Science.gov

Sample records for actin filaments f-actin

  1. Supercoiling of f-actin filaments.

    PubMed

    Lednev, V V; Popp, D

    1990-05-01

    In the X-ray diffraction pattern from oriented gels of actin-containing filaments sampling of layer lines indicating the development of a well-ordered pseudo-hexagonal lattice within the gels at interfilament spacings as large as 13 nm is observed. This value exceeds by 3 nm the largest estimate of an external diameter of pure f-actin. The development of layer line sampling is always accompanied by: (i) the appearance of strong forbidden meridional reflections on the 5.9- and 5.1-nm layer lines; (ii) a drastic intensification of the first (expected) 2.75-nm meridional reflection by a factor of about 4; (iii) the appearance of streaks, connecting near-meridional reflections on the 5.9-, 5.1-, and 37-nm layer lines; and (iv) a slight decrease in the number of subunits per turn of the basic f-actin helix. All these features strongly indicate that f-actin filaments are supercoiled and make regular local contacts between themselves, which may lead to periodic distortions of the mobile external domain in the actin subunits. PMID:2261308

  2. Structural Transitions of F-Actin:Espin Bundles

    NASA Astrophysics Data System (ADS)

    Purdy, Kirstin; Bartles, James; Wong, Gerard

    2006-03-01

    Espin is an actin bundling protein involved in the formation of the parallel bundles of filamentous actin in hair cell stereocilia. Mutations in espin are implicated in deafness phenotypes in mice and humans. We present measurements of the F-actin structures induced by wild type and by mutated espin obtained via small angle x-ray scattering and fluorescence microscopy. We found that wild type espin induced a paracrystalline hexagonal array of twisted F-actin, whereas the mutated espin only condensed the F-actin into a nematic-like phase. The possibility of coexisting nematic and bundled actin in mixtures containing both mutant and wild type espins was also investigated.

  3. Structure of the F-actin-tropomyosin complex.

    PubMed

    von der Ecken, Julian; Müller, Mirco; Lehman, William; Manstein, Dietmar J; Penczek, Pawel A; Raunser, Stefan

    2015-03-01

    Filamentous actin (F-actin) is the major protein of muscle thin filaments, and actin microfilaments are the main component of the eukaryotic cytoskeleton. Mutations in different actin isoforms lead to early-onset autosomal dominant non-syndromic hearing loss, familial thoracic aortic aneurysms and dissections, and multiple variations of myopathies. In striated muscle fibres, the binding of myosin motors to actin filaments is mainly regulated by tropomyosin and troponin. Tropomyosin also binds to F-actin in smooth muscle and in non-muscle cells and stabilizes and regulates the filaments there in the absence of troponin. Although crystal structures for monomeric actin (G-actin) are available, a high-resolution structure of F-actin is still missing, hampering our understanding of how disease-causing mutations affect the function of thin muscle filaments and microfilaments. Here we report the three-dimensional structure of F-actin at a resolution of 3.7 Å in complex with tropomyosin at a resolution of 6.5 Å, determined by electron cryomicroscopy. The structure reveals that the D-loop is ordered and acts as a central region for hydrophobic and electrostatic interactions that stabilize the F-actin filament. We clearly identify map density corresponding to ADP and Mg(2+) and explain the possible effect of prominent disease-causing mutants. A comparison of F-actin with G-actin reveals the conformational changes during filament formation and identifies the D-loop as their key mediator. We also confirm that negatively charged tropomyosin interacts with a positively charged groove on F-actin. Comparison of the position of tropomyosin in F-actin-tropomyosin with its position in our previously determined F-actin-tropomyosin-myosin structure reveals a myosin-induced transition of tropomyosin. Our results allow us to understand the role of individual mutations in the genesis of actin- and tropomyosin-related diseases and will serve as a strong foundation for the targeted

  4. Dissociation of F-actin induced by hydrostatic pressure.

    PubMed

    Garcia, C R; Amaral Júnior, J A; Abrahamsohn, P; Verjovski-Almeida, S

    1992-11-01

    F-actin purified from rabbit skeletal muscle undergoes reversible dissociation when subjected to hydrostatic pressures up to 240 MPa. Dissociation and reversibility were detected by the following procedures: fluorescence spectral changes observed under pressure, when either intrinsic tryptophan or pyrenyl emission of N-(1-pyrenyl)iodoacetamide-labeled actin were monitored; electron microscopy of samples fixed under pressure; size-exclusion HPLC of pressurized actin. The effect of pressure upon F-actin that had been polymerized in the presence of either Mg2+, Ca2+ or K+ was studied. The standard volume changes for the association of actin subunits, calculated from pressure/dissociation curves were 74 +/- 14 ml/mol for Mg-F-actin, 79 +/- 12 ml/mol for Ca-F-actin and 328 +/- 63 ml/mol for K-F-actin, indicating that actin subunits are packed differently in the polymer depending on which cation is present. All pressure/dissociation data could be fitted by a model for dissociation of a dimer, which suggests that in the F-actin filament there is a predominant intersubunit interaction interface, most likely the head-to-tail intrastrand interaction between two subunits which repeats itself along the polymer. A tenfold change in total protein concentration from 20 micrograms to 200 micrograms/ml Mg-F-actin did not cause a change in the pressure required for half-maximal dissociation. This indicates a heterogeneity of free energy of association among actin monomers in the Mg-F-actin polymer, suggesting that, in addition to the predominant intersubunit interaction, the disordered interactions in the filament significantly contribute to the heterogeneity of microenvironments in the interface between the subunits. PMID:1425683

  5. Technical advance: identification of plant actin-binding proteins by F-actin affinity chromatography

    NASA Technical Reports Server (NTRS)

    Hu, S.; Brady, S. R.; Kovar, D. R.; Staiger, C. J.; Clark, G. B.; Roux, S. J.; Muday, G. K.

    2000-01-01

    Proteins that interact with the actin cytoskeleton often modulate the dynamics or organization of the cytoskeleton or use the cytoskeleton to control their localization. In plants, very few actin-binding proteins have been identified and most are thought to modulate cytoskeleton function. To identify actin-binding proteins that are unique to plants, the development of new biochemical procedures will be critical. Affinity columns using actin monomers (globular actin, G-actin) or actin filaments (filamentous actin, F-actin) have been used to identify actin-binding proteins from a wide variety of organisms. Monomeric actin from zucchini (Cucurbita pepo L.) hypocotyl tissue was purified to electrophoretic homogeneity and shown to be native and competent for polymerization to actin filaments. G-actin, F-actin and bovine serum albumin affinity columns were prepared and used to separate samples enriched in either soluble or membrane-associated actin-binding proteins. Extracts of soluble actin-binding proteins yield distinct patterns when eluted from the G-actin and F-actin columns, respectively, leading to the identification of a putative F-actin-binding protein of approximately 40 kDa. When plasma membrane-associated proteins were applied to these columns, two abundant polypeptides eluted selectively from the F-actin column and cross-reacted with antiserum against pea annexins. Additionally, a protein that binds auxin transport inhibitors, the naphthylphthalamic acid binding protein, which has been previously suggested to associate with the actin cytoskeleton, was eluted in a single peak from the F-actin column. These experiments provide a new approach that may help to identify novel actin-binding proteins from plants.

  6. F-actin dismantling through a redox-driven synergy between Mical and cofilin.

    PubMed

    Grintsevich, Elena E; Yesilyurt, Hunkar Gizem; Rich, Shannon K; Hung, Ruei-Jiun; Terman, Jonathan R; Reisler, Emil

    2016-08-01

    Numerous cellular functions depend on actin filament (F-actin) disassembly. The best-characterized disassembly proteins, the ADF (actin-depolymerizing factor)/cofilins (encoded by the twinstar gene in Drosophila), sever filaments and recycle monomers to promote actin assembly. Cofilin is also a relatively weak actin disassembler, posing questions about mechanisms of cellular F-actin destabilization. Here we uncover a key link to targeted F-actin disassembly by finding that F-actin is efficiently dismantled through a post-translational-mediated synergism between cofilin and the actin-oxidizing enzyme Mical. We find that Mical-mediated oxidation of actin improves cofilin binding to filaments, where their combined effect dramatically accelerates F-actin disassembly compared with either effector alone. This synergism is also necessary and sufficient for F-actin disassembly in vivo, magnifying the effects of both Mical and cofilin on cellular remodelling, axon guidance and Semaphorin-Plexin repulsion. Mical and cofilin, therefore, form a redox-dependent synergistic pair that promotes F-actin instability by rapidly dismantling F-actin and generating post-translationally modified actin that has altered assembly properties. PMID:27454820

  7. Drebrin inhibits cofilin-induced severing of F-actin.

    PubMed

    Grintsevich, Elena E; Reisler, Emil

    2014-08-01

    Molecular cross-talk between neuronal drebrin A and cofilin is believed to be a part of the activity-dependent cytoskeleton-modulating pathway in dendritic spines. Impairments in this pathway are implicated also in synaptic dysfunction in Alzheimer's disease, Down syndrome, epilepsy, and normal aging. However, up to now the molecular interplay between cofilin and drebrin has not been elucidated. TIRF microscopy and solution experiments revealed that full length drebrin A or its actin binding core (Drb1-300) inhibits, but do not abolish cofilin-induced severing of actin filaments. Cosedimentation experiments showed that F-actin can be fully occupied with combination of these two proteins. The dependence of cofilin binding on fractional saturation of actin filaments with drebrin suggests direct competition between these two proteins for F-actin binding. This implies that cofilin and drebrin can either overcome or reverse the allosteric changes in F-actin induced by the competitor's binding. The ability of cofilin to displace drebrin from actin filaments is pH dependent and is facilitated at acidic pH (6.8). Pre-steady state kinetic experiments reveal that both binding and dissociation of drebrin to/from actin filaments is faster than that reported for cooperative binding of cofilin. We found, that drebrin displacement by cofilin is greatly inhibited when actin severing is abolished, which might be linked to the cooperativity of drebrin binding to actin filaments. Our results contribute to molecular understanding of the competitive interactions of drebrin and cofilin with actin filaments. PMID:25047716

  8. In vitro modulation of filament bundling in F-actin and keratins by annexin II and calcium.

    PubMed

    Ma, A S; Bystol, M E; Tranvan, A

    1994-05-01

    In our preliminary subcellular localization experiment we demonstrated that annexin II co-localized with submembranous actin in subpopulations of both cultured fibroblasts and keratinocytes. To investigate the physical interaction between annexin II and actin at the cell periphery, in vitro reconstitution experiments were carried out with keratins used as a control. Annexin II, isolated by immunoaffinity column chromatography, was found to exist as globular structures measuring 10 to 25 nm in diameter by rotary shadowing, similar to a previous report. We believe that these structures represent its polymeric forms. By negative staining, monomeric annexin II was detectable as tapered rods, measuring 6 nm in length and 1 to 2 nm in diameter. When annexin II was mixed with actin in 3 mM piperazine-N, N-bis-2-ethanesulfonic acid (PIPES) buffer with 10 mM NaCl2, 2 mM MgCl2 and 0.1 mM CaCl2, thick twisting actin bundles formed, confirming previous reports. This bundling was much reduced when calcium was removed. In the presence of 5 mM ethylenediamine tetra-acetic acid (EDTA) in 5 mM tris, pH 7.2, keratins were found to form a network of filaments, which began to disassemble when the chelator was removed and became fragmented when 0.1 mM CaCl2 was added. Keratins under the same conditions did not fragment when annexin II was present. These results suggest that annexin II, in conjunction with Ca2+, may be involved in a flexible system accommodating changes in the membrane cytoskeletal framework at the cell periphery in keratinocytes. PMID:7520812

  9. F-actin buckling coordinates contractility and severing in a biomimetic actomyosin cortex

    PubMed Central

    Murrell, Michael P.; Gardel, Margaret L.

    2012-01-01

    Here we develop a minimal model of the cell actomyosin cortex by forming a quasi-2D cross-linked filamentous actin (F-actin) network adhered to a model cell membrane and contracted by myosin thick filaments. Myosin motors generate both compressive and tensile stresses on F-actin and consequently induce large bending fluctuations, which reduces their effective persistence length to <1 μm. Over a large range of conditions, we show the extent of network contraction corresponds exactly to the extent of individual F-actin shortening via buckling. This demonstrates an essential role of buckling in breaking the symmetry between tensile and compressive stresses to facilitate mesoscale network contraction of up to 80% strain. Portions of buckled F-actin with a radius of curvature ∼300 nm are prone to severing and thus compressive stresses mechanically coordinate contractility with F-actin severing, the initial step of F-actin turnover. Finally, the F-actin curvature acquired by myosin-induced stresses can be further constrained by adhesion of the network to a membrane, accelerating filament severing but inhibiting the long-range transmission of the stresses necessary for network contractility. Thus, the extent of membrane adhesion can regulate the coupling between network contraction and F-actin severing. These data demonstrate the essential role of the nonlinear response of F-actin to compressive stresses in potentiating both myosin-mediated contractility and filament severing. This may serve as a general mechanism to mechanically coordinate contractility and cortical dynamics across diverse actomyosin assemblies in smooth muscle and nonmuscle cells. PMID:23213249

  10. Dolastatin 11 connects two long-pitch strands in F-actin to stabilize microfilaments.

    PubMed

    Oda, Toshiro; Crane, Zackary D; Dicus, Christopher W; Sufi, Bilal A; Bates, Robert B

    2003-04-25

    Dolastatin 11, a drug isolated from the Indian Ocean sea hare Dolabella auricularia, arrests cytokinesis in vivo and increases the amount of F-actin to stabilize F-actin in vitro, like phalloidin and jasplakinolide. However, according to the previous biochemical study, the binding of dolastatin 11 to F-actin does not compete with that of phalloidin, suggesting that the binding sites are different. To understand the mechanism of F-actin stabilization by dolastatin 11, we determined the position of bound dolastatin 11 in F-actin using the X-ray fiber diffraction from oriented filament sols. Our analysis shows that the position of dolastatin 11 is clearly different from that of phalloidin. However, these bound drugs are present in the gap between the two long-pitch F-actin strands in a similar way. The result suggests that the connection between the two long-pitch F-actin strands might be a key for the control of F-actin stabilization. PMID:12691743

  11. Piccolo Directs Activity Dependent F-Actin Assembly from Presynaptic Active Zones via Daam1

    PubMed Central

    Wagh, Dhananjay; Terry-Lorenzo, Ryan; Waites, Clarissa L.; Leal-Ortiz, Sergio A.; Maas, Christoph; Reimer, Richard J.; Garner, Craig C.

    2015-01-01

    The dynamic assembly of filamentous (F) actin plays essential roles in the assembly of presynaptic boutons, the fusion, mobilization and recycling of synaptic vesicles (SVs), and presynaptic forms of plasticity. However, the molecular mechanisms that regulate the temporal and spatial assembly of presynaptic F-actin remain largely unknown. Similar to other F-actin rich membrane specializations, presynaptic boutons contain a set of molecules that respond to cellular cues and trans-synaptic signals to facilitate activity-dependent assembly of F-actin. The presynaptic active zone (AZ) protein Piccolo has recently been identified as a key regulator of neurotransmitter release during SV cycling. It does so by coordinating the activity-dependent assembly of F-Actin and the dynamics of key plasticity molecules including Synapsin1, Profilin and CaMKII. The multidomain structure of Piccolo, its exquisite association with the AZ, and its ability to interact with a number of actin-associated proteins suggest that Piccolo may function as a platform to coordinate the spatial assembly of F-actin. Here we have identified Daam1, a Formin that functions with Profilin to drive F-actin assembly, as a novel Piccolo binding partner. We also found that within cells Daam1 activation promotes Piccolo binding, an interaction that can spatially direct the polymerization of F-Actin. Moreover, similar to Piccolo and Profilin, Daam1 loss of function impairs presynaptic-F-actin assembly in neurons. These data suggest a model in which Piccolo directs the assembly of presynaptic F-Actin from the AZ by scaffolding key actin regulatory proteins including Daam1. PMID:25897839

  12. A dynamic formin-dependent deep F-actin network in axons

    PubMed Central

    Ganguly, Archan; Tang, Yong; Wang, Lina; Ladt, Kelsey; Loi, Jonathan; Dargent, Bénédicte; Leterrier, Christophe

    2015-01-01

    Although actin at neuronal growth cones is well-studied, much less is known about actin organization and dynamics along axon shafts and presynaptic boutons. Using probes that selectively label filamentous-actin (F-actin), we found focal “actin hotspots” along axons—spaced ∼3–4 µm apart—where actin undergoes continuous assembly/disassembly. These foci are a nidus for vigorous actin polymerization, generating long filaments spurting bidirectionally along axons—a phenomenon we call “actin trails.” Super-resolution microscopy reveals intra-axonal deep actin filaments in addition to the subplasmalemmal “actin rings” described recently. F-actin hotspots colocalize with stationary axonal endosomes, and blocking vesicle transport diminishes the actin trails, suggesting mechanistic links between vesicles and F-actin kinetics. Actin trails are formin—but not Arp2/3—dependent and help enrich actin at presynaptic boutons. Finally, formin inhibition dramatically disrupts synaptic recycling. Collectively, available data suggest a two-tier F-actin organization in axons, with stable “actin rings” providing mechanical support to the plasma membrane and dynamic "actin trails" generating a flexible cytoskeletal network with putative physiological roles. PMID:26216902

  13. Direct interaction of beta-dystroglycan with F-actin.

    PubMed Central

    Chen, Yun-Ju; Spence, Heather J; Cameron, Jacqueline M; Jess, Thomas; Ilsley, Jane L; Winder, Steven J

    2003-01-01

    Dystroglycans are essential transmembrane adhesion receptors for laminin. Alpha-dystroglycan is a highly glycosylated extracellular protein that interacts with laminin in the extracellular matrix and the transmembrane region of beta-dystroglycan. Beta-dystroglycan, via its cytoplasmic tail, interacts with dystrophin and utrophin and also with the actin cytoskeleton. As a part of the dystrophin-glycoprotein complex of muscles, dystroglycan is also important in maintaining sarcolemmal integrity. Mutations in dystrophin that lead to Duchenne muscular dystrophy also lead to a loss of dystroglycan from the sarcolemma, and chimaeric mice lacking muscle dystroglycan exhibit a severe muscular dystrophy phenotype. Using yeast two-hybrid analysis and biochemical and cell biological studies, we show, in the present study, that the cytoplasmic tail of beta-dystroglycan interacts directly with F-actin and, furthermore, that it bundles actin filaments and induces an aberrant actin phenotype when overexpressed in cells. PMID:12892561

  14. Double localization of F-actin in chemoattractant-stimulated polymorphonuclear leucocytes.

    PubMed

    Lepidi, H; Benoliel, A M; Mege, J L; Bongrand, P; Capo, C

    1992-09-01

    Uniform concentrations of chemoattractants such as formylpeptides induced a morphological polarization of human polymorphonuclear leucocytes (PMNs) and a concentration of F-actin at the cell front. They also induced a transient increase in filamentous actin (F-actin) which preceded the cell shape change. We combined fluorescence microscopy and image analysis to study the localization of F-actin, as revealed by a specific probe (bodipyTM phallacidin) in suspended PMNs stimulated by chemoattractants. F-actin exhibited remarkable concentration in focal points after a 30 s exposure to 10(-8) M formylmethionyl-leucyl-phenylalanine (fMet-Leu-Phe), although no shape change of PMNs was detectable. A 10-min incubation with formylpeptide (10(-6) to 10(-9) M) induced the morphological polarization of PMNs and the appearance of a principal focus of F-actin in the cell head region and a secondary focus in the cell posterior end. The distribution of F-actin-associated fluorescence in 2D images of polarized PMNs might be due to an actual concentration of F-actin in privileged areas, to a local concentration of plasma membrane drawing filamentous actin or to variations in the cell volume. Then, we studied the distribution of a cytoplasmic marker, fluorescein diacetate and a membrane probe, TMA-DPH, in unstimulated rounded PMNs and in spherical and morphologically polarized PMNs stimulated by formylpeptide. The distribution of neither of these probes was correlated with F-actin distribution, especially in rounded PMNs stimulated 30 s with 10(-8) M fMet-Leu-Phe, suggesting that F-actin was concentrated in two foci located in the cell head region and in the cell posterior end. In addition, zymosan-activated serum induced the morphological polarization of PMNs and the appearance of two foci of filamentous actin, demonstrating that binding of formylpeptide to its specific receptor was not required for F-actin reorganization. We conclude that the accumulation of F-actin probably

  15. Characterization of ring-like F-actin structure as a mechanical partner for spindle positioning in mitosis.

    PubMed

    Lu, Huan; Zhao, Qun; Jiang, Hao; Zhu, Tongge; Xia, Peng; Seffens, William; Aikhionbare, Felix; Wang, Dongmei; Dou, Zhen; Yao, Xuebiao

    2014-01-01

    Proper spindle positioning and orientation are essential for accurate mitosis which requires dynamic interactions between microtubule and actin filament (F-actin). Although mounting evidence demonstrates the role of F-actin in cortical cytoskeleton dynamics, it remains elusive as to the structure and function of F-actin-based networks in spindle geometry. Here we showed a ring-like F-actin structure surrounding the mitotic spindle which forms since metaphase and maintains in MG132-arrested metaphase HeLa cells. This cytoplasmic F-actin structure is relatively isotropic and less dynamic. Our computational modeling of spindle position process suggests a possible mechanism by which the ring-like F-actin structure can regulate astral microtubule dynamics and thus mitotic spindle orientation. We further demonstrated that inhibiting Plk1, Mps1 or Myosin, and disruption of microtubules or F-actin polymerization perturbs the formation of the ring-like F-actin structure and alters spindle position and symmetric division. These findings reveal a previously unrecognized but important link between mitotic spindle and ring-like F-actin network in accurate mitosis and enables the development of a method to theoretically illustrate the relationship between mitotic spindle and cytoplasmic F-actin. PMID:25299690

  16. Evidence That an Unconventional Actin Can Provide Essential F-Actin Function and That a Surveillance System Monitors F-Actin Integrity in Chlamydomonas.

    PubMed

    Onishi, Masayuki; Pringle, John R; Cross, Frederick R

    2016-03-01

    Actin is one of the most conserved eukaryotic proteins. It is thought to have multiple essential cellular roles and to function primarily or exclusively as filaments ("F-actin"). Chlamydomonas has been an enigma, because a null mutation (ida5-1) in its single gene for conventional actin does not affect growth. A highly divergent actin gene, NAP1, is upregulated in ida5-1 cells, but it has been unclear whether NAP1 can form filaments or provide actin function. Here, we used the actin-depolymerizing drug latrunculin B (LatB), the F-actin-specific probe Lifeact-Venus, and genetic and molecular methods to resolve these issues. LatB-treated wild-type cells continue to proliferate; they initially lose Lifeact-stained structures but recover them concomitant with upregulation of NAP1. Thirty-nine LatB-sensitive mutants fell into four genes (NAP1 and LAT1-LAT3) in which we identified the causative mutations using a novel combinatorial pool-sequencing strategy. LAT1-LAT3 are required for NAP1 upregulation upon LatB treatment, and ectopic expression of NAP1 largely rescues the LatB sensitivity of the lat1-lat3 mutants, suggesting that the LAT gene products comprise a regulatory hierarchy with NAP1 expression as the major functional output. Selection of LatB-resistant revertants of a nap1 mutant yielded dominant IDA5 mutations that presumably render F-IDA5 resistant to LatB, and nap1 and lat mutations are synthetically lethal with ida5-1 in the absence of LatB. We conclude that both IDA5 and the divergent NAP1 can form filaments and redundantly provide essential F-actin functions and that a novel surveillance system, probably responding to a loss of F-actin, triggers NAP1 expression and perhaps other compensatory responses. PMID:26715672

  17. Electrophoresis and orientation of F-actin in agarose gels.

    PubMed Central

    Borejdo, J; Ortega, H

    1989-01-01

    F-Actin was electrophoresed on agarose gels. In the presence of 2 mM MgCl2 and above pH 8.5 F-actin entered 1% agarose; when the electric field was 2.1 V/cm and the pH was 8.8, F-actin migrated through a gel as a single band at a rate of 2.5 mm/h. Labeling of actin with fluorophores did not affect its rate of migration, but an increase in ionic strength slowed it down. After the electrophoresis actin was able to bind phalloidin and heavy meromyosin (HMM) and it activated Mg2+-dependent ATPase activity of HMM. The mobility of F-actin increased with the rise in pH. Acto-S-1 complex was also able to migrate in agarose at basic pH, but at a lower rate than F-actin alone. The orientation of fluorescein labeled F-actin and of fluorescein labeled S-1 which formed rigor bonds with F-actin was measured during the electrophoresis by the fluorescence detected linear dichroism method. The former showed little orientation, probably because the dye was mobile on the surface of actin, but we were able to measure the orientation of the absorption dipole of the dye bound to S-1 which was attached to F-actin, and found that it assumed an orientation largely parallel to the direction of the electric field. These results show that actin can migrate in agarose gels in the F form and that it is oriented during the electrophoresis. Images FIGURE 1 FIGURE 3 FIGURE 4 PMID:2528384

  18. Electrostatic self-assembly between biological polymers & macroions: Interactions of F-actin & DNA with lysozyme

    NASA Astrophysics Data System (ADS)

    Sanders, Lori K.; Matthews, Brian W.; Wong, Gerard C. L.

    2005-03-01

    The pathological self-assembly of polyelectrolytes such as DNA and F-actin with cationic antimicrobial proteins such as lysozyme may have significant clinical consequences in Cystic Fibrosis (CF) lung infections. Wild-type lysozyme is a compact, cationic, globular protein which carries a net charge of +9e at neutral pH. Our Small Angle X-ray Scattering (SAXS) experiments on F-actin-lysozyme complexes indicate that the wild-type lysozyme close packs into 1-D columns between hexagonally organized F-actin filaments. We will present SAXS results of the interactions of F-actin and DNA with genetically engineered lysozyme mutants that carry a reduced charge of +5e. We have also used fluorescence microscopy to investigate the morphologies and sizes of such bundles induced with divalent cations, wild-type lysozyme, and mutant lysozymes.

  19. The Interplay between Viscoelastic and Thermodynamic Properties Determines the Birefringence of F-Actin Gels

    PubMed Central

    Helfer, Emmanuèle; Panine, Pierre; Carlier, Marie-France; Davidson, Patrick

    2005-01-01

    F-actin gels of increasing concentrations (25–300 μM) display in vitro a progressive onset of birefringence due to orientational ordering of actin filaments. At F-actin concentrations <100 μM, this birefringence can be erased and restored at will by sonication and gentle flow, respectively. Hence, the orientational ordering does not result from a thermodynamic transition to a nematic phase but instead is due to mechanical stresses stored in the gels. In contrast, at F-actin concentrations ≥100 μM, gels display spontaneous birefringence recovery, at rest, which is the sign of true nematic ordering, in good agreement with statistical physics models of the isotropic/nematic transition. Well-aligned samples of F-actin gels could be produced and their small-angle x-ray scattering patterns are quite anisotropic. These patterns show no sign of filament positional short-range order and could be modeled by averaging the form factor with the Maier-Saupe nematic distribution function. The derived nematic order parameter S of the gels ranged from S = 0.7 at 300 μM to S = 0.4 at 25 μM. Both birefringence and small-angle x-ray scattering data indicate that, even in absence of cross-linking proteins, spontaneous cooperative alignment of actin filaments may arise in motile regions of living cells where F-actin concentrations can reach values of a few 100 μM. PMID:15863487

  20. Hierarchical Cross-linked F-actin Networks: Understanding Structure and Assembly

    NASA Astrophysics Data System (ADS)

    Hirst, Linda; Nguyen, Lam

    2009-11-01

    The protein, F-actin provides us with an interesting system in which to investigate the assembly properties of semi-flexible filaments in the presence of cross-linkers. Recently it was observed that F-actin, in the presence of the cross-linker alpha-actinin at high molar ratios will generate a novel hierarchical network of filament bundles. We investigate this system using coarse-grained molecular dynamics (MD) simulation, confocal microscopy and x-ray scattering. We have studied the F-actin/alpha-actinin system in detail with different actin conc. (C) and alpha-actinin/actin molar ratios (gamma). Confocal microscopy and analysis shows that the assembled systems fall into one of 3 phases depending on C and gamma: (1) loosely connected network of F-actin and bundles, (2) loosely connected network of dense domains and (3) uniform network of bundles. This can be explained and replicated using MD simulation. We have also examined different types of cross-linkers to represent the proteins, fascin and filamin. Results show that phase formation is related to the flexibility in binding between F-actin and cross-linkers. This degree of freedom, possible with longer cross-linkers allows the formation of branch points and thus bundle networks.

  1. Quantitation of liquid-crystalline ordering in F-actin solutions.

    PubMed

    Coppin, C M; Leavis, P C

    1992-09-01

    Actin filaments (F-actin) are important determinants of cellular shape and motility. These functions depend on the collective organization of numerous filaments with respect to both position and orientation in the cytoplasm. Much of the orientational organization arises spontaneously through liquid crystal formation in concentrated F-actin solutions. In studying this phenomenon, we found that solutions of purified F-actin undergo a continuous phase transition, from the isotropic state to a liquid crystalline state, when either the mean filament length or the actin concentration is increased above its respective threshold value. The phase diagram representing the threshold filament lengths and concentrations at which the phase transition occurs is consistent with that predicted by Flory's theory on solutions of noninteracting, rigid cylinders (Flory, 1956b). However, in contrast to other predictions based on this model, we found no evidence for the coexistence of isotropic and anisotropic phases. Furthermore, the phase transition proved to be temperature dependent, which suggests the existence of orientation-dependent interfilament interactions or of a temperature-dependent filament flexibility. We developed a simple method for growing undistorted fluorescent acrylodan-labeled F-actin liquid crystals; and we derived a simple theoretical treatment by which polarization-of-fluorescence measurements could be used to quantitate, for the first time, the degree of spontaneous filament ordering (nematic order parameter) in these F-actin liquid crystals. This order parameter was found to increase monotonically with both filament length and concentration. Actin liquid crystals can readily become distorted by a process known as "texturing." Zigzaging and helicoidal liquid crystalline textures which persisted in the absence of ATP were observed through the polarizing microscope. Possible texturing mechanisms are discussed. PMID:1330036

  2. Self-organized Gels in DNA/F-Actin mixtures without Crosslinkers

    NASA Astrophysics Data System (ADS)

    Butler, John; Hwee Lai, Ghee; Zribi, Olena; Smalyukh, Ivan; Angelini, Thomas; Purdy, Kirstin; Golestanian, Ramin; Wong, Gerard C. L.

    2009-03-01

    Interactions between flexible chains and rigid rods govern a broad range of soft matter systems. As a model system of like-charged rigid rods and flexible chains, we examine mixtures of DNA and filamentous actin (F-actin). Confocal microscopy reveals the formation of elongated nematic F-actin domains reticulated via defect-free vertices into a network embedded in a mesh of random DNA. Synchrotron small-angle x-ray scattering (SAXS) indicates that the DNA mesh squeezes the F-actin domains into a nematic state with an inter-actin spacing that decreases with increasing DNA concentration. Salt strongly influences the domain sizes and transitions the system from a counterion-controlled regime to a depletion-controlled regime, both mechanisms of which are entropic in origin.

  3. F-actin distribution and function during sexual development in Eimeria maxima.

    PubMed

    Frölich, Sonja; Wallach, Michael

    2015-06-01

    To determine the involvement of the actin cytoskeleton in macrogametocyte growth and oocyst wall formation, freshly purified macrogametocytes and oocysts were stained with Oregon Green 514 conjugated phalloidin to visualize F-actin microfilaments, while Evans blue staining was used to detect type 1 wall forming bodies (WFB1s) and the outer oocyst wall. The double-labelled parasites were then analysed at various stages of sexual development using three-dimensional confocal microscopy. The results showed F-actin filaments were distributed throughout the entire cytoplasm of mature Eimeria maxima macrogametocytes forming a web-like meshwork of actin filaments linking the type 1 WFBs together into structures resembling 'beads on a string'. At the early stages of oocyst wall formation, F-actin localization changed in alignment with the egg-shaped morphology of the forming oocysts with F-actin microfilaments making direct contact with the WFB1s. In tissue oocysts, the labelled actin cytoskeleton was situated underneath the forming outer layer of the oocyst wall. Treatment of macrogametocytes in vitro with the actin depolymerizing agents, Cytochalasin D and Latrunculin, led to a reduction in the numbers of mature WFB1s in the cytoplasm of the developing macrogametocytes, indicating that the actin plays an important role in WFB1 transport and oocyst wall formation in E. maxima. PMID:25800683

  4. Rapid non-equilibrium turnover fluidizes entangled F-actin solutions

    NASA Astrophysics Data System (ADS)

    McCall, Patrick M.; Kovar, David R.; Gardel, Margaret L.

    The actin cytoskeleton of living cells is a semiflexible polymer network which regulates cell division, motility, and morphogenesis by controlling cell shape. These complex shape-changing processes require both mechanical deformation and remodeling of the actin cytoskeleton. Molecular motors generate internal forces to drive deformation, while cytoskeletal remodeling is regulated by non-equilibrium polymer turnover. Although the mechanical properties of equilibrium actin filament (F-actin) networks are well-described by theories of semiflexible polymers, these theories do not incorporate the effects of non-equilibrium turnover. To address this experimentally, we developed a model system in which both the turnover rate and the length distribution of purified F-actin can be tuned independently at steady-state through the combined action of actin regulatory proteins. Specifically we tune the concentrations of cofilin, profilin, and formin to regulate F-actin severing, recycling, and nucleation, respectively. We find that the actin turnover rate can be tuned by cofilin up to 25-fold (31 +/- 2 subunits/sec/filament). Surprisingly, changes in turnover rate have no effect on the steady-state F-actin length distribution, which is instead set by formin concentration. Passive microrheology measurements show that increased turnover leads to striking fluidization in both entangled and crosslinked networks. Non-equilibrium turnover thus enables modulation of network mechanics, which impacts force transmission and material deformation.

  5. Passive and active microrheology for cross-linked F-actin networks in vitro.

    PubMed

    Lee, Hyungsuk; Ferrer, Jorge M; Nakamura, Fumihiko; Lang, Matthew J; Kamm, Roger D

    2010-04-01

    Actin filament (F-actin) is one of the dominant structural constituents in the cytoskeleton. Orchestrated by various actin-binding proteins (ABPs), F-actin is assembled into higher-order structures such as bundles and networks that provide mechanical support for the cell and play important roles in numerous cellular processes. Although mechanical properties of F-actin networks have been extensively studied, the underlying mechanisms for network elasticity are not fully understood, in part because different measurements probe different length and force scales. Here, we developed both passive and active microrheology techniques using optical tweezers to estimate the mechanical properties of F-actin networks at a length scale comparable to cells. For the passive approach we tracked the motion of a thermally fluctuating colloidal sphere to estimate the frequency-dependent complex shear modulus of the network. In the active approach, we used an optical trap to oscillate an embedded microsphere and monitored the response in order to obtain network viscoelasticity over a physiologically relevant force range. While both active and passive measurements exhibit similar results at low strain, the F-actin network subject to high strain exhibits non-linear behavior which is analogous to the strain-hardening observed in macroscale measurements. Using confocal and total internal reflection fluorescent microscopy, we also characterize the microstructure of reconstituted F-actin networks in terms of filament length, mesh size and degree of bundling. Finally, we propose a model of network connectivity by investigating the effect of filament length on the mechanical properties and structure. PMID:19883801

  6. Formation of long and winding nuclear F-actin bundles by nuclear c-Abl tyrosine kinase

    SciTech Connect

    Aoyama, Kazumasa; Yuki, Ryuzaburo; Horiike, Yasuyoshi; Kubota, Sho; Yamaguchi, Noritaka; Morii, Mariko; Ishibashi, Kenichi; Nakayama, Yuji; Kuga, Takahisa; Hashimoto, Yuuki; Tomonaga, Takeshi; Yamaguchi, Naoto

    2013-12-10

    The non-receptor-type tyrosine kinase c-Abl is involved in actin dynamics in the cytoplasm. Having three nuclear localization signals (NLSs) and one nuclear export signal, c-Abl shuttles between the nucleus and the cytoplasm. Although monomeric actin and filamentous actin (F-actin) are present in the nucleus, little is known about the relationship between c-Abl and nuclear actin dynamics. Here, we show that nuclear-localized c-Abl induces nuclear F-actin formation. Adriamycin-induced DNA damage together with leptomycin B treatment accumulates c-Abl into the nucleus and increases the levels of nuclear F-actin. Treatment of c-Abl-knockdown cells with Adriamycin and leptomycin B barely increases the nuclear F-actin levels. Expression of nuclear-targeted c-Abl (NLS-c-Abl) increases the levels of nuclear F-actin even without Adriamycin, and the increased levels of nuclear F-actin are not inhibited by inactivation of Abl kinase activity. Intriguingly, expression of NLS-c-Abl induces the formation of long and winding bundles of F-actin within the nucleus in a c-Abl kinase activity-dependent manner. Furthermore, NLS-c-AblΔC, which lacks the actin-binding domain but has the full tyrosine kinase activity, is incapable of forming nuclear F-actin and in particular long and winding nuclear F-actin bundles. These results suggest that nuclear c-Abl plays critical roles in actin dynamics within the nucleus. - Highlights: • We show the involvement of c-Abl tyrosine kinase in nuclear actin dynamics. • Nuclear F-actin is formed by nuclear-localized c-Abl and its kinase-dead version. • The c-Abl actin-binding domain is prerequisite for nuclear F-actin formation. • Formation of long nuclear F-actin bundles requires nuclear c-Abl kinase activity. • We discuss a role for nuclear F-actin bundle formation in chromatin regulation.

  7. Coactosin-like protein, a human F-actin-binding protein: critical role of lysine-75.

    PubMed Central

    Provost, P; Doucet, J; Stock, A; Gerisch, G; Samuelsson, B; Rådmark, O

    2001-01-01

    Coactosin-like protein (CLP) was recently identified in a yeast two-hybrid screen using 5-lipoxygenase as bait. In the present study, we report the functional characterization of CLP as a human filamentous actin (F-actin)-binding protein. CLP mRNA shows a wide tissue distribution and is predominantly expressed in placenta, lung, kidney and peripheral-blood leucocytes. Endogenous CLP is localized in the cytosol of myeloid cells. Using a two-hybrid approach, actin was identified as a CLP-interacting protein. Binding experiments indicated that CLP associates with F-actin, but does not form a stable complex with globular actin. In transfected mammalian cells, CLP co-localized with actin stress fibres. CLP bound to actin filaments with a stoichiometry of 1:2 (CLP: actin subunits), but could be cross-linked to only one subunit of actin. Site-directed mutagenesis revealed the involvement of Lys(75) of CLP in actin binding, a residue highly conserved in related proteins and supposed to be exposed on the surface of the CLP protein. Our results identify CLP as a new human protein that binds F-actin in vitro and in vivo, and indicate that Lys(75) is essential for this interaction. PMID:11583571

  8. Retrograde Flow and Myosin II Activity within the Leading Cell Edge Deliver F-Actin to the Lamella to Seed the Formation of Graded Polarity Actomyosin II Filament Bundles in Migrating Fibroblasts

    PubMed Central

    Anderson, Tom W.; Vaughan, Andrew N.

    2008-01-01

    In migrating fibroblasts actomyosin II bundles are graded polarity (GP) bundles, a distinct organization to stress fibers. GP bundles are important for powering cell migration, yet have an unknown mechanism of formation. Electron microscopy and the fate of photobleached marks show actin filaments undergoing retrograde flow in filopodia, and the lamellipodium are structurally and dynamically linked with stationary GP bundles within the lamella. An individual filopodium initially protrudes, but then becomes separated from the tip of the lamellipodium and seeds the formation of a new GP bundle within the lamella. In individual live cells expressing both GFP-myosin II and RFP-actin, myosin II puncta localize to the base of an individual filopodium an average 28 s before the filopodium seeds the formation of a new GP bundle. Associated myosin II is stationary with respect to the substratum in new GP bundles. Inhibition of myosin II motor activity in live cells blocks appearance of new GP bundles in the lamella, without inhibition of cell protrusion in the same timescale. We conclude retrograde F-actin flow and myosin II activity within the leading cell edge delivers F-actin to the lamella to seed the formation of new GP bundles. PMID:18799629

  9. Tracer diffusion in F-actin and Ficoll mixtures. Toward a model for cytoplasm.

    PubMed Central

    Hou, L; Lanni, F; Luby-Phelps, K

    1990-01-01

    We have previously reported that self-diffusion of inert tracer particles in the cytoplasm of living Swiss 3T3 cells is hindered in a size-dependent manner (Luby-Phelps, K., D.L. Taylor, and F. Lanni. 1986. J. Cell Biol. 102:2015-2022; Luby-Phelps, K., P.E. Castle, D.L. Taylor, and F. Lanni. 1987. Proc Natl. Acad. Sci. USA. 84:4910-4913). Lacking a theory that completely explains our data, we are attempting to understand the molecular architecture responsible for this phenomenon by studying tracer diffusion in simple, reconstituted model systems. This report contains our findings on tracer diffusion in concentrated solutions of Ficoll 70 or Ficoll 400, in solutions of entangled F-actin filaments, and in solutions of entangled F-actin containing a background of concentrated Ficoll particles or concentrated bovine serum albumin (BSA). A series of size-fractionated fluorescein-Ficolls were used as tracer particles. By fluorescence recovery after photobleaching (FRAP), we obtained the mean diffusion coefficients in a dilute, aqueous reference phase (Do), the mean diffusion coefficients in the model matrices (D), and the mean hydrodynamic radii (RH) for selected tracer fractions. For each model matrix, the results were compared with similar data obtained from living cells. As in concentrated solutions of globular proteins (Luby-Phelps et al., 1987), D/Do was not significantly size-dependent in concentrated solutions of Ficoll 400 or Ficoll 70. In contrast, D/Do decreased monotonically with increasing RH in solutions of F-actin ranging in concentration from 1 to 12 mg/ml. This size dependence was most pronounced at higher F-actin concentrations. However, the shape of the curve and the extrapolated value of D/Do in the limit, RH----O did not closely resemble the cellular data for tracers in the same size range (3 less than RH less than 30 nm). In mixtures of F-actin and Ficoll or F-actin and BSA, D/Do was well approximated by D/Do for the same concentration of F-actin

  10. A Role for Nuclear F-Actin Induction in Human Cytomegalovirus Nuclear Egress

    PubMed Central

    Wilkie, Adrian R.; Lawler, Jessica L.

    2016-01-01

    ABSTRACT Herpesviruses, which include important pathogens, remodel the host cell nucleus to facilitate infection. This remodeling includes the formation of structures called replication compartments (RCs) in which herpesviruses replicate their DNA. During infection with the betaherpesvirus, human cytomegalovirus (HCMV), viral DNA synthesis occurs at the periphery of RCs within the nuclear interior, after which assembled capsids must reach the inner nuclear membrane (INM) for translocation to the cytoplasm (nuclear egress). The processes that facilitate movement of HCMV capsids to the INM during nuclear egress are unknown. Although an actin-based mechanism of alphaherpesvirus capsid trafficking to the INM has been proposed, it is controversial. Here, using a fluorescently-tagged, nucleus-localized actin-binding peptide, we show that HCMV, but not herpes simplex virus 1, strongly induced nuclear actin filaments (F-actin) in human fibroblasts. Based on studies using UV inactivation and inhibitors, this induction depended on viral gene expression. Interestingly, by 24 h postinfection, nuclear F-actin formed thicker structures that appeared by super-resolution microscopy to be bundles of filaments. Later in infection, nuclear F-actin primarily localized along the RC periphery and between the RC periphery and the nuclear rim. Importantly, a drug that depolymerized nuclear F-actin caused defects in production of infectious virus, capsid accumulation in the cytoplasm, and capsid localization near the nuclear rim, without decreasing capsid accumulation in the nucleus. Thus, our results suggest that for at least one herpesvirus, nuclear F-actin promotes capsid movement to the nuclear periphery and nuclear egress. We discuss our results in terms of competing models for these processes. PMID:27555312

  11. Stable high capacity, F-actin affinity column

    SciTech Connect

    Luna, E.J.; Wang, Y.L.; Voss, E.W. Jr.; Branton, D.; Taylor, D.L.

    1982-11-10

    A high capacity F-actin affinity matrix is constructed by binding fluorescyl-actin to rabbit anti-fluorescein IgG that is covalently bound to Sepharose 4B. When stabilized with phalloidin, the actin remains associated with the Sepharose beads during repeated washes, activates the ATPase activity of myosin subfragment 1, and specifically binds /sup 125/I-heavy meromyosin and /sup 125/I-tropomyosin. The associations between the F-actin-binding proteins are monitored both by affinity chromatography and by a rapid, low speed sedimentation assay. Anti-fluorescein IgG-Sepharose should be generally useful as a matrix for the immobilization of proteins containing accessible, covalently bound fluorescein groups.

  12. F-actin remodeling defects as revealed in primary immunodeficiency disorders.

    PubMed

    Janssen, W J M; Geluk, H C A; Boes, M

    2016-03-01

    Primary immunodeficiencies (PIDs) are a heterogeneous group of immune-related diseases. PIDs develop due to defects in gene-products that have consequences to immune cell function. A number of PID-proteins is involved in the remodeling of filamentous actin (f-actin) to support the generation of a contact zone between the antigen-specific T cell and antigen presenting cell (APC): the immunological synapse (IS). IS formation is the first step towards T-cell activation and essential for clonal expansion and acquisition of effector function. We here evaluated PIDs in which aberrant f-actin-driven IS formation may contribute to the PID disease phenotypes as seen in patients. We review examples of such contributions to PID phenotypes from literature, and highlight cases in which PID-proteins were evaluated for a role in f-actin polymerization and IS formation. We conclude with the proposition that patient groups might benefit from stratifying them in distinct functional groups in regard to their f-actin remodeling phenotypes in lymphocytes. PMID:26802313

  13. A semi-flexible model prediction for the polymerization force exerted by a living F-actin filament on a fixed wall

    NASA Astrophysics Data System (ADS)

    Pierleoni, Carlo; Ciccotti, Giovanni; Ryckaert, Jean-Paul

    2015-10-01

    by a living filament on a wall at distance L is in practice L independent and very close to the value of the stalling force Fs H = ( k B T / d ) ln ( ρ ˆ 1 ) predicted by Hill, this expression being strictly valid in the rigid filament limit. The average filament force results from the product of the cumulative size fraction x = x ( L , ℓ p , ρ ˆ 1 ) , where the filament is in contact with the wall, times the buckling force on a filament of size Lc ≈ L, namely, Fs H = x f b ( L ; ℓ p ) . The observed L independence of Fs H implies that x ∝ L-2 for given ( ℓ p , ρ ˆ 1 ) and x ∝ ln ρ ˆ 1 for given (ℓp, L). At fixed ( L , ρ ˆ 1 ), one also has x ∝ ℓp - 1 which indicates that the rigid filament limit ℓp → ∞ is a singular limit in which an infinite force has zero weight. Finally, we derive the physically relevant threshold for filament escaping in the case of actin filaments.

  14. Electrostatic interaction map reveals a new binding position for tropomyosin on F-actin.

    PubMed

    Rynkiewicz, Michael J; Schott, Veronika; Orzechowski, Marek; Lehman, William; Fischer, Stefan

    2015-12-01

    Azimuthal movement of tropomyosin around the F-actin thin filament is responsible for muscle activation and relaxation. Recently a model of αα-tropomyosin, derived from molecular-mechanics and electron microscopy of different contractile states, showed that tropomyosin is rather stiff and pre-bent to present one specific face to F-actin during azimuthal transitions. However, a new model based on cryo-EM of troponin- and myosin-free filaments proposes that the interacting-face of tropomyosin can differ significantly from that in the original model. Because resolution was insufficient to assign tropomyosin side-chains, the interacting-face could not be unambiguously determined. Here, we use structural analysis and energy landscapes to further examine the proposed models. The observed bend in seven crystal structures of tropomyosin is much closer in direction and extent to the original model than to the new model. Additionally, we computed the interaction map for repositioning tropomyosin over the F-actin surface, but now extended over a much larger surface than previously (using the original interacting-face). This map shows two energy minima-one corresponding to the "blocked-state" as in the original model, and the other related by a simple 24 Å translation of tropomyosin parallel to the F-actin axis. The tropomyosin-actin complex defined by the second minimum fits perfectly into the recent cryo-EM density, without requiring any change in the interacting-face. Together, these data suggest that movement of tropomyosin between regulatory states does not require interacting-face rotation. Further, they imply that thin filament assembly may involve an interplay between initially seeded tropomyosin molecules growing from distinct binding-site regions on actin. PMID:26286845

  15. Mechanical force-induced polymerization and depolymerization of F-actin at water/solid interfaces

    NASA Astrophysics Data System (ADS)

    Zhang, Xueqiang; Hu, Xiuyuan; Lei, Haozhi; Hu, Jun; Zhang, Yi

    2016-03-01

    polymerization and depolymerization behaviors at water/solid interfaces using an atomic force microscope (AFM) operated in liquid. By raster scanning an AFM probe on a substrate surface with a certain load, it was found that actin monomers could polymerize into filaments without the help of actin related proteins (ARPs). Further study indicated that actin monomers were inclined to form filaments only under a small scanning load. The polymerized actin filaments would be depolymerized when the mechanical force was stronger. A possible mechanism has been suggested to explain the mechanical force induced actin polymerization. Electronic supplementary information (ESI) available: The height histograms of Fig. 1b-1d, the effect of G-actin concentration on the mechanical-force-induced F-actin formation, and the effect of different mechanical forces on the depolymerization of F-actin. See DOI: 10.1039/c5nr08713a

  16. Organized F-actin is essential for normal trichome morphogenesis in Arabidopsis.

    PubMed Central

    Szymanski, D B; Marks, M D; Wick, S M

    1999-01-01

    Actin microfilaments form a three-dimensional cytoskeletal network throughout the cell and constitute an essential throughway for organelle and vesicle transport. Development of Arabidopsis trichomes, unicellular structures derived from the epidermis, is being used as a genetic system in which to study actin-dependent growth in plant cells. The present study indicates that filamentous actin (F-actin) plays an important role during Arabidopsis trichome morphogenesis. For example, immunolocalization of actin filaments during trichome morphogenesis identified rearrangements of the cytoskeletal structure during the development of the mature cell. Moreover, pharmacological experiments indicate that there are distinct requirements for actin- and microtubule-dependent function during trichome morphogenesis. The F-actin-disrupting drug cytochalasin D does not affect the establishment of polarity during trichome development; however, maintenance and coordination of the normal pattern of cell growth are very sensitive to this drug. In contrast, oryzalin, an agent that depolymerizes microtubules, severely inhibits cell polarization. Furthermore, cytochalasin D treatment phenocopies a known class of mutations that cause distorted trichome morphology. Results of an analysis of cell shape and microfilament structure in wild-type, mutant, and drug-treated trichomes are consistent with a role for actin in the maintenance and coordination of an established growth pattern. PMID:10590162

  17. In vivo dynamics of the F-actin-binding protein neurabin-II.

    PubMed Central

    Stephens, D J; Banting, G

    2000-01-01

    Neurabin-II (spinophilin) is a ubiquitously expressed F-actin-binding protein containing an N-terminal actin-binding domain, a PDZ (PSD95/discs large/ZO-1) domain and a C-terminal domain predicted to form a coiled-coil structure. We have stably expressed a green fluorescent protein (GFP)-tagged version of neurabin-II in PC12 cells, and characterized the in vivo dynamics of this actin-binding protein using confocal fluorescence microscopy. We show that GFP-neurabin-II localizes to actin filaments, especially at cortical sites and areas underlying sites of active membrane remodelling. GFP-neurabin-II labels only a subset of F-actin within these cells, as indicated by rhodamine-phalloidin staining. Both actin filaments and small, highly motile structures within the cell body are seen. Photobleaching experiments show that GFP-neurabin-II also exhibits highly dynamic behaviour when bound to actin filaments. Latrunculin B treatment results in rapid relocalization of GFP-neurabin-II to the cytosol, whereas cytochalasin D treatment causes the collapse of GFP-neurabin-II fluorescence to intensely fluorescent foci of F-actin within the cell body. This collapse is reversed on cytochalasin D removal, recovery from which is greatly accelerated by stimulation of cells with epidermal growth factor (EGF). Furthermore, we show that this EGF-induced relocalization of GFP-neurabin-II is dependent on the activity of the small GTPase Rac1 but not the activity of ADP-ribosylation factor 6. PMID:10620493

  18. Structure of the 34 kDa F-actin-bundling protein ABP34 from Dictyostelium discoideum.

    PubMed

    Kim, Min-Kyu; Kim, Ji-Hye; Kim, Ji-Sun; Kang, Sa-Ouk

    2015-09-01

    The crystal structure of the 34 kDa F-actin-bundling protein ABP34 from Dictyostelium discoideum was solved by Ca(2+)/S-SAD phasing and refined at 1.89 Å resolution. ABP34 is a calcium-regulated actin-binding protein that cross-links actin filaments into bundles. Its in vitro F-actin-binding and F-actin-bundling activities were confirmed by a co-sedimentation assay and transmission electron microscopy. The co-localization of ABP34 with actin in cells was also verified. ABP34 adopts a two-domain structure with an EF-hand-containing N-domain and an actin-binding C-domain, but has no reported overall structural homologues. The EF-hand is occupied by a calcium ion with a pentagonal bipyramidal coordination as in the canonical EF-hand. The C-domain structure resembles a three-helical bundle and superposes well onto the rod-shaped helical structures of some cytoskeletal proteins. Residues 216-244 in the C-domain form part of the strongest actin-binding sites (193-254) and exhibit a conserved sequence with the actin-binding region of α-actinin and ABP120. Furthermore, the second helical region of the C-domain is kinked by a proline break, offering a convex surface towards the solvent area which is implicated in actin binding. The F-actin-binding model suggests that ABP34 binds to the side of the actin filament and residues 216-244 fit into a pocket between actin subdomains -1 and -2 through hydrophobic interactions. These studies provide insights into the calcium coordination in the EF-hand and F-actin-binding site in the C-domain of ABP34, which are associated through interdomain interactions. PMID:26327373

  19. Myosin-induced changes in F-actin: fluorescence probing of subdomain 2 by dansyl ethylenediamine attached to Gln-41.

    PubMed Central

    Kim, E; Miller, C J; Motoki, M; Seguro, K; Muhlrad, A; Reisler, E

    1996-01-01

    Actin labeled at Gln-41 with dansyl ethylenediamine (DED) via transglutaminase reaction was used for monitoring the interaction of myosin subfragment 1 (S1) with the His-40-Gly-42 site in the 38-52 loop on F-actin. Proteolytic digestions of F-actin with subtilisin and trypsin, and acto-S1 ATPase measurements on heat-treated F-actin revealed that the labeling of Gln-41 had a stabilizing effect on subdomain 2 and the actin filaments. DED on Gln-41 had no effect on the values of K(m) and Vmax of the acto-S1 ATPase and the sliding velocities of actin filaments in the in vitro motility assays. This suggests either that S1 does not bind to the 40-42 site on actin or that such binding is not functionally important. The binding of monoclonal antidansyl IgG to DED-F-actin did not affect acto-S1 binding in the absence of nucleotides, indicating that the 40-42 site does not contribute much to rigor acto-S1 binding. Myosin-induced changes in subdomain 2 on actin were manifested through an increase in the fluorescence of DED-F-actin, a decrease in the accessibility of the probe to collisional quenchers, and a partial displacement of antidansyl IgG from actin by S1. It is proposed that these changes in the 38-52 loop on actin originate from S1 binding to other myosin recognition sites on actin. Images FIGURE 7 FIGURE 8 PMID:8785300

  20. Self-Organized Gels in DNA/F-Actin Mixtures without Crosslinkers: Networks of Induced Nematic Domains with Tunable Density

    NASA Astrophysics Data System (ADS)

    Lai, Ghee Hwee; Butler, John C.; Zribi, Olena V.; Smalyukh, Ivan I.; Angelini, Thomas E.; Purdy, Kirstin R.; Golestanian, Ramin; Wong, Gerard C. L.

    2008-11-01

    We examine mixtures of DNA and filamentous actin (F-actin) as a model system of like-charged rigid rods and flexible chains. Confocal microscopy reveals the formation of elongated nematic F-actin domains reticulated via defect-free vertices into a network embedded in a mesh of random DNA. Synchrotron x-ray scattering results indicate that the DNA mesh squeezes the F-actin domains into a nematic state with an interactin spacing that decreases with increasing DNA concentration as dactin∝ρDNA-1/2. Interestingly, the system changes from a counterion-controlled regime to a depletion-controlled regime with added salt, with drastic consequences for the osmotic pressure induced phase behavior.

  1. Reconstitution of Actin-based Motility by Vasodilator-stimulated Phosphoprotein (VASP) Depends on the Recruitment of F-actin Seeds from the Solution Produced by Cofilin*

    PubMed Central

    Siton, Orit; Bernheim-Groswasser, Anne

    2014-01-01

    Vasodilator-stimulated phosphoprotein (VASP) is active in many filopodium-based and cytoskeleton reorganization processes. It is not fully understood how VASP directly functions in actin-based motility and how regulatory proteins affect its function. Here, we combine bead motility assay and single filament experiments. In the presence of a bundling component, actin bundles that grow from the surface of WT-VASP-coated beads induced movement of the beads. VASP promotes actin-based movement alone, in the absence of other actin nucleators. We propose that at physiological salt conditions VASP nucleation activity is too weak to promote motility and bundle formation. Rather, VASP recruits F-actin seeds from the solution and promotes their elongation. Cofilin has a crucial role in the nucleation of these F-actin seeds, notably under conditions of unfavorable spontaneous actin nucleation. We explored the role of multiple VASP variants. We found that the VASP-F-actin binding domain is required for the recruitment of F-actin seeds from the solution. We also found that the interaction of profilin-actin complexes with the VASP-proline-rich domain and the binding of the VASP-F-actin binding domain to the side of growing filaments is critical for transforming actin polymerization into motion. At the single filament level, profilin mediates both filament elongation rate and VASP anti-capping activity. Binding of profilin-actin complexes increases the polymerization efficiency by VASP but decreases its efficiency as an anti-capper; binding of free profilin creates the opposite effect. Finally, we found that an additional component such as methylcellulose or fascin is required for actin bundle formation and motility mediated by VASP. PMID:25246528

  2. Measuring F-actin properties in dendritic spines

    PubMed Central

    Koskinen, Mikko; Hotulainen, Pirta

    2014-01-01

    During the last decade, numerous studies have demonstrated that the actin cytoskeleton plays a pivotal role in the control of dendritic spine shape. Synaptic stimulation rapidly changes the actin dynamics and many actin regulators have been shown to play roles in neuron functionality. Accordingly, defects in the regulation of the actin cytoskeleton in neurons have been implicated in memory disorders. Due to the small size of spines, it is difficult to detect changes in the actin structures in dendritic spines by conventional light microscopy imaging. Instead, to know how tightly actin filaments are bundled together, and how fast the filaments turnover, we need to use advanced microscopy techniques, such as fluorescence recovery after photobleaching (FRAP), photoactivatable green fluorescent protein (PAGFP) fluorescence decay and fluorescence anisotropy. Fluorescence anisotropy, which measures the Förster resonance energy transfer (FRET) between two GFP fluorophores, has been proposed as a method to measure the level of actin polymerization. Here, we propose a novel idea that fluorescence anisotropy could be more suitable to study the level of actin filament bundling instead of actin polymerization. We validate the method in U2OS cell line where the actin structures can be clearly distinguished and apply to analyze how actin filament organization in dendritic spines changes during neuronal maturation. In addition to fluorescence anisotropy validation, we take a critical look at the properties and limitations of FRAP and PAGFP fluorescence decay methods and offer our proposals for the analysis methods for these approaches. These three methods complement each other, each providing additional information about actin dynamics and organization in dendritic spines. PMID:25140131

  3. Vacuole formation in mast cells responding to osmotic stress and to F-actin disassembly.

    PubMed

    Koffer, Anna; Williams, Mark; Johansen, Torben

    2002-01-01

    Fluorescent probes were used to visualize the morphology of membranes and of F-actin in rat peritoneal mast cells, exposed to hyperosmotic medium and consequently reversed to isotonicity. Hypertonicity induced cell shrinkage followed by a regulatory volume increase, and cell alkalinization that was sensitive to amiloride, an inhibitor of the Na(+)/H(+) exchanger (NHE), but not to Latrunculin B, an inhibitor of actin polymerization. Using Bodipy-Sphingomyelin, we have observed formation of vacuole-like dilations (VLDs), primarily at or close to the adhesion plane, following the reversal from hyper- to isotonic medium. VLD formation was not inhibited by Latrunculin B or by amiloride. Phalloidin staining has shown that actin filaments do not surround the vacuoles and latrunculin-induced depolymerization of actin has actually promoted vacuole formation, even in isotonic conditions. The results support the idea that a decrease in membrane tension promotes the internalization of the plasma membrane. PMID:12421579

  4. Analysis of rhodamine and fluorescein-labeled F-actin diffusion in vitro by fluorescence photobleaching recovery.

    PubMed Central

    Simon, J R; Gough, A; Urbanik, E; Wang, F; Lanni, F; Ware, B R; Taylor, D L

    1988-01-01

    Properties of filamentous acetamidofluorescein-labeled actin and acetamidotetramethylrhodamine-labeled actin (AF and ATR-actin, respectively) were examined to resolve discrepancies in the reported translational diffusion coefficients of F-actin measured in vitro by FPR and other techniques. Using falling-ball viscometry and two independent versions of fluorescence photobleaching recovery (FPR), the present data indicate that several factors are responsible for these discrepancies. Gel filtration chromatography profoundly affects the viscosity of actin solutions and filament diffusion coefficients. ATR-actin and, to a lesser degree, AF-actin show a reduction in viscosity in proportion to the fraction labeled, presumably due to filament shortening. Actin filaments containing AF-actin or ATR-actin are susceptible to photoinduced damage, including a covalent cross-linking of actin protomers within filaments and an apparent cleavage of filaments detected by a decrease of the measured viscosity and an increase in the measured filament diffusion coefficients. Quantum yields of the two photoinduced effects are quite different. Multiple cross-links are produced relative to each photobleaching event, whereas less than 1% filament cleavage occurs. Substantial differences in the filament diffusion coefficients measured by FPR are also the result of differences in illumination geometry and sampling time. However, under controlled conditions, FPR can be used as a quantitative tool for measuring the hydrodynamic properties of actin filaments. Incremented filament shortening caused by photoinduced cleavage or incremental addition of filament capping proteins produces a continuous and approximately linear increase of filament diffusion coefficients, indicating that filaments are not associated in solution. Our results indicate that actin filaments exhibit low mobilities and it is inferred that actin filaments formed in vitro by column-purified actin, under standard conditions, are

  5. Bulkiness or aromatic nature of tyrosine-143 of actin is important for the weak binding between F-actin and myosin-ADP-phosphate

    SciTech Connect

    Gomibuchi, Yuki; Uyeda, Taro Q.P.; Wakabayashi, Takeyuki

    2013-11-29

    Highlights: •The effect of mutation of Tyr143 that becomes more exposed on assembly was examined. •Mutation of tyrosine-143 of Dictyostelium actin changed actin polymerizability. •The bulkiness or aromatic nature of Tyr143 is important for the weak binding. •The weak interaction between myosin and actin strengthened by Tyr143Trp mutation. -- Abstract: Actin filaments (F-actin) interact with myosin and activate its ATPase to support force generation. By comparing crystal structures of G-actin and the quasi-atomic model of F-actin based on high-resolution cryo-electron microscopy, the tyrosine-143 was found to be exposed more than 60 Å{sup 2} to the solvent in F-actin. Because tyrosine-143 flanks the hydrophobic cleft near the hydrophobic helix that binds to myosin, the mutant actins, of which the tyrosine-143 was replaced with tryptophan, phenylalanine, or isoleucine, were generated using the Dictyostelium expression system. It polymerized significantly poorly when induced by NaCl, but almost normally by KCl. In the presence of phalloidin and KCl, the extents of the polymerization of all the mutant actins were comparable to that of the wild-type actin so that the actin-activated myosin ATPase activity could be reliably compared. The affinity of skeletal heavy meromyosin to F-actin and the maximum ATPase activity (V{sub max}) were estimated by a double reciprocal plot. The Tyr143Trp-actin showed the higher affinity (smaller K{sub app}) than that of the wild-type actin, with the V{sub max} being almost unchanged. The K{sub app} and V{sub max} of the Tyr143Phe-actin were similar to those of the wild-type actin. However, the activation by Tyr143Ile-actin was much smaller than the wild-type actin and the accurate determination of K{sub app} was difficult. Comparison of the myosin ATPase activated by the various mutant actins at the same concentration of F-actin showed that the extent of activation correlates well with the solvent-accessible surface areas (ASA

  6. Nuclear F-actin enhances the transcriptional activity of β-catenin by increasing its nuclear localization and binding to chromatin.

    PubMed

    Yamazaki, Shota; Yamamoto, Koji; de Lanerolle, Primal; Harata, Masahiko

    2016-04-01

    Actin plays multiple roles both in the cytoplasm and in the nucleus. Cytoplasmic actin, in addition to its structural role in the cytoskeleton, also contributes to the subcellular localization of transcription factors by interacting with them or their partners. The transcriptional cofactor β-catenin, which acts as an intracellular transducer of canonical Wnt signaling, indirectly associates with the cytoplasmic filamentous actin (F-actin). Recently, it has been observed that F-actin is transiently formed within the nucleus in response to serum stimulation and integrin signaling, and also during gene reprogramming. Despite these earlier observations, information about the function of nuclear F-actin is poorly defined. Here, by facilitating the accumulation of nuclear actin artificially, we demonstrate that polymerizing nuclear actin enhanced the nuclear accumulation and transcriptional function of β-catenin. Our results also show that the nuclear F-actin colocalizes with β-catenin and enhances the binding of β-catenin to the downstream target genes of the Wnt/β-catenin signaling pathway, including the genes for the cell cycle regulators c-myc and cyclin D, and the OCT4 gene. Nuclear F-actin itself also associated with these genes. Since Wnt/β-catenin signaling has important roles in cell differentiation and pluripotency, our observations suggest that nuclear F-actin formed during these biological processes is involved in regulating Wnt/β-catenin signaling. PMID:26900020

  7. Nuclear F-actin formation and reorganization upon cell spreading.

    PubMed

    Plessner, Matthias; Melak, Michael; Chinchilla, Pilar; Baarlink, Christian; Grosse, Robert

    2015-05-01

    We recently discovered signal-regulated nuclear actin network assembly. However, in contrast to cytoplasmic actin regulation, polymeric nuclear actin structures and functions remain only poorly understood. Here we describe a novel molecular tool to visualize real-time nuclear actin dynamics by targeting the Actin-Chromobody-TagGFP to the nucleus, thus establishing a nuclear Actin-Chromobody. Interestingly, we observe nuclear actin polymerization into dynamic filaments upon cell spreading and fibronectin stimulation, both of which appear to be triggered by integrin signaling. Furthermore, we show that nucleoskeletal proteins such as the LINC (linker of nucleoskeleton and cytoskeleton) complex and components of the nuclear lamina couple cell spreading or integrin activation by fibronectin to nuclear actin polymerization. Spreading-induced nuclear actin polymerization results in serum response factor (SRF)-mediated transcription through nuclear retention of myocardin-related transcription factor A (MRTF-A). Our results reveal a signaling pathway, which links integrin activation by extracellular matrix interaction to nuclear actin polymerization through the LINC complex, and therefore suggest a role for nuclear actin polymerization in the context of cellular adhesion and mechanosensing. PMID:25759381

  8. Phospholipase Cη2 Activation Redirects Vesicle Trafficking by Regulating F-actin*

    PubMed Central

    Yamaga, Masaki; Kielar-Grevstad, D. Michelle; Martin, Thomas F. J.

    2015-01-01

    PI(4,5)P2 localizes to sites of dense core vesicle exocytosis in neuroendocrine cells and is required for Ca2+-triggered vesicle exocytosis, but the impact of local PI(4,5)P2 hydrolysis on exocytosis is poorly understood. Previously, we reported that Ca2+-dependent activation of phospholipase Cη2 (PLCη2) catalyzes PI(4,5)P2 hydrolysis, which affected vesicle exocytosis by regulating the activities of the lipid-dependent priming factors CAPS (also known as CADPS) and ubiquitous Munc13-2 in PC12 cells. Here we describe an additional role for PLCη2 in vesicle exocytosis as a Ca2+-dependent regulator of the actin cytoskeleton. Depolarization of neuroendocrine PC12 cells with 56 or 95 mm KCl buffers increased peak Ca2+ levels to ∼400 or ∼800 nm, respectively, but elicited similar numbers of vesicle exocytic events. However, 56 mm K+ preferentially elicited the exocytosis of plasma membrane-resident vesicles, whereas 95 mm K+ preferentially elicited the exocytosis of cytoplasmic vesicles arriving during stimulation. Depolarization with 95 mm K+ but not with 56 mm K+ activated PLCη2 to catalyze PI(4,5)P2 hydrolysis. The decrease in PI(4,5)P2 promoted F-actin disassembly, which increased exocytosis of newly arriving vesicles. Consistent with its role as a Ca2+-dependent regulator of the cortical actin cytoskeleton, PLCη2 localized with F-actin filaments. The results highlight the importance of PI(4,5)P2 for coordinating cytoskeletal dynamics with vesicle exocytosis and reveal a new role for PLCη2 as a Ca2+-dependent regulator of F-actin dynamics and vesicle trafficking. PMID:26432644

  9. Dynamic and elastic properties of F-actin: a normal-modes analysis.

    PubMed Central

    ben-Avraham, D; Tirion, M M

    1995-01-01

    We examine the dynamic, elastic, and mechanical consequences of the proposed atomic models of F-actin, using a normal mode analysis. This initial analysis is done in vacuo and assumes that all monomers are rigid and equivalent. Our computation proceeds from the atomic level and, relying on a single fitting parameter, reproduces various experimental results, including persistence lengths, elastic moduli, and contact energies. The computations reveal modes of motion characteristic to all polymers, such as longitudinal pressure waves, torsional waves, and bending, as well as motions unique to F-actin. Motions typical to actin include a "groove-swinging" motion of the two long-pitch helices, as well as an axial slipping motion of the two strands. We prepare snapshots of thermally activated filaments and quantify the accumulation of azimuthal angular "disorder," variations in cross-over lengths, and various other fluctuations. We find that the orientation of a small number of select residues has a surprisingly large effect on the filament flexibility and elasticity characteristics. PMID:7787015

  10. Cooperative and non-cooperative conformational changes of F-actin induced by cofilin

    SciTech Connect

    Aihara, Tomoki; Oda, Toshiro

    2013-05-31

    Highlights: •Mobility of MTSL attached to C374 in F-actin became high upon addition of cofilin. •Change of motility of MTSL attached to C374 with cofilin-binding was cooperative. •Mobility of MTSL attached to V43C in F-actin became high upon addition of cofilin. •Change of motility of MTSL attached to V43C with cofilin-binding was linear. -- Abstract: Cofilin is an actin-binding protein that promotes F-actin depolymerization. It is well-known that cofilin-coated F-actin is more twisted than naked F-actin, and that the protomer is more tilted. However, the means by which the local changes induced by the binding of individual cofilin proteins proceed to the global conformational changes of the whole F-actin molecule remain unknown. Here we investigated the cofilin-induced changes in several parts of F-actin, through site-directed spin-label electron paramagnetic resonance spectroscopy analyses of recombinant actins containing single reactive cysteines. We found that the global, cooperative conformational changes induced by cofilin-binding, which were detected by the spin-label attached to the Cys374 residue, occurred without the detachment of the D-loop in subdomain 2 from the neighboring protomer. The two processes of local and global changes do not necessarily proceed in sequence.

  11. In situ localization of F-actin microfilaments in the vasculature of the porcine retina.

    PubMed

    Strauss, B I; Langille, B L; Gotlieb, A I

    1987-10-01

    The organization of F-actin microfilaments in the vascular endothelium of the porcine retina was studied in situ using rhodamine phalloidin labelling and fluorescence microscopy. A comparison was made between arterial and venous endothelial-cell microfilament distribution. The arterial cells in straight segments, bifurcations and branch points were elongated with their long axis in the direction of flow. Venous endothelial cells, on the other hand, were ellipsoid to rhomboid in shape throughout. F-actin was localized at the periphery of both arterial and venous endothelial cells. Prominent central microfilament bundles, similar to in vitro stress fibres, were oriented parallel to the long axis of arterial cells but were rarely present in venous cells. Only occasional venous endothelial cells contained short central actin filaments which were mainly in the venules. Central microfilaments were not identified in pre-capillary, capillary, or post-capillary endothelial cells. Incubation of the retinal organ cultures for 24 hr resulted in loss of the central microfilaments while peripheral staining persisted. Short-term incubation of the retinas in organ culture with low-dose cytochalasin B resulted in disruption of the central microfilaments while the peripheral actin microfilaments remained intact. The central microfilament bundles may reflect an adaptive response to arterial blood flow and may indeed be a sensitive dynamic system reflecting the influence of environmental factors on endothelial cells. PMID:3428383

  12. A Theoretical Model for F-actin Remodeling in Vascular Smooth Muscle Cells Subjected to Cyclic Stretch

    PubMed Central

    Na, S.; Meininger, G.A.; Humphrey, J.D.

    2007-01-01

    A constrained mixture theory model was developed and used to estimate remodeling of F-actin in vascular smooth muscle cells that were subjected to 10% equibiaxial stretching for up to 30 minutes. The model was based on a synthesis of data on time-dependent changes in atomic force microscopy measured cell stiffness and immunofluorescence measured focal adhesion associated vinculin as well as data on stress fiber stiffness and pre-stretch. Results suggest that an observed acute (after 2 minutes of stretching) increase in cell stiffness is consistent with an increased stretch of the originally present F-actin plus an assembly of new F-actin having nearly homeostatic values of stretch. Moreover, the subsequent (after 30 minutes of stretching) decrease in cell stiffness back towards the baseline value is consistent with a replacement of the overstretched original filaments with the new (reassembled), less stretched filaments. That is, overall cell response is consistent with a recently proposed concept of “tensional homeostasis” whereby cells seek to maintain constant certain mechanical factors via a remodeling of intracellular and transmembrane proteins. Although there is a need to refine the model based on more comprehensive data sets, using multiple experimental approaches, the present results suggest that a constrained mixture theory can capture salient features of the dynamics of F-actin remodeling and that it offers some advantages over many past methods of modeling, particularly those based on classical linearized viscoelasticity. PMID:17240401

  13. F-actin Severing Facilitates Distinct Mechanisms of Stress Relaxation in the Actin Cytoskeleton

    NASA Astrophysics Data System (ADS)

    Kim, Taeyoon; Jung, Wonyeong; Murrell, Michael

    Rheological behaviors of actin cytoskeleton play an important role in physiological processes including cell migration and division. The actin cytoskeleton shows a wide variety of viscoelastic responses to external mechanical cues, such as strain-stiffening and stress relaxation. It has been hypothesized that the stress relaxation originates mainly from transient nature of cross-linkers that connect pairs of F-actins. By contrast, potential impacts of rich F-actin dynamics to the stress relaxation have been neglected in most previous studies. Here, using a computational model, we demonstrated that severing of F-actins induced by buckling during strain-stiffening can facilitate a very distinct mode of stress relaxation in the actin cytoskeleton from that induced by the transient cross-linkers. We also explored conditions where the severing-induced stress relaxation becomes prominent. This finding provides a more complete understanding of rheological behaviors of the actin cytoskeleton. We gratefully acknowledge the support of the National Science Foundation (1434013-CMMI and 1434095-CMMI).

  14. Calcium storage and release properties of F-actin: evidence for the involvement of F-actin in cellular calcium signaling.

    PubMed

    Lange, K; Brandt, U

    1996-10-21

    Preceding studies have shown that the bulk of the ATP-dependent, inositol 1,4,5-trisphosphate (IP3)-sensitive Ca2+ store of hamster insulinoma (HIT) cells is located in microvilli on the cell surface. Similar results were obtained with isolated rat hepatocytes. Moreover, in vesicles of microvillar origin, passive fluxes of Ca2+, ATP, and IP3 occur through cation and anion channels, respectively, suggesting that Ca2+ storage is due to ATP-dependent Ca2+ binding to an intravesicular component. Here we demonstrate that F-actin may be a possible candidate for this function. ATP-actin monomers bind Ca2+ with high affinity (Kd = 2-8 nM) to their divalent cation binding sites. Polymerization of actin monomers decreases the rate constant for divalent cation exchange at this binding site by more than 3 orders of magnitude rendering bound cations nearly unavailable. F-actin-bound Ca2+ can be released by depolymerization and dissociation from Ca(2+)-ADP-actin monomers (Kd = 375 nM). We now provide additional evidence for the possible involvement of actin in Ca2+ storage. (1) Preincubation of surface-derived Ca(2+)-storing vesicles from HIT cells with the F-actin stabilizer, phalloidin, strongly inhibited ATP-dependent Ca2+ uptake, reducing the IP3-sensitive Ca2+ pool by 70%. Phalloidin, when added after the loading process, affected neither the amount of stored Ca2+ nor IP3 action on the store. (2) F-actin polymerized in the presence of Mg2+ in nominally Ca(2+)-free buffer still contained about half of the high affinity sites occupied with Ca2+ (Mg/Ca-F-actin). (3) Using the fura-2 technique, we found that in the presence of ATP, Mg/Ca-F-actin incorporated free Ca2+ at a relatively low rate. Short pulses of ultrasound (3-10 s) strongly accelerated Ca2+ uptake, decreasing free Ca2+ from 500 nM to below 100 nM. (4) In the presence of physiological levels of Mg2+ (0.5 mM), sonication liberated large amounts of Ca2+ from Mg/Ca-F-actin. (5) Ca-F-actin released bound Ca2+ at a very

  15. Motion in partially and fully cross-linked F-actin networks

    NASA Astrophysics Data System (ADS)

    Morris, Eliza; Ehrlicher, Allen; Weitz, David

    2012-02-01

    Single molecule experiments have measured stall forces and procession rates of molecular motors on isolated cytoskeletal fibers in Newtonian fluids. But in the cell, these motors are transporting cargo through a highly complex cytoskeletal network. To compare these single molecule results to the forces exerted by motors within the cell, an evaluation of the response of the cytoskeletal network is needed. Using magnetic tweezers and fluorescence confocal microscopy we observe and quantify the relationship between bead motion and filament response in F-actin networks both partially and fully cross-linked with filamin We find that when the transition from full to partial cross-linking is brought about by a decrease in cross-linker concentration there is a simultaneous decline in the elasticity of the network, but the response of the bead remains qualitatively similar. However, when the cross-linking is reduced through a shortening of the F-actin filaments the bead response is completely altered. The characteristics of the altered bead response will be discussed here.

  16. Mechanosensitive systems at the cadherin-F-actin interface.

    PubMed

    Huveneers, Stephan; de Rooij, Johan

    2013-01-15

    Cells integrate biochemical and mechanical information to function within multicellular tissue. Within developing and remodeling tissues, mechanical forces contain instructive information that governs important cellular processes that include stem cell maintenance, differentiation and growth. Although the principles of signal transduction (protein phosphorylation, allosteric regulation of enzymatic activity and binding sites) are the same for biochemical and mechanical-induced signaling, the first step of mechanosensing, in which protein complexes under tension transduce changes in physical force into cellular signaling, is very different, and the molecular mechanisms are only beginning to be elucidated. In this Commentary, we focus on mechanotransduction at cell-cell junctions, aiming to comprehend the molecular mechanisms involved. We describe how different junction structures are associated with the actomyosin cytoskeleton and how this relates to the magnitude and direction of forces at cell-cell junctions. We discuss which cell-cell adhesion receptors have been shown to take part in mechanotransduction. Then we outline the force-induced molecular events that might occur within a key mechanosensitive system at cell-cell junctions; the cadherin-F-actin interface, at which α-catenin and vinculin form a central module. Mechanotransduction at cell-cell junctions emerges as an important signaling mechanism, and we present examples of its potential relevance for tissue development and disease. PMID:23524998

  17. Nonmedially assembled F-actin cables incorporate into the actomyosin ring in fission yeast

    PubMed Central

    Huang, Junqi; Huang, Yinyi; Yu, Haochen; Subramanian, Dhivya; Padmanabhan, Anup; Thadani, Rahul; Tao, Yaqiong; Tang, Xie; Wedlich-Soldner, Roland

    2012-01-01

    In many eukaryotes, cytokinesis requires the assembly and constriction of an actomyosin-based contractile ring. Despite the central role of this ring in cytokinesis, the mechanism of F-actin assembly and accumulation in the ring is not fully understood. In this paper, we investigate the mechanism of F-actin assembly during cytokinesis in Schizosaccharomyces pombe using lifeact as a probe to monitor actin dynamics. Previous work has shown that F-actin in the actomyosin ring is assembled de novo at the division site. Surprisingly, we find that a significant fraction of F-actin in the ring was recruited from formin-Cdc12p nucleated long actin cables that were generated at multiple nonmedial locations and incorporated into the ring by a combination of myosin II and myosin V activities. Our results, together with findings in animal cells, suggest that de novo F-actin assembly at the division site and directed transport of F-actin cables assembled elsewhere can contribute to ring assembly. PMID:23185032

  18. Prestressed F-actin networks cross-linked by hinged filamins replicate mechanical properties of cells

    NASA Astrophysics Data System (ADS)

    Gardel, M. L.; Nakamura, F.; Hartwig, J. H.; Crocker, J. C.; Stossel, T. P.; Weitz, D. A.

    2006-02-01

    We show that actin filaments, shortened to physiological lengths by gelsolin and cross-linked with recombinant human filamins (FLNs), exhibit dynamic elastic properties similar to those reported for live cells. To achieve elasticity values of comparable magnitude to those of cells, the in vitro network must be subjected to external prestress, which directly controls network elasticity. A molecular requirement for the strain-related behavior at physiological conditionsis a flexible hinge found in FLNa and some FLNb molecules. Basic physical properties of the in vitro filamin-F-actin network replicate the essential mechanical properties of living cells. This physical behavior could accommodate passive deformation and internal organelle trafficking at low strains yet resist externally or internally generated high shear forces. cytoskeleton | cell mechanics | nonlinear rheology

  19. Effect of ADP on binding of skeletal S1 to F-actin.

    PubMed

    Andreev, O A; Ushakov, D S; Borejdo, J

    1998-12-22

    The proximity of skeletal myosin subfragment-1 (S1) to actin, and its orientation with respect to thin filaments of single muscle fibers, were compared in the presence and in the absence of ADP. The proximity was assessed by the efficiency of carbodiimide-induced cross-linking and the orientation by polarization of fluorescence of probes attached to the essential light chains. ADP made no difference in proximity or orientation when the molar ratio of S1 to actin was low or high. However, at the intermediate ratios, ADP made a significant difference. Strong dissociating agents, AMP-PNP and PPi, made significant differences at all ratios. To explain this behavior, it is unnecessary to invoke the ADP-induced "swinging" of the tail of S1. Rather, it is simply explained by the "two-state" model which we proposed earlier, in which S1 binds to one or to two actin protomers, depending on the saturation of the filaments with S1s. The dissociation induced by the ADP shifts the equilibrium between the two bound states. At high and low degrees of saturation, ADP is unable to significantly decrease the amount of S1 bound to F-actin. However, at intermediate saturation levels, ADP causes significantly more S1s to bind to two actins. These results suggest that the ADP-induced changes seen at the intermediate molar ratios are due to the dissociation-induced reorientation of S1. PMID:9922150

  20. Membrane Supply and Demand Regulates F-Actin in a Cell Surface Reservoir.

    PubMed

    Figard, Lauren; Wang, Mengyu; Zheng, Liuliu; Golding, Ido; Sokac, Anna Marie

    2016-05-01

    Cells store membrane in surface reservoirs of pits and protrusions. These membrane reservoirs facilitate cell shape change and buffer mechanical stress, but we do not know how reservoir dynamics are regulated. During cellularization, the first cytokinesis in Drosophila embryos, a reservoir of microvilli unfolds to fuel cleavage furrow ingression. We find that regulated exocytosis adds membrane to the reservoir before and during unfolding. Dynamic F-actin deforms exocytosed membrane into microvilli. Single microvilli extend and retract in ∼20 s, while the overall reservoir is depleted in sync with furrow ingression over 60-70 min. Using pharmacological and genetic perturbations, we show that exocytosis promotes microvillar F-actin assembly, while furrow ingression controls microvillar F-actin disassembly. Thus, reservoir F-actin and, consequently, reservoir dynamics are regulated by membrane supply from exocytosis and membrane demand from furrow ingression. PMID:27165556

  1. A synaptic F-actin network controls otoferlin-dependent exocytosis in auditory inner hair cells

    PubMed Central

    Vincent, Philippe FY; Bouleau, Yohan; Petit, Christine; Dulon, Didier

    2015-01-01

    We show that a cage-shaped F-actin network is essential for maintaining a tight spatial organization of Cav1.3 Ca2+ channels at the synaptic ribbons of auditory inner hair cells. This F-actin network is also found to provide mechanosensitivity to the Cav1.3 channels when varying intracellular hydrostatic pressure. Furthermore, this F-actin mesh network attached to the synaptic ribbons directly influences the efficiency of otoferlin-dependent exocytosis and its sensitivity to intracellular hydrostatic pressure, independently of its action on the Cav1.3 channels. We propose a new mechanistic model for vesicle exocytosis in auditory hair cells where the rate of vesicle recruitment to the ribbons is directly controlled by a synaptic F-actin network and changes in intracellular hydrostatic pressure. DOI: http://dx.doi.org/10.7554/eLife.10988.001 PMID:26568308

  2. A synaptic F-actin network controls otoferlin-dependent exocytosis in auditory inner hair cells.

    PubMed

    Vincent, Philippe Fy; Bouleau, Yohan; Petit, Christine; Dulon, Didier

    2015-01-01

    We show that a cage-shaped F-actin network is essential for maintaining a tight spatial organization of Cav1.3 Ca(2+) channels at the synaptic ribbons of auditory inner hair cells. This F-actin network is also found to provide mechanosensitivity to the Cav1.3 channels when varying intracellular hydrostatic pressure. Furthermore, this F-actin mesh network attached to the synaptic ribbons directly influences the efficiency of otoferlin-dependent exocytosis and its sensitivity to intracellular hydrostatic pressure, independently of its action on the Cav1.3 channels. We propose a new mechanistic model for vesicle exocytosis in auditory hair cells where the rate of vesicle recruitment to the ribbons is directly controlled by a synaptic F-actin network and changes in intracellular hydrostatic pressure. PMID:26568308

  3. Three-dimensional reconstruction of a co-complex of F-actin with antibody Fab fragments to actin's NH2 terminus.

    PubMed Central

    Orlova, A; Yu, X; Egelman, E H

    1994-01-01

    We have decorated F-actin with Fab fragments of antibodies to actin residues 1-7. These antibody fragments do not strongly affect the rigor binding of myosin S-1 to actin, but do affect the binding of S-1 to actin in the presence of nucleotide (DasGupta, G., and E. Reisler, 1989. J. Mol. Biol. 207:833-836; 1991. Biochemistry. 30:9961-9966; 1992. Biochemistry. 31:1836-1841). Although the binding constant is rather low, we estimate that we have achieved about 85% occupancy of the actin sites. Three-dimensional reconstructions from electron micrographs of both negatively stained and frozen-hydrated filaments show that the Fab fragment is bound at the location of the NH2 terminus in the model of Holmes et al. (Holmes, K.C., D. Popp, W. Gebhard, and W. Kabsch. 1990. Nature. 347:37-44) for F-actin, excluding very different orientations of the actin subunit in the filament. Most of the mass of the antibody is not visualized, which is due to the large mobility of the NH2 terminus in F-actin, differences in binding angle within the polyclonal antibody population, or a combination of both of these possibilities. Images FIGURE 1 FIGURE 5 FIGURE 7 FIGURE 10 PMID:8161679

  4. Short Stop provides an essential link between F-actin and microtubules during axon extension.

    PubMed

    Lee, Seungbok; Kolodziej, Peter A

    2002-03-01

    Coordination of F-actin and microtubule dynamics is important for cellular motility and morphogenesis, but little is known about underlying mechanisms. short stop (shot) encodes an evolutionarily conserved, neuronally expressed family of rod-like proteins required for sensory and motor axon extension in Drosophila melanogaster. We identify Shot isoforms that contain N-terminal F-actin and C-terminal microtubule-binding domains, and that crosslink F-actin and microtubules in cultured cells. The F-actin- and microtubule-binding domains of Shot are required in the same molecule for axon extension, though the length of the connecting rod domain can be dramatically reduced without affecting activity. Shot therefore functions as a cytoskeletal crosslinker in axon extension, rather than mediating independent interactions with F-actin and microtubules. A Ca(2+)-binding motif located adjacent to the microtubule-binding domain is also required for axon extension, suggesting that intracellular Ca(2+) release may regulate Shot activity. These results suggest that Shot coordinates regulated interactions between F-actin and microtubules that are crucial for neuronal morphogenesis. PMID:11874915

  5. Head-neck domain of Arabidopsis myosin XI, MYA2, fused with GFP produces F-actin patterns that coincide with fast organelle streaming in different plant cells

    PubMed Central

    Walter, Nadine; Holweg, Carola L

    2008-01-01

    . Potential roles of MYA2 may also exist in the cell nucleus. Whether the low quality of the F-actin-labeling by MYA2-head6IQ compared to other F-actin-binding proteins (ABPs) signifies a weak association of the myosin with actin filaments remains to be proven by other means than in vivo. Clues for the mode of contact between the myosin molecules and F-actin so far cannot be drawn from sequence-related data. PMID:18598361

  6. Nuclear DNA helicase II (RNA helicase A) binds to an F-actin containing shell that surrounds the nucleolus.

    PubMed

    Zhang, Suisheng; Köhler, Carsten; Hemmerich, Peter; Grosse, Frank

    2004-02-15

    Nuclear DNA helicase II (NDH II), alternatively named RNA helicase A (RHA), is an F-actin binding protein that is particularly enriched in the nucleolus of mouse cells. Here, we show that the nucleolar localization of NDH II of murine 3T3 cells depended on an ongoing rRNA synthesis. NDH II migrated out of the nucleolus after administration of 0.05 microg/ml actinomycin D, while nucleolin and the upstream binding factor (UBF) remained there. In S phase-arrested mouse cells, NDH II was frequently found at the nucleolar periphery, where it was accompanied by newly synthesized nucleolar RNA. Human NDH II was mainly distributed through the whole nucleoplasm and not enriched in the nucleoli. However, in the human breast carcinoma cell line MCF-7, NDH II was also found at the nucleolar periphery, together with the tumor suppressor protein p53. Both NDH II and p53 were apparently attached to the F-actin-based filamentous network that surrounded the nucleoli. Accordingly, this subnuclear structure was sensitive to F-actin depolymerizing agents. Depolymerization with gelsolin led to a striking accumulation of NDH II in the nucleoli of MCF-7 cells. This effect was abolished by RNase, which extensively released nucleolus-bound NDH II when added together with gelsolin. Taken together, these results support the idea that an actin-based filamentous network may anchor NDH II at the nucleolar periphery for pre-ribosomal RNA processing, ribosome assembly, and/or transport. PMID:14729462

  7. Cofilin 1-Mediated Biphasic F-Actin Dynamics of Neuronal Cells Affect Herpes Simplex Virus 1 Infection and Replication

    PubMed Central

    Xiang, Yangfei; Zheng, Kai; Ju, Huaiqiang; Wang, Shaoxiang; Pei, Ying; Ding, Weichao; Chen, Zhenping; Wang, Qiaoli; Qiu, Xianxiu; Zhong, Meigong; Zeng, Fanli; Ren, Zhe; Qian, Chuiwen; Liu, Ge

    2012-01-01

    Herpes simplex virus 1 (HSV-1) invades the nervous system and causes pathological changes. In this study, we defined the remodeling of F-actin and its possible mechanisms during HSV-1 infection of neuronal cells. HSV-1 infection enhanced the formation of F-actin-based structures in the early stage of infection, which was followed by a continuous decrease in F-actin during the later stages of infection. The disruption of F-actin dynamics by chemical inhibitors significantly reduced the efficiency of viral infection and intracellular HSV-1 replication. The active form of the actin-depolymerizing factor cofilin 1 was found to increase at an early stage of infection and then to continuously decrease in a manner that corresponded to the remodeling pattern of F-actin, suggesting that cofilin 1 may be involved in the biphasic F-actin dynamics induced by HSV-1 infection. Knockdown of cofilin 1 impaired HSV-1-induced F-actin assembly during early infection and inhibited viral entry; however, overexpression of cofilin 1 did not affect F-actin assembly or viral entry during early infection but decreased intracellular viral reproduction efficiently. Our results, for the first time, demonstrated the biphasic F-actin dynamics in HSV-1 neuronal infection and confirmed the association of F-actin with the changes in the expression and activity of cofilin 1. These results may provide insight into the mechanism by which HSV-1 productively infects neuronal cells and causes pathogenesis. PMID:22623803

  8. Live imaging provides new insights on dynamic F-actin filopodia and differential endocytosis during myoblast fusion in Drosophila.

    PubMed

    Haralalka, Shruti; Shelton, Claude; Cartwright, Heather N; Guo, Fengli; Trimble, Rhonda; Kumar, Ram P; Abmayr, Susan M

    2014-01-01

    The process of myogenesis includes the recognition, adhesion, and fusion of committed myoblasts into multinucleate syncytia. In the larval body wall muscles of Drosophila, this elaborate process is initiated by Founder Cells and Fusion-Competent Myoblasts (FCMs), and cell adhesion molecules Kin-of-IrreC (Kirre) and Sticks-and-stones (Sns) on their respective surfaces. The FCMs appear to provide the driving force for fusion, via the assembly of protrusions associated with branched F-actin and the WASp, SCAR and Arp2/3 pathways. In the present study, we utilize the dorsal pharyngeal musculature that forms in the Drosophila embryo as a model to explore myoblast fusion and visualize the fusion process in live embryos. These muscles rely on the same cell types and genes as the body wall muscles, but are amenable to live imaging since they do not undergo extensive morphogenetic movement during formation. Time-lapse imaging with F-actin and membrane markers revealed dynamic FCM-associated actin-enriched protrusions that rapidly extend and retract into the myotube from different sites within the actin focus. Ultrastructural analysis of this actin-enriched area showed that they have two morphologically distinct structures: wider invasions and/or narrow filopodia that contain long linear filaments. Consistent with this, formin Diaphanous (Dia) and branched actin nucleator, Arp3, are found decorating the filopodia or enriched at the actin focus, respectively, indicating that linear actin is present along with branched actin at sites of fusion in the FCM. Gain-of-function Dia and loss-of-function Arp3 both lead to fusion defects, a decrease of F-actin foci and prominent filopodia from the FCMs. We also observed differential endocytosis of cell surface components at sites of fusion, with actin reorganizing factors, WASp and SCAR, and Kirre remaining on the myotube surface and Sns preferentially taken up with other membrane proteins into early endosomes and lysosomes in the

  9. Experimental and computational assessment of F-actin influence in regulating cellular stiffness and relaxation behaviour of fibroblasts.

    PubMed

    Fallqvist, Björn; Fielden, Matthew L; Pettersson, Torbjörn; Nordgren, Niklas; Kroon, Martin; Gad, Annica K B

    2016-06-01

    In biomechanics, a complete understanding of the structures and mechanisms that regulate cellular stiffness at a molecular level remain elusive. In this paper, we have elucidated the role of filamentous actin (F-actin) in regulating elastic and viscous properties of the cytoplasm and the nucleus. Specifically, we performed colloidal-probe atomic force microscopy (AFM) on BjhTERT fibroblast cells incubated with Latrunculin B (LatB), which results in depolymerisation of F-actin, or DMSO control. We found that the treatment with LatB not only reduced cellular stiffness, but also greatly increased the relaxation rate for the cytoplasm in the peripheral region and in the vicinity of the nucleus. We thus conclude that F-actin is a major determinant in not only providing elastic stiffness to the cell, but also in regulating its viscous behaviour. To further investigate the interdependence of different cytoskeletal networks and cell shape, we provided a computational model in a finite element framework. The computational model is based on a split strain energy function of separate cellular constituents, here assumed to be cytoskeletal components, for which a composite strain energy function was defined. We found a significant influence of cell geometry on the predicted mechanical response. Importantly, the relaxation behaviour of the cell can be characterised by a material model with two time constants that have previously been found to predict mechanical behaviour of actin and intermediate filament networks. By merely tuning two effective stiffness parameters, the model predicts experimental results in cells with a partly depolymerised actin cytoskeleton as well as in untreated control. This indicates that actin and intermediate filament networks are instrumental in providing elastic stiffness in response to applied forces, as well as governing the relaxation behaviour over shorter and longer time-scales, respectively. PMID:26766328

  10. Activation of F-Actin Binding Capacity of Ezrin: Synergism of PIP2 Interaction and Phosphorylation

    PubMed Central

    Bosk, Sabine; Braunger, Julia A.; Gerke, Volker; Steinem, Claudia

    2011-01-01

    Ezrin is a membrane-cytoskeleton linker protein that can bind F-actin in its active conformation. Several means of regulation of ezrin's activity have been described including phosphorylation of Thr-567 and binding of L-α-phosphatidylinositol-4,5-bisphosphate (PIP2). However, the relative contributions of these events toward activation of the protein and their potential interdependence are not known. We developed an assay based on solid-supported membranes, to which different ezrin mutants (ezrin T567A (inactive mutant), wild-type, and T567D (active pseudophosphorylated mutant)) were bound, that enabled us to analyze the influence of phosphorylation and PIP2 binding on ezrin's activation state in vitro. The lipid bilayers employed contained either DOGS-NTA-Ni to bind the proteins via an N-terminal His-tag, or PIP2, to which ezrin binds via specific binding sites located in the N-terminal region of the protein. Quantitative analysis of the binding behavior of all three proteins to the two different receptor lipids revealed that all three bind with high affinity and specificity to the two receptor lipids. Fluorescence microscopy on ezrin-decorated solid-supported membranes showed that, dependent on the mode of binding and the phosphorylation state, ezrin is capable of binding actin filaments. A clear synergism between phosphorylation and the receptor lipid PIP2 was observed, suggesting a conformational switch from the dormant to the active, F-actin binding state by recognition of PIP2, which is enhanced by the phosphorylation. PMID:21463584

  11. Fluid Shear Stress Upregulates E-Tmod41 via miR-23b-3p and Contributes to F-Actin Cytoskeleton Remodeling during Erythropoiesis

    PubMed Central

    Mu, Weiyun; Wang, Xifu; Zhang, Xiaolan; Zhu, Sida; Sun, Dagong; Ka, Weibo; Sung, Lanping Amy; Yao, Weijuan

    2015-01-01

    The membrane skeleton of mature erythrocyte is formed during erythroid differentiation. Fluid shear stress is one of the main factors that promote embryonic hematopoiesis, however, its effects on erythroid differentiation and cytoskeleton remodeling are unclear. Erythrocyte tropomodulin of 41 kDa (E-Tmod41) caps the pointed end of actin filament (F-actin) and is critical for the formation of hexagonal topology of erythrocyte membrane skeleton. Our study focused on the regulation of E-Tmod41 and its role in F-actin cytoskeleton remodeling during erythroid differentiation induced by fluid shear stress. Mouse erythroleukemia (MEL) cells and embryonic erythroblasts were subjected to fluid shear stress (5 dyn/cm2) and erythroid differentiation was induced in both cells. F-actin content and E-Tmod41 expression were significantly increased in MEL cells after shearing. E-Tmod41 overexpression resulted in a significant increase in F-actin content, while the knockdown of E-Tmod41 generated the opposite result. An E-Tmod 3’UTR targeting miRNA, miR-23b-3p, was found suppressed by shear stress. When miR-23b-3p level was overexpressed / inhibited, both E-Tmod41 protein level and F-actin content were reduced / augmented. Furthermore, among the two alternative promoters of E-Tmod, PE0 (upstream of exon 0), which mainly drives the expression of E-Tmod41, was found activated by shear stress. In conclusion, our results suggest that fluid shear stress could induce erythroid differentiation and F-actin cytoskeleton remodeling. It upregulates E-Tmod41 expression through miR-23b-3p suppression and PE0 promoter activation, which, in turn, contributes to F-actin cytoskeleton remodeling. PMID:26308647

  12. Fluid Shear Stress Upregulates E-Tmod41 via miR-23b-3p and Contributes to F-Actin Cytoskeleton Remodeling during Erythropoiesis.

    PubMed

    Mu, Weiyun; Wang, Xifu; Zhang, Xiaolan; Zhu, Sida; Sun, Dagong; Ka, Weibo; Sung, Lanping Amy; Yao, Weijuan

    2015-01-01

    The membrane skeleton of mature erythrocyte is formed during erythroid differentiation. Fluid shear stress is one of the main factors that promote embryonic hematopoiesis, however, its effects on erythroid differentiation and cytoskeleton remodeling are unclear. Erythrocyte tropomodulin of 41 kDa (E-Tmod41) caps the pointed end of actin filament (F-actin) and is critical for the formation of hexagonal topology of erythrocyte membrane skeleton. Our study focused on the regulation of E-Tmod41 and its role in F-actin cytoskeleton remodeling during erythroid differentiation induced by fluid shear stress. Mouse erythroleukemia (MEL) cells and embryonic erythroblasts were subjected to fluid shear stress (5 dyn/cm2) and erythroid differentiation was induced in both cells. F-actin content and E-Tmod41 expression were significantly increased in MEL cells after shearing. E-Tmod41 overexpression resulted in a significant increase in F-actin content, while the knockdown of E-Tmod41 generated the opposite result. An E-Tmod 3'UTR targeting miRNA, miR-23b-3p, was found suppressed by shear stress. When miR-23b-3p level was overexpressed / inhibited, both E-Tmod41 protein level and F-actin content were reduced / augmented. Furthermore, among the two alternative promoters of E-Tmod, PE0 (upstream of exon 0), which mainly drives the expression of E-Tmod41, was found activated by shear stress. In conclusion, our results suggest that fluid shear stress could induce erythroid differentiation and F-actin cytoskeleton remodeling. It upregulates E-Tmod41 expression through miR-23b-3p suppression and PE0 promoter activation, which, in turn, contributes to F-actin cytoskeleton remodeling. PMID:26308647

  13. Myosin Va bound to phagosomes binds to F-actin and delays microtubule-dependent motility.

    PubMed

    Al-Haddad, A; Shonn, M A; Redlich, B; Blocker, A; Burkhardt, J K; Yu, H; Hammer, J A; Weiss, D G; Steffen, W; Griffiths, G; Kuznetsov, S A

    2001-09-01

    We established a light microscopy-based assay that reconstitutes the binding of phagosomes purified from mouse macrophages to preassembled F-actin in vitro. Both endogenous myosin Va from mouse macrophages and exogenous myosin Va from chicken brain stimulated the phagosome-F-actin interaction. Myosin Va association with phagosomes correlated with their ability to bind F-actin in an ATP-regulated manner and antibodies to myosin Va specifically blocked the ATP-sensitive phagosome binding to F-actin. The uptake and retrograde transport of phagosomes from the periphery to the center of cells in bone marrow macrophages was observed in both normal mice and mice homozygous for the dilute-lethal spontaneous mutation (myosin Va null). However, in dilute-lethal macrophages the accumulation of phagosomes in the perinuclear region occurred twofold faster than in normal macrophages. Motion analysis revealed saltatory phagosome movement with temporarily reversed direction in normal macrophages, whereas almost no reversals in direction were observed in dilute-lethal macrophages. These observations demonstrate that myosin Va mediates phagosome binding to F-actin, resulting in a delay in microtubule-dependent retrograde phagosome movement toward the cell center. We propose an "antagonistic/cooperative mechanism" to explain the saltatory phagosome movement toward the cell center in normal macrophages. PMID:11553713

  14. In vivo imaging of cell behaviors and F-actin reveals LIM-HD transcription factor regulation of peripheral versus central sensory axon development

    PubMed Central

    2011-01-01

    Background Development of specific neuronal morphology requires precise control over cell motility processes, including axon formation, outgrowth and branching. Dynamic remodeling of the filamentous actin (F-actin) cytoskeleton is critical for these processes; however, little is known about the mechanisms controlling motile axon behaviors and F-actin dynamics in vivo. Neuronal structure is specified in part by intrinsic transcription factor activity, yet the molecular and cellular steps between transcription and axon behavior are not well understood. Zebrafish Rohon-Beard (RB) sensory neurons have a unique morphology, with central axons that extend in the spinal cord and a peripheral axon that innervates the skin. LIM homeodomain (LIM-HD) transcription factor activity is required for formation of peripheral RB axons. To understand how neuronal morphogenesis is controlled in vivo and how LIM-HD transcription factor activity differentially regulates peripheral versus central axons, we used live imaging of axon behavior and F-actin distribution in vivo. Results We used an F-actin biosensor containing the actin-binding domain of utrophin to characterize actin rearrangements during specific developmental processes in vivo, including axon initiation, consolidation and branching. We found that peripheral axons initiate from a specific cellular compartment and that F-actin accumulation and protrusive activity precede peripheral axon initiation. Moreover, disruption of LIM-HD transcriptional activity has different effects on the motility of peripheral versus central axons; it inhibits peripheral axon initiation, growth and branching, while increasing the growth rate of central axons. Our imaging revealed that LIM-HD transcription factor activity is not required for F-actin based protrusive activity or F-actin accumulation during peripheral axon initiation, but can affect positioning of F-actin accumulation and axon formation. Conclusion Our ability to image the dynamics of

  15. Arp2/3-mediated F-actin formation controls regulated exocytosis in vivo

    PubMed Central

    Tran, Duy T.; Masedunskas, Andrius; Weigert, Roberto; Ten Hagen, Kelly G.

    2015-01-01

    The actin cytoskeleton plays crucial roles in many cellular processes, including regulated secretion. However, the mechanisms controlling F-actin dynamics in this process are largely unknown. Through 3D time-lapse imaging in a secreting organ, we show that F-actin is actively disassembled along the apical plasma membrane at the site of secretory vesicle fusion and re-assembled directionally on vesicle membranes. Moreover, we show that fusion pore formation and PIP2 redistribution precedes actin and myosin recruitment to secretory vesicle membranes. Finally, we show essential roles for the branched actin nucleators Arp2/3- and WASp in the process of secretory cargo expulsion and integration of vesicular membranes with the apical plasma membrane. Our results highlight previously unknown roles for branched actin in exocytosis and provide a genetically tractable system to image the temporal and spatial dynamics of polarized secretion in vivo. PMID:26639106

  16. Arp2/3-mediated F-actin formation controls regulated exocytosis in vivo.

    PubMed

    Tran, Duy T; Masedunskas, Andrius; Weigert, Roberto; Ten Hagen, Kelly G

    2015-01-01

    The actin cytoskeleton plays crucial roles in many cellular processes, including regulated secretion. However, the mechanisms controlling F-actin dynamics in this process are largely unknown. Through 3D time-lapse imaging in a secreting organ, we show that F-actin is actively disassembled along the apical plasma membrane at the site of secretory vesicle fusion and re-assembled directionally on vesicle membranes. Moreover, we show that fusion pore formation and PIP2 redistribution precedes actin and myosin recruitment to secretory vesicle membranes. Finally, we show essential roles for the branched actin nucleators Arp2/3- and WASp in the process of secretory cargo expulsion and integration of vesicular membranes with the apical plasma membrane. Our results highlight previously unknown roles for branched actin in exocytosis and provide a genetically tractable system to image the temporal and spatial dynamics of polarized secretion in vivo. PMID:26639106

  17. F-actin forms mobile and unwinding ring-shaped structures in germinating Arabidopsis pollen expressing Lifeact

    PubMed Central

    Vogler, Frank; Sprunck, Stefanie

    2015-01-01

    The flowering plant pollen tube is the fastest elongating plant cell and transports the sperm cells for double fertilization. The highly dynamic formation and reorganization of the actin cytoskeleton is essential for pollen germination and pollen tube growth. To drive pollen-specific expression of fluorescent marker proteins, commonly the strong Lat52 promoter is used. Here we show by quantitative fluorescent analysis that the gametophyte-specific ARO1 promoter from Arabidopsis drives an about 3.5 times weaker transgene expression than the Lat52 promoter. In one third of the pollen of F-actin-labeled ARO1p:tagRFP-T-Lifeact transgenic lines we observed mobile ring-shaped actin structures in pollen grains and pollen tubes. Pollen tube growth, transgene transmission and seed production were not affected by tagRFP-T-Lifeact expression. F-actin rings were able to integrate into emerging actin filaments and they may reflect a particular physiological state of the pollen or a readily available storage form provided for rapid actin network remodeling. PMID:26337326

  18. The catalytic domain of inositol-1,4,5-trisphosphate 3-kinase-a contributes to ITPKA-induced modulation of F-actin.

    PubMed

    Ashour, Dina Julia; Pelka, Benjamin; Jaaks, Patricia; Wundenberg, Torsten; Blechner, Christine; Zobiak, Bernd; Failla, Antonio Virgilio; Windhorst, Sabine

    2015-02-01

    Inositol-1,4,5-trisphosphate-3-kinase-A (ITPKA) has been considered as an actin bundling protein because its N-terminal actin binding domain (ABD) induces formation of linear actin bundles. Since in many cancer cell lines ITPKA is essential for formation of lamellipodia, which consist of cross-linked actin filaments, here we analyzed if full length-ITPKA may induce formation of more complex actin structures. Indeed, we found that incubation of F-actin with ITPKA resulted in formation of dense, branched actin networks. Based on our result that ITPKA does not exhibit an additional C-terminal ABD, we exclude that ITPKA cross-links actin filaments by simultaneous F-actin binding with two different ABDs. Instead, stimulated-emission-depletion-microscopy and measurement of InsP3 Kinase activity give evidence that that N-terminal ABD-homodimers of ITPKA bind to F-actin while the monomeric C-termini insert between adjacent actin filaments. Thereby, they prevent formation of thick actin bundles but induce formation of thin branched actin structures. Interestingly, when embedded in this dense actin network, InsP3 Kinase activity is doubled and the product of InsP3 Kinase activity, Ins(1,3,4,5)P4 , inhibits spontaneous actin polymerization which may reflect a local negative feedback regulation of InsP3 Kinase activity. In conclusion, we demonstrate that not only the ABD of ITPKA modulates actin dynamics but reveal that the InsP3 Kinase domain substantially contributes to this process. PMID:25620569

  19. Myosin-dependent endoplasmic reticulum motility and F-actin organization in plant cells

    PubMed Central

    Ueda, Haruko; Yokota, Etsuo; Kutsuna, Natsumaro; Shimada, Tomoo; Tamura, Kentaro; Shimmen, Teruo; Hasezawa, Seiichiro; Dolja, Valerian V.; Hara-Nishimura, Ikuko

    2010-01-01

    Plants exhibit an ultimate case of the intracellular motility involving rapid organelle trafficking and continuous streaming of the endoplasmic reticulum (ER). Although it was long assumed that the ER dynamics is actomyosin-driven, the responsible myosins were not identified, and the ER streaming was not characterized quantitatively. Here we developed software to generate a detailed velocity-distribution map for the GFP-labeled ER. This map revealed that the ER in the most peripheral plane was relatively static, whereas the ER in the inner plane was rapidly streaming with the velocities of up to ∼3.5 μm/sec. Similar patterns were observed when the cytosolic GFP was used to evaluate the cytoplasmic streaming. Using gene knockouts, we demonstrate that the ER dynamics is driven primarily by the ER-associated myosin XI-K, a member of a plant-specific myosin class XI. Furthermore, we show that the myosin XI deficiency affects organization of the ER network and orientation of the actin filament bundles. Collectively, our findings suggest a model whereby dynamic three-way interactions between ER, F-actin, and myosins determine the architecture and movement patterns of the ER strands, and cause cytosol hauling traditionally defined as cytoplasmic streaming. PMID:20351265

  20. Street rabies virus causes dendritic injury and F-actin depolymerization in the hippocampus

    PubMed Central

    Song, Yan; Hou, Jinli; Qiao, Bin; Li, Yanchao; Xu, Ye; Duan, Ming; Guan, Zhenhong; Sun, Liankun

    2013-01-01

    Rabies is an acute viral infection of the central nervous system and is typically fatal in humans and animals; however, its pathogenesis remains poorly understood. In this study, the morphological changes of dendrites and dendritic spines in the CA1 region of the hippocampus were investigated in mice that were infected intracerebrally with an MRV strain of the street rabies virus. Haematoxylin and eosin and fluorescence staining analysis of brain sections from the infected mice showed very few morphological changes in the neuronal bodies and neuronal processes. However, we found a significant decrease in the number of dendritic spines. Primary neuronal cultures derived from the hippocampus of mice (embryonic day 16.5) that were infected with the virus also showed an obvious decrease in the number of dendritic spines. Furthermore, the decrease in the number of dendritic spines was related to the depolymerization of actin filaments (F-actin). We propose that the observed structural changes can partially explain the severe clinical disease that was found in experimental models of street rabies virus infections. PMID:23114630

  1. Entangled F-actin displays a unique crossover to microscale nonlinearity dominated by entanglement segment dynamics.

    PubMed

    Falzone, Tobias T; Blair, Savanna; Robertson-Anderson, Rae M

    2015-06-14

    We drive optically trapped microspheres through entangled F-actin at constant speeds and distances well beyond the linear regime, and measure the microscale force response of the entangled filaments during and following strain. Our results reveal a unique crossover to appreciable nonlinearity at a strain rate of [small gamma, Greek, dot above]c ≈ 3 s(-1) which corresponds remarkably well with the theoretical rate of relaxation of entanglement length deformations 1/τent. Above [small gamma, Greek, dot above]c, we observe stress stiffening which occurs over very short time scales comparable to the predicted timescale over which mesh size deformations relax. Stress softening then takes over, yielding to an effectively viscous regime over a timescale comparable to the entanglement length relaxation time, τent. The viscous regime displays shear thinning but with a less pronounced viscosity scaling with strain rate compared to flexible polymers. The relaxation of induced force on filaments following strain shows that the relative relaxation proceeds more quickly for increasing strain rates; and for rates greater than [small gamma, Greek, dot above]c, the relaxation displays a complex power-law dependence on time. Our collective results reveal that molecular-level nonlinear viscoelasticity is driven by non-classical dynamics of individual entanglement segments that are unique to semiflexible polymers. PMID:25920523

  2. F-actin dampens NLRP3 inflammasome activity via Flightless-I and LRRFIP2

    PubMed Central

    Burger, Danielle; Fickentscher, Céline; de Moerloose, Philippe; Brandt, Karim J.

    2016-01-01

    NLRP3 and ASC are able to form a large multimeric complex called inflammasome in response to a number danger signals. The NLRP3 inflammasome is required for the activation of caspase-1 and subsequent maturation of pro-IL-1β into active IL-1β. Although the mechanisms regulating the formation and activity of NLRP3 inflammasome are yet not fully elucidated, data suggest that the assembly of NLRP3 inflammasome requires microtubules to induce the proximity of ASC and NLRP3. In this study we show that microfilaments (F-actin) inhibit NLRP3 inflammasome activity and interact with NLRP3 and ASC. We demonstrate that the inhibition depends on the actin polymerization state but not on the active polymerization process. In ATP- or nigericin-activated macrophages, our data further indicate that Flightless-I (FliI) and leucine-rich repeat FliI-interaction protein 2 (LRRFIP2) are required for the co-localization of NLRP3, ASC and F-actin. We also established that the ability of Ca2+ to accentuate the activity of NLRP3 inflammasome is abrogated in FliI- and LRRFIP2-knockdown macrophages, suggesting that Ca2+ signaling requires the presence of FliI and LRRFIP2. Accordingly, we observed that Ca2+/FliI-dependent severing of F-actin suppresses F-actin/FliI/LRRFIP2-dependent NLRP3 inflammasome inhibition leading to increase IL-1β production. Altogether, our results unveil a new function of F-actin in the regulation of NLRP3 inflammasome activity strengthening the importance of cytoskeleton in the regulation of inflammation. PMID:27431477

  3. F-actin is intermolecularly crosslinked by N,N'-p-phenylenedimaleimide through lysine-191 and cysteine-374.

    PubMed

    Elzinga, M; Phelan, J J

    1984-11-01

    The bifunctional reagent N,N'-p-phenylenedimaleimide (PDM) is being used in an attempt to measure distances between specific side chains in adjacent monomers within F-actin. [14C]PDM was synthesized and was used to crosslink F-actin. Uncrosslinked actin was removed by gel filtration, and, from an arginine-specific tryptic digest of the covalently crosslinked dimers and higher oligomers, one radioactive crosslinked peptide was obtained in high yield. Amino acid composition and sequence analysis indicated that it comprises residues 184-196 of one monomer and 373-375 of an adjacent actin molecule, bridged by PDM through Cys-374 and Lys-191. Thus, these groups are shown to be 1.2-1.4 nm apart in adjacent actin monomers in F-actin. This information may be crucial in establishing the orientation of actin monomers within F-actin. PMID:6436818

  4. Coronin 3 involvement in F-actin-dependent processes at the cell cortex

    SciTech Connect

    Rosentreter, Andre; Hofmann, Andreas; Xavier, Charles-Peter; Stumpf, Maria; Noegel, Angelika A.; Clemen, Christoph S. . E-mail: christoph.clemen@uni-koeln.de

    2007-03-10

    The actin interaction of coronin 3 has been mainly documented by in vitro experiments. Here, we discuss coronin 3 properties in the light of new structural information and focus on assays that reflect in vivo roles of coronin 3 and its impact on F-actin-associated functions. Using GFP-tagged coronin 3 fusion proteins and RNAi silencing we show that coronin 3 has roles in wound healing, protrusion formation, cell proliferation, cytokinesis, endocytosis, axonal growth, and secretion. During formation of cell protrusions actin accumulation precedes the focal enrichment of coronin 3 suggesting a role for coronin 3 in events that follow the initial F-actin assembly. Moreover, we show that coronin 3 similar to other coronins interacts with the Arp2/3-complex and cofilin indicating that this family in general is involved in regulating Arp2/3-mediated events.

  5. F-actin waves, actin cortex disassembly and focal exocytosis driven by actin-phosphoinositide positive feedback.

    PubMed

    Masters, Thomas A; Sheetz, Michael P; Gauthier, Nils C

    2016-04-01

    Actin polymerization is controlled by the phosphoinositide composition of the plasma membrane. However, the molecular mechanisms underlying the spatiotemporal regulation of actin network organization over extended length scales are still unclear. To observe phosphoinositide-dependent cytoskeletal dynamics we combined the model system of frustrated phagocytosis, total internal reflection microscopy and manipulation of the buffer tonicity. We found that macrophages interacting with IgG-coated glass substrates formed circular F-actin waves on their ventral surface enclosing a region of plasma membrane devoid of cortical actin. Plasma membrane free of actin cortex was strongly depleted of PI(4,5)P2 , but enriched in PI(3,4)P2 and displayed a fivefold increase in exocytosis. Wave formation could be promoted by application of a hypotonic shock. The actin waves were characteristic of a bistable wavefront at the boundary between the regions of membrane containing and lacking cortical actin. Phosphoinositide modifiers and RhoGTPase activities dramatically redistributed with respect to the wavefronts, which often exhibited spatial oscillations. Perturbation of either lipid or actin cytoskeleton-related pathways led to rapid loss of both the polarized lipid distribution and the wavefront. As waves travelled over the plasma membrane, wavefront actin was seen to rapidly polymerize and depolymerize at pre-existing clusters of FcγRIIA, coincident with rapid changes in lipid composition. Thus the potential of receptors to support rapid F-actin polymerization appears to depend acutely on the local concentrations of multiple lipid species. We propose that interdependence through positive feedback from the cytoskeleton to lipid modifiers leads to coordinated local cortex remodeling, focal exocytosis, and organizes extended actin networks. PMID:26915738

  6. Fission yeast IQGAP arranges actin filaments into the cytokinetic contractile ring.

    PubMed

    Takaine, Masak; Numata, Osamu; Nakano, Kentaro

    2009-10-21

    The contractile ring (CR) consists of bundled actin filaments and myosin II; however, the actin-bundling factor remains elusive. We show that the fission yeast Schizosaccharomyces pombe IQGAP Rng2 is involved in the generation of CR F-actin and required for its arrangement into a ring. An N-terminal fragment of Rng2 is necessary for the function of Rng2 and is localized to CR F-actin. In vitro the fragment promotes actin polymerization and forms linear arrays of F-actin, which are resistant to the depolymerization induced by the actin-depolymerizing factor Adf1. Our findings indicate that Rng2 is involved in the generation of CR F-actin and simultaneously bundles the filaments and regulates its dynamics by counteracting the effects of Adf1, thus enabling the reconstruction of CR F-actin bundles, which provides an insight into the physical properties of the building blocks that comprise the CR. PMID:19713940

  7. Staining Fission Yeast Filamentous Actin with Fluorescent Phalloidin Conjugates.

    PubMed

    Hagan, Iain M

    2016-01-01

    The Schizosaccharomyces pombe filamentous (F)-actin cytoskeleton drives cell growth, morphogenesis, endocytosis, and cytokinesis. The protocol described here reveals the distribution of F-actin in fixed cells through the use of fluorescently conjugated phalloidin. Simultaneous staining of cell wall landmarks (with calcofluor) and chromatin (with 4',6-diamidino-2-phenylindole, or DAPI) makes this rapid staining procedure highly effective for staging cell cycle progression, monitoring morphogenetic abnormalities, and assessing the impact of environmental and genetic changes on the integrity of the F-actin cytoskeleton. PMID:27250943

  8. F-actin polymerization and retrograde flow drive sustained PLCγ1 signaling during T cell activation

    PubMed Central

    Babich, Alexander; Li, Shuixing; O'Connor, Roddy S.; Milone, Michael C.; Freedman, Bruce D.

    2012-01-01

    Activation of T cells by antigen-presenting cells involves assembly of signaling molecules into dynamic microclusters (MCs) within a specialized membrane domain termed the immunological synapse (IS). Actin and myosin IIA localize to the IS, and depletion of F-actin abrogates MC movement and T cell activation. However, the mechanisms that coordinate actomyosin dynamics and T cell receptor signaling are poorly understood. Using pharmacological inhibitors that perturb individual aspects of actomyosin dynamics without disassembling the network, we demonstrate that F-actin polymerization is the primary driver of actin retrograde flow, whereas myosin IIA promotes long-term integrity of the IS. Disruption of F-actin retrograde flow, but not myosin IIA contraction, arrested MC centralization and inhibited sustained Ca2+ signaling at the level of endoplasmic reticulum store release. Furthermore, perturbation of retrograde flow inhibited PLCγ1 phosphorylation within MCs but left Zap70 activity intact. These studies highlight the importance of ongoing actin polymerization as a central driver of actomyosin retrograde flow, MC centralization, and sustained Ca2+ signaling. PMID:22665519

  9. ROP Gtpase–Dependent Dynamics of Tip-Localized F-Actin Controls Tip Growth in Pollen Tubes

    PubMed Central

    Fu, Ying; Wu, Guang; Yang, Zhenbiao

    2001-01-01

    Tip-growing pollen tubes provide a useful model system to study polar growth. Although roles for tip-focused calcium gradient and tip-localized Rho-family GTPase in pollen tube growth is established, the existence and function of tip-localized F-actin have been controversial. Using the green fluorescent protein–tagged actin-binding domain of mouse talin, we found a dynamic form of tip-localized F-actin in tobacco pollen tubes, termed short actin bundles (SABs). The dynamics of SABs during polar growth in pollen tubes is regulated by Rop1At, a Rop GTPase belonging to the Rho family. When overexpressed, Rop1At transformed SAB into a network of fine filaments and induced a transverse actin band behind the tip, leading to depolarized growth. These changes were due to ectopic Rop1At localization to the apical region of the plasma membrane and were suppressed by guanine dissociation inhibitor overexpression, which removed ectopically localized Rop1At. Rop GTPase–activating protein (RopGAP1) overexpression, or Latrunculin B treatments, also recovered normal actin organization and tip growth in Rop1At-overexpressing tubes. Moreover, overexpression of RopGAP1 alone disrupted SABs and inhibited growth. Finally, SAB oscillates and appears at the tip before growth. Together, these results indicate that the dynamics of tip actin are essential for tip growth and provide the first direct evidence to link Rho GTPase to actin organization in controlling cell polarity and polar growth in plants. PMID:11238457

  10. Bacterial lipopolysaccharide induces actin reorganization, intercellular gap formation, and endothelial barrier dysfunction in pulmonary vascular endothelial cells: concurrent F-actin depolymerization and new actin synthesis.

    PubMed

    Goldblum, S E; Ding, X; Brann, T W; Campbell-Washington, J

    1993-10-01

    Bacterial lipopolysaccharide (LPS) influences pulmonary vascular endothelial barrier function in vitro. We studied whether LPS regulates endothelial barrier function through actin reorganization. Postconfluent bovine pulmonary artery endothelial cell monolayers were exposed to Escherichia coli 0111:B4 LPS 10 ng/ml or media for up to 6 h and evaluated for: 1) transendothelial 14C-albumin flux, 2) F-actin organization with fluorescence microscopy, 3) F-actin quantitation by spectrofluorometry, and 4) monomeric G-actin levels by the DNAse 1 inhibition assay. LPS induced increments in 14C-albumin flux (P < 0.001) and intercellular gap formation at > or = 2-6 h. During this same time period the endothelial F-actin pool was not significantly changed compared to simultaneous media controls. Mean (+/- SE) G-actin (micrograms/mg total protein) was significantly (P < 0.002) increased compared to simultaneous media controls at 2, 4, and 6 h but not at 0.5 or 1 h. Prior F-actin stabilization with phallicidin protected against the LPS-induced increments in G-actin (P = 0.040) as well as changes in barrier function (P < 0.0001). Prior protein synthesis inhibition unmasked an LPS-induced decrement in F-actin (P = 0.0044), blunted the G-actin increment (P = 0.010), and increased LPS-induced changes in endothelial barrier function (P < 0.0001). Therefore, LPS induces pulmonary vascular endothelial F-actin depolymerization, intercellular gap formation, and barrier dysfunction. Over the same time period, LPS increased total actin (P < 0.0001) and new actin synthesis (P = 0.0063) which may be a compensatory endothelial cell response to LPS-induced F-actin depolymerization. PMID:8408232

  11. Polarity protein Crumbs homolog-3 (CRB3) regulates ectoplasmic specialization dynamics through its action on F-actin organization in Sertoli cells

    PubMed Central

    Gao, Ying; Lui, Wing-yee; Lee, Will M.; Cheng, C. Yan

    2016-01-01

    Crumbs homolog 3 (or Crumbs3, CRB3) is a polarity protein expressed by Sertoli and germ cells at the basal compartment in the seminiferous epithelium. CRB3 also expressed at the blood-testis barrier (BTB), co-localized with F-actin, TJ proteins occludin/ZO-1 and basal ES (ectoplasmic specialization) proteins N-cadherin/β-catenin at stages IV-VII only. The binding partners of CRB3 in the testis were the branched actin polymerization protein Arp3, and the barbed end-capping and bundling protein Eps8, illustrating its possible role in actin organization. CRB3 knockdown (KD) by RNAi in Sertoli cells with an established tight junction (TJ)-permeability barrier perturbed the TJ-barrier via changes in the distribution of TJ- and basal ES-proteins at the cell-cell interface. These changes were the result of CRB3 KD-induced re-organization of actin microfilaments, in which actin microfilaments were truncated, and extensively branched, thereby destabilizing F-actin-based adhesion protein complexes at the BTB. Using Polyplus in vivo-jetPEI as a transfection medium with high efficiency for CRB3 KD in the testis, the CRB3 KD testes displayed defects in spermatid and phagosome transport, and also spermatid polarity due to a disruption of F-actin organization. In summary, CRB3 is an actin microfilament regulator, playing a pivotal role in organizing actin filament bundles at the ES. PMID:27358069

  12. Polarity protein Crumbs homolog-3 (CRB3) regulates ectoplasmic specialization dynamics through its action on F-actin organization in Sertoli cells.

    PubMed

    Gao, Ying; Lui, Wing-Yee; Lee, Will M; Cheng, C Yan

    2016-01-01

    Crumbs homolog 3 (or Crumbs3, CRB3) is a polarity protein expressed by Sertoli and germ cells at the basal compartment in the seminiferous epithelium. CRB3 also expressed at the blood-testis barrier (BTB), co-localized with F-actin, TJ proteins occludin/ZO-1 and basal ES (ectoplasmic specialization) proteins N-cadherin/β-catenin at stages IV-VII only. The binding partners of CRB3 in the testis were the branched actin polymerization protein Arp3, and the barbed end-capping and bundling protein Eps8, illustrating its possible role in actin organization. CRB3 knockdown (KD) by RNAi in Sertoli cells with an established tight junction (TJ)-permeability barrier perturbed the TJ-barrier via changes in the distribution of TJ- and basal ES-proteins at the cell-cell interface. These changes were the result of CRB3 KD-induced re-organization of actin microfilaments, in which actin microfilaments were truncated, and extensively branched, thereby destabilizing F-actin-based adhesion protein complexes at the BTB. Using Polyplus in vivo-jetPEI as a transfection medium with high efficiency for CRB3 KD in the testis, the CRB3 KD testes displayed defects in spermatid and phagosome transport, and also spermatid polarity due to a disruption of F-actin organization. In summary, CRB3 is an actin microfilament regulator, playing a pivotal role in organizing actin filament bundles at the ES. PMID:27358069

  13. F-actin mechanics control spindle centring in the mouse zygote

    NASA Astrophysics Data System (ADS)

    Chaigne, Agathe; Campillo, Clément; Voituriez, Raphaël; Gov, Nir S.; Sykes, Cécile; Verlhac, Marie-Hélène; Terret, Marie-Emilie

    2016-01-01

    Mitotic spindle position relies on interactions between astral microtubules nucleated by centrosomes and a rigid cortex. Some cells, such as mouse oocytes, do not possess centrosomes and astral microtubules. These cells rely only on actin and on a soft cortex to position their spindle off-centre and undergo asymmetric divisions. While the first mouse embryonic division also occurs in the absence of centrosomes, it is symmetric and not much is known on how the spindle is positioned at the exact cell centre. Using interdisciplinary approaches, we demonstrate that zygotic spindle positioning follows a three-step process: (1) coarse centring of pronuclei relying on the dynamics of an F-actin/Myosin-Vb meshwork; (2) fine centring of the metaphase plate depending on a high cortical tension; (3) passive maintenance at the cell centre. Altogether, we show that F-actin-dependent mechanics operate the switch between asymmetric to symmetric division required at the oocyte to embryo transition.

  14. F-actin mechanics control spindle centring in the mouse zygote.

    PubMed

    Chaigne, Agathe; Campillo, Clément; Voituriez, Raphaël; Gov, Nir S; Sykes, Cécile; Verlhac, Marie-Hélène; Terret, Marie-Emilie

    2016-01-01

    Mitotic spindle position relies on interactions between astral microtubules nucleated by centrosomes and a rigid cortex. Some cells, such as mouse oocytes, do not possess centrosomes and astral microtubules. These cells rely only on actin and on a soft cortex to position their spindle off-centre and undergo asymmetric divisions. While the first mouse embryonic division also occurs in the absence of centrosomes, it is symmetric and not much is known on how the spindle is positioned at the exact cell centre. Using interdisciplinary approaches, we demonstrate that zygotic spindle positioning follows a three-step process: (1) coarse centring of pronuclei relying on the dynamics of an F-actin/Myosin-Vb meshwork; (2) fine centring of the metaphase plate depending on a high cortical tension; (3) passive maintenance at the cell centre. Altogether, we show that F-actin-dependent mechanics operate the switch between asymmetric to symmetric division required at the oocyte to embryo transition. PMID:26727405

  15. F-actin mechanics control spindle centring in the mouse zygote

    PubMed Central

    Chaigne, Agathe; Campillo, Clément; Voituriez, Raphaël; Gov, Nir S.; Sykes, Cécile; Verlhac, Marie-Hélène; Terret, Marie-Emilie

    2016-01-01

    Mitotic spindle position relies on interactions between astral microtubules nucleated by centrosomes and a rigid cortex. Some cells, such as mouse oocytes, do not possess centrosomes and astral microtubules. These cells rely only on actin and on a soft cortex to position their spindle off-centre and undergo asymmetric divisions. While the first mouse embryonic division also occurs in the absence of centrosomes, it is symmetric and not much is known on how the spindle is positioned at the exact cell centre. Using interdisciplinary approaches, we demonstrate that zygotic spindle positioning follows a three-step process: (1) coarse centring of pronuclei relying on the dynamics of an F-actin/Myosin-Vb meshwork; (2) fine centring of the metaphase plate depending on a high cortical tension; (3) passive maintenance at the cell centre. Altogether, we show that F-actin-dependent mechanics operate the switch between asymmetric to symmetric division required at the oocyte to embryo transition. PMID:26727405

  16. Ordered stacking of F-actin layers and mixed lipid bilayers: a columnar liquid crystal.

    PubMed

    Caillé, A; Artzner, F; Amblard, F

    2013-01-25

    In this Letter, we show how the grooved helical structure of actin microfilaments (F-actin) interacting with mixed fluid lipid bilayers leads to handedness-independent 1D lipid bilayer undulations coupled to longitudinal in-plane ordering of the microfilaments. This longitudinal ordering is forced by the emerging in-plane compression and curvature energy terms of the straight 1D bilayer undulation wave fronts. Thereby, adjacent helices are set into registry along their long axis in their monolayer and π shifted between adjacent monolayers. An ordered composite multilamellar structure emerges by alternate stacking of these lipid bilayers and monolayers of F-actin. This two-dimensionally ordered system has the symmetries of a centered rectangular columnar liquid crystal, the straight 1D wave fronts playing the role of the classical molecular columns. PMID:25166203

  17. Reaction-diffusion waves of reversible actin filament assembly drive cell oscillations and locomotion

    NASA Astrophysics Data System (ADS)

    Vicker, Michael G.

    Excitation waves of actin filament (F-actin) polymerization and depolymerization have been visualized in fixed and in living Dictyostelium cells by confocal and fluorescence resonance energy transfer (FRET) microscopy. F-actin waves generate supramolecular F-actin patterns, typical of chemical wave systems. Scroll waves distinguishable as sphere, ring and spiral patterns propagate up to several micrometres in diameter in a few seconds at wavefront speeds measured at up to 25 µm/min. These newly identified nonlinear F-actin dynamics drive eukaryotic cell locomotion. F-actin autowaves also induce oscillatory modi of temporally variable frequency and amplitude as cell surface projections, including pseudopodia and lamellipodia, which may traverse the cell surface as waves. F-actin waves may also govern a range of cell functions and behaviours, including phagocytosis, chemotaxis, cell surface receptor activity and biological rhythms.

  18. A nanobody targeting the F-actin capping protein CapG restrains breast cancer metastasis

    PubMed Central

    2013-01-01

    Introduction Aberrant turnover of the actin cytoskeleton is intimately associated with cancer cell migration and invasion. Frequently however, evidence is circumstantial, and a reliable assessment of the therapeutic significance of a gene product is offset by lack of inhibitors that target biologic properties of a protein, as most conventional drugs do, instead of the corresponding gene. Proteomic studies have demonstrated overexpression of CapG, a constituent of the actin cytoskeleton, in breast cancer. Indirect evidence suggests that CapG is involved in tumor cell dissemination and metastasis. In this study, we used llama-derived CapG single-domain antibodies or nanobodies in a breast cancer metastasis model to address whether inhibition of CapG activity holds therapeutic merit. Methods We raised single-domain antibodies (nanobodies) against human CapG and used these as intrabodies (immunomodulation) after lentiviral transduction of breast cancer cells. Functional characterization of nanobodies was performed to identify which biochemical properties of CapG are perturbed. Orthotopic and tail vein in vivo models of metastasis in nude mice were used to assess cancer cell spreading. Results With G-actin and F-actin binding assays, we identified a CapG nanobody that binds with nanomolar affinity to the first CapG domain. Consequently, CapG interaction with actin monomers or actin filaments is blocked. Intracellular delocalization experiments demonstrated that the nanobody interacts with CapG in the cytoplasmic environment. Expression of the nanobody in breast cancer cells restrained cell migration and Matrigel invasion. Notably, the nanobody prevented formation of lung metastatic lesions in orthotopic xenograft and tail-vein models of metastasis in immunodeficient mice. We showed that CapG nanobodies can be delivered into cancer cells by using bacteria harboring a type III protein secretion system (T3SS). Conclusions CapG inhibition strongly reduces breast cancer

  19. Mutations in the Drosophila orthologs of the F-actin capping protein alpha- and beta-subunits cause actin accumulation and subsequent retinal degeneration.

    PubMed

    Delalle, Ivana; Pfleger, Cathie M; Buff, Eugene; Lueras, Paula; Hariharan, Iswar K

    2005-12-01

    The progression of several human neurodegenerative diseases is characterized by the appearance of intracellular inclusions or cytoskeletal abnormalities. An important question is whether these abnormalities actually contribute to the degenerative process or whether they are merely manifestations of cells that are already destined for degeneration. We have conducted a large screen in Drosophila for mutations that alter the growth or differentiation of cells during eye development. We have used mitotic recombination to generate patches of homozygous mutant cells. In our entire screen, mutations in only two different loci, burned (bnd) and scorched (scrd), resulted in eyes in which the mutant patches appeared black and the mutant tissue appeared to have undergone degeneration. In larval imaginal discs, growth and cell fate specification occur normally in mutant cells, but there is an accumulation of F-actin. Mutant cells degenerate much later during the pupal phase of development. burned mutations are allelic to mutations in the previously described cpb locus that encodes the beta-subunit of the F-actin capping protein, while scorched mutations disrupt the gene encoding its alpha-subunit (cpa). The alpha/beta-heterodimer caps the barbed ends of an actin filament and restricts its growth. In its absence, cells progressively accumulate actin filaments and eventually die. A possible role for their human orthologs in neurodegenerative disease merits further investigation. PMID:16143599

  20. Environmental toxicants perturb human Sertoli cell adhesive function via changes in F-actin organization mediated by actin regulatory proteins

    PubMed Central

    Xiao, Xiang; Mruk, Dolores D.; Tang, Elizabeth I.; Wong, Chris K.C.; Lee, Will M.; John, Constance M.; Turek, Paul J.; Silvestrini, Bruno; Cheng, C. Yan

    2014-01-01

    STUDY QUESTION Can human Sertoli cells cultured in vitro and that have formed an epithelium be used as a model to monitor toxicant-induced junction disruption and to better understand the mechanism(s) by which toxicants disrupt cell adhesion at the Sertoli cell blood–testis barrier (BTB)? SUMMARY ANSWER Our findings illustrate that human Sertoli cells cultured in vitro serve as a reliable system to monitor the impact of environmental toxicants on the BTB function. WHAT IS KNOWN ALREADY Suspicions of a declining trend in semen quality and a concomitant increase in exposures to environmental toxicants over the past decades reveal the need of an in vitro system that efficiently and reliably monitors the impact of toxicants on male reproductive function. Furthermore, studies in rodents have confirmed that environmental toxicants impede Sertoli cell BTB function in vitro and in vivo. STUDY DESIGN, SIZE AND DURATION We examined the effects of two environmental toxicants: cadmium chloride (0.5–20 µM) and bisphenol A (0.4–200 µM) on human Sertoli cell function. Cultured Sertoli cells from three men were used in this study, which spanned an 18-month period. PARTICIPANTS/MATERIALS, SETTING, METHODS Human Sertoli cells from three subjects were cultured in F12/DMEM containing 5% fetal bovine serum. Changes in protein expression were monitored by immunoblotting using specific antibodies. Immunofluorescence analyses were used to assess changes in the distribution of adhesion proteins, F-actin and actin regulatory proteins following exposure to two toxicants: cadmium chloride and bisphenol A (BPA). MAIN RESULTS AND THE ROLE OF CHANCE Human Sertoli cells were sensitive to cadmium and BPA toxicity. Changes in the localization of cell adhesion proteins were mediated by an alteration of the actin-based cytoskeleton. This alteration of F-actin network in Sertoli cells as manifested by truncation and depolymerization of actin microfilaments at the Sertoli cell BTB was caused by

  1. Regulation of myosin IIA and filamentous actin during insulin-stimulated glucose uptake in 3T3-L1 adipocytes

    SciTech Connect

    Stall, Richard; Ramos, Joseph; Kent Fulcher, F.; Patel, Yashomati M.

    2014-03-10

    Insulin stimulated glucose uptake requires the colocalization of myosin IIA (MyoIIA) and the insulin-responsive glucose transporter 4 (GLUT4) at the plasma membrane for proper GLUT4 fusion. MyoIIA facilitates filamentous actin (F-actin) reorganization in various cell types. In adipocytes F-actin reorganization is required for insulin-stimulated glucose uptake. What is not known is whether MyoIIA interacts with F-actin to regulate insulin-induced GLUT4 fusion at the plasma membrane. To elucidate the relationship between MyoIIA and F-actin, we examined the colocalization of MyoIIA and F-actin at the plasma membrane upon insulin stimulation as well as the regulation of this interaction. Our findings demonstrated that MyoIIA and F-actin colocalized at the site of GLUT4 fusion with the plasma membrane upon insulin stimulation. Furthermore, inhibition of MyoII with blebbistatin impaired F-actin localization at the plasma membrane. Next we examined the regulatory role of calcium in MyoIIA-F-actin colocalization. Reduced calcium or calmodulin levels decreased colocalization of MyoIIA and F-actin at the plasma membrane. While calcium alone can translocate MyoIIA it did not stimulate F-actin accumulation at the plasma membrane. Taken together, we established that while MyoIIA activity is required for F-actin localization at the plasma membrane, it alone is insufficient to localize F-actin to the plasma membrane. - Highlights: • Insulin induces colocalization of MyoIIA and F-actin at the cortex in adipocytes. • MyoIIA is necessary but not sufficient to localize F-actin at the cell cortex. • MyoIIA-F-actin colocalization is regulated by calcium and calmodulin.

  2. An affine continuum mechanical model for cross-linked F-actin networks with compliant linker proteins.

    PubMed

    Holzapfel, Gerhard A; Unterberger, Michael J; Ogden, Ray W

    2014-10-01

    Cross-linked actin networks are important building blocks of the cytoskeleton. In order to gain deeper insight into the interpretation of experimental data on actin networks, adequate models are required. In this paper we introduce an affine constitutive network model for cross-linked F-actin networks based on nonlinear continuum mechanics, and specialize it in order to reproduce the experimental behavior of in vitro reconstituted model networks. The model is based on the elastic properties of single filaments embedded in an isotropic matrix such that the overall properties of the composite are described by a free-energy function. In particular, we are able to obtain the experimentally determined shear and normal stress responses of cross-linked actin networks typically observed in rheometer tests. In the present study an extensive analysis is performed by applying the proposed model network to a simple shear deformation. The single filament model is then extended by incorporating the compliance of cross-linker proteins and further extended by including viscoelasticity. All that is needed for the finite element implementation is the constitutive model for the filaments, the linkers and the matrix, and the associated elasticity tensor in either the Lagrangian or Eulerian formulation. The model facilitates parameter studies of experimental setups such as micropipette aspiration experiments and we present such studies to illustrate the efficacy of this modeling approach. PMID:25043658

  3. Concomitant binding of Afadin to LGN and F-actin directs planar spindle orientation.

    PubMed

    Carminati, Manuel; Gallini, Sara; Pirovano, Laura; Alfieri, Andrea; Bisi, Sara; Mapelli, Marina

    2016-02-01

    Polarized epithelia form by oriented cell divisions in which the mitotic spindle aligns parallel to the epithelial plane. To orient the mitotic spindle, cortical cues trigger the recruitment of NuMA-dynein-based motors, which pull on astral microtubules via the protein LGN. We demonstrate that the junctional protein Afadin is required for spindle orientation and correct epithelial morphogenesis of Caco-2 cysts. Molecularly, Afadin binds directly and concomitantly to F-actin and to LGN. We determined the crystallographic structure of human Afadin in complex with LGN and show that it resembles the LGN-NuMA complex. In mitosis, Afadin is necessary for cortical accumulation of LGN and NuMA above the spindle poles, in an F-actin-dependent manner. Collectively, our results depict Afadin as a molecular hub governing the enrichment of LGN and NuMA at the cortex. To our knowledge, Afadin is the first-described mechanical anchor between dynein and cortical F-actin. PMID:26751642

  4. F-actin bundles direct the initiation and orientation of lamellipodia through adhesion-based signaling

    PubMed Central

    Johnson, Heath E.; King, Samantha J.; Asokan, Sreeja B.; Rotty, Jeremy D.; Bear, James E.

    2015-01-01

    Mesenchymal cells such as fibroblasts are weakly polarized and reorient directionality by a lamellipodial branching mechanism that is stabilized by phosphoinositide 3-kinase (PI3K) signaling. However, the mechanisms by which new lamellipodia are initiated and directed are unknown. Using total internal reflection fluorescence microscopy to monitor cytoskeletal and signaling dynamics in migrating cells, we show that peripheral F-actin bundles/filopodia containing fascin-1 serve as templates for formation and orientation of lamellipodia. Accordingly, modulation of fascin-1 expression tunes cell shape, quantified as the number of morphological extensions. Ratiometric imaging reveals that F-actin bundles/filopodia play both structural and signaling roles, as they prime the activation of PI3K signaling mediated by integrins and focal adhesion kinase. Depletion of fascin-1 ablated fibroblast haptotaxis on fibronectin but not platelet-derived growth factor chemotaxis. Based on these findings, we conceptualize haptotactic sensing as an exploration, with F-actin bundles directing and lamellipodia propagating the process and with signaling mediated by adhesions playing the role of integrator. PMID:25666809

  5. Rab35 GTPase and OCRL phosphatase remodel lipids and F-actin for successful cytokinesis.

    PubMed

    Dambournet, Daphné; Machicoane, Mickael; Chesneau, Laurent; Sachse, Martin; Rocancourt, Murielle; El Marjou, Ahmed; Formstecher, Etienne; Salomon, Rémi; Goud, Bruno; Echard, Arnaud

    2011-08-01

    Abscission is the least understood step of cytokinesis. It consists of the final cut of the intercellular bridge connecting the sister cells at the end of mitosis, and is thought to involve membrane trafficking as well as lipid and cytoskeleton remodelling. We previously identified the Rab35 GTPase as a regulator of a fast recycling endocytic pathway that is essential for post-furrowing cytokinesis stages. Here, we report that the phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P2) 5-phosphatase OCRL, which is mutated in Lowe syndrome patients, is an effector of the Rab35 GTPase in cytokinesis abscission. GTP-bound (active) Rab35 directly interacts with OCRL and controls its localization at the intercellular bridge. Depletion of Rab35 or OCRL inhibits cytokinesis abscission and is associated with local abnormal PtdIns(4,5)P2 and F-actin accumulation in the intercellular bridge. These division defects are also found in cell lines derived from Lowe patients and can be corrected by the addition of low doses of F-actin depolymerization drugs. Our data demonstrate that PtdIns(4,5)P2 hydrolysis is important for normal cytokinesis abscission to locally remodel the F-actin cytoskeleton in the intercellular bridge. They also reveal an unexpected role for the phosphatase OCRL in cell division and shed new light on the pleiotropic phenotypes associated with Lowe disease. PMID:21706022

  6. mDia1 and formins: screw cap of the actin filament

    PubMed Central

    Mizuno, Hiroaki; Watanabe, Naoki

    2012-01-01

    Formin homology proteins (formins) are actin nucleation factors which remain bound to the growing barbed end and processively elongate actin filament (F-actin). Recently, we have demonstrated that a mammalian formin mDia1 rotates along the long-pitch helix of F-actin during processive elongation (helical rotation) by single-molecule fluorescence polarization. We have also shown processive depolymerization of mDia1-bound F-actin during which helical rotation was visualized. In the cell where F-actins are highly cross-linked, formins should rotate during filament elongation. Therefore, when formins are tightly anchored to cellular structures, formins may not elongate F-actin. Adversely, helical rotation of formins might affect the twist of F-actin. Formins could thus control actin elongation and regulate stability of cellular actin filaments through helical rotation. On the other hand, ADP-actin elongation at the mDia1-bound barbed end turned out to become decelerated by profilin, in marked contrast to its remarkably positive effect on mDia1-mediated ATP-actin elongation. This deceleration is caused by enhancement of the off-rate of ADP-actin. While mDia1 and profilin enhance the ADP-actin off-rate, they do not apparently increase the ADP-actin on-rate at the barbed end. These results imply that G-actin-bound ATP and its hydrolysis may be part of the acceleration mechanism of formin-mediated actin elongation.

  7. Tropomyosin diffusion over actin subunits facilitates thin filament assembly

    PubMed Central

    Fischer, Stefan; Rynkiewicz, Michael J.; Moore, Jeffrey R.; Lehman, William

    2016-01-01

    Coiled-coil tropomyosin binds to consecutive actin-subunits along actin-containing thin filaments. Tropomyosin molecules then polymerize head-to-tail to form cables that wrap helically around the filaments. Little is known about the assembly process that leads to continuous, gap-free tropomyosin cable formation. We propose that tropomyosin molecules diffuse over the actin-filament surface to connect head-to-tail to partners. This possibility is likely because (1) tropomyosin hovers loosely over the actin-filament, thus binding weakly to F-actin and (2) low energy-barriers provide tropomyosin freedom for 1D axial translation on F-actin. We consider that these unique features of the actin-tropomyosin interaction are the basis of tropomyosin cable formation. PMID:26798831

  8. Docking, molecular dynamics and QM/MM studies to delineate the mode of binding of CucurbitacinE to F-actin.

    PubMed

    Kumar, R Pravin; Roopa, L; Nongthomba, Upendra; Sudheer Mohammed, M M; Kulkarni, Naveen

    2016-01-01

    CucurbitacinE (CurE) has been known to bind covalently to F-actin and inhibit depolymerization. However, the mode of binding of CurE to F-actin and the consequent changes in the F-actin dynamics have not been studied. Through quantum mechanical/molecular mechanical (QM/MM) and density function theory (DFT) simulations after the molecular dynamics (MD) simulations of the docked complex of F-actin and CurE, a detailed transition state (TS) model for the Michael reaction is proposed. The TS model shows nucleophilic attack of the sulphur of Cys257 at the β-carbon of Michael Acceptor of CurE producing an enol intermediate that forms a covalent bond with CurE. The MD results show a clear difference between the structure of the F-actin in free form and F-actin complexed with CurE. CurE affects the conformation of the nucleotide binding pocket increasing the binding affinity between F-actin and ADP, which in turn could affect the nucleotide exchange. CurE binding also limits the correlated displacement of the relatively flexible domain 1 of F-actin causing the protein to retain a flat structure and to transform into a stable "tense" state. This structural transition could inhibit depolymerization of F-actin. In conclusion, CurE allosterically modulates ADP and stabilizes F-actin structure, thereby affecting nucleotide exchange and depolymerization of F-actin. PMID:26615469

  9. Probing the Flexibility of Tropomyosin and Its Binding to Filamentous Actin Using Molecular Dynamics Simulations

    PubMed Central

    Zheng, Wenjun; Barua, Bipasha; Hitchcock-DeGregori, Sarah E.

    2013-01-01

    Tropomyosin (Tm) is a coiled-coil protein that binds to filamentous actin (F-actin) and regulates its interactions with actin-binding proteins like myosin by moving between three positions on F-actin (the blocked, closed, and open positions). To elucidate the molecular details of Tm flexibility in relation to its binding to F-actin, we conducted extensive molecular dynamics simulations for both Tm alone and Tm-F-actin complex in the presence of explicit solvent (total simulation time >400 ns). Based on the simulations, we systematically analyzed the local flexibility of the Tm coiled coil using multiple parameters. We found a good correlation between the regions with high local flexibility and a number of destabilizing regions in Tm, including six clusters of core alanines. Despite the stabilization by F-actin binding, the distribution of local flexibility in Tm is largely unchanged in the absence and presence of F-actin. Our simulations showed variable fluctuations of individual Tm periods from the closed position toward the open position. In addition, we performed Tm-F-actin binding calculations based on the simulation trajectories, which support the importance of Tm flexibility to Tm-F-actin binding. We identified key residues of Tm involved in its dynamic interactions with F-actin, many of which have been found in recent mutational studies to be functionally important, and the rest of which will make promising targets for future mutational experiments. PMID:24138864

  10. Activation of myosin V-based motility and F-actin-dependent network formation of endoplasmic reticulum during mitosis.

    PubMed

    Wollert, Torsten; Weiss, Dieter G; Gerdes, Hans-Hermann; Kuznetsov, Sergei A

    2002-11-25

    It is widely believed that microtubule- and F-actin-based transport of cytoplasmic organelles and membrane fusion is down-regulated during mitosis. Here we show that during the transition of Xenopus egg extracts from interphase to metaphase myosin V-driven movement of small globular vesicles along F-actin is strongly inhibited. In contrast, the movement of ER and ER network formation on F-actin is up-regulated in metaphase extracts. Our data demonstrate that myosin V-driven motility of distinct organelles is differently controlled during the cell cycle and suggest an active role of F-actin in partitioning, positioning, and membrane fusion of the ER during cell division. PMID:12438410

  11. Strong Dependence of Hydration State of F-Actin on the Bound Mg(2+)/Ca(2+) Ions.

    PubMed

    Suzuki, Makoto; Imao, Asato; Mogami, George; Chishima, Ryotaro; Watanabe, Takahiro; Yamaguchi, Takaya; Morimoto, Nobuyuki; Wazawa, Tetsuichi

    2016-07-21

    Understanding of the hydration state is an important issue in the chemomechanical energetics of versatile biological functions of polymerized actin (F-actin). In this study, hydration-state differences of F-actin by the bound divalent cations are revealed through precision microwave dielectric relaxation (DR) spectroscopy. G- and F-actin in Ca- and Mg-containing buffer solutions exhibit dual hydration components comprising restrained water with DR frequency f2 (fw). The hydration state of F-actin is strongly dependent on the ionic composition. In every buffer tested, the HMW signal Dhyme (≡ (f1 - fw)δ1/(fwδw)) of F-actin is stronger than that of G-actin, where δw is DR-amplitude of bulk solvent and δ1 is that of HMW in a fixed-volume ellipsoid containing an F-actin and surrounding water in solution. Dhyme value of F-actin in Ca2.0-buffer (containing 2 mM Ca(2+)) is markedly higher than in Mg2.0-buffer (containing 2 mM Mg(2+)). Moreover, in the presence of 2 mM Mg(2+), the hydration state of F-actin is changed by adding a small fraction of Ca(2+) (∼0.1 mM) and becomes closer to that of the Ca-bound form in Ca2.0-buffer. This is consistent with the results of the partial specific volume and the Cotton effect around 290 nm in the CD spectra, indicating a change in the tertiary structure and less apparent change in the secondary structure of actin. The number of restrained water molecules per actin (N2) is estimated to be 1600-2100 for Ca2.0- and F-buffer and ∼2500 for Mg2.0-buffer at 10-15 °C. These numbers are comparable to those estimated from the available F-actin atomic structures as in the first water layer. The number of HMW molecules is roughly explained by the volume between the equipotential surface of -kT/2e and the first water layer of the actin surface by solving the Poisson-Boltzmann equation using UCSF Chimera. PMID:27332748

  12. Chromaffin granule membrane-F-actin interactions and spectrin-like protein of subcellular organelles: a possible relationship.

    PubMed

    Aunis, D; Perrin, D

    1984-06-01

    The membrane of chromaffin granule, the secretory vesicle of adrenal medullary cells storing catecholamines, enkephalins, and many other components, interacts with F-actin. Using low shear falling ball viscometry to estimate actin binding to membranes, we demonstrated that mitochondrial and plasma membranes from chromaffin cells also provoked large increases in viscosity of F-actin solutions. Mitochondrial membranes also had the capacity to cause complete gelation of F-actin. In addition, vasopressin-containing granules from neurohypophysial tissue were shown to bind F-actin and to increase the viscosity of F-actin solutions. Using an antibody directed against human erythrocyte spectrin, it was found that a spectrin-like protein was associated with secretory granule membrane, mitochondrial membrane, and plasma membrane. The chromaffin granule membrane-associated spectrin-like protein faces the cytoplasmic side, is composed of two subunits (240 kD and 235kD ), the alpha-subunit (240 kD, pHi5 .5) being recognized by the antibody. Nonionic detergents such as Triton X-100 or Nonidet P40 failed to release fully active spectrin-like protein. In contrast, Kyro EOB , a different nonionic detergent, was found to release spectrin-like protein while keeping intact F-actin binding capacity, at least below 0.5% Kyro EOB concentration. Chromaffin cells in culture were stained with antispectrin antibody, showing the presence of spectrin-like protein in the cell periphery close to the cell membrane but also in the cytoplasm. We conclude that in living cells the interaction of F-actin with chromaffin granule membrane spectrin observed in vitro is important in controlling the potential function of secretory vesicles. PMID:6374036

  13. Actin filament curvature biases branching direction

    NASA Astrophysics Data System (ADS)

    Wang, Evan; Risca, Viviana; Chaudhuri, Ovijit; Chia, Jia-Jun; Geissler, Phillip; Fletcher, Daniel

    2012-02-01

    Actin filaments are key components of the cellular machinery, vital for a wide range of processes ranging from cell motility to endocytosis. Actin filaments can branch, and essential in this process is a protein complex known as the Arp2/3 complex, which nucleate new ``daughter'' filaments from pre-existing ``mother'' filaments by attaching itself to the mother filament. Though much progress has been made in understanding the Arp2/3-actin junction, some very interesting questions remain. In particular, F-actin is a dynamic polymer that undergoes a wide range of fluctuations. Prior studies of the Arp2/3-actin junction provides a very static notion of Arp2/3 binding. The question we ask is how differently does the Arp2/3 complex interact with a straight filament compared to a bent filament? In this study, we used Monte Carlo simulations of a surface-tethered worm-like chain to explore possible mechanisms underlying the experimental observation that there exists preferential branch formation by the Arp2/3 complex on the convex face of a curved filament. We show that a fluctuation gating model in which Arp2/3 binding to the actin filament is dependent upon a rare high-local-curvature shape fluctuation of the filament is consistent with the experimental data.

  14. Open Conformation of Ezrin Bound to Phosphatidylinositol 4,5-Bisphosphate and to F-actin Revealed by Neutron Scattering*

    PubMed Central

    Jayasundar, Jayant James; Ju, Jeong Ho; He, Lilin; Liu, Dazhi; Meilleur, Flora; Zhao, Jinkui; Callaway, David J. E.; Bu, Zimei

    2012-01-01

    Ezrin is a member of the ezrin-radixin-moesin family (ERM) of adapter proteins that are localized at the interface between the cell membrane and the cortical actin cytoskeleton, and they regulate a variety of cellular functions. The structure representing a dormant and closed conformation of an ERM protein has previously been determined by x-ray crystallography. Here, using contrast variation small angle neutron scattering, we reveal the structural changes of the full-length ezrin upon binding to the signaling lipid phosphatidylinositol 4,5-bisphosphate (PIP2) and to F-actin. Ezrin binding to F-actin requires the simultaneous binding of ezrin to PIP2. Once bound to F-actin, the opened ezrin forms more extensive contacts with F-actin than generally depicted, suggesting a possible role of ezrin in regulating the interfacial structure and dynamics between the cell membrane and the underlying actin cytoskeleton. In addition, using gel filtration, we find that the conformational opening of ezrin in response to PIP2 binding is cooperative, but the cooperativity is disrupted by a phospho-mimic mutation S249D in the 4.1-ezrin/radixin/moesin (FERM) domain of ezrin. Using surface plasmon resonance, we show that the S249D mutation weakens the binding affinity and changes the kinetics of 4.1-ERM to PIP2 binding. The study provides the first structural view of the activated ezrin bound to PIP2 and to F-actin. PMID:22927432

  15. Control of electrostatic interactions between F-actin and genetically modified lysozyme in aqueous media

    SciTech Connect

    Sanders, Lori K.; Xian, Wujing; Guaqueta, Camilo; Strohman, Michael J.; Vrasich, Chuck R.; Luijten, Erik; Wong, Gerard C.L.

    2008-07-11

    The aim for deterministic control of the interactions between macroions in aqueous media has motivated widespread experimental and theoretical work. Although it has been well established that like-charged macromolecules can aggregate under the influence of oppositely charged condensing agents, the specific conditions for the stability of such aggregates can only be determined empirically. We examine these conditions, which involve an interplay of electrostatic and osmotic effects, by using a well defined model system composed of F-actin, an anionic rod-like polyelectrolyte, and lysozyme, a cationic globular protein with a charge that can be genetically modified. The structure and stability of actin-lysozyme complexes for different lysozyme charge mutants and salt concentrations are examined by using synchrotron x-ray scattering and molecular dynamics simulations. We provide evidence that supports a structural transition from columnar arrangements of F-actin held together by arrays of lysozyme at the threefold interstitial sites of the actin sublattice to marginally stable complexes in which lysozyme resides at twofold bridging sites between actin. The reduced stability arises from strongly reduced partitioning of salt between the complex and the surrounding solution. Changes in the stability of actin-lysozyme complexes are of biomedical interest because their formation has been reported to contribute to the persistence of airway infections in cystic fibrosis by sequestering antimicrobials such as lysozyme. We present x-ray microscopy results that argue for the existence of actin-lysozyme complexes in cystic fibrosis sputum and demonstrate that, for a wide range of salt conditions, charge-reduced lysozyme is not sequestered in ordered complexes while retaining its bacterial killing activity.

  16. Control of Electrostatic Interactions Between F-Actin And Genetically Modified Lysozyme in Aqueous Media

    SciTech Connect

    Sanders, L.K.; Xian, W.; Guaqueta, C.; Strohman, M.; Vrasich, C.R.; Luijten, E.; Wong, G.C.L.

    2009-06-04

    The aim for deterministic control of the interactions between macroions in aqueous media has motivated widespread experimental and theoretical work. Although it has been well established that like-charged macromolecules can aggregate under the influence of oppositely charged condensing agents, the specific conditions for the stability of such aggregates can only be determined empirically. We examine these conditions, which involve an interplay of electrostatic and osmotic effects, by using a well defined model system composed of F-actin, an anionic rod-like polyelectrolyte, and lysozyme, a cationic globular protein with a charge that can be genetically modified. The structure and stability of actin-lysozyme complexes for different lysozyme charge mutants and salt concentrations are examined by using synchrotron x-ray scattering and molecular dynamics simulations. We provide evidence that supports a structural transition from columnar arrangements of F-actin held together by arrays of lysozyme at the threefold interstitial sites of the actin sublattice to marginally stable complexes in which lysozyme resides at twofold bridging sites between actin. The reduced stability arises from strongly reduced partitioning of salt between the complex and the surrounding solution. Changes in the stability of actin-lysozyme complexes are of biomedical interest because their formation has been reported to contribute to the persistence of airway infections in cystic fibrosis by sequestering antimicrobials such as lysozyme. We present x-ray microscopy results that argue for the existence of actin-lysozyme complexes in cystic fibrosis sputum and demonstrate that, for a wide range of salt conditions, charge-reduced lysozyme is not sequestered in ordered complexes while retaining its bacterial killing activity.

  17. Global architecture of F-actin cytoskeleton regulates cell shape-dependent endothelial mechanotransduction

    PubMed Central

    Shao, Yue; Mann, Jennifer M.; Chen, Weiqiang; Fu, Jianping

    2014-01-01

    Uniaxial stretch is an important biophysical regulator of cell morphology (or shape) and functions of vascular endothelial cells (ECs). However, it is unclear whether and how cell shape can independently regulate EC mechanotransductive properties under uniaxial stretch. Herein, utilizing a novel uniaxial cell-stretching device integrated with micropost force sensors, we reported the first experimental evidence showing cell shape-dependent EC mechanotransduction via cytoskeleton (CSK) contractile forces in response to uniaxial stretch. Combining experiments and theoretical modeling from first principles, we showed that it was the global architecture of the F-actin CSK that instructed the cell shape-dependent EC mechanotransductive process. Furthermore, a cell shape-dependent nature was relayed in EC mechanotransduction via dynamic focal adhesion (FA) assembly. Our results suggested a novel mechanotransductive process in ECs wherein the global architecture of the F-actin CSK, governed by cell shape, controls mechanotransduction via CSK contractile forces and force-dependent FA assembly under uniaxial stretch. PMID:24435061

  18. Control of electrostatic interactions between F-actin and genetically modified lysozyme in aqueous media

    PubMed Central

    Sanders, Lori K.; Xian, Wujing; Guáqueta, Camilo; Strohman, Michael J.; Vrasich, Chuck R.; Luijten, Erik; Wong, Gerard C. L.

    2007-01-01

    The aim for deterministic control of the interactions between macroions in aqueous media has motivated widespread experimental and theoretical work. Although it has been well established that like-charged macromolecules can aggregate under the influence of oppositely charged condensing agents, the specific conditions for the stability of such aggregates can only be determined empirically. We examine these conditions, which involve an interplay of electrostatic and osmotic effects, by using a well defined model system composed of F-actin, an anionic rod-like polyelectrolyte, and lysozyme, a cationic globular protein with a charge that can be genetically modified. The structure and stability of actin–lysozyme complexes for different lysozyme charge mutants and salt concentrations are examined by using synchrotron x-ray scattering and molecular dynamics simulations. We provide evidence that supports a structural transition from columnar arrangements of F-actin held together by arrays of lysozyme at the threefold interstitial sites of the actin sublattice to marginally stable complexes in which lysozyme resides at twofold bridging sites between actin. The reduced stability arises from strongly reduced partitioning of salt between the complex and the surrounding solution. Changes in the stability of actin–lysozyme complexes are of biomedical interest because their formation has been reported to contribute to the persistence of airway infections in cystic fibrosis by sequestering antimicrobials such as lysozyme. We present x-ray microscopy results that argue for the existence of actin–lysozyme complexes in cystic fibrosis sputum and demonstrate that, for a wide range of salt conditions, charge-reduced lysozyme is not sequestered in ordered complexes while retaining its bacterial killing activity. PMID:17911256

  19. High-Resolution Crystal Structures of Villin Headpiece nad Mutants with Reduced F-Actin Binding Activity

    SciTech Connect

    Meng,J.; Vardar, D.; Wang, Y.; Guo, H.; Head, J.; McKnight, C.

    2005-01-01

    Villin-type headpiece domains are approximately 70 amino acid modular motifs found at the C terminus of a variety of actin cytoskeleton-associated proteins. The headpiece domain of villin, a protein found in the actin bundles of the brush border epithelium, is of interest both as a compact F-actin binding domain and as a model folded protein. We have determined the high-resolution crystal structures of chicken villin headpiece (HP67) at 1.4 Angstrom resolution as well as two mutants, R37A and W64Y, at 1.45 and 1.5 Angstrom resolution, respectively. Replacement of R37 causes a 5-fold reduction in F-actin binding affinity in sedimentation assays. Replacement of W64 results in a much more drastic reduction in F-actin binding affinity without significant changes in headpiece structure or stability. The detailed comparison of these crystal structures with each other and to our previously determined NMR structures of HP67 and the 35-residue autonomously folding subdomain in villin headpiece, HP35, provides the details of the headpiece fold and further defines the F-actin binding site of villin-type headpiece domains.

  20. The Actin-binding Domain of Cortactin is Dynamic and Unstructured and Affects Lateral and Longitudinal Contacts in F-actin

    PubMed Central

    Shvetsov, Alexander; Berkane, Emir; Chereau, David; Dominguez, Roberto; Reisler, Emil

    2011-01-01

    Cortactin is an F-actin- and Arp2/3 complex-binding protein, implicated in the regulation of cytoskeleton dynamics and cortical actin-assembly. The actin-binding domain of cortactin consists of a 6.5 tandem repeat of a 37-amino acid sequence known as the cortactin repeat (residues 80-325). Using a combination of structure prediction, circular dichroism and cysteine crosslinking, we tested a recently published three-dimensional model of the cortactin molecule in which the cortactin repeat is folded as a globular helical domain (Zhang et al., 2007). We show that the cortactin repeat is unstructured in solution. Thus, wild type and mutant constructs of the cortactin repeat, containing pairs of cysteines at positions 112 and 246, 83 and 112, 83 and 246, and 83 and 306, could be readily crosslinked with reagents of varying lengths (0–9.6 Å). Using yeast actin cysteine mutants, we also show that cortactin inhibits disulfide and dibromobimane crosslinking across the lateral and longitudinal interfaces of actin subunits in the filament, suggesting a weakening of inter-subunits contacts. Our results are in disagreement with the proposed model of the cortactin molecule and have important implications for our understanding of cortactin regulation of cytoskeleton dynamics. PMID:19089942

  1. The actin-binding domain of cortactin is dynamic and unstructured and affects lateral and longitudinal contacts in F-actin.

    PubMed

    Shvetsov, Alexander; Berkane, Emir; Chereau, David; Dominguez, Roberto; Reisler, Emil

    2009-02-01

    Cortactin is an F-actin- and Arp2/3 complex-binding protein, implicated in the regulation of cytoskeleton dynamics and cortical actin-assembly. The actin-binding domain of cortactin consists of a 6.5 tandem repeat of a 37-amino acid sequence known as the cortactin repeat (residues 80-325). Using a combination of structure prediction, circular dichroism, and cysteine crosslinking, we tested a recently published three-dimensional model of the cortactin molecule in which the cortactin repeat is folded as a globular helical domain [Zhang et al., 2007, Mol Cell 27:197-213]. We show that the cortactin repeat is unstructured in solution. Thus, wild type and mutant constructs of the cortactin repeat, containing pairs of cysteines at positions 112 and 246, 83 and 112, 83 and 246, and 83 and 306, could be readily crosslinked with reagents of varying lengths (0-9.6 A). Using yeast actin cysteine mutants, we also show that cortactin inhibits disulfide and dibromobimane crosslinking across the lateral and longitudinal interfaces of actin subunits in the filament, suggesting a weakening of intersubunits contacts. Our results are in disagreement with the proposed model of the cortactin molecule and have important implications for our understanding of cortactin regulation of cytoskeleton dynamics. PMID:19089942

  2. Mechanical force-induced polymerization and depolymerization of F-actin at water/solid interfaces.

    PubMed

    Zhang, Xueqiang; Hu, Xiuyuan; Lei, Haozhi; Hu, Jun; Zhang, Yi

    2016-03-21

    Actin molecules are among the three main cytoskeleton proteins of cells and undergo rapid cycling to regulate critical processes such as endocytosis, cytokinesis, cell polarity, and cell morphogenesis. Although extensive studies have been carried out on the dynamics as well as biological functions of actin polymerization and depolymerization both in vivo and in vitro, the molecular mechanisms by which cells sense and respond to mechanical signals are not fully understood. In particular, little attention has been paid to the effect of a physical force that is exerted directly on the actin cytoskeleton. In this paper, we have explored how the mechanical force affects the actin polymerization and depolymerization behaviors at water/solid interfaces using an atomic force microscope (AFM) operated in liquid. By raster scanning an AFM probe on a substrate surface with a certain load, it was found that actin monomers could polymerize into filaments without the help of actin related proteins (ARPs). Further study indicated that actin monomers were inclined to form filaments only under a small scanning load. The polymerized actin filaments would be depolymerized when the mechanical force was stronger. A possible mechanism has been suggested to explain the mechanical force induced actin polymerization. PMID:26928199

  3. A p21-activated kinase (PAK1) signaling cascade coordinately regulates F-actin remodeling and insulin granule exocytosis in pancreatic β cells

    PubMed Central

    Kalwat, Michael A.; Yoder, Stephanie M.; Wang, Zhanxiang; Thurmond, Debbie C.

    2012-01-01

    Human islet studies implicate an important signaling role for the Cdc42 effector protein p21-activated kinase (PAK1) in the sustained/second-phase of insulin secretion. Because human islets from type 2 diabetic donors lack ~80% of normal PAK1 protein levels, the mechanistic requirement for PAK1 signaling in islet function was interrogated. Similar to MIN6 β cells, human islets elicited glucose-stimulated PAK1 activation that was sensitive to the PAK1 inhibitor, IPA3. Given that sustained insulin secretion has been correlated with glucose-induced filamentous actin (F-actin) remodeling, we tested the hypothesis that a Cdc42-activated PAK1 signaling cascade is required to elicit F-actin remodeling to mobilize granules to the cell surface. Live-cell imaging captured the glucose-induced cortical F-actin remodeling in MIN6 β cells; IPA3-mediated inhibition of PAK1 abolished this remodeling. IPA3 also ablated glucose-stimulated insulin granule accumulation at the plasma membrane, consistent with its role in sustained/second-phase insulin release. Both IPA3 and a selective inhibitor of the Cdc42 GTPase, ML-141, blunted the glucose-stimulated activation of Raf-1, suggesting Raf-1 to be downstream of Cdc42→PAK1. IPA3 also inhibited MEK1/2 activation, implicating the MEK1/2→ERK1/2 cascade to occur downstream of PAK1. Importantly, PD0325901, a new selective inhibitor of MEK1/2→ERK1/2 activation, impaired F-actin remodeling and the sustained/amplification pathway of insulin release. Taken together, these data suggest that glucose-mediated activation of Cdc42 leads to activation of PAK1 and prompts activation of its downstream targets Raf-1, MEK1/2 and ERK1/2 to elicit F-actin remodeling and recruitment of insulin granules to the plasma membrane to support the sustained phase of insulin release. PMID:23246867

  4. The accessibility of etheno-nucleotides to collisional quenchers and the nucleotide cleft in G- and F-actin.

    PubMed Central

    Root, D. D.; Reisler, E.

    1992-01-01

    Recent publication of the atomic structure of G-actin (Kabsch, W., Mannherz, H. G., Suck, D., Pai, E. F., & Holmes, K. C., 1990, Nature 347, 37-44) raises questions about how the conformation of actin changes upon its polymerization. In this work, the effects of various quenchers of etheno-nucleotides bound to G- and F-actin were examined in order to assess polymerization-related changes in the nucleotide phosphate site. The Mg(2+)-induced polymerization of actin quenched the fluorescence of the etheno-nucleotides by approximately 20% simultaneously with the increase in light scattering by actin. A conformational change at the nucleotide binding site was also indicated by greater accessibility of F-actin than G-actin to positively, negatively, and neutrally charged collisional quenchers. The difference in accessibility between G- and F-actin was greatest for I-, indicating that the environment of the etheno group is more positively charged in the polymerized form of actin. Based on calculations of the change in electric potential of the environment of the etheno group, specific polymerization-related movements of charged residues in the atomic structure of G-actin are suggested. The binding of S-1 to epsilon-ATP-G-actin increased the accessibility of the etheno group to I- even over that in Mg(2+)-polymerized actin. The quenching of the etheno group by nitromethane was, however, unaffected by the binding of S-1 to actin. Thus, the binding of S-1 induces conformational changes in the cleft region of actin that are different from those caused by Mg2+ polymerization of actin.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1304380

  5. Novel actin-like filament structure from Clostridium tetani.

    PubMed

    Popp, David; Narita, Akihiro; Lee, Lin Jie; Ghoshdastider, Umesh; Xue, Bo; Srinivasan, Ramanujam; Balasubramanian, Mohan K; Tanaka, Toshitsugu; Robinson, Robert C

    2012-06-15

    Eukaryotic F-actin is constructed from two protofilaments that gently wind around each other to form a helical polymer. Several bacterial actin-like proteins (Alps) are also known to form F-actin-like helical arrangements from two protofilaments, yet with varied helical geometries. Here, we report a unique filament architecture of Alp12 from Clostridium tetani that is constructed from four protofilaments. Through fitting of an Alp12 monomer homology model into the electron microscopy data, the filament was determined to be constructed from two antiparallel strands, each composed of two parallel protofilaments. These four protofilaments form an open helical cylinder separated by a wide cleft. The molecular interactions within single protofilaments are similar to F-actin, yet interactions between protofilaments differ from those in F-actin. The filament structure and assembly and disassembly kinetics suggest Alp12 to be a dynamically unstable force-generating motor involved in segregating the pE88 plasmid, which encodes the lethal tetanus toxin, and thus a potential target for drug design. Alp12 can be repeatedly cycled between states of polymerization and dissociation, making it a novel candidate for incorporation into fuel-propelled nanobiopolymer machines. PMID:22514279

  6. Reversibility and Viscoelastic Properties of Micropillar Supported and Oriented Magnesium Bundled F-Actin

    PubMed Central

    Maier, Timo; Haraszti, Tamás

    2015-01-01

    Filamentous actin is one of the most important cytoskeletal elements. Not only is it responsible for the elastic properties of many cell types, but it also plays a vital role in cellular adhesion and motility. Understanding the bundling kinetics of actin filaments is important in the formation of various cytoskeletal structures, such as filopodia and stress fibers. Utilizing a unique pillar-structured microfluidic device, we investigated the time dependence of bundling kinetics of pillar supported free-standing actin filaments. Microparticles attached to the filaments allowed the measurement of thermal motion, and we found that bundling takes place at lower concentrations than previously found in 3-dimensional actin gels, i.e. actin filaments formed bundles in the presence of 5–12 mM of magnesium chloride in a time-dependent manner. The filaments also displayed long term stability for up to hours after removing the magnesium ions from the buffer, which suggests that there is an extensive hysteresis between cation induced crosslinking and decrosslinking. PMID:26322783

  7. Septins Arrange F-Actin-Containing Fibers on the Chlamydia trachomatis Inclusion and Are Required for Normal Release of the Inclusion by Extrusion

    PubMed Central

    Volceanov, Larisa; Herbst, Katharina; Biniossek, Martin; Schilling, Oliver; Haller, Dirk; Nölke, Thilo; Subbarayal, Prema; Rudel, Thomas; Zieger, Barbara

    2014-01-01

    ABSTRACT Chlamydia trachomatis is an obligate intracellular human pathogen that grows inside a membranous, cytosolic vacuole termed an inclusion. Septins are a group of 13 GTP-binding proteins that assemble into oligomeric complexes and that can form higher-order filaments. We report here that the septins SEPT2, -9, -11, and probably -7 form fibrillar structures around the chlamydial inclusion. Colocalization studies suggest that these septins combine with F actin into fibers that encase the inclusion. Targeting the expression of individual septins by RNA interference (RNAi) prevented the formation of septin fibers as well as the recruitment of actin to the inclusion. At the end of the developmental cycle of C. trachomatis, newly formed, infectious elementary bodies are released, and this release occurs at least in part through the organized extrusion of intact inclusions. RNAi against SEPT9 or against the combination of SEPT2/7/9 substantially reduced the number of extrusions from a culture of infected HeLa cells. The data suggest that a higher-order structure of four septins is involved in the recruitment or stabilization of the actin coat around the chlamydial inclusion and that this actin recruitment by septins is instrumental for the coordinated egress of C. trachomatis from human cells. The organization of F actin around parasite-containing vacuoles may be a broader response mechanism of mammalian cells to the infection by intracellular, vacuole-dwelling pathogens. PMID:25293760

  8. Protein Kinases Possibly Mediate Hypergravity-Induced Changes in F-Actin Expression by Endothelial Cells

    NASA Technical Reports Server (NTRS)

    Love, Felisha D.; Melhado, Caroline D.; Bosah, Francis N.; Harris-Hooker, Sandra A.; Sanford, Gary L.

    1998-01-01

    Basic cellular functions such as electrolyte concentration, cell growth rate, glucose utilization, bone formation, response to growth stimulation, and exocytosis are modified in microgravity. These studies indicate that microgravity affects a number of physiological systems and included in this are cell signaling mechanisms. Rijken and coworkers performed growth factor studies that showed PKC signaling and actin microfilament organization appears to be sensitive to microgravity, suggesting that the inhibition of signal transduction by microgravity may be related to alterations in actin microfilament organization. However, similar studies have not been done for vascular cells. Vascular endothelial cells play critical roles in providing nutrients to organ and tissues and in wound repair. The major deterrent to ground-based microgravity studies is that it is impossible to achieved true microgravity for longer than a few minutes on earth. Hence, it has not been possible to conduct prolonged microgravity studies except for two models that simulate certain aspects of microgravity. However, hypergravity is quite easily achieved. Several researchers have shown that hypergravity will increase the proliferation of several different cell lines while decreasing cell motility and slowing liver regeneration following partial hepatectomy, These studies indicate the hypergravity also alters the behavior of most cells. Several investigators have shown that hypergravity affects the activation of several protein kinases (PKs) in cells. In this study, we investigated whether hypergravity alters the expression of f-actin by bovine aortic endothelial cells (BAECs) and the role of PK's (calmodulin 11 dependent, PKA and PKC) as mediators of these effects.

  9. Plasma membrane-associated SCAR complex subunits promote cortical F-actin accumulation and normal growth characteristics in Arabidopsis roots

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ARP2/3 complex, a highly conserved nucleator of F-actin polymerization, and its activator, the SCAR complex, have been shown to play important roles in leaf epidermal cell morphogenesis in Arabidopsis. However, the intracellular site(s) and function(s) of SCAR complex and ARP2/3 complex-depende...

  10. Bidirectional interactions between NOX2-type NADPH oxidase and the F-actin cytoskeleton in neuronal growth cones.

    PubMed

    Munnamalai, Vidhya; Weaver, Cory J; Weisheit, Corinne E; Venkatraman, Prahatha; Agim, Zeynep Sena; Quinn, Mark T; Suter, Daniel M

    2014-08-01

    NADPH oxidases are important for neuronal function but detailed subcellular localization studies have not been performed. Here, we provide the first evidence for the presence of functional NADPH oxidase 2 (NOX2)-type complex in neuronal growth cones and its bidirectional relationship with the actin cytoskeleton. NADPH oxidase inhibition resulted in reduced F-actin content, retrograde F-actin flow, and neurite outgrowth. Stimulation of NADPH oxidase via protein kinase C activation increased levels of hydrogen peroxide in the growth cone periphery. The main enzymatic NADPH oxidase subunit NOX2/gp91(phox) localized to the growth cone plasma membrane and showed little overlap with the regulatory subunit p40(phox) . p40(phox) itself exhibited colocalization with filopodial actin bundles. Differential subcellular fractionation revealed preferential association of NOX2/gp91(phox) and p40(phox) with the membrane and the cytoskeletal fraction, respectively. When neurite growth was evoked with beads coated with the cell adhesion molecule apCAM, we observed a significant increase in colocalization of p40(phox) with NOX2/gp91(phox) at apCAM adhesion sites. Together, these findings suggest a bidirectional functional relationship between NADPH oxidase activity and the actin cytoskeleton in neuronal growth cones, which contributes to the control of neurite outgrowth. We have previously shown that reactive oxygen species (ROS) are critical for actin organization and dynamics in neuronal growth cones as well as neurite outgrowth. Here, we report that the cytosolic subunit p40(phox) of the NOX2-type NADPH oxidase complex is partially associated with F-actin in neuronal growth cones, while ROS produced by this complex regulates F-actin dynamics and neurite growth. These findings provide evidence for a bidirectional relationship between NADPH oxidase activity and the actin cytoskeleton in neuronal growth cones. PMID:24702317

  11. Simulated microgravity inhibits osteogenic differentiation of mesenchymal stem cells via depolymerizing F-actin to impede TAZ nuclear translocation

    PubMed Central

    Chen, Zhe; Luo, Qing; Lin, Chuanchuan; Kuang, Dongdong; Song, Guanbin

    2016-01-01

    Microgravity induces observed bone loss in space flight, and reduced osteogenesis of bone mesenchymal stem cells (BMSCs) partly contributes to this phenomenon. Abnormal regulation or functioning of the actin cytoskeleton induced by microgravity may cause the inhibited osteogenesis of BMSCs, but the underlying mechanism remains obscure. In this study, we demonstrated that actin cytoskeletal changes regulate nuclear aggregation of the transcriptional coactivator with PDZ-binding motif (TAZ), which is indispensable for osteogenesis of bone mesenchymal stem cells (BMSCs). Moreover, we utilized a clinostat to model simulated microgravity (SMG) and demonstrated that SMG obviously depolymerized F-actin and hindered TAZ nuclear translocation. Interestingly, stabilizing the actin cytoskeleton induced by Jasplakinolide (Jasp) significantly rescued TAZ nuclear translocation and recovered the osteogenic differentiation of BMSCs in SMG, independently of large tumor suppressor 1(LATS1, an upstream kinase of TAZ). Furthermore, lysophosphatidic acid (LPA) also significantly recovered the osteogenic differentiation of BMSCs in SMG through the F-actin-TAZ pathway. Taken together, we propose that the depolymerized actin cytoskeleton inhibits osteogenic differentiation of BMSCs through impeding nuclear aggregation of TAZ, which provides a novel connection between F-actin cytoskeleton and osteogenesis of BMSCs and has important implications in bone loss caused by microgravity. PMID:27444891

  12. Simulated microgravity inhibits osteogenic differentiation of mesenchymal stem cells via depolymerizing F-actin to impede TAZ nuclear translocation.

    PubMed

    Chen, Zhe; Luo, Qing; Lin, Chuanchuan; Kuang, Dongdong; Song, Guanbin

    2016-01-01

    Microgravity induces observed bone loss in space flight, and reduced osteogenesis of bone mesenchymal stem cells (BMSCs) partly contributes to this phenomenon. Abnormal regulation or functioning of the actin cytoskeleton induced by microgravity may cause the inhibited osteogenesis of BMSCs, but the underlying mechanism remains obscure. In this study, we demonstrated that actin cytoskeletal changes regulate nuclear aggregation of the transcriptional coactivator with PDZ-binding motif (TAZ), which is indispensable for osteogenesis of bone mesenchymal stem cells (BMSCs). Moreover, we utilized a clinostat to model simulated microgravity (SMG) and demonstrated that SMG obviously depolymerized F-actin and hindered TAZ nuclear translocation. Interestingly, stabilizing the actin cytoskeleton induced by Jasplakinolide (Jasp) significantly rescued TAZ nuclear translocation and recovered the osteogenic differentiation of BMSCs in SMG, independently of large tumor suppressor 1(LATS1, an upstream kinase of TAZ). Furthermore, lysophosphatidic acid (LPA) also significantly recovered the osteogenic differentiation of BMSCs in SMG through the F-actin-TAZ pathway. Taken together, we propose that the depolymerized actin cytoskeleton inhibits osteogenic differentiation of BMSCs through impeding nuclear aggregation of TAZ, which provides a novel connection between F-actin cytoskeleton and osteogenesis of BMSCs and has important implications in bone loss caused by microgravity. PMID:27444891

  13. Nuclear F-actin Formation and Reorganization upon Cell Spreading*♦

    PubMed Central

    Plessner, Matthias; Melak, Michael; Chinchilla, Pilar; Baarlink, Christian; Grosse, Robert

    2015-01-01

    We recently discovered signal-regulated nuclear actin network assembly. However, in contrast to cytoplasmic actin regulation, polymeric nuclear actin structures and functions remain only poorly understood. Here we describe a novel molecular tool to visualize real-time nuclear actin dynamics by targeting the Actin-Chromobody-TagGFP to the nucleus, thus establishing a nuclear Actin-Chromobody. Interestingly, we observe nuclear actin polymerization into dynamic filaments upon cell spreading and fibronectin stimulation, both of which appear to be triggered by integrin signaling. Furthermore, we show that nucleoskeletal proteins such as the LINC (linker of nucleoskeleton and cytoskeleton) complex and components of the nuclear lamina couple cell spreading or integrin activation by fibronectin to nuclear actin polymerization. Spreading-induced nuclear actin polymerization results in serum response factor (SRF)-mediated transcription through nuclear retention of myocardin-related transcription factor A (MRTF-A). Our results reveal a signaling pathway, which links integrin activation by extracellular matrix interaction to nuclear actin polymerization through the LINC complex, and therefore suggest a role for nuclear actin polymerization in the context of cellular adhesion and mechanosensing. PMID:25759381

  14. Synthetic peptides that cause F-actin bundling and block actin depolymerization

    DOEpatents

    Sederoff, Heike; Huber, Steven C; Larabell, Carolyn A

    2011-10-18

    Synthetic peptides derived from sucrose synthase, and having homology to actin and actin-related proteins, sharing a common motif, useful for causing acting bundling and preventing actin depolymerization. Peptides exhibiting the common motif are described, as well as specific synthetic peptides which caused bundled actin and inhibit actin depolymerization. These peptides can be useful for treating a subject suffering from a disease characterized by cells having neoplastic growth, for anti-cancer therapeutics, delivered to subjects solely, or concomitantly or sequentially with other known cancer therapeutics. These peptides can also be used for stabilizing microfilaments in living cells and inhibiting growth of cells.

  15. Heteromerous interactions among glycolytic enzymes and of glycolytic enzymes with F-actin: effects of poly(ethylene glycol).

    PubMed

    Walsh, J L; Knull, H R

    1988-01-01

    Interactions of glucose-6-phosphate isomerase (D-glucose-6-phosphate ketol-isomerase, EC 5.3.1.9), aldolase (D-fructose-1,6-bisphosphate D-glyceraldehyde-3-phosphate lyase, EC 4.1.2.13), glyceraldehyde-3-phosphate dehydrogenase (D-glyceraldehyde-3-phosphate:NAD+ oxidoreductase (phosphorylating), EC 1.2.1.12), triose-phosphate isomerase (D-glyceraldehyde-3-phosphate ketol-isomerase, EC 5.3.1.1), phosphoglycerate mutase (D-phosphoglycerate 2,3-phosphomutase, EC 5.4.2.1), phosphoglycerate kinase (ATP:3-phospho-D-glycerate 1-phosphotransferase, EC 2.7.3), enolase (2-phospho-D-glycerate hydro-lyase, EC 4.2.1.11), pyruvate kinase (ATP:Pyruvate O2-phosphotransferase, EC 2.7.1.40) and lactate dehydrogenase [S)-lactate:NAD+ oxidoreductase, EC 1.1.1.27) with F-actin, among the glycolytic enzymes listed above, and with phosphofructokinase (ATP:D-fructose-6-phosphate 1-phosphotransferase, EC 2.7.1.11) were studied in the presence of poly(ethylene glycol). Both purified rabbit muscle enzymes and rabbit muscle myogen, a high-speed supernatant fraction containing the glycolytic enzymes, were used to study enzyme-F-actin interactions. Following ultracentrifugation, F-actin and poly(ethylene glycol) tended to increase and KCl to decrease the pelleting of enzymes. In general, the greater part of the pelleting occurred in the presence of both F-actin and poly(ethylene glycol) and the absence of KCl. Enzymes that pelleted more in myogen preparations than as individual purified enzymes in the presence of poly(ethylene glycol) and the absence of F-actin were tested for specific enzyme-enzyme associations, several of which were observed. Such interactions support the view that the internal cell structure is composed of proteins that interact with one another to form the microtrabecular lattice. PMID:3334856

  16. Effect of Flumorph on F-Actin Dynamics in the Potato Late Blight Pathogen Phytophthora infestans.

    PubMed

    Hua, Chenlei; Kots, Kiki; Ketelaar, Tijs; Govers, Francine; Meijer, Harold J G

    2015-04-01

    Oomycetes are fungal-like pathogens that cause notorious diseases. Protecting crops against oomycetes requires regular spraying with chemicals, many with an unknown mode of action. In the 1990s, flumorph was identified as a novel crop protection agent. It was shown to inhibit the growth of oomycete pathogens including Phytophthora spp., presumably by targeting actin. We recently generated transgenic Phytophthora infestans strains that express Lifeact-enhanced green fluorescent protein (eGFP), which enabled us to monitor the actin cytoskeleton during hyphal growth. For analyzing effects of oomicides on the actin cytoskeleton in vivo, the P. infestans Lifeact-eGFP strain is an excellent tool. Here, we confirm that flumorph is an oomicide with growth inhibitory activity. Microscopic analyses showed that low flumorph concentrations provoked hyphal tip swellings accompanied by accumulation of actin plaques in the apex, a feature reminiscent of tips of nongrowing hyphae. At higher concentrations, swelling was more pronounced and accompanied by an increase in hyphal bursting events. However, in hyphae that remained intact, actin filaments were indistinguishable from those in nontreated, nongrowing hyphae. In contrast, in hyphae treated with the actin depolymerizing drug latrunculin B, no hyphal bursting was observed but the actin filaments were completely disrupted. This difference demonstrates that actin is not the primary target of flumorph. PMID:25496300

  17. Cucumber Mosaic Virus Movement Protein Severs Actin Filaments to Increase the Plasmodesmal Size Exclusion Limit in Tobacco[W][OA

    PubMed Central

    Su, Shengzhong; Liu, Zhaohui; Chen, Cheng; Zhang, Yan; Wang, Xu; Zhu, Lei; Miao, Long; Wang, Xue-Chen; Yuan, Ming

    2010-01-01

    Plant viral movement proteins (MPs) enable viruses to pass through cell walls by increasing the size exclusion limit (SEL) of plasmodesmata (PD). Here, we report that the ability of Cucumber mosaic virus (CMV) MP to increase the SEL of the PD could be inhibited by treatment with the actin filament (F-actin)–stabilizing agent phalloidin but not by treatment with the F-actin–destabilizing agent latrunculin A. In vitro studies showed that CMV MP bound globular and F-actin, inhibited actin polymerization, severed F-actin, and participated in plus end capping of F-actin. Analyses of two CMV MP mutants, one with and one without F-actin severing activities, demonstrated that the F-actin severing ability was required to increase the PD SEL. Furthermore, the Tobacco mosaic virus MP also exhibited F-actin severing activity, and its ability to increase the PD SEL was inhibited by treatment with phalloidin. Our data provide evidence to support the hypothesis that F-actin severing is required for MP-induced increase in the SEL of PD. This may have broad implications in the study of the mechanisms of actin dynamics that regulate cell-to-cell transport of viral and endogenous proteins. PMID:20435906

  18. F-actin cross-linking enhances the stability of force generation in disordered actomyosin networks

    NASA Astrophysics Data System (ADS)

    Jung, Wonyeong; Murrell, Michael P.; Kim, Taeyoon

    2015-12-01

    Myosin molecular motors and actin cross-linking proteins (ACPs) are known to mediate the generation and transmission of mechanical forces within the cortical F-actin cytoskeleton that drive major cellular processes such as cell division and migration. However, how motors and ACPs interact collectively over diverse timescales to modulate the time-dependent mechanical properties of the cytoskeleton remains unclear. In this study, we present a three-dimensional agent-based computational model of the cortical actomyosin network to quantitatively determine the effects of motor activity and the density and kinetics of ACPs on the accumulation and maintenance of mechanical tension within a disordered actomyosin network. We found that motors accumulate large stress quickly by behaving as temporary cross-linkers although this stress is relaxed over time unless there are sufficient passive ACPs to stabilize the network. Stabilization by ACPs helps motors to generate forces up to their maximum potential, leading to significant enhancement of the efficiency and stability of stress generation. Thus, we demonstrated that the force-dependent kinetics of ACP dissociation plays a critical role for the accumulation and sustainment of stress and the structural remodeling of networks.

  19. Mutations in the Gene That Encodes the F-Actin Binding Protein Anillin Cause FSGS

    PubMed Central

    Hall, Gentzon; Adeyemo, Adebowale; Hanke, Nils; Tossidou, Irini; Burchette, James; Wu, Guanghong; Homstad, Alison; Sparks, Matthew A.; Gomez, Jose; Jiang, Ruiji; Alonso, Andrea; Lavin, Peter; Conlon, Peter; Korstanje, Ron; Stander, M. Christine; Shamsan, Ghaidan; Barua, Moumita; Spurney, Robert; Singhal, Pravin C.; Kopp, Jeffrey B.; Haller, Hermann; Howell, David; Pollak, Martin R.; Shaw, Andrey S.; Schiffer, Mario; Winn, Michelle P.

    2014-01-01

    FSGS is characterized by segmental scarring of the glomerulus and is a leading cause of kidney failure. Identification of genes causing FSGS has improved our understanding of disease mechanisms and points to defects in the glomerular epithelial cell, the podocyte, as a major factor in disease pathogenesis. Using a combination of genome-wide linkage studies and whole-exome sequencing in a kindred with familial FSGS, we identified a missense mutation R431C in anillin (ANLN), an F-actin binding cell cycle gene, as a cause of FSGS. We screened 250 additional families with FSGS and found another variant, G618C, that segregates with disease in a second family with FSGS. We demonstrate upregulation of anillin in podocytes in kidney biopsy specimens from individuals with FSGS and kidney samples from a murine model of HIV-1–associated nephropathy. Overexpression of R431C mutant ANLN in immortalized human podocytes results in enhanced podocyte motility. The mutant anillin displays reduced binding to the slit diaphragm–associated scaffold protein CD2AP. Knockdown of the ANLN gene in zebrafish morphants caused a loss of glomerular filtration barrier integrity, podocyte foot process effacement, and an edematous phenotype. Collectively, these findings suggest that anillin is important in maintaining the integrity of the podocyte actin cytoskeleton. PMID:24676636

  20. CASK and protein 4.1 support F-actin nucleation on neurexins.

    PubMed

    Biederer, T; Sudhof, T C

    2001-12-21

    Rearrangements of the actin cytoskeleton are involved in a variety of cellular processes from locomotion of cells to morphological alterations of the cell surface. One important question is how local interactions of cells with the extracellular space are translated into alterations of their membrane organization. To address this problem, we studied CASK, a member of the membrane-associated guanylate kinase homologues family of adaptor proteins. CASK has been shown to bind the erythrocyte isoform of protein 4.1, a class of proteins that promote formation of actin/spectrin microfilaments. In neurons, CASK also interacts via its PDZ domain with the cytosolic C termini of neurexins, neuron-specific cell-surface proteins. We now show that CASK binds a brain-enriched isoform of protein 4.1, and nucleates local assembly of actin/spectrin filaments. These interactions can be reconstituted on the cytosolic tail of neurexins. Furthermore, CASK can be recovered with actin filaments prepared from rat brain extracts, and neurexins are recruited together with CASK and protein 4.1 into these actin filaments. Thus, analogous to the PDZ-domain protein p55 and glycophorin C at the erythrocyte membrane, a similar complex comprising CASK and neurexins exists in neurons. Our data suggest that intercellular junctions formed by neurexins, such as junctions initiated by beta-neurexins with neuroligins, are at least partially coupled to the actin cytoskeleton via an interaction with CASK and protein 4.1. PMID:11604393

  1. A human β-III-spectrin spinocerebellar ataxia type 5 mutation causes high-affinity F-actin binding

    PubMed Central

    Avery, Adam W.; Crain, Jonathan; Thomas, David D.; Hays, Thomas S.

    2016-01-01

    Spinocerebellar ataxia type 5 (SCA5) is a human neurodegenerative disease that stems from mutations in the SPTBN2 gene encoding the protein β-III-spectrin. Here we investigated the molecular consequence of a SCA5 missense mutation that results in a L253P substitution in the actin-binding domain (ABD) of β-III-spectrin. We report that the L253P substitution in the isolated β-III-spectrin ABD causes strikingly high F-actin binding affinity (Kd = 75.5 nM) compared to the weak F-actin binding affinity of the wild-type ABD (Kd = 75.8 μM). The mutation also causes decreased thermal stability (Tm = 44.6 °C vs 59.5 °C). Structural analyses indicate that leucine 253 is in a loop at the interface of the tandem calponin homology (CH) domains comprising the ABD. Leucine 253 is predicted to form hydrophobic contacts that bridge the CH domains. The decreased stability of the mutant indicates that these bridging interactions are probably disrupted, suggesting that the high F-actin binding affinity of the mutant is due to opening of the CH domain interface. These results support a fundamental role for leucine 253 in regulating opening of the CH domain interface and binding of the ABD to F-actin. This study indicates that high-affinity actin binding of L253P β-III-spectrin is a likely driver of neurodegeneration. PMID:26883385

  2. A human β-III-spectrin spinocerebellar ataxia type 5 mutation causes high-affinity F-actin binding.

    PubMed

    Avery, Adam W; Crain, Jonathan; Thomas, David D; Hays, Thomas S

    2016-01-01

    Spinocerebellar ataxia type 5 (SCA5) is a human neurodegenerative disease that stems from mutations in the SPTBN2 gene encoding the protein β-III-spectrin. Here we investigated the molecular consequence of a SCA5 missense mutation that results in a L253P substitution in the actin-binding domain (ABD) of β-III-spectrin. We report that the L253P substitution in the isolated β-III-spectrin ABD causes strikingly high F-actin binding affinity (Kd = 75.5 nM) compared to the weak F-actin binding affinity of the wild-type ABD (Kd = 75.8 μM). The mutation also causes decreased thermal stability (Tm = 44.6 °C vs 59.5 °C). Structural analyses indicate that leucine 253 is in a loop at the interface of the tandem calponin homology (CH) domains comprising the ABD. Leucine 253 is predicted to form hydrophobic contacts that bridge the CH domains. The decreased stability of the mutant indicates that these bridging interactions are probably disrupted, suggesting that the high F-actin binding affinity of the mutant is due to opening of the CH domain interface. These results support a fundamental role for leucine 253 in regulating opening of the CH domain interface and binding of the ABD to F-actin. This study indicates that high-affinity actin binding of L253P β-III-spectrin is a likely driver of neurodegeneration. PMID:26883385

  3. A Mechanism for Actin Filament Severing by Malaria Parasite Actin Depolymerizing Factor 1 via a Low Affinity Binding Interface*

    PubMed Central

    Wong, Wilson; Webb, Andrew I.; Olshina, Maya A.; Infusini, Giuseppe; Tan, Yan Hong; Hanssen, Eric; Catimel, Bruno; Suarez, Cristian; Condron, Melanie; Angrisano, Fiona; NebI, Thomas; Kovar, David R.; Baum, Jake

    2014-01-01

    Actin depolymerizing factor (ADF)/cofilins are essential regulators of actin turnover in eukaryotic cells. These multifunctional proteins facilitate both stabilization and severing of filamentous (F)-actin in a concentration-dependent manner. At high concentrations ADF/cofilins bind stably to F-actin longitudinally between two adjacent actin protomers forming what is called a decorative interaction. Low densities of ADF/cofilins, in contrast, result in the optimal severing of the filament. To date, how these two contrasting modalities are achieved by the same protein remains uncertain. Here, we define the proximate amino acids between the actin filament and the malaria parasite ADF/cofilin, PfADF1 from Plasmodium falciparum. PfADF1 is unique among ADF/cofilins in being able to sever F-actin but do so without stable filament binding. Using chemical cross-linking and mass spectrometry (XL-MS) combined with structure reconstruction we describe a previously overlooked binding interface on the actin filament targeted by PfADF1. This site is distinct from the known binding site that defines decoration. Furthermore, total internal reflection fluorescence (TIRF) microscopy imaging of single actin filaments confirms that this novel low affinity site is required for F-actin severing. Exploring beyond malaria parasites, selective blocking of the decoration site with human cofilin (HsCOF1) using cytochalasin D increases its severing rate. HsCOF1 may therefore also use a decoration-independent site for filament severing. Thus our data suggest that a second, low affinity actin-binding site may be universally used by ADF/cofilins for actin filament severing. PMID:24371134

  4. Stimulation of regulatory volume decrease (RVD) by isolated bovine articular chondrocytes following F-actin disruption using latrunculin B.

    PubMed

    Kerrigan, Mark J P; Hall, Andrew C

    2005-01-01

    Articular chondrocytes are exposed to significant changes in extracellular osmolarity during normal joint activity, which can lead to changes in cell volume and metabolism of the extracellular matrix (ECM). Chondrocytes can respond to cell swelling/shrinking by volume regulatory pathways, but the signalling pathways are poorly understood although a role for the cytoskeleton is frequently implicated. Here, we have investigated the effects of disruption of the chondrocyte F-actin cytoskeleton on the recovery of cell volume by RVD. The cytoskeleton was perturbed using the relatively specific agent latrunculin B (5 microM; 30 min) and loss of F-actin integrity quantified using fluorescent phalloidin-labelling and confocal laser scanning microscopy (CLSM). Imaging of isolated chondrocytes labelled with Fura-2 to measure the fluorescence associated with cell volume changes, showed that the extent of hypo-osmotic swelling was unaffected by latrunculin B treatment. Two categories of the chondrocyte RVD response were observed: 'fast' RVD where at 3 min post-osmotic challenge there was a recovery in cell fluorescence of >or=80%, whereas other cells exhibited 'slow' RVD. Latrunculin B increased the proportion of chondrocytes demonstrating 'fast' RVD by approximately 10 fold and reduced those cells showing 'slow' RVD. An inhibitor of chondrocyte RVD (REV 5901) had no significant effect on the integrity of the cytoskeleton showing that the RVD response could be inhibited independent of the state of the F-actin cytoskeleton. These results suggest that the intact cortical F-actin cytoskeleton has a restraining effect on the RVD response of isolated bovine articular chondrocytes. PMID:16227656

  5. An Arp2/3 nucleated F-actin shell fragments nuclear membranes at nuclear envelope breakdown in starfish oocytes.

    PubMed

    Mori, Masashi; Somogyi, Kálmán; Kondo, Hiroshi; Monnier, Nilah; Falk, Henning J; Machado, Pedro; Bathe, Mark; Nédélec, François; Lénárt, Péter

    2014-06-16

    Animal cells disassemble and reassemble their nuclear envelopes (NEs) upon each division. Nuclear envelope breakdown (NEBD) serves as a major regulatory mechanism by which mixing of cytoplasmic and nuclear compartments drives the complete reorganization of cellular architecture, committing the cell for division. Breakdown is initiated by phosphorylation-driven partial disassembly of the nuclear pore complexes (NPCs), increasing their permeability but leaving the overall NE structure intact. Subsequently, the NE is rapidly broken into membrane fragments, defining the transition from prophase to prometaphase and resulting in complete mixing of cyto- and nucleoplasm. However, the mechanism underlying this rapid NE fragmentation remains largely unknown. Here, we show that NE fragmentation during NEBD in starfish oocytes is driven by an Arp2/3 complex-nucleated F-actin "shell" that transiently polymerizes on the inner surface of the NE. Blocking the formation of this F-actin shell prevents membrane fragmentation and delays entry of large cytoplasmic molecules into the nucleus. We observe spike-like protrusions extending from the F-actin shell that appear to "pierce" the NE during the fragmentation process. Finally, we show that NE fragmentation is essential for successful reproduction, because blocking this process in meiosis leads to formation of aneuploid eggs. PMID:24909322

  6. Hypotonicity and cell volume regulation in shark rectal gland: role of organic osmolytes and F-actin.

    PubMed

    Ziyadeh, F N; Mills, J W; Kleinzeller, A

    1992-03-01

    Hypotonic stress (reduction of external tonicity from approximately 900 mosM and 295 mM NaCl to approximately 600 mosM and 135 mM NaCl) produced a relatively slow regulatory volume decrease (RVD) in dogfish shark (Squalus acanthias) rectal gland cells. During the 5-h experiment, cell K+ content remained unchanged; cell content of Na+ and Cl- dropped in the initial swelling phase by some 50% (reflecting the corresponding reduction in medium NaCl), and then remained unchanged during volume recovery phase. Also, cellular fluxes of 86Rb+ and urea were not affected by hypotonic stress. However, hypotonicity enhanced 10- to 20-fold the efflux of organic cell osmolytes taurine, betaine, and trimethyloxamine, and this accounted for the loss of osmotically obliged water during RVD. Enhancement of osmolyte efflux by hypotonic stress was abolished by readjusting the low-Na+ saline to isotonicity (approximately 900 mosM) with innocuous cations (choline+, Li+, or N-methylglucamine+). The results suggest that reduction of medium tonicity may be the determinant for the RVD response to hypotonic stress. The above properties of the observed RVD were also displayed when studying changes on cell F-actin at the basolateral cell face; hypotonic stress (medium with 135 mM NaCl) produced a rapid disappearance of fluorescence related to this cytoskeletal component, whereas no such changes were seen in low-Na+ salines made isotonic with choline or N-methylglucamine chloride nor in a saline made hyposmolar by omitting urea. Hence, hypotonicity is required to affect F-actin organization (depolymerization?). These changes of F-actin fluorescence are transient; they were completed within 5-10 min of hypotonic stress, and afterwards a gradual reconstitution of cell F-actin organization was seen. The above observations are consistent with the assumption that, in shark rectal gland cells, transient loss of cytoskeleton (F-actin) organization at the basolateral cell face, induced by hypotonicity

  7. Two-headed binding of a processive myosin to F-actin.

    PubMed

    Walker, M L; Burgess, S A; Sellers, J R; Wang, F; Hammer, J A; Trinick, J; Knight, P J

    2000-06-15

    Myosins are motor proteins in cells. They move along actin by changing shape after making stereospecific interactions with the actin subunits. As these are arranged helically, a succession of steps will follow a helical path. However, if the myosin heads are long enough to span the actin helical repeat (approximately 36 nm), linear motion is possible. Muscle myosin (myosin II) heads are about 16 nm long, which is insufficient to span the repeat. Myosin V, however, has heads of about 31 nm that could span 36 nm and thus allow single two-headed molecules to transport cargo by walking straight. Here we use electron microscopy to show that while working, myosin V spans the helical repeat. The heads are mostly 13 actin subunits apart, with values of 11 or 15 also found. Typically the structure is polar and one head is curved, the other straighter. Single particle processing reveals the polarity of the underlying actin filament, showing that the curved head is the leading one. The shape of the leading head may correspond to the beginning of the working stroke of the motor. We also observe molecules attached by one head in this conformation. PMID:10866203

  8. Bidirectional interactions between NOX2-type NADPH oxidase and the F-actin cytoskeleton in neuronal growth cones

    PubMed Central

    Munnamalai, Vidhya; Weaver, Cory J.; Weisheit, Corinne E.; Venkatraman, Prahatha; Agim, Zeynep Sena; Quinn, Mark T.; Suter, Daniel M.

    2014-01-01

    NADPH oxidases are important for neuronal function but detailed subcellular localization studies have not been performed. Here, we provide the first evidence for the presence of functional NOX2-type NADPH oxidase complex in neuronal growth cones and its bidirectional relationship with the actin cytoskeleton. NADPH oxidase inhibition resulted in reduced F-actin content, retrograde F-actin flow, and neurite outgrowth. Stimulation of NADPH oxidase via protein kinase C activation increased levels of hydrogen peroxide in the growth cone periphery. The main enzymatic NADPH oxidase subunit NOX2/gp91phox localized to the growth cone plasma membrane and showed little overlap with the regulatory subunit p40phox. p40phox itself exhibited co-localization with filopodial actin bundles. Differential subcellular fractionation revealed preferential association of NOX2/gp91phox and p40phox with the membrane and the cytoskeletal fraction, respectively. When neurite growth was evoked with beads coated with the cell adhesion molecule apCAM, we observed a significant increase in co-localization of p40phox with NOX2/gp91phox at apCAM adhesion sites. Together, these findings suggest a bidirectional functional relationship between NADPH oxidase activity and the actin cytoskeleton in neuronal growth cones, which contributes to the control of neurite outgrowth. PMID:24702317

  9. Ultrastructural localization of F-actin using phalloidin and quantum dots in HL-60 promyelocytic leukemia cell line after cell death induction by arsenic trioxide.

    PubMed

    Izdebska, Magdalena; Gagat, Maciej; Grzanka, Dariusz; Grzanka, Alina

    2013-06-01

    Quantum dots (QDs) are fluorescent nanocrystals whose unique properties are fundamentally different from organic fluorophores. Moreover, their cores display sufficient electron density to be visible under transmission electron microscopy (TEM). Here, we report a technique for phalloidin-based TEM detection of F-actin. The ultrastructural reorganization of F-actin after arsenic trioxide (ATO) treatment was estimated using a combination of pre- and post-embedding techniques with biotinylated phalloidin and QD-streptavidin conjugates or colloidal gold (AU) conjugated to streptavidin. Ultrastructural studies showed ATO-induced apoptosis of HL-60 cells. Moreover, different patterns of QD-labeled F-actin after ATO treatment were seen. In the case of AU labeling, only a few gold particles were seen and it was impossible to see any difference in F-actin distribution. TEM imaging experiments using QDs and colloidal gold (AU) showed that the strategy of bioconjugation of nanoprobes is the most important factor in biotinylated phalloidin detection of F-actin using streptavidin-coated nanoparticles, especially at the ultrastructural level. Additionally, the results presented in present study confirm the essential role of F-actin in chromatin reorganization during cell death processes. PMID:23312591

  10. Ha-VP39 binding to actin and the influence of F-actin on assembly of progeny virions.

    PubMed

    Lu, S; Ge, G; Qi, Y

    2004-11-01

    We present evidence that actin is necessary for the successful assembly of HaNPV virions. Purified nucleocapsid protein Ha-VP39 of Heliothis armigera nuclear polyhedrosis virus (HaNPV) was found to be able to bind to actin in vitro without assistance, as demonstrated by Western blot and isothermal titration calorimeter. DeltaH and binding constants (K) detected by isothermal titration calorimeter strongly suggested that Ha-VP39 first binds actin to seed the formation of hexamer complex of actin, and the hexamers then link to each other to form filaments, and the filaments finally twist into cable structures. The proliferation of HaNPV was completely inhibited in Hz-AM1 cells cultivated in the medium containing 0.5 microg/ml cytochalasin D (CD) to prevent polymerization of actin, while its yield was reduced to 10(-4) in the presence of 0.1 microg/ml CD. Actin concentration and the viral DNA synthesis were not significantly affected by CD even though the progeny virions assembled in the CD treated cells were morphologically different from normal ones and resulted in fewer plaques in plaque assay. PMID:15503206

  11. Identification and characterization of espin, an actin-binding protein localized to the F-actin-rich junctional plaques of Sertoli cell ectoplasmic specializations.

    PubMed

    Bartles, J R; Wierda, A; Zheng, L

    1996-06-01

    Ectoplasmic specializations are membrane-cytoskeletal assemblages found in Sertoli cells at sites of attachment to elongate spermatids or neighboring Sertoli cells. They are characterized in part by the presence of a unique junctional plaque which contains a narrow layer of parallel actin bundles sandwiched between the Sertoli cell plasma membrane and an affiliated cistern of endoplasmic reticulum. Using a monoclonal antibody, we have identified 'espin,' a novel actin-binding protein localized to ectoplasmic specializations. By immunogold electron microscopy, espin was localized to the parallel actin bundles of ectoplasmic specializations at sites where Sertoli cells contacted the heads of elongate spermatids. The protein was also detected at the sites of ectoplasmic specializations between neighboring Sertoli cells. Espin exhibits an apparent molecular mass of approximately 110 kDa in SDS gels. It is encoded by an approximately 2.9 kb mRNA, which was found to be specific to testis among the 11 rat organs and tissues examined. On the basis of cDNA sequence, espin is predicted to be an 836 amino acid protein which contains 8 ankyrin-like repeats in its N-terminal third, a potential P-loop, two proline-rich peptides and two peptides which contain clusters of multiple glutamates bracketed by arginines, lysines and glutamines in a pattern reminiscent of the repetitive motif found in the protein trichohyalin. The ankyrin-like repeats and a 66 amino acid peptide in the C terminus show significant sequence similarity to proteins encoded by the forked gene of Drosophila. A fusion protein containing the C-terminal 378 amino acids of espin was found to bind with high affinity (Kd = approximately 10 nM) to F-actin in vitro with a stoichiometry of approximately 1 espin per 6 actin monomers. When expressed by transfected NRK fibroblasts, the same C-terminal fragment of espin was observed to decorate actin fibers or cables. On the basis of its structure, localization and

  12. Filamentous actin is a substrate for protealysin, a metalloprotease of invasive Serratia proteamaculans.

    PubMed

    Tsaplina, Olga; Efremova, Tatiana; Demidyuk, Ilya; Khaitlina, Sofia

    2012-01-01

    Homologous bacterial metalloproteases ECP32/grimelysin from Serratia grimesii and protealysin from Serratia proteamaculans are involved in the invasion of the nonpathogenic bacteria in eukaryotic cells and are suggested to translocate into the cytoplasm [Bozhokina ES et al. (2011) Cell Biol Int35, 111-118]. The proteases have been characterized as actin-hydrolyzing enzymes with a narrow specificity toward intact cell proteins. However, cleavage of filamentous actin (F-actin) (i.e. the main actin species in the cell) and the properties of the cleaved F-actin have not been investigated previously. In the present study, we revealed the presence of protealysin in the cytoplasm of 3T3-SV40 cells infected with S. proteamaculans or recombinant Escherichia coli expressing the protealysin gene. We also show for the first time that purified protealysin and the lysates of the recombinant E. coli producing protealysin cleave 20-40% of F-actin. Cleavage limited predominantly to the bond Gly42-Val43 efficiently increases the steady-state ATPase activity (dynamics) of F-actin. abolishes this effect and promotes the nucleation of protealysin-cleaved Mg-globular-actin even in the absence of 0.1 m KCl, most likely as a result of the stabilization of lateral intermonomer contacts of actin subunits. The results obtained in the present study suggest that F-actin can be a target for protealysin upon its translocation into the host cell. PMID:22077798

  13. Multiscale Modelling for investigating single molecule effects on the mechanics of actin filaments

    NASA Astrophysics Data System (ADS)

    A, Deriu Marco; C, Bidone Tamara; Laura, Carbone; Cristina, Bignardi; M, Montevecchi Franco; Umberto, Morbiducci

    2011-12-01

    This work presents a preliminary multiscale computational investigation of the effects of nucleotides and cations on the mechanics of actin filaments (F-actin). At the molecular level, Molecular Dynamics (MD) simulations are employed to characterize the rearrangements of the actin monomers (G-actin) in terms of secondary structures evolution in physiological conditions. At the mesoscale level, a coarse grain (CG) procedure is adopted where each monomer is represented by means of Elastic Network Modeling (ENM) technique. At the macroscale level, actin filaments up to hundreds of nanometers are assumed as isotropic and elastic beams and characterized via Rotation Translation Block (RTB) analysis. F-actin bound to adenosine triphosphate (ATP) shows a persistence length around 5 μm, while actin filaments bound to adenosine diphosphate (ADP) have a persistence length of about 3 μm. With magnesium bound to the high affinity binding site of G-actin, the persistence length of F-actin decreases to about 2 μm only in the ADP-bound form of the filament, while the same ion has no effects, in terms of stiffness variation, on the ATP-bound form of F-actin. The molecular mechanisms behind these changes in flexibility are herein elucidated. Thus, this study allows to analyze how the local binding of cations and nucleotides on G-actin induce molecular rearrangements that transmit to the overall F-actin, characterizing shifts of mechanical properties, that can be related with physiological and pathological cellular phenomena, as cell migration and spreading. Further, this study provides the basis for upcoming investigating of network and cellular remodelling at higher length scales.

  14. Difference in hydration structures between F-actin and myosin subfragment-1 detected by small-angle X-ray and neutron scattering

    PubMed Central

    Matsuo, Tatsuhito; Arata, Toshiaki; Oda, Toshiro; Fujiwara, Satoru

    2013-01-01

    Hydration structures around F-actin and myosin subfragment-1 (S1), which play central roles as counterparts in muscle contraction, were investigated by small-angle X-ray scattering (SAXS) and small-angle neutron scattering (SANS). The radius of gyration of chymotryptic S1 was evaluated to be 41.3±1.1 Å for SAXS, 40.1±3.0 Å for SANS in H2O, and 37.8±0.8 Å for SANS in D2O, respectively. The values of the cross-sectional radius of gyration of F-actin were 25.4±0.03 Å for SAXS, 23.4±2.4 Å for SANS in H2O, and 22.6 ± 0.6 Å for SANS in D2O, respectively. These differences arise from different contributions of the hydration shell to the scattering curves. Analysis by model calculations showed that the hydration shell of S1 has the average density 10–15% higher than bulk water, being the typical hydration shell. On the other hand, the hydration shell of F-actin has the average density more than 19% higher than bulk water, indicating that F-actin has a denser, unusual hydration structure. The results indicate a difference in the hydration structures around F-actin and S1. The unusual hydration structure around F-actin may have the structural property of so-called “hyper-mobile water” around F-actin. PMID:27493547

  15. Self-organization of chemoattractant waves in Dictyostelium depends on F-actin and cell-substrate adhesion.

    PubMed

    Fukujin, Fumihito; Nakajima, Akihiko; Shimada, Nao; Sawai, Satoshi

    2016-06-01

    In the social amoeba Dictyostelium discoideum, travelling waves of extracellular cyclic adenosine monophosphate (cAMP) self-organize in cell populations and direct aggregation of individual cells to form multicellular fruiting bodies. In contrast to the large body of studies that addressed how movement of cells is determined by spatial and temporal cues encoded in the dynamic cAMP gradients, how cell mechanics affect the formation of a self-generated chemoattractant field has received less attention. Here, we show, by live cell imaging analysis, that the periodicity of the synchronized cAMP waves increases in cells treated with the actin inhibitor latrunculin. Detail analysis of the extracellular cAMP-induced transients of cytosolic cAMP (cAMP relay response) in well-isolated cells demonstrated that their amplitude and duration were markedly reduced in latrunculin-treated cells. Similarly, in cells strongly adhered to a poly-l-lysine-coated surface, the response was suppressed, and the periodicity of the population-level oscillations was markedly lengthened. Our results suggest that cortical F-actin is dispensable for the basic low amplitude relay response but essential for its full amplification and that this enhanced response is necessary to establish high-frequency signalling centres. The observed F-actin dependence may prevent aggregation centres from establishing in microenvironments that are incompatible with cell migration. PMID:27358278

  16. Myosin Va facilitates the distribution of secretory granules in the F-actin rich cortex of PC12 cells.

    PubMed

    Rudolf, Rüdiger; Kögel, Tanja; Kuznetsov, Sergei A; Salm, Thorsten; Schlicker, Oliver; Hellwig, Andrea; Hammer, John A; Gerdes, Hans-Hermann

    2003-04-01

    Neuroendocrine secretory granules, the storage organelles for neuropeptides and hormones, are formed at the trans-Golgi network, stored inside the cell and exocytosed upon stimulation. Previously, we have reported that newly formed secretory granules of PC12 cells are transported in a microtubule-dependent manner from the trans-Golgi network to the F-actin-rich cell cortex, where they undergo short directed movements and exhibit a homogeneous distribution. Here we provide morphological and biochemical evidence that myosin Va is associated with secretory granules. Expression of a dominant-negative tail domain of myosin Va in PC12 cells led to an extensive clustering of secretory granules close to the cell periphery, a loss of their cortical restriction and a strong reduction in their motility in the actin cortex. Based on this data we propose a model that implies a dual transport system for secretory granules: after microtubule-dependent delivery to the cell periphery, secretory granules exhibit a myosin Va-dependent transport leading to their restriction and even dispersal in the F-actin-rich cortex of PC12 cells. PMID:12615975

  17. Formin3 is required for assembly of the F-actin structure that mediates tracheal fusion in Drosophila.

    PubMed

    Tanaka, Hiromasa; Takasu, Etsuko; Aigaki, Toshiro; Kato, Kagayaki; Hayashi, Shigeo; Nose, Akinao

    2004-10-15

    During tracheal development in Drosophila, some branches join to form a continuous luminal network. Specialized cells at the branch tip, called fusion cells, extend filopodia to make contact and become doughnut shaped to allow passage of the lumen. These morphogenetic processes accompany the highly regulated cytoskeletal reorganization of fusion cells. We identified the Drosophila formin3 (form3) gene that encodes a novel formin and plays a role in tracheal fusion. Formins are a family of proteins characterized by highly conserved formin homology (FH) domains. The formin family functions in various actin-based processes, including cytokinesis and cell polarity. During embryogenesis, form3 mRNA is expressed mainly in the tracheal system. In form3 mutant embryos, the tracheal fusion does not occur at some points. This phenotype is rescued by the forced expression of form3 in the trachea. We used live imaging of GFP-moesin during tracheal fusion to show that an F-actin structure that spans the adjoining fusion cells and mediates the luminal connection does not form at abnormal anastomosis sites in form3 mutants. These results suggested that Form3 plays a role in the F-actin assembly, which is essential for cellular rearrangement during tracheal fusion. PMID:15385168

  18. Self-organization of chemoattractant waves in Dictyostelium depends on F-actin and cell–substrate adhesion

    PubMed Central

    Fukujin, Fumihito; Nakajima, Akihiko; Shimada, Nao; Sawai, Satoshi

    2016-01-01

    In the social amoeba Dictyostelium discoideum, travelling waves of extracellular cyclic adenosine monophosphate (cAMP) self-organize in cell populations and direct aggregation of individual cells to form multicellular fruiting bodies. In contrast to the large body of studies that addressed how movement of cells is determined by spatial and temporal cues encoded in the dynamic cAMP gradients, how cell mechanics affect the formation of a self-generated chemoattractant field has received less attention. Here, we show, by live cell imaging analysis, that the periodicity of the synchronized cAMP waves increases in cells treated with the actin inhibitor latrunculin. Detail analysis of the extracellular cAMP-induced transients of cytosolic cAMP (cAMP relay response) in well-isolated cells demonstrated that their amplitude and duration were markedly reduced in latrunculin-treated cells. Similarly, in cells strongly adhered to a poly-l-lysine-coated surface, the response was suppressed, and the periodicity of the population-level oscillations was markedly lengthened. Our results suggest that cortical F-actin is dispensable for the basic low amplitude relay response but essential for its full amplification and that this enhanced response is necessary to establish high-frequency signalling centres. The observed F-actin dependence may prevent aggregation centres from establishing in microenvironments that are incompatible with cell migration. PMID:27358278

  19. Arabidopsis CROOKED encodes for the smallest subunit of the ARP2/3 complex and controls cell shape by region specific fine F-actin formation.

    PubMed

    Mathur, Jaideep; Mathur, Neeta; Kirik, Victor; Kernebeck, Birgit; Srinivas, Bhylahalli Purushottam; Hülskamp, Martin

    2003-07-01

    The generation of a specific cell shape requires differential growth, whereby specific regions of the cell expand more relative to others. The Arabidopsis crooked mutant exhibits aberrant cell shapes that develop because of mis-directed expansion, especially during a rapid growth phase. GFP-aided visualization of the F-actin cytoskeleton and the behavior of subcellular organelles in different cell-types in crooked and wild-type Arabidopsis revealed that localized expansion is promoted in cellular regions with fine F-actin arrays but is restricted in areas that maintain dense F-actin. This suggested that a spatiotemporal distinction between fine versus dense F-actin in a growing cell could determine the final shape of the cell. CROOKED was molecularly identified as the plant homolog of ARPC5, the smallest sub-unit of the ARP2/3 complex that in other organisms is renowned for its role in creating dendritic arrays of fine F-actin. Rescue of crooked phenotype by the human ortholog provides the first molecular evidence for the presence and functional conservation of the complex in higher plants. Our cell-biological and molecular characterization of CROOKED suggests a general actin-based mechanism for regulating differential growth and generating cell shape diversity. PMID:12783786

  20. Changes in F-actin organization induced by hard metal particle exposure in rat pulmonary epithelial cells using laser scanning confocal microscopy.

    PubMed

    Antonini, J M; Starks, K; Roberts, J R; Millecchia, L; Yang, H M; Rao, K M

    2000-01-01

    Chronic inhalation of hard metal (WC-Co) particles causes alveolitis and the eventual development of pulmonary fibrosis. The initial inflammatory response includes a change in the alveolar epithelial cell-capillary barrier, which has been shown to be regulated by the state of assembly and organization of the actin cytoskeletal network. The objective of this study was to evaluate the effect WC-Co particles have on F-actin organization of lung epithelial cells in an in vitro culture system. Rat lung epithelial (L2) cells were exposed to 5, 25, and 100 microg/mL of WC-Co particles, as well as the individual components (Co and WC) of the hard metal mixture particles for 24 h. The effect on F-actin organization was visualized by laser scanning confocal microscopy (LSCM) following Bodipy-Phallacidin staining. Minimal changes in the F-actin microfilaments of L2 cells were observed by LSCM after exposure to WC and WC-Co at 5 and 25 microg/mL, while at 100 microg/mL, there was a noticeable disruption in the uniform distribution of L2 cell F-actin microfilaments. After exposure to Co, a dose-dependent change in the F-actin organization of the L2 cells was observed. Little change in F-actin assembly was observed after treatment with 5 microg/mL of Co (the concentration equivalent to the 5% amount of Co commonly present in 100 microg/mL of the WC-Co sample mixture). However, at 100 microg/mL of Co, the microfilaments aggregated into homogeneous masses within the cells, and a significant loss in the organization of L2 F-actin was observed. These dramatic alterations in F-actin organization seen after exposure to the higher doses of Co were attributed to an increase in L2 cell injury as measured by lactate dehydrogenase and trypan blue exclusion. We conclude the pulmonary response evoked in the lung by inhalation of high levels of WC-Co particles is unlikely due to alterations in the F-actin microfilaments of lung-epithelial cells. PMID:10900403

  1. The PCH family member MAYP/PSTPIP2 directly regulates F-actin bundling and enhances filopodia formation and motility in macrophages.

    PubMed

    Chitu, Violeta; Pixley, Fiona J; Macaluso, Frank; Larson, Daniel R; Condeelis, John; Yeung, Yee-Guide; Stanley, E Richard

    2005-06-01

    Macrophage actin-associated tyrosine phosphorylated protein (MAYP) belongs to the Pombe Cdc15 homology (PCH) family of proteins involved in the regulation of actin-based functions including cell adhesion and motility. In mouse macrophages, MAYP is tyrosine phosphorylated after activation of the colony-stimulating factor-1 receptor (CSF-1R), which also induces actin reorganization, membrane ruffling, cell spreading, polarization, and migration. Because MAYP associates with F-actin, we investigated the function of MAYP in regulating actin organization in macrophages. Overexpression of MAYP decreased CSF-1-induced membrane ruffling and increased filopodia formation, motility and CSF-1-mediated chemotaxis. The opposite phenotype was observed with reduced expression of MAYP, indicating that MAYP is a negative regulator of CSF-1-induced membrane ruffling and positively regulates formation of filopodia and directional migration. Overexpression of MAYP led to a reduction in total macrophage F-actin content but was associated with increased actin bundling. Consistent with this, purified MAYP bundled F-actin and regulated its turnover in vitro. In addition, MAYP colocalized with cortical and filopodial F-actin in vivo. Because filopodia are postulated to increase directional motility by acting as environmental sensors, the MAYP-stimulated increase in directional movement may be at least partly explained by enhancement of filopodia formation. PMID:15788569

  2. The natural product cucurbitacin E inhibits depolymerization of actin filaments

    PubMed Central

    Sörensen, Pia M.; Iacob, Roxana E.; Fritzsche, Marco; Engen, John R.; Brieher, William M.; Charras, Guillaume; Eggert, Ulrike S.

    2012-01-01

    Although small molecule actin modulators have been widely used as research tools, only one cell permeable small molecule inhibitor of actin depolymerization (jasplakinolide) is commercially available. We report that the natural product cucurbitacin E inhibits actin depolymerization and show that its mechanism of action is different from jasplakinolide. In assays using pure fluorescently labeled actin, cucurbitacin E specifically affected depolymerization without affecting polymerization. It inhibited actin depolymerization at sub-stoichiometric concentrations up to 1:6 cucurbitacin:actin E. Cucurbitacin E specifically binds to filamentous actin (F-actin) forming a covalent bond at residue Cys257, but not to monomeric actin (G-actin). Based on its compatibility with phalloidin staining, we show that cucurbitacin E occupies a different binding site on actin filaments. Using loss of fluorescence after localized photoactivation, we found that cucurbitacin E inhibited actin depolymerization in live cells. Cucurbitacin E is a widely available plant-derived natural product, making it a useful tool to study actin dynamics in cells and actin-based processes such as cytokinesis. PMID:22724897

  3. Direct binding of F actin to the cytoplasmic domain of the alpha 2 integrin chain in vitro

    NASA Technical Reports Server (NTRS)

    Kieffer, J. D.; Plopper, G.; Ingber, D. E.; Hartwig, J. H.; Kupper, T. S.

    1995-01-01

    The transmembrane integrins have been shown to interact with the cytoskeleton via noncovalent binding between cytoplasmic domains (CDs) of integrin beta chains and various actin binding proteins within the focal adhesion complex. Direct or indirect integrin alpha chain CD binding to the actin cytoskeleton has not been reported. We show here that actin, as an abundant constituent of focal adhesion complex proteins isolated from fibroblasts, binds strongly and specifically to alpha 2 CD, but not to alpha 1 CD peptide. Similar specific binding to alpha 2 CD peptide was seen for highly purified F actin, free of putative actin-binding proteins. The bound complex of actin and peptide was visualized directly by coprecipitation, and actin binding was abrogated by removal of a five amino acid sequence from the alpha 2 CD peptide. Our findings may explain the earlier observation that, while integrins alpha 2 beta 1 and alpha 1 beta 1 both bind to collagen, only alpha 2 beta 1 can mediate contraction of extracellular collagen matrices.

  4. Plasma Gelsolin Levels Decrease in Diabetic State and Increase upon Treatment with F-Actin Depolymerizing Versions of Gelsolin

    PubMed Central

    Khatri, Neeraj; Sagar, Amin; Peddada, Nagesh; Choudhary, Vikas; Chopra, Bhupinder Singh; Garg, Veena; Ashish

    2014-01-01

    The study aims to map plasma gelsolin (pGSN) levels in diabetic humans and mice models of type II diabetes and to evaluate the efficacy of gelsolin therapy in improvement of diabetes in mice. We report that pGSN values decrease by a factor of 0.45 to 0.5 in the blood of type II diabetic humans and mice models. Oral glucose tolerance test in mice models showed that subcutaneous administration of recombinant pGSN and its F-actin depolymerizing competent versions brought down blood sugar levels comparable to Sitagliptin, a drug used to manage hyperglycemic condition. Further, daily dose of pGSN or its truncated versions to diabetic mice for a week kept sugar levels close to normal values. Also, diabetic mice treated with Sitagliptin for 7 days, showed increase in their pGSN values with the decrease in blood glucose as compared to their levels at the start of treatment. Gelsolin helped in improving glycemic control in diabetic mice. We propose that gelsolin level monitoring and replacement of F-actin severing capable gelsolin(s) should be considered in diabetic care. PMID:25478578

  5. F-actin-rich contractile endothelial pores prevent vascular leakage during leukocyte diapedesis through local RhoA signalling

    PubMed Central

    Heemskerk, Niels; Schimmel, Lilian; Oort, Chantal; van Rijssel, Jos; Yin, Taofei; Ma, Bin; van Unen, Jakobus; Pitter, Bettina; Huveneers, Stephan; Goedhart, Joachim; Wu, Yi; Montanez, Eloi; Woodfin, Abigail; van Buul, Jaap D.

    2016-01-01

    During immune surveillance and inflammation, leukocytes exit the vasculature through transient openings in the endothelium without causing plasma leakage. However, the exact mechanisms behind this intriguing phenomenon are still unknown. Here we report that maintenance of endothelial barrier integrity during leukocyte diapedesis requires local endothelial RhoA cycling. Endothelial RhoA depletion in vitro or Rho inhibition in vivo provokes neutrophil-induced vascular leakage that manifests during the physical movement of neutrophils through the endothelial layer. Local RhoA activation initiates the formation of contractile F-actin structures that surround emigrating neutrophils. These structures that surround neutrophil-induced endothelial pores prevent plasma leakage through actomyosin-based pore confinement. Mechanistically, we found that the initiation of RhoA activity involves ICAM-1 and the Rho GEFs Ect2 and LARG. In addition, regulation of actomyosin-based endothelial pore confinement involves ROCK2b, but not ROCK1. Thus, endothelial cells assemble RhoA-controlled contractile F-actin structures around endothelial pores that prevent vascular leakage during leukocyte extravasation. PMID:26814335

  6. Prevalence of IgG autoantibody against F-actin in patients suspected of having autoimmune or acute viral hepatitis.

    PubMed

    Jaskowski, Troy D; Konnick, Eric Q; Ashwood, Edward R; Litwin, Christine M; Hill, Harry R

    2007-01-01

    Our objectives in this study were to compare results obtained by an enzyme immunoassay (EIA) for F-actin antibody (FAA) immunoglobulin G (IgG) to those determined by an indirect fluorescent antibody (IFA) assay for smooth muscle antibody (SMA) IgG, and to determine the prevalence of FAA in patient sera having serologic evidence of acute viral hepatitis. Sera from 415 patients suspected of having autoimmune hepatitis (AIH), 208 patients suspected of having acute viral hepatitis A, B, or C, and 100 healthy blood donors (HBD) were included in the study. Only one of 100 HBD showed low levels (20-30 Units) of F-actin IgG. In patients suspected of having AIH, the prevalence of FAA increased as SMA titers increased and all sera with SMA titers of >or=1:160 were FAA-positive. In contrast, there were many sera with negative (<1:20) or low (1:20-1:40) SMA titers that contained moderate to high levels (>30 Units) of FAA; many exceeding 80 Units. Moreover, 51.4% of these sera were also positive for anti-nuclear antibody (ANA), which is also utilized in diagnosing type 1 AIH. FAA was detected in 25% of viral hepatitis antibody-positive sera, with the majority (59.3%) containing low levels, and all were ANA-negative. PMID:17621360

  7. F-actin-rich contractile endothelial pores prevent vascular leakage during leukocyte diapedesis through local RhoA signalling.

    PubMed

    Heemskerk, Niels; Schimmel, Lilian; Oort, Chantal; van Rijssel, Jos; Yin, Taofei; Ma, Bin; van Unen, Jakobus; Pitter, Bettina; Huveneers, Stephan; Goedhart, Joachim; Wu, Yi; Montanez, Eloi; Woodfin, Abigail; van Buul, Jaap D

    2016-01-01

    During immune surveillance and inflammation, leukocytes exit the vasculature through transient openings in the endothelium without causing plasma leakage. However, the exact mechanisms behind this intriguing phenomenon are still unknown. Here we report that maintenance of endothelial barrier integrity during leukocyte diapedesis requires local endothelial RhoA cycling. Endothelial RhoA depletion in vitro or Rho inhibition in vivo provokes neutrophil-induced vascular leakage that manifests during the physical movement of neutrophils through the endothelial layer. Local RhoA activation initiates the formation of contractile F-actin structures that surround emigrating neutrophils. These structures that surround neutrophil-induced endothelial pores prevent plasma leakage through actomyosin-based pore confinement. Mechanistically, we found that the initiation of RhoA activity involves ICAM-1 and the Rho GEFs Ect2 and LARG. In addition, regulation of actomyosin-based endothelial pore confinement involves ROCK2b, but not ROCK1. Thus, endothelial cells assemble RhoA-controlled contractile F-actin structures around endothelial pores that prevent vascular leakage during leukocyte extravasation. PMID:26814335

  8. Subcellular localisation of the p40phox component of NADPH oxidase involves direct interactions between the Phox homology domain and F-actin

    PubMed Central

    Shao, Dongmin; Segal, Anthony W.; Dekker, Lodewijk V.

    2010-01-01

    Cytosolic components of the NADPH oxidase interact with the actin cytoskeleton. These interactions are thought to be important for the activation of this enzyme system but they are poorly characterised at the molecular level. Here we have explored the interaction between the actin cytoskeleton and p40phox, one of the cytosolic components of NADPH oxidase. Full length p40phox expressed in COS cells co-localised with F-actin in a peripheral lamellar compartment. The co-localisation was lost after deletion of the Phox homology (PX) domain and the PX domain in isolation (p40PX) showed the same F-actin co-localisation as the full length protein. PX domains are known lipid-binding modules however, a mutant p40PX which did not bind lipids still co-localised with F-actin suggesting that lipid-independent interactions underlie the localisation. Affinity chromatography identified actin as a binding partner for p40PX in neutrophil extracts. Pure actin interacted with both p40phox and with p40PX suggesting it is a direct interaction. Disruption of the actin cytoskeleton with cytochalasin D resulted in actin rearrangement and concomitantly the localisation of full length p40phox proteins and that of p40PX changed. Thus p40PX is a dual F-actin/lipid-binding module and F-actin interactions with the PX domain dictate at least in part the intracellular localisation of the cytosolic p40phox subunit of the NADPH oxidase. PMID:20637895

  9. Pseudorabies virus US3 leads to filamentous actin disassembly and contributes to viral genome delivery to the nucleus.

    PubMed

    Jacob, Thary; Van den Broeke, Céline; Grauwet, Korneel; Baert, Kim; Claessen, Christophe; De Pelsmaeker, Steffi; Van Waesberghe, Cliff; Favoreel, Herman W

    2015-06-12

    The conserved alphaherpesvirus US3 tegument protein induces rearrangements of the actin cytoskeleton, consisting of protrusion formation and stress fiber breakdown. Although US3 does not affect levels of total actin protein, it remains unclear whether US3 modulates the total levels of filamentous (F) actin. In this report, we show that the pseudorabies virus (PRV) US3 protein, via its kinase activity, leads to disassembly of F-actin in porcine ST cells. F-actin disassembly has been reported before to contribute to host cell entry of HIV. In line with this, in the current study, we report that US3 has a previously uncharacterized role in viral genome delivery to the nucleus, since quantitative polymerase chain reaction (qPCR) assays on nuclear fractions demonstrated a reduced nuclear delivery of US3null PRV compared to wild type PRV genomes. Treatment of cells with the actin depolymerizing drug cytochalasin D enhanced virus genome delivery to the nucleus, particularly of US3null PRV, supporting a role for F-actin disassembly during certain aspects of viral entry. In conclusion, the US3 kinase of PRV leads to F-actin depolymerization, and US3 and F-actin disassembly contribute to viral genome delivery to the nucleus. PMID:25869795

  10. Tropomyosin-1 protects transformed alveolar epithelial cells against cigaret smoke extract through the stabilization of F-actin-dependent cell-cell junctions.

    PubMed

    Gagat, Maciej; Grzanka, Dariusz; Izdebska, Magdalena; Sroka, Wiktor Dariusz; Hałas-Wiśniewska, Marta; Grzanka, Alina

    2016-04-01

    The aim of the study was to estimate the effect of tropomyosin-1-based structural stabilization of F-actin in transformed human alveolar epithelial line H1299 cells subjected to high oxidative stress induced by cigaret smoke extract. We demonstrated here that cigaret smoke extract induces cell shrinking and detachment as a consequence of F-actin cytoskeleton degradation in H1299 cells not overexpressing tropomyosin-1. Furthermore, the treatment of these cells with cigaret smoke extract resulted in the loss of peripheral localization of ZO-1 and initiated apoptosis. In contrast, structural stabilization of F-actin, by overexpression of tropomyosin-1, preserved cell to cell interactions through the attenuation of cortical actin organization into thin fibers and thus protected these cells against oxidative stress-induced degradation of actin cytoskeleton and cell death. In conclusion, we suggest that structural stabilization of thin cortical F-actin fibers increases link between tight junctions proteins and actin cytoskeleton and thus protects H1299 cells against cigaret smoke extract. PMID:26805581

  11. Claudin 28b and F-actin are involved in rainbow trout gill pavement cell tight junction remodeling under osmotic stress.

    PubMed

    Sandbichler, Adolf Michael; Egg, Margit; Schwerte, Thorsten; Pelster, Bernd

    2011-05-01

    Permeability of rainbow trout gill pavement cells cultured on permeable supports (single seeded inserts) changes upon exposure to freshwater or treatment with cortisol. The molecular components of this change are largely unknown, but tight junctions that regulate the paracellular pathway are prime candidates in this adaptational process. Using differential display polymerase chain reaction we found a set of 17 differentially regulated genes in trout pavement cells that had been exposed to freshwater apically for 24 h. Five genes were related to the cell-cell contact. One of these genes was isolated and identified as encoding claudin 28b, an integral component of the tight junction. Immunohistochemical reactivity to claudin 28b protein was concentrated in a circumferential ring colocalized to the cortical F-actin ring. To study the contribution of this isoform to changes in transepithelial resistance and Phenol Red diffusion under apical hypo-or hyperosmotic exposure we quantified the fluorescence signal of this claudin isoform in immunohistochemical stainings together with the fluorescence of phalloidin-probed F-actin. Upon hypo-osmotic stress claudin 28b fluorescence and epithelial tightness remained stable. Under hyperosmotic stress, the presence of claudin 28b at the junction significantly decreased, and epithelial tightness was severely reduced. Cortical F-actin fluorescence increased upon hypo-osmotic stress, whereas hyperosmotic stress led to a separation of cortical F-actin rings and the number of apical crypt-like pores increased. Addition of cortisol to the basolateral medium attenuated cortical F-actin separation and pore formation during hyperosmotic stress and reduced claudin 28b in junctions except after recovery of cells from exposure to freshwater. Our results showed that short-term salinity stress response in cultured trout gill cells was dependent on a dynamic remodeling of tight junctions, which involves claudin 28b and the supporting F-actin ring

  12. F-actin links Epac-PKC signaling to purinergic P2X3 receptor sensitization in dorsal root ganglia following inflammation

    PubMed Central

    Gu, Yanping; Wang, Congying; Li, GuangWen

    2016-01-01

    Sensitization of purinergic P2X3 receptors (P2X3Rs) contributes to the production of exaggerated nociceptive responses following inflammatory injury. We showed previously that prostaglandin E2 (PGE2) potentiates P2X3R-mediated ATP currents in dorsal root ganglion neurons isolated from both control and complete Freund’s adjuvant-induced inflamed rats. PGE2 potentiation of ATP currents depends only on PKA signaling in control neurons, but it depends on both PKA and PKC signaling in inflamed neurons. We further found that inflammation evokes an increase in exchange proteins directly activated by cAMP (Epacs) in dorsal root ganglions. This increase promotes the activation of PKC to produce a much enhanced PGE2 effect on ATP currents and to elicit Epac-dependent flinch nocifensive behavioral responses in complete Freund’s adjuvant rats. The link between Epac-PKC signaling and P2X3R sensitization remains unexplored. Here, we show that the activation of Epacs promotes the expression of phosphorylated PKC and leads to an increase in the cytoskeleton, F-actin, expression at the cell perimeter. Depolymerization of F-actin blocks PGE2-enhanced ATP currents and inhibits P2X3R-mediated nocifensive responses after inflammation. Thus, F-actin is dynamically involved in the Epac-PKC-dependent P2X3R sensitization. Furthermore, Epacs induce a PKC-dependent increase in the membrane expression of P2X3Rs. This increase is abolished by F-actin depolymerization, suggesting that F-actin mediates Epac-PKC signaling of P2X3R membrane expression. Thus, after inflammation, an Epac-PKC dependent increase in F-actin in dorsal root ganglion neurons enhances the membrane expression of P2X3Rs to bring about sensitization of P2X3Rs and abnormal pain behaviors. PMID:27385722

  13. The IQGAP-related protein DGAP1 interacts with Rac and is involved in the modulation of the F-actin cytoskeleton and control of cell motility.

    PubMed

    Faix, J; Clougherty, C; Konzok, A; Mintert, U; Murphy, J; Albrecht, R; Mühlbauer, B; Kuhlmann, J

    1998-10-01

    DGAP1 of Dictyostelium discoideum is a cell cortex associated 95 kDa protein that shows homology to both RasGTPase-activating proteins (RasGAPs) and RasGAP-related proteins. When tested for RasGAP activity, recombinant DGAP1 protein did not promote the GTPase activity of human H-Ras or of Dictyostelium RasG in vitro. Instead, DGAP1 bound to Dictyostelium Rac1A and human Rac1, but not to human Cdc42. DGAP1 preferentially interacted with the activated GTP-bound forms of Rac1 and Rac1A, but did not affect the GTPase activities. Since Rho-type GTPases are implicated in the formation of specific F-actin structures and in the control of cell morphology, the microfilament system of mutants that either lack or overexpress DGAP1 has been analysed. DGAP1-null mutants showed elevated levels of F-actin that was organised in large leading edges, membrane ruffles or numerous large filopods. Expression of actin fused to green fluorescent protein (GFP) was used to monitor the actin dynamics in these cells, and revealed that the F-actin cytoskeleton of DGAP1-null cells was rapidly re-arranged to form ruffles and filopods. Conversely, in DGAP1-overexpressing cells, the formation of cellular projections containing F-actin was largely suppressed. Measurement of cell migration demonstrated that DGAP1 expression is inversely correlated with the speed of cell motility. PMID:9739079

  14. Morphogenetic role of F-actin meshwork in chamber formation: immunolabeling results from symbiont bearing benthic foraminifera

    NASA Astrophysics Data System (ADS)

    Tyszka, Jaroslaw; Raitzsch, Markus; Bijma, Jelle; Höher, Nicole; Bickmeyer, Ulf; Rivera-Ingraham, Georginia; Topa, Paweł; Kaczmarek, Karina; Mewes, Antje; Bowser, Samuel; Travis, Jeffrey

    2015-04-01

    Foraminifera are excellent tracers of palaeoceanographic conditions recorded in their shell (test) morphology and chemical composition. Understanding foraminiferal morphology controlled by chamberwise growth can be reduced to processes of chamber formation. However, little is known about how foraminifera control the shape of the chamber wall to be biosynthesized and precipitated. Searching for fundamental morphogenetic features involved in biomineralization, we focused on foraminifers, which belong to the class Globothalamea. The most critical condition to run experiments was to have convenient access to early stages of chamber formation in any species of cultured benthic foraminifers. We have tested small foraminifers collected from the tidal flats of the North Sea. All species, including Ammonia, Haynesina, and Elphidium, turned out to be unsuitable due to their reproduction seasonality and/or unpredictability. The problem was solved by using symbiont bearing Amphistegina lessonii cultured in small aquaria. In well treated cultures, such foraminifera often reproduce on a glass wall surface, serving as a continuous source of juveniles. They tend to regularly construct chambers. Another important point is that symbiont bearing foraminifers usually do not construct opaque protective cysts from detritus that disturb observations. All these features facilitate immunolabeling experiments observed under confocal microscopy. Therefore, for the first time, we managed to label cytoskeleton proteins during the chamber formation in Foraminifera. The results show that the shape of chamber is predefined by a meshwork of F-actin, which acts as a dynamic organic scaffold most likely responsible for distribution and docking of biomineralizing molecules (glycoproteins). The F-actin meshwork interacts with microtubules and all associated proteins, which are involved in the morphogenesis of biomineralized structures. Foraminifera, like other eukaryotic cells, can form active

  15. Phosphorylation of CRN2 by CK2 regulates F-actin and Arp2/3 interaction and inhibits cell migration

    PubMed Central

    Xavier, Charles-Peter; Rastetter, Raphael H.; Blömacher, Margit; Stumpf, Maria; Himmel, Mirko; Morgan, Reginald O.; Fernandez, Maria-Pilar; Wang, Conan; Osman, Asiah; Miyata, Yoshihiko; Gjerset, Ruth A.; Eichinger, Ludwig; Hofmann, Andreas; Linder, Stefan; Noegel, Angelika A.; Clemen, Christoph S.

    2012-01-01

    CRN2 (synonyms: coronin 1C, coronin 3) functions in the re-organization of the actin network and is implicated in cellular processes like protrusion formation, secretion, migration and invasion. We demonstrate that CRN2 is a binding partner and substrate of protein kinase CK2, which phosphorylates CRN2 at S463 in its C-terminal coiled coil domain. Phosphomimetic S463D CRN2 loses the wild-type CRN2 ability to inhibit actin polymerization, to bundle F-actin, and to bind to the Arp2/3 complex. As a consequence, S463D mutant CRN2 changes the morphology of the F-actin network in the front of lamellipodia. Our data imply that CK2-dependent phosphorylation of CRN2 is involved in the modulation of the local morphology of complex actin structures and thereby inhibits cell migration. PMID:22355754

  16. Mitochondrial Dysfunction, Disruption of F-Actin Polymerization, and Transcriptomic Alterations in Zebrafish Larvae Exposed to Trichloroethylene.

    PubMed

    Wirbisky, Sara E; Damayanti, Nur P; Mahapatra, Cecon T; Sepúlveda, Maria S; Irudayaraj, Joseph; Freeman, Jennifer L

    2016-02-15

    Trichloroethylene (TCE) is primarily used as an industrial degreasing agent and has been in use since the 1940s. TCE is released into the soil, surface, and groundwater. From an environmental and regulatory standpoint, more than half of Superfund hazardous waste sites on the National Priority List are contaminated with TCE. Occupational exposure to TCE occurs primarily via inhalation, while environmental TCE exposure also occurs through ingestion of contaminated drinking water. Current literature links TCE exposure to various adverse health effects including cardiovascular toxicity. Current studies aiming to address developmental cardiovascular toxicity utilized rodent and avian models, with the majority of studies using relatively higher parts per million (mg/L) doses. In this study, to further investigate developmental cardiotoxicity of TCE, zebrafish embryos were treated with 0, 10, 100, or 500 parts per billion (ppb; μg/L) TCE during embryogenesis and/or through early larval stages. After the appropriate exposure period, angiogenesis, F-actin, and mitochondrial function were assessed. A significant dose-response decrease in angiogenesis, F-actin, and mitochondrial function was observed. To further complement this data, a transcriptomic profile of zebrafish larvae was completed to identify gene alterations associated with the 10 ppb TCE exposure. Results from the transcriptomic data revealed that embryonic TCE exposure caused significant changes in genes associated with cardiovascular disease, cancer, and organismal injury and abnormalities with a number of targets in the FAK signaling pathway. Overall, results from our study support TCE as a developmental cardiovascular toxicant, provide molecular targets and pathways for investigation in future studies, and indicate a need for continued priority for environmental regulation. PMID:26745549

  17. Hyper-mobility of water around actin filaments revealed using pulse-field gradient spin-echo {sup 1}H NMR and fluorescence spectroscopy

    SciTech Connect

    Wazawa, Tetsuichi; Sagawa, Takashi; Ogawa, Tsubasa; Morimoto, Nobuyuki; Kodama, Takao; Suzuki, Makoto

    2011-01-28

    Research highlights: {yields} Translationally hyper-mobile water has been detected around actin filaments. {yields} Translationally hyper-mobile water is formed upon polymerization of actin. {yields} Low water viscosity was found around F-actin using fluorescence anisotropy. {yields} Formation of hyper-mobile water may explain endothermic actin polymerization. -- Abstract: This paper reports that water molecules around F-actin, a polymerized form of actin, are more mobile than those around G-actin or in bulk water. A measurement using pulse-field gradient spin-echo {sup 1}H NMR showed that the self-diffusion coefficient of water in aqueous F-actin solution increased with actin concentration by {approx}5%, whereas that in G-actin solution was close to that of pure water. This indicates that an F-actin/water interaction is responsible for the high self-diffusion of water. The local viscosity around actin was also investigated by fluorescence measurements of Cy3, a fluorescent dye, conjugated to Cys 374 of actin. The steady-state fluorescence anisotropy of Cy3 attached to F-actin was 0.270, which was lower than that for G-actin, 0.334. Taking into account the fluorescence lifetimes of the Cy3 bound to actin, their rotational correlation times were estimated to be 3.8 and 9.1 ns for F- and G-actin, respectively. This indicates that Cy3 bound to F-actin rotates more freely than that bound to G-actin, and therefore the local water viscosity is lower around F-actin than around G-actin.

  18. The structural basis for the intrinsic disorder of the actin filament: the "lateral slipping" model.

    PubMed

    Bremer, A; Millonig, R C; Sütterlin, R; Engel, A; Pollard, T D; Aebi, U

    1991-11-01

    Three-dimensional (3-D) helical reconstructions computed from electron micrographs of negatively stained dispersed F-actin filaments invariably revealed two uninterrupted columns of mass forming the "backbone" of the double-helical filament. The contact between neighboring subunits along the thus defined two long-pitch helical strands was spatially conserved and of high mass density, while the intersubunit contact between them was of lower mass density and varied among reconstructions. In contrast, phalloidinstabilized F-actin filaments displayed higher and spatially more conserved mass density between the two long-pitch helical strands, suggesting that this bicyclic hepta-peptide toxin strengthens the intersubunit contact between the two strands. Consistent with this distinct intersubunit bonding pattern, the two long-pitch helical strands of unstabilized filaments were sometimes observed separated from each other over a distance of two to six subunits, suggesting that the intrastrand intersubunit contact is also physically stronger than the interstrand contact. The resolution of the filament reconstructions, extending to 2.5 nm axially and radially, enabled us to reproducibly "cut out" the F-actin subunit which measured 5.5 nm axially by 6.0 nm tangentially by 3.2 nm radially. The subunit is distinctly polar with a massive "base" pointing towards the "barbed" end of the filament, and a slender "tip" defining its "pointed" end (i.e., relative to the "arrowhead" pattern revealed after stoichiometric decoration of the filaments with myosin subfragment 1). Concavities running approximately parallel to the filament axis both on the inner and outer face of the subunit define a distinct cleft separating the subunit into two domains of similar size: an inner domain confined to radii less than or equal to 2.5-nm forms the uninterrupted backbone of the two long-pitch helical strands, and an outer domain placed at radii of 2-5-nm protrudes radially and thus predominantly

  19. [A study of quantitative dynamics of F-actin during oocyte maturation in the starfish Asterias amurensis].

    PubMed

    Lamash, N E; Eliseĭkina, M G

    2006-01-01

    We studied the actin cytoskeleton state in Asterias amurensis oocytes within 30 min after the 1-methyladenine-induced maturation until the germinal vesicle breakdown. The total amount of actin remained unchanged during oocyte maturation. In immature oocytes, the major part of actin is not a part of filaments, but in the presence of 1-methyladenine massive actin polymerization began already within 20 min. Electron immunocytochemistry methods demonstrated joint localization of actin and alpha-protein in the cytoplasm. They were redistributed from the cortex to the cytoplasm in the presence of 1-methyladenine. A possible involvement of actin cytoskeleton in transmembrane transduction of the hormonal signal at the postreceptor stages is discussed. PMID:17022441

  20. Modulation of nuclear localization of the influenza virus nucleoprotein through interaction with actin filaments.

    PubMed

    Digard, P; Elton, D; Bishop, K; Medcalf, E; Weeds, A; Pope, B

    1999-03-01

    The influenza virus genome is transcribed in the nuclei of infected cells but assembled into progeny virions in the cytoplasm. This is reflected in the cellular distribution of the virus nucleoprotein (NP), a protein which encapsidates genomic RNA to form ribonucleoprotein structures. At early times postinfection NP is found in the nucleus, but at later times it is found predominantly in the cytoplasm. NP contains several sequences proposed to act as nuclear localization signals (NLSs), and it is not clear how these are overridden to allow cytoplasmic accumulation of the protein. We find that NP binds tightly to filamentous actin in vitro and have identified a cluster of residues in NP essential for the interaction. Complexes containing RNA, NP, and actin could be formed, suggesting that viral ribonucleoproteins also bind actin. In cells, exogenously expressed NP when expressed at a high level partitioned to the cytoplasm, where it associated with F-actin stress fibers. In contrast, mutants unable to bind F-actin efficiently were imported into the nucleus even under conditions of high-level expression. Similarly, nuclear import of NLS-deficient NP molecules was restored by concomitant disruption of F-actin binding. We propose that the interaction of NP with F-actin causes the cytoplasmic retention of influenza virus ribonucleoproteins. PMID:9971805

  1. F-Actin Organization and Pollen Tube Tip Growth in Arabidopsis Are Dependent on the Gametophyte-Specific Armadillo Repeat Protein ARO1[W

    PubMed Central

    Gebert, Marina; Dresselhaus, Thomas; Sprunck, Stefanie

    2008-01-01

    The signal-mediated and spatially controlled assembly and dynamics of actin are crucial for maintaining shape, motility, and tip growth of eukaryotic cells. We report that a novel Armadillo repeat protein in Arabidopsis thaliana, ARMADILLO REPEAT ONLY1 (ARO1), is of fundamental importance for polar growth and F-actin organization in tip-growing pollen tubes. ARO1 is specifically expressed in the vegetative cell of pollen as well as in the egg cell. ARO1-GFP (for green fluorescent protein) fusion proteins accumulate most notably in pollen tube tips and partially colocalize with F-actin in the shank of pollen tubes. ARO1 knockout results in a highly disorganized actin cytoskeleton, growth depolarization, and ultimately tube growth arrest. Tip-localized ARO1-GFP is spatially shifted toward the future site of tip growth, indicating a role of ARO1 in the signaling network controlling tip growth and regulating actin organization. After the pollen tube discharges its contents into the receptive synergid, ARO1-GFP colocalizes with emerging F-actin structures near the site of sperm cell fusion, suggesting additional participation in the mechanism of sperm cell tracking toward the female gametes. The variable localization of ARO1 in the cytoplasm, the nucleus, and at the plasma membrane, however, indicates a multifunctional role like that of β-catenin/Armadillo and the p120 catenins. PMID:18931021

  2. Regulators of actin filament barbed ends at a glance.

    PubMed

    Shekhar, Shashank; Pernier, Julien; Carlier, Marie-France

    2016-03-15

    Cells respond to external stimuli by rapidly remodeling their actin cytoskeleton. At the heart of this function lies the intricately controlled regulation of individual filaments. The barbed end of an actin filament is the hotspot for the majority of the biochemical reactions that control filament assembly. Assays performed in bulk solution and with single filaments have enabled characterization of a plethora of barbed-end-regulating proteins. Interestingly, many of these regulators work in tandem with other proteins, which increase or decrease their affinity for the barbed end in a spatially and temporally controlled manner, often through simultaneous binding of two regulators at the barbed ends, in addition to standard mutually exclusive binding schemes. In this Cell Science at a Glance and the accompanying poster, we discuss key barbed-end-interacting proteins and the kinetic mechanisms by which they regulate actin filament assembly. We take F-actin capping protein, gelsolin, profilin and barbed-end-tracking polymerases, including formins and WH2-domain-containing proteins, as examples, and illustrate how their activity and competition for the barbed end regulate filament dynamics. PMID:26940918

  3. Actin filament turnover drives leading edge growth during myelin sheath formation in the central nervous system

    PubMed Central

    Schmitt, Sebastian; Snaidero, Nicolas; Mitkovski, Mišo; Velte, Caroline; Brückner, Bastian R.; Alexopoulos, Ioannis; Czopka, Tim; Jung, Sang Y.; Rhee, Jeong S.; Janshoff, Andreas; Witke, Walter; Schaap, Iwan A.T.; Lyons, David A.; Simons, Mikael

    2016-01-01

    Summary During central nervous system development, oligodendrocytes wrap their plasma membrane around axons to generate multi-lamellar myelin sheaths. To drive growth at the leading edge of myelin at the interface with the axon, mechanical forces are necessary, but the underlying mechanisms are not known. Using an interdisciplinary approach that combines morphological, genetic and biophysical analyses, we identified a key role for actin filament network turnover in myelin growth. At the onset of myelin biogenesis, F-actin is redistributed to the leading edge, where its polymerization-based forces push out non-adhesive and motile protrusions. F-actin disassembly converts protrusions into sheets by reducing surface tension and in turn inducing membrane spreading and adhesion. We identified the actin depolymerizing factor ADF/Cofilin1, which mediates high F-actin turnover rates, as essential factor in this process. We propose that F-actin turnover is the driving force in myelin wrapping by regulating repetitive cycles of leading edge protrusion and spreading. PMID:26166299

  4. The kinetics underlying the velocity of smooth muscle myosin filament sliding on actin filaments in vitro.

    PubMed

    Haldeman, Brian D; Brizendine, Richard K; Facemyer, Kevin C; Baker, Josh E; Cremo, Christine R

    2014-07-25

    Actin-myosin interactions are well studied using soluble myosin fragments, but little is known about effects of myosin filament structure on mechanochemistry. We stabilized unphosphorylated smooth muscle myosin (SMM) and phosphorylated smooth muscle myosin (pSMM) filaments against ATP-induced depolymerization using a cross-linker and attached fluorescent rhodamine (XL-Rh-SMM). Electron micrographs showed that these side polar filaments are very similar to unmodified filaments. They are ~0.63 μm long and contain ~176 molecules. Rate constants for ATP-induced dissociation and ADP release from acto-myosin for filaments and S1 heads were similar. Actin-activated ATPases of SMM and XL-Rh-SMM were similarly regulated. XL-Rh-pSMM filaments moved processively on F-actin that was bound to a PEG brush surface. ATP dependence of filament velocities was similar to that for solution ATPases at high [actin], suggesting that both processes are limited by the same kinetic step (weak to strong transition) and therefore are attachment- limited. This differs from actin sliding over myosin monomers, which is primarily detachment-limited. Fitting filament data to an attachment-limited model showed that approximately half of the heads are available to move the filament, consistent with a side polar structure. We suggest the low stiffness subfragment 2 (S2) domain remains unhindered during filament motion in our assay. Actin-bound negatively displaced heads will impart minimal drag force because of S2 buckling. Given the ADP release rate, the velocity, and the length of S2, these heads will detach from actin before slack is taken up into a backwardly displaced high stiffness position. This mechanism explains the lack of detachment- limited kinetics at physiological [ATP]. These findings address how nonlinear elasticity in assemblies of motors leads to efficient collective force generation. PMID:24907276

  5. The Kinetics Underlying the Velocity of Smooth Muscle Myosin Filament Sliding on Actin Filaments in Vitro*

    PubMed Central

    Haldeman, Brian D.; Brizendine, Richard K.; Facemyer, Kevin C.; Baker, Josh E.; Cremo, Christine R.

    2014-01-01

    Actin-myosin interactions are well studied using soluble myosin fragments, but little is known about effects of myosin filament structure on mechanochemistry. We stabilized unphosphorylated smooth muscle myosin (SMM) and phosphorylated smooth muscle myosin (pSMM) filaments against ATP-induced depolymerization using a cross-linker and attached fluorescent rhodamine (XL-Rh-SMM). Electron micrographs showed that these side polar filaments are very similar to unmodified filaments. They are ∼0.63 μm long and contain ∼176 molecules. Rate constants for ATP-induced dissociation and ADP release from acto-myosin for filaments and S1 heads were similar. Actin-activated ATPases of SMM and XL-Rh-SMM were similarly regulated. XL-Rh-pSMM filaments moved processively on F-actin that was bound to a PEG brush surface. ATP dependence of filament velocities was similar to that for solution ATPases at high [actin], suggesting that both processes are limited by the same kinetic step (weak to strong transition) and therefore are attachment-limited. This differs from actin sliding over myosin monomers, which is primarily detachment-limited. Fitting filament data to an attachment-limited model showed that approximately half of the heads are available to move the filament, consistent with a side polar structure. We suggest the low stiffness subfragment 2 (S2) domain remains unhindered during filament motion in our assay. Actin-bound negatively displaced heads will impart minimal drag force because of S2 buckling. Given the ADP release rate, the velocity, and the length of S2, these heads will detach from actin before slack is taken up into a backwardly displaced high stiffness position. This mechanism explains the lack of detachment-limited kinetics at physiological [ATP]. These findings address how nonlinear elasticity in assemblies of motors leads to efficient collective force generation. PMID:24907276

  6. CryoEM reveals different coronin binding modes for ADP- and ADP-BeFx- actin filaments

    PubMed Central

    Ge, Peng; Oztug Durer, Zeynep A.; Kudryashov, Dmitri; Zhou, Z. Hong; Reisler, Emil

    2015-01-01

    Essential cellular processes involving the actin cytoskeleton are regulated by auxiliary proteins which can sense the nucleotide state of actin. Here we report cryo electron microscopy (cryoEM) structures at 8.6 Å resolution for ADP- and ADP-BeFx- (mimicking ADP-Pi) bound actin filaments in complex with the β-propeller domain (residues 1–600) of yeast coronin 1 (crn1). Our structures identify the main differences in the interaction of coronin with the two nucleotide states of F-actin. We derived pseudo-atomic models by fitting the atomic structures of actin and coronin into these structures. The identified binding interfaces on actin were confirmed by chemical crosslinking, fluorescence spectroscopy and actin mutagenesis. Importantly, the structures of actin and coronin mapped in this study offer a structural explanation for the nucleotide-dependent effects of coronin on cofilin-assisted remodeling of F-actin. PMID:25362487

  7. Myosin IIB and F-actin control apical vacuolar morphology and histamine-induced trafficking of H-K-ATPase-containing tubulovesicles in gastric parietal cells

    PubMed Central

    Crothers, James M.; Rosen, Jared E.; Nakada, Stephanie L.; Rakholia, Milap; Okamoto, Curtis T.; Forte, John G.; Machen, Terry E.

    2014-01-01

    Selective inhibitors of myosin or actin function and confocal microscopy were used to test the role of an actomyosin complex in controlling morphology, trafficking, and fusion of tubulovesicles (TV) containing H-K-ATPase with the apical secretory canaliculus (ASC) of primary-cultured rabbit gastric parietal cells. In resting cells, myosin IIB and IIC, ezrin, and F-actin were associated with ASC, whereas H-K-ATPase localized to intracellular TV. Histamine caused fusion of TV with ASC and subsequent expansion resulting from HCl and water secretion; F-actin and ezrin remained associated with ASC whereas myosin IIB and IIC appeared to dissociate from ASC and relocalize to the cytoplasm. ML-7 (inhibits myosin light chain kinase) caused ASC of resting cells to collapse and most myosin IIB, F-actin, and ezrin to dissociate from ASC. TV were unaffected by ML-7. Jasplakinolide (stabilizes F-actin) caused ASC to develop large blebs to which actin, myosin II, and ezrin, as well as tubulin, were prominently localized. When added prior to stimulation, ML-7 and jasplakinolide prevented normal histamine-stimulated transformations of ASC/TV and the cytoskeleton, but they did not affect cells that had been previously stimulated with histamine. These results indicate that dynamic pools of actomyosin are required for maintenance of ASC structure in resting cells and for trafficking of TV to ASC during histamine stimulation. However, the dynamic pools of actomyosin are not required once the histamine-stimulated transformation of TV/ASC and cytoskeleton has occurred. These results also show that vesicle trafficking in parietal cells shares mechanisms with similar processes in renal collecting duct cells, neuronal synapses, and skeletal muscle. PMID:24578340

  8. Boolean gates on actin filaments

    NASA Astrophysics Data System (ADS)

    Siccardi, Stefano; Tuszynski, Jack A.; Adamatzky, Andrew

    2016-01-01

    Actin is a globular protein which forms long polar filaments in the eukaryotic cytoskeleton. Actin networks play a key role in cell mechanics and cell motility. They have also been implicated in information transmission and processing, memory and learning in neuronal cells. The actin filaments have been shown to support propagation of voltage pulses. Here we apply a coupled nonlinear transmission line model of actin filaments to study interactions between voltage pulses. To represent digital information we assign a logical TRUTH value to the presence of a voltage pulse in a given location of the actin filament, and FALSE to the pulse's absence, so that information flows along the filament with pulse transmission. When two pulses, representing Boolean values of input variables, interact, then they can facilitate or inhibit further propagation of each other. We explore this phenomenon to construct Boolean logical gates and a one-bit half-adder with interacting voltage pulses. We discuss implications of these findings on cellular process and technological applications.

  9. Characterization of F-Actin Tryptophan Phosphorescence in the Presence and Absence of Tryptophan-Free Myosin Motor Domain

    PubMed Central

    Bódis, Emöke; Strambini, Giovanni B.; Gonnelli, Margherita; Málnási-Csizmadia, András; Somogyi, Béla

    2004-01-01

    The effect of binding the Trp-free motor domain mutant of Dictyostelium discoideum, rabbit skeletal muscle myosin S1, and tropomyosin on the dynamics and conformation of actin filaments was characterized by an analysis of steady-state tryptophan phosphorescence spectra and phosphorescence decay kinetics over a temperature range of 140–293 K. The binding of the Trp-free motor domain mutant of D. discoideum to actin caused red shifts in the phosphorescence spectrum of two internal Trp residues of actin and affected the intrinsic lifetime of each emitter, decreasing by roughly twofold the short phosphorescence lifetime components (τ1 and τ2) and increasing by ∼20% the longest component (τ3). The alteration of actin phosphorescence by the motor protein suggests that i), structural changes occur deep down in the core of actin and that ii), subtle changes in conformation appear also on the surface but in regions distant from the motor domain binding site. When actin formed complexes with skeletal S1, an extra phosphorescence lifetime component appeared (τ4, twice as long as τ3) in the phosphorescence decay that is absent in the isolated proteins. The lack of this extra component in the analogous actin-Trp-free motor domain mutant of D. discoideum complex suggests that it should be assigned to Trps in S1 that in the complex attain a more compact local structure. Our data indicated that the binding of tropomyosin to actin filaments had no effect on the structure or flexibility of actin observable by this technique. PMID:15298917

  10. Enterohaemorrhagic E. coli (EHEC) exploits a tryptophan switch to hijack host F-actin assembly

    PubMed Central

    Aitio, Olli; Hellman, Maarit; Skehan, Brian; Kesti, Tapio; Leong, John M.; Saksela, Kalle; Permi, Perttu

    2012-01-01

    SUMMARY Intrinsically disordered protein (IDP)-mediated interactions are often characterized by low affinity but high specificity. These traits are essential in signaling and regulation that require reversibility. Enterohaemorrhagic Escherichia coli (EHEC) exploit this situation by commandeering host cytoskeletal signaling to stimulate actin assembly beneath bound bacteria, generating ‘pedestals’ that promote intestinal colonization. EHEC translocates into the host cell two proteins, EspFU and Tir, which form a complex with the host protein IRTKS. The interaction of this complex with N-WASP triggers localized actin polymerization. We show that EspFU is an IDP that contains a transiently α-helical N-terminus and dynamic C-terminus. Our structure shows that single EspFU repeat is capable of forming a high-affinity trimolecular complex with N-WASP and IRTKS. We demonstrate that bacterial and cellular ligands interact with IRTKS SH3 in a similar fashion but the bacterial protein has evolved to outcompete cellular targets by utilizing a tryptophan switch that offers superior binding affinity enabling EHEC-induced pedestal formation. PMID:22921828

  11. Disentangling Membrane Dynamics and Cell Migration; Differential Influences of F-actin and Cell-Matrix Adhesions

    PubMed Central

    Kowalewski, Jacob M.; Shafqat-Abbasi, Hamdah; Jafari-Mamaghani, Mehrdad; Endrias Ganebo, Bereket; Gong, Xiaowei

    2015-01-01

    Cell migration is heavily interconnected with plasma membrane protrusion and retraction (collectively termed “membrane dynamics”). This makes it difficult to distinguish regulatory mechanisms that differentially influence migration and membrane dynamics. Yet such distinctions may be valuable given evidence that cancer cell invasion in 3D may be better predicted by 2D membrane dynamics than by 2D cell migration, implying a degree of functional independence between these processes. Here, we applied multi-scale single cell imaging and a systematic statistical approach to disentangle regulatory associations underlying either migration or membrane dynamics. This revealed preferential correlations between membrane dynamics and F-actin features, contrasting with an enrichment of links between cell migration and adhesion complex properties. These correlative linkages were often non-linear and therefore context-dependent, strengthening or weakening with spontaneous heterogeneity in cell behavior. More broadly, we observed that slow moving cells tend to increase in area, while fast moving cells tend to shrink, and that the size of dynamic membrane domains is independent of cell area. Overall, we define macromolecular features preferentially associated with either cell migration or membrane dynamics, enabling more specific interrogation and targeting of these processes in future. PMID:26248038

  12. Disassembly of F-Actin Cytoskeleton after Interaction of Bacillus cereus with Fully Differentiated Human Intestinal Caco-2 Cells

    PubMed Central

    Minnaard, Jessica; Lievin-Le Moal, Vanessa; Coconnier, Marie-Helene; Servin, Alain L.; Pérez, Pablo F.

    2004-01-01

    In the present study, the role of direct procaryote-eucaryote interactions in the virulence of Bacillus cereus was investigated. As a model of human enterocytes, differentiated Caco-2 cells were used. Infection of fully differentiated Caco-2 cells with B. cereus in the exponential phase of growth, in order to minimize the concentration of spores or sporulating microorganisms, shows that a strain-dependent cytopathic effect develops. Interestingly, addition of 3-h-old cultures of some strains resulted in complete detachment of the cultured cells after a 3-h infection whereas no such effect was found after a 3-h infection with 16-h-old cultures. Infection of enterocyte-like cells with B. cereus leads to disruption of the F-actin network and necrosis. Even though the effect of secreted factors cannot be ruled out, direct eucaryote-procaryote interaction seems to be necessary. In addition, we observed that some B. cereus strains were able to be internalized in Caco-2 cells. Our findings add a new insight into the mechanisms of virulence of B. cereus in the context of intestinal infection. PMID:15155611

  13. Competition for actin between two distinct F-actin networks defines a bistable switch for cell polarization.

    PubMed

    Lomakin, Alexis J; Lee, Kun-Chun; Han, Sangyoon J; Bui, Duyen A; Davidson, Michael; Mogilner, Alex; Danuser, Gaudenz

    2015-11-01

    Symmetry-breaking polarization enables functional plasticity of cells and tissues and is yet not well understood. Here we show that epithelial cells, hard-wired to maintain a static morphology and to preserve tissue organization, can spontaneously switch to a migratory polarized phenotype after relaxation of the actomyosin cytoskeleton. We find that myosin II engages actin in the formation of cortical actomyosin bundles and thus makes it unavailable for deployment in the process of dendritic growth normally driving cell motility. Under low-contractility regimes, epithelial cells polarize in a front-back manner owing to the emergence of actin retrograde flows powered by dendritic polymerization of actin. Coupled to cell movement, the flows transport myosin II from the front to the back of the cell, where the motor locally 'locks' actin in contractile bundles. This polarization mechanism could be employed by embryonic and cancer epithelial cells in microenvironments where high-contractility-driven cell motion is inefficient. PMID:26414403

  14. Extracellular Inhibitors, Repellents, and Semaphorin/Plexin/MICAL-mediated Actin Filament Disassembly

    PubMed Central

    Hung, Ruei-Jiun; Terman, Jonathan R.

    2011-01-01

    Multiple extracellular signals have been identified that regulate actin dynamics within motile cells, but how these instructive cues present on the cell surface exert their precise effects on the internal actin cytoskeleton is still poorly understood. One particularly interesting class of these cues is a group of extracellular proteins that negatively alter the movement of cells and their processes. Over the years, these types of events have been described using a variety of terms and herein we provide an overview of inhibitory/repulsive cellular phenomena and highlight the largest known protein family of repulsive extracellular cues, the Semaphorins. Specifically, the Semaphorins (Semas) utilize Plexin cell-surface receptors to dramatically collapse the actin cytoskeleton and we summarize what is known of the direct molecular and biochemical mechanisms of Sema-triggered actin filament (F-actin) disassembly. We also discuss new observations from our lab that reveal that the multi-domain oxidoreductase (Redox) enzyme MICAL, an important mediator of Sema/Plexin repulsion, is a novel F-actin disassembly factor. Our results indicate that MICAL triggers Sema/Plexin-mediated reorganization of the F-actin cytoskeleton and suggest a role for specific Redox signaling events in regulating actin dynamics. PMID:21800438

  15. F-actin binds to the cytoplasmic surface of ponticulin, a 17-kD integral glycoprotein from Dictyostelium discoideum plasma membranes

    PubMed Central

    1987-01-01

    F-actin affinity chromatography and immunological techniques are used to identify actin-binding proteins in purified Dictyostelium discoideum plasma membranes. A 17-kD integral glycoprotein (gp17) consistently elutes from F-actin columns as the major actin-binding protein under a variety of experimental conditions. The actin-binding activity of gp17 is identical to that of intact plasma membranes: it resists extraction with 0.1 N NaOH, 1 mM dithiothreitol (DTT); it is sensitive to ionic conditions; it is stable over a wide range of pH; and it is eliminated by proteolysis, denaturation with heat, or treatment with DTT and N- ethylmaleimide. gp17 may be responsible for much of the actin-binding activity of plasma membranes since monovalent antibody fragments (Fab) directed primarily against gp17 inhibit actin-membrane binding by 96% in sedimentation assays. In contrast, Fab directed against cell surface determinants inhibit binding by only 0-10%. The actin-binding site of gp17 appears to be located on the cytoplasmic surface of the membrane since Fab against this protein continue to inhibit 96% of actin- membrane binding even after extensive adsorption against cell surfaces. gp17 is abundant in the plasma membrane, constituting 0.4-1.0% of the total membrane protein. A transmembrane orientation of gp17 is suggested since, in addition to the cytoplasmic localization of the actin-binding site, extracellular determinants of gp17 are identified. gp17 is surface-labeled by sulfo-N-hydroxy-succinimido-biotin, a reagent that cannot penetrate the cell membrane. Also, gp17 is glycosylated since it is specifically bound by the lectin, concanavalin A. We propose that gp17 is a major actin-binding protein that is important for connecting the plasma membrane to the underlying microfilament network. Therefore, we have named this protein "ponticulin" from the Latin word, ponticulus, which means small bridge. PMID:3312238

  16. Calmodulin-Dependent Protein Kinase mediates Hypergravity-Induced Changes in F-Actin Expression by Endothelial Cells

    NASA Technical Reports Server (NTRS)

    Love, Felisha D.; Melhado, Caroline; Bosah, Francis; Harris-Hooker, Sandra A.; Sanford, Gary L.

    1997-01-01

    A number of basic cellular functions, e.g., electrolyte concentration cell growth rate, glucose utilization, bone formation, response to growth stimulation and exocytosis are modified by microgravity or during spaceflight. Studies with intact animal during spaceflights have found lipid accumulations within the lumen of the vasculature and degeneration of the vascular wall. Capillary alterations with extensive endothelial invaginations were also seen. Hemodynamic studies have shown that there is a redistribution of blood from the lower extremities to the upper part of the body; this will alter vascular permeability, resulting in leakage into surrounding tissues. These studies indicate that changes in gravity will affect a number of physiological systems, including the vasculature. However, few studies have addressed the effect of microgravity on vascular cell function and metabolism. A major problem with ground based studies is that achieving a true microgravity hand, environment for prolonged period is not possible. On the other increasing gravity (i.e., hypergravity) is easily achieved. Several researchers have shown that hypergravity will increase the proliferation of several different cell limes (e.g., chick embryo fibroblasts) while decreasing cell motility and slowing liver regeneration following partial hepatectomy. These studies suggest that hypergravity will alter the behavior of most cells. Several investigators have shown that hypergravity affects the expression of the early response genes (c-fos and c-myc) and the activation of several protein kinases (PK's) in cells (10,11). In this study we investigated whether hypergravity alters the expression of f-actin by aortic endothelial cells, and the possible role of protein kinases (calmodulin(II)-dependent and PKA) as mediators of these effects.

  17. The F-actin capping proteins of Physarum polycephalum: cap42(a) is very similar, if not identical, to fragmin and is structurally and functionally very homologous to gelsolin; cap42(b) is Physarum actin.

    PubMed Central

    Ampe, C; Vandekerckhove, J

    1987-01-01

    We have carried out a primary structure analysis of the F-actin capping proteins of Physarum polycephalum. Cap42(b) was completely sequenced and was found to be identical with Physarum actin. Approximately 88% of the sequence of cap42(a) was determined. Cap42(a) and fragmin were found to be identical by amino acid composition, isoelectric point, mol. wt, elution time on reversed-phase chromatography and amino acid sequence of their tryptic peptides. The available sequence of cap42(a) is greater than 36% homologous with the NH2-terminal 42-kd domain of human gelsolin. A highly homologous region of 16 amino acids is also shared between cap42(a), gelsolin and the Acanthamoeba profilins. Cap42(a) binds two actin molecules in a similar way to gelsolin suggesting a mechanism of F-actin modulation that has been conserved during evolution. Images Fig. 1. Fig. 3. Fig. 4. PMID:2832154

  18. N- and E-cadherins in Xenopus are specifically required in the neural and non-neural ectoderm, respectively, for F-actin assembly and morphogenetic movements

    PubMed Central

    Nandadasa, Sumeda; Tao, Qinghua; Menon, Nikhil R.; Heasman, Janet; Wylie, Christopher

    2009-01-01

    Summary Transmembrane cadherins are calcium-dependent intercellular adhesion molecules. Recently, they have also been shown to be sites of actin assembly during adhesive contact formation. However, the roles of actin assembly on transmembrane cadherins during development are not fully understood. We show here, using the developing ectoderm of the Xenopus embryo as a model, that F-actin assembly is a primary function of both N-cadherin in the neural ectoderm and E-cadherin in the non-neural (epidermal) ectoderm, and that each cadherin is essential for the characteristic morphogenetic movements of these two tissues. However, depletion of N-cadherin and E-cadherin did not cause dissociation in these tissues at the neurula stage, probably owing to the expression of C-cadherin in each tissue. Depletion of each of these cadherins is not rescued by the other, nor by the expression of C-cadherin, which is expressed in both tissues. One possible reason for this is that each cadherin is expressed in a different domain of the cell membrane. These data indicate the combinatorial nature of cadherin function, the fact that N- and E-cadherin play primary roles in F-actin assembly in addition to roles in cell adhesion, and that this function is specific to individual cadherins. They also show how cell adhesion and motility can be combined in morphogenetic tissue movements that generate the form and shape of the embryonic organs. PMID:19279134

  19. Specific Conserved C-terminal Amino Acids of Caenorhabditis elegans HMP-1/α-Catenin Modulate F-actin Binding Independently of Vinculin*

    PubMed Central

    Maiden, Stephanie L.; Harrison, Neale; Keegan, Jack; Cain, Brian; Lynch, Allison M.; Pettitt, Jonathan; Hardin, Jeff

    2013-01-01

    Stable intercellular adhesions formed through the cadherin-catenin complex are important determinants of proper tissue architecture and help maintain tissue integrity during morphogenetic movements in developing embryos. A key regulator of this stability is α-catenin, which connects the cadherin-catenin complex to the actin cytoskeleton. Although the C-terminal F-actin-binding domain of α-catenin has been shown to be crucial for its function, a more detailed in vivo analysis of discrete regions and residues required for actin binding has not been performed. Using Caenorhabditis elegans as a model system, we have characterized mutations in hmp-1/α-catenin that identify HMP-1 residues 687–742 and 826–927, as well as amino acid 802, as critical to the localization of junctional proximal actin during epidermal morphogenesis. We also find that the S823F transition in a hypomorphic allele, hmp-1(fe4), decreases actin binding in vitro. Using hmp-1(fe4) animals in a mutagenesis screen, we were then able to identify 11 intragenic suppressors of hmp-1(fe4) that revert actin binding to wild-type levels. Using homology modeling, we show that these amino acids are positioned at key conserved sites within predicted α-helices in the C terminus. Through the use of transgenic animals, we also demonstrate that HMP-1 residues 315–494, which correspond to a putative mechanotransduction domain that binds vinculin in vertebrate αE-catenin, are not required during epidermal morphogenesis but may aid efficient recruitment of HMP-1 to the junction. Our studies are the first to identify key conserved amino acids in the C terminus of α-catenin that modulate F-actin binding in living embryos of a simple metazoan. PMID:23271732

  20. F-actin binding regions on the androgen receptor and huntingtin increase aggregation and alter aggregate characteristics.

    PubMed

    Angeli, Suzanne; Shao, Jieya; Diamond, Marc I

    2010-01-01

    Protein aggregation is associated with neurodegeneration. Polyglutamine expansion diseases such as spinobulbar muscular atrophy and Huntington disease feature proteins that are destabilized by an expanded polyglutamine tract in their N-termini. It has previously been reported that intracellular aggregation of these target proteins, the androgen receptor (AR) and huntingtin (Htt), is modulated by actin-regulatory pathways. Sequences that flank the polyglutamine tract of AR and Htt might influence protein aggregation and toxicity through protein-protein interactions, but this has not been studied in detail. Here we have evaluated an N-terminal 127 amino acid fragment of AR and Htt exon 1. The first 50 amino acids of ARN127 and the first 14 amino acids of Htt exon 1 mediate binding to filamentous actin in vitro. Deletion of these actin-binding regions renders the polyglutamine-expanded forms of ARN127 and Htt exon 1 less aggregation-prone, and increases the SDS-solubility of aggregates that do form. These regions thus appear to alter the aggregation frequency and type of polyglutamine-induced aggregation. These findings highlight the importance of flanking sequences in determining the propensity of unstable proteins to misfold. PMID:20140226

  1. Capping of the barbed ends of actin filaments by a high-affinity profilin-actin complex.

    PubMed

    DiNubile, M J; Huang, S

    1997-01-01

    Profilin, a ubiquitous 12 to 15-kDa protein, serves many functions, including sequestering monomeric actin, accelerating nucleotide exchange on actin monomers, decreasing the critical concentration of the barbed end of actin filaments, and promoting actin polymerization when barbed ends are free. Most previous studies have focused on profilin itself rather than its complex with actin. A high-affinity profilin-actin complex (here called profilactin) can be isolated from a poly-(L)-proline (PLP) column by sequential elution with 3 M and 7 M urea. Profilactin inhibited the elongation rate of pyrenyl-G-actin from filament seeds in a concentration- and time-dependent manner. Much greater inhibition of elongation was observed with spectrin-F-actin than gelsolin-F-actin seeds, suggesting that the major effect of profilactin was due to capping the barbed ends of actin filaments. Its dissociation constant for binding to filament ends was 0.3 microM; the on- and off-rate constants were estimated to be 1.7 x 10(3) M-1 s-1 and 4.5 x 10(-4) s-1, respectively. Purified profilin (obtained by repetitive applications to a PLP column and assessed by silver-stained polyacylamide gels) did not slow the elongation rate of pyrenyl-G-actin from filament seeds. Capping protein could not be detected by Western blotting in the profilactin preparation, but low concentrations of gelsolin did contaminate our preparation. However, prolonged incubation with either calcium or EGTA did not affect capping activity, implying that contaminating gelsolin-actin complexes were not primarily responsible for the observed capping activity. Reapplication of the profilactin preparation to PLP-coupled Sepharose removed both profilin and actin and concurrently eliminated its capping activity. Profilactin that was reapplied to uncoupled Sepharose retained its capping activity. Phosphatidylinositol-4,5-bisphosphate (PIP2) was the most potent phosphoinositol in reducing the capping activity of profilactin

  2. F-actin binds to the cytoplasmic surface of ponticulin, a 17-kD integral glycoprotein from Dictyostelium discoideum plasma membranes.

    PubMed

    Wuestehube, L J; Luna, E J

    1987-10-01

    F-actin affinity chromatography and immunological techniques are used to identify actin-binding proteins in purified Dictyostelium discoideum plasma membranes. A 17-kD integral glycoprotein (gp17) consistently elutes from F-actin columns as the major actin-binding protein under a variety of experimental conditions. The actin-binding activity of gp17 is identical to that of intact plasma membranes: it resists extraction with 0.1 N NaOH, 1 mM dithiothreitol (DTT); it is sensitive to ionic conditions; it is stable over a wide range of pH; and it is eliminated by proteolysis, denaturation with heat, or treatment with DTT and N-ethylmaleimide. gp17 may be responsible for much of the actin-binding activity of plasma membranes since monovalent antibody fragments (Fab) directed primarily against gp17 inhibit actin-membrane binding by 96% in sedimentation assays. In contrast, Fab directed against cell surface determinants inhibit binding by only 0-10%. The actin-binding site of gp17 appears to be located on the cytoplasmic surface of the membrane since Fab against this protein continue to inhibit 96% of actin-membrane binding even after extensive adsorption against cell surfaces. gp17 is abundant in the plasma membrane, constituting 0.4-1.0% of the total membrane protein. A transmembrane orientation of gp17 is suggested since, in addition to the cytoplasmic localization of the actin-binding site, extracellular determinants of gp17 are identified. gp17 is surface-labeled by sulfo-N-hydroxy-succinimido-biotin, a reagent that cannot penetrate the cell membrane. Also, gp17 is glycosylated since it is specifically bound by the lectin, concanavalin A. We propose that gp17 is a major actin-binding protein that is important for connecting the plasma membrane to the underlying microfilament network. Therefore, we have named this protein "ponticulin" from the Latin word, ponticulus, which means small bridge. PMID:3312238

  3. Electro-optical imaging of F-actin and endoplasmic reticulum in living and fixed plant cells.

    PubMed

    Allen, N S; Bennett, M N

    1996-01-01

    Confocal and video micrographs of living and fixed alfalfa roots, onion epithelial and pear pollen cells illustrate the architecture of the cytoskeleton and endoplasmic reticulum in plant cells. Fixation of plant tissues to preserve cytoplasmic structure poses special problems. When possible, emphasis should be placed on the imaging of structures in stained living cells over time. The early events that occur when Nod factors or bacteria elicit nodule formation in alfalfa roots will illustrate several approaches to plant cell fixation, staining and imaging. The first observable events after Nod factor stimulation occur in root hairs and are changes in rates of cytoplasmic streaming, nuclear movements, and changes in the shape of the vacuole. Within ten minutes, the endoplasmic reticulum shifts position towards the tip of the root hair. For comparison, the endoplasmic reticulum localization in pollen tubes and onion epithelial cells will be illustrated. The actin cytoskeleton undergoes a series of changes over a twelve hour period. These changes in the cytoskeleton are spatially and temporally correlated with the observed growth changes of the root hairs. This dynamic change of the actin filament and endoplasmic reticulum and associated secretory vesicles in these root hairs suggests a mechanism for the observed root hair growth changes. PMID:9601538

  4. Actin age orchestrates myosin-5 and myosin-6 run lengths.

    PubMed

    Zimmermann, Dennis; Santos, Alicja; Kovar, David R; Rock, Ronald S

    2015-08-01

    Unlike a static and immobile skeleton, the actin cytoskeleton is a highly dynamic network of filamentous actin (F-actin) polymers that continuously turn over. In addition to generating mechanical forces and sensing mechanical deformation, dynamic F-actin networks serve as cellular tracks for myosin motor traffic. However, much of our mechanistic understanding of processive myosins comes from in vitro studies in which motility was studied on pre-assembled and artificially stabilized, static F-actin tracks. In this work, we examine the role of actin dynamics in single-molecule myosin motility using assembling F-actin and two highly processive motors, myosin-5 and myosin-6. These two myosins have distinct functions in the cell and travel in opposite directions along actin filaments [1-3]. Myosin-5 walks toward the barbed ends of F-actin, traveling to sites of actin polymerization at the cell periphery [4]. Myosin-6 walks toward the pointed end of F-actin [5], traveling toward the cell center along older segments of the actin filament. We find that myosin-5 takes 1.3- to 1.5-fold longer runs on ADP•Pi (young) F-actin, whereas myosin-6 takes 1.7- to 3.6-fold longer runs along ADP (old) F-actin. These results suggest that conformational differences between ADP•Pi and ADP F-actin tailor these myosins to walk farther toward their preferred actin filament end. Taken together, these experiments define a new mechanism by which myosin traffic may sort to different F-actin networks depending on filament age. PMID:26190073

  5. 2-Aminoethoxydiphenyl borate (2-APB) reduces alkaline phosphatase release, CD63 expression, F-actin polymerization and chemotaxis without affecting the phagocytosis activity in bovine neutrophils.

    PubMed

    Conejeros, I; Velásquez, Z D; Carretta, M D; Alarcón, P; Hidalgo, M A; Burgos, R A

    2012-01-15

    2-Aminoethoxydiphenyl borate (2-APB) interferes with the Ca(2+) influx and reduces the ROS production, gelatinase secretion and CD11b expression in bovine neutrophils. Moreover, it has been suggested that inhibition of the Ca(2+) channel involved in the store operated Ca(2+) entry (SOCE) is a potential target for the development of new anti-inflammatory drugs in cattle, however it is unknown whether 2-APB affects neutrophil functions associated with the innate immune response. This study describes the effect of 2-APB, a putative SOCE inhibitor, on alkaline phosphatase activity a marker of secretory vesicles, CD63 a marker for azurophil granules, F-actin polymerization and in vitro chemotaxis in bovine neutrophils stimulated with platelet-activating factor (PAF). Also, we evaluated the effect of 2-APB in the phagocytic activity against Escherichia coli and Staphylococcus aureus bioparticles. We observed that doses of 2-APB ≥10 μM significantly reduced alkaline phosphatase activity and in vitro chemotaxis, whereas concentrations of 2-APB ≥50 μM reduced CD63 expression and F-actin polymerization. Finally, we observed that 2-APB did not affect the phagocytic activity in neutrophils incubated with E. coli and S. aureus bioparticles. We concluded that inhibition of Ca(2+) influx could be a useful strategy to reduce inflammatory process in cattle. PMID:22226550

  6. Cadherin 6 promotes neural crest cell detachment via F-actin regulation and influences active Rho distribution during epithelial-to-mesenchymal transition

    PubMed Central

    Clay, Matthew R.; Halloran, Mary C.

    2014-01-01

    The epithelial-to-mesenchymal transition (EMT) is a complex change in cell phenotype that is important for cell migration, morphogenesis and carcinoma metastasis. Loss of epithelial cell adhesion and tight regulation of cadherin adhesion proteins are crucial for EMT. Cells undergoing EMT often display cadherin switching, where they downregulate one cadherin and induce expression of another. However, the functions of the upregulated cadherins and their effects on cell motility are poorly understood. Neural crest cells (NCCs), which undergo EMT during development, lose N-cadherin and upregulate Cadherin 6 (Cdh6) prior to EMT. Cdh6 has been suggested to suppress EMT via cell adhesion, but also to promote EMT by mediating pro-EMT signals. Here, we determine novel roles for Cdh6 in generating cell motility during EMT. We use live imaging of NCC behavior in vivo to show that Cdh6 promotes detachment of apical NCC tails, an important early step of EMT. Furthermore, we show that Cdh6 affects spatiotemporal dynamics of F-actin and active Rho GTPase, and that Cdh6 is required for accumulation of F-actin in apical NCC tails during detachment. Moreover, Cdh6 knockdown alters the subcellular distribution of active Rho, which is known to promote localized actomyosin contraction that is crucial for apical NCC detachment. Together, these data suggest that Cdh6 is an important determinant of where subcellular actomyosin forces are generated during EMT. Our results also identify mechanisms by which an upregulated cadherin can generate cell motility during EMT. PMID:24917505

  7. F-Actin-Dependent Endocytosis of Cell Wall Pectins in Meristematic Root Cells. Insights from Brefeldin A-Induced Compartments1

    PubMed Central

    Baluška, František; Hlavacka, Andrej; Šamaj, Jozef; Palme, Klaus; Robinson, David G.; Matoh, Toru; McCurdy, David W.; Menzel, Diedrik; Volkmann, Dieter

    2002-01-01

    Brefeldin A (BFA) inhibits exocytosis but allows endocytosis, making it a valuable agent to identify molecules that recycle at cell peripheries. In plants, formation of large intracellular compartments in response to BFA treatment is a unique feature of some, but not all, cells. Here, we have analyzed assembly and distribution of BFA compartments in development- and tissue-specific contexts of growing maize (Zea mays) root apices. Surprisingly, these unique compartments formed only in meristematic cells of the root body. On the other hand, BFA compartments were absent from secretory cells of root cap periphery, metaxylem cells, and most elongating cells, all of which are active in exocytosis. We report that cell wall pectin epitopes counting rhamnogalacturonan II dimers cross-linked by borate diol diester, partially esterified (up to 40%) homogalacturonan pectins, and (1→4)-β-d-galactan side chains of rhamnogalacturonan I were internalized into BFA compartments. In contrast, Golgi-derived secretory (esterified up to 80%) homogalacturonan pectins localized to the cytoplasm in control cells and did not accumulate within characteristic BFA compartments. Latrunculin B-mediated depolymerization of F-actin inhibited internalization and accumulation of cell wall pectins within intracellular BFA compartments. Importantly, cold treatment and protoplasting prevented internalization of wall pectins into root cells upon BFA treatment. These observations suggest that cell wall pectins of meristematic maize root cells undergo rapid endocytosis in an F-actin-dependent manner. PMID:12226521

  8. ARF6 promotes the formation of Rac1 and WAVE-dependent ventral F-actin rosettes in breast cancer cells in response to epidermal growth factor.

    PubMed

    Marchesin, Valentina; Montagnac, Guillaume; Chavrier, Philippe

    2015-01-01

    Coordination between actin cytoskeleton assembly and localized polarization of intracellular trafficking routes is crucial for cancer cell migration. ARF6 has been implicated in the endocytic recycling of surface receptors and membrane components and in actin cytoskeleton remodeling. Here we show that overexpression of an ARF6 fast-cycling mutant in MDA-MB-231 breast cancer-derived cells to mimick ARF6 hyperactivation observed in invasive breast tumors induced a striking rearrangement of the actin cytoskeleton at the ventral cell surface. This phenotype consisted in the formation of dynamic actin-based podosome rosette-like structures expanding outward as wave positive for F-actin and actin cytoskeleton regulatory components including cortactin, Arp2/3 and SCAR/WAVE complexes and upstream Rac1 regulator. Ventral rosette-like structures were similarly induced in MDA-MB-231 cells in response to epidermal growth factor (EGF) stimulation and to Rac1 hyperactivation. In addition, interference with ARF6 expression attenuated activation and plasma membrane targeting of Rac1 in response to EGF treatment. Our data suggest a role for ARF6 in linking EGF-receptor signaling to Rac1 recruitment and activation at the plasma membrane to promote breast cancer cell directed migration. PMID:25799492

  9. Phosphatidylinositol 3-Kinase-Associated Protein (PI3KAP)/XB130 Crosslinks Actin Filaments through Its Actin Binding and Multimerization Properties In Vitro and Enhances Endocytosis in HEK293 Cells.

    PubMed

    Yamanaka, Daisuke; Akama, Takeshi; Chida, Kazuhiro; Minami, Shiro; Ito, Koichi; Hakuno, Fumihiko; Takahashi, Shin-Ichiro

    2016-01-01

    Actin-crosslinking proteins control actin filament networks and bundles and contribute to various cellular functions including regulation of cell migration, cell morphology, and endocytosis. Phosphatidylinositol 3-kinase-associated protein (PI3KAP)/XB130 has been reported to be localized to actin filaments (F-actin) and required for cell migration in thyroid carcinoma cells. Here, we show a role for PI3KAP/XB130 as an actin-crosslinking protein. First, we found that the carboxyl terminal region of PI3KAP/XB130 containing amino acid residues 830-840 was required and sufficient for localization to F-actin in NIH3T3 cells, and this region is directly bound to F-actin in vitro. Moreover, actin-crosslinking assay revealed that recombinant PI3KAP/XB130 crosslinked F-actin. In general, actin-crosslinking proteins often multimerize to assemble multiple actin-binding sites. We then investigated whether PI3KAP/XB130 could form a multimer. Blue native-PAGE analysis showed that recombinant PI3KAP/XB130 was detected at 250-1200 kDa although the molecular mass was approximately 125 kDa, suggesting that PI3KAP/XB130 formed multimers. Furthermore, we found that the amino terminal 40 amino acids were required for this multimerization by co-immunoprecipitation assay in HEK293T cells. Deletion mutants of PI3KAP/XB130 lacking the actin-binding region or the multimerizing region did not crosslink actin filaments, indicating that actin binding and multimerization of PI3KAP/XB130 were necessary to crosslink F-actin. Finally, we examined roles of PI3KAP/XB130 on endocytosis, an actin-related biological process. Overexpression of PI3KAP/XB130 enhanced dextran uptake in HEK 293 cells. However, most of the cells transfected with the deletion mutant lacking the actin-binding region incorporated dextran to a similar extent as control cells. Taken together, these results demonstrate that PI3KAP/XB130 crosslinks F-actin through both its actin-binding region and multimerizing region and plays

  10. Phosphatidylinositol 3-Kinase-Associated Protein (PI3KAP)/XB130 Crosslinks Actin Filaments through Its Actin Binding and Multimerization Properties In Vitro and Enhances Endocytosis in HEK293 Cells

    PubMed Central

    Yamanaka, Daisuke; Akama, Takeshi; Chida, Kazuhiro; Minami, Shiro; Ito, Koichi; Hakuno, Fumihiko; Takahashi, Shin-Ichiro

    2016-01-01

    Actin-crosslinking proteins control actin filament networks and bundles and contribute to various cellular functions including regulation of cell migration, cell morphology, and endocytosis. Phosphatidylinositol 3-kinase-associated protein (PI3KAP)/XB130 has been reported to be localized to actin filaments (F-actin) and required for cell migration in thyroid carcinoma cells. Here, we show a role for PI3KAP/XB130 as an actin-crosslinking protein. First, we found that the carboxyl terminal region of PI3KAP/XB130 containing amino acid residues 830–840 was required and sufficient for localization to F-actin in NIH3T3 cells, and this region is directly bound to F-actin in vitro. Moreover, actin-crosslinking assay revealed that recombinant PI3KAP/XB130 crosslinked F-actin. In general, actin-crosslinking proteins often multimerize to assemble multiple actin-binding sites. We then investigated whether PI3KAP/XB130 could form a multimer. Blue native-PAGE analysis showed that recombinant PI3KAP/XB130 was detected at 250–1200 kDa although the molecular mass was approximately 125 kDa, suggesting that PI3KAP/XB130 formed multimers. Furthermore, we found that the amino terminal 40 amino acids were required for this multimerization by co-immunoprecipitation assay in HEK293T cells. Deletion mutants of PI3KAP/XB130 lacking the actin-binding region or the multimerizing region did not crosslink actin filaments, indicating that actin binding and multimerization of PI3KAP/XB130 were necessary to crosslink F-actin. Finally, we examined roles of PI3KAP/XB130 on endocytosis, an actin-related biological process. Overexpression of PI3KAP/XB130 enhanced dextran uptake in HEK 293 cells. However, most of the cells transfected with the deletion mutant lacking the actin-binding region incorporated dextran to a similar extent as control cells. Taken together, these results demonstrate that PI3KAP/XB130 crosslinks F-actin through both its actin-binding region and multimerizing region and

  11. Myosin II Motors and F-Actin Dynamics Drive the Coordinated Movement of the Centrosome and Soma during CNS Glial-Guided Neuronal Migration

    SciTech Connect

    Solecki, Dr. David; Trivedi, Dr. Niraj; Govek, Eve-Ellen; Kerekes, Ryan A; Gleason, Shaun Scott; Hatten, Mary E

    2009-01-01

    Lamination of cortical regions of the vertebrate brain depends on glial-guided neuronal migration. The conserved polarity protein Par6{alpha} localizes to the centrosome and coordinates forward movement of the centrosome and soma in migrating neurons. The cytoskeletal components that produce this unique form of cell polarity and their relationship to polarity signaling cascades are unknown. We show that F-actin and Myosin II motors are enriched in the neuronal leading process and that Myosin II activity is necessary for leading process actin dynamics. Inhibition of Myosin II decreased the speed of centrosome and somal movement, whereas Myosin II activation increased coordinated movement. Ectopic expression or silencing of Par6{alpha} inhibited Myosin II motors by decreasing Myosin light-chain phosphorylation. These findings suggest leading-process Myosin II may function to 'pull' the centrosome and soma forward during glial-guided migration by a mechanism involving the conserved polarity protein Par6{alpha}.

  12. The Stationary-Phase Cells of Saccharomyces cerevisiae Display Dynamic Actin Filaments Required for Processes Extending Chronological Life Span

    PubMed Central

    Lejskova, Renata; Malcova, Ivana

    2015-01-01

    Stationary-growth-phase Saccharomyces cerevisiae yeast cultures consist of nondividing cells that undergo chronological aging. For their successful survival, the turnover of proteins and organelles, ensured by autophagy and the activation of mitochondria, is performed. Some of these processes are engaged in by the actin cytoskeleton. In S. cerevisiae stationary-phase cells, F actin has been shown to form static aggregates named actin bodies, subsequently cited to be markers of quiescence. Our in vivo analyses revealed that stationary-phase cultures contain cells with dynamic actin filaments, besides the cells with static actin bodies. The cells with dynamic actin displayed active endocytosis and autophagy and well-developed mitochondrial networks. Even more, stationary-phase cell cultures grown under calorie restriction predominantly contained cells with actin cables, confirming that the presence of actin cables is linked to successful adaptation to stationary phase. Cells with actin bodies were inactive in endocytosis and autophagy and displayed aberrations in mitochondrial networks. Notably, cells of the respiratory activity-deficient cox4Δ strain displayed the same mitochondrial aberrations and actin bodies only. Additionally, our results indicate that mitochondrial dysfunction precedes the formation of actin bodies and the appearance of actin bodies corresponds to decreased cell fitness. We conclude that the F-actin status reflects the extent of damage that arises from exponential growth. PMID:26351139

  13. Alpha-herpesvirus infection induces the formation of nuclear actin filaments.

    PubMed

    Feierbach, Becket; Piccinotti, Silvia; Bisher, Margaret; Denk, Winfried; Enquist, Lynn W

    2006-08-01

    Herpesviruses are large double-stranded DNA viruses that replicate in the nuclei of infected cells. Spatial control of viral replication and assembly in the host nucleus is achieved by the establishment of nuclear compartments that serve to concentrate viral and host factors. How these compartments are established and maintained remains poorly understood. Pseudorabies virus (PRV) is an alpha-herpesvirus often used to study herpesvirus invasion and spread in the nervous system. Here, we report that PRV and herpes simplex virus type 1 infection of neurons results in formation of actin filaments in the nucleus. Filamentous actin is not found in the nucleus of uninfected cells. Nuclear actin filaments appear physically associated with the viral capsids, as shown by serial block-face scanning electron micropscopy and confocal microscopy. Using a green fluorescent protein-tagged viral capsid protein (VP26), we show that nuclear actin filaments form prior to capsid assembly and are required for the efficient formation of viral capsid assembly sites. We find that actin polymerization dynamics (e.g., treadmilling) are not necessary for the formation of these sites. Green fluorescent protein-VP26 foci co-localize with the actin motor myosin V, suggesting that viral capsids travel along nuclear actin filaments using myosin-based directed transport. Viral transcription, but not viral DNA replication, is required for actin filament formation. The finding that infection, by either PRV or herpes simplex virus type 1, results in formation of nuclear actin filaments in neurons, and that PRV infection of an epithelial cell line results in a similar phenotype is evidence that F-actin plays a conserved role in herpesvirus assembly. Our results suggest a mechanism by which assembly domains are organized within infected cells and provide insight into how the viral infectious cycle and host actin cytoskeleton are integrated to promote the infection process. PMID:16933992

  14. Arabidopsis RIC1 Severs Actin Filaments at the Apex to Regulate Pollen Tube Growth

    PubMed Central

    Zhou, Zhenzhen; Shi, Haifan; Chen, Binqing; Zhang, Ruihui; Huang, Shanjin; Fu, Ying

    2015-01-01

    Pollen tubes deliver sperms to the ovule for fertilization via tip growth. The rapid turnover of F-actin in pollen tube tips plays an important role in this process. In this study, we demonstrate that Arabidopsis thaliana RIC1, a member of the ROP-interactive CRIB motif-containing protein family, regulates pollen tube growth via its F-actin severing activity. Knockout of RIC1 enhanced pollen tube elongation, while overexpression of RIC1 dramatically reduced tube growth. Pharmacological analysis indicated that RIC1 affected F-actin dynamics in pollen tubes. In vitro biochemical assays revealed that RIC1 directly bound and severed F-actin in the presence of Ca2+ in addition to interfering with F-actin turnover by capping F-actin at the barbed ends. In vivo, RIC1 localized primarily to the apical plasma membrane (PM) of pollen tubes. The level of RIC1 at the apical PM oscillated during pollen tube growth. The frequency of F-actin severing at the apex was notably decreased in ric1-1 pollen tubes but was increased in pollen tubes overexpressing RIC1. We propose that RIC1 regulates F-actin dynamics at the apical PM as well as the cytosol by severing F-actin and capping the barbed ends in the cytoplasm, establishing a novel mechanism that underlies the regulation of pollen tube growth. PMID:25804540

  15. Spatial Association of Signaling Proteins and F-Actin Effects on Cluster Assembly Analyzed via Photoactivation Localization Microscopy in T Cells

    PubMed Central

    Hsu, Chih-Jung; Baumgart, Tobias

    2011-01-01

    Recognition of antigens by T cell receptors (TCRs) triggers cellular signaling cascades initiated by recruitment to the plasma membrane of numerous effector molecules to form signaling microclusters (MCs). Here we show that the method of high-resolution photoactivation localization microscopy (PALM) imaging can be used to analyze the spatial correlation between kinase ZAP70 and adaptor SLP76 MCs at the cell periphery and the effects of F-actin on MC assembly. We first determined the photophysical rate constants of Dronpa and tdEos fluorescence probes, which allowed us to optimize our dual-color PALM imaging method. We next analyzed the degrees of spatial association through determination of Mander's colocalization coefficients from PALM images, which revealed increasing spatial segregation of ZAP70 and SLP76 MCs at the cell periphery after initiation of signaling. We showed that this spatial segregation at the cell periphery occurred in parallel with the reduction of MC phosphorylation levels. Furthermore, we used Ripley's K function to analyze spatial randomness, and determined average radii of clusters as a function of activation time. The average radii of SLP76 and LAT MCs were found to decrease, whereas ZAP70 MC radii remained relatively constant. Finally, effects of F-actin depolymerization on MC morphology were studied by determining radial distributions of cluster circularity. Our data suggest that MC morphology is affected by actin polymerization. The quantitative analysis of sub-diffraction PALM images may provide a starting point for a molecular interpretation of cluster-cluster interactions and of the regulation of T cell signaling MCs by the cytoskeleton. PMID:21887278

  16. Effect of ATP on actin filament stiffness.

    PubMed

    Janmey, P A; Hvidt, S; Oster, G F; Lamb, J; Stossel, T P; Hartwig, J H

    1990-09-01

    Actin is an adenine nucleotide-binding protein and an ATPase. The bound adenine nucleotide stabilizes the protein against denaturation and the ATPase activity, although not required for actin polymerization, affects the kinetics of this assembly Here we provide evidence for another effect of adenine nucleotides. We find that actin filaments made from ATP-containing monomers, the ATPase activity of which hydrolyses ATP to ADP following polymerization, are stiff rods, whereas filaments prepared from ADP-monomers are flexible. ATP exchanges with ADP in such filaments and stiffens them. Because both kinds of actin filaments contain mainly ADP, we suggest the alignment of actin monomers in filaments that have bound and hydrolysed ATP traps them conformationally and stores elastic energy. This energy would be available for release by actin-binding proteins that transduce force or sever actin filaments. These data support earlier proposals that actin is not merely a passive cable, but has an active mechanochemical role in cell function. PMID:2168523

  17. Selenium nanoparticles induced membrane bio-mechanical property changes in MCF-7 cells by disturbing membrane molecules and F-actin.

    PubMed

    Pi, Jiang; Yang, Fen; Jin, Hua; Huang, Xun; Liu, Ruiying; Yang, Peihui; Cai, Jiye

    2013-12-01

    Selenium nanoparticles (Se NPs) have been served as promising materials for biomedical applications, especially for cancer treatment. The anti-cancer effects of Se NPs against cancer cells have been widely studied in recent years, but whether Se NPs can induce the changes of cell membrane bio-mechanical properties in cancer cells still remain unexplored. In this Letter, we prepared Se NPs for investigating the intracellular localization of Se NPs in MCF-7 cells and determined the effects of Se NPs on apoptosis and necrosis in MCF-7 cells. Especially, we reported for the first time about the effects of Se NPs on the bio-mechanical properties of cancer cells and found that Se NPs could remarkably decrease the adhesion force and Young's modulus of MCF-7 cells. To further understand the potential mechanisms about how Se NPs affect the bio-mechanical properties of MCF-7 cells, we also investigated the expression of CD44 molecules, the structure and the amounts of F-actin. The results indicated that the decreased adhesion force between AFM tip and cell membrane was partially due to the changes of membrane molecules induced by Se NPs, such as the down-regulation of trans-membrane CD44 molecules. Additionally, the decrease of Young's modulus of MCF-7 cells was due to the dis-organization and down-regulation of F-actin induced by Se NPs. These results collectively suggested that cell membrane was of vital importance in Se NPs induced toxicity in cancer cells, which could be served as a potential target for cancer treatment by Se NPs. PMID:24140445

  18. Arabidopsis Microtubule-Destabilizing Protein 25 Functions in Pollen Tube Growth by Severing Actin Filaments[W

    PubMed Central

    Qin, Tao; Liu, Xiaomin; Li, Jiejie; Sun, Jingbo; Song, Leina; Mao, Tonglin

    2014-01-01

    The formation of distinct actin filament arrays in the subapical region of pollen tubes is crucial for pollen tube growth. However, the molecular mechanisms underlying the organization and dynamics of the actin filaments in this region remain to be determined. This study shows that Arabidopsis thaliana MICROTUBULE-DESTABILIZING PROTEIN25 (MDP25) has the actin filament–severing activity of an actin binding protein. This protein negatively regulated pollen tube growth by modulating the organization and dynamics of actin filaments in the subapical region of pollen tubes. MDP25 loss of function resulted in enhanced pollen tube elongation and inefficient fertilization. MDP25 bound directly to actin filaments and severed individual actin filaments, in a manner that was dramatically enhanced by Ca2+, in vitro. Analysis of a mutant that bears a point mutation at the Ca2+ binding sites demonstrated that the subcellular localization of MDP25 was determined by cytosolic Ca2+ level in the subapical region of pollen tubes, where MDP25 was disassociated from the plasma membrane and moved into the cytosol. Time-lapse analysis showed that the F-actin-severing frequency significantly decreased and a high density of actin filaments was observed in the subapical region of mdp25-1 pollen tubes. This study reveals a mechanism whereby calcium enhances the actin filament–severing activity of MDP25 in the subapical region of pollen tubes to modulate pollen tube growth. PMID:24424096

  19. The F-actin bundler α-actinin Ain1 is tailored for ring assembly and constriction during cytokinesis in fission yeast.

    PubMed

    Li, Yujie; Christensen, Jenna R; Homa, Kaitlin E; Hocky, Glen M; Fok, Alice; Sees, Jennifer A; Voth, Gregory A; Kovar, David R

    2016-06-01

    The actomyosin contractile ring is a network of cross-linked actin filaments that facilitates cytokinesis in dividing cells. Contractile ring formation has been well characterized in Schizosaccharomyces pombe, in which the cross-linking protein α-actinin SpAin1 bundles the actin filament network. However, the specific biochemical properties of SpAin1 and whether they are tailored for cytokinesis are not known. Therefore we purified SpAin1 and quantified its ability to dynamically bind and bundle actin filaments in vitro using a combination of bulk sedimentation assays and direct visualization by two-color total internal reflection fluorescence microscopy. We found that, while SpAin1 bundles actin filaments of mixed polarity like other α-actinins, SpAin1 has lower bundling activity and is more dynamic than human α-actinin HsACTN4. To determine whether dynamic bundling is important for cytokinesis in fission yeast, we created the less dynamic bundling mutant SpAin1(R216E). We found that dynamic bundling is critical for cytokinesis, as cells expressing SpAin1(R216E) display disorganized ring material and delays in both ring formation and constriction. Furthermore, computer simulations of initial actin filament elongation and alignment revealed that an intermediate level of cross-linking best facilitates filament alignment. Together our results demonstrate that dynamic bundling by SpAin1 is important for proper contractile ring formation and constriction. PMID:27075176

  20. The F-actin bundler α-actinin Ain1 is tailored for ring assembly and constriction during cytokinesis in fission yeast

    PubMed Central

    Li, Yujie; Christensen, Jenna R.; Homa, Kaitlin E.; Hocky, Glen M.; Fok, Alice; Sees, Jennifer A.; Voth, Gregory A.; Kovar, David R.

    2016-01-01

    The actomyosin contractile ring is a network of cross-linked actin filaments that facilitates cytokinesis in dividing cells. Contractile ring formation has been well characterized in Schizosaccharomyces pombe, in which the cross-linking protein α-actinin SpAin1 bundles the actin filament network. However, the specific biochemical properties of SpAin1 and whether they are tailored for cytokinesis are not known. Therefore we purified SpAin1 and quantified its ability to dynamically bind and bundle actin filaments in vitro using a combination of bulk sedimentation assays and direct visualization by two-color total internal reflection fluorescence microscopy. We found that, while SpAin1 bundles actin filaments of mixed polarity like other α-actinins, SpAin1 has lower bundling activity and is more dynamic than human α-actinin HsACTN4. To determine whether dynamic bundling is important for cytokinesis in fission yeast, we created the less dynamic bundling mutant SpAin1(R216E). We found that dynamic bundling is critical for cytokinesis, as cells expressing SpAin1(R216E) display disorganized ring material and delays in both ring formation and constriction. Furthermore, computer simulations of initial actin filament elongation and alignment revealed that an intermediate level of cross-linking best facilitates filament alignment. Together our results demonstrate that dynamic bundling by SpAin1 is important for proper contractile ring formation and constriction. PMID:27075176

  1. Intrastrand cross-linked actin between Gln-41 and Cys-374. I. Mapping of sites cross-linked in F-actin by N-(4-azido-2-nitrophenyl) putrescine.

    PubMed

    Hegyi, G; Mák, M; Kim, E; Elzinga, M; Muhlrad, A; Reisler, E

    1998-12-22

    A new heterobifunctional photo-cross-linking reagent, N-(4-azido-2-nitrophenyl)-putrescine (ANP), was synthesized and covalently bound to Gln-41 of rabbit skeletal muscle actin by a bacterial transglutaminase-mediated reaction. Up to 1.0 mol of the reagent was incorporated per mole of G-actin; at least 90% of it was bound to Gln-41 while a minor fraction (about 8%) was attached to Gln-59. The labeled G-actin was polymerized, and the resulting F-actin was intermolecularly cross-linked by irradiation with UV light. The labeled and cross-linked peptides were isolated from either a complete or limited tryptic digest of cross-linked actin. In the limited digest the tryptic cleavage was restricted to arginine by succinylation of the lysyl residues. N-terminal sequencing and mass spectrometry indicated that the cross-linked peptides contained residues 40-50 (or 40-62 in the arginine limited digest) and residues 373-375, and that the actual cross-linking took place between Gln-41 and Cys-374. This latter finding was also supported by the inhibition of Cys-374 labeling with a fluorescent probe in the cross-linked actin. The dynamic length of ANP, between 11.1 and 12.5 A, constrains to that range the distance between the gamma-carboxyl group of Gln-41 in one monomer and the sulfur atom of Cys-374 in an adjacent monomer. This is consistent with the distances between these two residues on adjacent monomers of the same strand in the long-pitch helix in the structural models of F-actin [Holmes, K. C., Popp, D., Gebhard, W., and Kabsch, W. (1990) Nature 347, 44-49 and Lorenz, M., Popp, D., and Holmes, K. C. (1993) J. Mol. Biol. 234, 826-836]. The effect of cross-linking on the function of actin is described in the companion papers. PMID:9922144

  2. Isoforms of α-Actinin from Cardiac, Smooth, and Skeletal Muscle Form Polar Arrays of Actin Filaments

    PubMed Central

    Taylor, Kenneth A.; Taylor, Dianne W.; Schachat, Fred

    2000-01-01

    We have used a positively charged lipid monolayer to form two-dimensional bundles of F-actin cross-linked by α-actinin to investigate the relative orientation of the actin filaments within them. This method prevents growth of the bundles perpendicular to the monolayer plane, thereby facilitating interpretation of the electron micrographs. Using α-actinin isoforms isolated from the three types of vertebrate muscle, i.e., cardiac, skeletal, and smooth, we have observed almost exclusively cross-linking between polar arrays of filaments, i.e., actin filaments with their plus ends oriented in the same direction. One type of bundle can be classified as an Archimedian spiral consisting of a single actin filament that spirals inward as the filament grows and the bundle is formed. These spirals have a consistent hand and grow to a limiting internal diameter of 0.4–0.7 μm, where the filaments appear to break and spiral formation ceases. These results, using isoforms usually characterized as cross-linkers of bipolar actin filament bundles, suggest that α-actinin is capable of cross-linking actin filaments in any orientation. Formation of specifically bipolar or polar filament arrays cross-linked by α-actinin may require additional factors that either determine the filament orientation or restrict the cross-linking capabilities of α-actinin. PMID:10791977

  3. Effect of disruption of actin filaments by Clostridium botulinum C2 toxin on insulin secretion in HIT-T15 cells and pancreatic islets.

    PubMed Central

    Li, G; Rungger-Brändle, E; Just, I; Jonas, J C; Aktories, K; Wollheim, C B

    1994-01-01

    To examine their role in insulin secretion, actin filaments (AFs) were disrupted by Clostridium botulinum C2 toxin that ADP-ribosylates G-actin. Ribosylation also prevents polymerization of G-actin to F-actin and inhibits AF assembly by capping the fast-growing end of F-actin. Pretreatment of HIT-T15 cells with the toxin inhibited stimulated insulin secretion in a time- and dose-dependent manner. The toxin did not affect cellular insulin content or nonstimulated secretion. In static incubation, toxin treatment caused 45-50% inhibition of secretion induced by nutrients alone (10 mM glucose + 5 mM glutamine + 5 mM leucine) or combined with bombesin (phospholipase C-activator) and 20% reduction of that potentiated by forskolin (stimulator of adenylyl cyclase). In perifusion, the stimulated secretion during the first phase was marginally diminished, whereas the second phase was inhibited by approximately 80%. Pretreatment of HIT cells with wartmannin, a myosin light chain kinase inhibitor, caused a similar pattern of inhibition of the biphasic insulin release as C2 toxin. Nutrient metabolism and bombesin-evoked rise in cytosolic free Ca2+ were not affected by C2 toxin, indicating that nutrient recognition and the coupling between receptor activation and second messenger generation was not changed. In the toxin-treated cells, the AF web beneath the plasma membrane and the diffuse cytoplasmic F-actin fibers disappeared, as shown both by staining with an antibody against G- and F-actin and by staining F-actin with fluorescent phallacidin. C2 toxin dose-dependently reduced cellular F-actin content. Stimulation of insulin secretion was not associated with changes in F-actin content and organization. Treatment of cells with cytochalasin E and B, which shorten AFs, inhibited the stimulated insulin release by 30-50% although differing in their effects on F-actin content. In contrast to HIT-T15 cells, insulin secretion was potentiated in isolated rat islets after disruption of

  4. Actin Filament Segmentation Using Dynamic Programming

    PubMed Central

    Li, Hongsheng; Shen, Tian; Huang, Xiaolei

    2011-01-01

    We introduce a novel algorithm for actin filament segmentation in 2D TIRFM image sequences. This problem is difficult because actin filaments dynamically change shapes during their growth, and the TIRFM images are usually noisy. We ask a user to specify the two tips of a filament of interest in the first frame. We then model the segmentation problem in an image sequence as a temporal chain, where its states are tip locations; given candidate tip locations, actin filaments' body points are inferred by a dynamic programming method, which adaptively generates candidate solutions. Combining candidate tip locations and their inferred body points, the temporal chain model is efficiently optimized using another dynamic programming method. Evaluation on noisy TIRFM image sequences demonstrates the accuracy and robustness of this approach. PMID:21761674

  5. A tridimensional view of the organization of actin filaments in the central nervous system by use of fluorescent photooxidation.

    PubMed

    Capani, Francisco; Saraceno, Ezequiel; Boti, Valeria Romina; Aon-Bertolino, Laura; Fernández, Juan Carlos; Gato, Fernándo; Kruse, Maria Sol; Krause, Maria Sol; Giraldez, Lisandro; Ellisman, Mark H; Coirini, Héctor

    2008-04-01

    Cellular and subcellular organization and distribution of actin filaments have been studied with various techniques. The use of fluorescence photo-oxidation combined with phalloidin conjugates with eosin has allowed the examination of the precise cellular and subcellular location of F-actin. Correlative fluorescence light microscopy and transmission electron microscopy studies of F-actin distribution are facilitated with this method for morphological and physiological studies. Because phalloidin-eosin is smaller than other markers, this method allows the analysis of the three-dimensional location of F-actin with high-resolution light microscopy, three-d serial sections reconstructions, and electron tomography. The combination of selective staining and three-dimensional reconstructions provide a valuable tool for revealing aspects of the synaptic morphology that are not available when conventional electron microscopy is used. By applying this selective staining technique and three-dimensional imaging, we uncovered the structural organization of actin in the postsynaptic densities in physiological and pathological conditions. PMID:18669318

  6. Cytoskeletal F-actin polymerization from cytosolic G-actin occurs in the phagocytosing immunocytes of arthropods (Limulus polyphemus and Gromphadorhina portentosa): does [cAMP]i play any role?

    PubMed

    Gupta, A P; Campenot, E S

    1996-09-01

    Phagocytosis is a major defense reaction in arthropods and is accomplished by two blood cells (hemocytes), the granulocyte (GRs) and plasmatocytes (PLs), collectively called immunocytes. Immunocytes (principally the GRs) from two arthropods, Limulus polyphemus (horseshoe crab) and Gromphadorhina portentosa (Madagascar hissing cockroach) effectively phagocytose fluorescein isothiocyanate (FITC)-conjugated fluoresbrite microspheres (FITC-FM) and chicken (Gallus domesticus) erythrocytes within 1 hr of incubation. Although actin polymerization and changes in intracellular cAMP ([cAMP]i) levels occur during the early stages of phagocytosis in vertebrates, these two phenomena have not been studied in arthropod immunocytes. Using the DNase I inhibition assay, we found a decrease in cytosolic G-actin and an increase in the cytoskeletal F-actin in the phagocytosing immunocytes; the total actin in both resting and phagocytosing immunocytes remained constant. These results showed an 86% increase in F-actin in G. portentosa immunocytes and a 29% increase in those of L. polyphemus after 1 hr of initial incubation with FITC-FM. As in some vertebrates, the role of [cAMP]i in the early stages of phagocytosis in these two animals- and perhaps in arthropods in general-is variable; although we detected some negligible amounts of [cAMP]i (0.10-0.80 pmol/cell at different time intervals) in L. polyphemus immunocytes, it was inconclusive whether those in G. portentosa also contained [cAMP]i. Even in L. polyphemus, the difference in the amounts of [cAMP]i in resting and phagocytosing cells was insignificant (P > 0.05). It was also inconclusive whether [Ca2+]i and/or [Mg2+]i play any roles in the early stages of phagocytosis in the two arthropods in this study. These results suggest that the two phenomena (F-actin polymerization and levels of [cAMP]i in arthropods) are basically similar to those in vertebrate neutrophils and macrophages, which suggests that certain immunological

  7. Novel actin filaments from Bacillus thuringiensis form nanotubules for plasmid DNA segregation

    PubMed Central

    Jiang, Shimin; Narita, Akihiro; Popp, David; Ghoshdastider, Umesh; Lee, Lin Jie; Srinivasan, Ramanujam; Balasubramanian, Mohan K.; Oda, Toshiro; Koh, Fujiet; Larsson, Mårten; Robinson, Robert C.

    2016-01-01

    Here we report the discovery of a bacterial DNA-segregating actin-like protein (BtParM) from Bacillus thuringiensis, which forms novel antiparallel, two-stranded, supercoiled, nonpolar helical filaments, as determined by electron microscopy. The BtParM filament features of supercoiling and forming antiparallel double-strands are unique within the actin fold superfamily, and entirely different to the straight, double-stranded, polar helical filaments of all other known ParMs and of eukaryotic F-actin. The BtParM polymers show dynamic assembly and subsequent disassembly in the presence of ATP. BtParR, the DNA-BtParM linking protein, stimulated ATP hydrolysis/phosphate release by BtParM and paired two supercoiled BtParM filaments to form a cylinder, comprised of four strands with inner and outer diameters of 57 Å and 145 Å, respectively. Thus, in this prokaryote, the actin fold has evolved to produce a filament system with comparable features to the eukaryotic chromosome-segregating microtubule. PMID:26873105

  8. Noise-induced cochlear F-actin depolymerization is mediated via ROCK2/p-ERM signaling

    PubMed Central

    Han, Yu; Wang, Xianren; Chen, Jun; Sha, Su-Hua

    2015-01-01

    Our previous work has suggested that traumatic noise activates Rho-GTPase pathways in cochlear outer hair cells (OHCs), resulting in cell death and noise-induced hearing loss (NIHL). In this study, we investigated Rho effectors, Rho-associated kinases (ROCKs), and the targets of ROCKs, the ezrin-radixin-moesin (ERM) proteins, in the regulation of the cochlear actin cytoskeleton using adult CBA/J mice under conditions of noise-induced temporary threshold shift (TTS) and permanent threshold shift (PTS) hearing loss, which result in changes to the F/G-actin ratio. The levels of cochlear ROCK2 and p-ERM decreased 1 h after either TTS- or PTS-noise exposure. In contrast, ROCK2 and p-ERM in OHCs decreased only after PTS-, not after TTS-noise exposure. Treatment with lysophosphatidic acid, an activator of the Rho pathway, resulted in significant reversal of the F/G-actin ratio changes caused by noise exposure and attenuated OHC death and NIHL. Conversely, the down-regulation of ROCK2 by pretreatment with ROCK2 siRNA reduced the expression of ROCK2 and p-ERM in OHCs, exacerbated TTS to PTS, and worsened OHC loss. Additionally, pretreatment with siRNA against radixin, an ERM protein, aggravated TTS to PTS. Our results indicate that a ROCK2-mediated ERM-phosphorylation signaling cascade modulates noise-induced hair cell loss and NIHL by targeting the cytoskeleton. PMID:25683353

  9. Identification of icsA, a plasmid locus of Shigella flexneri that governs bacterial intra- and intercellular spread through interaction with F-actin.

    PubMed Central

    Bernardini, M L; Mounier, J; d'Hauteville, H; Coquis-Rondon, M; Sansonetti, P J

    1989-01-01

    The capacity of Shigella to spread within the cytosol of infected epithelial cells and to infect adjacent cells is critical for the development of infection foci, which lead to mucosal abscesses. Shigella is a nonmotile microorganism that appears to utilize host cell microfilaments to generate intra- as well as intercellular movements, since this movement was inhibited by cytochalasin D and involvement of F-actin was demonstrated by direct labeling of infected cells with the specific dye N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)phallacidin. Such movements led to the formation of extracellular protrusions, which may explain cell to cell spread. icsA, a locus necessary for intra- and intercellular spread, was identified on the Shigella flexneri virulence plasmid pWR100. This locus was cloned and shown to express a 120-kDa outer membrane protein, which plays an important role in the interactions established between host cell microfilaments and the bacterial surface, thus leading to intracellular movement. Images PMID:2542950

  10. Early embryonic development in the Djungarian hamster (Phodopus sungorus) is accompanied by alterations in the distribution and intensity of an estrogen (E2)-dependent oviduct glycoprotein in the blastomere membrane and zona pellucida and in its association with F-actin.

    PubMed

    Murray, M; Messinger, S M

    1994-12-01

    The luminal environment of the estrogen (E2)-dominated mammalian oviduct generates and sustains the environment in which the first embryonic cleavages take place. The objective of this study was to determine, by use of an antiserum against an E2-dependent sheep oviduct secretory glycoprotein (M(r) 90,000-92,000), whether the E2-dominated and pregnant oviduct of the Djungarian hamster (Phodopus sungorus) releases an antigenically related protein. If the protein was present, a secondary objective was to define its fate and association with filamentous-actin (f-actin) and chromatin patterns in early cleavage-stage embryos. Oviduct flushings containing embryos (1-cell fertilized, 2-, 4-, and 8-cells), and uterine flushings (> 16 cell embryos) were obtained from pregnant hamsters. Embryos were removed from flushings, and oviduct secretions were analyzed by Western blotting. The zona pellucida was removed with acid Tyrode's solution from approximately half of the 2-, 4-, and 8-cell embryos. Zona-intact and zona-free embryos were then fixed and subjected to triple immunofluorescence staining with an antiserum to the sheep oviduct protein, rhodamine phalloidin, and Hoechst 33258. An antigenically related protein M(r) 200,000) was detected in oviduct secretions of E2-treated, ovariectomized, and pregnant hamsters, and not in secretions from ovariectomized controls. In the zona pellucida of 1- and 2-cell embryos, the oviduct protein displayed an intertwining, reticular organization that was replaced by a diffuse and more intense accumulation in 4-, 8-, and > 16-cell embryos. In 2-cell embryos, punctate foci of the oviduct protein were distributed unevenly over the apical blastomere plasma membrane, forming patches in regions of f-actin exclusion, which were absent at later development stages. At the 4- and 8-cell stage of development, as blastomeres lost their spherical form by minimizing intercellular spaces, the oviduct protein took on a polarized arrangement and was

  11. How cofilin severs an actin filament.

    PubMed

    De La Cruz, Enrique M

    2009-05-15

    The actin regulatory protein, cofilin, promotes actin assembly dynamics by severing filaments and increasing the number of ends from which subunits add and dissociate. Recent studies provide biophysical descriptions of cooperative filament interactions in energetic, mechanical and structural terms. A one-dimensional Ising model with nearest-neighbor interactions permits thermodynamic analysis of cooperative binding and indicates that one or a few cofilin molecules can sever a filament. Binding and cooperative interactions are entropically driven. A significant fraction of the binding free energy results from the linked dissociation of filament-associated ions (polyelectrolyte effect), which modulate filament structure, stability and mechanics. The remaining binding free energy and essentially all of the cooperative free energy arise from the enhanced conformational dynamics of the cofilactin complex. Filament mechanics are modulated by cofilin such that cofilin-saturated filaments are approximately 10- to 20-fold more compliant in bending and twisting than bare filaments. Cofilin activity is well described by models in which discontinuities in topology, mechanics and conformational dynamics generate stress concentration and promote fracture at junctions of bare and decorated segments, analogous to the grain boundary fracture of crystalline materials and the thermally driven formation of shear transformation zones in colloidal glass. PMID:20700473

  12. Ezrin self-association involves binding of an N-terminal domain to a normally masked C-terminal domain that includes the F-actin binding site.

    PubMed Central

    Gary, R; Bretscher, A

    1995-01-01

    Ezrin is a membrane-cytoskeletal linking protein that is concentrated in actin-rich surface structures. It is closely related to the microvillar proteins radixin and moesin and to the tumor suppressor merlin/schwannomin. Cell extracts contain ezrin dimers and ezrin-moesin heterodimers in addition to monomers. Truncated ezrin fusion proteins were assayed by blot overlay to determine which regions mediate self-association. Here we report that ezrin self-association occurs by head-to-tail joining of distinct N-terminal and C-terminal domains. It is likely that these domains, termed N- and C-ERMADs (ezrin-radixin-moesin association domain), are responsible for homotypic and heterotypic associations among ERM family members. The N-ERMAD of ezrin resided within amino acids 1-296; deletion of 10 additional residues resulted in loss of activity. The C-ERMAD was mapped to the last 107 amino acids of ezrin, residues 479-585. The two residues at the C-terminus were required for activity, and the region from 530-585 was insufficient. The C-ERMAD was masked in the native monomer. Exposure of this domain required unfolding ezrin with sodium dodecyl sulfate or expressing the domain as part of a truncated protein. Intermolecular association could not occur unless the C-ERMAD had been made accessible to its N-terminal partner. It can be inferred that dimerization in vivo requires an activation step that exposes this masked domain. The conformationally inaccessible C-terminal region included the F-actin binding site, suggesting that this activity is likewise regulated by masking. Images PMID:7579708

  13. Mechanism of Actin Filament Bundling by Fascin

    SciTech Connect

    Jansen, Silvia; Collins, Agnieszka; Yang, Changsong; Rebowski, Grzegorz; Svitkina, Tatyana; Dominguez, Roberto

    2013-03-07

    Fascin is the main actin filament bundling protein in filopodia. Because of the important role filopodia play in cell migration, fascin is emerging as a major target for cancer drug discovery. However, an understanding of the mechanism of bundle formation by fascin is critically lacking. Fascin consists of four {beta}-trefoil domains. Here, we show that fascin contains two major actin-binding sites, coinciding with regions of high sequence conservation in {beta}-trefoil domains 1 and 3. The site in {beta}-trefoil-1 is located near the binding site of the fascin inhibitor macroketone and comprises residue Ser-39, whose phosphorylation by protein kinase C down-regulates actin bundling and formation of filopodia. The site in {beta}-trefoil-3 is related by pseudo-2-fold symmetry to that in {beta}-trefoil-1. The two sites are {approx}5 nm apart, resulting in a distance between actin filaments in the bundle of {approx}8.1 nm. Residue mutations in both sites disrupt bundle formation in vitro as assessed by co-sedimentation with actin and electron microscopy and severely impair formation of filopodia in cells as determined by rescue experiments in fascin-depleted cells. Mutations of other areas of the fascin surface also affect actin bundling and formation of filopodia albeit to a lesser extent, suggesting that, in addition to the two major actin-binding sites, fascin makes secondary contacts with other filaments in the bundle. In a high resolution crystal structure of fascin, molecules of glycerol and polyethylene glycol are bound in pockets located within the two major actin-binding sites. These molecules could guide the rational design of new anticancer fascin inhibitors.

  14. Mechanical properties of branched actin filaments.

    PubMed

    Razbin, Mohammadhosein; Falcke, Martin; Benetatos, Panayotis; Zippelius, Annette

    2015-07-01

    Cells moving on a two dimensional substrate generate motion by polymerizing actin filament networks inside a flat membrane protrusion. New filaments are generated by branching off existing ones, giving rise to branched network structures. We investigate the force-extension relation of branched filaments, grafted on an elastic structure at one end and pushing with the free ends against the leading edge cell membrane. Single filaments are modeled as worm-like chains, whose thermal bending fluctuations are restricted by the leading edge cell membrane, resulting in an effective force. Branching can increase the stiffness considerably; however the effect depends on branch point position and filament orientation, being most pronounced for intermediate tilt angles and intermediate branch point positions. We describe filament networks without cross-linkers to focus on the effect of branching. We use randomly positioned branch points, as generated in the process of treadmilling, and orientation distributions as measured in lamellipodia. These networks reproduce both the weak and strong force response of lamellipodia as measured in force-velocity experiments. We compare properties of branched and unbranched networks. The ratio of the network average of the force per branched filament to the average force per unbranched filament depends on the orientation distribution of the filaments. The ratio exhibits compression dependence and may go up to about 4.5 in networks with a narrow orientation distribution. With orientation distributions measured in lamellipodia, it is about two and essentially independent from network compression, graft elasticity and filament persistence length. PMID:26040560

  15. Mechanical properties of branched actin filaments

    NASA Astrophysics Data System (ADS)

    Razbin, Mohammadhosein; Falcke, Martin; Benetatos, Panayotis; Zippelius, Annette

    2015-07-01

    Cells moving on a two dimensional substrate generate motion by polymerizing actin filament networks inside a flat membrane protrusion. New filaments are generated by branching off existing ones, giving rise to branched network structures. We investigate the force-extension relation of branched filaments, grafted on an elastic structure at one end and pushing with the free ends against the leading edge cell membrane. Single filaments are modeled as worm-like chains, whose thermal bending fluctuations are restricted by the leading edge cell membrane, resulting in an effective force. Branching can increase the stiffness considerably; however the effect depends on branch point position and filament orientation, being most pronounced for intermediate tilt angles and intermediate branch point positions. We describe filament networks without cross-linkers to focus on the effect of branching. We use randomly positioned branch points, as generated in the process of treadmilling, and orientation distributions as measured in lamellipodia. These networks reproduce both the weak and strong force response of lamellipodia as measured in force-velocity experiments. We compare properties of branched and unbranched networks. The ratio of the network average of the force per branched filament to the average force per unbranched filament depends on the orientation distribution of the filaments. The ratio exhibits compression dependence and may go up to about 4.5 in networks with a narrow orientation distribution. With orientation distributions measured in lamellipodia, it is about two and essentially independent from network compression, graft elasticity and filament persistence length.

  16. Ionic wave propagation along actin filaments.

    PubMed

    Tuszyński, J A; Portet, S; Dixon, J M; Luxford, C; Cantiello, H F

    2004-04-01

    We investigate the conditions enabling actin filaments to act as electrical transmission lines for ion flows along their lengths. We propose a model in which each actin monomer is an electric element with a capacitive, inductive, and resistive property due to the molecular structure of the actin filament and viscosity of the solution. Based on Kirchhoff's laws taken in the continuum limit, a nonlinear partial differential equation is derived for the propagation of ionic waves. We solve this equation in two different regimes. In the first, the maximum propagation velocity wave is found in terms of Jacobi elliptic functions. In the general case, we analyze the equation in terms of Fisher-Kolmogoroff modes with both localized and extended wave characteristics. We propose a new signaling mechanism in the cell, especially in neurons. PMID:15041636

  17. A Robust Actin Filaments Image Analysis Framework.

    PubMed

    Alioscha-Perez, Mitchel; Benadiba, Carine; Goossens, Katty; Kasas, Sandor; Dietler, Giovanni; Willaert, Ronnie; Sahli, Hichem

    2016-08-01

    The cytoskeleton is a highly dynamical protein network that plays a central role in numerous cellular physiological processes, and is traditionally divided into three components according to its chemical composition, i.e. actin, tubulin and intermediate filament cytoskeletons. Understanding the cytoskeleton dynamics is of prime importance to unveil mechanisms involved in cell adaptation to any stress type. Fluorescence imaging of cytoskeleton structures allows analyzing the impact of mechanical stimulation in the cytoskeleton, but it also imposes additional challenges in the image processing stage, such as the presence of imaging-related artifacts and heavy blurring introduced by (high-throughput) automated scans. However, although there exists a considerable number of image-based analytical tools to address the image processing and analysis, most of them are unfit to cope with the aforementioned challenges. Filamentous structures in images can be considered as a piecewise composition of quasi-straight segments (at least in some finer or coarser scale). Based on this observation, we propose a three-steps actin filaments extraction methodology: (i) first the input image is decomposed into a 'cartoon' part corresponding to the filament structures in the image, and a noise/texture part, (ii) on the 'cartoon' image, we apply a multi-scale line detector coupled with a (iii) quasi-straight filaments merging algorithm for fiber extraction. The proposed robust actin filaments image analysis framework allows extracting individual filaments in the presence of noise, artifacts and heavy blurring. Moreover, it provides numerous parameters such as filaments orientation, position and length, useful for further analysis. Cell image decomposition is relatively under-exploited in biological images processing, and our study shows the benefits it provides when addressing such tasks. Experimental validation was conducted using publicly available datasets, and in osteoblasts grown in

  18. A Robust Actin Filaments Image Analysis Framework

    PubMed Central

    Alioscha-Perez, Mitchel; Benadiba, Carine; Goossens, Katty; Kasas, Sandor; Dietler, Giovanni; Willaert, Ronnie; Sahli, Hichem

    2016-01-01

    The cytoskeleton is a highly dynamical protein network that plays a central role in numerous cellular physiological processes, and is traditionally divided into three components according to its chemical composition, i.e. actin, tubulin and intermediate filament cytoskeletons. Understanding the cytoskeleton dynamics is of prime importance to unveil mechanisms involved in cell adaptation to any stress type. Fluorescence imaging of cytoskeleton structures allows analyzing the impact of mechanical stimulation in the cytoskeleton, but it also imposes additional challenges in the image processing stage, such as the presence of imaging-related artifacts and heavy blurring introduced by (high-throughput) automated scans. However, although there exists a considerable number of image-based analytical tools to address the image processing and analysis, most of them are unfit to cope with the aforementioned challenges. Filamentous structures in images can be considered as a piecewise composition of quasi-straight segments (at least in some finer or coarser scale). Based on this observation, we propose a three-steps actin filaments extraction methodology: (i) first the input image is decomposed into a ‘cartoon’ part corresponding to the filament structures in the image, and a noise/texture part, (ii) on the ‘cartoon’ image, we apply a multi-scale line detector coupled with a (iii) quasi-straight filaments merging algorithm for fiber extraction. The proposed robust actin filaments image analysis framework allows extracting individual filaments in the presence of noise, artifacts and heavy blurring. Moreover, it provides numerous parameters such as filaments orientation, position and length, useful for further analysis. Cell image decomposition is relatively under-exploited in biological images processing, and our study shows the benefits it provides when addressing such tasks. Experimental validation was conducted using publicly available datasets, and in osteoblasts

  19. Velocity of movement of actin filaments in in vitro motility assay. Measured by fluorescence correlation spectroscopy.

    PubMed Central

    Borejdo, J; Burlacu, S

    1992-01-01

    We have measured the velocity of actin filaments in in vitro motility assay by fluorescence correlation spectroscopy. In this method, one measures fluctuations in the number of filaments in an open sample volume. The number of filaments was calculated from measurements of fluorescence of rhodamine-phalloidin bound to F-actin. Sample volume was defined by a diaphragm placed in front of the photomultiplier. Fluctuations arise when actin filaments enter and leave the sample volume due to translations driven by mechanochemical interactions with myosin heads which are immobilized on a glass surface. The average velocity of the translation of filaments determined by the correlation method, (Vc), was equal to the diameter of the diaphragm divided by the half-time of the relaxation of fluctuations. The average number of moving filaments determined by correlation method, (Nc), was inversely proportional to the relative fluctuations. By the fluctuation method it was possible to determine the average velocity of over 800 moving filaments in less than 4 min. There was good agreement between (Vc) and (Nc) and the average velocity and the average number of moving filaments determined manually. To be able to apply correlation measurements to an experimental problem, neither (Vc) nor (Nc) must depend on the position of observation of filaments. We first confirmed that this was indeed the case. We then applied the method to investigate the dependence of motility on the ATPase activity of myosin heads. ATPase activity was varied by mixing intact heads with heads which were labeled with different thiol reagents. It was found that the motion was drastically influenced by the reagent used for modification. When the reagent was N-ethyl-maleimide, 1.5% modification was sufficient to completely inhibit the motion. When the reagent was 5-iodoacetamidofluorescein, motion declined hyperbolically with the fraction of modified heads. Images FIGURE 2 FIGURE 4 FIGURE 11 PMID:1534696

  20. Drebrin-like protein DBN-1 is a sarcomere component that stabilizes actin filaments during muscle contraction.

    PubMed

    Butkevich, Eugenia; Bodensiek, Kai; Fakhri, Nikta; von Roden, Kerstin; Schaap, Iwan A T; Majoul, Irina; Schmidt, Christoph F; Klopfenstein, Dieter R

    2015-01-01

    Actin filament organization and stability in the sarcomeres of muscle cells are critical for force generation. Here we identify and functionally characterize a Caenorhabditis elegans drebrin-like protein DBN-1 as a novel constituent of the muscle contraction machinery. In vitro, DBN-1 exhibits actin filament binding and bundling activity. In vivo, DBN-1 is expressed in body wall muscles of C. elegans. During the muscle contraction cycle, DBN-1 alternates location between myosin- and actin-rich regions of the sarcomere. In contracted muscle, DBN-1 is accumulated at I-bands where it likely regulates proper spacing of α-actinin and tropomyosin and protects actin filaments from the interaction with ADF/cofilin. DBN-1 loss of function results in the partial depolymerization of F-actin during muscle contraction. Taken together, our data show that DBN-1 organizes the muscle contractile apparatus maintaining the spatial relationship between actin-binding proteins such as α-actinin, tropomyosin and ADF/cofilin and possibly strengthening actin filaments by bundling. PMID:26146072

  1. Actin-Dynamics in Plant Cells: The Function of Actin-Perturbing Substances: Jasplakinolide, Chondramides, Phalloidin, Cytochalasins, and Latrunculins.

    PubMed

    Holzinger, Andreas; Blaas, Kathrin

    2016-01-01

    This chapter gives an overview of the most common F-actin-perturbing substances that are used to study actin dynamics in living plant cells in studies on morphogenesis, motility, organelle movement, or when apoptosis has to be induced. These substances can be divided into two major subclasses: F-actin-stabilizing and -polymerizing substances like jasplakinolide and chondramides and F-actin-severing compounds like chytochalasins and latrunculins. Jasplakinolide was originally isolated form a marine sponge, and can now be synthesized and has become commercially available, which is responsible for its wide distribution as membrane-permeable F-actin-stabilizing and -polymerizing agent, which may even have anticancer activities. Cytochalasins, derived from fungi, show an F-actin-severing function and many derivatives are commercially available (A, B, C, D, E, H, J), also making it a widely used compound for F-actin disruption. The same can be stated for latrunculins (A, B), derived from red sea sponges; however the mode of action is different by binding to G-actin and inhibiting incorporation into the filament. In the case of swinholide a stable complex with actin dimers is formed resulting also in severing of F-actin. For influencing F-actin dynamics in plant cells only membrane permeable drugs are useful in a broad range. We however introduce also the phallotoxins and synthetic derivatives, as they are widely used to visualize F-actin in fixed cells. A particular uptake mechanism has been shown for hepatocytes, but has also been described in siphonal giant algae. In the present chapter the focus is set on F-actin dynamics in plant cells where alterations in cytoplasmic streaming can be particularly well studied; however methods by fluorescence applications including phalloidin and antibody staining as well as immunofluorescence-localization of the inhibitor drugs are given. PMID:26498789

  2. Actin-Dynamics in Plant Cells: The Function of Actin Perturbing Substances Jasplakinolide, Chondramides, Phalloidin, Cytochalasins, and Latrunculins

    PubMed Central

    Holzinger, Andreas; Blaas, Kathrin

    2016-01-01

    This chapter will give an overview of the most common F-actin perturbing substances, that are used to study actin dynamics in living plant cells in studies on morphogenesis, motility, organelle movement or when apoptosis has to be induced. These substances can be divided into two major subclasses – F-actin stabilizing and polymerizing substances like jasplakinolide, chondramides and F-actin severing compounds like chytochalasins and latrunculins. Jasplakinolide was originally isolated form a marine sponge, and can now be synthesized and has become commercially available, which is responsible for its wide distribution as membrane permeable F-actin stabilizing and polymerizing agent, which may even have anti-cancer activities. Cytochalasins, derived from fungi show an F-actin severing function and many derivatives are commercially available (A, B, C, D, E, H, J), also making it a widely used compound for F-actin disruption. The same can be stated for latrunculins (A, B), derived from red sea sponges, however the mode of action is different by binding to G-actin and inhibiting incorporation into the filament. In the case of swinholide a stable complex with actin dimers is formed resulting also in severing of F-actin. For influencing F-actin dynamics in plant cells only membrane permeable drugs are useful in a broad range. We however introduce also the phallotoxins and synthetic derivatives, as they are widely used to visualize F-actin in fixed cells. A particular uptake mechanism has been shown for hepatocytes, but has also been described in siphonal giant algae. In the present chapter the focus is set on F-actin dynamics in plant cells where alterations in cytoplasmic streaming can be particularly well studied; however methods by fluorescence applications including phalloidin- and antibody staining as well as immunofluorescence-localization of the inhibitor drugs are given. PMID:26498789

  3. Regulation of actin polymerization by tropomodulin-3 controls megakaryocyte actin organization and platelet biogenesis.

    PubMed

    Sui, Zhenhua; Nowak, Roberta B; Sanada, Chad; Halene, Stephanie; Krause, Diane S; Fowler, Velia M

    2015-07-23

    The actin cytoskeleton is important for platelet biogenesis. Tropomodulin-3 (Tmod3), the only Tmod isoform detected in platelets and megakaryocytes (MKs), caps actin filament (F-actin) pointed ends and binds tropomyosins (TMs), regulating actin polymerization and stability. To determine the function of Tmod3 in platelet biogenesis, we studied Tmod3(-/-) embryos, which are embryonic lethal by E18.5. Tmod3(-/-) embryos often show hemorrhaging at E14.5 with fewer and larger platelets, indicating impaired platelet biogenesis. MK numbers are moderately increased in Tmod3(-/-) fetal livers, with only a slight increase in the 8N population, suggesting that MK differentiation is not significantly affected. However, Tmod3(-/-) MKs fail to develop a normal demarcation membrane system (DMS), and cytoplasmic organelle distribution is abnormal. Moreover, cultured Tmod3(-/-) MKs exhibit impaired proplatelet formation with a wide range of proplatelet bud sizes, including abnormally large proplatelet buds containing incorrect numbers of von Willebrand factor-positive granules. Tmod3(-/-) MKs exhibit F-actin disturbances, and Tmod3(-/-) MKs spreading on collagen fail to polymerize F-actin into actomyosin contractile bundles. Tmod3 associates with TM4 and the F-actin cytoskeleton in wild-type MKs, and confocal microscopy reveals that Tmod3, TM4, and F-actin partially colocalize near the membrane of proplatelet buds. In contrast, the abnormally large proplatelets from Tmod3(-/-) MKs show increased F-actin and redistribution of F-actin and TM4 from the cortex to the cytoplasm, but normal microtubule coil organization. We conclude that F-actin capping by Tmod3 regulates F-actin organization in mouse fetal liver-derived MKs, thereby controlling MK cytoplasmic morphogenesis, including DMS formation and organelle distribution, as well as proplatelet formation and sizing. PMID:25964668

  4. Tropomyosin - master regulator of actin filament function in the cytoskeleton.

    PubMed

    Gunning, Peter W; Hardeman, Edna C; Lappalainen, Pekka; Mulvihill, Daniel P

    2015-08-15

    Tropomyosin (Tpm) isoforms are the master regulators of the functions of individual actin filaments in fungi and metazoans. Tpms are coiled-coil parallel dimers that form a head-to-tail polymer along the length of actin filaments. Yeast only has two Tpm isoforms, whereas mammals have over 40. Each cytoskeletal actin filament contains a homopolymer of Tpm homodimers, resulting in a filament of uniform Tpm composition along its length. Evidence for this 'master regulator' role is based on four core sets of observation. First, spatially and functionally distinct actin filaments contain different Tpm isoforms, and recent data suggest that members of the formin family of actin filament nucleators can specify which Tpm isoform is added to the growing actin filament. Second, Tpms regulate whole-organism physiology in terms of morphogenesis, cell proliferation, vesicle trafficking, biomechanics, glucose metabolism and organ size in an isoform-specific manner. Third, Tpms achieve these functional outputs by regulating the interaction of actin filaments with myosin motors and actin-binding proteins in an isoform-specific manner. Last, the assembly of complex structures, such as stress fibers and podosomes involves the collaboration of multiple types of actin filament specified by their Tpm composition. This allows the cell to specify actin filament function in time and space by simply specifying their Tpm isoform composition. PMID:26240174

  5. Single turnovers of fluorescent ATP bound to bipolar myosin filament during actin filaments sliding

    PubMed Central

    Maruta, Takahiro; Kobatake, Takahiro; Okubo, Hiroyuki; Chaen, Shigeru

    2013-01-01

    The nucleotide turnover rates of bipolar myosin thick filament along which actin filament slides were measured by the displacement of prebound fluorescent ATP analog 2′(3′)-O-[N-[2-[(Cy3)]amindo]ethyl] carbamoyl]-adenosine 5′ triphosphate (Cy3-EDA-ATP) upon flash photolysis of caged ATP. The fluorescence of the thick filament where actin filament slides decayed with two exponential processes. The slower rate constant was the same as that without actin filament. Along bipolar myosin thick filament, actin filaments slide at a fast speed towards the central bare zone (forward), but more slowly away from the bare zone (backward). The displacement rate constant of fluorescent ATP from the myosin filament where actin filament moved forward was 5.0 s−1, whereas the rate constant where the actin filament slid backward was 1.7 s−1. These findings suggest that the slow ADP release rate is responsible for the slow backward sliding movement.

  6. A CapG gain-of-function mutant reveals critical structural and functional determinants for actin filament severing

    PubMed Central

    Zhang, Y; Vorobiev, Sergey M; Gibson, Bruce G; Hao, Binghua; Sidhu, Gurjit S; Mishra, Vishnu S; Yarmola, Elena G; Bubb, Michael R; Almo, Steven C; Southwick, Frederick S

    2006-01-01

    CapG is the only member of the gelsolin family unable to sever actin filaments. Changing amino acids 84–91 (severing domain) and 124–137 (WH2-containing segment) simultaneously to the sequences of gelsolin results in a mutant, CapG-sev, capable of severing actin filaments. The gain of severing function does not alter actin filament capping, but is accompanied by a higher affinity for monomeric actin, and the capacity to bind and sequester two actin monomers. Analysis of CapG-sev crystal structure suggests a more loosely folded inactive conformation than gelsolin, with a shorter S1–S2 latch. Calcium binding to S1 opens this latch and S1 becomes separated from a closely interfaced S2–S3 complex by an extended arm consisting of amino acids 118–137. Modeling with F-actin predicts that the length of this WH2-containing arm is critical for severing function, and the addition of a single amino acid (alanine or histidine) eliminates CapG-sev severing activity, confirming this prediction. We conclude that efficient severing utilizes two actin monomer-binding sites, and that the length of the WH2-containing segment is a critical functional determinant for severing. PMID:16977317

  7. Structural Polymorphism of the Actin-Espin System: A Prototypical System of Filaments and Linkers in Stereocilia

    SciTech Connect

    Purdy, Kirstin R.; Wong, Gerard C. L.; Bartles, James R.

    2007-02-02

    We examine the interaction between cytoskeletal F-actin and espin 3A, a prototypical actin bundling protein found in sensory cell microvilli, including ear cell stereocilia. Espin induces twist distortions in F-actin as well as facilitates bundle formation. Mutations in one of the two F-actin binding sites of espin, which have been implicated in deafness, can tune espin-actin interactions and radically transform the system's phase behavior. These results are compared to recent theoretical work on the general phase behavior linker-rod systems.

  8. Structural Polymorphism of the Actin-Espin System: A Prototypical System of Filaments and Linkers in Stereocilia

    NASA Astrophysics Data System (ADS)

    Purdy, Kirstin R.; Bartles, James R.; Wong, Gerard C. L.

    2007-02-01

    We examine the interaction between cytoskeletal F-actin and espin 3A, a prototypical actin bundling protein found in sensory cell microvilli, including ear cell stereocilia. Espin induces twist distortions in F-actin as well as facilitates bundle formation. Mutations in one of the two F-actin binding sites of espin, which have been implicated in deafness, can tune espin-actin interactions and radically transform the system’s phase behavior. These results are compared to recent theoretical work on the general phase behavior linker-rod systems.

  9. Three cotton genes preferentially expressed in flower tissues encode actin-depolymerizing factors which are involved in F-actin dynamics in cells

    PubMed Central

    Li, Xue-Bao; Xu, Dan; Wang, Xiu-Lan; Huang, Geng-Qing; Luo, Juan; Li, Deng-Di; Zhang, Ze-Ting; Xu, Wen-Liang

    2010-01-01

    To investigate whether the high expression levels of actin-depolymerizing factor genes are related to pollen development, three GhADF genes (cDNAs) were isolated and characterized in cotton. Among them, GhADF6 and GhADF8 were preferentially expressed in petals, whereas GhADF7 displayed the highest level of expression in anthers, revealing its anther specificity. The GhADF7 transcripts in anthers reached its peak value at flowering, suggesting that its expression is developmentally-regulated in anthers. The GhADF7 gene including the promoter region was isolated from the cotton genome. To demonstrate the specificity of the GhADF7 promoter, the 5′-flanking region, including the promoter and 5′-untranslated region, was fused with the GUS gene. Histochemical assays demonstrated that the GhADF7:GUS gene was specifically expressed in pollen grains. When pollen grains germinated, very strong GUS staining was detected in the elongating pollen tube. Furthermore, overexpression of GhADF7 gene in Arabidopsis thaliana reduced the viable pollen grains and, consequently, transgenic plants were partially male-sterile. Overexpression of GhADF7 in fission yeast (Schizosaccharomyces pombe) altered the balance of actin depolymerization and polymerization, leading to the defective cytokinesis and multinucleate formation in the cells. Given all the above results together, it is proposed that the GhADF7 gene may play an important role in pollen development and germination. PMID:19861654

  10. Mechanosensitive kinetic preference of actin-binding protein to actin filament

    NASA Astrophysics Data System (ADS)

    Inoue, Yasuhiro; Adachi, Taiji

    2016-04-01

    The kinetic preference of actin-binding proteins to actin filaments is altered by external forces on the filament. Such an altered kinetic preference is largely responsible for remodeling the actin cytoskeletal structure in response to intracellular forces. During remodeling, actin-binding proteins and actin filaments interact under isothermal conditions, because the cells are homeostatic. In such a temperature homeostatic state, we can rigorously and thermodynamically link the chemical potential of actin-binding proteins to stresses on the actin filaments. From this relationship, we can construct a physical model that explains the force-dependent kinetic preference of actin-binding proteins to actin filaments. To confirm the model, we have analyzed the mechanosensitive alternation of the kinetic preference of Arp2/3 and cofilin to actin filaments. We show that this model captures the qualitative responses of these actin-binding proteins to the forces, as observed experimentally. Moreover, our theoretical results demonstrate that, depending on the structural parameters of the binding region, actin-binding proteins can show different kinetic responses even to the same mechanical signal tension, in which the double-helix nature of the actin filament also plays a critical role in a stretch-twist coupling of the filament.

  11. Purification and characterization of caldesmon77: a calmodulin-binding protein that interacts with actin filaments from bovine adrenal medulla.

    PubMed Central

    Sobue, K; Tanaka, T; Kanda, K; Ashino, N; Kakiuchi, S

    1985-01-01

    Caldesmon150, a protein composed of the Mr 150,000/147,000 doublet, alternately binds to calmodulin and actin filaments in a Ca2+-dependent "flip-flop" fashion. In all fibroblast cell lines examined, we also found a Mr 77,000 protein that crossreacts with anti-caldesmon150 antibody by using an immunoprecipitation technique [Owada, M.K., Hakura, A., Iida, K., Yahara, I., Sobue, K. & Kakiuchi, S. (1984) Proc. Natl. Acad. Sci. USA 81, 3133-3137]. In this report, we examine the tissue distribution of caldesmon by the method of immunoblotting, using caldesmon-specific antibody. Both caldesmon150 and caldesmon77 show widespread distribution in the tissues examined. Caldesmon77 is more widely distributed than caldesmon150, and we have purified caldesmon77 from bovine adrenal medulla. Its molecular weight estimated by NaDodSO4/polyacrylamide gel electrophoresis was 77,000, and a tetramer of this polypeptide may constitute the native molecule (Mr, 300,000). Caldesmon77 possesses a number of features in common with caldesmon150, including flip-flop binding to calmodulin and actin filaments depending on the concentration of Ca2+ and crossreactivity with caldesmon150-specific antibody. Analysis of caldesmon77-F actin interaction by sedimentation and electrophoresis revealed that 0.5 mg of caldesmon77 bound to 1 mg of F actin. This indicated that the molar ratio between caldesmon77 (tetramer) and actin monomer was calculated to be 1:12-14. In addition, caldesmon77 regulated the actin-myosin interaction in Ca2+-sensitive actomyosin obtained from adrenal medulla. These results suggest that caldesmon77 might be a ubiquitous actin-linked regulator of nonmuscle contractile processes, including those in adrenal medulla. Images PMID:2991905

  12. Structural Basis of Actin Filament Nucleation by Tandem W Domains

    PubMed Central

    Chen, Xiaorui; Ni, Fengyun; Tian, Xia; Kondrashkina, Elena; Wang, Qinghua; Ma, Jianpeng

    2013-01-01

    SUMMARY Spontaneous nucleation of actin is very inefficient in cells. To overcome this barrier, cells have evolved a set of actin filament nucleators to promote rapid nucleation and polymerization in response to specific stimuli. However, the molecular mechanism of actin nucleation remains poorly understood. This is hindered largely by the fact that actin nucleus, once formed, rapidly polymerizes into filament, thus making it impossible to capture stable multisubunit actin nucleus. Here, we report an effective double-mutant strategy to stabilize actin nucleus by preventing further polymerization. Employing this strategy, we solved the crystal structure of AMPPNP-actin in complex with the first two tandem W domains of Cordon-bleu (Cobl), a potent actin filament nucleator. Further sequence comparison and functional studies suggest that the nucleation mechanism of Cobl is probably shared by the p53 cofactor JMY, but not Spire. Moreover, the double-mutant strategy opens the way for atomic mechanistic study of actin nucleation and polymerization. PMID:23727244

  13. Identification of sucrose synthase as an actin-binding protein

    NASA Technical Reports Server (NTRS)

    Winter, H.; Huber, J. L.; Huber, S. C.; Davies, E. (Principal Investigator)

    1998-01-01

    Several lines of evidence indicate that sucrose synthase (SuSy) binds both G- and F-actin: (i) presence of SuSy in the Triton X-100-insoluble fraction of microsomal membranes (i.e. crude cytoskeleton fraction); (ii) co-immunoprecipitation of actin with anti-SuSy monoclonal antibodies; (iii) association of SuSy with in situ phalloidin-stabilized F-actin filaments; and (iv) direct binding to F-actin, polymerized in vitro. Aldolase, well known to interact with F-actin, interfered with binding of SuSy, suggesting that a common or overlapping binding site may be involved. We postulate that some of the soluble SuSy in the cytosol may be associated with the actin cytoskeleton in vivo.

  14. Formin-mediated actin polymerization at endothelial junctions is required for vessel lumen formation and stabilization.

    PubMed

    Phng, Li-Kun; Gebala, Véronique; Bentley, Katie; Philippides, Andrew; Wacker, Andrin; Mathivet, Thomas; Sauteur, Loïc; Stanchi, Fabio; Belting, Heinz-Georg; Affolter, Markus; Gerhardt, Holger

    2015-01-12

    During blood vessel formation, endothelial cells (ECs) establish cell-cell junctions and rearrange to form multicellular tubes. Here, we show that during lumen formation, the actin nucleator and elongation factor, formin-like 3 (fmnl3), localizes to EC junctions, where filamentous actin (F-actin) cables assemble. Fluorescent actin reporters and fluorescence recovery after photobleaching experiments in zebrafish embryos identified a pool of dynamic F-actin with high turnover at EC junctions in vessels. Knockdown of fmnl3 expression, chemical inhibition of formin function, and expression of dominant-negative fmnl3 revealed that formin activity maintains a stable F-actin content at EC junctions by continual polymerization of F-actin cables. Reduced actin polymerization leads to destabilized endothelial junctions and consequently to failure in blood vessel lumenization and lumen instability. Our findings highlight the importance of formin activity in blood vessel morphogenesis. PMID:25584798

  15. Geometrical and Mechanical Properties Control Actin Filament Organization

    PubMed Central

    Ennomani, Hajer; Théry, Manuel; Nedelec, Francois; Blanchoin, Laurent

    2015-01-01

    The different actin structures governing eukaryotic cell shape and movement are not only determined by the properties of the actin filaments and associated proteins, but also by geometrical constraints. We recently demonstrated that limiting nucleation to specific regions was sufficient to obtain actin networks with different organization. To further investigate how spatially constrained actin nucleation determines the emergent actin organization, we performed detailed simulations of the actin filament system using Cytosim. We first calibrated the steric interaction between filaments, by matching, in simulations and experiments, the bundled actin organization observed with a rectangular bar of nucleating factor. We then studied the overall organization of actin filaments generated by more complex pattern geometries used experimentally. We found that the fraction of parallel versus antiparallel bundles is determined by the mechanical properties of actin filament or bundles and the efficiency of nucleation. Thus nucleation geometry, actin filaments local interactions, bundle rigidity, and nucleation efficiency are the key parameters controlling the emergent actin architecture. We finally simulated more complex nucleation patterns and performed the corresponding experiments to confirm the predictive capabilities of the model. PMID:26016478

  16. Bending Flexibility of Actin Filaments during Motor-Induced Sliding

    PubMed Central

    Vikhorev, Petr G.; Vikhoreva, Natalia N.; Månsson, Alf

    2008-01-01

    Muscle contraction and other forms of cell motility occur as a result of cyclic interactions between myosin molecules and actin filaments. Force generation is generally attributed to ATP-driven structural changes in myosin, whereas a passive role is ascribed to actin. However, some results challenge this view, predicting structural changes in actin during motor activity, e.g., when the actin filaments slide on a myosin-coated surface in vitro. Here, we analyzed statistical properties of the sliding filament paths, allowing us to detect changes of this type. It is interesting to note that evidence for substantial structural changes that led to increased bending flexibility of the filaments was found in phalloidin-stabilized, but not in phalloidin-free, actin filaments. The results are in accordance with the idea that a high-flexibility structural state of actin is a prerequisite for force production, but not the idea that a low-to-high flexibility transition of the actin filament should be an important component of the force-generating step per se. Finally, our data challenge the general view that phalloidin-stabilized filaments behave as native actin filaments in their interaction with myosin. This has important implications, since phalloidin stabilization is a routine procedure in most studies of actomyosin function. PMID:18835897

  17. Visualization of actin filaments and monomers in somatic cell nuclei.

    PubMed

    Belin, Brittany J; Cimini, Beth A; Blackburn, Elizabeth H; Mullins, R Dyche

    2013-04-01

    In addition to its long-studied presence in the cytoplasm, actin is also found in the nuclei of eukaryotic cells. The function and form (monomer, filament, or noncanonical oligomer) of nuclear actin are hotly debated, and its localization and dynamics are largely unknown. To determine the distribution of nuclear actin in live somatic cells and evaluate its potential functions, we constructed and validated fluorescent nuclear actin probes. Monomeric actin probes concentrate in nuclear speckles, suggesting an interaction of monomers with RNA-processing factors. Filamentous actin probes recognize discrete structures with submicron lengths that are excluded from chromatin-rich regions. In time-lapse movies, these actin filament structures exhibit one of two types of mobility: 1) diffusive, with an average diffusion coefficient of 0.06-0.08 μm(2)/s, or (2) subdiffusive, with a mobility coefficient of 0.015 μm(2)/s. Individual filament trajectories exhibit features of particles moving within a viscoelastic mesh. The small size of nuclear actin filaments is inconsistent with a role in micron-scale intranuclear transport, and their localization suggests that they do not participate directly in chromatin-based processes. Our results instead suggest that actin filaments form part of a large, viscoelastic structure in the nucleoplasm and may act as scaffolds that help organize nuclear contents. PMID:23447706

  18. Myosin motors fragment and compact membrane-bound actin filaments

    PubMed Central

    Vogel, Sven K; Petrasek, Zdenek; Heinemann, Fabian; Schwille, Petra

    2013-01-01

    Cell cortex remodeling during cell division is a result of myofilament-driven contractility of the cortical membrane-bound actin meshwork. Little is known about the interaction between individual myofilaments and membrane-bound actin filaments. Here we reconstituted a minimal actin cortex to directly visualize the action of individual myofilaments on membrane-bound actin filaments using TIRF microscopy. We show that synthetic myofilaments fragment and compact membrane-bound actin while processively moving along actin filaments. We propose a mechanism by which tension builds up between the ends of myofilaments, resulting in compressive stress exerted to single actin filaments, causing their buckling and breakage. Modeling of this mechanism revealed that sufficient force (∼20 pN) can be generated by single myofilaments to buckle and break actin filaments. This mechanism of filament fragmentation and compaction may contribute to actin turnover and cortex reorganization during cytokinesis. DOI: http://dx.doi.org/10.7554/eLife.00116.001 PMID:23326639

  19. The yin-yang of dendrite morphology: unity of actin and microtubules.

    PubMed

    Georges, Penelope C; Hadzimichalis, Norell M; Sweet, Eric S; Firestein, Bonnie L

    2008-12-01

    Actin and microtubules (MT) are targets of numerous molecular pathways that control neurite outgrowth. To generate a neuronal protrusion, coordinated structural changes of the actin and MT cytoskeletons must occur. Neurite formation occurs when actin filaments (F-actin) are destabilized, filopodia are extended, and MTs invade filopodia. This process results in either axon or dendrite formation. Axonal branching involves interplay between F-actin and MTs, with F-actin and MTs influencing polymerization, stabilization, and maintenance of each other. Our knowledge of the mechanisms regulating development of the axon, however, far eclipses our understanding of dendritic development and branching. The two classes of neurites, while fundamentally similar in their ability to elongate and branch, dramatically differ in growth rate, orientation of polarized MT bundles, and mechanisms that initiate branching. In this review, we focus on how F-actin, MTs, and proteins that link the two cytoskeletons coordinate to specifically initiate dendritic events. PMID:18987787

  20. Bundling actin filaments from membranes: some novel players

    PubMed Central

    Thomas, Clément

    2012-01-01

    Progress in live-cell imaging of the cytoskeleton has significantly extended our knowledge about the organization and dynamics of actin filaments near the plasma membrane of plant cells. Noticeably, two populations of filamentous structures can be distinguished. On the one hand, fine actin filaments which exhibit an extremely dynamic behavior basically characterized by fast polymerization and prolific severing events, a process referred to as actin stochastic dynamics. On the other hand, thick actin bundles which are composed of several filaments and which are comparatively more stable although they constantly remodel as well. There is evidence that the actin cytoskeleton plays critical roles in trafficking and signaling at both the cell cortex and organelle periphery but the exact contribution of actin bundles remains unclear. A common view is that actin bundles provide the long-distance tracks used by myosin motors to deliver their cargo to growing regions and accordingly play a particularly important role in cell polarization. However, several studies support that actin bundles are more than simple passive highways and display multiple and dynamic roles in the regulation of many processes, such as cell elongation, polar auxin transport, stomatal and chloroplast movement, and defense against pathogens. The list of identified plant actin-bundling proteins is ever expanding, supporting that plant cells shape structurally and functionally different actin bundles. Here I review the most recently characterized actin-bundling proteins, with a particular focus on those potentially relevant to membrane trafficking and/or signaling. PMID:22936939

  1. Force Generation, Polymerization Dynamics and Nucleation of Actin Filaments

    NASA Astrophysics Data System (ADS)

    Wang, Ruizhe

    We study force generation and actin filament dynamics using stochastic and deterministic methods. First, we treat force generation of bundled actin filaments by polymerization via molecular-level stochastic simulations. In the widely-used Brownian Ratchet model, actin filaments grow freely whenever the tip-obstacle gap created by thermal fluctuation exceeds the monomer size. We name this model the Perfect Brownian Ratchet (PBR) model. In the PBR model, actin monomer diffusion is treated implicitly. We perform a series of simulations based on the PBR, in which obstacle motion is treated explicitly; in most previous studies, obstacle motion has been treated implicitly. We find that the cooperativity of filaments is generally weak in the PBR model, meaning that more filaments would grow more slowly given the same force per filament. Closed-form formulas are also developed, which match the simulation results. These portable and accurate formulas provide guidance for experiments and upper and lower bounds for theoretical analyses. We also studied a variation of the PBR, called the Diffusing Brownian Ratchet (DBR) model, in which both actin monomer and obstacle diffusion are treated explicitly. We find that the growth rate of multiple filaments is even lower, compared with that in PBR. This finding challenges the widely-accepted PBR assumption and suggests that pushing the study of actin dynamics down to the sub-nanometer level yields new insights. We subsequently used a rate equation approach to model the effect of local depletion of actin monomers on the nucleation of actin filaments on biomimetic beads, and how the effect is regulated by capping protein (CP). We find that near the bead surface, a higher CP concentration increases local actin concentration, which leads to an enhanced activities of actin filaments' nucleation. Our model analysis matches the experimental results and lends support to an important but undervalued hypothesis proposed by Carlier and

  2. Growth-arrest-specific 7C protein inhibits tumor metastasis via the N-WASP/FAK/F-actin and hnRNP U/β-TrCP/β-catenin pathways in lung cancer

    PubMed Central

    Chang, Jer-Wei; Mao, Jiou-Shan; Tsai, Charng-Dar; Wu, Pei-Chen; Lin, Cuei-Jyuan; Lu, Yi-Lin; Liao, Sheng-You; Cheng, Hung-Chi; Hsu, Han-Shui

    2015-01-01

    Growth-arrest-specific 7 (GAS7) belongs to a group of adaptor proteins that coordinate the actin cytoskeleton. Among human GAS7 isoforms, only GAS7C possesses a Src homology 3 domain. We report here that GAS7C acts as a migration suppressor and can serve as a prognostic biomarker in lung cancer. GAS7C overexpression reduces lung cancer migration, whereas GAS7C knockdown enhances cancer cell migration. Importantly, ectopically overexpressed GAS7C binds tightly with N-WASP thus inactivates the fibronectin/integrin/FAK pathway, which in turn leads to the suppression of F-actin dynamics. In addition, overexpression of GAS7C sequesters hnRNP U and thus decreases the level of β-catenin protein via the β-TrCP ubiquitin-degradation pathway. The anti-metastatic effect of GAS7C overexpression was also confirmed using lung cancer xenografts. Our clinical data indicated that 23.6% (25/106) of lung cancer patients showed low expression of GAS7C mRNA which correlated with a poorer overall survival. In addition, low GAS7C mRNA expression was detected in 60.0% of metastatic lung cancer patients, indicating an association between low GAS7C expression and cancer progression. A significant inverse correlation between mRNA expression and promoter hypermethylation was also found, which suggests that the low level of GAS7C expression was partly due to promoter hypermethylation. Our results provide novel evidence that low GAS7C correlates with poor prognosis and promotes metastasis in lung cancer. Low GAS7C increases cancer cell motility by promoting N-WASP/FAK/F-actin cytoskeleton dynamics. It also enhances β-catenin stability via hnRNP U/β-TrCP complex formation. Therefore, GAS7C acts as a metastasis suppressor in lung cancer. PMID:26506240

  3. On the properties of a bundle of flexible actin filaments in an optical trap

    NASA Astrophysics Data System (ADS)

    Perilli, Alessia; Pierleoni, Carlo; Ciccotti, Giovanni; Ryckaert, Jean-Paul

    2016-06-01

    We establish the statistical mechanics framework for a bundle of Nf living and uncrosslinked actin filaments in a supercritical solution of free monomers pressing against a mobile wall. The filaments are anchored normally to a fixed planar surface at one of their ends and, because of their limited flexibility, they grow almost parallel to each other. Their growing ends hit a moving obstacle, depicted as a second planar wall, parallel to the previous one and subjected to a harmonic compressive force. The force constant is denoted as the trap strength while the distance between the two walls as the trap length to make contact with the experimental optical trap apparatus. For an ideal solution of reactive filaments and free monomers at fixed free monomer chemical potential μ1, we obtain the general expression for the grand potential from which we derive averages and distributions of relevant physical quantities, namely, the obstacle position, the bundle polymerization force, and the number of filaments in direct contact with the wall. The grafted living filaments are modeled as discrete Wormlike chains, with F-actin persistence length ℓp, subject to discrete contour length variations ±d (the monomer size) to model single monomer (de)polymerization steps. Rigid filaments (ℓp = ∞), either isolated or in bundles, all provide average values of the stalling force in agreement with Hill's predictions Fs H = N f k B T ln ( ρ 1 / ρ 1 c) / d , independent of the average trap length. Here ρ1 is the density of free monomers in the solution and ρ1c its critical value at which the filament does not grow nor shrink in the absence of external forces. Flexible filaments (ℓp < ∞) instead, for values of the trap strength suitable to prevent their lateral escape, provide an average bundle force and an average trap length slightly larger than the corresponding rigid cases (few percents). Still the stalling force remains nearly independent on the average trap length, but

  4. Single Filaments to Reveal the Multiple Flavors of Actin.

    PubMed

    Jégou, Antoine; Romet-Lemonne, Guillaume

    2016-05-24

    A number of key cell processes rely on specific assemblies of actin filaments, which are all constructed from nearly identical building blocks: the abundant and extremely conserved actin protein. A central question in the field is to understand how different filament networks can coexist and be regulated. Discoveries in science are often related to technical advances. Here, we focus on the ongoing single filament revolution and discuss how these techniques have greatly contributed to our understanding of actin assembly. In particular, we highlight how they have refined our understanding of the many protein-based regulatory mechanisms that modulate actin assembly. It is now becoming apparent that other factors give filaments a specific identity that determines which proteins will bind to them. We argue that single filament techniques will play an essential role in the coming years as we try to understand the many ways actin filaments can take different flavors and unveil how these flavors modulate the action of regulatory proteins. We discuss different factors known to make actin filaments distinguishable by regulatory proteins and speculate on their possible consequences. PMID:27224479

  5. Emergence of Large-Scale Cell Morphology and Movement from Local Actin Filament Growth Dynamics

    PubMed Central

    Lacayo, Catherine I; Pincus, Zachary; VanDuijn, Martijn M; Wilson, Cyrus A; Fletcher, Daniel A; Gertler, Frank B; Mogilner, Alex; Theriot, Julie A

    2007-01-01

    Variations in cell migration and morphology are consequences of changes in underlying cytoskeletal organization and dynamics. We investigated how these large-scale cellular events emerge as direct consequences of small-scale cytoskeletal molecular activities. Because the properties of the actin cytoskeleton can be modulated by actin-remodeling proteins, we quantitatively examined how one such family of proteins, enabled/vasodilator-stimulated phosphoprotein (Ena/VASP), affects the migration and morphology of epithelial fish keratocytes. Keratocytes generally migrate persistently while exhibiting a characteristic smooth-edged “canoe” shape, but may also exhibit less regular morphologies and less persistent movement. When we observed that the smooth-edged canoe keratocyte morphology correlated with enrichment of Ena/VASP at the leading edge, we mislocalized and overexpressed Ena/VASP proteins and found that this led to changes in the morphology and movement persistence of cells within a population. Thus, local changes in actin filament dynamics due to Ena/VASP activity directly caused changes in cell morphology, which is coupled to the motile behavior of keratocytes. We also characterized the range of natural cell-to-cell variation within a population by using measurable morphological and behavioral features—cell shape, leading-edge shape, filamentous actin (F-actin) distribution, cell speed, and directional persistence—that we have found to correlate with each other to describe a spectrum of coordinated phenotypes based on Ena/VASP enrichment at the leading edge. This spectrum stretched from smooth-edged, canoe-shaped keratocytes—which had VASP highly enriched at their leading edges and migrated fast with straight trajectories—to more irregular, rounder cells migrating slower with less directional persistence and low levels of VASP at their leading edges. We developed a mathematical model that accounts for these coordinated cell-shape and behavior

  6. VASP Governs Actin Dynamics by Modulating Filament Anchoring

    PubMed Central

    Trichet, Léa; Campàs, Otger; Sykes, Cécile; Plastino, Julie

    2007-01-01

    Actin filament dynamics at the cell membrane are important for cell-matrix and cell-cell adhesions and the protrusion of the leading edge. Since actin filaments must be connected to the cell membrane to exert forces but must also detach from the membrane to allow it to move and evolve, the balance between actin filament tethering and detachment at adhesion sites and the leading edge is key for cell shape changes and motility. How this fine tuning is performed in cells remains an open question, but possible candidates are the Drosophila enabled/vasodilator-stimulated phosphoprotein (Ena/VASP) family of proteins, which localize to dynamic actin structures in the cell. Here we study VASP-mediated actin-related proteins 2/3 (Arp2/3) complex-dependent actin dynamics using a substrate that mimics the fluid properties of the cell membrane: an oil-water interface. We show evidence that polymerization activators undergo diffusion and convection on the fluid surface, due to continual attachment and detachment to the actin network. These dynamics are enhanced in the presence of VASP, and we observe cycles of catastrophic detachment of the actin network from the surface, resulting in stop-and-go motion. These results point to a role for VASP in the modulation of filament anchoring, with implications for actin dynamics at cell adhesions and at the leading edge of the cell. PMID:17098798

  7. Cofilin-2 controls actin filament length in muscle sarcomeres

    PubMed Central

    Kremneva, Elena; Makkonen, Maarit H.; Skwarek-Maruszewska, Aneta; Gateva, Gergana; Michelot, Alphee; Dominguez, Roberto; Lappalainen, Pekka

    2014-01-01

    SUMMARY ADF/cofilins drive cytoskeletal dynamics by promoting the disassembly of ‘aged’ ADP-actin filaments. Mammals express several ADF/cofilin isoforms, but their specific biochemical activities and cellular functions have not been studied in detail. Here we demonstrate that the muscle-specific isoform cofilin-2 promotes actin filament disassembly in sarcomeres to control the precise length of thin filaments in the contractile apparatus. In contrast to other isoforms, cofilin-2 efficiently binds and disassembles both ADP- and ATP/ADP-Pi-actin filaments. We mapped surface-exposed cofilin-2-specific residues required for ATP-actin binding and propose that these residues function as an ‘actin nucleotide-state sensor’ among ADF/cofilins. The results suggest that cofilin-2 evolved specific biochemical and cellular properties allowing it to control actin dynamics in sarcomeres, where filament pointed ends may contain a mixture of ADP- and ATP/ADP-Pi-actin subunits. Our findings also offer a rationale for why cofilin-2 mutations in humans lead to myopathies. PMID:25373779

  8. Mechanical Heterogeneity Favors Fragmentation of Strained Actin Filaments

    PubMed Central

    De La Cruz, Enrique M.; Martiel, Jean-Louis; Blanchoin, Laurent

    2015-01-01

    We present a general model of actin filament deformation and fragmentation in response to compressive forces. The elastic free energy density along filaments is determined by their shape and mechanical properties, which were modeled in terms of bending, twisting, and twist-bend coupling elasticities. The elastic energy stored in filament deformation (i.e., strain) tilts the fragmentation-annealing reaction free-energy profile to favor fragmentation. The energy gradient introduces a local shear force that accelerates filament intersubunit bond rupture. The severing protein, cofilin, renders filaments more compliant in bending and twisting. As a result, filaments that are partially decorated with cofilin are mechanically heterogeneous (i.e., nonuniform) and display asymmetric shape deformations and energy profiles distinct from mechanically homogenous (i.e., uniform), bare actin, or saturated cofilactin filaments. The local buckling strain depends on the relative size of the compliant segment as well as the bending and twisting rigidities of flanking regions. Filaments with a single bare/cofilin-decorated boundary localize energy and force adjacent to the boundary, within the compliant cofilactin segment. Filaments with small cofilin clusters were predicted to fragment within the compliant cofilactin rather than at boundaries. Neglecting contributions from twist-bend coupling elasticity underestimates the energy density and gradients along filaments, and thus the net effects of filament strain to fragmentation. Spatial confinement causes compliant cofilactin segments and filaments to adopt higher deformation modes and store more elastic energy, thereby promoting fragmentation. The theory and simulations presented here establish a quantitative relationship between actin filament fragmentation thermodynamics and elasticity, and reveal how local discontinuities in filament mechanical properties introduced by regulatory proteins can modulate both the severing efficiency

  9. Demonstration of prominent actin filaments in the root columella

    NASA Technical Reports Server (NTRS)

    Collings, D. A.; Zsuppan, G.; Allen, N. S.; Blancaflor, E. B.; Brown, C. S. (Principal Investigator)

    2001-01-01

    The distribution of actin filaments within the gravity-sensing columella cells of plant roots remains poorly understood, with studies over numerous years providing inconsistent descriptions of actin organization in these cells. This uncertainty in actin organization, and thus in actin's role in graviperception and gravisignaling, has led us to investigate actin arrangements in the columella cells of Zea mays L., Medicago truncatula Gaertn., Linum usitatissiilium L. and Nicotianla benthamiana Domin. Actin organization was examined using a combination of optimized immunofluorescence techniques, and an improved fluorochrome-conjugated phalloidin labeling method reliant on 3-maleimidobenzoyl-N-hydroxy-succinimide ester (MBS) cross-linking combined with glycerol permeabilization. Confocal microscopy of root sections labeled with anti-actin antibodies revealed patterns suggestive of actin throughout the columella region. These patterns included short and fragmented actin bundles, fluorescent rings around amyloplasts and intense fluorescence originating from the nucleus. Additionally, confocal microscopy of MBS-stabilized and Alexa Fluor-phalloidin-labeled root sections revealed a previously undetected state of actin organization in the columella. Discrete actin structures surrounded the amyloplasts and prominent actin cables radiated from the nuclear surface toward the cell periphery. Furthermore, the cortex of the columella cells contained fine actin bundles (or single filaments) that had a predominant transverse orientation. We also used confocal microscopy of plant roots expressing endoplasmic reticulum (ER)-targeted green fluorescent protein to demonstrate rapid ER movements within the columella cells, suggesting that the imaged actin network is functional. The successful identification of discrete actin structures in the root columella cells forms the perception and signaling.

  10. Actin Interacting Protein1 and Actin Depolymerizing Factor Drive Rapid Actin Dynamics in Physcomitrella patens[W

    PubMed Central

    Augustine, Robert C.; Pattavina, Kelli A.; Tüzel, Erkan; Vidali, Luis; Bezanilla, Magdalena

    2011-01-01

    The remodeling of actin networks is required for a variety of cellular processes in eukaryotes. In plants, several actin binding proteins have been implicated in remodeling cortical actin filaments (F-actin). However, the extent to which these proteins support F-actin dynamics in planta has not been tested. Using reverse genetics, complementation analyses, and cell biological approaches, we assessed the in vivo function of two actin turnover proteins: actin interacting protein1 (AIP1) and actin depolymerizing factor (ADF). We report that AIP1 is a single-copy gene in the moss Physcomitrella patens. AIP1 knockout plants are viable but have reduced expansion of tip-growing cells. AIP1 is diffusely cytosolic and functions in a common genetic pathway with ADF to promote tip growth. Specifically, ADF can partially compensate for loss of AIP1, and AIP1 requires ADF for function. Consistent with a role in actin remodeling, AIP1 knockout lines accumulate F-actin bundles, have fewer dynamic ends, and have reduced severing frequency. Importantly, we demonstrate that AIP1 promotes and ADF is essential for cortical F-actin dynamics. PMID:22003077

  11. Structure of a Longitudinal Actin Dimer Assembled by Tandem W Domains: Implications for Actin Filament Nucleation

    SciTech Connect

    Rebowski, Grzegorz; Namgoong, Suk; Boczkowska, Malgorzata; Leavis, Paul C.; Navaza, Jorge; Dominguez, Roberto

    2013-11-20

    Actin filament nucleators initiate polymerization in cells in a regulated manner. A common architecture among these molecules consists of tandem WASP homology 2 domains (W domains) that recruit three to four actin subunits to form a polymerization nucleus. We describe a low-resolution crystal structure of an actin dimer assembled by tandem W domains, where the first W domain is cross-linked to Cys374 of the actin subunit bound to it, whereas the last W domain is followed by the C-terminal pointed end-capping helix of thymosin {beta}4. While the arrangement of actin subunits in the dimer resembles that of a long-pitch helix of the actin filament, important differences are observed. These differences result from steric hindrance of the W domain with intersubunit contacts in the actin filament. We also determined the structure of the first W domain of Vibrio parahaemolyticus VopL cross-linked to actin Cys374 and show it to be nearly identical with non-cross-linked W-Actin structures. This result validates the use of cross-linking as a tool for the study of actin nucleation complexes, whose natural tendency to polymerize interferes with most structural methods. Combined with a biochemical analysis of nucleation, the structures may explain why nucleators based on tandem W domains with short inter-W linkers have relatively weak activity, cannot stay bound to filaments after nucleation, and are unlikely to influence filament elongation. The findings may also explain why nucleation-promoting factors of the Arp2/3 complex, which are related to tandem-W-domain nucleators, are ejected from branch junctions after nucleation. We finally show that the simple addition of the C-terminal pointed end-capping helix of thymosin {beta}4 to tandem W domains can change their activity from actin filament nucleation to monomer sequestration.

  12. Actin filaments in normal dermis and during wound healing.

    PubMed Central

    Doillon, C. J.; Hembry, R. M.; Ehrlich, H. P.; Burke, J. F.

    1987-01-01

    During wound healing, it has been suggested, modified fibroblasts rich in actin filaments are responsible for wound contraction. With the use of specific fluorescent probe (NBD-phallacidin), the distribution of actin filaments are compared in normal dermis and in several wound contraction models, including open and burn wounds and full and thin-thickness skin autografts. Fibroblasts of normal dermis are slightly stained with NBD-phallacidin. Fibroblasts with actin filaments are increased in autografts, particularly at Days 15 and 21 after grafting, and are prominent in open and burn wounds. The wound contraction rate is not directly related to the presence of actin-staining fibroblasts. After stabilization of the contraction of open or burn wounds, fibroblasts rich in actin filaments remain. The superficial layer of full-thickness skin graft contains a similar actin distribution without concomitant contraction. It is concluded that the distribution of actin-rich fibroblasts corresponds morphologically to previous areas of necrosis or injury. Images Figure 2 Figure 3 PMID:3544851

  13. The interaction of vinculin with actin.

    PubMed

    Golji, Javad; Mofrad, Mohammad R K

    2013-04-01

    Vinculin can interact with F-actin both in recruitment of actin filaments to the growing focal adhesions and also in capping of actin filaments to regulate actin dynamics. Using molecular dynamics, both interactions are simulated using different vinculin conformations. Vinculin is simulated either with only its vinculin tail domain (Vt), with all residues in its closed conformation, with all residues in an open I conformation, and with all residues in an open II conformation. The open I conformation results from movement of domain 1 away from Vt; the open II conformation results from complete dissociation of Vt from the vinculin head domains. Simulation of vinculin binding along the actin filament showed that Vt alone can bind along the actin filaments, that vinculin in its closed conformation cannot bind along the actin filaments, and that vinculin in its open I conformation can bind along the actin filaments. The simulations confirm that movement of domain 1 away from Vt in formation of vinculin 1 is sufficient for allowing Vt to bind along the actin filament. Simulation of Vt capping actin filaments probe six possible bound structures and suggest that vinculin would cap actin filaments by interacting with both S1 and S3 of the barbed-end, using the surface of Vt normally occluded by D4 and nearby vinculin head domain residues. Simulation of D4 separation from Vt after D1 separation formed the open II conformation. Binding of open II vinculin to the barbed-end suggests this conformation allows for vinculin capping. Three binding sites on F-actin are suggested as regions that could link to vinculin. Vinculin is suggested to function as a variable switch at the focal adhesions. The conformation of vinculin and the precise F-actin binding conformation is dependent on the level of mechanical load on the focal adhesion. PMID:23633939

  14. Solid friction between soft filaments.

    PubMed

    Ward, Andrew; Hilitski, Feodor; Schwenger, Walter; Welch, David; Lau, A W C; Vitelli, Vincenzo; Mahadevan, L; Dogic, Zvonimir

    2015-06-01

    Any macroscopic deformation of a filamentous bundle is necessarily accompanied by local sliding and/or stretching of the constituent filaments. Yet the nature of the sliding friction between two aligned filaments interacting through multiple contacts remains largely unexplored. Here, by directly measuring the sliding forces between two bundled F-actin filaments, we show that these frictional forces are unexpectedly large, scale logarithmically with sliding velocity as in solid-like friction, and exhibit complex dependence on the filaments' overlap length. We also show that a reduction of the frictional force by orders of magnitude, associated with a transition from solid-like friction to Stokes's drag, can be induced by coating F-actin with polymeric brushes. Furthermore, we observe similar transitions in filamentous microtubules and bacterial flagella. Our findings demonstrate how altering a filament's elasticity, structure and interactions can be used to engineer interfilament friction and thus tune the properties of fibrous composite materials. PMID:25730393

  15. A synthetic mechano-growth factor E peptide promotes rat tenocyte migration by lessening cell stiffness and increasing F-actin formation via the FAK-ERK1/2 signaling pathway

    SciTech Connect

    Zhang, Bingyu; Luo, Qing; Mao, Xinjian; Xu, Baiyao; Yang, Li; Ju, Yang; Song, Guanbin

    2014-03-10

    Tendon injuries are common in sports and are frequent reasons for orthopedic consultations. The management of damaged tendons is one of the most challenging problems in orthopedics. Mechano-growth factor (MGF), a recently discovered growth repair factor, plays positive roles in tissue repair through the improvement of cell proliferation and migration and the protection of cells against injury-induced apoptosis. However, it remains unclear whether MGF has the potential to accelerate tendon repair. We used a scratch wound assay in this study to demonstrate that MGF-C25E (a synthetic mechano-growth factor E peptide) promotes the migration of rat tenocytes and that this promotion is accompanied by an elevation in the expression of the following signaling molecules: focal adhesion kinase (FAK) and extracellular signal regulated kinase1/2 (ERK1/2). Inhibitors of the FAK and ERK1/2 pathways inhibited the MGF-C25E-induced tenocyte migration, indicating that MGF-C25E promotes tenocyte migration through the FAK-ERK1/2 signaling pathway. The analysis of the mechanical properties showed that the Young's modulus of tenocytes was decreased through treatment of MGF-C25E, and an obvious formation of pseudopodia and F-actin was observed in MGF-C25E-treated tenocytes. The inhibition of the FAK or ERK1/2 signals restored the decrease in Young's modulus and inhibited the formation of pseudopodia and F-actin. Overall, our study demonstrated that MGF-C25E promotes rat tenocyte migration by lessening cell stiffness and increasing pseudopodia formation via the FAK-ERK1/2 signaling pathway. - Highlights: • Mechano-growth factor E peptide (MGF-C25E) promotes migration of rat tenocytes. • MGF-C25E activates the FAK-ERK1/2 pathway in rat tenocytes. • MGF-C25E induces the actin remodeling and the formation of pseudopodia, and decreases the stiffness in rat tenocytes. • MGF-C25E promotes tenocyte migration via altering stiffness and forming pseudopodia by the activation of the FAK-ERK1

  16. Single-headed binding of a spin-labeled-HMM-ADP complex to F-actin. Saturation transfer electron paramagnetic resonance and sedimentation studies.

    PubMed Central

    Manuck, B A; Seidel, J C; Gergely, J

    1986-01-01

    The interaction of actin and spin-labeled heavy meromyosin (MSL-HMM) was studied in the presence and absence of adenosine diphosphate or 5'-adenyl-yl-imidodiphosphate (AMPPNP) to determine the contributions of single and double-headed binding. The extent of single-headed binding to actin was deduced from a comparison of the fraction of immobilized heads (fi) with the fraction of bound molecules (fs) determined by saturation-transfer EPR (ST-EPR) and sedimentation, respectively. The ST-EPR measurements depend on the reduced motion of the spin label rigidly bound to the HMM heads upon the interaction of the latter with actin. During titration of acto-MSL-HMM with nucleotide, we measured changes in fi and fs brought about by dissociation of MSL-HMM from actin. On titration with ADP, fs changed very little, remaining above 0.8, while fi decreased to approximately 0.5 at 10mM ADP, a result consistent with extensive single-headed binding of MSL-HMM to actin. On titration with AMPPNP, single-headed binding was not detected; viz., fi and fs decreased in parallel. It was not necessary to postulate a nucleotide induced state of the bound heads, differing in motional properties from that of rigor heads, to account for the results. PMID:3017466

  17. Filament assembly by Spire: key residues and concerted actin binding.

    PubMed

    Rasson, Amy S; Bois, Justin S; Pham, Duy Stephen L; Yoo, Haneul; Quinlan, Margot E

    2015-02-27

    The most recently identified class of actin nucleators, WASp homology domain 2 (WH2) nucleators, use tandem repeats of monomeric actin-binding WH2 domains to facilitate actin nucleation. WH2 domains are involved in a wide variety of actin regulatory activities. Structurally, they are expected to clash with interprotomer contacts within the actin filament. Thus, the discovery of their role in nucleation was surprising. Here we use Drosophila Spire (Spir) as a model system to investigate both how tandem WH2 domains can nucleate actin and what differentiates nucleating WH2-containing proteins from their non-nucleating counterparts. We found that the third WH2 domain in Spir (Spir-C or SC) plays a unique role. In the context of a short nucleation construct (containing only two WH2 domains), placement of SC in the N-terminal position was required for the most potent nucleation. We found that the native organization of the WH2 domains with respect to each other is necessary for binding to actin with positive cooperativity. We identified two residues within SC that are critical for its activity. Using this information, we were able to convert a weak synthetic nucleator into one with activity equal to a native Spir construct. Lastly, we found evidence that SC binds actin filaments, in addition to monomers. PMID:25234086

  18. Filament Assembly by Spire: Key Residues and Concerted Actin Binding

    PubMed Central

    Rasson, Amy S.; Bois, Justin S.; Pham, Duy Stephen L.; Yoo, Haneul; Quinlan, Margot E.

    2014-01-01

    The most recently identified class of actin nucleators, WASp Homology domain 2 (WH2) – nucleators, use tandem repeats of monomeric actin-binding WH2 domains to facilitate actin nucleation. WH2 domains are involved in a wide variety of actin regulatory activities. Structurally, they are expected to clash with interprotomer contacts within the actin filament. Thus, the discovery of their role in nucleation was surprising. Here we use Drosophila Spire (Spir) as a model system to investigate both how tandem WH2 domains can nucleate actin and what differentiates nucleating WH2-containing proteins from their non-nucleating counterparts. We found that the third WH2 domain in Spir (Spir-C or Sc), plays a unique role. In the context of a short nucleation construct (containing only two WH2 domains), placement of Sc in the N-terminal position was required for the most potent nucleation. We found that the native organization of the WH2 domains with respect to each other is necessary for binding to actin with positive cooperativity. We identified two residues within Sc that are critical for its activity. Using this information we were able to convert a weak synthetic nucleator into one with activity equal to a native Spir construct. Lastly, we found evidence that Sc binds actin filaments, in addition to monomers. PMID:25234086

  19. Moesin, ezrin, and p205 are actin-binding proteins associated with neutrophil plasma membranes.

    PubMed Central

    Pestonjamasp, K; Amieva, M R; Strassel, C P; Nauseef, W M; Furthmayr, H; Luna, E J

    1995-01-01

    Actin-binding proteins in bovine neutrophil plasma membranes were identified using blot overlays with 125I-labeled F-actin. Along with surface-biotinylated proteins, membranes were enriched in major actin-binding polypeptides of 78, 81, and 205 kDa. Binding was specific for F-actin because G-actin did not bind. Further, unlabeled F-actin blocked the binding of 125I-labeled F-actin whereas other acidic biopolymers were relatively ineffective. Binding also was specifically inhibited by myosin subfragment 1, but not by CapZ or plasma gelsolin, suggesting that the membrane proteins, like myosin, bind along the sides of the actin filaments. The 78- and 81-kDa polypeptides were identified as moesin and ezrin, respectively, by co-migration on sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunoprecipitation with antibodies specific for moesin and ezrin. Although not present in detectable amounts in bovine neutrophils, radixin (a third and closely related member of this gene family) also bound 125I-labeled F-actin on blot overlays. Experiments with full-length and truncated bacterial fusion proteins localized the actin-binding site in moesin to the extreme carboxy terminus, a highly conserved sequence. Immunofluorescence micrographs of permeabilized cells and cell "footprints" showed moesin co-localization with actin at the cytoplasmic surface of the plasma membrane, consistent with a role as a membrane-actin-linking protein. Images PMID:7612961

  20. Talin can crosslink actin filaments into both networks and bundles.

    PubMed

    Zhang, J; Robson, R M; Schmidt, J M; Stromer, M H

    1996-01-17

    The talin-actin interaction was examined by using negative staining and cosedimentation assays. At pH 6.4 and low ionic strength, talin extensively crosslinked actin filaments into both networks and bundles. The bundles consist of parallel actin filaments with a center-to-center distance of 13 nm, and talin crossbridges spaced at 36-nm intervals along the bundles. As pH was increased stepwise from 6.4 to 7.3, talin's bundling activity was decreased first, then its networking activity. Qualitatively similar results were obtained at pH 6.4 by increasing ionic strength. Chemical crosslinking indicated talin was present as a dimer from pH 6.4 to 7.3, with or without added KC1. The results show that talin can interact directly with actin filaments by formation of actin filament networks and bundles, with the bundles more sensitive to dissolution by increase in pH or ionic strength. PMID:8561791

  1. Chondramides, novel cyclodepsipeptides from myxobacteria, influence cell development and induce actin filament polymerization in the green alga Micrasterias.

    PubMed

    Holzinger, A; Lütz-Meindl, U

    2001-02-01

    The effects of chondramides A-D, new actin targeting cyclodepsipeptides from the myxobacterium Chondromyces crocatus, are probed on the unicellular green alga Micrasterias denticulata, a model organism for studies on cytomorphogenesis. All four chondramides readily enter the cells and cause severe shape malformations when applied during growth. However, the four derivatives have different lowest effective concentrations. Chondramide A: 20 microM, chondramide B: 15 microM, chondramide C: 5 microM chondramide D: 10 microM. At the ultrastructural level, chondramide C, the most effective drug, causes the appearance of abnormal, dense F-actin bundles, and a substantial increase in ER, which covers large parts of the developing semicell. Also the secondary cell wall is malformed by the drug. When chondramide C effects are investigated by means of indirect immunofluorescence, alterations of the F-actin system are also visible. Instead of the cortical F-actin network of untreated controls, distinct parts of the cell are covered by abundant F-actin aggregations. Phalloidin staining of chondramide C treated cells results in a decreased fluorescence in a time-dependent manner due to binding competitions between these drugs. F-actin polymerizing and bundling capacities of chondramides A-D are presented in Micrasterias for the first time, and may in future make this substances a useful tool for cell biological research. PMID:11169761

  2. Rictor/mTORC2 regulates blood-testis barrier dynamics via its effects on gap junction communications and actin filament network

    PubMed Central

    Mok, Ka-Wai; Mruk, Dolores D.; Lee, Will M.; Cheng, C. Yan

    2013-01-01

    In the mammalian testis, coexisting tight junctions (TJs), basal ectoplasmic specializations, and gap junctions (GJs), together with desmosomes near the basement membrane, constitute the blood-testis barrier (BTB). The most notable feature of the BTB, however, is the extensive network of actin filament bundles, which makes it one of the tightest blood-tissue barriers. The BTB undergoes restructuring to facilitate the transit of preleptotene spermatocytes at stage VIII-IX of the epithelial cycle. Thus, the F-actin network at the BTB undergoes cyclic reorganization via a yet-to-be explored mechanism. Rictor, the key component of mTORC2 that is known to regulate actin cytoskeleton, was shown to express stage-specifically at the BTB in the seminiferous epithelium. Its expression was down-regulated at the BTB in stage VIII-IX tubules, coinciding with BTB restructuring at these stages. Using an in vivo model, a down-regulation of rictor at the BTB was also detected during adjudin-induced BTB disruption, illustrating rictor expression is positively correlated with the status of the BTB integrity. Indeed, the knockdown of rictor by RNAi was found to perturb the Sertoli cell TJ-barrier function in vitro and the BTB integrity in vivo. This loss of barrier function was accompanied by changes in F-actin organization at the Sertoli cell BTB in vitro and in vivo, associated with a loss of interaction between actin and α-catenin or ZO-1. Rictor knockdown by RNAi was also found to impede Sertoli cell-cell GJ communication, disrupting protein distribution (e.g., occludin, ZO-1) at the BTB, illustrating that rictor is a crucial BTB regulator.—Mok, K., Mruk, D. D., Lee, W. M., Cheng, C. Y. Rictor/mTORC2 regulates blood-testis barrier dynamics via its effects on gap junction communications and actin filament network. PMID:23288930

  3. A single-cell correlative nanoelectromechanosensing approach to detect cancerous transformation: monitoring the function of F-actin microfilaments in the modulation of the ion channel activity

    NASA Astrophysics Data System (ADS)

    AbdolahadThe Authors With Same Contributions., Mohammad; Saeidi, Ali; Janmaleki, Mohsen; Mashinchian, Omid; Taghinejad, Mohammad; Taghinejad, Hossein; Azimi, Soheil; Mahmoudi, Morteza; Mohajerzadeh, Shams

    2015-01-01

    Cancerous transformation may be dependent on correlation between electrical disruptions in the cell membrane and mechanical disruptions of cytoskeleton structures. Silicon nanotube (SiNT)-based electrical probes, as ultra-accurate signal recorders with subcellular resolution, may create many opportunities for fundamental biological research and biomedical applications. Here, we used this technology to electrically monitor cellular mechanosensing. The SiNT probe was combined with an electrically activated glass micropipette aspiration system to achieve a new cancer diagnostic technique that is based on real-time correlation between mechanical and electrical behaviour of single cells. Our studies demonstrated marked changes in the electrical response following increases in the mechanical aspiration force in healthy cells. In contrast, such responses were extremely weak for malignant cells. Confocal microscopy results showed the impact of actin microfilament remodelling on the reduction of the electrical response for aspirated cancer cells due to the significant role of actin in modulating the ion channel activity in the cell membrane.Cancerous transformation may be dependent on correlation between electrical disruptions in the cell membrane and mechanical disruptions of cytoskeleton structures. Silicon nanotube (SiNT)-based electrical probes, as ultra-accurate signal recorders with subcellular resolution, may create many opportunities for fundamental biological research and biomedical applications. Here, we used this technology to electrically monitor cellular mechanosensing. The SiNT probe was combined with an electrically activated glass micropipette aspiration system to achieve a new cancer diagnostic technique that is based on real-time correlation between mechanical and electrical behaviour of single cells. Our studies demonstrated marked changes in the electrical response following increases in the mechanical aspiration force in healthy cells. In contrast, such

  4. αT-Catenin Is a Constitutive Actin-binding α-Catenin That Directly Couples the Cadherin·Catenin Complex to Actin Filaments*

    PubMed Central

    Wickline, Emily D.; Dale, Ian W.; Merkel, Chelsea D.; Heier, Jonathon A.; Stolz, Donna B.

    2016-01-01

    α-Catenin is the primary link between the cadherin·catenin complex and the actin cytoskeleton. Mammalian αE-catenin is allosterically regulated: the monomer binds the β-catenin·cadherin complex, whereas the homodimer does not bind β-catenin but interacts with F-actin. As part of the cadherin·catenin complex, αE-catenin requires force to bind F-actin strongly. It is not known whether these properties are conserved across the mammalian α-catenin family. Here we show that αT (testes)-catenin, a protein unique to amniotes that is expressed predominantly in the heart, is a constitutive actin-binding α-catenin. We demonstrate that αT-catenin is primarily a monomer in solution and that αT-catenin monomer binds F-actin in cosedimentation assays as strongly as αE-catenin homodimer. The β-catenin·αT-catenin heterocomplex also binds F-actin with high affinity unlike the β-catenin·αE-catenin complex, indicating that αT-catenin can directly link the cadherin·catenin complex to the actin cytoskeleton. Finally, we show that a mutation in αT-catenin linked to arrhythmogenic right ventricular cardiomyopathy, V94D, promotes homodimerization, blocks β-catenin binding, and in cardiomyocytes disrupts localization at cell-cell contacts. Together, our data demonstrate that αT-catenin is a constitutively active actin-binding protein that can physically couple the cadherin·catenin complex to F-actin in the absence of tension. We speculate that these properties are optimized to meet the demands of cardiomyocyte adhesion. PMID:27231342

  5. Electrostatics control actin filament nucleation and elongation kinetics.

    PubMed

    Crevenna, Alvaro H; Naredi-Rainer, Nikolaus; Schönichen, André; Dzubiella, Joachim; Barber, Diane L; Lamb, Don C; Wedlich-Söldner, Roland

    2013-04-26

    The actin cytoskeleton is a central mediator of cellular morphogenesis, and rapid actin reorganization drives essential processes such as cell migration and cell division. Whereas several actin-binding proteins are known to be regulated by changes in intracellular pH, detailed information regarding the effect of pH on the actin dynamics itself is still lacking. Here, we combine bulk assays, total internal reflection fluorescence microscopy, fluorescence fluctuation spectroscopy techniques, and theory to comprehensively characterize the effect of pH on actin polymerization. We show that both nucleation and elongation are strongly enhanced at acidic pH, with a maximum close to the pI of actin. Monomer association rates are similarly affected by pH at both ends, although dissociation rates are differentially affected. This indicates that electrostatics control the diffusional encounter but not the dissociation rate, which is critical for the establishment of actin filament asymmetry. A generic model of protein-protein interaction, including electrostatics, explains the observed pH sensitivity as a consequence of charge repulsion. The observed pH effect on actin in vitro agrees with measurements of Listeria propulsion in pH-controlled cells. pH regulation should therefore be considered as a modulator of actin dynamics in a cellular environment. PMID:23486468

  6. F-actin asymmetry and the endoplasmic reticulum-associated TCC-1 protein contribute to stereotypic spindle movements in the Caenorhabditis elegans embryo.

    PubMed

    Berends, Christian W H; Muñoz, Javier; Portegijs, Vincent; Schmidt, Ruben; Grigoriev, Ilya; Boxem, Mike; Akhmanova, Anna; Heck, Albert J R; van den Heuvel, Sander

    2013-07-01

    The microtubule spindle apparatus dictates the plane of cell cleavage in animal cells. During development, dividing cells control the position of the spindle to determine the size, location, and fate of daughter cells. Spindle positioning depends on pulling forces that act between the cell periphery and astral microtubules. This involves dynein recruitment to the cell cortex by a heterotrimeric G-protein α subunit in complex with a TPR-GoLoco motif protein (GPR-1/2, Pins, LGN) and coiled-coil protein (LIN-5, Mud, NuMA). In this study, we searched for additional factors that contribute to spindle positioning in the one-cell Caenorhabditis elegans embryo. We show that cortical actin is not needed for Gα-GPR-LIN-5 localization and pulling force generation. Instead, actin accumulation in the anterior actually reduces pulling forces, possibly by increasing cortical rigidity. Examining membrane-associated proteins that copurified with GOA-1 Gα, we found that the transmembrane and coiled-coil domain protein 1 (TCC-1) contributes to proper spindle movements. TCC-1 localizes to the endoplasmic reticulum membrane and interacts with UNC-116 kinesin-1 heavy chain in yeast two-hybrid assays. RNA interference of tcc-1 and unc-116 causes similar defects in meiotic spindle positioning, supporting the concept of TCC-1 acting with kinesin-1 in vivo. These results emphasize the contribution of membrane-associated and cortical proteins other than Gα-GPR-LIN-5 in balancing the pulling forces that position the spindle during asymmetric cell division. PMID:23699393

  7. F-actin asymmetry and the endoplasmic reticulum–associated TCC-1 protein contribute to stereotypic spindle movements in the Caenorhabditis elegans embryo

    PubMed Central

    Berends, Christian W. H.; Muñoz, Javier; Portegijs, Vincent; Schmidt, Ruben; Grigoriev, Ilya; Boxem, Mike; Akhmanova, Anna; Heck, Albert J. R.; van den Heuvel, Sander

    2013-01-01

    The microtubule spindle apparatus dictates the plane of cell cleavage in animal cells. During development, dividing cells control the position of the spindle to determine the size, location, and fate of daughter cells. Spindle positioning depends on pulling forces that act between the cell periphery and astral microtubules. This involves dynein recruitment to the cell cortex by a heterotrimeric G-protein α subunit in complex with a TPR-GoLoco motif protein (GPR-1/2, Pins, LGN) and coiled-coil protein (LIN-5, Mud, NuMA). In this study, we searched for additional factors that contribute to spindle positioning in the one-cell Caenorhabditis elegans embryo. We show that cortical actin is not needed for Gα–GPR–LIN-5 localization and pulling force generation. Instead, actin accumulation in the anterior actually reduces pulling forces, possibly by increasing cortical rigidity. Examining membrane-associated proteins that copurified with GOA-1 Gα, we found that the transmembrane and coiled-coil domain protein 1 (TCC-1) contributes to proper spindle movements. TCC-1 localizes to the endoplasmic reticulum membrane and interacts with UNC-116 kinesin-1 heavy chain in yeast two-hybrid assays. RNA interference of tcc-1 and unc-116 causes similar defects in meiotic spindle positioning, supporting the concept of TCC-1 acting with kinesin-1 in vivo. These results emphasize the contribution of membrane-associated and cortical proteins other than Gα–GPR–LIN-5 in balancing the pulling forces that position the spindle during asymmetric cell division. PMID:23699393

  8. Cryo-EM structures of the actin:tropomyosin filament reveal the mechanism for the transition from C- to M-state.

    PubMed

    Sousa, Duncan R; Stagg, Scott M; Stroupe, M Elizabeth

    2013-11-15

    Tropomyosin (Tm) is a key factor in the molecular mechanisms that regulate the binding of myosin motors to actin filaments (F-Actins) in most eukaryotic cells. This regulation is achieved by the azimuthal repositioning of Tm along the actin (Ac):Tm:troponin (Tn) thin filament to block or expose myosin binding sites on Ac. In striated muscle, including involuntary cardiac muscle, Tm regulates muscle contraction by coupling Ca(2+) binding to Tn with myosin binding to the thin filament. In smooth muscle, the switch is the posttranslational modification of the myosin. Depending on the activation state of Tn and the binding state of myosin, Tm can occupy the blocked, closed, or open position on Ac. Using native cryogenic 3DEM (three-dimensional electron microscopy), we have directly resolved and visualized cardiac and gizzard muscle Tm on filamentous Ac in the position that corresponds to the closed state. From the 8-Å-resolution structure of the reconstituted Ac:Tm filament formed with gizzard-derived Tm, we discuss two possible mechanisms for the transition from closed to open state and describe the role Tm plays in blocking myosin tight binding in the closed-state position. PMID:24021812

  9. Actin Filaments Regulate Exocytosis at the Hair Cell Ribbon Synapse.

    PubMed

    Guillet, Marie; Sendin, Gaston; Bourien, Jérôme; Puel, Jean-Luc; Nouvian, Régis

    2016-01-20

    Exocytosis at the inner hair cell ribbon synapse is achieved through the functional coupling between calcium channels and glutamate-filled synaptic vesicles. Using membrane capacitance measurements, we investigated whether the actin network regulates the exocytosis of synaptic vesicles at the mouse auditory hair cell. Our results suggest that actin network disruption increases exocytosis and that actin filaments may spatially organize a subfraction of synaptic vesicles with respect to the calcium channels. Significance statement: Inner hair cells (IHCs), the auditory sensory cells of the cochlea, release glutamate onto the afferent auditory nerve fibers to encode sound stimulation. To achieve this task, the IHC relies on the recruitment of glutamate-filled vesicles that can be located in close vicinity to the calcium channels or more remotely from them. The molecular determinants responsible for organizing these vesicle pools are not fully identified. Using pharmacological tools in combination with membrane capacitance measurements, we show that actin filament disruption increases exocytosis in IHCs and that actin filaments most likely position a fraction of vesicles away from the calcium channels. PMID:26791198

  10. Solid friction between soft filaments

    NASA Astrophysics Data System (ADS)

    Ward, Andrew; Hilitski, Feodor; Schwenger, Walter; Welch, David; Lau, A. W. C.; Vitelli, Vincenzo; Mahadevan, L.; Dogic, Zvonimir

    2015-06-01

    Any macroscopic deformation of a filamentous bundle is necessarily accompanied by local sliding and/or stretching of the constituent filaments. Yet the nature of the sliding friction between two aligned filaments interacting through multiple contacts remains largely unexplored. Here, by directly measuring the sliding forces between two bundled F-actin filaments, we show that these frictional forces are unexpectedly large, scale logarithmically with sliding velocity as in solid-like friction, and exhibit complex dependence on the filaments’ overlap length. We also show that a reduction of the frictional force by orders of magnitude, associated with a transition from solid-like friction to Stokes’s drag, can be induced by coating F-actin with polymeric brushes. Furthermore, we observe similar transitions in filamentous microtubules and bacterial flagella. Our findings demonstrate how altering a filament’s elasticity, structure and interactions can be used to engineer interfilament friction and thus tune the properties of fibrous composite materials.

  11. RNA-dependent association with myosin IIA promotes F-actin-guided trafficking of the ELAV-like protein HuR to polysomes

    PubMed Central

    Doller, Anke; Schulz, Sebastian; Pfeilschifter, Josef; Eberhardt, Wolfgang

    2013-01-01

    The role of the mRNA-binding protein human antigen R (HuR) in stabilization and translation of AU-rich elements (ARE) containing mRNAs is well established. However, the trafficking of HuR and bound mRNA cargo, which comprises a fundamental requirement for the aforementioned HuR functions is only poorly understood. By administering different cytoskeletal inhibitors, we found that the protein kinase Cδ (PKCδ)-triggered accumulation of cytoplasmic HuR by Angiotensin II (AngII) is an actin-myosin driven process functionally relevant for stabilization of ARE-bearing mRNAs. Furthermore, we show that the AngII-induced recruitment of HuR and its bound mRNA from ribonucleoprotein particles to free and cytoskeleton bound polysomes strongly depended on an intact actomyosin cytoskeleton. In addition, HuR allocation to free and cytoskeletal bound polysomes is highly sensitive toward RNase and PPtase and structurally depends on serine 318 (S318) located within the C-terminal RNA recognition motif (RRM3). Conversely, the trafficking of the phosphomimetic HuRS318D, mimicking HuR phosphorylation at S318 by the PKCδ remained PPtase resistant. Co-immunoprecipitation experiments with truncated HuR proteins revealed that the stimulus-induced association of HuR with myosin IIA is strictly RNA dependent and mediated via the RRM3. Our data implicate a microfilament dependent transport of HuR, which is relevant for stimulus-induced targeting of ARE-bearing mRNAs from translational inactive ribonucleoprotein particles to polysomes. PMID:23921630

  12. Mammalian target of rapamycin complex (mTOR) pathway modulates blood-testis barrier (BTB) function through F-actin organization and gap junction.

    PubMed

    Li, Nan; Cheng, C Yan

    2016-09-01

    mTOR (mammalian target of rapamycin) is one of the most important signaling molecules in mammalian cells which regulates an array of cellular events, ranging from cell metabolism to cell proliferation. Based on the association of mTOR with the core component proteins, such as Raptor or Rictor, mTOR can become the mTORC1 (mammalian target of rapamycin complex 1) or mTORC2, respectively. Studies have shown that during the epithelial cycle of spermatogenesis, mTORC1 promotes remodeling and restructuring of the blood-testis barrier (BTB) in vitro and in vivo, making the Sertoli cell tight junction (TJ)-permeability barrier "leaky"; whereas mTORC2 promotes BTB integrity, making the Sertoli cell TJ-barrier "tighter". These contrasting effects, coupled with the spatiotemporal expression of the core signaling proteins at the BTB that confer the respective functions of mTORC1 vs. mTORC2 thus provide a unique mechanism to modulate BTB dynamics, allowing or disallowing the transport of biomolecules and also preleptotene spermatocytes across the immunological barrier. More importantly, studies have shown that these changes to BTB dynamics conferred by mTORC1 and mTORC2 are mediated by changes in the organization of the actin microfilament networks at the BTB, and involve gap junction (GJ) intercellular communication. Since GJ has recently been shown to be crucial to reboot spermatogenesis and meiosis following toxicant-induced aspermatogenesis, these findings thus provide new insightful information regarding the integration of mTOR and GJ to regulate spermatogenesis. PMID:26957088

  13. Lamellipodin promotes actin assembly by clustering Ena/VASP proteins and tethering them to actin filaments

    PubMed Central

    Hansen, Scott D; Mullins, R Dyche

    2015-01-01

    Enabled/Vasodilator (Ena/VASP) proteins promote actin filament assembly at multiple locations, including: leading edge membranes, focal adhesions, and the surface of intracellular pathogens. One important Ena/VASP regulator is the mig-10/Lamellipodin/RIAM family of adaptors that promote lamellipod formation in fibroblasts and drive neurite outgrowth and axon guidance in neurons. To better understand how MRL proteins promote actin network formation we studied the interactions between Lamellipodin (Lpd), actin, and VASP, both in vivo and in vitro. We find that Lpd binds directly to actin filaments and that this interaction regulates its subcellular localization and enhances its effect on VASP polymerase activity. We propose that Lpd delivers Ena/VASP proteins to growing barbed ends and increases their polymerase activity by tethering them to filaments. This interaction represents one more pathway by which growing actin filaments produce positive feedback to control localization and activity of proteins that regulate their assembly. DOI: http://dx.doi.org/10.7554/eLife.06585.001 PMID:26295568

  14. Actin Filament Elongation in Arp2/3-derived Networks is Controlled by Three Distinct Mechanisms

    PubMed Central

    Michelot, Alphée; Grassart, Alexandre; Okreglak, Voytek; Costanzo, Michael; Boone, Charles; Drubin, David G.

    2012-01-01

    Summary Spatial and temporal control of actin filament barbed end elongation is crucial for force generation by actin networks. In this study, genetics, cell biology, and biochemistry were used to reveal three complementary mechanisms that regulate actin filament barbed end elongation in Arp2/3-derived networks. Aip1 inhibits elongation of aged ADP-actin filaments decorated with cofilin, and together with capping protein (CP), maintains a high level of assembly-competent actin species. We identified Abp1 and Aim3 as two additional proteins that work together to inhibit barbed end elongation. Abp1/Aim3 collaborates with CP to control elongation of newly assembled ATP-actin filaments to organize filament polarity within actin networks. Thus, three distinct mechanisms control filament elongation in different regions of Arp2/3 networks, maintaining pools of assembly-competent actin species while ensuring proper filament polarity and facilitating force production. PMID:23333351

  15. Actin filament elongation in Arp2/3-derived networks is controlled by three distinct mechanisms.

    PubMed

    Michelot, Alphée; Grassart, Alexandre; Okreglak, Voytek; Costanzo, Michael; Boone, Charles; Drubin, David G

    2013-01-28

    Spatial and temporal control of actin filament barbed end elongation is crucial for force generation by actin networks. In this study, genetics, cell biology, and biochemistry were used to reveal three complementary mechanisms that regulate actin filament barbed end elongation in Arp2/3-derived networks. Aip1 inhibits elongation of aged ADP-actin filaments decorated with cofilin and, together with capping protein (CP), maintains a high level of assembly-competent actin species. We identified Abp1 and Aim3 as two additional proteins that work together to inhibit barbed end elongation. Abp1/Aim3 collaborates with CP to control elongation of newly assembled ATP-actin filaments to organize filament polarity within actin networks. Thus, three distinct mechanisms control filament elongation in different regions of Arp2/3 networks, maintaining pools of assembly-competent actin species while ensuring proper filament polarity and facilitating force production. PMID:23333351

  16. How capping protein enhances actin filament growth and nucleation on biomimetic beads

    NASA Astrophysics Data System (ADS)

    Wang, Ruizhe; Carlsson, Anders E.

    2015-12-01

    Capping protein (CP), which caps the growing ends of actin filaments, accelerates actin-based motility. Recent experiments on biomimetic beads have shown that CP also enhances the rate of actin filament nucleation. Proposed explanations for these phenomena include (i) the actin funneling hypothesis (AFH), in which the presence of CP increases the free-actin concentration, and (ii) the monomer gating model, in which CP binding to actin filament barbed ends makes more monomers available for filament nucleation. To establish how CP increases the rates of filament elongation and nucleation on biomimetic beads, we perform a quantitative modeling analysis of actin polymerization, using rate equations that include actin filament nucleation, polymerization and capping, as modified by monomer depletion near the surface of the bead. With one adjustable parameter, our simulation results match previously measured time courses of polymerized actin and filament number. The results support a version of the AFH where CP increases the local actin monomer concentration at the bead surface, but leaves the global free-actin concentration nearly constant. Because the rate of filament nucleation increases with the monomer concentration, the increased local monomer concentration enhances actin filament nucleation. We derive a closed-form formula for the characteristic CP concentration where the local free-actin concentration reaches half the bulk value, and find it to be comparable to the global Arp2/3 complex concentration. We also propose an experimental protocol for distinguishing branching nucleation of filaments from spontaneous nucleation.

  17. Thiolutin inhibits endothelial cell adhesion by perturbing Hsp27 interactions with components of the actin and intermediate filament cytoskeleton

    PubMed Central

    Jia, Yifeng; Wu, Shiaw-Lin; Isenberg, Jeff S.; Dai, Shujia; Sipes, John M.; Field, Lyndsay; Zeng, Bixi; Bandle, Russell W.; Ridnour, Lisa A.; Wink, David A.; Ramchandran, Ramani; Karger, Barry L.

    2009-01-01

    Thiolutin is a dithiole synthesized by Streptomyces sp. that inhibits endothelial cell adhesion and tumor growth. We show here that thiolutin potently inhibits developmental angiogenesis in zebrafish and vascular outgrowth from tissue explants in 3D cultures. Thiolutin is a potent and selective inhibitor of endothelial cell adhesion accompanied by rapid induction of HSPB1 (Hsp27) phosphorylation. The inhibitory effects of thiolutin on endothelial cell adhesion are transient, potentially due to a compensatory increase in Hsp27 protein levels. Accordingly, heat shock induction of Hsp27 limits the anti-adhesive activity of thiolutin. Thiolutin treatment results in loss of actin stress fibers, increased cortical actin as cells retract, and decreased cellular F-actin. Mass spectrometric analysis of Hsp27 binding partners following immunoaffinity purification identified several regulatory components of the actin cytoskeleton that associate with Hsp27 in a thiolutin-sensitive manner including several components of the Arp2/3 complex. Among these, ArpC1a is a direct binding partner of Hsp27. Thiolutin treatment induces peripheral localization of phosphorylated Hsp27 and Arp2/3. Hsp27 also associates with the intermediate filament components vimentin and nestin. Thiolutin treatment specifically ablates Hsp27 interaction with nestin and collapses nestin filaments. These results provide new mechanistic insights into regulation of cell adhesion and cytoskeletal dynamics by Hsp27. Electronic supplementary material The online version of this article (doi:10.1007/s12192-009-0130-0) contains supplementary material, which is available to authorized users. PMID:19579057

  18. Excitable actin dynamics in lamellipodial protrusion and retraction.

    PubMed

    Ryan, Gillian L; Petroccia, Heather M; Watanabe, Naoki; Vavylonis, Dimitrios

    2012-04-01

    Many animal cells initiate crawling by protruding lamellipodia, consisting of a dense network of actin filaments, at their leading edge. We imaged XTC cells that exhibit flat lamellipodia on poly-L-lysine-coated coverslips. Using active contours, we tracked the leading edge and measured the total amount of F-actin by summing the pixel intensities within a 5-μm band. We observed protrusion and retraction with period 130-200 s and local wavelike features. Positive (negative) velocities correlated with minimum (maximum) integrated actin concentration. Approximately constant retrograde flow indicated that protrusions and retractions were driven by fluctuations of the actin polymerization rate. We present a model of these actin dynamics as an excitable system in which a diffusive, autocatalytic activator causes actin polymerization; F-actin accumulation in turn inhibits further activator accumulation. Simulations of the model reproduced the pattern of actin polymerization seen in experiments. To explore the model's assumption of an autocatalytic activation mechanism, we imaged cells expressing markers for both F-actin and the p21 subunit of the Arp2/3 complex. We found that integrated Arp2/3-complex concentrations spike several seconds before spikes of F-actin concentration. This suggests that the Arp2/3 complex participates in an activation mechanism that includes additional diffuse components. Response of cells to stimulation by fetal calf serum could be reproduced by the model, further supporting the proposed dynamical picture. PMID:22500749

  19. Characterization of actin filament deformation in response to actively driven microspheres propagated through entangled actin networks

    NASA Astrophysics Data System (ADS)

    Falzone, Tobias; Blair, Savanna; Robertson-Anderson, Rae

    2014-03-01

    The semi-flexible biopolymer actin is a ubiquitous component of nearly all biological organisms, playing an important role in many biological processes such as cell structure and motility, cancer invasion and metastasis, muscle contraction, and cell signaling. Concentrated actin networks possess unique viscoelastic properties that have been the subject of much theoretical and experimental work. However, much is still unknown regarding the correlation of the applied stress on the network to the induced filament strain at the molecular level. Here, we use dual optical traps alongside fluorescence microscopy to carry out active microrheology measurements that link mechanical stress to structural response at the micron scale. Specifically, we actively drive microspheres through entangled actin networks while simultaneously measuring the force the surrounding filaments exert on the sphere and visualizing the deformation and subsequent relaxation of fluorescent labeled filaments within the network. These measurements, which provide much needed insight into the link between stress and strain in actin networks, are critical for clarifying our theoretical understanding of the complex viscoelastic behavior exhibited in actin networks.

  20. The Association of Myosin IB with Actin Waves in Dictyostelium Requires Both the Plasma Membrane-Binding Site and Actin-Binding Region in the Myosin Tail

    PubMed Central

    Brzeska, Hanna; Pridham, Kevin; Chery, Godefroy; Titus, Margaret A.; Korn, Edward D.

    2014-01-01

    F-actin structures and their distribution are important determinants of the dynamic shapes and functions of eukaryotic cells. Actin waves are F-actin formations that move along the ventral cell membrane driven by actin polymerization. Dictyostelium myosin IB is associated with actin waves but its role in the wave is unknown. Myosin IB is a monomeric, non-filamentous myosin with a globular head that binds to F-actin and has motor activity, and a non-helical tail comprising a basic region, a glycine-proline-glutamine-rich region and an SH3-domain. The basic region binds to acidic phospholipids in the plasma membrane through a short basic-hydrophobic site and the Gly-Pro-Gln region binds F-actin. In the current work we found that both the basic-hydrophobic site in the basic region and the Gly-Pro-Gln region of the tail are required for the association of myosin IB with actin waves. This is the first evidence that the Gly-Pro-Gln region is required for localization of myosin IB to a specific actin structure in situ. The head is not required for myosin IB association with actin waves but binding of the head to F-actin strengthens the association of myosin IB with waves and stabilizes waves. Neither the SH3-domain nor motor activity is required for association of myosin IB with actin waves. We conclude that myosin IB contributes to anchoring actin waves to the plasma membranes by binding of the basic-hydrophobic site to acidic phospholipids in the plasma membrane and binding of the Gly-Pro-Gln region to F-actin in the wave. PMID:24747353

  1. Transportation of Nanoscale Cargoes by Myosin Propelled Actin Filaments

    PubMed Central

    Persson, Malin; Gullberg, Maria; Tolf, Conny; Lindberg, A. Michael; Månsson, Alf; Kocer, Armagan

    2013-01-01

    Myosin II propelled actin filaments move ten times faster than kinesin driven microtubules and are thus attractive candidates as cargo-transporting shuttles in motor driven lab-on-a-chip devices. In addition, actomyosin-based transportation of nanoparticles is useful in various fundamental studies. However, it is poorly understood how actomyosin function is affected by different number of nanoscale cargoes, by cargo size, and by the mode of cargo-attachment to the actin filament. This is studied here using biotin/fluorophores, streptavidin, streptavidin-coated quantum dots, and liposomes as model cargoes attached to monomers along the actin filaments (“side-attached”) or to the trailing filament end via the plus end capping protein CapZ. Long-distance transportation (>100 µm) could be seen for all cargoes independently of attachment mode but the fraction of motile filaments decreased with increasing number of side-attached cargoes, a reduction that occurred within a range of 10–50 streptavidin molecules, 1–10 quantum dots or with just 1 liposome. However, as observed by monitoring these motile filaments with the attached cargo, the velocity was little affected. This also applied for end-attached cargoes where the attachment was mediated by CapZ. The results with side-attached cargoes argue against certain models for chemomechanical energy transduction in actomyosin and give important insights of relevance for effective exploitation of actomyosin-based cargo-transportation in molecular diagnostics and other nanotechnological applications. The attachment of quantum dots via CapZ, without appreciable modulation of actomyosin function, is useful in fundamental studies as exemplified here by tracking with nanometer accuracy. PMID:23437074

  2. Dynamic actin filaments control the mechanical behavior of the human red blood cell membrane

    PubMed Central

    Gokhin, David S.; Nowak, Roberta B.; Khoory, Joseph A.; de la Piedra, Alfonso; Ghiran, Ionita C.; Fowler, Velia M.

    2015-01-01

    Short, uniform-length actin filaments function as structural nodes in the spectrin-actin membrane skeleton to optimize the biomechanical properties of red blood cells (RBCs). Despite the widespread assumption that RBC actin filaments are not dynamic (i.e., do not exchange subunits with G-actin in the cytosol), this assumption has never been rigorously tested. Here we show that a subpopulation of human RBC actin filaments is indeed dynamic, based on rhodamine-actin incorporation into filaments in resealed ghosts and fluorescence recovery after photobleaching (FRAP) analysis of actin filament mobility in intact RBCs (∼25–30% of total filaments). Cytochalasin-D inhibition of barbed-end exchange reduces rhodamine-actin incorporation and partially attenuates FRAP recovery, indicating functional interaction between actin subunit turnover at the single-filament level and mobility at the membrane-skeleton level. Moreover, perturbation of RBC actin filament assembly/disassembly with latrunculin-A or jasplakinolide induces an approximately twofold increase or ∼60% decrease, respectively, in soluble actin, resulting in altered membrane deformability, as determined by alterations in RBC transit time in a microfluidic channel assay, as well as by abnormalities in spontaneous membrane oscillations (flickering). These experiments identify a heretofore-unrecognized but functionally important subpopulation of RBC actin filaments, whose properties and architecture directly control the biomechanical properties of the RBC membrane. PMID:25717184

  3. In vitro studies of actin filament and network dynamics

    PubMed Central

    Mullins, R Dyche; Hansen, Scott D

    2013-01-01

    Now that many genomes have been sequenced, a central concern of cell biology is to understand how the proteins they encode work together to create living matter. In vitro studies form an essential part of this program because understanding cellular functions of biological molecules often requires isolating them and reconstituting their activities. In particular, many elements of the actin cytoskeleton were first discovered by biochemical methods and their cellular functions deduced from in vitro experiments. We highlight recent advances that have come from in vitro studies, beginning with studies of actin filaments, and ending with multi-component reconstitutions of complex actin-based processes, including force-generation and cell spreading. We describe both scientific results and the technical innovations that made them possible. PMID:23267766

  4. To be or not to be assembled: progressing into nuclear actin filaments.

    PubMed

    Grosse, Robert; Vartiainen, Maria K

    2013-11-01

    The paradigm states that cytoplasmic actin operates as filaments and nuclear actin is mainly monomeric, acting as a scaffold in transcription complexes. However, why should a powerful function of actin, namely polymerization, not be used in the nucleus? Recent progress in the field forces us to rethink this issue, as many actin filament assembly proteins have been linked to nuclear functions and new experimental approaches have provided the first direct visualizations of polymerized nuclear actin. PMID:24088744

  5. [Cytoskeletal actin and its associated proteins. Some examples in Protista].

    PubMed

    Guillén, N; Carlier, M F; Brugerolle, G; Tardieux, I; Ausseil, J

    1998-06-01

    Many processes, cell motility being an example, require cells to remodel the actin cytoskeleton in response to both intracellular and extracellular signals. Reorganization of the actin cytoskeleton involves the rapid disassembly and reassembly of actin filaments, a phenomenon regulated by the action of particular actin-binding proteins. In recent years, an interest in studying actin regulation in unicellular organisms has arisen. Parasitic protozoan are among these organisms and studies of the cytoskeleton functions of these protozoan are relevant related to either cell biology or pathogenicity. To discuss recent data in this field, a symposium concerning "Actin and actin-binding proteins in protists" was held on May 8-11 in Paris, France, during the XXXV meeting of the French Society of Protistology. As a brief summary of the symposium we report here findings concerning the in vitro actin dynamic assembly, as well as the characterization of several actin-binding proteins from the parasitic protozoan Entamoeba histolytica, Trichomonas vaginalis and Plasmodium knowlesi. In addition, localization of actin in non-pathogen protists such as Prorocentrum micans and Crypthecodinium cohnii is also presented. The data show that some actin-binding proteins facilitate organization of filaments into higher order structures as pseudopods, while others have regulatory functions, indicating very particular roles for actin-binding proteins. One of the proteins discussed during the symposium, the actin depolymerizing factor ADF, was shown to enhance the treadmilling rate of actin filaments. In vitro, ADF binds to the ADP-bound forms of G-actin and F-actin, thereby participating in and changing the rate of actin assembly. Biochemical approaches allowed the identification of a protein complex formed by HSP/C70-cap32-34 which might also be involved in depolymerization of F-actin in P. knowlesi. Molecular and cellular approaches were used to identify proteins such as ABP-120 and myosin

  6. Actin filaments growing against a barrier with fluctuating shape

    NASA Astrophysics Data System (ADS)

    Sadhu, Raj Kumar; Chatterjee, Sakuntala

    2016-06-01

    We study force generation by a set of parallel actin filaments growing against a nonrigid obstacle, in the presence of an external load. The filaments polymerize by either moving the whole obstacle, with a large energy cost, or by causing local distortion in its shape which costs much less energy. The nonrigid obstacle also has local thermal fluctuations due to which its shape can change with time and we describe this using fluctuations in the height profile of a one-dimensional interface with Kardar-Parisi-Zhang dynamics. We find the shape fluctuations of the barrier strongly affect the force generation mechanism. The qualitative nature of the force-velocity curve is crucially determined by the relative time scale of filament and barrier dynamics. The height profile of the barrier also shows interesting variation with the external load. Our analytical calculations within mean-field theory show reasonable agreement with our simulation results.

  7. Arabidopsis CROLIN1, a Novel Plant Actin-binding Protein, Functions in Cross-linking and Stabilizing Actin Filaments*

    PubMed Central

    Jia, Honglei; Li, Jisheng; Zhu, Jingen; Fan, Tingting; Qian, Dong; Zhou, Yuelong; Wang, Jiaojiao; Ren, Haiyun; Xiang, Yun; An, Lizhe

    2013-01-01

    Higher order actin filament structures are necessary for cytoplasmic streaming, organelle movement, and other physiological processes. However, the mechanism by which the higher order cytoskeleton is formed in plants remains unknown. In this study, we identified a novel actin-cross-linking protein family (named CROLIN) that is well conserved only in the plant kingdom. There are six isovariants of CROLIN in the Arabidopsis genome, with CROLIN1 specifically expressed in pollen. In vitro biochemical analyses showed that CROLIN1 is a novel actin-cross-linking protein with binding and stabilizing activities. Remarkably, CROLIN1 can cross-link actin bundles into actin networks. CROLIN1 loss of function induces pollen germination and pollen tube growth hypersensitive to latrunculin B. All of these results demonstrate that CROLIN1 may play an important role in stabilizing and remodeling actin filaments by binding to and cross-linking actin filaments. PMID:24072702

  8. Arabidopsis FIM5 decorates apical actin filaments and regulates their organization in the pollen tube

    PubMed Central

    Zhang, Meng; Zhang, Ruihui; Qu, Xiaolu; Huang, Shanjin

    2016-01-01

    The actin cytoskeleton is increasingly recognized as a major regulator of pollen tube growth. Actin filaments have distinct distribution patterns and dynamic properties within different regions of the pollen tube. Apical actin filaments are highly dynamic and crucial for pollen tube growth. However, how apical actin filaments are generated and properly constructed remains an open question. Here we showed that Arabidopsis fimbrin5 (FIM5) decorates filamentous structures throughout the entire tube but is apically concentrated. Apical actin structures are disorganized to different degrees in the pollen tubes of fim5 loss-of-function mutants. Further observations suggest that apical actin structures are not constructed properly because apical actin filaments cannot be maintained at the cortex of fim5 pollen tubes. Actin filaments appeared to be more curved in fim5 pollen tubes and this was confirmed by measurements showing that the convolutedness and the rate of change of convolutedness of actin filaments was significantly increased in fim5 pollen tubes. This suggests that the rigidity of the actin filaments may be compromised in fim5 pollen tubes. Further, the apical cell wall composition is altered, implying that tip-directed vesicle trafficking events are impaired in fim5 pollen tubes. Thus, we found that FIM5 decorates apical actin filaments and regulates their organization in order to drive polarized pollen tube growth. PMID:27117336

  9. Reorganization of the cortical actin cytoskeleton during maturation division in the Tubifex egg: possible involvement of protein kinase C.

    PubMed

    Shimizu, T

    1997-08-01

    Tubifex eggs undergo a drastic reorganization of the cortical actin cytoskeleton during metaphase of the second meiosis. At the end of the first meiosis, the egg cortex displays only scattered actin filaments and tiny dots of F-actin; during the following 90 min, cortical F-actin gradually increases in amount, becomes organized into foci that are interlinked by actin bundles, and generates a geodesic dome-like organization. In this study, we have characterized this reorganization of the cortical actin cytoskeleton. In living eggs injected with rhodamine-phalloidin at the beginning of the second meiosis, cortical actin assembly (i.e., formation of actin foci and bundles) proceeds normally, but labeled F-actin is not found to be included significantly in the formed cortical actin network, suggesting that the increase in cortical F-actin is not simply ascribable to the recruitment of preexisting actin filaments. Cortical actin assembly can be induced precociously not only by calcium ionophore A23187 but also by a phorbol ester PMA, an agonist of protein kinase C (PKC). Conversely, the formation of actin foci and bundles is inhibited by PKC antagonists, although cortical F-actin increases to some extent in the presence of these inhibitors. Similar inhibition of the cortical reorganization is elicited in eggs whose intracellular free calcium level ([Ca2+]i) has been clamped low by microinjection of a calcium chelator BAPTA. The treatment of BAPTA-injected eggs with PMA results in the formation of actin foci and bundles. An experiment with eggs injected with fluo-3 shows that [Ca2+]i increases during metaphase of the second meiosis. These results suggest that the reorganization of cortical actin during metaphase of the second meiosis requires activation of PKC, which depends on increases in [Ca2+]i. PMID:9245516

  10. Vinculin-dependent actin bundling regulates cell migration and traction forces

    PubMed Central

    Jannie, Karry M.; Ellerbroek, Shawn M.; Zhou, Dennis W.; Chen, Sophia; Crompton, David J.; García, Andrés J.; DeMali, Kris A.

    2015-01-01

    Vinculin binding to actin filaments is thought to be critical for force transduction within a cell, but direct experimental evidence to support this conclusion has been limited . In this study, we found mutation (R1049E) of the vinculin tail impairs its ability to bind F-actin, stimulate actin polymerization, and bundle F-actin in vitro. Further , mutant (R1049E) vinculin expressing cells are altered in cell migration, which is accompanied by changes in cell adhesion, cell spreading, and cell generation of traction forces, providing direct evidence for the critical role of vinculin in mechanotransduction at adhesion sites. Lastly, we herein discuss the viability of models detailing the F-actin-binding surface on vinculin in context of our mutational analysis. PMID:25358683

  11. CASEIN KINASE1-LIKE PROTEIN2 Regulates Actin Filament Stability and Stomatal Closure via Phosphorylation of Actin Depolymerizing Factor.

    PubMed

    Zhao, Shuangshuang; Jiang, Yuxiang; Zhao, Yang; Huang, Shanjin; Yuan, Ming; Zhao, Yanxiu; Guo, Yan

    2016-06-01

    The opening and closing of stomata are crucial for plant photosynthesis and transpiration. Actin filaments undergo dynamic reorganization during stomatal closure, but the underlying mechanism for this cytoskeletal reorganization remains largely unclear. In this study, we identified and characterized Arabidopsis thaliana casein kinase 1-like protein 2 (CKL2), which responds to abscisic acid (ABA) treatment and participates in ABA- and drought-induced stomatal closure. Although CKL2 does not bind to actin filaments directly and has no effect on actin assembly in vitro, it colocalizes with and stabilizes actin filaments in guard cells. Further investigation revealed that CKL2 physically interacts with and phosphorylates actin depolymerizing factor 4 (ADF4) and inhibits its activity in actin filament disassembly. During ABA-induced stomatal closure, deletion of CKL2 in Arabidopsis alters actin reorganization in stomata and renders stomatal closure less sensitive to ABA, whereas deletion of ADF4 impairs the disassembly of actin filaments and causes stomatal closure to be more sensitive to ABA Deletion of ADF4 in the ckl2 mutant partially recues its ABA-insensitive stomatal closure phenotype. Moreover, Arabidopsis ADFs from subclass I are targets of CKL2 in vitro. Thus, our results suggest that CKL2 regulates actin filament reorganization and stomatal closure mainly through phosphorylation of ADF. PMID:27268429

  12. Length regulation of mechanosensitive stereocilia depends on very slow actin dynamics and filament-severing proteins.

    PubMed

    Narayanan, Praveena; Chatterton, Paul; Ikeda, Akihiro; Ikeda, Sakae; Corey, David P; Ervasti, James M; Perrin, Benjamin J

    2015-01-01

    Auditory sensory hair cells depend on stereocilia with precisely regulated lengths to detect sound. Since stereocilia are primarily composed of crosslinked, parallel actin filaments, regulated actin dynamics are essential for controlling stereocilia length. Here we assessed stereocilia actin turnover by monitoring incorporation of inducibly expressed β-actin-GFP in adult mouse hair cells in vivo and by directly measuring β-actin-GFP turnover in explants. Stereocilia actin incorporation is remarkably slow and restricted to filament barbed ends in a small tip compartment, with minimal accumulation in the rest of the actin core. Shorter rows of stereocilia, which have mechanically gated ion channels, show more variable actin turnover than the tallest stereocilia, which lack channels. Finally, the proteins ADF and AIP1, which both mediate actin filament severing, contribute to stereocilia length maintenance. Altogether, the data support a model whereby stereocilia actin cores are largely static, with dynamic regulation at the tips to maintain a critical length. PMID:25897778

  13. Identification and characterization of the actin-binding motif of phostensin.

    PubMed

    Wang, Tzu-Fan; Lai, Ning-Sheng; Huang, Kuang-Yung; Huang, Hsien-Lu; Lu, Ming-Chi; Lin, Yu-Shan; Chen, Chun-Yu; Liu, Su-Qin; Lin, Ta-Hsien; Huang, Hsien-Bin

    2012-01-01

    Phostensin, a protein phosphatase 1 F-actin cytoskeleton-targeting subunit encoded by KIAA1949, consists of 165 amino acids and caps the pointed ends of actin filaments. Sequence alignment analyses suggest that the C-terminal region of phostensin, spanning residues 129 to 155, contains a consensus actin-binding motif. Here, we have verified the existence of an actin-binding motif in the C-terminal domain of phostensin using colocalization, F-actin co-sedimentation and single filament binding assays. Our data indicate that the N-terminal region of phostensin (1-129) cannot bind to actin filaments and cannot retard the pointed end elongation of gelsolin-actin seeds. Furthermore, the C-terminal region of phostensin (125-165) multiply bind to the sides of actin filaments and lacks the ability to block the pointed end elongation, suggesting that the actin-binding motif is located in the C-terminal region of the phostensin. Further analyses indicate that phostensin binding to the pointed end of actin filament requires N-terminal residues 35 to 51. These results suggest that phostensin might fold into a rigid structure, allowing the N-terminus to sterically hinder the binding of C-terminus to the sides of actin filament, thus rendering phostensin binding to the pointed ends of actin filaments. PMID:23443105

  14. SWAP-70 Identifies a Transitional Subset of Actin Filaments in Motile CellsV⃞

    PubMed Central

    Hilpelä, Pirta; Oberbanscheidt, Pia; Hahne, Penelope; Hund, Martin; Kalhammer, Georg; Small, J. Victor; Bähler, Martin

    2003-01-01

    Functionally different subsets of actin filament arrays contribute to cellular organization and motility. We report the identification of a novel subset of loose actin filament arrays through regulated association with the widely expressed protein SWAP-70. These loose actin filament arrays were commonly located behind protruding lamellipodia and membrane ruffles. Visualization of these loose actin filament arrays was dependent on lamellipodial protrusion and the binding of the SWAP-70 PH-domain to a 3′-phosphoinositide. SWAP-70 with a functional pleckstrin homology-domain lacking the C-terminal 60 residues was targeted to the area of the loose actin filament arrays, but it did not associate with actin filaments. The C-terminal 60 residues were sufficient for actin filament association, but they provided no specificity for the subset of loose actin filament arrays. These results identify SWAP-70 as a phosphoinositide 3-kinase signaling-dependent marker for a distinct, hitherto unrecognized, array of actin filaments. Overexpression of SWAP-70 altered the actin organization and lamellipodial morphology. These alterations were dependent on a proper subcellular targeting of SWAP-70. We propose that SWAP-70 regulates the actincytoskeletonasaneffectororadaptorproteininresponsetoagoniststimulatedphosphatidylinositol (3,4)-bisphosphate production and cell protrusion. PMID:12925760

  15. Nanoscale segregation of actin nucleation and elongation factors determines dendritic spine protrusion

    PubMed Central

    Chazeau, Anaël; Mehidi, Amine; Nair, Deepak; Gautier, Jérémie J; Leduc, Cécile; Chamma, Ingrid; Kage, Frieda; Kechkar, Adel; Thoumine, Olivier; Rottner, Klemens; Choquet, Daniel; Gautreau, Alexis; Sibarita, Jean-Baptiste; Giannone, Grégory

    2014-01-01

    Actin dynamics drive morphological remodeling of neuronal dendritic spines and changes in synaptic transmission. Yet, the spatiotemporal coordination of actin regulators in spines is unknown. Using single protein tracking and super-resolution imaging, we revealed the nanoscale organization and dynamics of branched F-actin regulators in spines. Branched F-actin nucleation occurs at the PSD vicinity, while elongation occurs at the tip of finger-like protrusions. This spatial segregation differs from lamellipodia where both branched F-actin nucleation and elongation occur at protrusion tips. The PSD is a persistent confinement zone for IRSp53 and the WAVE complex, an activator of the Arp2/3 complex. In contrast, filament elongators like VASP and formin-like protein-2 move outwards from the PSD with protrusion tips. Accordingly, Arp2/3 complexes associated with F-actin are immobile and surround the PSD. Arp2/3 and Rac1 GTPase converge to the PSD, respectively, by cytosolic and free-diffusion on the membrane. Enhanced Rac1 activation and Shank3 over-expression, both associated with spine enlargement, induce delocalization of the WAVE complex from the PSD. Thus, the specific localization of branched F-actin regulators in spines might be reorganized during spine morphological remodeling often associated with synaptic plasticity. PMID:25293574

  16. A small molecule inhibitor of tropomyosin dissociates actin binding from tropomyosin-directed regulation of actin dynamics

    PubMed Central

    Bonello, Teresa T.; Janco, Miro; Hook, Jeff; Byun, Alex; Appaduray, Mark; Dedova, Irina; Hitchcock-DeGregori, Sarah; Hardeman, Edna C.; Stehn, Justine R.; Böcking, Till; Gunning, Peter W.

    2016-01-01

    The tropomyosin family of proteins form end-to-end polymers along the actin filament. Tumour cells rely on specific tropomyosin-containing actin filament populations for growth and survival. To dissect out the role of tropomyosin in actin filament regulation we use the small molecule TR100 directed against the C terminus of the tropomyosin isoform Tpm3.1. TR100 nullifies the effect of Tpm3.1 on actin depolymerisation but surprisingly Tpm3.1 retains the capacity to bind F-actin in a cooperative manner. In vivo analysis also confirms that, in the presence of TR100, fluorescently tagged Tpm3.1 recovers normally into stress fibers. Assembling end-to-end along the actin filament is thereby not sufficient for tropomyosin to fulfil its function. Rather, regulation of F-actin stability by tropomyosin requires fidelity of information communicated at the barbed end of the actin filament. This distinction has significant implications for perturbing tropomyosin-dependent actin filament function in the context of anti-cancer drug development. PMID:26804624

  17. Neutrophil actin dysfunction is a genetic disorder associated with partial impairment of neutrophil actin assembly in three family members.

    PubMed Central

    Southwick, F S; Dabiri, G A; Stossel, T P

    1988-01-01

    A male infant with a severe neutrophil motility disorder and poorly polymerizable actin in PMN extracts was reported over a decade ago to have neutrophil actin dysfunction (NAD) (1974. N. Engl. J. Med. 291:1093-1099). Polymerized actin (F-actin) content of fixed and permeabilized intact neutrophils from the father, mother, and sister of the NAD index case have been measured using nitrobenzoxadiazole-phallacidin, a fluorescent compound which binds specifically to actin filaments. F-actin content of unstimulated PMN from all three family members was significantly lower than unstimulated control PMN (mean 23.6 +/- 0.4 SEM fluorescent units vs. 32.6 +/- 0.6 for controls). After stimulation with the chemotactic peptide FMLP, maximal F-actin content of NAD family member PMN was below that of controls (52.7 +/- 1.3 vs. 72.6 +/- 1.8). F-actin content of detergent insoluble cytoskeletons after stimulation with FMLP was also significantly lower in PMN from NAD family members as compared with controls (21 +/- 6% vs. 73 +/- 8%). PMN extracts from the father and mother, when treated with 0.6 M KCl, polymerized half as much actin as controls. Whereas diisopropylfluorophosphate treatment of normal PMN decreased actin polymerizability in cell extracts, this treatment increased the assembly of actin in parental PMN extract. Addition of purified actin to NAD extracts failed to reveal an abnormal actin polymerization inhibitory activity, and no obvious structural defect in actin purified from the father's PMNs was noted by HPLC and two dimensional thin layer chromatography of tryptic digests. The present studies of actin assembly in intact PMNs confirm that NAD is associated with a true defect in PMN actin assembly and is a genetic disorder that is recessively inherited. Images PMID:3183050

  18. Dynamic Localization of G-actin During Membrane Protrusion in Neuronal Motility

    PubMed Central

    Lee, Chi Wai; Vitriol, Eric A.; Shim, Sangwoo; Wise, Ariel L.; Velayutham, Radhi P.; Zheng, James Q.

    2013-01-01

    Summary Background Actin-based cell motility is fundamental for the development, function, and malignant events of eukaryotic organisms. During neural development, axonal growth cones depend on rapid assembly and disassembly of actin filaments (F-actin) for their guided extension to specific targets for wiring. Monomeric globular actin (G-actin) is the building block for F-actin but is not considered to play a direct role in spatiotemporal control of actin dynamics in cell motility. Results Here we report that a pool of G-actin dynamically localizes to the leading edge of growth cones and neuroblastoma cells to spatially elevate the G-/F-actin ratio that drives membrane protrusion and cell movement. Loss of G-actin localization leads to the cessation and retraction of membrane protrusions. Moreover, G-actin localization occurs asymmetrically in growth cones during attractive turning. Finally, we identify the actin monomer binding proteins profilin and thymosin β4 as key molecules that localize actin monomers to the leading edge of lamellipodia for their motility. Conclusions Our results suggest that dynamic localization of G-actin provides a novel mechanism to regulate the spatiotemporal actin dynamics underlying membrane protrusion in cell locomotion and growth cone chemotaxis. PMID:23746641

  19. Actin turnover-dependent fast dissociation of capping protein in the dendritic nucleation actin network: evidence of frequent filament severing.

    PubMed

    Miyoshi, Takushi; Tsuji, Takahiro; Higashida, Chiharu; Hertzog, Maud; Fujita, Akiko; Narumiya, Shuh; Scita, Giorgio; Watanabe, Naoki

    2006-12-18

    Actin forms the dendritic nucleation network and undergoes rapid polymerization-depolymerization cycles in lamellipodia. To elucidate the mechanism of actin disassembly, we characterized molecular kinetics of the major filament end-binding proteins Arp2/3 complex and capping protein (CP) using single-molecule speckle microscopy. We have determined the dissociation rates of Arp2/3 and CP as 0.048 and 0.58 s(-1), respectively, in lamellipodia of live XTC fibroblasts. This CP dissociation rate is three orders of magnitude faster than in vitro. CP dissociates slower from actin stress fibers than from the lamellipodial actin network, suggesting that CP dissociation correlates with actin filament dynamics. We found that jasplakinolide, an actin depolymerization inhibitor, rapidly blocked the fast CP dissociation in cells. Consistently, the coexpression of LIM kinase prolonged CP speckle lifetime in lamellipodia. These results suggest that cofilin-mediated actin disassembly triggers CP dissociation from actin filaments. We predict that filament severing and end-to-end annealing might take place fairly frequently in the dendritic nucleation actin arrays. PMID:17178911

  20. Assembly and Turnover of Short Actin Filaments by the Formin INF2 and Profilin*

    PubMed Central

    Gurel, Pinar S.; A, Mu; Guo, Bingqian; Shu, Rui; Mierke, Dale F.; Higgs, Henry N.

    2015-01-01

    INF2 (inverted formin 2) is a formin protein with unique biochemical effects on actin. In addition to the common formin ability to accelerate actin nucleation and elongation, INF2 can also sever filaments and accelerate their depolymerization. Although we understand key attributes of INF2-mediated severing, we do not understand the mechanism by which INF2 accelerates depolymerization subsequent to severing. Here, we show that INF2 can create short filaments (<60 nm) that continuously turn over actin subunits through a combination of barbed end elongation, severing, and WH2 motif-mediated depolymerization. This pseudo-steady state condition occurs whether starting from actin filaments or monomers. The rate-limiting step of the cycle is nucleotide exchange of ADP for ATP on actin monomers after release from the INF2/actin complex. Profilin addition has two effects: 1) to accelerate filament turnover 6-fold by accelerating nucleotide exchange and 2) to shift the equilibrium toward polymerization, resulting in longer filaments. In sum, our findings show that the combination of multiple interactions of INF2 with actin can work in concert to increase the ATP turnover rate of actin. Depending on the ratio of INF2:actin, this increased flux can result in rapid filament depolymerization or maintenance of short filaments. We also show that high concentrations of cytochalasin D accelerate ATP turnover by actin but through a different mechanism from that of INF2. PMID:26124273

  1. Site-specific cation release drives actin filament severing by vertebrate cofilin

    PubMed Central

    Kang, Hyeran; Bradley, Michael J.; Cao, Wenxiang; Zhou, Kaifeng; Grintsevich, Elena E.; Michelot, Alphée; Sindelar, Charles V.; Hochstrasser, Mark; De La Cruz, Enrique M.

    2014-01-01

    Actin polymerization powers the directed motility of eukaryotic cells. Sustained motility requires rapid filament turnover and subunit recycling. The essential regulatory protein cofilin accelerates network remodeling by severing actin filaments and increasing the concentration of ends available for elongation and subunit exchange. Although cofilin effects on actin filament assembly dynamics have been extensively studied, the molecular mechanism of cofilin-induced filament severing is not understood. Here we demonstrate that actin filament severing by vertebrate cofilin is driven by the linked dissociation of a single cation that controls filament structure and mechanical properties. Vertebrate cofilin only weakly severs Saccharomyces cerevisiae actin filaments lacking this “stiffness cation” unless a stiffness cation-binding site is engineered into the actin molecule. Moreover, vertebrate cofilin rescues the viability of a S. cerevisiae cofilin deletion mutant only when the stiffness cation site is simultaneously introduced into actin, demonstrating that filament severing is the essential function of cofilin in cells. This work reveals that site-specific interactions with cations serve a key regulatory function in actin filament fragmentation and dynamics. PMID:25468977

  2. Stretching Actin Filaments within Cells Enhances their Affinity for the Myosin II Motor Domain

    PubMed Central

    Uyeda, Taro Q. P.; Iwadate, Yoshiaki; Umeki, Nobuhisa; Nagasaki, Akira; Yumura, Shigehiko

    2011-01-01

    To test the hypothesis that the myosin II motor domain (S1) preferentially binds to specific subsets of actin filaments in vivo, we expressed GFP-fused S1 with mutations that enhanced its affinity for actin in Dictyostelium cells. Consistent with the hypothesis, the GFP-S1 mutants were localized along specific portions of the cell cortex. Comparison with rhodamine-phalloidin staining in fixed cells demonstrated that the GFP-S1 probes preferentially bound to actin filaments in the rear cortex and cleavage furrows, where actin filaments are stretched by interaction with endogenous myosin II filaments. The GFP-S1 probes were similarly enriched in the cortex stretched passively by traction forces in the absence of myosin II or by external forces using a microcapillary. The preferential binding of GFP-S1 mutants to stretched actin filaments did not depend on cortexillin I or PTEN, two proteins previously implicated in the recruitment of myosin II filaments to stretched cortex. These results suggested that it is the stretching of the actin filaments itself that increases their affinity for the myosin II motor domain. In contrast, the GFP-fused myosin I motor domain did not localize to stretched actin filaments, which suggests different preferences of the motor domains for different structures of actin filaments play a role in distinct intracellular localizations of myosin I and II. We propose a scheme in which the stretching of actin filaments, the preferential binding of myosin II filaments to stretched actin filaments, and myosin II-dependent contraction form a positive feedback loop that contributes to the stabilization of cell polarity and to the responsiveness of the cells to external mechanical stimuli. PMID:22022566

  3. Effect of tensile force on the mechanical behavior of actin filaments.

    PubMed

    Matsushita, Shinji; Inoue, Yasuhiro; Hojo, Masaki; Sokabe, Masahiro; Adachi, Taiji

    2011-06-01

    Actin filaments are the most abundant components of the cellular cytoskeleton, and play critical roles in various cellular functions such as migration, division and shape control. In these activities, mechanical tension causes structural changes in the double-helical structure of the actin filament, which is a key modulator of cytoskeletal reorganization. This study performed large-scale molecular dynamics (MD) and steered MD simulations to quantitatively analyze the effects of tensile force on the mechanical behavior of actin filaments. The results revealed that when a tensile force of 200pN was applied to a filament consisting of 14 actin subunits, the twist angle of the filament decreased by approximately 20°, corresponding to a rotation of approximately -2° per subunit, representing a critical structural change in actin filaments. Based on these structural changes, the variance in filament length and twist angle was found to decrease, leading to increases in extensional and torsional stiffness. Torsional stiffness increased significantly under the tensile condition, and the ratio of filament stiffness under tensile force to that under no external force increased significantly on longer temporal scales. The results obtained from this study contribute to the understanding of mechano-chemical interactions concerning actin dynamics, showing that increased tensile force in the filament prevents actin regulatory proteins from binding to the filament. PMID:21536289

  4. Engagement of CD81 induces ezrin tyrosine phosphorylation and its cellular redistribution with filamentous actin

    SciTech Connect

    Coffey, Greg P.; Rajapaksa, Ranjani; Liu, Raymond; Sharpe, Orr; Kuo, Chiung-Chi; Wald Krauss, Sharon; Sagi, Yael; Davis, R. Eric; Staudt, Louis M.; Sharman, Jeff P.; Robinson, William H.; Levy, Shoshana

    2009-06-09

    CD81 is a tetraspanin family member involved in diverse cellular interactions in the immune and nervous systems and in cell fusion events. However, the mechanism of action of CD81 and of other tetraspanins has not been defined. We reasoned that identifying signaling molecules downstream of CD81 would provide mechanistic clues. We engaged CD81 on the surface of Blymphocytes and identified the induced tyrosine-phosphorylated proteins by mass spectrometry. This analysis showed that the most prominent tyrosine phosphorylated protein was ezrin, an actin binding protein and a member of the ezrin-radixin-moesin family. We also found that CD81 engagement induces spleen tyrosine kinase (Syk) and that Syk was involved in tyrosine phosphorylation of ezrin. Ezrin colocalized with CD81 and F-actin upon stimulation and this association was disrupted when Syk activation was blocked. Taken together, these studies suggest a model in which CD81 interfaces between the plasma membrane and the cytoskeleton by activating Syk, mobilizing ezrin, and recruiting F-actin to facilitate cytoskeletal reorganization and cell signaling. This may be a mechanism explaining the pleiotropic effects induced in response to stimulating cells by anti-CD81 antibodies or by the hepatitis C virus, which uses this molecule as its key receptor.

  5. Feedback Interactions of Polymerized Actin with the Cell Membrane: Waves, Pulses, and Oscillations

    NASA Astrophysics Data System (ADS)

    Carlsson, Anders

    Polymerized filaments of the protein actin have crucial functions in cell migration, and in bending the cell membrane to drive endocytosis or the formation of protrusions. The nucleation and polymerization of actin filaments are controlled by upstream agents in the cell membrane, including nucleation-promoting factors (NPFs) that activate the Arp2/3 complex to form new branches on pre-existing filaments. But polymerized actin (F-actin) also feeds back on the assembly of NPFs. We explore the effects of the resulting feedback loop of F-actin and NPFs on two phenomena: actin pulses that drive endocytosis in yeast, and actin waves traveling along the membrane of several cell types. In our model of endocytosis in yeast, the actin network is grown explicitly in three dimensions, exerts a negative feedback interaction on localized patch of NPFs in the membrane, and bends the membrane by exerting a distribution of forces. This model explains observed actin and NPF pulse dynamics, and the effects of several interventions including i) NPF mutations, ii) inhibition of actin polymerization, and iii) deletion of a protein that allows F-actin to bend the cell membrane. The model predicts that mutation of the active region of an NPF will enhance the accumulation of that NPF, and we confirm this prediction by quantitative fluorescence microscopy. For actin waves, we treat a similar model, with NPFs distributed over a larger region of the cell membrane. This model naturally generates actin waves, and predicts a transition from wave behavior to spatially localized oscillations when NPFs are confined to a small region. We also predict a transition from waves to static polarization as the negative-feedback coupling between F-actin and the NPFs is reduced. Supported by NIGMS Grant R01 GM107667.

  6. Arabidopsis AtADF1 is functionally affected by mutations on actin binding sites.

    PubMed

    Dong, Chun-Hai; Tang, Wei-Ping; Liu, Jia-Yao

    2013-03-01

    The plant actin depolymerizing factor (ADF) binds to both monomeric and filamentous actin, and is directly involved in the depolymerization of actin filaments. To better understand the actin binding sites of the Arabidopsis thaliana L. AtADF1, we generated mutants of AtADF1 and investigated their functions in vitro and in vivo. Analysis of mutants harboring amino acid substitutions revealed that charged residues (Arg98 and Lys100) located at the α-helix 3 and forming an actin binding site together with the N-terminus are essential for both G- and F-actin binding. The basic residues on the β-strand 5 (K82/A) and the α-helix 4 (R135/A, R137/A) form another actin binding site that is important for F-actin binding. Using transient expression of CFP-tagged AtADF1 mutant proteins in onion (Allium cepa) peel epidermal cells and transgenic Arabidopsis thaliana L. plants overexpressing these mutants, we analyzed how these mutant proteins regulate actin organization and affect seedling growth. Our results show that the ADF mutants with a lower affinity for actin filament binding can still be functional, unless the affinity for actin monomers is also affected. The G-actin binding activity of the ADF plays an essential role in actin binding, depolymerization of actin polymers, and therefore in the control of actin organization. PMID:23190411

  7. Regional orientation of actin filaments in the pericanalicular cytoplasm of rat hepatocytes.

    PubMed

    Ishii, M; Washioka, H; Tonosaki, A; Toyota, T

    1991-12-01

    To elucidate how actin filaments participate in bile formation, polarity of actin filaments in the pericanalicular cytoplasm was determined with myosin subfragment 1 by transmission electron microscopy of ultrathin sections and deep-etching replicas. Densely concentrated actin filaments were identified around the bile canaliculi in the forms of microvillous core filaments, pericanalicular web filaments, and filaments on the junctional complex. They bound subfragment 1 to form double-helical strands on the deep-etching replica or typical arrowheads on the ultrathin section. All microvillous core filaments showed their arrowheads pointing basally, suggesting the molecular growth occurring at their apical ends. In contrast, filaments of the pericanalicular web, running in parallel to the cell surface, showed unfixed polarities as indicated by their arrowheads. Furthermore, neighboring filament pairs often showed opposite polarities, an alignment necessary for filament sliding. The junctional complex had filaments with arrowheads pointed mostly at the cell center with a small number in opposite direction. In addition, a group of sporadic filaments appeared to be installed to link to both the canalicular membrane and coated vesicles. Such regionally specialized actin filaments are considered inclusively to form a cytoskeletal system that is in charge of (a) maintenance of length of the microvilli, (b) contraction of the canalicular walls, and (c) translocation of coated vesicles in the pericanalicular cytoplasm. PMID:1955131

  8. Electrostatic Interactions Between the Bni1p Formin FH2 Domain and Actin Influence Actin Filament Nucleation

    PubMed Central

    Baker, Joseph L.; Courtemanche, Naomi; Parton, Daniel L.; McCullagh, Martin; Pollard, Thomas D.; Voth, Gregory A.

    2014-01-01

    SUMMARY Formins catalyze nucleation and growth of actin filaments. Here we study the structure and interactions of actin with the FH2 domain of budding yeast formin Bni1p. We built an all-atom model of the formin dimer on an Oda actin filament 7-mer and studied structural relaxation and inter-protein interactions by molecular dynamics simulations. These simulations produced a refined model for the FH2 dimer associated with the barbed end of the filament and revealed electrostatic interactions between the formin knob and actin target-binding cleft. Mutations of two formin residues contributing to these interactions (R1423N, K1467L or both) reduced the interaction energies between the proteins, and in coarse-grained simulations the formin lost more inter-protein contacts with an actin dimer than with an actin 7-mer. Biochemical experiments confirmed a strong influence of these mutations on Bni1p-mediated actin filament nucleation, but not elongation, suggesting that different interactions contribute to these two functions of formins. PMID:25482541

  9. Profilin-Dependent Nucleation and Assembly of Actin Filaments Controls Cell Elongation in Arabidopsis1[OPEN

    PubMed Central

    Cao, Lingyan; Blanchoin, Laurent; Staiger, Christopher J.

    2016-01-01

    Actin filaments in plant cells are incredibly dynamic; they undergo incessant remodeling and assembly or disassembly within seconds. These dynamic events are choreographed by a plethora of actin-binding proteins, but the exact mechanisms are poorly understood. Here, we dissect the contribution of Arabidopsis (Arabidopsis thaliana) PROFILIN1 (PRF1), a conserved actin monomer-binding protein, to actin organization and single filament dynamics during axial cell expansion of living epidermal cells. We found that reduced PRF1 levels enhanced cell and organ growth. Surprisingly, we observed that the overall frequency of nucleation events in prf1 mutants was dramatically decreased and that a subpopulation of actin filaments that assemble at high rates was reduced. To test whether profilin cooperates with plant formin proteins to execute actin nucleation and rapid filament elongation in cells, we used a pharmacological approach. Here, we used Small Molecule Inhibitor of Formin FH2 (SMIFH2), after validating its mode of action on a plant formin in vitro, and observed a reduced nucleation frequency of actin filaments in live cells. Treatment of wild-type epidermal cells with SMIFH2 mimicked the phenotype of prf1 mutants, and the nucleation frequency in prf1-2 mutant was completely insensitive to these treatments. Our data provide compelling evidence that PRF1 coordinates the stochastic dynamic properties of actin filaments by modulating formin-mediated actin nucleation and assembly during plant cell expansion. PMID:26574597

  10. Quantifying morphological features of actin cytoskeletal filaments in plant cells based on mathematical morphology.

    PubMed

    Kimori, Yoshitaka; Hikino, Kazumi; Nishimura, Mikio; Mano, Shoji

    2016-01-21

    By quantifying the morphological properties of biological structures, we can better evaluate complex shapes and detect subtle morphological changes in organisms. In this paper, we propose a shape analysis method based on morphological image processing, and apply it to image analysis of actin cytoskeletal filaments in root hair cells of Arabidopsis thaliana. In plant cells, the actin cytoskeletal filaments have critical roles in various cellular processes such as vesicle trafficking and organelle motility. The dynamics of vesicles and organelles in plant cells depend on actin cytoskeletal filaments, regulating cell division and cell enlargement. To better understand the actin-dependent organelle motility, we attempted to quantify the organization of actin filaments in the root hair cells of the root hair defective 3 (rhd3) mutant. RHD3 is involved in actin organization, and its defect has been reported to affect the dynamics of various vesicles and organelles. We measured three shape features of the actin filaments in wild-type and mutant plants. One feature (thickness) was depicted on a grayscale; the others (describing the complexity of the filament network patterns in two-dimensional space) were depicted as binary features. The morphological phenotypes of the cytoskeletal filaments clearly differed between wild-type and mutant. Subtle variations of filament morphology among the mutants were detected and statistically quantified. PMID:26551157

  11. Profilin Interaction with Actin Filament Barbed End Controls Dynamic Instability, Capping, Branching, and Motility

    PubMed Central

    Pernier, Julien; Shekhar, Shashank; Jegou, Antoine; Guichard, Bérengère; Carlier, Marie-France

    2016-01-01

    Summary Cell motility and actin homeostasis depend on the control of polarized growth of actin filaments. Profilin, an abundant regulator of actin dynamics, supports filament assembly at barbed ends by binding G-actin. Here, we demonstrate how, by binding and destabilizing filament barbed ends at physiological concentrations, profilin also controls motility, cell migration, and actin homeostasis. Profilin enhances filament length fluctuations. Profilin competes with Capping Protein at barbed ends, which generates a lower amount of profilin-actin than expected if barbed ends were tightly capped. Profilin competes with barbed end polymerases, such as formins and VopF, and inhibits filament branching by WASP-Arp2/3 complex by competition for filament barbed ends, accounting for its as-yet-unknown effects on motility and metastatic cell migration observed in this concentration range. In conclusion, profilin is a major coordinator of polarized growth of actin filaments, controlled by competition between barbed end cappers, trackers, destabilizers, and filament branching machineries. PMID:26812019

  12. Two Functionally Distinct Sources of Actin Monomers Supply the Leading Edge of Lamellipodia

    PubMed Central

    Vitriol, Eric A.; McMillen, Laura M.; Kapustina, Maryna; Gomez, Shawn M.; Vavylonis, Dimitrios; Zheng, James Q.

    2015-01-01

    Summary Lamellipodia, the sheet-like protrusions of motile cells, consist of networks of actin filaments (F-actin) regulated by the ordered assembly from and disassembly into actin monomers (G-actin). Traditionally, G-actin is thought to exist as a homogeneous pool. Here, we show that there are two functionally and molecularly distinct sources of G-actin that supply lamellipodial actin networks. G-actin originating from the cytosolic pool requires the monomer binding protein thymosin β4 (Tβ4) for optimal leading edge localization, is targeted to formins, and is responsible for creating an elevated G/F-actin ratio that promotes membrane protrusion. The second source of G-actin comes from recycled lamellipodia F-actin. Recycling occurs independently of Tβ4 and appears to regulate lamellipodia homeostasis. Tβ4-bound G-actin specifically localizes to the leading edge because it doesn’t interact with Arp2/3-mediated polymerization sites found throughout the lamellipodia. These findings demonstrate that actin networks can be constructed from multiple sources of monomers with discrete spatiotemporal functions. PMID:25865895

  13. Cofilin Increases the Bending Flexibility of Actin Filaments: Implications for Severing and Cell Mechanics

    PubMed Central

    McCullough, Brannon R.; Blanchoin, Laurent; Martiel, Jean-Louis; De La Cruz, Enrique M.

    2009-01-01

    We determined the flexural (bending) rigidities of actin and cofilactin filaments from a cosine correlation function analysis of their thermally driven, two-dimensional fluctuations in shape. The persistence length of actin filaments is 9.8 µm, corresponding to a flexural rigidity of 0.040 pN µm2. Cofilin binding lowers the persistence length ∼5-fold to a value of 2.2 µm and the filament flexural rigidity to 0.0091 pN µm2. That cofilin-decorated filaments are more flexible than native filaments despite an increased mass indicates that cofilin binding weakens and redistributes stabilizing subunit interactions of filaments. We favor a mechanism in which the increased flexibility of cofilin-decorated filaments results from the linked dissociation of filament-stabilizing ions and reorganization of actin subdomain 2 and as a consequence promotes severing due to a mechanical asymmetry. Knowledge of the effects of cofilin on actin filament bending mechanics, together with our previous analysis of torsional stiffness, provide a quantitative measure of the mechanical changes in actin filaments associated with cofilin binding, and suggest that the overall mechanical and force-producing properties of cells can be modulated by cofilin activity. PMID:18617188

  14. Antagonism between Ena/VASP proteins and actin filament capping regulates fibroblast motility.

    PubMed

    Bear, James E; Svitkina, Tatyana M; Krause, Matthias; Schafer, Dorothy A; Loureiro, Joseph J; Strasser, Geraldine A; Maly, Ivan V; Chaga, Oleg Y; Cooper, John A; Borisy, Gary G; Gertler, Frank B

    2002-05-17

    Cell motility requires lamellipodial protrusion, a process driven by actin polymerization. Ena/VASP proteins accumulate in protruding lamellipodia and promote the rapid actin-driven motility of the pathogen Listeria. In contrast, Ena/VASP negatively regulate cell translocation. To resolve this paradox, we analyzed the function of Ena/VASP during lamellipodial protrusion. Ena/VASP-deficient lamellipodia protruded slower but more persistently, consistent with their increased cell translocation rates. Actin networks in Ena/VASP-deficient lamellipodia contained shorter, more highly branched filaments compared to controls. Lamellipodia with excess Ena/VASP contained longer, less branched filaments. In vitro, Ena/VASP promoted actin filament elongation by interacting with barbed ends, shielding them from capping protein. We conclude that Ena/VASP regulates cell motility by controlling the geometry of actin filament networks within lamellipodia. PMID:12086607

  15. Unidirectional movement of an actin filament taking advantage of temperature gradients.

    PubMed

    Kawaguchi, Tomoaki; Honda, Hajime

    2007-01-01

    An actin filament with heat acceptors attached to its Cys374 residue in each actin monomer could move unidirectionally even under heat pulsation alone, while in the total absence of both ATP and myosin. The prime driver for the movement was temperature gradients operating between locally heated portions on an actin filament and its cooler surroundings. In this report, we investigated how the mitigation of the temperature gradients induces a unidirectional movement of an actin filament. We then observed the transversal fluctuations of the filament in response to heat pulsation and their transition into longitudinally unidirectional movement. The transition was significantly accelerated when Cys374 and Lys336 were simultaneously excited within an actin monomer. These results suggest that the mitigation of the temperature gradients within each actin monomer first went through the energy transformation to transversal fluctuations of the filament, and then followed by the transformation further down to longitudinal movements of the filament. The faster mitigation of temperature gradients within actin monomer helps build up the transition from the transversal to longitudinal movements of the filament by coordinating the interaction between the neighboring monomers. PMID:17030086

  16. Biophysical characterization of cofilin-induced extension-torsion coupling in actin filaments.

    PubMed

    Kim, Jae In; Kwon, Junpyo; Baek, Inchul; Na, Sungsoo

    2016-06-14

    Cofilin makes the actin filament flexible and thermally unstable by disassembling the filament and inducing bending and torsional compliance. Actin monomers bound to cofilin are able to chemically and mechanically interact in response to external forces. In this study, we performed two molecular dynamics tensile tests for actin and cofilactin filaments under identical conditions. Surprisingly, cofilactin filaments were found to be twisted, generating shear stress caused by torsion. Additionally, analysis by plane stress assumption indicated that the extension-torsion coupling effect increases the amount of principal stress by 10%. Using elasticity and solid mechanics theories, our study elucidates the role of cofilin in the disassembly of actin filaments under tensile forces. PMID:27143106

  17. Kinetics and thermodynamics of phalloidin binding to actin filaments from three divergent species.

    PubMed

    De La Cruz, E M; Pollard, T D

    1996-11-12

    We compared the kinetics and thermodynamics of rhodamine phalloidin binding to actin purified from rabbit skeletal muscle, Acanthamoeba castellanii, and Saccharomyces cerevisiae in 50 mM KCl, 1 mM MgCl2, and pH 7.0 buffer at 22 degrees C. Filaments of S. cerevisiae actin bind rhodamine phalloidin more weakly than Acanthamoeba and rabbit skeletal muscle actin filaments due to a more rapid dissociation rate in spite of a significantly faster association rate constant. The higher dissociation rate constant and lower binding affinity of rhodamine phalloidin for S. cerevisiae actin filaments provide a quantitative explanation for the inefficient staining of yeast actin filaments, compared with that of rabbit skeletal muscle actin filaments [Kron et al. (1992) Proc. Natl. Acad. Sci. U.S.A. 89, 4466-4470]. The temperature dependence of the rate constants was interpreted according to transition state theory. There is a small enthalpic difference (delta H++) between the ground states and the transition state. Consequently, the free energy of activation (delta G++) for association and dissociation of rhodamine phalloidin is dominated by entropic changes (delta S++). At equilibrium, rhodamine phalloidin binding generates a positive entropy change (delta S0). The rates of rhodamine phalloidin binding are independent of the pH, ionic strength, and filament length. Rhodamine covalently bound decreases the association rate and affinity of phalloidin for actin. The association rate constant is low for both phalloidin and rhodamine phalloidin because the filaments must undergo conformational changes (i.e. "breathe") to expose the phalloidin binding site [De La Cruz, E. M., & Pollard, T. D. (1994) Biochemistry 33, 14387-14392]. Raising the solvent microviscosity, but not the macroviscosity, dampens these conformational fluctuations, and phalloidin binding kinetics are inhibited. Yeast actin filaments bind rhodamine phalloidin more rapidly, suggesting that perhaps they are more

  18. 2E4 (Kaptin): A novel actin-associated protein from human blood platelets found in lamellipodia and the tips of the stereocilia of the inner ear

    PubMed Central

    Bearer, Elaine L.; Abraham, Manoj T.

    2010-01-01

    Actin – 2E4/kaptin – platelet activation – stereocilia – sensory epithelium Platelet activation, crucial for hemostasis, requires actin polymerization, yet the molecular mechanisms by which localized actin polymerization is mediated are not clear. Here we report the characterization of a novel actin-binding protein. 2E4, originally isolated from human blood platelets and likely to be involved in the actin rearrangements occurring during activation. 2E4 binds to filamentous (F)-actin by F-actin affinity chromatography and is eluted from F-actin affinity columns and extracted from cells with ATP. Its presence at the leading edge of platelets spread on glass and in the lamellipodia of motile fibroblasts suggests a role in actin dynamics. Using localization to obtain clues about function, we stained the sensory epithelium of the embryonic inner car to determine whether 2E4 is at the barbed end of actin filaments during their elongation. Indeed, 2E4 was present at the tips of the elongating stereocilium. 2E4 is novel by DNA sequence and has no identifiable structural motifs. Its unusual amino acid sequence, its ATP-sensitive actin association and its location at sites of actin polymerization in cells suggest 2E4 plays a unique role in the actin rearrangements that accompany platelet activation and stereocilia formation. PMID:10099934

  19. Structural basis of thymosin-β4/profilin exchange leading to actin filament polymerization

    PubMed Central

    Xue, Bo; Leyrat, Cedric; Grimes, Jonathan M.; Robinson, Robert C.

    2014-01-01

    Thymosin-β4 (Tβ4) and profilin are the two major sequestering proteins that maintain the pool of monomeric actin (G-actin) within cells of higher eukaryotes. Tβ4 prevents G-actin from joining a filament, whereas profilin:actin only supports barbed-end elongation. Here, we report two Tβ4:actin structures. The first structure shows that Tβ4 has two helices that bind at the barbed and pointed faces of G-actin, preventing the incorporation of the bound G-actin into a filament. The second structure displays a more open nucleotide binding cleft on G-actin, which is typical of profilin:actin structures, with a concomitant disruption of the Tβ4 C-terminal helix interaction. These structures, combined with biochemical assays and molecular dynamics simulations, show that the exchange of bound actin between Tβ4 and profilin involves both steric and allosteric components. The sensitivity of profilin to the conformational state of actin indicates a similar allosteric mechanism for the dissociation of profilin during filament elongation. PMID:25313062

  20. Arabidopsis Actin Depolymerizing Factor4 Modulates the Stochastic Dynamic Behavior of Actin Filaments in the Cortical Array of Epidermal Cells[C][W

    PubMed Central

    Henty, Jessica L.; Bledsoe, Samuel W.; Khurana, Parul; Meagher, Richard B.; Day, Brad; Blanchoin, Laurent; Staiger, Christopher J.

    2011-01-01

    Actin filament arrays are constantly remodeled as the needs of cells change as well as during responses to biotic and abiotic stimuli. Previous studies demonstrate that many single actin filaments in the cortical array of living Arabidopsis thaliana epidermal cells undergo stochastic dynamics, a combination of rapid growth balanced by disassembly from prolific severing activity. Filament turnover and dynamics are well understood from in vitro biochemical analyses and simple reconstituted systems. However, the identification in living cells of the molecular players involved in controlling actin dynamics awaits the use of model systems, especially ones where the power of genetics can be combined with imaging of individual actin filaments at high spatial and temporal resolution. Here, we test the hypothesis that actin depolymerizing factor (ADF)/cofilin contributes to stochastic filament severing and facilitates actin turnover. A knockout mutant for Arabidopsis ADF4 has longer hypocotyls and epidermal cells when compared with wild-type seedlings. This correlates with a change in actin filament architecture; cytoskeletal arrays in adf4 cells are significantly more bundled and less dense than in wild-type cells. Several parameters of single actin filament turnover are also altered. Notably, adf4 mutant cells have a 2.5-fold reduced severing frequency as well as significantly increased actin filament lengths and lifetimes. Thus, we provide evidence that ADF4 contributes to the stochastic dynamic turnover of actin filaments in plant cells. PMID:22010035

  1. Reorganization of actin filaments by ADF/cofilin is involved in formation of microtubule structures during Xenopus oocyte maturation

    PubMed Central

    Yamagishi, Yuka; Abe, Hiroshi

    2015-01-01

    We examined the reorganization of actin filaments and microtubules during Xenopus oocyte maturation. Surrounding the germinal vesicle (GV) in immature oocytes, the cytoplasmic actin filaments reorganized to accumulate beneath the vegetal side of the GV, where the microtubule-organizing center and transient microtubule array (MTOC-TMA) assembled, just before GV breakdown (GVBD). Immediately after GVBD, both Xenopus ADF/cofilin (XAC) and its phosphatase Slingshot (XSSH) accumulated into the nuclei and intranuclear actin filaments disassembled from the vegetal side with the shrinkage of the GV. As the MTOC-TMA developed well, cytoplasmic actin filaments were retained at the MTOC-TMA base region. Suppression of XAC dephosphorylation by anti-XSSH antibody injection inhibited both actin filament reorganization and proper formation and localization of both the MTOC-TMA and meiotic spindles. Stabilization of actin filaments by phalloidin also inhibited formation of the MTOC-TMA and disassembly of intranuclear actin filaments without affecting nuclear shrinkage. Nocodazole also caused the MTOC-TMA and the cytoplasmic actin filaments at its base region to disappear, which further impeded disassembly of intranuclear actin filaments from the vegetal side. XAC appears to reorganize cytoplasmic actin filaments required for precise assembly of the MTOC and, together with the MTOC-TMA, regulate the intranuclear actin filament disassembly essential for meiotic spindle formation. PMID:26424802

  2. Actin Filaments and Myosin I Alpha Cooperate with Microtubules for the Movement of LysosomesV⃞

    PubMed Central

    Cordonnier, Marie-Neige; Dauzonne, Daniel; Louvard, Daniel; Coudrier, Evelyne

    2001-01-01

    An earlier report suggested that actin and myosin I alpha (MMIα), a myosin associated with endosomes and lysosomes, were involved in the delivery of internalized molecules to lysosomes. To determine whether actin and MMIα were involved in the movement of lysosomes, we analyzed by time-lapse video microscopy the dynamic of lysosomes in living mouse hepatoma cells (BWTG3 cells), producing green fluorescent protein actin or a nonfunctional domain of MMIα. In GFP-actin cells, lysosomes displayed a combination of rapid long-range directional movements dependent on microtubules, short random movements, and pauses, sometimes on actin filaments. We showed that the inhibition of the dynamics of actin filaments by cytochalasin D increased pauses of lysosomes on actin structures, while depolymerization of actin filaments using latrunculin A increased the mobility of lysosomes but impaired the directionality of their long-range movements. The production of a nonfunctional domain of MMIα impaired the intracellular distribution of lysosomes and the directionality of their long-range movements. Altogether, our observations indicate for the first time that both actin filaments and MMIα contribute to the movement of lysosomes in cooperation with microtubules and their associated molecular motors. PMID:11739797

  3. The Actin and Myosin Filaments of Human and Bovine Blood Platelets

    PubMed Central

    Zucker-Franklin, Dorothea; Grusky, George

    1972-01-01

    The contractility of platelets has been attributed to an actomyosin-like protein which has been well defined on a physicochemical basis. Moreover, platelets contain ±80 A filaments which resemble actin filaments in smooth muscle. Studies were undertaken on human and bovine platelets to better define the morphologic structures which may subserve this contractile function. In order to identify actin, the ability of the filaments to react with heavy meromyosin (HMM) was tested. Accordingly, platelets were glycerinated and treated with HMM. In addition, platelet actin was extracted, reacted with HMM, and examined by negative staining. In both instances typical arrowhead structures with clearly defined polarity and a periodicity of ±360 A formed. As is the case with purified muscle actin, the complexes were dissociable with Mg-ATP. The formation of myosin-like filaments was observed when osmotically shocked platelets were incubated with MgCl2 and excess ATP. These “thick” filaments measured 250-300 A in width, tapered at both ends and often occurred in clumps. They resembled aggregates of thick filaments described in contracted smooth muscle. Extraction of platelets by methods suitable for the demonstration of myosin showed filaments with an average length of 0.3 μ, a smooth shaft, and frayed or bulbous ends. These appeared identical to those seen in synthetically prepared myosin of striated muscle. It is suggested that the filaments described here represent the actin and myosin of platelets. Images PMID:4333023

  4. Structural characterization of a capping protein interaction motif defines a family of actin filament regulators

    PubMed Central

    Hernandez-Valladares, Maria; Kim, Taekyung; Kannan, Balakrishnan; Tung, Alvin; Aguda, Adeleke H; Larsson, Mårten; Cooper, John A; Robinson, Robert C

    2011-01-01

    Capping protein (CP) regulates actin dynamics by binding the barbed ends of actin filaments. Removal of CP may be one means to harness actin polymerization for processes such as cell movement and endocytosis. Here we structurally and biochemically investigated a CP interaction (CPI) motif present in the otherwise unrelated proteins CARMIL and CD2AP. The CPI motif wraps around the stalk of the mushroom-shaped CP at a site distant from the actin-binding interface, which lies on the top of the mushroom cap. We propose that the CPI motif may act as an allosteric modulator, restricting CP to a low-affinity, filament-binding conformation. Structure-based sequence alignments extend the CPI motif–containing family to include CIN85, CKIP-1, CapZIP and a relatively uncharacterized protein, WASHCAP (FAM21). Peptides comprising these CPI motifs are able to inhibit CP and to uncap CP-bound actin filaments. PMID:20357771

  5. Image analysis shows that variations in actin crossover spacings are random, not compensatory.

    PubMed Central

    Egelman, E H; DeRosier, D J

    1992-01-01

    A recent paper by Bremer et al. (1991. J. Cell Biol. 115:689-703) has argued that the random angular disorder model for actin is wrong, and that the variations in crossover spacing observed in electron micrographs of F-actin filaments can be best explained by a compensatory disorder caused by the lateral slipping of the twin (or two-start) strands which comprise the actin filament. We have analyzed the images of F-actin presented in Bremer et al. and show that their data argues against compensatory disorder and in favor of random disorder, independent of the cause of the disorder. We also revise our estimate of the angular component and show that the magnitude of this disorder is about 5-6 degrees per subunit, which is less than the 10-12 degrees that we originally proposed. PMID:1477281

  6. High Speed Depolymerization at Actin Filament Ends Jointly Catalyzed by Twinfilin and Srv2/CAP

    PubMed Central

    Johnston, Adam B.; Collins, Agnieszka; Goode, Bruce L.

    2015-01-01

    Purified actin filaments depolymerize slowly, and cytosolic conditions strongly favor actin assembly over disassembly, which has left our understanding of how actin filaments are rapidly turned over in vivo incomplete 1,2. One mechanism for driving filament disassembly is severing by factors such as Cofilin. However, even after severing, pointed end depolymerization remains slow and unable to fully account for observed rates of actin filament turnover in vivo. Here we describe a mechanism by which Twinfilin and Cyclase-associated protein work in concert to accelerate depolymerization of actin filaments by 3-fold and 17-fold at their barbed and pointed ends, respectively. This mechanism occurs even under assembly conditions, allowing reconstitution and direct visualization of individual filaments undergoing tunable, accelerated treadmilling. Further, we use specific mutations to demonstrate that this activity is critical for Twinfilin function in vivo. These findings fill a major gap in our knowledge of mechanisms, and suggest that depolymerization and severing may be deployed separately or together to control the dynamics and architecture of distinct actin networks. PMID:26458246

  7. ER sheet persistence is coupled to myosin 1c-regulated dynamic actin filament arrays.

    PubMed

    Joensuu, Merja; Belevich, Ilya; Rämö, Olli; Nevzorov, Ilya; Vihinen, Helena; Puhka, Maija; Witkos, Tomasz M; Lowe, Martin; Vartiainen, Maria K; Jokitalo, Eija

    2014-04-01

    The endoplasmic reticulum (ER) comprises a dynamic three-dimensional (3D) network with diverse structural and functional domains. Proper ER operation requires an intricate balance within and between dynamics, morphology, and functions, but how these processes are coupled in cells has been unclear. Using live-cell imaging and 3D electron microscopy, we identify a specific subset of actin filaments localizing to polygons defined by ER sheets and tubules and describe a role for these actin arrays in ER sheet persistence and, thereby, in maintenance of the characteristic network architecture by showing that actin depolymerization leads to increased sheet fluctuation and transformations and results in small and less abundant sheet remnants and a defective ER network distribution. Furthermore, we identify myosin 1c localizing to the ER-associated actin filament arrays and reveal a novel role for myosin 1c in regulating these actin structures, as myosin 1c manipulations lead to loss of the actin filaments and to similar ER phenotype as observed after actin depolymerization. We propose that ER-associated actin filaments have a role in ER sheet persistence regulation and thus support the maintenance of sheets as a stationary subdomain of the dynamic ER network. PMID:24523293

  8. ER sheet persistence is coupled to myosin 1c–regulated dynamic actin filament arrays

    PubMed Central

    Joensuu, Merja; Belevich, Ilya; Rämö, Olli; Nevzorov, Ilya; Vihinen, Helena; Puhka, Maija; Witkos, Tomasz M.; Lowe, Martin; Vartiainen, Maria K.; Jokitalo, Eija

    2014-01-01

    The endoplasmic reticulum (ER) comprises a dynamic three-dimensional (3D) network with diverse structural and functional domains. Proper ER operation requires an intricate balance within and between dynamics, morphology, and functions, but how these processes are coupled in cells has been unclear. Using live-cell imaging and 3D electron microscopy, we identify a specific subset of actin filaments localizing to polygons defined by ER sheets and tubules and describe a role for these actin arrays in ER sheet persistence and, thereby, in maintenance of the characteristic network architecture by showing that actin depolymerization leads to increased sheet fluctuation and transformations and results in small and less abundant sheet remnants and a defective ER network distribution. Furthermore, we identify myosin 1c localizing to the ER-associated actin filament arrays and reveal a novel role for myosin 1c in regulating these actin structures, as myosin 1c manipulations lead to loss of the actin filaments and to similar ER phenotype as observed after actin depolymerization. We propose that ER-associated actin filaments have a role in ER sheet persistence regulation and thus support the maintenance of sheets as a stationary subdomain of the dynamic ER network. PMID:24523293

  9. Dendritic Actin Filament Nucleation Causes Traveling Waves and Patches

    NASA Astrophysics Data System (ADS)

    Carlsson, Anders E.

    2010-06-01

    The polymerization of actin via branching at a cell membrane containing nucleation-promoting factors is simulated using a stochastic-growth methodology. The polymerized-actin distribution displays three types of behavior: (a) traveling waves, (b) moving patches, and (c) random fluctuations. Increasing actin concentration causes a transition from patches to waves. The waves and patches move by a treadmilling mechanism not involving myosin II. The effects of downregulation of key proteins on actin wave behavior are evaluated.

  10. Fullerenol Nanoparticles with Structural Activity Induce Variable Intracellular Actin Filament Morphologies.

    PubMed

    Jin, Junjiang; Dong, Ying; Wang, Ying; Xia, Lin; Gu, Weihong; Bai, Xue; Chang, Yanan; Zhang, Mingyi; Chen, Kui; Li, Juan; Zhao, Lina; Xing, Gengmei

    2016-06-01

    Fullerenol nanoparticles are promising for various biological applications; many studies have shown that they induce variable and diverse biological effects including side effects. Separation and purification of two fractions of fullerenols has demonstrated that they have varied chemical structures on the surfaces of their carbon cages. Actin is an important structural protein that is able to transform functional structures under varied physiological conditions. We assessed the abilities of the two fractions of fullerenols to attach to actin and induce variable morphological features in actin filament structures. Specifically the fullerenol fraction with a surface electric charge of -1.913 ± 0.008q (x10(-6) C) has percentages of C-OH and C=O on the carbon cage of 16.14 ± 0.60 and 17.55 ± 0.69. These features allow it to form intermolecular hydrogen bonds with actin at a stoichiometric ratio of four fullerenols per actin subunit. Molecular simulations revealed these specific binding sites and binding modes in atomic details in the interaction between the active fullerenol and actin filament. Conversely, these interactions were not possible for the other fraction of fullerenol with that percentages of C-OH and C=O on the carbon cage were 15.59 ± 0.01 and 1.94 ± 0.11. Neither sample induced appreciable cytotoxicity or acute cell death. After entering cells, active fullerenol binding to actin induces variable morphological features and may transform ATP-actin to ADP-actin. These changes facilitate the binding of ADF/cofilin, allowing cofilin to sever actin filaments to form cofilin/actin/fullerenol rods. Our findings suggest that fullerenol with structural activity binding disturbs actin filament structure, which may inhibit locomotion of cell or induce chronic side effects in to cells. PMID:27319217

  11. Dynamics of Actin Cables in Polarized Growth of the Filamentous Fungus Aspergillus nidulans

    PubMed Central

    Bergs, Anna; Ishitsuka, Yuji; Evangelinos, Minoas; Nienhaus, G. U.; Takeshita, Norio

    2016-01-01

    Highly polarized growth of filamentous fungi requires a continuous supply of proteins and lipids to the hyphal tip. This transport is managed by vesicle trafficking via the actin and microtubule cytoskeletons and their associated motor proteins. Particularly, actin cables originating from the hyphal tip are essential for hyphal growth. Although, specific marker proteins have been developed to visualize actin cables in filamentous fungi, the exact organization and dynamics of actin cables has remained elusive. Here, we observed actin cables using tropomyosin (TpmA) and Lifeact fused to fluorescent proteins in living Aspergillus nidulans hyphae and studied the dynamics and regulation. GFP tagged TpmA visualized dynamic actin cables formed from the hyphal tip with cycles of elongation and shrinkage. The elongation and shrinkage rates of actin cables were similar and approximately 0.6 μm/s. Comparison of actin markers revealed that high concentrations of Lifeact reduced actin dynamics. Simultaneous visualization of actin cables and microtubules suggests temporally and spatially coordinated polymerization and depolymerization between the two cytoskeletons. Our results provide new insights into the molecular mechanism of ordered polarized growth regulated by actin cables and microtubules. PMID:27242709

  12. Dynamics of Actin Cables in Polarized Growth of the Filamentous Fungus Aspergillus nidulans.

    PubMed

    Bergs, Anna; Ishitsuka, Yuji; Evangelinos, Minoas; Nienhaus, G U; Takeshita, Norio

    2016-01-01

    Highly polarized growth of filamentous fungi requires a continuous supply of proteins and lipids to the hyphal tip. This transport is managed by vesicle trafficking via the actin and microtubule cytoskeletons and their associated motor proteins. Particularly, actin cables originating from the hyphal tip are essential for hyphal growth. Although, specific marker proteins have been developed to visualize actin cables in filamentous fungi, the exact organization and dynamics of actin cables has remained elusive. Here, we observed actin cables using tropomyosin (TpmA) and Lifeact fused to fluorescent proteins in living Aspergillus nidulans hyphae and studied the dynamics and regulation. GFP tagged TpmA visualized dynamic actin cables formed from the hyphal tip with cycles of elongation and shrinkage. The elongation and shrinkage rates of actin cables were similar and approximately 0.6 μm/s. Comparison of actin markers revealed that high concentrations of Lifeact reduced actin dynamics. Simultaneous visualization of actin cables and microtubules suggests temporally and spatially coordinated polymerization and depolymerization between the two cytoskeletons. Our results provide new insights into the molecular mechanism of ordered polarized growth regulated by actin cables and microtubules. PMID:27242709

  13. Cations Stiffen Actin Filaments by Adhering a Key Structural Element to Adjacent Subunits.

    PubMed

    Hocky, Glen M; Baker, Joseph L; Bradley, Michael J; Sinitskiy, Anton V; De La Cruz, Enrique M; Voth, Gregory A

    2016-05-26

    Ions regulate the assembly and mechanical properties of actin filaments. Recent work using structural bioinformatics and site-specific mutagenesis favors the existence of two discrete and specific divalent cation binding sites on actin filaments, positioned in the long axis between actin subunits. Cation binding at one site drives polymerization, while the other modulates filament stiffness and plays a role in filament severing by the regulatory protein, cofilin. Existing structural methods have not been able to resolve filament-associated cations, and so in this work we turn to molecular dynamics simulations to suggest a candidate binding pocket geometry for each site and to elucidate the mechanism by which occupancy of the "stiffness site" affects filament mechanical properties. Incorporating a magnesium ion in the "polymerization site" does not seem to require any large-scale change to an actin subunit's conformation. Binding of a magnesium ion in the "stiffness site" adheres the actin DNase-binding loop (D-loop) to its long-axis neighbor, which increases the filament torsional stiffness and bending persistence length. Our analysis shows that bound D-loops occupy a smaller region of accessible conformational space. Cation occupancy buries key conserved residues of the D-loop, restricting accessibility to regulatory proteins and enzymes that target these amino acids. PMID:27146246

  14. Drosophila quail, a villin-related protein, bundles actin filaments in apoptotic nurse cells.

    PubMed

    Matova, N; Mahajan-Miklos, S; Mooseker, M S; Cooley, L

    1999-12-01

    Drosophila Quail protein is required for the completion of fast cytoplasm transport from nurse cells to the oocyte, an event critical for the production of viable oocytes. The abundant network of cytoplasmic filamentous actin, established at the onset of fast transport, is absent in quail mutant egg chambers. Previously, we showed that Quail is a germline-specific protein with sequence homology to villin, a vertebrate actin-regulating protein. In this study, we combined biochemical experiments with observations in egg chambers to define more precisely the function of this protein in the regulation of actin-bundle assembly in nurse cells. We report that recombinant Quail can bind and bundle filamentous actin in vitro in a manner similar to villin at a physiological calcium concentration. In contrast to villin, Quail is unable to sever or cap filamentous actin, or to promote nucleation of new actin filaments at a high calcium concentration. Instead, Quail bundles the filaments regardless of the calcium concentration. In vivo, the assembly of nurse-cell actin bundles is accompanied by extensive perforation of the nurse-cell nuclear envelopes, and both of these phenomena are manifestations of nurse-cell apoptosis. To investigate whether free calcium levels are affected during apoptosis, we loaded egg chambers with the calcium indicator Indo-1. Our observations indicate a rise in free calcium in the nurse-cell cytoplasm coincident with the permeabilization of the nuclear envelopes. We also show that human villin expressed in the Drosophila germline could sense elevated cytoplasmic calcium; in nurse cells with reduced levels of Quail protein, villin interfered with actin-bundle stability. We conclude that Quail efficiently assembles actin filaments into bundles in nurse cells and maintains their stability under fluctuating free calcium levels. We also propose a developmental model for the fast phase of cytoplasm transport incorporating findings presented in this study

  15. The 46/50 kDa phosphoprotein VASP purified from human platelets is a novel protein associated with actin filaments and focal contacts.

    PubMed Central

    Reinhard, M; Halbrügge, M; Scheer, U; Wiegand, C; Jockusch, B M; Walter, U

    1992-01-01

    Vasoactive agents which elevate either cGMP or cAMP inhibit platelet activation by pathways sharing at least one component, the 46/50 kDa vasodilator-stimulated phosphoprotein (VASP). VASP is stoichiometrically phosphorylated by both cGMP-dependent and cAMP-dependent protein kinases in intact human platelets, and its phosphorylation correlates very well with platelet inhibition caused by cGMP- and cAMP-elevating agents. Here we report that in human platelets spread on glass, VASP is associated predominantly with the distal parts of radial microfilament bundles and with microfilaments outlining the periphery, whereas less VASP is associated with a central microfilamentous ring. VASP is also detectable in a variety of different cell types including fibroblasts and epithelial cells. In fibroblasts, VASP is concentrated at focal contact areas, along microfilament bundles (stress fibres) in a punctate pattern, in the periphery of protruding lamellae, and is phosphorylated by cGMP- and cAMP-dependent protein kinases in response to appropriate stimuli. Evidence for the direct binding of VASP to F-actin is also presented. The data demonstrate that VASP is a novel phosphoprotein associated with actin filaments and focal contact areas, i.e. transmembrane junctions between microfilaments and the extracellular matrix. Images PMID:1318192

  16. H2O2-treated actin: assembly and polymer interactions with cross-linking proteins.

    PubMed Central

    DalleDonne, I; Milzani, A; Colombo, R

    1995-01-01

    During inflammation, hydrogen peroxide, produced by polymorphonuclear leukocytes, provokes cell death mainly by disarranging filamentous (polymerized) actin (F-actin). To show the molecular mechanism(s) by which hydrogen peroxide could alter actin dynamics, we analyzed the ability of H2O2-treated actin samples to polymerize as well as the suitability of actin polymers (from oxidized monomers) to interact with cross-linking proteins. H2O2-treated monomeric (globular) actin (G-actin) shows an altered time course of polymerization. The increase in the lag phase and the lowering in both the polymerization rate and the polymerization extent have been evidenced. Furthermore, steady-state actin polymers, from oxidized monomers, are more fragmented than control polymers. This seems to be ascribable to the enhanced fragility of oxidized filaments rather than to the increase in the nucleation activity, which markedly falls. These facts; along with the unsuitability of actin polymers from oxidized monomers to interact with both filamin and alpha-actinin, suggest that hydrogen peroxide influences actin dynamics mainly by changing the F-actin structure. H2O2, via the oxidation of actin thiols (in particular, the sulfhydryl group of Cys-374), likely alters the actin C-terminus, influencing both subunit/subunit interactions and the spatial structure of the binding sites for cross-linking proteins in F-actin. We suggest that most of the effects of hydrogen peroxide on actin could be explained in the light of the "structural connectivity," demonstrated previously in actin. Images FIGURE 3 FIGURE 9 PMID:8599677

  17. The Actin Filament-Binding Protein Coronin Regulates Motility in Plasmodium Sporozoites

    PubMed Central

    Bane, Kartik S.; Singer, Mirko; Reinig, Miriam; Klug, Dennis; Heiss, Kirsten; Baum, Jake; Mueller, Ann-Kristin; Frischknecht, Friedrich

    2016-01-01

    Parasites causing malaria need to migrate in order to penetrate tissue barriers and enter host cells. Here we show that the actin filament-binding protein coronin regulates gliding motility in Plasmodium berghei sporozoites, the highly motile forms of a rodent malaria-causing parasite transmitted by mosquitoes. Parasites lacking coronin show motility defects that impair colonization of the mosquito salivary glands but not migration in the skin, yet result in decreased transmission efficiency. In non-motile sporozoites low calcium concentrations mediate actin-independent coronin localization to the periphery. Engagement of extracellular ligands triggers an intracellular calcium release followed by the actin-dependent relocalization of coronin to the rear and initiation of motility. Mutational analysis and imaging suggest that coronin organizes actin filaments for productive motility. Using coronin-mCherry as a marker for the presence of actin filaments we found that protein kinase A contributes to actin filament disassembly. We finally speculate that calcium and cAMP-mediated signaling regulate a switch from rapid parasite motility to host cell invasion by differentially influencing actin dynamics. PMID:27409081

  18. An Actin Filament Population Defined by the Tropomyosin Tpm3.1 Regulates Glucose Uptake

    PubMed Central

    Kee, Anthony J.; Yang, Lingyan; Lucas, Christine A.; Greenberg, Michael J.; Martel, Nick; Leong, Gary M.; Hughes, William E.; Cooney, Gregory J.; James, David E.; Ostap, E. Michael; Han, Weiping; Gunning, Peter W.; Hardeman, Edna C.

    2016-01-01

    Actin has an ill-defined role in the trafficking of GLUT4 glucose transporter vesicles to the plasma membrane (PM). We have identified novel actin filaments defined by the tropomyosin Tpm3.1 at glucose uptake sites in white adipose tissue (WAT) and skeletal muscle. In Tpm 3.1-overexpressing mice, insulin-stimulated glucose uptake was increased; while Tpm3.1-null mice they were more sensitive to the impact of high-fat diet on glucose uptake. Inhibition of Tpm3.1 function in 3T3-L1 adipocytes abrogates insulin-stimulated GLUT4 translocation and glucose uptake. In WAT, the amount of filamentous actin is determined by Tpm3.1 levels and is paralleled by changes in exocyst component (sec8) and Myo1c levels. In adipocytes, Tpm3.1 localizes with MyoIIA, but not Myo1c, and it inhibits Myo1c binding to actin. We propose that Tpm3.1 determines the amount of cortical actin that can engage MyoIIA and generate contractile force, and in parallel limits the interaction of Myo1c with actin filaments. The balance between these actin filament populations may determine the efficiency of movement and/or fusion of GLUT4 vesicles with the PM. PMID:25783006

  19. Antibodies covalently immobilized on actin filaments for fast myosin driven analyte transport.

    PubMed

    Kumar, Saroj; ten Siethoff, Lasse; Persson, Malin; Lard, Mercy; te Kronnie, Geertruy; Linke, Heiner; Månsson, Alf

    2012-01-01

    Biosensors would benefit from further miniaturization, increased detection rate and independence from external pumps and other bulky equipment. Whereas transportation systems built around molecular motors and cytoskeletal filaments hold significant promise in the latter regard, recent proof-of-principle devices based on the microtubule-kinesin motor system have not matched the speed of existing methods. An attractive solution to overcome this limitation would be the use of myosin driven propulsion of actin filaments which offers motility one order of magnitude faster than the kinesin-microtubule system. Here, we realized a necessary requirement for the use of the actomyosin system in biosensing devices, namely covalent attachment of antibodies to actin filaments using heterobifunctional cross-linkers. We also demonstrated consistent and rapid myosin II driven transport where velocity and the fraction of motile actin filaments was negligibly affected by the presence of antibody-antigen complexes at rather high density (>20 µm(-1)). The results, however, also demonstrated that it was challenging to consistently achieve high density of functional antibodies along the actin filament, and optimization of the covalent coupling procedure to increase labeling density should be a major focus for future work. Despite the remaining challenges, the reported advances are important steps towards considerably faster nanoseparation than shown for previous molecular motor based devices, and enhanced miniaturization because of high bending flexibility of actin filaments. PMID:23056279

  20. Antibodies Covalently Immobilized on Actin Filaments for Fast Myosin Driven Analyte Transport

    PubMed Central

    Kumar, Saroj; ten Siethoff, Lasse; Persson, Malin; Lard, Mercy; te Kronnie, Geertruy; Linke, Heiner; Månsson, Alf

    2012-01-01

    Biosensors would benefit from further miniaturization, increased detection rate and independence from external pumps and other bulky equipment. Whereas transportation systems built around molecular motors and cytoskeletal filaments hold significant promise in the latter regard, recent proof-of-principle devices based on the microtubule-kinesin motor system have not matched the speed of existing methods. An attractive solution to overcome this limitation would be the use of myosin driven propulsion of actin filaments which offers motility one order of magnitude faster than the kinesin-microtubule system. Here, we realized a necessary requirement for the use of the actomyosin system in biosensing devices, namely covalent attachment of antibodies to actin filaments using heterobifunctional cross-linkers. We also demonstrated consistent and rapid myosin II driven transport where velocity and the fraction of motile actin filaments was negligibly affected by the presence of antibody-antigen complexes at rather high density (>20 µm−1). The results, however, also demonstrated that it was challenging to consistently achieve high density of functional antibodies along the actin filament, and optimization of the covalent coupling procedure to increase labeling density should be a major focus for future work. Despite the remaining challenges, the reported advances are important steps towards considerably faster nanoseparation than shown for previous molecular motor based devices, and enhanced miniaturization because of high bending flexibility of actin filaments. PMID:23056279

  1. Three-dimensional architecture of actin filaments in Listeria monocytogenes comet tails

    PubMed Central

    Jasnin, Marion; Asano, Shoh; Gouin, Edith; Hegerl, Reiner; Plitzko, Jürgen M.; Villa, Elizabeth; Cossart, Pascale; Baumeister, Wolfgang

    2013-01-01

    The intracellular bacterial pathogen Listeria monocytogenes is capable of remodelling the actin cytoskeleton of its host cells such that “comet tails” are assembled powering its movement within cells and enabling cell-to-cell spread. We used cryo-electron tomography to visualize the 3D structure of the comet tails in situ at the level of individual filaments. We have performed a quantitative analysis of their supramolecular architecture revealing the existence of bundles of nearly parallel hexagonally packed filaments with spacings of 12–13 nm. Similar configurations were observed in stress fibers and filopodia, suggesting that nanoscopic bundles are a generic feature of actin filament assemblies involved in motility; presumably, they provide the necessary stiffness. We propose a mechanism for the initiation of comet tail assembly and two scenarios that occur either independently or in concert for the ensuing actin-based motility, both emphasizing the role of filament bundling. PMID:24306931

  2. Molecular dynamics simulation of a myosin subfragment-1 docking with an actin filament.

    PubMed

    Masuda, Tadashi

    2013-09-01

    Myosins are typical molecular motor proteins, which convert the chemical energy of ATP into mechanical work. The fundamental mechanism of this energy conversion is still unknown. To explain the experimental results observed in molecular motors, Masuda has proposed a theory called the "Driven by Detachment (DbD)" mechanism for the working principle of myosins. Based on this theory, the energy used during the power stroke of the myosins originates from the attractive force between a detached myosin head and an actin filament, and does not directly arise from the energy of ATP. According to this theory, every step in the myosin working process may be reproduced by molecular dynamics (MD) simulations, except for the ATP hydrolysis step. Therefore, MD simulations were conducted to reproduce the docking process of a myosin subfragment-1 (S1) against an actin filament. A myosin S1 directed toward the barbed end of an actin filament was placed at three different positions by shifting it away from the filament axis. After 30 ns of MD simulations, in three cases out of ten trials on average, the myosin made a close contact with two actin monomers by changing the positions and the orientation of both the myosin and the actin as predicted in previous studies. Once the docking was achieved, the distance between the myosin and the actin showed smaller fluctuations, indicating that the docking is stable over time. If the docking was not achieved, the myosin moved randomly around the initial position or moved away from the actin filament. MD simulations thus successfully reproduced the docking of a myosin S1 with an actin filament. By extending the similar MD simulations to the other steps of the myosin working process, the validity of the DbD theory may be computationally demonstrated. PMID:23791790

  3. Synthetic Chondramide A Analogues Stabilize Filamentous Actin and Block Invasion by Toxoplasma gondii

    PubMed Central

    2013-01-01

    Apicomplexan parasites such as Toxoplasma gondii rely on actin-based motility to cross biological barriers and invade host cells. Key structural and biochemical differences in host and parasite actins make this an attractive target for small-molecule inhibitors. Here we took advantage of recent advances in the synthesis of cyclic depsipeptide compounds that stabilize filamentous actin to test the ability of chondramides to disrupt growth of T. gondii in vitro. Structural modeling of chondramide A (2) binding to an actin filament model revealed variations in the binding site between host and parasite actins. A series of 10 previously synthesized analogues (2b–k) with substitutions in the β-tyrosine moiety blocked parasite growth on host cell monolayers with EC50 values that ranged from 0.3 to 1.3 μM. In vitro polymerization assays using highly purified recombinant actin from T. gondii verified that synthetic and natural product chondramides target the actin cytoskeleton. Consistent with this, chondramide treatment blocked parasite invasion into host cells and was more rapidly effective than pyrimethamine, a standard therapeutic agent. Although the current compounds lack specificity for parasite vs host actin, these studies provide a platform for the future design and synthesis of synthetic cyclic peptide inhibitors that selectively disrupt actin dynamics in parasites. PMID:24020843

  4. Disrupted dynamics of F-actin and insulin granule fusion in INS-1 832/13 beta-cells exposed to glucotoxicity: partial restoration by glucagon-like peptide 1.

    PubMed

    Quinault, Aurore; Gausseres, Blandine; Bailbe, Danielle; Chebbah, Nella; Portha, Bernard; Movassat, Jamileh; Tourrel-Cuzin, Cecile

    2016-08-01

    Actin dynamics in pancreatic β-cells is involved in insulin exocytosis but the molecular mechanisms of this dynamics and its role in biphasic insulin secretion in pancreatic β-cells is largely unknown. Moreover, the impact of a glucotoxic environment on the sub-cortical actin network dynamics is poorly studied. In this study, we investigate the behavior of insulin granules and the subcortical actin network dynamics in INS-1 832/13 β-cells submitted to a normal or glucotoxic environment. Our results show that glucose stimulation leads to a reorganization of the subcortical actin network with a rupture of its interactions with t-SNARE proteins (Syntaxin 1A and SNAP-25), promoting insulin secretion in INS-1 832/13 β-cells. Prolonged exposure of INS-1 832/13 β-cells to high-glucose levels (glucotoxicity) leads to the densification of the cortical actin network, which prevents its reorganization under acute glucose, and diminishes the glucose-stimulated insulin secretion, as shown by the decreased number of fusion events. The most interesting in our results is the partial restoration by GLP-1 of the insulin secretion ability from high-glucose treated INS-1 832/13 cells. This improved insulin exocytosis is associated with partial restored actin dynamics and fusion events during the two phases of the secretion, with a preferential involvement of Epac2 signaling in the first phase and a rather involvement of PKA signaling in the second phase of insulin exocytosis. All these data provide some new insights into the mechanism by which current therapeutics may be improving insulin secretion. PMID:27101990

  5. Colchicine activates actin polymerization by microtubule depolymerization.

    PubMed

    Jung, H I; Shin, I; Park, Y M; Kang, K W; Ha, K S

    1997-06-30

    Swiss 3T3 fibroblasts were treated with the microtubule-disrupting agent colchicine to study any interaction between microtubule dynamics and actin polymerization. Colchicine increased the amount of filamentous actin (F-actin), in a dose- and time-dependent manner with a significant increase at 1 h by about 130% over control level. Confocal microscopic observation showed that colchicine increased F-actin contents by stress fiber formation without inducing membrane ruffling. Colchicine did not activate phospholipase C and phospholipase D, whereas lysophosphatidic acid did, indicating that colchicine may have a different mechanism of actin polymerization regulation from LPA. A variety of microtubule-disrupting agents stimulated actin polymerization in Swiss 3T3 and Rat-2 fibroblasts as did colchicine, but the microtubule-stabilizing agent taxol inhibited actin polymerization induced by the above microtubule-disrupting agents. In addition, colchicine-induced actin polymerization was blocked by two protein phosphatase inhibitors, okadaic acid and calyculin A. These results suggest that microtubule depolymerization activates stress fiber formation by serine/threonine dephosphorylation in fibroblasts. PMID:9264034

  6. Yeast actin filaments display ATP-dependent sliding movement over surfaces coated with rabbit muscle myosin.

    PubMed Central

    Kron, S J; Drubin, D G; Botstein, D; Spudich, J A

    1992-01-01

    The yeast Saccharomyces cerevisiae has been used to study the function of components of the actin cytoskeleton in vivo, mainly because it is easy to derive and characterize mutations affecting these proteins. In contrast, biochemical studies have generally used proteins derived from higher eukaryotes. We have devised a simple procedure to prepare, in high yield, homogeneous native actin from wild-type and act1 mutant yeast. Using intensified video fluorescence microscopy, we found that actin filaments polymerized from these preparations exhibit ATP-dependent sliding movement over surfaces coated with rabbit skeletal muscle myosin. The rates of sliding movement of the wild-type and mutant yeast actins were each about half that of rabbit skeletal muscle actin under similar conditions. We conclude that over the large evolutionary distance between yeast and mammals there has been significant conservation of actin function, specifically the ability to be moved by interaction with myosin. Images PMID:1533933

  7. Quantitative fluorescent speckle microscopy (QFSM) to measure actin dynamics.

    PubMed

    Mendoza, Michelle C; Besson, Sebastien; Danuser, Gaudenz

    2012-10-01

    Quantitative fluorescent speckle microscopy (QFSM) is a live-cell imaging method to analyze the dynamics of macromolecular assemblies with high spatial and temporal resolution. Its greatest successes were in the analysis of actin filament and adhesion dynamics in the context of cell migration and microtubule dynamics in interphase and the meiotic/mitotic spindle. Here, focus is on the former application to illustrate the procedures of FSM imaging and the computational image processing that extracts quantitative information from these experiments. QFSM is advantageous over other methods because it measures the movement and turnover kinetics of the actin filament (F-actin) network in living cells across the entire field of view. Experiments begin with the microinjection of fluorophore-labeled actin into cells, which generate a low ratio of fluorescently labeled to endogenously unlabeled actin monomers. Spinning disk confocal or wide-field imaging then visualizes fluorophore clusters (two to eight actin monomers) within the assembled F-actin network as speckles. QFSM software identifies and computationally tracks and utilizes the location, appearance, and disappearance of speckles to derive network flows and maps of the rate of filament assembly and disassembly. PMID:23042526

  8. Transport of ER vesicles on actin filaments in neurons by myosin V.

    PubMed

    Tabb, J S; Molyneaux, B J; Cohen, D L; Kuznetsov, S A; Langford, G M

    1998-11-01

    Axoplasmic organelles in the giant axon of the squid have been shown to move on both actin filaments and microtubules and to switch between actin filaments and microtubules during fast axonal transport. The objectives of this investigation were to identify the specific classes of axoplasmic organelles that move on actin filaments and the myosin motors involved. We developed a procedure to isolate endoplasmic reticulum (ER) from extruded axoplasm and to reconstitute its movement in vitro. The isolated ER vesicles moved on exogenous actin filaments adsorbed to coverslips in an ATP-dependent manner without the addition of soluble factors. Therefore myosin was tightly bound and not extracted during isolation. These vesicles were identified as smooth ER by use of an antibody to an ER-resident protein, ERcalcistorin/protein disulfide isomerase (EcaSt/PDI). Furthermore, an antibody to squid myosin V was used in immunogold EM studies to show that myosin V localized to these vesicles. The antibody was generated to a squid brain myosin (p196) that was classified as myosin V based on comparisons of amino acid sequences of tryptic peptides of this myosin with those of other known members of the myosin V family. Dual labeling with the squid myosin V antibody and a kinesin heavy chain antibody showed that the two motors colocalized on the same vesicles. Finally, antibody inhibition experiments were performed with two myosin V-specific antibodies to show that myosin V motor activity is required for transport of vesicles on actin filaments in axoplasm. One antibody was made to a peptide in the globular tail domain and the other to the globular head fragment of myosin V. Both antibodies inhibited vesicle transport on actin filaments by greater than 90% compared to controls. These studies provide the first direct evidence that ER vesicles are transported on actin filaments by myosin V. These data confirm the role of actin filaments in fast axonal transport and provide support for

  9. Live-cell imaging of actin dynamics reveals mechanisms of stereocilia length regulation in the inner ear.

    PubMed

    Drummond, Meghan C; Barzik, Melanie; Bird, Jonathan E; Zhang, Duan-Sun; Lechene, Claude P; Corey, David P; Cunningham, Lisa L; Friedman, Thomas B

    2015-01-01

    The maintenance of sensory hair cell stereocilia is critical for lifelong hearing; however, mechanisms of structural homeostasis remain poorly understood. Conflicting models propose that stereocilia F-actin cores are either continually renewed every 24-48 h via a treadmill or are stable, exceptionally long-lived structures. Here to distinguish between these models, we perform an unbiased survey of stereocilia actin dynamics in more than 500 utricle hair cells. Live-imaging EGFP-β-actin or dendra2-β-actin reveal stable F-actin cores with turnover and elongation restricted to stereocilia tips. Fixed-cell microscopy of wild-type and mutant β-actin demonstrates that incorporation of actin monomers into filaments is required for localization to stereocilia tips. Multi-isotope imaging mass spectrometry and live imaging of single differentiating hair cells capture stereociliogenesis and explain uniform incorporation of (15)N-labelled protein and EGFP-β-actin into nascent stereocilia. Collectively, our analyses support a model in which stereocilia actin cores are stable structures that incorporate new F-actin only at the distal tips. PMID:25898120

  10. Formation of an actin-like filament concurrent with the enzymatic synthesis of inorganic polyphosphate

    PubMed Central

    Gómez-García, María R.; Kornberg, Arthur

    2004-01-01

    Inorganic polyphosphate (poly P), a chain of hundreds of phosphate residues linked by ATP-like bonds, is found in every cell in nature and is commonly produced from ATP by poly P kinases (e.g., PPK1). Dictyostelium discoideum, the social slime mold, possesses a PPK activity (DdPPK1) with sequence similarity to bacterial PPKs. We find here a previously unrecognized PPK (DdPPK2) in D. discoideum with the sequences and properties of actin-related proteins (Arps) that are similar to muscle actins in size, properties, and globular-filamentous structural transitions. Significantly, the unique actin inhibitors, phalloidin and DNase I, also inhibit synthesis of poly P by DdPPK2. Thus, this particular Arp complex is an enzyme that can polymerize into an actin-like filament concurrent with its synthesis of a poly P chain in a fully reversible reaction. PMID:15496465

  11. Single-filament kinetic studies provide novel insights into regulation of actin-based motility

    PubMed Central

    Shekhar, Shashank; Carlier, Marie-France

    2016-01-01

    Polarized assembly of actin filaments forms the basis of actin-based motility and is regulated both spatially and temporally. Cells use a variety of mechanisms by which intrinsically slower processes are accelerated, and faster ones decelerated, to match rates observed in vivo. Here we discuss how kinetic studies of individual reactions and cycles that drive actin remodeling have provided a mechanistic and quantitative understanding of such processes. We specifically consider key barbed-end regulators such as capping protein and formins as illustrative examples. We compare and contrast different kinetic approaches, such as the traditional pyrene-polymerization bulk assays, as well as more recently developed single-filament and single-molecule imaging approaches. Recent development of novel biophysical methods for sensing and applying forces will in future allow us to address the very important relationship between mechanical stimulus and kinetics of actin-based motility. PMID:26715420

  12. Liquid-like bundles of crosslinked actin filaments contract without motors

    NASA Astrophysics Data System (ADS)

    Weirich, Kimberly

    The actin cytoskeleton is a dynamic, structural material that drives cellular-scale deformations during processes such as cell migration and division. Motor proteins are responsible for actively driving many deformations by buckling and translocating actin filaments. However, there is evidence that deformations, such as the constriction of the actin bundle that drives the separation of cells during division, can occur without motors, mediated instead by crosslinker proteins. How might crosslinkers, independent of motors, drive contraction of a bundle? Using a model system of purified proteins, we show that crosslinkers, analogous to molecular cohesion, create an effective surface tension that induces bundle contraction. Crosslinked short actin filaments form micron-sized spindle-shaped bundles. Similar to tactoid granules found at the isotropic-nematic phase transition in liquid crystals, these bundles coarsen and coalesce like liquid droplets. In contrast, crosslinked long filaments coarsen into a steady state of bundles that are frozen in a solid-like network. Near the liquid-solid boundary, filaments of intermediate length initially form bundles that spontaneously contract into tactoid droplets. Our results, that crosslinked actin bundles are liquid-like with an effective surface tension, provide evidence for a mechanism of motor-independent contractility in biological materials.

  13. Astral microtubules physically redistribute cortical actin filaments to the incipient contractile ring.

    PubMed

    Tseng, Kuo-Fu; Foss, Margit; Zhang, Dahong

    2012-11-01

    Prior to cell cleavage, cytokinetic proteins are recruited into the nascent actomyosin contractile ring, paving the way for formation of a functional cleavage furrow. Interactions between spindle microtubules and the cell cortex may play a critical role in this recruitment, since microtubules have been shown to affect distribution and activation of cytokinetic proteins within the cortex. However, direct evidence for physical interaction between microtubules and the cortex has been lacking. Here, we probed the physical connection between astral microtubules and cortical actin filaments, by micromanipulating the fluorescently tagged cytoskeleton in living spermatocytes of the grasshopper Melanoplus femurrubrum. When microtubules were tugged with a microneedle, they in turn pulled on cortical actin filaments, interrupting the filaments' journey toward the equator. Further displacement of the actin dragged the cell membrane inward, demonstrating that the cortical actin network physically linked spindle microtubules to the cell membrane. Regional disruption of the connection by breaking spindle microtubules prevented actin accumulation in a segment of the ring, which locally inhibited furrowing. We propose a model in which dynamic astral microtubules physically redistribute cortical actin into the incipient contractile ring. PMID:23027710

  14. Actin Grips: Circular Actin-Rich Cytoskeletal Structures that Mediate the Wrapping of Polymeric Microfibers by Endothelial Cells

    PubMed Central

    Jones, Desiree; Park, DoYoung; Anghelina, Mirela; Pecot, Thierry; Machiraju, Raghu; Xue, Ruipeng; Lannutti, John; Thomas, Jessica; Cole, Sara; Moldovan, Leni; Moldovan, Nicanor I.

    2015-01-01

    Interaction of endothelial-lineage cells with three-dimensional substrates was much less studied than that with flat culture surfaces. We investigated the in vitro attachment of both mature endothelial cells (ECs) and of less differentiated EC colony-forming cells to poly-e-capro-lactone (PCL) fibers with diameters in 5–20 μm range (‘scaffold microfibers’, SMFs). We found that notwithstanding the poor intrinsic adhesiveness to PCL, both cell types completely wrapped the SMFs after long-term cultivation, thus attaining a cylindrical morphology. In this system, both EC types grew vigorously for more than a week and became increasingly more differentiated, as shown by multiplexed gene expression. Three-dimensional reconstructions from multiphoton confocal microscopy images using custom software showed that the filamentous (F) actin bundles took a conspicuous ring-like organization around the SMFs. Unlike the classical F-actin-containing stress fibers, these rings were not associated with either focal adhesions or intermediate filaments. We also demonstrated that plasma membrane boundaries adjacent to these circular cytoskeletal structures were tightly yet dynamically apposed to the SMFs, for which reason we suggest to call them ‘actin grips’. In conclusion, we describe a particular form of F-actin assembly with relevance for cytoskeletal organization in response to biomaterials, for endothelial-specific cell behavior in vitro and in vivo, and for tissue engineering. PMID:25818446

  15. Cloning and characterization of the actin gene from Puccinia striiformis f. sp. tritici.

    PubMed

    Liu, Jie; Zhang, Qiong; Chang, Qing; Zhuang, Hua; Huang, Li-Li; Kang, Zhen-Sheng

    2012-06-01

    The fungus Puccinia striiformis f. sp. tritici, the causal agent of wheat stripe rust, is an obligate biotrophic basidiomycete. Urediniospores are the most common spore type involved in the epidemiology of this disease. Tip growth of germ tubes of germinated urediniospores is a key step during infection of wheat, but few studies have investigated it so far. Recent research has found that actin is closely associated with hyphal tip growth. In this study, we have cloned and obtained the full-length actin cDNA from P. striiformis f. sp. tritici and characterized its expression. Furthermore, actin filament (F-actin) patterns were visualized microscopically during germ tube formation. The most conspicuous actin-containing structures were actin patches. They were mainly concentrated near the hyphal tip and scattered throughout the cortex. By using cytochalasin B, we observed that depolymerization of F-actin greatly reduced the germination rate of urediniospores and disrupted the transport of vesicles to the germ tube tip, indicating that F-actin played a key role in the tip growth of P. striiformis f. sp. tritici. This work helps us to understand the tip growth mechanism of P. striiformis f. sp. tritici, and may provide a theoretical framework for designing novel pesticides. PMID:22806107

  16. Actin filament barbed-end capping activity in neutrophil lysates: the role of capping protein-beta 2.

    PubMed

    DiNubile, M J; Cassimeris, L; Joyce, M; Zigmond, S H

    1995-12-01

    A barbed-end capping activity was found in high speed supernates of neutrophils lysed in submicromolar calcium. In dilute supernate (> or = 100-fold dilution of cytoplasm), this activity accounted for most of the inhibition of barbed-end elongation of pyrenyl-G-actin from spectrin-F-actin seeds. Pointed-end elongation from gelsolin-capped F-actin seeds was not inhibited at comparable concentrations of supernate, thus excluding actin monomer sequestration as a cause of the observed inhibition. Most of the capping activity was due to capping protein-beta 2 (a homologue of cap Z). Thus, while immunoadsorption of > or = 95% of the gelsolin in the supernate did not decrease capping activity, immunoadsorption of capping protein-beta 2 reduced capping activity proportionally to the amount of capping protein-beta 2 adsorbed. Depletion of > 90% of capping protein-beta 2 from the supernate removed 90% of its capping activity. The functional properties of the capping activity were defined. The dissociation constant for binding to barbed ends (determined by steady state and kinetic analyses) was approximately 1-2 nM; the on-rate of capping was between 7 x 10(5) and 5 x 10(6) M-1 s-1; and the off-rate was approximately 2 x 10(-3) s-1. The concentration of capper free in the intact cell (determined by adsorption of supernate with spectrin-actin seeds) was estimated to be approximately 1-2 microM. Thus, there appeared to be enough high affinity capper to cap all the barbed ends in vivo. Nevertheless, immediately after lysis with detergent, neutrophils contained sites that nucleate barbed-end elongation of pyrenyl-G-actin. These barbed ends subsequently become capped with a time course and concentration dependence similar to that of spectrin-F-actin seeds in high speed supernates. These observations suggest that, despite the excess of high affinity capper, some ends either are not capped in vivo or are transiently uncapped upon lysis and dilution. PMID:8590796

  17. Exploring the Stability Limits of Actin and Its Suprastructures

    PubMed Central

    Rosin, Christopher; Erlkamp, Mirko; Ecken, Julian von der; Raunser, Stefan; Winter, Roland

    2014-01-01

    Actin is the main component of the microfilament system in eukaryotic cells and can be found in distinct morphological states. Global (G)-actin is able to assemble into highly organized, supramolecular cellular structures known as filamentous (F)-actin and bundled (B)-actin. To evaluate the structure and stability of G-, F-, and B-actin over a wide range of temperatures and pressures, we used Fourier transform infrared spectroscopy in combination with differential scanning and pressure perturbation calorimetry, small-angle x-ray scattering, laser confocal scanning microscopy, and transmission electron microscopy. Our analysis was designed to provide new (to our knowledge) insights into the stabilizing forces of actin self-assembly and to reveal the stability of the actin polymorphs, including in conditions encountered in extreme environments. In addition, we sought to explain the limited pressure stability of actin self-assembly observed in vivo. G-actin is not only the least temperature-stable but also the least pressure-stable actin species. Under abyssal conditions, where temperatures as low as 1–4°C and pressures up to 1 kbar are reached, G-actin is hardly stable. However, the supramolecular assemblies of actin are stable enough to withstand the extreme conditions usually encountered on Earth. Beyond ∼3–4 kbar, filamentous structures disassemble, and beyond ∼4 kbar, complete dissociation of F-actin structures is observed. Between ∼1 and 2 kbar, some disordering of actin assemblies commences, in agreement with in vivo observations. The limited pressure stability of the monomeric building block seems to be responsible for the suppression of actin assembly in the kbar pressure range. PMID:25517163

  18. Solid friction between soft filaments

    PubMed Central

    Ward, Andrew; Hilitski, Feodor; Schwenger, Walter; Welch, David; Lau, A.W. C.; Vitelli, Vincenzo; Mahadevan, L.; Dogic, Zvonimir

    2015-01-01

    Any macroscopic deformation of a filamentous bundle is necessarily accompanied by local sliding and/or stretching of the constituent filaments1,2. Yet the nature of the sliding friction between two aligned filaments interacting through multiple contacts remains largely unexplored. Here, by directly measuring the sliding forces between two bundled F-actin filaments, we show that these frictional forces are unexpectedly large, scale logarithmically with sliding velocity as in solid-like friction, and exhibit complex dependence on the filaments’ overlap length. We also show that a reduction of the frictional force by orders of magnitude, associated with a transition from solid-like friction to Stokes’s drag, can be induced by coating F-actin with polymeric brushes. Furthermore, we observe similar transitions in filamentous microtubules and bacterial flagella. Our findings demonstrate how altering a filament’s elasticity, structure and interactions can be used to engineer interfilament friction and thus tune the properties of fibrous composite materials. PMID:25730393

  19. The actin binding protein adseverin regulates osteoclastogenesis.

    PubMed

    Hassanpour, Siavash; Jiang, Hongwei; Wang, Yongqiang; Kuiper, Johannes W P; Glogauer, Michael

    2014-01-01

    Adseverin (Ads), a member of the Gelsolin superfamily of actin binding proteins, regulates the actin cytoskeleton architecture by severing and capping existing filamentous actin (F-actin) strands and nucleating the assembly of new F-actin filaments. Ads has been implicated in cellular secretion, exocytosis and has also been shown to regulate chondrogenesis and megakaryoblastic leukemia cell differentiation. Here we report for the first time that Ads is involved in regulating osteoclastogenesis (OCG). Ads is induced during OCG downstream of RANK-ligand (RANKL) stimulation and is highly expressed in mature osteoclasts. The D5 isoform of Ads is not involved in regulating OCG, as its expression is not induced in response to RANKL. Three clonal Ads knockdown RAW264.7 (RAW) macrophage cell lines with varying degrees of Ads expression and OCG deficiency were generated. The most drastic OCG defect was noted in the clonal cell line with the greatest degree of Ads knockdown as indicated by a lack of TRAcP staining and multinucleation. RNAi mediated knockdown of Ads in osteoclast precursors resulted in distinct morphological changes characterized by altered F-actin distribution and increased filopodia formation. Ads knockdown precursor cells experienced enhanced migration while fusion of knockdown precursors cells was limited. Transient reintroduction of de novo Ads back into the knockdown system was capable of rescuing TRAcP expression but not osteoclast multinucleation most likely due to the transient nature of Ads expression. This preliminary study allows us to conclude that Ads is a RANKL induced early regulator of OCG with a potential role in pre-osteoclast differentiation and fusion. PMID:25275604

  20. The Actin Binding Protein Adseverin Regulates Osteoclastogenesis

    PubMed Central

    Wang, Yongqiang; Kuiper, Johannes W. P.; Glogauer, Michael

    2014-01-01

    Adseverin (Ads), a member of the Gelsolin superfamily of actin binding proteins, regulates the actin cytoskeleton architecture by severing and capping existing filamentous actin (F-actin) strands and nucleating the assembly of new F-actin filaments. Ads has been implicated in cellular secretion, exocytosis and has also been shown to regulate chondrogenesis and megakaryoblastic leukemia cell differentiation. Here we report for the first time that Ads is involved in regulating osteoclastogenesis (OCG). Ads is induced during OCG downstream of RANK-ligand (RANKL) stimulation and is highly expressed in mature osteoclasts. The D5 isoform of Ads is not involved in regulating OCG, as its expression is not induced in response to RANKL. Three clonal Ads knockdown RAW264.7 (RAW) macrophage cell lines with varying degrees of Ads expression and OCG deficiency were generated. The most drastic OCG defect was noted in the clonal cell line with the greatest degree of Ads knockdown as indicated by a lack of TRAcP staining and multinucleation. RNAi mediated knockdown of Ads in osteoclast precursors resulted in distinct morphological changes characterized by altered F-actin distribution and increased filopodia formation. Ads knockdown precursor cells experienced enhanced migration while fusion of knockdown precursors cells was limited. Transient reintroduction of de novo Ads back into the knockdown system was capable of rescuing TRAcP expression but not osteoclast multinucleation most likely due to the transient nature of Ads expression. This preliminary study allows us to conclude that Ads is a RANKL induced early regulator of OCG with a potential role in pre-osteoclast differentiation and fusion. PMID:25275604

  1. Analysis of flexural rigidity of actin filaments propelled by surface adsorbed myosin motors.

    PubMed

    Bengtsson, Elina; Persson, Malin; Månsson, Alf

    2013-11-01

    Actin filaments are central components of the cytoskeleton and the contractile machinery of muscle. The filaments are known to exist in a range of conformational states presumably with different flexural rigidity and thereby different persistence lengths. Our results analyze the approaches proposed previously to measure the persistence length from the statistics of the winding paths of actin filaments that are propelled by surface-adsorbed myosin motor fragments in the in vitro motility assay. Our results suggest that the persistence length of heavy meromyosin propelled actin filaments can be estimated with high accuracy and reproducibility using this approach provided that: (1) the in vitro motility assay experiments are designed to prevent bias in filament sliding directions, (2) at least 200 independent filament paths are studied, (3) the ratio between the sliding distance between measurements and the camera pixel-size is between 4 and 12, (4) the sliding distances between measurements is less than 50% of the expected persistence length, and (5) an appropriate cut-off value is chosen to exclude abrupt large angular changes in sliding direction that are complications, e.g., due to the presence of rigor heads. If the above precautions are taken the described method should be a useful routine part of in vitro motility assays thus expanding the amount of information to be gained from these. PMID:24039103

  2. The Structural Basis of Actin Organization by Vinculin and Metavinculin.

    PubMed

    Kim, Laura Y; Thompson, Peter M; Lee, Hyunna T; Pershad, Mihir; Campbell, Sharon L; Alushin, Gregory M

    2016-01-16

    Vinculin is an essential adhesion protein that links membrane-bound integrin and cadherin receptors through their intracellular binding partners to filamentous actin, facilitating mechanotransduction. Here we present an 8.5-Å-resolution cryo-electron microscopy reconstruction and pseudo-atomic model of the vinculin tail (Vt) domain bound to F-actin. Upon actin engagement, the N-terminal "strap" and helix 1 are displaced from the Vt helical bundle to mediate actin bundling. We find that an analogous conformational change also occurs in the H1' helix of the tail domain of metavinculin (MVt) upon actin binding, a muscle-specific splice isoform that suppresses actin bundling by Vt. These data support a model in which metavinculin tunes the actin bundling activity of vinculin in a tissue-specific manner, providing a mechanistic framework for understanding metavinculin mutations associated with hereditary cardiomyopathies. PMID:26493222

  3. Actin filament tracking based on particle filters and stretching open active contour models.

    PubMed

    Li, Hongsheng; Shen, Tian; Vavylonis, Dimitrios; Huang, Xiaolei

    2009-01-01

    We introduce a novel algorithm for actin filament tracking and elongation measurement. Particle Filters (PF) and Stretching Open Active Contours (SOAC) work cooperatively to simplify the modeling of PF in a one-dimensional state space while naturally integrating filament body constraints to tip estimation. Our algorithm reduces the PF state spaces to one-dimensional spaces by tracking filament bodies using SOAC and probabilistically estimating tip locations along the curve length of SOACs. Experimental evaluation on TIRFM image sequences with very low SNRs demonstrates the accuracy and robustness of this approach. PMID:20426170

  4. Actin filaments target the oligomeric maturation of the dynamin GTPase Drp1 to mitochondrial fission sites

    PubMed Central

    Ji, Wei-ke; Hatch, Anna L; Merrill, Ronald A; Strack, Stefan; Higgs, Henry N

    2015-01-01

    While the dynamin GTPase Drp1 plays a critical role during mitochondrial fission, mechanisms controlling its recruitment to fission sites are unclear. A current assumption is that cytosolic Drp1 is recruited directly to fission sites immediately prior to fission. Using live-cell microscopy, we find evidence for a different model, progressive maturation of Drp1 oligomers on mitochondria through incorporation of smaller mitochondrially-bound Drp1 units. Maturation of a stable Drp1 oligomer does not forcibly lead to fission. Drp1 oligomers also translocate directionally along mitochondria. Ionomycin, a calcium ionophore, causes rapid mitochondrial accumulation of actin filaments followed by Drp1 accumulation at the fission site, and increases fission rate. Inhibiting actin polymerization, myosin IIA, or the formin INF2 reduces both un-stimulated and ionomycin-induced Drp1 accumulation and mitochondrial fission. Actin filaments bind purified Drp1 and increase GTPase activity in a manner that is synergistic with the mitochondrial protein Mff, suggesting a role for direct Drp1/actin interaction. We propose that Drp1 is in dynamic equilibrium on mitochondria in a fission-independent manner, and that fission factors such as actin filaments target productive oligomerization to fission sites. DOI: http://dx.doi.org/10.7554/eLife.11553.001 PMID:26609810

  5. Actin filaments target the oligomeric maturation of the dynamin GTPase Drp1 to mitochondrial fission sites.

    PubMed

    Ji, Wei-ke; Hatch, Anna L; Merrill, Ronald A; Strack, Stefan; Higgs, Henry N

    2015-01-01

    While the dynamin GTPase Drp1 plays a critical role during mitochondrial fission, mechanisms controlling its recruitment to fission sites are unclear. A current assumption is that cytosolic Drp1 is recruited directly to fission sites immediately prior to fission. Using live-cell microscopy, we find evidence for a different model, progressive maturation of Drp1 oligomers on mitochondria through incorporation of smaller mitochondrially-bound Drp1 units. Maturation of a stable Drp1 oligomer does not forcibly lead to fission. Drp1 oligomers also translocate directionally along mitochondria. Ionomycin, a calcium ionophore, causes rapid mitochondrial accumulation of actin filaments followed by Drp1 accumulation at the fission site, and increases fission rate. Inhibiting actin polymerization, myosin IIA, or the formin INF2 reduces both un-stimulated and ionomycin-induced Drp1 accumulation and mitochondrial fission. Actin filaments bind purified Drp1 and increase GTPase activity in a manner that is synergistic with the mitochondrial protein Mff, suggesting a role for direct Drp1/actin interaction. We propose that Drp1 is in dynamic equilibrium on mitochondria in a fission-independent manner, and that fission factors such as actin filaments target productive oligomerization to fission sites. PMID:26609810

  6. Movement of scallop myosin on Nitella actin filaments: regulation by calcium.

    PubMed Central

    Vale, R D; Szent-Gyorgyi, A G; Sheetz, M P

    1984-01-01

    In order to determine if Ca2+ regulates scallop myosin movement on actin, we have measured motility of scallop myosin along actin filaments using a direct visual assay. This procedure consists of covalently linking myosin to 1-micron beads and pipetting them onto a parallel array of actin filaments located on the cytoplasmic face of a Nitella internodal cell. In the absence of Ca2+, scallop myosin-coated beads exhibit no directed motion; however, in the presence of pCa2+ of greater than 5.84, these beads undergo linear translocations with average velocities of 2.0 micron/s. This Ca2+ -sensitive motility requires the presence of regulatory light chains on the scallop myosin. Removal of regulatory light chains with 10 mM EDTA produces a "desensitized" myosin, no longer sensitive to Ca2+, which moves at rates of 0.09-0.3 micron in the presence or absence of Ca2+. Readdition of regulatory light chains to preparations of desensitized myosin once again confers Ca2+-sensitive motility. The Ca2+ dependence of scallop-myosin motility shows a sharp transition, consistent with the Ca2+ activation sensitivity of the actin-activated ATPase. Furthermore, relative rates of movement of calcium-regulated myosins from various molluscan species are consistent with their respective rates of ATP hydrolysis. Thus, myosin motility along actin filaments provides a sensitive and direct assay of myosin activity and is suitable for studying myosin regulation. PMID:6238334

  7. Arabidopsis VILLIN5, an Actin Filament Bundling and Severing Protein, Is Necessary for Normal Pollen Tube Growth[W

    PubMed Central

    Zhang, Hua; Qu, Xiaolu; Bao, Chanchan; Khurana, Parul; Wang, Qiannan; Xie, Yurong; Zheng, Yiyan; Chen, Naizhi; Blanchoin, Laurent; Staiger, Christopher J.; Huang, Shanjin

    2010-01-01

    A dynamic actin cytoskeleton is essential for pollen germination and tube growth. However, the molecular mechanisms underlying the organization and turnover of the actin cytoskeleton in pollen remain poorly understood. Villin plays a key role in the formation of higher-order structures from actin filaments and in the regulation of actin dynamics in eukaryotic cells. It belongs to the villin/gelsolin/fragmin superfamily of actin binding proteins and is composed of six gelsolin-homology domains at its core and a villin headpiece domain at its C terminus. Recently, several villin family members from plants have been shown to sever, cap, and bundle actin filaments in vitro. Here, we characterized a villin isovariant, Arabidopsis thaliana VILLIN5 (VLN5), that is highly and preferentially expressed in pollen. VLN5 loss-of-function retarded pollen tube growth and sensitized actin filaments in pollen grains and tubes to latrunculin B. In vitro biochemical analyses revealed that VLN5 is a typical member of the villin family and retains a full suite of activities, including barbed-end capping, filament bundling, and calcium-dependent severing. The severing activity was confirmed with time-lapse evanescent wave microscopy of individual actin filaments in vitro. We propose that VLN5 is a major regulator of actin filament stability and turnover that functions in concert with oscillatory calcium gradients in pollen and therefore plays an integral role in pollen germination and tube growth. PMID:20807879

  8. Shortening actin filaments cause force generation in actomyosin network to change from contractile to extensile

    NASA Astrophysics Data System (ADS)

    Kumar, Nitin; Gardel, Margaret

    Motor proteins in conjunction with filamentous proteins convert biochemical energy into mechanical energy which serves a number of cellular processes including cell motility, force generation and intracellular cargo transport. In-vitro experiments suggest that the forces generated by kinesin motors on microtubule bundles are extensile in nature whereas myosin motors on actin filaments are contractile. It is not clear how qualitatively similar systems can show completely different behaviors in terms of the nature of force generation. In order to answer this question, we carry out in vitro experiments where we form quasi 2D filamentous actomyosin networks and vary the length of actin filaments by adding capping protein. We show that when filaments are much shorter than their typical persistence length (approximately 10 microns), the forces generated are extensile and we see active nematic defect propagation, as seen in the microtubule-kinesin system. Based on this observation, we claim that the rigidity of rods plays an important role in dictating the nature of force generation in such systems. In order to understand this transition, we selectively label individual filaments and find that longer filaments show considerable bending and buckling, making them difficult to slide and extend along their length.

  9. Capping Protein Modulates the Dynamic Behavior of Actin Filaments in Response to Phosphatidic Acid in Arabidopsis[C][W

    PubMed Central

    Li, Jiejie; Henty-Ridilla, Jessica L.; Huang, Shanjin; Wang, Xia; Blanchoin, Laurent; Staiger, Christopher J.

    2012-01-01

    Remodeling of actin filament arrays in response to biotic and abiotic stimuli is thought to require precise control over the generation and availability of filament ends. Heterodimeric capping protein (CP) is an abundant filament capper, and its activity is inhibited by membrane signaling phospholipids in vitro. How exactly CP modulates the properties of filament ends in cells and whether its activity is coordinated by phospholipids in vivo is not well understood. By observing directly the dynamic behavior of individual filament ends in the cortical array of living Arabidopsis thaliana epidermal cells, we dissected the contribution of CP to actin organization and dynamics in response to the signaling phospholipid, phosphatidic acid (PA). Here, we examined three cp knockdown mutants and found that reduced CP levels resulted in more dynamic activity at filament ends, and this significantly enhanced filament-filament annealing and filament elongation from free ends. The cp mutants also exhibited more dense actin filament arrays. Treatment of wild-type cells with exogenous PA phenocopied the actin-based defects in cp mutants, with an increase in the density of filament arrays and enhanced annealing frequency. These cytoskeletal responses to exogenous PA were completely abrogated in cp mutants. Our data provide compelling genetic evidence that the end-capping activity of CP is inhibited by membrane signaling lipids in eukaryotic cells. Specifically, CP acts as a PA biosensor and key transducer of fluxes in membrane signaling phospholipids into changes in actin cytoskeleton dynamics. PMID:22960908

  10. Abnormal movement of tropomyosin and response of myosin heads and actin during the ATPase cycle caused by the Arg167His, Arg167Gly and Lys168Glu mutations in TPM1 gene.

    PubMed

    Borovikov, Yurii S; Rysev, Nikita A; Chernev, Aleksey A; Avrova, Stanislava V; Karpicheva, Olga E; Borys, Danuta; Śliwińska, Małgorzata; Moraczewska, Joanna

    2016-09-15

    Amino acid substitutions: Arg167His, Arg167Gly and Lys168Glu, located in a consensus actin-binding site of the striated muscle tropomyosin Tpm1.1 (TM), were used to investigate mechanisms of the thin filament regulation. The azimuthal movement of TM strands on the actin filament and the responses of the myosin heads and actin subunits during the ATPase cycle were studied using fluorescence polarization of muscle fibres. The recombinant wild-type and mutant TMs labelled with 5-IAF, 1,5-IAEDANS-labelled S1and FITC-phalloidin F-actin were incorporated into the ghost muscle fibres to acquire information on the orientation of the probes relative to the fibre axis. The substitutions Arg167Gly and Lys168Glu shifted TM strands into the actin filament centre, whereas Arg167His moved TM towards the periphery of the filament. In the presence of Arg167Gly-TM and Lys168Glu-TM the fraction of actin monomers that were switched on and the number of the myosin heads strongly bound to F-actin were abnormally high even under conditions close to relaxation. In contrast, Arg167His-TM decreased the fraction of switched on actin and reduced the formation of strongly bound myosin heads throughout the ATPase cycle. We concluded that the altered TM-actin contacts destabilized the thin filament and affected the actin-myosin interactions. PMID:27480605

  11. Myopathy-inducing mutation H40Y in ACTA1 hampers actin filament structure and function.

    PubMed

    Chan, Chun; Fan, Jun; Messer, Andrew E; Marston, Steve B; Iwamoto, Hiroyuki; Ochala, Julien

    2016-08-01

    In humans, more than 200 missense mutations have been identified in the ACTA1 gene. The exact molecular mechanisms by which, these particular mutations become toxic and lead to muscle weakness and myopathies remain obscure. To address this, here, we performed a molecular dynamics simulation, and we used a broad range of biophysical assays to determine how the lethal and myopathy-related H40Y amino acid substitution in actin affects the structure, stability, and function of this protein. Interestingly, our results showed that H40Y severely disrupts the DNase I-binding-loop structure and actin filaments. In addition, we observed that normal and mutant actin monomers are likely to form distinctive homopolymers, with mutant filaments being very stiff, and not supporting proper myosin binding. These phenomena underlie the toxicity of H40Y and may be considered as important triggering factors for the contractile dysfunction, muscle weakness and disease phenotype seen in patients. PMID:27112274

  12. Direct interaction of actin filaments with F-BAR protein pacsin2

    PubMed Central

    Kostan, Julius; Salzer, Ulrich; Orlova, Albina; Törö, Imre; Hodnik, Vesna; Senju, Yosuke; Zou, Juan; Schreiner, Claudia; Steiner, Julia; Meriläinen, Jari; Nikki, Marko; Virtanen, Ismo; Carugo, Oliviero; Rappsilber, Juri; Lappalainen, Pekka; Lehto, Veli-Pekka; Anderluh, Gregor; Egelman, Edward H; Djinović-Carugo, Kristina

    2014-01-01

    Two mechanisms have emerged as major regulators of membrane shape: BAR domain-containing proteins, which induce invaginations and protrusions, and nuclear promoting factors, which cause generation of branched actin filaments that exert mechanical forces on membranes. While a large body of information exists on interactions of BAR proteins with membranes and regulatory proteins of the cytoskeleton, little is known about connections between these two processes. Here, we show that the F-BAR domain protein pacsin2 is able to associate with actin filaments using the same concave surface employed to bind to membranes, while some other tested N-BAR and F-BAR proteins (endophilin, CIP4 and FCHO2) do not associate with actin. This finding reveals a new level of complexity in membrane remodeling processes. PMID:25216944

  13. Power transduction of actin filaments ratcheting in vitro against a load.

    PubMed

    Démoulin, Damien; Carlier, Marie-France; Bibette, Jérôme; Baudry, Jean

    2014-12-16

    The actin cytoskeleton has the unique capability of producing pushing forces at the leading edge of motile cells without the implication of molecular motors. This phenomenon has been extensively studied theoretically, and molecular models, including the widely known Brownian ratchet, have been proposed. However, supporting experimental work is lacking, due in part to hardly accessible molecular length scales. We designed an experiment to directly probe the mechanism of force generation in a setup where a population of actin filaments grows against a load applied by magnetic microparticles. The filaments, arranged in stiff bundles by fascin, are constrained to point toward the applied load. In this protrusion-like geometry, we are able to directly measure the velocity of filament elongation and its dependence on force. Using numerical simulations, we provide evidence that our experimental data are consistent with a Brownian ratchet-based model. We further demonstrate the existence of a force regime far below stalling where the mechanical power transduced by the ratcheting filaments to the load is maximal. The actin machinery in migrating cells may tune the number of filaments at the leading edge to work in this force regime. PMID:25453075

  14. A Processive Arabidopsis Formin Modulates Actin Filament Dynamics in Association with Profilin.

    PubMed

    Zhang, Sha; Liu, Chang; Wang, Jiaojiao; Ren, Zhanhong; Staiger, Christopher J; Ren, Haiyun

    2016-06-01

    Formins are conserved regulators of actin cytoskeletal organization and dynamics that have been implicated to be important for cell division and cell polarity. The mechanism by which diverse formins regulate actin dynamics in plants is still not well understood. Using in vitro single-molecule imaging technology, we directly observed that the FH1-FH2 domain of an Arabidopsis thaliana formin, AtFH14, processively attaches to the barbed end of actin filaments as a dimer and slows their elongation rate by 90%. The attachment persistence of FH1-FH2 is concentration dependent. Furthermore, by use of the triple-color total internal reflection fluorescence microscopy, we found that ABP29, a barbed-end capping protein, competes with FH1-FH2 at the filament barbed end, where its binding is mutually exclusive with AtFH14. In the presence of different plant profilin isoforms, FH1-FH2 enhances filament elongation rates from about 10 to 42 times. Filaments buckle when FH1-FH2 is anchored specifically to cover slides, further indicating that AtFH14 moves processively on the elongating barbed end. At high concentration, AtFH14 bundles actin filaments randomly into antiparallel or parallel spindle-like structures; however, the FH1-FH2-mediated bundles become thinner and longer in the presence of plant profilins. This is the direct demonstration of a processive formin from plants. Our results also illuminate the molecular mechanism of AtFH14 in regulating actin dynamics via association with profilin. PMID:26996265

  15. A Novel Human Cytomegalovirus Glycoprotein, gpUS9, Which Promotes Cell-to-Cell Spread in Polarized Epithelial Cells, Colocalizes with the Cytoskeletal Proteins E-Cadherin and F-Actin

    PubMed Central

    Maidji, Ekaterina; Tugizov, Sharof; Abenes, Gerardo; Jones, Thomas; Pereira, Lenore

    1998-01-01

    Processes by which human herpesviruses penetrate and are released from polarized epithelial cells, which have distinct apical and basolateral membrane domains differing in protein and lipid content, are poorly understood. We recently reported that human cytomegalovirus (CMV) mutants with deletions of the gene US9 formed wild-type plaques in cultures of human fibroblasts but were impaired in the capacity for cell-to-cell spread in polarized human retinal pigment epithelial cells. Unlike the glycoproteins that are required for infection, the protein encoded by CMV US9 plays an accessory role by promoting dissemination of virus across cell-cell junctions of polarized epithelial cells. To identify the product and investigate its specialized functions, we selected Madine-Darby canine kidney II (MDCK) epithelial cells that constitutively express CMV US9 or, as a control, US8. The gene products, designated gpUS9 and gpUS8, were glycosylated proteins of comparable molecular masses but differed considerably in intracellular distribution and solubility. Immunofluorescence laser scanning confocal microscopy indicated that, like gpUS8, gpUS9 was present in the endoplasmic reticulum and Golgi compartments of nonpolarized cells. In polarized epithelial cells, gpUS9 also accumulated along lateral membranes, colocalizing with cadherin and actin, and was insoluble in Triton X-100, a property shared with proteins that associate with the cytoskeleton. We hypothesize that gpUS9 may enhance the dissemination of CMV in infected epithelial tissues by associating with the cytoskeletal matrix. PMID:9621030

  16. The Role of Formin Tails in Actin Nucleation, Processive Elongation, and Filament Bundling*

    PubMed Central

    Vizcarra, Christina L.; Bor, Batbileg; Quinlan, Margot E.

    2014-01-01

    Formins are multidomain proteins that assemble actin in a wide variety of biological processes. They both nucleate and remain processively associated with growing filaments, in some cases accelerating filament growth. The well conserved formin homology 1 and 2 domains were originally thought to be solely responsible for these activities. Recently a role in nucleation was identified for the Diaphanous autoinhibitory domain (DAD), which is C-terminal to the formin homology 2 domain. The C-terminal tail of the Drosophila formin Cappuccino (Capu) is conserved among FMN formins but distinct from other formins. It does not have a DAD domain. Nevertheless, we find that Capu-tail plays a role in filament nucleation similar to that described for mDia1 and other formins. Building on this, replacement of Capu-tail with DADs from other formins tunes nucleation activity. Capu-tail has low-affinity interactions with both actin monomers and filaments. Removal of the tail reduces actin filament binding and bundling. Furthermore, when the tail is removed, we find that processivity is compromised. Despite decreased processivity, the elongation rate of filaments is unchanged. Again, replacement of Capu-tail with DADs from other formins tunes the processive association with the barbed end, indicating that this is a general role for formin tails. Our data show a role for the Capu-tail domain in assembling the actin cytoskeleton, largely mediated by electrostatic interactions. Because of its multifunctionality, the formin tail is a candidate for regulation by other proteins during cytoskeletal rearrangements. PMID:25246531

  17. Cell Elasticity Is Regulated by the Tropomyosin Isoform Composition of the Actin Cytoskeleton

    PubMed Central

    Jalilian, Iman; Heu, Celine; Cheng, Hong; Freittag, Hannah; Desouza, Melissa; Stehn, Justine R.; Bryce, Nicole S.; Whan, Renee M.; Hardeman, Edna C.

    2015-01-01

    The actin cytoskeleton is the primary polymer system within cells responsible for regulating cellular stiffness. While various actin binding proteins regulate the organization and dynamics of the actin cytoskeleton, the proteins responsible for regulating the mechanical properties of cells are still not fully understood. In the present study, we have addressed the significance of the actin associated protein, tropomyosin (Tpm), in influencing the mechanical properties of cells. Tpms belong to a multi-gene family that form a co-polymer with actin filaments and differentially regulate actin filament stability, function and organization. Tpm isoform expression is highly regulated and together with the ability to sort to specific intracellular sites, result in the generation of distinct Tpm isoform-containing actin filament populations. Nanomechanical measurements conducted with an Atomic Force Microscope using indentation in Peak Force Tapping in indentation/ramping mode, demonstrated that Tpm impacts on cell stiffness and the observed effect occurred in a Tpm isoform-specific manner. Quantitative analysis of the cellular filamentous actin (F-actin) pool conducted both biochemically and with the use of a linear detection algorithm to evaluate actin structures revealed that an altered F-actin pool does not absolutely predict changes in cell stiffness. Inhibition of non-muscle myosin II revealed that intracellular tension generated by myosin II is required for the observed increase in cell stiffness. Lastly, we show that the observed increase in cell stiffness is partially recapitulated in vivo as detected in epididymal fat pads isolated from a Tpm3.1 transgenic mouse line. Together these data are consistent with a role for Tpm in regulating cell stiffness via the generation of specific populations of Tpm isoform-containing actin filaments. PMID:25978408

  18. Fascin 1 is an actin filament-bundling protein that regulates ectoplasmic specialization dynamics in the rat testis

    PubMed Central

    Gungor-Ordueri, N. Ece; Celik-Ozenci, Ciler

    2014-01-01

    In the testis, spermatids are polarized cells, with their heads pointing toward the basement membrane during maturation. This polarity is crucial to pack the maximal number of spermatids in the seminiferous epithelium so that millions of sperms can be produced daily. A loss of spermatid polarity is detected after rodents are exposed to toxicants (e.g., cadmium) or nonhormonal male contraceptives (e.g., adjudin), which is associated with a disruption on the expression and/or localization of polarity proteins. In the rat testis, fascin 1, an actin-bundling protein found in mammalian cells, was expressed by Sertoli and germ cells. Fascin 1 was a component of the ectoplasmic specialization (ES), a testis-specific anchoring junction known to confer spermatid adhesion and polarity. Its expression in the seminiferous epithelium was stage specific. Fascin 1 was localized to the basal ES at the Sertoli cell-cell interface of the blood-testis barrier in all stages of the epithelial cycle, except it diminished considerably at late stage VIII. Fascin 1 was highly expressed at the apical ES at stage VII–early stage VIII and restricted to the step 19 spermatids. Its knockdown by RNAi that silenced fascin 1 by ∼70% in Sertoli cells cultured in vitro was found to perturb the tight junction-permeability barrier via a disruption of F-actin organization. Knockdown of fascin 1 in vivo by ∼60–70% induced defects in spermatid polarity, which was mediated by a mislocalization and/or downregulation of actin-bundling proteins Eps8 and palladin, thereby impeding F-actin organization and disrupting spermatid polarity. In summary, these findings provide insightful information on spermatid polarity regulation. PMID:25159326

  19. Fascin 1 is an actin filament-bundling protein that regulates ectoplasmic specialization dynamics in the rat testis.

    PubMed

    Gungor-Ordueri, N Ece; Celik-Ozenci, Ciler; Cheng, C Yan

    2014-11-01

    In the testis, spermatids are polarized cells, with their heads pointing toward the basement membrane during maturation. This polarity is crucial to pack the maximal number of spermatids in the seminiferous epithelium so that millions of sperms can be produced daily. A loss of spermatid polarity is detected after rodents are exposed to toxicants (e.g., cadmium) or nonhormonal male contraceptives (e.g., adjudin), which is associated with a disruption on the expression and/or localization of polarity proteins. In the rat testis, fascin 1, an actin-bundling protein found in mammalian cells, was expressed by Sertoli and germ cells. Fascin 1 was a component of the ectoplasmic specialization (ES), a testis-specific anchoring junction known to confer spermatid adhesion and polarity. Its expression in the seminiferous epithelium was stage specific. Fascin 1 was localized to the basal ES at the Sertoli cell-cell interface of the blood-testis barrier in all stages of the epithelial cycle, except it diminished considerably at late stage VIII. Fascin 1 was highly expressed at the apical ES at stage VII-early stage VIII and restricted to the step 19 spermatids. Its knockdown by RNAi that silenced fascin 1 by ~70% in Sertoli cells cultured in vitro was found to perturb the tight junction-permeability barrier via a disruption of F-actin organization. Knockdown of fascin 1 in vivo by ~60-70% induced defects in spermatid polarity, which was mediated by a mislocalization and/or downregulation of actin-bundling proteins Eps8 and palladin, thereby impeding F-actin organization and disrupting spermatid polarity. In summary, these findings provide insightful information on spermatid polarity regulation. PMID:25159326

  20. Mechanism of actin filament nucleation by the bacterial effector VopL

    SciTech Connect

    Yu, Bingke; Cheng, Hui-Chun; Brautigam, Chad A.; Tomchick, Diana R.; Rosen, Michael K.

    2012-05-02

    Vibrio parahaemolyticus protein L (VopL) is an actin nucleation factor that induces stress fibers when injected into eukaryotic host cells. VopL contains three N-terminal Wiskott-Aldrich homology 2 (WH2) motifs and a unique VopL C-terminal domain (VCD). We describe crystallographic and biochemical analyses of filament nucleation by VopL. The WH2 element of VopL does not nucleate on its own and requires the VCD for activity. The VCD forms a U-shaped dimer in the crystal, stabilized by a terminal coiled coil. Dimerization of the WH2 motifs contributes strongly to nucleation activity, as do contacts of the VCD to actin. Our data lead to a model in which VopL stabilizes primarily lateral (short-pitch) contacts between actin monomers to create the base of a two-stranded filament. Stabilization of lateral contacts may be a common feature of actin filament nucleation by WH2-based factors.

  1. Dense granule trafficking in Toxoplasma gondii requires a unique class 27 myosin and actin filaments.

    PubMed

    Heaslip, Aoife T; Nelson, Shane R; Warshaw, David M

    2016-07-01

    The survival of Toxoplasma gondii within its host cell requires protein release from secretory vesicles, called dense granules, to maintain the parasite's intracellular replicative niche. Despite the importance of DGs, nothing is known about the mechanisms underlying their transport. In higher eukaryotes, secretory vesicles are transported to the plasma membrane by molecular motors moving on their respective cytoskeletal tracks (i.e., microtubules and actin). Because the organization of these cytoskeletal structures differs substantially in T. gondii, the molecular motor dependence of DG trafficking is far from certain. By imaging the motions of green fluorescent protein-tagged DGs in intracellular parasites with high temporal and spatial resolution, we show through a combination of molecular genetics and chemical perturbations that directed DG transport is independent of microtubules and presumably their kinesin/dynein motors. However, directed DG transport is dependent on filamentous actin and a unique class 27 myosin, TgMyoF, which has structural similarity to myosin V, the prototypical cargo transporter. Actomyosin DG transport was unexpected, since filamentous parasite actin has yet to be visualized in vivo due in part to the prevailing model that parasite actin forms short, unstable filaments. Thus our data uncover new critical roles for these essential proteins in the lytic cycle of this devastating pathogen. PMID:27146112

  2. HopW1 from Pseudomonas syringae Disrupts the Actin Cytoskeleton to Promote Virulence in Arabidopsis

    PubMed Central

    Cecchini, Nicolas M.; Li, Yujie; Lee, Min Woo; Kovar, David R.; Greenberg, Jean T.

    2014-01-01

    A central mechanism of virulence of extracellular bacterial pathogens is the injection into host cells of effector proteins that modify host cellular functions. HopW1 is an effector injected by the type III secretion system that increases the growth of the plant pathogen Pseudomonas syringae on the Columbia accession of Arabidopsis. When delivered by P. syringae into plant cells, HopW1 causes a reduction in the filamentous actin (F-actin) network and the inhibition of endocytosis, a known actin-dependent process. When directly produced in plants, HopW1 forms complexes with actin, disrupts the actin cytoskeleton and inhibits endocytosis as well as the trafficking of certain proteins to vacuoles. The C-terminal region of HopW1 can reduce the length of actin filaments and therefore solubilize F-actin in vitro. Thus, HopW1 acts by disrupting the actin cytoskeleton and the cell biological processes that depend on actin, which in turn are needed for restricting P. syringae growth in Arabidopsis. PMID:24968323

  3. Actin localisation and the effect of cytochalasin D on the osmotic tolerance of cauda epididymidal kangaroo spermatozoa.

    PubMed

    McClean, R; MacCallum, C; Blyde, D; Holt, W; Johnston, S

    2006-01-01

    This study examined the hypothesis that filamentous actin associated with the complex cytoskeleton of the kangaroo sperm head and tail may be contributing to lack of plasma membrane plasticity and a consequent loss of membrane integrity during cryopreservation. In the first study, the distribution of G and F actin within Eastern Grey Kangaroo (EGK, Macropus giganteus) cauda epididymidal spermatozoa was successfully detected using DNAse-FITC and a monoclonal F-actin antibody (ab205, Abcam), respectively. G-actin staining was most intense in the acrosome but was also observed with less intensity over the nucleus and mid-piece. F-actin was located in the sperm nucleus but was not discernable in the acrosome or sperm tail. To investigate whether cytochalasin D (a known F-actin depolymerising agent) was capable of improving the osmotic tolerance of EGK cauda epididymal spermatozoa, sperm were incubated in hypo-osmotic media (61 and 104 mOsm) containing a range of cytochalasin D concentrations (0-200 microM). Cytochalasin D had no beneficial effect on plasma membrane integrity of sperm incubated in hypo-osmotic media. However, when EGK cauda epididymidal sperm were incubated in isosmotic media, there was a progressive loss of sperm motility with increasing cytochalasin D concentration. The results of this study indicated that the F-actin distribution in cauda epididymidal spermatozoa of the EGK was surprisingly different from that of the Tammar Wallaby (M. eugenii) and that cytochalasin-D does not appear to improve the tolerance of EGK cauda epididymidal sperm to osmotically induced injury. PMID:16990953

  4. Rho GTPases have diverse effects on the organization of the actin filament system.

    PubMed Central

    Aspenström, Pontus; Fransson, Asa; Saras, Jan

    2004-01-01

    The Rho GTPases are related to the Ras proto-oncogenes and consist of 22 family members. These proteins have important roles in regulating the organization of the actin filament system, and thereby the morphogenesis of vertebrate cells as well as their ability to migrate. In an effort to compare the effects of all members of the Rho GTPase family, active Rho GTPases were transfected into porcine aortic endothelial cells and the effects on the actin filament system were monitored. Cdc42, TCL (TC10-like), Rac1-Rac3 and RhoG induced the formation of lamellipodia, whereas Cdc42, Rac1 and Rac2 also induced the formation of thick bundles of actin filaments. In contrast, transfection with TC10 or Chp resulted in the formation of focal adhesion-like structures, whereas Wrch-1 induced long and thin filopodia. Transfection with RhoA, RhoB or RhoC induced the assembly of stress fibres, whereas Rnd1-Rnd3 resulted in the loss of stress fibres, but this effect was associated with the formation of actin- and ezrin-containing dorsal microvilli. Cells expressing RhoD and Rif had extremely long and flexible filopodia. None of the RhoBTB or Miro GTPases had any major influence on the organization of the actin filament system; instead, RhoBTB1 and RhoBTB2 were present in vesicular structures, and Miro-1 and Miro-2 were present in mitochondria. Collectively, the data obtained in this study to some extent confirm earlier observations, but also allow the identification of previously undetected roles of the different members of the Rho GTPases. PMID:14521508

  5. Polymerization of actin in RBL-2H3 cells can be triggered through either the IgE receptor or the adenosine receptor but different signaling pathways are used.

    PubMed Central

    Apgar, J R

    1994-01-01

    Crosslinking of the IgE receptor on rat basophilic leukemia (RBL) cells using the multivalent antigen DNP-BSA leads to a rapid and sustained increase in the filamentous actin content of the cells. Stimulation of RBL cells through the adenosine receptor also induces a very rapid polymerization of actin, which peaks in 45-60 s and is equivalent in magnitude to the F-actin response elicited through stimulation of the IgE receptor. However, in contrast to the IgE mediated response, which remains elevated for over 30 min, the F-actin increase induced by the adenosine analogue 5'-(N-ethylcarboxamido)-adenosine (NECA) is relatively transient and returns to baseline values within 5-10 min. While previous work has shown that the polymerization of actin in RBL cells stimulated through the IgE receptor is mediated by protein kinase C (PKC), protein kinase inhibitors have no effect on the F-actin response activated through the adenosine receptor. In contrast, pretreatment of the cells with pertussis toxin completely inhibits the F-actin response to NECA but has relatively little effect on the response induced through the IgE receptor. Stimulation of RBL cells through either receptor causes increased production of phosphatidylinositol mono-phosphate (PIP) and phosphatidylinositol bis-phosphate (PIP2), which correlates with the F-actin response. Production of PIP and PIP2 may be important downstream signals since these polyphosphoinositides are able to regulate the interaction of gelsolin and profilin with actin. Thus the polymerization of actin can be triggered through either the adenosine receptor or the IgE receptor, but different upstream signaling pathways are being used. The IgE mediated response requires the activation of PKC while stimulation through the adenosine receptor is PKC independent but involves a G protein. PMID:8049523

  6. Plant pathogenic bacteria target the actin microfilament network involved in the trafficking of disease defense components

    PubMed Central

    Jelenska, Joanna; Kang, Yongsung; Greenberg, Jean T

    2014-01-01

    Cells of infected organisms transport disease defense-related molecules along actin filaments to deliver them to their sites of action to combat the pathogen. To accommodate higher demand for intracellular traffic, plant F-actin density increases transiently during infection or treatment of Arabidopsis with pathogen-associated molecules. Many animal and plant pathogens interfere with actin polymerization and depolymerization to avoid immune responses. Pseudomonas syringae, a plant extracellular pathogen, injects HopW1 effector into host cells to disrupt the actin cytoskeleton and reduce vesicle movement in order to elude defense responses. In some Arabidopsis accessions, however, HopW1 is recognized and causes resistance via an actin-independent mechanism. HopW1 targets isoform 7 of vegetative actin (ACT7) that is regulated by phytohormones and environmental factors. We hypothesize that dynamic changes of ACT7 filaments are involved in plant immunity. PMID:25551177

  7. Cofilin-induced unidirectional cooperative conformational changes in actin filaments revealed by high-speed atomic force microscopy

    PubMed Central

    Ngo, Kien Xuan; Kodera, Noriyuki; Katayama, Eisaku; Ando, Toshio; Uyeda, Taro QP

    2015-01-01

    High-speed atomic force microscopy was employed to observe structural changes in actin filaments induced by cofilin binding. Consistent with previous electron and fluorescence microscopic studies, cofilin formed clusters along actin filaments, where the filaments were 2-nm thicker and the helical pitch was ∼25% shorter, compared to control filaments. Interestingly, the shortened helical pitch was propagated to the neighboring bare zone on the pointed-end side of the cluster, while the pitch on the barbed-end side was similar to the control. Thus, cofilin clusters induce distinctively asymmetric conformational changes in filaments. Consistent with the idea that cofilin favors actin structures with a shorter helical pitch, cofilin clusters grew unidirectionally toward the pointed-end of the filament. Severing was often observed near the boundaries between bare zones and clusters, but not necessarily at the boundaries. DOI: http://dx.doi.org/10.7554/eLife.04806.001 PMID:25642645

  8. Differential Actin-regulatory Activities of Tropomodulin1 and Tropomodulin3 with Diverse Tropomyosin and Actin Isoforms*

    PubMed Central

    Yamashiro, Sawako; Gokhin, David S.; Sui, Zhenhua; Bergeron, Sarah E.; Rubenstein, Peter A.; Fowler, Velia M.

    2014-01-01

    Tropomodulins (Tmods) are F-actin pointed end capping proteins that interact with tropomyosins (TMs) and cap TM-coated filaments with higher affinity than TM-free filaments. Here, we tested whether differences in recognition of TM or actin isoforms by Tmod1 and Tmod3 contribute to the distinct cellular functions of these Tmods. We found that Tmod3 bound ∼5-fold more weakly than Tmod1 to α/βTM, TM5b, and TM5NM1. However, surprisingly, Tmod3 was as effective as Tmod1 at capping pointed ends of skeletal muscle α-actin (αsk-actin) filaments coated with α/βTM, TM5b, or TM5NM1. Tmod3 only capped TM-coated αsk-actin filaments more weakly than Tmod1 in the presence of recombinant αTM2, which is unacetylated at its NH2 terminus, binds F-actin weakly, and has a disabled Tmod-binding site. Moreover, both Tmod1 and Tmod3 were similarly effective at capping pointed ends of platelet β/cytoplasmic γ (γcyto)-actin filaments coated with TM5NM1. In the absence of TMs, both Tmod1 and Tmod3 had similarly weak abilities to nucleate β/γcyto-actin filament assembly, but only Tmod3 could sequester cytoplasmic β- and γcyto-actin (but not αsk-actin) monomers and prevent polymerization under physiological conditions. Thus, differences in TM binding by Tmod1 and Tmod3 do not appear to regulate the abilities of these Tmods to cap TM-αsk-actin or TM-β/γcyto-actin pointed ends and, thus, are unlikely to determine selective co-assembly of Tmod, TM, and actin isoforms in different cell types and cytoskeletal structures. The ability of Tmod3 to sequester β- and γcyto-actin (but not αsk-actin) monomers in the absence of TMs suggests a novel function for Tmod3 in regulating actin remodeling or turnover in cells. PMID:24644292

  9. Stabilization of actin bundles by a dynamin 1/cortactin ring complex is necessary for growth cone filopodia.

    PubMed

    Yamada, Hiroshi; Abe, Tadashi; Satoh, Ayano; Okazaki, Nana; Tago, Shota; Kobayashi, Kinue; Yoshida, Yumi; Oda, Yoshiya; Watanabe, Masami; Tomizawa, Kazuhito; Matsui, Hideki; Takei, Kohji

    2013-03-01

    Dynamin GTPase, a key molecule in endocytosis, mechanically severs the invaginated membrane upon GTP hydrolysis. Dynamin functions also in regulating actin cytoskeleton, but the mechanisms are yet to be defined. Here we show that dynamin 1, a neuronal isoform of dynamin, and cortactin form ring complexes, which twine around F-actin bundles and stabilize them. By negative-staining EM, dynamin 1-cortactin complexes appeared as "open" or "closed" rings depending on guanine nucleotide conditions. By pyrene actin assembly assay, dynamin 1 stimulated actin assembly in mouse brain cytosol. In vitro incubation of F-actin with both dynamin 1 and cortactin led to the formation of long and thick actin bundles, on which dynamin 1 and cortactin were periodically colocalized in puncta. A depolymerization assay revealed that dynamin 1 and cortactin increased the stability of actin bundles, most prominently in the presence of GTP. In rat cortical neurons and human neuroblastoma cell line, SH-SY5Y, both dynamin 1 and cortactin localized on actin filaments and the bundles at growth cone filopodia as revealed by immunoelectron microscopy. In SH-SY5Y cell, acute inhibition of dynamin 1 by application of dynamin inhibitor led to growth cone collapse. Cortactin knockdown also reduced growth cone filopodia. Together, our results strongly suggest that dynamin 1 and cortactin ring complex mechanically stabilizes F-actin bundles in growth cone filopodia. Thus, the GTPase-dependent mechanochemical enzyme property of dynamin is commonly used both in endocytosis and regulation of F-actin bundles by a dynamin 1-cortactin complex. PMID:23467367

  10. Zonula occludens toxin modulates tight junctions through protein kinase C-dependent actin reorganization, in vitro.

    PubMed Central

    Fasano, A; Fiorentini, C; Donelli, G; Uzzau, S; Kaper, J B; Margaretten, K; Ding, X; Guandalini, S; Comstock, L; Goldblum, S E

    1995-01-01

    The intracellular signaling involved in the mechanism of action of zonula occludens toxin (ZOT) was studied using several in vitro and ex vivo models. ZOT showed a selective effect among various cell lines tested, suggesting that it may interact with a specific receptor, whose surface expression on various cells differs. When tested in IEC6 cell monolayers, ZOT-containing supernatants induced a redistribution of the F-actin cytoskeleton. Similar results were obtained with rabbit ileal mucosa, where the reorganization of F-actin paralleled the increase in tissue permeability. In endothelial cells, the cytoskeletal rearrangement involved a decrease of the soluble G-actin pool (-27%) and a reciprocal increase in the filamentous F-actin pool (+22%). This actin polymerization was time- and dose-dependent, and was reversible. Pretreatment with a specific protein kinase C inhibitor, CGP41251, completely abolished the ZOT effects on both tissue permeability and actin polymerization. In IEC6 cells ZOT induced a peak increment of the PKC-alpha isoform after 3 min incubation. Taken together, these results suggest that ZOT activates a complex intracellular cascade of events that regulate tight junction permeability, probably mimicking the effect of physiologic modulator(s) of epithelial barrier function. Images PMID:7635964

  11. Structure of a Bud6/Actin Complex Reveals a Novel WH2-like Actin Monomer Recruitment Motif.

    PubMed

    Park, Eunyoung; Graziano, Brian R; Zheng, Wei; Garabedian, Mikael; Goode, Bruce L; Eck, Michael J

    2015-08-01

    In budding yeast, the actin-binding protein Bud6 cooperates with formins Bni1 and Bnr1 to catalyze the assembly of actin filaments. The nucleation-enhancing activity of Bud6 requires both a "core" domain that binds to the formin and a "flank" domain that binds monomeric actin. Here, we describe the structure of the Bud6 flank domain in complex with actin. Two helices in Bud6(flank) interact with actin; one binds in a groove at the barbed end of the actin monomer in a manner closely resembling the helix of WH2 domains, a motif found in many actin nucleation factors. The second helix rises along the face of actin. Mutational analysis verifies the importance of these Bud6-actin contacts for nucleation-enhancing activity. The Bud6 binding site on actin overlaps with that of the formin FH2 domain and is also incompatible with inter-subunit contacts in F-actin, suggesting that Bud6 interacts only transiently with actin monomers during filament nucleation. PMID:26118535

  12. Microtubules and actin filaments are not critically involved in the biogenesis of epithelial cell surface polarity.

    PubMed

    Salas, P J; Misek, D E; Vega-Salas, D E; Gundersen, D; Cereijido, M; Rodriguez-Boulan, E

    1986-05-01

    We have studied the role of microtubules and actin filaments in the biogenesis of epithelial cell surface polarity, using influenza hemagglutinin and vesicular stomatitis G protein as model apical and basolateral proteins in infected Madin-Darby canine kidney cells. Addition of colchicine or nocodazole to confluent monolayers at concentrations sufficient to completely disassemble microtubules did not affect the asymmetric budding of influenza or vesicular stomatitis virus and only slightly reduced the typical asymmetric surface distribution of their envelope proteins, despite extensive cytoplasmic redistribution of the Golgi apparatus. Alteration of microtubular function by taxol or dissociation of actin filaments by cytochalasin D also failed to have a significant effect. Furthermore, neither colchicine nor cytochalasin D pretreatment blocked the ability of subconfluent Madin-Darby canine kidney cells to sustain polarized budding of influenza virus a few hours after attachment to the substrate. Our results indicate that domain-specific microtubule or actin filament "tracks" are not responsible for the vectorial delivery of apically or basolaterally directed transport vesicles. In conjunction with currently available evidence, they are compatible with a model in which receptors in the cytoplasmic aspect of apical or basolateral regions provide vectoriality to the transport of vesicles carrying plasma membrane proteins to their final surface localization. PMID:2871031

  13. Microtubules continuously dictate distribution of actin filaments and positioning of cell cleavage in grasshopper spermatocytes.

    PubMed

    Alsop, G Bradley; Zhang, Dahong

    2004-03-15

    We systematically examined the impact of microtubules on distribution of actin filaments and positioning of cell cleavage using micromanipulation to progressively alter the symmetric distribution of spindle microtubules in grasshopper spermatocytes. The initial microtubule asymmetry was induced by placing a single chromosome at one spindle pole using a microneedle, which facilitates regional assembly of spindle microtubules. We augmented chromosome-induced microtubule asymmetry by further removing the aster from the achromosomal pole, producing unichromosome-bearing monopolar spindles. We created the highest spindle asymmetry by cutting early anaphase cells in two, each containing a full set of segregating chromosomes in a half-spindle. We demonstrate that the location of the spindle midzone, distribution of actin filaments, and position of cell cleavage depend on the amount of microtubule asymmetry generated, shifting up to 48.6+/-3.8% away from the spindle equator in cut cells. The positional shift is dynamic, changing incessantly as spindle microtubules reorganize during cytokinesis. These results suggest that microtubules continuously dictate the distribution of actin filaments and positioning of cell cleavage in grasshopper spermatocytes. PMID:15020685

  14. Critical forces for actin filament buckling and force transmission influence transport in actomyosin networks

    NASA Astrophysics Data System (ADS)

    Stam, Samantha; Gardel, Margaret

    Viscoelastic networks of biopolymers coordinate the motion of intracellular objects during transport. These networks have nonlinear mechanical properties due to events such as filament buckling or breaking of cross-links. The influence of such nonlinear properties on the time and length scales of transport is not understood. Here, we use in vitro networks of actin and the motor protein myosin II to clarify how intracellular forces regulate active diffusion. We observe two transitions in the mean-squared displacement of cross-linked actin with increasing motor concentration. The first is a sharp transition from initially subdiffusive to diffusive-like motion that requires filament buckling but does not cause net contraction of the network. Further increase of the motor density produces a second transition to network rupture and ballistic actin transport. This corresponds with an increase in the correlation of motion and thus may be caused when forces propagate far enough for global motion. We conclude that filament buckling and overall network contraction require different amounts of force and produce distinct transport properties. These nonlinear transitions may act as mechanical switches that can be turned on to produce observed motion within cells.

  15. Capping complex formation at the slow-growing end of the actin filament.

    PubMed

    Kostyukova, A S

    2008-12-01

    Actin filaments are polar; their barbed (fast-growing) and pointed (slow-growing) ends differ in structure and dynamic properties. The slow-growing end is regulated by tropomodulins, a family of capping proteins that require tropomyosins for optimal function. There are four tropomodulin isoforms; their distributions vary depending on tissue type and change during development. The C-terminal half of tropomodulin contains one compact domain represented by alternating alpha-helices and beta-structures. The tropomyosin-independent actin-capping site is located at the C-terminus. The N-terminal half has no regular structure; however, it contains a tropomyosin-dependent actin-capping site and two tropomyosin-binding sites. One tropomodulin molecule can bind two tropomyosin molecules. Effectiveness of tropomodulin binding to tropomyosin depends on the tropomyosin isoform. Regulation of tropomodulin binding at the pointed end as well as capping effectiveness in the presence of specific tropomyosins may affect formation of local cytoskeleton and dynamics of actin filaments in cells. PMID:19216712

  16. Computational Study of the Binding Mechanism of Actin-Depolymerizing Factor 1 with Actin in Arabidopsis thaliana

    PubMed Central

    Wang, Xue; Dong, Chun-Hai; Yang, Jian Ming; Yao, Xiao Jun

    2016-01-01

    Actin is a highly conserved protein. It plays important roles in cellular function and exists either in the monomeric (G-actin) or polymeric form (F-actin). Members of the actin-depolymerizing factor (ADF)/cofilin protein family bind to both G-actin and F-actin and play vital roles in actin dynamics by manipulating the rates of filament polymerization and depolymerization. It has been reported that the S6D and R98A/K100A mutants of actin-depolymerizing factor 1 (ADF1) in Arabidopsis thaliana decreased the binding affinity of ADF for the actin monomer. To investigate the binding mechanism and dynamic behavior of the ADF1–actin complex, we constructed a homology model of the AtADF1–actin complex based on the crystal structure of AtADF1 and the twinfilin C-terminal ADF-H domain in a complex with a mouse actin monomer. The model was then refined for subsequent molecular dynamics simulations. Increased binding energy of the mutated system was observed using the Molecular Mechanics Generalized Born Surface Area and Poisson–Boltzmann Surface Area (MM-GB/PBSA) methods. To determine the residues that make decisive contributions to the ADF1 actin-binding affinity, per-residue decomposition and computational alanine scanning analyses were performed, which provided more detailed information on the binding mechanism. Root-mean-square fluctuation and principal component analyses confirmed that the S6D and R98A/K100A mutants induced an increased conformational flexibility. The comprehensive molecular insight gained from this study is of great importance for understanding the binding mechanism of ADF1 and G-actin. PMID:27414648

  17. Computational Study of the Binding Mechanism of Actin-Depolymerizing Factor 1 with Actin in Arabidopsis thaliana.

    PubMed

    Du, Juan; Wang, Xue; Dong, Chun-Hai; Yang, Jian Ming; Yao, Xiao Jun

    2016-01-01

    Actin is a highly conserved protein. It plays important roles in cellular function and exists either in the monomeric (G-actin) or polymeric form (F-actin). Members of the actin-depolymerizing factor (ADF)/cofilin protein family bind to both G-actin and F-actin and play vital roles in actin dynamics by manipulating the rates of filament polymerization and depolymerization. It has been reported that the S6D and R98A/K100A mutants of actin-depolymerizing factor 1 (ADF1) in Arabidopsis thaliana decreased the binding affinity of ADF for the actin monomer. To investigate the binding mechanism and dynamic behavior of the ADF1-actin complex, we constructed a homology model of the AtADF1-actin complex based on the crystal structure of AtADF1 and the twinfilin C-terminal ADF-H domain in a complex with a mouse actin monomer. The model was then refined for subsequent molecular dynamics simulations. Increased binding energy of the mutated system was observed using the Molecular Mechanics Generalized Born Surface Area and Poisson-Boltzmann Surface Area (MM-GB/PBSA) methods. To determine the residues that make decisive contributions to the ADF1 actin-binding affinity, per-residue decomposition and computational alanine scanning analyses were performed, which provided more detailed information on the binding mechanism. Root-mean-square fluctuation and principal component analyses confirmed that the S6D and R98A/K100A mutants induced an increased conformational flexibility. The comprehensive molecular insight gained from this study is of great importance for understanding the binding mechanism of ADF1 and G-actin. PMID:27414648

  18. Gelsolin, a Protein That Caps the Barbed Ends and Severs Actin Filaments, Enhances the Actin-Based Motility of Listeria monocytogenes in Host Cells

    PubMed Central

    Laine, Roney O.; Phaneuf, Katherine L.; Cunningham, Casey C.; Kwiatkowski, David; Azuma, Toshi; Southwick, Frederick S.

    1998-01-01

    The actin-based motility of Listeria monocytogenes requires the addition of actin monomers to the barbed or plus ends of actin filaments. Immunofluorescence micrographs have demonstrated that gelsolin, a protein that both caps barbed ends and severs actin filaments, is concentrated directly behind motile bacteria at the junction between the actin filament rocket tail and the bacterium. In contrast, CapG, a protein that strictly caps actin filaments, fails to localize near intracellular Listeria. To explore the effect of increasing concentrations of gelsolin on bacterial motility, NIH 3T3 fibroblasts stably transfected with gelsolin cDNA were infected with Listeria. The C5 cell line containing 2.25 times control levels of gelsolin supported significantly higher velocities of bacterial movement than did control fibroblasts (mean ± standard error of the mean, 0.09 ± 0.003 μm/s [n = 176] versus 0.05 ± 0.003 μm/s [n = 65]). The rate of disassembly of the Listeria-induced actin filament rocket tail was found to be independent of gelsolin content. Therefore, if increases in gelsolin content result in increases in Listeria-induced rocket tail assembly rates, a positive correlation between gelsolin content and tail length would be expected. BODIPY-phalloidin staining of four different stably transfected NIH 3T3 fibroblast cell lines confirmed this expectation (r = 0.92). Rocket tails were significantly longer in cells with a high gelsolin content. Microinjection of gelsolin 1/2 (consisting of the amino-terminal half of native gelsolin) also increased bacterial velocity by more than 2.2 times. Microinjection of CapG had no effect on bacterial movement. Cultured skin fibroblasts derived from gelsolin-null mice were capable of supporting intracellular Listeria motility at velocities comparable to those supported by wild-type skin fibroblasts. These experiments demonstrated that the surface of Listeria contains a polymerization zone that can block the barbed

  19. Orchestration of microtubules and the actin cytoskeleton in trichome cell shape determination by a plant-unique kinesin

    PubMed Central

    Tian, Juan; Han, Libo; Feng, Zhidi; Wang, Guangda; Liu, Weiwei; Ma, Yinping; Yu, Yanjun; Kong, Zhaosheng

    2015-01-01

    Microtubules (MTs) and actin filaments (F-actin) function cooperatively to regulate plant cell morphogenesis. However, the mechanisms underlying the crosstalk between these two cytoskeletal systems, particularly in cell shape control, remain largely unknown. In this study, we show that introduction of the MyTH4-FERM tandem into KCBP (kinesin-like calmodulin-binding protein) during evolution conferred novel functions. The MyTH4 domain and the FERM domain in the N-terminal tail of KCBP physically bind to MTs and F-actin, respectively. During trichome morphogenesis, KCBP distributes in a specific cortical gradient and concentrates at the branching sites and the apexes of elongating branches, which lack MTs but have cortical F-actin. Further, live-cell imaging and genetic analyses revealed that KCBP acts as a hub integrating MTs and actin filaments to assemble the required cytoskeletal configuration for the unique, polarized diffuse growth pattern during trichome cell morphogenesis. Our findings provide significant insights into the mechanisms underlying cytoskeletal regulation of cell shape determination. DOI: http://dx.doi.org/10.7554/eLife.09351.001 PMID:26287478

  20. Crystal structure of a nuclear actin ternary complex.

    PubMed

    Cao, Tingting; Sun, Lingfei; Jiang, Yuxiang; Huang, Shanjin; Wang, Jiawei; Chen, Zhucheng

    2016-08-01

    Actin polymerizes and forms filamentous structures (F-actin) in the cytoplasm of eukaryotic cells. It also exists in the nucleus and regulates various nucleic acid transactions, particularly through its incorporation into multiple chromatin-remodeling complexes. However, the specific structure of actin and the mechanisms that regulate its polymeric nature inside the nucleus remain unknown. Here, we report the crystal structure of nuclear actin (N-actin) complexed with actin-related protein 4 (Arp4) and the helicase-SANT-associated (HSA) domain of the chromatin remodeler Swr1. The inner face and barbed end of N-actin are sequestered by interactions with Arp4 and the HSA domain, respectively, which prevents N-actin from polymerization and binding to many actin regulators. The two major domains of N-actin are more twisted than those of globular actin (G-actin), and its nucleotide-binding pocket is occluded, freeing N-actin from binding to and regulation by ATP. These findings revealed the salient structural features of N-actin that distinguish it from its cytoplasmic counterpart and provide a rational basis for its functions and regulation inside the nucleus. PMID:27457955

  1. Nuclear Actin Extends, with No Contraction in Sight

    PubMed Central

    Pederson, Thoru; Aebi, Ueli

    2005-01-01

    Within the past two years, actin has been implicated in eukaryotic gene transcription by all three classes of RNA polymerase. Moreover, within just the past year, actin has been identified as a constituent of filaments attached to the nuclear pore complexes and extending into the nucleus. This review summarizes these and other very recent advances in the nuclear actin field and emphasizes the key present issues. On the one hand, we are confronted with a body of evidence for a role of actin in gene transcription but with no known structural basis; on the other hand, there is now evidence for polymeric actin—not likely in the classical F-actin conformation—in the nuclear periphery with no known function. In addition, numerous proteins that interact with either G- or F-actin are increasingly being detected in the nucleus, suggesting that both monomeric and oligomeric or polymeric forms of actin are at play and raising the possibility that the equilibrium between them, perhaps differentially regulated at various intranuclear sites, may be a major determinant of nuclear function. PMID:16148048

  2. Concentration profiles of actin-binding molecules in lamellipodia

    NASA Astrophysics Data System (ADS)

    Falcke, Martin

    2016-04-01

    Motile cells form lamellipodia in the direction of motion, which are flat membrane protrusions containing an actin filament network. The network flows rearward relative to the leading edge of the lamellipodium due to actin polymerization at the front. Thus, actin binding molecules are subject to transport towards the rear of the cell in the bound state and diffuse freely in the unbound state. We analyze this reaction-diffusion-advection process with respect to the concentration profiles of these species and provide an analytic approximation for them. Network flow may cause a depletion zone of actin binding molecules close to the leading edge. The existence of such zone depends on the free molecule concentration in the cell body, on the ratio of the diffusion length to the distance bound molecules travel rearward with the flow before dissociating, and the ratio of the diffusion length to the width of the region with network flow and actin binding. Our calculations suggest the existence of depletion zones for the F-actin cross-linkers filamin and α-actinin in fish keratocytes (and other cell types), which is in line with the small elastic moduli of the F-actin network close to the leading edge found in measurements of the force motile cells are able to exert.

  3. The scaffolding protein IQGAP1 co-localizes with actin at the cytoplasmic face of the nuclear envelope: implications for cytoskeletal regulation

    PubMed Central

    Johnson, Michael A.

    2012-01-01

    IQGAP1 is an important cytoskeletal regulator, known to act at the plasma membrane to bundle and cap actin filaments, and to tether the cortical actin meshwork to microtubules via plus-end binding proteins. Here we describe the novel subcellular localization of IQGAP1 at the cytoplasmic face of the nuclear envelope, where it co-located with F-actin. The IQGAP1 and F-actin staining overlapped that of microtubules at the nuclear envelope, revealing a pattern strikingly similar to that observed at the plasma membrane. In detergent-extracted cells IQGAP1 was retained at cytoskeletal structures at the nuclear envelope. This finding has new implications for involvement of IQGAP1 in cell polarization and migration events and potentially in cell cycle-associated nuclear envelope assembly/disassembly. PMID:22964981

  4. Actin Filament Tracking Based on Particle Filters and Stretching Open Active Contour Models

    PubMed Central

    Li, Hongsheng; Shen, Tian; Vavylonis, Dimitrios; Huang, Xiaolei

    2010-01-01

    We introduce a novel algorithm for actin filament tracking and elongation measurement. Particle Filters (PF) and Stretching Open Active Contours (SOAC) work cooperatively to simplify the modeling of PF in a one-dimensional state space while naturally integrating filament body constraints to tip estimation. Existing microtubule (MT) tracking methods track either MT tips or entire bodies in high-dimensional state spaces. In contrast, our algorithm reduces the PF state spaces to one-dimensional spaces by tracking filament bodies using SOAC and probabilistically estimating tip locations along the curve length of SOACs. Experimental evaluation on TIRFM image sequences with very low SNRs demonstrates the accuracy and robustness of the proposed approach. PMID:20426170

  5. Mesoscopic model for filament orientation in growing actin networks: the role of obstacle geometry

    NASA Astrophysics Data System (ADS)

    Weichsel, Julian; Schwarz, Ulrich S.

    2013-03-01

    Propulsion by growing actin networks is a universal mechanism used in many different biological systems, ranging from the sheet-like lamellipodium of crawling animal cells to the actin comet tails induced by certain bacteria and viruses in order to move within their host cells. Although the core molecular machinery for actin network growth is well preserved in all of these cases, the geometry of the propelled obstacle varies considerably. During recent years, filament orientation distribution has emerged as an important observable characterizing the structure and dynamical state of the growing network. Here we derive several continuum equations for the orientation distribution of filaments growing behind stiff obstacles of various shapes and validate the predicted steady state orientation patterns by stochastic computer simulations based on discrete filaments. We use an ordinary differential equation approach to demonstrate that for flat obstacles of finite size, two fundamentally different orientation patterns peaked at either ±35° or +70°/0°/ - 70° exhibit mutually exclusive stability, in agreement with earlier results for flat obstacles of very large lateral extension. We calculate and validate phase diagrams as a function of model parameters and show how this approach can be extended to obstacles with piecewise straight contours. For curved obstacles, we arrive at a partial differential equation in the continuum limit, which again is in good agreement with the computer simulations. In all cases, we can identify the same two fundamentally different orientation patterns, but only within an appropriate reference frame, which is adjusted to the local orientation of the obstacle contour. Our results suggest that two fundamentally different network architectures compete with each other in growing actin networks, irrespective of obstacle geometry, and clarify how simulated and electron tomography data have to be analyzed for non-flat obstacle geometries.

  6. Pseudo-acetylation of K326 and K328 of actin disrupts Drosophila melanogaster indirect flight muscle structure and performance

    PubMed Central

    Viswanathan, Meera C.; Blice-Baum, Anna C.; Schmidt, William; Foster, D. Brian; Cammarato, Anthony

    2015-01-01

    In striated muscle tropomyosin (Tm) extends along the length of F-actin-containing thin filaments. Its location governs access of myosin binding sites on actin and, hence, force production. Intermolecular electrostatic associations are believed to mediate critical interactions between the proteins. For example, actin residues K326, K328, and R147 were predicted to establish contacts with E181 of Tm. Moreover, K328 also potentially forms direct interactions with E286 of myosin when the motor is strongly bound. Recently, LC-MS/MS analysis of the cardiac acetyl-lysine proteome revealed K326 and K328 of actin were acetylated, a post-translational modification (PTM) that masks the residues' inherent positive charges. Here, we tested the hypothesis that by removing the vital actin charges at residues 326 and 328, the PTM would perturb Tm positioning and/or strong myosin binding as manifested by altered skeletal muscle function and structure in the Drosophila melanogaster model system. Transgenic flies were created that permit tissue-specific expression of K326Q, K328Q, or K326Q/K328Q acetyl-mimetic actin and of wild-type actin via the UAS-GAL4 bipartite expression system. Compared to wild-type actin, muscle-restricted expression of mutant actin had a dose-dependent effect on flight ability. Moreover, excessive K328Q and K326Q/K328Q actin overexpression induced indirect flight muscle degeneration, a phenotype consistent with hypercontraction observed in other Drosophila myofibrillar mutants. Based on F-actin-Tm and F-actin-Tm-myosin models and on our physiological data, we conclude that acetylating K326 and K328 of actin alters electrostatic associations with Tm and/or myosin and thereby augments contractile properties. Our findings highlight the utility of Drosophila as a model that permits efficient targeted design and assessment of molecular and tissue-specific responses to muscle protein modifications, in vivo. PMID:25972811

  7. Annular PIP3 accumulation controls actin architecture and modulates cytotoxicity at the immunological synapse.

    PubMed

    Le Floc'h, Audrey; Tanaka, Yoshihiko; Bantilan, Niels S; Voisinne, Guillaume; Altan-Bonnet, Grégoire; Fukui, Yoshinori; Huse, Morgan

    2013-11-18

    The immunological synapse formed by a T lymphocyte on the surface of a target cell contains a peripheral ring of filamentous actin (F-actin) that promotes adhesion and facilitates the directional secretion of cytokines and cytolytic factors. We show that growth and maintenance of this F-actin ring is dictated by the annular accumulation of phosphatidylinositol trisphosphate (PIP3) in the synaptic membrane. PIP3 functions in this context by recruiting the exchange factor Dock2 to the periphery of the synapse, where it drives actin polymerization through the Rho-family GTPase Rac. We also show that synaptic PIP3 is generated by class IA phosphoinositide 3-kinases that associate with T cell receptor microclusters and are activated by the GTPase Ras. Perturbations that inhibit or promote PIP3-dependent F-actin remodeling dramatically affect T cell cytotoxicity, demonstrating the functional importance of this pathway. These results reveal how T cells use lipid-based signaling to control synaptic architecture and modulate effector responses. PMID:24190432

  8. He-Ne laser influenced actin filaments alleviate the damage of UV-B in wheat

    NASA Astrophysics Data System (ADS)

    Chen, Huize; Han, Rong

    2015-01-01

    This work investigated the use of a He-Ne laser in alleviating the damaging effects of ultraviolet-B (UV-B) radiation on wheat seedlings by influenced actin filaments. Triticum aestivum seedlings were irradiated with either enhanced UV-B (10.08 KJ m-2 d-1) or a combination of UV-B light and the He-Ne laser. Plants were also exposed to the He-Ne laser alone. In order to compare the effect of the He-Ne laser, red light (same power and wavelength as the He-Ne laser) treatment and the combined UV-B and red light treatment were added. Moreover, wheat seedlings were treated with actin special drugs, including cytochalasin B (CB) and jasplakinolide (JAS). We analyzed the growth of the seedlings, the distribution of actin filaments (AFs), DNA laddering and ACTIN expression in the different groups. The results showed that enhanced UV-B produced negative effects on the growth of wheat seedlings while implementing the He-Ne laser partially alleviated the injury. With the red light treatment, there are no positive effects. The ACTIN expression stayed the same in the different treatments, while the distribution and the protein content are different. The Fourier transform infrared (FTIR) microspectroscopic results further established significant changes in the chemical composition of the wall material. These results suggested that the He-Ne laser alleviated the damaging effects of UV-B radiation in wheat seedlings by changing the characteristics of the AFs.

  9. Covisualization in living onion cells of putative integrin, putative spectrin, actin, putative intermediate filaments, and other proteins at the cell membrane and in an endomembrane sheath

    NASA Technical Reports Server (NTRS)

    Reuzeau, C.; Doolittle, K. W.; McNally, J. G.; Pickard, B. G.; Evans, M. L. (Principal Investigator)

    1997-01-01

    Covisualizations with wide-field computational optical-sectioning microscopy of living epidermal cells of the onion bulb scale have evidenced two major new cellular features. First, a sheath of cytoskeletal elements clads the endomembrane system. Similar elements clad the inner faces of punctate plasmalemmal sites interpreted as plasmalemmal control centers. One component of the endomembrane sheath and plasmalemmal control center cladding is anti-genicity-recognized by two injected antibodies against animal spectrin. Immunoblots of separated epidermal protein also showed bands recognized by these antibodies. Injected phalloidin identified F-actin with the same cellular distribution pattern, as did antibodies against intermediate-filament protein and other cytoskeletal elements known from animal cells. Injection of general protein stains demonstrated the abundance of endomembrane sheath protein. Second, the endomembrane system, like the plasmalemmal puncta, contains antigen recognized by an anti-beta 1 integrin injected into the cytoplasm. Previously, immunoblots of separated epidermal protein were shown to have a major band recognized both by this antibody prepared against a peptide representing the cytosolic region of beta 1 integrin and an antibody against the matrix region of beta 1 integrin. The latter antiboby also identified puncta at the external face of protoplasts. It is proposed that integrin and associated transmembrane proteins secure the endomembrane sheath and transmit signals between it and the lumen or matrix of the endoplasmic reticulum and organellar matrices. This function is comparable to that proposed for such transmembrane linkers in the plasmalemmal control centers, which also appear to bind cytoskeleton and a host of related molecules and transmit signals between them and the wall matrix. It is at the plasmalemmal control centers that the endoplasmic reticulum, a major component of the endomembrane system, attaches to the plasma membrane.

  10. A technique for simultaneous measurement of force and overlap between single muscle filaments of myosin and actin.

    PubMed

    Kalganov, Albert; Novinger, Rowan; Rassier, Dilson E

    2010-12-17

    In this study, we show a method for direct measurements of force and simultaneous visualization of isolated muscle filaments. Single actin filaments isolated from chicken skeletal muscle and single thick filaments isolated from Mussels were imaged using fluorescence and dark field microscopy, respectively. Force generated by the filaments was measured using micro-fabricated cantilevers. Force values were in the range observed previously with myosin filaments and molecules. The results suggest that the technique can be used to investigate many issues of interest and debate in the field of muscle biophysics. PMID:21081114

  11. The Plant-Specific Actin Binding Protein SCAB1 Stabilizes Actin Filaments and Regulates Stomatal Movement in Arabidopsis[C][W

    PubMed Central

    Zhao, Yang; Zhao, Shuangshuang; Mao, Tonglin; Qu, Xiaolu; Cao, Wanhong; Zhang, Li; Zhang, Wei; He, Liu; Li, Sidi; Ren, Sulin; Zhao, Jinfeng; Zhu, Guoli; Huang, Shanjin; Ye, Keqiong; Yuan, Ming; Guo, Yan

    2011-01-01

    Microfilament dynamics play a critical role in regulating stomatal movement; however, the molecular mechanism underlying this process is not well understood. We report here the identification and characterization of STOMATAL CLOSURE-RELATED ACTIN BINDING PROTEIN1 (SCAB1), an Arabidopsis thaliana actin binding protein. Plants lacking SCAB1 were hypersensitive to drought stress and exhibited reduced abscisic acid-, H2O2-, and CaCl2-regulated stomatal movement. In vitro and in vivo analyses revealed that SCAB1 binds, stabilizes, and bundles actin filaments. SCAB1 shares sequence similarity only with plant proteins and contains a previously undiscovered actin binding domain. During stomatal closure, actin filaments switched from a radial orientation in open stomata to a longitudinal orientation in closed stomata. This switch took longer in scab1 plants than in wild-type plants and was correlated with the delay in stomatal closure seen in scab1 mutants in response to drought stress. Our results suggest that SCAB1 is required for the precise regulation of actin filament reorganization during stomatal closure. PMID:21719691

  12. Convoluted Plasma Membrane Domains in the Green Alga Chara are Depleted of Microtubules and Actin Filaments

    PubMed Central

    Sommer, Aniela; Hoeftberger, Margit; Hoepflinger, Marion C.; Schmalbrock, Sarah; Bulychev, Alexander; Foissner, Ilse

    2015-01-01

    Charasomes are convoluted plasma membrane domains in the green alga Chara australis. They harbor H+-ATPases involved in acidification of the medium, which facilitates carbon uptake required for photosynthesis. In this study we investigated the distribution of cortical microtubules and cortical actin filaments in relation to the distribution of charasomes. We found that microtubules and actin filaments were largely lacking beneath the charasomes, suggesting the absence of nucleating and/or anchoring complexes or an inhibitory effect on polymerization. We also investigated the influence of cytoskeleton inhibitors on the light-dependent growth and the darkness-induced degradation of charasomes. Inhibition of cytoplasmic streaming by cytochalasin D significantly inhibited charasome growth and delayed charasome degradation, whereas depolymerization of microtubules by oryzalin or stabilization of microtubules by paclitaxel had no effect. Our data indicate that the membrane at the cytoplasmic surface of charasomes has different properties in comparison with the smooth plasma membrane. We show further that the actin cytoskeleton is necessary for charasome growth and facilitates charasome degradation presumably via trafficking of secretory and endocytic vesicles, respectively. However, microtubules are required neither for charasome growth nor for charasome degradation. PMID:26272553

  13. Convoluted Plasma Membrane Domains in the Green Alga Chara are Depleted of Microtubules and Actin Filaments.

    PubMed

    Sommer, Aniela; Hoeftberger, Margit; Hoepflinger, Marion C; Schmalbrock, Sarah; Bulychev, Alexander; Foissner, Ilse

    2015-10-01

    Charasomes are convoluted plasma membrane domains in the green alga Chara australis. They harbor H(+)-ATPases involved in acidification of the medium, which facilitates carbon uptake required for photosynthesis. In this study we investigated the distribution of cortical microtubules and cortical actin filaments in relation to the distribution of charasomes. We found that microtubules and actin filaments were largely lacking beneath the charasomes, suggesting the absence of nucleating and/or anchoring complexes or an inhibitory effect on polymerization. We also investigated the influence of cytoskeleton inhibitors on the light-dependent growth and the darkness-induced degradation of charasomes. Inhibition of cytoplasmic streaming by cytochalasin D significantly inhibited charasome growth and delayed charasome degradation, whereas depolymerization of microtubules by oryzalin or stabilization of microtubules by paclitaxel had no effect. Our data indicate that the membrane at the cytoplasmic surface of charasomes has different properties in comparison with the smooth plasma membrane. We show further that the actin cytoskeleton is necessary for charasome growth and facilitates charasome degradation presumably via trafficking of secretory and endocytic vesicles, respectively. However, microtubules are required neither for charasome growth nor for charasome degradation. PMID:26272553

  14. Closed membrane shapes with attached BAR domains subject to external force of actin filaments.

    PubMed

    Mesarec, Luka; Góźdź, Wojciech; Iglič, Veronika Kralj; Kralj, Samo; Iglič, Aleš

    2016-05-01

    Membrane deformations induced by attached BAR superfamily domains could trigger or facilitate the growth of plasma membrane protrusions. The BAR domain family consists of BAR, F-BAR and I-BAR domains, each enforcing a different local curvature when attached to the membrane surface. Our theoretical study mainly focuses on the role of I-BAR in the membrane tubular deformations generated or stabilised by actin filaments. The influence of the area density of membrane attached BAR domains and their intrinsic curvature on the closed membrane shapes (vesicles) was investigated numerically. We derived an analytical approximative expression for the critical relative area density of BARs at which the membrane tubular protrusions on vesicles are most prominent. We have shown that the BARs with a higher intrinsic curvature induce thinner and longer cylindrical protrusions. The average orientation of the membrane attached BARs is altered when the vesicle shape is subjected to external force of growing actin rod-like structure inside a vesicle. The average orientation angle of membrane attached BARs may indicate whether the actin filaments are just stabilising the protrusion or generating it by stretching the vesicle. PMID:26854580

  15. Atomic Force Microscopy and Light Scattering of Small Unilamellar Actin-Containing Liposomes

    PubMed Central

    Palmer, Andre F.; Wingert, Philip; Nickels, Jonathan

    2003-01-01

    Three-dimensional networks of filamentous actin (F-actin) encapsulated inside phosphatidylcholine liposomes are currently being used in an effort to model the cytoskeleton and plasma membrane of eukaryotic cells. In this article, unilamellar lipid vesicles consisting of egg yolk-derived phosphatidylcholine encapsulating monomeric actin (G-actin) were made via extrusion in low ionic strength buffer (G-buffer). Vesicle shape and structure in these dispersions was studied using a combination of fluid-tapping atomic force microscopy, and multiangle static light scattering. After subjecting the liposome dispersion to high ionic strength polymerization buffer (F-buffer) containing K+ ions, atomic force microscopy imaging and light scattering of these liposomes indicated the formation of specialized structures, including an overall liposome structure transformation from spherical to torus, disk-shaped geometries and tubular assemblies. Several atomic force microscopy control measurements were made to ascertain that the specialized structures formed were not due to free G-actin and F-actin self-assembling on the sample surface, plain liposomes exposed to G- and F-buffer, or liposomes encapsulating G-actin. Liposomes encapsulating G-actin assumed mostly thin disk shapes and some large irregularly shaped aggregates. In contrast, liposomes encapsulating polymerized actin assumed mostly torus or disk shapes along with some high aspect ratio tubular structures. PMID:12885667

  16. Dynamic Filament Formation by a Divergent Bacterial Actin-Like ParM Protein

    PubMed Central

    Brzoska, Anthony J.; Jensen, Slade O.; Barton, Deborah A.; Davies, Danielle S.; Overall, Robyn L.; Skurray, Ronald A.; Firth, Neville

    2016-01-01

    Actin-like proteins (Alps) are a diverse family of proteins whose genes are abundant in the chromosomes and mobile genetic elements of many bacteria. The low-copy-number staphylococcal multiresistance plasmid pSK41 encodes ParM, an Alp involved in efficient plasmid partitioning. pSK41 ParM has previously been shown to form filaments in vitro that are structurally dissimilar to those formed by other bacterial Alps. The mechanistic implications of these differences are not known. In order to gain insights into the properties and behavior of the pSK41 ParM Alp in vivo, we reconstituted the parMRC system in the ectopic rod-shaped host, E. coli, which is larger and more genetically amenable than the native host, Staphylococcus aureus. Fluorescence microscopy showed a functional fusion protein, ParM-YFP, formed straight filaments in vivo when expressed in isolation. Strikingly, however, in the presence of ParR and parC, ParM-YFP adopted a dramatically different structure, instead forming axial curved filaments. Time-lapse imaging and selective photobleaching experiments revealed that, in the presence of all components of the parMRC system, ParM-YFP filaments were dynamic in nature. Finally, molecular dissectio