal Reflection Fluorescence Microscopy images, and 3D actin cable meshworks of live fission yeast cells imaged by spinning disk confocal microscopy. Quantitative evaluation of the method using synthetic images shows that for images with SNR above 5.0, the average vertex error measured by the distance between our result and ground truth is 1 voxel, and the average Hausdorff distance is below 10 voxels. PMID:24316442
Mechanics model for actin-based motility
NASA Astrophysics Data System (ADS)
Lin, Yuan
2009-02-01
We present here a mechanics model for the force generation by actin polymerization. The possible adhesions between the actin filaments and the load surface, as well as the nucleation and capping of filament tips, are included in this model on top of the well-known elastic Brownian ratchet formulation. A closed form solution is provided from which the force-velocity relationship, summarizing the mechanics of polymerization, can be drawn. Model predictions on the velocity of moving beads driven by actin polymerization are consistent with experiment observations. This model also seems capable of explaining the enhanced actin-based motility of Listeria monocytogenes and beads by the presence of Vasodilator-stimulated phosphoprotein, as observed in recent experiments.
Mechanics model for actin-based motility.
Lin, Yuan
2009-02-01
We present here a mechanics model for the force generation by actin polymerization. The possible adhesions between the actin filaments and the load surface, as well as the nucleation and capping of filament tips, are included in this model on top of the well-known elastic Brownian ratchet formulation. A closed form solution is provided from which the force-velocity relationship, summarizing the mechanics of polymerization, can be drawn. Model predictions on the velocity of moving beads driven by actin polymerization are consistent with experiment observations. This model also seems capable of explaining the enhanced actin-based motility of Listeria monocytogenes and beads by the presence of Vasodilator-stimulated phosphoprotein, as observed in recent experiments.
Fritzsche, Marco; Fernandes, Ricardo A.; Chang, Veronica T.; Colin-York, Huw; Clausen, Mathias P.; Felce, James H.; Galiani, Silvia; Erlenkämper, Christoph; Santos, Ana M.; Heddleston, John M.; Pedroza-Pacheco, Isabela; Waithe, Dominic; de la Serna, Jorge Bernardino; Lagerholm, B. Christoffer; Liu, Tsung-li; Chew, Teng-Leong; Betzig, Eric; Davis, Simon J.; Eggeling, Christian
2017-01-01
T cell activation and especially trafficking of T cell receptor microclusters during immunological synapse formation are widely thought to rely on cytoskeletal remodeling. However, important details on the involvement of actin in the latter transport processes are missing. Using a suite of advanced optical microscopes to analyze resting and activated T cells, we show that, following contact formation with activating surfaces, these cells sequentially rearrange their cortical actin across the entire cell, creating a previously unreported ramifying actin network above the immunological synapse. This network shows all the characteristics of an inward-growing transportation network and its dynamics correlating with T cell receptor rearrangements. This actin reorganization is accompanied by an increase in the nanoscale actin meshwork size and the dynamic adjustment of the turnover times and filament lengths of two differently sized filamentous actin populations, wherein formin-mediated long actin filaments support a very flat and stiff contact at the immunological synapse interface. The initiation of immunological synapse formation, as highlighted by calcium release, requires markedly little contact with activating surfaces and no cytoskeletal rearrangements. Our work suggests that incipient signaling in T cells initiates global cytoskeletal rearrangements across the whole cell, including a stiffening process for possibly mechanically supporting contact formation at the immunological synapse interface as well as a central ramified transportation network apparently directed at the consolidation of the contact and the delivery of effector functions. PMID:28691087
Filament assembly by Spire: key residues and concerted actin binding.
Rasson, Amy S; Bois, Justin S; Pham, Duy Stephen L; Yoo, Haneul; Quinlan, Margot E
2015-02-27
The most recently identified class of actin nucleators, WASp homology domain 2 (WH2) nucleators, use tandem repeats of monomeric actin-binding WH2 domains to facilitate actin nucleation. WH2 domains are involved in a wide variety of actin regulatory activities. Structurally, they are expected to clash with interprotomer contacts within the actin filament. Thus, the discovery of their role in nucleation was surprising. Here we use Drosophila Spire (Spir) as a model system to investigate both how tandem WH2 domains can nucleate actin and what differentiates nucleating WH2-containing proteins from their non-nucleating counterparts. We found that the third WH2 domain in Spir (Spir-C or SC) plays a unique role. In the context of a short nucleation construct (containing only two WH2 domains), placement of SC in the N-terminal position was required for the most potent nucleation. We found that the native organization of the WH2 domains with respect to each other is necessary for binding to actin with positive cooperativity. We identified two residues within SC that are critical for its activity. Using this information, we were able to convert a weak synthetic nucleator into one with activity equal to a native Spir construct. Lastly, we found evidence that SC binds actin filaments, in addition to monomers. Copyright © 2014 Elsevier Ltd. All rights reserved.
Winkelman, Jonathan D; Suarez, Cristian; Hocky, Glen M; Harker, Alyssa J; Morganthaler, Alisha N; Christensen, Jenna R; Voth, Gregory A; Bartles, James R; Kovar, David R
2016-10-24
Cells assemble and maintain functionally distinct actin cytoskeleton networks with various actin filament organizations and dynamics through the coordinated action of different sets of actin-binding proteins. The biochemical and functional properties of diverse actin-binding proteins, both alone and in combination, have been increasingly well studied. Conversely, how different sets of actin-binding proteins properly sort to distinct actin filament networks in the first place is not nearly as well understood. Actin-binding protein sorting is critical for the self-organization of diverse dynamic actin cytoskeleton networks within a common cytoplasm. Using in vitro reconstitution techniques including biomimetic assays and single-molecule multi-color total internal reflection fluorescence microscopy, we discovered that sorting of the prominent actin-bundling proteins fascin and α-actinin to distinct networks is an intrinsic behavior, free of complicated cellular signaling cascades. When mixed, fascin and α-actinin mutually exclude each other by promoting their own recruitment and inhibiting recruitment of the other, resulting in the formation of distinct fascin- or α-actinin-bundled domains. Subdiffraction-resolution light microscopy and negative-staining electron microscopy revealed that fascin domains are densely packed, whereas α-actinin domains consist of widely spaced parallel actin filaments. Importantly, other actin-binding proteins such as fimbrin and espin show high specificity between these two bundle types within the same reaction. Here we directly observe that fascin and α-actinin intrinsically segregate to discrete bundled domains that are specifically recognized by other actin-binding proteins. Copyright © 2016 Elsevier Ltd. All rights reserved.
Lange, K; Brandt, U; Gartzke, J; Bergmann, J
1998-02-25
In previous studies we have shown that the insulin-responding glucose transporter isoform of 3T3-L1 adipocytes, GluT4, is almost completely located on microvilli. Furthermore, insulin caused the integration of these microvilli into the plasma membrane, suggesting that insulin-induced stimulation of glucose uptake may be due to the destruction of the cytoskeletal diffusion barrier formed by the actin filament bundle of the microvillar shaft regions [Lange et al. (1990) FEBS Lett. 261, 459-463; Lange et al. (1990) FEBS Lett. 276, 39-41]. Similar shape changes in microvilli were observed when the transport rates of adipocytes were modulated by glucose feeding or starvation. Here we demonstrate that the action of insulin on the surface morphology of hepatocytes is identical to that on 3T3L1 adipocytes; small and narrow microvilli on the surface of unstimulated hepatocytes were rapidly shortened and dilated on top of large domed surface areas. The aspect and mechanism of this effect are closely related to "membrane ruffling" induced by insulin and other growth factors. Pretreatment of hepatocytes with the PI 3-kinase inhibitor wortmannin (100 nM), which completely prevents transport stimulation by insulin in adipocytes and other cell types, also inhibited insulin-induced shape changes in microvilli on the hepatocyte surface. In contrast, vasopressin-induced microvillar shape changes in hepatocytes [Lange et al. (1997) Exp. Cell Res. 234, 486-497] were insensitive to wortmannin pretreatment. These findings indicate that PI 3-kinase products are necessary for stimulation of submembrane microfilament dynamics and that cytoskeletal reorganization is critically involved in insulin stimulation of transport processes. The mechanism of the insulin-induced cytoskeletal reorganization can be explained on the basis of the recent finding of Lu et al. [Biochemistry 35(1996) 14027-14034] that PI 3-kinase products exhibit much higher affinity for the profilin-actin complex than the primary products, PIP and PIP2. Thus, activated PI 3-kinase may direct a flux of profilin-actin complexes to the membrane locations of activated insulin receptors, where, due to the release of actin monomers after binding of profilactin to PI(3,4)P2 and PI(3,4,5)P3, massive actin polymerization is initiated. As a consequence, PI 3-kinase activation initiates a vectorial reorganization of the cellular actin system to membrane sites neighboring activated insulin receptors, giving rise to local membrane stress as visualized by extensive surface deformations and shortening of microvilli. In addition, extensive high-affinity binding of F-actin-barbed endcapping proteins enhances the cytoplasmic concentration of rapidly polymerizing filament ends. Consequently, the actin monomer concentration is lowered and the (cytoplasmic) pointed ends of the microvillar shaft bundle depolymerize and become shorter. The observations presented strengthen the previously postulated diffusion-barrier concept of glucose- and ion-uptake regulation and provide a mechanistic basis for explaining the action of insulin and other growth factors on transport processes across the plasma membrane.
Bidirectional Interplay between Vimentin Intermediate Filaments and Contractile Actin Stress Fibers.
Jiu, Yaming; Lehtimäki, Jaakko; Tojkander, Sari; Cheng, Fang; Jäälinoja, Harri; Liu, Xiaonan; Varjosalo, Markku; Eriksson, John E; Lappalainen, Pekka
2015-06-16
The actin cytoskeleton and cytoplasmic intermediate filaments contribute to cell migration and morphogenesis, but the interplay between these two central cytoskeletal elements has remained elusive. Here, we find that specific actin stress fiber structures, transverse arcs, interact with vimentin intermediate filaments and promote their retrograde flow. Consequently, myosin-II-containing arcs are important for perinuclear localization of the vimentin network in cells. The vimentin network reciprocally restricts retrograde movement of arcs and hence controls the width of flat lamellum at the leading edge of the cell. Depletion of plectin recapitulates the vimentin organization phenotype of arc-deficient cells without affecting the integrity of vimentin filaments or stress fibers, demonstrating that this cytoskeletal cross-linker is required for productive interactions between vimentin and arcs. Collectively, our results reveal that plectin-mediated interplay between contractile actomyosin arcs and vimentin intermediate filaments controls the localization and dynamics of these two cytoskeletal systems and is consequently important for cell morphogenesis. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Takano, Mitsunori; Terada, Tomoki P; Sasai, Masaki
2010-04-27
The actomyosin molecular motor, the motor composed of myosin II and actin filament, is responsible for muscle contraction, converting chemical energy into mechanical work. Although recent single molecule and structural studies have shed new light on the energy-converting mechanism, the physical basis of the molecular-level mechanism remains unclear because of the experimental limitations. To provide a clue to resolve the controversy between the lever-arm mechanism and the Brownian ratchet-like mechanism, we here report an in silico single molecule experiment of an actomyosin motor. When we placed myosin on an actin filament and allowed myosin to move along the filament, we found that myosin exhibits a unidirectional Brownian motion along the filament. This unidirectionality was found to arise from the combination of a nonequilibrium condition realized by coupling to the ATP hydrolysis and a ratchet-like energy landscape inherent in the actin-myosin interaction along the filament, indicating that a Brownian ratchet-like mechanism contributes substantially to the energy conversion of this molecular motor.
Anesthetic Sevoflurane Causes Rho-Dependent Filopodial Shortening in Mouse Neurons.
Zimering, Jeffrey H; Dong, Yuanlin; Fang, Fang; Huang, Lining; Zhang, Yiying; Xie, Zhongcong
2016-01-01
Early postnatal anesthesia causes long-lasting learning and memory impairment in rodents, however, evidence for a specific neurotoxic effect on early synaptogenesis has not been demonstrated. Drebrin A is an actin binding protein whose localization in dendritic protrusions serves an important role in dendritic spine morphogenesis, and is a marker for early synaptogenesis. We therefore set out to investigate whether clinically-relevant concentrations of anesthetic sevoflurane, widely- used in infants and children, alters dendritic morphology in cultured fetal day 16 mouse hippocampal neurons. After 7 days in vitro, mouse hippocampal neurons were exposed to four hours of 3% sevoflurane in 95% air/5% CO2 or control condition (95% air/5% CO2). Neurons were fixed in 4% paraformaldehyde and stained with Alexa Fluor555-Phalloidin, and/or rabbit anti-mouse drebrin A/E antibodies which permitted subcellular localization of filamentous (F)-actin and/or drebrin immunoreactivity, respectively. Sevoflurane caused acute significant length-shortening in filopodia and thin dendritic spines in days-in-vitro 7 neurons, an effect which was completely rescued by co-incubating neurons with ten micromolar concentrations of the selective Rho kinase inhibitor Y27632. Filopodia and thin spine recovered in length two days after sevoflurane exposure. Yet cluster-type filopodia (a precursor to synaptic filopodia) were persistently significantly decreased in number on day-in-vitro 9, in part owing to preferential localization of drebrin immunoreactivity to dendritic shafts versus filopodial stalks. These data suggest that sevoflurane induces F-actin depolymerization leading to acute, reversible length-shortening in dendritic protrusions through a mechanism involving (in part) activation of RhoA/Rho kinase signaling and impairs localization of drebrin A to filopodia required for early excitatory synapse formation.
Chowdhury, Helena H; Popoff, Michel R; Zorec, Robert
1999-01-01
We measured membrane capacitance (Cm) in cultured rat melanotrophs pretreated with Clostridium spiroforme toxin (CST), which specifically depolymerises cortical filamentous actin (F-actin). Phalloidin staining confirmed that CST treatment depolymerised the F-actin. In control cells, cytosol dialysis with 1 μm Ci2+ increased Cm by 23 ± 4% (n = 11) relative to the resting Cm 400 s after the start of patch rupture. In CST-treated cells the increase in Cm was 32 ± 5% (n = 15), not significantly different from controls. The rate of Cm increase was affected transiently by CST treatment, peaking at 1 min after patch rupture. The maximal rate of Cm increase was 4.27 ± 0.85 fF s−1 (n = 12; measured 200 s after the start of patch rupture) in controls and 8.0 ± 1.35 fF s−1 (n = 23; measured 75 s after the start of patch rupture) in CST-treated cells (P < 0.01). In control cells cytosol dialysis with 0 μm Ci2+ decreased Cm by 9 ± 3% (n = 7), in CST-treated cells Cm increased by 11 ± 3% (n = 7) relative to resting Cm 400 s after the start of cytosol dialysis. The rate of change in Cm remained constant (controls: -1 to -2 fF s−1; CST treatment: 1-2 fF s−1). Transient and sustained effects of CST treatment on changes in Cm at high or low [Ca2+]i, respectively, suggest a distinct role of cytoskeleton in Ca2+-dependent and Ca2+-independent changes in Cm. Transient enhancement of the rate of Cm by CST is consistent with a barrier role of cytoskeleton in regulated exocytosis. The sustained effect of CST on Ca2+-independent changes in Cm suggests cytoskeletal involvement in endocytosis. PMID:10581310
NASA Astrophysics Data System (ADS)
Stam, Samantha; Alberts, Jonathan; Gardel, Margaret; Munro, Edwin
2013-03-01
The interactions of bipolar myosin II filaments with actin arrays are a predominate means of generating forces in numerous physiological processes including muscle contraction and cell migration. However, how the spatiotemporal regulation of these forces depends on motor mechanochemistry, bipolar filament size, and local actin mechanics is unknown. Here, we simulate myosin II motors with an agent-based model in which the motors have been benchmarked against experimental measurements. Force generation occurs in two distinct regimes characterized either by stable tension maintenance or by stochastic buildup and release; transitions between these regimes occur by changes to duty ratio and myosin filament size. The time required for building force to stall scales inversely with the stiffness of a network and the actin gliding speed of a motor. Finally, myosin motors are predicted to contract a network toward stiffer regions, which is consistent with experimental observations. Our representation of myosin motors can be used to understand how their mechanical and biochemical properties influence their observed behavior in a variety of in vitro and in vivo contexts.
Montaville, Pierre; Kühn, Sonja; Compper, Christel; Carlier, Marie-France
2016-01-01
Formin 2 (Fmn2), a member of the FMN family of formins, plays an important role in early development. This formin cooperates with profilin and Spire, a WASP homology domain 2 (WH2) repeat protein, to stimulate assembly of a dynamic cytoplasmic actin meshwork that facilitates translocation of the meiotic spindle in asymmetric division of mouse oocytes. The kinase-like non-catalytic domain (KIND) of Spire directly interacts with the C-terminal extension of the formin homology domain 2 (FH2) domain of Fmn2, called FSI. This direct interaction is required for the synergy between the two proteins in actin assembly. We have recently demonstrated how Spire, which caps barbed ends via its WH2 domains, activates Fmn2. Fmn2 by itself associates very poorly to filament barbed ends but is rapidly recruited to Spire-capped barbed ends via the KIND domain, and it subsequently displaces Spire from the barbed end to elicit rapid processive assembly from profilin·actin. Here, we address the mechanism by which Spire and Fmn2 compete at barbed ends and the role of FSI in orchestrating this competition as well as in the processivity of Fmn2. We have combined microcalorimetric, fluorescence, and hydrodynamic binding assays, as well as bulk solution and single filament measurements of actin assembly, to show that removal of FSI converts Fmn2 into a Capping Protein. This activity is mimicked by association of KIND to Fmn2. In addition, FSI binds actin at filament barbed ends as a weak capper and plays a role in displacing the WH2 domains of Spire from actin, thus allowing the association of actin-binding regions of FH2 to the barbed end. PMID:26668326
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Bingke; Cheng, Hui-Chun; Brautigam, Chad A.
Vibrio parahaemolyticus protein L (VopL) is an actin nucleation factor that induces stress fibers when injected into eukaryotic host cells. VopL contains three N-terminal Wiskott-Aldrich homology 2 (WH2) motifs and a unique VopL C-terminal domain (VCD). We describe crystallographic and biochemical analyses of filament nucleation by VopL. The WH2 element of VopL does not nucleate on its own and requires the VCD for activity. The VCD forms a U-shaped dimer in the crystal, stabilized by a terminal coiled coil. Dimerization of the WH2 motifs contributes strongly to nucleation activity, as do contacts of the VCD to actin. Our data leadmore » to a model in which VopL stabilizes primarily lateral (short-pitch) contacts between actin monomers to create the base of a two-stranded filament. Stabilization of lateral contacts may be a common feature of actin filament nucleation by WH2-based factors.« less
Biological role and structural mechanism of twinfilin–capping protein interaction
Falck, Sandra; Paavilainen, Ville O; Wear, Martin A; Grossmann, J Günter; Cooper, John A; Lappalainen, Pekka
2004-01-01
Twinfilin and capping protein (CP) are highly conserved actin-binding proteins that regulate cytoskeletal dynamics in organisms from yeast to mammals. Twinfilin binds actin monomer, while CP binds the barbed end of the actin filament. Remarkably, twinfilin and CP also bind directly to each other, but the mechanism and role of this interaction in actin dynamics are not defined. Here, we found that the binding of twinfilin to CP does not affect the binding of either protein to actin. Furthermore, site-directed mutagenesis studies revealed that the CP-binding site resides in the conserved C-terminal tail region of twinfilin. The solution structure of the twinfilin–CP complex supports these conclusions. In vivo, twinfilin's binding to both CP and actin monomer was found to be necessary for twinfilin's role in actin assembly dynamics, based on genetic studies with mutants that have defined biochemical functions. Our results support a novel model for how sequential interactions between actin monomers, twinfilin, CP, and actin filaments promote cytoskeletal dynamics. PMID:15282541
Directional bilateral filters for smoothing fluorescence microscopy images
NASA Astrophysics Data System (ADS)
Venkatesh, Manasij; Mohan, Kavya; Seelamantula, Chandra Sekhar
2015-08-01
Images obtained through fluorescence microscopy at low numerical aperture (NA) are noisy and have poor resolution. Images of specimens such as F-actin filaments obtained using confocal or widefield fluorescence microscopes contain directional information and it is important that an image smoothing or filtering technique preserve the directionality. F-actin filaments are widely studied in pathology because the abnormalities in actin dynamics play a key role in diagnosis of cancer, cardiac diseases, vascular diseases, myofibrillar myopathies, neurological disorders, etc. We develop the directional bilateral filter as a means of filtering out the noise in the image without significantly altering the directionality of the F-actin filaments. The bilateral filter is anisotropic to start with, but we add an additional degree of anisotropy by employing an oriented domain kernel for smoothing. The orientation is locally adapted using a structure tensor and the parameters of the bilateral filter are optimized for within the framework of statistical risk minimization. We show that the directional bilateral filter has better denoising performance than the traditional Gaussian bilateral filter and other denoising techniques such as SURE-LET, non-local means, and guided image filtering at various noise levels in terms of peak signal-to-noise ratio (PSNR). We also show quantitative improvements in low NA images of F-actin filaments.
The Stochastic Dynamics of Filopodial Growth
NASA Astrophysics Data System (ADS)
Papoian, Garegin A.; Lan, Yueheng; Zhuravlev, Pavel
2008-03-01
A filopodium is a cytoplasmic projection, exquisitely built and regulated, which extends from the leading edge of the migrating cell, exploring the cell's neighborhood. Commonly, filopodia grow and retract after their initiation, exhibiting rich dynamical behaviors. We model the growth of a filopodium based on a stochastic description which incorporates mechanical, physical and biochemical components. Our model provides a full stochastic treatment of the actin monomer diffusion and polymerization of each individual actin filament under stress of the fluctuating membrane. We have investigated the length distribution of individual filaments in a growing filopodium and studied how it depends on various physical parameters. The distribution of filament lengths turned out to be narrow, which we explained by the negative feedback created by the membrane load and monomeric G-actin gradient. We also discovered that filopodial growth is strongly diminished upon increasing retrograde flow, suggesting that regulating the retrograde flow rate would be a highly efficient way to control filopodial extension dynamics. The filopodial length increases as the membrane fluctuations decrease, which we attributed to the unequal loading of the mem- brane force among individual filaments, which, in turn, results in larger average polymerization rates. We also observed significant diffusional noise of G-actin monomers, which leads to smaller G-actin flux along the filopodial tube compared with the prediction using the diffusion equation.
Nyitrai, M; Hild, G; Lukács, A; Bódis, E; Somogyi, B
2000-01-28
Cyclic conformational changes in the myosin head are considered essential for muscle contraction. We hereby show that the extension of the fluorescence resonance energy transfer method described originally by Taylor et al. (Taylor, D. L., Reidler, J., Spudich, J. A., and Stryer, L. (1981) J. Cell Biol. 89, 362-367) allows determination of the position of a labeled point outside the actin filament in supramolecular complexes and also characterization of the conformational heterogeneity of an actin-binding protein while considering donor-acceptor distance distributions. Using this method we analyzed proximity relationships between two labeled points of S1 and the actin filament in the acto-S1 rigor complex. The donor (N-[[(iodoacetyl)amino]ethyl]-5-naphthylamine-1-sulfonate) was attached to either the catalytic domain (Cys-707) or the essential light chain (Cys-177) of S1, whereas the acceptor (5-(iodoacetamido)fluorescein) was attached to the actin filament (Cys-374). In contrast to the narrow positional distribution (assumed as being Gaussian) of Cys-707 (5 +/- 3 A), the positional distribution of Cys-177 was found to be broad (102 +/- 4 A). Such a broad positional distribution of the label on the essential light chain of S1 may be important in accommodating the helically arranged acto-myosin binding relative to the filament axis.
Solid friction between soft filaments.
Ward, Andrew; Hilitski, Feodor; Schwenger, Walter; Welch, David; Lau, A W C; Vitelli, Vincenzo; Mahadevan, L; Dogic, Zvonimir
2015-06-01
Any macroscopic deformation of a filamentous bundle is necessarily accompanied by local sliding and/or stretching of the constituent filaments. Yet the nature of the sliding friction between two aligned filaments interacting through multiple contacts remains largely unexplored. Here, by directly measuring the sliding forces between two bundled F-actin filaments, we show that these frictional forces are unexpectedly large, scale logarithmically with sliding velocity as in solid-like friction, and exhibit complex dependence on the filaments' overlap length. We also show that a reduction of the frictional force by orders of magnitude, associated with a transition from solid-like friction to Stokes's drag, can be induced by coating F-actin with polymeric brushes. Furthermore, we observe similar transitions in filamentous microtubules and bacterial flagella. Our findings demonstrate how altering a filament's elasticity, structure and interactions can be used to engineer interfilament friction and thus tune the properties of fibrous composite materials.
Cai, Giampiero; Faleri, Claudia; Del Casino, Cecilia; Emons, Anne Mie C.; Cresti, Mauro
2011-01-01
Callose and cellulose are fundamental components of the cell wall of pollen tubes and are probably synthesized by distinct enzymes, callose synthase and cellulose synthase, respectively. We examined the distribution of callose synthase and cellulose synthase in tobacco (Nicotiana tabacum) pollen tubes in relation to the dynamics of actin filaments, microtubules, and the endomembrane system using specific antibodies to highly conserved peptide sequences. The role of the cytoskeleton and membrane flow was investigated using specific inhibitors (latrunculin B, 2,3-butanedione monoxime, taxol, oryzalin, and brefeldin A). Both enzymes are associated with the plasma membrane, but cellulose synthase is present along the entire length of pollen tubes (with a higher concentration at the apex) while callose synthase is located in the apex and in distal regions. In longer pollen tubes, callose synthase accumulates consistently around callose plugs, indicating its involvement in plug synthesis. Actin filaments and endomembrane dynamics are critical for the distribution of callose synthase and cellulose synthase, showing that enzymes are transported through Golgi bodies and/or vesicles moving along actin filaments. Conversely, microtubules appear to be critical in the positioning of callose synthase in distal regions and around callose plugs. In contrast, cellulose synthases are only partially coaligned with cortical microtubules and unrelated to callose plugs. Callose synthase also comigrates with tubulin by Blue Native-polyacrylamide gel electrophoresis. Membrane sucrose synthase, which expectedly provides UDP-glucose to callose synthase and cellulose synthase, binds to actin filaments depending on sucrose concentration; its distribution is dependent on the actin cytoskeleton and the endomembrane system but not on microtubules. PMID:21205616
Motility assays using myosin attached to surfaces through specific binding to monoclonal antibodies.
Winkelmann, D. A.; Bourdieu, L.; Kinose, F.; Libchaber, A.
1995-01-01
We have analyzed the dependence of actin filament movement on the mode of myosin attachment to surfaces. Monoclonal antibodies that bind to three distinct sites were used to tether myosin to nitrocellulose-coated glass. One antibody reacts with an epitope on the regulatory light chain located at the head-rod junction. The other two react with sites in the rod domain, one in the S2 region near the S2-LMM hinge, and the other at the C terminus of the myosin rod. These monoclonal antibodies were used to provide increasing flexibility in the mode of attachment. Fast skeletal muscle myosin monomers were bound to the surfaces through the specific interaction with these monoclonal antibodies and the sliding movement of fluorescently labeled actin filaments analyzed by video microscopy. Each of these antibodies produced stable, myosin-coated surfaces that supported uniform movement of actin over the course of several hours. Attachment of myosin through the anti-S2 and anti-LMM monoclonal antibodies yielded a maximum velocity of 10 microns/s at 30 degrees C, whereas attachment through anti-LC2 produced a lower velocity of 4-5 microns/s. Each antibody showed a characteristic minimum myosin density below which sliding movement was no longer supported and an exponential dependence of actin filament velocity on myosin surface density below Vmax. Maximum sliding velocity was achieved over a range of myosin surface densities. Thus, the specific mode of attachment can influence the characteristic velocity of actin filament movement and the surface density needed to support movement. These data are being used to analyze the dynamics of sliding filament assays and evaluate estimates of the average number of motor molecules per unit length of actin required to support movement. PMID:7787107
Akisaka, Toshitaka; Yoshida, Atsushi
2015-05-01
Osteoclasts are highly polarized cells from both morphological and functional points of view. Using quick-freeze, rotary-replication methods combined with cell-shearing, we clarified the variability of cytoplasmic surface of the polarized membranes of osteoclasts seeded on apatite. As to the organization of actin filaments and clathrin sheets, we confirmed almost the same ventral membrane specializations of osteoclasts on apatite as seen on glass plates. The organized actin filaments and membrane-associated particles supported the ruffled border membranes. Inside the actin sealing zone, membrane specializations were not always occupied with the ruffled border but also with other types of membranes. Some osteoclasts formed an actin ring but lacked the ruffled border projections. We report a unique and distinctive membrane modification of apatite-attached osteoclasts, i.e., the presence of dense aggregates of membrane-associated particles and related structures not found in the osteoclasts seeded on glass plates. Actin filament polarity in the podosomes was determined by decoration with myosin S1. The actin filament polarity within podosome appears to be oriented predominantly with its barbed ends toward the core, whereas the interconnecting F-actin appears to be mixed oriented. Two different types of clathrin plaques displayed different distributions: clathrin-dependent endocytosis was observed in the ruffled border regions, whereas flat clathrin sheets were found in the leading edge of lamellipodia and near podosomes. The clathrin sheets adhered to the apatite surface tightly on the ventral membranes overlaying the resorption lacunae. All these membrane specializations as mentioned above may indicate the functional variability of osteoclasts seeded on apatite.
Zhang, Chunhua; Mallery, Eileen L.; Szymanski, Daniel B.
2013-01-01
In plant cells the actin cytoskeleton adopts many configurations, but is best understood as an unstable, interconnected track that rearranges to define the patterns of long distance transport of organelles during growth. Actin filaments do not form spontaneously; instead filament nucleators, such as the evolutionarily conserved actin-related protein (ARP) 2/3 complex, can efficiently generate new actin filament networks when in a fully activated state. A growing number of genetic experiments have shown that ARP2/3 is necessary for morphogenesis in processes that range from tip growth during root nodule formation to the diffuse polarized growth of leaf trichomes and pavement cells. Although progress has been rapid in the identification of proteins that function in series to positively regulate ARP2/3, less has been learned about the actual function of ARP2/3 in cells. In this paper, we analyze the localization of ARP2/3 in Arabidopsis leaf pavement cells. We detect a pool of ARP2/3 in the nucleus, and also find that ARP2/3 is efficiently and specifically clustered on multiple organelle surfaces and associates with both the actin filament and microtubule cytoskeletons. Our mutant analyses and ARP2/3 and actin double labeling experiments indicate that the clustering of ARP2/3 on organelle surfaces and an association with actin bundles does not necessarily reflect an active pool of ARP2/3, and instead most of the complex appears to exist as a latent organelle-associated pool. PMID:23874346
Direct membrane binding by bacterial actin MreB.
Salje, Jeanne; van den Ent, Fusinita; de Boer, Piet; Löwe, Jan
2011-08-05
Bacterial actin MreB is one of the key components of the bacterial cytoskeleton. It assembles into short filaments that lie just underneath the membrane and organize the cell wall synthesis machinery. Here we show that MreB from both T. maritima and E. coli binds directly to cell membranes. This function is essential for cell shape determination in E. coli and is proposed to be a general property of many, if not all, MreBs. We demonstrate that membrane binding is mediated by a membrane insertion loop in TmMreB and by an N-terminal amphipathic helix in EcMreB and show that purified TmMreB assembles into double filaments on a membrane surface that can induce curvature. This, the first example of a membrane-binding actin filament, prompts a fundamental rethink of the structure and dynamics of MreB filaments within cells. Copyright © 2011 Elsevier Inc. All rights reserved.
Katoh, K; Hammar, K; Smith, P J; Oldenbourg, R
1999-01-01
We have investigated the dynamic behavior of cytoskeletal fine structure in the lamellipodium of nerve growth cones using a new type of polarized light microscope (the Pol-Scope). Pol-Scope images display with exquisite resolution and definition birefringent fine structures, such as filaments and membranes, without having to treat the cell with exogenous dyes or fluorescent labels. Furthermore, the measured birefringence of protein fibers in the thin lamellipodial region can be interpreted in terms of the number of filaments in the bundles. We confirmed that birefringent fibers are actin-based using conventional fluorescence-labeling methods. By recording movies of time-lapsed Pol-Scope images, we analyzed the creation and dynamic composition of radial fibers, filopodia, and intrapodia in advancing growth cones. The strictly quantitative information available in time-lapsed Pol-Scope images confirms previously deduced behavior and provides new insight into the architectural dynamics of filamentous actin.
ER/Golgi trafficking is facilitated by unbranched actin filaments containing Tpm4.2.
Kee, Anthony J; Bryce, Nicole S; Yang, Lingyan; Polishchuk, Elena; Schevzov, Galina; Weigert, Roberto; Polishchuk, Roman; Gunning, Peter W; Hardeman, Edna C
2017-10-01
We have identified novel actin filaments defined by tropomyosin Tpm4.2 at the ER. EM analysis of mouse embryo fibroblasts (MEFs) isolated from mice expressing a mutant Tpm4.2 (Tpm4 Plt53/Plt53 ), incapable of incorporating into actin filaments, revealed swollen ER structures compared with wild-type (WT) MEFs (Tpm4 +/+ ). ER-to-Golgi, but not Golgi-to-ER trafficking was altered in the Tpm4 Plt53/Plt53 MEFs following the transfection of the temperature sensitive ER-associated ts045-VSVg construct. Exogenous Tpm4.2 was able to rescue the ER-to-Golgi trafficking defect in the Tpm4 Plt53/Plt53 cells. The treatment of WT MEFs with the myosin II inhibitor, blebbistatin, blocked the Tpm4.2-dependent ER-to-Golgi trafficking. The lack of an effect on ER-to-Golgi trafficking following treatment of MEFs with CK666 indicates that branched Arp2/3-containing actin filaments are not involved in anterograde vesicle trafficking. We propose that unbranched, Tpm4.2-containing filaments have an important role in maintaining ER/Golgi structure and that these structures, in conjunction with myosin II motors, mediate ER-to-Golgi trafficking. © 2017 Wiley Periodicals, Inc.
Inhibiting Myosin Light Chain Kinase Induces Apoptosis In Vitro and In Vivo
Fazal, Fabeha; Gu, Lianzhi; Ihnatovych, Ivanna; Han, YooJeong; Hu, WenYang; Antic, Nenad; Carreira, Fernando; Blomquist, James F.; Hope, Thomas J.; Ucker, David S.; de Lanerolle, Primal
2005-01-01
Previous short-term studies have correlated an increase in the phosphorylation of the 20-kDa light chain of myosin II (MLC20) with blebbing in apoptotic cells. We have found that this increase in MLC20 phosphorylation is rapidly followed by MLC20 dephosphorylation when cells are stimulated with various apoptotic agents. MLC20 dephosphorylation is not a consequence of apoptosis because MLC20 dephosphorylation precedes caspase activation when cells are stimulated with a proapoptotic agent or when myosin light chain kinase (MLCK) is inhibited pharmacologically or by microinjecting an inhibitory antibody to MLCK. Moreover, blocking caspase activation increased cell survival when MLCK is inhibited or when cells are treated with tumor necrosis factor alpha. Depolymerizing actin filaments or detaching cells, processes that destabilize the cytoskeleton, or inhibiting myosin ATPase activity also resulted in MLC20 dephosphorylation and cell death. In vivo experiments showed that inhibiting MLCK increased the number of apoptotic cells and retarded the growth of mammary cancer cells in mice. Thus, MLC20 dephosphorylation occurs during physiological cell death and prolonged MLC20 dephosphorylation can trigger apoptosis. PMID:15988034
Smith, Benjamin A; Padrick, Shae B; Doolittle, Lynda K; Daugherty-Clarke, Karen; Corrêa, Ivan R; Xu, Ming-Qun; Goode, Bruce L; Rosen, Michael K; Gelles, Jeff
2013-09-03
During cell locomotion and endocytosis, membrane-tethered WASP proteins stimulate actin filament nucleation by the Arp2/3 complex. This process generates highly branched arrays of filaments that grow toward the membrane to which they are tethered, a conflict that seemingly would restrict filament growth. Using three-color single-molecule imaging in vitro we revealed how the dynamic associations of Arp2/3 complex with mother filament and WASP are temporally coordinated with initiation of daughter filament growth. We found that WASP proteins dissociated from filament-bound Arp2/3 complex prior to new filament growth. Further, mutations that accelerated release of WASP from filament-bound Arp2/3 complex proportionally accelerated branch formation. These data suggest that while WASP promotes formation of pre-nucleation complexes, filament growth cannot occur until it is triggered by WASP release. This provides a mechanism by which membrane-bound WASP proteins can stimulate network growth without restraining it. DOI:http://dx.doi.org/10.7554/eLife.01008.001.
Interactions of histatin-3 and histatin-5 with actin.
Blotnick, Edna; Sol, Asaf; Bachrach, Gilad; Muhlrad, Andras
2017-03-06
Histatins are histidine rich polypeptides produced in the parotid and submandibular gland and secreted into the saliva. Histatin-3 and -5 are the most important polycationic histatins. They possess antimicrobial activity against fungi such as Candida albicans. Histatin-5 has a higher antifungal activity than histatin-3 while histatin-3 is mostly involved in wound healing in the oral cavity. We found that these histatins, like other polycationic peptides and proteins, such as LL-37, lysozyme and histones, interact with extracellular actin. Histatin-3 and -5 polymerize globular actin (G-actin) to filamentous actin (F-actin) and bundle F-actin filaments. Both actin polymerization and bundling by histatins is pH sensitive due to the high histidine content of histatins. In spite of the equal number of net positive charges and histidine residues in histatin-3 and -5, less histatin-3 is needed than histatin-5 for polymerization and bundling of actin. The efficiency of actin polymerization and bundling by histatins greatly increases with decreasing pH. Histatin-3 and -5 induced actin bundles are dissociated by 100 and 50 mM NaCl, respectively. The relatively low NaCl concentration required to dissociate histatin-induced bundles implies that the actin-histatin filaments bind to each other mainly by electrostatic forces. The binding of histatin-3 to F-actin is stronger than that of histatin-5 showing that hydrophobic forces have also some role in histatin-3- actin interaction. Histatins affect the fluorescence of probes attached to the D-loop of G-actin indicating histatin induced changes in actin structure. Transglutaminase cross-links histatins to actin. Competition and limited proteolysis experiments indicate that the main histatin cross-linking site on actin is glutamine-49 on the D-loop of actin. Both histatin-3 and -5 interacts with actin, however, histatin 3 binds stronger to actin and affects actin structure at lower concentration than histatin-5 due to the extra 8 amino acid sequence at the C-terminus of histatin-3. Extracellular actin might regulate histatin activity in the oral cavity, which should be the subject of further investigation.
Molecular mechanisms of cell-cell spread of intracellular bacterial pathogens.
Ireton, Keith
2013-07-17
Several bacterial pathogens, including Listeria monocytogenes, Shigella flexneri and Rickettsia spp., have evolved mechanisms to actively spread within human tissues. Spreading is initiated by the pathogen-induced recruitment of host filamentous (F)-actin. F-actin forms a tail behind the microbe, propelling it through the cytoplasm. The motile pathogen then encounters the host plasma membrane, forming a bacterium-containing protrusion that is engulfed by an adjacent cell. Over the past two decades, much progress has been made in elucidating mechanisms of F-actin tail formation. Listeria and Shigella produce tails of branched actin filaments by subverting the host Arp2/3 complex. By contrast, Rickettsia forms tails with linear actin filaments through a bacterial mimic of eukaryotic formins. Compared with F-actin tail formation, mechanisms controlling bacterial protrusions are less well understood. However, recent findings have highlighted the importance of pathogen manipulation of host cell-cell junctions in spread. Listeria produces a soluble protein that enhances bacterial protrusions by perturbing tight junctions. Shigella protrusions are engulfed through a clathrin-mediated pathway at 'tricellular junctions'--specialized membrane regions at the intersection of three epithelial cells. This review summarizes key past findings in pathogen spread, and focuses on recent developments in actin-based motility and the formation and internalization of bacterial protrusions.
Izoré, Thierry; Duman, Ramona; Kureisaite-Ciziene, Danguole; Löwe, Jan
2014-01-01
Polymerising proteins of the actin family are nearly ubiquitous. Crenactins, restricted to Crenarchaea, are more closely related to actin than bacterial MreB. Crenactins occur in gene clusters hinting at an unknown, but conserved function. We solved the crystal structure of crenactin at 3.2 Å resolution. The protein crystallises as a continuous right-handed helix with 8 subunits per complete turn, spanning 419 Å. The structure of crenactin shows several loops that are longer than in actin, but overall, crenactin is closely related to eukaryotic actin, with an RMSD of 1.6 Å. Crenactin filaments imaged by electron microscopy showed polymers with very similar helical parameters. PMID:24486010
Zhu, Lei; Zhang, Yan; Kang, Erfang; Xu, Qiangyi; Wang, Miaoying; Rui, Yue; Liu, Baoquan; Yuan, Ming; Fu, Ying
2013-03-01
For fertilization to occur in plants, the pollen tube must be guided to enter the ovule via the micropyle. Previous reports have implicated actin filaments, actin binding proteins, and the tip-focused calcium gradient as key contributors to polar growth of pollen tubes; however, the regulation of directional pollen tube growth is largely unknown. We reported previously that Arabidopsis thaliana MICROTUBULE-ASSOCIATED PROTEIN18 (MAP18) contributes to directional cell growth and cortical microtubule organization. The preferential expression of MAP18 in pollen and in pollen tubes suggests that MAP18 also may function in pollen tube growth. In this study, we demonstrate that MAP18 functions in pollen tubes by influencing actin organization, rather than microtubule assembly. In vitro biochemical results indicate that MAP18 exhibits Ca(2+)-dependent filamentous (F)-actin-severing activity. Abnormal expression of MAP18 in map18 and MAP18 OX plants was associated with disorganization of the actin cytoskeleton in the tube apex, resulting in aberrant pollen tube growth patterns and morphologies, inaccurate micropyle targeting, and fewer fertilization events. Experiments with MAP18 mutants created by site-directed mutagenesis suggest that F-actin-severing activity is essential to the effects of MAP18 on pollen tube growth direction. Our study demonstrates that in Arabidopsis, MAP18 guides the direction of pollen tube growth by modulating actin filaments.
Helfer, Emmanuèle; Panine, Pierre; Carlier, Marie-France; Davidson, Patrick
2005-07-01
F-actin gels of increasing concentrations (25-300 microM) display in vitro a progressive onset of birefringence due to orientational ordering of actin filaments. At F-actin concentrations <100 microM, this birefringence can be erased and restored at will by sonication and gentle flow, respectively. Hence, the orientational ordering does not result from a thermodynamic transition to a nematic phase but instead is due to mechanical stresses stored in the gels. In contrast, at F-actin concentrations > or =100 microM, gels display spontaneous birefringence recovery, at rest, which is the sign of true nematic ordering, in good agreement with statistical physics models of the isotropic/nematic transition. Well-aligned samples of F-actin gels could be produced and their small-angle x-ray scattering patterns are quite anisotropic. These patterns show no sign of filament positional short-range order and could be modeled by averaging the form factor with the Maier-Saupe nematic distribution function. The derived nematic order parameter S of the gels ranged from S = 0.7 at 300 microM to S = 0.4 at 25 microM. Both birefringence and small-angle x-ray scattering data indicate that, even in absence of cross-linking proteins, spontaneous cooperative alignment of actin filaments may arise in motile regions of living cells where F-actin concentrations can reach values of a few 100 microM.
Addition of electrophilic lipids to actin alters filament structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gayarre, Javier; Sanchez, David; Sanchez-Gomez, Francisco J.
2006-11-03
Pathophysiological processes associated with oxidative stress lead to the generation of reactive lipid species. Among them, lipids bearing unsaturated aldehyde or ketone moieties can form covalent adducts with cysteine residues and modulate protein function. Through proteomic techniques we have identified actin as a target for the addition of biotinylated analogs of the cyclopentenone prostaglandins 15-deoxy-{delta}{sup 12,14}-PGJ{sub 2} (15d-PGJ{sub 2}) and PGA{sub 1} in NIH-3T3 fibroblasts. This modification could take place in vitro and mapped to the protein C-terminal end. Other electrophilic lipids, like the isoprostane 8-iso-PGA{sub 1} and 4-hydroxy-2-nonenal, also bound to actin. The C-terminal region of actin is importantmore » for monomer-monomer interactions and polymerization. Electron microscopy showed that actin treated with 15d-PGJ{sub 2} or 4-hydroxy-2-nonenal formed filaments which were less abundant and displayed shorter length and altered structure. Streptavidin-gold staining allowed mapping of biotinylated 15d-PGJ{sub 2} at sites of filament disruption. These results shed light on the structural implications of actin modification by lipid electrophiles.« less
Cofilin is a pH sensor for actin free barbed end formation: role of phosphoinositide binding.
Frantz, Christian; Barreiro, Gabriela; Dominguez, Laura; Chen, Xiaoming; Eddy, Robert; Condeelis, John; Kelly, Mark J S; Jacobson, Matthew P; Barber, Diane L
2008-12-01
Newly generated actin free barbed ends at the front of motile cells provide sites for actin filament assembly driving membrane protrusion. Growth factors induce a rapid biphasic increase in actin free barbed ends, and we found both phases absent in fibroblasts lacking H(+) efflux by the Na-H exchanger NHE1. The first phase is restored by expression of mutant cofilin-H133A but not unphosphorylated cofilin-S3A. Constant pH molecular dynamics simulations and nuclear magnetic resonance (NMR) reveal pH-sensitive structural changes in the cofilin C-terminal filamentous actin binding site dependent on His133. However, cofilin-H133A retains pH-sensitive changes in NMR spectra and severing activity in vitro, which suggests that it has a more complex behavior in cells. Cofilin activity is inhibited by phosphoinositide binding, and we found that phosphoinositide binding is pH-dependent for wild-type cofilin, with decreased binding at a higher pH. In contrast, phosphoinositide binding by cofilin-H133A is attenuated and pH insensitive. These data suggest a molecular mechanism whereby cofilin acts as a pH sensor to mediate a pH-dependent actin filament dynamics.
Montaville, Pierre; Jégou, Antoine; Pernier, Julien; Compper, Christel; Guichard, Bérengère; Mogessie, Binyam; Schuh, Melina; Romet-Lemonne, Guillaume; Carlier, Marie-France
2014-02-01
In mammalian oocytes, three actin binding proteins, Formin 2 (Fmn2), Spire, and profilin, synergistically organize a dynamic cytoplasmic actin meshwork that mediates translocation of the spindle toward the cortex and is required for successful fertilization. Here we characterize Fmn2 and elucidate the molecular mechanism for this synergy, using bulk solution and individual filament kinetic measurements of actin assembly dynamics. We show that by capping filament barbed ends, Spire recruits Fmn2 and facilitates its association with barbed ends, followed by rapid processive assembly and release of Spire. In the presence of actin, profilin, Spire, and Fmn2, filaments display alternating phases of rapid processive assembly and arrested growth, driven by a "ping-pong" mechanism, in which Spire and Fmn2 alternately kick off each other from the barbed ends. The results are validated by the effects of injection of Spire, Fmn2, and their interacting moieties in mouse oocytes. This original mechanism of regulation of a Rho-GTPase-independent formin, recruited by Spire at Rab11a-positive vesicles, supports a model for modulation of a dynamic actin-vesicle meshwork in the oocyte at the origin of asymmetric positioning of the meiotic spindle.
Nunes, Paula; Haines, Nicola; Kuppuswamy, Venkat; Fleet, David J.
2006-01-01
N-ethylmaleimide sensitive factor (NSF) can dissociate the soluble NSF attachment receptor (SNARE) complex, but NSF also participates in other intracellular trafficking functions by virtue of SNARE-independent activity. Drosophila that express a neural transgene encoding a dominant-negative form of NSF2 show an 80% reduction in the size of releasable synaptic vesicle pool, but no change in the number of vesicles in nerve terminal boutons. Here we tested the hypothesis that vesicles in the NSF2 mutant terminal are less mobile. Using a combination of genetics, pharmacology, and imaging we find a substantial reduction in vesicle mobility within the nerve terminal boutons of Drosophila NSF2 mutant larvae. Subsequent analysis revealed a decrease of filamentous actin in both NSF2 dominant-negative and loss-of-function mutants. Lastly, actin-filament disrupting drugs also decrease vesicle movement. We conclude that a factor contributing to the NSF mutant phenotype is a reduction in vesicle mobility, which is associated with decreased presynaptic F-actin. Our data are consistent with a model in which actin filaments promote vesicle mobility and suggest that NSF participates in establishing or maintaining this population of actin. PMID:16914524
Transportation of Nanoscale Cargoes by Myosin Propelled Actin Filaments
Persson, Malin; Gullberg, Maria; Tolf, Conny; Lindberg, A. Michael; Månsson, Alf; Kocer, Armagan
2013-01-01
Myosin II propelled actin filaments move ten times faster than kinesin driven microtubules and are thus attractive candidates as cargo-transporting shuttles in motor driven lab-on-a-chip devices. In addition, actomyosin-based transportation of nanoparticles is useful in various fundamental studies. However, it is poorly understood how actomyosin function is affected by different number of nanoscale cargoes, by cargo size, and by the mode of cargo-attachment to the actin filament. This is studied here using biotin/fluorophores, streptavidin, streptavidin-coated quantum dots, and liposomes as model cargoes attached to monomers along the actin filaments (“side-attached”) or to the trailing filament end via the plus end capping protein CapZ. Long-distance transportation (>100 µm) could be seen for all cargoes independently of attachment mode but the fraction of motile filaments decreased with increasing number of side-attached cargoes, a reduction that occurred within a range of 10–50 streptavidin molecules, 1–10 quantum dots or with just 1 liposome. However, as observed by monitoring these motile filaments with the attached cargo, the velocity was little affected. This also applied for end-attached cargoes where the attachment was mediated by CapZ. The results with side-attached cargoes argue against certain models for chemomechanical energy transduction in actomyosin and give important insights of relevance for effective exploitation of actomyosin-based cargo-transportation in molecular diagnostics and other nanotechnological applications. The attachment of quantum dots via CapZ, without appreciable modulation of actomyosin function, is useful in fundamental studies as exemplified here by tracking with nanometer accuracy. PMID:23437074
PI(3,5)P2 controls endosomal branched actin dynamics by regulating cortactin–actin interactions
Hong, Nan Hyung; Qi, Aidong
2015-01-01
Branched actin critically contributes to membrane trafficking by regulating membrane curvature, dynamics, fission, and transport. However, how actin dynamics are controlled at membranes is poorly understood. Here, we identify the branched actin regulator cortactin as a direct binding partner of phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2) and demonstrate that their interaction promotes turnover of late endosomal actin. In vitro biochemical studies indicated that cortactin binds PI(3,5)P2 via its actin filament-binding region. Furthermore, PI(3,5)P2 competed with actin filaments for binding to cortactin, thereby antagonizing cortactin activity. These findings suggest that PI(3,5)P2 formation on endosomes may remove cortactin from endosome-associated branched actin. Indeed, inhibition of PI(3,5)P2 production led to cortactin accumulation and actin stabilization on Rab7+ endosomes. Conversely, inhibition of Arp2/3 complex activity greatly reduced cortactin localization to late endosomes. Knockdown of cortactin reversed PI(3,5)P2-inhibitor–induced actin accumulation and stabilization on endosomes. These data suggest a model in which PI(3,5)P2 binding removes cortactin from late endosomal branched actin networks and thereby promotes net actin turnover. PMID:26323691
Lin, Xiaoyan; Ruiz, Janelle; Bajraktari, Ilda; Ohman, Rachel; Banerjee, Soojay; Gribble, Katherine; Kaufman, Joshua D.; Wingfield, Paul T.; Griggs, Robert C.; Fischbeck, Kenneth H.; Mankodi, Ami
2014-01-01
The core of skeletal muscle Z-discs consists of actin filaments from adjacent sarcomeres that are cross-linked by α-actinin homodimers. Z-disc-associated, alternatively spliced, PDZ motif-containing protein (ZASP)/Cypher interacts with α-actinin, myotilin, and other Z-disc proteins via the PDZ domain. However, these interactions are not sufficient to maintain the Z-disc structure. We show that ZASP directly interacts with skeletal actin filaments. The actin-binding domain is between the modular PDZ and LIM domains. This ZASP region is alternatively spliced so that each isoform has unique actin-binding domains. All ZASP isoforms contain the exon 6-encoded ZASP-like motif that is mutated in zaspopathy, a myofibrillar myopathy (MFM), whereas the exon 8–11 junction-encoded peptide is exclusive to the postnatal long ZASP isoform (ZASP-LΔex10). MFM is characterized by disruption of skeletal muscle Z-discs and accumulation of myofibrillar degradation products. Wild-type and mutant ZASP interact with α-actin, α-actinin, and myotilin. Expression of mutant, but not wild-type, ZASP leads to Z-disc disruption and F-actin accumulation in mouse skeletal muscle, as in MFM. Mutations in the actin-binding domain of ZASP-LΔex10, but not other isoforms, cause disruption of the actin cytoskeleton in muscle cells. These isoform-specific mutation effects highlight the essential role of the ZASP-LΔex10 isoform in F-actin organization. Our results show that MFM-associated ZASP mutations in the actin-binding domain have deleterious effects on the core structure of the Z-discs in skeletal muscle. PMID:24668811
Purification of Arp2/3 complex from Saccharomyces cerevisiae
Doolittle, Lynda K.; Rosen, Michael K.; Padrick, Shae B.
2014-01-01
Summary Much of cellular control over actin dynamics comes through regulation of actin filament initiation. At the molecular level, this is accomplished through a collection of cellular protein machines, called actin nucleation factors, which position actin monomers to initiate a new actin filament. The Arp2/3 complex is a principal actin nucleation factor used throughout the eukaryotic family tree. The budding yeast Saccharomyces cerevisiae has proven to be not only an excellent genetic platform for the study of the Arp2/3 complex, but also an excellent source for the purification of endogenous Arp2/3 complex. Here we describe a protocol for the preparation of endogenous Arp2/3 complex from wild type Saccharomyces cerevisiae. This protocol produces material suitable for biochemical study, and yields milligram quantities of purified Arp2/3 complex. PMID:23868593
Structural Basis for the Regulation of Muscle Contraction by Troponin and Tropomyosin
Galińska-Rakoczy, Agnieszka; Engel, Patti; Xu, Chen; Jung, HyunSuk; Craig, Roger; Tobacman, Larry S.; Lehman, William
2008-01-01
The molecular switching mechanism governing skeletal and cardiac muscle contraction couples the binding of Ca2+ on troponin to the movement of tropomyosin on actin filaments. Despite years of investigation, this mechanism remains unclear because it has not yet been possible to directly assess the structural influence of troponin on tropomyosin that causes actin filaments, and hence myosin-crossbridge cycling and contraction, to switch on and off. A C-terminal domain of troponin I is thought to be intimately involved in inducing tropomyosin movement to an inhibitory position that blocks myosin-crossbridge interaction. Release of this regulatory, latching domain from actin after Ca2+-binding to TnC presumably allows tropomyosin movement away from the inhibitory position on actin, thus initiating contraction. However, the structural interactions of the regulatory domain of TnI with tropomyosin and actin that cause tropomyosin movement are unknown and thus the regulatory process is not well defined. Here, thin filaments were labeled with an engineered construct representing C-terminal TnI and then 3D-EM was used to resolve where troponin is anchored on actin-tropomyosin. EM-reconstruction showed how TnI-binding to both actin and tropomyosin at low-Ca2+ competes with tropomyosin for a common site on actin and drives tropomyosin movement to a constrained, relaxing position to inhibit myosin-crossbridge association. Thus the observations reported reveal the structural mechanism responsible for troponin-tropomyosin-mediated steric-interference of actin-myosin interaction that regulates muscle contraction. PMID:18514658
Actin filaments-A target for redox regulation.
Wilson, Carlos; Terman, Jonathan R; González-Billault, Christian; Ahmed, Giasuddin
2016-10-01
Actin and its ability to polymerize into dynamic filaments is critical for the form and function of cells throughout the body. While multiple proteins have been characterized as affecting actin dynamics through noncovalent means, actin and its protein regulators are also susceptible to covalent modifications of their amino acid residues. In this regard, oxidation-reduction (Redox) intermediates have emerged as key modulators of the actin cytoskeleton with multiple different effects on cellular form and function. Here, we review work implicating Redox intermediates in post-translationally altering actin and discuss what is known regarding how these alterations affect the properties of actin. We also focus on two of the best characterized enzymatic sources of these Redox intermediates-the NADPH oxidase NOX and the flavoprotein monooxygenase MICAL-and detail how they have both been identified as altering actin, but share little similarity and employ different means to regulate actin dynamics. Finally, we discuss the role of these enzymes and redox signaling in regulating the actin cytoskeleton in vivo and highlight their importance for neuronal form and function in health and disease. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Actin-myosin network is required for proper assembly of influenza virus particles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumakura, Michiko; Kawaguchi, Atsushi, E-mail: ats-kawaguchi@md.tsukuba.ac.jp; Nagata, Kyosuke, E-mail: knagata@md.tsukuba.ac.jp
Actin filaments are known to play a central role in cellular dynamics. After polymerization of actin, various actin-crosslinking proteins including non-muscle myosin II facilitate the formation of spatially organized actin filament networks. The actin-myosin network is highly expanded beneath plasma membrane. The genome of influenza virus (vRNA) replicates in the cell nucleus. Then, newly synthesized vRNAs are nuclear-exported to the cytoplasm as ribonucleoprotein complexes (vRNPs), followed by transport to the beneath plasma membrane where virus particles assemble. Here, we found that, by inhibiting actin-myosin network formation, the virus titer tends to be reduced and HA viral spike protein is aggregatedmore » on the plasma membrane. These results indicate that the actin-myosin network plays an important role in the virus formation. - Highlights: • Actin-myosin network is important for the influenza virus production. • HA forms aggregations at the plasma membrane in the presence of blebbistatin. • M1 is recruited to the budding site through the actin-myosin network.« less
Actin filaments – a target for redox regulation
Wilson, Carlos; Terman, Jonathan R.; González-Billault, Christian; Ahmed, Giasuddin
2016-01-01
Actin and its ability to polymerize into dynamic filaments is critical for the form and function of cells throughout the body. While multiple proteins have been characterized as affecting actin dynamics through non-covalent means, actin and its protein regulators are also susceptible to covalent modifications of their amino acid residues. In this regard, oxidation-reduction (Redox) intermediates have emerged as key modulators of the actin cytoskeleton with multiple different effects on cellular form and function. Here, we review work implicating Redox intermediates in post-translationally altering actin and discuss what is known regarding how these alterations affect the properties of actin. We also focus on two of the best characterized enzymatic sources of these Redox intermediates – the NADPH oxidase NOX and the flavoprotein monooxygenase MICAL – and detail how they have both been identified as altering actin, but share little similarity and employ different means to regulate actin dynamics. Finally, we discuss the role of these enzymes and redox signaling in regulating the actin cytoskeleton in vivo and highlight their importance for neuronal form and function in health and disease. PMID:27309342
siRNA Screen Identifies Trafficking Host Factors that Modulate Alphavirus Infection
Radoshitzky, Sheli R.; Pegoraro, Gianluca; Chī, Xiǎolì; Dǒng, Lián; Chiang, Chih-Yuan; Jozwick, Lucas; Clester, Jeremiah C.; Cooper, Christopher L.; Courier, Duane; Langan, David P.; Underwood, Knashka; Kuehl, Kathleen A.; Sun, Mei G.; Caì, Yíngyún; Yú, Shuǐqìng; Burk, Robin; Zamani, Rouzbeh; Kota, Krishna; Kuhn, Jens H.; Bavari, Sina
2016-01-01
Little is known about the repertoire of cellular factors involved in the replication of pathogenic alphaviruses. To uncover molecular regulators of alphavirus infection, and to identify candidate drug targets, we performed a high-content imaging-based siRNA screen. We revealed an actin-remodeling pathway involving Rac1, PIP5K1- α, and Arp3, as essential for infection by pathogenic alphaviruses. Infection causes cellular actin rearrangements into large bundles of actin filaments termed actin foci. Actin foci are generated late in infection concomitantly with alphavirus envelope (E2) expression and are dependent on the activities of Rac1 and Arp3. E2 associates with actin in alphavirus-infected cells and co-localizes with Rac1–PIP5K1-α along actin filaments in the context of actin foci. Finally, Rac1, Arp3, and actin polymerization inhibitors interfere with E2 trafficking from the trans-Golgi network to the cell surface, suggesting a plausible model in which transport of E2 to the cell surface is mediated via Rac1- and Arp3-dependent actin remodeling. PMID:27031835
Baum, Jake; Tonkin, Christopher J; Paul, Aditya S; Rug, Melanie; Smith, Brian J; Gould, Sven B; Richard, Dave; Pollard, Thomas D; Cowman, Alan F
2008-03-13
Malaria parasites invade host cells using actin-based motility, a process requiring parasite actin filament nucleation and polymerization. Malaria and other apicomplexan parasites lack Arp2/3 complex, an actin nucleator widely conserved across eukaryotes, but do express formins, another type of actin nucleator. Here, we demonstrate that one of two malaria parasite formins, Plasmodium falciparum formin 1 (PfFormin 1), and its ortholog in the related parasite Toxoplasma gondii, follows the moving tight junction between the invading parasite and the host cell, which is the predicted site of the actomyosin motor that powers motility. Furthermore, in vitro, the PfFormin1 actin-binding formin homology 2 domain is a potent nucleator, stimulating actin polymerization and, like other formins, localizing to the barbed end during filament elongation. These findings support a conserved molecular mechanism underlying apicomplexan parasite motility and, given the essential role that actin plays in cell invasion, highlight formins as important determinants of malaria parasite pathogenicity.
Revenu, Céline; Ubelmann, Florent; Hurbain, Ilse; El-Marjou, Fatima; Dingli, Florent; Loew, Damarys; Delacour, Delphine; Gilet, Jules; Brot-Laroche, Edith; Rivero, Francisco; Louvard, Daniel; Robine, Sylvie
2012-01-01
Actin-bundling proteins are identified as key players in the morphogenesis of thin membrane protrusions. Until now, functional redundancy among the actin-bundling proteins villin, espin, and plastin-1 has prevented definitive conclusions regarding their role in intestinal microvilli. We report that triple knockout mice lacking these microvillar actin-bundling proteins suffer from growth delay but surprisingly still develop microvilli. However, the microvillar actin filaments are sparse and lack the characteristic organization of bundles. This correlates with a highly inefficient apical retention of enzymes and transporters that accumulate in subapical endocytic compartments. Myosin-1a, a motor involved in the anchorage of membrane proteins in microvilli, is also mislocalized. These findings illustrate, in vivo, a precise role for local actin filament architecture in the stabilization of apical cargoes into microvilli. Hence, the function of actin-bundling proteins is not to enable microvillar protrusion, as has been assumed, but to confer the appropriate actin organization for the apical retention of proteins essential for normal intestinal physiology.
Pal Sharma, C; Goldmann, Wolfgang H
2004-01-01
Actin-binding protein (ABP-280; filamin) is a phosphoprotein present in the periphery of the cytoplasm where it can cross-link actin filaments, associate with lipid membranes, and bind to membrane surface receptors. Given its function and localization in the cell, we decided to investigate the possibility of whether it serves as substrate for p56lck, a lymphocyte-specific member of the src family of protein tyrosine kinases associated with cell surface glycoproteins. The interaction of p56lck with membrane glycoproteins is important for cell development and functional activation. Here, we show that purified p56lck interacts and catalyzes in vitro kinase reactions. Tyrosine phosphorylation by p56lck is restricted to a single peptide of labeled ABP-280 shown by protease digest. The addition of phorbol ester to cells results in the inhibition of phosphorylation of ABP-280 by p56lck. These results show a decrease in phosphorylation suggesting conformationally induced regulation. Dynamic light scattering confirmed increased actin filament cross-linking due to phosphorylation of ABP-280 by p56lck.
Tying a molecular knot with optical tweezers
NASA Astrophysics Data System (ADS)
Arai, Yasuharu; Yasuda, Ryohei; Akashi, Ken-Ichirou; Harada, Yoshie; Miyata, Hidetake; Kinosita, Kazuhiko; Itoh, Hiroyasu
1999-06-01
Filamentous structures are abundant in cells. Relatively rigid filaments, such as microtubules and actin, serve as intracellular scaffolds that support movement and force, and their mechanical properties are crucial to their function in the cell. Some aspects of the behaviour of DNA, meanwhile, depend critically on its flexibility-for example, DNA-binding proteins can induce sharp bends in the helix. The mechanical characterization of such filaments has generally been conducted without controlling the filament shape, by the observation of thermal motions or of the response to external forces or flows. Controlled buckling of a microtubule has been reported, but the analysis of the buckled shape was complicated. Here we report the continuous control of the radius of curvature of a molecular strand by tying a knot in it, using optical tweezers to manipulate the strand's ends. We find that actin filaments break at the knot when the knot diameter falls below 0.4µm. The pulling force at breakage is around 1pN, two orders of magnitude smaller than the tensile stress of a straight filament. The flexural rigidity of the filament remained unchanged down to this diameter. We have also knotted a single DNA molecule, opening up the possibility of studying curvature-dependent interactions with associated proteins. We find that the knotted DNA is stronger than actin.
Chemotaxis and Actin Oscillations
NASA Astrophysics Data System (ADS)
Bodenschatz, Eberhard; Hsu, Hsin-Fang; Negrete, Jose; Beta, Carsten; Pumir, Alain; Gholami, Azam; Tarantola, Marco; Westendorf, Christian; Zykov, Vladimir
Recently, self-oscillations of the cytoskeletal actin have been observed in Dictyostelium, a model system for studying chemotaxis. Here we report experimental results on the self-oscillation mechanism and the role of regulatory proteins and myosin II. We stimulate cells rapidly and periodically by using photo un-caging of the chemoattractant in a micro-fluidic device and measured the cellular responses. We found that the response amplitude grows with stimulation strength only in a very narrow region of stimulation, after which the response amplitude reaches a plateau. Moreover, the frequency-response is not constant but rather varies with the strength of external stimuli. To understand the underlying mechanism, we analyzed the polymerization and de-polymerization time in the single cell level. Despite of the large cell-to-cell variability, we found that the polymerization time is independent of external stimuli and the de-polymerization time is prolonged as the stimulation strength increases. Our conclusions will be summarized and the role of noise in the signaling network will be discussed. German Science Foundation CRC 937.
Gladilin, Evgeny; Gonzalez, Paula; Eils, Roland
2014-08-22
Mechanical cell properties play an important role in many basic biological functions, including motility, adhesion, proliferation and differentiation. There is a growing body of evidence that the mechanical cell phenotype can be used for detection and, possibly, treatment of various diseases, including cancer. Understanding of pathological mechanisms requires investigation of the relationship between constitutive properties and major structural components of cells, i.e., the nucleus and cytoskeleton. While the contribution of actin und microtubules to cellular rheology has been extensively studied in the past, the role of intermediate filaments has been scarcely investigated up to now. Here, for the first time we compare the effects of drug-induced disruption of actin and vimentin intermediate filaments on mechanical properties of suspended NK cells using high-throughput deformability measurements and computational modeling. Although, molecular mechanisms of actin and vimentin disruption by the applied cytoskeletal drugs, Cytochalasin-D and Withaferin-A, are different, cell softening in both cases can be attributed to reduction of the effective density and stiffness of filament networks. Our experimental data suggest that actin and vimentin deficient cells exhibit, in average, 41% and 20% higher deformability in comparison to untreated control. 3D Finite Element simulation is performed to quantify the contribution of cortical actin and perinuclear vimentin to mechanical phenotype of the whole cell. Our simulation provides quantitative estimates for decreased filament stiffness in drug-treated cells and predicts more than two-fold increase of the strain magnitude in the perinuclear vimentin layer of actin deficient cells relatively to untreated control. Thus, the mechanical function of vimentin becomes particularly essential in motile and proliferating cells that have to dynamically remodel the cortical actin network. These insights add functional cues to frequently observed overexpression of vimentin in diverse types of cancer and underline the role of vimentin targeting drugs, such as Withaferin-A, as a potent cancerostatic supplement. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Defeu Soufo, Hervé Joël; Reimold, Christian; Breddermann, Hannes; Mannherz, Hans G; Graumann, Peter L
2015-04-24
EF-Tu has been shown to interact with actin-like protein MreB and to affect its localization in Escherichia coli and in Bacillus subtilis cells. We have purified YFP-MreB in an active form, which forms filaments on glass slides in vitro and was active in dynamic light-scattering assays, polymerizing in milliseconds after addition of magnesium. Purified EF-Tu enhanced the amount of MreB filaments, as seen by sedimentation assays, the speed of filament formation and the length of MreB filaments in vitro. EF-Tu had the strongest impact on MreB filaments in a 1:1 ratio, and EF-Tu co-sedimented with MreB filaments, revealing a stoichiometric interaction between both proteins. This was supported by cross-linking assays where 1:1 species were well detectable. When expressed in E. coli cells, B. subtilis MreB formed filaments and induced the formation of co-localizing B. subtilis EF-Tu structures, indicating that MreB can direct the positioning of EF-Tu structures in a heterologous cell system. Fluorescence recovery after photobleaching analysis showed that MreB filaments have a higher turnover in B. subtilis cells than in E. coli cells, indicating different filament kinetics in homologous or heterologous cell systems. The data show that MreB can direct the localization of EF-Tu in vivo, which in turn positively affects the formation and dynamics of MreB filaments. Thus, EF-Tu is a modulator of the activity of a bacterial actin-like protein. Copyright © 2015. Published by Elsevier Ltd.
Favorable prognostic role of tropomodulins in neuroblastoma.
Bettinsoli, Paola; Ferrari-Toninelli, Giulia; Bonini, Sara Anna; Guarienti, Michela; Cangelosi, Davide; Varesio, Luigi; Memo, Maurizio
2018-06-05
Neuroblastoma is a pediatric tumor of the sympatoadrenal lineage of the neural crest characterized by high molecular and clinical heterogeneity, which are the main causes of the poor response to standard multimodal therapy. The identification of new and selective biomarkers is important to improve our knowledge on the mechanisms of neuroblastoma progression and to find the targets for innovative cancer therapies. This study identifies a positive correlation among tropomodulins (TMODs) proteins expression and neuroblastoma progression. TMODs bind the pointed end of actin filaments, regulate polymerization and depolymerization processes modifying actin cytoskeletal dynamic and influencing neuronal development processes. Expression levels of TMODs genes were analyzed in 17 datasets comprising different types of tumors, including neuroblastoma, and it was demonstrated that high levels of tropomodulin1 ( TMOD1 ) and tropomodulin 2 ( TMOD2 ) correlate positively with high survival probability and with favorable clinical and molecular characteristics. Functional studies on neuroblastoma cell lines, showed that TMOD1 knockin induced cell cycle arrest, cell proliferation arrest and a mature functional differentiation. TMOD1 overexpression was responsible for particular cell morphology and biochemical changes which directed cells towards a neuronal favorable differentiation profile. TMOD1 downregulation also induced cell proliferation arrest but caused the loss of mature cell differentiation and promoted the development of neuroendocrine cellular characteristics, delineating an aggressive and unfavorable tumor behavior. Overall, these data indicated that TMODs are favorable prognostic biomarkers in neuroblastoma and we believe that they could contribute to unravel a new pathophysiological mechanism of neuroblastoma resistance contributing to the design of personalized therapeutics opportunities.
Phosphoinositide-specific phospholipase C in oat roots: association with the actin cytoskeleton.
Huang, Chiung-Hua; Crain, Richard C
2009-10-01
Phosphoinositide-specific phospholipase C (PI-PLC) activities are involved in mediating plant cell responses to environmental stimuli. Two variants of PI-PLC have been partially purified from the roots of oat seedlings; one cytosolic and one particulate. Although the cytosolic enzyme was significantly purified, the activity still co-migrated with a number of other proteins on heparin HPLC and also on size-exclusion chromatography. The partially purified PI-PLC was tested by Western blotting, and we found that actin and actin-binding proteins, profilin and tropomyosin, co-purified with cytosolic phospholipase C. After a non-ionic detergent (Triton X-100) treatment, PI-PLC activities still remained with the actin cytoskeleton. The effects of phalloidin and F-buffer confirmed this association; these conditions, which favor actin polymerization, decreased the release of PI-PLC from the cytoskeleton. The treatments of latrunculin and G-buffer, the conditions that favor actin depolymerization, increased the release of PI-PLC from the cytoskeleton. These results suggest that oat PI-PLC associates with the actin cytoskeleton.
Displacement of statoliths in Chara rhizoids during horizontal rotation on clinostats.
Cai, W M; Braun, M; Sievers, A
1997-06-01
The basipetal movement of statoliths in Chara rhizoids, similar to that during parabolic flights of TEXUS rockets occurs also during rotation on clinostats. Within 15 min on fast-rotating clinostat, the distance between the center of the statolith complex and the cell vertex increases for 60% of that in positively gravitropic downward growing rhizoids. Cytochalasin D experiments confirm that the movement of statoliths is actin-dependent and the actin filaments exert basipetal forces on statoliths in gravity field. The clinostat and/or cytochalasin experiments confirm the suggestion that on earth the position of statoliths depends on the balance of the gravitational force and the counteracting force mediated by actin filaments. The statolith center keeps a stable position during about 30 min on a fast-rotating clinostat, i.e. it is then in a new dynamically stable state. This new state is achieved 15 min after the basipetal acting filament-mediated force has been disturbed by clinostatting. Further experiments on the fast-rotating clinostat show that this new position brings about a reorganization of actin filaments which makes the process of acropetal transport of statoliths possible. The amplitude of particle oscillatory movement decreases as the rotational speed of the clinostat increases. This explains the differences of the results obtained from the experiments on fast-rotating and slow-rotating clinostats. It should be kept in mind that rhizoids are unicellular. The fast-rotating clinostat is suitable for simulation of conditions without gravity when a rhizoid is on the axis of rotation. The interaction of statoliths and actin filaments at zero gravity can be studied by means of such a clinostat.
A novel role for WAVE1 in controlling actin network growth rate and architecture.
Sweeney, Meredith O; Collins, Agnieszka; Padrick, Shae B; Goode, Bruce L
2015-02-01
Branched actin filament networks in cells are assembled through the combined activities of Arp2/3 complex and different WASP/WAVE proteins. Here we used TIRF and electron microscopy to directly compare for the first time the assembly kinetics and architectures of actin filament networks produced by Arp2/3 complex and dimerized VCA regions of WAVE1, WAVE2, or N-WASP. WAVE1 produced strikingly different networks from WAVE2 or N-WASP, which comprised unexpectedly short filaments. Further analysis showed that the WAVE1-specific activity stemmed from an inhibitory effect on filament elongation both in the presence and absence of Arp2/3 complex, which was observed even at low stoichiometries of WAVE1 to actin monomers, precluding an effect from monomer sequestration. Using a series of VCA chimeras, we mapped the elongation inhibitory effects of WAVE1 to its WH2 ("V") domain. Further, mutating a single conserved lysine residue potently disrupted WAVE1's inhibitory effects. Taken together, our results show that WAVE1 has unique activities independent of Arp2/3 complex that can govern both the growth rates and architectures of actin filament networks. Such activities may underlie previously observed differences between the cellular functions of WAVE1 and WAVE2. © 2015 Sweeney et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
Takano, Mitsunori; Terada, Tomoki P.; Sasai, Masaki
2010-01-01
The actomyosin molecular motor, the motor composed of myosin II and actin filament, is responsible for muscle contraction, converting chemical energy into mechanical work. Although recent single molecule and structural studies have shed new light on the energy-converting mechanism, the physical basis of the molecular-level mechanism remains unclear because of the experimental limitations. To provide a clue to resolve the controversy between the lever-arm mechanism and the Brownian ratchet-like mechanism, we here report an in silico single molecule experiment of an actomyosin motor. When we placed myosin on an actin filament and allowed myosin to move along the filament, we found that myosin exhibits a unidirectional Brownian motion along the filament. This unidirectionality was found to arise from the combination of a nonequilibrium condition realized by coupling to the ATP hydrolysis and a ratchet-like energy landscape inherent in the actin-myosin interaction along the filament, indicating that a Brownian ratchet-like mechanism contributes substantially to the energy conversion of this molecular motor. PMID:20385833
McCloskey, Diana T; Doherty, Lynda; Dai, Yan-Ping; Miller, Lisa; Hume, Joseph R; Yamboliev, Ilia A
2007-06-08
Short ClC3 isoform (sClC3) functions as a volume-sensitive outwardly rectifying anion channel (VSOAC) in some cell types. In previous studies, we have shown that the hypotonic activation of sClC3 is linked to cell swelling-mediated remodeling of the actin cytoskeleton. In the present study, we have tested the hypothesis that the cytosolic tails of sClC3 bind to actin directly and that binding modulates the hypotonic activation of the channel. Co-sedimentation assays in vitro demonstrated a strong binding between the glutathione S-transferase-fused cytosolic C terminus of sClC3 (GST-sClC3-CT) to filamentous actin (F-actin) but not to globular monomeric actin (G-actin). The GST-fused N terminus (GST-sClC3-NT) exhibited low binding affinity to both G- and F-actin. Co-sedimentation experiments with progressively truncated GST-sClC3-CT indicated that the F-actin binding region is located between amino acids 690 and 760 of sClC3. Two synthetic peptides mapping basic clusters of the cytosolic sClC3-CT (CTP2, isoleucine 716 to leucine 734; and CTP3, proline 688 to proline 709) prevented binding of GST-sClC3-CT to F-actin in vitro. Dialysis into NIH/3T3 cells of these two peptides (but not of synthetic peptide CTP1 (isoleucine 737 to glutamine 748)) reduced the maximal current density by 60 and 38%, respectively. Based on these results, we have concluded that, by direct interaction with subcortical actin filaments, sClC3 contributes to the hypotonic stress-induced VSOACs in NIH/3T3 cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nueesch, Juerg P.F.; Lachmann, Sylvie; Rommelaere, Jean
During a productive infection, the prototype strain of parvovirus minute virus of mice (MVMp) induces dramatic morphological alterations to the fibroblast host cell A9, resulting in cell lysis and progeny virus release. In order to understand the mechanisms underlying these changes, we characterized the fate of various cytoskeletal filaments and investigated the nuclear/cytoplasmic compartmentalization of infected cells. While most pronounced effects could be seen on micro- and intermediate filaments, manifest in dramatic rearrangements and degradation of filamentous (F-)actin and vimentin structures, only little impact could be seen on microtubules or the nuclear envelope during the entire monitored time of infection.more » To further analyze the disruption of the cytoskeletal structures, we investigated the viral impact on selective regulatory pathways. Thereby, we found a correlation between microtubule stability and MVM-induced phosphorylation of {alpha}/{beta} tubulin. In contrast, disassembly of actin filaments late in infection could be traced back to the disregulation of two F-actin associated proteins gelsolin and Wiscott-Aldrich Syndrome Protein (WASP). Thereby, an increase in the amount of gelsolin, an F-actin severing protein was observed during infection, accounting for the disruption of stress fibers upon infection. Concomitantly, the actin polymerization activity also diminished due to a loss of WASP, the activator protein of the actin polymerization machinery the Arp2/3 complex. No effects could be seen in amount and distribution of other F-actin regulatory factors such as cortactin, cofilin, and profilin. In summary, the selective attack of MVM towards distinct host cell cytoskeletal structures argues for a regulatory feature during infection, rather than a collapse of the host cell as a mere side effect of virus production.« less
NASA Astrophysics Data System (ADS)
Stam, Samantha; Gardel, Margaret
Viscoelastic networks of biopolymers coordinate the motion of intracellular objects during transport. These networks have nonlinear mechanical properties due to events such as filament buckling or breaking of cross-links. The influence of such nonlinear properties on the time and length scales of transport is not understood. Here, we use in vitro networks of actin and the motor protein myosin II to clarify how intracellular forces regulate active diffusion. We observe two transitions in the mean-squared displacement of cross-linked actin with increasing motor concentration. The first is a sharp transition from initially subdiffusive to diffusive-like motion that requires filament buckling but does not cause net contraction of the network. Further increase of the motor density produces a second transition to network rupture and ballistic actin transport. This corresponds with an increase in the correlation of motion and thus may be caused when forces propagate far enough for global motion. We conclude that filament buckling and overall network contraction require different amounts of force and produce distinct transport properties. These nonlinear transitions may act as mechanical switches that can be turned on to produce observed motion within cells.
Usukura, Eiji; Narita, Akihiro; Yagi, Akira; Ito, Shuichi; Usukura, Jiro
2016-01-01
An improved unroofing method enabled the cantilever of an atomic force microscope (AFM) to reach directly into a cell to visualize the intracellular cytoskeletal actin filaments, microtubules, clathrin coats, and caveolae in phosphate-buffered saline (PBS) at a higher resolution than conventional electron microscopy. All of the actin filaments clearly exhibited a short periodicity of approximately 5–6 nm, which was derived from globular actins linked to each other to form filaments, as well as a long helical periodicity. The polarity of the actin filaments appeared to be determined by the shape of the periodic striations. Microtubules were identified based on their thickness. Clathrin coats and caveolae were observed on the cytoplasmic surface of cell membranes. The area containing clathrin molecules and their terminal domains was directly visualized. Characteristic ridge structures located at the surface of the caveolae were observed at high resolution, similar to those observed with electron microscopy (EM). Overall, unroofing allowed intracellular AFM imaging in a liquid environment with a level of quality equivalent or superior to that of EM. Thus, AFMs are anticipated to provide cutting-edge findings in cell biology and histology. PMID:27273367
A Robust Actin Filaments Image Analysis Framework
Alioscha-Perez, Mitchel; Benadiba, Carine; Goossens, Katty; Kasas, Sandor; Dietler, Giovanni; Willaert, Ronnie; Sahli, Hichem
2016-01-01
The cytoskeleton is a highly dynamical protein network that plays a central role in numerous cellular physiological processes, and is traditionally divided into three components according to its chemical composition, i.e. actin, tubulin and intermediate filament cytoskeletons. Understanding the cytoskeleton dynamics is of prime importance to unveil mechanisms involved in cell adaptation to any stress type. Fluorescence imaging of cytoskeleton structures allows analyzing the impact of mechanical stimulation in the cytoskeleton, but it also imposes additional challenges in the image processing stage, such as the presence of imaging-related artifacts and heavy blurring introduced by (high-throughput) automated scans. However, although there exists a considerable number of image-based analytical tools to address the image processing and analysis, most of them are unfit to cope with the aforementioned challenges. Filamentous structures in images can be considered as a piecewise composition of quasi-straight segments (at least in some finer or coarser scale). Based on this observation, we propose a three-steps actin filaments extraction methodology: (i) first the input image is decomposed into a ‘cartoon’ part corresponding to the filament structures in the image, and a noise/texture part, (ii) on the ‘cartoon’ image, we apply a multi-scale line detector coupled with a (iii) quasi-straight filaments merging algorithm for fiber extraction. The proposed robust actin filaments image analysis framework allows extracting individual filaments in the presence of noise, artifacts and heavy blurring. Moreover, it provides numerous parameters such as filaments orientation, position and length, useful for further analysis. Cell image decomposition is relatively under-exploited in biological images processing, and our study shows the benefits it provides when addressing such tasks. Experimental validation was conducted using publicly available datasets, and in osteoblasts grown in two different conditions: static (control) and fluid shear stress. The proposed methodology exhibited higher sensitivity values and similar accuracy compared to state-of-the-art methods. PMID:27551746
Force Exertion and Transmission in Cross-Linked Actin Networks
NASA Astrophysics Data System (ADS)
Stam, Samantha
Cells are responsive to external cues in their environment telling them to proliferate or migrate within their surrounding tissue. Sensing of cues that are mechanical in nature, such stiffness of a tissue or forces transmitted from other cells, is believed to involve the cytoskeleton of a cell. The cytoskeleton is a complex network of proteins consisting of polymers that provide structural support, motor proteins that remodel these structures, and many others. We do not yet have a complete understanding of how cytoskeletal components respond to either internal or external mechanical force and stiffness. Such an understanding should involve mechanisms by which constituent molecules, such as motor proteins, are responsive to mechanics. Additionally, physical models of how forces are transmitted through biopolymer networks are necessary. My research has focused on networks formed by the cytoskeletal filament actin and the molecular motor protein myosin II. Actin filaments form networks and bundles that form a structural framework of the cell, and myosin II slides actin filaments. In this thesis, we show that stiffness of an elastic load that opposes myosin-generated actin sliding has a very sharp effect on the myosin force output in simulations. Secondly, we show that the stiffness and connectivity of cytoskeletal filaments regulates the contractility and anisotropy of network deformations that transmit force on material length scales. Together, these results have implications for predicting and interpreting the deformations and forces in biopolymeric active materials.
Self-organizing actin patterns shape membrane architecture but not cell mechanics
NASA Astrophysics Data System (ADS)
Fritzsche, M.; Li, D.; Colin-York, H.; Chang, V. T.; Moeendarbary, E.; Felce, J. H.; Sezgin, E.; Charras, G.; Betzig, E.; Eggeling, C.
2017-02-01
Cell-free studies have demonstrated how collective action of actin-associated proteins can organize actin filaments into dynamic patterns, such as vortices, asters and stars. Using complementary microscopic techniques, we here show evidence of such self-organization of the actin cortex in living HeLa cells. During cell adhesion, an active multistage process naturally leads to pattern transitions from actin vortices over stars into asters. This process is primarily driven by Arp2/3 complex nucleation, but not by myosin motors, which is in contrast to what has been theoretically predicted and observed in vitro. Concomitant measurements of mechanics and plasma membrane fluidity demonstrate that changes in actin patterning alter membrane architecture but occur functionally independent of macroscopic cortex elasticity. Consequently, tuning the activity of the Arp2/3 complex to alter filament assembly may thus be a mechanism allowing cells to adjust their membrane architecture without affecting their macroscopic mechanical properties.
Self-organizing actin patterns shape membrane architecture but not cell mechanics
Fritzsche, M.; Li, D.; Colin-York, H.; Chang, V. T.; Moeendarbary, E.; Felce, J. H.; Sezgin, E.; Charras, G.; Betzig, E.; Eggeling, C.
2017-01-01
Cell-free studies have demonstrated how collective action of actin-associated proteins can organize actin filaments into dynamic patterns, such as vortices, asters and stars. Using complementary microscopic techniques, we here show evidence of such self-organization of the actin cortex in living HeLa cells. During cell adhesion, an active multistage process naturally leads to pattern transitions from actin vortices over stars into asters. This process is primarily driven by Arp2/3 complex nucleation, but not by myosin motors, which is in contrast to what has been theoretically predicted and observed in vitro. Concomitant measurements of mechanics and plasma membrane fluidity demonstrate that changes in actin patterning alter membrane architecture but occur functionally independent of macroscopic cortex elasticity. Consequently, tuning the activity of the Arp2/3 complex to alter filament assembly may thus be a mechanism allowing cells to adjust their membrane architecture without affecting their macroscopic mechanical properties. PMID:28194011
Actin dynamics, architecture, and mechanics in cell motility.
Blanchoin, Laurent; Boujemaa-Paterski, Rajaa; Sykes, Cécile; Plastino, Julie
2014-01-01
Tight coupling between biochemical and mechanical properties of the actin cytoskeleton drives a large range of cellular processes including polarity establishment, morphogenesis, and motility. This is possible because actin filaments are semi-flexible polymers that, in conjunction with the molecular motor myosin, can act as biological active springs or "dashpots" (in laymen's terms, shock absorbers or fluidizers) able to exert or resist against force in a cellular environment. To modulate their mechanical properties, actin filaments can organize into a variety of architectures generating a diversity of cellular organizations including branched or crosslinked networks in the lamellipodium, parallel bundles in filopodia, and antiparallel structures in contractile fibers. In this review we describe the feedback loop between biochemical and mechanical properties of actin organization at the molecular level in vitro, then we integrate this knowledge into our current understanding of cellular actin organization and its physiological roles.
Long non-coding RNA CRYBG3 blocks cytokinesis by directly binding G-actin.
Pei, Hailong; Hu, Wentao; Guo, Ziyang; Chen, Huaiyuan; Ma, Ji; Mao, Weidong; Li, Bingyan; Wang, Aiqing; Wan, Jianmei; Zhang, Jian; Nie, Jing; Zhou, Guangming; Hei, Tom K
2018-06-22
The dynamic interchange between monomeric globular actin (G-actin) and polymeric filamentous actin filaments (F-actin) is fundamental and essential to many cellular processes including cytokinesis and maintenance of genomic stability. Here we report that the long non-coding RNA LNC CRYBG3 directly binds G-actin to inhibit its polymerization and formation of contractile rings, resulting in M-Phase cell arrest. Knockdown of LNC CRYBG3 in tumor cells enhanced their malignant phenotypes. Nucleotide sequence 228-237 of the full-length LNC CRYBG3 and the ser14 domain of beta-actin are essential for their interaction, and mutation of either of these sites abrogated binding of LNC CRYBG3 to G-actin. Binding of LNC CRYBG3 to G-actin blocked nuclear localization of MAL, which consequently kept serum response factor (SRF) away from the promoter region of several immediate early genes, including JUNB and Arp3, which are necessary for cellular proliferation, tumor growth, adhesion, movement, and metastasis. These findings reveal a novel lncRNA-actin-MAL-SRF pathway and highlight LNC CRYBG3 as a means to block cytokinesis and treat cancer by targeting the actin cytoskeleton. Copyright ©2018, American Association for Cancer Research.
Taye, Mengistie; Kim, Jaemin; Yoon, Sook Hee; Lee, Wonseok; Hanotte, Olivier; Dessie, Tadelle; Kemp, Stephen; Mwai, Okeyo Ally; Caetano-Anolles, Kelsey; Cho, Seoae; Oh, Sung Jong; Lee, Hak-Kyo; Kim, Heebal
2017-02-09
Africa is home to numerous cattle breeds whose diversity has been shaped by subtle combinations of human and natural selection. African Sanga cattle are an intermediate type of cattle resulting from interbreeding between Bos taurus and Bos indicus subspecies. Recently, research has asserted the potential of Sanga breeds for commercial beef production with better meat quality as compared to Bos indicus breeds. Here, we identified meat quality related gene regions that are positively selected in Ankole (Sanga) cattle breeds as compared to indicus (Boran, Ogaden, and Kenana) breeds using cross-population (XP-EHH and XP-CLR) statistical methods. We identified 238 (XP-EHH) and 213 (XP-CLR) positively selected genes, of which 97 were detected from both statistics. Among the genes obtained, we primarily reported those involved in different biological process and pathways associated with meat quality traits. Genes (CAPZB, COL9A2, PDGFRA, MAP3K5, ZNF410, and PKM2) involved in muscle structure and metabolism affect meat tenderness. Genes (PLA2G2A, PARK2, ZNF410, MAP2K3, PLCD3, PLCD1, and ROCK1) related to intramuscular fat (IMF) are involved in adipose metabolism and adipogenesis. MB and SLC48A1 affect meat color. In addition, we identified genes (TIMP2, PKM2, PRKG1, MAP3K5, and ATP8A1) related to feeding efficiency. Among the enriched Gene Ontology Biological Process (GO BP) terms, actin cytoskeleton organization, actin filament-based process, and protein ubiquitination are associated with meat tenderness whereas cellular component organization, negative regulation of actin filament depolymerization and negative regulation of protein complex disassembly are involved in adipocyte regulation. The MAPK pathway is responsible for cell proliferation and plays an important role in hyperplastic growth, which has a positive effect on meat tenderness. Results revealed several candidate genes positively selected in Ankole cattle in relation to meat quality characteristics. The genes identified are involved in muscle structure and metabolism, and adipose metabolism and adipogenesis. These genes help in the understanding of the biological mechanisms controlling beef quality characteristics in African Ankole cattle. These results provide a basis for further research on the genomic characteristics of Ankole and other Sanga cattle breeds for quality beef.
Jia, Xiaodong; Zhang, Xi; Hu, Yingsong; Hu, Mandong; Tian, Shuguang; Han, Xuelin; Sun, Yansong; Han, Li
2018-06-01
Aspergillus fumigatus is a major fungal pathogen that is responsible for approximately 90% of human aspergillosis. Cofilin is an actin depolymerizing factor that plays crucial roles in multiple cellular functions in many organisms. However, the functions of cofilin in A. fumigatus are still unknown. In this study, we constructed an A. fumigatus strain overexpressing cofilin (cofilin OE). The cofilin OE strain displayed a slightly different growth phenotype, significantly increased resistance against H 2 O 2 and diamide, and increased activation of the high osmolarity glycerol pathway compared to the wild-type strain (WT). The cofilin OE strain internalized more efficiently into lung epithelial A549 cells, and induced increased transcription of inflammatory factors (MCP-1, TNF-α and IL-8) compared to WT. Cofilin overexpression also resulted in increased polysaccharides including β-1, 3-glucan and chitin, and increased transcription of genes related to oxidative stress responses and polysaccharide synthesis in A. fumigatus. However, the cofilin OE strain exhibited similar virulence to the wild-type strain in murine and Galleria mellonella infection models. These results demonstrated for the first time that cofilin, a regulator of actin cytoskeleton dynamics, might play a critical role in the regulation of oxidative stress responses and cell wall polysaccharide synthesis in A. fumigatus.
Actin protofilament orientation in deformation of the erythrocyte membrane skeleton.
Picart, C; Dalhaimer, P; Discher, D E
2000-01-01
The red cell's spectrin-actin network is known to sustain local states of shear, dilation, and condensation, and yet the short actin filaments are found to maintain membrane-tangent and near-random azimuthal orientations. When calibrated with polarization results for single actin filaments, imaging of micropipette-deformed red cell ghosts has allowed an assessment of actin orientations and possible reorientations in the network. At the hemispherical cap of the aspirated projection, where the network can be dilated severalfold, filaments have the same membrane-tangent orientation as on a relatively unstrained portion of membrane. Likewise, over the length of the network projection pulled into the micropipette, where the network is strongly sheared in axial extension and circumferential contraction, actin maintains its tangent orientation and is only very weakly aligned with network extension. Similar results are found for the integral membrane protein Band 3. Allowing for thermal fluctuations, we deduce a bound for the effective coupling constant, alpha, between network shear and azimuthal orientation of the protofilament. The finding that alpha must be about an order of magnitude or more below its tight-coupling value illustrates how nanostructural kinematics can decouple from more macroscopic responses. Monte Carlo simulations of spectrin-actin networks at approximately 10-nm resolution further support this conclusion and substantiate an image of protofilaments as elements of a high-temperature spin glass. PMID:11106606
Myopathy-inducing mutation H40Y in ACTA1 hampers actin filament structure and function
Chan, Chun; Fan, Jun; Messer, Andrew E.; ...
2016-04-22
In humans, more than 200 missense mutations have been identified in the ACTA1 gene. The exact molecular mechanisms by which, these particular mutations become toxic and lead to muscle weakness and myopathies remain obscure. To address this, here, we performed a molecular dynamics simulation, and we used a broad range of biophysical assays to determine how the lethal and myopathy-related H40Y amino acid substitution in actin affects the structure, stability, and function of this protein. Interestingly, our results showed that H40Y severely disrupts the DNase I-binding-loop structure and actin filaments. In addition, we observed that normal and mutant actin monomersmore » are likely to form distinctive homopolymers, with mutant filaments being very stiff, and not supporting proper myosin binding. Lastly, these phenomena underlie the toxicity of H40Y and may be considered as important triggering factors for the contractile dysfunction, muscle weakness and disease phenotype seen in patients.« less
Myopathy-inducing mutation H40Y in ACTA1 hampers actin filament structure and function
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chan, Chun; Fan, Jun; Messer, Andrew E.
In humans, more than 200 missense mutations have been identified in the ACTA1 gene. The exact molecular mechanisms by which, these particular mutations become toxic and lead to muscle weakness and myopathies remain obscure. To address this, here, we performed a molecular dynamics simulation, and we used a broad range of biophysical assays to determine how the lethal and myopathy-related H40Y amino acid substitution in actin affects the structure, stability, and function of this protein. Interestingly, our results showed that H40Y severely disrupts the DNase I-binding-loop structure and actin filaments. In addition, we observed that normal and mutant actin monomersmore » are likely to form distinctive homopolymers, with mutant filaments being very stiff, and not supporting proper myosin binding. Lastly, these phenomena underlie the toxicity of H40Y and may be considered as important triggering factors for the contractile dysfunction, muscle weakness and disease phenotype seen in patients.« less
Hetrick, Byron; Han, Min Suk; Helgeson, Luke A; Nolen, Brad J
2013-05-23
Actin-related protein 2/3 (Arp2/3) complex is a seven-subunit assembly that nucleates branched actin filaments. Small molecule inhibitors CK-666 and CK-869 bind to Arp2/3 complex and inhibit nucleation, but their modes of action are unknown. Here, we use biochemical and structural methods to determine the mechanism of each inhibitor. Our data indicate that CK-666 stabilizes the inactive state of the complex, blocking movement of the Arp2 and Arp3 subunits into the activated filament-like (short pitch) conformation, while CK-869 binds to a serendipitous pocket on Arp3 and allosterically destabilizes the short pitch Arp3-Arp2 interface. These results provide key insights into the relationship between conformation and activity in Arp2/3 complex and will be critical for interpreting the influence of the inhibitors on actin filament networks in vivo. Copyright © 2013 Elsevier Ltd. All rights reserved.
Smith, Benjamin A; Padrick, Shae B; Doolittle, Lynda K; Daugherty-Clarke, Karen; Corrêa, Ivan R; Xu, Ming-Qun; Goode, Bruce L; Rosen, Michael K; Gelles, Jeff
2013-01-01
During cell locomotion and endocytosis, membrane-tethered WASP proteins stimulate actin filament nucleation by the Arp2/3 complex. This process generates highly branched arrays of filaments that grow toward the membrane to which they are tethered, a conflict that seemingly would restrict filament growth. Using three-color single-molecule imaging in vitro we revealed how the dynamic associations of Arp2/3 complex with mother filament and WASP are temporally coordinated with initiation of daughter filament growth. We found that WASP proteins dissociated from filament-bound Arp2/3 complex prior to new filament growth. Further, mutations that accelerated release of WASP from filament-bound Arp2/3 complex proportionally accelerated branch formation. These data suggest that while WASP promotes formation of pre-nucleation complexes, filament growth cannot occur until it is triggered by WASP release. This provides a mechanism by which membrane-bound WASP proteins can stimulate network growth without restraining it. DOI: http://dx.doi.org/10.7554/eLife.01008.001 PMID:24015360
Structural basis for the regulation of muscle contraction by troponin and tropomyosin.
Galińska-Rakoczy, Agnieszka; Engel, Patti; Xu, Chen; Jung, Hyunsuk; Craig, Roger; Tobacman, Larry S; Lehman, William
2008-06-20
The molecular switching mechanism governing skeletal and cardiac muscle contraction couples the binding of Ca2+ on troponin to the movement of tropomyosin on actin filaments. Despite years of investigation, this mechanism remains unclear because it has not yet been possible to directly assess the structural influence of troponin on tropomyosin that causes actin filaments, and hence myosin-crossbridge cycling and contraction, to switch on and off. A C-terminal domain of troponin I is thought to be intimately involved in inducing tropomyosin movement to an inhibitory position that blocks myosin-crossbridge interaction. Release of this regulatory, latching domain from actin after Ca2+ binding to TnC (the Ca2+ sensor of troponin that relieves inhibition) presumably allows tropomyosin movement away from the inhibitory position on actin, thus initiating contraction. However, the structural interactions of the regulatory domain of TnI (the "inhibitory" subunit of troponin) with tropomyosin and actin that cause tropomyosin movement are unknown, and thus, the regulatory process is not well defined. Here, thin filaments were labeled with an engineered construct representing C-terminal TnI, and then, 3D electron microscopy was used to resolve where troponin is anchored on actin-tropomyosin. Electron microscopy reconstruction showed how TnI binding to both actin and tropomyosin at low Ca2+ competes with tropomyosin for a common site on actin and drives tropomyosin movement to a constrained, relaxing position to inhibit myosin-crossbridge association. Thus, the observations reported reveal the structural mechanism responsible for troponin-tropomyosin-mediated steric interference of actin-myosin interaction that regulates muscle contraction.
Montaville, Pierre; Jégou, Antoine; Pernier, Julien; Compper, Christel; Guichard, Bérengère; Mogessie, Binyam; Schuh, Melina; Romet-Lemonne, Guillaume; Carlier, Marie-France
2014-01-01
In mammalian oocytes, three actin binding proteins, Formin 2 (Fmn2), Spire, and profilin, synergistically organize a dynamic cytoplasmic actin meshwork that mediates translocation of the spindle toward the cortex and is required for successful fertilization. Here we characterize Fmn2 and elucidate the molecular mechanism for this synergy, using bulk solution and individual filament kinetic measurements of actin assembly dynamics. We show that by capping filament barbed ends, Spire recruits Fmn2 and facilitates its association with barbed ends, followed by rapid processive assembly and release of Spire. In the presence of actin, profilin, Spire, and Fmn2, filaments display alternating phases of rapid processive assembly and arrested growth, driven by a “ping-pong” mechanism, in which Spire and Fmn2 alternately kick off each other from the barbed ends. The results are validated by the effects of injection of Spire, Fmn2, and their interacting moieties in mouse oocytes. This original mechanism of regulation of a Rho-GTPase–independent formin, recruited by Spire at Rab11a-positive vesicles, supports a model for modulation of a dynamic actin-vesicle meshwork in the oocyte at the origin of asymmetric positioning of the meiotic spindle. PMID:24586110
Microscale force response and morphology of tunable co-polymerized cytoskeleton networks
NASA Astrophysics Data System (ADS)
Ricketts, Shea; Yadav, Vikrant; Ross, Jennifer L.; Robertson-Anderson, Rae M.
The cytoskeleton is largely comprised of actin and microtubules that entangle and crosslink to form complex networks and structures, giving rise to nonlinear multifunctional mechanics in cells. The relative concentrations of semiflexible actin filaments and rigid microtubules tune cytoskeleton function, allowing cells to move and divide while maintaining rigidity and resilience. To elucidate this complex tunability, we create in vitro composites of co-polymerized actin and microtubules with actin:microtubule molar ratios of 0:1-1:0. We use optical tweezers and confocal microscopy to characterize the nonlinear microscale force response and morphology of the composites. We optically drag a microsphere 30 μm through varying actin-microtubule networks at 10 μm/s and 20 μm/s, and measure the force the networks exerts to resist the strain and the force relaxation following strain. We use dual-color confocal microscopy to image distinctly-labeled filaments in the networks, and characterize the integration of actin and microtubules, network connectivity, and filament rigidity. We find that increasing the fraction of microtubules in networks non-monotonically increases elasticity and stiffness, and hinders force relaxation by suppressing network mobility and fluctuations. NSF CAREER Award (DMR-1255446), Scialog Collaborative Innovation Award funded by Research Corporation for Scientific Advancement (Grant No. 24192).
Jóźwiak, Jolanta; Rzhepetskyy, Yuriy; Sobczak, Magdalena; Kocik, Elżbieta; Skórzewski, Radosław; Kłopocka, Wanda; Rędowicz, Maria Jolanta
2011-02-01
Amebin [formerly termed as ApABP-FI; Sobczak et al. (2007) Biochem. Cell Biol. 85] is encoded in Amoeba proteus by two transcripts, 2672-nt and 1125-nt. A product of the shorter transcript (termed as C-amebin), comprising C-terminal 375 amino-acid-residue fragment of amebin, has been expressed and purified as the recombinant GST-fusion protein. GST-C-amebin bound both to monomeric and filamentous actin. The binding was Ca(2+)-independent and promoted filament bundling, as revealed with the transmission electron microscopy. GST-C-amebin significantly decreased MgATPase activity of rabbit skeletal muscle acto-S1. Removal with endoproteinase ArgC of a positively charged C-terminal region of GST-amebin containing KLASMWEQ sequence abolished actin-binding and bundling as well as the ATPase-inhibitory effect of C-amebin, indicating that this protein region was involved in the interaction with actin. Microinjection of amoebae with antibody against C-terminus of amebin significantly affected amoebae morphology, disturbed cell polarization and transport of cytoplasmic granules as well as blocked migration. These data indicate that amebin may be one of key regulators of the actin-cytoskeleton dynamics and actin-dependent motility in A. proteus. Copyright © 2010 Elsevier Inc. All rights reserved.
Mechanism of the calcium-regulation of muscle contraction--in pursuit of its structural basis.
Wakabayashi, Takeyuki
2015-01-01
The author reviewed the research that led to establish the structural basis for the mechanism of the calcium-regulation of the contraction of striated muscles. The target of calcium ions is troponin on the thin filaments, of which the main component is the double-stranded helix of actin. A model of thin filament was generated by adding tropomyosin and troponin. During the process to provide the structural evidence for the model, the troponin arm was found to protrude from the calcium-depleted troponin and binds to the carboxyl-terminal region of actin. As a result, the carboxyl-terminal region of tropomyosin shifts and covers the myosin-binding sites of actin to block the binding of myosin. At higher calcium concentrations, the troponin arm changes its partner from actin to the main body of calcium-loaded troponin. Then, tropomyosin shifts back to the position near the grooves of actin double helix, and the myosin-binding sites of actin becomes available to myosin resulting in force generation through actin-myosin interactions.
Spracklen, Andrew J.; Fagan, Tiffany N.; Lovander, Kaylee E.; Tootle, Tina L.
2015-01-01
Dynamic remodeling of the actin cytoskeleton is required for both development and tissue homeostasis. While fixed image analysis has provided significant insight into such events, a complete understanding of cytoskeletal dynamics requires live imaging. Numerous tools for the live imaging of actin have been generated by fusing the actin-binding domain from an actin-interacting protein to a fluorescent protein. Here we comparatively assess the utility of three such tools – Utrophin, Lifeact, and F-tractin – for characterizing the actin remodeling events occurring within the germline-derived nurse cells during Drosophila mid-oogenesis or follicle development. Specifically, we used the UAS/GAL4 system to express these tools at different levels and in different cells, and analyzed these tools for effects on fertility, alterations in the actin cytoskeleton, and ability to label filamentous actin (F-actin) structures by both fixed and live imaging. While both Utrophin and Lifeact robustly label F-actin structures within the Drosophila germline, when strongly expressed they cause sterility and severe actin defects including cortical actin breakdown resulting in multi-nucleate nurse cells, early F-actin filament and aggregate formation during stage 9 (S9), and disorganized parallel actin filament bundles during stage 10B (S10B). However, by using a weaker germline GAL4 driver in combination with a higher temperature, Utrophin can label F-actin with minimal defects. Additionally, strong Utrophin expression within the germline causes F-actin formation in the nurse cell nuclei and germinal vesicle during mid-oogenesis. Similarly, Lifeact expression results in nuclear F-actin only within the germinal vesicle. F-tractin expresses at a lower level than the other two labeling tools, but labels cytoplasmic F-actin structures well without causing sterility or striking actin defects. Together these studies reveal how critical it is to evaluate the utility of each actin labeling tool within the tissue and cell type of interest in order to identify the tool that represents the best compromise between acceptable labeling and minimal disruption of the phenomenon being observed. In this case, we find that F-tractin, and perhaps Utrophin, when Utrophin expression levels are optimized to label efficiently without causing actin defects, can be used to study F-actin dynamics within the Drosophila nurse cells. PMID:24995797
The Fysics of Filopodia (or The Physics of Philopodia)
NASA Astrophysics Data System (ADS)
Schwarz, Jen; Gopinathan, Ajay; Lee, Kun-Chun; Liu, Andrea; Yang, Louise
2006-03-01
Cell motility is driven by the dynamic reorganization of the cellular cytoskeleton which is composed of actin. Monomeric actin assembles into filaments that grow, shrink, branch and bundle. Branching generates new filaments that form a mesh-like structure that protrudes outward allowing the cell to move somewhere. But how does it know where to move? It has been proposed that filopodia serve as scouts for the cell. Filopodia are bundles of actin filaments that extend out ahead of the rest of the cell to probe its upcoming environment. Recent in vitro experiments [Vignjevic et al., J. Ce ll Bio. 160, 951 (2003)] determine the minimal ingredients required for such a process. We model these experiments analytically and via Monte Carlo simulations to estimate the typical bundle size and length. We also estimate the size of the mesh-like structure from which the filopodia emerge and explain the observed nonmonotonicity of this size as a function of capping protein concentration, which inhibits filament growth.
Sugi, Haruo; Chaen, Shigeru; Kobayashi, Takakazu; Abe, Takahiro; Kimura, Kazushige; Saeki, Yasutake; Ohnuki, Yoshiki; Miyakawa, Takuya; Tanokura, Masaru; Sugiura, Seiryo
2014-01-01
Muscle contraction results from attachment-detachment cycles between myosin heads extending from myosin filaments and actin filaments. It is generally believed that a myosin head first attaches to actin, undergoes conformational changes to produce force and motion in muscle, and then detaches from actin. Despite extensive studies, the molecular mechanism of myosin head conformational changes still remains to be a matter for debate and speculation. The myosin head consists of catalytic (CAD), converter (CVD) and lever arm (LD) domains. To give information about the role of these domains in the myosin head performance, we have examined the effect of three site-directed antibodies to the myosin head on in vitro ATP-dependent actin-myosin sliding and Ca2+-activated contraction of muscle fibers. Antibody 1, attaching to junctional peptide between 50K and 20K heavy chain segments in the CAD, exhibited appreciable effects neither on in vitro actin-myosin sliding nor muscle fiber contraction. Since antibody 1 covers actin-binding sites of the CAD, one interpretation of this result is that rigor actin-myosin linkage is absent or at most a transient intermediate in physiological actin-myosin cycling. Antibody 2, attaching to reactive lysine residue in the CVD, showed a marked inhibitory effect on in vitro actin-myosin sliding without changing actin-activated myosin head (S1) ATPase activity, while it showed no appreciable effect on muscle contraction. Antibody 3, attaching to two peptides of regulatory light chains in the LD, had no significant effect on in vitro actin-myosin sliding, while it reduced force development in muscle fibers without changing MgATPase activity. The above definite differences in the effect of antibodies 2 and 3 between in vitro actin-myosin sliding and muscle contraction can be explained by difference in experimental conditions; in the former, myosin heads are randomly oriented on a glass surface, while in the latter myosin heads are regularly arranged within filament-lattice structures.
Sugi, Haruo; Chaen, Shigeru; Kobayashi, Takakazu; Abe, Takahiro; Kimura, Kazushige; Saeki, Yasutake; Ohnuki, Yoshiki; Miyakawa, Takuya; Tanokura, Masaru; Sugiura, Seiryo
2014-01-01
Muscle contraction results from attachment-detachment cycles between myosin heads extending from myosin filaments and actin filaments. It is generally believed that a myosin head first attaches to actin, undergoes conformational changes to produce force and motion in muscle, and then detaches from actin. Despite extensive studies, the molecular mechanism of myosin head conformational changes still remains to be a matter for debate and speculation. The myosin head consists of catalytic (CAD), converter (CVD) and lever arm (LD) domains. To give information about the role of these domains in the myosin head performance, we have examined the effect of three site-directed antibodies to the myosin head on in vitro ATP-dependent actin-myosin sliding and Ca2+-activated contraction of muscle fibers. Antibody 1, attaching to junctional peptide between 50K and 20K heavy chain segments in the CAD, exhibited appreciable effects neither on in vitro actin-myosin sliding nor muscle fiber contraction. Since antibody 1 covers actin-binding sites of the CAD, one interpretation of this result is that rigor actin-myosin linkage is absent or at most a transient intermediate in physiological actin-myosin cycling. Antibody 2, attaching to reactive lysine residue in the CVD, showed a marked inhibitory effect on in vitro actin-myosin sliding without changing actin-activated myosin head (S1) ATPase activity, while it showed no appreciable effect on muscle contraction. Antibody 3, attaching to two peptides of regulatory light chains in the LD, had no significant effect on in vitro actin-myosin sliding, while it reduced force development in muscle fibers without changing MgATPase activity. The above definite differences in the effect of antibodies 2 and 3 between in vitro actin-myosin sliding and muscle contraction can be explained by difference in experimental conditions; in the former, myosin heads are randomly oriented on a glass surface, while in the latter myosin heads are regularly arranged within filament-lattice structures. PMID:24918754
Qdot Labeled Actin Super Resolution Motility Assay Measures Low Duty Cycle Muscle Myosin Step-Size
Wang, Yihua; Ajtai, Katalin; Burghardt, Thomas P.
2013-01-01
Myosin powers contraction in heart and skeletal muscle and is a leading target for mutations implicated in inheritable muscle diseases. During contraction, myosin transduces ATP free energy into the work of muscle shortening against resisting force. Muscle shortening involves relative sliding of myosin and actin filaments. Skeletal actin filaments were fluorescence labeled with a streptavidin conjugate quantum dot (Qdot) binding biotin-phalloidin on actin. Single Qdot’s were imaged in time with total internal reflection fluorescence microscopy then spatially localized to 1-3 nanometers using a super-resolution algorithm as they translated with actin over a surface coated with skeletal heavy meromyosin (sHMM) or full length β-cardiac myosin (MYH7). Average Qdot-actin velocity matches measurements with rhodamine-phalloidin labeled actin. The sHMM Qdot-actin velocity histogram contains low velocity events corresponding to actin translation in quantized steps of ~5 nm. The MYH7 velocity histogram has quantized steps at 3 and 8 nm in addition to 5 nm, and, larger compliance than sHMM depending on MYH7 surface concentration. Low duty cycle skeletal and cardiac myosin present challenges for a single molecule assay because actomyosin dissociates quickly and the freely moving element diffuses away. The in vitro motility assay has modestly more actomyosin interactions and methylcellulose inhibited diffusion to sustain the complex while preserving a subset of encounters that do not overlap in time on a single actin filament. A single myosin step is isolated in time and space then characterized using super-resolution. The approach provides quick, quantitative, and inexpensive step-size measurement for low duty cycle muscle myosin. PMID:23383646
Montaville, Pierre; Kühn, Sonja; Compper, Christel; Carlier, Marie-France
2016-02-12
Formin 2 (Fmn2), a member of the FMN family of formins, plays an important role in early development. This formin cooperates with profilin and Spire, a WASP homology domain 2 (WH2) repeat protein, to stimulate assembly of a dynamic cytoplasmic actin meshwork that facilitates translocation of the meiotic spindle in asymmetric division of mouse oocytes. The kinase-like non-catalytic domain (KIND) of Spire directly interacts with the C-terminal extension of the formin homology domain 2 (FH2) domain of Fmn2, called FSI. This direct interaction is required for the synergy between the two proteins in actin assembly. We have recently demonstrated how Spire, which caps barbed ends via its WH2 domains, activates Fmn2. Fmn2 by itself associates very poorly to filament barbed ends but is rapidly recruited to Spire-capped barbed ends via the KIND domain, and it subsequently displaces Spire from the barbed end to elicit rapid processive assembly from profilin·actin. Here, we address the mechanism by which Spire and Fmn2 compete at barbed ends and the role of FSI in orchestrating this competition as well as in the processivity of Fmn2. We have combined microcalorimetric, fluorescence, and hydrodynamic binding assays, as well as bulk solution and single filament measurements of actin assembly, to show that removal of FSI converts Fmn2 into a Capping Protein. This activity is mimicked by association of KIND to Fmn2. In addition, FSI binds actin at filament barbed ends as a weak capper and plays a role in displacing the WH2 domains of Spire from actin, thus allowing the association of actin-binding regions of FH2 to the barbed end. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Solid friction between soft filaments
NASA Astrophysics Data System (ADS)
Ward, Andrew; Hilitski, Feodor; Schwenger, Walter; Welch, David; Lau, A. W. C.; Vitelli, Vincenzo; Mahadevan, L.; Dogic, Zvonimir
2015-06-01
Any macroscopic deformation of a filamentous bundle is necessarily accompanied by local sliding and/or stretching of the constituent filaments. Yet the nature of the sliding friction between two aligned filaments interacting through multiple contacts remains largely unexplored. Here, by directly measuring the sliding forces between two bundled F-actin filaments, we show that these frictional forces are unexpectedly large, scale logarithmically with sliding velocity as in solid-like friction, and exhibit complex dependence on the filaments’ overlap length. We also show that a reduction of the frictional force by orders of magnitude, associated with a transition from solid-like friction to Stokes’s drag, can be induced by coating F-actin with polymeric brushes. Furthermore, we observe similar transitions in filamentous microtubules and bacterial flagella. Our findings demonstrate how altering a filament’s elasticity, structure and interactions can be used to engineer interfilament friction and thus tune the properties of fibrous composite materials.
Solid friction between soft filaments
Ward, Andrew; Hilitski, Feodor; Schwenger, Walter; ...
2015-03-02
Any macroscopic deformation of a filamentous bundle is necessarily accompanied by local sliding and/or stretching of the constituent filaments. Yet the nature of the sliding friction between two aligned filaments interacting through multiple contacts remains largely unexplored. Here, by directly measuring the sliding forces between two bundled F-actin filaments, we show that these frictional forces are unexpectedly large, scale logarithmically with sliding velocity as in solid-like friction, and exhibit complex dependence on the filaments’ overlap length. We also show that a reduction of the frictional force by orders of magnitude, associated with a transition from solid-like friction to Stokes’s drag,more » can be induced by coating F-actin with polymeric brushes. Furthermore, we observe similar transitions in filamentous microtubules and bacterial flagella. In conclusion, our findings demonstrate how altering a filament’s elasticity, structure and interactions can be used to engineer interfilament friction and thus tune the properties of fibrous composite materials.« less
An Actin-Dependent Step in Mitochondrial Fission Mediated by the ER-Associated Formin INF2
Korobova, Farida; Ramabhadran, Vinay; Higgs, Henry N.
2013-01-01
Mitochondrial fission is fundamentally important to cellular physiology. The dynamin-related protein Drp1 mediates fission, and interaction between mitochondrion and endoplasmic reticulum (ER) enhances fission. However, the mechanism for Drp1 recruitment to mitochondria is unclear, although previous results implicate actin involvement. Here, we found that actin polymerization through ER-localized inverted formin 2 (INF2) was required for efficient mitochondrial fission in mammalian cells. INF2 functioned upstream of Drp1. Actin filaments appeared to accumulate between mitochondria and INF2-enriched ER membranes at constriction sites. Thus, INF2-induced actin filaments may drive initial mitochondrial constriction, which allows Drp1-driven secondary constriction. Because INF2 mutations can lead to Charcot-Marie-Tooth disease, our results provide a potential cellular mechanism for this disease state. PMID:23349293
NASA Astrophysics Data System (ADS)
McMillen, Laura M.; Vavylonis, Dimitrios
2016-12-01
Cell protrusion through polymerization of actin filaments at the leading edge of motile cells may be influenced by spatial gradients of diffuse actin and regulators. Here we study the distribution of two of the most important regulators, capping protein and Arp2/3 complex, which regulate actin polymerization in the lamellipodium through capping and nucleation of free barbed ends. We modeled their kinetics using data from prior single molecule microscopy experiments on XTC cells. These experiments have provided evidence for a broad distribution of diffusion coefficients of both capping protein and Arp2/3 complex. The slowly diffusing proteins appear as extended ‘clouds’ while proteins bound to the actin filament network appear as speckles that undergo retrograde flow. Speckle appearance and disappearance events correspond to assembly and dissociation from the actin filament network and speckle lifetimes correspond to the dissociation rate. The slowly diffusing capping protein could represent severed capped actin filament fragments or membrane-bound capping protein. Prior evidence suggests that slowly diffusing Apr2/3 complex associates with the membrane. We use the measured rates and estimates of diffusion coefficients of capping protein and Arp2/3 complex in a Monte Carlo simulation that includes particles in association with a filament network and diffuse in the cytoplasm. We consider two separate pools of diffuse proteins, representing fast and slowly diffusing species. We find a steady state with concentration gradients involving a balance of diffusive flow of fast and slow species with retrograde flow. We show that simulations of FRAP are consistent with prior experiments performed on different cell types. We provide estimates for the ratio of bound to diffuse complexes and calculate conditions where Arp2/3 complex recycling by diffusion may become limiting. We discuss the implications of slowly diffusing populations and suggest experiments to distinguish among mechanisms that influence long range transport.
Davis, Mary; Lin, Wen-Lang; Cook, Casey; Dunmore, Judy; Tay, William; Menkosky, Kyle; Cao, Xiangkun; Petrucelli, Leonard; DeTure, Michael
2014-01-01
Background Trans-activation Response DNA-binding Protein-43 (TDP-43) lesions are observed in Amyotrophic Lateral Sclerosis (ALS), Frontotemporal Lobar Degeneration with ubiquitin inclusions (FTLD-TDP) and 25–50% of Alzheimer's Disease (AD) cases. These abnormal protein inclusions are composed of either amorphous TDP-43 aggregates or highly ordered filaments. The filamentous TDP-43 accumulations typically contain clean 10–12 nm filaments though wider 18–20 nm coated filaments may be observed. The TDP-43 present within these lesions is phosphorylated, truncated and ubiquitinated, and these modifications appear to be abnormal as they are linked to both a cellular heat shock response and microglial activation. The mechanisms associated with this abnormal TDP-43 accumulation are believed to result in a loss of TDP-43 function, perhaps due to the post-translational modifications or resulting from physical sequestration of the TDP-43. The formation of TDP-43 inclusions involves cellular translocation and conversion of TDP-43 into fibrillogenic forms, but the ability of these accumulations to sequester normal TDP-43 and propagate this behavior between neurons pathologically is mostly inferred. The lack of methodology to produce soluble full length TDP-43 and recapitulate this polymerization into filaments as observed in disease has limited our understanding of these pathogenic cascades. Results The protocols described here generate soluble, full-length and untagged TDP-43 allowing for a direct assessment of the impact of various posttranslational modifications on TDP-43 function. We demonstrate that Casein Kinase II (CKII) promotes the polymerization of this soluble TDP-43 into 10 nm diameter filaments that resemble the most common TDP-43 structures observed in disease. Furthermore, these filaments are recognized as abnormal by Heat Shock Proteins (HSPs) which can inhibit TDP-43 polymerization or directly promote TDP-43 filament depolymerization. Conclusion These findings demonstrate CKII induces polymerization of soluble TDP-43 into filaments and Hsp90 promotes TDP-43 filament depolymerization. These findings provide rational for potential therapeutic intervention at these points in TDP-43 proteinopathies. PMID:24595055
WAVE binds Ena/VASP for enhanced Arp2/3 complex–based actin assembly
Havrylenko, Svitlana; Noguera, Philippe; Abou-Ghali, Majdouline; Manzi, John; Faqir, Fahima; Lamora, Audrey; Guérin, Christophe; Blanchoin, Laurent; Plastino, Julie
2015-01-01
The WAVE complex is the main activator of the Arp2/3 complex for actin filament nucleation and assembly in the lamellipodia of moving cells. Other important players in lamellipodial protrusion are Ena/VASP proteins, which enhance actin filament elongation. Here we examine the molecular coordination between the nucleating activity of the Arp2/3 complex and the elongating activity of Ena/VASP proteins for the formation of actin networks. Using an in vitro bead motility assay, we show that WAVE directly binds VASP, resulting in an increase in Arp2/3 complex–based actin assembly. We show that this interaction is important in vivo as well, for the formation of lamellipodia during the ventral enclosure event of Caenorhabditis elegans embryogenesis. Ena/VASP's ability to bind F-actin and profilin-complexed G-actin are important for its effect, whereas Ena/VASP tetramerization is not necessary. Our data are consistent with the idea that binding of Ena/VASP to WAVE potentiates Arp2/3 complex activity and lamellipodial actin assembly. PMID:25355952
A Mechanistic Model of the Actin Cycle
Bindschadler, M.; Osborn, E. A.; Dewey, C. F.; McGrath, J. L.
2004-01-01
We have derived a broad, deterministic model of the steady-state actin cycle that includes its major regulatory mechanisms. Ours is the first model to solve the complete nucleotide profile within filaments, a feature that determines the dynamics and geometry of actin networks at the leading edges of motile cells, and one that has challenged investigators developing models to interpret steady-state experiments. We arrived at the nucleotide profile through analytic and numerical approaches that completely agree. Our model reproduces behaviors seen in numerous experiments with purified proteins, but allows a detailed inspection of the concentrations and fluxes that might exist in these experiments. These inspections provide new insight into the mechanisms that determine the rate of actin filament treadmilling. Specifically, we find that mechanisms for enhancing Pi release from the ADP·Pi intermediate on filaments, for increasing the off rate of ADP-bound subunits at pointed ends, and the multiple, simultaneous functions of profilin, make unique and essential contributions to increased treadmilling. In combination, these mechanisms have a theoretical capacity to increase treadmilling to levels limited only by the amount of available actin. This limitation arises because as the cycle becomes more dynamic, it tends toward the unpolymerized state. PMID:15111391
Cortical actin nanodynamics determines nitric oxide release in vascular endothelium.
Fels, Johannes; Jeggle, Pia; Kusche-Vihrog, Kristina; Oberleithner, Hans
2012-01-01
The release of the main vasodilator nitric oxide (NO) by the endothelial NO synthase (eNOS) is a hallmark of endothelial function. We aim at elucidating the underlying mechanism how eNOS activity depends on cortical stiffness (К(cortex)) of living endothelial cells. It is hypothesized that cortical actin dynamics determines К(cortex) and directly influences eNOS activity. By combined atomic force microscopy and fluorescence imaging we generated mechanical and optical sections of single living cells. This approach allows the discrimination between К(cortex) and bulk cell stiffness (К(bulk)) and, additionally, the simultaneous analysis of submembranous actin web dynamics. We show that К(cortex) softens when cortical F-actin depolymerizes and that this shift from a gel-like stiff cortex to a soft G-actin rich layer, triggers the stiffness-sensitive eNOS activity. The results implicate that stiffness changes in the ∼100 nm phase of the submembranous actin web, without affecting К(bulk), regulate NO release and thus determines endothelial function.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wazawa, Tetsuichi; CREST, JST, 4-1-8, Honcho, Kawaguchi, Saitama 332-0012; Sagawa, Takashi
2011-01-28
Research highlights: {yields} Translationally hyper-mobile water has been detected around actin filaments. {yields} Translationally hyper-mobile water is formed upon polymerization of actin. {yields} Low water viscosity was found around F-actin using fluorescence anisotropy. {yields} Formation of hyper-mobile water may explain endothermic actin polymerization. -- Abstract: This paper reports that water molecules around F-actin, a polymerized form of actin, are more mobile than those around G-actin or in bulk water. A measurement using pulse-field gradient spin-echo {sup 1}H NMR showed that the self-diffusion coefficient of water in aqueous F-actin solution increased with actin concentration by {approx}5%, whereas that in G-actin solutionmore » was close to that of pure water. This indicates that an F-actin/water interaction is responsible for the high self-diffusion of water. The local viscosity around actin was also investigated by fluorescence measurements of Cy3, a fluorescent dye, conjugated to Cys 374 of actin. The steady-state fluorescence anisotropy of Cy3 attached to F-actin was 0.270, which was lower than that for G-actin, 0.334. Taking into account the fluorescence lifetimes of the Cy3 bound to actin, their rotational correlation times were estimated to be 3.8 and 9.1 ns for F- and G-actin, respectively. This indicates that Cy3 bound to F-actin rotates more freely than that bound to G-actin, and therefore the local water viscosity is lower around F-actin than around G-actin.« less
In vitro studies of actin filament and network dynamics
Mullins, R Dyche; Hansen, Scott D
2013-01-01
Now that many genomes have been sequenced, a central concern of cell biology is to understand how the proteins they encode work together to create living matter. In vitro studies form an essential part of this program because understanding cellular functions of biological molecules often requires isolating them and reconstituting their activities. In particular, many elements of the actin cytoskeleton were first discovered by biochemical methods and their cellular functions deduced from in vitro experiments. We highlight recent advances that have come from in vitro studies, beginning with studies of actin filaments, and ending with multi-component reconstitutions of complex actin-based processes, including force-generation and cell spreading. We describe both scientific results and the technical innovations that made them possible. PMID:23267766
Oosawa, Fumio
2008-04-25
Various myosin-actin systems do not always show the same sliding behaviors. To make the situation clear, discussions are concentrated on the unit event of sliding of the chemo-mechanical enzyme composed of a single myosin head and a single actin filament with regulatory proteins. The popular idea of the one-to-one correspondence between the chemical state and the physical state or between the chemical reaction step and the physical conformational change is reexamined. It is likely that the sites and the modes of interaction between myosin head and actin filament during the ATP hydrolysis are more multiple and variable, and the input-output coupling in the chemo-mechanical enzyme is loose.
Vasicova, Pavla; Lejskova, Renata; Malcova, Ivana; Hasek, Jiri
2015-11-01
Stationary-growth-phase Saccharomyces cerevisiae yeast cultures consist of nondividing cells that undergo chronological aging. For their successful survival, the turnover of proteins and organelles, ensured by autophagy and the activation of mitochondria, is performed. Some of these processes are engaged in by the actin cytoskeleton. In S. cerevisiae stationary-phase cells, F actin has been shown to form static aggregates named actin bodies, subsequently cited to be markers of quiescence. Our in vivo analyses revealed that stationary-phase cultures contain cells with dynamic actin filaments, besides the cells with static actin bodies. The cells with dynamic actin displayed active endocytosis and autophagy and well-developed mitochondrial networks. Even more, stationary-phase cell cultures grown under calorie restriction predominantly contained cells with actin cables, confirming that the presence of actin cables is linked to successful adaptation to stationary phase. Cells with actin bodies were inactive in endocytosis and autophagy and displayed aberrations in mitochondrial networks. Notably, cells of the respiratory activity-deficient cox4Δ strain displayed the same mitochondrial aberrations and actin bodies only. Additionally, our results indicate that mitochondrial dysfunction precedes the formation of actin bodies and the appearance of actin bodies corresponds to decreased cell fitness. We conclude that the F-actin status reflects the extent of damage that arises from exponential growth. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Lejskova, Renata; Malcova, Ivana
2015-01-01
Stationary-growth-phase Saccharomyces cerevisiae yeast cultures consist of nondividing cells that undergo chronological aging. For their successful survival, the turnover of proteins and organelles, ensured by autophagy and the activation of mitochondria, is performed. Some of these processes are engaged in by the actin cytoskeleton. In S. cerevisiae stationary-phase cells, F actin has been shown to form static aggregates named actin bodies, subsequently cited to be markers of quiescence. Our in vivo analyses revealed that stationary-phase cultures contain cells with dynamic actin filaments, besides the cells with static actin bodies. The cells with dynamic actin displayed active endocytosis and autophagy and well-developed mitochondrial networks. Even more, stationary-phase cell cultures grown under calorie restriction predominantly contained cells with actin cables, confirming that the presence of actin cables is linked to successful adaptation to stationary phase. Cells with actin bodies were inactive in endocytosis and autophagy and displayed aberrations in mitochondrial networks. Notably, cells of the respiratory activity-deficient cox4Δ strain displayed the same mitochondrial aberrations and actin bodies only. Additionally, our results indicate that mitochondrial dysfunction precedes the formation of actin bodies and the appearance of actin bodies corresponds to decreased cell fitness. We conclude that the F-actin status reflects the extent of damage that arises from exponential growth. PMID:26351139
Boggs, Joan M; Rangaraj, Godha; Gao, Wen; Heng, Yew-Meng
2006-01-17
Myelin basic protein (MBP) binds to negatively charged lipids on the cytosolic surface of oligodendrocyte membranes and is most likely responsible for adhesion of these surfaces in the multilayered myelin sheath. It can also polymerize actin, bundle F-actin filaments, and bind actin filaments to lipid bilayers through electrostatic interactions. MBP consists of a number of posttranslationally modified isomers of varying charge, some resulting from phosphorylation at several sites by different kinases, including mitogen-activated protein kinase (MAPK). Phosphorylation of MBP in oligodendrocytes occurs in response to various extracellular stimuli. Phosphorylation/dephosphorylation of MBP also occurs in the myelin sheath in response to electrical activity in the brain. Here we investigate the effect of phosphorylation of MBP on its interaction with actin in vitro by phosphorylating the most highly charged unmodified isomer, C1, at two sites with MAPK. Phosphorylation decreased the ability of MBP to polymerize actin and to bundle actin filaments but had no effect on the dissociation constant of the MBP-actin complex or on the ability of Ca2+-calmodulin to dissociate the complex. The most significant effect of phosphorylation on the MBP-actin complex was a dramatic reduction in its ability to bind to negatively charged lipid bilayers. The effect was much greater than that reported earlier for another charge isomer of MBP, C8, in which six arginines were deiminated to citrulline, resulting in a reduction of net positive charge of 6. These results indicate that although average electrostatic forces are the primary determinant of the interaction of MBP with actin, phosphorylation may have an additional effect due to a site-specific electrostatic effect or to a conformational change. Thus, phosphorylation of MBP, which occurs in response to various extracellular signals in both myelin and oligodendrocytes, attenuates the ability of MBP to polymerize and bundle actin and to bind it to a negatively charged membrane.
Volodin, Alexandra; Kosti, Idit; Goldberg, Alfred Lewis; Cohen, Shenhav
2017-01-01
A hallmark of muscle atrophy is the excessive degradation of myofibrillar proteins primarily by the ubiquitin proteasome system. In mice, during the rapid muscle atrophy induced by fasting, the desmin cytoskeleton and the attached Z-band–bound thin filaments are degraded after ubiquitination by the ubiquitin ligase tripartite motif-containing protein 32 (Trim32). To study the order of events leading to myofibril destruction, we investigated the slower atrophy induced by denervation (disuse). We show that myofibril breakdown is a two-phase process involving the initial disassembly of desmin filaments by Trim32, which leads to the later myofibril breakdown by enzymes, whose expression is increased by the paired box 4 (PAX4) transcription factor. After denervation of mouse tibialis anterior muscles, phosphorylation and Trim32-dependent ubiquitination of desmin filaments increased rapidly and stimulated their gradual depolymerization (unlike their rapid degradation during fasting). Trim32 down-regulation attenuated the loss of desmin and myofibrillar proteins and reduced atrophy. Although myofibrils and desmin filaments were intact at 7 d after denervation, inducing the dissociation of desmin filaments caused an accumulation of ubiquitinated proteins and rapid destruction of myofibrils. The myofibril breakdown normally observed at 14 d after denervation required not only dissociation of desmin filaments, but also gene induction by PAX4. Down-regulation of PAX4 or its target gene encoding the p97/VCP ATPase reduced myofibril disassembly and degradation on denervation or fasting. Thus, during atrophy, the initial loss of desmin is critical for the subsequent myofibril destruction, and over time, myofibrillar proteins become more susceptible to PAX4-induced enzymes that promote proteolysis. PMID:28096335
Esue, Osigwe; Wirtz, Denis; Tseng, Yiider
2006-02-01
MreB, a major component of the recently discovered bacterial cytoskeleton, displays a structure homologous to its eukaryotic counterpart actin. Here, we study the assembly and mechanical properties of Thermotoga maritima MreB in the presence of different nucleotides in vitro. We found that GTP, not ADP or GDP, can mediate MreB assembly into filamentous structures as effectively as ATP. Upon MreB assembly, both GTP and ATP release the gamma phosphate at similar rates. Therefore, MreB is an equally effective ATPase and GTPase. Electron microscopy and quantitative rheology suggest that the morphologies and micromechanical properties of filamentous ATP-MreB and GTP-MreB are similar. In contrast, mammalian actin assembly is favored in the presence of ATP over GTP. These results indicate that, despite high structural homology of their monomers, T. maritima MreB and actin filaments display different assembly, morphology, micromechanics, and nucleotide-binding specificity. Furthermore, the biophysical properties of T. maritima MreB filaments, including high rigidity and propensity to form bundles, suggest a mechanism by which MreB helical structure may be involved in imposing a cylindrical architecture on rod-shaped bacterial cells.
Scale dependence of the mechanics of active gels with increasing motor concentration.
Sonn-Segev, Adar; Bernheim-Groswasser, Anne; Roichman, Yael
2017-10-18
Actin is a protein that plays an essential role in maintaining the mechanical integrity of cells. In response to strong external stresses, it can assemble into large bundles, but it grows into a fine branched network to induce cell motion. In some cases, the self-organization of actin fibers and networks involves the action of bipolar filaments of the molecular motor myosin. Such self-organization processes mediated by large myosin bipolar filaments have been studied extensively in vitro. Here we create active gels, composed of single actin filaments and small myosin bipolar filaments. The active steady state in these gels persists long enough to enable the characterization of their mechanical properties using one and two point microrheology. We study the effect of myosin concentration on the mechanical properties of this model system for active matter, for two different motor assembly sizes. In contrast to previous studies of networks with large motor assemblies, we find that the fluctuations of tracer particles embedded in the network decrease in amplitude as motor concentration increases. Nonetheless, we show that myosin motors stiffen the actin networks, in accordance with bulk rheology measurements of networks containing larger motor assemblies. This implies that such stiffening is of universal nature and may be relevant to a wider range of cytoskeleton-based structures.
Holt, Brian D.; Shams, Hengameh; Horst, Travis A.; Basu, Saurav; Rape, Andrew D.; Wang, Yu-Li; Rohde, Gustavo K.; Mofrad, Mohammad R. K.; Islam, Mohammad F.; Dahl, Kris Noel
2012-01-01
With a range of desirable mechanical and optical properties, single wall carbon nanotubes (SWCNTs) are a promising material for nanobiotechnologies. SWCNTs also have potential as biomaterials for modulation of cellular structures. Previously, we showed that highly purified, dispersed SWCNTs grossly alter F-actin inside cells. F-actin plays critical roles in the maintenance of cell structure, force transduction, transport and cytokinesis. Thus, quantification of SWCNT-actin interactions ranging from molecular, sub-cellular and cellular levels with both structure and function is critical for developing SWCNT-based biotechnologies. Further, this interaction can be exploited, using SWCNTs as a unique actin-altering material. Here, we utilized molecular dynamics simulations to explore the interactions of SWCNTs with actin filaments. Fluorescence lifetime imaging microscopy confirmed that SWCNTs were located within ~5 nm of F-actin in cells but did not interact with G-actin. SWCNTs did not alter myosin II sub-cellular localization, and SWCNT treatment in cells led to significantly shorter actin filaments. Functionally, cells with internalized SWCNTs had greatly reduced cell traction force. Combined, these results demonstrate direct, specific SWCNT alteration of F-actin structures which can be exploited for SWCNT-based biotechnologies and utilized as a new method to probe fundamental actin-related cellular processes and biophysics. PMID:24955540
Mechanical Detection of a Long-Range Actin Network Emanating from a Biomimetic Cortex
Bussonnier, Matthias; Carvalho, Kevin; Lemière, Joël; Joanny, Jean-François; Sykes, Cécile; Betz, Timo
2014-01-01
Actin is ubiquitous globular protein that polymerizes into filaments and forms networks that participate in the force generation of eukaryotic cells. Such forces are used for cell motility, cytokinesis, and tissue remodeling. Among those actin networks, we focus on the actin cortex, a dense branched network beneath the plasma membrane that is of particular importance for the mechanical properties of the cell. Here we reproduce the cellular cortex by activating actin filament growth on a solid surface. We unveil the existence of a sparse actin network that emanates from the surface and extends over a distance that is at least 10 times larger than the cortex itself. We call this sparse actin network the “actin cloud” and characterize its mechanical properties with optical tweezers. We show, both experimentally and theoretically, that the actin cloud is mechanically relevant and that it should be taken into account because it can sustain forces as high as several picoNewtons (pN). In particular, it is known that in plant cells, actin networks similar to the actin cloud have a role in positioning the nucleus; in large oocytes, they play a role in driving chromosome movement. Recent evidence shows that such networks even prevent granule condensation in large cells. PMID:25140420
Direct Interaction of CaVβ with Actin Up-regulates L-type Calcium Currents in HL-1 Cardiomyocytes*
Stölting, Gabriel; de Oliveira, Regina Campos; Guzman, Raul E.; Miranda-Laferte, Erick; Conrad, Rachel; Jordan, Nadine; Schmidt, Silke; Hendriks, Johnny; Gensch, Thomas; Hidalgo, Patricia
2015-01-01
Expression of the β-subunit (CaVβ) is required for normal function of cardiac L-type calcium channels, and its up-regulation is associated with heart failure. CaVβ binds to the α1 pore-forming subunit of L-type channels and augments calcium current density by facilitating channel opening and increasing the number of channels in the plasma membrane, by a poorly understood mechanism. Actin, a key component of the intracellular trafficking machinery, interacts with Src homology 3 domains in different proteins. Although CaVβ encompasses a highly conserved Src homology 3 domain, association with actin has not yet been explored. Here, using co-sedimentation assays and FRET experiments, we uncover a direct interaction between CaVβ and actin filaments. Consistently, single-molecule localization analysis reveals streaklike structures composed by CaVβ2 that distribute over several micrometers along actin filaments in HL-1 cardiomyocytes. Overexpression of CaVβ2-N3 in HL-1 cells induces an increase in L-type current without altering voltage-dependent activation, thus reflecting an increased number of channels in the plasma membrane. CaVβ mediated L-type up-regulation, and CaVβ-actin association is prevented by disruption of the actin cytoskeleton with cytochalasin D. Our study reveals for the first time an interacting partner of CaVβ that is directly involved in vesicular trafficking. We propose a model in which CaVβ promotes anterograde trafficking of the L-type channels by anchoring them to actin filaments in their itinerary to the plasma membrane. PMID:25533460
Zhou, Z L; Sun, X X; Ma, J; Tong, M H; To, S K Y; Wong, A S T; Ngan, A H W
2017-07-26
Recent studies have indicated that the nanoindentation measured stiffness of carcinoma adherent cells is in general lower than normal cells, thus suggesting that cell stiffness may serve as a bio-marker for carcinoma. However, the proper establishment of such a conclusion would require biophysical understanding of the underlying mechanism of the cell stiffness. In this work, we compared the elastic moduli of the actin cytoskeletons of Hey A8 ovarian carcinoma cells with and without metastasis (HM and NM), as measured by 2D atomic force microscopy (AFM) with low-depth nanoindentation via a rate-jump method. The results indicate clearly that HM cells showed lower actin cytoskeleton stiffness atop of their nucleus position and higher actin cytoskeleton stiffness at their rims, compared to NM cells, suggesting that the local stiffness on the cytoskeleton can reflect actin filament distribution. Immunofluorescence staining and scanning electron microscopy (SEM) also indicated that the difference in stiffness in Hey A8 cells with different metastasis is associated with their F-actin rearrangement. Finite-element modelling (FEM) shows that a migrating cell would have its actin filaments bundled together to form stress fibers, which would exhibit lower indentation stiffness than the less aligned arrangement of filaments in a non-migrating cell. The results here indicate that the actin cytoskeleton stiffness can serve as a reliable marker for grading the metastasis of adherent carcinoma cells due to their cytoskeleton change and potentially predicting the migration direction of the cells. Copyright © 2017 Elsevier Ltd. All rights reserved.
The N-terminal tropomyosin- and actin-binding sites are important for leiomodin 2's function.
Ly, Thu; Moroz, Natalia; Pappas, Christopher T; Novak, Stefanie M; Tolkatchev, Dmitri; Wooldridge, Dayton; Mayfield, Rachel M; Helms, Gregory; Gregorio, Carol C; Kostyukova, Alla S
2016-08-15
Leiomodin is a potent actin nucleator related to tropomodulin, a capping protein localized at the pointed end of the thin filaments. Mutations in leiomodin-3 are associated with lethal nemaline myopathy in humans, and leiomodin-2-knockout mice present with dilated cardiomyopathy. The arrangement of the N-terminal actin- and tropomyosin-binding sites in leiomodin is contradictory and functionally not well understood. Using one-dimensional nuclear magnetic resonance and the pointed-end actin polymerization assay, we find that leiomodin-2, a major cardiac isoform, has an N-terminal actin-binding site located within residues 43-90. Moreover, for the first time, we obtain evidence that there are additional interactions with actin within residues 124-201. Here we establish that leiomodin interacts with only one tropomyosin molecule, and this is the only site of interaction between leiomodin and tropomyosin. Introduction of mutations in both actin- and tropomyosin-binding sites of leiomodin affected its localization at the pointed ends of the thin filaments in cardiomyocytes. On the basis of our new findings, we propose a model in which leiomodin regulates actin poly-merization dynamics in myocytes by acting as a leaky cap at thin filament pointed ends. © 2016 Ly, Moroz, et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
Tada, Hirobumi; Miyazaki, Tomoyuki; Takemoto, Kiwamu; Takase, Kenkichi; Jitsuki, Susumu; Nakajima, Waki; Koide, Mayu; Yamamoto, Naoko; Komiya, Kasane; Suyama, Kumiko; Sano, Akane; Taguchi, Akiko; Takahashi, Takuya
2016-10-25
Social separation early in life can lead to the development of impaired interpersonal relationships and profound social disorders. However, the underlying cellular and molecular mechanisms involved are largely unknown. Here, we found that isolation of neonatal rats induced glucocorticoid-dependent social dominance over nonisolated control rats in juveniles from the same litter. Furthermore, neonatal isolation inactivated the actin-depolymerizing factor (ADF)/cofilin in the juvenile medial prefrontal cortex (mPFC). Isolation-induced inactivation of ADF/cofilin increased stable actin fractions at dendritic spines in the juvenile mPFC, decreasing glutamate synaptic AMPA receptors. Expression of constitutively active ADF/cofilin in the mPFC rescued the effect of isolation on social dominance. Thus, neonatal isolation affects spines in the mPFC by reducing actin dynamics, leading to altered social behavior later in life.
Tada, Hirobumi; Miyazaki, Tomoyuki; Takemoto, Kiwamu; Takase, Kenkichi; Jitsuki, Susumu; Nakajima, Waki; Koide, Mayu; Yamamoto, Naoko; Komiya, Kasane; Suyama, Kumiko; Sano, Akane; Taguchi, Akiko; Takahashi, Takuya
2016-01-01
Social separation early in life can lead to the development of impaired interpersonal relationships and profound social disorders. However, the underlying cellular and molecular mechanisms involved are largely unknown. Here, we found that isolation of neonatal rats induced glucocorticoid-dependent social dominance over nonisolated control rats in juveniles from the same litter. Furthermore, neonatal isolation inactivated the actin-depolymerizing factor (ADF)/cofilin in the juvenile medial prefrontal cortex (mPFC). Isolation-induced inactivation of ADF/cofilin increased stable actin fractions at dendritic spines in the juvenile mPFC, decreasing glutamate synaptic AMPA receptors. Expression of constitutively active ADF/cofilin in the mPFC rescued the effect of isolation on social dominance. Thus, neonatal isolation affects spines in the mPFC by reducing actin dynamics, leading to altered social behavior later in life. PMID:27791080
The actin cytoskeleton in whole mount preparations and sections.
Resch, Guenter P; Urban, Edit; Jacob, Sonja
2010-01-01
In non-muscle cells, the actin cytoskeleton plays a key role by providing a scaffold contributing to the definition of cell shape, force for driving cell motility, cytokinesis, endocytosis, and propulsion of pathogens, as well as tracks for intracellular transport. A thorough understanding of these processes requires insight into the spatial and temporal organisation of actin filaments into diverse higher-order structures, such as networks, parallel bundles, and contractile arrays. Transmission and scanning electron microscopy can be used to visualise the actin cytoskeleton, but due to the delicate nature of actin filaments, they are easily affected by standard preparation protocols, yielding variable degrees of ultrastructural preservation. In this chapter, we describe different conventional and cryo-approaches to visualise the actin cytoskeleton using transmission electron microscopy and discuss their specific advantages and drawbacks. In the first part, we present three different whole mount techniques, which allow visualisation of actin in the peripheral, thinly spread parts of cells grown in monolayers. In the second part, we describe specific issues concerning the visualisation of actin in thin sections. Techniques for three-dimensional visualisation of actin, protein localisation, and correlative light and electron microscopy are also included. Copyright © 2010 Elsevier Inc. All rights reserved.
Direct observation of subunit exchange along mature vimentin intermediate filaments.
Nöding, Bernd; Herrmann, Harald; Köster, Sarah
2014-12-16
Actin filaments, microtubules, and intermediate filaments (IFs) are central elements of the metazoan cytoskeleton. At the molecular level, the assembly mechanism for actin filaments and microtubules is fundamentally different from that of IFs. The former two types of filaments assemble from globular proteins. By contrast, IFs assemble from tetrameric complexes of extended, half-staggered, and antiparallel oriented coiled-coils. These tetramers laterally associate into unit-length filaments; subsequent longitudinal annealing of unit-length filaments yields mature IFs. In vitro, IFs form open structures without a fixed number of tetramers per cross-section along the filament. Therefore, a central question for the structural biology of IFs is whether individual subunits can dissociate from assembled filaments and rebind at other sites. Using the fluorescently labeled IF-protein vimentin for assembly, we directly observe and quantitatively determine subunit exchange events between filaments as well as with soluble vimentin pools. Thereby we demonstrate that the cross-sectional polymorphism of donor and acceptor filaments plays an important role. We propose that in segments of donor filaments with more than the standard 32 molecules per cross-section, subunits are not as tightly bound and are predisposed to be released from the filament. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Myosin II Motor Activity in the Lateral Amygdala Is Required for Fear Memory Consolidation
ERIC Educational Resources Information Center
Gavin, Cristin F.; Rubio, Maria D.; Young, Erica; Miller, Courtney; Rumbaugh, Gavin
2012-01-01
Learning induces dynamic changes to the actin cytoskeleton that are required to support memory formation. However, the molecular mechanisms that mediate filamentous actin (F-actin) dynamics during learning and memory are poorly understood. Myosin II motors are highly expressed in actin-rich growth structures including dendritic spines, and we have…
Kampourakis, Thomas; Zhang, Xuemeng; Sun, Yin-Biao; Irving, Malcolm
2018-01-01
Omecamtiv mecarbil and blebbistatin perturb the regulatory state of the thick filament in heart muscle. Omecamtiv mecarbil increases contractility at low levels of activation by stabilizing the ON state of the thick filament. Omecamtiv mecarbil decreases contractility at high levels of activation by disrupting the acto-myosin ATPase cycle. Blebbistatin reduces contractility by stabilizing the thick filament OFF state and inhibiting acto-myosin ATPase. Thick filament regulation is a promising target for novel therapeutics in heart disease. Contraction of heart muscle is triggered by a transient rise in intracellular free calcium concentration linked to a change in the structure of the actin-containing thin filaments that allows the head or motor domains of myosin from the thick filaments to bind to them and induce filament sliding. It is becoming increasingly clear that cardiac contractility is also regulated through structural changes in the thick filaments, although the molecular mechanisms underlying thick filament regulation are still relatively poorly understood. Here we investigated those mechanisms using small molecules - omecamtiv mecarbil (OM) and blebbistatin (BS) - that bind specifically to myosin and respectively activate or inhibit contractility in demembranated cardiac muscle cells. We measured isometric force and ATP utilization at different calcium and small-molecule concentrations in parallel with in situ structural changes determined using fluorescent probes on the myosin regulatory light chain in the thick filaments and on troponin C in the thin filaments. The results show that BS inhibits contractility and actin-myosin ATPase by stabilizing the OFF state of the thick filament in which myosin head domains are more parallel to the filament axis. In contrast, OM stabilizes the ON state of the thick filament, but inhibits contractility at high intracellular calcium concentration by disrupting the actin-myosin ATPase pathway. The effects of BS and OM on the calcium sensitivity of isometric force and filament structural changes suggest that the co-operativity of calcium activation in physiological conditions is due to positive coupling between the regulatory states of the thin and thick filaments. © 2017 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
Myosin-induced volume increase of the hyper-mobile water surrounding actin filaments.
Suzuki, Makoto; Kabir, Syed Rashel; Siddique, Md Shahjahan Parvez; Nazia, Umme Salma; Miyazaki, Takashi; Kodama, Takao
2004-09-10
Microwave dielectric spectroscopy can measure the rotational mobility of water molecules that hydrate proteins and the hydration-shell volume. Using this technique, we have recently shown that apart from typical hydrating water molecules with lowered mobility there are other water molecules around the actin filaments (F-actin) which have a much higher mobility than that of bulk water [Biophys. J. 85 (2003) 3154]. We report here that the volume of this water component (hyper-mobile water) markedly increases without significant change of the volume of the ordinary hydration shell when the myosin motor-domain (S1, myosin subfragment-1) binds to F-actin. No hyper-mobile component was found in the hydration shell of S1 itself. The present results strongly suggest that the solvent space around S1 bound to F-actin is diffusionally asymmetric, which supports our model of force generation by actomyosin proposed previously [op. cit.].
NASA Astrophysics Data System (ADS)
Falzone, Tobias; Blair, Savanna; Robertson-Anderson, Rae
2015-03-01
The semiflexible biopolymer actin, a ubiquitous component of nearly all biological organisms, plays an important role in many mechanically-driven processes such as muscle contraction, cancer invasion and cell motility. As such, entangled actin networks, which possess unique and complex viscoelastic properties, have been the subject of much theoretical and experimental work. However, due to this viscoelastic complexity, much is still unknown regarding the correlation of the applied stress on actin networks to the induced filament strain at the molecular and micro scale. Here, we use simultaneous optical trapping and fluorescence microscopy to characterize the link between applied microscopic forces and strain propagation as a function of strain rate and concentration. Specifically, we track fiduciary markers on entangled actin filaments before, during and after actively driving embedded microspheres through the network. These measurements provide much needed insight into the molecular-level dynamics connecting stress and strain in semiflexible polymer networks.
Palytoxins and cytoskeleton: An overview.
Louzao, M Carmen; Ares, Isabel R; Cagide, Eva; Espiña, Begoña; Vilariño, Natalia; Alfonso, Amparo; Vieytes, Mercedes R; Botana, Luis M
2011-03-01
Cytoskeleton is a dynamic structure essential for a wide variety of normal cellular processes, including the maintenance of cell shape and morphology, volume regulation, membrane dynamics and signal transduction. Cytoskeleton is organized into microtubules, actin meshwork and intermediate filaments. Actin has been identified as a major target for destruction during apoptosis and is also important under pathological conditions such as cancers. Several natural compounds actively modulate actin organization by specific signaling cascades being useful tools to study cytoskeleton dynamics. Palytoxin is a large bioactive compound, first isolated from zoanthids, with a complex structure and different analogs such as ostreocin-D or ovatoxin-a. This toxin has been identified as a potent tumor promoter and cytotoxic molecule, which leads to actin filament distortion and triggers cell death or apoptosis. In this review we report the findings on the involvement of palytoxin and analogues modulating the actin cytoskeleton within different cellular models. Copyright © 2010 Elsevier Ltd. All rights reserved.
Khatau, Shyam B.; Bloom, Ryan J.; Bajpai, Saumendra; Razafsky, David; Zang, Shu; Giri, Anjil; Wu, Pei-Hsun; Marchand, Jorge; Celedon, Alfredo; Hale, Christopher M.; Sun, Sean X.; Hodzic, Didier; Wirtz, Denis
2012-01-01
Cells often migrate in vivo in an extracellular matrix that is intrinsically three-dimensional (3D) and the role of actin filament architecture in 3D cell migration is less well understood. Here we show that, while recently identified linkers of nucleoskeleton to cytoskeleton (LINC) complexes play a minimal role in conventional 2D migration, they play a critical role in regulating the organization of a subset of actin filament bundles – the perinuclear actin cap - connected to the nucleus through Nesprin2giant and Nesprin3 in cells in 3D collagen I matrix. Actin cap fibers prolong the nucleus and mediate the formation of pseudopodial protrusions, which drive matrix traction and 3D cell migration. Disruption of LINC complexes disorganizes the actin cap, which impairs 3D cell migration. A simple mechanical model explains why LINC complexes and the perinuclear actin cap are essential in 3D migration by providing mechanical support to the formation of pseudopodial protrusions. PMID:22761994
Oda, Toshiro; Aihara, Tomoki; Wakabayashi, Katsuzo
2016-01-01
Nucleators generating new F-actin filaments play important roles in cell activities. Detailed information concerning the events involved in nucleation of actin alone in vitro is fundamental to understanding these processes, but such information has been hard to come by. We addressed the early process of salt-induced polymerization of actin using the time-resolved synchrotron small-angle X-ray scattering (SAXS). Actin molecules in low salt solution maintain a monomeric state by an electrostatic repulsive force between molecules. On mixing with salts, the repulsive force was rapidly screened, causing an immediate formation of many of non-polymerizable dimers. SAXS kinetic analysis revealed that tetramerization gives the highest energetic barrier to further polymerization, and the major nucleation is the formation of helical tetramers. Filaments start to grow rapidly with the formation of pentamers. These findings suggest an acceleration mechanism of actin assembly by a variety of nucleators in cells. PMID:27775032
Inada, Noriko; Higaki, Takumi; Hasezawa, Seiichiro
2016-01-01
Actin-depolymerizing factors (ADFs) are conserved proteins that function in regulating the structure and dynamics of actin microfilaments in eukaryotes. In this study, we present evidence that Arabidopsis (Arabidopsis thaliana) subclass I ADFs, particularly ADF4, functions as a susceptibility factor for an adapted powdery mildew fungus. The null mutant of ADF4 significantly increased resistance against the adapted powdery mildew fungus Golovinomyces orontii. The degree of resistance was further enhanced in transgenic plants in which the expression of all subclass I ADFs (i.e. ADF1–ADF4) was suppressed. Microscopic observations revealed that the enhanced resistance of adf4 and ADF1-4 knockdown plants (ADF1-4Ri) was associated with the accumulation of hydrogen peroxide and cell death specific to G. orontii-infected cells. The increased resistance and accumulation of hydrogen peroxide in ADF1-4Ri were suppressed by the introduction of mutations in the salicylic acid- and jasmonic acid-signaling pathways but not by a mutation in the ethylene-signaling pathway. Quantification by microscopic images detected an increase in the level of actin microfilament bundling in ADF1-4Ri but not in adf4 at early G. orontii infection time points. Interestingly, complementation analysis revealed that nuclear localization of ADF4 was crucial for susceptibility to G. orontii. Based on its G. orontii-infected-cell-specific phenotype, we suggest that subclass I ADFs are susceptibility factors that function in a direct interaction between the host plant and the powdery mildew fungus. PMID:26747284
Puppo, A.; Chun, Jong T.; Gragnaniello, Giovanni; Garante, Ezio; Santella, Luigia
2008-01-01
Background When preparing for fertilization, oocytes undergo meiotic maturation during which structural changes occur in the endoplasmic reticulum (ER) that lead to a more efficient calcium response. During meiotic maturation and subsequent fertilization, the actin cytoskeleton also undergoes dramatic restructuring. We have recently observed that rearrangements of the actin cytoskeleton induced by actin-depolymerizing agents, or by actin-binding proteins, strongly modulate intracellular calcium (Ca2+) signals during the maturation process. However, the significance of the dynamic changes in F-actin within the fertilized egg has been largely unclear. Methodology/Principal Findings We have measured changes in intracellular Ca2+ signals and F-actin structures during fertilization. We also report the unexpected observation that the conventional antagonist of the InsP3 receptor, heparin, hyperpolymerizes the cortical actin cytoskeleton in postmeiotic eggs. Using heparin and other pharmacological agents that either hypo- or hyperpolymerize the cortical actin, we demonstrate that nearly all aspects of the fertilization process are profoundly affected by the dynamic restructuring of the egg cortical actin cytoskeleton. Conclusions/Significance Our findings identify important roles for subplasmalemmal actin fibers in the process of sperm-egg interaction and in the subsequent events related to fertilization: the generation of Ca2+ signals, sperm penetration, cortical granule exocytosis, and the block to polyspermy. PMID:18974786
An electromechanical model of myosin molecular motors.
Masuda, Tadashi
2003-12-21
There is a long-running debate on the working mechanism of myosin molecular motors, which, by interacting with actin filaments, convert the chemical energy of ATP into a variety of mechanical work. After the development of technologies for observing and manipulating individual working molecules, experimental results negating the widely accepted 'lever-arm hypothesis' have been reported. In this paper, based on the experimental results so far accumulated, an alternative hypothesis is proposed, in which motor molecules are modelled as electromechanical components that interact with each other through electrostatic force. Electrostatic attractive force between myosin and actin is assumed to cause a conformational change in the myosin head during the attachment process. An elastic energy resulting from the conformational change then produces the power stroke. The energy released at the ATP hydrolysis is mainly used to detach the myosin head from actin filaments. The mechanism presented in this paper is compatible with the experimental results contradictory to the previous theories. It also explains the behavior of myosins V and VI, which are engaged in cellular transport and move processively along actin filaments.
Saunders, Marissa G; Voth, Gregory A
2011-10-14
In the monomeric actin crystal structure, the positions of a highly organized network of waters are clearly visible within the active site. However, the recently proposed models of filamentous actin (F-actin) did not extend to including these waters. Since the water network is important for ATP hydrolysis, information about water position is critical to understanding the increased rate of catalysis upon filament formation. Here, we show that waters in the active site are essential for intersubdomain rotational flexibility and that they organize the active-site structure. Including the crystal structure waters during simulation setup allows us to observe distinct changes in the active-site structure upon the flattening of the actin subunit, as proposed in the Oda model for F-actin. We identify changes in both protein position and water position relative to the phosphate tail that suggest a mechanism for accelerating the rate of nucleotide hydrolysis in F-actin by stabilizing charge on the β-phosphate and by facilitating deprotonation of catalytic water. Copyright © 2011 Elsevier Ltd. All rights reserved.
Mechanism of the calcium-regulation of muscle contraction — In pursuit of its structural basis —
WAKABAYASHI, Takeyuki
2015-01-01
The author reviewed the research that led to establish the structural basis for the mechanism of the calcium-regulation of the contraction of striated muscles. The target of calcium ions is troponin on the thin filaments, of which the main component is the double-stranded helix of actin. A model of thin filament was generated by adding tropomyosin and troponin. During the process to provide the structural evidence for the model, the troponin arm was found to protrude from the calcium-depleted troponin and binds to the carboxyl-terminal region of actin. As a result, the carboxyl-terminal region of tropomyosin shifts and covers the myosin-binding sites of actin to block the binding of myosin. At higher calcium concentrations, the troponin arm changes its partner from actin to the main body of calcium-loaded troponin. Then, tropomyosin shifts back to the position near the grooves of actin double helix, and the myosin-binding sites of actin becomes available to myosin resulting in force generation through actin-myosin interactions. PMID:26194856
Actin in Mung Bean Mitochondria and Implications for Its Function[W][OA
Lo, Yih-Shan; Cheng, Ning; Hsiao, Lin-June; Annamalai, Arunachalam; Jauh, Guang-Yuh; Wen, Tuan-Nan; Dai, Hwa; Chiang, Kwen-Sheng
2011-01-01
Here, a large fraction of plant mitochondrial actin was found to be resistant to protease and high-salt treatments, suggesting it was protected by mitochondrial membranes. A portion of this actin became sensitive to protease or high-salt treatment after removal of the mitochondrial outer membrane, indicating that some actin is located inside the mitochondrial outer membrane. The import of an actin–green fluorescent protein (GFP) fusion protein into the mitochondria in a transgenic plant, actin:GFP, was visualized in living cells and demonstrated by flow cytometry and immunoblot analyses. Polymerized actin was found in mitochondria of actin:GFP plants and in mung bean (Vigna radiata). Notably, actin associated with mitochondria purified from early-developing cotyledons during seed germination was sensitive to high-salt and protease treatments. With cotyledon ageing, mitochondrial actin became more resistant to both treatments. The progressive import of actin into cotyledon mitochondria appeared to occur in concert with the conversion of quiescent mitochondria into active forms during seed germination. The binding of actin to mitochondrial DNA (mtDNA) was demonstrated by liquid chromatography–tandem mass spectrometry analysis. Porin and ADP/ATP carrier proteins were also found in mtDNA-protein complexes. Treatment with an actin depolymerization reagent reduced the mitochondrial membrane potential and triggered the release of cytochrome C. The potential function of mitochondrial actin and a possible actin import pathway are discussed. PMID:21984697
Cell-cycle regulation of formin-mediated actin cable assembly
Miao, Yansong; Wong, Catherine C. L.; Mennella, Vito; Michelot, Alphée; Agard, David A.; Holt, Liam J.; Yates, John R.; Drubin, David G.
2013-01-01
Assembly of appropriately oriented actin cables nucleated by formin proteins is necessary for many biological processes in diverse eukaryotes. However, compared with knowledge of how nucleation of dendritic actin filament arrays by the actin-related protein-2/3 complex is regulated, the in vivo regulatory mechanisms for actin cable formation are less clear. To gain insights into mechanisms for regulating actin cable assembly, we reconstituted the assembly process in vitro by introducing microspheres functionalized with the C terminus of the budding yeast formin Bni1 into extracts prepared from yeast cells at different cell-cycle stages. EM studies showed that unbranched actin filament bundles were reconstituted successfully in the yeast extracts. Only extracts enriched in the mitotic cyclin Clb2 were competent for actin cable assembly, and cyclin-dependent kinase 1 activity was indispensible. Cyclin-dependent kinase 1 activity also was found to regulate cable assembly in vivo. Here we present evidence that formin cell-cycle regulation is conserved in vertebrates. The use of the cable-reconstitution system to test roles for the key actin-binding proteins tropomyosin, capping protein, and cofilin provided important insights into assembly regulation. Furthermore, using mass spectrometry, we identified components of the actin cables formed in yeast extracts, providing the basis for comprehensive understanding of cable assembly and regulation. PMID:24133141
Electrostatics Control Actin Filament Nucleation and Elongation Kinetics*
Crevenna, Alvaro H.; Naredi-Rainer, Nikolaus; Schönichen, André; Dzubiella, Joachim; Barber, Diane L.; Lamb, Don C.; Wedlich-Söldner, Roland
2013-01-01
The actin cytoskeleton is a central mediator of cellular morphogenesis, and rapid actin reorganization drives essential processes such as cell migration and cell division. Whereas several actin-binding proteins are known to be regulated by changes in intracellular pH, detailed information regarding the effect of pH on the actin dynamics itself is still lacking. Here, we combine bulk assays, total internal reflection fluorescence microscopy, fluorescence fluctuation spectroscopy techniques, and theory to comprehensively characterize the effect of pH on actin polymerization. We show that both nucleation and elongation are strongly enhanced at acidic pH, with a maximum close to the pI of actin. Monomer association rates are similarly affected by pH at both ends, although dissociation rates are differentially affected. This indicates that electrostatics control the diffusional encounter but not the dissociation rate, which is critical for the establishment of actin filament asymmetry. A generic model of protein-protein interaction, including electrostatics, explains the observed pH sensitivity as a consequence of charge repulsion. The observed pH effect on actin in vitro agrees with measurements of Listeria propulsion in pH-controlled cells. pH regulation should therefore be considered as a modulator of actin dynamics in a cellular environment. PMID:23486468
Single Molecule Stepping and Structural Dynamics of Myosin X
Sun, Yujie; Sato, Osamu; Ruhnow, Felix; Arsenault, Mark E.; Ikebe, Mitsuo; Goldman, Yale E.
2010-01-01
Myosin X is an unconventional myosin with puzzling motility properties. We studied the motility of dimerized myosin X using single molecule fluorescence techniques – polTIRF, FIONA, and Parallax to measure rotation angles and 3-dimensional position of the molecule during its walk. It was found that Myosin X steps processively in a hand-over-hand manner following a left-handed helical path along both single actin filaments and bundles. Its step size and velocity are smaller on actin bundles than individual filaments, suggesting myosin X often steps onto neighboring filaments in a bundle. The data suggest that a previously postulated single α-helical domain mechanically extends the 3-IQ motif lever arm and either the neck-tail hinge or the tail is flexible. These structural features, in conjunction with the membrane and microtubule binding domains, enable myosin X to perform multiple functions on varied actin structures in cells. PMID:20364131
Segmentation and Tracking of Cytoskeletal Filaments Using Open Active Contours
Smith, Matthew B.; Li, Hongsheng; Shen, Tian; Huang, Xiaolei; Yusuf, Eddy; Vavylonis, Dimitrios
2010-01-01
We use open active contours to quantify cytoskeletal structures imaged by fluorescence microscopy in two and three dimensions. We developed an interactive software tool for segmentation, tracking, and visualization of individual fibers. Open active contours are parametric curves that deform to minimize the sum of an external energy derived from the image and an internal bending and stretching energy. The external energy generates (i) forces that attract the contour toward the central bright line of a filament in the image, and (ii) forces that stretch the active contour toward the ends of bright ridges. Images of simulated semiflexible polymers with known bending and torsional rigidity are analyzed to validate the method. We apply our methods to quantify the conformations and dynamics of actin in two examples: actin filaments imaged by TIRF microscopy in vitro, and actin cables in fission yeast imaged by spinning disk confocal microscopy. PMID:20814909
Actin as the generator of tension during muscle contraction.
Schutt, C E; Lindberg, U
1992-01-01
We propose that the key structural feature in the conversion of chemical free energy into mechanical work by actomyosin is a myosin-induced change in the length of the actin filament. As reported earlier, there is evidence that helical actin filaments can untwist into ribbons having an increased intersubunit repeat. Regular patterns of actomyosin interactions arise when ribbons are aligned with myosin thick filaments, because the repeat distance of the myosin lattice (429 A) is an integral multiple of the subunit repeat in the ribbon (35.7 A). This commensurability property of the actomyosin lattice leads to a simple mechanism for controlling the sequence of events in chemical-mechanical transduction. A role for tropomyosin in transmitting the forces developed by actomyosin is proposed. In this paper, we describe how these transduction principles provide the basis for a theory of muscle contraction. Images PMID:1530888
Xiao, Xiang; Mruk, Dolores D.; Tang, Elizabeth I.; Wong, Chris K.C.; Lee, Will M.; John, Constance M.; Turek, Paul J.; Silvestrini, Bruno; Cheng, C. Yan
2014-01-01
STUDY QUESTION Can human Sertoli cells cultured in vitro and that have formed an epithelium be used as a model to monitor toxicant-induced junction disruption and to better understand the mechanism(s) by which toxicants disrupt cell adhesion at the Sertoli cell blood–testis barrier (BTB)? SUMMARY ANSWER Our findings illustrate that human Sertoli cells cultured in vitro serve as a reliable system to monitor the impact of environmental toxicants on the BTB function. WHAT IS KNOWN ALREADY Suspicions of a declining trend in semen quality and a concomitant increase in exposures to environmental toxicants over the past decades reveal the need of an in vitro system that efficiently and reliably monitors the impact of toxicants on male reproductive function. Furthermore, studies in rodents have confirmed that environmental toxicants impede Sertoli cell BTB function in vitro and in vivo. STUDY DESIGN, SIZE AND DURATION We examined the effects of two environmental toxicants: cadmium chloride (0.5–20 µM) and bisphenol A (0.4–200 µM) on human Sertoli cell function. Cultured Sertoli cells from three men were used in this study, which spanned an 18-month period. PARTICIPANTS/MATERIALS, SETTING, METHODS Human Sertoli cells from three subjects were cultured in F12/DMEM containing 5% fetal bovine serum. Changes in protein expression were monitored by immunoblotting using specific antibodies. Immunofluorescence analyses were used to assess changes in the distribution of adhesion proteins, F-actin and actin regulatory proteins following exposure to two toxicants: cadmium chloride and bisphenol A (BPA). MAIN RESULTS AND THE ROLE OF CHANCE Human Sertoli cells were sensitive to cadmium and BPA toxicity. Changes in the localization of cell adhesion proteins were mediated by an alteration of the actin-based cytoskeleton. This alteration of F-actin network in Sertoli cells as manifested by truncation and depolymerization of actin microfilaments at the Sertoli cell BTB was caused by mislocalization of actin filament barbed end capping and bundling protein Eps8, and branched actin polymerization protein Arp3. Besides impeding actin dynamics, endocytic vesicle-mediated trafficking and the proper localization of actin regulatory proteins c-Src and annexin II in Sertoli cells were also affected. Results of statistical analysis demonstrate that these findings were not obtained by chance. LIMITATIONS, REASONS FOR CAUTION (i) This study was done in vitro and might not extrapolate to the in vivo state, (ii) conclusions are based on the use of Sertoli cell samples from three men and (iii) it is uncertain if the concentrations of toxicants used in the experiments are reached in vivo. WIDER IMPLICATIONS OF THE FINDINGS Human Sertoli cells cultured in vitro provide a robust model to monitor environmental toxicant-mediated disruption of Sertoli cell BTB function and to study the mechanism(s) of toxicant-induced testicular dysfunction. PMID:24532171
Actin motility: formin a SCAry tail.
Alberts, Art; Way, Michael
2011-01-11
A new biochemical analysis has revealed that the Rickettsia bacterial protein Sca2--recently shown to be essential for virulence and actin-dependent motility--assembles actin filaments using a mechanism that functionally resembles the processive elongation tactics used by formins. Copyright © 2011 Elsevier Ltd. All rights reserved.
The role of titin in eccentric muscle contraction.
Herzog, Walter
2014-08-15
Muscle contraction and force regulation in skeletal muscle have been thought to occur exclusively through the relative sliding of and the interaction between the contractile filaments actin and myosin. While this two-filament sarcomere model has worked well in explaining the properties of isometrically and concentrically contracting muscle, it has failed miserably in explaining experimental observations in eccentric contractions. Here, I suggest, and provide evidence, that a third filament, titin, is involved in force regulation of sarcomeres by adjusting its stiffness in an activation-dependent (calcium) and active force-dependent manner. Upon muscle activation, titin binds calcium at specific sites, thereby increasing its stiffness, and cross-bridge attachment to actin is thought to free up binding sites for titin on actin, thereby reducing titin's free-spring length, thus increasing its stiffness and force upon stretch of active muscle. This role of titin as a third force regulating myofilament in sarcomeres, although not fully proven, would account for many of the unexplained properties of eccentric muscle contraction, while simultaneously not affecting the properties predicted by the two-filament cross-bridge model in isometric and concentric muscle function. Here, I identify the problems of the two-filament sarcomere model and demonstrate the advantages of the three-filament model by providing evidence of titin's contribution to active force in eccentric muscle function. © 2014. Published by The Company of Biologists Ltd.
Induction of autophagy improves embryo viability in cloned mouse embryos
Shen, XingHui; Zhang, Na; Wang, ZhenDong; Bai, GuangYu; Zheng, Zhong; Gu, YanLi; Wu, YanShuang; Liu, Hui; Zhou, DongJie; Lei, Lei
2015-01-01
Autophagy is an essential cellular mechanism that degrades cytoplasmic proteins and organelles to recycle their components. Moreover, autophagy is essential for preimplantation development in mammals. Here we show that autophagy is also important for reprogramming in somatic cell nuclear transfer (SCNT). Our data indicate that unlike fertilized oocytes, autophagy is not triggered in SCNT embryos during 6 hours of activation. Mechanistically, the inhibited autophagic induction during SCNT activation is due to the cytochalasin B (CB) caused depolymerization of actin filaments. In this study, we induced autophagy during SCNT activation by rapamycin and pp242, which could restore the expected level of autophagy and significantly enhance the development of SCNT embryos to the blastocyst stage when compared with the control (68.5% and 68.7% vs. 41.5%, P < 0.05). Furthermore, the treatment of rapamycin and pp242 accelerates active DNA demethylation indicated by the conversion of 5 mC to 5 hmC, and treatment of rapamycin improves degradation of maternal mRNA as well. Thus, our findings reveal that autophagy is important for development of SCNT embryos and inhibited autophagic induction during SCNT activation might be one of the serious causes of low efficiency of SCNT. PMID:26643778
A glycolytic metabolon in Saccharomyces cerevisiae is stabilized by F-actin.
Araiza-Olivera, Daniela; Chiquete-Felix, Natalia; Rosas-Lemus, Mónica; Sampedro, José G; Peña, Antonio; Mujica, Adela; Uribe-Carvajal, Salvador
2013-08-01
In the Saccharomyces cerevisiae glycolytic pathway, 11 enzymes catalyze the stepwise conversion of glucose to two molecules of ethanol plus two CO₂ molecules. In the highly crowded cytoplasm, this pathway would be very inefficient if it were dependent on substrate/enzyme diffusion. Therefore, the existence of a multi-enzymatic glycolytic complex has been suggested. This complex probably uses the cytoskeleton to stabilize the interaction of the various enzymes. Here, the role of filamentous actin (F-actin) in stabilization of a putative glycolytic metabolon is reported. Experiments were performed in isolated enzyme/actin mixtures, cytoplasmic extracts and permeabilized yeast cells. Polymerization of actin was promoted using phalloidin or inhibited using cytochalasin D or latrunculin. The polymeric filamentous F-actin, but not the monomeric globular G-actin, stabilized both the interaction of isolated glycolytic pathway enzyme mixtures and the whole fermentation pathway, leading to higher fermentation activity. The associated complexes were resistant against inhibition as a result of viscosity (promoted by the disaccharide trehalose) or inactivation (using specific enzyme antibodies). In S. cerevisiae, a glycolytic metabolon appear to assemble in association with F-actin. In this complex, fermentation activity is enhanced and enzymes are partially protected against inhibition by trehalose or by antibodies. © 2013 FEBS.
van der Ven, P F; Schaart, G; Jap, P H; Sengers, R C; Stadhouders, A M; Ramaekers, F C
1992-10-01
This report describes a phenotyping study of differentiating human skeletal muscle cells in tissue culture. Satellite cells (adult myoblasts), isolated from biopsy material, showed a proliferative behaviour in high-nutrition medium, but fused to form myotubes when grown in low-nutrition medium. The expression and structural organization of the intermediate filament proteins desmin and vimentin as well as the sarcomeric constituents alpha-actin, alpha-actinin, nebulin, myosin and especially titin during myofibrillogenesis in vitro, were studied by means of indirect immunofluorescence assays. The proliferating myoblasts contained both desmin and vimentin, alpha-actinin and the filamentous form of actin. Shortly after the change of medium, expression of titin, sarcomeric myosin and skeletal muscle alpha-actin was found in mononuclear cells in a diffuse, filamentous (titin, myosin, alpha-actin) or punctate (titin, myosin) pattern. Four to 10 days after the medium change, mature myotubes showed desmin, titin, alpha-actinin, nebulin, sarcomeric myosin and actin cross-striations, while vimentin was no longer detected. We conclude that human skeletal muscle cell cultures are an appropriate model system to study the molecular basis of myofibrillogenesis. Especially the presence of desmin in a striated fashion points to a high degree of maturation of the muscle cell cultures.
Matsushita, A; Arikawa, K
1997-09-01
In the crab Hemigrapsus sanguineus, maintained under a 12 h:12 h light:dark cycle, the amount of vesicular smooth endoplasmic reticulum (vesicular sER) in the photoreceptor cell body increases after the light is turned off. This paper demonstrates that actin filaments in the photoreceptor cell body are involved in the transport of vesicular sER towards the rhabdom. To specify the time of actin contribution to rhabdom synthesis, we disrupted the organization of actin filaments in the cell body with cytochalasin D at various time around dusk. We then measured the rhabdom size and also examined the ultrastructure of the photoreceptor cell body 3 h after extinguishing the light. When cytochalasin D was applied from either 1 h before or immediately after extinguishing the light, the rhabdom size did not increase, whereas vesicular sER accumulated in the cell body. In contrast, cytochalasin D applied to the eyes from 20 min after turning the light off did not inhibit rhabdom synthesis. These results indicate that the first 20 min after the light is turned off is particularly important for the transport of vesicular sER towards the rhabdom by the cell body actin filaments.
Naresh, S; Atreja, S K
2015-12-01
In the female reproductive tract, the spermatozoa undergo a series of physiological and biochemical changes, prior to gaining the ability to fertilize, that result to capacitation. However, the actin polymerization and protein tyrosine phosphorylation are the two necessary steps for capacitation. In this study, we have demonstrated the actin polymerization and established the correlation between protein tyrosine phosphorylation and actin reorganization during in vitro capacitation in buffalo (Bubalus bubalis) spermatozoa. Indirect immunofluorescence and Western blot techniques were used to detect actin polymerization and tyrosine phosphorylation. The time-dependent fluorimetric studies revealed that the actin polymerization starts from the tail region and progressed towards the head region of spermatozoa during capacitation. The lysophosphatidyl choline (LPC)-induced acrosome reaction (AR) stimulated quick actin depolymerization. The inhibitor cytochalasin D (CD) blocked the in vitro capacitation by inhibiting the actin polymerization. In addition, we also performed different inhibitor (Genistein, H-89, PD9809 and GF-109) and enhancer (dbcAMP, H(2)O(2) and vanadate) studies on actin tyrosine phosphorylation and actin polymerization. The inhibitors of tyrosine phosphorylation inhibit actin tyrosine phosphorylation and polymerization, whereas enhancers of tyrosine phosphorylation stimulate F-actin formation and tyrosine phosphorylation. These observations suggest that the tyrosine phosphorylation regulates the actin polymerization, and both are coupled processes during capacitation of buffalo spermatozoa. © 2015 Blackwell Verlag GmbH.
Structures of actin-like ParM filaments show architecture of plasmid-segregating spindles.
Bharat, Tanmay A M; Murshudov, Garib N; Sachse, Carsten; Löwe, Jan
2015-07-02
Active segregation of Escherichia coli low-copy-number plasmid R1 involves formation of a bipolar spindle made of left-handed double-helical actin-like ParM filaments. ParR links the filaments with centromeric parC plasmid DNA, while facilitating the addition of subunits to ParM filaments. Growing ParMRC spindles push sister plasmids to the cell poles. Here, using modern electron cryomicroscopy methods, we investigate the structures and arrangements of ParM filaments in vitro and in cells, revealing at near-atomic resolution how subunits and filaments come together to produce the simplest known mitotic machinery. To understand the mechanism of dynamic instability, we determine structures of ParM filaments in different nucleotide states. The structure of filaments bound to the ATP analogue AMPPNP is determined at 4.3 Å resolution and refined. The ParM filament structure shows strong longitudinal interfaces and weaker lateral interactions. Also using electron cryomicroscopy, we reconstruct ParM doublets forming antiparallel spindles. Finally, with whole-cell electron cryotomography, we show that doublets are abundant in bacterial cells containing low-copy-number plasmids with the ParMRC locus, leading to an asynchronous model of R1 plasmid segregation.
Lipid-linked cell wall precursors regulate membrane association of bacterial actin MreB
Schirner, Kathrin; Eun, Ye-Jin; Dion, Mike; Luo, Yun; Helmann, John D.; Garner, Ethan C.; Walker, Suzanne
2014-01-01
Summary The bacterial actin homolog MreB, which is critical for rod shape determination, forms filaments that rotate around the cell width on the inner surface of the cytoplasmic membrane. What determines filament association with the membranes or with other cell wall elongation proteins is not known. Using specific chemical and genetic perturbations while following MreB filament motion, we find that MreB membrane association is an actively regulated process that depends on the presence of lipid-linked peptidoglycan precursors. When precursors are depleted, MreB filaments disassemble into the cytoplasm and peptidoglycan synthesis becomes disorganized. In cells that lack wall teichoic acids, but continue to make peptidoglycan, dynamic MreB filaments are observed, although their presence is not sufficient to establish a rod shape. We propose that the cell regulates MreB filament association with the membrane, allowing rapid and reversible inactivation of cell wall enzyme complexes in response to the inhibition of cell wall synthesis. PMID:25402772
Lipid-linked cell wall precursors regulate membrane association of bacterial actin MreB.
Schirner, Kathrin; Eun, Ye-Jin; Dion, Mike; Luo, Yun; Helmann, John D; Garner, Ethan C; Walker, Suzanne
2015-01-01
The bacterial actin homolog MreB, which is crucial for rod shape determination, forms filaments that rotate around the cell width on the inner surface of the cytoplasmic membrane. What determines filament association with the membranes or with other cell wall elongation proteins is not known. Using specific chemical and genetic perturbations while following MreB filament motion, we find that MreB membrane association is an actively regulated process that depends on the presence of lipid-linked peptidoglycan precursors. When precursors are depleted, MreB filaments disassemble into the cytoplasm, and peptidoglycan synthesis becomes disorganized. In cells that lack wall teichoic acids but continue to make peptidoglycan, dynamic MreB filaments are observed, although their presence is not sufficient to establish a rod shape. We propose that the cell regulates MreB filament association with the membrane, allowing rapid and reversible inactivation of cell wall enzyme complexes in response to the inhibition of cell wall synthesis.
Theory of muscle contraction mechanism with cooperative interaction among crossbridges.
Mitsui, Toshio; Ohshima, Hiroyuki
2012-01-01
The power stroke model was criticized and a model was proposed for muscle contraction mechanism (Mitsui, 1999). The proposed model was further developed and calculations based on the model well reproduced major experimental data on the steady filament sliding (Mitsui and Ohshima, 2008) and on the transient phenomena (Mitsui, Takai and Ohshima, 2011). In this review more weight is put on explanation of the basic ideas of the model, especially logical necessity of the model, leaving mathematical details to the above-mentioned papers. A thermodynamic relationship that any models based upon the sliding filament theory should fulfill is derived. The model which fulfills the thermodynamic relationship is constructed on the assumption that a myosin head bound to an actin filament forms a complex with three actin molecules. In shortening muscles, the complex moves along the actin filament changing the partner actin molecules with steps of about 5.5 nm. This process is made possible through cooperative interaction among cross-bridges. The ATP hydrolysis energy is liberated by fraction at each step through chemical reactions between myosin and actin molecules. The cooperativity among crossbridges disappears in length-clamped muscles, in agreement with experimental observations that the cross-bridge produces force independently in the isometric tetanus state. The distance of the head movement per ATP hydrolysis cycle is expected to be about 5.5 nm or a few times of it under the condition of the in vitro single head experiments. Calculation results are surveyed illustrating that they are in good agreement with major experimental observations.
Transportation of drug-gold nanocomposites by actinomyosin motor system
NASA Astrophysics Data System (ADS)
Kaur, Harsimran; Chaudhary, Archana; Kaur, Inderpreet; Singh, Kashmir; Bharadwaj, Lalit M.
2011-06-01
Nanotechnology is playing an important role in drug delivery to overcome limitations of conventional drug delivery systems in terms of solubility, in vivo stability, pharmacokinetics, and bio-distribution. The controlled transportation of drug into the cell and within the cell is a major challenge to be addressed. Cellular molecular motors have been exploited for their cargo carrying capacity for various applications including engineering and health care. Combination of nanotechnology and biomolecular motors can address some of the challenges in drug delivery. In the present study, transportation of drug nanocomposites has been demonstrated. Nanocomposites of 6-mercaptopurine and levodopa drugs (cancer and Parkinson's disease, respectively) were prepared with gold nanoparticles (GNPs) by covalent attachment and these nanocomposites were attached to actin filaments. These nanocomposites were in-turn transported by actin filaments on myosin tracks. Characterization of drug nanocomposites formation was done by UV-Vis spectroscopy, field emission scanning electron microscopy, transmission electron microscopy, and confocal microscopy. GNP composites of 6-mercaptopurine and levodopa were formed by sulfide and amide bond formation, respectively. Average velocity of actin filament attached to nanocomposites was found to be 3.17 and 3.89 μm/s for levodopa and 6-mercaptopurine, respectively, as compared to actin filaments with velocity of 4.0-6.0 μm/s. Three concepts have been proposed for the study of drug transportation into the cell based on polycationic complex formation, interaction of actin with cellular myosin and Biomolecular Adaptor for Retrograde Transport (BART) technology. The aspects of this study heads toward the development of an approach to utilize molecular motors for nanoscale transportation endogenously.
Bittig, Arne T; Matschegewski, Claudia; Nebe, J Barbara; Stählke, Susanne; Uhrmacher, Adelinde M
2014-09-09
Intra-cellular processes of cells at the interface to an implant surface are influenced significantly by their extra-cellular surrounding. Specifically, when growing osteoblasts on titanium surfaces with regular micro-ranged geometry, filaments are shorter, less aligned and they concentrate at the top of the geometric structures. Changes to the cytoskeleton network, i. e., its localization, alignment, orientation, and lengths of the filaments, as well as the overall concentration and distribution of key-actors are induced. For example, integrin is distributed homogeneously, whereas integrin in activated state and vinculin, both components of focal adhesions, have been found clustered on the micro-ranged geometries. Also, the concentration of Rho, an intracellular signaling protein related to focal adhesion regulation, was significantly lower. To explore whether regulations associated with the focal adhesion complex can be responsible for the changed actin filament patterns, a spatial computational model has been developed using ML-Space, a rule-based model description language, and its associated Brownian-motion-based simulator. The focus has been on the deactivation of cofilin in the vicinity of the focal adhesion complex. The results underline the importance of sensing mechanisms to support a clustering of actin filament nucleations on the micro-ranged geometries, and of intracellular diffusion processes, which lead to spatially heterogeneous distributions of active (dephosphorylated) cofilin, which in turn influences the organization of the actin network. We find, for example, that the spatial heterogeneity of key molecular actors can explain the difference in filament lengths in cells on different micro-geometries partly, but to explain the full extent, further model assumptions need to be added and experimentally validated. In particular, our findings and hypothesis referring to the role, distribution, and amount of active cofilin have still to be verified in wet-lab experiments. Letting cells grow on surface structures is a possibility to shed new light on the intricate mechanisms that relate membrane and actin related dynamics in the cell. Our results demonstrate the need for declarative expressive spatial modeling approaches that allow probing different hypotheses, and the central role of the focal adhesion complex not only for nucleating actin filaments, but also for regulating possible severing agents locally.
2014-01-01
Background Intra-cellular processes of cells at the interface to an implant surface are influenced significantly by their extra-cellular surrounding. Specifically, when growing osteoblasts on titanium surfaces with regular micro-ranged geometry, filaments are shorter, less aligned and they concentrate at the top of the geometric structures. Changes to the cytoskeleton network, i. e., its localization, alignment, orientation, and lengths of the filaments, as well as the overall concentration and distribution of key-actors are induced. For example, integrin is distributed homogeneously, whereas integrin in activated state and vinculin, both components of focal adhesions, have been found clustered on the micro-ranged geometries. Also, the concentration of Rho, an intracellular signaling protein related to focal adhesion regulation, was significantly lower. Results To explore whether regulations associated with the focal adhesion complex can be responsible for the changed actin filament patterns, a spatial computational model has been developed using ML-Space, a rule-based model description language, and its associated Brownian-motion-based simulator. The focus has been on the deactivation of cofilin in the vicinity of the focal adhesion complex. The results underline the importance of sensing mechanisms to support a clustering of actin filament nucleations on the micro-ranged geometries, and of intracellular diffusion processes, which lead to spatially heterogeneous distributions of active (dephosphorylated) cofilin, which in turn influences the organization of the actin network. We find, for example, that the spatial heterogeneity of key molecular actors can explain the difference in filament lengths in cells on different micro-geometries partly, but to explain the full extent, further model assumptions need to be added and experimentally validated. In particular, our findings and hypothesis referring to the role, distribution, and amount of active cofilin have still to be verified in wet-lab experiments. Conclusion Letting cells grow on surface structures is a possibility to shed new light on the intricate mechanisms that relate membrane and actin related dynamics in the cell. Our results demonstrate the need for declarative expressive spatial modeling approaches that allow probing different hypotheses, and the central role of the focal adhesion complex not only for nucleating actin filaments, but also for regulating possible severing agents locally. PMID:25200251
Schürch, W.; Skalli, O.; Lagacé, R.; Seemayer, T. A.; Gabbiani, G.
1990-01-01
Intermediate filament proteins and actin isoforms of a series of 12 malignant hemangiopericytomas and five glomus tumors were examined by light microscopy, transmission electron microscopy, two-dimensional gel electrophoresis (2D-GE), and by immunohistochemistry, the latter using monoclonal or affinity-purified polyclonal antibodies to desmin, vimentin, cytokeratins, alpha-smooth muscle, and alpha-sarcomeric actins. By light microscopy, all hemangiopericytomas disclosed a predominant vascular pattern with scant storiform, myxoid and spindle cell areas, and with variable degrees of perivascular fibrosis. By ultrastructure, smooth muscle differentiation was observed in each hemangiopericytoma. Immunohistochemically, neoplastic cells of hemangiopericytomas expressed vimentin as the sole intermediate filament protein and lacked alpha-smooth muscle or alpha-sarcomeric actins. 2D-GE revealed only beta and gamma actins, in proportions typical for fibroblastic tissues. Glomus tumors revealed vimentin and alpha-smooth muscle actin within glomus cells by immunohistochemical techniques and disclosed ultrastructurally distinct smooth muscle differentiation. Therefore hemangiopericytomas represent a distinct soft-tissue neoplasm with uniform morphologic, immunohistochemical, and biochemical features most likely related to glomus tumors, the former representing an aggressive and potentially malignant neoplasm of vascular smooth muscle cells and the latter a well-differentiated neoplasm of vascular smooth muscle cells. Because malignant hemangiopericytomas disclose smooth muscle differentiation by ultrastructure, but do not express alpha-smooth muscle actin, as normal pericytes and glomus cells, it is suggested that these neoplasms represent highly vascularized smooth muscle neoplasms, ie, poorly differentiated leiomyosarcomas derived from vascular smooth muscle cells or their equivalent, the pericytes, which have lost alpha-smooth muscle actin as a differentiation marker that is similar to many conventional poorly differentiated leiomyosarcomas. Images Figure 6 Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:2158236
Direct interaction of CaVβ with actin up-regulates L-type calcium currents in HL-1 cardiomyocytes.
Stölting, Gabriel; de Oliveira, Regina Campos; Guzman, Raul E; Miranda-Laferte, Erick; Conrad, Rachel; Jordan, Nadine; Schmidt, Silke; Hendriks, Johnny; Gensch, Thomas; Hidalgo, Patricia
2015-02-20
Expression of the β-subunit (CaVβ) is required for normal function of cardiac L-type calcium channels, and its up-regulation is associated with heart failure. CaVβ binds to the α1 pore-forming subunit of L-type channels and augments calcium current density by facilitating channel opening and increasing the number of channels in the plasma membrane, by a poorly understood mechanism. Actin, a key component of the intracellular trafficking machinery, interacts with Src homology 3 domains in different proteins. Although CaVβ encompasses a highly conserved Src homology 3 domain, association with actin has not yet been explored. Here, using co-sedimentation assays and FRET experiments, we uncover a direct interaction between CaVβ and actin filaments. Consistently, single-molecule localization analysis reveals streaklike structures composed by CaVβ2 that distribute over several micrometers along actin filaments in HL-1 cardiomyocytes. Overexpression of CaVβ2-N3 in HL-1 cells induces an increase in L-type current without altering voltage-dependent activation, thus reflecting an increased number of channels in the plasma membrane. CaVβ mediated L-type up-regulation, and CaVβ-actin association is prevented by disruption of the actin cytoskeleton with cytochalasin D. Our study reveals for the first time an interacting partner of CaVβ that is directly involved in vesicular trafficking. We propose a model in which CaVβ promotes anterograde trafficking of the L-type channels by anchoring them to actin filaments in their itinerary to the plasma membrane. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Rapid formin-mediated actin-filament elongation is essential for polarized plant cell growth.
Vidali, Luis; van Gisbergen, Peter A C; Guérin, Christophe; Franco, Paula; Li, Ming; Burkart, Graham M; Augustine, Robert C; Blanchoin, Laurent; Bezanilla, Magdalena
2009-08-11
Formins are present in all eukaryotes and are essential for the creation of actin-based structures responsible for diverse cellular processes. Because multicellular organisms contain large formin gene families, establishing the physiological functions of formin isoforms has been difficult. Using RNAi, we analyzed the function of all 9 formin genes within the moss Physcomitrella patens. We show that plants lacking class II formins (For2) are severely stunted and composed of spherical cells with disrupted actin organization. In contrast, silencing of all other formins results in normal elongated cell morphology and actin organization. Consistent with a role in polarized growth, For2 are apically localized in growing cells. We show that an N-terminal phosphatase tensin (PTEN)-like domain mediates apical localization. The PTEN-like domain is followed by a conserved formin homology (FH)1-FH2 domain, known to promote actin polymerization. To determine whether apical localization of any FH1-FH2 domain mediates polarized growth, we performed domain swapping. We found that only the class II FH1-FH2, in combination with the PTEN-like domain, rescues polarized growth, because it cannot be replaced with a similar domain from a For1. We used in vitro polymerization assays to dissect the functional differences between these FH1-FH2 domains. We found that both the FH1 and the FH2 domains from For2 are required to mediate exceptionally rapid rates of actin filament elongation, much faster than any other known formin. Thus, our data demonstrate that rapid rates of actin elongation are critical for driving the formation of apical filamentous actin necessary for polarized growth.
Mesoscopic model of actin-based propulsion.
Zhu, Jie; Mogilner, Alex
2012-01-01
Two theoretical models dominate current understanding of actin-based propulsion: microscopic polymerization ratchet model predicts that growing and writhing actin filaments generate forces and movements, while macroscopic elastic propulsion model suggests that deformation and stress of growing actin gel are responsible for the propulsion. We examine both experimentally and computationally the 2D movement of ellipsoidal beads propelled by actin tails and show that neither of the two models can explain the observed bistability of the orientation of the beads. To explain the data, we develop a 2D hybrid mesoscopic model by reconciling these two models such that individual actin filaments undergoing nucleation, elongation, attachment, detachment and capping are embedded into the boundary of a node-spring viscoelastic network representing the macroscopic actin gel. Stochastic simulations of this 'in silico' actin network show that the combined effects of the macroscopic elastic deformation and microscopic ratchets can explain the observed bistable orientation of the actin-propelled ellipsoidal beads. To test the theory further, we analyze observed distribution of the curvatures of the trajectories and show that the hybrid model's predictions fit the data. Finally, we demonstrate that the model can explain both concave-up and concave-down force-velocity relations for growing actin networks depending on the characteristic time scale and network recoil. To summarize, we propose that both microscopic polymerization ratchets and macroscopic stresses of the deformable actin network are responsible for the force and movement generation.
van Dijk, Sabine J; Kooiker, Kristina B; Napierski, Nathaniel C; Touma, Katia D; Mazzalupo, Stacy; Harris, Samantha P
2018-06-01
Cardiac myosin binding protein-C (cMyBP-C) is an essential regulatory protein required for proper systolic contraction and diastolic relaxation. We previously showed that N'-terminal domains of cMyBP-C stimulate contraction by binding to actin and activating the thin filament in vitro. In principle, thin filament activating effects of cMyBP-C could influence contraction and relaxation rates, or augment force amplitude in vivo. cMyBP-C binding to actin could also contribute to an internal load that slows muscle shortening velocity as previously hypothesized. However, the functional significance of cMyBP-C binding to actin has not yet been established in vivo. We previously identified an actin binding site in the regulatory M-domain of cMyBP-C and described two missense mutations that either increased (L348P) or decreased (E330K) binding affinity of recombinant cMyBP-C N'-terminal domains for actin in vitro. Here we created transgenic mice with either the L348P or E330K mutations to determine the functional significance of cMyBP-C binding to actin in vivo. Results showed that enhanced binding of cMyBP-C to actin in L348P-Tg mice prolonged the time to end-systole and slowed relaxation rates. Reduced interactions between cMyBP-C and actin in E330K-Tg mice had the opposite effect and significantly shortened the duration of ejection. Neither mouse model displayed overt systolic dysfunction, but L348P-Tg mice showed diastolic dysfunction presumably resulting from delayed relaxation. We conclude that cMyBP-C binding to actin contributes to sustained thin filament activation at the end of systole and during isovolumetric relaxation. These results provide the first functional evidence that cMyBP-C interactions with actin influence cardiac function in vivo. Copyright © 2018 Elsevier Ltd. All rights reserved.
Vázquez-Victorio, Genaro; Caligaris, Cassandre; Del Valle-Espinosa, Eugenio; Sosa-Garrocho, Marcela; González-Arenas, Nelly R.; Reyes-Cruz, Guadalupe; Briones-Orta, Marco A.; Macías-Silva, Marina
2015-01-01
TGF-β-induced antimitotic signals are highly regulated during cell proliferation under normal and pathological conditions, such as liver regeneration and cancer. Up-regulation of the transcriptional cofactors Ski and SnoN during liver regeneration may favor hepatocyte proliferation by inhibiting TGF-β signals. In this study, we found a novel mechanism that regulates Ski protein stability through TGF-β and G protein-coupled receptor (GPCR) signaling. Ski protein is distributed between the nucleus and cytoplasm of normal hepatocytes, and the molecular mechanisms controlling Ski protein stability involve the participation of actin cytoskeleton dynamics. Cytoplasmic Ski is partially associated with actin and localized in cholesterol-rich vesicles. Ski protein stability is decreased by TGF-β/Smads, GPCR/Rho signals, and actin polymerization, whereas GPCR/cAMP signals and actin depolymerization promote Ski protein stability. In conclusion, TGF-β and GPCR signals differentially regulate Ski protein stability and sorting in hepatocytes, and this cross-talk may occur during liver regeneration. PMID:25561741
Soufo, Hervé Joël Defeu; Graumann, Peter L
2010-12-01
Like many bacteria, Bacillus subtilis cells contain three actin-like MreB proteins. We show that the three paralogues, MreB, Mbl and MreBH, have different filament architectures in a heterologous cell system, and form straight filaments, helices or ring structures, different from the regular helical arrangement in B. subtilis cells. However, when coexpressed, they colocalize into a single filamentous helical structure, showing that the paralogues influence each other's filament architecture. Ring-like MreBH structures can be converted into MreB-like helical filaments by a single point mutation affecting subunit contacts, showing that MreB paralogues feature flexible filament arrangements. Time-lapse and FRAP experiments show that filaments can extend as well as shrink at both ends, and also show internal rearrangement, suggesting that filaments consist of overlapping bundles of shorter filaments that continuously turn over. Upon induction in Escherichia coli cells, B. subtilis MreB (BsMreB) filaments push the cells into strikingly altered cell morphology, showing that MreB filaments can change cell shape. E. coli cells with a weakened cell wall were ruptured upon induction of BsMreB filaments, suggesting that the bacterial actin orthologue may exert force against the cell membrane and envelope, and thus possibly plays an additional mechanical role in bacteria. © 2010 Blackwell Publishing Ltd.
NASA Astrophysics Data System (ADS)
McCall, Patrick; Stam, Samantha; Kovar, David; Gardel, Margaret
The shape and mechanics of animal cells are controlled by a dynamic, thin network of semiflexible actin filaments and myosin-II motor proteins called the actomyosin cortex. Motor-generated stresses in the cortex drive changes in cell shape during cell division and morphogenesis, while dynamic turnover of actin filaments dissipates stress. The relative effects that force generation, force dissipation, and disassembly and reassembly of material have on motion in these networks are unknown. We find that cross-linked actin networks in vitro contract under myosin-generated stresses, resulting in partial filament disassembly, the formation of asters, and clustering of myosin motors. We observe a rapid restoration of uniform polymer density in the presence of the assembly factors which catalyze network turnover through elongation of severed actin filaments. When severing is accelerated further by the addition of a severing protein, network contraction and motor clustering are dramatically suppressed. We test the relative effects of material regeneration and force transmission using image analysis, and conclude that the dominant mechanism for this effect is relatively short-lived stresses that do not propagate over considerable distance or push network deformation into the nonlinear contractile regime we have previously characterized. Our results present a framework to understand cytoskeletal active matter that are influenced by a complex interplay between stress generation, network reorganization, and polymer turnover.
Fusi, Luca; Percario, Valentina; Brunello, Elisabetta; Caremani, Marco; Bianco, Pasquale; Powers, Joseph D; Reconditi, Massimo; Lombardi, Vincenzo; Piazzesi, Gabriella
2017-02-15
Myosin filament mechanosensing determines the efficiency of the contraction by adapting the number of switched ON motors to the load. Accordingly, the unloaded shortening velocity (V 0 ) is already set at the end of latency relaxation (LR), ∼10 ms after the start of stimulation, when the myosin filament is still in the OFF state. Here the number of actin-attached motors per half-myosin filament (n) during V 0 shortening imposed either at the end of LR or at the plateau of the isometric contraction is estimated from the relation between half-sarcomere compliance and force during the force redevelopment after shortening. The value of n decreases progressively with shortening and, during V 0 shortening starting at the end of LR, is 1-4. Reduction of n is accounted for by a constant duty ratio of 0.05 and a parallel switching OFF of motors, explaining the very low rate of ATP utilization found during unloaded shortening. The maximum velocity at which a skeletal muscle can shorten (i.e. the velocity of sliding between the myosin filament and the actin filament under zero load, V 0 ) is already set at the end of the latency relaxation (LR) preceding isometric force generation, ∼10 ms after the start of electrical stimulation in frog muscle fibres at 4°C. At this time, Ca 2+ -induced activation of the actin filament is maximal, while the myosin filament is in the OFF state characterized by most of the myosin motors lying on helical tracks on the filament surface, making them unavailable for actin binding and ATP hydrolysis. Here, the number of actin-attached motors per half-thick filament during V 0 shortening (n) is estimated by imposing, on tetanized single fibres from Rana esculenta (at 4°C and sarcomere length 2.15 μm), small 4 kHz oscillations and determining the relation between half-sarcomere (hs) compliance and force during the force development following V 0 shortening. When V 0 shortening is superimposed on the maximum isometric force T 0 , n decreases progressively with the increase of shortening (range 30-80 nm per hs) and, when V 0 shortening is imposed at the end of LR, n can be as low as 1-4. Reduction of n is accounted for by a constant duty ratio of the myosin motor of ∼0.05 and a parallel switching OFF of the thick filament, providing an explanation for the very low rate of ATP utilization during extended V 0 shortening. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.
Henson, John H.; Yeterian, Mesrob; Weeks, Richard M.; Medrano, Angela E.; Brown, Briana L.; Geist, Heather L.; Pais, Mollyann D.; Oldenbourg, Rudolf; Shuster, Charles B.
2015-01-01
Recent studies have investigated the dendritic actin cytoskeleton of the cell edge's lamellipodial (LP) region by experimentally decreasing the activity of the actin filament nucleator and branch former, the Arp2/3 complex. Here we extend these studies via pharmacological inhibition of the Arp2/3 complex in sea urchin coelomocytes, cells that possess an unusually broad LP region and display correspondingly exaggerated centripetal flow. Using light and electron microscopy, we demonstrate that Arp2/3 complex inhibition via the drug CK666 dramatically altered LP actin architecture, slowed centripetal flow, drove a lamellipodial-to-filopodial shape change in suspended cells, and induced a novel actin structural organization during cell spreading. A general feature of the CK666 phenotype in coelomocytes was transverse actin arcs, and arc generation was arrested by a formin inhibitor. We also demonstrate that CK666 treatment produces actin arcs in other cells with broad LP regions, namely fish keratocytes and Drosophila S2 cells. We hypothesize that the actin arcs made visible by Arp2/3 complex inhibition in coelomocytes may represent an exaggerated manifestation of the elongate mother filaments that could possibly serve as the scaffold for the production of the dendritic actin network. PMID:25568343
WDR1 Presence in the Songbird Basilar Papilla
Adler, Henry J.; Sanovich, Elena; Brittan-Powell, Elizabeth F.; Yan, Kai; Dooling, Robert J.
2009-01-01
WD40 repeat 1 protein (WDR1) was first reported in the acoustically injured chicken inner ear, and bioinformatics revealed that WDR1 has numerous WD40 repeats, important for protein-protein interactions. It has significant homology to actin interacting protein 1 (Aip1) in several lower species such as yeast, roundworm, fruitfly and frog. Several studies have shown that Aip1 binds cofilin/actin depolymerizing factor, and that these interactions are pivotal for actin disassembly via actin filament severing and actin monomer capping. However, the role of WDR1 in auditory function has yet to be determined. WDR1 is typically restricted to hair cells of the normal avian basilar papilla, but is redistributed towards supporting cells after acoustic overstimulation, suggesting that WDR1 may be involved in inner ear response to noise stress. One aim of the present study was to resolve the question as to whether stress factors, other than intense sound, could induce changes in WDR1 presence in the affected avian inner ear. Several techniques were used to assess WDR1 presence in the inner ears of songbird strains, including Belgian Waterslager (BW) canary, an avian strain with degenerative hearing loss thought to have a genetic basis. Reverse transcription, followed by polymerase chain reactions with WDR1-specific primers, confirmed WDR1 presence in the basilar papillae of adult BW, non-BW canaries, and zebra finches. Confocal microscopy examinations, following immunocytochemistry with anti-WDR1 antibody, localized WDR1 to the hair cell cytoplasm along the avian sensory epithelium. In addition, little, if any, staining by anti-WDR1 antibody was observed among supporting cells in the chicken or songbird ear. The present observations confirm and extend the early findings of WDR1 localization in hair cells, but not in supporting cells, in the normal avian basilar papilla. However, unlike supporting cells in the acoustically damaged chicken basilar papilla, the inner ear of the BW canary showed little, if any, WDR1 up-regulation in supporting cells. This may be due to the fact that the BW canary already has established hearing loss and/or to the possibility that the mechanism(s) involved in BW hearing loss may not be related to WDR1. PMID:18514449
Structure and Dynamics of an Arp2/3 Complex-independent Component of the Lamellipodial Actin Network
Henson, John H.; Cheung, David; Fried, Christopher A.; Shuster, Charles B.; McClellan, Mary K.; Voss, Meagen K.; Sheridan, John T.; Oldenbourg, Rudolf
2010-01-01
Sea urchin coelomocytes contain an unusually broad lamellipodial region and have served as a useful model experimental system for studying the process of actin-based retrograde/centripetal flow. In the current study the small molecule drug 2,3-butanedione monoxime (BDM) was employed as a means of delocalizing the Arp2/3 complex from the cell edge in an effort to investigate the Arp2/3 complex-independent aspects of retrograde flow. Digitally-enhanced phase contrast, fluorescence and polarization light microscopy, along with rotary shadow TEM methods demonstrated that BDM treatment resulted in the centripetal displacement of the Arp2/3 complex and the associated dendritic lamellipodial (LP) actin network from the cell edge. In its wake there remained an array of elongate actin filaments organized into concave arcs that displayed retrograde flow at approximately one quarter the normal rate. Actin polymerization inhibitor experiments indicated that these arcs were generated by polymerization at the cell edge, while active myosin-based contraction in BDM treated cells was demonstrated by localization with anti-phospho-MRLC antibody, the retraction of the cytoskeleton in the presence of BDM, and the response of the BDM arcs to laser-based severing. The results suggest that BDM treatment reveals an Arp2/3 complex-independent actin structure in coelomocytes consisting of elongate filaments integrated into the LP network and that these filaments represent a potential connection between the LP network and the central cytoskeleton. PMID:19530177
ERIC Educational Resources Information Center
Briggs, Sherri B.; Blouin, Ashley M.; Young, Erica J.; Rumbaugh, Gavin; Miller, Courtney A.
2017-01-01
Depolymerizing actin in the amygdala through nonmuscle myosin II inhibition (NMIIi) produces a selective, lasting, and retrieval-independent disruption of the storage of methamphetamine-associated memories. Here we report a similar disruption of memories associated with amphetamine, but not cocaine or morphine, by NMIIi. Reconsolidation appeared…