Science.gov

Sample records for actin network flow

  1. Elastic coupling of nascent apCAM adhesions to flowing actin networks.

    PubMed

    Mejean, Cecile O; Schaefer, Andrew W; Buck, Kenneth B; Kress, Holger; Shundrovsky, Alla; Merrill, Jason W; Dufresne, Eric R; Forscher, Paul

    2013-01-01

    Adhesions are multi-molecular complexes that transmit forces generated by a cell's acto-myosin networks to external substrates. While the physical properties of some of the individual components of adhesions have been carefully characterized, the mechanics of the coupling between the cytoskeleton and the adhesion site as a whole are just beginning to be revealed. We characterized the mechanics of nascent adhesions mediated by the immunoglobulin-family cell adhesion molecule apCAM, which is known to interact with actin filaments. Using simultaneous visualization of actin flow and quantification of forces transmitted to apCAM-coated beads restrained with an optical trap, we found that adhesions are dynamic structures capable of transmitting a wide range of forces. For forces in the picoNewton scale, the nascent adhesions' mechanical properties are dominated by an elastic structure which can be reversibly deformed by up to 1 µm. Large reversible deformations rule out an interface between substrate and cytoskeleton that is dominated by a number of stiff molecular springs in parallel, and favor a compliant cross-linked network. Such a compliant structure may increase the lifetime of a nascent adhesion, facilitating signaling and reinforcement.

  2. Confinement induces actin flow in a meiotic cytoplasm

    PubMed Central

    Pinot, Mathieu; Steiner, Villier; Dehapiot, Benoit; Yoo, Byung-Kuk; Chesnel, Franck; Blanchoin, Laurent; Kervrann, Charles; Gueroui, Zoher

    2012-01-01

    In vivo, F-actin flows are observed at different cell life stages and participate in various developmental processes during asymmetric divisions in vertebrate oocytes, cell migration, or wound healing. Here, we show that confinement has a dramatic effect on F-actin spatiotemporal organization. We reconstitute in vitro the spontaneous generation of F-actin flow using Xenopus meiotic extracts artificially confined within a geometry mimicking the cell boundary. Perturbations of actin polymerization kinetics or F-actin nucleation sites strongly modify the network flow dynamics. A combination of quantitative image analysis and biochemical perturbations shows that both spatial localization of F-actin nucleators and actin turnover play a decisive role in generating flow. Interestingly, our in vitro assay recapitulates several symmetry-breaking processes observed in oocytes and early embryonic cells. PMID:22753521

  3. Architecture and Connectivity Govern Actin Network Contractility.

    PubMed

    Ennomani, Hajer; Letort, Gaëlle; Guérin, Christophe; Martiel, Jean-Louis; Cao, Wenxiang; Nédélec, François; De La Cruz, Enrique M; Théry, Manuel; Blanchoin, Laurent

    2016-03-07

    Actomyosin contractility plays a central role in a wide range of cellular processes, including the establishment of cell polarity, cell migration, tissue integrity, and morphogenesis during development. The contractile response is variable and depends on actomyosin network architecture and biochemical composition. To determine how this coupling regulates actomyosin-driven contraction, we used a micropatterning method that enables the spatial control of actin assembly. We generated a variety of actin templates and measured how defined actin structures respond to myosin-induced forces. We found that the same actin filament crosslinkers either enhance or inhibit the contractility of a network, depending on the organization of actin within the network. Numerical simulations unified the roles of actin filament branching and crosslinking during actomyosin contraction. Specifically, we introduce the concept of "network connectivity" and show that the contractions of distinct actin architectures are described by the same master curve when considering their degree of connectivity. This makes it possible to predict the dynamic response of defined actin structures to transient changes in connectivity. We propose that, depending on the connectivity and the architecture, network contraction is dominated by either sarcomeric-like or buckling mechanisms. More generally, this study reveals how actin network contractility depends on its architecture under a defined set of biochemical conditions.

  4. Reversible stress softening of actin networks

    PubMed Central

    Chaudhuri, Ovijit; Parekh, Sapun H.; Fletcher, Daniel A.

    2011-01-01

    The mechanical properties of cells play an essential role in numerous physiological processes. Organized networks of semiflexible actin filaments determine cell stiffness and transmit force during mechanotransduction, cytokinesis, cell motility and other cellular shape changes1–3. Although numerous actin-binding proteins have been identified that organize networks, the mechanical properties of actin networks with physiological architectures and concentrations have been difficult to measure quantitatively. Studies of mechanical properties in vitro have found that crosslinked networks of actin filaments formed in solution exhibit stress stiffening arising from the entropic elasticity of individual filaments or crosslinkers resisting extension4–8. Here we report reversible stress-softening behaviour in actin networks reconstituted in vitro that suggests a critical role for filaments resisting compression. Using a modified atomic force microscope to probe dendritic actin networks (like those formed in the lamellipodia of motile cells), we observe stress stiffening followed by a regime of reversible stress softening at higher loads. This softening behaviour can be explained by elastic buckling of individual filaments under compression that avoids catastrophic fracture of the network. The observation of both stress stiffening and softening suggests a complex interplay between entropic and enthalpic elasticity in determining the mechanical properties of actin networks. PMID:17230186

  5. Cortical flow aligns actin filaments to form a furrow

    PubMed Central

    Reymann, Anne-Cecile; Staniscia, Fabio; Erzberger, Anna; Salbreux, Guillaume; Grill, Stephan W

    2016-01-01

    Cytokinesis in eukaryotic cells is often accompanied by actomyosin cortical flow. Over 30 years ago, Borisy and White proposed that cortical flow converging upon the cell equator compresses the actomyosin network to mechanically align actin filaments. However, actin filaments also align via search-and-capture, and to what extent compression by flow or active alignment drive furrow formation remains unclear. Here, we quantify the dynamical organization of actin filaments at the onset of ring assembly in the C. elegans zygote, and provide a framework for determining emergent actomyosin material parameters by the use of active nematic gel theory. We characterize flow-alignment coupling, and verify at a quantitative level that compression by flow drives ring formation. Finally, we find that active alignment enhances but is not required for ring formation. Our work characterizes the physical mechanisms of actomyosin ring formation and highlights the role of flow as a central organizer of actomyosin network architecture. DOI: http://dx.doi.org/10.7554/eLife.17807.001 PMID:27719759

  6. Viscoelastic properties of actin networks influence material transport

    NASA Astrophysics Data System (ADS)

    Stam, Samantha; Weirich, Kimberly; Gardel, Margaret

    2015-03-01

    Directed flows of cytoplasmic material are important in a variety of biological processes including assembly of a mitotic spindle, retraction of the cell rear during migration, and asymmetric cell division. Networks of cytoskeletal polymers and molecular motors are known to be involved in these events, but how the network mechanical properties are tuned to perform such functions is not understood. Here, we construct networks of either semiflexible actin filaments or rigid bundles with varying connectivity. We find that solutions of rigid rods, where unimpeded sliding of filaments may enhance transport in comparison to unmoving tracks, are the fastest at transporting network components. Entangled solutions of semiflexible actin filaments also transport material, but the entanglements provide resistance. Increasing the elasticity of the actin networks with crosslinking proteins slows network deformation further. However, the length scale of correlated transport in these networks is increased. Our results reveal how the rigidity and connectivity of biopolymers allows material transport to occur over time and length scales required for physiological processes. This work was supported by the U. Chicago MRSEC

  7. Growth of branched actin networks against obstacles.

    PubMed Central

    Carlsson, A E

    2001-01-01

    A method for simulating the growth of branched actin networks against obstacles has been developed. The method is based on simple stochastic events, including addition or removal of monomers at filament ends, capping of filament ends, nucleation of branches from existing filaments, and detachment of branches; the network structure for several different models of the branching process has also been studied. The models differ with regard to their inclusion of effects such as preferred branch orientations, filament uncapping at the obstacle, and preferential branching at filament ends. The actin ultrastructure near the membrane in lamellipodia is reasonably well produced if preferential branching in the direction of the obstacle or barbed-end uncapping effects are included. Uncapping effects cause the structures to have a few very long filaments that are similar to those seen in pathogen-induced "actin tails." The dependence of the growth velocity, branch spacing, and network density on the rate parameters for the various processes is quite different among the branching models. An analytic theory of the growth velocity and branch spacing of the network is described. Experiments are suggested that could distinguish among some of the branching models. PMID:11566765

  8. Curvature and torsion in growing actin networks

    PubMed Central

    Shaevitz, Joshua W; Fletcher, Daniel A

    2011-01-01

    Intracellular pathogens such as Listeria monocytogenes and Rickettsia rickettsii move within a host cell by polymerizing a comet-tail of actin fibers that ultimately pushes the cell forward. This dense network of cross-linked actin polymers typically exhibits a striking curvature that causes bacteria to move in gently looping paths. Theoretically, tail curvature has been linked to details of motility by considering force and torque balances from a finite number of polymerizing filaments. Here we track beads coated with a prokaryotic activator of actin polymerization in three dimensions to directly quantify the curvature and torsion of bead motility paths. We find that bead paths are more likely to have low rather than high curvature at any given time. Furthermore, path curvature changes very slowly in time, with an autocorrelation decay time of 200 s. Paths with a small radius of curvature, therefore, remain so for an extended period resulting in loops when confined to two dimensions. When allowed to explore a three-dimensional (3D) space, path loops are less evident. Finally, we quantify the torsion in the bead paths and show that beads do not exhibit a significant left- or right-handed bias to their motion in 3D. These results suggest that paths of actin-propelled objects may be attributed to slow changes in curvature, possibly associated with filament debranching, rather than a fixed torque. PMID:18560043

  9. Curvature and torsion in growing actin networks

    NASA Astrophysics Data System (ADS)

    Shaevitz, Joshua W.; Fletcher, Daniel A.

    2008-06-01

    Intracellular pathogens such as Listeria monocytogenes and Rickettsia rickettsii move within a host cell by polymerizing a comet-tail of actin fibers that ultimately pushes the cell forward. This dense network of cross-linked actin polymers typically exhibits a striking curvature that causes bacteria to move in gently looping paths. Theoretically, tail curvature has been linked to details of motility by considering force and torque balances from a finite number of polymerizing filaments. Here we track beads coated with a prokaryotic activator of actin polymerization in three dimensions to directly quantify the curvature and torsion of bead motility paths. We find that bead paths are more likely to have low rather than high curvature at any given time. Furthermore, path curvature changes very slowly in time, with an autocorrelation decay time of 200 s. Paths with a small radius of curvature, therefore, remain so for an extended period resulting in loops when confined to two dimensions. When allowed to explore a three-dimensional (3D) space, path loops are less evident. Finally, we quantify the torsion in the bead paths and show that beads do not exhibit a significant left- or right-handed bias to their motion in 3D. These results suggest that paths of actin-propelled objects may be attributed to slow changes in curvature, possibly associated with filament debranching, rather than a fixed torque.

  10. Cyclic hardening in bundled actin networks.

    PubMed

    Schmoller, K M; Fernández, P; Arevalo, R C; Blair, D L; Bausch, A R

    2010-01-01

    Nonlinear deformations can irreversibly alter the mechanical properties of materials. Most soft materials, such as rubber and living tissues, display pronounced softening when cyclically deformed. Here we show that, in contrast, reconstituted networks of crosslinked, bundled actin filaments harden when subject to cyclical shear. As a consequence, they exhibit a mechano-memory where a significant stress barrier is generated at the maximum of the cyclic shear strain. This unique response is crucially determined by the network architecture: at lower crosslinker concentrations networks do not harden, but soften showing the classic Mullins effect known from rubber-like materials. By simultaneously performing macrorheology and confocal microscopy, we show that cyclic shearing results in structural reorganization of the network constituents such that the maximum applied strain is encoded into the network architecture.

  11. Formin DAAM1 Organizes Actin Filaments in the Cytoplasmic Nodal Actin Network

    PubMed Central

    Luo, Weiwei; Lieu, Zi Zhao; Manser, Ed; Bershadsky, Alexander D.; Sheetz, Michael P.

    2016-01-01

    A nodal cytoplasmic actin network underlies actin cytoplasm cohesion in the absence of stress fibers. We previously described such a network that forms upon Latrunculin A (LatA) treatment, in which formin DAAM1 was localized at these nodes. Knock down of DAAM1 reduced the mobility of actin nodes but the nodes remained. Here we have investigated DAAM1 containing nodes after LatA washout. DAAM1 was found to be distributed between the cytoplasm and the plasma membrane. The membrane binding likely occurs through an interaction with lipid rafts, but is not required for F-actin assembly. Interesting the forced interaction of DAAM1 with plasma membrane through a rapamycin-dependent linkage, enhanced F-actin assembly at the cell membrane (compared to the cytoplasm) after the LatA washout. However, immediately after addition of both rapamycin and LatA, the cytoplasmic actin nodes formed transiently, before DAAM1 moved to the membrane. This was consistent with the idea that DAAM1 was initially anchored to cytoplasmic actin nodes. Further, photoactivatable tracking of DAAM1 showed DAAM1 was immobilized at these actin nodes. Thus, we suggest that DAAM1 organizes actin filaments into a nodal complex, and such nodal complexes seed actin network recovery after actin depolymerization. PMID:27760153

  12. Actin network architecture can determine myosin motor activity.

    PubMed

    Reymann, Anne-Cécile; Boujemaa-Paterski, Rajaa; Martiel, Jean-Louis; Guérin, Christophe; Cao, Wenxiang; Chin, Harvey F; De La Cruz, Enrique M; Théry, Manuel; Blanchoin, Laurent

    2012-06-08

    The organization of actin filaments into higher-ordered structures governs eukaryotic cell shape and movement. Global actin network size and architecture are maintained in a dynamic steady state through regulated assembly and disassembly. Here, we used experimentally defined actin structures in vitro to investigate how the activity of myosin motors depends on network architecture. Direct visualization of filaments revealed myosin-induced actin network deformation. During this reorganization, myosins selectively contracted and disassembled antiparallel actin structures, while parallel actin bundles remained unaffected. The local distribution of nucleation sites and the resulting orientation of actin filaments appeared to regulate the scalability of the contraction process. This "orientation selection" mechanism for selective contraction and disassembly suggests how the dynamics of the cellular actin cytoskeleton can be spatially controlled by actomyosin contractility.

  13. New single-molecule speckle microscopy reveals modification of the retrograde actin flow by focal adhesions at nanometer scales.

    PubMed

    Yamashiro, Sawako; Mizuno, Hiroaki; Smith, Matthew B; Ryan, Gillian L; Kiuchi, Tai; Vavylonis, Dimitrios; Watanabe, Naoki

    2014-04-01

    Speckle microscopy directly visualizes the retrograde actin flow, which is believed to promote cell-edge protrusion when linked to focal adhesions (FAs). However, it has been argued that, due to rapid actin turnover, the use of green fluorescent protein-actin, the lack of appropriate analysis algorithms, and technical difficulties, speckle microscopy does not necessarily report the flow velocities of entire actin populations. In this study, we developed a new, user-friendly single-molecule speckle (SiMS) microscopy using DyLight dye-labeled actin. Our new SiMS method enables in vivo nanometer-scale displacement analysis with a low localization error of ±8-8.5 nm, allowing accurate flow-velocity measurement for actin speckles with lifetime <5 s. In lamellipodia, both short- and long-lived F-actin molecules flow with the same speed, indicating they are part of a single actin network. These results do not support coexistence of F-actin populations with different flow speeds, which is referred to as the lamella hypothesis. Mature FAs, but not nascent adhesions, locally obstruct the retrograde flow. Interestingly, the actin flow in front of mature FAs is fast and biased toward FAs, suggesting that mature FAs attract the flow in front and actively remodel the local actin network.

  14. New single-molecule speckle microscopy reveals modification of the retrograde actin flow by focal adhesions at nanometer scales

    PubMed Central

    Yamashiro, Sawako; Mizuno, Hiroaki; Smith, Matthew B.; Ryan, Gillian L.; Kiuchi, Tai; Vavylonis, Dimitrios; Watanabe, Naoki

    2014-01-01

    Speckle microscopy directly visualizes the retrograde actin flow, which is believed to promote cell-edge protrusion when linked to focal adhesions (FAs). However, it has been argued that, due to rapid actin turnover, the use of green fluorescent protein–actin, the lack of appropriate analysis algorithms, and technical difficulties, speckle microscopy does not necessarily report the flow velocities of entire actin populations. In this study, we developed a new, user-friendly single-molecule speckle (SiMS) microscopy using DyLight dye-labeled actin. Our new SiMS method enables in vivo nanometer-scale displacement analysis with a low localization error of ±8–8.5 nm, allowing accurate flow-velocity measurement for actin speckles with lifetime <5 s. In lamellipodia, both short- and long-lived F-actin molecules flow with the same speed, indicating they are part of a single actin network. These results do not support coexistence of F-actin populations with different flow speeds, which is referred to as the lamella hypothesis. Mature FAs, but not nascent adhesions, locally obstruct the retrograde flow. Interestingly, the actin flow in front of mature FAs is fast and biased toward FAs, suggesting that mature FAs attract the flow in front and actively remodel the local actin network. PMID:24501425

  15. Encoding Mechano-Memories in Actin Networks

    NASA Astrophysics Data System (ADS)

    Foucard, Louis; Majumdar, Sayantan; Levine, Alex; Gardel, Margaret

    The ability of cells to sense and adapt to external mechanical stimuli is vital to many of its biological functions. A critical question is therefore to understand how mechanosensory mechanisms arise in living matter, with implications in both cell biology and smart materials design. Experimental work has demonstrated that the mechanical properties of semiflexible actin networks in Eukaryotic cells can be modulated (either transiently or irreversibly) via the application of external forces. Previous work has also shown with a combination of numerical simulations and analytic calculations shows that the broken rotational symmetry of the filament orientational distribution in semiflexible networks leads to dramatic changes in the mechanical response. Here we demonstrate with a combination of numerical and analytic calculations that the observed long-lived mechano-memory in the actin networks arise from changes in the nematic order of the constituent filaments. These stress-induced changes in network topology relax slowly under zero stress and can be observed through changes in the nonlinear mechanics. Our results provide a strategy for designing a novel class of materials and demonstrate a new putative mechanism of mechanical sensing in eukaryotic cells.

  16. Network Flows

    DTIC Science & Technology

    1988-12-01

    Researchers have suggested other solution strategies, using ideas from nonlinear progamming for solving this general separable convex cost flow problems. Some...plane methods and branch and bound procedures of integer programming, primal-dual methods of linear and nonlinear programming, and polyhedral methods...Combinatorial Optimization: Networks and Matroids), Bazaraa and Jarvis [1978] (Linear Programming and Network Flows), Minieka [1978] (Optimization Algorithms for

  17. Resemblance of actin-binding protein/actin gels to covalently crosslinked networks

    NASA Astrophysics Data System (ADS)

    Janmey, Paul A.; Hvidt, Søren; Lamb, Jennifer; Stossel, Thomas P.

    1990-05-01

    THE maintainance of the shape of cells is often due to their surface elasticity, which arises mainly from an actin-rich cytoplasmic cortex1,2. On locomotion, phagocytosis or fission, however, these cells become partially fluid-like. The finding of proteins that can bind to actin and control the assembly of, or crosslink, actin filaments, and of intracellular messages that regulate the activities of some of these actin-binding proteins, indicates that such 'gel sol' transformations result from the rearrangement of cortical actin-rich networks3. Alternatively, on the basis of a study of the mechanical properties of mixtures of actin filaments and an Acanthamoeba actin-binding protein, α-actinin, it has been proposed that these transformations can be accounted for by rapid exchange of crosslinks between actin filaments4: the cortical network would be solid when the deformation rate is greater than the rate of crosslink exchange, but would deform or 'creep' when deformation is slow enough to permit crosslinker molecules to rearrange. Here we report, however, that mixtures of actin filaments and actin-binding protein (ABP), an actin crosslinking protein of many higher eukaryotes, form gels Theologically equivalent to covalently crosslinked networks. These gels do not creep in response to applied stress on a time scale compatible with most cell-surface movements. These findings support a more complex and controlled mechanism underlying the dynamic mechanical properties of cortical cytoplasm, and can explain why cells do not collapse under the constant shear forces that often exist in tissues.

  18. A structural study of F-actin - filamin networks

    NASA Astrophysics Data System (ADS)

    Ahrens-Braunstein, Ashley; Nguyen, Lam; Hirst, Linda

    2010-03-01

    The cell's ability to move and contract is attributed to the semi-flexible filamentous protein, F -actin, one of the three filaments in the cytoskeleton. Actin bundling can be formed by a cross-linking actin binding protein (ABP) filamin. By examining filamin's cross-linking abilities at different concentrations and molar ratios, we can study the flexibility, structure and multiple network formations created when cross-linking F-actin with this protein. We have studied the phase diagram of this protein system using fluorescence microscopy, analyzing the network structures observed in the context of a coarse grained molecular dynamics simulation carried out by our group.

  19. Mechanics of composite actin networks: in vitro and cellular perspectives

    NASA Astrophysics Data System (ADS)

    Upadhyaya, Arpita

    2014-03-01

    Actin filaments and associated actin binding proteins play an essential role in governing the mechanical properties of eukaryotic cells. Even though cells have multiple actin binding proteins (ABPs) that exist simultaneously to maintain the structural and mechanical integrity of the cellular cytoskeleton, how these proteins work together to determine the properties of actin networks is not well understood. The ABP, palladin, is essential for the integrity of cell morphology and movement during development. Palladin coexists with alpha-actinin in stress fibers and focal adhesions and binds to both actin and alpha-actinin. To obtain insight into how mutually interacting actin crosslinking proteins modulate the properties of actin networks, we have characterized the micro-structure and mechanics of actin networks crosslinked with palladin and alpha-actinin. Our studies on composite networks of alpha-actinin/palladin/actin show that palladin and alpha-actinin synergistically determine network viscoelasticity. We have further examined the role of palladin in cellular force generation and mechanosensing. Traction force microscopy revealed that TAFs are sensitive to substrate stiffness as they generate larger forces on substrates of increased stiffness. Contrary to expectations, knocking down palladin increased the forces generated by cells, and also inhibited the ability to sense substrate stiffness for very stiff gels. This was accompanied by significant differences in the actin organization and adhesion dynamics of palladin knock down cells. Perturbation experiments also suggest altered myosin activity in palladin KD cells. Our results suggest that the actin crosslinkers such as palladin and myosin motors coordinate for optimal cell function and to prevent aberrant behavior as in cancer metastasis.

  20. Cross-Linking Molecules Modify Composite Actin Networks Independently

    NASA Astrophysics Data System (ADS)

    Schmoller, K. M.; Lieleg, O.; Bausch, A. R.

    2008-09-01

    While cells make use of many actin binding proteins (ABPs) simultaneously to tailor the mechanical properties of the cytoskeleton, the detailed interplay of different ABPs is not understood. By a combination of macrorheological measurements and confocal microscopy, we show that the ABPs fascin and filamin modify the structural and viscoelastic properties of composite in vitro actin networks independently. The outnumbering ABP dictates the local network structure and therefore also dominates the macromechanical network response.

  1. Diffusing wave spectroscopy microrheology of actin filament networks.

    PubMed Central

    Palmer, A; Xu, J; Kuo, S C; Wirtz, D

    1999-01-01

    Filamentous actin (F-actin), one of the constituents of the cytoskeleton, is believed to be the most important participant in the motion and mechanical integrity of eukaryotic cells. Traditionally, the viscoelastic moduli of F-actin networks have been measured by imposing a small mechanical strain and quantifying the resulting stress. The magnitude of the viscoelastic moduli, their concentration dependence and strain dependence, as well as the viscoelastic nature (solid-like or liquid-like) of networks of uncross-linked F-actin, have been the subjects of debate. Although this paper helps to resolve the debate and establishes the extent of the linear regime of F-actin networks' rheology, we report novel measurements of the high-frequency behavior of networks of F-actin, using a noninvasive light-scattering based technique, diffusing wave spectroscopy (DWS). Because no external strain is applied, our optical assay generates measurements of the mechanical properties of F-actin networks that avoid many ambiguities inherent in mechanical measurements. We observe that the elastic modulus has a small magnitude, no strain dependence, and a weak concentration dependence. Therefore, F-actin alone is not sufficient to generate the elastic modulus necessary to sustain the structural rigidity of most cells or support new cellular protrusions. Unlike previous studies, our measurements show that the mechanical properties of F-actin are highly dependent on the frequency content of the deformation. We show that the loss modulus unexpectedly dominates the elastic modulus at high frequencies, which are key for fast transitions. Finally, the measured mean square displacement of the optical probes, which is also generated by DWS measurements, offers new insight into the local bending fluctuations of the individual actin filaments and shows how they generate enhanced dissipation at short time scales. PMID:9916038

  2. Growing actin networks regulated by obstacle size and shape

    NASA Astrophysics Data System (ADS)

    Gong, Bo; Lin, Ji; Qian, Jin

    2017-01-01

    Growing actin networks provide the driving force for the motility of cells and intracellular pathogens. Based on the molecular-level processes of actin polymerization, branching, capping, and depolymerization, we have developed a modeling framework to simulate the stochastic and cooperative behaviors of growing actin networks in propelling obstacles, with an emphasis on the size and shape effects on work capacity and filament orientation in the growing process. Our results show that the characteristic size of obstacles changes the protrusion power per unit length, without influencing the orientation distribution of actin filaments in growing networks. In contrast, the geometry of obstacles has a profound effect on filament patterning, which influences the orientation of filaments differently when the drag coefficient of environment is small, intermediate, or large. We also discuss the role of various parameters, such as the aspect ratio of obstacles, branching rate, and capping rate, in affecting the protrusion power of network growth.

  3. F-actin polymerization and retrograde flow drive sustained PLCγ1 signaling during T cell activation

    PubMed Central

    Babich, Alexander; Li, Shuixing; O'Connor, Roddy S.; Milone, Michael C.; Freedman, Bruce D.

    2012-01-01

    Activation of T cells by antigen-presenting cells involves assembly of signaling molecules into dynamic microclusters (MCs) within a specialized membrane domain termed the immunological synapse (IS). Actin and myosin IIA localize to the IS, and depletion of F-actin abrogates MC movement and T cell activation. However, the mechanisms that coordinate actomyosin dynamics and T cell receptor signaling are poorly understood. Using pharmacological inhibitors that perturb individual aspects of actomyosin dynamics without disassembling the network, we demonstrate that F-actin polymerization is the primary driver of actin retrograde flow, whereas myosin IIA promotes long-term integrity of the IS. Disruption of F-actin retrograde flow, but not myosin IIA contraction, arrested MC centralization and inhibited sustained Ca2+ signaling at the level of endoplasmic reticulum store release. Furthermore, perturbation of retrograde flow inhibited PLCγ1 phosphorylation within MCs but left Zap70 activity intact. These studies highlight the importance of ongoing actin polymerization as a central driver of actomyosin retrograde flow, MC centralization, and sustained Ca2+ signaling. PMID:22665519

  4. Two-tiered coupling between flowing actin and immobilized N-cadherin/catenin complexes in neuronal growth cones

    PubMed Central

    Garcia, Mikael; Leduc, Cécile; Lagardère, Matthieu; Argento, Amélie; Sibarita, Jean-Baptiste; Thoumine, Olivier

    2015-01-01

    Neuronal growth cones move forward by dynamically connecting actin-based motility to substrate adhesion, but the mechanisms at the individual molecular level remain unclear. We cultured primary neurons on N-cadherin–coated micropatterned substrates, and imaged adhesion and cytoskeletal proteins at the ventral surface of growth cones using single particle tracking combined to photoactivated localization microscopy (sptPALM). We demonstrate transient interactions in the second time scale between flowing actin filaments and immobilized N-cadherin/catenin complexes, translating into a local reduction of the actin retrograde flow. Normal actin flow on micropatterns was rescued by expression of a dominant negative N-cadherin construct competing for the coupling between actin and endogenous N-cadherin. Fluorescence recovery after photobleaching (FRAP) experiments confirmed the differential kinetics of actin and N-cadherin, and further revealed a 20% actin population confined at N-cadherin micropatterns, contributing to local actin accumulation. Computer simulations with relevant kinetic parameters modeled N-cadherin and actin turnover well, validating this mechanism. Such a combination of short- and long-lived interactions between the motile actin network and spatially restricted adhesive complexes represents a two-tiered clutch mechanism likely to sustain dynamic environment sensing and provide the force necessary for growth cone migration. PMID:26038554

  5. Global treadmilling coordinates actin turnover and controls the size of actin networks.

    PubMed

    Carlier, Marie-France; Shekhar, Shashank

    2017-03-01

    Various cellular processes (including cell motility) are driven by the regulated, polarized assembly of actin filaments into distinct force-producing arrays of defined size and architecture. Branched, linear, contractile and cytosolic arrays coexist in vivo, and cells intricately control the number, length and assembly rate of filaments in these arrays. Recent in vitro and in vivo studies have revealed novel molecular mechanisms that regulate the number of filament barbed and pointed ends and their respective assembly and disassembly rates, thus defining classes of dynamically different filaments, which coexist in the same cell. We propose that a global treadmilling process, in which a steady-state amount of polymerizable actin monomers is established by the dynamics of each network, is responsible for defining the size and turnover of coexisting actin networks. Furthermore, signal-induced changes in the partitioning of actin to distinct arrays (mediated by RHO GTPases) result in the establishment of various steady-state concentrations of polymerizable monomers, thereby globally influencing the growth rate of actin filaments.

  6. 3D actin network centerline extraction with multiple active contours.

    PubMed

    Xu, Ting; Vavylonis, Dimitrios; Huang, Xiaolei

    2014-02-01

    Fluorescence microscopy is frequently used to study two and three dimensional network structures formed by cytoskeletal polymer fibers such as actin filaments and actin cables. While these cytoskeletal structures are often dilute enough to allow imaging of individual filaments or bundles of them, quantitative analysis of these images is challenging. To facilitate quantitative, reproducible and objective analysis of the image data, we propose a semi-automated method to extract actin networks and retrieve their topology in 3D. Our method uses multiple Stretching Open Active Contours (SOACs) that are automatically initialized at image intensity ridges and then evolve along the centerlines of filaments in the network. SOACs can merge, stop at junctions, and reconfigure with others to allow smooth crossing at junctions of filaments. The proposed approach is generally applicable to images of curvilinear networks with low SNR. We demonstrate its potential by extracting the centerlines of synthetic meshwork images, actin networks in 2D Total Internal Reflection Fluorescence Microscopy images, and 3D actin cable meshworks of live fission yeast cells imaged by spinning disk confocal microscopy. Quantitative evaluation of the method using synthetic images shows that for images with SNR above 5.0, the average vertex error measured by the distance between our result and ground truth is 1 voxel, and the average Hausdorff distance is below 10 voxels.

  7. Self-organization of actin networks by a monomeric myosin

    PubMed Central

    Saczko-Brack, Dario; Warchol, Ewa; Rogez, Benoit; Kröss, Markus; Heissler, Sarah M.; Sellers, James R.; Batters, Christopher; Veigel, Claudia

    2016-01-01

    The organization of actomyosin networks lies at the center of many types of cellular motility, including cell polarization and collective cell migration during development and morphogenesis. Myosin-IXa is critically involved in these processes. Using total internal reflection fluorescence microscopy, we resolved actin bundles assembled by myosin-IXa. Electron microscopic data revealed that the bundles consisted of highly ordered lattices with parallel actin polarity. The myosin-IXa motor domains aligned across the network, forming cross-links at a repeat distance of precisely 36 nm, matching the helical repeat of actin. Single-particle image processing resolved three distinct conformations of myosin-IXa in the absence of nucleotide. Using cross-correlation of a modeled actomyosin crystal structure, we identified sites of additional mass, which can only be accounted for by the large insert in loop 2 exclusively found in the motor domain of class IX myosins. We show that the large insert in loop 2 binds calmodulin and creates two coordinated actin-binding sites that constrain the actomyosin interactions generating the actin lattices. The actin lattices introduce orientated tracks at specific sites in the cell, which might install platforms allowing Rho-GTPase–activating protein (RhoGAP) activity to be focused at a definite locus. In addition, the lattices might introduce a myosin-related, force-sensing mechanism into the cytoskeleton in cell polarization and collective cell migration. PMID:27956608

  8. Microstructure and Mechanical Properties of Composite Actin Networks

    NASA Astrophysics Data System (ADS)

    Gardel, Margaret; Shin, Jennifer; Mahadevan, L.; Matsudaira, Paul; Weitz, D. A.

    2003-03-01

    There exits a family of actin-binding proteins (ABPs) and each protein has a distinct function for bundling, networking, gelating, capping, or simply binding to actin. Whether actin serves as a structural or motile component, its mechanical properties are determined by its degree and kinds of association with different ABPs and these properties are often closely related to its functional needs. For instance, in a cell actin is highly crosslinked with multiple ABPs (fimbrin, alpha-actinin, etc.) to generate thrust and strength for locomotion. In the acrosomal reaction of horseshoe crab sperm, actin exists as a bundle of preassembled filaments crosslinked with scruin to form a rigid structure to penetrate into an egg without yielding. We study the effects three different ABPs (scruin,fimbrin and alpha-actinin) have on the rheology and microstructure of actin networks using multiparticle tracking, imaging, and bulk rheology. From these experiments we can deduce how an evolving microstructure affects the bulk rheological properties and the role different concentrations and kinds of ABPs have in these changes.

  9. The role of actin networks in cellular mechanosensing

    NASA Astrophysics Data System (ADS)

    Azatov, Mikheil

    Physical processes play an important role in many biological phenomena, such as wound healing, organ development, and tumor metastasis. During these processes, cells constantly interact with and adapt to their environment by exerting forces to mechanically probe the features of their surroundings and generating appropriate biochemical responses. The mechanisms underlying how cells sense the physical properties of their environment are not well understood. In this thesis, I present my studies to investigate cellular responses to the stiffness and topography of the environment. In order to sense the physical properties of their environment, cells dynamically reorganize the structure of their actin cytoskeleton, a dynamic network of biopolymers, altering the shape and spatial distribution of protein assemblies. Several observations suggest that proteins that crosslink actin filaments may play an important role in cellular mechanosensitivity. Palladin is an actin-crosslinking protein that is found in the lamellar actin network, stress fibers and focal adhesions, cellular structures that are critical for mechanosensing of the physical environment. By virtue of its close interactions with these structures in the cell, palladin may play an important role in cell mechanics. However, the role of actin crosslinkers in general, and palladin in particular, in cellular force generation and mechanosensing is not well known. I have investigated the role of palladin in regulating the plasticity of the actin cytoskeleton and cellular force generation in response to alterations in substrate stiffness. I have shown that the expression levels of palladin modulate the forces exerted by cells and their ability to sense substrate stiffness. Perturbation experiments also suggest that palladin levels in cells altered myosin motor activity. These results suggest that the actin crosslinkers, such as palladin, and myosin motors coordinate for optimal cell function and to prevent aberrant

  10. The dynamics of semiflexible actin filaments in simple shear flow

    NASA Astrophysics Data System (ADS)

    Liu, Yanan; Lindner, Anke; Du Roure, Olivia

    2016-11-01

    The rheological properties of complex fluids made of particles in a suspended fluid depend on the behavior of microscopic particles in flow. A first step to understand this link is to investigate the individual particle dynamics in simple shear flows. A rigid rod will perform so-called Jeffery orbits, however when the rod becomes flexible and Brownian, the behavior in terms of deformation and migration is still to be fully understood. We chose here to address this situation by studying experimentally the behavior of semiflexible polymers. We use actin filaments and combine fluorescent labeling techniques, microfluidic devices to carry out controlled systematical experiments. Different dynamics are observed as a function of the elasto-viscous number, comparing viscous forces to elastic restoring forces ζ = (8 πηγ˙L4) / (LpkB T) . The bending modulus of the actin filaments is given by its persistence length Lp = 17 +/- 1 μm . When increasing the elasto-visous number we subsequently observe tumbling, buckling, and bending under flow. Those observations seem to be in good agreement with recent numerical simulations. At the same time, actin filaments fluctuate due to Brownian motion and these fluctuations can modify the individual dynamics of actin filaments. ERC PaDy No.682367.

  11. A dynamic formin-dependent deep F-actin network in axons

    PubMed Central

    Ganguly, Archan; Tang, Yong; Wang, Lina; Ladt, Kelsey; Loi, Jonathan; Dargent, Bénédicte; Leterrier, Christophe

    2015-01-01

    Although actin at neuronal growth cones is well-studied, much less is known about actin organization and dynamics along axon shafts and presynaptic boutons. Using probes that selectively label filamentous-actin (F-actin), we found focal “actin hotspots” along axons—spaced ∼3–4 µm apart—where actin undergoes continuous assembly/disassembly. These foci are a nidus for vigorous actin polymerization, generating long filaments spurting bidirectionally along axons—a phenomenon we call “actin trails.” Super-resolution microscopy reveals intra-axonal deep actin filaments in addition to the subplasmalemmal “actin rings” described recently. F-actin hotspots colocalize with stationary axonal endosomes, and blocking vesicle transport diminishes the actin trails, suggesting mechanistic links between vesicles and F-actin kinetics. Actin trails are formin—but not Arp2/3—dependent and help enrich actin at presynaptic boutons. Finally, formin inhibition dramatically disrupts synaptic recycling. Collectively, available data suggest a two-tier F-actin organization in axons, with stable “actin rings” providing mechanical support to the plasma membrane and dynamic "actin trails" generating a flexible cytoskeletal network with putative physiological roles. PMID:26216902

  12. Dynamic actin cycling through mitochondrial subpopulations locally regulates the fission–fusion balance within mitochondrial networks

    PubMed Central

    Moore, Andrew S.; Wong, Yvette C.; Simpson, Cory L.; Holzbaur, Erika L. F.

    2016-01-01

    Mitochondria form interconnected networks that dynamically remodel in response to cellular needs. Using live-cell imaging, we investigate the role of the actin cytoskeleton in regulating mitochondrial fission and fusion. We identify cycling of actin filaments onto and off of subsets of cellular mitochondria. The association of actin filaments with mitochondrial subpopulations is transient; actin quickly disassembles, then reassembles around a distinct subpopulation, efficiently cycling through all cellular mitochondria within 14 min. The focal assembly of actin induces local, Drp1-dependent fragmentation of the mitochondrial network. On actin disassembly, fragmented mitochondria undergo rapid fusion, leading to regional recovery of the tubular mitochondrial network. Cycling requires dynamic actin polymerization and is blocked by inhibitors of both Arp2/3 and formins. We propose that cyclic assembly of actin onto mitochondria modulates the fission/fusion balance, promotes network remodelling and content mixing, and thus may serve as an essential mechanism regulating mitochondrial network homeostasis. PMID:27686185

  13. Viral Replication Protein Inhibits Cellular Cofilin Actin Depolymerization Factor to Regulate the Actin Network and Promote Viral Replicase Assembly

    PubMed Central

    Kovalev, Nikolay; de Castro Martín, Isabel Fernández; Barajas, Daniel; Risco, Cristina; Nagy, Peter D.

    2016-01-01

    RNA viruses exploit host cells by co-opting host factors and lipids and escaping host antiviral responses. Previous genome-wide screens with Tomato bushy stunt virus (TBSV) in the model host yeast have identified 18 cellular genes that are part of the actin network. In this paper, we show that the p33 viral replication factor interacts with the cellular cofilin (Cof1p), which is an actin depolymerization factor. Using temperature-sensitive (ts) Cof1p or actin (Act1p) mutants at a semi-permissive temperature, we find an increased level of TBSV RNA accumulation in yeast cells and elevated in vitro activity of the tombusvirus replicase. We show that the large p33 containing replication organelle-like structures are located in the close vicinity of actin patches in yeast cells or around actin cable hubs in infected plant cells. Therefore, the actin filaments could be involved in VRC assembly and the formation of large viral replication compartments containing many individual VRCs. Moreover, we show that the actin network affects the recruitment of viral and cellular components, including oxysterol binding proteins and VAP proteins to form membrane contact sites for efficient transfer of sterols to the sites of replication. Altogether, the emerging picture is that TBSV, via direct interaction between the p33 replication protein and Cof1p, controls cofilin activities to obstruct the dynamic actin network that leads to efficient subversion of cellular factors for pro-viral functions. In summary, the discovery that TBSV interacts with cellular cofilin and blocks the severing of existing filaments and the formation of new actin filaments in infected cells opens a new window to unravel the way by which viruses could subvert/co-opt cellular proteins and lipids. By regulating the functions of cofilin and the actin network, which are central nodes in cellular pathways, viruses could gain supremacy in subversion of cellular factors for pro-viral functions. PMID:26863541

  14. Microtubules Remodel Actomyosin Networks in Xenopus Egg Extracts via Two Mechanisms of F-Actin Transport

    PubMed Central

    Waterman-Storer, Clare; Duey, Devin Y.; Weber, Kari L.; Keech, John; Cheney, Richard E.; Salmon, E.D.; Bement, William M.

    2000-01-01

    Interactions between microtubules and filamentous actin (F-actin) are crucial for many cellular processes, including cell locomotion and cytokinesis, but are poorly understood. To define the basic principles governing microtubule/F-actin interactions, we used dual-wavelength digital fluorescence and fluorescent speckle microscopy to analyze microtubules and F-actin labeled with spectrally distinct fluorophores in interphase Xenopus egg extracts. In the absence of microtubules, networks of F-actin bundles zippered together or exhibited serpentine gliding along the coverslip. When microtubules were nucleated from Xenopus sperm centrosomes, they were released and translocated away from the aster center. In the presence of microtubules, F-actin exhibited two distinct, microtubule-dependent motilities: rapid (∼250–300 nm/s) jerking and slow (∼50 nm/s), straight gliding. Microtubules remodeled the F-actin network, as F-actin jerking caused centrifugal clearing of F-actin from around aster centers. F-actin jerking occurred when F-actin bound to motile microtubules powered by cytoplasmic dynein. F-actin straight gliding occurred when F-actin bundles translocated along the microtubule lattice. These interactions required Xenopus cytosolic factors. Localization of myosin-II to F-actin suggested it may power F-actin zippering, while localization of myosin-V on microtubules suggested it could mediate interactions between microtubules and F-actin. We examine current models for cytokinesis and cell motility in light of these findings. PMID:10908578

  15. Dexamethasone alters F-actin architecture and promotes cross-linked actin network formation in human trabecular meshwork tissue.

    PubMed

    Clark, Abbot F; Brotchie, Daniel; Read, A Thomas; Hellberg, Peggy; English-Wright, Sherry; Pang, Iok-Hou; Ethier, C Ross; Grierson, Ian

    2005-02-01

    Elevated intraocular pressure is an important risk factor for the development of glaucoma, a leading cause of irreversible blindness. This ocular hypertension is due to increased hydrodynamic resistance to the drainage of aqueous humor through specialized outflow tissues, including the trabecular meshwork (TM) and the endothelial lining of Schlemm's canal. We know that glucocorticoid therapy can cause increased outflow resistance and glaucoma in susceptible individuals, that the cytoskeleton helps regulate aqueous outflow resistance, and that glucocorticoid treatment alters the actin cytoskeleton of cultured TM cells. Our purpose was to characterize the actin cytoskeleton of cells in outflow pathway tissues in situ, to characterize changes in the cytoskeleton due to dexamethasone treatment in situ, and to compare these with changes observed in cell culture. Human ocular anterior segments were perfused with or without 10(-7) M dexamethasone, and F-actin architecture was investigated by confocal laser scanning microscopy. We found that outflow pathway cells contained stress fibers, peripheral actin staining, and occasional actin "tangles." Dexamethasone treatment caused elevated IOP in several eyes and increased overall actin staining, with more actin tangles and the formation of cross-linked actin networks (CLANs). The actin architecture in TM tissues was remarkably similar to that seen in cultured TM cells. Although CLANs have been reported previously in cultured cells, this is the first report of CLANs in tissue. These cytoskeletal changes may be associated with increased aqueous humor outflow resistance after ocular glucocorticoid treatment.

  16. Myosin lever arm directs collective motion on cellular actin network.

    PubMed

    Hariadi, Rizal F; Cale, Mario; Sivaramakrishnan, Sivaraj

    2014-03-18

    The molecular motor myosin teams up to drive muscle contraction, membrane traffic, and cell division in biological cells. Myosin function in cells emerges from the interaction of multiple motors tethered to a scaffold, with surrounding actin filaments organized into 3D networks. Despite the importance of myosin function, the influence of intermotor interactions on collective motion remains poorly understood. In this study, we used precisely engineered myosin assemblies to examine emergence in collective myosin movement. We report that tethering multiple myosin VI motors, but not myosin V motors, modifies their movement trajectories on keratocyte actin networks. Single myosin V and VI dimers display similar skewed trajectories, albeit in opposite directions, when traversing the keratocyte actin network. In contrast, tethering myosin VI motors, but not myosin V motors, progressively straightens the trajectories with increasing myosin number. Trajectory shape of multimotor scaffolds positively correlates with the stiffness of the myosin lever arm. Swapping the flexible myosin VI lever arm for the relatively rigid myosin V lever increases trajectory skewness, and vice versa. A simplified model of coupled motor movement demonstrates that the differences in flexural rigidity of the two myosin lever arms is sufficient to account for the differences in observed behavior of groups of myosin V and VI motors. In accordance with this model trajectory, shapes for scaffolds containing both myosin V and VI are dominated by the myosin with a stiffer lever arm. Our findings suggest that structural features unique to each myosin type may confer selective advantages in cellular functions.

  17. Actin retrograde flow and actomyosin II arc contraction drive receptor cluster dynamics at the immunological synapse in Jurkat T cells.

    PubMed

    Yi, Jason; Wu, Xufeng S; Crites, Travis; Hammer, John A

    2012-03-01

    Actin retrograde flow and actomyosin II contraction have both been implicated in the inward movement of T cell receptor (TCR) microclusters and immunological synapse formation, but no study has integrated and quantified their relative contributions. Using Jurkat T cells expressing fluorescent myosin IIA heavy chain and F-tractin-a novel reporter for F-actin-we now provide direct evidence that the distal supramolecular activation cluster (dSMAC) and peripheral supramolecular activation cluster (pSMAC) correspond to lamellipodial (LP) and lamellar (LM) actin networks, respectively, as hypothesized previously. Our images reveal concentric and contracting actomyosin II arcs/rings at the LM/pSMAC. Moreover, the speeds of centripetally moving TCR microclusters correspond very closely to the rates of actin retrograde flow in the LP/dSMAC and actomyosin II arc contraction in the LM/pSMAC. Using cytochalasin D and jasplakinolide to selectively inhibit actin retrograde flow in the LP/dSMAC and blebbistatin to selectively inhibit actomyosin II arc contraction in the LM/pSMAC, we demonstrate that both forces are required for centripetal TCR microcluster transport. Finally, we show that leukocyte function-associated antigen 1 clusters accumulate over time at the inner aspect of the LM/pSMAC and that this accumulation depends on actomyosin II contraction. Thus actin retrograde flow and actomyosin II arc contraction coordinately drive receptor cluster dynamics at the immunological synapse.

  18. Criticalities in crosslinked actin networks due to myosin activity

    NASA Astrophysics Data System (ADS)

    Sheinman, Michael

    2013-03-01

    Many essential processes in cells and tissues, like motility and morphogenesis, are orchestrated by molecular motors applying internal, active stresses on crosslinked networks of actin filaments. Using scaling analysis, mean-field calculation, numerical modelling and in vitro experiments of such active networks we predict and observe different mechanical regimes exhibiting interesting critical behaviours with non-trivial power-law dependencies. Firstly, we find that the presence of active stresses can dramatically increase the stiffness of a floppy network, as was observed in reconstituted intracellular F-actin networks with myosin motors and extracellular gels with contractile cells. Uniform internal stress results in an anomalous, critical mechanical regime only in the vicinity of the rigidity percolation points of the network. However, taking into account heterogeneity of motors, we demonstrate that the motors, stiffening any floppy network, induce large non-affine fluctuations, giving rise to a critical mechanical regime. Secondly, upon increasing motor concentration, the resulting large internal stress is able to significantly enhance unbinding of the network's crosslinks and, therefore, disconnect the initially well-connected network to isolated clusters. However, during this process, when the network approaches marginal connectivity the internal stresses are expected to drop drastically such that the connectivity stabilizes. This general argument and detailed numerical simulations show that motors should drive a well connected network to a close vicinity of a critical point of marginal connectivity. Experiments clearly confirm this conclusion and demonstrate robust critical connectivity of initially well-connected networks, ruptured by the motor activity for a wide range of parameters. M. Sheinman, C.P. Broedersz and F.C. MacKintosh, Phys. Rev. Lett, in press. J. Alvarado, M. Sheinman, A. Sharma, F.C. MacKintosh and G. Koenderink, in preparation.

  19. Competition for actin between two distinct F-actin networks defines a bistable switch for cell polarization.

    PubMed

    Lomakin, Alexis J; Lee, Kun-Chun; Han, Sangyoon J; Bui, Duyen A; Davidson, Michael; Mogilner, Alex; Danuser, Gaudenz

    2015-11-01

    Symmetry-breaking polarization enables functional plasticity of cells and tissues and is yet not well understood. Here we show that epithelial cells, hard-wired to maintain a static morphology and to preserve tissue organization, can spontaneously switch to a migratory polarized phenotype after relaxation of the actomyosin cytoskeleton. We find that myosin II engages actin in the formation of cortical actomyosin bundles and thus makes it unavailable for deployment in the process of dendritic growth normally driving cell motility. Under low-contractility regimes, epithelial cells polarize in a front-back manner owing to the emergence of actin retrograde flows powered by dendritic polymerization of actin. Coupled to cell movement, the flows transport myosin II from the front to the back of the cell, where the motor locally 'locks' actin in contractile bundles. This polarization mechanism could be employed by embryonic and cancer epithelial cells in microenvironments where high-contractility-driven cell motion is inefficient.

  20. Mechanical detection of a long-range actin network emanating from a biomimetic cortex.

    PubMed

    Bussonnier, Matthias; Carvalho, Kevin; Lemière, Joël; Joanny, Jean-François; Sykes, Cécile; Betz, Timo

    2014-08-19

    Actin is ubiquitous globular protein that polymerizes into filaments and forms networks that participate in the force generation of eukaryotic cells. Such forces are used for cell motility, cytokinesis, and tissue remodeling. Among those actin networks, we focus on the actin cortex, a dense branched network beneath the plasma membrane that is of particular importance for the mechanical properties of the cell. Here we reproduce the cellular cortex by activating actin filament growth on a solid surface. We unveil the existence of a sparse actin network that emanates from the surface and extends over a distance that is at least 10 times larger than the cortex itself. We call this sparse actin network the "actin cloud" and characterize its mechanical properties with optical tweezers. We show, both experimentally and theoretically, that the actin cloud is mechanically relevant and that it should be taken into account because it can sustain forces as high as several picoNewtons (pN). In particular, it is known that in plant cells, actin networks similar to the actin cloud have a role in positioning the nucleus; in large oocytes, they play a role in driving chromosome movement. Recent evidence shows that such networks even prevent granule condensation in large cells.

  1. Crosslinked actin networks show liquid crystal elastomer behaviour, including soft-mode elasticity

    NASA Astrophysics Data System (ADS)

    Dalhaimer, Paul; Discher, Dennis E.; Lubensky, Tom C.

    2007-05-01

    Actin filament networks with protein crosslinks of distinct length and flexibility resemble liquid crystal elastomers. We simulate actin filament systems with flexible crosslinkers of varying length and connectivity to understand general phase behaviour and elasticity. Simulated networks with very short filaments and long crosslinkers resemble the cytoskeleton of the red blood cell and remain isotropic in compression and shear, seeming well-suited to blood flow. In contrast, networks with longer filaments as found in many cell types show three regimes of nematic phase behaviour dependent on crosslinker length: (1) `loose' networks are isotropic at zero stress but align under compression or shear; (2) `semi-loose' networks are nematic at low stress but become isotropic under dilation and (3) `tight' networks possess a locked-in nematic order as represented by the cytoskeleton of the outer hair cell in the ear, for which anisotropic compliance directs sound propagation. Furthermore, for a subset of loose networks with `periodic' connections among filaments, extremely soft stress-strain behaviour is found, as predicted for liquid crystal elastomers.

  2. The Effect of Crosslinking on the Microscale Stress Response and Molecular Deformations in Actin Networks

    NASA Astrophysics Data System (ADS)

    Gurmessa, Bekele; Fitzpatrick, Robert; Valdivia, Jonathon; Anderson, Rae M. R.

    Actin, the most abundant protein in eukaryotic cells, is a semi-flexible biopolymer in the cytoskeleton that plays a crucial structural and mechanical role in cell stability, motion and replication, as well as muscle contraction. Most of these mechanically driven structural changes in cells stem from the complex viscoelastic nature of entangled actin networks and the presence of a myriad of proteins that cross-link actin filaments. Despite their importance, the mechanical response of actin networks is not yet well understood, particularly at the molecular level. Here, we use optical trapping - coupled with fluorescence microscopy - to characterize the microscale stress response and induced filament deformations in entangled and cross-linked actin networks subject to localized mechanical perturbations. In particular, we actively drive a microsphere 10 microns through an entangled or cross- linked actin network at a constant speed and measure the resistive force that the deformed actin filaments exert on the bead during and following strain. We simultaneously visualize and track individual sparsely-labeled actin filaments to directly link force response to molecular deformations, and map the propagation of the initially localized perturbation field throughout the rest of the network (~100 um). By varying the concentration of actin and cross-linkers we directly determine the role of crosslinking and entanglements on the length and time scales of stress propagation, molecular deformation and relaxation mechanisms in actin networks.

  3. Competition between Tropomyosin, Fimbrin, and ADF/Cofilin drives their sorting to distinct actin filament networks.

    PubMed

    Christensen, Jenna R; Hocky, Glen M; Homa, Kaitlin E; Morganthaler, Alisha N; Hitchcock-DeGregori, Sarah E; Voth, Gregory A; Kovar, David R

    2017-03-10

    The fission yeast actin cytoskeleton is an ideal, simplified system to investigate fundamental mechanisms behind cellular self-organization. By focusing on the stabilizing protein tropomyosin Cdc8, bundling protein fimbrin Fim1, and severing protein coffin Adf1, we examined how their pairwise and collective interactions with actin filaments regulate their activity and segregation to functionally diverse F-actin networks. Utilizing multi-color TIRF microscopy of in vitro reconstituted F-actin networks, we observed and characterized two distinct Cdc8 cables loading and spreading cooperatively on individual actin filaments. Furthermore, Cdc8, Fim1, and Adf1 all compete for association with F-actin by different mechanisms, and their cooperative association with actin filaments affects their ability to compete. Finally, competition between Fim1 and Adf1 for F-actin synergizes their activities, promoting rapid displacement of Cdc8 from a dense F-actin network. Our findings reveal that competitive and cooperative interactions between actin binding proteins help define their associations with different F-actin networks.

  4. Calcineurin-dependent cofilin activation and increased retrograde actin flow drive 5-HT-dependent neurite outgrowth in Aplysia bag cell neurons.

    PubMed

    Zhang, Xiao-Feng; Hyland, Callen; Van Goor, David; Forscher, Paul

    2012-12-01

    Neurite outgrowth in response to soluble growth factors often involves changes in intracellular Ca(2+); however, mechanistic roles for Ca(2+) in controlling the underlying dynamic cytoskeletal processes have remained enigmatic. Bag cell neurons exposed to serotonin (5-hydroxytryptamine [5-HT]) respond with a threefold increase in neurite outgrowth rates. Outgrowth depends on phospholipase C (PLC) → inositol trisphosphate → Ca(2+) → calcineurin signaling and is accompanied by increased rates of retrograde actin network flow in the growth cone P domain. Calcineurin inhibitors had no effect on Ca(2+) release or basal levels of retrograde actin flow; however, they completely suppressed 5-HT-dependent outgrowth and F-actin flow acceleration. 5-HT treatments were accompanied by calcineurin-dependent increases in cofilin activity in the growth cone P domain. 5-HT effects were mimicked by direct activation of PLC, suggesting that increased actin network treadmilling may be a widespread mechanism for promoting neurite outgrowth in response to neurotrophic factors.

  5. Actin-myosin network is required for proper assembly of influenza virus particles

    SciTech Connect

    Kumakura, Michiko; Kawaguchi, Atsushi Nagata, Kyosuke

    2015-02-15

    Actin filaments are known to play a central role in cellular dynamics. After polymerization of actin, various actin-crosslinking proteins including non-muscle myosin II facilitate the formation of spatially organized actin filament networks. The actin-myosin network is highly expanded beneath plasma membrane. The genome of influenza virus (vRNA) replicates in the cell nucleus. Then, newly synthesized vRNAs are nuclear-exported to the cytoplasm as ribonucleoprotein complexes (vRNPs), followed by transport to the beneath plasma membrane where virus particles assemble. Here, we found that, by inhibiting actin-myosin network formation, the virus titer tends to be reduced and HA viral spike protein is aggregated on the plasma membrane. These results indicate that the actin-myosin network plays an important role in the virus formation. - Highlights: • Actin-myosin network is important for the influenza virus production. • HA forms aggregations at the plasma membrane in the presence of blebbistatin. • M1 is recruited to the budding site through the actin-myosin network.

  6. Avalanches, hardening and softening in dense cross-linked actin networks

    NASA Astrophysics Data System (ADS)

    Astrom, Jan; Kumar, Sunil; Vattulainen, Ilpo; Karttunen, Mikko

    2008-03-01

    Actin filament networks enable the cytoskeleton to adjust to internal and external forcing. These active networks can adapt to changes by dynamically adjusting their crosslinks. Here, we study actin filaments as elastic fibers having finite dimensions. We employ a full three-dimensional model to study the elastic properties of actin networks by computer simulations. We model a dense actin network with the crosslinks being approximately 1μm apart. The results show that dense actin networks, without any pre-straining, are characterized by (a) strain hardening without entropic elasticity, (b) 'viscotic' hysteresis in the case of strong crosslinks, (c) avalanches of crosslink slippage leading to strain softening in the case of breakable crosslinks, and (d) spontaneous formation of stress fibers in the case of active crosslink formation and destruction. We will discuss the relation to recent experimental observations.

  7. Effects of filament rigidity in myosin II-induced actin network contractility and dynamics

    NASA Astrophysics Data System (ADS)

    Weirich, Kimberly; Gardel, Margaret

    2014-03-01

    Cells change shape, deforming to move and divide. The dynamic protein scaffold that shapes the cell is the cortex, a disordered, thin network of actin filaments. Random, local stresses generated by myosin II in the network create cellular-scale deformations. Myosin induced buckling and severing of actin filaments has been shown to underlie the contractility of two-dimensional disordered actin networks. This non-linear elastic response of actin filaments is thought to be an essential symmetry breaking mechanism to produce robust contractility in disordered actomyosin networks. To test this idea, we explore the effects of an actin bundling protein fascin, a crosslinker which induces polarity specific bundling of actin filaments, to create a network of F-actin bundles. We investigate myosin-induced stresses in a network of randomly oriented actin filaments, confined to a thin sheet at a supported lipid bilayer surface through a crowding agent. We find fascin-bundled filaments are less prone to filament buckling and show increased filament sliding, causing the myosin activity to induce network reorganization rather than contraction. Thus, changes in the filament bending rigidity in motor-filament systems can drive the system between distinct states with unique dynamic and mechanical signatures.

  8. F-actin flow drives affinity maturation and spatial organization of LFA-1 at the immunological synapse

    PubMed Central

    Comrie, William A.; Babich, Alexander

    2015-01-01

    Integrin-dependent interactions between T cells and antigen-presenting cells are vital for proper T cell activation, effector function, and memory. Regulation of integrin function occurs via conformational change, which modulates ligand affinity, and receptor clustering, which modulates valency. Here, we show that conformational intermediates of leukocyte functional antigen 1 (LFA-1) form a concentric array at the immunological synapse. Using an inhibitor cocktail to arrest F-actin dynamics, we show that organization of this array depends on F-actin flow and ligand mobility. Furthermore, F-actin flow is critical for maintaining the high affinity conformation of LFA-1, for increasing valency by recruiting LFA-1 to the immunological synapse, and ultimately for promoting intracellular cell adhesion molecule 1 (ICAM-1) binding. Finally, we show that F-actin forces are opposed by immobilized ICAM-1, which triggers LFA-1 activation through a combination of induced fit and tension-based mechanisms. Our data provide direct support for a model in which the T cell actin network generates mechanical forces that regulate LFA-1 activity at the immunological synapse. PMID:25666810

  9. Comparative analysis of tools for live cell imaging of actin network architecture.

    PubMed

    Belin, Brittany J; Goins, Lauren M; Mullins, R Dyche

    2014-01-01

    Fluorescent derivatives of actin and actin-binding domains are powerful tools for studying actin filament architecture and dynamics in live cells. Growing evidence, however, indicates that these probes are biased, and their cellular distribution does not accurately reflect that of the cytoskeleton. To understand the strengths and weaknesses of commonly used live-cell probes--fluorescent protein fusions of actin, Lifeact, F-tractin, and actin-binding domains from utrophin--we compared their distributions in cells derived from various model organisms. We focused on five actin networks: the peripheral cortex, lamellipodial and lamellar networks, filopodial bundles, and stress fibers. Using phalloidin as a standard, we identified consistent biases in the distribution of each probe. The localization of F-tractin is the most similar to that of phalloidin but induces organism-specific changes in cell morphology. Both Lifeact and GFP-actin concentrate in lamellipodial actin networks but are excluded from lamellar networks and filopodia. In contrast, the full utrophin actin-binding domain (Utr261) binds filaments of the lamellum but only weakly localizes to lamellipodia, while a shorter variant (Utr230) is restricted to the most stable subpopulations of actin filaments: cortical networks and stress fibers. In some cells, Utr230 also detects Golgi-associated filaments, previously detected by immunofluorescence but not visible by phalloidin staining. Consistent with its localization, Utr230 exhibits slow rates of fluorescence recovery after photobleaching (FRAP) compared to F-tractin, Utr261 and Lifeact, suggesting that it may be more useful for FRAP- and photo-activation-based studies of actin network dynamics.

  10. Comparative analysis of tools for live cell imaging of actin network architecture

    PubMed Central

    Belin, Brittany J; Goins, Lauren M; Mullins, R Dyche

    2014-01-01

    Abstract Fluorescent derivatives of actin and actin-binding domains are powerful tools for studying actin filament architecture and dynamics in live cells. Growing evidence, however, indicates that these probes are biased, and their cellular distribution does not accurately reflect that of the cytoskeleton. To understand the strengths and weaknesses of commonly used live-cell probes—fluorescent protein fusions of actin, Lifeact, F-tractin, and actin-binding domains from utrophin—we compared their distributions in cells derived from various model organisms. We focused on five actin networks: the peripheral cortex, lamellipodial and lamellar networks, filopodial bundles, and stress fibers. Using phalloidin as a standard, we identified consistent biases in the distribution of each probe. The localization of F-tractin is the most similar to that of phalloidin but induces organism-specific changes in cell morphology. Both Lifeact and GFP-actin concentrate in lamellipodial actin networks but are excluded from lamellar networks and filopodia. In contrast, the full utrophin actin-binding domain (Utr261) binds filaments of the lamellum but only weakly localizes to lamellipodia, while a shorter variant (Utr230) is restricted to the most stable subpopulations of actin filaments: cortical networks and stress fibers. In some cells, Utr230 also detects Golgi-associated filaments, previously detected by immunofluorescence but not visible by phalloidin staining. Consistent with its localization, Utr230 exhibits slow rates of fluorescence recovery after photobleaching (FRAP) compared to F-tractin, Utr261 and Lifeact, suggesting that it may be more useful for FRAP- and photo-activation-based studies of actin network dynamics. PMID:26317264

  11. Emerin organizes actin flow for nuclear movement and centrosome orientation in migrating fibroblasts.

    PubMed

    Chang, Wakam; Folker, Eric S; Worman, Howard J; Gundersen, Gregg G

    2013-12-01

    In migrating fibroblasts, rearward movement of the nucleus orients the centrosome toward the leading edge. Nuclear movement results from coupling rearward-moving, dorsal actin cables to the nucleus by linear arrays of nesprin-2G and SUN2, termed transmembrane actin-associated nuclear (TAN) lines. A-type lamins anchor TAN lines, prompting us to test whether emerin, a nuclear membrane protein that interacts with lamins and TAN line proteins, contributes to nuclear movement. In fibroblasts depleted of emerin, nuclei moved nondirectionally or completely failed to move. Consistent with these nuclear movement defects, dorsal actin cable flow was nondirectional in cells lacking emerin. TAN lines formed normally in cells lacking emerin and were coordinated with the erratic nuclear movements, although in 20% of the cases, TAN lines slipped over immobile nuclei. Myosin II drives actin flow, and depletion of myosin IIB, but not myosin IIA, showed similar nondirectional nuclear movement and actin flow as in emerin-depleted cells. Myosin IIB specifically coimmunoprecipitated with emerin, and emerin depletion prevented myosin IIB localization near nuclei. These results show that emerin functions with myosin IIB to polarize actin flow and nuclear movement in fibroblasts, suggesting a novel function for the nuclear envelope in organizing directional actin flow and cytoplasmic polarity.

  12. Self-organized DNA/F-actin gels: entangled networks of nematic domains with tunable density

    NASA Astrophysics Data System (ADS)

    Butler, John; Zribi, Olena; Smalyukh, Ivan; Hwee Lai, Ghee; Golestanian, Ramin; Angelini, Thomas; Wong, Gerard

    2008-03-01

    We examine mixtures of DNA and F-actin as a model system of like-charged rigid rods and flexible chains. Confocal microscopy reveals the formation of elongated nematic F-actin domains reticulated via defect-free vertices into a network, all embedded in a mesh of random DNA. Synchrotron x-ray scattering results indicate that the DNA mesh squeezes the F-actin domains into a nematic state via the osmotic pressure of uncondensed counterions, so that the inter-actin spacing within the domains decreases with increasing DNA concentration. These observations are consistent with arguments based on electrostatics and nematic elasticity.

  13. Passive and active microrheology for cross-linked F-actin networks in vitro.

    PubMed

    Lee, Hyungsuk; Ferrer, Jorge M; Nakamura, Fumihiko; Lang, Matthew J; Kamm, Roger D

    2010-04-01

    Actin filament (F-actin) is one of the dominant structural constituents in the cytoskeleton. Orchestrated by various actin-binding proteins (ABPs), F-actin is assembled into higher-order structures such as bundles and networks that provide mechanical support for the cell and play important roles in numerous cellular processes. Although mechanical properties of F-actin networks have been extensively studied, the underlying mechanisms for network elasticity are not fully understood, in part because different measurements probe different length and force scales. Here, we developed both passive and active microrheology techniques using optical tweezers to estimate the mechanical properties of F-actin networks at a length scale comparable to cells. For the passive approach we tracked the motion of a thermally fluctuating colloidal sphere to estimate the frequency-dependent complex shear modulus of the network. In the active approach, we used an optical trap to oscillate an embedded microsphere and monitored the response in order to obtain network viscoelasticity over a physiologically relevant force range. While both active and passive measurements exhibit similar results at low strain, the F-actin network subject to high strain exhibits non-linear behavior which is analogous to the strain-hardening observed in macroscale measurements. Using confocal and total internal reflection fluorescent microscopy, we also characterize the microstructure of reconstituted F-actin networks in terms of filament length, mesh size and degree of bundling. Finally, we propose a model of network connectivity by investigating the effect of filament length on the mechanical properties and structure.

  14. Relating microstructure to rheology of a bundled and cross-linked F-actin network in vitro

    NASA Astrophysics Data System (ADS)

    Shin, J. H.; Gardel, M. L.; Mahadevan, L.; Matsudaira, P.; Weitz, D. A.

    2004-06-01

    The organization of individual actin filaments into higher-order structures is controlled by actin-binding proteins (ABPs). Although the biological significance of the ABPs is well documented, little is known about how bundling and cross-linking quantitatively affect the microstructure and mechanical properties of actin networks. Here we quantify the effect of the ABP scruin on actin networks by using imaging techniques, cosedimentation assays, multiparticle tracking, and bulk rheology. We show how the structure of the actin network is modified as the scruin concentration is varied, and we correlate these structural changes to variations in the resultant network elasticity.

  15. RefilinB (FAM101B) targets FilaminA to organize perinuclear actin networks and regulates nuclear shape

    PubMed Central

    Gay, Olivia; Gilquin, Benoît; Nakamura, Fumihiko; Jenkins, Zandra A.; McCartney, Rosannah; Krakow, Deborah; Deshiere, Alexandre; Assard, Nicole; Hartwig, John H.; Robertson, Stephen P.; Baudier, Jacques

    2011-01-01

    The intracellular localization and shape of the nucleus plays a central role in cellular and developmental processes. In fibroblasts, nuclear movement and shape are controlled by a specific perinuclear actin network made of contractile actin filament bundles called transmembrane actin-associated nuclear (TAN) lines that form a structure called the actin cap. The identification of regulatory proteins associated with this specific actin cytoskeletal dynamic is a priority for understanding actin-based changes in nuclear shape and position in normal and pathological situations. Here, we first identify a unique family of actin regulators, the refilin proteins (RefilinA and RefilinB), that stabilize specifically perinuclear actin filament bundles. We next identify the actin-binding filamin A (FLNA) protein as the downstream effector of refilins. Refilins act as molecular switches to convert FLNA from an actin branching protein into one that bundles. In NIH 3T3 fibroblasts, the RefilinB/FLNA complex organizes the perinuclear actin filament bundles forming the actin cap. Finally, we demonstrate that in epithelial normal murine mammary gland (NmuMG) cells, the RefilinB/FLNA complex controls formation of a new perinuclear actin network that accompanies nuclear shape changes during the epithelial–mesenchymal transition (EMT). Our studies open perspectives for further functional analyses of this unique actin-based network and shed light on FLNA function during development and in human syndromes associated with FLNA mutations. PMID:21709252

  16. Morphology and viscoelasticity of actin networks formed with the mutually interacting crosslinkers: palladin and alpha-actinin.

    PubMed

    Grooman, Brian; Fujiwara, Ikuko; Otey, Carol; Upadhyaya, Arpita

    2012-01-01

    Actin filaments and associated actin binding proteins play an essential role in governing the mechanical properties of eukaryotic cells. Even though cells have multiple actin binding proteins (ABPs) that exist simultaneously to maintain the structural and mechanical integrity of the cellular cytoskeleton, how these proteins work together to determine the properties of actin networks is not clearly understood. The ABP, palladin, is essential for the maintenance of cell morphology and the regulation of cell movement. Palladin coexists with α-actinin in stress fibers and focal adhesions and binds to both actin and α-actinin. To obtain insight into how mutually interacting actin crosslinking proteins modulate the properties of actin networks, we characterized the micro-structure and mechanics of actin networks crosslinked with palladin and α-actinin. We first showed that palladin crosslinks actin filaments into bundled networks which are viscoelastic in nature. Our studies also showed that composite networks of α-actinin/palladin/actin behave very similar to pure palladin or pure [Formula: see text]-actinin networks. However, we found evidence that palladin and α-actinin synergistically modify network viscoelasticity. To our knowledge, this is the first quantitative characterization of the physical properties of actin networks crosslinked with two mutually interacting crosslinkers.

  17. Actin kinetics shapes cortical network structure and mechanics

    PubMed Central

    Fritzsche, Marco; Erlenkämper, Christoph; Moeendarbary, Emad; Charras, Guillaume; Kruse, Karsten

    2016-01-01

    The actin cortex of animal cells is the main determinant of cellular mechanics. The continuous turnover of cortical actin filaments enables cells to quickly respond to stimuli. Recent work has shown that most of the cortical actin is generated by only two actin nucleators, the Arp2/3 complex and the formin Diaph1. However, our understanding of their interplay, their kinetics, and the length distribution of the filaments that they nucleate within living cells is poor. Such knowledge is necessary for a thorough comprehension of cellular processes and cell mechanics from basic polymer physics principles. We determined cortical assembly rates in living cells by using single-molecule fluorescence imaging in combination with stochastic simulations. We find that formin-nucleated filaments are, on average, 10 times longer than Arp2/3-nucleated filaments. Although formin-generated filaments represent less than 10% of all actin filaments, mechanical measurements indicate that they are important determinants of cortical elasticity. Tuning the activity of actin nucleators to alter filament length distribution may thus be a mechanism allowing cells to adjust their macroscopic mechanical properties to their physiological needs. PMID:27152338

  18. Flow distances on open flow networks

    NASA Astrophysics Data System (ADS)

    Guo, Liangzhu; Lou, Xiaodan; Shi, Peiteng; Wang, Jun; Huang, Xiaohan; Zhang, Jiang

    2015-11-01

    An open flow network is a weighted directed graph with a source and a sink, depicting flux distributions on networks in the steady state mode of an open flow system. Energetic food webs, economic input-output networks, and international trade networks are open flow network models of energy flows between species, money or value flows between industrial sectors, and goods flows between countries, respectively. An open flow network is different from a closed flow network because it considers the flows from or to the environment (the source and the sink). For instance, in energetic food webs, species obtain energy not only from other species but also from the environment (sunlight), and species also dissipate energy to the environment. Flow distances between any two nodes i and j are defined as the average number of transition steps of a random walker along the network from i to j. The conventional method for the calculation of the random walk distance on closed flow networks cannot be applied to open flow networks. Therefore, we derive novel explicit expressions for flow distances of open flow networks according to their underlying Markov matrix of the network in this paper. We apply flow distances to two types of empirical open flow networks, including energetic food webs and economic input-output networks. In energetic food webs, we visualize the trophic level of each species and compare flow distances with other distance metrics on the graph. In economic input-output networks, we rank sectors according to their average flow distances and cluster sectors into different industrial groups with strong connections. Other potential applications and mathematical properties are also discussed. To summarize, flow distance is a useful and powerful tool to study open flow systems.

  19. Orientational Order of the Lamellipodial Actin Network as Demonstrated in Living Motile CellsV⃞

    PubMed Central

    Verkhovsky, Alexander B.; Chaga, Oleg Y.; Schaub, Sébastien; Svitkina, Tatyana M.; Meister, Jean-Jacques; Borisy, Gary G.

    2003-01-01

    Lamellipodia of crawling cells represent both the motor for cell advance and the primary building site for the actin cytoskeleton. The organization of actin in the lamellipodium reflects actin dynamics and is of critical importance for the mechanism of cell motility. In previous structural studies, the lamellipodial actin network was analyzed primarily by electron microscopy (EM). An understanding of lamellipodial organization would benefit significantly if the EM data were complemented and put into a kinetic context by establishing correspondence with structural features observable at the light microscopic level in living cells. Here, we use an enhanced phase contrast microscopy technique to visualize an apparent long-range diagonal actin meshwork in the advancing lamellipodia of living cells. Visualization of this meshwork permitted a correlative light and electron microscopic approach that validated the underlying organization of lamellipodia. The linear features in the light microscopic meshwork corresponded to regions of greater actin filament density. Orientation of features was analyzed quantitatively and compared with the orientation of actin filaments at the EM level. We infer that the light microscopic meshwork reflects the orientational order of actin filaments which, in turn, is related to their branching angle. PMID:13679520

  20. In vitro studies of actin filament and network dynamics

    PubMed Central

    Mullins, R Dyche; Hansen, Scott D

    2013-01-01

    Now that many genomes have been sequenced, a central concern of cell biology is to understand how the proteins they encode work together to create living matter. In vitro studies form an essential part of this program because understanding cellular functions of biological molecules often requires isolating them and reconstituting their activities. In particular, many elements of the actin cytoskeleton were first discovered by biochemical methods and their cellular functions deduced from in vitro experiments. We highlight recent advances that have come from in vitro studies, beginning with studies of actin filaments, and ending with multi-component reconstitutions of complex actin-based processes, including force-generation and cell spreading. We describe both scientific results and the technical innovations that made them possible. PMID:23267766

  1. A single charge in the actin binding domain of fascin can independently tune the linear and non-linear response of an actin bundle network.

    PubMed

    Maier, M; Müller, K W; Heussinger, C; Köhler, S; Wall, W A; Bausch, A R; Lieleg, O

    2015-05-01

    Actin binding proteins (ABPs) not only set the structure of actin filament assemblies but also mediate the frequency-dependent viscoelastic moduli of cross-linked and bundled actin networks. Point mutations in the actin binding domain of those ABPs can tune the association and dissociation dynamics of the actin/ABP bond and thus modulate the network mechanics both in the linear and non-linear response regime. We here demonstrate how the exchange of a single charged amino acid in the actin binding domain of the ABP fascin triggers such a modulation of the network rheology. Whereas the overall structure of the bundle networks is conserved, the transition point from strain-hardening to strain-weakening sensitively depends on the cross-linker off-rate and the applied shear rate. Our experimental results are consistent both with numerical simulations of a cross-linked bundle network and a theoretical description of the bundle network mechanics which is based on non-affine bending deformations and force-dependent cross-link dynamics.

  2. Structural and viscoelastic properties of actin networks formed by espin or pathologically relevant espin mutants.

    PubMed

    Lieleg, Oliver; Schmoller, Kurt M; Purdy Drew, Kirstin R; Claessens, Mireille M A E; Semmrich, Christine; Zheng, Lili; Bartles, James R; Bausch, Andreas R

    2009-11-09

    The structural organization of the cytoskeleton determines its viscoelastic response which is crucial for the correct functionality of living cells. Both the mechanical response and microstructure of the cytoskeleton are regulated on a microscopic level by the local activation of different actin binding and/or bundling proteins (ABPs). Misregulations in the expression of these ABPs or mutations in their sequence can entail severe cellular dysfunctions and diseases. Here, we study the structural and viscoelastic properties of reconstituted actin networks cross-linked by the ABP espin and compare the obtained network properties to those of other bundled actin networks. Moreover, we quantify the impact of pathologically relevant espin mutations on the viscoelastic properties of these cytoskeletal networks.

  3. Quantifying the contribution of actin networks to the elastic strength of fibroblasts.

    PubMed

    Ananthakrishnan, Revathi; Guck, Jochen; Wottawah, Falk; Schinkinger, Stefan; Lincoln, Bryan; Romeyke, Maren; Moon, Tess; Käs, Josef

    2006-09-21

    The structural models created to understand the cytoskeletal mechanics of cells in suspension are described here. Suspended cells can be deformed by well-defined surface stresses in an Optical Stretcher [Guck, J., Ananthakrishnan, R., Mahmood, H., Moon, T.J., Cunningham, C.C., Käs, J., 2001. The optical stretcher: a novel laser tool to micromanipulate cells. Biophys. J. 81(2), 767-784], a two-beam optical trap designed for the contact-free deformation of cells. Suspended cells have a well-defined cytoskeleton, displaying a radially symmetric actin cortical network underlying the cell membrane with no actin stress fibers, and microtubules and intermediate filaments in the interior. Based on experimental data using suspended fibroblasts, we create two structural models: a thick shell actin cortex model that describes cell deformation for a localized stress distribution on these cells and a three-layered model that considers the entire cytoskeleton when a broad stress distribution is applied. Applying the models to data, we obtain a (actin) cortical shear moduli G of approximately 220 Pa for normal fibroblasts and approximately 185 Pa for malignantly transformed fibroblasts. Additionally, modeling the cortex as a transiently crosslinked isotropic actin network, we show that actin and its crosslinkers must be co-localized into a tight shell to achieve these cortical strengths. The similar moduli values and cortical actin and crosslinker densities but different deformabilities of the normal and cancerous cells suggest that a cell's structural strength is not solely determined by cytoskeletal composition but equally importantly by (actin) cytoskeletal architecture via differing cortical thicknesses. We also find that although the interior structural elements (microtubules, nucleus) contribute to the deformed cell's exact shape via their loose coupling to the cortex, it is the outer actin cortical shell (and its thickness) that mainly determines the cell's structural

  4. Serial Network Flow Monitor

    NASA Technical Reports Server (NTRS)

    Robinson, Julie A.; Tate-Brown, Judy M.

    2009-01-01

    Using a commercial software CD and minimal up-mass, SNFM monitors the Payload local area network (LAN) to analyze and troubleshoot LAN data traffic. Validating LAN traffic models may allow for faster and more reliable computer networks to sustain systems and science on future space missions. Research Summary: This experiment studies the function of the computer network onboard the ISS. On-orbit packet statistics are captured and used to validate ground based medium rate data link models and enhance the way that the local area network (LAN) is monitored. This information will allow monitoring and improvement in the data transfer capabilities of on-orbit computer networks. The Serial Network Flow Monitor (SNFM) experiment attempts to characterize the network equivalent of traffic jams on board ISS. The SNFM team is able to specifically target historical problem areas including the SAMS (Space Acceleration Measurement System) communication issues, data transmissions from the ISS to the ground teams, and multiple users on the network at the same time. By looking at how various users interact with each other on the network, conflicts can be identified and work can begin on solutions. SNFM is comprised of a commercial off the shelf software package that monitors packet traffic through the payload Ethernet LANs (local area networks) on board ISS.

  5. Surface adsorption and hopping cause probe-size-dependent microrheology of actin networks

    NASA Astrophysics Data System (ADS)

    He, Jun; Tang, Jay X.

    2011-04-01

    A network of filaments formed primarily by the abundant cytoskeletal protein actin gives animal cells their shape and elasticity. The rheological properties of reconstituted actin networks have been studied by tracking micron-sized probe beads embedded within the networks. We investigate how microrheology depends on surface properties of probe particles by varying the stickiness of their surface. For this purpose, we chose carboxylate polystyrene (PS) beads, silica beads, bovine serum albumin (BSA) -coated PS beads, and polyethylene glycol (PEG) -grafted PS beads, which show descending stickiness to actin filaments, characterized by confocal imaging and microrheology. Probe size dependence of microrheology is observed for all four types of beads. For the slippery PEG beads, particle-tracking microrheology detects weaker networks using smaller beads, which tend to diffuse through the network by hopping from one confinement “cage” to another. This trend is reversed for the other three types of beads, for which microrheology measures stiffer networks for smaller beads due to physisorption of nearby filaments to the bead surface. We explain the probe size dependence with two simple models. We also evaluate depletion effect near nonadsorption bead surface using quantitative image analysis and discuss the possible impact of depletion on microrheology. Analysis of these effects is necessary in order to accurately define the actin network rheology both in vitro and in vivo.

  6. Auxins and Cytokinins as Antipodal Modulators of Elasticity within the Actin Network of Plant Cells.

    PubMed Central

    Grabski, S.; Schindler, M.

    1996-01-01

    The cytoskeleton of plant and animal cells serves as a transmitter, transducer, and effector of cell signaling mechanisms. In plants, pathways for proliferation, differentiation, intracellular vesicular transport, cell-wall biosynthesis, symbiosis, secretion, and membrane recycling depend on the organization and dynamic properties of actin- and tubulin-based structures that are either associated with the plasma membrane or traverse the cytoplasm. Recently, a new in vivo cytoskeletal assay (cell optical displacement assay) was introduced to measure the tension within subdomains (cortical, transvacuolar, and perinuclear) of the actin network in living plant cells. Cell optical displacement assay measurements within soybean (Glycine max [L.]) root cells previously demonstrated that lipophilic signals, e.g. linoleic acid and arachidonic acid or changes in cytoplasmic pH gradients, could induce significant reductions in the tension within the actin network of transvacuolar strands. In contrast, enhancement of cytoplasmic free Ca2+ resulted in an increase in tension. In the present communication we have used these measurements to show that a similar antipodal pattern of activity exists for auxins and cytokinins (in their ability to modify the tension within the actin network of plant cells). It is suggested that these growth substances exert their effect on the cytoskeleton through the activation of signaling cascades, which result in the production of lipophilic and ionic second messengers, both of which have been demonstrated to directly effect the tension within the actin network of soybean root cells. PMID:12226233

  7. Strain hardening, avalanches, and strain softening in dense cross-linked actin networks

    NASA Astrophysics Data System (ADS)

    Åström, Jan A.; Kumar, P. B. Sunil; Vattulainen, Ilpo; Karttunen, Mikko

    2008-05-01

    Actin filament networks enable the cytoskeleton to adjust to internal and external forcing. These dynamic networks can adapt to changes by dynamically adjusting their cross-links. Here, we model actin filaments as cross-linked elastic fibers of finite dimensions, with the cross-links being approximately 1μm apart, and employ a full three-dimensional model to study their elastic properties by computer simulations. The results show compelling evidence that dense actin networks are characterized by (a) strain hardening without entropic elasticity, (b) avalanches of cross-link slippage leading to strain softening in the case of breakable cross-links, and (c) spontaneous formation of stress fibers in the case of dynamic cross-link formation and destruction.

  8. Mechanics of actin networks crosslinked with mutant human α-actinin-4

    NASA Astrophysics Data System (ADS)

    Volkmer, Sabine; Blair, Daniel; Kasza, Karen; Weitz, David

    2007-03-01

    Globular actin can be polymerized in vitro to form F-actin in the presence of various binding proteins. These networks often exhibit dramatic nonlinear rheological response to imposed strains. We study the rheological properties of F-actin networks crosslinked with human α-actinin-4. A single genetic mutation of the α-actinin-4 protein is associated with focal and segmented glomerulosclerosis (FSGS), a genetic disorder which leads to renal failure. Mechanically, the mutant crosslinker has an increased binding strength compared to the wild type. We will show that human α-actinin-4, displays a unique stiffening response. Moreover, we also demonstrate that a single point mutation dramatically effects the inherent relaxation time of the crosslinked network.

  9. Action of the mechanical disruption of the actin network on the gravisensitivity of the root statocyte

    NASA Astrophysics Data System (ADS)

    Lefranc, A.; Jeune, B.; Driss-Ecole, D.; Perbal, G.

    The effects of the mechanical disruption of the thin actin network of statocytes on gravisensitivity have been studied on lentil roots. Seedling roots were first inverted for 7 min (root tip upward) and then placed in the downward (normal) position for 7 min before gravitropic stimulation in the horizontal position. The period of inversion allowed the amyloplasts to move from the distal part to the proximal part of the statocyte, but did not fully sediment. When the roots were returned to the tip down position, the amyloplasts moved toward the distal part, but also did not completely sediment by the time the roots were placed horizontally. Thus, in these roots the amyloplasts could be still moving toward the distal wall after they had been replaced in the normal position and the actin network should not be fully restored. Gravisensitivity was estimated by the analysis of the dose-response curves of vertical and treated (inverted and returned to downward position) roots. The only effect, which has been observed on treated roots, was a delay of graviresponse for about 1 min. Our interpretation of this result is that in vertical roots the amyloplasts can exert tensions in the actin network that are directly transmitted to mechanoreceptors located in the plasma membrane. In roots with a partially disrupted actin network, a delay of 1 min is necessary for the amyloplasts to activate mechanoreceptors.

  10. Buckling-induced F-actin fragmentation modulates the contraction of active cytoskeletal networks.

    PubMed

    Li, Jing; Biel, Thomas; Lomada, Pranith; Yu, Qilin; Kim, Taeyoon

    2017-04-11

    Actomyosin contractility originating from interactions between F-actin and myosin facilitates various structural reorganizations of the actin cytoskeleton. Cross-linked actomyosin networks show a tendency to contract to single or multiple foci, which has been investigated extensively in numerous studies. Recently, it was suggested that suppression of F-actin buckling via an increase in bending rigidity significantly reduces network contraction. In this study, we demonstrate that networks may show the largest contraction at intermediate bending rigidity, not at the lowest rigidity, if filaments are severed by buckling arising from myosin activity as demonstrated in recent experiments; if filaments are very flexible, frequent severing events can severely deteriorate network connectivity, leading to the formation of multiple small foci and low network contraction. By contrast, if filaments are too stiff, the networks exhibit minimal contraction due to the inhibition of filament buckling. This study reveals that buckling-induced filament severing can modulate the contraction of active cytoskeletal networks, which has been neglected to date.

  11. Toxoplasma gondii F-actin forms an extensive filamentous network required for material exchange and parasite maturation

    PubMed Central

    Periz, Javier; Whitelaw, Jamie; Harding, Clare; Gras, Simon; Del Rosario Minina, Mario Igor; Latorre-Barragan, Fernanda; Lemgruber, Leandro; Reimer, Madita Alice; Insall, Robert; Heaslip, Aoife; Meissner, Markus

    2017-01-01

    Apicomplexan actin is important during the parasite's life cycle. Its polymerization kinetics are unusual, permitting only short, unstable F-actin filaments. It has not been possible to study actin in vivo and so its physiological roles have remained obscure, leading to models distinct from conventional actin behaviour. Here a modified version of the commercially available actin-chromobody was tested as a novel tool for visualising F-actin dynamics in Toxoplasma gondii. Cb labels filamentous actin structures within the parasite cytosol and labels an extensive F-actin network that connects parasites within the parasitophorous vacuole and allows vesicles to be exchanged between parasites. In the absence of actin, parasites lack a residual body and inter-parasite connections and grow in an asynchronous and disorganized manner. Collectively, these data identify new roles for actin in the intracellular phase of the parasites lytic cycle and provide a robust new tool for imaging parasitic F-actin dynamics. DOI: http://dx.doi.org/10.7554/eLife.24119.001 PMID:28322189

  12. Interaction between Calcium and Actin in Guard Cell and Pollen Signaling Networks

    PubMed Central

    Chen, Dong-Hua; Acharya, Biswa R.; Liu, Wei; Zhang, Wei

    2013-01-01

    Calcium (Ca2+) plays important roles in plant growth, development, and signal transduction. It is a vital nutrient for plant physical design, such as cell wall and membrane, and also serves as a counter-cation for biochemical, inorganic, and organic anions, and more particularly, its concentration change in cytosol is a ubiquitous second messenger in plant physiological signaling in responses to developmental and environmental stimuli. Actin cytoskeleton is well known for its importance in cellular architecture maintenance and its significance in cytoplasmic streaming and cell division. In plant cell system, the actin dynamics is a process of polymerization and de-polymerization of globular actin and filamentous actin and that acts as an active regulator for calcium signaling by controlling calcium evoked physiological responses. The elucidation of the interaction between calcium and actin dynamics will be helpful for further investigation of plant cell signaling networks at molecular level. This review mainly focuses on the recent advances in understanding the interaction between the two aforementioned signaling components in two well-established model systems of plant, guard cell, and pollen. PMID:27137395

  13. Prestressed F-actin networks cross-linked by hinged filamins replicate mechanical properties of cells

    NASA Astrophysics Data System (ADS)

    Gardel, M. L.; Nakamura, F.; Hartwig, J. H.; Crocker, J. C.; Stossel, T. P.; Weitz, D. A.

    2006-02-01

    We show that actin filaments, shortened to physiological lengths by gelsolin and cross-linked with recombinant human filamins (FLNs), exhibit dynamic elastic properties similar to those reported for live cells. To achieve elasticity values of comparable magnitude to those of cells, the in vitro network must be subjected to external prestress, which directly controls network elasticity. A molecular requirement for the strain-related behavior at physiological conditionsis a flexible hinge found in FLNa and some FLNb molecules. Basic physical properties of the in vitro filamin-F-actin network replicate the essential mechanical properties of living cells. This physical behavior could accommodate passive deformation and internal organelle trafficking at low strains yet resist externally or internally generated high shear forces. cytoskeleton | cell mechanics | nonlinear rheology

  14. The Eps8/IRSp53/VASP Network Differentially Controls Actin Capping and Bundling in Filopodia Formation

    PubMed Central

    Milanesi, Francesca; Di Fiore, Pier Paolo; Menna, Elisabetta; Matteoli, Michela; Gov, Nir S.; Scita, Giorgio; Ciliberto, Andrea

    2011-01-01

    There is a body of literature that describes the geometry and the physics of filopodia using either stochastic models or partial differential equations and elasticity and coarse-grained theory. Comparatively, there is a paucity of models focusing on the regulation of the network of proteins that control the formation of different actin structures. Using a combination of in-vivo and in-vitro experiments together with a system of ordinary differential equations, we focused on a small number of well-characterized, interacting molecules involved in actin-dependent filopodia formation: the actin remodeler Eps8, whose capping and bundling activities are a function of its ligands, Abi-1 and IRSp53, respectively; VASP and Capping Protein (CP), which exert antagonistic functions in controlling filament elongation. The model emphasizes the essential role of complexes that contain the membrane deforming protein IRSp53, in the process of filopodia initiation. This model accurately accounted for all observations, including a seemingly paradoxical result whereby genetic removal of Eps8 reduced filopodia in HeLa, but increased them in hippocampal neurons, and generated quantitative predictions, which were experimentally verified. The model further permitted us to explain how filopodia are generated in different cellular contexts, depending on the dynamic interaction established by Eps8, IRSp53 and VASP with actin filaments, thus revealing an unexpected plasticity of the signaling network that governs the multifunctional activities of its components in the formation of filopodia. PMID:21814501

  15. Branching influences force-velocity curves and length fluctuations in actin networks

    NASA Astrophysics Data System (ADS)

    Hansda, Deepak Kumar; Sen, Shamik; Padinhateeri, Ranjith

    2014-12-01

    We investigate collective dynamics of branched actin networks growing against a rigid movable wall constrained by a resistive force. Computing the force velocity relations, we show that the stall force of such networks depends not only on the average number of filaments touching the wall, but also on the amount of fluctuation of the leading edge of the network. These differences arise due to differences in the network architecture, namely, distance between two adjacent branching points and the initial distance of the starting filament from the wall, with their relative magnitudes influencing the nature of the force velocity curves (convex versus concave). We also show that the introduction of branching results in nonmonotonic diffusion constant, a quantity that measures the growth in length fluctuation of the leading edge of the network, as a function of externally applied force. Together our results demonstrate how the collective dynamics of a branched network differs from that of a parallel filament network.

  16. Mesoscopic model for filament orientation in growing actin networks: the role of obstacle geometry

    NASA Astrophysics Data System (ADS)

    Weichsel, Julian; Schwarz, Ulrich S.

    2013-03-01

    Propulsion by growing actin networks is a universal mechanism used in many different biological systems, ranging from the sheet-like lamellipodium of crawling animal cells to the actin comet tails induced by certain bacteria and viruses in order to move within their host cells. Although the core molecular machinery for actin network growth is well preserved in all of these cases, the geometry of the propelled obstacle varies considerably. During recent years, filament orientation distribution has emerged as an important observable characterizing the structure and dynamical state of the growing network. Here we derive several continuum equations for the orientation distribution of filaments growing behind stiff obstacles of various shapes and validate the predicted steady state orientation patterns by stochastic computer simulations based on discrete filaments. We use an ordinary differential equation approach to demonstrate that for flat obstacles of finite size, two fundamentally different orientation patterns peaked at either ±35° or +70°/0°/ - 70° exhibit mutually exclusive stability, in agreement with earlier results for flat obstacles of very large lateral extension. We calculate and validate phase diagrams as a function of model parameters and show how this approach can be extended to obstacles with piecewise straight contours. For curved obstacles, we arrive at a partial differential equation in the continuum limit, which again is in good agreement with the computer simulations. In all cases, we can identify the same two fundamentally different orientation patterns, but only within an appropriate reference frame, which is adjusted to the local orientation of the obstacle contour. Our results suggest that two fundamentally different network architectures compete with each other in growing actin networks, irrespective of obstacle geometry, and clarify how simulated and electron tomography data have to be analyzed for non-flat obstacle geometries.

  17. The spatial response of nonlinear strain propagation in response to actively driven microspheres through entangled actin networks

    NASA Astrophysics Data System (ADS)

    Falzone, Tobias; Blair, Savanna; Robertson-Anderson, Rae

    2015-03-01

    The semiflexible biopolymer actin, a ubiquitous component of nearly all biological organisms, plays an important role in many mechanically-driven processes such as muscle contraction, cancer invasion and cell motility. As such, entangled actin networks, which possess unique and complex viscoelastic properties, have been the subject of much theoretical and experimental work. However, due to this viscoelastic complexity, much is still unknown regarding the correlation of the applied stress on actin networks to the induced filament strain at the molecular and micro scale. Here, we use simultaneous optical trapping and fluorescence microscopy to characterize the link between applied microscopic forces and strain propagation as a function of strain rate and concentration. Specifically, we track fiduciary markers on entangled actin filaments before, during and after actively driving embedded microspheres through the network. These measurements provide much needed insight into the molecular-level dynamics connecting stress and strain in semiflexible polymer networks.

  18. AKAP220 manages apical actin networks that coordinate aquaporin-2 location and renal water reabsorption

    PubMed Central

    Whiting, Jennifer L.; Ogier, Leah; Forbush, Katherine A.; Bucko, Paula; Gopalan, Janani; Seternes, Ole-Morten; Langeberg, Lorene K.; Scott, John D.

    2016-01-01

    Filtration through the kidney eliminates toxins, manages electrolyte balance, and controls water homeostasis. Reabsorption of water from the luminal fluid of the nephron occurs through aquaporin-2 (AQP2) water pores in principal cells that line the kidney-collecting duct. This vital process is impeded by formation of an “actin barrier” that obstructs the passive transit of AQP2 to the plasma membrane. Bidirectional control of AQP2 trafficking is managed by hormones and signaling enzymes. We have discovered that vasopressin-independent facets of this homeostatic mechanism are under the control of A-Kinase Anchoring Protein 220 (AKAP220; product of the Akap11 gene). CRISPR/Cas9 gene editing and imaging approaches show that loss of AKAP220 disrupts apical actin networks in organoid cultures. Similar defects are evident in tissue sections from AKAP220-KO mice. Biochemical analysis of AKAP220-null kidney extracts detected reduced levels of active RhoA GTPase, a well-known modulator of the actin cytoskeleton. Fluorescent imaging of kidney sections from these genetically modified mice revealed that RhoA and AQP2 accumulate at the apical surface of the collecting duct. Consequently, these animals are unable to appropriately dilute urine in response to overhydration. We propose that membrane-proximal signaling complexes constrained by AKAP220 impact the actin barrier dynamics and AQP2 trafficking to ensure water homeostasis. PMID:27402760

  19. TorsinA controls TAN line assembly and the retrograde flow of dorsal perinuclear actin cables during rearward nuclear movement.

    PubMed

    Saunders, Cosmo A; Harris, Nathan J; Willey, Patrick T; Woolums, Brian M; Wang, Yuexia; McQuown, Alex J; Schoenhofen, Amy; Worman, Howard J; Dauer, William T; Gundersen, Gregg G; Luxton, G W Gant

    2017-03-06

    The nucleus is positioned toward the rear of most migratory cells. In fibroblasts and myoblasts polarizing for migration, retrograde actin flow moves the nucleus rearward, resulting in the orientation of the centrosome in the direction of migration. In this study, we report that the nuclear envelope-localized AAA+ (ATPase associated with various cellular activities) torsinA (TA) and its activator, the inner nuclear membrane protein lamina-associated polypeptide 1 (LAP1), are required for rearward nuclear movement during centrosome orientation in migrating fibroblasts. Both TA and LAP1 contributed to the assembly of transmembrane actin-associated nuclear (TAN) lines, which couple the nucleus to dorsal perinuclear actin cables undergoing retrograde flow. In addition, TA localized to TAN lines and was necessary for the proper mobility of EGFP-mini-nesprin-2G, a functional TAN line reporter construct, within the nuclear envelope. Furthermore, TA and LAP1 were indispensable for the retrograde flow of dorsal perinuclear actin cables, supporting the recently proposed function for the nucleus in spatially organizing actin flow and cytoplasmic polarity. Collectively, these results identify TA as a key regulator of actin-dependent rearward nuclear movement during centrosome orientation.

  20. Actin-myosin network influences morphological response of neuronal cells to altered osmolarity.

    PubMed

    Bober, Brian G; Love, James M; Horton, Steven M; Sitnova, Mariya; Shahamatdar, Sina; Kannan, Ajay; Shah, Sameer B

    2015-04-01

    Acute osmotic fluctuations in the brain occur during a number of clinical conditions and can result in a variety of adverse neurological symptoms. Osmotic perturbation can cause changes in the volumes of intra- and extracellular fluid and, due to the rigidity of the skull, can alter intracranial pressure thus making it difficult to analyze purely osmotic effects in vivo. The present study aims to determine the effects of changes in osmolarity on SH-SY5Y human neuroblastoma cells in vitro, and the role of the actin-myosin network in regulating this response. Cells were exposed to hyper- or hypoosmotic media and morphological and cytoskeletal responses were recorded. Hyperosmotic shock resulted in a drop in cell body volume and planar area, a persisting shape deformation, and increases in cellular translocation. Hypoosmotic shock did not significantly alter planar area, but caused a transient increase in cell body volume and an increase in cellular translocation via the development of small protrusions rich in actin. Disruption of the actin-myosin network with latrunculin and blebbistatin resulted in changes to volume and shape regulation, and a decrease in cellular translocation. In both osmotic perturbations, no apparent disruptions to cytoskeletal integrity were observed by light microscopy. Overall, because osmotically induced changes persisted even after volume regulation occurred, it is possible that osmotic stress may play a larger role in neurological dysfunction than currently believed.

  1. Mechanical output of myosin II motors is regulated by myosin filament size and actin network mechanics

    NASA Astrophysics Data System (ADS)

    Stam, Samantha; Alberts, Jonathan; Gardel, Margaret; Munro, Edwin

    2013-03-01

    The interactions of bipolar myosin II filaments with actin arrays are a predominate means of generating forces in numerous physiological processes including muscle contraction and cell migration. However, how the spatiotemporal regulation of these forces depends on motor mechanochemistry, bipolar filament size, and local actin mechanics is unknown. Here, we simulate myosin II motors with an agent-based model in which the motors have been benchmarked against experimental measurements. Force generation occurs in two distinct regimes characterized either by stable tension maintenance or by stochastic buildup and release; transitions between these regimes occur by changes to duty ratio and myosin filament size. The time required for building force to stall scales inversely with the stiffness of a network and the actin gliding speed of a motor. Finally, myosin motors are predicted to contract a network toward stiffer regions, which is consistent with experimental observations. Our representation of myosin motors can be used to understand how their mechanical and biochemical properties influence their observed behavior in a variety of in vitro and in vivo contexts.

  2. Self-organized gels in DNA/F-actin mixtures without crosslinkers: networks of induced nematic domains with tunable density.

    PubMed

    Lai, Ghee Hwee; Butler, John C; Zribi, Olena V; Smalyukh, Ivan I; Angelini, Thomas E; Purdy, Kirstin R; Golestanian, Ramin; Wong, Gerard C L

    2008-11-21

    We examine mixtures of DNA and filamentous actin (F-actin) as a model system of like-charged rigid rods and flexible chains. Confocal microscopy reveals the formation of elongated nematic F-actin domains reticulated via defect-free vertices into a network embedded in a mesh of random DNA. Synchrotron x-ray scattering results indicate that the DNA mesh squeezes the F-actin domains into a nematic state with an interactin spacing that decreases with increasing DNA concentration as d(actin) proportional, variantrho(DNA)(-1/2). Interestingly, the system changes from a counterion-controlled regime to a depletion-controlled regime with added salt, with drastic consequences for the osmotic pressure induced phase behavior.

  3. Two Distinct Actin Networks Mediate Traction Oscillations to Confer Focal Adhesion Mechanosensing.

    PubMed

    Wu, Zhanghan; Plotnikov, Sergey V; Moalim, Abdiwahab Y; Waterman, Clare M; Liu, Jian

    2017-02-28

    Focal adhesions (FAs) are integrin-based transmembrane assemblies that connect a cell to its extracellular matrix (ECM). They are mechanosensors through which cells exert actin cytoskeleton-mediated traction forces to sense the ECM stiffness. Interestingly, FAs themselves are dynamic structures that adapt their growth in response to mechanical force. It is unclear how the cell manages the plasticity of the FA structure and the associated traction force to accurately sense ECM stiffness. Strikingly, FA traction forces oscillate in time and space, and govern the cell mechanosensing of ECM stiffness. However, precisely how and why the FA traction oscillates is unknown. We developed a model of FA growth that integrates the contributions of the branched actin network and stress fibers (SFs). Using the model in combination with experimental tests, we show that the retrograde flux of the branched actin network promotes the proximal growth of the FA and contributes to a traction peak near the FA's distal tip. The resulting traction gradient within the growing FA favors SF formation near the FA's proximal end. The SF-mediated actomyosin contractility further stabilizes the FA and generates a second traction peak near the center of the FA. Formin-mediated SF elongation negatively feeds back with actomyosin contractility, resulting in central traction peak oscillation. This underpins the observed FA traction oscillation and, importantly, broadens the ECM stiffness range over which FAs can accurately adapt to traction force generation. Actin cytoskeleton-mediated FA growth and maturation thus culminate with FA traction oscillation to drive efficient FA mechanosensing.

  4. Microstructural model for cyclic hardening in F-actin networks crosslinked by α-actinin

    NASA Astrophysics Data System (ADS)

    López-Menéndez, Horacio; Rodríguez, José Félix

    2016-06-01

    The rheology of F-actin networks has attracted a great attention during the last years. In order to gain a complete understanding of the rheological properties of these novel materials, it is necessary the study in a large deformations regime to alter their internal structure. In this sense, Schmoller et al. (2010) showed that the reconstituted networks of F-actin crosslinked with α-actinin unexpectedly harden when they are subjected to a cyclical shear. This observation contradicts the expected Mullins effect observed in most soft materials, such as rubber and living tissues, where a pronounced softening is observed when they are cyclically deformed. We think that the key to understand this stunning effect is the gelation process. To define it, the most relevant constituents are the chemical crosslinks - α-actinin -, the physical crosslinks - introduced by the entanglement of the semiflexible network - and the interaction between them. As a consequence of this interaction, a pre-stressed network emerges and introduces a feedback effect, where the pre-stress also regulates the adhesion energy of the α-actinin, setting the structure in a metastable reference configuration. Therefore, the external loads and the evolvement of the trapped stress drive the microstructural changes during the cyclic loading protocol. In this work, we propose a micromechanical model into the framework of nonlinear continuum mechanics. The mechanics of the F-actin filaments is modelled using the wormlike chain model for semiflexible filaments and the gelation process is modelled as mesoscale dynamics for the α-actinin and physical crosslink. The model has been validated with reported experimental results.

  5. F-actin cross-linking enhances the stability of force generation in disordered actomyosin networks

    NASA Astrophysics Data System (ADS)

    Jung, Wonyeong; Murrell, Michael P.; Kim, Taeyoon

    2015-12-01

    Myosin molecular motors and actin cross-linking proteins (ACPs) are known to mediate the generation and transmission of mechanical forces within the cortical F-actin cytoskeleton that drive major cellular processes such as cell division and migration. However, how motors and ACPs interact collectively over diverse timescales to modulate the time-dependent mechanical properties of the cytoskeleton remains unclear. In this study, we present a three-dimensional agent-based computational model of the cortical actomyosin network to quantitatively determine the effects of motor activity and the density and kinetics of ACPs on the accumulation and maintenance of mechanical tension within a disordered actomyosin network. We found that motors accumulate large stress quickly by behaving as temporary cross-linkers although this stress is relaxed over time unless there are sufficient passive ACPs to stabilize the network. Stabilization by ACPs helps motors to generate forces up to their maximum potential, leading to significant enhancement of the efficiency and stability of stress generation. Thus, we demonstrated that the force-dependent kinetics of ACP dissociation plays a critical role for the accumulation and sustainment of stress and the structural remodeling of networks.

  6. Cytoskeletal actin networks in motile cells are critically self-organized systems synchronized by mechanical interactions.

    PubMed

    Cardamone, Luca; Laio, Alessandro; Torre, Vincent; Shahapure, Rajesh; DeSimone, Antonio

    2011-08-23

    Growing networks of actin fibers are able to organize into compact, stiff two-dimensional structures inside lamellipodia of crawling cells. We put forward the hypothesis that the growing actin network is a critically self-organized system, in which long-range mechanical stresses arising from the interaction with the plasma membrane provide the selective pressure leading to organization. We show that a simple model based only on this principle reproduces the stochastic nature of lamellipodia protrusion (growth periods alternating with fast retractions) and several of the features observed in experiments: a growth velocity initially insensitive to the external force; the capability of the network to organize its orientation; a load-history-dependent growth velocity. Our model predicts that the spectrum of the time series of the height of a growing lamellipodium decays with the inverse of the frequency. This behavior is a well-known signature of self-organized criticality and is confirmed by unique optical tweezer measurements performed in vivo on neuronal growth cones.

  7. STAR syndrome-associated CDK10/Cyclin M regulates actin network architecture and ciliogenesis.

    PubMed

    Guen, Vincent J; Gamble, Carly; Perez, Dahlia E; Bourassa, Sylvie; Zappel, Hildegard; Gärtner, Jutta; Lees, Jacqueline A; Colas, Pierre

    2016-01-01

    CDK10/CycM is a protein kinase deficient in STAR (toe Syndactyly, Telecanthus and Anogenital and Renal malformations) syndrome, which results from mutations in the X-linked FAM58A gene encoding Cyclin M. The biological functions of CDK10/CycM and etiology of STAR syndrome are poorly understood. Here, we report that deficiency of CDK10/Cyclin M promotes assembly and elongation of primary cilia. We establish that this reflects a key role for CDK10/Cyclin M in regulation of actin network organization, which is known to govern ciliogenesis. In an unbiased screen, we identified the RhoA-associated kinase PKN2 as a CDK10/CycM phosphorylation substrate. We establish that PKN2 is a bone fide regulator of ciliogenesis, acting in a similar manner to CDK10/CycM. We discovered that CDK10/Cyclin M binds and phosphorylates PKN2 on threonines 121 and 124, within PKN2's core RhoA-binding domain. Furthermore, we demonstrate that deficiencies in CDK10/CycM or PKN2, or expression of a non-phosphorylatable version of PKN2, destabilize both the RhoA protein and the actin network architecture. Importantly, we established that ectopic expression of RhoA is sufficient to override the induction of ciliogenesis resulting from CDK10/CycM knockdown, indicating that RhoA regulation is critical for CDK10/CycM's negative effect on ciliogenesis. Finally, we show that kidney sections from a STAR patient display dilated renal tubules and abnormal, elongated cilia. Altogether, these results reveal CDK10/CycM as a key regulator of actin dynamics and a suppressor of ciliogenesis through phosphorylation of PKN2 and promotion of RhoA signaling. Moreover, they suggest that STAR syndrome is a ciliopathy.

  8. A variational approach to the growth dynamics of pre-stressed actin filament networks

    NASA Astrophysics Data System (ADS)

    John, Karin; Stöter, Thomas; Misbah, Chaouqi

    2016-09-01

    In order to model the growth dynamics of elastic bodies with residual stresses a thermodynamically consistent approach is needed such that the cross-coupling between growth and mechanics can be correctly described. In the present work we apply a variational principle to the formulation of the interfacial growth dynamics of dendritic actin filament networks growing from biomimetic beads, an experimentally well studied system, where the buildup of residual stresses governs the network growth. We first introduce the material model for the network via a strain energy density for an isotropic weakly nonlinear elastic material and then derive consistently from this model the dynamic equations for the interfaces, i.e. for a polymerizing internal interface in contact with the bead and a depolymerizing external interface directed towards the solvent. We show that (i) this approach automatically preserves thermodynamic symmetry-properties, which is not the case for the often cited ‘rubber-band-model’ (Sekimoto et al 2004 Eur. Phys. J. E 13 247-59, Plastino et al 2004 Eur. Biophys. J. 33 310-20) and (ii) leads to a robust morphological instability of the treadmilling network interfaces. The nature of the instability depends on the interplay of the two dynamic interfaces. Depending on the biochemical conditions the network envelope evolves into a comet-like shape (i.e. the actin envelope thins out at one side and thickens on the opposite side of the bead) via a varicose instability or it breaks the symmetry via higher order zigzag modes. We conclude that morphological instabilities due to mechano-chemical coupling mechanisms and the presences of mechancial pre-stresses can play a major role in locally organizing the cytoskeleton of living cells.

  9. Ecosystem flow networks: loaded dice?

    PubMed

    Ulanowicz, R E; Wolff, W F

    1991-02-01

    An information-theoretic comparison of the topologies of observed ecosystem transfers and randomly constructed networks reveals that it is not easy to separate the members of the two sets. The distribution of ecosystem flow magnitudes, however, is seen to differ markedly from ordinary probability functions and to resemble the Cauchy or Pareto distributions. The agencies that impart such structure to ecological flow networks are not obvious, but one strong possibility is that autocatalysis, or indirect mutualism, promotes certain pathways at the expense of others, thereby enlarging the tail of the distribution of flow magnitudes.

  10. Network Profiling Using Flow

    DTIC Science & Technology

    2012-08-01

    through several different protocols. The most common protocol for sending mail across the internet is Simple Mail Transfer Protocol ( SMTP ) on TCP port 25...Protocol Port Encrypted Session Port SMTP 25 465 POP3 110 995 IMAP 143 993 MSA 587 None CMU/SEI-2012-TR-006 | 25 network. This a good test to...Results The sample network has four SMTP mail servers and no externally facing mail clients, as listed in Table 13. Table 13: Validated Email Assets

  11. Self-Organized Gels in DNA/F-Actin Mixtures without Crosslinkers: Networks of Induced Nematic Domains with Tunable Density

    NASA Astrophysics Data System (ADS)

    Lai, Ghee Hwee; Butler, John C.; Zribi, Olena V.; Smalyukh, Ivan I.; Angelini, Thomas E.; Purdy, Kirstin R.; Golestanian, Ramin; Wong, Gerard C. L.

    2008-11-01

    We examine mixtures of DNA and filamentous actin (F-actin) as a model system of like-charged rigid rods and flexible chains. Confocal microscopy reveals the formation of elongated nematic F-actin domains reticulated via defect-free vertices into a network embedded in a mesh of random DNA. Synchrotron x-ray scattering results indicate that the DNA mesh squeezes the F-actin domains into a nematic state with an interactin spacing that decreases with increasing DNA concentration as dactin∝ρDNA-1/2. Interestingly, the system changes from a counterion-controlled regime to a depletion-controlled regime with added salt, with drastic consequences for the osmotic pressure induced phase behavior.

  12. Cortical Actin Flow in T Cells Quantified by Spatio-temporal Image Correlation Spectroscopy of Structured Illumination Microscopy Data.

    PubMed

    Ashdown, George; Pandžić, Elvis; Cope, Andrew; Wiseman, Paul; Owen, Dylan

    2015-12-17

    Filamentous-actin plays a crucial role in a majority of cell processes including motility and, in immune cells, the formation of a key cell-cell interaction known as the immunological synapse. F-actin is also speculated to play a role in regulating molecular distributions at the membrane of cells including sub-membranous vesicle dynamics and protein clustering. While standard light microscope techniques allow generalized and diffraction-limited observations to be made, many cellular and molecular events including clustering and molecular flow occur in populations at length-scales far below the resolving power of standard light microscopy. By combining total internal reflection fluorescence with the super resolution imaging method structured illumination microscopy, the two-dimensional molecular flow of F-actin at the immune synapse of T cells was recorded. Spatio-temporal image correlation spectroscopy (STICS) was then applied, which generates quantifiable results in the form of velocity histograms and vector maps representing flow directionality and magnitude. This protocol describes the combination of super-resolution imaging and STICS techniques to generate flow vectors at sub-diffraction levels of detail. This technique was used to confirm an actin flow that is symmetrically retrograde and centripetal throughout the periphery of T cells upon synapse formation.

  13. Flows in Polymer Networks

    NASA Astrophysics Data System (ADS)

    Tanaka, Fumihiko

    A simple transient network model is introduced to describe creation and annihilation of junctions in the networks of associating polymers. Stationary non-linear viscosity is calculated by the theory and by Monte Carlo simulation to study shear thickening. The dynamic mechanical moduli are calculated as functions of the frequency and the chain disengagement rate. From the peak of the loss modulus, the lifetime τx of the junction is estimated, and from the high frequency plateau of the storage modulus, the number of elastically effective chains in the network is found. Transient phenomena such as stress relaxation and stress overshoot are also theoretically studied. Results are compared with the recent experimental reports on the rheological study of hydrophobically modified water-soluble polymeters.

  14. Direct observation of dendritic actin filament networks nucleated by Arp2/3 complex and WASP/Scar proteins.

    PubMed

    Blanchoin, L; Amann, K J; Higgs, H N; Marchand, J B; Kaiser, D A; Pollard, T D

    2000-04-27

    Most nucleated cells crawl about by extending a pseudopod that is driven by the polymerization of actin filaments in the cytoplasm behind the leading edge of the plasma membrane. These actin filaments are linked into a network by Y-branches, with the pointed end of each filament attached to the side of another filament and the rapidly growing barbed end facing forward. Because Arp2/3 complex nucleates actin polymerization and links the pointed end to the side of another filament in vitro, a dendritic nucleation model has been proposed in which Arp2/3 complex initiates filaments from the sides of older filaments. Here we report, by using a light microscopy assay, many new features of the mechanism. Branching occurs during, rather than after, nucleation by Arp2/3 complex activated by the Wiskott-Aldrich syndrome protein (WASP) or Scar protein; capping protein and profilin act synergistically with Arp2/3 complex to favour branched nucleation; phosphate release from aged actin filaments favours dissociation of Arp2/3 complex from the pointed ends of filaments; and branches created by Arp2/3 complex are relatively rigid. These properties result in the automatic assembly of the branched actin network after activation by proteins of the WASP/Scar family and favour the selective disassembly of proximal regions of the network.

  15. Convergence and extension at gastrulation require a myosin IIB dependent cortical actin network

    PubMed Central

    Skoglund, Paul; Rolo, Ana; Chen, Xuejun; Gumbiner, Barry M.; Keller, Ray

    2009-01-01

    Summary Force-producing convergence (narrowing) and extension (lengthening) of tissues by active intercalation of cells along the axis of convergence play a major role in axial morphogenesis during development of both vertebrate and invertebrate embryos, and failure of these processes in human embryos leads to embryonic defects including spina bifida and anencephaly. Here we use Xenopus laevis, a system in which the polarized cell motility that drives this active cell intercalation has been related to development of forces that close the blastopore and elongate the body axis, to examine the role of myosin IIB in convergence and extension. We find that myosin IIB is localized in the cortex of intercalating cells, and that morpholino knockdown of this myosin isoform shows that it is essential for maintenance of a stereotypical, cortical actin cytoskeleton that we visualize with time-lapse fluorescent confocal microscopy. We show that this actin network consists of foci or nodes connected by cables and is polarized relative to the embryonic axis, preferentially cyclically shortening and lengthening parallel to the axis of cell polarization, elongation, and intercalation, and also parallel to the axis of convergence forces during gastrulation. MHC-B-depletion results in disruption of this polarized cytoskeleton, loss of the polarized protrusive activity characteristic of intercalating cells, eventual loss of cell-cell and cell matrix adhesion, and dose-dependent failure of blastopore closure, arguably because of failure to develop convergence forces parallel to the myosin IIB-dependent dynamics of the actin cytoskeleton. These findings bridge the gap between a molecular-scale motor protein and tissue-scale embryonic morphogenesis. PMID:18550716

  16. Flow optimization in vascular networks.

    PubMed

    Cascaval, Radu C; D'Apice, Ciro; D'Arienzo, Maria Pia; Manzo, Rosanna

    2017-06-01

    The development of mathematical models for studying phenomena observed in vascular networks is very useful for its potential applications in medicine and physiology. Detailed 3D studies of flow in the arterial system based on the Navier-Stokes equations require high computational power, hence reduced models are often used, both for the constitutive laws and the spatial domain. In order to capture the major features of the phenomena under study, such as variations in arterial pressure and flow velocity, the resulting PDE models on networks require appropriate junction and boundary conditions. Instead of considering an entire network, we simulate portions of the latter and use inflow and outflow conditions which realistically mimic the behavior of the network that has not been included in the spatial domain. The resulting PDEs are solved numerically using a discontinuous Galerkin scheme for the spatial and Adam-Bashforth method for the temporal discretization. The aim is to study the effect of truncation to the flow in the root edge of a fractal network, the effect of adding or subtracting an edge to a given network, and optimal control strategies on a network in the event of a blockage or unblockage of an edge or of an entire subtree.

  17. Carbon Emission Flow in Networks

    PubMed Central

    Kang, Chongqing; Zhou, Tianrui; Chen, Qixin; Xu, Qianyao; Xia, Qing; Ji, Zhen

    2012-01-01

    As the human population increases and production expands, energy demand and anthropogenic carbon emission rates have been growing rapidly, and the need to decrease carbon emission levels has drawn increasing attention. The link between energy production and consumption has required the large-scale transport of energy within energy transmission networks. Within this energy flow, there is a virtual circulation of carbon emissions. To understand this circulation and account for the relationship between energy consumption and carbon emissions, this paper introduces the concept of “carbon emission flow in networks” and establishes a method to calculate carbon emission flow in networks. Using an actual analysis of China's energy pattern, the authors discuss the significance of this new concept, not only as a feasible approach but also as an innovative theoretical perspective. PMID:22761988

  18. Actin polymerization machinery: the finish line of signaling networks, the starting point of cellular movement.

    PubMed

    Disanza, A; Steffen, A; Hertzog, M; Frittoli, E; Rottner, K; Scita, G

    2005-05-01

    Dynamic assembly of actin filaments generates the forces supporting cell motility. Several recent biochemical and genetic studies have revealed a plethora of different actin binding proteins whose coordinated activity regulates the turnover of actin filaments, thus controlling a variety of actin-based processes, including cell migration. Additionally, emerging evidence is highlighting a scenario whereby the same basic set of actin regulatory proteins is also the convergent node of different signaling pathways emanating from extracellular stimuli, like those from receptor tyrosine kinases. Here, we will focus on the molecular mechanisms of how the machinery of actin polymerization functions and is regulated, in a signaling-dependent mode, to generate site-directed actin assembly leading to cell motility.

  19. A Gβγ effector, ElmoE, transduces GPCR signaling to the actin network during chemotaxis.

    PubMed

    Yan, Jianshe; Mihaylov, Vassil; Xu, Xuehua; Brzostowski, Joseph A; Li, Hongyan; Liu, Lunhua; Veenstra, Timothy D; Parent, Carole A; Jin, Tian

    2012-01-17

    Activation of G protein-coupled receptors (GPCRs) leads to the dissociation of heterotrimeric G-proteins into Gα and Gβγ subunits, which go on to regulate various effectors involved in a panoply of cellular responses. During chemotaxis, Gβγ subunits regulate actin assembly and migration, but the protein(s) linking Gβγ to the actin cytoskeleton remains unknown. Here, we identified a Gβγ effector, ElmoE in Dictyostelium, and demonstrated that it is required for GPCR-mediated chemotaxis. Remarkably, ElmoE associates with Gβγ and Dock-like proteins to activate the small GTPase Rac, in a GPCR-dependent manner, and also associates with Arp2/3 complex and F-actin. Thus, ElmoE serves as a link between chemoattractant GPCRs, G-proteins and the actin cytoskeleton. The pathway, consisting of GPCR, Gβγ, Elmo/Dock, Rac, and Arp2/3, spatially guides the growth of dendritic actin networks in pseudopods of eukaryotic cells during chemotaxis.

  20. The polarity protein Inturned links NPHP4 to Daam1 to control the subapical actin network in multiciliated cells.

    PubMed

    Yasunaga, Takayuki; Hoff, Sylvia; Schell, Christoph; Helmstädter, Martin; Kretz, Oliver; Kuechlin, Sebastian; Yakulov, Toma A; Engel, Christina; Müller, Barbara; Bensch, Robert; Ronneberger, Olaf; Huber, Tobias B; Lienkamp, Soeren S; Walz, Gerd

    2015-12-07

    Motile cilia polarization requires intracellular anchorage to the cytoskeleton; however, the molecular machinery that supports this process remains elusive. We report that Inturned plays a central role in coordinating the interaction between cilia-associated proteins and actin-nucleation factors. We observed that knockdown of nphp4 in multiciliated cells of the Xenopus laevis epidermis compromised ciliogenesis and directional fluid flow. Depletion of nphp4 disrupted the subapical actin layer. Comparison to the structural defects caused by inturned depletion revealed striking similarities. Furthermore, coimmunoprecipitation assays demonstrated that the two proteins interact with each other and that Inturned mediates the formation of ternary protein complexes between NPHP4 and DAAM1. Knockdown of daam1, but not formin-2, resulted in similar disruption of the subapical actin web, whereas nphp4 depletion prevented the association of Inturned with the basal bodies. Thus, Inturned appears to function as an adaptor protein that couples cilia-associated molecules to actin-modifying proteins to rearrange the local actin cytoskeleton.

  1. The polarity protein Inturned links NPHP4 to Daam1 to control the subapical actin network in multiciliated cells

    PubMed Central

    Yasunaga, Takayuki; Hoff, Sylvia; Schell, Christoph; Helmstädter, Martin; Kretz, Oliver; Kuechlin, Sebastian; Yakulov, Toma A.; Engel, Christina; Müller, Barbara; Bensch, Robert; Ronneberger, Olaf; Huber, Tobias B.; Lienkamp, Soeren S.

    2015-01-01

    Motile cilia polarization requires intracellular anchorage to the cytoskeleton; however, the molecular machinery that supports this process remains elusive. We report that Inturned plays a central role in coordinating the interaction between cilia-associated proteins and actin-nucleation factors. We observed that knockdown of nphp4 in multiciliated cells of the Xenopus laevis epidermis compromised ciliogenesis and directional fluid flow. Depletion of nphp4 disrupted the subapical actin layer. Comparison to the structural defects caused by inturned depletion revealed striking similarities. Furthermore, coimmunoprecipitation assays demonstrated that the two proteins interact with each other and that Inturned mediates the formation of ternary protein complexes between NPHP4 and DAAM1. Knockdown of daam1, but not formin-2, resulted in similar disruption of the subapical actin web, whereas nphp4 depletion prevented the association of Inturned with the basal bodies. Thus, Inturned appears to function as an adaptor protein that couples cilia-associated molecules to actin-modifying proteins to rearrange the local actin cytoskeleton. PMID:26644512

  2. Nuclei migrate through constricted spaces using microtubule motors and actin networks in C. elegans hypodermal cells.

    PubMed

    Bone, Courtney R; Chang, Yu-Tai; Cain, Natalie E; Murphy, Shaun P; Starr, Daniel A

    2016-11-15

    Cellular migrations through constricted spaces are a crucial aspect of many developmental and disease processes including hematopoiesis, inflammation and metastasis. A limiting factor in these events is nuclear deformation. Here, we establish an in vivo model in which nuclei can be visualized while moving through constrictions and use it to elucidate mechanisms for nuclear migration. C. elegans hypodermal P-cell larval nuclei traverse a narrow space that is about 5% their width. This constriction is blocked by fibrous organelles, structures that pass through P cells to connect the muscles to cuticle. Fibrous organelles are removed just prior to nuclear migration, when nuclei and lamins undergo extreme morphological changes to squeeze through the space. Both actin and microtubule networks are organized to mediate nuclear migration. The LINC complex, consisting of the SUN protein UNC-84 and the KASH protein UNC-83, recruits dynein and kinesin-1 to the nuclear surface. Both motors function in P-cell nuclear migration, but dynein, functioning through UNC-83, plays a more central role as nuclei migrate towards minus ends of polarized microtubule networks. Thus, the nucleoskeleton and cytoskeleton are coordinated to move nuclei through constricted spaces.

  3. Directed actin assembly and motility.

    PubMed

    Boujemaa-Paterski, Rajaa; Galland, Rémi; Suarez, Cristian; Guérin, Christophe; Théry, Manuel; Blanchoin, Laurent

    2014-01-01

    The actin cytoskeleton is a key component of the cellular architecture. However, understanding actin organization and dynamics in vivo is a complex challenge. Reconstitution of actin structures in vitro, in simplified media, allows one to pinpoint the cellular biochemical components and their molecular interactions underlying the architecture and dynamics of the actin network. Previously, little was known about the extent to which geometrical constraints influence the dynamic ultrastructure of these networks. Therefore, in order to study the balance between biochemical and geometrical control of complex actin organization, we used the innovative methodologies of UV and laser patterning to design a wide repertoire of nucleation geometries from which we assembled branched actin networks. Using these methods, we were able to reconstitute complex actin network organizations, closely related to cellular architecture, to precisely direct and control their 3D connections. This methodology mimics the actin networks encountered in cells and can serve in the fabrication of innovative bioinspired systems.

  4. Networks Models of Actin Dynamics during Spermatozoa Postejaculatory Life: A Comparison among Human-Made and Text Mining-Based Models

    PubMed Central

    Ordinelli, Alessandra; Ramal Sanchez, Marina; Mattioli, Mauro; Barboni, Barbara

    2016-01-01

    Here we realized a networks-based model representing the process of actin remodelling that occurs during the acquisition of fertilizing ability of human spermatozoa (HumanMade_ActinSpermNetwork, HM_ASN). Then, we compared it with the networks provided by two different text mining tools: Agilent Literature Search (ALS) and PESCADOR. As a reference, we used the data from the online repository Kyoto Encyclopaedia of Genes and Genomes (KEGG), referred to the actin dynamics in a more general biological context. We found that HM_ALS and the networks from KEGG data shared the same scale-free topology following the Barabasi-Albert model, thus suggesting that the information is spread within the network quickly and efficiently. On the contrary, the networks obtained by ALS and PESCADOR have a scale-free hierarchical architecture, which implies a different pattern of information transmission. Also, the hubs identified within the networks are different: HM_ALS and KEGG networks contain as hubs several molecules known to be involved in actin signalling; ALS was unable to find other hubs than “actin,” whereas PESCADOR gave some nonspecific result. This seems to suggest that the human-made information retrieval in the case of a specific event, such as actin dynamics in human spermatozoa, could be a reliable strategy. PMID:27642606

  5. Reversible mechano-memory in sheared cross-linked actin networks

    NASA Astrophysics Data System (ADS)

    Majumdar, Sayantan; Gardel, Margaret L.

    2015-03-01

    Is it possible to control the shear modulus of a material mechanically? We reconstitute a network of actin filaments cross-linked with Filamin A and show that the system has remarkable property to respond under shear in a deformation history dependent manner. When a large shear stress pulse is applied to the system, the system remembers the direction of deformation long after the stress pulse is removed. For the next loading cycle, shear response of the system becomes anisotropic; if the applied pulse direction is same as the previous one, the system behaves like a viscoelastic solid but a transient liquefaction is observed if the pulse direction is reversed. Imaging and normal force measurements under shear suggest that this anisotropic response comes from stretching and bending dominated deformation directions induced by the large shear deformation giving rise to a direction dependent mechano-memory. The long time scale over which the memory effect persists has relevance in various deformations in cellular and multicellular systems. S.M. acknowledges support from a Kadanoff-Rice Post Doctoral fellowship from MRSEC, University of Chicago.

  6. Why is Actin Patchy?

    NASA Astrophysics Data System (ADS)

    Carlsson, Anders

    2009-03-01

    The intracellular protein actin, by reversibly polymerizing into filaments, generates forces for motion and shape changes of many types of biological cells. Fluorescence imaging studies show that actin often occurs in the form of localized patches of size roughly one micrometer at the cell membrane. Patch formation is most prevalent when the free-actin concentration is low. I investigate possible mechanisms for the formation of actin patches by numerically simulating the ``dendritic nucleation'' model of actin network growth. The simulations include filament growth, capping, branching, severing, and debranching. The attachment of membrane-bound activators to actin filaments, and subsequent membrane diffusion of unattached activators, are also included. It is found that as the actin concentration increases from zero, the actin occurs in patches at lower actin concentrations, and the size of the patches increases with increasing actin concentration. At a critical value of the actin concentration, the system undergoes a transition to complete coverage. The results are interpreted within the framework of reaction-diffusion equations in two dimensions.

  7. Boolean gates on actin filaments

    NASA Astrophysics Data System (ADS)

    Siccardi, Stefano; Tuszynski, Jack A.; Adamatzky, Andrew

    2016-01-01

    Actin is a globular protein which forms long polar filaments in the eukaryotic cytoskeleton. Actin networks play a key role in cell mechanics and cell motility. They have also been implicated in information transmission and processing, memory and learning in neuronal cells. The actin filaments have been shown to support propagation of voltage pulses. Here we apply a coupled nonlinear transmission line model of actin filaments to study interactions between voltage pulses. To represent digital information we assign a logical TRUTH value to the presence of a voltage pulse in a given location of the actin filament, and FALSE to the pulse's absence, so that information flows along the filament with pulse transmission. When two pulses, representing Boolean values of input variables, interact, then they can facilitate or inhibit further propagation of each other. We explore this phenomenon to construct Boolean logical gates and a one-bit half-adder with interacting voltage pulses. We discuss implications of these findings on cellular process and technological applications.

  8. Flow Control Using Neural Networks

    DTIC Science & Technology

    2007-11-02

    FEB 93 - 31 DEC 96 4. TITLE AND SUBTITLE 5 . FUNDING NUMBERS FLOW CONTROL USING NEURAL NETWORKS F49620-93-1-0135 61102F 6. AUTHOR(S) 2307/BS THORWALD...OFFICE OF SCIENTIFIC RESEARCH (AFOSRO AGENCY REPORT NUMBER 110 DUNCAN AVENUE, ROOM B115 BOLLING AFB DC 20332- 8050 11. SUPPLEMENTARY NOTES 12a...signals. Figure 5 shows a time series for an actuator that performs a ramp motion in the streamwise direction over about 1 % of the TS period and remains

  9. Stochastic cycle selection in active flow networks

    PubMed Central

    Woodhouse, Francis G.; Forrow, Aden; Fawcett, Joanna B.; Dunkel, Jörn

    2016-01-01

    Active biological flow networks pervade nature and span a wide range of scales, from arterial blood vessels and bronchial mucus transport in humans to bacterial flow through porous media or plasmodial shuttle streaming in slime molds. Despite their ubiquity, little is known about the self-organization principles that govern flow statistics in such nonequilibrium networks. Here we connect concepts from lattice field theory, graph theory, and transition rate theory to understand how topology controls dynamics in a generic model for actively driven flow on a network. Our combined theoretical and numerical analysis identifies symmetry-based rules that make it possible to classify and predict the selection statistics of complex flow cycles from the network topology. The conceptual framework developed here is applicable to a broad class of biological and nonbiological far-from-equilibrium networks, including actively controlled information flows, and establishes a correspondence between active flow networks and generalized ice-type models. PMID:27382186

  10. Stochastic cycle selection in active flow networks

    NASA Astrophysics Data System (ADS)

    Woodhouse, Francis; Forrow, Aden; Fawcett, Joanna; Dunkel, Jorn

    2016-11-01

    Active biological flow networks pervade nature and span a wide range of scales, from arterial blood vessels and bronchial mucus transport in humans to bacterial flow through porous media or plasmodial shuttle streaming in slime molds. Despite their ubiquity, little is known about the self-organization principles that govern flow statistics in such non-equilibrium networks. By connecting concepts from lattice field theory, graph theory and transition rate theory, we show how topology controls dynamics in a generic model for actively driven flow on a network. Through theoretical and numerical analysis we identify symmetry-based rules to classify and predict the selection statistics of complex flow cycles from the network topology. Our conceptual framework is applicable to a broad class of biological and non-biological far-from-equilibrium networks, including actively controlled information flows, and establishes a new correspondence between active flow networks and generalized ice-type models.

  11. Capping protein regulatory cycle driven by CARMIL and V-1 may promote actin network assembly at protruding edges.

    PubMed

    Fujiwara, Ikuko; Remmert, Kirsten; Piszczek, Grzegorz; Hammer, John A

    2014-05-13

    Although capping protein (CP) terminates actin filament elongation, it promotes Arp2/3-dependent actin network assembly and accelerates actin-based motility both in vitro and in vivo. In vitro, capping protein Arp2/3 myosin I linker (CARMIL) antagonizes CP by reducing its affinity for the barbed end and by uncapping CP-capped filaments, whereas the protein V-1/myotrophin sequesters CP in an inactive complex. Previous work showed that CARMIL can readily retrieve CP from the CP:V-1 complex, thereby converting inactive CP into a version with moderate affinity for the barbed end. Here we further clarify the mechanism of this exchange reaction, and we demonstrate that the CP:CARMIL complex created by complex exchange slows the rate of barbed-end elongation by rapidly associating with, and dissociating from, the barbed end. Importantly, the cellular concentrations of V-1 and CP determined here argue that most CP is sequestered by V-1 at steady state in vivo. Finally, we show that CARMIL is recruited to the plasma membrane and only at cell edges undergoing active protrusion. Assuming that CARMIL is active only at this location, our data argue that a large pool of freely diffusing, inactive CP (CP:V-1) feeds, via CARMIL-driven complex exchange, the formation of weak-capping complexes (CP:CARMIL) at the plasma membrane of protruding edges. In vivo, therefore, CARMIL should promote Arp2/3-dependent actin network assembly at the leading edge by promoting barbed-end capping there.

  12. Capping protein regulatory cycle driven by CARMIL and V-1 may promote actin network assembly at protruding edges

    PubMed Central

    Fujiwara, Ikuko; Remmert, Kirsten; Piszczek, Grzegorz; Hammer, John A.

    2014-01-01

    Although capping protein (CP) terminates actin filament elongation, it promotes Arp2/3-dependent actin network assembly and accelerates actin-based motility both in vitro and in vivo. In vitro, capping protein Arp2/3 myosin I linker (CARMIL) antagonizes CP by reducing its affinity for the barbed end and by uncapping CP-capped filaments, whereas the protein V-1/myotrophin sequesters CP in an inactive complex. Previous work showed that CARMIL can readily retrieve CP from the CP:V-1 complex, thereby converting inactive CP into a version with moderate affinity for the barbed end. Here we further clarify the mechanism of this exchange reaction, and we demonstrate that the CP:CARMIL complex created by complex exchange slows the rate of barbed-end elongation by rapidly associating with, and dissociating from, the barbed end. Importantly, the cellular concentrations of V-1 and CP determined here argue that most CP is sequestered by V-1 at steady state in vivo. Finally, we show that CARMIL is recruited to the plasma membrane and only at cell edges undergoing active protrusion. Assuming that CARMIL is active only at this location, our data argue that a large pool of freely diffusing, inactive CP (CP:V-1) feeds, via CARMIL-driven complex exchange, the formation of weak-capping complexes (CP:CARMIL) at the plasma membrane of protruding edges. In vivo, therefore, CARMIL should promote Arp2/3-dependent actin network assembly at the leading edge by promoting barbed-end capping there. PMID:24778263

  13. Computer program for compressible flow network analysis

    NASA Technical Reports Server (NTRS)

    Wilton, M. E.; Murtaugh, J. P.

    1973-01-01

    Program solves problem of an arbitrarily connected one dimensional compressible flow network with pumping in the channels and momentum balancing at flow junctions. Program includes pressure drop calculations for impingement flow and flow through pin fin arrangements, as currently found in many air cooled turbine bucket and vane cooling configurations.

  14. Cascades in interdependent flow networks

    NASA Astrophysics Data System (ADS)

    Scala, Antonio; De Sanctis Lucentini, Pier Giorgio; Caldarelli, Guido; D'Agostino, Gregorio

    2016-06-01

    In this manuscript, we investigate the abrupt breakdown behavior of coupled distribution grids under load growth. This scenario mimics the ever-increasing customer demand and the foreseen introduction of energy hubs interconnecting the different energy vectors. We extend an analytical model of cascading behavior due to line overloads to the case of interdependent networks and find evidence of first order transitions due to the long-range nature of the flows. Our results indicate that the foreseen increase in the couplings between the grids has two competing effects: on the one hand, it increases the safety region where grids can operate without withstanding systemic failures; on the other hand, it increases the possibility of a joint systems' failure.

  15. Modeling information flow in biological networks.

    PubMed

    Kim, Yoo-Ah; Przytycki, Jozef H; Wuchty, Stefan; Przytycka, Teresa M

    2011-06-01

    Large-scale molecular interaction networks are being increasingly used to provide a system level view of cellular processes. Modeling communications between nodes in such huge networks as information flows is useful for dissecting dynamical dependences between individual network components. In the information flow model, individual nodes are assumed to communicate with each other by propagating the signals through intermediate nodes in the network. In this paper, we first provide an overview of the state of the art of research in the network analysis based on information flow models. In the second part, we describe our computational method underlying our recent work on discovering dysregulated pathways in glioma. Motivated by applications to inferring information flow from genotype to phenotype in a very large human interaction network, we generalized previous approaches to compute information flows for a large number of instances and also provided a formal proof for the method.

  16. Amplification of actin polymerization forces

    PubMed Central

    Dmitrieff, Serge; Nédélec, François

    2016-01-01

    The actin cytoskeleton drives many essential processes in vivo, using molecular motors and actin assembly as force generators. We discuss here the propagation of forces caused by actin polymerization, highlighting simple configurations where the force developed by the network can exceed the sum of the polymerization forces from all filaments. PMID:27002174

  17. Amplification of actin polymerization forces.

    PubMed

    Dmitrieff, Serge; Nédélec, François

    2016-03-28

    The actin cytoskeleton drives many essential processes in vivo, using molecular motors and actin assembly as force generators. We discuss here the propagation of forces caused by actin polymerization, highlighting simple configurations where the force developed by the network can exceed the sum of the polymerization forces from all filaments.

  18. Nucleocapsid of Tomato spotted wilt tospovirus forms mobile particles that traffic on an actin/endoplasmic reticulum network driven by myosin XI-K.

    PubMed

    Feng, Zhike; Chen, Xiaojiao; Bao, Yiqun; Dong, Jiahong; Zhang, Zhongkai; Tao, Xiaorong

    2013-12-01

    A number of viral proteins from plant viruses, other than movement proteins, have been shown to traffic intracellularly along actin filaments and to be involved in viral infection. However, there has been no report that a viral capsid protein may traffic within a cell by utilizing the actin/endoplasmic reticulum (ER) network. We used Tomato spotted wilt tospovirus (TSWV) as a model virus to study the cell biological properties of a nucleocapsid (N) protein. We found that TSWV N protein was capable of forming highly motile cytoplasmic inclusions that moved along the ER and actin network. The disruption of actin filaments by latrunculin B, an actin-depolymerizing agent, almost stopped the intracellular movement of N inclusions, whereas treatment with a microtubule-depolymerizing reagent, oryzalin, did not. The over-expression of a myosin XI-K tail, functioning in a dominant-negative manner, completely halted the movement of N inclusions. Latrunculin B treatment strongly inhibited the formation of TSWV local lesions in Nicotiana tabacum cv Samsun NN and delayed systemic infection in N. benthamiana. Collectively, our findings provide the first evidence that the capsid protein of a plant virus has the novel property of intracellular trafficking. The findings add capsid protein as a new class of viral protein that traffics on the actin/ER system.

  19. Network Adaptive Deadband: NCS Data Flow Control for Shared Networks

    PubMed Central

    Díaz-Cacho, Miguel; Delgado, Emma; Prieto, José A. G.; López, Joaquín

    2012-01-01

    This paper proposes a new middleware solution called Network Adaptive Deadband (NAD) for long time operation of Networked Control Systems (NCS) through the Internet or any shared network based on IP technology. The proposed middleware takes into account the network status and the NCS status, to improve the global system performance and to share more effectively the network by several NCS and sensor/actuator data flows. Relationship between network status and NCS status is solved with a TCP-friendly transport flow control protocol and the deadband concept, relating deadband value and transmission throughput. This creates a deadband-based flow control solution. Simulation and experiments in shared networks show that the implemented network adaptive deadband has better performance than an optimal constant deadband solution in the same circumstances. PMID:23208556

  20. Combinatorial genetic analysis of a network of actin disassembly‐promoting factors

    PubMed Central

    Ydenberg, Casey A.; Johnston, Adam; Weinstein, Jaclyn; Bellavance, Danielle; Jansen, Silvia

    2015-01-01

    The patterning of actin cytoskeleton structures in vivo is a product of spatially and temporally regulated polymer assembly balanced by polymer disassembly. While in recent years our understanding of actin assembly mechanisms has grown immensely, our knowledge of actin disassembly machinery and mechanisms has remained comparatively sparse. Saccharomyces cerevisiae is an ideal system to tackle this problem, both because of its amenabilities to genetic manipulation and live‐cell imaging and because only a single gene encodes each of the core disassembly factors: cofilin (COF1), Srv2/CAP (SRV2), Aip1 (AIP1), GMF (GMF1/AIM7), coronin (CRN1), and twinfilin (TWF1). Among these six factors, only the functions of cofilin are essential and have been well defined. Here, we investigated the functions of the nonessential actin disassembly factors by performing genetic and live‐cell imaging analyses on a combinatorial set of isogenic single, double, triple, and quadruple mutants in S. cerevisiae. Our results show that each disassembly factor makes an important contribution to cell viability, actin organization, and endocytosis. Further, our data reveal new relationships among these factors, providing insights into how they work together to orchestrate actin turnover. Finally, we observe specific combinations of mutations that are lethal, e.g., srv2Δ aip1Δ and srv2Δ crn1Δ twf1Δ, demonstrating that while cofilin is essential, it is not sufficient in vivo, and that combinations of the other disassembly factors perform vital functions. © 2015 The Authors. Cytoskeleton Published by Wiley Periodicals, Inc. PMID:26147656

  1. Memo-RhoA-mDia1 signaling controls microtubules, the actin network, and adhesion site formation in migrating cells.

    PubMed

    Zaoui, Kossay; Honoré, Stéphane; Isnardon, Daniel; Braguer, Diane; Badache, Ali

    2008-11-03

    Actin assembly at the cell front drives membrane protrusion and initiates the cell migration cycle. Microtubules (MTs) extend within forward protrusions to sustain cell polarity and promote adhesion site turnover. Memo is an effector of the ErbB2 receptor tyrosine kinase involved in breast carcinoma cell migration. However, its mechanism of action remained unknown. We report in this study that Memo controls ErbB2-regulated MT dynamics by altering the transition frequency between MT growth and shortening phases. Moreover, although Memo-depleted cells can assemble the Rac1-dependent actin meshwork and form lamellipodia, they show defective localization of lamellipodial markers such as alpha-actinin-1 and a reduced number of short-lived adhesion sites underlying the advancing edge of migrating cells. Finally, we demonstrate that Memo is required for the localization of the RhoA guanosine triphosphatase and its effector mDia1 to the plasma membrane and that Memo-RhoA-mDia1 signaling coordinates the organization of the lamellipodial actin network, adhesion site formation, and MT outgrowth within the cell leading edge to sustain cell motility.

  2. Cofilin-mediated actin dynamics promotes actin bundle formation during Drosophila bristle development

    PubMed Central

    Wu, Jing; Wang, Heng; Guo, Xuan; Chen, Jiong

    2016-01-01

    The actin bundle is an array of linear actin filaments cross-linked by actin-bundling proteins, but its assembly and dynamics are not as well understood as those of the branched actin network. Here we used the Drosophila bristle as a model system to study actin bundle formation. We found that cofilin, a major actin disassembly factor of the branched actin network, promotes the formation and positioning of actin bundles in the developing bristles. Loss of function of cofilin or AIP1, a cofactor of cofilin, each resulted in increased F-actin levels and severe defects in actin bundle organization, with the defects from cofilin deficiency being more severe. Further analyses revealed that cofilin likely regulates actin bundle formation and positioning by the following means. First, cofilin promotes a large G-actin pool both locally and globally, likely ensuring rapid actin polymerization for bundle initiation and growth. Second, cofilin limits the size of a nonbundled actin-myosin network to regulate the positioning of actin bundles. Third, cofilin prevents incorrect assembly of branched and myosin-associated actin filament into bundles. Together these results demonstrate that the interaction between the dynamic dendritic actin network and the assembling actin bundles is critical for actin bundle formation and needs to be closely regulated. PMID:27385345

  3. Predicting Information Flows in Network Traffic.

    ERIC Educational Resources Information Center

    Hinich, Melvin J.; Molyneux, Robert E.

    2003-01-01

    Discusses information flow in networks and predicting network traffic and describes a study that uses time series analysis on a day's worth of Internet log data. Examines nonlinearity and traffic invariants, and suggests that prediction of network traffic may not be possible with current techniques. (Author/LRW)

  4. MicroFilament Analyzer identifies actin network organizations in epidermal cells of Arabidopsis thaliana roots

    PubMed Central

    Jacques, Eveline; Lewandowski, Michal; Buytaert, Jan; Fierens, Yves; Verbelen, Jean-Pierre; Vissenberg, Kris

    2013-01-01

    The plant cytoskeleton plays a crucial role in the cells’ growth and development during different developmental stages and it undergoes many rearrangements. In order to describe the arrangements of the F-actin cytoskeleton in root epidermal cells of Arabidopsis thaliana, the recently developed software MicroFilament Analyzer (MFA) was exploited. This software enables high-throughput identification and quantification of the orientation of filamentous structures on digital images in a highly standardized and fast way. Using confocal microscopy and transgenic GFP-FABD2-GFP plants the actin cytoskeleton was visualized in the root epidermis. MFA analysis revealed that during the early stages of cell development F-actin is organized in a mainly random pattern. As the cells grow, they preferentially adopt a longitudinal organization, a pattern that is also preserved in the largest cells. In the evolution from young to old cells, an approximately even distribution of transverse, oblique or combined orientations is always present besides the switch from random to a longitudinal oriented actin cytoskeleton. PMID:23656865

  5. Modulation of cargo release from dense core granules by size and actin network.

    PubMed

    Felmy, Felix

    2007-08-01

    During regulated fusion of secretory granules with the plasma membrane, a fusion pore first opens and then dilates. The dilating pore allows cargo proteins from the dense core to be released into the extracellular space. Using real-time evanescent field fluorescence microscopy of live PC12 cells, it was determined how rapidly proteins of different sizes escape from single granules after fusion. Tissue plasminogen activator (tPA)-Venus is released 40-fold slower than the three times smaller neuropeptide Y [NPY-monomeric GFP (mGFP)]. An NPY bearing two mGFPs in tandem [NPY-(mGFP)(2)] as an intermediate-sized fusion probe is released most slowly. Although, the time-course of release varies substantially for a given probe. Coexpression of beta-actin, actin-related protein 3 or mAbp1 slowed the release of the two larger cargo molecules but did not affect release of NPY-mGFP or of the granule-membrane-bound probe Vamp-pHluorin. Additionally, high concentrations of cytochalasin D slowed release of the tPA-Venus. Together these results suggest that fusion pore dilation is not the only determinate of release time-course and that actin rearrangements similar to those mediating actin-mediated motility influences the time-course of release without directly interfering with the granule membrane to cell membrane connection.

  6. Kv3.3 Channels Bind Hax-1 and Arp2/3 to Assemble a Stable Local Actin Network that Regulates Channel Gating.

    PubMed

    Zhang, Yalan; Zhang, Xiao-Feng; Fleming, Matthew R; Amiri, Anahita; El-Hassar, Lynda; Surguchev, Alexei A; Hyland, Callen; Jenkins, David P; Desai, Rooma; Brown, Maile R; Gazula, Valeswara-Rao; Waters, Michael F; Large, Charles H; Horvath, Tamas L; Navaratnam, Dhasakumar; Vaccarino, Flora M; Forscher, Paul; Kaczmarek, Leonard K

    2016-04-07

    Mutations in the Kv3.3 potassium channel (KCNC3) cause cerebellar neurodegeneration and impair auditory processing. The cytoplasmic C terminus of Kv3.3 contains a proline-rich domain conserved in proteins that activate actin nucleation through Arp2/3. We found that Kv3.3 recruits Arp2/3 to the plasma membrane, resulting in formation of a relatively stable cortical actin filament network resistant to cytochalasin D that inhibits fast barbed end actin assembly. These Kv3.3-associated actin structures are required to prevent very rapid N-type channel inactivation during short depolarizations of the plasma membrane. The effects of Kv3.3 on the actin cytoskeleton are mediated by the binding of the cytoplasmic C terminus of Kv3.3 to Hax-1, an anti-apoptotic protein that regulates actin nucleation through Arp2/3. A human Kv3.3 mutation within a conserved proline-rich domain produces channels that bind Hax-1 but are impaired in recruiting Arp2/3 to the plasma membrane, resulting in growth cones with deficient actin veils in stem cell-derived neurons.

  7. Transport along freely suspended actin cortex models in a controlled microfluidic environment

    NASA Astrophysics Data System (ADS)

    Schulz, Simon; Haraszti, Tamas; Roos, Wouter; Schmitz, Christian; Ulmer, Jens; Graeter, Stefan; Spatz, Joachim P.

    2006-03-01

    Arrays of microfabricated pillars are constructed to serve as a template for mimicking the actin cortex of cells. The three-dimensional template surface prevents interaction of the actin filaments hanging between pillars. A special flow-cell design enables applying flow around a network of actin freely suspended between polydimethylsiloxane pillars. This opens new possibilities to study the mechanics of two-dimensional actin networks as a function of actin-crosslinkers, to observe the active diffusion of molecular motors operating on pending networks and to investigate the alternations in the transport of microscopic particles, coated by different proteins and molecular motors, along these actin cortex models under the drag of flow. The stiffness of the F-actin can be tuned by bundling through various cross-linkers. Additionally, actin filaments act as tracks for guiding passive and active transport of cargo such as organelles or microspheres by molecular motors like myosin-V. These transport problems are biomimetic studies of tracks and external driving force on a statistical process of two-dimensional networks isolated from the complicated and undetermined cellular environment.

  8. Actinic keratosis

    MedlinePlus

    Solar keratosis; Sun-induced skin changes - keratosis; Keratosis - actinic (solar); Skin lesion - actinic keratosis ... likely to develop it if you: Have fair skin, blue or green eyes, or blond or red ...

  9. Quantitative Fluorescent Speckle Microscopy (QFSM) to Measure Actin Dynamics

    PubMed Central

    Mendoza, Michelle C.; Besson, Sebastien; Danuser, Gaudenz

    2012-01-01

    Quantitative Fluorescent Speckle Microscopy (QFSM) is a live cell imaging method to analyze the dynamics of macromolecular assemblies with high spatial and temporal resolution. Its greatest successes were in the analysis of actin filament and adhesion dynamics in the context of cell migration and microtubule dynamics in interphase and the meotic/mitotic spindle. Here, we focus on the former application to illustrate the procedures of FSM imaging and the computational image processing that extracts quantitative information from these experiments. QFSM is advantageous over other methods because it measures the movement and turnover kinetics of the actin filament (F-actin) network in living cells across the entire field of view. Experiments begin with microinjection of fluorophore-labeled actin into cells, which generate a low ratio of fluorescently-labeled:endogenous unlabeled actin monomers. Spinning disk confocal or wide-field imaging then visualizes fluorophore clusters (2–8 actin monomers) within the assembled F-actin network as speckles. QFSM software identifies and computationally tracks and utilizes the location, appearance, and disappearance of speckles to derive network flows and maps of the rate of filament assembly and disassembly. PMID:23042526

  10. The Interaction of Arp2/3 Complex with Actin: Nucleation, High Affinity Pointed End Capping, and Formation of Branching Networks of Filaments

    NASA Astrophysics Data System (ADS)

    Dyche Mullins, R.; Heuser, John A.; Pollard, Thomas D.

    1998-05-01

    The Arp2/3 complex is a stable assembly of seven protein subunits including two actin-related proteins (Arp2 and Arp3) and five novel proteins. Previous work showed that this complex binds to the sides of actin filaments and is concentrated at the leading edges of motile cells. Here, we show that Arp2/3 complex purified from Acanthamoeba caps the pointed ends of actin filaments with high affinity. Arp2/3 complex inhibits both monomer addition and dissociation at the pointed ends of actin filaments with apparent nanomolar affinity and increases the critical concentration for polymerization at the pointed end from 0.6 to 1.0 μ M. The high affinity of Arp2/3 complex for pointed ends and its abundance in amoebae suggest that in vivo all actin filament pointed ends are capped by Arp2/3 complex. Arp2/3 complex also nucleates formation of actin filaments that elongate only from their barbed ends. From kinetic analysis, the nucleation mechanism appears to involve stabilization of polymerization intermediates (probably actin dimers). In electron micrographs of quick-frozen, deep-etched samples, we see Arp2/3 bound to sides and pointed ends of actin filaments and examples of Arp2/3 complex attaching pointed ends of filaments to sides of other filaments. In these cases, the angle of attachment is a remarkably constant 70 ± 7 degrees. From these in vitro biochemical properties, we propose a model for how Arp2/3 complex controls the assembly of a branching network of actin filaments at the leading edge of motile cells.

  11. Actin Mechanics and Fragmentation*

    PubMed Central

    De La Cruz, Enrique M.; Gardel, Margaret L.

    2015-01-01

    Cell physiological processes require the regulation and coordination of both mechanical and dynamical properties of the actin cytoskeleton. Here we review recent advances in understanding the mechanical properties and stability of actin filaments and how these properties are manifested at larger (network) length scales. We discuss how forces can influence local biochemical interactions, resulting in the formation of mechanically sensitive dynamic steady states. Understanding the regulation of such force-activated chemistries and dynamic steady states reflects an important challenge for future work that will provide valuable insights as to how the actin cytoskeleton engenders mechanoresponsiveness of living cells. PMID:25957404

  12. Information flow analysis of interactome networks.

    PubMed

    Missiuro, Patrycja Vasilyev; Liu, Kesheng; Zou, Lihua; Ross, Brian C; Zhao, Guoyan; Liu, Jun S; Ge, Hui

    2009-04-01

    Recent studies of cellular networks have revealed modular organizations of genes and proteins. For example, in interactome networks, a module refers to a group of interacting proteins that form molecular complexes and/or biochemical pathways and together mediate a biological process. However, it is still poorly understood how biological information is transmitted between different modules. We have developed information flow analysis, a new computational approach that identifies proteins central to the transmission of biological information throughout the network. In the information flow analysis, we represent an interactome network as an electrical circuit, where interactions are modeled as resistors and proteins as interconnecting junctions. Construing the propagation of biological signals as flow of electrical current, our method calculates an information flow score for every protein. Unlike previous metrics of network centrality such as degree or betweenness that only consider topological features, our approach incorporates confidence scores of protein-protein interactions and automatically considers all possible paths in a network when evaluating the importance of each protein. We apply our method to the interactome networks of Saccharomyces cerevisiae and Caenorhabditis elegans. We find that the likelihood of observing lethality and pleiotropy when a protein is eliminated is positively correlated with the protein's information flow score. Even among proteins of low degree or low betweenness, high information scores serve as a strong predictor of loss-of-function lethality or pleiotropy. The correlation between information flow scores and phenotypes supports our hypothesis that the proteins of high information flow reside in central positions in interactome networks. We also show that the ranks of information flow scores are more consistent than that of betweenness when a large amount of noisy data is added to an interactome. Finally, we combine gene expression

  13. Effects of novel ethacrynic acid derivatives on human trabecular meshwork cell shape, actin cytoskeletal organization, and transcellular fluid flow.

    PubMed

    Rao, Ponugoti Vasantha; Shimazaki, Atsushi; Ichikawa, Masaki; Franse-Carman, Linda; Alvarado, Jorge A; Epstein, David L

    2005-12-01

    To determine efficacy and therapeutic index in the context of ocular hypotensive activity of the new ethacrynic acid (ECA) derivatives of the series (SA8,248 and SA8,389), 9,000 series (SA9,000, SA9,622 and SA9,995) and ticrynafen, we undertook a comparative evaluation of the dose-dependent effects of these compounds on human trabecular meshwork (HTM) cell shape, actin cytoskeletal organization, focal adhesions and transcellular fluid flow. Responses were either scored using an arbitrary scale of 1-5 or quantified. Compounds of the 9000 series (SA9,995>SA9,000>SA9,622) were found to be 14- to 20-fold more potent than ECA, ticrynafen or analogs from the 8,000 series (SA8,389>SA8,248) in terms of ability to induce cell shape alterations in HTM cells. Similarly, compounds of the 9,000 series (SA9,995>SA9,622>SA9,000) were found to be much stronger (2 to 20 fold) than ECA, ticrynafen or analogs of the 8000 series in terms of affecting decreases in actin stress fiber content in HTM cells. Analogs of the 9000 series (SA9,622>SA9,995>SA9,000) were also observed to be 8 to 10 fold more potent than ECA (SA8,389>ECA>SA8,248>ticrynafen) at eliciting decreases in cellular focal adhesions. Interestingly, analogs of the 9000 series (SA9,000>SA9,622>SA9,995) and SA8,248 demonstrated a huge increase (by many folds) in transcellular fluid flow of HTM cell monolayers as compared to ECA and ticrynafen. Collectively, these analyses revealed that the structural modification of ECA improves its ocular hypotensive efficacy, indicating that the SA9,000 series compounds might be promising novel ocular hypotensive drugs.

  14. Computational inference of neural information flow networks.

    PubMed

    Smith, V Anne; Yu, Jing; Smulders, Tom V; Hartemink, Alexander J; Jarvis, Erich D

    2006-11-24

    Determining how information flows along anatomical brain pathways is a fundamental requirement for understanding how animals perceive their environments, learn, and behave. Attempts to reveal such neural information flow have been made using linear computational methods, but neural interactions are known to be nonlinear. Here, we demonstrate that a dynamic Bayesian network (DBN) inference algorithm we originally developed to infer nonlinear transcriptional regulatory networks from gene expression data collected with microarrays is also successful at inferring nonlinear neural information flow networks from electrophysiology data collected with microelectrode arrays. The inferred networks we recover from the songbird auditory pathway are correctly restricted to a subset of known anatomical paths, are consistent with timing of the system, and reveal both the importance of reciprocal feedback in auditory processing and greater information flow to higher-order auditory areas when birds hear natural as opposed to synthetic sounds. A linear method applied to the same data incorrectly produces networks with information flow to non-neural tissue and over paths known not to exist. To our knowledge, this study represents the first biologically validated demonstration of an algorithm to successfully infer neural information flow networks.

  15. Cycle and flow trusses in directed networks

    NASA Astrophysics Data System (ADS)

    Takaguchi, Taro; Yoshida, Yuichi

    2016-11-01

    When we represent real-world systems as networks, the directions of links often convey valuable information. Finding module structures that respect link directions is one of the most important tasks for analysing directed networks. Although many notions of a directed module have been proposed, no consensus has been reached. This lack of consensus results partly because there might exist distinct types of modules in a single directed network, whereas most previous studies focused on an independent criterion for modules. To address this issue, we propose a generic notion of the so-called truss structures in directed networks. Our definition of truss is able to extract two distinct types of trusses, named the cycle truss and the flow truss, from a unified framework. By applying the method for finding trusses to empirical networks obtained from a wide range of research fields, we find that most real networks contain both cycle and flow trusses. In addition, the abundance of (and the overlap between) the two types of trusses may be useful to characterize module structures in a wide variety of empirical networks. Our findings shed light on the importance of simultaneously considering different types of modules in directed networks.

  16. Cycle and flow trusses in directed networks

    PubMed Central

    Yoshida, Yuichi

    2016-01-01

    When we represent real-world systems as networks, the directions of links often convey valuable information. Finding module structures that respect link directions is one of the most important tasks for analysing directed networks. Although many notions of a directed module have been proposed, no consensus has been reached. This lack of consensus results partly because there might exist distinct types of modules in a single directed network, whereas most previous studies focused on an independent criterion for modules. To address this issue, we propose a generic notion of the so-called truss structures in directed networks. Our definition of truss is able to extract two distinct types of trusses, named the cycle truss and the flow truss, from a unified framework. By applying the method for finding trusses to empirical networks obtained from a wide range of research fields, we find that most real networks contain both cycle and flow trusses. In addition, the abundance of (and the overlap between) the two types of trusses may be useful to characterize module structures in a wide variety of empirical networks. Our findings shed light on the importance of simultaneously considering different types of modules in directed networks. PMID:28018610

  17. A complex network representation of wind flows

    NASA Astrophysics Data System (ADS)

    Gelbrecht, Maximilian; Boers, Niklas; Kurths, Jürgen

    2017-03-01

    Climate networks have proven to be a valuable method to investigate spatial connectivity patterns of the climate system. However, so far such networks have mostly been applied to scalar observables. In this study, we propose a new method for constructing networks from atmospheric wind fields on two-dimensional isobaric surfaces. By connecting nodes along a spatial environment based on the local wind flow, we derive a network representation of the low-level circulation that captures its most important characteristics. In our approach, network links are placed according to a suitable statistical null model that takes into account the direction and magnitude of the flow. We compare a simulation-based (numerically costly) and a semi-analytical (numerically cheaper) approach to determine the statistical significance of possible connections, and find that both methods yield qualitatively similar results. As an application, we choose the regional climate system of South America and focus on the monsoon season in austral summer. Monsoon systems are generally characterized by substantial changes in the large-scale wind directions, and therefore provide ideal applications for the proposed wind networks. Based on these networks, we are able to reveal the key features of the low-level circulation of the South American Monsoon System, including the South American Low-Level Jet. Networks of the dry and the wet season are compared with each other and their differences are consistent with the literature on South American climate.

  18. The actin cytoskeleton and small G protein RhoA are not involved in flow-dependent activation of ENaC

    PubMed Central

    2010-01-01

    Background Epithelial cells are exposed to a variety of mechanical stimuli. Epithelial Na+ channels (ENaC) mediate sodium transport across apical membranes of epithelial cells that line the distal nephron, airway and alveoli, and distal colon. Early investigations into stretch sensitivity of ENaC were controversial. However, recent studies are supportive of ENaC's mechanosensitivity. This work studied whether flow-dependent activation of ENaC is modulated by changes in the state of the actin cytoskeleton and whether small GTPase RhoA is involved in flow-mediated increase of ENaC activity. Findings Pretreatment with Cytochalasin D and Latrunculin B for 20 min and 1-2 hrs to disassemble F-actin had no effect on flow-mediated increase of amiloride-sensitive current. Overexpression of ENaC with constitutively active (G14V) or dominant negative (T19N) RhoA similarly had no effect on flow-dependent activation of ENaC activity. In addition, we did not observe changes when we inhibited Rho-kinase with Y27632. Conclusions Our results suggest that the flow-dependent activation of ENaC is not influenced by small GTPase RhoA and modifications in the actin cytoskeleton. PMID:20663206

  19. Bacterial nucleators: actin' on actin

    PubMed Central

    Bugalhão, Joana N.; Mota, Luís Jaime; Franco, Irina S.

    2015-01-01

    The actin cytoskeleton is a key target of numerous microbial pathogens, including protozoa, fungi, bacteria and viruses. In particular, bacterial pathogens produce and deliver virulence effector proteins that hijack actin dynamics to enable bacterial invasion of host cells, allow movement within the host cytosol, facilitate intercellular spread or block phagocytosis. Many of these effector proteins directly or indirectly target the major eukaryotic actin nucleator, the Arp2/3 complex, by either mimicking nucleation promoting factors or activating upstream small GTPases. In contrast, this review is focused on a recently identified class of effector proteins from Gram-negative bacteria that function as direct actin nucleators. These effector proteins mimic functional activities of formins, WH2-nucleators and Ena/VASP assembly promoting factors demonstrating that bacteria have coopted the complete set of eukaryotic actin assembly pathways. Structural and functional analyses of these nucleators have revealed several motifs and/or mechanistic activities that are shared with eukaryotic actin nucleators. However, functional effects of these proteins during infection extend beyond plain actin polymerization leading to interference with other host cell functions such as vesicle trafficking, cell cycle progression and cell death. Therefore, their use as model systems could not only help in the understanding of the mechanistic details of actin polymerization but also provide novel insights into the connection between actin dynamics and other cellular pathways. PMID:26416078

  20. Actinous enigma or enigmatic actin

    PubMed Central

    Povarova, Olga I; Uversky, Vladimir N; Kuznetsova, Irina M; Turoverov, Konstantin K

    2014-01-01

    Being the most abundant protein of the eukaryotic cell, actin continues to keep its secrets for more than 60 years. Everything about this protein, its structure, functions, and folding, is mysteriously counterintuitive, and this review represents an attempt to solve some of the riddles and conundrums commonly found in the field of actin research. In fact, actin is a promiscuous binder with a wide spectrum of biological activities. It can exist in at least three structural forms, globular, fibrillar, and inactive (G-, F-, and I-actin, respectively). G-actin represents a thermodynamically instable, quasi-stationary state, which is formed in vivo as a result of the energy-intensive, complex posttranslational folding events controlled and driven by cellular folding machinery. The G-actin structure is dependent on the ATP and Mg2+ binding (which in vitro is typically substituted by Ca2+) and protein is easily converted to the I-actin by the removal of metal ions and by action of various denaturing agents (pH, temperature, and chemical denaturants). I-actin cannot be converted back to the G-form. Foldable and “natively folded” forms of actin are always involved in interactions either with the specific protein partners, such as Hsp70 chaperone, prefoldin, and the CCT chaperonin during the actin folding in vivo or with Mg2+ and ATP as it takes place in the G-form. We emphasize that the solutions for the mysteries of actin multifunctionality, multistructurality, and trapped unfolding can be found in the quasi-stationary nature of this enigmatic protein, which clearly possesses many features attributed to both globular and intrinsically disordered proteins.

  1. Hierarchical social networks and information flow

    NASA Astrophysics Data System (ADS)

    López, Luis; F. F. Mendes, Jose; Sanjuán, Miguel A. F.

    2002-12-01

    Using a simple model for the information flow on social networks, we show that the traditional hierarchical topologies frequently used by companies and organizations, are poorly designed in terms of efficiency. Moreover, we prove that this type of structures are the result of the individual aim of monopolizing as much information as possible within the network. As the information is an appropriate measurement of centrality, we conclude that this kind of topology is so attractive for leaders, because the global influence each actor has within the network is completely determined by the hierarchical level occupied.

  2. Spike Code Flow in Cultured Neuronal Networks.

    PubMed

    Tamura, Shinichi; Nishitani, Yoshi; Hosokawa, Chie; Miyoshi, Tomomitsu; Sawai, Hajime; Kamimura, Takuya; Yagi, Yasushi; Mizuno-Matsumoto, Yuko; Chen, Yen-Wei

    2016-01-01

    We observed spike trains produced by one-shot electrical stimulation with 8 × 8 multielectrodes in cultured neuronal networks. Each electrode accepted spikes from several neurons. We extracted the short codes from spike trains and obtained a code spectrum with a nominal time accuracy of 1%. We then constructed code flow maps as movies of the electrode array to observe the code flow of "1101" and "1011," which are typical pseudorandom sequence such as that we often encountered in a literature and our experiments. They seemed to flow from one electrode to the neighboring one and maintained their shape to some extent. To quantify the flow, we calculated the "maximum cross-correlations" among neighboring electrodes, to find the direction of maximum flow of the codes with lengths less than 8. Normalized maximum cross-correlations were almost constant irrespective of code. Furthermore, if the spike trains were shuffled in interval orders or in electrodes, they became significantly small. Thus, the analysis suggested that local codes of approximately constant shape propagated and conveyed information across the network. Hence, the codes can serve as visible and trackable marks of propagating spike waves as well as evaluating information flow in the neuronal network.

  3. Bistability in the Rac1, PAK, and RhoA Signaling Network Drives Actin Cytoskeleton Dynamics and Cell Motility Switches

    PubMed Central

    Byrne, Kate M.; Monsefi, Naser; Dawson, John C.; Degasperi, Andrea; Bukowski-Wills, Jimi-Carlo; Volinsky, Natalia; Dobrzyński, Maciej; Birtwistle, Marc R.; Tsyganov, Mikhail A.; Kiyatkin, Anatoly; Kida, Katarzyna; Finch, Andrew J.; Carragher, Neil O.; Kolch, Walter; Nguyen, Lan K.; von Kriegsheim, Alex; Kholodenko, Boris N.

    2016-01-01

    Summary Dynamic interactions between RhoA and Rac1, members of the Rho small GTPase family, play a vital role in the control of cell migration. Using predictive mathematical modeling, mass spectrometry-based quantitation of network components, and experimental validation in MDA-MB-231 mesenchymal breast cancer cells, we show that a network containing Rac1, RhoA, and PAK family kinases can produce bistable, switch-like responses to a graded PAK inhibition. Using a small chemical inhibitor of PAK, we demonstrate that cellular RhoA and Rac1 activation levels respond in a history-dependent, bistable manner to PAK inhibition. Consequently, we show that downstream signaling, actin dynamics, and cell migration also behave in a bistable fashion, displaying switches and hysteresis in response to PAK inhibition. Our results demonstrate that PAK is a critical component in the Rac1-RhoA inhibitory crosstalk that governs bistable GTPase activity, cell morphology, and cell migration switches. PMID:27136688

  4. Directional Transport of a Bead Bound to Lamellipodial Surface Is Driven by Actin Polymerization

    PubMed Central

    Nobezawa, Daisuke; Ikeda, Sho-ichi; Wada, Eitaro; Nagano, Takashi

    2017-01-01

    The force driving the retrograde flow of actin cytoskeleton is important in the cellular activities involving cell movement (e.g., growth cone motility in axon guidance, wound healing, or cancer metastasis). However, relative importance of the forces generated by actin polymerization and myosin II in this process remains elusive. We have investigated the retrograde movement of the poly-d-lysine-coated bead attached with the optical trap to the edge of lamellipodium of Swiss 3T3 fibroblasts. The velocity of the attached bead drastically decreased by submicromolar concentration of cytochalasin D, latrunculin A, or jasplakinolide, indicating the involvement of actin turnover. On the other hand, the velocity decreased only slightly in the presence of 50 μM (−)-blebbistatin and Y-27632. Comparative fluorescence microscopy of the distribution of actin filaments and that of myosin II revealed that the inhibition of actin turnover by cytochalasin D, latrunculin A, or jasplakinolide greatly diminished the actin filament network. On the other hand, inhibition of myosin II activity by (−)-blebbistatin or Y-27632 little affected the actin network but diminished stress fibers. Based on these results, we conclude that the actin polymerization/depolymerization plays the major role in the retrograde movement, while the myosin II activity is involved in the maintenance of the dynamic turnover of actin in lamellipodium. PMID:28246604

  5. Membrane Tension Acts Through PLD2 and mTORC2 to Limit Actin Network Assembly During Neutrophil Migration

    PubMed Central

    Diz-Muñoz, Alba; Thurley, Kevin; Chintamen, Sana; Altschuler, Steven J.; Fletcher, Daniel A.; Weiner, Orion D.

    2016-01-01

    For efficient polarity and migration, cells need to regulate the magnitude and spatial distribution of actin assembly. This process is coordinated by reciprocal interactions between the actin cytoskeleton and mechanical forces. Actin polymerization-based protrusion increases tension in the plasma membrane, which in turn acts as a long-range inhibitor of actin assembly. These interactions form a negative feedback circuit that limits the magnitude of membrane tension in neutrophils and prevents expansion of the existing front and the formation of secondary fronts. It has been suggested that the plasma membrane directly inhibits actin assembly by serving as a physical barrier that opposes protrusion. Here we show that efficient control of actin polymerization-based protrusion requires an additional mechanosensory feedback cascade that indirectly links membrane tension with actin assembly. Specifically, elevated membrane tension acts through phospholipase D2 (PLD2) and the mammalian target of rapamycin complex 2 (mTORC2) to limit actin nucleation. In the absence of this pathway, neutrophils exhibit larger leading edges, higher membrane tension, and profoundly defective chemotaxis. Mathematical modeling suggests roles for both the direct (mechanical) and indirect (biochemical via PLD2 and mTORC2) feedback loops in organizing cell polarity and motility—the indirect loop is better suited to enable competition between fronts, whereas the direct loop helps spatially organize actin nucleation for efficient leading edge formation and cell movement. This circuit is essential for polarity, motility, and the control of membrane tension. PMID:27280401

  6. GhCFE1A, a dynamic linker between the ER network and actin cytoskeleton, plays an important role in cotton fibre cell initiation and elongation.

    PubMed

    Lv, Fenni; Wang, Haihai; Wang, Xinyu; Han, Libo; Ma, Yinping; Wang, Sen; Feng, Zhidi; Niu, Xiaowei; Cai, Caiping; Kong, Zhaosheng; Zhang, Tianzhen; Guo, Wangzhen

    2015-04-01

    Fibre cell initiation and elongation is critical for cotton fibre development. However, little is known about the regulation of initiation and elongation during fibre cell development. Here, the regulatory role of a novel protein GhCFE1A was uncovered. GhCFE1A is preferentially expressed at initiation and rapid elongation stages during fibre development; in addition, much higher expression of GhCFE1A was detected at the fibre initiation stage in fibreless cotton mutants than in the fibre-bearing TM-1 wild-type. Importantly, overexpression of GhCFE1A in cotton not only delayed fibre cell elongation but also significantly reduced the density of lint and fuzz fibre initials and stem trichomes. Yeast two-hybrid assay showed that GhCFE1A interacted with several actin proteins, and the interaction was further confirmed by co-sedimentation assay. Interestingly, a subcellular localization assay showed that GhCFE1A resided on the cortical endoplasmic reticulum (ER) network and co-localized with actin cables. Moreover, the density of F-actin filaments was shown to be reduced in GhCFE1A-overexpressing fibres at the rapid elongation stage compared with the wild-type control. Taken together, the results demonstrate that GhCFE1A probably functions as a dynamic linker between the actin cytoskeleton and the ER network, and plays an important role in fibre cell initiation and elongation during cotton fibre development.

  7. On information flow in relay networks

    NASA Astrophysics Data System (ADS)

    El Gamal, A.

    Preliminary investigations conducted by El Gamal and Cover (1980) have shown that a max-flow min-cut interpretation for the capacity expressions of the classes of degraded and semideterministic relay channels can be found. In this paper it is shown that such an interpretation can also be found for fairly general classes of discrete memoryless relay networks. Cover and El Gamal (1979) have obtained general lower and upper bounds to capacity. However, the capacity of the general relay channel is not known. Past results are here extended to establish the capacity of deterministic relay networks with no interference and degraded relay networks. A general upper bound is given to the capacity of any relay network with this upper bound being a natural generalization of Theorem 4 in the study conducted by Cover and El Gamal (1979).

  8. Three-dimensional structure of actin filaments and of an actin gel made with actin-binding protein.

    PubMed

    Niederman, R; Amrein, P C; Hartwig, J

    1983-05-01

    Purified muscle actin and mixtures of actin and actin-binding protein were examined in the transmission electron microscope after fixation, critical point drying, and rotary shadowing. The three-dimensional structure of the protein assemblies was analyzed by a computer-assisted graphic analysis applicable to generalized filament networks. This analysis yielded information concerning the frequency of filament intersections, the filament length between these intersections, the angle at which filaments branch at these intersections, and the concentration of filaments within a defined volume. Purified actin at a concentration of 1 mg/ml assembled into a uniform mass of long filaments which overlap at random angles between 0 degrees and 90 degrees. Actin in the presence of macrophage actin-binding protein assembled into short, straight filaments, organized in a perpendicular branching network. The distance between branch points was inversely related to the molar ratio of actin-binding protein to actin. This distance was what would be predicted if actin filaments grew at right angles off of nucleation sites on the two ends of actin-binding protein dimers, and then annealed. The results suggest that actin in combination with actin-binding protein self-assembles to form a three-dimensional network resembling the peripheral cytoskeleton of motile cells.

  9. Adaptive Routing Algorithm for Priority Flows in a Network

    DTIC Science & Technology

    2012-06-14

    ADAPTIVE ROUTING ALGORITHM FOR PRIORITY FLOWS IN A NETWORK THESIS Timothy J. Carbino, Captain...ADAPTIVE ROUTING ALGORITHM FOR PRIORITY FLOWS IN A NETWORK THESIS Presented to the Faculty Department of Electrical and Computer... Thesis 20 Aug 10 – 14 Jun 12 Adaptive Routing Algorithm for Priority Flows in a Network 12629PCarbino, Timothy J, Captain, USAF Air Force Institute of

  10. Temperature-induced sol-gel transition and microgel formation in α-actinin cross-linked actin networks: A rheological study

    NASA Astrophysics Data System (ADS)

    Tempel, M.; Isenberg, G.; Sackmann, E.

    1996-08-01

    We have studied the sol-gel transition, the viscoelastic and the structural properties of networks constituted of semiflexible actin filaments cross-linked by α-actinin. Cross-linking was regulated in a reversible way by varying the temperature through the association-dissociation equilibrium of the actin-α-actinin system. Viscoelastic parameters [shear storage modulus G'(ω), phase shift tan(Φ)(ω), creep compliance J(t)] were measured as a function of temperature and actin-to-cross-linker ratio by a magnetically driven rotating disc rheometer. G'(ω) and tan(Φ)(ω) were studied at a frequency ω corresponding to the elastic plateau regime of the G'(ω) versus ω spectrum of the purely entangled solution. The microstructure of the networks was viewed by negative staining electron microscopy (EM). The phase shift tan(Φ) (or equivalently the viscosity η) diverges and reaches a maximum when approaching the apparent gel point from lower and higher temperatures, and the maximum defines the gel point (temperature Tg). The elastic plateau modulus G'N diverges at temperatures beyond this gel point TTg. The cross-linking transition (corresponding to a sol-gel transition at zero frequency) is interpreted in terms of a percolation model and the divergence of G'N at TTg), (2) that microscopic segregation takes place at T<=Tg leading to local formation of clusters (a state termed microgel), and (3) that at low actin-α-actinin ratios (rAα<=10) and low temperatures (T<=10 °C) macroscopic segregation into bundles of cross-linked actin filaments and a diluted solution of actin filaments is observed. The three regimes of network structure are represented by an

  11. Neural network system for traffic flow management

    NASA Astrophysics Data System (ADS)

    Gilmore, John F.; Elibiary, Khalid J.; Petersson, L. E. Rickard

    1992-09-01

    Atlanta will be the home of several special events during the next five years ranging from the 1996 Olympics to the 1994 Super Bowl. When combined with the existing special events (Braves, Falcons, and Hawks games, concerts, festivals, etc.), the need to effectively manage traffic flow from surface streets to interstate highways is apparent. This paper describes a system for traffic event response and management for intelligent navigation utilizing signals (TERMINUS) developed at Georgia Tech for adaptively managing special event traffic flows in the Atlanta, Georgia area. TERMINUS (the original name given Atlanta, Georgia based upon its role as a rail line terminating center) is an intelligent surface street signal control system designed to manage traffic flow in Metro Atlanta. The system consists of three components. The first is a traffic simulation of the downtown Atlanta area around Fulton County Stadium that models the flow of traffic when a stadium event lets out. Parameters for the surrounding area include modeling for events during various times of day (such as rush hour). The second component is a computer graphics interface with the simulation that shows the traffic flows achieved based upon intelligent control system execution. The final component is the intelligent control system that manages surface street light signals based upon feedback from control sensors that dynamically adapt the intelligent controller's decision making process. The intelligent controller is a neural network model that allows TERMINUS to control the configuration of surface street signals to optimize the flow of traffic away from special events.

  12. Instantaneous inactivation of cofilin reveals its function of F-actin disassembly in lamellipodia.

    PubMed

    Vitriol, Eric A; Wise, Ariel L; Berginski, Mathew E; Bamburg, James R; Zheng, James Q

    2013-07-01

    Cofilin is a key regulator of the actin cytoskeleton. It can sever actin filaments, accelerate filament disassembly, act as a nucleation factor, recruit or antagonize other actin regulators, and control the pool of polymerization-competent actin monomers. In cells these actions have complex functional outputs. The timing and localization of cofilin activity are carefully regulated, and thus global, long-term perturbations may not be sufficient to probe its precise function. To better understand cofilin's spatiotemporal action in cells, we implemented chromophore-assisted laser inactivation (CALI) to instantly and specifically inactivate it. In addition to globally inhibiting actin turnover, CALI of cofilin generated several profound effects on the lamellipodia, including an increase of F-actin, a rearward expansion of the actin network, and a reduction in retrograde flow speed. These results support the hypothesis that the principal role of cofilin in lamellipodia at steady state is to break down F-actin, control filament turnover, and regulate the rate of retrograde flow.

  13. Actinic reticuloid

    SciTech Connect

    Marx, J.L.; Vale, M.; Dermer, P.; Ragaz, A.; Michaelides, P.; Gladstein, A.H.

    1982-09-01

    A 58-year-old man has his condition diagnosed as actinic reticuloid on the basis of clinical and histologic findings and phototesting data. He had clinical features resembling mycosis fungoides in light-exposed areas. Histologic findings disclosed a bandlike infiltrate with atypical mononuclear cells in the dermis and scattered atypical cells in the epidermis. Electron microscopy disclosed mononuclear cells with bizarre, convoluted nuclei, resembling cerebriform cells of Lutzner. Phototesting disclosed a diminished minimal erythemal threshold to UV-B and UV-A. Microscopic changes resembling actinic reticuloid were reproduced in this patient 24 and 72 hours after exposure to 15 minimal erythemal doses of UV-B.

  14. Ponticulin is the major high affinity link between the plasma membrane and the cortical actin network in Dictyostelium

    PubMed Central

    1994-01-01

    Interactions between the plasma membrane and underlying actin-based cortex have been implicated in membrane organization and stability, the control of cell shape, and various motile processes. To ascertain the function of high affinity actin-membrane associations, we have disrupted by homologous recombination the gene encoding ponticulin, the major high affinity actin-membrane link in Dictyostelium discoideum amoebae. Cells lacking detectable amounts of ponticulin message and protein also are deficient in high affinity actin-membrane binding by several criteria. First, only 10-13% as much endogenous actin cosediments through sucrose and crude plasma membranes from ponticulin- minus cells, as compared with membranes from the parental strain. Second, purified plasma membranes exhibit little or no binding or nucleation of exogenous actin in vitro. Finally, only 10-30% as much endogenous actin partitions with plasma membranes from ponticulin-minus cells after these cells are mechanically unroofed with polylysine- coated coverslips. The loss of the cell's major actin-binding membrane protein appears to be surprisingly benign under laboratory conditions. Ponticulin-minus cells grow normally in axenic culture and pinocytose FITC-dextran at the same rate as do parental cells. The rate of phagocytosis of particles by ponticulin-minus cells in growth media also is unaffected. By contrast, after initiation of development, cells lacking ponticulin aggregate faster than the parental cells. Subsequent morphogenesis proceeds asynchronously, but viable spores can form. These results indicate that ponticulin is not required for cellular translocation, but apparently plays a role in cell patterning during development. PMID:8089176

  15. Enhanced Flow in Small-World Networks

    NASA Astrophysics Data System (ADS)

    Oliveira, Cláudio L. N.; Morais, Pablo A.; Moreira, André A.; Andrade, José S.

    2014-04-01

    The proper addition of shortcuts to a regular substrate can lead to the formation of a complex network with a highly efficient structure for navigation [J. M. Kleinberg, Nature 406, 845 (2000)]. Here we show that enhanced flow properties can also be observed in these small-world topologies. Precisely, our model is a network built from an underlying regular lattice over which long-range connections are randomly added according to the probability, Pij˜rij-α, where rij is the Manhattan distance between nodes i and j, and the exponent α is a controlling parameter. The mean two-point global conductance of the system is computed by considering that each link has a local conductance given by gij∝rij-C, where C determines the extent of the geographical limitations (costs) on the long-range connections. Our results show that the best flow conditions are obtained for C =0 with α=0, while for C≫1 the overall conductance always increases with α. For C≈1, α=d becomes the optimal exponent, where d is the topological dimension of the substrate. Interestingly, this exponent is identical to the one obtained for optimal navigation in small-world networks using decentralized algorithms.

  16. Methodologies and techniques for analysis of network flow data

    SciTech Connect

    Bobyshev, A.; Grigoriev, M.; /Fermilab

    2004-12-01

    Network flow data gathered at the border routers and core switches is used at Fermilab for statistical analysis of traffic patterns, passive network monitoring, and estimation of network performance characteristics. Flow data is also a critical tool in the investigation of computer security incidents. Development and enhancement of flow based tools is an on-going effort. This paper describes the most recent developments in flow analysis at Fermilab.

  17. Hodge Decomposition of Information Flow on Small-World Networks

    PubMed Central

    Haruna, Taichi; Fujiki, Yuuya

    2016-01-01

    We investigate the influence of the small-world topology on the composition of information flow on networks. By appealing to the combinatorial Hodge theory, we decompose information flow generated by random threshold networks on the Watts-Strogatz model into three components: gradient, harmonic and curl flows. The harmonic and curl flows represent globally circular and locally circular components, respectively. The Watts-Strogatz model bridges the two extreme network topologies, a lattice network and a random network, by a single parameter that is the probability of random rewiring. The small-world topology is realized within a certain range between them. By numerical simulation we found that as networks become more random the ratio of harmonic flow to the total magnitude of information flow increases whereas the ratio of curl flow decreases. Furthermore, both quantities are significantly enhanced from the level when only network structure is considered for the network close to a random network and a lattice network, respectively. Finally, the sum of these two ratios takes its maximum value within the small-world region. These findings suggest that the dynamical information counterpart of global integration and that of local segregation are the harmonic flow and the curl flow, respectively, and that a part of the small-world region is dominated by internal circulation of information flow. PMID:27733817

  18. Hodge Decomposition of Information Flow on Small-World Networks.

    PubMed

    Haruna, Taichi; Fujiki, Yuuya

    2016-01-01

    We investigate the influence of the small-world topology on the composition of information flow on networks. By appealing to the combinatorial Hodge theory, we decompose information flow generated by random threshold networks on the Watts-Strogatz model into three components: gradient, harmonic and curl flows. The harmonic and curl flows represent globally circular and locally circular components, respectively. The Watts-Strogatz model bridges the two extreme network topologies, a lattice network and a random network, by a single parameter that is the probability of random rewiring. The small-world topology is realized within a certain range between them. By numerical simulation we found that as networks become more random the ratio of harmonic flow to the total magnitude of information flow increases whereas the ratio of curl flow decreases. Furthermore, both quantities are significantly enhanced from the level when only network structure is considered for the network close to a random network and a lattice network, respectively. Finally, the sum of these two ratios takes its maximum value within the small-world region. These findings suggest that the dynamical information counterpart of global integration and that of local segregation are the harmonic flow and the curl flow, respectively, and that a part of the small-world region is dominated by internal circulation of information flow.

  19. Analysis of microtubule growth dynamics arising from altered actin network structure and contractility in breast tumor cells.

    PubMed

    Ory, Eleanor; Bhandary, Lekhana; Boggs, Amanda; Chakrabarti, Kristi; Parker, Joshua; Losert, Wolfgang; Martin, Stuart S

    2017-01-16

    The periphery of epithelial cells is shaped by opposing cytoskeletal physical forces generated predominately by two dynamic force generating systems - growing microtubule ends push against the boundary from the cell center, and the actin cortex contracts the attached plasma membrane. Here we investigate how changes to the structure and dynamics of the actin cortex alter the dynamics of microtubules. Current drugs target actin polymerization and contraction to reduce cell division and invasiveness; however, the impacts on microtubule dynamics remain incompletely understood. Using human MCF-7 breast tumor cells expressing GFP-tagged microtubule end-binding-protein-1 (EB1) and coexpression of cytoplasmic fluorescent protein mCherry, we map the trajectories of growing microtubule ends and cytoplasmic boundary respectively. Based on EB1 tracks and cytoplasmic boundary outlines, we calculate the speed, distance from cytoplasmic boundary, and straightness of microtubule growth. Actin depolymerization with Latrunculin-A reduces EB1 growth speed as well as allows the trajectories to extend beyond the cytoplasmic boundary. Blebbistatin, a direct myosin-II inhibitor, reduced EB1 speed and yielded less straight EB1 trajectories. Inhibiting signaling upstream of myosin-II contractility via the Rho-kinase inhibitor, Y-27632, altered EB1 dynamics differently from Blebbistatin. These results indicate that reduced actin cortex integrity can induce distinct alterations in microtubule dynamics. Given recent findings that tumor stem cell characteristics are increased by drugs which reduce actin contractility or stabilize microtubules, it remains important to clearly define how cytoskeletal drugs alter the interactions between these two filament systems in tumor cells.

  20. IQGAP and mitotic exit network (MEN) proteins are required for cytokinesis and re-polarization of the actin cytoskeleton in the budding yeast, Saccharomyces cerevisiae.

    PubMed

    Corbett, Mark; Xiong, Yulan; Boyne, James R; Wright, Daniel J; Munro, Ewen; Price, Clive

    2006-11-01

    In budding yeast the final stages of the cell division cycle, cytokinesis and cell separation, are distinct events that require to be coupled, both together and with mitotic exit. Here we demonstrate that mutations in genes of the mitotic exit network (MEN) prevent cell separation and are synthetically lethal in combination with both cytokinesis and septation defective mutations. Analysis of the synthetic lethal phenotypes reveals that Iqg1p functions in combination with the MEN components, Tem1p, Cdc15p Dbf20p and Dbf2p to govern the re-polarization of the actin cytoskeleton to either side of the bud neck. In addition phosphorylation of the conserved PCH protein, Hof1p, is dependent upon these activities and requires actin ring assembly. Recruitment of Dbf2p to the bud neck is dependent upon actin ring assembly and correlates with Hof1p phosphorylation. Failure to phosphorylate Hof1p results in the increased stability of the protein and its persistence at the bud neck. These data establish a mechanistic dependency of cell separation upon an intermediate step requiring actomyosin ring assembly.

  1. Employment growth through labor flow networks.

    PubMed

    Guerrero, Omar A; Axtell, Robert L

    2013-01-01

    It is conventional in labor economics to treat all workers who are seeking new jobs as belonging to a labor pool, and all firms that have job vacancies as an employer pool, and then match workers to jobs. Here we develop a new approach to study labor and firm dynamics. By combining the emerging science of networks with newly available employment micro-data, comprehensive at the level of whole countries, we are able to broadly characterize the process through which workers move between firms. Specifically, for each firm in an economy as a node in a graph, we draw edges between firms if a worker has migrated between them, possibly with a spell of unemployment in between. An economy's overall graph of firm-worker interactions is an object we call the labor flow network (LFN). This is the first study that characterizes a LFN for an entire economy. We explore the properties of this network, including its topology, its community structure, and its relationship to economic variables. It is shown that LFNs can be useful in identifying firms with high growth potential. We relate LFNs to other notions of high performance firms. Specifically, it is shown that fewer than 10% of firms account for nearly 90% of all employment growth. We conclude with a model in which empirically-salient LFNs emerge from the interaction of heterogeneous adaptive agents in a decentralized labor market.

  2. Channel networks within lava flows: Formation, evolution, and implications for flow behavior

    NASA Astrophysics Data System (ADS)

    Dietterich, Hannah R.; Cashman, Katharine V.

    2014-08-01

    New high-resolution maps of Hawaiian lava flows highlight complex topographically controlled channel networks. Network geometries range from distributary systems dominated by branching around local obstacles, to tributary systems constricted by topography. We combine 2-D network analysis tools developed for river systems and neural networks with 3-D lidar morphologic analysis and historical records of flow emplacement to investigate both the origins of channel networks and their influence on flow morphology and behavior. We find that network complexity is a function of underlying slope and that the degree of flow branching, network connectivity, and longevity of individual channels all influence the final flow morphology (flow and channel widths and levee heights). Furthermore, because channel networks govern the distribution of lava supply within a flow, changes in the channel topology can dramatically alter the effective volumetric flux in any one branch, which affects both flow length and advance rate. Specifically, branching will slow and shorten flows, while merging can accelerate and lengthen them. Consideration of channel networks is thus important for predicting lava flow behavior and mitigating flow hazards with diversion barriers. Observed relationships between network geometry, flow parameters, and morphology also offer insight into the interpretation of these features elsewhere on Earth and other terrestrial planets.

  3. Optimizing information flow in biological networks

    NASA Astrophysics Data System (ADS)

    Bialek, William

    2009-03-01

    The generation of physicists who turned to the phenomena of life in the 1930s realized that to understand these phenomena one would need to track not just the flow of energy (as in inanimate systems) but also the flow of information. It would take more than a decade before Shannon provided the tools to formalize this intuition, making precise the connection between entropy and information. Since Shannon, many investigators have explored the possibility that biological mechanisms are selected to maximize the efficiency with which information is transmitted or represented, subject to fundamental physical constraints. I will survey these efforts, emphasizing that the same principles are being used in thinking about biological systems at very different levels of organization, from bacteria to brains. Although sometimes submerged under concerns about particular systems, the idea that information flow is optimized provides us with a candidate for a real theory of biological networks, rather than just a collection of parameterized models. I will try to explain why I think the time is right to focus on this grand theoretical goal, pointing to some key open problems and opportunities for connection to emerging experiments.

  4. Actin-binding proteins take the reins in growth cones.

    PubMed

    Pak, Chi W; Flynn, Kevin C; Bamburg, James R

    2008-02-01

    Higher-order actin-based networks (actin superstructures) are important for growth-cone motility and guidance. Principles for generating, organizing and remodelling actin superstructures have emerged from recent findings in cell-free systems, non-neuronal cells and growth cones. This Review examines how actin superstructures are initiated de novo at the leading-edge membrane and how the spontaneous organization of actin superstructures is driven by ensembles of actin-binding proteins. How the regulation of actin-binding proteins can affect growth-cone turning and axonal regeneration is also discussed.

  5. Functional synergy of actin filament cross-linking proteins.

    PubMed

    Tseng, Yiider; Schafer, Benjamin W; Almo, Steven C; Wirtz, Denis

    2002-07-12

    The organization of filamentous actin (F-actin) in resilient networks is coordinated by various F-actin cross-linking proteins. The relative tolerance of cells to null mutations of genes that code for a single actin cross-linking protein suggests that the functions of those proteins are highly redundant. This apparent functional redundancy may, however, reflect the limited resolution of available assays in assessing the mechanical role of F-actin cross-linking/bundling proteins. Using reconstituted F-actin networks and rheological methods, we demonstrate how alpha-actinin and fascin, two F-actin cross-linking/bundling proteins that co-localize along stress fibers and in lamellipodia, could synergistically enhance the resilience of F-actin networks in vitro. These two proteins can generate microfilament arrays that "yield" at a strain amplitude that is much larger than each one of the proteins separately. F-actin/alpha-actinin/fascin networks display strain-induced hardening, whereby the network "stiffens" under shear deformations, a phenomenon that is non-existent in F-actin/fascin networks and much weaker in F-actin/alpha-actinin networks. Strain-hardening is further enhanced at high rates of deformation and high concentrations of actin cross-linking proteins. A simplified model suggests that the optimum results of the competition between the increased stiffness of bundles and their decreased density of cross-links. Our studies support a re-evaluation of the notion of functional redundancy among cytoskeletal regulatory proteins.

  6. Arp2/3 complex inhibition radically alters lamellipodial actin architecture, suspended cell shape, and the cell spreading process

    PubMed Central

    Henson, John H.; Yeterian, Mesrob; Weeks, Richard M.; Medrano, Angela E.; Brown, Briana L.; Geist, Heather L.; Pais, Mollyann D.; Oldenbourg, Rudolf; Shuster, Charles B.

    2015-01-01

    Recent studies have investigated the dendritic actin cytoskeleton of the cell edge's lamellipodial (LP) region by experimentally decreasing the activity of the actin filament nucleator and branch former, the Arp2/3 complex. Here we extend these studies via pharmacological inhibition of the Arp2/3 complex in sea urchin coelomocytes, cells that possess an unusually broad LP region and display correspondingly exaggerated centripetal flow. Using light and electron microscopy, we demonstrate that Arp2/3 complex inhibition via the drug CK666 dramatically altered LP actin architecture, slowed centripetal flow, drove a lamellipodial-to-filopodial shape change in suspended cells, and induced a novel actin structural organization during cell spreading. A general feature of the CK666 phenotype in coelomocytes was transverse actin arcs, and arc generation was arrested by a formin inhibitor. We also demonstrate that CK666 treatment produces actin arcs in other cells with broad LP regions, namely fish keratocytes and Drosophila S2 cells. We hypothesize that the actin arcs made visible by Arp2/3 complex inhibition in coelomocytes may represent an exaggerated manifestation of the elongate mother filaments that could possibly serve as the scaffold for the production of the dendritic actin network. PMID:25568343

  7. Hierarchicality of Trade Flow Networks Reveals Complexity of Products

    PubMed Central

    Shi, Peiteng; Zhang, Jiang; Yang, Bo; Luo, Jingfei

    2014-01-01

    With globalization, countries are more connected than before by trading flows, which amounts to at least trillion dollars today. Interestingly, around percents of exports consist of intermediate products in global. Therefore, the trade flow network of particular product with high added values can be regarded as value chains. The problem is weather we can discriminate between these products from their unique flow network structure? This paper applies the flow analysis method developed in ecology to 638 trading flow networks of different products. We claim that the allometric scaling exponent can be used to characterize the degree of hierarchicality of a flow network, i.e., whether the trading products flow on long hierarchical chains. Then, it is pointed out that the flow networks of products with higher added values and complexity like machinary, transport equipment etc. have larger exponents, meaning that their trade flow networks are more hierarchical. As a result, without the extra data like global input-output table, we can identify the product categories with higher complexity, and the relative importance of a country in the global value chain by the trading network solely. PMID:24905753

  8. Hierarchicality of trade flow networks reveals complexity of products.

    PubMed

    Shi, Peiteng; Zhang, Jiang; Yang, Bo; Luo, Jingfei

    2014-01-01

    With globalization, countries are more connected than before by trading flows, which amounts to at least 36 trillion dollars today. Interestingly, around 30-60 percents of exports consist of intermediate products in global. Therefore, the trade flow network of particular product with high added values can be regarded as value chains. The problem is weather we can discriminate between these products from their unique flow network structure? This paper applies the flow analysis method developed in ecology to 638 trading flow networks of different products. We claim that the allometric scaling exponent η can be used to characterize the degree of hierarchicality of a flow network, i.e., whether the trading products flow on long hierarchical chains. Then, it is pointed out that the flow networks of products with higher added values and complexity like machinary, transport equipment etc. have larger exponents, meaning that their trade flow networks are more hierarchical. As a result, without the extra data like global input-output table, we can identify the product categories with higher complexity, and the relative importance of a country in the global value chain by the trading network solely.

  9. Actinic Prurigo.

    PubMed

    Rodríguez-Carreón, Alma Angélica; Rodríguez-Lobato, Erika; Rodríguez-Gutiérrez, Georgina; Cuevas-González, Juan Carlos; Mancheno-Valencia, Alexandra; Solís-Arias, Martha Patricia; Vega-Memije, María Elisa; Hojyo-Tomoka, María Teresa; Domínguez-Soto, Luciano

    2015-01-01

    Actinic prurigo is an idiopathic photodermatosis that affects the skin, as well as the labial and conjunctival mucosa in indigenous and mestizo populations of Latin America. It starts predominantly in childhood, has a chronic course, and is exacerbated with solar exposure. Little is known of its pathophysiology, including the known mechanisms of the participation of HLA-DR4 and an abnormal immunologic response with increase of T CD4+ lymphocytes. The presence of IgE, eosinophils, and mast cells suggests that it is a hypersensitivity reaction (likely type IVa or b). The diagnosis is clinical, and the presence of lymphoid follicles in the mucosal histopathologic study of mucosa is pathognomonic. The best available treatment to date is thalidomide, despite its secondary effects.

  10. TGFβ2 Induces the Formation of Cross-Linked Actin Networks (CLANs) in Human Trabecular Meshwork Cells Through the Smad and Non-Smad Dependent Pathways

    PubMed Central

    Montecchi-Palmer, Michela; Bermudez, Jaclyn Y.; Webber, Hannah C.; Patel, Gaurang C.; Clark, Abbot F.; Mao, Weiming

    2017-01-01

    Purpose Increased intraocular pressure results from increased aqueous humor (AH) outflow resistance at the trabecular meshwork (TM) due to pathologic changes including the formation of cross-linked actin networks (CLANs). Transforming growth factor β2 (TGFβ2) is elevated in the AH and TM of primary open angle glaucoma (POAG) patients and induces POAG-associated TM changes, including CLANs. We determined the role of individual TGFβ2 signaling pathways in CLAN formation. Methods Cultured nonglaucomatous human TM (NTM) cells were treated with control or TGFβ2, with or without the inhibitors of TGFβ receptor, Smad3, c-Jun N-terminal kinases (JNK), extracellular signal regulated kinase (ERK), P38, or Rho-associated protein kinase (ROCK). NTM cells were cotreated with TGFβ2 plus inhibitors for 10 days or pretreated with TGFβ2 for 10 days followed by 1-hour inhibitor treatment. NTM cells were immunostained with phalloidin-Alexa-488 and 4′,6-diamidino-2-phenylindole (DAPI). Data were analyzed using 1-way ANOVA and Dunnett's post hoc test. Results TGFβ2 significantly induced CLAN formation (n = 6 to 12, P < 0.05), which was completely inhibited by TGFβ receptor, Smad3, and ERK inhibitors, as well as completely or partially inhibited by JNK, P38, and ROCK inhibitors, depending on cell strains. One-hour exposure to ROCK inhibitor completely resolved formed CLANs (P < 0.05), whereas TGFβ receptor, Smad3 inhibitor, and ERK inhibitors resulted in partial or complete resolution. The JNK and P38 inhibitors showed partial or no resolution. Among these inhibitors, the ROCK inhibitor was the most disruptive to the actin stress fibers, whereas ERK inhibition showed the least disruption. Conclusions TGFβ2-induced CLANs in NTM cells were prevented and resolved using various pathway inhibitors. Apart from CLAN inhibition, some of these inhibitors also had different effects on actin stress fibers. PMID:28241317

  11. Modeling actin waves in dictyostelium cells

    NASA Astrophysics Data System (ADS)

    Wasnik, Vaibhav; Mukhopadhyay, Ranjan

    2011-03-01

    Actin networks in living cells demonstrate a high capacity for self-organization and are responsible for the formation of a variety of structures such as lamellopodia, phagocytic cups, and cleavage furrows. Recent experiments have studied actin waves formed on the surface of dictyostelium cells that have been treated with a depolymerizing agent. These waves are believed to be physiologically important, for example, for the formation of phagocytic cups. We propose and study a minimal model, based on the dendritic nucleation of actin polymers, to explain the formation of these waves. This model can be extended to study the dynamics of the coupled actin-membrane system.

  12. Reconstitution of a Minimal Actin Cortex by Coupling Actin Filaments to Reconstituted Membranes.

    PubMed

    Vogel, Sven K

    2016-01-01

    A thin layer of actin filaments in many eukaryotic cell types drives pivotal aspects of cell morphogenesis and is generally cited as the actin cortex. Myosin driven contractility and actin cytoskeleton membrane interactions form the basis of fundamental cellular processes such as cytokinesis, cell migration, and cortical flows. How the interplay between the actin cytoskeleton, the membrane, and actin binding proteins drives these processes is far from being understood. The complexity of the actin cortex in living cells and the hardly feasible manipulation of the omnipotent cellular key players, namely actin, myosin, and the membrane, are challenging in order to gain detailed insights about the underlying mechanisms. Recent progress in developing bottom-up in vitro systems where the actin cytoskeleton is combined with reconstituted membranes may provide a complementary route to reveal general principles underlying actin cortex properties. In this chapter the reconstitution of a minimal actin cortex by coupling actin filaments to a supported membrane is described. This minimal system may be very well suited to study for example protein interactions on membrane bound actin filaments in a very controlled and quantitative manner as it may be difficult to perform in living systems.

  13. The murine Nck SH2/SH3 adaptors are important for the development of mesoderm-derived embryonic structures and for regulating the cellular actin network.

    PubMed

    Bladt, Friedhelm; Aippersbach, Elke; Gelkop, Sigal; Strasser, Geraldine A; Nash, Piers; Tafuri, Anna; Gertler, Frank B; Pawson, Tony

    2003-07-01

    Mammalian Nck1 and Nck2 are closely related adaptor proteins that possess three SH3 domains, followed by an SH2 domain, and are implicated in coupling phosphotyrosine signals to polypeptides that regulate the actin cytoskeleton. However, the in vivo functions of Nck1 and Nck2 have not been defined. We have mutated the murine Nck1 and Nck2 genes and incorporated beta-galactosidase reporters into the mutant loci. In mouse embryos, the two Nck genes have broad and overlapping expression patterns. They are functionally redundant in the sense that mice deficient for either Nck1 or Nck2 are viable, whereas inactivation of both Nck1 and Nck2 results in profound defects in mesoderm-derived notochord and embryonic lethality at embryonic day 9.5. Fibroblast cell lines derived from Nck1(-/-) Nck2(-/-) embryos have defects in cell motility and in the organization of the lamellipodial actin network. These data suggest that the Nck SH2/SH3 adaptors have important functions in the development of mesodermal structures during embryogenesis, potentially linked to a role in cell movement and cytoskeletal organization.

  14. An extended signal control strategy for urban network traffic flow

    NASA Astrophysics Data System (ADS)

    Yan, Fei; Tian, Fuli; Shi, Zhongke

    2016-03-01

    Traffic flow patterns are in general repeated on a daily or weekly basis. To improve the traffic conditions by using the inherent repeatability of traffic flow, a novel signal control strategy for urban networks was developed via iterative learning control (ILC) approach. Rigorous analysis shows that the proposed learning control method can guarantee the asymptotic convergence. The impacts of the ILC-based signal control strategy on the macroscopic fundamental diagram (MFD) were analyzed by simulations on a test road network. The results show that the proposed ILC strategy can evenly distribute the accumulation in the network and improve the network mobility.

  15. Information Flow Between Resting-State Networks

    PubMed Central

    Diez, Ibai; Erramuzpe, Asier; Escudero, Iñaki; Mateos, Beatriz; Cabrera, Alberto; Marinazzo, Daniele; Sanz-Arigita, Ernesto J.; Stramaglia, Sebastiano

    2015-01-01

    Abstract The resting brain dynamics self-organize into a finite number of correlated patterns known as resting-state networks (RSNs). It is well known that techniques such as independent component analysis can separate the brain activity at rest to provide such RSNs, but the specific pattern of interaction between RSNs is not yet fully understood. To this aim, we propose here a novel method to compute the information flow (IF) between different RSNs from resting-state magnetic resonance imaging. After hemodynamic response function blind deconvolution of all voxel signals, and under the hypothesis that RSNs define regions of interest, our method first uses principal component analysis to reduce dimensionality in each RSN to next compute IF (estimated here in terms of transfer entropy) between the different RSNs by systematically increasing k (the number of principal components used in the calculation). When k=1, this method is equivalent to computing IF using the average of all voxel activities in each RSN. For k≥1, our method calculates the k multivariate IF between the different RSNs. We find that the average IF among RSNs is dimension dependent, increasing from k=1 (i.e., the average voxel activity) up to a maximum occurring at k=5 and to finally decay to zero for k≥10. This suggests that a small number of components (close to five) is sufficient to describe the IF pattern between RSNs. Our method—addressing differences in IF between RSNs for any generic data—can be used for group comparison in health or disease. To illustrate this, we have calculated the inter-RSN IF in a data set of Alzheimer's disease (AD) to find that the most significant differences between AD and controls occurred for k=2, in addition to AD showing increased IF w.r.t. controls. The spatial localization of the k=2 component, within RSNs, allows the characterization of IF differences between AD and controls. PMID:26177254

  16. Flow distributions and spatial correlations in human brain capillary networks

    NASA Astrophysics Data System (ADS)

    Lorthois, Sylvie; Peyrounette, Myriam; Larue, Anne; Le Borgne, Tanguy

    2015-11-01

    The vascular system of the human brain cortex is composed of a space filling mesh-like capillary network connected upstream and downstream to branched quasi-fractal arterioles and venules. The distribution of blood flow rates in these networks may affect the efficiency of oxygen transfer processes. Here, we investigate the distribution and correlation properties of blood flow velocities from numerical simulations in large 3D human intra-cortical vascular network (10000 segments) obtained from an anatomical database. In each segment, flow is solved from a 1D non-linear model taking account of the complex rheological properties of blood flow in microcirculation to deduce blood pressure, blood flow and red blood cell volume fraction distributions throughout the network. The network structural complexity is found to impart broad and spatially correlated Lagrangian velocity distributions, leading to power law transit time distributions. The origins of this behavior (existence of velocity correlations in capillary networks, influence of the coupling with the feeding arterioles and draining veins, topological disorder, complex blood rheology) are studied by comparison with results obtained in various model capillary networks of controlled disorder. ERC BrainMicroFlow GA615102, ERC ReactiveFronts GA648377.

  17. Polysulfide flow batteries enabled by percolating nanoscale conductor networks.

    PubMed

    Fan, Frank Y; Woodford, William H; Li, Zheng; Baram, Nir; Smith, Kyle C; Helal, Ahmed; McKinley, Gareth H; Carter, W Craig; Chiang, Yet-Ming

    2014-01-01

    A new approach to flow battery design is demonstrated wherein diffusion-limited aggregation of nanoscale conductor particles at ∼1 vol % concentration is used to impart mixed electronic-ionic conductivity to redox solutions, forming flow electrodes with embedded current collector networks that self-heal after shear. Lithium polysulfide flow cathodes of this architecture exhibit electrochemical activity that is distributed throughout the volume of flow electrodes rather than being confined to surfaces of stationary current collectors. The nanoscale network architecture enables cycling of polysulfide solutions deep into precipitation regimes that historically have shown poor capacity utilization and reversibility and may thereby enable new flow battery designs of higher energy density and lower system cost. Lithium polysulfide half-flow cells operating in both continuous and intermittent flow mode are demonstrated for the first time.

  18. Actin Age Orchestrates Myosin-5 and Myosin-6 Runlengths

    PubMed Central

    Zimmermann, Dennis; Santos, Alicja; Kovar, David R.; Rock, Ronald S.

    2015-01-01

    Summary Unlike a static and immobile skeleton, the actin cytoskeleton is a highly dynamic network of filamentous actin (F-actin) polymers that continuously turn over. In addition to generating mechanical forces and sensing mechanical deformation, dynamic F-actin networks serve as cellular tracks for myosin motor traffic. However, much of our mechanistic understanding of processive myosins comes from in vitro studies where motility was studied on pre-assembled and artificially stabilized, static F-actin tracks. In this work, we examine the role of actin dynamics in single-molecule myosin motility using assembling F-actin and the two highly processive motors, myosin-5 and myosin-6. These two myosins have distinct functions in the cell and travel in opposite directions along actin filaments [1–3]. Myosin-5 walks towards the barbed ends of F-actin, traveling to sites of actin polymerization at the cell periphery [4]. Myosin-6 walks towards the pointed end of F-actin [5], traveling towards the cell center along older segments of the actin filament. We find that myosin-5 takes 1.3 to 1.5-fold longer runs on ADP•Pi (young) F-actin, while myosin-6 takes 1.7 to 3.6-fold longer runs along ADP (old) F-actin. These results suggest that conformational differences between ADP•Pi and ADP F-actin tailor these myosins to walk farther toward their preferred actin filament end. Taken together, these experiments define a new mechanism by which myosin traffic may sort to different F-actin networks depending on filament age. PMID:26190073

  19. Constructing minimum-cost flow-dependent networks

    NASA Astrophysics Data System (ADS)

    Thomas, Doreen A.; Weng, Jia F.

    2002-09-01

    In the construction of a communication network, the length of the network is an important but not unique factor determining the cost of the network. Among many possible network models, Gilbert proposed a flow-dependent model in which flow demands are assigned between each pair of points in a given point set A, and the cost per unit length of a link in the network is a function of the flow through the link. In this paper we first investigate the properties of this Gilbert model: the concavity of the cost function, decomposition, local minimality, the number of Steiner points and the maximum degree of Steiner points. Then we propose three heuristics for constructing minimum cost Gilbert networks. Two of them come from the fact that generally a minimum cost Gilbert network stands between two extremes: the complete network G(A) on A and the edge-weighted Steiner minimal tree W(A) on A. The first heuristic starts with G(A) and reduces the cost by splitting angles; the second one starts with both G(A) and W(A), and reduces the cost by selecting low cost paths. As a generalisation of the second heuristic, the third heuristic constructs a new Gilbert network of less cost by hybridising known Gilbert networks. Finally we discuss some considerations in practical applications.

  20. F-actin waves, actin cortex disassembly and focal exocytosis driven by actin-phosphoinositide positive feedback.

    PubMed

    Masters, Thomas A; Sheetz, Michael P; Gauthier, Nils C

    2016-04-01

    Actin polymerization is controlled by the phosphoinositide composition of the plasma membrane. However, the molecular mechanisms underlying the spatiotemporal regulation of actin network organization over extended length scales are still unclear. To observe phosphoinositide-dependent cytoskeletal dynamics we combined the model system of frustrated phagocytosis, total internal reflection microscopy and manipulation of the buffer tonicity. We found that macrophages interacting with IgG-coated glass substrates formed circular F-actin waves on their ventral surface enclosing a region of plasma membrane devoid of cortical actin. Plasma membrane free of actin cortex was strongly depleted of PI(4,5)P2 , but enriched in PI(3,4)P2 and displayed a fivefold increase in exocytosis. Wave formation could be promoted by application of a hypotonic shock. The actin waves were characteristic of a bistable wavefront at the boundary between the regions of membrane containing and lacking cortical actin. Phosphoinositide modifiers and RhoGTPase activities dramatically redistributed with respect to the wavefronts, which often exhibited spatial oscillations. Perturbation of either lipid or actin cytoskeleton-related pathways led to rapid loss of both the polarized lipid distribution and the wavefront. As waves travelled over the plasma membrane, wavefront actin was seen to rapidly polymerize and depolymerize at pre-existing clusters of FcγRIIA, coincident with rapid changes in lipid composition. Thus the potential of receptors to support rapid F-actin polymerization appears to depend acutely on the local concentrations of multiple lipid species. We propose that interdependence through positive feedback from the cytoskeleton to lipid modifiers leads to coordinated local cortex remodeling, focal exocytosis, and organizes extended actin networks.

  1. Myosin 1b promotes the formation of post-Golgi carriers by regulating actin assembly and membrane remodelling at the trans-Golgi network.

    PubMed

    Almeida, Claudia G; Yamada, Ayako; Tenza, Danièle; Louvard, Daniel; Raposo, Graça; Coudrier, Evelyne

    2011-06-12

    The function of organelles is intimately associated with rapid changes in membrane shape. By exerting force on membranes, the cytoskeleton and its associated motors have an important role in membrane remodelling. Actin and myosin 1 have been implicated in the invagination of the plasma membrane during endocytosis. However, whether myosin 1 and actin contribute to the membrane deformation that gives rise to the formation of post-Golgi carriers is unknown. Here we report that myosin 1b regulates the actin-dependent post-Golgi traffic of cargo, generates force that controls the assembly of F-actin foci and, together with the actin cytoskeleton, promotes the formation of tubules at the TGN. Our results provide evidence that actin and myosin 1 regulate organelle shape and uncover an important function for myosin 1b in the initiation of post-Golgi carrier formation by regulating actin assembly and remodelling TGN membranes.

  2. One dimensional modeling of blood flow in large networks

    NASA Astrophysics Data System (ADS)

    Wang, Xiaofei; Lagree, Pierre-Yves; Fullana, Jose-Maria; Lorthois, Sylvie; Institut de Mecanique des Fluides de Toulouse Collaboration

    2014-11-01

    A fast and valid simulation of blood flow in large networks of vessels can be achieved with a one-dimensional viscoelastic model. In this paper, we developed a parallel code with this model and computed several networks: a circle of arteries, a human systemic network with 55 arteries and a vascular network of mouse kidney with more than one thousand segments. The numerical results were verified and the speedup of parallel computing was tested on multi-core computers. The evolution of pressure distributions in all the networks were visualized and we can see clearly the propagation patterns of the waves. This provides us a convenient tool to simulate blood flow in networks.

  3. Overland flow erosion inferred from Martian channel network geometry

    NASA Astrophysics Data System (ADS)

    Seybold, Hansjörg; Kirchner, James

    2016-04-01

    The controversy about the origin of Mars' channel networks is almost as old as their discovery 150 years ago. Over the last few decades, new Mars probes have revealed more detailed structures in Martian The controversy about the origin of Mars' channel networks is almost as old as their discovery 150 years ago. Over the last few decades, new Mars probes have revealed more detailed structures in Martian drainage networks, and new studies suggest that Mars once had large volumes of surface water. But how this water flowed, and how it could have carved the channels, remains unclear. Simple scaling arguments show that networks formed by similar mechanisms should have similar branching angles on Earth and Mars, suggesting that Earth analogues can be informative here. A recent analysis of high-resolution data for the continental United States shows that climate leaves a characteristic imprint in the branching geometry of stream networks. Networks growing in humid regions have an average branching angle of α = 2π/5 = 72° [1], which is characteristic of network growth by groundwater sapping [2]. Networks in arid regions, where overland flow erosion is more dominant, show much smaller branching angles. Here we show that the channel networks on Mars have branching angles that resemble those created by surficial flows on Earth. This result implies that the growth of Martian channel networks was dominated by near-surface flow, and suggests that deeper infiltration was inhibited, potentially by permafrost or by impermeable weathered soils. [1] Climate's Watermark in the Geometry of River Networks, Seybold et al.; under review [2] Ramification of stream networks, Devauchelle et al.; PNAS (2012)

  4. GPCRs and actin-cytoskeleton dynamics.

    PubMed

    Vázquez-Victorio, Genaro; González-Espinosa, Claudia; Espinosa-Riquer, Zyanya P; Macías-Silva, Marina

    2016-01-01

    A multitude of physiological processes regulated by G protein-coupled receptors (GPCRs) signaling are accomplished by the participation of active rearrangements of the cytoskeleton. In general, it is common that a cross talk occurs among networks of microfilaments, microtubules, and intermediate filaments in order to reach specific cell responses. In particular, actin-cytoskeleton dynamics regulate processes such as cell shape, cell division, cell motility, and cell polarization, among others. This chapter describes the current knowledge about the regulation of actin-cytoskeleton dynamic by diverse GPCR signaling pathways, and also includes some protocols combining immunofluorescence and confocal microscopy for the visualization of the different rearrangements of the actin-cytoskeleton. We report how both the S1P-GPCR/G12/13/Rho/ROCK and glucagon-GPCR/Gs/cAMP axes induce differential actin-cytoskeleton rearrangements in epithelial cells. We also show that specific actin-binding molecules, like phalloidin and LifeAct, are very useful to analyze F-actin reorganization by confocal microscopy, and also that both molecules show similar results in fixed cells, whereas the anti-actin antibody is useful to detect both the G- and F-actin, as well as their compartmentalization. Thus, it is highly recommended to utilize different approaches to investigate the regulation of actin dynamics by GPCR signaling, with the aim to get a better picture of the phenomenon under study.

  5. Urban traffic-network performance: flow theory and simulation experiments

    SciTech Connect

    Williams, J.C.

    1986-01-01

    Performance models for urban street networks were developed to describe the response of a traffic network to given travel-demand levels. The three basic traffic flow variables, speed, flow, and concentration, are defined at the network level, and three model systems are proposed. Each system consists of a series of interrelated, consistent functions between the three basic traffic-flow variables as well as the fraction of stopped vehicles in the network. These models are subsequently compared with the results of microscopic simulation of a small test network. The sensitivity of one of the model systems to a variety of network features was also explored. Three categories of features were considered, with the specific features tested listed in parentheses: network topology (block length and street width), traffic control (traffic signal coordination), and traffic characteristics (level of inter-vehicular interaction). Finally, a fundamental issue concerning the estimation of two network-level parameters (from a nonlinear relation in the two-fluid theory) was examined. The principal concern was that of comparability of these parameters when estimated with information from a single vehicle (or small group of vehicles), as done in conjunction with previous field studies, and when estimated with network-level information (i.e., all the vehicles), as is possible with simulation.

  6. Flow-Based Network Analysis of the Caenorhabditis elegans Connectome

    PubMed Central

    Bacik, Karol A.; Schaub, Michael T.; Billeh, Yazan N.; Barahona, Mauricio

    2016-01-01

    We exploit flow propagation on the directed neuronal network of the nematode C. elegans to reveal dynamically relevant features of its connectome. We find flow-based groupings of neurons at different levels of granularity, which we relate to functional and anatomical constituents of its nervous system. A systematic in silico evaluation of the full set of single and double neuron ablations is used to identify deletions that induce the most severe disruptions of the multi-resolution flow structure. Such ablations are linked to functionally relevant neurons, and suggest potential candidates for further in vivo investigation. In addition, we use the directional patterns of incoming and outgoing network flows at all scales to identify flow profiles for the neurons in the connectome, without pre-imposing a priori categories. The four flow roles identified are linked to signal propagation motivated by biological input-response scenarios. PMID:27494178

  7. Bridging Minds: A Mixed Methodology to Assess Networked Flow.

    PubMed

    Galimberti, Carlo; Chirico, Alice; Brivio, Eleonora; Mazzoni, Elvis; Riva, Giuseppe; Milani, Luca; Gaggioli, Andrea

    2015-01-01

    The main goal of this contribution is to present a methodological framework to study Networked Flow, a bio-psycho-social theory of collective creativity applying it on creative processes occurring via a computer network. First, we draw on the definition of Networked Flow to identify the key methodological requirements of this model. Next, we present the rationale of a mixed methodology, which aims at combining qualitative, quantitative and structural analysis of group dynamics to obtain a rich longitudinal dataset. We argue that this integrated strategy holds potential for describing the complex dynamics of creative collaboration, by linking the experiential features of collaborative experience (flow, social presence), with the structural features of collaboration dynamics (network indexes) and the collaboration outcome (the creative product). Finally, we report on our experience with using this methodology in blended collaboration settings (including both face-to-face and virtual meetings), to identify open issues and provide future research directions.

  8. Edge anisotropy and the geometric perspective on flow networks

    NASA Astrophysics Data System (ADS)

    Molkenthin, Nora; Kutza, Hannes; Tupikina, Liubov; Marwan, Norbert; Donges, Jonathan F.; Feudel, Ulrike; Kurths, Jürgen; Donner, Reik V.

    2017-03-01

    Spatial networks have recently attracted great interest in various fields of research. While the traditional network-theoretic viewpoint is commonly restricted to their topological characteristics (often disregarding the existing spatial constraints), this work takes a geometric perspective, which considers vertices and edges as objects in a metric space and quantifies the corresponding spatial distribution and alignment. For this purpose, we introduce the concept of edge anisotropy and define a class of measures characterizing the spatial directedness of connections. Specifically, we demonstrate that the local anisotropy of edges incident to a given vertex provides useful information about the local geometry of geophysical flows based on networks constructed from spatio-temporal data, which is complementary to topological characteristics of the same flow networks. Taken both structural and geometric viewpoints together can thus assist the identification of underlying flow structures from observations of scalar variables.

  9. Incorporation of Condensation Heat Transfer in a Flow Network Code

    NASA Technical Reports Server (NTRS)

    Anthony, Miranda; Majumdar, Alok; McConnaughey, Paul K. (Technical Monitor)

    2001-01-01

    In this paper we have investigated the condensation of water vapor in a short tube. A numerical model of condensation heat transfer was incorporated in a flow network code. The flow network code that we have used in this paper is Generalized Fluid System Simulation Program (GFSSP). GFSSP is a finite volume based flow network code. Four different condensation models were presented in the paper. Soliman's correlation has been found to be the most stable in low flow rates which is of particular interest in this application. Another highlight of this investigation is conjugate or coupled heat transfer between solid or fluid. This work was done in support of NASA's International Space Station program.

  10. Clustering coefficient and periodic orbits in flow networks

    NASA Astrophysics Data System (ADS)

    Rodríguez-Méndez, Victor; Ser-Giacomi, Enrico; Hernández-García, Emilio

    2017-03-01

    We show that the clustering coefficient, a standard measure in network theory, when applied to flow networks, i.e., graph representations of fluid flows in which links between nodes represent fluid transport between spatial regions, identifies approximate locations of periodic trajectories in the flow system. This is true for steady flows and for periodic ones in which the time interval τ used to construct the network is the period of the flow or a multiple of it. In other situations, the clustering coefficient still identifies cyclic motion between regions of the fluid. Besides the fluid context, these ideas apply equally well to general dynamical systems. By varying the value of τ used to construct the network, a kind of spectroscopy can be performed so that the observation of high values of mean clustering at a value of τ reveals the presence of periodic orbits of period 3 τ , which impact phase space significantly. These results are illustrated with examples of increasing complexity, namely, a steady and a periodically perturbed model two-dimensional fluid flow, the three-dimensional Lorenz system, and the turbulent surface flow obtained from a numerical model of circulation in the Mediterranean sea.

  11. Do Brain Networks Evolve by Maximizing Their Information Flow Capacity?

    PubMed Central

    Antonopoulos, Chris G.; Srivastava, Shambhavi; Pinto, Sandro E. de S.; Baptista, Murilo S.

    2015-01-01

    We propose a working hypothesis supported by numerical simulations that brain networks evolve based on the principle of the maximization of their internal information flow capacity. We find that synchronous behavior and capacity of information flow of the evolved networks reproduce well the same behaviors observed in the brain dynamical networks of Caenorhabditis elegans and humans, networks of Hindmarsh-Rose neurons with graphs given by these brain networks. We make a strong case to verify our hypothesis by showing that the neural networks with the closest graph distance to the brain networks of Caenorhabditis elegans and humans are the Hindmarsh-Rose neural networks evolved with coupling strengths that maximize information flow capacity. Surprisingly, we find that global neural synchronization levels decrease during brain evolution, reflecting on an underlying global no Hebbian-like evolution process, which is driven by no Hebbian-like learning behaviors for some of the clusters during evolution, and Hebbian-like learning rules for clusters where neurons increase their synchronization. PMID:26317592

  12. Do Brain Networks Evolve by Maximizing Their Information Flow Capacity?

    PubMed

    Antonopoulos, Chris G; Srivastava, Shambhavi; Pinto, Sandro E de S; Baptista, Murilo S

    2015-08-01

    We propose a working hypothesis supported by numerical simulations that brain networks evolve based on the principle of the maximization of their internal information flow capacity. We find that synchronous behavior and capacity of information flow of the evolved networks reproduce well the same behaviors observed in the brain dynamical networks of Caenorhabditis elegans and humans, networks of Hindmarsh-Rose neurons with graphs given by these brain networks. We make a strong case to verify our hypothesis by showing that the neural networks with the closest graph distance to the brain networks of Caenorhabditis elegans and humans are the Hindmarsh-Rose neural networks evolved with coupling strengths that maximize information flow capacity. Surprisingly, we find that global neural synchronization levels decrease during brain evolution, reflecting on an underlying global no Hebbian-like evolution process, which is driven by no Hebbian-like learning behaviors for some of the clusters during evolution, and Hebbian-like learning rules for clusters where neurons increase their synchronization.

  13. Cascading dynamics with local weighted flow redistribution in interdependent networks

    NASA Astrophysics Data System (ADS)

    Qiu, Yuzhuo

    2013-07-01

    We study load cascading dynamics in a system composed of coupled interdependent networks while adopting a local weighted flow redistribution rule. We find that when the intra- or inter-connectivity increases, robustness against the cascade of load failures in the symmetrically coupled interdependent networks increases. In addition, when a failed link has to first split its flow asymmetrically to its neighbouring link groups according to the link types, even though there exists an optimal split, the robustness is lowered in contrast with the non-split situation. Furthermore, the optimal weighting mechanism in an isolated network no longer holds in interdependent networks. Finally, robustness against the cascade of load failures is not guaranteed to increase by making the distribution of the degree of intra-connectivity broader. We confirm these phenomena by theoretical analysis based on mean-field theory. Our findings might have great implications for preventing load-failure-induced local cascades in symmetrically coupled interdependent networks.

  14. Exact Convex Relaxation of Optimal Power Flow in Radial Networks

    SciTech Connect

    Gan, LW; Li, N; Topcu, U; Low, SH

    2015-01-01

    The optimal power flow (OPF) problem determines a network operating point that minimizes a certain objective such as generation cost or power loss. It is nonconvex. We prove that a global optimum of OPF can be obtained by solving a second-order cone program, under a mild condition after shrinking the OPF feasible set slightly, for radial power networks. The condition can be checked a priori, and holds for the IEEE 13, 34, 37, 123-bus networks and two real-world networks.

  15. Random fracture networks: percolation, geometry and flow

    NASA Astrophysics Data System (ADS)

    Adler, P. M.; Thovert, J. F.; Mourzenko, V. V.

    2015-12-01

    This paper reviews some of the basic properties of fracture networks. Most of the data can only be derived numerically, and to be useful they need to be rationalized, i.e., a large set of numbers should be replaced by a simple formula which is easy to apply for estimating orders of magnitude. Three major tools are found useful in this rationalization effort. First, analytical results can usually be derived for infinite fractures, a limit which corresponds to large densities. Second, the excluded volume and the dimensionless density prove crucial to gather data obtained at intermediate densities. Finally, shape factors can be used to further reduce the influence of fracture shapes. Percolation of fracture networks is of primary importance since this characteristic controls transport properties such as permeability. Recent numerical studies for various types of fracture networks (isotropic, anisotropic, heterogeneous in space, polydisperse, mixture of shapes) are summarized; the percolation threshold rho is made dimensionless by means of the excluded volume. A general correlation for rho is proposed as a function of the gyration radius. The statistical characteristics of the blocks which are cut in the solid matrix by the network are presented, since they control transfers between the porous matrix and the fractures. Results on quantities such as the volume, surface and number of faces are given and semi empirical relations are proposed. The possible intersection of a percolating network and of a cubic cavity is also summarized. This might be of importance for the underground storage of wastes. An approximate reasoning based on the excluded volume of the percolating cluster and of the cubic cavity is proposed. Finally, consequences on the permeability of fracture networks are briefly addressed. An empirical formula which verifies some theoretical properties is proposed.

  16. River flow mass exponents with fractal channel networks and rainfall

    USGS Publications Warehouse

    Troutman, B.M.; Over, T.M.

    2001-01-01

    An important problem in hydrologic science is understanding how river flow is influenced by rainfall properties and drainage basin characteristics. In this paper we consider one approach, the use of mass exponents, in examining the relation of river flow to rainfall and the channel network, which provides the primary conduit for transport of water to the outlet in a large basin. Mass exponents, which characterize the power-law behavior of moments as a function of scale, are ideally suited for defining scaling behavior of processes that exhibit a high degree of variability or intermittency. The main result in this paper is an expression relating the mass exponent of flow resulting from an instantaneous burst of rainfall to the mass exponents of spatial rainfall and that of the network width function. Spatial rainfall is modeled as a random multiplicative cascade and the channel network as a recursive replacement tree; these fractal models reproduce certain types of self-similar behavior seen in actual rainfall and networks. It is shown that under these modeling assumptions the scaling behavior of flow mirrors that of rainfall if rainfall is highly variable in space, and on the other hand flow mirrors the structure of the network if rainfall is not so highly variable. ?? 2001 Elsevier Science Ltd. All rights reserved.

  17. Actin-Regulator Feedback Interactions during Endocytosis

    PubMed Central

    Wang, Xinxin; Galletta, Brian J.; Cooper, John A.; Carlsson, Anders E.

    2016-01-01

    Endocytosis mediated by clathrin, a cellular process by which cells internalize membrane receptors and their extracellular ligands, is an important component of cell signaling regulation. Actin polymerization is involved in endocytosis in varying degrees depending on the cellular context. In yeast, clathrin-mediated endocytosis requires a pulse of polymerized actin and its regulators, which recruit and activate the Arp2/3 complex. In this article, we seek to identify the main protein-protein interactions that 1) cause actin and its regulators to appear in pulses, and 2) determine the effects of key mutations and drug treatments on actin and regulator assembly. We perform a joint modeling/experimental study of actin and regulator dynamics during endocytosis in the budding yeast Saccharomyces cerevisiae. We treat both a stochastic model that grows an explicit three-dimensional actin network, and a simpler two-variable Fitzhugh-Nagumo type model. The models include a negative-feedback interaction of F-actin onto the Arp2/3 regulators. Both models explain the pulse time courses and the effects of interventions on actin polymerization: the surprising increase in the peak F-actin count caused by reduced regulator branching activity, the increase in F-actin resulting from slowing of actin disassembly, and the increased Arp2/3 regulator lifetime resulting from latrunculin treatment. In addition, they predict that decreases in the regulator branching activity lead to increases in accumulation of regulators, and we confirmed this prediction with experiments on yeast harboring mutations in the Arp2/3 regulators, using quantitative fluorescence microscopy. Our experimental measurements suggest that the regulators act quasi-independently, in the sense that accumulation of a particular regulator is most strongly affected by mutations of that regulator, as opposed to the others. PMID:27028652

  18. Dendritic Actin Nucleation Causes Traveling Waves and Patches

    NASA Astrophysics Data System (ADS)

    Carlsson, Anders

    2010-03-01

    Reversible polymerization of the intracellular protein actin into semiflexible filaments is crucial for cell motion and environmental sensing. Recent studies have shown that polymerized actin can spontaneously form traveling waves and/or moving patches. I investigate possible mechanisms for such phenomena by numerically simulating the ``dendritic nucleation'' model of actin network growth. The simulations treat the growth of an actin network on a flat portion of a cell membrane, using a stochastic-growth method which calculates an explicit three-dimensional network structure. The calculations treat processes including filament growth, capping, branching, severing, and Brownian motion. The dynamics of membrane proteins stimulating actin polymerization are also included: they diffuse in the membrane, and detach/deactivate in the presence of polymerized actin. The simulations show three types of polymerized-actin behavior: 1) traveling waves, 2) coherently moving patches, and 3) random fluctuations with occasional moving patches. Wave formation is favored at low free-actin concentrations by a long reattachment time for the membrane proteins, and by weakness of the attractive interaction between filaments and the membrane. Raising the free-actin concentration results in a randomly varying distribution of polymerized actin. Lowering the free-actin concentration below the optimal value for waves causes the waves to break up into patches which, however, move coherently. Effects of similar magnitude are predicted when other intracellular protein concentrations are varied. Diffusion of the membrane proteins slows the waves, and, if fast enough, stops them completely, resulting in the formation of a static spot.

  19. Social networks and trade of services: modelling interregional flows with spatial and network autocorrelation effects

    NASA Astrophysics Data System (ADS)

    de la Mata, Tamara; Llano, Carlos

    2013-07-01

    Recent literature on border effect has fostered research on informal barriers to trade and the role played by network dependencies. In relation to social networks, it has been shown that intensity of trade in goods is positively correlated with migration flows between pairs of countries/regions. In this article, we investigate whether such a relation also holds for interregional trade of services. We also consider whether interregional trade flows in services linked with tourism exhibit spatial and/or social network dependence. Conventional empirical gravity models assume the magnitude of bilateral flows between regions is independent of flows to/from regions located nearby in space, or flows to/from regions related through social/cultural/ethic network connections. With this aim, we provide estimates from a set of gravity models showing evidence of statistically significant spatial and network (demographic) dependence in the bilateral flows of the trade of services considered. The analysis has been applied to the Spanish intra- and interregional monetary flows of services from the accommodation, restaurants and travel agencies for the period 2000-2009, using alternative datasets for the migration stocks and definitions of network effects.

  20. Loan and nonloan flows in the Australian interbank network

    NASA Astrophysics Data System (ADS)

    Sokolov, Andrey; Webster, Rachel; Melatos, Andrew; Kieu, Tien

    2012-05-01

    High-value transactions between banks in Australia are settled in the Reserve Bank Information and Transfer System (RITS) administered by the Reserve Bank of Australia. RITS operates on a real-time gross settlement (RTGS) basis and settles payments and transfers sourced from the SWIFT payment delivery system, the Austraclear securities settlement system, and the interbank transactions entered directly into RITS. In this paper, we analyse a dataset received from the Reserve Bank of Australia that includes all interbank transactions settled in RITS on an RTGS basis during five consecutive weekdays from 19 February 2007 inclusive, a week of relatively quiescent market conditions. The source, destination, and value of each transaction are known, which allows us to separate overnight loans from other transactions (nonloans) and reconstruct monetary flows between banks for every day in our sample. We conduct a novel analysis of the flow stability and examine the connection between loan and nonloan flows. Our aim is to understand the underlying causal mechanism connecting loan and nonloan flows. We find that the imbalances in the banks' exchange settlement funds resulting from the daily flows of nonloan transactions are almost exactly counterbalanced by the flows of overnight loans. The correlation coefficient between loan and nonloan imbalances is about -0.9 on most days. Some flows that persist over two consecutive days can be highly variable, but overall the flows are moderately stable in value. The nonloan network is characterised by a large fraction of persistent flows, whereas only half of the flows persist over any two consecutive days in the loan network. Moreover, we observe an unusual degree of coherence between persistent loan flow values on Tuesday and Wednesday. We probe static topological properties of the Australian interbank network and find them consistent with those observed in other countries.

  1. An artificial neural network based groundwater flow and transport simulator

    SciTech Connect

    Krom, T.D.; Rosbjerg, D.

    1998-07-01

    Artificial neural networks are investigated as a tool for the simulation of contaminant loss and recovery in three-dimensional heterogeneous groundwater flow and contaminant transport modeling. These methods have useful applications in expert system development, knowledge base development and optimization of groundwater pollution remediation. The numerical model runs used to develop the artificial neural networks can be re-used to develop artificial neural networks to address alternative optimization problems or changed formulations of the constraints and or objective function under optimization. Artificial neural networks have been analyzed with the goal of estimating objectives which normally require the use of traditional flow and transport codes: such as contaminant recovery, contaminant loss (unrecovered) and remediation failure. The inputs to the artificial neutral networks are variable pumping withdrawal rates at fairly unconstrained 3-D locations. A forward-feed backwards error propagation artificial neural network architecture is used. The significance of the size of the training set, network architecture, and network weight optimization algorithm with respect to the estimation accuracy and objective are shown to be important. Finally, the quality of the weight optimization is studied via cross-validation techniques. This is demonstrated to be a useful method for judging training performance for strongly under-described systems.

  2. The stationary flow in a heterogeneous compliant vessel network

    NASA Astrophysics Data System (ADS)

    Filoche, Marcel; Florens, Magali

    2011-09-01

    We introduce a mathematical model of the hydrodynamic transport into systems consisting in a network of connected flexible pipes. In each pipe of the network, the flow is assumed to be steady and one-dimensional. The fluid-structure interaction is described through tube laws which relate the pipe diameter to the pressure difference across the pipe wall. We show that the resulting one-dimensional differential equation describing the flow in the pipe can be exactly integrated if one is able to estimate averages of the Reynolds number along the pipe. The differential equation is then transformed into a non linear scalar equation relating pressures at both ends of the pipe and the flow rate in the pipe. These equations are coupled throughout the network with mass conservation equations for the flow and zero pressure losses at the branching points of the network. This allows us to derive a general model for the computation of the flow into very large inhomogeneous networks consisting of several thousands of flexible pipes. This model is then applied to perform numerical simulations of the human lung airway system at exhalation. The topology of the system and the tube laws are taken from morphometric and physiological data in the literature. We find good qualitative and quantitative agreement between the simulation results and flow-volume loops measured in real patients. In particular, expiratory flow limitation which is an essential characteristic of forced expiration is found to be well reproduced by our simulations. Finally, a mathematical model of a pathology (Chronic Obstructive Pulmonary Disease) is introduced which allows us to quantitatively assess the influence of a moderate or severe alteration of the airway compliances.

  3. Sample EP Flow Analysis of Severely Damaged Networks

    SciTech Connect

    Werley, Kenneth Alan; McCown, Andrew William

    2016-10-12

    These are slides for a presentation at the working group meeting of the WESC SREMP Software Product Integration Team on sample EP flow analysis of severely damaged networks. The following topics are covered: ERCOT EP Transmission Model; Zoomed in to Houston and Overlaying StreetAtlas; EMPACT Solve/Dispatch/Shedding Options; QACS BaseCase Power Flow Solution; 3 Substation Contingency; Gen. & Load/100 Optimal Dispatch; Dispatch Results; Shed Load for Low V; Network Damage Summary; Estimated Service Areas (Potential); Estimated Outage Areas (potential).

  4. Field-effect Flow Control in Polymer Microchannel Networks

    NASA Technical Reports Server (NTRS)

    Sniadecki, Nathan; Lee, Cheng S.; Beamesderfer, Mike; DeVoe, Don L.

    2003-01-01

    A new Bio-MEMS electroosmotic flow (EOF) modulator for plastic microchannel networks has been developed. The EOF modulator uses field-effect flow control (FEFC) to adjust the zeta potential at the Parylene C microchannel wall. By setting a differential EOF pumping rate in two of the three microchannels at a T-intersection with EOF modulators, the induced pressure at the intersection generated pumping in the third, field-free microchannel. The EOF modulators are able to change the magnitude and direction of the pressure pumping by inducing either a negative or positive pressure at the intersection. The flow velocity is tracked by neutralized fluorescent microbeads in the microchannels. The proof-of-concept of the EOF modulator described here may be applied to complex plastic ,microchannel networks where individual microchannel flow rates are addressable by localized induced-pressure pumping.

  5. Analysis of Cortical Flow Models In Vivo

    PubMed Central

    Benink, Hélène A.; Mandato, Craig A.; Bement, William M.

    2000-01-01

    Cortical flow, the directed movement of cortical F-actin and cortical organelles, is a basic cellular motility process. Microtubules are thought to somehow direct cortical flow, but whether they do so by stimulating or inhibiting contraction of the cortical actin cytoskeleton is the subject of debate. Treatment of Xenopus oocytes with phorbol 12-myristate 13-acetate (PMA) triggers cortical flow toward the animal pole of the oocyte; this flow is suppressed by microtubules. To determine how this suppression occurs and whether it can control the direction of cortical flow, oocytes were subjected to localized manipulation of either the contractile stimulus (PMA) or microtubules. Localized PMA application resulted in redirection of cortical flow toward the site of application, as judged by movement of cortical pigment granules, cortical F-actin, and cortical myosin-2A. Such redirected flow was accelerated by microtubule depolymerization, showing that the suppression of cortical flow by microtubules is independent of the direction of flow. Direct observation of cortical F-actin by time-lapse confocal analysis in combination with photobleaching showed that cortical flow is driven by contraction of the cortical F-actin network and that microtubules suppress this contraction. The oocyte germinal vesicle serves as a microtubule organizing center in Xenopus oocytes; experimental displacement of the germinal vesicle toward the animal pole resulted in localized flow away from the animal pole. The results show that 1) cortical flow is directed toward areas of localized contraction of the cortical F-actin cytoskeleton; 2) microtubules suppress cortical flow by inhibiting contraction of the cortical F-actin cytoskeleton; and 3) localized, microtubule-dependent suppression of actomyosin-based contraction can control the direction of cortical flow. We discuss these findings in light of current models of cortical flow. PMID:10930453

  6. Lagrangian Flow networks: a new way to characterize transport and connectivity in geophysical flows

    NASA Astrophysics Data System (ADS)

    Ser-Giacomi, Enrico; Hernandez-Garcia, Emilio; Lopez, Cristobal; Rossi, Vincent; Vasile, Ruggero

    2015-04-01

    Water and air transport are among the basic processes shaping the climate of our planet. Heat and salinity fluxes change sea water density, and thus drive the global thermohaline circulation. Atmospheric winds force the ocean motion, and also transport moisture, heat or chemicals, impacting the regional climate. We describe transport among different regions of the ocean or the atmosphere by flow networks, giving a discrete and robust representation of the fluid advection dynamics. We use network-theory tools to gain insights into transport problem. Local and global features of the networks are extracted from many numerical experiments to give a time averaged description of the system. Classical concepts like dispersion, mixing and connectivity are finally related to a set of network-like objects contributing to build a "dictionary" between network measures and physical quantities in geophysical flows.

  7. Evolution of karst conduit networks in transition from pressurised flow to free surface flow

    NASA Astrophysics Data System (ADS)

    Perne, M.; Covington, M. D.; Gabrovšek, F.

    2014-06-01

    We present a novel modelling approach to study the evolution of conduit networks in soluble rocks. Unlike the models presented so far, the model allows a transition from pressurised (pipe) flow to a free surface (open channel) flow in evolving discrete conduit networks. It calculates flow, solute transport and dissolutional enlargement within each time step and steps through time until a stable flow pattern establishes. The flow in each time step is calculated by calling the EPA Storm Water Management Model (EPA SWMM), which efficiently solves the 1-D Saint Venant equations in a network of conduits. We present several cases with low dip and sub-vertical networks to demonstrate mechanisms of flow pathway selection. In low dip models the inputs were randomly distributed to several junctions. The evolution of pathways progresses upstream: initially pathways linking outlets to the closest inputs evolve fastest because the gradient along these pathways is largest. When a pathway efficiently drains the available recharge, the head drop along the pathway attracts flow from the neighbouring upstream junctions and new connecting pathways evolve. The mechanism progresses from the output boundary inwards until all inputs are connected to the stable flow system. In the pressurised phase, each junction is drained by at least one conduit, but only one conduit remains active in the vadose phase. The selection depends on the initial geometry of a junction, initial distribution of diameters, the evolution in a pressurised regime, and on the dip of the conduits, which plays an important role in vadose entrenchment. In high dip networks, the vadose zone propagates downwards and inwards from the rim of the massif. When a network with randomly distributed initial diameters is supplied with concentrated recharge from the adjacent area, the sink point regresses up upstream along junctions connected to the prominent pathways. Large conductive structures provide deep penetration of high

  8. Resistive Network Optimal Power Flow: Uniqueness and Algorithms

    SciTech Connect

    Tan, CW; Cai, DWH; Lou, X

    2015-01-01

    The optimal power flow (OPF) problem minimizes the power loss in an electrical network by optimizing the voltage and power delivered at the network buses, and is a nonconvex problem that is generally hard to solve. By leveraging a recent development on the zero duality gap of OPF, we propose a second-order cone programming convex relaxation of the resistive network OPF, and study the uniqueness of the optimal solution using differential topology, especially the Poincare-Hopf Index Theorem. We characterize the global uniqueness for different network topologies, e.g., line, radial, and mesh networks. This serves as a starting point to design distributed local algorithms with global behaviors that have low complexity, are computationally fast, and can run under synchronous and asynchronous settings in practical power grids.

  9. Interest communities and flow roles in directed networks: the Twitter network of the UK riots

    PubMed Central

    Beguerisse-Díaz, Mariano; Garduño-Hernández, Guillermo; Vangelov, Borislav; Yaliraki, Sophia N.; Barahona, Mauricio

    2014-01-01

    Directionality is a crucial ingredient in many complex networks in which information, energy or influence are transmitted. In such directed networks, analysing flows (and not only the strength of connections) is crucial to reveal important features of the network that might go undetected if the orientation of connections is ignored. We showcase here a flow-based approach for community detection through the study of the network of the most influential Twitter users during the 2011 riots in England. Firstly, we use directed Markov Stability to extract descriptions of the network at different levels of coarseness in terms of interest communities, i.e. groups of nodes within which flows of information are contained and reinforced. Such interest communities reveal user groupings according to location, profession, employer and topic. The study of flows also allows us to generate an interest distance, which affords a personalized view of the attention in the network as viewed from the vantage point of any given user. Secondly, we analyse the profiles of incoming and outgoing long-range flows with a combined approach of role-based similarity and the novel relaxed minimum spanning tree algorithm to reveal that the users in the network can be classified into five roles. These flow roles go beyond the standard leader/follower dichotomy and differ from classifications based on regular/structural equivalence. We then show that the interest communities fall into distinct informational organigrams characterized by a different mix of user roles reflecting the quality of dialogue within them. Our generic framework can be used to provide insight into how flows are generated, distributed, preserved and consumed in directed networks. PMID:25297320

  10. Interest communities and flow roles in directed networks: the Twitter network of the UK riots.

    PubMed

    Beguerisse-Díaz, Mariano; Garduño-Hernández, Guillermo; Vangelov, Borislav; Yaliraki, Sophia N; Barahona, Mauricio

    2014-12-06

    Directionality is a crucial ingredient in many complex networks in which information, energy or influence are transmitted. In such directed networks, analysing flows (and not only the strength of connections) is crucial to reveal important features of the network that might go undetected if the orientation of connections is ignored. We showcase here a flow-based approach for community detection through the study of the network of the most influential Twitter users during the 2011 riots in England. Firstly, we use directed Markov Stability to extract descriptions of the network at different levels of coarseness in terms of interest communities, i.e. groups of nodes within which flows of information are contained and reinforced. Such interest communities reveal user groupings according to location, profession, employer and topic. The study of flows also allows us to generate an interest distance, which affords a personalized view of the attention in the network as viewed from the vantage point of any given user. Secondly, we analyse the profiles of incoming and outgoing long-range flows with a combined approach of role-based similarity and the novel relaxed minimum spanning tree algorithm to reveal that the users in the network can be classified into five roles. These flow roles go beyond the standard leader/follower dichotomy and differ from classifications based on regular/structural equivalence. We then show that the interest communities fall into distinct informational organigrams characterized by a different mix of user roles reflecting the quality of dialogue within them. Our generic framework can be used to provide insight into how flows are generated, distributed, preserved and consumed in directed networks.

  11. Relationship between supergranulation flows, magnetic cancellation and network flares

    NASA Astrophysics Data System (ADS)

    Attie, R.; Innes, D. E.; Solanki, S. K.; Glassmeier, K. H.

    2016-11-01

    Context. Photospheric flows create a network of often mixed-polarity magnetic field in the quiet Sun, where small-scale eruptions and network flares are commonly seen. Aims: The aim of this paper is (1) to describe the characteristics of the flows that lead to these energy releases, (2) to quantify the energy build up due to photospheric flows acting on the magnetic field, and (3) to assess its contribution to the energy of small-scale, short-lived X-ray flares in the quiet Sun. Methods: We used photospheric and X-ray data from the SoHO and Hinode spacecraft combined with tracking algorithms to analyse the evolution of five network flares. The energy of the X-ray emitting thermal plasma is compared with an estimate of the energy built up due to converging and sheared flux. Results: Quiet-Sun network flares occur above sites of converging opposite-polarity magnetic flux that are often found on the outskirts of network cell junctions, sometimes with observable vortex-like motion. In all studied flares the thermal energy was more than an order of magnitude higher than the magnetic free energy of the converging flux model. The energy in the sheared field was always higher than in the converging flux but still lower than the thermal energy. Conclusions: X-ray network flares occur at sites of magnetic energy dissipation. The energy is probably built up by supergranular flows causing systematic shearing of the magnetic field. This process appears more efficient near the junction of the network lanes. Since this work relies on 11 case studies, our results call for a follow-up statistical analysis to test our hypothesis throughout the quiet Sun.

  12. Distributed actin turnover in the lamellipodium and FRAP kinetics.

    PubMed

    Smith, Matthew B; Kiuchi, Tai; Watanabe, Naoki; Vavylonis, Dimitrios

    2013-01-08

    Studies of actin dynamics at the leading edge of motile cells with single-molecule speckle (SiMS) microscopy have shown a broad distribution of EGFP-actin speckle lifetimes and indicated actin polymerization and depolymerization over an extended region. Other experiments using FRAP with the same EGFP-actin as a probe have suggested, by contrast, that polymerization occurs exclusively at the leading edge. We performed FRAP experiments on XTC cells to compare SiMS to FRAP on the same cell type. We used speckle statistics obtained by SiMS to model the steady-state distribution and kinetics of actin in the lamellipodium. We demonstrate that a model with a single diffuse actin species is in good agreement with FRAP experiments. A model including two species of diffuse actin provides an even better agreement. The second species consists of slowly diffusing oligomers that associate to the F-actin network throughout the lamellipodium or break up into monomers after a characteristic time. Our work motivates studies to test the presence and composition of slowly diffusing actin species that may contribute to local remodeling of the actin network and increase the amount of soluble actin.

  13. Pharmacological characterization of actin-binding (-)-doliculide.

    PubMed

    Foerster, Florian; Braig, Simone; Chen, Tao; Altmann, Karl-Heinz; Vollmar, Angelika M

    2014-09-15

    Natural compounds offer a broad spectrum of potential drug candidates against human malignancies. Several cytostatic drugs, which are in clinical use for decades, derive directly from natural sources or are synthetically optimized derivatives of natural lead structures. An eukaryote target molecule to which many natural derived anti-cancer drugs bind to is the microtubule network. Of similar importance for the cell is the actin cytoskeleton, responsible for cell movements, migration of cells and cytokinesis. Nature provides also a broad range of compounds directed against actin as intracellular target, but none of these actin-targeting compounds has ever been brought to clinical trials. One reason why actin-binding compounds have not yet been considered for further clinical investigations is that little is known about their pharmacological properties in cancer cells. Herein, we focused on the closer characterization of doliculide, an actin binding natural compound of marine origin in the breast cancer cell lines MCF7 and MDA-MB-231. We used fluorescence-recovery-after-photobleaching (FRAP) analysis to determine doliculide's early effects on the actin cytoskeleton and rhodamin-phalloidin staining for long-term effects on the actin CSK. After validating the disruption of the actin network, we further investigated the functional effects of doliculide. Doliculide treatment leads to inhibition of proliferation and impairs the migratory potential. Finally, we could also show that doliculide leads to the induction of apoptosis in both cell lines. Our data for the first time provide a closer characterization of doliculide in breast cancer cells and propagate doliculide for further investigations as lead structure and potential therapeutic option as actin-targeting compound.

  14. Actin binding domain of filamin distinguishes posterior from anterior actin filaments in migrating Dictyostelium cells

    PubMed Central

    Shibata, Keitaro; Nagasaki, Akira; Adachi, Hiroyuki; Uyeda, Taro Q. P.

    2016-01-01

    Actin filaments in different parts of a cell interact with specific actin binding proteins (ABPs) and perform different functions in a spatially regulated manner. However, the mechanisms of those spatially-defined interactions have not been fully elucidated. If the structures of actin filaments differ in different parts of a cell, as suggested by previous in vitro structural studies, ABPs may distinguish these structural differences and interact with specific actin filaments in the cell. To test this hypothesis, we followed the translocation of the actin binding domain of filamin (ABDFLN) fused with photoswitchable fluorescent protein (mKikGR) in polarized Dictyostelium cells. When ABDFLN-mKikGR was photoswitched in the middle of a polarized cell, photoswitched ABDFLN-mKikGR rapidly translocated to the rear of the cell, even though actin filaments were abundant in the front. The speed of translocation (>3 μm/s) was much faster than that of the retrograde flow of cortical actin filaments. Rapid translocation of ABDFLN-mKikGR to the rear occurred normally in cells lacking GAPA, the only protein, other than actin, known to bind ABDFLN. We suggest that ABDFLN recognizes a certain feature of actin filaments in the rear of the cell and selectively binds to them, contributing to the posterior localization of filamin.

  15. A Maximal Flow Approach to Dynamic Routing in Communication Networks,

    DTIC Science & Technology

    1980-05-01

    of nodes. In Appendix B we provide a computer program in Fortran for finding the maximal flow in these networks, based on the algorithm of Edmons and... Edmons and Karp is implemented by a Fortran Subroutine called MAXFL. The algorithm finds the shortest path between source and destination on which an

  16. Encounter Complexes for Clustering Network Flow (Briefing Charts)

    DTIC Science & Technology

    2015-01-01

    JAN 2015 2. REPORT TYPE 3. DATES COVERED 00-00-2015 to 00-00-2015 4. TITLE AND SUBTITLE Encounter Complexes For Clustering Network Flow 5a...2015. 14. ABSTRACT 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT Same as Report (SAR) 18. NUMBER OF PAGES 37

  17. A statistically inferred microRNA network identifies breast cancer target miR-940 as an actin cytoskeleton regulator

    NASA Astrophysics Data System (ADS)

    Bhajun, Ricky; Guyon, Laurent; Pitaval, Amandine; Sulpice, Eric; Combe, Stéphanie; Obeid, Patricia; Haguet, Vincent; Ghorbel, Itebeddine; Lajaunie, Christian; Gidrol, Xavier

    2015-02-01

    MiRNAs are key regulators of gene expression. By binding to many genes, they create a complex network of gene co-regulation. Here, using a network-based approach, we identified miRNA hub groups by their close connections and common targets. In one cluster containing three miRNAs, miR-612, miR-661 and miR-940, the annotated functions of the co-regulated genes suggested a role in small GTPase signalling. Although the three members of this cluster targeted the same subset of predicted genes, we showed that their overexpression impacted cell fates differently. miR-661 demonstrated enhanced phosphorylation of myosin II and an increase in cell invasion, indicating a possible oncogenic miRNA. On the contrary, miR-612 and miR-940 inhibit phosphorylation of myosin II and cell invasion. Finally, expression profiling in human breast tissues showed that miR-940 was consistently downregulated in breast cancer tissues

  18. Enhancing debris flow modeling parameters integrating Bayesian networks

    NASA Astrophysics Data System (ADS)

    Graf, C.; Stoffel, M.; Grêt-Regamey, A.

    2009-04-01

    Applied debris-flow modeling requires suitably constraint input parameter sets. Depending on the used model, there is a series of parameters to define before running the model. Normally, the data base describing the event, the initiation conditions, the flow behavior, the deposition process and mainly the potential range of possible debris flow events in a certain torrent is limited. There are only some scarce places in the world, where we fortunately can find valuable data sets describing event history of debris flow channels delivering information on spatial and temporal distribution of former flow paths and deposition zones. Tree-ring records in combination with detailed geomorphic mapping for instance provide such data sets over a long time span. Considering the significant loss potential associated with debris-flow disasters, it is crucial that decisions made in regard to hazard mitigation are based on a consistent assessment of the risks. This in turn necessitates a proper assessment of the uncertainties involved in the modeling of the debris-flow frequencies and intensities, the possible run out extent, as well as the estimations of the damage potential. In this study, we link a Bayesian network to a Geographic Information System in order to assess debris-flow risk. We identify the major sources of uncertainty and show the potential of Bayesian inference techniques to improve the debris-flow model. We model the flow paths and deposition zones of a highly active debris-flow channel in the Swiss Alps using the numerical 2-D model RAMMS. Because uncertainties in run-out areas cause large changes in risk estimations, we use the data of flow path and deposition zone information of reconstructed debris-flow events derived from dendrogeomorphological analysis covering more than 400 years to update the input parameters of the RAMMS model. The probabilistic model, which consistently incorporates this available information, can serve as a basis for spatial risk

  19. Underground stope optimization with network flow method

    NASA Astrophysics Data System (ADS)

    Bai, Xiaoyu; Marcotte, Denis; Simon, Richard

    2013-03-01

    A new algorithm to optimize stope design for the sublevel stoping mining method is described. The model is based on a cylindrical coordinate defined around the initial vertical raise. Geotechnical constraints on hanging wall and footwall slopes are translated as precedence relations between blocks in the cylindrical coordinate system. Two control parameters with clear engineering meaning are defined to further constrain the solution: (a) the maximum distance of a block from the raise and (b) the horizontal width required to bring the farthest block to the raise. The graph obtained is completed by the addition of a source and a sink node allowing to transform the optimization program to a problem of maximum flow over the graph. The (conditional) optimal stope corresponding to the current raise location and height is obtained. The best location and height for the raise are determined by global optimization. The performance of the algorithm is evaluated with three simple synthetic deposits and one real deposit. Comparison is made with the floating stope technique. The results show that the algorithm effectively meets the geotechnical constraints and control parameters, and produce realistic optimal stope for engineering use.

  20. International Trade Modelling Using Open Flow Networks: A Flow-Distance Based Analysis.

    PubMed

    Shen, Bin; Zhang, Jiang; Li, Yixiao; Zheng, Qiuhua; Li, Xingsen

    2015-01-01

    This paper models and analyzes international trade flows using open flow networks (OFNs) with the approaches of flow distances, which provide a novel perspective and effective tools for the study of international trade. We discuss the establishment of OFNs of international trade from two coupled viewpoints: the viewpoint of trading commodity flow and that of money flow. Based on the novel model with flow distance approaches, meaningful insights are gained. First, by introducing the concepts of trade trophic levels and niches, countries' roles and positions in the global supply chains (or value-added chains) can be evaluated quantitatively. We find that the distributions of trading "trophic levels" have the similar clustering pattern for different types of commodities, and summarize some regularities between money flow and commodity flow viewpoints. Second, we find that active and competitive countries trade a wide spectrum of products, while inactive and underdeveloped countries trade a limited variety of products. Besides, some abnormal countries import many types of goods, which the vast majority of countries do not need to import. Third, harmonic node centrality is proposed and we find the phenomenon of centrality stratification. All the results illustrate the usefulness of the model of OFNs with its network approaches for investigating international trade flows.

  1. International Trade Modelling Using Open Flow Networks: A Flow-Distance Based Analysis

    PubMed Central

    Shen, Bin; Zhang, Jiang; Li, Yixiao; Zheng, Qiuhua; Li, Xingsen

    2015-01-01

    This paper models and analyzes international trade flows using open flow networks (OFNs) with the approaches of flow distances, which provide a novel perspective and effective tools for the study of international trade. We discuss the establishment of OFNs of international trade from two coupled viewpoints: the viewpoint of trading commodity flow and that of money flow. Based on the novel model with flow distance approaches, meaningful insights are gained. First, by introducing the concepts of trade trophic levels and niches, countries’ roles and positions in the global supply chains (or value-added chains) can be evaluated quantitatively. We find that the distributions of trading “trophic levels” have the similar clustering pattern for different types of commodities, and summarize some regularities between money flow and commodity flow viewpoints. Second, we find that active and competitive countries trade a wide spectrum of products, while inactive and underdeveloped countries trade a limited variety of products. Besides, some abnormal countries import many types of goods, which the vast majority of countries do not need to import. Third, harmonic node centrality is proposed and we find the phenomenon of centrality stratification. All the results illustrate the usefulness of the model of OFNs with its network approaches for investigating international trade flows. PMID:26569618

  2. Time-resolved studies of actin organization by multivalent ions and actin-binding proteins

    NASA Astrophysics Data System (ADS)

    Hwee Lai, Ghee; Purdy, Kirstin; Bartles, James R.; Chee Lai Wong, Gerard

    2007-03-01

    Actin is one of the principal components in the eukaryotic cytoskeleton, the architecture of which is highly regulated for a wide range of biological functions. In the presence of multivalent salts or actin-binding proteins, it is known that F-actin can organize into bundles or networks. In this work, we use time-resolved confocal microscopy to study the dynamics of actin bundle growth induced by multivalent ions and by espin, a prototypical actin binding protein that is known to induce bundles. For divalent ion induced bundles, we observe a rapid lateral saturation followed by longitudinal growth of bundles, in sharp contrast to the bundling mechanism of espin, which favors finite length bundles.

  3. Actin-Based Feedback Circuits in Cell Migration and Endocytosis

    NASA Astrophysics Data System (ADS)

    Wang, Xinxin

    In this thesis, we study the switch and pulse functions of actin during two important cellular processes, cell migration and endocytosis. Actin is an abundant protein that can polymerize to form a dendritic network. The actin network can exert force to push or bend the cell membrane. During cell migration, the actin network behaves like a switch, assembling mostly at one end or at the other end. The end with the majority of the actin network is the leading edge, following which the cell can persistently move in the same direction. The other end, with the minority of the actin network, is the trailing edge, which is dragged by the cell as it moves forward. When subjected to large fluctuations or external stimuli, the leading edge and the trailing edge can interchange and change the direction of motion, like a motion switch. Our model of the actin network in a cell reveals that mechanical force is crucial for forming the motion switch. We find a transition from single state symmetric behavior to switch behavior, when tuning parameters such as the force. The model is studied by both stochastic simulations, and a set of rate equations that are consistent with the simulations. Endocytosis is a process by which cells engulf extracellular substances and recycle the cell membrane. In yeast cells, the actin network is transiently needed to overcome the pressure difference across the cell membrane caused by turgor pressure. The actin network behaves like a pulse, which assembles and then disassembles within about 30 seconds. Using a stochastic model, we reproduce the pulse behaviors of the actin network and one of its regulatory proteins, Las17. The model matches green fluorescence protein (GFP) experiments for wild-type cells. The model also predicts some phenotypes that modify or diminish the pulse behavior. The phenotypes are verified with both experiments performed at Washington University and with other groups' experiments. We find that several feedback mechanisms are

  4. Simulation model for flow of neutrophils in pulmonary capillary network.

    PubMed

    Shirai, Atsushi; Fujita, Ryo; Hayase, Toshiyuki

    2005-01-01

    The concentration of neutrophils in the pulmonary microvasculature is higher than in systemic large vessels. It is thought that the high concentration of neutrophils facilitates their effective recruitment to sites of inflammation. Thus, in order to understand the role of neutrophils in the immune system, it is important to clarify their flow characteristics in the pulmonary microvasculature. In previous studies, we numerically investigated the motion of a neutrophil through a single capillary segment modeled by a moderate axisymmetric constriction in a straight pipe, developing a mathematical model for the prediction of the transit time of the cell through the segment. In the present study, this model was extended for application to network simulation of the motion of neutrophils. First, we numerically investigated shape recovery of a neutrophil after expulsion from a narrow capillary segment. This process was modeled in two different phases: elastic recovery and viscous recovery. The resulting model was combined with the previously developed models to simulate motion of the cells and plasma flow in a capillary network. A numerical simulation of the motion of neutrophils and plasma flow in a simple lattice capillary network showed that neutrophils were widely dispersed in the network with an increased concentration.

  5. Regional myocardial flow heterogeneity explained with fractal networks

    PubMed Central

    VAN BEEK, JOHANNES H. G. M.; ROGER, STEPHEN A.; BASSINGTHWAIGHTE, JAMES B.

    2010-01-01

    There is explain how the distribution of flow broadens with an increase in the spatial resolution of the measurement, we developed fractal models for vascular networks. A dichotomous branching network of vessels represents the arterial tree and connects to a similar venous network. A small difference in vessel lengths and radii between the two daughter vessels, with the same degree of asymmetry at each branch generation, predicts the dependence of the relative dispersion (mean ± SD) on spatial resolution of the perfusion measurement reasonably well. When the degree of asymmetry increases with successive branching, a better fit to data on sheep and baboons results. When the asymmetry is random, a satisfactory fit is found. These models show that a difference in flow of 20% between the daughter vessels at a branch point gives a relative dispersion of flow of ~30% when the heart is divided into 100–200 pieces. Although these simple models do not represent anatomic features accurately, they provide valuable insight on the heterogeneity of flow within the heart. PMID:2589520

  6. Demonstration of prominent actin filaments in the root columella

    NASA Technical Reports Server (NTRS)

    Collings, D. A.; Zsuppan, G.; Allen, N. S.; Blancaflor, E. B.; Brown, C. S. (Principal Investigator)

    2001-01-01

    The distribution of actin filaments within the gravity-sensing columella cells of plant roots remains poorly understood, with studies over numerous years providing inconsistent descriptions of actin organization in these cells. This uncertainty in actin organization, and thus in actin's role in graviperception and gravisignaling, has led us to investigate actin arrangements in the columella cells of Zea mays L., Medicago truncatula Gaertn., Linum usitatissiilium L. and Nicotianla benthamiana Domin. Actin organization was examined using a combination of optimized immunofluorescence techniques, and an improved fluorochrome-conjugated phalloidin labeling method reliant on 3-maleimidobenzoyl-N-hydroxy-succinimide ester (MBS) cross-linking combined with glycerol permeabilization. Confocal microscopy of root sections labeled with anti-actin antibodies revealed patterns suggestive of actin throughout the columella region. These patterns included short and fragmented actin bundles, fluorescent rings around amyloplasts and intense fluorescence originating from the nucleus. Additionally, confocal microscopy of MBS-stabilized and Alexa Fluor-phalloidin-labeled root sections revealed a previously undetected state of actin organization in the columella. Discrete actin structures surrounded the amyloplasts and prominent actin cables radiated from the nuclear surface toward the cell periphery. Furthermore, the cortex of the columella cells contained fine actin bundles (or single filaments) that had a predominant transverse orientation. We also used confocal microscopy of plant roots expressing endoplasmic reticulum (ER)-targeted green fluorescent protein to demonstrate rapid ER movements within the columella cells, suggesting that the imaged actin network is functional. The successful identification of discrete actin structures in the root columella cells forms the perception and signaling.

  7. Ultrasensitive quantification of cerebral capillary flow networks and dynamics

    NASA Astrophysics Data System (ADS)

    You, Jiang; Park, Ki; Du, Congwu; Pan, Yingtian

    2015-03-01

    Ultra-high resolution optical Doppler coherence tomography (μODT) is a promising tool for brain functional imaging. However, its sensitivity for detecting slow flows in capillary beds may limit its utility in visualizing and quantifying subtle changes in brain microcirculation. To address this limitation, we developed a novel method called contrast-enhanced μODT (c-μODT) in which intralipid is injected into mouse tail vein to enhance μODT detection sensitivity. We demonstrate that after intralipid injection, the flow detection sensitivity of μODT is dramatically enhanced by 230% as quantified by the fill factor (FF) of microvasculature. More importantly, we show that c-μODT preserves the quantitative properties for flow imaging, i.e., showing a comparable change ratio of hypercapnia-induced flow increase in the capillary network before and after injecting intralipid.

  8. Fluid Flow Induced Calcium Response in Bone Cell Network

    PubMed Central

    Huo, Bo; Lu, Xin L.; Hung, Clark T.; Costa, Kevin D.; Xu, Qiaobing; Whitesides, George M.; Guo, X. Edward

    2010-01-01

    In our previous work, bone cell networks with controlled spacing and functional intercellular gap junctions had been successfully established by using microcontact printing and self assembled monolayers technologies [Guo, X. E., E. Takai, X. Jiang, Q. Xu, G. M. Whitesides, J. T. Yardley, C. T. Hung, E. M. Chow, T. Hantschel, and K. D. Costa. Mol. Cell. Biomech. 3:95–107, 2006]. The present study investigated the calcium response and the underlying signaling pathways in patterned bone cell networks exposed to a steady fluid flow. The glass slides with cell networks were separated into eight groups for treatment with specific pharmacological agents that inhibit pathways significant in bone cell calcium signaling. The calcium transients of the network were recorded and quantitatively evaluated with a set of network parameters. The results showed that 18α-GA (gap junction blocker), suramin (ATP inhibitor), and thapsigargin (depleting intracellular calcium stores) significantly reduced the occurrence of multiple calcium peaks, which were visually obvious in the untreated group. The number of responsive peaks also decreased slightly yet significantly when either the COX-2/PGE2 or the NOS/nitric oxide pathway was disrupted. Different from all other groups, cells treated with 18α-GA maintained a high concentration of intracellular calcium following the first peak. In the absence of calcium in the culture medium, the intracellular calcium concentration decreased slowly with fluid flow without any calcium transients observed. These findings have identified important factors in the flow mediated calcium signaling of bone cells within a patterned network. PMID:20852730

  9. Smooth information flow in temperature climate network reflects mass transport

    NASA Astrophysics Data System (ADS)

    Hlinka, Jaroslav; Jajcay, Nikola; Hartman, David; Paluš, Milan

    2017-03-01

    A directed climate network is constructed by Granger causality analysis of air temperature time series from a regular grid covering the whole Earth. Using winner-takes-all network thresholding approach, a structure of a smooth information flow is revealed, hidden to previous studies. The relevance of this observation is confirmed by comparison with the air mass transfer defined by the wind field. Their close relation illustrates that although the information transferred due to the causal influence is not a physical quantity, the information transfer is tied to the transfer of mass and energy.

  10. Geometrical and Mechanical Properties Control Actin Filament Organization

    PubMed Central

    Ennomani, Hajer; Théry, Manuel; Nedelec, Francois; Blanchoin, Laurent

    2015-01-01

    The different actin structures governing eukaryotic cell shape and movement are not only determined by the properties of the actin filaments and associated proteins, but also by geometrical constraints. We recently demonstrated that limiting nucleation to specific regions was sufficient to obtain actin networks with different organization. To further investigate how spatially constrained actin nucleation determines the emergent actin organization, we performed detailed simulations of the actin filament system using Cytosim. We first calibrated the steric interaction between filaments, by matching, in simulations and experiments, the bundled actin organization observed with a rectangular bar of nucleating factor. We then studied the overall organization of actin filaments generated by more complex pattern geometries used experimentally. We found that the fraction of parallel versus antiparallel bundles is determined by the mechanical properties of actin filament or bundles and the efficiency of nucleation. Thus nucleation geometry, actin filaments local interactions, bundle rigidity, and nucleation efficiency are the key parameters controlling the emergent actin architecture. We finally simulated more complex nucleation patterns and performed the corresponding experiments to confirm the predictive capabilities of the model. PMID:26016478

  11. Geometrical and mechanical properties control actin filament organization.

    PubMed

    Letort, Gaëlle; Politi, Antonio Z; Ennomani, Hajer; Théry, Manuel; Nedelec, Francois; Blanchoin, Laurent

    2015-05-01

    The different actin structures governing eukaryotic cell shape and movement are not only determined by the properties of the actin filaments and associated proteins, but also by geometrical constraints. We recently demonstrated that limiting nucleation to specific regions was sufficient to obtain actin networks with different organization. To further investigate how spatially constrained actin nucleation determines the emergent actin organization, we performed detailed simulations of the actin filament system using Cytosim. We first calibrated the steric interaction between filaments, by matching, in simulations and experiments, the bundled actin organization observed with a rectangular bar of nucleating factor. We then studied the overall organization of actin filaments generated by more complex pattern geometries used experimentally. We found that the fraction of parallel versus antiparallel bundles is determined by the mechanical properties of actin filament or bundles and the efficiency of nucleation. Thus nucleation geometry, actin filaments local interactions, bundle rigidity, and nucleation efficiency are the key parameters controlling the emergent actin architecture. We finally simulated more complex nucleation patterns and performed the corresponding experiments to confirm the predictive capabilities of the model.

  12. Local Arp2/3-dependent actin assembly modulates applied traction force during apCAM adhesion site maturation

    PubMed Central

    Buck, Kenneth B.; Schaefer, Andrew W.; Schoonderwoert, Vincent T.; Creamer, Matthew S.; Dufresne, Eric R.; Forscher, Paul

    2017-01-01

    Homophilic binding of immunoglobulin superfamily molecules such as the Aplysia cell adhesion molecule (apCAM) leads to actin filament assembly near nascent adhesion sites. Such actin assembly can generate significant localized forces that have not been characterized in the larger context of axon growth and guidance. We used apCAM-coated bead substrates applied to the surface of neuronal growth cones to characterize the development of forces evoked by varying stiffness of mechanical restraint. Unrestrained bead propulsion matched or exceeded rates of retrograde network flow and was dependent on Arp2/3 complex activity. Analysis of growth cone forces applied to beads at low stiffness of restraint revealed switching between two states: frictional coupling to retrograde flow and Arp2/3-dependent propulsion. Stiff mechanical restraint led to formation of an extensive actin cup matching the geometric profile of the bead target and forward growth cone translocation; pharmacological inhibition of the Arp2/3 complex or Rac attenuated F-actin assembly near bead binding sites, decreased the efficacy of growth responses, and blocked accumulation of signaling molecules associated with nascent adhesions. These studies introduce a new model for regulation of traction force in which local actin assembly forces buffer nascent adhesion sites from the mechanical effects of retrograde flow. PMID:27852899

  13. A perturbation-theoretic approach to Lagrangian flow networks

    NASA Astrophysics Data System (ADS)

    Fujiwara, Naoya; Kirchen, Kathrin; Donges, Jonathan F.; Donner, Reik V.

    2017-03-01

    Complex network approaches have been successfully applied for studying transport processes in complex systems ranging from road, railway, or airline infrastructures over industrial manufacturing to fluid dynamics. Here, we utilize a generic framework for describing the dynamics of geophysical flows such as ocean currents or atmospheric wind fields in terms of Lagrangian flow networks. In this approach, information on the passive advection of particles is transformed into a Markov chain based on transition probabilities of particles between the volume elements of a given partition of space for a fixed time step. We employ perturbation-theoretic methods to investigate the effects of modifications of transport processes in the underlying flow for three different problem classes: efficient absorption (corresponding to particle trapping or leaking), constant input of particles (with additional source terms modeling, e.g., localized contamination), and shifts of the steady state under probability mass conservation (as arising if the background flow is perturbed itself). Our results demonstrate that in all three cases, changes to the steady state solution can be analytically expressed in terms of the eigensystem of the unperturbed flow and the perturbation itself. These results are potentially relevant for developing more efficient strategies for coping with contaminations of fluid or gaseous media such as ocean and atmosphere by oil spills, radioactive substances, non-reactive chemicals, or volcanic aerosols.

  14. Cyclase-associated protein (CAP) acts directly on F-actin to accelerate cofilin-mediated actin severing across the range of physiological pH.

    PubMed

    Normoyle, Kieran P M; Brieher, William M

    2012-10-12

    Fast actin depolymerization is necessary for cells to rapidly reorganize actin filament networks. Utilizing a Listeria fluorescent actin comet tail assay to monitor actin disassembly rates, we observed that although a mixture of actin disassembly factors (cofilin, coronin, and actin-interacting protein 1 is sufficient to disassemble actin comet tails in the presence of physiological G-actin concentrations this mixture was insufficient to disassemble actin comet tails in the presence of physiological F-actin concentrations. Using biochemical complementation, we purified cyclase-associated protein (CAP) from thymus extracts as a factor that protects against the inhibition of excess F-actin. CAP has been shown to participate in actin dynamics but has been thought to act by liberating cofilin from ADP·G-actin monomers to restore cofilin activity. However, we found that CAP augments cofilin-mediated disassembly by accelerating the rate of cofilin-mediated severing. We also demonstrated that CAP acts directly on F-actin and severs actin filaments at acidic, but not neutral, pH. At the neutral pH characteristic of cytosol in most mammalian cells, we demonstrated that neither CAP nor cofilin are capable of severing actin filaments. However, the combination of CAP and cofilin rapidly severed actin at all pH values across the physiological range. Therefore, our results reveal a new function for CAP in accelerating cofilin-mediated actin filament severing and provide a mechanism through which cells can maintain high actin turnover rates without having to alkalinize cytosol, which would affect many biochemical reactions beyond actin depolymerization.

  15. Synaptopodin-2 induces assembly of peripheral actin bundles and immature focal adhesions to promote lamellipodia formation and prostate cancer cell migration

    PubMed Central

    Kai, FuiBoon; Fawcett, James P.; Duncan, Roy

    2015-01-01

    Synaptopodin-2 (Synpo2), an actin-binding protein and invasive cancer biomarker, induces formation of complex stress fiber networks in the cell body and promotes PC3 prostate cancer cell migration in response to serum stimulation. The role of these actin networks in enhanced cancer cell migration is unknown. Using time-course analysis and live cell imaging of mock- and Synpo2-transduced PC3 cells, we now show that Synpo2 induces assembly of actin fibers near the cell periphery and Arp2/3-dependent lamellipodia formation. Lamellipodia formed in a non-directional manner or repeatedly changed direction, explaining the enhanced chemokinetic activity of PC3 cells in response to serum stimulation. Myosin contraction promotes retrograde flow of the Synpo2-associated actin filaments at the leading edge and their merger with actin networks in the cell body. Enhanced PC3 cell migration correlates with Synpo2-induced formation of lamellipodia and immature focal adhesions (FAs), but is not dependent on myosin contraction or FA maturation. The previously reported correlation between Synpo2-induced stress fiber assembly and enhanced PC3 cell migration therefore reflects the role of Synpo2 as a newly identified regulator of actin bundle formation and nascent FA assembly near the leading cell edge. PMID:25883213

  16. PI(3,5)P2 controls endosomal branched actin dynamics by regulating cortactin–actin interactions

    PubMed Central

    Hong, Nan Hyung; Qi, Aidong

    2015-01-01

    Branched actin critically contributes to membrane trafficking by regulating membrane curvature, dynamics, fission, and transport. However, how actin dynamics are controlled at membranes is poorly understood. Here, we identify the branched actin regulator cortactin as a direct binding partner of phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2) and demonstrate that their interaction promotes turnover of late endosomal actin. In vitro biochemical studies indicated that cortactin binds PI(3,5)P2 via its actin filament-binding region. Furthermore, PI(3,5)P2 competed with actin filaments for binding to cortactin, thereby antagonizing cortactin activity. These findings suggest that PI(3,5)P2 formation on endosomes may remove cortactin from endosome-associated branched actin. Indeed, inhibition of PI(3,5)P2 production led to cortactin accumulation and actin stabilization on Rab7+ endosomes. Conversely, inhibition of Arp2/3 complex activity greatly reduced cortactin localization to late endosomes. Knockdown of cortactin reversed PI(3,5)P2-inhibitor–induced actin accumulation and stabilization on endosomes. These data suggest a model in which PI(3,5)P2 binding removes cortactin from late endosomal branched actin networks and thereby promotes net actin turnover. PMID:26323691

  17. A methodology for detecting routing events in discrete flow networks.

    SciTech Connect

    Garcia, H. E.; Yoo, T.; Nuclear Technology

    2004-01-01

    A theoretical framework for formulating and implementing model-based monitoring of discrete flow networks is discussed. Possible flows of items are described as the sequence of discrete-event (DE) traces. Each trace defines the DE sequence(s) that are triggered when an entity follows a given flow-path and visits tracking locations distributed within the monitored system. Given the set of possible discrete flows, a possible-behavior model - an interacting set of automata - is constructed, where each automaton models the discrete flow of items at each tracking location. Event labels or symbols contain all the information required to unambiguously distinguish each discrete flow. Within the possible behavior, there is a special sub-behavior whose occurrence is required to be detected. The special behavior may be specified by the occurrence of routing events, such as faults. These intermittent or non-persistent events may occur repeatedly. An observation mask is then defined, characterizing the actual observation configuration available for collecting item tracking data. The analysis task is then to determine whether this observation configuration is capable of detecting the identified special behavior. The assessment is accomplished by evaluating several observability notions, such as detectability and diagnosability. If the corresponding property is satisfied, associated formal observers are constructed to perform the monitoring task at hand. The synthesis of an optimal observation mask may also be conducted to suggest an appropriate observation configuration guaranteeing the detection of the special events and to construct associated monitoring agents. The proposed framework, modeling methodology, and supporting techniques for discrete flow networks monitoring are presented and illustrated with an example.

  18. An Algorithm to Find Minimum Cost Flow in a Network.

    DTIC Science & Technology

    The paper describes an algorithm to find a flow of minimum cost in a network and a computer program which performs this algorithm. The principle of...optimal. What might make this algorithm efficient is the fact that the information which has been gathered at some iteration to find a negative...circuit will be used to find a negative circuit at next iteration so that each iteration requires a relatively small amount of work. (Author)

  19. Evolution of weighted complex bus transit networks with flow

    NASA Astrophysics Data System (ADS)

    Huang, Ailing; Xiong, Jie; Shen, Jinsheng; Guan, Wei

    2016-02-01

    Study on the intrinsic properties and evolutional mechanism of urban public transit networks (PTNs) has great significance for transit planning and control, particularly considering passengers’ dynamic behaviors. This paper presents an empirical analysis for exploring the complex properties of Beijing’s weighted bus transit network (BTN) based on passenger flow in L-space, and proposes a bi-level evolution model to simulate the development of transit routes from the view of complex network. The model is an iterative process that is driven by passengers’ travel demands and dual-controlled interest mechanism, which is composed of passengers’ spatio-temporal requirements and cost constraint of transit agencies. Also, the flow’s dynamic behaviors, including the evolutions of travel demand, sectional flow attracted by a new link and flow perturbation triggered in nearby routes, are taken into consideration in the evolutional process. We present the numerical experiment to validate the model, where the main parameters are estimated by using distribution functions that are deduced from real-world data. The results obtained have proven that our model can generate a BTN with complex properties, such as the scale-free behavior or small-world phenomenon, which shows an agreement with our empirical results. Our study’s results can be exploited to optimize the real BTN’s structure and improve the network’s robustness.

  20. Monitoring individual traffic flows within the ATLAS TDAQ network

    NASA Astrophysics Data System (ADS)

    Sjoen, R.; Stancu, S.; Ciobotaru, M.; Batraneanu, S. M.; Leahu, L.; Martin, B.; Al-Shabibi, A.

    2010-04-01

    The ATLAS data acquisition system consists of four different networks interconnecting up to 2000 processors using up to 200 edge switches and five multi-blade chassis devices. The architecture of the system has been described in [1] and its operational model in [2]. Classical, SNMP-based, network monitoring provides statistics on aggregate traffic, but for performance monitoring and troubleshooting purposes there was an imperative need to identify and quantify single traffic flows. sFlow [3] is an industry standard based on statistical sampling which attempts to provide a solution to this. Due to the size of the ATLAS network, the collection and analysis of the sFlow data from all devices generates a data handling problem of its own. This paper describes how this problem is addressed by making it possible to collect and store data either centrally or distributed according to need. The methods used to present the results in a relevant fashion for system analysts are discussed and we explore the possibilities and limitations of this diagnostic tool, giving an example of its use in solving system problems that arise during the ATLAS data taking.

  1. Towards effective flow simulations in realistic discrete fracture networks

    NASA Astrophysics Data System (ADS)

    Berrone, Stefano; Pieraccini, Sandra; Scialò, Stefano

    2016-04-01

    We focus on the simulation of underground flow in fractured media, modeled by means of Discrete Fracture Networks. Focusing on a new recent numerical approach proposed by the authors for tackling the problem avoiding mesh generation problems, we further improve the new family of methods making a step further towards effective simulations of large, multi-scale, heterogeneous networks. Namely, we tackle the imposition of Dirichlet boundary conditions in weak form, in such a way that geometrical complexity of the DFN is not an issue; we effectively solve DFN problems with fracture transmissivities spanning many orders of magnitude and approaching zero; furthermore, we address several numerical issues for improving the numerical solution also in quite challenging networks.

  2. Information flow in layered networks of non-monotonic units

    NASA Astrophysics Data System (ADS)

    Schittler Neves, Fabio; Martim Schubert, Benno; Erichsen, Rubem, Jr.

    2015-07-01

    Layered neural networks are feedforward structures that yield robust parallel and distributed pattern recognition. Even though much attention has been paid to pattern retrieval properties in such systems, many aspects of their dynamics are not yet well characterized or understood. In this work we study, at different temperatures, the memory activity and information flows through layered networks in which the elements are the simplest binary odd non-monotonic function. Our results show that, considering a standard Hebbian learning approach, the network information content has its maximum always at the monotonic limit, even though the maximum memory capacity can be found at non-monotonic values for small enough temperatures. Furthermore, we show that such systems exhibit rich macroscopic dynamics, including not only fixed point solutions of its iterative map, but also cyclic and chaotic attractors that also carry information.

  3. Chemotaxis and Actin Oscillations

    NASA Astrophysics Data System (ADS)

    Bodenschatz, Eberhard; Hsu, Hsin-Fang; Negrete, Jose; Beta, Carsten; Pumir, Alain; Gholami, Azam; Tarantola, Marco; Westendorf, Christian; Zykov, Vladimir

    Recently, self-oscillations of the cytoskeletal actin have been observed in Dictyostelium, a model system for studying chemotaxis. Here we report experimental results on the self-oscillation mechanism and the role of regulatory proteins and myosin II. We stimulate cells rapidly and periodically by using photo un-caging of the chemoattractant in a micro-fluidic device and measured the cellular responses. We found that the response amplitude grows with stimulation strength only in a very narrow region of stimulation, after which the response amplitude reaches a plateau. Moreover, the frequency-response is not constant but rather varies with the strength of external stimuli. To understand the underlying mechanism, we analyzed the polymerization and de-polymerization time in the single cell level. Despite of the large cell-to-cell variability, we found that the polymerization time is independent of external stimuli and the de-polymerization time is prolonged as the stimulation strength increases. Our conclusions will be summarized and the role of noise in the signaling network will be discussed. German Science Foundation CRC 937.

  4. Dynamics of blood flow in a microfluidic ladder network

    NASA Astrophysics Data System (ADS)

    Maddala, Jeevan; Zilberman-Rudenko, Jevgenia; McCarty, Owen

    The dynamics of a complex mixture of cells and proteins, such as blood, in perturbed shear flow remains ill-defined. Microfluidics is a promising technology for improving the understanding of blood flow under complex conditions of shear; as found in stent implants and in tortuous blood vessels. We model the fluid dynamics of blood flow in a microfluidic ladder network with dimensions mimicking venules. Interaction of blood cells was modeled using multiagent framework, where cells of different diameters were treated as spheres. This model served as the basis for predicting transition regions, collision pathways, re-circulation zones and residence times of cells dependent on their diameters and device architecture. Based on these insights from the model, we were able to predict the clot formation configurations at various locations in the device. These predictions were supported by the experiments using whole blood. To facilitate platelet aggregation, the devices were coated with fibrillar collagen and tissue factor. Blood was perfused through the microfluidic device for 9 min at a physiologically relevant venous shear rate of 600 s-1. Using fluorescent microscopy, we observed flow transitions near the channel intersections and at the areas of blood flow obstruction, which promoted larger thrombus formation. This study of integrating model predictions with experimental design, aids in defining the dynamics of blood flow in microvasculature and in development of novel biomedical devices.

  5. Three-phase flow simulations in discrete fracture networks

    NASA Astrophysics Data System (ADS)

    Geiger, S.; Niessner, J.; Matthai, S. K.; Helmig, R.

    2006-12-01

    Fractures are often the key conduits for fluid flow in otherwise low permeability rocks. Their presence in hydrocarbon reservoirs leads to complex production histories, unpredictable coupling of wells, rapidly changing flow rates, possibly early water breakthrough, and low final recovery. Recently, it has been demonstrated that a combination of finite volume and finite element discretization is well suited to model incompressible, immiscible two-phase flow in 3D discrete fracture networks (DFN) representing complexly fractured rocks. Such an approach has been commercialized in Golder Associates' FracMan Reservoir Edition software. For realistic reservoir simulations, however, it would be desirable if a third compressible gas phase can be included which is often present at reservoir conditions. Here we present the extension of an existing node-centred finite volume - finite element (FEFV) discretization for the efficient and accurate simulations of three-component - three-phase flow in geologically realistic representations of fractured porous media. Two possible types of fracture networks can be used: In 2D, they are detailed geometrical representations of fractured rock masses mapped in field studies. In 3D, they are geologically constrained, stochastically generated discrete fracture networks. Flow and transport can be simulated for fractures only or for fractures and matrix combined. The governing equations are solved decoupled using an implicit-pressure, explicit-saturation (IMPES) approach. Flux and concentration terms can be treated with higher-order accuracy in the finite volume scheme to preserve shock fronts. The method is locally mass conservative and works on unstructured, spatially refined grids. Flash calculations are carried out by a new description of the Black-Oil model. Capillary and gravity effects are included in this formulation. The robustness and accuracy of this formulation is shown in several applications. First, grid convergence is

  6. Spontaneous actin dynamics in contractile rings

    NASA Astrophysics Data System (ADS)

    Kruse, Karsten; Wollrab, Viktoria; Thiagarajan, Raghavan; Wald, Anne; Riveline, Daniel

    Networks of polymerizing actin filaments are known to be capable to self-organize into a variety of structures. For example, spontaneous actin polymerization waves have been observed in living cells in a number of circumstances, notably, in crawling neutrophils and slime molds. During later stages of cell division, they can also spontaneously form a contractile ring that will eventually cleave the cell into two daughter cells. We present a framework for describing networks of polymerizing actin filaments, where assembly is regulated by various proteins. It can also include the effects of molecular motors. We show that the molecular processes driven by these proteins can generate various structures that have been observed in contractile rings of fission yeast and mammalian cells. We discuss a possible functional role of each of these patterns. The work was supported by Agence Nationale de la Recherche, France, (ANR-10-LABX-0030-INRT) and by Deutsche Forschungsgemeinschaft through SFB1027.

  7. Structural Efficiency of Percolated Landscapes in Flow Networks

    PubMed Central

    Serrano, M. Ángeles; De Los Rios, Paolo

    2008-01-01

    The large-scale structure of complex systems is intimately related to their functionality and evolution. In particular, global transport processes in flow networks rely on the presence of directed pathways from input to output nodes and edges, which organize in macroscopic connected components. However, the precise relation between such structures and functional or evolutionary aspects remains to be understood. Here, we investigate which are the constraints that the global structure of directed networks imposes on transport phenomena. We define quantitatively under minimal assumptions the structural efficiency of networks to determine how robust communication between the core and the peripheral components through interface edges could be. Furthermore, we assess that optimal topologies in terms of access to the core should look like “hairy balls” so to minimize bottleneck effects and the sensitivity to failures. We illustrate our investigation with the analysis of three real networks with very different purposes and shaped by very different dynamics and time-scales–the Internet customer-provider set of relationships, the nervous system of the worm Caenorhabditis elegans, and the metabolism of the bacterium Escherichia coli. Our findings prove that different global connectivity structures result in different levels of structural efficiency. In particular, biological networks seem to be close to the optimal layout. PMID:18985157

  8. Quasi-3D Cytoskeletal Dynamics of Osteocytes under Fluid Flow

    PubMed Central

    Baik, Andrew D.; Lu, X. Lucas; Qiu, Jun; Huo, Bo; Hillman, Elizabeth M.C.; Dong, Cheng; Guo, X. Edward

    2010-01-01

    Osteocytes respond to dynamic fluid shear loading by activating various biochemical pathways, mediating a dynamic process of bone formation and resorption. Whole-cell deformation and regional deformation of the cytoskeleton may be able to directly regulate this process. Attempts to image cellular deformation by conventional microscopy techniques have been hindered by low temporal or spatial resolution. In this study, we developed a quasi-three-dimensional microscopy technique that enabled us to simultaneously visualize an osteocyte's traditional bottom-view profile and a side-view profile at high temporal resolution. Quantitative analysis of the plasma membrane and either the intracellular actin or microtubule (MT) cytoskeletal networks provided characterization of their deformations over time. Although no volumetric dilatation of the whole cell was observed under flow, both the actin and MT networks experienced primarily tensile strains in all measured strain components. Regional heterogeneity in the strain field of normal strains was observed in the actin networks, especially in the leading edge to flow, but not in the MT networks. In contrast, side-view shear strains exhibited similar subcellular distribution patterns in both networks. Disruption of MT networks caused actin normal strains to decrease, whereas actin disruption had little effect on the MT network strains, highlighting the networks' mechanical interactions in osteocytes. PMID:21044578

  9. Actin is required for IFT regulation in Chlamydomonas reinhardtii.

    PubMed

    Avasthi, Prachee; Onishi, Masayuki; Karpiak, Joel; Yamamoto, Ryosuke; Mackinder, Luke; Jonikas, Martin C; Sale, Winfield S; Shoichet, Brian; Pringle, John R; Marshall, Wallace F

    2014-09-08

    Assembly of cilia and flagella requires intraflagellar transport (IFT), a highly regulated kinesin-based transport system that moves cargo from the basal body to the tip of flagella [1]. The recruitment of IFT components to basal bodies is a function of flagellar length, with increased recruitment in rapidly growing short flagella [2]. The molecular pathways regulating IFT are largely a mystery. Because actin network disruption leads to changes in ciliary length and number, actin has been proposed to have a role in ciliary assembly. However, the mechanisms involved are unknown. In Chlamydomonas reinhardtii, conventional actin is found in both the cell body and the inner dynein arm complexes within flagella [3, 4]. Previous work showed that treating Chlamydomonas cells with the actin-depolymerizing compound cytochalasin D resulted in reversible flagellar shortening [5], but how actin is related to flagellar length or assembly remains unknown. Here we utilize small-molecule inhibitors and genetic mutants to analyze the role of actin dynamics in flagellar assembly in Chlamydomonas reinhardtii. We demonstrate that actin plays a role in IFT recruitment to basal bodies during flagellar elongation and that when actin is perturbed, the normal dependence of IFT recruitment on flagellar length is lost. We also find that actin is required for sufficient entry of IFT material into flagella during assembly. These same effects are recapitulated with a myosin inhibitor, suggesting that actin may act via myosin in a pathway by which flagellar assembly is regulated by flagellar length.

  10. What we talk about when we talk about nuclear actin

    PubMed Central

    Belin, Brittany J; Mullins, R Dyche

    2013-01-01

    In the cytoplasm, actin filaments form crosslinked networks that enable eukaryotic cells to transport cargo, change shape, and move. Actin is also present in the nucleus but, in this compartment, its functions are more cryptic and controversial. If we distill the substantial literature on nuclear actin down to its essentials, we find four, recurring, and more-or-less independent, claims: (1) crosslinked networks of conventional actin filaments span the nucleus and help maintain its structure and organize its contents; (2) assembly or contraction of filaments regulates specific nuclear events; (3) actin monomers moonlight as subunits of chromatin remodeling complexes, independent of their ability to form filaments; and (4) modified actin monomers or oligomers, structurally distinct from canonical, cytoskeletal filaments, mediate nuclear events by unknown mechanisms. We discuss the evidence underlying these claims and as well as their strengths and weaknesses. Next, we describe our recent work, in which we built probes specific for nuclear actin and used them to describe the form and distribution of actin in somatic cell nuclei. Finally, we discuss how different forms of nuclear actin may play different roles in different cell types and physiological contexts. PMID:23934079

  11. Fractal scaling and fluid flow in fracture networks in rock

    SciTech Connect

    Barton, C.C.

    1996-12-31

    Recovery of oil and gas resources and injection of toxic waste materials requires quantitative models to describe and predict the movement of fluids in rock. Existing models based on pore-space flow are inappropriate for study of the more rapid process of fluid flow through fracture networks. This type of flow is not a simple function of the fracture characteristics at any particular scale, but rather the integration of fracture contributions at all scales. The mathematical constructs of fractal geometry are well suited to quantify and model relationships within complex systems that are statistically self-similar over a wide range of scales. Analyses show that fracture traces mapped on two-dimensional slices through three-dimensional nature fracture networks in rock follow a fractal scaling law over six orders of magnitude. Detailed measurements of 17 two-dimensional samples of fracture networks (at diverse scales in rocks of dissimilar age, lithology, and tectonic setting) show similar fractal dimensions in the range 1.3-1.7. The range in fractal dimension implies that a single physical process of rock fracturing operates over a wide range of scales, from microscopic cracks to large, regional fault systems. The knowledge that rock-fracture networks are fractal allows the use of data from a one-dimensional drill-hole sample to predict the two- and three-dimensional scaling of the fracture system. The spacing of fractures in drill holes is a fractal Cantor distribution, and the range of fractal dimension is 0.4-0.6, which is an integer dimension less than that of fracture-trace patterns exposed on two-dimensional, planar sections. A reconstruction of the fracture history at the point of initial connectivity across the network (percolation) has a fractal dimension of 1.35 as compared to a dimension of 1.9 for the percolation cluster in a two-dimensional model. Paleo flow was mapped based on the deposition of aqueous minerals on the fracture surface.

  12. Fractal scaling and fluid flow in fracture networks in rock

    SciTech Connect

    Barton, C.C. )

    1996-01-01

    Recovery of oil and gas resources and injection of toxic waste materials requires quantitative models to describe and predict the movement of fluids in rock. Existing models based on pore-space flow are inappropriate for study of the more rapid process of fluid flow through fracture networks. This type of flow is not a simple function of the fracture characteristics at any particular scale, but rather the integration of fracture contributions at all scales. The mathematical constructs of fractal geometry are well suited to quantify and model relationships within complex systems that are statistically self-similar over a wide range of scales. Analyses show that fracture traces mapped on two-dimensional slices through three-dimensional nature fracture networks in rock follow a fractal scaling law over six orders of magnitude. Detailed measurements of 17 two-dimensional samples of fracture networks (at diverse scales in rocks of dissimilar age, lithology, and tectonic setting) show similar fractal dimensions in the range 1.3-1.7. The range in fractal dimension implies that a single physical process of rock fracturing operates over a wide range of scales, from microscopic cracks to large, regional fault systems. The knowledge that rock-fracture networks are fractal allows the use of data from a one-dimensional drill-hole sample to predict the two- and three-dimensional scaling of the fracture system. The spacing of fractures in drill holes is a fractal Cantor distribution, and the range of fractal dimension is 0.4-0.6, which is an integer dimension less than that of fracture-trace patterns exposed on two-dimensional, planar sections. A reconstruction of the fracture history at the point of initial connectivity across the network (percolation) has a fractal dimension of 1.35 as compared to a dimension of 1.9 for the percolation cluster in a two-dimensional model. Paleo flow was mapped based on the deposition of aqueous minerals on the fracture surface.

  13. Analyzing the International Exergy Flow Network of Ferrous Metal Ores

    PubMed Central

    Qi, Hai; An, Haizhong; Hao, Xiaoqing; Zhong, Weiqiong; Zhang, Yanbing

    2014-01-01

    This paper employs an un-weighted and weighted exergy network to study the properties of ferrous metal ores in countries worldwide and their evolution from 2002 to 2012. We find that there are few countries controlling most of the ferrous metal ore exports in terms of exergy and that the entire exergy flow network is becoming more heterogeneous though the addition of new nodes. The increasing of the average clustering coefficient indicates that the formation of an international exergy flow system and regional integration is improving. When we contrast the average out strength of exergy and the average out strength of currency, we find both similarities and differences. Prices are affected largely by human factors; thus, the growth rate of the average out strength of currency has fluctuated acutely in the eleven years from 2002 to 2012. Exergy is defined as the maximum work that can be extracted from a system and can reflect the true cost in the world, and this parameter fluctuates much less. Performing an analysis based on the two aspects of exergy and currency, we find that the network is becoming uneven. PMID:25188407

  14. Actin Polymerization is Stimulated by Actin Crosslinking Protein Palladin

    PubMed Central

    Gurung, Ritu; Yadav, Rahul; Brungardt, Joseph G.; Orlova, Albina; Egelman, Edward H.; Beck, Moriah R.

    2016-01-01

    The actin scaffold protein palladin regulates both normal cell migration and invasive cell motility, processes that require the coordinated regulation of actin dynamics. However, the potential effect of palladin on actin dynamics has remained elusive. Here we show that the actin binding immunoglobulin-like domain of palladin, which is directly responsible for both actin binding and bundling, also stimulates actin polymerization in vitro. Palladin eliminated the lag phase that is characteristic of the slow nucleation step of actin polymerization. Furthermore, palladin dramatically reduced depolymerization, slightly enhanced the elongation rate, and did not alter the critical concentration. Microscopy and in vitro crosslinking assays reveal differences in actin bundle architecture when palladin is incubated with actin before or after polymerization. These results suggest a model whereby palladin stimulates a polymerization-competent form of G-actin, akin to metal ions, either through charge neutralization or conformational changes. PMID:26607837

  15. Actin protofilament orientation in deformation of the erythrocyte membrane skeleton.

    PubMed Central

    Picart, C; Dalhaimer, P; Discher, D E

    2000-01-01

    The red cell's spectrin-actin network is known to sustain local states of shear, dilation, and condensation, and yet the short actin filaments are found to maintain membrane-tangent and near-random azimuthal orientations. When calibrated with polarization results for single actin filaments, imaging of micropipette-deformed red cell ghosts has allowed an assessment of actin orientations and possible reorientations in the network. At the hemispherical cap of the aspirated projection, where the network can be dilated severalfold, filaments have the same membrane-tangent orientation as on a relatively unstrained portion of membrane. Likewise, over the length of the network projection pulled into the micropipette, where the network is strongly sheared in axial extension and circumferential contraction, actin maintains its tangent orientation and is only very weakly aligned with network extension. Similar results are found for the integral membrane protein Band 3. Allowing for thermal fluctuations, we deduce a bound for the effective coupling constant, alpha, between network shear and azimuthal orientation of the protofilament. The finding that alpha must be about an order of magnitude or more below its tight-coupling value illustrates how nanostructural kinematics can decouple from more macroscopic responses. Monte Carlo simulations of spectrin-actin networks at approximately 10-nm resolution further support this conclusion and substantiate an image of protofilaments as elements of a high-temperature spin glass. PMID:11106606

  16. Flow Pattern Identification of Horizontal Two-Phase Refrigerant Flow Using Neural Networks

    DTIC Science & Technology

    2015-12-31

    812 × 500 × 546 ~ 2.2 x 108 data points ) to train a neural network. It was proposed that a combina- tion of spatial- and time- averaging together with...For each flow pattern test point (i.e., each heater power and volumetric flow rate combination), 500 tomograms were generated over a sampling period of...running average of εðtÞ was used to determine an acceptable number of data points to estimate hεðtÞi. When the fluctuations in the running average

  17. Myosin Vs organize actin cables in fission yeast

    PubMed Central

    Lo Presti, Libera; Chang, Fred; Martin, Sophie G.

    2012-01-01

    Myosin V motors are believed to contribute to cell polarization by carrying cargoes along actin tracks. In Schizosaccharomyces pombe, Myosin Vs transport secretory vesicles along actin cables, which are dynamic actin bundles assembled by the formin For3 at cell poles. How these flexible structures are able to extend longitudinally in the cell through the dense cytoplasm is unknown. Here we show that in myosin V (myo52 myo51) null cells, actin cables are curled, bundled, and fail to extend into the cell interior. They also exhibit reduced retrograde flow, suggesting that formin-mediated actin assembly is impaired. Myo52 may contribute to actin cable organization by delivering actin regulators to cell poles, as myoV∆ defects are partially suppressed by diverting cargoes toward cell tips onto microtubules with a kinesin 7–Myo52 tail chimera. In addition, Myo52 motor activity may pull on cables to provide the tension necessary for their extension and efficient assembly, as artificially tethering actin cables to the nuclear envelope via a Myo52 motor domain restores actin cable extension and retrograde flow in myoV mutants. Together these in vivo data reveal elements of a self-organizing system in which the motors shape their own tracks by transporting cargoes and exerting physical pulling forces. PMID:23051734

  18. Regulation of myosin II activity by actin architecture

    NASA Astrophysics Data System (ADS)

    Weirich, Kimberly; Stam, Samantha; McCall, Patrick; Munro, Edwin; Gardel, Margaret

    2015-03-01

    Networks of actin filaments containing myosin II motors generate forces and motions that promote biological processes such as cell division, motility, and cargo transport. In cells, actin filaments are arranged in various structures from disordered meshworks to tight bundles. Clusters of myosin II motors, known as myosin filaments, crosslink and generate force on neighboring actin filaments. We hypothesized that the local actin architecture controls the magnitude and duration of force generated by myosin II motors. We used fluorescence imaging to directly measure the mobility of myosin II filaments on actin networks and bundles with varying actin filament polarity, orientation, spacing, and length. On unipolar bundles, myosin exhibits fast, unidirectional motion consistent with their unloaded gliding speed. On mixed polarity bundles, myosin speed is reduced by one order of magnitude and marked by direction switching and trapping. Increasing filament spacing and bundle flexibility reduces the duration of trapping and enhances the mobility of motors. Simulations indicate that stable trapping is a signature of large generated forces while increased mobility indicates force release. Our data underscore that the efficiency of force generation by myosin motors in an actin network depends sensitively on its architecture and suggests actin crosslinking proteins are tuned to optimize actomyosin contractility.

  19. Backbone of complex networks of corporations: The flow of control

    NASA Astrophysics Data System (ADS)

    Glattfelder, J. B.; Battiston, S.

    2009-09-01

    We present a methodology to extract the backbone of complex networks based on the weight and direction of links, as well as on nontopological properties of nodes. We show how the methodology can be applied in general to networks in which mass or energy is flowing along the links. In particular, the procedure enables us to address important questions in economics, namely, how control and wealth are structured and concentrated across national markets. We report on the first cross-country investigation of ownership networks, focusing on the stock markets of 48 countries around the world. On the one hand, our analysis confirms results expected on the basis of the literature on corporate control, namely, that in Anglo-Saxon countries control tends to be dispersed among numerous shareholders. On the other hand, it also reveals that in the same countries, control is found to be highly concentrated at the global level, namely, lying in the hands of very few important shareholders. Interestingly, the exact opposite is observed for European countries. These results have previously not been reported as they are not observable without the kind of network analysis developed here.

  20. Backbone of complex networks of corporations: the flow of control.

    PubMed

    Glattfelder, J B; Battiston, S

    2009-09-01

    We present a methodology to extract the backbone of complex networks based on the weight and direction of links, as well as on nontopological properties of nodes. We show how the methodology can be applied in general to networks in which mass or energy is flowing along the links. In particular, the procedure enables us to address important questions in economics, namely, how control and wealth are structured and concentrated across national markets. We report on the first cross-country investigation of ownership networks, focusing on the stock markets of 48 countries around the world. On the one hand, our analysis confirms results expected on the basis of the literature on corporate control, namely, that in Anglo-Saxon countries control tends to be dispersed among numerous shareholders. On the other hand, it also reveals that in the same countries, control is found to be highly concentrated at the global level, namely, lying in the hands of very few important shareholders. Interestingly, the exact opposite is observed for European countries. These results have previously not been reported as they are not observable without the kind of network analysis developed here.

  1. Axonal actin in action: Imaging actin dynamics in neurons.

    PubMed

    Ladt, Kelsey; Ganguly, Archan; Roy, Subhojit

    2016-01-01

    Actin is a highly conserved, key cytoskeletal protein involved in numerous structural and functional roles. In neurons, actin has been intensively investigated in axon terminals-growth cones-and dendritic spines, but details about actin structure and dynamics in axon shafts have remained obscure for decades. A major barrier in the field has been imaging actin. Actin exists as soluble monomers (G-actin) as well as actin filaments (F-actin), and labeling actin with conventional fluorescent probes like GFP/RFP typically leads to a diffuse haze that makes it difficult to discern kinetic behaviors. In a recent publication, we used F-actin selective probes to visualize actin dynamics in axons, resolving striking actin behaviors that have not been described before. However, using these probes to visualize actin dynamics is challenging as they can cause bundling of actin filaments; thus, experimental parameters need to be strictly optimized. Here we describe some practical methodological details related to using these probes for visualizing F-actin dynamics in axons.

  2. Value flow mapping: Using networks to inform stakeholder analysis

    NASA Astrophysics Data System (ADS)

    Cameron, Bruce G.; Crawley, Edward F.; Loureiro, Geilson; Rebentisch, Eric S.

    2008-02-01

    Stakeholder theory has garnered significant interest from the corporate community, but has proved difficult to apply to large government programs. A detailed value flow exercise was conducted to identify the value delivery mechanisms among stakeholders for the current Vision for Space Exploration. We propose a method for capturing stakeholder needs that explicitly recognizes the outcomes required of the value creating organization. The captured stakeholder needs are then translated into input-output models for each stakeholder, which are then aggregated into a network model. Analysis of this network suggests that benefits are infrequently linked to the root provider of value. Furthermore, it is noted that requirements should not only be written to influence the organization's outputs, but also to influence the propagation of benefit further along the value chain. A number of future applications of this model to systems architecture and requirement analysis are discussed.

  3. Analyzing information flow in brain networks with nonparametric Granger causality.

    PubMed

    Dhamala, Mukeshwar; Rangarajan, Govindan; Ding, Mingzhou

    2008-06-01

    Multielectrode neurophysiological recording and high-resolution neuroimaging generate multivariate data that are the basis for understanding the patterns of neural interactions. How to extract directions of information flow in brain networks from these data remains a key challenge. Research over the last few years has identified Granger causality as a statistically principled technique to furnish this capability. The estimation of Granger causality currently requires autoregressive modeling of neural data. Here, we propose a nonparametric approach based on widely used Fourier and wavelet transforms to estimate both pairwise and conditional measures of Granger causality, eliminating the need of explicit autoregressive data modeling. We demonstrate the effectiveness of this approach by applying it to synthetic data generated by network models with known connectivity and to local field potentials recorded from monkeys performing a sensorimotor task.

  4. Analyzing Information Flow in Brain Networks with Nonparametric Granger Causality

    PubMed Central

    Dhamala, Mukeshwar; Rangarajan, Govindan; Ding, Mingzhou

    2009-01-01

    Multielectrode neurophysiological recording and high-resolution neuroimaging generate multivariate data that are the basis for understanding the patterns of neural interactions. How to extract directions of information flow in brain networks from these data remains a key challenge. Research over the last few years has identified Granger causality as a statistically principled technique to furnish this capability. The estimation of Granger causality currently requires autoregressive modeling of neural data. Here, we propose a nonparametric approach based on widely used Fourier and wavelet transforms to estimate Granger causality, eliminating the need of explicit autoregressive data modeling. We demonstrate the effectiveness of this approach by applying it to synthetic data generated by network models with known connectivity and to local field potentials recorded from monkeys performing a sensorimotor task. PMID:18394927

  5. Program for Analyzing Flows in a Complex Network

    NASA Technical Reports Server (NTRS)

    Majumdar, Alok Kumar

    2006-01-01

    Generalized Fluid System Simulation Program (GFSSP) version 4 is a general-purpose computer program for analyzing steady-state and transient flows in a complex fluid network. The program is capable of modeling compressibility, fluid transients (e.g., water hammers), phase changes, mixtures of chemical species, and such externally applied body forces as gravitational and centrifugal ones. A graphical user interface enables the user to interactively develop a simulation of a fluid network consisting of nodes and branches. The user can also run the simulation and view the results in the interface. The system of equations for conservation of mass, energy, chemical species, and momentum is solved numerically by a combination of the Newton-Raphson and successive-substitution methods.

  6. Actin-filament disassembly: it takes two to shrink them fast.

    PubMed

    Winterhoff, Moritz; Faix, Jan

    2015-06-01

    Actin-filament disassembly is indispensable for replenishing the pool of polymerizable actin and allows continuous dynamic remodelling of the actin cytoskeleton. A new study now reveals that ADF/cofilin preferentially dismantles branched networks and provides new insights into the collaborative work of ADF/cofilin and Aip1 on filament disassembly at the molecular level.

  7. FLOWER IPv4/IPv6 Network Flow Summarization software

    SciTech Connect

    Nickless, Bill; Curtis, Darren; Christy, Jason; Younkin, Chance; Mount, Jason; Richard Griswold, Joe Lenaeus

    2011-04-04

    FLOWER was written as a refactoring/reimplementation of the existing Flo software used by the Cooperative Protection Program (CPP) to provide network flow summaries for analysis by the Operational Analysis Center (OAC) and other US Department of Energy cyber security elements. FLOWER is designed and tested to operate at 10 gigabits/second, nearly 10 times faster than competing solutions. FLOWER output is optimized for importation into SQL databases for categorization and analysis. FLOWER is written in C++ using current best software engineering practices.

  8. The stochastic link equilibrium strategy and algorithm for flow assignment in communication networks

    NASA Astrophysics Data System (ADS)

    Tao, Yang; Zhou, Xia

    2005-11-01

    Based on the mature user equilibrium (UE) theory in transportation field as well as the similarity of network flow between transportation and communication, in this paper, the user equilibrium theory was applied to communication networks, and how to apply the stochastic user equilibrium (SUE) to flow assigning in generalized communication networks was further studied. The stochastic link equilibrium (SLE) flow assignment strategy was proposed in this paper, the algorithm of SLE flow assignment was also provided. Both analyses and simulation based on the given algorithm proved that the optimal flow assignment in networks can be achieved by using this algorithm.

  9. FLOWNET: A Computer Program for Calculating Secondary Flow Conditions in a Network of Turbomachinery

    NASA Technical Reports Server (NTRS)

    Rose, J. R.

    1978-01-01

    The program requires the network parameters, the flow component parameters, the reservoir conditions, and the gas properties as input. It will then calculate all unknown pressures and the mass flow rate in each flow component in the network. The program can treat networks containing up to fifty flow components and twenty-five unknown network pressures. The types of flow components that can be treated are face seals, narrow slots, and pipes. The program is written in both structured FORTRAN (SFTRAN) and FORTRAN 4. The program must be run in an interactive (conversational) mode.

  10. Actin-binding proteins implicated in the formation of the punctate actin foci stimulated by the self-incompatibility response in Papaver.

    PubMed

    Poulter, Natalie S; Staiger, Christopher J; Rappoport, Joshua Z; Franklin-Tong, Vernonica E

    2010-03-01

    The actin cytoskeleton is a key target for signaling networks and plays a central role in translating signals into cellular responses in eukaryotic cells. Self-incompatibility (SI) is an important mechanism responsible for preventing self-fertilization. The SI system of Papaver rhoeas pollen involves a Ca(2+)-dependent signaling network, including massive actin depolymerization as one of the earliest cellular responses, followed by the formation of large actin foci. However, no analysis of these structures, which appear to be aggregates of filamentous (F-)actin based on phalloidin staining, has been carried out to date. Here, we characterize and quantify the formation of F-actin foci in incompatible Papaver pollen tubes over time. The F-actin foci increase in size over time, and we provide evidence that their formation requires actin polymerization. Once formed, these SI-induced structures are unusually stable, being resistant to treatments with latrunculin B. Furthermore, their formation is associated with changes in the intracellular localization of two actin-binding proteins, cyclase-associated protein and actin-depolymerizing factor. Two other regulators of actin dynamics, profilin and fimbrin, do not associate with the F-actin foci. This study provides, to our knowledge, the first insights into the actin-binding proteins and mechanisms involved in the formation of these intriguing structures, which appear to be actively formed during the SI response.

  11. Ramification of Channel Networks Incised by Groundwater Flow

    NASA Astrophysics Data System (ADS)

    Yi, R. S.; Seybold, H. F.; Petroff, A. P.; Devauchelle, O.; Rothman, D.

    2011-12-01

    The geometry of channel networks has been a source of fascination since at least Leonardo da Vinci's time. Yet a comprehensive understanding of ramification---the mechanism of branching by which a stream network acquires its geometric complexity---remains elusive. To investigate the mechanisms of ramification and network growth, we consider channel growth driven by groundwater flow as a model system, analogous to a medical scientist's laboratory rat. We test our theoretical predictions through analysis of a particularly compelling example found on the Florida Panhandle north of Bristol. As our ultimate goal is to understand ramification and growth dynamics of the entire network, we build a computational model based on the following growth hypothesis: Channels grow in the direction that captures the maximum water flux. When there are two such directions, tips bifurcate. The direction of growth can be determined from the expansion of the ground water field around each tip, where each coefficient in this expansion has a physical interpretation. The first coefficient in the expansion determines the ground water discharge, leading to a straight growth of the channel. The second term describes the asymmetry in the water field leading to a bending of the stream in the direction of maximal water flux. The ratio between the first and the third coefficient determines a critical distance rc over which the tip feels inhomogeneities in the ground water table. This initiates then the splitting of the tip. In order to test our growth hypothesis and to determine rc, we grow the Florida network backward. At each time step we calculate the solution of the ground water field and determine the appropriate expansion coefficients around each tip. Comparing this simulation result to the predicted values provides us with a stringent measure for rc and the significance of our growth hypothesis.

  12. Impact of actin filament stabilization on adult hippocampal and olfactory bulb neurogenesis.

    PubMed

    Kronenberg, Golo; Gertz, Karen; Baldinger, Tina; Kirste, Imke; Eckart, Sarah; Yildirim, Ferah; Ji, Shengbo; Heuser, Isabella; Schröck, Helmut; Hörtnagl, Heide; Sohr, Reinhard; Djoufack, Pierre Chryso; Jüttner, René; Glass, Rainer; Przesdzing, Ingo; Kumar, Jitender; Freyer, Dorette; Hellweg, Rainer; Kettenmann, Helmut; Fink, Klaus Benno; Endres, Matthias

    2010-03-03

    Rearrangement of the actin cytoskeleton is essential for dynamic cellular processes. Decreased actin turnover and rigidity of cytoskeletal structures have been associated with aging and cell death. Gelsolin is a Ca(2+)-activated actin-severing protein that is widely expressed throughout the adult mammalian brain. Here, we used gelsolin-deficient (Gsn(-/-)) mice as a model system for actin filament stabilization. In Gsn(-/-) mice, emigration of newly generated cells from the subventricular zone into the olfactory bulb was slowed. In vitro, gelsolin deficiency did not affect proliferation or neuronal differentiation of adult neural progenitors cells (NPCs) but resulted in retarded migration. Surprisingly, hippocampal neurogenesis was robustly induced by gelsolin deficiency. The ability of NPCs to intrinsically sense excitatory activity and thereby implement coupling between network activity and neurogenesis has recently been established. Depolarization-induced [Ca(2+)](i) increases and exocytotic neurotransmitter release were enhanced in Gsn(-/-) synaptosomes. Importantly, treatment of Gsn(-/-) synaptosomes with mycotoxin cytochalasin D, which, like gelsolin, produces actin disassembly, decreased enhanced Ca(2+) influx and subsequent exocytotic norepinephrine release to wild-type levels. Similarly, depolarization-induced glutamate release from Gsn(-/-) brain slices was increased. Furthermore, increased hippocampal neurogenesis in Gsn(-/-) mice was associated with a special microenvironment characterized by enhanced density of perfused vessels, increased regional cerebral blood flow, and increased endothelial nitric oxide synthase (NOS-III) expression in hippocampus. Together, reduced filamentous actin turnover in presynaptic terminals causes increased Ca(2+) influx and, subsequently, elevated exocytotic neurotransmitter release acting on neural progenitors. Increased neurogenesis in Gsn(-/-) hippocampus is associated with a special vascular niche for neurogenesis.

  13. Neural networks for BEM analysis of steady viscous flows

    NASA Astrophysics Data System (ADS)

    Mai-Duy, Nam; Tran-Cong, Thanh

    2003-03-01

    This paper presents a new neural network-boundary integral approach for analysis of steady viscous fluid flows. Indirect radial basis function networks (IRBFNs) which perform better than element-based methods for function interpolation, are introduced into the BEM scheme to represent the variations of velocity and traction along the boundary from the nodal values. In order to assess the effect of IRBFNs, the other features used in the present work remain the same as those used in the standard BEM. For example, Picard-type scheme is utilized in the iterative procedure to deal with the non-linear convective terms while the calculation of volume integrals and velocity gradients are based on the linear finite element-based method. The proposed IRBFN-BEM is verified on the driven cavity viscous flow problem and can achieve a moderate Reynolds number of 1400 using a relatively coarse uniform mesh. The results obtained such as the velocity profiles along the horizontal and vertical centrelines as well as the properties of the primary vortex are in very good agreement with the benchmark solution. Furthermore, the secondary vortices are also captured by the present method. Thus, it appears that an ability to represent the boundary solution accurately can significantly improve the overall solution accuracy of the BEM.

  14. Polycation induced actin bundles.

    PubMed

    Muhlrad, Andras; Grintsevich, Elena E; Reisler, Emil

    2011-04-01

    Three polycations, polylysine, the polyamine spermine and the polycationic protein lysozyme were used to study the formation, structure, ionic strength sensitivity and dissociation of polycation-induced actin bundles. Bundles form fast, simultaneously with the polymerization of MgATP-G-actins, upon the addition of polycations to solutions of actins at low ionic strength conditions. This indicates that nuclei and/or nascent filaments bundle due to attractive, electrostatic effect of polycations and the neutralization of repulsive interactions of negative charges on actin. The attractive forces between the filaments are strong, as shown by the low (in nanomolar range) critical concentration of their bundling at low ionic strength. These bundles are sensitive to ionic strength and disassemble partially in 100 mM NaCl, but both the dissociation and ionic strength sensitivity can be countered by higher polycation concentrations. Cys374 residues of actin monomers residing on neighboring filaments in the bundles can be cross-linked by the short span (5.4Å) MTS-1 (1,1-methanedyl bismethanethiosulfonate) cross-linker, which indicates a tight packing of filaments in the bundles. The interfilament cross-links, which connect monomers located on oppositely oriented filaments, prevent disassembly of bundles at high ionic strength. Cofilin and the polysaccharide polyanion heparin disassemble lysozyme induced actin bundles more effectively than the polylysine-induced bundles. The actin-lysozyme bundles are pathologically significant as both proteins are found in the pulmonary airways of cystic fibrosis patients. Their bundles contribute to the formation of viscous mucus, which is the main cause of breathing difficulties and eventual death in this disorder.

  15. Peak-flow frequency relations and evaluation of the peak-flow gaging network in Nebraska

    USGS Publications Warehouse

    Soenksen, Philip J.; Miller, Lisa D.; Sharpe, Jennifer B.; Watton, Jason R.

    1999-01-01

    Estimates of peak-flow magnitude and frequency are required for the efficient design of structures that convey flood flows or occupy floodways, such as bridges, culverts, and roads. The U.S. Geological Survey, in cooperation with the Nebraska Department of Roads, conducted a study to update peak-flow frequency analyses for selected streamflow-gaging stations, develop a new set of peak-flow frequency relations for ungaged streams, and evaluate the peak-flow gaging-station network for Nebraska. Data from stations located in or within about 50 miles of Nebraska were analyzed using guidelines of the Interagency Advisory Committee on Water Data in Bulletin 17B. New generalized skew relations were developed for use in frequency analyses of unregulated streams. Thirty-three drainage-basin characteristics related to morphology, soils, and precipitation were quantified using a geographic information system, related computer programs, and digital spatial data.For unregulated streams, eight sets of regional regression equations relating drainage-basin to peak-flow characteristics were developed for seven regions of the state using a generalized least squares procedure. Two sets of regional peak-flow frequency equations were developed for basins with average soil permeability greater than 4 inches per hour, and six sets of equations were developed for specific geographic areas, usually based on drainage-basin boundaries. Standard errors of estimate for the 100-year frequency equations (1percent probability) ranged from 12.1 to 63.8 percent. For regulated reaches of nine streams, graphs of peak flow for standard frequencies and distance upstream of the mouth were estimated.The regional networks of streamflow-gaging stations on unregulated streams were analyzed to evaluate how additional data might affect the average sampling errors of the newly developed peak-flow equations for the 100-year frequency occurrence. Results indicated that data from new stations, rather than more

  16. Curing critical links in oscillator networks as power flow models

    NASA Astrophysics Data System (ADS)

    Rohden, Martin; Witthaut, Dirk; Timme, Marc; Meyer-Ortmanns, Hildegard

    2017-01-01

    Modern societies crucially depend on the robust supply with electric energy so that blackouts of power grids can have far reaching consequences. Typically, large scale blackouts take place after a cascade of failures: the failure of a single infrastructure component, such as a critical transmission line, results in several subsequent failures that spread across large parts of the network. Improving the robustness of a network to prevent such secondary failures is thus key for assuring a reliable power supply. In this article we analyze the nonlocal rerouting of power flows after transmission line failures for a simplified AC power grid model and compare different strategies to improve network robustness. We identify critical links in the grid and compute alternative pathways to quantify the grid’s redundant capacity and to find bottlenecks along the pathways. Different strategies are developed and tested to increase transmission capacities to restore stability with respect to transmission line failures. We show that local and nonlocal strategies typically perform alike: one can equally well cure critical links by providing backup capacities locally or by extending the capacities of bottleneck links at remote locations.

  17. Directedness of information flow in mobile phone communication networks.

    PubMed

    Peruani, Fernando; Tabourier, Lionel

    2011-01-01

    Without having direct access to the information that is being exchanged, traces of information flow can be obtained by looking at temporal sequences of user interactions. These sequences can be represented as causality trees whose statistics result from a complex interplay between the topology of the underlying (social) network and the time correlations among the communications. Here, we study causality trees in mobile-phone data, which can be represented as a dynamical directed network. This representation of the data reveals the existence of super-spreaders and super-receivers. We show that the tree statistics, respectively the information spreading process, are extremely sensitive to the in-out degree correlation exhibited by the users. We also learn that a given information, e.g., a rumor, would require users to retransmit it for more than 30 hours in order to cover a macroscopic fraction of the system. Our analysis indicates that topological node-node correlations of the underlying social network, while allowing the existence of information loops, they also promote information spreading. Temporal correlations, and therefore causality effects, are only visible as local phenomena and during short time scales. Consequently, the very idea that there is (intentional) information spreading beyond a small vecinity is called into question. These results are obtained through a combination of theory and data analysis techniques.

  18. Biomimetic systems for studying actin-based motility.

    PubMed

    Upadhyaya, Arpita; van Oudenaarden, Alexander

    2003-09-16

    Actin polymerization provides a major driving force for eukaryotic cell motility. Successive intercalation of monomeric actin subunits between the plasma membrane and the filamentous actin network results in protrusions of the membrane enabling the cell to move or to change shape. One of the challenges in understanding eukaryotic cell motility is to dissect the elementary biochemical and biophysical steps that link actin polymerization to mechanical force generation. Recently, significant progress was made using biomimetic, in vitro systems that are inspired by the actin-based motility of bacterial pathogens such as Listeria monocytogenes. Polystyrene microspheres and synthetic phospholipid vesicles coated with proteins that initiate actin polymerization display motile behavior similar to Listeria, mimicking the leading edge of lamellipodia and filopodia. A major advantage of these biomimetic systems is that both biochemical and physical parameters can be controlled precisely. These systems provide a test bed for validating theoretical models on force generation and polarity establishment resulting from actin polymerization. In this review, we discuss recent experimental progress using biomimetic systems propelled by actin polymerization and discuss these results in the light of recent theoretical models on actin-based motility.

  19. Numerical Modeling of Interstitial Fluid Flow Coupled with Blood Flow through a Remodeled Solid Tumor Microvascular Network.

    PubMed

    Soltani, M; Chen, P

    2013-01-01

    Modeling of interstitial fluid flow involves processes such as fluid diffusion, convective transport in extracellular matrix, and extravasation from blood vessels. To date, majority of microvascular flow modeling has been done at different levels and scales mostly on simple tumor shapes with their capillaries. However, with our proposed numerical model, more complex and realistic tumor shapes and capillary networks can be studied. Both blood flow through a capillary network, which is induced by a solid tumor, and fluid flow in tumor's surrounding tissue are formulated. First, governing equations of angiogenesis are implemented to specify the different domains for the network and interstitium. Then, governing equations for flow modeling are introduced for different domains. The conservation laws for mass and momentum (including continuity equation, Darcy's law for tissue, and simplified Navier-Stokes equation for blood flow through capillaries) are used for simulating interstitial and intravascular flows and Starling's law is used for closing this system of equations and coupling the intravascular and extravascular flows. This is the first study of flow modeling in solid tumors to naturalistically couple intravascular and extravascular flow through a network. This network is generated by sprouting angiogenesis and consisting of one parent vessel connected to the network while taking into account the non-continuous behavior of blood, adaptability of capillary diameter to hemodynamics and metabolic stimuli, non-Newtonian blood flow, and phase separation of blood flow in capillary bifurcation. The incorporation of the outlined components beyond the previous models provides a more realistic prediction of interstitial fluid flow pattern in solid tumors and surrounding tissues. Results predict higher interstitial pressure, almost two times, for realistic model compared to the simplified model.

  20. Numerical Modeling of Interstitial Fluid Flow Coupled with Blood Flow through a Remodeled Solid Tumor Microvascular Network

    PubMed Central

    Soltani, M.; Chen, P.

    2013-01-01

    Modeling of interstitial fluid flow involves processes such as fluid diffusion, convective transport in extracellular matrix, and extravasation from blood vessels. To date, majority of microvascular flow modeling has been done at different levels and scales mostly on simple tumor shapes with their capillaries. However, with our proposed numerical model, more complex and realistic tumor shapes and capillary networks can be studied. Both blood flow through a capillary network, which is induced by a solid tumor, and fluid flow in tumor’s surrounding tissue are formulated. First, governing equations of angiogenesis are implemented to specify the different domains for the network and interstitium. Then, governing equations for flow modeling are introduced for different domains. The conservation laws for mass and momentum (including continuity equation, Darcy’s law for tissue, and simplified Navier–Stokes equation for blood flow through capillaries) are used for simulating interstitial and intravascular flows and Starling’s law is used for closing this system of equations and coupling the intravascular and extravascular flows. This is the first study of flow modeling in solid tumors to naturalistically couple intravascular and extravascular flow through a network. This network is generated by sprouting angiogenesis and consisting of one parent vessel connected to the network while taking into account the non-continuous behavior of blood, adaptability of capillary diameter to hemodynamics and metabolic stimuli, non-Newtonian blood flow, and phase separation of blood flow in capillary bifurcation. The incorporation of the outlined components beyond the previous models provides a more realistic prediction of interstitial fluid flow pattern in solid tumors and surrounding tissues. Results predict higher interstitial pressure, almost two times, for realistic model compared to the simplified model. PMID:23840579

  1. Liquid crystal domains and thixotropy of filamentous actin suspensions.

    PubMed

    Kerst, A; Chmielewski, C; Livesay, C; Buxbaum, R E; Heidemann, S R

    1990-06-01

    The thixotropic properties of filamentous actin suspensions were examined by a step-function shearing protocol. Samples of purified filamentous actin were sheared at 0.2 sec-1 in a cone and plate rheometer. We noted a sharp stress overshoot upon the initiation of shear, indicative of a gel state, and a nearly instantaneous drop to zero stress upon cessation of shear. Stress-overshoot recovery was almost complete after 5 min of "rest" before samples were again sheared at 0.2 sec-1. Overshoot recovery increased linearly with the square root of rest time, suggesting that gel-state recovery is diffusion limited. Actin suspensions subjected to oscillatory shearing at frequencies from 0.003 to 30 radians/sec confirmed the existence of a 5-min time scale in the gel, similar to that for stress-overshoot recovery. Flow of filamentous actin was visualized by polarized light observations. Actin from 6 mg/ml to 20 mg/ml showed the "polycrystalline" texture of birefringence typical for liquid crystal structure. At shear rates less than 1 sec-1, flow occurred by the relative movement of irregular, roughly ellipsoidal actin domains 40-140 microns long; the appearance was similar to moving ice floes. At shear rates greater than 1 sec-1, domains decreased in size, possibly by frictional interactions among domains. Eventually domains flow in a "river" of actin aligned by the flow. Our observations confirm our previous domain-friction model for actin rheology. The similarities between the unusual flow properties of actin and cytoplasm argue that cytoplasm also may flow as domains.

  2. Flow model for open-channel reach or network

    USGS Publications Warehouse

    Schaffranek, R.W.

    1987-01-01

    Formulation of a one-dimensional model for simulating unsteady flow in a single open-channel reach or in a network of interconnected channels is presented. The model is both general and flexible in that it can be used to simulate a wide range of flow conditions for various channel configurations. It is based on a four-point (box), implicit, finite-difference approximation of the governing nonlinear flow equations with user-definable weighting coefficients to permit varying the solution scheme from box-centered to fully forward. Unique transformation equations are formulated that permit correlation of the unknowns at the extremities of the channels, thereby reducing coefficient matrix and execution time requirements. Discharges and water-surface elevations computed at intermediate locations within a channel are determined following solution of the transformation equations. The matrix of transformation and boundary-condition equations is solved by Gauss elimination using maximum pivot strategy. Two diverse applications of the model are presented to illustrate its broad utility. (USGS)

  3. Simulating unsteady flow and sediment transport in vegetated channel network

    NASA Astrophysics Data System (ADS)

    Bai, Yang; Duan, Jennifer G.

    2014-07-01

    This paper presents a one-dimensional model for simulating flood routing and sediment transport over mobile alluvium in a vegetated channel network. The modified St. Venant equations together with the governing equations for suspended sediment and bed load transport were solved simultaneously to obtain flow properties and sediment transport rate. The Godunov-type finite volume method is employed to discretize the governing equations. Then, the Exner equation was solved for bed elevation change. Since sediment transport is non-equilibrium when bed is degrading or aggrading, a recovery coefficient for suspended sediment and an adaptation length for bed load transport were used to quantify the differences between equilibrium and non-equilibrium sediment transport rate. The influence of vegetation on floodplain and main channel was accounted for by adjusting resistance terms in the momentum equations for flow field. A procedure to separate the grain resistance from the total resistance was proposed and implemented to calculate sediment transport rate. The model was tested by a flume experiment case and an unprecedented flood event occurred in the Santa Cruz River, Tucson, Arizona, in July 2006. Simulated results of flow discharge and bed elevation changes showed satisfactory agreements with the measurements. The impacts of vegetation density on sediment transport and significance of non-equilibrium sediment transport model were discussed.

  4. SIPSON--simulation of interaction between pipe flow and surface overland flow in networks.

    PubMed

    Djordjević, S; Prodanović, D; Maksimović, C; Ivetić, M; Savić, D

    2005-01-01

    The new simulation model, named SIPSON, based on the Preissmann finite difference method and the conjugate gradient method, is presented in the paper. This model simulates conditions when the hydraulic capacity of a sewer system is exceeded, pipe flow is pressurized, the water flows out from the piped system to the streets, and the inlets cannot capture all the runoff. In the mathematical model, buried structures and pipelines, together with surface channels, make a horizontally and vertically looped network involving a complex interaction of flows. In this paper, special internal boundary conditions related to equivalent inlets are discussed. Procedures are described for the simulation of manhole cover loss, basement flooding, the representation of street geometry, and the distribution of runoff hydrographs between surface and underground networks. All these procedures are built into the simulation model. Relevant issues are illustrated on a set of examples, focusing on specific parameters and comparison with field measurements of flooding of the Motilal ki Chal catchment (Indore, India). Satisfactory agreement of observed and simulated hydrographs and maximum surface flooding levels is obtained. It is concluded that the presented approach is an improvement compared to the standard "virtual reservoir" approach commonly applied in most of the models.

  5. Actin Filament Stress Fibers in Vascular Endothelial Cells in vivo

    NASA Astrophysics Data System (ADS)

    Wong, Albert J.; Pollard, Thomas D.; Herman, Ira M.

    1983-02-01

    Fluorescence microscopy with 7-nitrobenz-2-oxa-3-diazole phallacidin was used to survey vertebrate tissues for actin filament bundles comparable to the stress fibers of cultured cells. Such bundles were found only in vascular endothelial cells. Like the stress fibers of cultured cells, these actin filament bundles were stained in a punctate pattern by fluorescent antibodies to both alpha-actinin and myosin. The stress fibers were oriented parallel to the direction of blood flow and were prominent in endothelial cells from regions exposed to high-velocity flow, such as the left ventricle, aortic valve, and aorta. Actin bundles may help the endothelial cell to withstand hemodynamic stress.

  6. Dynamic buckling of actin within filopodia

    PubMed Central

    Leijnse, Natascha; Oddershede, Lene B; Bendix, Poul M

    2015-01-01

    Abstract Filopodia are active tubular structures protruding from the cell surface which allow the cell to sense and interact with the surrounding environment through repetitive elongation-retraction cycles. The mechanical behavior of filopodia has been studied by measuring the traction forces exerted on external substrates.1 These studies have revealed that internal actin flow can transduce a force across the cell surface through transmembrane linkers like integrins. In addition to the elongation-retraction behavior filopodia also exhibit a buckling and rotational behavior. Filopodial buckling in conjunction with rotation enables the cell to explore a much larger 3-dimensional space and allows for more complex, and possibly stronger, interactions with the external environment.2 Here we focus on how bending of the filopodial actin dynamically correlates with pulling on an optically trapped microsphere which acts like an external substrate attached to the filopodial tip. There is a clear correlation between presence of actin near the tip and exertion of a traction force, thus demonstrating that the traction force is transduced along the actin shaft inside the filopodium. By extending a filopodium and holding it while measuring the cellular response, we also monitor and analyze the waiting times for the first buckle observed in the fluorescently labeled actin shaft. PMID:26479403

  7. Confidence intervals in Flow Forecasting by using artificial neural networks

    NASA Astrophysics Data System (ADS)

    Panagoulia, Dionysia; Tsekouras, George

    2014-05-01

    One of the major inadequacies in implementation of Artificial Neural Networks (ANNs) for flow forecasting is the development of confidence intervals, because the relevant estimation cannot be implemented directly, contrasted to the classical forecasting methods. The variation in the ANN output is a measure of uncertainty in the model predictions based on the training data set. Different methods for uncertainty analysis, such as bootstrap, Bayesian, Monte Carlo, have already proposed for hydrologic and geophysical models, while methods for confidence intervals, such as error output, re-sampling, multi-linear regression adapted to ANN have been used for power load forecasting [1-2]. The aim of this paper is to present the re-sampling method for ANN prediction models and to develop this for flow forecasting of the next day. The re-sampling method is based on the ascending sorting of the errors between real and predicted values for all input vectors. The cumulative sample distribution function of the prediction errors is calculated and the confidence intervals are estimated by keeping the intermediate value, rejecting the extreme values according to the desired confidence levels, and holding the intervals symmetrical in probability. For application of the confidence intervals issue, input vectors are used from the Mesochora catchment in western-central Greece. The ANN's training algorithm is the stochastic training back-propagation process with decreasing functions of learning rate and momentum term, for which an optimization process is conducted regarding the crucial parameters values, such as the number of neurons, the kind of activation functions, the initial values and time parameters of learning rate and momentum term etc. Input variables are historical data of previous days, such as flows, nonlinearly weather related temperatures and nonlinearly weather related rainfalls based on correlation analysis between the under prediction flow and each implicit input

  8. Sediment transport mechanisms through the sustainable vegetated flow networks

    NASA Astrophysics Data System (ADS)

    Allen, Deonie; Haynes, Heather; Arthur, Scott

    2016-04-01

    Understanding the pollution treatment efficiency of a sustainable urban drainage (SuDS) asset or network requires the influx, transport, detention and discharge of the pollutant within the system. To date event specific monitoring of sediment (primarily total suspended solids) concentrations in the inflow and discharge from SuDS have been monitored. Long term analysis of where the sediment is transported to and the residency time of this pollutant within the SuDS asset or network have not been unraveled due to the difficulty in monitoring specific sediment particulate movement. Using REO tracing methodology, sediment particulate movement has become possible. In tracing sediment movement from an urban surface the internal residency and transportation of this sediment has illustrated SuDS asset differences in multi-event detention. Of key importance is the finding that sediment remains within the SuDS asset for extended periods of time, but that the location sediment detention changes. Thus, over multiple rainfall-runoff events sediment is seen to move through the SuDS assets and network proving the assumption that detained sediment is permanent and stationary to be inaccurate. Furthermore, mass balance analysis of SuDS sediment indicates that there is notable re-suspension and ongoing release of sediment from the SuDS over time and cumulative rainfall-runoff events. Continued monitoring of sediment deposition and concentration in suspension illustrates that sediment detention within SuDS decreases over time/multiple events, without stabilizing within a 12 month period. Repeated experiments show a consistent pattern of detention and release for the three SuDS networks monitored in Scotland. Through consideration of both rainfall and flow factors the drivers of sediment transport within the monitored SuDS have been identified. Within the limitation of this field study the key drivers to SuDS sediment detention efficiency (or transport of sediment through the system

  9. Quantitative apical membrane proteomics reveals vasopressin-induced actin dynamics in collecting duct cells

    PubMed Central

    Loo, Chin-San; Chen, Cheng-Wei; Wang, Po-Jen; Chen, Pei-Yu; Lin, Shu-Yu; Khoo, Kay-Hooi; Fenton, Robert A.; Knepper, Mark A.; Yu, Ming-Jiun

    2013-01-01

    In kidney collecting duct cells, filamentous actin (F-actin) depolymerization is a critical step in vasopressin-induced trafficking of aquaporin-2 to the apical plasma membrane. However, the molecular components of this response are largely unknown. Using stable isotope-based quantitative protein mass spectrometry and surface biotinylation, we identified 100 proteins that showed significant abundance changes in the apical plasma membrane of mouse cortical collecting duct cells in response to vasopressin. Fourteen of these proteins are involved in actin cytoskeleton regulation, including actin itself, 10 actin-associated proteins, and 3 regulatory proteins. Identified were two integral membrane proteins (Clmn, Nckap1) and one actin-binding protein (Mpp5) that link F-actin to the plasma membrane, five F-actin end-binding proteins (Arpc2, Arpc4, Gsn, Scin, and Capzb) involved in F-actin reorganization, and two actin adaptor proteins (Dbn1, Lasp1) that regulate actin cytoskeleton organization. There were also protease (Capn1), protein kinase (Cdc42bpb), and Rho guanine nucleotide exchange factor 2 (Arhgef2) that mediate signal-induced F-actin changes. Based on these findings, we devised a live-cell imaging method to observe vasopressin-induced F-actin dynamics in polarized mouse cortical collecting duct cells. In response to vasopressin, F-actin gradually disappeared near the center of the apical plasma membrane while consolidating laterally near the tight junction. This F-actin peripheralization was blocked by calcium ion chelation. Vasopressin-induced apical aquaporin-2 trafficking and forskolin-induced water permeability increase were blocked by F-actin disruption. In conclusion, we identified a vasopressin-regulated actin network potentially responsible for vasopressin-induced apical F-actin dynamics that could explain regulation of apical aquaporin-2 trafficking and water permeability increase. PMID:24085853

  10. A green fluorescent protein fusion to actin-binding domain 2 of Arabidopsis fimbrin highlights new features of a dynamic actin cytoskeleton in live plant cells.

    PubMed

    Sheahan, Michael B; Staiger, Chris J; Rose, Ray J; McCurdy, David W

    2004-12-01

    The actin cytoskeleton coordinates numerous cellular processes required for plant development. The functions of this network are intricately linked to its dynamic arrangement, and thus progress in understanding how actin orchestrates cellular processes relies on critical evaluation of actin organization and turnover. To investigate the dynamic nature of the actin cytoskeleton, we used a fusion protein between green fluorescent protein (GFP) and the second actin-binding domain (fABD2) of Arabidopsis (Arabidopsis thaliana) fimbrin, AtFIM1. The GFP-fABD2 fusion protein labeled highly dynamic and dense actin networks in diverse species and cell types, revealing structural detail not seen with alternative labeling methods, such as the commonly used mouse talin GFP fusion (GFP-mTalin). Further, we show that expression of the GFP-fABD2 fusion protein in Arabidopsis, unlike GFP-mTalin, has no detectable adverse effects on plant morphology or development. Time-lapse confocal microscopy and fluorescence recovery after photobleaching analyses of the actin cytoskeleton labeled with GFP-fABD2 revealed that lateral-filament migration and sliding of individual actin filaments or bundles are processes that contribute to the dynamic and continually reorganizing nature of the actin scaffold. These new observations of the dynamic actin cytoskeleton in plant cells using GFP-fABD2 reveal the value of this probe for future investigations of how actin filaments coordinate cellular processes required for plant development.

  11. Speed limit and ramp meter control for traffic flow networks

    NASA Astrophysics Data System (ADS)

    Goatin, Paola; Göttlich, Simone; Kolb, Oliver

    2016-07-01

    The control of traffic flow can be related to different applications. In this work, a method to manage variable speed limits combined with coordinated ramp metering within the framework of the Lighthill-Whitham-Richards (LWR) network model is introduced. Following a 'first-discretize-then-optimize' approach, the first order optimality system is derived and the switch of speeds at certain fixed points in time is explained, together with the boundary control for the ramp metering. Sequential quadratic programming methods are used to solve the control problem numerically. For application purposes, experimental setups are presented wherein variable speed limits are used as a traffic guidance system to avoid traffic jams on highway interchanges and on-ramps.

  12. Multi-Commodity Network Flow for Tracking Multiple People.

    PubMed

    Ben Shitrit, Horesh; Berclaz, Jérôme; Fleuret, Francois; Fua, Pascal

    2014-08-01

    In this paper, we show that tracking multiple people whose paths may intersect can be formulated as a multi-commodity network flow problem. Our proposed framework is designed to exploit image appearance cues to prevent identity switches. Our method is effective even when such cues are only available at distant time intervals. This is unlike many current approaches that depend on appearance being exploitable from frame-to-frame. Furthermore, our algorithm lends itself to a real-time implementation. We validate our approach on three publicly available datasets that contain long and complex sequences, the APIDIS basketball dataset, the ISSIA soccer dataset, and the PETS'09 pedestrian dataset. We also demonstrate its performance on a newer basketball dataset that features complete world championship basketball matches. In all cases, our approach preserves identity better than state-of-the-art tracking algorithms.

  13. Multi-Commodity Network Flow for Tracking Multiple People.

    PubMed

    Ben Shitrit, Horesh; Berclaz, Jérôme; Fleuret, François; Fua, Pascal

    2013-10-17

    n this paper, we show that tracking multiple people whose paths may intersect can be formulated as a multi-commodity network flow problem. Our proposed framework is designed to exploit image appearance cues to prevent identity switches. Our method is effective even when such cues are only available at distant time intervals. This is unlike many current approaches that depend on appearance being exploitable from frame to frame. Furthermore, our algorithm lends itself to a real-time implementation. We validate our approach on three publicly available datasets that contain long and complex sequences, the APIDIS basketball dataset, the ISSIA soccer dataset and the PETS’09 pedestrian dataset. We also demonstrate its performance on a newer basketball dataset that features complete world championship basketball matches. In all cases, our approach preserves identity better than state-of-the-art tracking algorithms.

  14. Spatio-temporal organization of dynamics in a two-dimensional periodically driven vortex flow: A Lagrangian flow network perspective

    NASA Astrophysics Data System (ADS)

    Lindner, Michael; Donner, Reik V.

    2017-03-01

    We study the Lagrangian dynamics of passive tracers in a simple model of a driven two-dimensional vortex resembling real-world geophysical flow patterns. Using a discrete approximation of the system's transfer operator, we construct a directed network that describes the exchange of mass between distinct regions of the flow domain. By studying different measures characterizing flow network connectivity at different time-scales, we are able to identify the location of dynamically invariant structures and regions of maximum dispersion. Specifically, our approach allows us to delimit co-existing flow regimes with different dynamics. To validate our findings, we compare several network characteristics to the well-established finite-time Lyapunov exponents and apply a receiver operating characteristic analysis to identify network measures that are particularly useful for unveiling the skeleton of Lagrangian chaos.

  15. Design and Evaluation of a Proxy-Based Monitoring System for OpenFlow Networks

    PubMed Central

    Taniguchi, Yoshiaki; Tsutsumi, Hiroaki; Iguchi, Nobukazu; Watanabe, Kenzi

    2016-01-01

    Software-Defined Networking (SDN) has attracted attention along with the popularization of cloud environment and server virtualization. In SDN, the control plane and the data plane are decoupled so that the logical topology and routing control can be configured dynamically depending on network conditions. To obtain network conditions precisely, a network monitoring mechanism is necessary. In this paper, we focus on OpenFlow which is a core technology to realize SDN. We propose, design, implement, and evaluate a network monitoring system for OpenFlow networks. Our proposed system acts as a proxy between an OpenFlow controller and OpenFlow switches. Through experimental evaluations, we confirm that our proposed system can capture packets and monitor traffic information depending on administrator's configuration. In addition, we show that our proposed system does not influence significant performance degradation to overall network performance. PMID:27006977

  16. Parallel Computation of Unsteady Flows on a Network of Workstations

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Parallel computation of unsteady flows requires significant computational resources. The utilization of a network of workstations seems an efficient solution to the problem where large problems can be treated at a reasonable cost. This approach requires the solution of several problems: 1) the partitioning and distribution of the problem over a network of workstation, 2) efficient communication tools, 3) managing the system efficiently for a given problem. Of course, there is the question of the efficiency of any given numerical algorithm to such a computing system. NPARC code was chosen as a sample for the application. For the explicit version of the NPARC code both two- and three-dimensional problems were studied. Again both steady and unsteady problems were investigated. The issues studied as a part of the research program were: 1) how to distribute the data between the workstations, 2) how to compute and how to communicate at each node efficiently, 3) how to balance the load distribution. In the following, a summary of these activities is presented. Details of the work have been presented and published as referenced.

  17. Aluminum modifies the viscosity of filamentous actin solutions as measured by optical displacement microviscometry.

    PubMed

    Arnoys, E J; Schindler, M

    2000-01-01

    A microtechnique has been developed that is capable of measuring the viscosity of filamentous actin (F-actin) solutions. This method, called optical displacement microviscometry (ODM), was utilized to determine the changes in viscosity of solutions of rabbit muscle, human platelet, and maize pollen actin when measured in the absence and presence of aluminum. Measurements demonstrated that the viscosity of the different actin solutions decreased with aluminum concentration. In contrast, increases in viscosity were observed when aluminum was added to F-actin solutions containing filamin (chicken gizzard), a protein that bundles actin filaments. Confocal fluorescence imaging of pure actin solutions in the presence of aluminum showed a disrupted actin network composed of fragmented actin filaments in the form of small aggregates. In contrast, in the presence of filamin, aluminum promoted the formation of thicker actin filaments. These measurements demonstrate that aluminum can affect actin filaments differentially depending on the presence of an actin-binding protein. In addition, a strong correlation is observed between the changes in viscosity as measured by ODM and the thickness and assembled state of bundles of actin filaments.

  18. Reentrant Information Flow in Electrophysiological Rat Default Mode Network

    PubMed Central

    Jing, Wei; Guo, Daqing; Zhang, Yunxiang; Guo, Fengru; Valdés-Sosa, Pedro A.; Xia, Yang; Yao, Dezhong

    2017-01-01

    Functional MRI (fMRI) studies have demonstrated that the rodent brain shows a default mode network (DMN) activity similar to that in humans, offering a potential preclinical model both for physiological and pathophysiological studies. However, the neuronal mechanism underlying rodent DMN remains poorly understood. Here, we used electrophysiological data to analyze the power spectrum and estimate the directed phase transfer entropy (dPTE) within rat DMN across three vigilance states: wakeful rest (WR), slow-wave sleep (SWS), and rapid-eye-movement sleep (REMS). We observed decreased gamma powers during SWS compared with WR in most of the DMN regions. Increased gamma powers were found in prelimbic cortex, cingulate cortex, and hippocampus during REMS compared with WR, whereas retrosplenial cortex showed a reverse trend. These changed gamma powers are in line with the local metabolic variation of homologous brain regions in humans. In the analysis of directional interactions, we observed well-organized anterior-to-posterior patterns of information flow in the delta band, while opposite patterns of posterior-to-anterior flow were found in the theta band. These frequency-specific opposite patterns were only observed in WR and REMS. Additionally, most of the information senders in the delta band were also the receivers in the theta band, and vice versa. Our results provide electrophysiological evidence that rat DMN is similar to its human counterpart, and there is a frequency-dependent reentry loop of anterior-posterior information flow within rat DMN, which may offer a mechanism for functional integration, supporting conscious awareness. PMID:28289373

  19. Actinic keratosis. Current treatment options.

    PubMed

    Jeffes, E W; Tang, E H

    2000-01-01

    Actinic keratoses are hyperkeratotic skin lesions that represent focal abnormal proliferation of epidermal keratinocytes. Some actinic keratoses evolve into squamous cell carcinoma of the skin, while others resolve spontaneously. The conversion rate of actinic keratosis to squamous cell carcinoma is not accurately known, but appears to be in the range of 0.25 to 1% per year. Although there is a low rate of conversion of actinic keratoses to squamous cell carcinoma, 60% of squamous cell carcinomas of the skin probably arise from actinic keratoses. The main cause of actinic keratoses in otherwise healthy Caucasians appears to be the sun. Therapy for actinic keratoses begins with prevention which starts with sun avoidance and physical protection. Sunprotection with sunscreens actually slows the return of actinic keratoses in patients already getting actinic keratoses. Interestingly, a few studies are available that demonstrate that a high fat diet is associated with the production of more actinic keratoses than is a low fat diet. One of the mainstays of therapy has been local destruction of the actinic keratoses with cryotherapy, and curettage and electrodesiccation. A new addition to this group of therapies to treat individual actinic keratoses is photodynamic therapy with topical aminolevulinic acid and light. In patients who have numerous actinic keratoses in an area of severely sun damaged skin, therapies which are applied to the whole actinic keratosis area are used. The goal of treating such an area of skin is to treat all of the early as well as the numerous clinically evident actinic keratoses at the same time. The classical approaches for treating areas of photodamaged skin without treating actinic keratoses individually include: the use of topically applied fluorouracil cream, dermabrasion, and cutaneous peels with various agents like trichloroacetic acid. Both topically as well as orally administered retinoids have been used to treat actinic keratoses but

  20. A Dynamic Space-Time Network Flow Model for City Traffic Congestion.

    DTIC Science & Technology

    1983-10-01

    both the constant demand and elastic demand models a static set of origin destination demands is assumed to exist. This may be a valid long run...determined for each situation. II. A TWO ATTRIBUTE DINAMIC NETWORK FLOW MODEL In this section a two attribute network flow model which is dynamic, i.e

  1. Impact of C24:0 on actin-microtubule interaction in human neuronal SK-N-BE cells: evaluation by FRET confocal spectral imaging microscopy after dual staining with rhodamine-phalloidin and tubulin tracker green

    PubMed Central

    Zarrouk, Amira; Nury, Thomas; Dauphin, Aurélien; Frère, Perrine; Riedinger, Jean-Marc; Bachelet, Claude-Marie; Frouin, Frédérique; Moreau, Thibault; Hammami, Mohamed; Kahn, Edmond; Lizard, Gérard

    2015-01-01

    Summary Disorganization of the cytoskeleton of neurons has major consequences on the transport of neuro-transmitters via the microtubule network. The interaction of cytoskeleton proteins (actin and tubulin) was studied in neuronal SK-N-BE cells treated with tetracosanoic acid (C24:0), which is cytotoxic and increased in Alzheimer’s disease patients. When SK-N-BE cells were treated with C24:0, mitochondrial dysfunctions and a non-apoptotic mode of cell death were observed. Fluorescence microscopy revealed shrunken cells with perinuclear condensation of actin and tubulin. After staining with rhodamine-phalloidin and with an antibody raised against α-/β-tubulin, modifications of F-actin and α-/β-tubulin levels were detected by flow cytometry. Lower levels of α-tubulin were found by Western blotting. In C24:0-treated cells, spectral analysis and fluorescence recovery after photo-bleaching (FRAP) measured by confocal microscopy proved the existence of fluorescence resonance energy transfer (FRET) when actin and tubulin were stained with tubulin tracker and rhodamine-phalloidin demonstrating actin and tubulin co-localization/interaction. In control cells, no FRET was observed. Our data demonstrate quantitative changes in actin and tubulin, and modified interactions between actin and tubulin in SK-N-BE cells treated with C24:0. They also show that FRET confocal imaging microscopy is an interesting method for specifying the impact of cytotoxic compounds on cytoskeleton proteins. PMID:26214025

  2. The centrosome is an actin-organizing center

    PubMed Central

    Farina, Francesca; Gaillard, Jérémie; Guérin, Christophe; Couté, Yohann; Sillibourne, James; Blanchoin, Laurent; Théry, Manuel

    2016-01-01

    Microtubules and actin filaments are the two main cytoskeleton networks supporting intracellular architecture and cell polarity. The centrosome nucleates and anchors microtubules and is therefore considered to be the main microtubule-organizing center. However, recurring, yet unexplained, observations have pointed towards a connection between the centrosome and actin filaments. Here we have used isolated centrosomes to demonstrate that the centrosome can directly promote actin filament assembly. A cloud of centrosome-associated actin filaments could be identified in living cells as well. Actin-filament nucleation at the centrosome was mediated by the nucleation promoting factor WASH in combination with the Arp2/3 complex. Pericentriolar material 1 (PCM1) appeared to modulate the centrosomal actin network by regulating Arp2/3 complex and WASH recruitment to the centrosome. Hence our results reveal an additional facet of the centrosome as an intracellular organizer and provide mechanistic insights into how the centrosome can function as an actin filament-organizing center. PMID:26655833

  3. Architecture Design and Experimental Platform Demonstration of Optical Network based on OpenFlow Protocol

    NASA Astrophysics Data System (ADS)

    Xing, Fangyuan; Wang, Honghuan; Yin, Hongxi; Li, Ming; Luo, Shenzi; Wu, Chenguang

    2016-02-01

    With the extensive application of cloud computing and data centres, as well as the constantly emerging services, the big data with the burst characteristic has brought huge challenges to optical networks. Consequently, the software defined optical network (SDON) that combines optical networks with software defined network (SDN), has attracted much attention. In this paper, an OpenFlow-enabled optical node employed in optical cross-connect (OXC) and reconfigurable optical add/drop multiplexer (ROADM), is proposed. An open source OpenFlow controller is extended on routing strategies. In addition, the experiment platform based on OpenFlow protocol for software defined optical network, is designed. The feasibility and availability of the OpenFlow-enabled optical nodes and the extended OpenFlow controller are validated by the connectivity test, protection switching and load balancing experiments in this test platform.

  4. Lamellipodial actin mechanically links myosin activity with adhesion site formation

    PubMed Central

    Giannone, Gregory; Dubin-Thaler, Benjamin; Rossier, Olivier; Cai, Yunfei; Chaga, Oleg; Jiang, Guoying; Beaver, William; Döbereiner, Hans-Günther; Freund, Yoav; Borisy, Gary; Sheetz, Michael P.

    2013-01-01

    Summary Cell motility proceeds by cycles of edge protrusion, adhesion and retraction. Whether these functions are coordinated by biochemical or biomechanical processes is unknown. We find that myosin II pulls the rear of the lamellipodial actin network, causing upward bending, edge retraction and initiation of new adhesion sites. The network then separates from the edge and condenses over the myosin. Protrusion resumes as lamellipodial actin regenerates from the front and extends rearward until it reaches newly assembled myosin, initiating the next cycle. Upward bending, observed by evanescence and electron microscopy, results in ruffle formation when adhesion strength is low. Correlative fluorescence and electron microscopy shows that the regenerating lamellipodium forms a cohesive, separable layer of actin above the lamellum. Thus, actin polymerization periodically builds a mechanical link, the lamellipodium, connecting myosin motors with the initiation of adhesion sites, suggesting that the major functions driving motility are coordinated by a biomechanical process. PMID:17289574

  5. Network Flow Simulation of Fluid Transients in Rocket Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Bandyopadhyay, Alak; Hamill, Brian; Ramachandran, Narayanan; Majumdar, Alok

    2011-01-01

    Fluid transients, also known as water hammer, can have a significant impact on the design and operation of both spacecraft and launch vehicle propulsion systems. These transients often occur at system activation and shutdown. The pressure rise due to sudden opening and closing of valves of propulsion feed lines can cause serious damage during activation and shutdown of propulsion systems. During activation (valve opening) and shutdown (valve closing), pressure surges must be predicted accurately to ensure structural integrity of the propulsion system fluid network. In the current work, a network flow simulation software (Generalized Fluid System Simulation Program) based on Finite Volume Method has been used to predict the pressure surges in the feed line due to both valve closing and valve opening using two separate geometrical configurations. The valve opening pressure surge results are compared with experimental data available in the literature and the numerical results compared very well within reasonable accuracy (< 5%) for a wide range of inlet-to-initial pressure ratios. A Fast Fourier Transform is preformed on the pressure oscillations to predict the various modal frequencies of the pressure wave. The shutdown problem, i.e. valve closing problem, the simulation results are compared with the results of Method of Characteristics. Most rocket engines experience a longitudinal acceleration, known as "pogo" during the later stage of engine burn. In the shutdown example problem, an accumulator has been used in the feed system to demonstrate the "pogo" mitigation effects in the feed system of propellant. The simulation results using GFSSP compared very well with the results of Method of Characteristics.

  6. The simplicity of fractal-like flow networks for effective heat and mass transport

    SciTech Connect

    Pence, Deborah

    2010-05-15

    A variety of applications using disk-shaped fractal-like flow networks and the status of one and two-dimensional predictive models for these applications are summarized. Applications discussed include single-phase and two-phase heat sinks and heat exchangers, two-phase flow separators, desorbers, and passive micromixers. Advantages of using these fractal-like flow networks versus parallel-flow networks include lower pressure drop, lower maximum wall temperature, inlet plenum symmetry, alternate flow paths, and pressure recovery at the bifurcation. The compact nature of microscale fractal-like branching heat exchangers makes them ideal for modularity. Differences between fractal-like and constructal approaches applied to disk-shaped heat sink designs are highlighted, and the importance of including geometric constraints, including fabrication constraints, in flow network design optimization is discussed. Finally, a simple pencil and paper procedure for designing single-phase heat sinks with fractal-like flow networks based solely on geometric constraints is outlined. Benefit-to-cost ratios resulting from geometric-based designs are compared with those from flow networks determined using multivariable optimization. Results from the two network designs are within 11%. (author)

  7. Actin stress in cell reprogramming

    PubMed Central

    Guo, Jun; Wang, Yuexiu; Sachs, Frederick; Meng, Fanjie

    2014-01-01

    Cell mechanics plays a role in stem cell reprogramming and differentiation. To understand this process better, we created a genetically encoded optical probe, named actin–cpstFRET–actin (AcpA), to report forces in actin in living cells in real time. We showed that stemness was associated with increased force in actin. We reprogrammed HEK-293 cells into stem-like cells using no transcription factors but simply by softening the substrate. However, Madin-Darby canine kidney (MDCK) cell reprogramming required, in addition to a soft substrate, Harvey rat sarcoma viral oncogene homolog expression. Replating the stem-like cells on glass led to redifferentiation and reduced force in actin. The actin force probe was a FRET sensor, called cpstFRET (circularly permuted stretch sensitive FRET), flanked by g-actin subunits. The labeled actin expressed efficiently in HEK, MDCK, 3T3, and bovine aortic endothelial cells and in multiple stable cell lines created from those cells. The viability of the cell lines demonstrated that labeled actin did not significantly affect cell physiology. The labeled actin distribution was similar to that observed with GFP-tagged actin. We also examined the stress in the actin cross-linker actinin. Actinin force was not always correlated with actin force, emphasizing the need for addressing protein specificity when discussing forces. Because actin is a primary structural protein in animal cells, understanding its force distribution is central to understanding animal cell physiology and the many linked reactions such as stress-induced gene expression. This new probe permits measuring actin forces in a wide range of experiments on preparations ranging from isolated proteins to transgenic animals. PMID:25422450

  8. Dynamics of comb-of-comb-network polymers in random layered flows.

    PubMed

    Katyal, Divya; Kant, Rama

    2016-12-01

    We analyze the dynamics of comb-of-comb-network polymers in the presence of external random flows. The dynamics of such structures is evaluated through relevant physical quantities, viz., average square displacement (ASD) and the velocity autocorrelation function (VACF). We focus on comparing the dynamics of the comb-of-comb network with the linear polymer. The present work displays an anomalous diffusive behavior of this flexible network in the random layered flows. The effect of the polymer topology on the dynamics is analyzed by varying the number of generations and branch lengths in these networks. In addition, we investigate the influence of external flow on the dynamics by varying flow parameters, like the flow exponent α and flow strength W_{α}. Our analysis highlights two anomalous power-law regimes, viz., subdiffusive (intermediate-time polymer stretching and flow-induced diffusion) and superdiffusive (long-time flow-induced diffusion). The anomalous long-time dynamics is governed by the temporal exponent ν of ASD, viz., ν=2-α/2. Compared to a linear polymer, the comb-of-comb network shows a shorter crossover time (from the subdiffusive to superdiffusive regime) but a reduced magnitude of ASD. Our theory displays an anomalous VACF in the random layered flows that scales as t^{-α/2}. We show that the network with greater total mass moves faster.

  9. Dynamics of comb-of-comb-network polymers in random layered flows

    NASA Astrophysics Data System (ADS)

    Katyal, Divya; Kant, Rama

    2016-12-01

    We analyze the dynamics of comb-of-comb-network polymers in the presence of external random flows. The dynamics of such structures is evaluated through relevant physical quantities, viz., average square displacement (ASD) and the velocity autocorrelation function (VACF). We focus on comparing the dynamics of the comb-of-comb network with the linear polymer. The present work displays an anomalous diffusive behavior of this flexible network in the random layered flows. The effect of the polymer topology on the dynamics is analyzed by varying the number of generations and branch lengths in these networks. In addition, we investigate the influence of external flow on the dynamics by varying flow parameters, like the flow exponent α and flow strength Wα. Our analysis highlights two anomalous power-law regimes, viz., subdiffusive (intermediate-time polymer stretching and flow-induced diffusion) and superdiffusive (long-time flow-induced diffusion). The anomalous long-time dynamics is governed by the temporal exponent ν of ASD, viz., ν =2 -α /2 . Compared to a linear polymer, the comb-of-comb network shows a shorter crossover time (from the subdiffusive to superdiffusive regime) but a reduced magnitude of ASD. Our theory displays an anomalous VACF in the random layered flows that scales as t-α /2. We show that the network with greater total mass moves faster.

  10. Overall Ventilation System Flow Network Calculation for Site Recommendation

    SciTech Connect

    Jeff J. Steinhoff

    2001-08-02

    The scope of this calculation is to determine ventilation system resistances, pressure drops, airflows, and operating cost estimates for the Site Recommendation (SR) design as detailed in the ''Site Recommendation Subsurface Layout'' (BSC (Bechtel SAIC Company) 2001a). The statutory limit for emplacement of waste in Yucca Mountain is 70,000 metric tons of uranium (MTU) and is considered the base case for this report. The objective is to determine the overall repository system ventilation flow network for the monitoring phase during normal operations and to provide a basis for the system description document design descriptions. Any values derived from this calculation will not be used to support construction, fabrication, or procurement. The work scope is identified in the ''Technical Work Plan for Subsurface Design Section FY01 Work Activities'' (CRWMS M&O 2001, pp. 6 and 13). In accordance with the technical work plan this calculation was prepared in accordance with AP-3.12Q, ''Calculations'' and other procedures invoked by AP-3.12Q. It also incorporates the procedure AP-SI1.Q, ''Software Management''.

  11. Analysis of HRCT-derived xylem network reveals reverse flow in some vessels

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Flow in xylem vessels is modeled based on constructions of three dimensional xylem networks derived from High Resolution Computed Tomography (HRCT) images of grapevine (Vitis vinifera) stems. Flow in 6-14% of the vessels was found to be oriented in the opposite direction to the bulk flow under norma...

  12. Micro/Nano-pore Network Analysis of Gas Flow in Shale Matrix

    PubMed Central

    Zhang, Pengwei; Hu, Liming; Meegoda, Jay N.; Gao, Shengyan

    2015-01-01

    The gas flow in shale matrix is of great research interests for optimized shale gas extraction. The gas flow in the nano-scale pore may fall in flow regimes such as viscous flow, slip flow and Knudsen diffusion. A 3-dimensional nano-scale pore network model was developed to simulate dynamic gas flow, and to describe the transient properties of flow regimes. The proposed pore network model accounts for the various size distributions and low connectivity of shale pores. The pore size, pore throat size and coordination number obey normal distribution, and the average values can be obtained from shale reservoir data. The gas flow regimes were simulated using an extracted pore network backbone. The numerical results show that apparent permeability is strongly dependent on pore pressure in the reservoir and pore throat size, which is overestimated by low-pressure laboratory tests. With the decrease of reservoir pressure, viscous flow is weakening, then slip flow and Knudsen diffusion are gradually becoming dominant flow regimes. The fingering phenomenon can be predicted by micro/nano-pore network for gas flow, which provides an effective way to capture heterogeneity of shale gas reservoir. PMID:26310236

  13. The Flow of International Students from a Macro Perspective: A Network Analysis

    ERIC Educational Resources Information Center

    Barnett, George A.; Lee, Moosung; Jiang, Ke; Park, Han Woo

    2016-01-01

    This paper provides a network analysis of the international flow of students among 210 countries and the factors determining the structure of this flow. Among these factors, bilateral hyperlink connections between countries and the number of telephone minutes (communication variables) are the most important predictors of the flow's structure,…

  14. Micro/Nano-pore Network Analysis of Gas Flow in Shale Matrix.

    PubMed

    Zhang, Pengwei; Hu, Liming; Meegoda, Jay N; Gao, Shengyan

    2015-08-27

    The gas flow in shale matrix is of great research interests for optimized shale gas extraction. The gas flow in the nano-scale pore may fall in flow regimes such as viscous flow, slip flow and Knudsen diffusion. A 3-dimensional nano-scale pore network model was developed to simulate dynamic gas flow, and to describe the transient properties of flow regimes. The proposed pore network model accounts for the various size distributions and low connectivity of shale pores. The pore size, pore throat size and coordination number obey normal distribution, and the average values can be obtained from shale reservoir data. The gas flow regimes were simulated using an extracted pore network backbone. The numerical results show that apparent permeability is strongly dependent on pore pressure in the reservoir and pore throat size, which is overestimated by low-pressure laboratory tests. With the decrease of reservoir pressure, viscous flow is weakening, then slip flow and Knudsen diffusion are gradually becoming dominant flow regimes. The fingering phenomenon can be predicted by micro/nano-pore network for gas flow, which provides an effective way to capture heterogeneity of shale gas reservoir.

  15. Lamellipodin promotes actin assembly by clustering Ena/VASP proteins and tethering them to actin filaments

    PubMed Central

    Hansen, Scott D; Mullins, R Dyche

    2015-01-01

    Enabled/Vasodilator (Ena/VASP) proteins promote actin filament assembly at multiple locations, including: leading edge membranes, focal adhesions, and the surface of intracellular pathogens. One important Ena/VASP regulator is the mig-10/Lamellipodin/RIAM family of adaptors that promote lamellipod formation in fibroblasts and drive neurite outgrowth and axon guidance in neurons. To better understand how MRL proteins promote actin network formation we studied the interactions between Lamellipodin (Lpd), actin, and VASP, both in vivo and in vitro. We find that Lpd binds directly to actin filaments and that this interaction regulates its subcellular localization and enhances its effect on VASP polymerase activity. We propose that Lpd delivers Ena/VASP proteins to growing barbed ends and increases their polymerase activity by tethering them to filaments. This interaction represents one more pathway by which growing actin filaments produce positive feedback to control localization and activity of proteins that regulate their assembly. DOI: http://dx.doi.org/10.7554/eLife.06585.001 PMID:26295568

  16. Single-molecule studies of actin assembly and disassembly factors.

    PubMed

    Smith, Benjamin A; Gelles, Jeff; Goode, Bruce L

    2014-01-01

    The actin cytoskeleton is very dynamic and highly regulated by multiple associated proteins in vivo. Understanding how this system of proteins functions in the processes of actin network assembly and disassembly requires methods to dissect the mechanisms of activity of individual factors and of multiple factors acting in concert. The advent of single-filament and single-molecule fluorescence imaging methods has provided a powerful new approach to discovering actin-regulatory activities and obtaining direct, quantitative insights into the pathways of molecular interactions that regulate actin network architecture and dynamics. Here we describe techniques for acquisition and analysis of single-molecule data, applied to the novel challenges of studying the filament assembly and disassembly activities of actin-associated proteins in vitro. We discuss the advantages of single-molecule analysis in directly visualizing the order of molecular events, measuring the kinetic rates of filament binding and dissociation, and studying the coordination among multiple factors. The methods described here complement traditional biochemical approaches in elucidating actin-regulatory mechanisms in reconstituted filamentous networks.

  17. Moesin and cortactin control actin-dependent multivesicular endosome biogenesis

    PubMed Central

    Muriel, Olivia; Tomas, Alejandra; Scott, Cameron C.; Gruenberg, Jean

    2016-01-01

    We used in vivo and in vitro strategies to study the mechanisms of multivesicular endosome biogenesis. We found that, whereas annexinA2 and ARP2/3 mediate F-actin nucleation and branching, respectively, the ERM protein moesin supports the formation of F-actin networks on early endosomes. We also found that moesin plays no role during endocytosis and recycling to the plasma membrane but is absolutely required, much like actin, for early-to-late-endosome transport and multivesicular endosome formation. Both actin network formation in vitro and early-to-late endosome transport in vivo also depend on the F-actin–binding protein cortactin. Our data thus show that moesin and cortactin are necessary for formation of F-actin networks that mediate endosome biogenesis or maturation and transport through the degradative pathway. We propose that the primary function of endosomal F-actin is to control the membrane remodeling that accompanies endosome biogenesis. We also speculate that this mechanism helps segregate tubular and multivesicular membranes along the recycling and degradation pathways, respectively. PMID:27605702

  18. Identifying Modular Flows on Multilayer Networks Reveals Highly Overlapping Organization in Interconnected Systems

    NASA Astrophysics Data System (ADS)

    De Domenico, Manlio; Lancichinetti, Andrea; Arenas, Alex; Rosvall, Martin

    2015-01-01

    To comprehend interconnected systems across the social and natural sciences, researchers have developed many powerful methods to identify functional modules. For example, with interaction data aggregated into a single network layer, flow-based methods have proven useful for identifying modular dynamics in weighted and directed networks that capture constraints on flow processes. However, many interconnected systems consist of agents or components that exhibit multiple layers of interactions, possibly from several different processes. Inevitably, representing this intricate network of networks as a single aggregated network leads to information loss and may obscure the actual organization. Here, we propose a method based on a compression of network flows that can identify modular flows both within and across layers in nonaggregated multilayer networks. Our numerical experiments on synthetic multilayer networks, with some layers originating from the same interaction process, show that the analysis fails in aggregated networks or when treating the layers separately, whereas the multilayer method can accurately identify modules across layers that originate from the same interaction process. We capitalize on our findings and reveal the community structure of two multilayer collaboration networks with topics as layers: scientists affiliated with the Pierre Auger Observatory and scientists publishing works on networks on the arXiv. Compared to conventional aggregated methods, the multilayer method uncovers connected topics and reveals smaller modules with more overlap that better capture the actual organization.

  19. Enterprise network control and management: traffic flow models

    NASA Astrophysics Data System (ADS)

    Maruyama, William; George, Mark S.; Hernandez, Eileen; LoPresto, Keith; Uang, Yea

    1999-11-01

    The exponential growth and dramatic increase in demand for network bandwidth is expanding the market for broadband satellite networks. It is critical to rapidly deliver ubiquitous satellite communication networks that are differentiated by lower cost and increased Quality of Service (QoS). There is a need to develop new network architectures, control and management systems to meet the future commercial and military traffic requirements, services and applications. The next generation communication networks must support legacy and emerging network traffic while providing user negotiated levels of QoS. Network resources control algorithms must be designed to provide the guaranteed performance levels for voice, video and data having different service requirements. To evaluate network architectures and performance, it is essential to understand the network traffic characteristics.

  20. A novel form of actin in Leishmania: molecular characterisation, subcellular localisation and association with subpellicular microtubules.

    PubMed

    Sahasrabuddhe, Amogh A; Bajpai, Virendra K; Gupta, Chhitar M

    2004-03-01

    To study the occurrence and subcellular distribution of actin in trypanosomatid parasites, we have cloned and overexpressed Leishmania donovani actin gene in bacteria, purified the protein, and employed the affinity purified rabbit polyclonal anti-recombinant actin antibodies as a probe to study the organisation and subcellular distribution of actin in Leishmania cells. The Leishmania actin did not cross react with antimammalian actin antibodies but was readily recognized by the anti-Leishmania actin antibodies in both the promastigote and amastigote forms of the parasite. About 10(6) copies per cell of this protein (M(r) 42.05 kDa) were present in the Leishmania promastigote. Unlike other eukaryotic actins, the oligomeric forms of Leishmania actin were not stained by phalloidin nor were dissociated by actin filament-disrupting agents, like Latrunculin B and Cytochalasin D. Analysis of the primary structure of this protein revealed that these unusual characteristics may be related to the presence of highly diverged amino acids in the DNase I-binding loop (amino acids 40-50) and the hydrophobic plug (amino acids 262-272) regions of Leishmania actin. The subcellular distribution of actin was studied in the Leishmania promastigotes by employing immunoelectron and immunofluorescence microscopies. This protein was present not only in the flagella, flagellar pocket, nucleus and the kinetoplast but it was also localized on the nuclear, vacuolar and cytoplasmic face of the plasma membranes. Further, the plasma membrane-associated actin was colocalised with subpellicular microtubules, while most of the actin present in the kinetoplast colocalised with the k-DNA network. These results clearly indicate that Leishmania contains a novel form of actin which may structurally and functionally differ from other eukaryotic actins. The functional significance of these observations is discussed.

  1. Nuclear actin and protein 4.1: Essential interactions during nuclear assembly in vitro

    SciTech Connect

    Krauss, Sharon Wald; Chen, Cynthia; Penman, Sheldon; Heald, Rebecca

    2003-06-11

    Structural protein 4.1, which has crucial interactions within the spectin-actin lattice of the human red cell membrane skeleton, also is widely distributed at diverse intracellular sites in nucleated cells. We previously showed that 4.1 is essential for assembly of functional nuclei in vitro and that the capacity of 4.1 to bind actin is required. Here we report that 4.1 and actin colocalize in mammalian cell nuclei using fluorescence microscopy and, by higher resolution cell whole mount electron microscopy, are associated on nuclear filaments. We also devised a cell-free assay using Xenopus egg extract containing fluorescent actin to follow actin during nuclear assembly. By directly imaging actin under non-perturbing conditions, the total nuclear actin population is retained and is visualized in situ relative to intact chromatin. We detected actin initially when chromatin and nuclear pores began assembling. As the nuclear lamina assembled, but preceding DNA synthesis, a discrete actin network formed throughout the nucleus. Protein 4.1 epitopes also were detected when actin began to accumulate in nuclei, producing a diffuse coincident pattern. As nuclei matured, actin was detected both coincident with and also independent of 4.1 epitopes. To test whether acquisition of nuclear actin is required for nuclear assembly, the actin inhibitor latrunculin A was added to Xenopus egg extracts during nuclear assembly. Latrunculin A strongly perturbed nuclear assembly and produced distorted nuclear structures containing neither actin nor protein 4.1. Our results suggest that actin as well as 4.1 is necessary for nuclear assembly and that 4.1-actin interactions may be critical.

  2. Tests of peak flow scaling in simulated self-similar river networks

    USGS Publications Warehouse

    Menabde, M.; Veitzer, S.; Gupta, V.; Sivapalan, M.

    2001-01-01

    The effect of linear flow routing incorporating attenuation and network topology on peak flow scaling exponent is investigated for an instantaneously applied uniform runoff on simulated deterministic and random self-similar channel networks. The flow routing is modelled by a linear mass conservation equation for a discrete set of channel links connected in parallel and series, and having the same topology as the channel network. A quasi-analytical solution for the unit hydrograph is obtained in terms of recursion relations. The analysis of this solution shows that the peak flow has an asymptotically scaling dependence on the drainage area for deterministic Mandelbrot-Vicsek (MV) and Peano networks, as well as for a subclass of random self-similar channel networks. However, the scaling exponent is shown to be different from that predicted by the scaling properties of the maxima of the width functions. ?? 2001 Elsevier Science Ltd. All rights reserved.

  3. Constrained optimisation in granular network flows: Games with a loaded dice

    NASA Astrophysics Data System (ADS)

    Lin, Qun; Tordesillas, Antoinette

    2013-06-01

    Flows in real world networks are rarely the outcome of unconditional random allocations as, say, the roll of a dice. Think, for example, of force transmission through a contact network in a quasistatically deforming granular material. Forces `flow' through this network in a highly conditional manner. How much force is transmitted between two contacting particles is always conditional not only on all the other forces acting between the particles in question but also on those acting on the other particles in the system. Broadly, we are interested in the nature and extent to which flows through a contact network favour certain pathways over others, and how the mechanisms that govern such biased flows for a given imposed loading history determine the future evolution of the contact network. Our first step is to solve a selection of fundamental combinatorial optimisation problems on the contact network from the perspective of force transmission. Here we report on solutions to the Maximum Flow Minimum Cost Problem for a weighted contact network where the weights assigned to the links of the contact network are varied according to their contact types. We found that those pathways through which the maximum flow of force is transmitted, in the direction of the maximum principal stress, at minimum cost - pass through the great majority of the force chains. Although the majority of the contacts in these pathways are elastic, the plastic contacts bear an undue influence on the minimum cost.

  4. A generalized network flow model for the multi-mode resource-constrained project scheduling problem with discounted cash flows

    NASA Astrophysics Data System (ADS)

    Chen, Miawjane; Yan, Shangyao; Wang, Sin-Siang; Liu, Chiu-Lan

    2015-02-01

    An effective project schedule is essential for enterprises to increase their efficiency of project execution, to maximize profit, and to minimize wastage of resources. Heuristic algorithms have been developed to efficiently solve the complicated multi-mode resource-constrained project scheduling problem with discounted cash flows (MRCPSPDCF) that characterize real problems. However, the solutions obtained in past studies have been approximate and are difficult to evaluate in terms of optimality. In this study, a generalized network flow model, embedded in a time-precedence network, is proposed to formulate the MRCPSPDCF with the payment at activity completion times. Mathematically, the model is formulated as an integer network flow problem with side constraints, which can be efficiently solved for optimality, using existing mathematical programming software. To evaluate the model performance, numerical tests are performed. The test results indicate that the model could be a useful planning tool for project scheduling in the real world.

  5. A network analysis of food flows within the United States of America.

    PubMed

    Lin, Xiaowen; Dang, Qian; Konar, Megan

    2014-05-20

    The world food system is globalized and interconnected, in which trade plays an increasingly important role in facilitating food availability. We present a novel application of network analysis to domestic food flows within the USA, a country with global importance as a major agricultural producer and trade power. We find normal node degree distributions and Weibull node strength and betweenness centrality distributions. An unassortative network structure with high clustering coefficients exists. These network properties indicate that the USA food flow network is highly social and well-mixed. However, a power law relationship between node betweenness centrality and node degree indicates potential network vulnerability to the disturbance of key nodes. We perform an equality analysis which serves as a benchmark for global food trade, where the Gini coefficient = 0.579, Lorenz asymmetry coefficient = 0.966, and Hoover index = 0.442. These findings shed insight into trade network scaling and proxy free trade and equitable network architectures.

  6. Calcium Response in Osteocytic Networks under Steady and Oscillatory Fluid Flow

    PubMed Central

    Lu, X. Lucas; Huo, Bo; Park, Miri; Guo, X. Edward

    2012-01-01

    The fluid flow in the lacunar-canalicular system of bone is an essential mechanical stimulation on the osteocyte networks. Due to the complexity of human physical activities, the fluid shear stress on osteocyte bodies and processes consists of both steady and oscillatory components. In this study, we investigated and compared the intracellular calcium ([Ca2+]i) responses of osteocytic networks under steady and oscillatory fluid flows. An in vitro osteocytic network was built with MLO-Y4 osteocyte-like cells using micro-patterning techniques to simulate the in vivo orderly organization of osteocyte networks. Sinusoidal oscillating fluid flow or unidirectional steady flow was applied on the cell surface with 20 dyne/cm2 peak shear stress. It was found that the osteocytic networks were significantly more responsive to steady flow than to oscillatory flow. The osteocytes can release more calcium peaks with higher magnitudes at a faster speed under steady flow stimulation. The [Ca2+]i signaling transients under the steady and oscillatory flows have significantly different spatiotemporal characters, but a similar responsive percentage of cells. Further signaling pathway studies using inhibitors showed that endoplasmic reticulum (ER) calcium store, extracellular calcium source, ATP, PGE2 and NO related pathways play similar roles in the [Ca2+]i signaling of osteocytes under either steady or oscillating flow. The spatiotemporal characteristics of [Ca2+]i transients under oscillating fluid flow are affected more profoundly by pharmacological treatments than under the steady flow. Our findings support the hypothesis that the [Ca2+]i responses of osteocytic networks are significantly dependent on the profiles of fluid flow. PMID:22750013

  7. Early Signaling in Primary T Cells Activated by Antigen Presenting Cells Is Associated with a Deep and Transient Lamellal Actin Network

    PubMed Central

    Roybal, Kole T.; Mace, Emily M.; Mantell, Judith M.; Verkade, Paul; Orange, Jordan S.; Wülfing, Christoph

    2015-01-01

    Cellular signaling transduction critically depends on molecular interactions that are in turn governed by dynamic subcellular distributions of the signaling system components. Comprehensive insight into signal transduction requires an understanding of such distributions and cellular structures driving them. To investigate the activation of primary murine T cells by antigen presenting cells (APC) we have imaged more than 60 signaling intermediates during T cell stimulation with microscopy across resolution limits. A substantial number of signaling intermediates associated with a transient, wide, and actin-associated lamellum extending from an interdigitated T cell:APC interface several micrometers into the T cell, as characterized in detail here. By mapping the more than 60 signaling intermediates onto the spatiotemporal features of cell biological structures, the lamellum and other ones previously described, we also define distinct spatial and temporal characteristics of T cell signal initiation, amplification, and core signaling in the activation of primary T cells by APCs. These characteristics differ substantially from ones seen when T cells are activated using common reductionist approaches. PMID:26237050

  8. Multi-frequency complex network from time series for uncovering oil-water flow structure

    PubMed Central

    Gao, Zhong-Ke; Yang, Yu-Xuan; Fang, Peng-Cheng; Jin, Ning-De; Xia, Cheng-Yi; Hu, Li-Dan

    2015-01-01

    Uncovering complex oil-water flow structure represents a challenge in diverse scientific disciplines. This challenge stimulates us to develop a new distributed conductance sensor for measuring local flow signals at different positions and then propose a novel approach based on multi-frequency complex network to uncover the flow structures from experimental multivariate measurements. In particular, based on the Fast Fourier transform, we demonstrate how to derive multi-frequency complex network from multivariate time series. We construct complex networks at different frequencies and then detect community structures. Our results indicate that the community structures faithfully represent the structural features of oil-water flow patterns. Furthermore, we investigate the network statistic at different frequencies for each derived network and find that the frequency clustering coefficient enables to uncover the evolution of flow patterns and yield deep insights into the formation of flow structures. Current results present a first step towards a network visualization of complex flow patterns from a community structure perspective. PMID:25649900

  9. Actin-mediated motion of meiotic chromosomes

    PubMed Central

    Koszul, R.; Kim, K. P.; Prentiss, M.; Kleckner, N.; Kameoka, S.

    2008-01-01

    Summary Chromosome movement is prominent during meiosis. Here, using a combination of in vitro and in vivo approaches, we elucidate the basis for dynamic mid-prophase chromosome movement in budding yeast. Diverse finding reveal a process in which, at the pachytene stage, individual telomere/nuclear envelope (NE) ensembles attach passively to, and then move in concert with, nucleus-hugging actin cables that are continuous with the global cytoskeletal actin network. Other chromosomes move in concert with lead chromosome(s). The same process, in modulated form, explains the zygotene "bouquet" configuration in which, immediately preceding pachytene, chromosome ends colocalize dynamically in a restricted region of the NE. Mechanical properties of the system and biological roles of mid-prophase movement for meiosis, including recombination, are discussed. PMID:18585353

  10. CRMP-5 interacts with actin to regulate neurite outgrowth

    PubMed Central

    GONG, XIAOBING; TAN, MINGHUI; GAO, YUAN; CHEN, KEEN; GUO, GUOQING

    2016-01-01

    CRMP family proteins (CRMPs) are abundantly expressed in the developing nervous system mediating growth cone guidance, neuronal polarity and axon elongation. CRMP-5 has been indicated to serve a critical role in neurite outgrowth. However, the detailed mechanisms of how CRMP-5 regulates neurite outgrowth remain unclear. In the current study, co-immunoprecipitation was used to identify the fact that CRMP-5 interacted with the actin and tubulin cytoskeleton networks in the growth cones of developing hippocampal neurons. CRMP-5 exhibited increased affinity towards actin when compared with microtubules. Immunocytochemistry was used to identify the fact that CRMP-5 colocalized with actin predominantly in the C-domain and T-zone in growth cones. In addition, genetic inhibition of CRMP-5 by siRNA suppressed the expression of actin, growth cone development and neurite outgrowth. Overexpression of CRMP-5 promoted the interaction with actin, growth cone development and hippocampal neurite outgrowth. Taken together, these data suggest that CRMP-5 is able to interact with the actin cytoskeleton network in the growth cone and affect growth cone development and neurite outgrowth via this interaction in developing hippocampal neurons. PMID:26677106

  11. Actin Skeletons at the Membrane as Liquid Crystal Elastomers

    NASA Astrophysics Data System (ADS)

    Discher, Dennis; Dalhaimer, Paul; Levine, Alex; Lubensky, Tom

    2002-03-01

    Actin filaments crosslinked by proteins such as spectrin form plasma membrane networks in a number of cell-types, including the red blood cell and the outer hair cell of the inner ear. Actin filaments are stiff compared to spectrin and can be considered hard rods. We statistically simulate network phase behavior at finite temperature by Monte Carlo methods, and explore the effects of spectrin and actin length as well as isotropic and shear stresses. Relative lengths required for a zero pressure nematic phase are determined, for exmaple, and indicate structural requirements for obtaining a 2D anisotropic elastomer. Emerging studies of network elasticity examine the anisotropic state and begin to probe the relevance of hyper-soft modes to hearing.

  12. Capture of microtubule plus-ends at the actin cortex promotes axophilic neuronal migration by enhancing microtubule tension in the leading process

    PubMed Central

    Hutchins, B. Ian; Wray, Susan

    2014-01-01

    Microtubules are a critical part of neuronal polarity and leading process extension, thus microtubule movement plays an important role in neuronal migration. However, the dynamics of microtubules during the forward movement of the nucleus into the leading process (nucleokinesis) is unclear and may be dependent on the cell type and mode of migration used. In particular, little is known about cytoskeletal changes during axophilic migration, commonly used in anteroposterior neuronal migration. We recently showed that leading process actin flow in migrating GnRH neurons is controlled by a signaling cascade involving IP3 receptors, CaMKK, AMPK, and RhoA. In the present study, microtubule dynamics were examined in GnRH neurons. Failure of the migration of these cells leads to the neuroendocrine disorder Kallmann Syndrome. Microtubules translocated forward along the leading process shaft during migration, but reversed direction and moved toward the nucleus when migration stalled. Blocking calcium release through IP3 receptors halted migration and induced the same reversal of microtubule translocation, while blocking cortical actin flow prevented microtubules from translocating toward the distal leading process. Super-resolution imaging revealed that microtubule plus-end tips are captured at the actin cortex through calcium-dependent mechanisms. This work shows that cortical actin flow draws the microtubule network forward through calcium-dependent capture in order to promote nucleokinesis, revealing a novel mechanism engaged by migrating neurons to facilitate movement. PMID:25505874

  13. Complex network analysis of phase dynamics underlying oil-water two-phase flows

    NASA Astrophysics Data System (ADS)

    Gao, Zhong-Ke; Zhang, Shan-Shan; Cai, Qing; Yang, Yu-Xuan; Jin, Ning-De

    2016-06-01

    Characterizing the complicated flow behaviors arising from high water cut and low velocity oil-water flows is an important problem of significant challenge. We design a high-speed cycle motivation conductance sensor and carry out experiments for measuring the local flow information from different oil-in-water flow patterns. We first use multivariate time-frequency analysis to probe the typical features of three flow patterns from the perspective of energy and frequency. Then we infer complex networks from multi-channel measurements in terms of phase lag index, aiming to uncovering the phase dynamics governing the transition and evolution of different oil-in-water flow patterns. In particular, we employ spectral radius and weighted clustering coefficient entropy to characterize the derived unweighted and weighted networks and the results indicate that our approach yields quantitative insights into the phase dynamics underlying the high water cut and low velocity oil-water flows.

  14. Understanding Urban Traffic Flow Characteristics from the Network Centrality Perspective at Different Granularities

    NASA Astrophysics Data System (ADS)

    Zhao, P. X.; Zhao, S. M.

    2016-06-01

    In this study, we analyze urban traffic flow using taxi trajectory data to understand the characteristics of traffic flow from the network centrality perspective at point (intersection), line (road), and area (community) granularities. The entire analysis process comprises three steps. The first step utilizes the taxi trajectory data to evaluate traffic flow at different granularities. Second, the centrality indices are calculated based on research units at different granularities. Third, correlation analysis between the centrality indices and corresponding urban traffic flow is performed. Experimental results indicate that urbaxperimental results indicate that urbaxperimental results indicate that urban traffic flow is relatively influenced by the road network structure. However, urban traffic flow also depends on the research unit size. Traditional centralities and traffic flow exhibit a low correlation at point granularity but exhibit a high correlation at line and area granularities. Furthermore, the conclusions of this study reflect the universality of the modifiable areal unit problem.

  15. Using Inspiration from Synaptic Plasticity Rules to Optimize Traffic Flow in Distributed Engineered Networks.

    PubMed

    Suen, Jonathan Y; Navlakha, Saket

    2017-02-09

    Controlling the flow and routing of data is a fundamental problem in many distributed networks, including transportation systems, integrated circuits, and the Internet. In the brain, synaptic plasticity rules have been discovered that regulate network activity in response to environmental inputs, which enable circuits to be stable yet flexible. Here, we develop a new neuro-inspired model for network flow control that depends only on modifying edge weights in an activity-dependent manner. We show how two fundamental plasticity rules, long-term potentiation and long-term depression, can be cast as a distributed gradient descent algorithm for regulating traffic flow in engineered networks. We then characterize, both by simulation and analytically, how different forms of edge-weight-update rules affect network routing efficiency and robustness. We find a close correspondence between certain classes of synaptic weight-update rules derived experimentally in the brain and rules commonly used in engineering, suggesting common principles to both.

  16. Experimental and modeling study of Newtonian and non-Newtonian fluid flow in pore network micromodels.

    PubMed

    Perrin, Christian L; Tardy, Philippe M J; Sorbie, Ken S; Crawshaw, John C

    2006-03-15

    The in situ rheology of polymeric solutions has been studied experimentally in etched silicon micromodels which are idealizations of porous media. The rectangular channels in these etched networks have dimensions typical of pore sizes in sandstone rocks. Pressure drop/flow rate relations have been measured for water and non-Newtonian hydrolyzed-polyacrylamide (HPAM) solutions in both individual straight rectangular capillaries and in networks of such capillaries. Results from these experiments have been analyzed using pore-scale network modeling incorporating the non-Newtonian fluid mechanics of a Carreau fluid. Quantitative agreement is seen between the experiments and the network calculations in the Newtonian and shear-thinning flow regions demonstrating that the 'shift factor,'alpha, can be calculated a priori. Shear-thickening behavior was observed at higher flow rates in the micromodel experiments as a result of elastic effects becoming important and this remains to be incorporated in the network model.

  17. Direct actin binding to A- and B-type lamin tails and actin filament bundling by the lamin A tail

    PubMed Central

    Simon, Dan N; Zastrow, Michael S

    2010-01-01

    Nuclear intermediate filament networks formed by A- and B-type lamins are major components of the nucleoskeleton. Lamins have growing links to human physiology and disease including Emery-Dreifuss muscular dystrophy (EDMD), lipodystrophy, cardiomyopathy, neuropathy, cerebellar disorders and segmental accelerated ‘aging’ syndromes. How lamins interact with other nucleoskeletal components, and even the identities of these other components, are open questions. Previous studies suggested lamins might bind actin. We report that the recombinant C-terminal tail domain of human A- and B-type lamins binds directly to purified actin in high-speed pelleting assays. This interaction maps to a conserved Actin Binding site (AB-1) comprising lamin A residues 461–536 in the Ig-fold domain, which are 54% identical in lamin B1. Two EDMD-causing missense mutations (R527P and L530P) in lamin A that are predicted to disrupt the Ig-fold, each reduced F-actin binding by ∼66%, whereas the surface-exposed lipodystrophy-causing R482Q mutation had no significant effect. The lamin A tail was unique among lamins in having a second actin-binding site (AB-2). This second site was mapped to lamin A tail residues 564–608, based on actin-binding results for the lamin C tail and internal deletions in the lamin A tail that cause Hutchinson-Gilford Progeria Syndrome (Δ35, Δ50) or restrictive dermopathy (Δ90). Supporting the presence of two actin-binding sites, recombinant precursor (unmodified) and mature lamin A tails (not C or B1 tails) each bundled F-actin in vitro: furthermore F-actin bundling was reduced 25–40% by the R527P, L530P, Δ35 and Δ50 mutations, and was abolished by Δ90. Unexpectedly, the mature lamin A tail bound F-actin significantly more efficiently than did the prelamin A tail; this suggested unmodified residues 647–664, unique to prelamin A, might auto-inhibit binding to actin (and potentially other partners). These biochemical results suggest direct mechanisms

  18. Analysis of HRCT-derived xylem network reveals reverse flow in some vessels.

    PubMed

    Lee, Eric F; Matthews, Mark A; McElrone, Andrew J; Phillips, Ronald J; Shackel, Kenneth A; Brodersen, Craig R

    2013-09-21

    Long distance water and nutrient transport in plants is dependent on the proper functioning of xylem networks, a series of interconnected pipe-like cells that are vulnerable to hydraulic dysfunction as a result of drought-induced embolism and/or xylem-dwelling pathogens. Here, flow in xylem vessels was modeled to determine the role of vessel connectivity by using three dimensional xylem networks derived from High Resolution Computed Tomography (HRCT) images of grapevine (Vitis vinifera cv. 'Chardonnay') stems. Flow in 4-27% of the vessel segments (i.e. any section of vessel elements between connection points associated with intervessel pits) was found to be oriented in the direction opposite to the bulk flow under normal transpiration conditions. In order for the flow in a segment to be in the reverse direction, specific requirements were determined for the location of connections, distribution of vessel endings, diameters of the connected vessels, and the conductivity of the connections. Increasing connectivity and decreasing vessel length yielded increasing numbers of reverse flow segments until a maximum value was reached, after which more interconnected networks and smaller average vessel lengths yielded a decrease in the number of reverse flow segments. Xylem vessel relays also encouraged the formation of reverse flow segments. Based on the calculated flow rates in the xylem network, the downward spread of Xylella fastidiosa bacteria in grape stems was modeled, and reverse flow was shown to be an additional mechanism for the movement of bacteria to the trunk of grapevine.

  19. Simulation based flow distribution network optimization for vacuum assisted resin transfer moulding process

    NASA Astrophysics Data System (ADS)

    Hsiao, Kuang-Ting; Devillard, Mathieu; Advani, Suresh G.

    2004-05-01

    In the vacuum assisted resin transfer moulding (VARTM) process, using a flow distribution network such as flow channels and high permeability fabrics can accelerate the resin infiltration of the fibre reinforcement during the manufacture of composite parts. The flow distribution network significantly influences the fill time and fill pattern and is essential for the process design. The current practice has been to cover the top surface of the fibre preform with the distribution media with the hope that the resin will flood the top surface immediately and penetrate through the thickness. However, this approach has some drawbacks. One is when the resin finds its way to the vent before it has penetrated the preform entirely, which results in a defective part or resin wastage. Also, if the composite structure contains ribs or inserts, this approach invariably results in dry spots. Instead of this intuitive approach, we propose a science-based approach to design the layout of the distribution network. Our approach uses flow simulation of the resin into the network and the preform and a genetic algorithm to optimize the flow distribution network. An experimental case study of a co-cured rib structure is conducted to demonstrate the design procedure and validate the optimized flow distribution network design. Good agreement between the flow simulations and the experimental results was observed. It was found that the proposed design algorithm effectively optimized the flow distribution network of the part considered in our case study and hence should prove to be a useful tool to extend the VARTM process to manufacture of complex structures with effective use of the distribution network layup.

  20. eNOS S-nitrosylates β-actin on Cys374 and regulates PKC-θ at the immune synapse by impairing actin binding to profilin-1.

    PubMed

    García-Ortiz, Almudena; Martín-Cofreces, Noa B; Ibiza, Sales; Ortega, Ángel; Izquierdo-Álvarez, Alicia; Trullo, Antonio; Victor, Víctor M; Calvo, Enrique; Sot, Begoña; Martínez-Ruiz, Antonio; Vázquez, Jesús; Sánchez-Madrid, Francisco; Serrador, Juan M

    2017-04-01

    The actin cytoskeleton coordinates the organization of signaling microclusters at the immune synapse (IS); however, the mechanisms involved remain poorly understood. We show here that nitric oxide (NO) generated by endothelial nitric oxide synthase (eNOS) controls the coalescence of protein kinase C-θ (PKC-θ) at the central supramolecular activation cluster (c-SMAC) of the IS. eNOS translocated with the Golgi to the IS and partially colocalized with F-actin around the c-SMAC. This resulted in reduced actin polymerization and centripetal retrograde flow of β-actin and PKC-θ from the lamellipodium-like distal (d)-SMAC, promoting PKC-θ activation. Furthermore, eNOS-derived NO S-nitrosylated β-actin on Cys374 and impaired actin binding to profilin-1 (PFN1), as confirmed with the transnitrosylating agent S-nitroso-L-cysteine (Cys-NO). The importance of NO and the formation of PFN1-actin complexes on the regulation of PKC-θ was corroborated by overexpression of PFN1- and actin-binding defective mutants of β-actin (C374S) and PFN1 (H119E), respectively, which reduced the coalescence of PKC-θ at the c-SMAC. These findings unveil a novel NO-dependent mechanism by which the actin cytoskeleton controls the organization and activation of signaling microclusters at the IS.

  1. Application guide for AFINCH (Analysis of Flows in Networks of Channels) described by NHDPlus

    USGS Publications Warehouse

    Holtschlag, David J.

    2009-01-01

    AFINCH (Analysis of Flows in Networks of CHannels) is a computer application that can be used to generate a time series of monthly flows at stream segments (flowlines) and water yields for catchments defined in the National Hydrography Dataset Plus (NHDPlus) value-added attribute system. AFINCH provides a basis for integrating monthly flow data from streamgages, water-use data, monthly climatic data, and land-cover characteristics to estimate natural monthly water yields from catchments by user-defined regression equations. Images of monthly water yields for active streamgages are generated in AFINCH and provide a basis for detecting anomalies in water yields, which may be associated with undocumented flow diversions or augmentations. Water yields are multiplied by the drainage areas of the corresponding catchments to estimate monthly flows. Flows from catchments are accumulated downstream through the streamflow network described by the stream segments. For stream segments where streamgages are active, ratios of measured to accumulated flows are computed. These ratios are applied to upstream water yields to proportionally adjust estimated flows to match measured flows. Flow is conserved through the NHDPlus network. A time series of monthly flows can be generated for stream segments that average about 1-mile long, or monthly water yields from catchments that average about 1 square mile. Estimated monthly flows can be displayed within AFINCH, examined for nonstationarity, and tested for monotonic trends. Monthly flows also can be used to estimate flow-duration characteristics at stream segments. AFINCH generates output files of monthly flows and water yields that are compatible with ArcMap, a geographical information system analysis and display environment. Chloropleth maps of monthly water yield and flow can be generated and analyzed within ArcMap by joining NHDPlus data structures with AFINCH output. Matlab code for the AFINCH application is presented.

  2. Flow network QSAR for the prediction of physicochemical properties by mapping an electrical resistance network onto a chemical reaction poset.

    PubMed

    Ivanciuc, Ovidiu; Ivanciuc, Teodora; Klein, Douglas J

    2013-06-01

    Usual quantitative structure-activity relationship (QSAR) models are computed from unstructured input data, by using a vector of molecular descriptors for each chemical in the dataset. Another alternative is to consider the structural relationships between the chemical structures, such as molecular similarity, presence of certain substructures, or chemical transformations between compounds. We defined a class of network-QSAR models based on molecular networks induced by a sequence of substitution reactions on a chemical structure that generates a partially ordered set (or poset) oriented graph that may be used to predict various molecular properties with quantitative superstructure-activity relationships (QSSAR). The network-QSAR interpolation models defined on poset graphs, namely average poset, cluster expansion, and spline poset, were tested with success for the prediction of several physicochemical properties for diverse chemicals. We introduce the flow network QSAR, a new poset regression model in which the dataset of chemicals, represented as a reaction poset, is transformed into an oriented network of electrical resistances in which the current flow results in a potential at each node. The molecular property considered in the QSSAR model is represented as the electrical potential, and the value of this potential at a particular node is determined by the electrical resistances assigned to each edge and by a system of batteries. Each node with a known value for the molecular property is attached to a battery that sets the potential on that node to the value of the respective molecular property, and no external battery is attached to nodes from the prediction set, representing chemicals for which the values of the molecular property are not known or are intended to be predicted. The flow network QSAR algorithm determines the values of the molecular property for the prediction set of molecules by applying Ohm's law and Kirchhoff's current law to the poset

  3. Physical Model for Self-Organization of Actin Cytoskeleton and Adhesion Complexes at the Cell Front

    PubMed Central

    Shemesh, Tom; Bershadsky, Alexander D.; Kozlov, Michael M.

    2012-01-01

    Cell motion is driven by interplay between the actin cytoskeleton and the cell adhesions in the front part of the cell. The actin network segregates into lamellipodium and lamellum, whereas the adhesion complexes are characteristically distributed underneath the actin system. Here, we suggest a computational model for this characteristic organization of the actin-adhesion system. The model is based on the ability of the adhesion complexes to sense mechanical forces, the stick-slip character of the interaction between the adhesions and the moving actin network, and a hypothetical propensity of the actin network to disintegrate upon sufficiently strong stretching stresses. We identify numerically three possible types of system organization, all observed in living cells: two states in which the actin network exhibits segregation into lamellipodium and lamellum, whereas the cell edge either remains stationary or moves, and a state where the actin network does not undergo segregation. The model recovers the asynchronous fluctuations and outward bulging of the cell edge, and the dependence of the edge protrusion velocity on the rate of the nascent adhesion generation, the membrane tension, and the substrate rigidity. PMID:22768930

  4. Hardness Analysis and Empirical Studies of the Relations among Robustness, Topology and Flow in Dynamic Networks.

    PubMed

    Zhou, Xing; Peng, Wei; Xu, Zhen; Yang, Bo

    2015-01-01

    Network robustness is the ability of a network to maintain performance after disruption, thus it is an important index for network designers to refer to. Every actual network has its own topology structure, flow magnitude (scale) and flow distribution. How the robustness relates to these factors still remains unresolved. To analyze the relations, we first established a robustness problem model, studied the hardness of a special case of the model, and generated a lot of representative network instances. We conducted experiments on these instances, deleting 5% to 50% edges on each instance and found that the robustness of a network has an approximate linearity to its structural entropy and flow entropy, when the correlation coefficient between the structure and flow is fixed. We also found that robustness is unlikely to have a relation to the flow scale and edge scale in our model. The empirical studies thus can provide a way of quickly estimating the robustness of real-world networks by using the regression coefficients we obtained during the experiments. We conducted computation on a real-world dataset and got favorable results, which exhibited the effectiveness of the estimation.

  5. A network theory approach for a better understanding of overland flow connectivity

    NASA Astrophysics Data System (ADS)

    Masselink, Rens; Heckmann, Tobias; Temme, Arnaud; Anders, Niels; Keesstra, Saskia

    2016-04-01

    Hydrological connectivity describes the physical coupling, or linkages of different elements within a landscape regarding (sub)surface flows. A firm understanding of hydrological connectivity is important for catchment management applications, for e.g. habitat and species protection, and for flood resistance and resilience improvement. Thinking about (geomorphological) systems as networks can lead to new insights, which has been recognised within the scientific community as well, seeing the recent increase in the use of network (graph) theory within the geosciences. Network theory supports the analysis and understanding of complex systems by providing data structures for modelling objects and their linkages, and a versatile toolbox to quantitatively appraise network structure and properties. The objective of this study was to characterise overland flow connectivity dynamics on hillslopes in a humid sub-Mediterranean environment by using a combination of high-resolution digital-terrain models, overland flow sensors and a network approach. Results showed that there are significant differences between overland flow on agricultural areas and semi-natural shrubs areas. Positive correlations between connectivity and precipitation characteristics were found, while negative correlations between connectivity and soil moisture were found, probably due to soil water repellency. The combination of a structural network to determine potential connectivity with dynamic networks to determine the actual connectivity proved a powerful tool in analysing overland flow connectivity.

  6. Stability and dynamical properties of material flow systems on random networks

    NASA Astrophysics Data System (ADS)

    Anand, K.; Galla, T.

    2009-04-01

    The theory of complex networks and of disordered systems is used to study the stability and dynamical properties of a simple model of material flow networks defined on random graphs. In particular we address instabilities that are characteristic of flow networks in economic, ecological and biological systems. Based on results from random matrix theory, we work out the phase diagram of such systems defined on extensively connected random graphs, and study in detail how the choice of control policies and the network structure affects stability. We also present results for more complex topologies of the underlying graph, focussing on finitely connected Erdös-Réyni graphs, Small-World Networks and Barabási-Albert scale-free networks. Results indicate that variability of input-output matrix elements, and random structures of the underlying graph tend to make the system less stable, while fast price dynamics or strong responsiveness to stock accumulation promote stability.

  7. Advanced Neural Network Modeling of Synthetic Jet Flow Fields

    DTIC Science & Technology

    2006-03-01

    The purpose of this research was to continue development of a neural network -based, lumped deterministic source term (LDST) approximation module for...main exploration involved the grid sensitivity of the neural network model. A second task was originally planned on the portability of the approach to

  8. F-actin reorganization upon de- and rehydration in the aeroterrestrial green alga Klebsormidium crenulatum.

    PubMed

    Blaas, Kathrin; Holzinger, Andreas

    2017-03-21

    Filamentous actin (F-actin) is a dynamic network involved in many cellular processes like cell division and cytoplasmic streaming. While many studies have addressed the involvement of F-actin in different cellular processes in cultured cells, little is known on the reactions to environmental stress scenarios, where this system might have essential regulatory functions. We investigated here the de- and rehydration kinetics of breakdown and reassembly of F-actin in the streptophyte green alga Klebsormidium crenulatum. Measurements of the chlorophyll fluorescence (effective quantum yield of photosystem II [ΔF/Fm']) via pulse amplitude modulation were performed as a measure for dehydration induced shut down of physiological activity, which ceased after 141±15min at ∼84% RH. We hypothesized that there is a link between this physiological parameter and the status of the F-actin system. Indeed, 20min of dehydration (ΔF/Fm'=0) leads to a breakdown of the fine cortical F-actin network as visualized by Atto 488 phalloidin staining, and dot-like structures remained. Already 10min after rehydration a beginning reassembly of F-actin is observed, after 25min the F-actin network appeared similar to untreated controls, indicating a full recovery. These results demonstrate the fast kinetics of F-actin dis- and reassembly likely contributing to cellular reorganization upon rehydration.

  9. Ring closure in actin polymers

    NASA Astrophysics Data System (ADS)

    Sinha, Supurna; Chattopadhyay, Sebanti

    2017-03-01

    We present an analysis for the ring closure probability of semiflexible polymers within the pure bend Worm Like Chain (WLC) model. The ring closure probability predicted from our analysis can be tested against fluorescent actin cyclization experiments. We also discuss the effect of ring closure on bend angle fluctuations in actin polymers.

  10. Global migration topology analysis and modeling of bilateral flow network 2006-2010

    NASA Astrophysics Data System (ADS)

    Porat, I.; Benguigui, L.

    2016-07-01

    Migration is one of the most dramatic and vast human processes in modern times. Migration is defined as people that leave their home and home-land and move to a new country. In this research we address the pattern of this massive human movement with the tools of network theory. The undirected global flow migration network (2006-2010) was identified as an exclusive disassortative network which combines two types of defined groups of large- and small-degree (D) countries with betweeness (Be) of Be˜D 3. This structure was modeled and simulated with synthetic networks of similar characteristics as the global flow migration network, and the results suggest that small-degree nodes have the topology of random networks, but the dominant part of the large-degree hubs controls this topology and shapes the network into an ultra-small world. This exclusive topology and the difference of the global flow migration network from scale-free and from Erdös-Rényi networks may be a result of two defined and different topologies of large- and small-degree countries.

  11. Building the Material Flow Networks of Aluminum in the 2007 U.S. Economy.

    PubMed

    Chen, Wei-Qiang; Graedel, T E; Nuss, Philip; Ohno, Hajime

    2016-04-05

    Based on the combination of the U.S. economic input-output table and the stocks and flows framework for characterizing anthropogenic metal cycles, this study presents a methodology for building material flow networks of bulk metals in the U.S. economy and applies it to aluminum. The results, which we term the Input-Output Material Flow Networks (IO-MFNs), achieve a complete picture of aluminum flow in the entire U.S. economy and for any chosen industrial sector (illustrated for the Automobile Manufacturing sector). The results are compared with information from our former study on U.S. aluminum stocks and flows to demonstrate the robustness and value of this new methodology. We find that the IO-MFN approach has the following advantages: (1) it helps to uncover the network of material flows in the manufacturing stage in the life cycle of metals; (2) it provides a method that may be less time-consuming but more complete and accurate in estimating new scrap generation, process loss, domestic final demand, and trade of final products of metals, than existing material flow analysis approaches; and, most importantly, (3) it enables the analysis of the material flows of metals in the U.S. economy from a network perspective, rather than merely that of a life cycle chain.

  12. Applications of flow-networks to opinion-dynamics

    NASA Astrophysics Data System (ADS)

    Tupikina, Liubov; Kurths, Jürgen

    2015-04-01

    Networks were successfully applied to describe complex systems, such as brain, climate, processes in society. Recently a socio-physical problem of opinion-dynamics was studied using network techniques. We present the toy-model of opinion-formation based on the physical model of advection-diffusion. We consider spreading of the opinion on the fixed subject, assuming that opinion on society is binary: if person has opinion then the state of the node in the society-network equals 1, if the person doesn't have opinion state of the node equals 0. Opinion can be spread from one person to another if they know each other, or in the network-terminology, if the nodes are connected. We include into the system governed by advection-diffusion equation the external field to model such effects as for instance influence from media. The assumptions for our model can be formulated as the following: 1.the node-states are influenced by the network structure in such a way, that opinion can be spread only between adjacent nodes (the advective term of the opinion-dynamics), 2.the network evolution can have two scenarios: -network topology is not changing with time; -additional links can appear or disappear each time-step with fixed probability which requires adaptive networks properties. Considering these assumptions for our system we obtain the system of equations describing our model-dynamics which corresponds well to other socio-physics models, for instance, the model of the social cohesion and the famous voter-model. We investigate the behavior of the suggested model studying "waiting time" of the system, time to get to the stable state, stability of the model regimes for different values of model parameters and network topology.

  13. Implementation of Finite Volume based Navier Stokes Algorithm Within General Purpose Flow Network Code

    NASA Technical Reports Server (NTRS)

    Schallhorn, Paul; Majumdar, Alok

    2012-01-01

    This paper describes a finite volume based numerical algorithm that allows multi-dimensional computation of fluid flow within a system level network flow analysis. There are several thermo-fluid engineering problems where higher fidelity solutions are needed that are not within the capacity of system level codes. The proposed algorithm will allow NASA's Generalized Fluid System Simulation Program (GFSSP) to perform multi-dimensional flow calculation within the framework of GFSSP s typical system level flow network consisting of fluid nodes and branches. The paper presents several classical two-dimensional fluid dynamics problems that have been solved by GFSSP's multi-dimensional flow solver. The numerical solutions are compared with the analytical and benchmark solution of Poiseulle, Couette and flow in a driven cavity.

  14. Neural network analysis of pulp flow speed in low coherence Doppler flowmetry measurement

    NASA Astrophysics Data System (ADS)

    Hannula, Manne; Alarousu, Erkki; Prykäri, Tuukka; Myllylä, Risto

    2007-03-01

    Low Coherence Doppler Flowmetry (LCDF) measurement produces a signal, which frequency domain characteristics are in connection to the speed of the flow. In this study a LCDF measurement data of pulp flow in a capillary was analyzed with a simple Artificial Neural Network (ANN) method to estimate the flow speed. The accuracy of the method proved to be good, validation of the method resulted in absolute error of 14 +/- 11 percentage units (mean+/-std) in flow speed estimation. The results of the study can be utilized in development of industrial pulp flow speed measurement instruments.

  15. Semi-automatic simulation model generation of virtual dynamic networks for production flow planning

    NASA Astrophysics Data System (ADS)

    Krenczyk, D.; Skolud, B.; Olender, M.

    2016-08-01

    Computer modelling, simulation and visualization of production flow allowing to increase the efficiency of production planning process in dynamic manufacturing networks. The use of the semi-automatic model generation concept based on parametric approach supporting processes of production planning is presented. The presented approach allows the use of simulation and visualization for verification of production plans and alternative topologies of manufacturing network configurations as well as with automatic generation of a series of production flow scenarios. Computational examples with the application of Enterprise Dynamics simulation software comprising the steps of production planning and control for manufacturing network have been also presented.

  16. Feedback Interactions of Polymerized Actin with the Cell Membrane: Waves, Pulses, and Oscillations

    NASA Astrophysics Data System (ADS)

    Carlsson, Anders

    Polymerized filaments of the protein actin have crucial functions in cell migration, and in bending the cell membrane to drive endocytosis or the formation of protrusions. The nucleation and polymerization of actin filaments are controlled by upstream agents in the cell membrane, including nucleation-promoting factors (NPFs) that activate the Arp2/3 complex to form new branches on pre-existing filaments. But polymerized actin (F-actin) also feeds back on the assembly of NPFs. We explore the effects of the resulting feedback loop of F-actin and NPFs on two phenomena: actin pulses that drive endocytosis in yeast, and actin waves traveling along the membrane of several cell types. In our model of endocytosis in yeast, the actin network is grown explicitly in three dimensions, exerts a negative feedback interaction on localized patch of NPFs in the membrane, and bends the membrane by exerting a distribution of forces. This model explains observed actin and NPF pulse dynamics, and the effects of several interventions including i) NPF mutations, ii) inhibition of actin polymerization, and iii) deletion of a protein that allows F-actin to bend the cell membrane. The model predicts that mutation of the active region of an NPF will enhance the accumulation of that NPF, and we confirm this prediction by quantitative fluorescence microscopy. For actin waves, we treat a similar model, with NPFs distributed over a larger region of the cell membrane. This model naturally generates actin waves, and predicts a transition from wave behavior to spatially localized oscillations when NPFs are confined to a small region. We also predict a transition from waves to static polarization as the negative-feedback coupling between F-actin and the NPFs is reduced. Supported by NIGMS Grant R01 GM107667.

  17. Flow version of statistical neurodynamics for oscillator neural networks

    NASA Astrophysics Data System (ADS)

    Uchiyama, Satoki

    2012-04-01

    We consider a neural network of Stuart-Landau oscillators as an associative memory. This oscillator network with N elements is a system of an N-dimensional differential equation, works as an attractor neural network, and is expected to have no Lyapunov functions. Therefore, the technique of equilibrium statistical physics is not applicable to the study of this system in the thermodynamic limit. However, the simplicity of this system allows us to extend statistical neurodynamics [S. Amari, K. Maginu, Neural Netw. 1 (1988) 63-73], which was originally developed to analyse the discrete time evolution of the Hopfield model, into the version for continuous time evolution. We have developed and attempted to apply this method in the analysis of the phase transition of our model network.

  18. Electrical percolation networks of carbon nanotubes in a shear flow.

    PubMed

    Kwon, Gyemin; Heo, Youhee; Shin, Kwanwoo; Sung, Bong June

    2012-01-01

    The effect of shear on the electrical percolation network of carbon nanotube (CNT)-polymer composites is investigated using computer simulations. Configurations of CNTs in a simple shear, obtained by using Monte Carlo simulations, are used to locate the electrical percolation network of CNTs and calculate the electric conductivity. When exposed to the shear, CNTs align parallel to the shear direction and the electrical percolation threshold CNT concentration decreases. Meanwhile, after a certain period of the shear imposition above a critical shear rate, CNTs begin to form an aggregate and the percolating network of CNTs is broken, thus decreasing the electric conductivity significantly. We also construct quasiphase diagrams for the aggregate formation and the electrical percolation network formation to investigate the effect of the shear rate and CNT concentration.

  19. Flow Control in Wireless Ad-Hoc Networks

    DTIC Science & Technology

    2009-01-01

    these mechanisms can be improved in order to fine-tune TCP under various networking environments. Low, Paganini and Doyle [36] study TCP from a control...Derivative Securities, M. A. H. Dempster and S. R. Pliska, Eds., vol. 16. Cambridge University Press , 1997, pp. 504–527. [30] KUSHNER, H. J., AND DIMASI...wireless networks: Optimality and stability. IEEE Trans- actions on Information Theory 55, 9 (Sept. 2009), 4087–4098. 76 [36] LOW, S. H., PAGANINI , F

  20. Feedback mechanism in network dynamics with preferential flow

    NASA Astrophysics Data System (ADS)

    Fan, H.; Wang, Z.; Chen, L.; Aihara, K.

    2009-02-01

    We study complex systems or networks in which each node holds an internal dynamics and interacts with other nodes through some kinds of topologies. Collective behavior with dynamical fluctuations is analyzed in complex systems. The dynamical fluctuations of a node can be divided into two parts: one is the internal dynamical fluctuation of the node and the other is the external dynamical fluctuation caused by other nodes. Based on a theoretical analysis, a hidden feedback mechanism is identified in complex systems, which is illustrated in a macroeconomic network and in a city-population network. Furthermore, we study the effect of the topology of the networks on the feedback mechanism. The feedback mechanism is preserved for hub nodes in the networks with a scale-free topology as well as in the networks with an evolving topology. By the hidden feedback mechanism, the observation data can be utilized to judge directly whether the system of each node is with positive feedback or with negative feedback even without knowing its dynamical model.

  1. Multipath protection for data center services in OpenFlow-based software defined elastic optical networks

    NASA Astrophysics Data System (ADS)

    Yang, Hui; Cheng, Lei; Yuan, Jian; Zhang, Jie; Zhao, Yongli; Lee, Young

    2015-06-01

    With the rapid growth of data center services, the elastic optical network is a very promising networking architecture to interconnect data centers because it can elastically allocate spectrum tailored for various bandwidth requirements. In case of a link failure, to ensure a high-level quality of service (QoS) for user request after the failure becomes a research focus. In light of it, in this paper, we propose and experimentally demonstrate multipath protection for data center services in OpenFlow-based software defined elastic optical network testbed aiming at improving network reliability. We first propose an OpenFlow-based software defined elastic optical network architecture for data center service protection. Then, based on the proposed architecture, multipath protection scheme is figured based on the importance level of the service. To implement the proposed scheme in the architecture, OpenFlow protocol is extended to support multipath protection in elastic optical network. The performance of our proposed multipath protection scheme is evaluated by means of experiment on our OpenFlow-based testbed. The feasibility of our proposed scheme is also demonstrated in software defined elastic optical networks.

  2. Cerebral blood flow modulation insufficiency in brain networks in multiple sclerosis: A hypercapnia MRI study.

    PubMed

    Marshall, Olga; Chawla, Sanjeev; Lu, Hanzhang; Pape, Louise; Ge, Yulin

    2016-12-01

    Cerebrovascular reactivity measures vascular regulation of cerebral blood flow and is responsible for maintaining healthy neurovascular coupling. Multiple sclerosis exhibits progressive neurodegeneration and global cerebrovascular reactivity deficits. This study investigates varied degrees of cerebrovascular reactivity impairment in different brain networks, which may be an underlying cause for functional changes in the brain, affecting long-distance projection integrity and cognitive function; 28 multiple sclerosis and 28 control subjects underwent pseudocontinuous arterial spin labeling perfusion MRI to measure cerebral blood flow under normocapnia (room air) and hypercapnia (5% carbon dioxide gas mixture) breathing. Cerebrovascular reactivity, measured as normocapnic to hypercapnic cerebral blood flow percent increase normalized by end-tidal carbon dioxide change, was determined from seven functional networks (default mode, frontoparietal, somatomotor, visual, limbic, dorsal, and ventral attention networks). Group analysis showed significantly decreased cerebrovascular reactivity in patients compared to controls within the default mode, frontoparietal, somatomotor, and ventral attention networks after multiple comparison correction. Regression analysis showed a significant correlation of cerebrovascular reactivity with lesion load in the default mode and ventral attention networks and with gray matter atrophy in the default mode network. Functional networks in multiple sclerosis patients exhibit varied amounts of cerebrovascular reactivity deficits. Such blood flow regulation abnormalities may contribute to functional communication disruption in multiple sclerosis.

  3. Network-based representation of energy transfer in unsteady separated flow

    NASA Astrophysics Data System (ADS)

    Nair, Aditya; Taira, Kunihiko

    2015-11-01

    We construct a network-based representation of energy pathways in unsteady separated flows using a POD-Galerkin projection model. In this formulation, we regard the POD modes as the network nodes and the energy transfer between the modes as the network edges. Based on the energy transfer analysis performed by Noack et al. (2008), edge weights are characterized on the interaction graph. As an example, we examine the energy transfer within the two-dimensional incompressible flow over a circular cylinder. In particular, we analyze the energy pathways involved in flow transition from the unstable symmetric steady state to periodic shedding cycle. The growth of perturbation energy over the network is examined to highlight key features of flow physics and to determine how the energy transfer can be influenced. Furthermore, we implement closed-loop flow control on the POD-Galerkin model to alter the energy interaction path and modify the global behavior of the wake dynamics. The insights gained will be used to perform further network analysis on fluid flows with added complexity. Work supported by US Army Research Office (W911NF-14-1-0386) and US Air Force Office of Scientific Research (YIP: FA9550-13-1-0183).

  4. ER sheet persistence is coupled to myosin 1c–regulated dynamic actin filament arrays

    PubMed Central

    Joensuu, Merja; Belevich, Ilya; Rämö, Olli; Nevzorov, Ilya; Vihinen, Helena; Puhka, Maija; Witkos, Tomasz M.; Lowe, Martin; Vartiainen, Maria K.; Jokitalo, Eija

    2014-01-01

    The endoplasmic reticulum (ER) comprises a dynamic three-dimensional (3D) network with diverse structural and functional domains. Proper ER operation requires an intricate balance within and between dynamics, morphology, and functions, but how these processes are coupled in cells has been unclear. Using live-cell imaging and 3D electron microscopy, we identify a specific subset of actin filaments localizing to polygons defined by ER sheets and tubules and describe a role for these actin arrays in ER sheet persistence and, thereby, in maintenance of the characteristic network architecture by showing that actin depolymerization leads to increased sheet fluctuation and transformations and results in small and less abundant sheet remnants and a defective ER network distribution. Furthermore, we identify myosin 1c localizing to the ER-associated actin filament arrays and reveal a novel role for myosin 1c in regulating these actin structures, as myosin 1c manipulations lead to loss of the actin filaments and to similar ER phenotype as observed after actin depolymerization. We propose that ER-associated actin filaments have a role in ER sheet persistence regulation and thus support the maintenance of sheets as a stationary subdomain of the dynamic ER network. PMID:24523293

  5. ER sheet persistence is coupled to myosin 1c-regulated dynamic actin filament arrays.

    PubMed

    Joensuu, Merja; Belevich, Ilya; Rämö, Olli; Nevzorov, Ilya; Vihinen, Helena; Puhka, Maija; Witkos, Tomasz M; Lowe, Martin; Vartiainen, Maria K; Jokitalo, Eija

    2014-04-01

    The endoplasmic reticulum (ER) comprises a dynamic three-dimensional (3D) network with diverse structural and functional domains. Proper ER operation requires an intricate balance within and between dynamics, morphology, and functions, but how these processes are coupled in cells has been unclear. Using live-cell imaging and 3D electron microscopy, we identify a specific subset of actin filaments localizing to polygons defined by ER sheets and tubules and describe a role for these actin arrays in ER sheet persistence and, thereby, in maintenance of the characteristic network architecture by showing that actin depolymerization leads to increased sheet fluctuation and transformations and results in small and less abundant sheet remnants and a defective ER network distribution. Furthermore, we identify myosin 1c localizing to the ER-associated actin filament arrays and reveal a novel role for myosin 1c in regulating these actin structures, as myosin 1c manipulations lead to loss of the actin filaments and to similar ER phenotype as observed after actin depolymerization. We propose that ER-associated actin filaments have a role in ER sheet persistence regulation and thus support the maintenance of sheets as a stationary subdomain of the dynamic ER network.

  6. Efficient path routing strategy for flows with multiple priorities on scale-free networks

    PubMed Central

    Zhou, Zhili; Cheng, Dong

    2017-01-01

    In real networks, traffic flows are different in amount as well as their priorities. However, the latter priority has rarely been examined in routing strategy studies. In this paper, a novel routing algorithm, which is based on the efficient path routing strategy (EP), is proposed to overcome network congestion problem caused by large amount of traffic flows with different priorities. In this scheme, traffic flows with different priorities are transmitted through different routing paths, which are based on EP with different parameters. Simulation results show that the traffic capacity for flows with different priorities can be enhanced by 12% with this method, compared with EP. In addition, the new method contributes to more balanced network traffic load distribution and reduces average transmission jump and delay of packets. PMID:28199382

  7. F-actin buckling coordinates contractility and severing in a biomimetic actomyosin cortex

    PubMed Central

    Murrell, Michael P.; Gardel, Margaret L.

    2012-01-01

    Here we develop a minimal model of the cell actomyosin cortex by forming a quasi-2D cross-linked filamentous actin (F-actin) network adhered to a model cell membrane and contracted by myosin thick filaments. Myosin motors generate both compressive and tensile stresses on F-actin and consequently induce large bending fluctuations, which reduces their effective persistence length to <1 μm. Over a large range of conditions, we show the extent of network contraction corresponds exactly to the extent of individual F-actin shortening via buckling. This demonstrates an essential role of buckling in breaking the symmetry between tensile and compressive stresses to facilitate mesoscale network contraction of up to 80% strain. Portions of buckled F-actin with a radius of curvature ∼300 nm are prone to severing and thus compressive stresses mechanically coordinate contractility with F-actin severing, the initial step of F-actin turnover. Finally, the F-actin curvature acquired by myosin-induced stresses can be further constrained by adhesion of the network to a membrane, accelerating filament severing but inhibiting the long-range transmission of the stresses necessary for network contractility. Thus, the extent of membrane adhesion can regulate the coupling between network contraction and F-actin severing. These data demonstrate the essential role of the nonlinear response of F-actin to compressive stresses in potentiating both myosin-mediated contractility and filament severing. This may serve as a general mechanism to mechanically coordinate contractility and cortical dynamics across diverse actomyosin assemblies in smooth muscle and nonmuscle cells. PMID:23213249

  8. Accelerated actin filament polymerization from microtubule plus-ends

    PubMed Central

    Henty-Ridilla, Jessica L.; Rankova, Aneliya; Eskin, Julian A.; Kenny, Katelyn; Goode, Bruce L.

    2016-01-01

    Microtubules govern actin network remodeling in a wide range of biological processes, yet the mechanisms underlying this cytoskeletal crosstalk have remained obscure. Here we used single-molecule fluorescence microscopy to show that the microtubule plus-end associated protein CLIP-170 binds tightly to formins to accelerate actin filament elongation. Furthermore, we observed mDia1 dimers and CLIP-170 dimers co-tracking growing filament ends for minutes. CLIP-170-mDia1 complexes promoted actin polymerization approximately 18 times faster than free barbed end growth, while simultaneously enhancing protection from capping protein. We used a microtubule-actin dynamics co-reconstitution system to observe CLIP-170-mDia1 complexes being recruited to growing microtubule ends by EB1. The complexes triggered rapid growth of actin filaments that remained attached to the microtubule surface. These activities of CLIP-170 were required in primary neurons for normal dendritic morphology. Thus, our results reveal a cellular mechanism whereby growing microtubule plus-ends direct rapid actin assembly. PMID:27199431

  9. Tracing the Flow of Perceptual Features in an Algorithmic Brain Network

    PubMed Central

    Ince, Robin A. A.; van Rijsbergen, Nicola J.; Thut, Gregor; Rousselet, Guillaume A.; Gross, Joachim; Panzeri, Stefano; Schyns, Philippe G.

    2015-01-01

    The model of the brain as an information processing machine is a profound hypothesis in which neuroscience, psychology and theory of computation are now deeply rooted. Modern neuroscience aims to model the brain as a network of densely interconnected functional nodes. However, to model the dynamic information processing mechanisms of perception and cognition, it is imperative to understand brain networks at an algorithmic level–i.e. as the information flow that network nodes code and communicate. Here, using innovative methods (Directed Feature Information), we reconstructed examples of possible algorithmic brain networks that code and communicate the specific features underlying two distinct perceptions of the same ambiguous picture. In each observer, we identified a network architecture comprising one occipito-temporal hub where the features underlying both perceptual decisions dynamically converge. Our focus on detailed information flow represents an important step towards a new brain algorithmics to model the mechanisms of perception and cognition. PMID:26635299

  10. Novel actin depolymerizing macrolide aplyronine A.

    PubMed

    Saito, S; Watabe, S; Ozaki, H; Kigoshi, H; Yamada, K; Fusetani, N; Karaki, H

    1996-09-01

    Aplyronine A is a macrolide isolated from Aplysia kurodai. By monitoring fluorescent intensity of pyrenyl-actin, it was found that aplyronine A inhibited both the velocity and the degree of actin polymerization. Aplyronine A also quickly depolymerized F-actin. The kinetics of depolymerization suggest that aplyronine A severs F-actin. The relationship between the concentration of total actin and F-actin at different concentrations of aplyronine A suggests that aplyronine A forms a 1:1 complex with G-actin. From these results, it is concluded that aplyronine A inhibits actin polymerization and depolymerizes F-actin by nibbling. Comparison of the chemical structure of aplyronine A and another actin-depolymerizing macrolide, mycalolide B, suggests that the side-chain but not the macrolide ring of aplyronine A may account for its actin binding and severing activity.

  11. A probabilistic prediction network for hydrological drought identification and environmental flow assessment

    NASA Astrophysics Data System (ADS)

    Liu, Zhiyong; Törnros, Tobias; Menzel, Lucas

    2016-08-01

    A general probabilistic prediction network is proposed for hydrological drought examination and environmental flow assessment. This network consists of three major components. First, we present the joint streamflow drought indicator (JSDI) to describe the hydrological dryness/wetness conditions. The JSDI is established based on a high-dimensional multivariate probabilistic model. In the second part, a drought-based environmental flow assessment method is introduced, which provides dynamic risk-based information about how much flow (the environmental flow target) is required for drought recovery and its likelihood under different hydrological drought initial situations. The final part involves estimating the conditional probability of achieving the required environmental flow under different precipitation scenarios according to the joint dependence structure between streamflow and precipitation. Three watersheds from different countries (Germany, China, and the United States) with varying sizes from small to large were used to examine the usefulness of this network. The results show that the JSDI can provide an assessment of overall hydrological dryness/wetness conditions and performs well in identifying both drought onset and persistence. This network also allows quantitative prediction of targeted environmental flow required for hydrological drought recovery and estimation of the corresponding likelihood. Moreover, the results confirm that the general network can estimate the conditional probability associated with the required flow under different precipitation scenarios. The presented methodology offers a promising tool for water supply planning and management and for drought-based environmental flow assessment. The network has no restrictions that would prevent it from being applied to other basins worldwide.

  12. Bacterial Actins and Their Interactors.

    PubMed

    Gayathri, Pananghat

    2017-01-01

    Bacterial actins polymerize in the presence of nucleotide (preferably ATP), form a common arrangement of monomeric interfaces within a protofilament, and undergo ATP hydrolysis-dependent change in stability of the filament-all of which contribute to performing their respective functions. The relative stability of the filament in the ADP-bound form compared to that of ATP and the rate of addition of monomers at the two ends decide the filament dynamics. One of the major differences between eukaryotic actin and bacterial actins is the variety in protofilament arrangements and dynamics exhibited by the latter. The filament structure and the polymerization dynamics enable them to perform various functions such as shape determination in rod-shaped bacteria (MreB), cell division (FtsA), plasmid segregation (ParM family of actin-like proteins), and organelle positioning (MamK). Though the architecture and dynamics of a few representative filaments have been studied, information on the effect of interacting partners on bacterial actin filament dynamics is not very well known. The chapter reviews some of the structural and functional aspects of bacterial actins, with special focus on the effect that interacting partners exert on the dynamics of bacterial actins, and how these assist them to carry out the functions within the bacterial cell.

  13. Recruitment Kinetics of Tropomyosin Tpm3.1 to Actin Filament Bundles in the Cytoskeleton Is Independent of Actin Filament Kinetics

    PubMed Central

    Appaduray, Mark A.; Masedunskas, Andrius; Lucas, Christine A.; Warren, Sean C.; Timpson, Paul; Stear, Jeffrey H.

    2016-01-01

    The actin cytoskeleton is a dynamic network of filaments that is involved in virtually every cellular process. Most actin filaments in metazoa exist as a co-polymer of actin and tropomyosin (Tpm) and the function of an actin filament is primarily defined by the specific Tpm isoform associated with it. However, there is little information on the interdependence of these co-polymers during filament assembly and disassembly. We addressed this by investigating the recovery kinetics of fluorescently tagged isoform Tpm3.1 into actin filament bundles using FRAP analysis in cell culture and in vivo in rats using intracellular intravital microscopy, in the presence or absence of the actin-targeting drug jasplakinolide. The mobile fraction of Tpm3.1 is between 50% and 70% depending on whether the tag is at the C- or N-terminus and whether the analysis is in vivo or in cultured cells. We find that the continuous dynamic exchange of Tpm3.1 is not significantly impacted by jasplakinolide, unlike tagged actin. We conclude that tagged Tpm3.1 may be able to undergo exchange in actin filament bundles largely independent of the assembly and turnover of actin. PMID:27977753

  14. Flow Regime Identification of Horizontal Two Phase Refrigerant R-134a Flow Using Neural Networks (Postprint)

    DTIC Science & Technology

    2013-11-01

    state operation of the channel. Measurement and detection of changes in flow regime improve thermal management system modeling efforts. Historically...identification and classification of horizontal two-phase flow regimes relies on human interpretation of measured signals. Variations in flow...Tomography (ECT) is a non-invasive impedance measurement method that produces mean normalized permittivity ratio, ̅, values that are directly linked

  15. Neural Network Based Adaptive Flow Control for Maneuvering Vehicles

    DTIC Science & Technology

    2005-09-01

    effective nonlinear adaptive control of the aerodynamic flow about a dynamic body using a distributed array of synthetic jets for actuation. Design of a wind...possible coupling effects between actuation, the dynamics of flow field, and the rigid body dynamics of the model. The outcomes of simulation studies are...presented. The parameters were selected to have an adverse effect on the closed loop response, therefore representing a hypothetical worst-case

  16. Price of anarchy on heterogeneous traffic-flow networks

    NASA Astrophysics Data System (ADS)

    Rose, A.; O'Dea, R.; Hopcraft, K. I.

    2016-09-01

    The efficiency of routing traffic through a network, comprising nodes connected by links whose cost of traversal is either fixed or varies in proportion to volume of usage, can be measured by the "price of anarchy." This is the ratio of the cost incurred by agents who act to minimize their individual expenditure to the optimal cost borne by the entire system. As the total traffic load and the network variability—parameterized by the proportion of variable-cost links in the network—changes, the behaviors that the system presents can be understood with the introduction of a network of simpler structure. This is constructed from classes of nonoverlapping paths connecting source to destination nodes that are characterized by the number of variable-cost edges they contain. It is shown that localized peaks in the price of anarchy occur at critical traffic volumes at which it becomes beneficial to exploit ostensibly more expensive paths as the network becomes more congested. Simulation results verifying these findings are presented for the variation of the price of anarchy with the network's size, aspect ratio, variability, and traffic load.

  17. Impact of C24:0 on actin-microtubule interaction in human neuronal SK-N-BE cells: evaluation by FRET confocal spectral imaging microscopy after dual staining with rhodamine-phalloidin and tubulin tracker green.

    PubMed

    Zarrouk, Amira; Nury, Thomas; Dauphin, Aurélien; Frère, Perrine; Riedinger, Jean-Marc; Bachelet, Claude-Marie; Frouin, Frédérique; Moreau, Thibault; Hammami, Mohamed; Kahn, Edmond; Lizard, Gérard

    2015-01-01

    Disorganization of the cytoskeleton of neurons has major consequences on the transport of neurotransmitters via the microtubule network. The interaction of cytoskeleton proteins (actin and tubulin) was studied in neuronal SK-N-BE cells treated with tetracosanoic acid (C24:0), which is cytotoxic and increased in Alzheimer's disease patients. When SK-N-BE cells were treated with C24:0, mitochondrial dysfunctions and a non-apoptotic mode of cell death were observed. Fluorescence microscopy revealed shrunken cells with perinuclear condensation of actin and tubulin. Impact of C24:0 on actin-microtubule interaction in human neuronal SK-N-BE cells: evaluation by FRET confocal spectral imaging microscopy after dual staining with rhodamine-phalloidin and tubulin tracker green After staining with rhodamine-phalloidin and with an antibody raised against α-/β-tubulin, modifications of F-actin and α-/β-tubulin levels were detected by flow cytometry. Lower levels of α-tubulin were found by Western blotting. In C24:0-treated cells, spectral analysis and fluorescence recovery after photobleaching (FRAP) measured by confocal microscopy proved the existence of fluorescence resonance energy transfer (FRET) when actin and tubulin were stained with tubulin tracker and rhodamine-phalloidin demonstrating actin and tubulin co-localization/interaction. In control cells, no FRET was observed. Our data demonstrate quantitative changes in actin and tubulin, and modified interactions between actin and tubulin in SK-N-BE cells treated with C24:0. They also show that FRET confocal imaging microscopy is an interesting method for specifying the impact of cytotoxic compounds on cytoskeleton proteins.

  18. Formaldehyde fixation is detrimental to actin cables in glucose-depleted S. cerevisiae cells

    PubMed Central

    Vasicova, Pavla; Rinnerthaler, Mark; Haskova, Danusa; Novakova, Lenka; Malcova, Ivana; Breitenbach, Michael; Hasek, Jiri

    2016-01-01

    Actin filaments form cortical patches and emanating cables in fermenting cells of Saccharomyces cerevisiae. This pattern has been shown to be depolarized in glucose-depleted cells after formaldehyde fixation and staining with rhodamine-tagged phalloidin. Loss of actin cables in mother cells was remarkable. Here we extend our knowledge on actin in live glucose-depleted cells co-expressing the marker of actin patches (Abp1-RFP) with the marker of actin cables (Abp140-GFP). Glucose depletion resulted in appearance of actin patches also in mother cells. However, even after 80 min of glucose deprivation these cells showed a clear network of actin cables labeled with Abp140-GFP in contrast to previously published data. In live cells with a mitochondrial dysfunction (rho0 cells), glucose depletion resulted in almost immediate appearance of Abp140-GFP foci partially overlapping with Abp1-RFP patches in mother cells. Residual actin cables were clustered in patch-associated bundles. A similar overlapping “patchy” pattern of both actin markers was observed upon treatment of glucose-deprived rho+ cells with FCCP (the inhibitor of oxidative phosphorylation) and upon treatment with formaldehyde. While the formaldehyde-targeted process stays unknown, our results indicate that published data on yeast actin cytoskeleton obtained from glucose-depleted cells after fixation should be considered with caution.

  19. Actin cytoskeleton: putting a CAP on actin polymerization.

    PubMed

    Stevenson, V A; Theurkauf, W E

    2000-10-05

    Two recent studies have identified a Drosophila homolog of cyclase-associated protein (CAP) as a developmentally important negative regulator of actin polymerization that may also directly mediate signal transduction.

  20. Formin' actin in the nucleus.

    PubMed

    Baarlink, Christian; Grosse, Robert

    2014-01-01

    Many if not most proteins can, under certain conditions, change cellular compartments, such as, for example, shuttling from the cytoplasm to the nucleus. Thus, many proteins may exert functions in various and very different subcellular locations, depending on the signaling context. A large amount of actin regulatory proteins has been detected in the mammalian cell nucleus, although their potential roles are much debated and are just beginning to emerge. Recently, members of the formin family of actin nucleators were also reported to dynamically localize to the nuclear environment. Here we discuss our findings that specific diaphanous-related formins can promote nuclear actin assembly in a signal-dependent manner.

  1. The Blow Up Method for Brakke Flows: Networks Near Triple Junctions

    NASA Astrophysics Data System (ADS)

    Tonegawa, Yoshihiro; Wickramasekera, Neshan

    2016-09-01

    We introduce a parabolic blow-up method to study the asymptotic behavior of a Brakke flow of planar networks (that is a 1-dimensional Brakke flow in a two dimensional region) weakly close in a space-time region to a static multiplicity 1 triple junction J. We show that such a network flow is regular in a smaller space-time region, in the sense that it consists of three curves coming smoothly together at a single point at 120{^{circ}} angles, staying smoothly close to J and moving smoothly. Using this result and White's stratification theorem, we deduce that whenever a Brakke flow of networks in a space-time region {{mathcal {R}}} has no static tangent flow with density {{≥q}2}, there exists a closed subset {{Σ subset {mathcal {R}}}} of parabolic Hausdorff dimension at most 1 such that the flow is classical in {{mathcal {R}}backslashΣ}, that is near every point in {{mathcal {R}}backslashΣ}, the flow, if non-empty, consists of either an embedded curve moving smoothly or three embedded curves meeting smoothly at a single point at 120{^{circ}} angles and moving smoothly. In particular, such a flow is classical at all times except for a closed set of times of ordinary Hausdorff dimension at most {1/2}.

  2. Actin dynamics and cofilin-actin rods in Alzheimer disease

    PubMed Central

    Bamburg, James R.; Bernstein, Barbara W.

    2017-01-01

    Cytoskeletal abnormalities and synaptic loss, typical of both familial and sporadic Alzheimer disease (AD), are induced by diverse stresses such as neuroinflammation, oxidative stress, and energetic stress, each of which may be initiated or enhanced by proinflammatory cytokines or amyloid-β (Aβ) peptides. Extracellular Aβ-containing plaques and intracellular phospho-tau-containing neurofibrillary tangles are postmortem pathologies required to confirm AD and have been the focus of most studies. However, AD brain, but not normal brain, also have increased levels of cytoplasmic rod-shaped bundles of filaments composed of ADF/cofilin-actin in a 1:1 complex (rods). Cofilin, the major ADF/cofilin isoform in mammalian neurons, severs actin filaments at low cofilin/actin ratios and stabilizes filaments at high cofilin/actin ratios. It binds cooperatively to ADP-actin subunits in F-actin. Cofilin is activated by dephosphorylation and may be oxidized in stressed neurons to form disulfide-linked dimers, required for bundling cofilin-actin filaments into stable rods. Rods form within neurites causing synaptic dysfunction by sequestering cofilin, disrupting normal actin dynamics, blocking transport, and exacerbating mitochondrial membrane potential loss. Aβ and proinflammatory cytokines induce rods through a cellular prion protein-dependent activation of NADPH oxidase and production of reactive oxygen species. Here we review recent advances in our understanding of cofilin biochemistry, rod formation, and the development of cognitive deficits. We will then discuss rod formation as a molecular pathway for synapse loss that may be common between all three prominent current AD hypotheses, thus making rods an attractive therapeutic target. PMID:26873625

  3. Experiments and network model of flow of oil-water emulsion in porous media

    NASA Astrophysics Data System (ADS)

    Romero, Mao Illich; Carvalho, Marcio S.; Alvarado, Vladimir

    2011-10-01

    Transport of emulsions in porous media is relevant to several subsurface applications. Many enhanced oil recovery (EOR) processes lead to emulsion formation and as a result conformance originating in the flow of a dispersed phase may arise. In some EOR processes, emulsion is injected directly as a mobility control agent. Modeling the flow of emulsion in porous media is extremely challenging due to the complex nature of the associated flows and numerous interfaces. The descriptions based on effective viscosity are not valid when the drop size is of the same order of magnitude as the pore-throat characteristic length scale. An accurate model of emulsion flow through porous media should describe this local change in mobility. The available filtration models do not take into account the variation of the straining and capturing rates with the local capillary number. In this work, we present experiments of emulsion flow through sandstone cores of different permeability and a first step on a capillary network model that uses experimentally determined pore-level constitutive relationships between flow rate and pressure drop in constricted capillaries to obtain representative macroscopic flow behavior emerging from microscopic emulsion flow at the pore level. A parametric analysis is conducted to study the effect of the permeability and dispersed phase droplet size on the flow response to emulsion flooding in porous media. The network model predictions qualitatively describe the oil-water emulsion flow behavior observed in the experiments.

  4. The influence of digital elevation model resolution on overland flow networks for modelling urban pluvial flooding.

    PubMed

    Leitão, J P; Boonya-Aroonnet, S; Prodanović, D; Maksimović, C

    2009-01-01

    This paper presents the developments towards the next generation of overland flow modelling of urban pluvial flooding. Using a detailed analysis of the Digital Elevation Model (DEM) the developed GIS tools can automatically generate surface drainage networks which consist of temporary ponds (floodable areas) and flow paths and link them with the underground network through inlets. For different commercially-available Rainfall-Runoff simulation models, the tool will generate the overland flow network needed to model the surface runoff and pluvial flooding accurately. In this paper the emphasis is placed on a sensitivity analysis of ponds and preferential overland flow paths creation. Different DEMs for three areas were considered in order to compare the results obtained. The DEMs considered were generated using different acquisition techniques and hence represent terrain with varying levels of resolution and accuracy. The results show that DEMs can be used to generate surface flow networks reliably. As expected, the quality of the surface network generated is highly dependent on the quality and resolution of the DEMs and successful representation of buildings and streets.

  5. Constraints of nonresponding flows based on cross layers in the networks

    NASA Astrophysics Data System (ADS)

    Zhou, Zhi-Chao; Xiao, Yang; Wang, Dong

    2016-02-01

    In the active queue management (AQM) scheme, core routers cannot manage and constrain user datagram protocol (UDP) data flows by the sliding window control mechanism in the transport layer due to the nonresponsive nature of such traffic flows. However, the UDP traffics occupy a large part of the network service nowadays which brings a great challenge to the stability of the more and more complex networks. To solve the uncontrollable problem, this paper proposes a cross layers random early detection (CLRED) scheme, which can control the nonresponding UDP-like flows rate effectively when congestion occurs in the access point (AP). The CLRED makes use of the MAC frame acknowledgement (ACK) transmitting congestion information to the sources nodes and utilizes the back-off windows of the MAC layer throttling data rate. Consequently, the UDP-like flows data rate can be restrained timely by the sources nodes in order to alleviate congestion in the complex networks. The proposed CLRED can constrain the nonresponsive flows availably and make the communication expedite, so that the network can sustain stable. The simulation results of network simulator-2 (NS2) verify the proposed CLRED scheme.

  6. Direct interaction of microtubule- and actin-based transport motors

    NASA Technical Reports Server (NTRS)

    Huang, J. D.; Brady, S. T.; Richards, B. W.; Stenolen, D.; Resau, J. H.; Copeland, N. G.; Jenkins, N. A.

    1999-01-01

    The microtubule network is thought to be used for long-range transport of cellular components in animal cells whereas the actin network is proposed to be used for short-range transport, although the mechanism(s) by which this transport is coordinated is poorly understood. For example, in sea urchins long-range Ca2+-regulated transport of exocytotic vesicles requires a microtubule-based motor, whereas an actin-based motor is used for short-range transport. In neurons, microtubule-based kinesin motor proteins are used for long-range vesicular transport but microtubules do not extend into the neuronal termini, where actin filaments form the cytoskeletal framework, and kinesins are rapidly degraded upon their arrival in neuronal termini, indicating that vesicles may have to be transferred from microtubules to actin tracks to reach their final destination. Here we show that an actin-based vesicle-transport motor, MyoVA, can interact directly with a microtubule-based transport motor, KhcU. As would be expected if these complexes were functional, they also contain kinesin light chains and the localization of MyoVA and KhcU overlaps in the cell. These results indicate that cellular transport is, in part, coordinated through the direct interaction of different motor molecules.

  7. The influence of underlying topography on lava channel networks and flow behavior (Invited)

    NASA Astrophysics Data System (ADS)

    Dietterich, H. R.; Cashman, K. V.; Rust, A.

    2013-12-01

    New high resolution mapping of historical lava flows in Hawai';i reveals complex topographically controlled channel networks. Network morphologies range from distributary systems dominated by branching around local obstacles, to tributary systems constricted by topographic confinement. Because channel networks govern the distribution of lava within the flow, they can dramatically alter the effective volumetric flux, which affects both flow length and advance rate. The influence of flow bifurcations is evidenced by (1) channelized flows from Pu';u ';O';o episodes 1-20 at Kilauea Volcano, where flow front velocities decreased by approximately half each time a flow split, and (2) the length of confined flows, such as the Mauna Loa 1859 flow, which traveled twice as far as the distributary Mauna Loa 1984 flow, despite similar effusion rates and durations. To study the underlying controls on flow bifurcations, we have undertaken a series of analogue experiments with golden syrup (a Newtonian fluid) to better understand the physics of obstacle interaction and its influence on flow behavior and morphology. Controlling the effusion rate and surface slope, we extrude flows onto a surface with a cylindrical or V-shaped obstacle of variable angle. When the flow is sufficiently fast, a stationary wave forms upslope of the obstacle; if the stationary wave is sufficiently high, the flow can overtop, rather than split around, the obstacle. The stationary wave height increases with flow velocity and with the effective obstacle width. Evidence for stationary waves in Hawaiian lava flows comes from both photographs of active flows and waveforms frozen into solidified flows. We have also performed a preliminary set of similar experiments with molten basalt to identify the effect of cooling and investigate flow merging. In these experiments, a stationary wave develops upslope of the obstacle, which allows the surface to cool and thicken. After splitting, the syrup experiments show

  8. A Geographic and Functional Network Flow Analysis Tool

    DTIC Science & Technology

    2014-06-01

    13 Figure 5. Quantum GIS with the ArcMaker plugin.........................................................14 Figure 6...System PPD-21 Presidential Policy Directive 21 QGIS Quantum GIS XML Extensible Markup Language xiv THIS PAGE INTENTIONALLY LEFT...heavily on Quantum GIS (QGIS 2012) to model our simulated networks. QGIS is a free, open source Geographic Information System software suite. We ran

  9. Information flow through threespine stickleback networks without social transmission.

    PubMed

    Atton, N; Hoppitt, W; Webster, M M; Galef, B G; Laland, K N

    2012-10-22

    Social networks can result in directed social transmission of learned information, thus influencing how innovations spread through populations. Here we presented shoals of threespine sticklebacks (Gasterosteous aculeatus) with two identical foraging tasks and applied network-based diffusion analysis (NBDA) to determine whether the order in which individuals in a social group contacted and solved the tasks was affected by the group's network structure. We found strong evidence for a social effect on discovery of the foraging tasks with individuals tending to discover a task sooner when others in their group had previously done so, and with the spread of discovery of the foraging tasks influenced by groups' social networks. However, the same patterns of association did not reliably predict spread of solution to the tasks, suggesting that social interactions affected the time at which the tasks were discovered, but not the latency to its solution following discovery. The present analysis, one of the first applications of NBDA to a natural animal system, illustrates how NBDA can lead to insight into the mechanisms supporting behaviour acquisition that more conventional statistical approaches might miss. Importantly, we provide the first compelling evidence that the spread of novel behaviours can result from social learning in the absence of social transmission, a phenomenon that we refer to as an untransmitted social effect on learning.

  10. Analysis of a solar collector field water flow network

    NASA Technical Reports Server (NTRS)

    Rohde, J. E.; Knoll, R. H.

    1976-01-01

    A number of methods are presented for minimizing the water flow variation in the solar collector field for the Solar Building Test Facility at the Langley Research Center. The solar collector field investigated consisted of collector panels connected in parallel between inlet and exit collector manifolds to form 12 rows. The rows were in turn connected in parallel between the main inlet and exit field manifolds to complete the field. The various solutions considered included various size manifolds, manifold area change, different locations for the inlets and exits to the manifolds, and orifices or flow control valves. Calculations showed that flow variations of less than 5 percent were obtainable both inside a row between solar collector panels and between various rows.

  11. Betweenness centrality and its applications from modeling traffic flows to network community detection

    NASA Astrophysics Data System (ADS)

    Ren, Yihui

    As real-world complex networks are heterogeneous structures, not all their components such as nodes, edges and subgraphs carry the same role or importance in the functions performed by the networks: some elements are more critical than others. Understanding the roles of the components of a network is crucial for understanding the behavior of the network as a whole. One the most basic function of networks is transport; transport of vehicles/people, information, materials, forces, etc., and these quantities are transported along edges between source and destination nodes. For this reason, network path-based importance measures, also called centralities, play a crucial role in the understanding of the transport functions of the network and the network's structural and dynamical behavior in general. In this thesis we study the notion of betweenness centrality, which measures the fraction of lowest-cost (or shortest) paths running through a network component, in particular through a node or an edge. High betweenness centrality nodes/edges are those that will be frequently used by the entities transported through the network and thus they play a key role in the overall transport properties of the network. In the first part of the thesis we present a first-principles based method for traffic prediction using a cost-based generalization of the radiation model (emission/absorbtion model) for human mobility, coupled with a cost-minimizing algorithm for efficient distribution of the mobility fluxes through the network. Using US census and highway traffic data, we show that traffic can efficiently and accurately be computed from a range-limited, network betweenness type calculation. The model based on travel time costs captures the log-normal distribution of the traffic and attains a high Pearson correlation coefficient (0.75) when compared with real traffic. We then focus on studying the extent of changes in traffic flows in the wake of a localized damage or alteration to the

  12. The Epidemic Spreading Model and the Direction of Information Flow in Brain Networks.

    PubMed

    Meier, J; Zhou, X; Hillebrand, A; Tewarie, P; Stam, C J; Mieghem, P Van

    2017-02-04

    The interplay between structural connections and emerging information flow in the human brain remains an open research problem. A recent study observed global patterns of directional information flow in empirical data using the measure of transfer entropy. For higher frequency bands, the overall direction of information flow was from posterior to anterior regions whereas an anterior-to-posterior pattern was observed in lower frequency bands. In this study, we applied a simple Susceptible-Infected-Susceptible (SIS) epidemic spreading model on the human connectome with the aim to reveal the topological properties of the structural network that give rise to these global patterns. We found that direct structural connections induced higher transfer entropy between two brain regions and that transfer entropy decreased with increasing distance between nodes (in terms of hops in the structural network). Applying the SIS model, we were able to confirm the empirically observed opposite information flow patterns and posterior hubs in the structural network seem to play a dominant role in the network dynamics. For small time scales, when these hubs acted as strong receivers of information, the global pattern of information flow was in the posterior-to-anterior direction and in the opposite direction when they were strong senders. Our analysis suggests that these global patterns of directional information flow are the result of an unequal spatial distribution of the structural degree between posterior and anterior regions and their directions seem to be linked to different time scales of the spreading process.

  13. The International Postal Network and Other Global Flows as Proxies for National Wellbeing

    PubMed Central

    Rutherford, Alex; Anson, Jose; Luengo-Oroz, Miguel; Mascolo, Cecilia

    2016-01-01

    The digital exhaust left by flows of physical and digital commodities provides a rich measure of the nature, strength and significance of relationships between countries in the global network. With this work, we examine how these traces and the network structure can reveal the socioeconomic profile of different countries. We take into account multiple international networks of physical and digital flows, including the previously unexplored international postal network. By measuring the position of each country in the Trade, Postal, Migration, International Flights, IP and Digital Communications networks, we are able to build proxies for a number of crucial socioeconomic indicators such as GDP per capita and the Human Development Index ranking along with twelve other indicators used as benchmarks of national well-being by the United Nations and other international organisations. In this context, we have also proposed and evaluated a global connectivity degree measure applying multiplex theory across the six networks that accounts for the strength of relationships between countries. We conclude by showing how countries with shared community membership over multiple networks have similar socioeconomic profiles. Combining multiple flow data sources can help understand the forces which drive economic activity on a global level. Such an ability to infer proxy indicators in a context of incomplete information is extremely timely in light of recent discussions on measurement of indicators relevant to the Sustainable Development Goals. PMID:27248142

  14. Correlation Networks from Flows. The Case of Forced and Time-Dependent Advection-Diffusion Dynamics.

    PubMed

    Tupikina, Liubov; Molkenthin, Nora; López, Cristóbal; Hernández-García, Emilio; Marwan, Norbert; Kurths, Jürgen

    2016-01-01

    Complex network theory provides an elegant and powerful framework to statistically investigate different types of systems such as society, brain or the structure of local and long-range dynamical interrelationships in the climate system. Network links in climate networks typically imply information, mass or energy exchange. However, the specific connection between oceanic or atmospheric flows and the climate network's structure is still unclear. We propose a theoretical approach for verifying relations between the correlation matrix and the climate network measures, generalizing previous studies and overcoming the restriction to stationary flows. Our methods are developed for correlations of a scalar quantity (temperature, for example) which satisfies an advection-diffusion dynamics in the presence of forcing and dissipation. Our approach reveals that correlation networks are not sensitive to steady sources and sinks and the profound impact of the signal decay rate on the network topology. We illustrate our results with calculations of degree and clustering for a meandering flow resembling a geophysical ocean jet.

  15. Unified pipe network method for simulation of water flow in fractured porous rock

    NASA Astrophysics Data System (ADS)

    Ren, Feng; Ma, Guowei; Wang, Yang; Li, Tuo; Zhu, Hehua

    2017-04-01

    Rock masses are often conceptualized as dual-permeability media containing fractures or fracture networks with high permeability and porous matrix that is less permeable. In order to overcome the difficulties in simulating fluid flow in a highly discontinuous dual-permeability medium, an effective unified pipe network method is developed, which discretizes the dual-permeability rock mass into a virtual pipe network system. It includes fracture pipe networks and matrix pipe networks. They are constructed separately based on equivalent flow models in a representative area or volume by taking the advantage of the orthogonality of the mesh partition. Numerical examples of fluid flow in 2-D and 3-D domain including porous media and fractured porous media are presented to demonstrate the accuracy, robustness, and effectiveness of the proposed unified pipe network method. Results show that the developed method has good performance even with highly distorted mesh. Water recharge into the fractured rock mass with complex fracture network is studied. It has been found in this case that the effect of aperture change on the water recharge rate is more significant in the early stage compared to the fracture density change.

  16. The International Postal Network and Other Global Flows as Proxies for National Wellbeing.

    PubMed

    Hristova, Desislava; Rutherford, Alex; Anson, Jose; Luengo-Oroz, Miguel; Mascolo, Cecilia

    2016-01-01

    The digital exhaust left by flows of physical and digital commodities provides a rich measure of the nature, strength and significance of relationships between countries in the global network. With this work, we examine how these traces and the network structure can reveal the socioeconomic profile of different countries. We take into account multiple international networks of physical and digital flows, including the previously unexplored international postal network. By measuring the position of each country in the Trade, Postal, Migration, International Flights, IP and Digital Communications networks, we are able to build proxies for a number of crucial socioeconomic indicators such as GDP per capita and the Human Development Index ranking along with twelve other indicators used as benchmarks of national well-being by the United Nations and other international organisations. In this context, we have also proposed and evaluated a global connectivity degree measure applying multiplex theory across the six networks that accounts for the strength of relationships between countries. We conclude by showing how countries with shared community membership over multiple networks have similar socioeconomic profiles. Combining multiple flow data sources can help understand the forces which drive economic activity on a global level. Such an ability to infer proxy indicators in a context of incomplete information is extremely timely in light of recent discussions on measurement of indicators relevant to the Sustainable Development Goals.

  17. Dual pools of actin at presynaptic terminals.

    PubMed

    Bleckert, Adam; Photowala, Huzefa; Alford, Simon

    2012-06-01

    We investigated actin's function in vesicle recycling and exocytosis at lamprey synapses and show that FM1-43 puncta and phalloidin-labeled filamentous actin (F-actin) structures are colocalized, yet recycling vesicles are not contained within F-actin clusters. Additionally, phalloidin also labels a plasma membrane-associated cortical actin. Injection of fluorescent G-actin revealed activity-independent dynamic actin incorporation into presynaptic synaptic vesicle clusters but not into cortical actin. Latrunculin-A, which sequesters G-actin, dispersed vesicle-associated actin structures and prevented subsequent labeled G-actin and phalloidin accumulation at presynaptic puncta, yet cortical phalloidin labeling persisted. Dispersal of presynaptic F-actin structures by latrunculin-A did not disrupt vesicle clustering or recycling or alter the amplitude or kinetics of excitatory postsynaptic currents (EPSCs). However, it slightly enhanced release during repetitive stimulation. While dispersal of presynaptic actin puncta with latrunculin-A failed to disperse synaptic vesicles or inhibit synaptic transmission, presynaptic phalloidin injection blocked exocytosis and reduced endocytosis measured by action potential-evoked FM1-43 staining. Furthermore, phalloidin stabilization of only cortical actin following pretreatment with latrunculin-A was sufficient to inhibit synaptic transmission. Conversely, treatment of axons with jasplakinolide, which induces F-actin accumulation but disrupts F-actin structures in vivo, resulted in increased synaptic transmission accompanied by a loss of phalloidin labeling of cortical actin but no loss of actin labeling within vesicle clusters. Marked synaptic deficits seen with phalloidin stabilization of cortical F-actin, in contrast to the minimal effects of disruption of a synaptic vesicle-associated F-actin, led us to conclude that two structurally and functionally distinct pools of actin exist at presynaptic sites.

  18. Flow distribution in parallel microfluidic networks and its effect on concentration gradient

    PubMed Central

    Guermonprez, Cyprien; Michelin, Sébastien; Baroud, Charles N.

    2015-01-01

    The architecture of microfluidic networks can significantly impact the flow distribution within its different branches and thereby influence tracer transport within the network. In this paper, we study the flow rate distribution within a network of parallel microfluidic channels with a single input and single output, using a combination of theoretical modeling and microfluidic experiments. Within the ladder network, the flow rate distribution follows a U-shaped profile, with the highest flow rate occurring in the initial and final branches. The contrast with the central branches is controlled by a single dimensionless parameter, namely, the ratio of hydrodynamic resistance between the distribution channel and the side branches. This contrast in flow rates decreases when the resistance of the side branches increases relative to the resistance of the distribution channel. When the inlet flow is composed of two parallel streams, one of which transporting a diffusing species, a concentration variation is produced within the side branches of the network. The shape of this concentration gradient is fully determined by two dimensionless parameters: the ratio of resistances, which determines the flow rate distribution, and the Péclet number, which characterizes the relative speed of diffusion and advection. Depending on the values of these two control parameters, different distribution profiles can be obtained ranging from a flat profile to a step distribution of solute, with well-distributed gradients between these two limits. Our experimental results are in agreement with our numerical model predictions, based on a simplified 2D advection-diffusion problem. Finally, two possible applications of this work are presented: the first one combines the present design with self-digitization principle to encapsulate the controlled concentration in nanoliter chambers, while the second one extends the present design to create a continuous concentration gradient within an open flow

  19. Evolutionary systemic risk: Fisher information flow metric in financial network dynamics

    NASA Astrophysics Data System (ADS)

    Khashanah, Khaldoun; Yang, Hanchao

    2016-03-01

    Recently the topic of financial network dynamics has gained renewed interest from researchers in the field of empirical systemic risk measurements. We refer to this type of network analysis as information flow networks analysis (IFNA). This paper proposes a new method that applies Fisher information metric to the evolutionary dynamics of financial networks using IFNA. Our paper is the first to apply the Fisher information metric to a set of financial time series. We introduce Evolution Index (EI) as a measure of systemic risk in financial networks. It is shown, for concrete networks with actual data of several stock markets, that the EI can be implemented as a measure of fitness of the stock market and as a leading indicator of systemic risk.

  20. [Photodynamic therapy for actinic cheilitis].

    PubMed

    Castaño, E; Comunión, A; Arias, D; Miñano, R; Romero, A; Borbujo, J

    2009-12-01

    Actinic cheilitis is a subtype of actinic keratosis that mainly affects the lower lip and has a higher risk of malignant transformation. Its location on the labial mucosa influences the therapeutic approach. Vermilionectomy requires local or general anesthetic and is associated with a risk of an unsightly scar, and the treatment with 5-fluorouracil or imiquimod lasts for several weeks and the inflammatory reaction can be very intense. A number of authors have used photodynamic therapy as an alternative to the usual treatments. We present 3 patients with histologically confirmed actinic cheilitis treated using photodynamic therapy with methyl aminolevulinic acid as the photosensitizer and red light at 630 nm. The clinical response was good, with no recurrences after 3 to 6 months of follow-up. Our experience supports the use of photodynamic therapy as a good alternative for the treatment of actinic cheilitis.

  1. Distribution of actin of the human erythrocyte membrane cytoskeleton after interaction with radiographic contrast media.

    PubMed

    Franke, R P; Scharnweber, T; Fuhrmann, R; Krüger, A; Wenzel, F; Mrowietz, C; Jung, F

    2013-01-01

    A type-dependent chemotoxic effect of radiographic contrast media on erythrocytes and endothelial cells was reported several times. While mechanisms of toxicity are still unclear the cellular reactions e.g. echinocyte formation in erythrocytes and the buckling of endothelial cells coincided with deterioration of capillary perfusion (in patients with coronary artery disease) and tissue oxygen tension (in the myocardium of pigs). Whether the shape changes in erythrocytes coincide with changes in the arrangement of actin, the core of the actin-spectrin cytoskeletal network and possible actor in membrane stresses and deformation is not known until now. To get specific informations actin was stained using two different staining methods (antibodies to β-actin staining oligomeric G-actin and polymeric F-actin and Phalloidin-Rhodamin staining polymeric F-actin only). In addition, an advanced version of confocal laser scanning microscopes was used enabling the display of the actin arrangement near substrate surfaces. Blood smears were produced after erythrocyte suspension in autologous plasma or in two different plasma/RCM mixtures. In this study an even homogenous distribution of fine grained globular actin in the normal human erythrocyte could be demonstrated. After suspension of erythrocytes in a plasma/Iodixanol mixture an increased number of membrane protrusions appeared densely filled with intensely stained actin similar to cells suspended in autologous plasma, however, there in less numbers. Suspension in Iopromide, in contrast, induced a complete reorganization of the cytoskeletal actin: the fine grained globular actin distribution disappeared and only few, long and thick actin filaments bundled and possibly polymerized appeared, instead, shown here for the first time.

  2. Feeling for Filaments: Quantification of the Cortical Actin Web in Live Vascular Endothelium

    PubMed Central

    Kronlage, Cornelius; Schäfer-Herte, Marco; Böning, Daniel; Oberleithner, Hans; Fels, Johannes

    2015-01-01

    Contact-mode atomic force microscopy (AFM) has been shown to reveal cortical actin structures. Using live endothelial cells, we visualized cortical actin dynamics simultaneously by AFM and confocal fluorescence microscopy. We present a method that quantifies dynamic changes in the mechanical ultrastructure of the cortical actin web. We argue that the commonly used, so-called error signal imaging in AFM allows a qualitative, but not quantitative, analysis of cortical actin dynamics. The approach we used comprises fast force-curve-based topography imaging and subsequent image processing that enhances local height differences. Dynamic changes in the organization of the cytoskeleton network can be observed and quantified by surface roughness calculations and automated morphometrics. Upon treatment with low concentrations of the actin-destabilizing agent cytochalasin D, the cortical cytoskeleton network is thinned out and the average mesh size increases. In contrast, jasplakinolide, a drug that enhances actin polymerization, consolidates the cytoskeleton network and reduces the average mesh area. In conclusion, cortical actin dynamics can be quantified in live cells. To our knowledge, this opens a new pathway for conducting quantitative structure-function analyses of the endothelial actin web just beneath the apical plasma membrane. PMID:26287621

  3. Experimental demonstration of time-aware software defined networking for OpenFlow-based intra-datacenter optical interconnection networks

    NASA Astrophysics Data System (ADS)

    Yang, Hui; Zhang, Jie; Zhao, Yongli; Ji, Yuefeng; Han, Jianrui; Lin, Yi; Qiu, Shaofeng; Lee, Young

    2014-06-01

    Nowadays, most service providers offer their services and support their applications through federated sets of data centers which need to be interconnected using high-capacity optical networks in intra-datacenter networks. Many datacenter applications in the environment require lower delay and higher availability with the end-to-end guaranteed quality of service. In this paper, we propose a novel time-aware software defined networking (TaSDN) architecture for OpenFlow-based intra-datacenter optical interconnection networks. Based on the proposed architecture, a time-aware service scheduling (TaSS) strategy is introduced to allocate the network and datacenter resources optimally, which considers the datacenter service scheduling with flexible service time and service bandwidth according to the various time sensitivity requirements. The TaSDN can arrange and accommodate the applications with required QoS considering the time factor, and enhance the data center responsiveness to quickly provide for intra-datacenter service demands. The overall feasibility of the proposed architecture is experimentally verified on our testbed with real OpenFlow-enabled tunable optical modules. The performance of TaSS strategy under heavy traffic load scenario is also evaluated based on TaSDN architecture in terms of blocking probability and resource occupation rate.

  4. [Using network planning techniques for work flow analysis in a clinical environment].

    PubMed

    Teichgräber, Ulf K M; Gillessen, Christoph; Neumann, Fabian; Clasen, Birthe; Ricke, Jens

    2002-08-01

    In the face of increasing financial pressure on our health care system, one way to reduce costs while maintaining or even improving outcome quality is to improve work flow efficiency. Network Planning Technique (NPT) is a tool for mapping and analyzing work flows. Designing a network plan requires four steps. Step 1 is concerned with the determination of the work flow structure. Step 2 deals with data acquisition. Based on the data retrieved a network plan is created in Step 3. Step 4 includes the calculation of the critical path and slack times under optimistic, realistic and pessimistic conditions. Applied to the ultrasound division in our department a total examination time of 34:14 minutes was calculated with 23:09 minutes total slack time for the technician under realistic conditions. Using NPT creates transparency in work flows and allows us to estimate resource demands. A comparison between two different divisions with a similar work flow structure but different resource allocation demonstrates this method's potential for improving work flows. Limitations of the NPT can be noted when considering cycle overlap in repetitive work flows and modeling non-regular activities.

  5. A neural network-based power system stabilizer using power flow characteristics

    SciTech Connect

    Park, Y.M.; Choi, M.S.; Lee, K.Y.

    1996-06-01

    A neural network-based Power System Stabilizer (Neuro-PSS) is designed for a generator connected to a multi-machine power system utilizing the nonlinear power flow dynamics. The uses of power flow dynamics provide a PSS for a wide range operation with reduced size neutral networks. The Neuro-PSS consists of two neutral networks: Neuro-Identifier and Neuro-Controller. The low-frequency oscillation is modeled by the Neuro-Identifier using the power flow dynamics, then a Generalized Backpropagation-Thorough-Time (GBTT) algorithm is developed to train the Neuro-Controller. The simulation results show that the Neuro-PSS designed in this paper performs well with good damping in a wide operation range compared with the conventional PSS.

  6. Modeling patient flows using a queuing network with blocking.

    PubMed

    Koizumi, Naoru; Kuno, Eri; Smith, Tony E

    2005-02-01

    The downsizing and closing of state mental health institutions in Philadelphia in the 1990's led to the development of a continuum care network of residential-based services. Although the diversity of care settings increased, congestion in facilities caused many patients to unnecessarily spend extra days in intensive facilities. This study applies a queuing network system with blocking to analyze such congestion processes. "Blocking" denotes situations where patients are turned away from accommodations to which they are referred, and are thus forced to remain in their present facilities until space becomes available. Both mathematical and simulation results are presented and compared. Although queuing models have been used in numerous healthcare studies, the inclusion of blocking is still rare. We found that, in Philadelphia, the shortage of a particular type of facilities may have created "upstream blocking". Thus removal of such facility-specific bottlenecks may be the most efficient way to reduce congestion in the system as a whole.

  7. Soft viscoelastic properties of nuclear actin age oocytes due to gravitational creep.

    PubMed

    Feric, Marina; Broedersz, Chase P; Brangwynne, Clifford P

    2015-11-18

    The actin cytoskeleton helps maintain structural organization within living cells. In large X. laevis oocytes, gravity becomes a dominant force and is countered by a nuclear actin network that prevents liquid-like nuclear bodies from immediate sedimentation and coalescence. However, nuclear actin's mechanical properties, and how they facilitate the stabilization of nuclear bodies, remain unknown. Using active microrheology, we find that nuclear actin forms a weak viscoelastic network, with a modulus of roughly 0.1 Pa. Embedded probe particles subjected to a constant force exhibit continuous displacement, due to viscoelastic creep. Gravitational forces also cause creep displacement of nuclear bodies, resulting in their asymmetric nuclear distribution. Thus, nuclear actin does not indefinitely support the emulsion of nuclear bodies, but only kinetically stabilizes them by slowing down gravitational creep to ~2 months. This is similar to the viability time of large oocytes, suggesting gravitational creep ages oocytes, with fatal consequences on long timescales.

  8. Rho GTPases, phosphoinositides, and actin

    PubMed Central

    Croisé, Pauline; Estay-Ahumada, Catherine; Gasman, Stéphane; Ory, Stéphane

    2014-01-01

    Rho GTPases are well known regulators of the actin cytoskeleton that act by binding and activating actin nucleators. They are therefore involved in many actin-based processes, including cell migration, cell polarity, and membrane trafficking. With the identification of phosphoinositide kinases and phosphatases as potential binding partners or effectors, Rho GTPases also appear to participate in the regulation of phosphoinositide metabolism. Since both actin dynamics and phosphoinositide turnover affect the efficiency and the fidelity of vesicle transport between cell compartments, Rho GTPases have emerged as critical players in membrane trafficking. Rho GTPase activity, actin remodeling, and phosphoinositide metabolism need to be coordinated in both space and time to ensure the progression of vesicles along membrane trafficking pathways. Although most molecular pathways are still unclear, in this review, we will highlight recent advances made in our understanding of how Rho-dependent signaling pathways organize actin dynamics and phosphoinositides and how phosphoinositides potentially provide negative feedback to Rho GTPases during endocytosis, exocytosis and membrane exchange between intracellular compartments. PMID:24914539

  9. Computational Tension Mapping of Adherent Cells Based on Actin Imaging.

    PubMed

    Manifacier, Ian; Milan, Jean-Louis; Jeanneau, Charlotte; Chmilewsky, Fanny; Chabrand, Patrick; About, Imad

    2016-01-01

    Forces transiting through the cytoskeleton are known to play a role in adherent cell activity. Up to now few approaches haves been able to determine theses intracellular forces. We thus developed a computational mechanical model based on a reconstruction of the cytoskeleton of an adherent cell from fluorescence staining of the actin network and focal adhesions (FA). Our custom made algorithm converted the 2D image of an actin network into a map of contractile interactions inside a 2D node grid, each node representing a group of pixels. We assumed that actin filaments observed under fluorescence microscopy, appear brighter when thicker, we thus presumed that nodes corresponding to pixels with higher actin density were linked by stiffer interactions. This enabled us to create a system of heterogeneous interactions which represent the spatial organization of the contractile actin network. The contractility of this interaction system was then adapted to match the level of force the cell truly exerted on focal adhesions; forces on focal adhesions were estimated from their vinculin expressed size. This enabled the model to compute consistent mechanical forces transiting throughout the cell. After computation, we applied a graphical approach on the original actin image, which enabled us to calculate tension forces throughout the cell, or in a particular region or even in single stress fibers. It also enabled us to study different scenarios which may indicate the mechanical role of other cytoskeletal components such as microtubules. For instance, our results stated that the ratio between intra and extra cellular compression is inversely proportional to intracellular tension.

  10. Computational Tension Mapping of Adherent Cells Based on Actin Imaging

    PubMed Central

    Manifacier, Ian; Milan, Jean-Louis; Jeanneau, Charlotte; Chmilewsky, Fanny; Chabrand, Patrick; About, Imad

    2016-01-01

    Forces transiting through the cytoskeleton are known to play a role in adherent cell activity. Up to now few approaches haves been able to determine theses intracellular forces. We thus developed a computational mechanical model based on a reconstruction of the cytoskeleton of an adherent cell from fluorescence staining of the actin network and focal adhesions (FA). Our custom made algorithm converted the 2D image of an actin network into a map of contractile interactions inside a 2D node grid, each node representing a group of pixels. We assumed that actin filaments observed under fluorescence microscopy, appear brighter when thicker, we thus presumed that nodes corresponding to pixels with higher actin density were linked by stiffer interactions. This enabled us to create a system of heterogeneous interactions which represent the spatial organization of the contractile actin network. The contractility of this interaction system was then adapted to match the level of force the cell truly exerted on focal adhesions; forces on focal adhesions were estimated from their vinculin expressed size. This enabled the model to compute consistent mechanical forces transiting throughout the cell. After computation, we applied a graphical approach on the original actin image, which enabled us to calculate tension forces throughout the cell, or in a particular region or even in single stress fibers. It also enabled us to study different scenarios which may indicate the mechanical role of other cytoskeletal components such as microtubules. For instance, our results stated that the ratio between intra and extra cellular compression is inversely proportional to intracellular tension. PMID:26812601

  11. Analytic solution for heat flow through a general harmonic network.

    PubMed

    Freitas, Nahuel; Paz, Juan Pablo

    2014-10-01

    We present an analytic expression for the heat current through a general harmonic network coupled with Ohmic reservoirs. We use a method that enables us to express the stationary state of the network in terms of the eigenvectors and eigenvalues of a generalized cubic eigenvalue problem. In this way, we obtain exact formulas for the heat current and the local temperature inside the network. Our method does not rely on the usual assumptions of weak coupling to the environments or on the existence of an infinite cutoff in the environmental spectral densities. We use this method to study nonequilibrium processes without the weak coupling and Markovian approximations. As a first application of our method, we revisit the problem of heat conduction in two- and three-dimensional crystals with binary mass disorder. We complement previous results showing that for small systems the scaling of the heat current with the system size greatly depends on the strength of the interaction between system and reservoirs. This somewhat counterintuitive result seems not to have been noticed before.

  12. Analytic solution for heat flow through a general harmonic network

    NASA Astrophysics Data System (ADS)

    Freitas, Nahuel; Paz, Juan Pablo

    2014-10-01

    We present an analytic expression for the heat current through a general harmonic network coupled with Ohmic reservoirs. We use a method that enables us to express the stationary state of the network in terms of the eigenvectors and eigenvalues of a generalized cubic eigenvalue problem. In this way, we obtain exact formulas for the heat current and the local temperature inside the network. Our method does not rely on the usual assumptions of weak coupling to the environments or on the existence of an infinite cutoff in the environmental spectral densities. We use this method to study nonequilibrium processes without the weak coupling and Markovian approximations. As a first application of our method, we revisit the problem of heat conduction in two- and three-dimensional crystals with binary mass disorder. We complement previous results showing that for small systems the scaling of the heat current with the system size greatly depends on the strength of the interaction between system and reservoirs. This somewhat counterintuitive result seems not to have been noticed before.

  13. Simulation of unsteady flow and solute transport in a tidal river network

    USGS Publications Warehouse

    Zhan, X.

    2003-01-01

    A mathematical model and numerical method for water flow and solute transport in a tidal river network is presented. The tidal river network is defined as a system of open channels of rivers with junctions and cross sections. As an example, the Pearl River in China is represented by a network of 104 channels, 62 nodes, and a total of 330 cross sections with 11 boundary section for one of the applications. The simulations are performed with a supercomputer for seven scenarios of water flow and/or solute transport in the Pearl River, China, with different hydrological and weather conditions. Comparisons with available data are shown. The intention of this study is to summarize previous works and to provide a useful tool for water environmental management in a tidal river network, particularly for the Pearl River, China.

  14. Availability Improvement of Layer 2 Seamless Networks Using OpenFlow

    PubMed Central

    Molina, Elias; Jacob, Eduardo; Matias, Jon; Moreira, Naiara; Astarloa, Armando

    2015-01-01

    The network robustness and reliability are strongly influenced by the implementation of redundancy and its ability of reacting to changes. In situations where packet loss or maximum latency requirements are critical, replication of resources and information may become the optimal technique. To this end, the IEC 62439-3 Parallel Redundancy Protocol (PRP) provides seamless recovery in layer 2 networks by delegating the redundancy management to the end-nodes. In this paper, we present a combination of the Software-Defined Networking (SDN) approach and PRP topologies to establish a higher level of redundancy and thereby, through several active paths provisioned via the OpenFlow protocol, the global reliability is increased, as well as data flows are managed efficiently. Hence, the experiments with multiple failure scenarios, which have been run over the Mininet network emulator, show the improvement in the availability and responsiveness over other traditional technologies based on a single active path. PMID:25759861

  15. A Fixed-Charge Multicommodity Network Flow Algorithm and a Warehouse Location Application.

    DTIC Science & Technology

    1985-08-01

    ice cream and confectionaries . (b) Take-home ice cream. (c) House brand products . (d) Loose pack stick/novelty items. (e) Take-home stick/novelty items... Product Line -------------------------------------- 5 1.3 Distribution Network ------------------------------- 5 1.4 Costs...for a major food products firm in Australia, but the • (fixed-charge multicommodity network flow) model we describe is certainly * not limited to

  16. Traffic-Adaptive, Flow-Specific Medium Access for Wireless Networks

    DTIC Science & Technology

    2009-09-01

    free medium access and proposes a flow-specific medium access scheme for networked satellite systems that is based on traffic-adaptive CWS-MAC and...layer; Medium access control; Wireless; Energy-efficiency; Preamble sampling; Networked satellite systems 16. PRICE CODE 17. SECURITY... systems that is based on traffic-adaptive CWS- MAC and is shown to outperform both CSMA- and TDMA-based solutions. vi THIS PAGE INTENTIONALLY LEFT

  17. Flow Effects on the Controlled Growth of Nanostructured Networks at Microcapillary Walls for Applications in Continuous Flow Reactions.

    PubMed

    Wang, Gang; Yuan, Cansheng; Fu, Boyi; He, Luye; Reichmanis, Elsa; Wang, Hongzhi; Zhang, Qinghong; Li, Yaogang

    2015-09-30

    Low-cost microfluidic devices are desirable for many chemical processes; however, access to robust, inert, and appropriately structured materials for the inner channel wall is severely limited. Here, the shear force within confined microchannels was tuned through control of reactant solution fluid-flow and shown to dramatically impact nano- through microstructure growth. Combined use of experimental results and simulations allowed controlled growth of 3D networked Zn(OH)F nanostructures with uniform pore distributions and large fluid contact areas on inner microchannel walls. These attributes facilitated subsequent preparation of uniformly distributed Pd and PdPt networks with high structural and chemical stability using a facile, in situ conversion method. The advantageous properties of the microchannel based catalytic system were demonstrated using microwave-assisted continuous-flow coupling as a representative reaction. High conversion rates and good recyclability were obtained. Controlling materials nanostructure via fluid-flow-enhanced growth affords a general strategy to optimize the structure of an inner microchannel wall for desired attributes. The approach provides a promising pathway toward versatile, high-performance, and low-cost microfluidic devices for continuous-flow chemical processes.

  18. A Network Flow-based Analysis of Cognitive Reserve in Normal Ageing and Alzheimer's Disease.

    PubMed

    Wook Yoo, Sang; Han, Cheol E; Shin, Joseph S; Won Seo, Sang; Na, Duk L; Kaiser, Marcus; Jeong, Yong; Seong, Joon-Kyung

    2015-05-20

    Cognitive reserve is the ability to sustain cognitive function even with a certain amount of brain damages. Here we investigate the neural compensation mechanism of cognitive reserve from the perspective of structural brain connectivity. Our goal was to show that normal people with high education levels (i.e., cognitive reserve) maintain abundant pathways connecting any two brain regions, providing better compensation or resilience after brain damage. Accordingly, patients with high education levels show more deterioration in structural brain connectivity than those with low education levels before symptoms of Alzheimer's disease (AD) become apparent. To test this hypothesis, we use network flow measuring the number of alternative paths between two brain regions in the brain network. The experimental results show that for normal aging, education strengthens network reliability, as measured through flow values, in a subnetwork centered at the supramarginal gyrus. For AD, a subnetwork centered at the left middle frontal gyrus shows a negative correlation between flow and education, which implies more collapse in structural brain connectivity for highly educated patients. We conclude that cognitive reserve may come from the ability of network reorganization to secure the information flow within the brain network, therefore making it more resistant to disease progress.

  19. Quantifying the effects of tidal amplitude on river delta network flow partitioning

    NASA Astrophysics Data System (ADS)

    Hiatt, M. R.; Sendrowski, A.; Passalacqua, P.

    2014-12-01

    Deltas are generally classified as river-, tide-, or wave-dominated systems, but the influences of all environmental forces cannot be ignored when fully addressing the dynamics of the system. For example, in river-dominated deltas, river flow from the feeder channel acts as the primary driver of dynamics within the system by delivering water, sediment, and nutrients through the distributary channels, but tides and waves may affect their allocation within the network. There has been work on the asymmetry of environmental fluxes at bifurcations, but relatively few studies exist on the water partitioning at the network scale. Understanding the network and environmental effects on the flux of water, sediment, and nutrients would benefit delta restoration projects and management practices. In this study, we investigate the allocation of water flow among the five major distributary channels at Wax Lake Delta (WLD), a micro-tidal river-dominated delta in coastal Louisiana, and the effects of tidal amplitude on distributary channel discharges. We collect and compare discharge results from acoustic Doppler current profiler (ADCP) velocity transects between spring and neap tide and between falling and rising tide. The results show that discharges increased from spring to neap tide and from rising to falling tide. We investigate the spatial gradients of tidal influence within the network and validate hydraulic geometry relations for tidally influenced channels. Our results give insight into the control of network structure on flow partitioning and show the degree of tidal influence on channel flow in the river-dominated WLD.

  20. Gas flow in plant microfluidic networks controlled by capillary valves

    NASA Astrophysics Data System (ADS)

    Capron, M.; Tordjeman, Ph.; Charru, F.; Badel, E.; Cochard, H.

    2014-03-01

    The xylem vessels of trees constitute a model natural microfluidic system. In this work, we have studied the mechanism of air flow in the Populus xylem. The vessel microstructure was characterized by optical microscopy, transmission electronic microscopy (TEM), and atomic force microscopy (AFM) at different length scales. The xylem vessels have length ≈15 cm and diameter ≈20μm. Flow from one vessel to the next occurs through ˜102 pits, which are grouped together at the ends of the vessels. The pits contain a thin, porous pit membrane with a thickness of 310 nm. We have measured the Young's moduli of the vessel wall and of the pits (both water-saturated and after drying) by specific nanoindentation and nanoflexion experiments with AFM. We found that both the dried and water-saturated pit membranes have Young's modulus around 0.4 MPa, in agreement with values obtained by micromolding of pits deformed by an applied pressure difference. Air injection experiments reveal that air flows through the xylem vessels when the differential pressure across a sample is larger than a critical value ΔPc=1.8 MPa. In order to model the air flow rate for ΔP ⩾ΔPc, we assumed the pit membrane to be a porous medium that is strained by the applied pressure difference. Water menisci in the pit pores play the role of capillary valves, which open at ΔP =ΔPc. From the point of view of the plant physiology, this work presents a basic understanding of the physics of bordered pits.

  1. Gas flow in plant microfluidic networks controlled by capillary valves.

    PubMed

    Capron, M; Tordjeman, Ph; Charru, F; Badel, E; Cochard, H

    2014-03-01

    The xylem vessels of trees constitute a model natural microfluidic system. In this work, we have studied the mechanism of air flow in the Populus xylem. The vessel microstructure was characterized by optical microscopy, transmission electronic microscopy (TEM), and atomic force microscopy (AFM) at different length scales. The xylem vessels have length ≈15 cm and diameter ≈20μm. Flow from one vessel to the next occurs through ∼102 pits, which are grouped together at the ends of the vessels. The pits contain a thin, porous pit membrane with a thickness of 310 nm. We have measured the Young's moduli of the vessel wall and of the pits (both water-saturated and after drying) by specific nanoindentation and nanoflexion experiments with AFM. We found that both the dried and water-saturated pit membranes have Young's modulus around 0.4 MPa, in agreement with values obtained by micromolding of pits deformed by an applied pressure difference. Air injection experiments reveal that air flows through the xylem vessels when the differential pressure across a sample is larger than a critical value ΔPc=1.8 MPa. In order to model the air flow rate for ΔP⩾ΔPc, we assumed the pit membrane to be a porous medium that is strained by the applied pressure difference. Water menisci in the pit pores play the role of capillary valves, which open at ΔP=ΔPc. From the point of view of the plant physiology, this work presents a basic understanding of the physics of bordered pits.

  2. A Scheme to Optimize Flow Routing and Polling Switch Selection of Software Defined Networks

    PubMed Central

    Chen, Huan; Li, Lemin; Ren, Jing; Wang, Yang; Zhao, Yangming; Wang, Xiong; Wang, Sheng; Xu, Shizhong

    2015-01-01

    This paper aims at minimizing the communication cost for collecting flow information in Software Defined Networks (SDN). Since flow-based information collecting method requires too much communication cost, and switch-based method proposed recently cannot benefit from controlling flow routing, jointly optimize flow routing and polling switch selection is proposed to reduce the communication cost. To this end, joint optimization problem is formulated as an Integer Linear Programming (ILP) model firstly. Since the ILP model is intractable in large size network, we also design an optimal algorithm for the multi-rooted tree topology and an efficient heuristic algorithm for general topology. According to extensive simulations, it is found that our method can save up to 55.76% communication cost compared with the state-of-the-art switch-based scheme. PMID:26690571

  3. NeuroFlow: A General Purpose Spiking Neural Network Simulation Platform using Customizable Processors.

    PubMed

    Cheung, Kit; Schultz, Simon R; Luk, Wayne

    2015-01-01

    NeuroFlow is a scalable spiking neural network simulation platform for off-the-shelf high performance computing systems using customizable hardware processors such as Field-Programmable Gate Arrays (FPGAs). Unlike multi-core processors and application-specific integrated circuits, the processor architecture of NeuroFlow can be redesigned and reconfigured to suit a particular simulation to deliver optimized performance, such as the degree of parallelism to employ. The compilation process supports using PyNN, a simulator-independent neural network description language, to configure the processor. NeuroFlow supports a number of commonly used current or conductance based neuronal models such as integrate-and-fire and Izhikevich models, and the spike-timing-dependent plasticity (STDP) rule for learning. A 6-FPGA system can simulate a network of up to ~600,000 neurons and can achieve a real-time performance of 400,000 neurons. Using one FPGA, NeuroFlow delivers a speedup of up to 33.6 times the speed of an 8-core processor, or 2.83 times the speed of GPU-based platforms. With high flexibility and throughput, NeuroFlow provides a viable environment for large-scale neural network simulation.

  4. NeuroFlow: A General Purpose Spiking Neural Network Simulation Platform using Customizable Processors

    PubMed Central

    Cheung, Kit; Schultz, Simon R.; Luk, Wayne

    2016-01-01

    NeuroFlow is a scalable spiking neural network simulation platform for off-the-shelf high performance computing systems using customizable hardware processors such as Field-Programmable Gate Arrays (FPGAs). Unlike multi-core processors and application-specific integrated circuits, the processor architecture of NeuroFlow can be redesigned and reconfigured to suit a particular simulation to deliver optimized performance, such as the degree of parallelism to employ. The compilation process supports using PyNN, a simulator-independent neural network description language, to configure the processor. NeuroFlow supports a number of commonly used current or conductance based neuronal models such as integrate-and-fire and Izhikevich models, and the spike-timing-dependent plasticity (STDP) rule for learning. A 6-FPGA system can simulate a network of up to ~600,000 neurons and can achieve a real-time performance of 400,000 neurons. Using one FPGA, NeuroFlow delivers a speedup of up to 33.6 times the speed of an 8-core processor, or 2.83 times the speed of GPU-based platforms. With high flexibility and throughput, NeuroFlow provides a viable environment for large-scale neural network simulation. PMID:26834542

  5. Correlation Networks from Flows. The Case of Forced and Time-Dependent Advection-Diffusion Dynamics

    PubMed Central

    Tupikina, Liubov; Molkenthin, Nora; López, Cristóbal; Hernández-García, Emilio; Marwan, Norbert; Kurths, Jürgen

    2016-01-01

    Complex network theory provides an elegant and powerful framework to statistically investigate different types of systems such as society, brain or the structure of local and long-range dynamical interrelationships in the climate system. Network links in climate networks typically imply information, mass or energy exchange. However, the specific connection between oceanic or atmospheric flows and the climate network’s structure is still unclear. We propose a theoretical approach for verifying relations between the correlation matrix and the climate network measures, generalizing previous studies and overcoming the restriction to stationary flows. Our methods are developed for correlations of a scalar quantity (temperature, for example) which satisfies an advection-diffusion dynamics in the presence of forcing and dissipation. Our approach reveals that correlation networks are not sensitive to steady sources and sinks and the profound impact of the signal decay rate on the network topology. We illustrate our results with calculations of degree and clustering for a meandering flow resembling a geophysical ocean jet. PMID:27128846

  6. Random network peristalsis in Physarum polycephalum organizes fluid flows across an individual

    PubMed Central

    Alim, Karen; Amselem, Gabriel; Peaudecerf, François; Brenner, Michael P.; Pringle, Anne

    2013-01-01

    Individuals can function as integrated organisms only when information and resources are shared across a body. Signals and substrates are commonly moved using fluids, often channeled through a network of tubes. Peristalsis is one mechanism for fluid transport and is caused by a wave of cross-sectional contractions along a tube. We extend the concept of peristalsis from the canonical case of one tube to a random network. Transport is maximized within the network when the wavelength of the peristaltic wave is of the order of the size of the network. The slime mold Physarum polycephalum grows as a random network of tubes, and our experiments confirm peristalsis is used by the slime mold to drive internal cytoplasmic flows. Comparisons of theoretically generated contraction patterns with the patterns exhibited by individuals of P. polycephalum demonstrate that individuals maximize internal flows by adapting patterns of contraction to size, thus optimizing transport throughout an organism. This control of fluid flow may be the key to coordinating growth and behavior, including the dynamic changes in network architecture seen over time in an individual. PMID:23898203

  7. Flow batteries for microfluidic networks: configuring an electroosmotic pump for nonterminal positions.

    PubMed

    He, Chiyang; Lu, Joann J; Jia, Zhijian; Wang, Wei; Wang, Xiayan; Dasgupta, Purnendu K; Liu, Shaorong

    2011-04-01

    A micropump provides flow and pressure for a lab-on-chip device, just as a battery supplies current and voltage for an electronic system. Numerous micropumps have been developed, but none is as versatile as a battery. One cannot easily insert a micropump into a nonterminal position of a fluidic line without affecting the rest of the fluidic system, and one cannot simply connect several micropumps in series to enhance the pressure output, etc. In this work we develop a flow battery (or pressure power supply) to address this issue. A flow battery consists of a +EOP (in which the liquid flows in the same direction as the field gradient) and a -EOP (in which the liquid flows opposite to the electric field gradient), and the outlet of the +EOP is directly connected to the inlet of the -EOP. An external high voltage is applied to this outlet-inlet joint via a short gel-filled capillary that allows ions but not bulk liquid flow, while the +EOP's inlet and the -EOP's outlet (the flow battery's inlet and outlet) are grounded. This flow battery can be deployed anywhere in a fluidic network without electrically affecting the rest of the system. Several flow batteries can be connected in series to enhance the pressure output to drive HPLC separations. In a fluidic system powered by flow batteries, a hydraulic equivalent of Ohm's law can be applied to analyze system pressures and flow rates.

  8. An open-access modeled passenger flow matrix for the global air network in 2010.

    PubMed

    Huang, Zhuojie; Wu, Xiao; Garcia, Andres J; Fik, Timothy J; Tatem, Andrew J

    2013-01-01

    The expanding global air network provides rapid and wide-reaching connections accelerating both domestic and international travel. To understand human movement patterns on the network and their socioeconomic, environmental and epidemiological implications, information on passenger flow is required. However, comprehensive data on global passenger flow remain difficult and expensive to obtain, prompting researchers to rely on scheduled flight seat capacity data or simple models of flow. This study describes the construction of an open-access modeled passenger flow matrix for all airports with a host city-population of more than 100,000 and within two transfers of air travel from various publicly available air travel datasets. Data on network characteristics, city population, and local area GDP amongst others are utilized as covariates in a spatial interaction framework to predict the air transportation flows between airports. Training datasets based on information from various transportation organizations in the United States, Canada and the European Union were assembled. A log-linear model controlling the random effects on origin, destination and the airport hierarchy was then built to predict passenger flows on the network, and compared to the results produced using previously published models. Validation analyses showed that the model presented here produced improved predictive power and accuracy compared to previously published models, yielding the highest successful prediction rate at the global scale. Based on this model, passenger flows between 1,491 airports on 644,406 unique routes were estimated in the prediction dataset. The airport node characteristics and estimated passenger flows are freely available as part of the Vector-Borne Disease Airline Importation Risk (VBD-Air) project at: www.vbd-air.com/data.

  9. Solving the Bi-Objective Maximum-Flow Network-Interdiction Problem

    DTIC Science & Technology

    2006-05-01

    starts.” We use a variant of the shortest- augmenting-path algorithm of Edmonds and Karp (1972) to solve maximum-flow problems, and an inherent feature...support. Both authors thank Gerald Brown for provid- ing road data for computational examples and Matthew Carlyle, Javier Salmeron, and Keith Olson for...Monterey, CA. Edmonds, J., R. M. Karp . 1972. Theoretical improvements in algo- rithm efficiency for network flow problems. J. ACM 19 248–264. Ford, L

  10. An Open-Access Modeled Passenger Flow Matrix for the Global Air Network in 2010

    PubMed Central

    Huang, Zhuojie; Wu, Xiao; Garcia, Andres J.; Fik, Timothy J.; Tatem, Andrew J.

    2013-01-01

    The expanding global air network provides rapid and wide-reaching connections accelerating both domestic and international travel. To understand human movement patterns on the network and their socioeconomic, environmental and epidemiological implications, information on passenger flow is required. However, comprehensive data on global passenger flow remain difficult and expensive to obtain, prompting researchers to rely on scheduled flight seat capacity data or simple models of flow. This study describes the construction of an open-access modeled passenger flow matrix for all airports with a host city-population of more than 100,000 and within two transfers of air travel from various publicly available air travel datasets. Data on network characteristics, city population, and local area GDP amongst others are utilized as covariates in a spatial interaction framework to predict the air transportation flows between airports. Training datasets based on information from various transportation organizations in the United States, Canada and the European Union were assembled. A log-linear model controlling the random effects on origin, destination and the airport hierarchy was then built to predict passenger flows on the network, and compared to the results produced using previously published models. Validation analyses showed that the model presented here produced improved predictive power and accuracy compared to previously published models, yielding the highest successful prediction rate at the global scale. Based on this model, passenger flows between 1,491 airports on 644,406 unique routes were estimated in the prediction dataset. The airport node characteristics and estimated passenger flows are freely available as part of the Vector-Borne Disease Airline Importation Risk (VBD-Air) project at: www.vbd-air.com/data. PMID:23691194

  11. Analysis of Cisco Open Network Environment (ONE) OpenFlow Controller Implementation

    DTIC Science & Technology

    2014-08-01

    SUBTITLE Analysis of Cisco Open Network Environment (ONE) OpenFlow Controller Implementation 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ...device. Proprietary control plane, with its closed application programming interface (API) and hidden data plane, has become a great hurdle in...Working in conjunction with an open API, OpenFlow allows the user to interface with the controller and provides remote programming of the forwarding

  12. Connectivity of overland flow by drainage network expansion in a rain forest catchment

    NASA Astrophysics Data System (ADS)

    Zimmermann, Beate; Zimmermann, Alexander; Turner, Benjamin L.; Francke, Till; Elsenbeer, Helmut

    2014-02-01

    Soils in various places of the Panama Canal Watershed feature a low saturated hydraulic conductivity (Ks) at shallow depth, which promotes overland-flow generation and associated flashy catchment responses. In undisturbed forests of these areas, overland flow is concentrated in flow lines that extend the channel network and provide hydrological connectivity between hillslopes and streams. To understand the dynamics of overland-flow connectivity, as well as the impact of connectivity on catchment response, we studied an undisturbed headwater catchment by monitoring overland-flow occurrence in all flow lines and discharge, suspended sediment, and total phosphorus at the catchment outlet. We find that connectivity is strongly influenced by seasonal variation in antecedent wetness and can develop even under light rainfall conditions. Connectivity increased rapidly as rainfall frequency increased, eventually leading to full connectivity and surficial drainage of entire hillslopes. Connectivity was nonlinearly related to catchment response. However, additional information on factors such as overland-flow volume would be required to constrain relationships between connectivity, stormflow, and the export of suspended sediment and phosphorus. The effort to monitor those factors would be substantial, so we advocate applying the established links between rain event characteristics, drainage network expansion by flow lines, and catchment response for predictive modeling and catchment classification in forests of the Panama Canal Watershed and in similar regions elsewhere.

  13. Information flow in interaction networks II: channels, path lengths, and potentials.

    PubMed

    Stojmirović, Aleksandar; Yu, Yi-Kuo

    2012-04-01

    In our previous publication, a framework for information flow in interaction networks based on random walks with damping was formulated with two fundamental modes: emitting and absorbing. While many other network analysis methods based on random walks or equivalent notions have been developed before and after our earlier work, one can show that they can all be mapped to one of the two modes. In addition to these two fundamental modes, a major strength of our earlier formalism was its accommodation of context-specific directed information flow that yielded plausible and meaningful biological interpretation of protein functions and pathways. However, the directed flow from origins to destinations was induced via a potential function that was heuristic. Here, with a theoretically sound approach called the channel mode, we extend our earlier work for directed information flow. This is achieved by constructing a potential function facilitating a purely probabilistic interpretation of the channel mode. For each network node, the channel mode combines the solutions of emitting and absorbing modes in the same context, producing what we call a channel tensor. The entries of the channel tensor at each node can be interpreted as the amount of flow passing through that node from an origin to a destination. Similarly to our earlier model, the channel mode encompasses damping as a free parameter that controls the locality of information flow. Through examples involving the yeast pheromone response pathway, we illustrate the versatility and stability of our new framework.

  14. Modeling Patient Flows Using a Queuing Network with Blocking

    PubMed Central

    KUNO, ERI; SMITH, TONY E.

    2015-01-01

    The downsizing and closing of state mental health institutions in Philadelphia in the 1990’s led to the development of a continuum care network of residential-based services. Although the diversity of care settings increased, congestion in facilities caused many patients to unnecessarily spend extra days in intensive facilities. This study applies a queuing network system with blocking to analyze such congestion processes. “Blocking” denotes situations where patients are turned away from accommodations to which they are referred, and are thus forced to remain in their present facilities until space becomes available. Both mathematical and simulation results are presented and compared. Although queuing models have been used in numerous healthcare studies, the inclusion of blocking is still rare. We found that, in Philadelphia, the shortage of a particular type of facilities may have created “upstream blocking”. Thus removal of such facility-specific bottlenecks may be the most efficient way to reduce congestion in the system as a whole. PMID:15782512

  15. Modeling dynamic functional information flows on large-scale brain networks.

    PubMed

    Lv, Peili; Guo, Lei; Hu, Xintao; Li, Xiang; Jin, Changfeng; Han, Junwei; Li, Lingjiang; Liu, Tianming

    2013-01-01

    Growing evidence from the functional neuroimaging field suggests that human brain functions are realized via dynamic functional interactions on large-scale structural networks. Even in resting state, functional brain networks exhibit remarkable temporal dynamics. However, it has been rarely explored to computationally model such dynamic functional information flows on large-scale brain networks. In this paper, we present a novel computational framework to explore this problem using multimodal resting state fMRI (R-fMRI) and diffusion tensor imaging (DTI) data. Basically, recent literature reports including our own studies have demonstrated that the resting state brain networks dynamically undergo a set of distinct brain states. Within each quasi-stable state, functional information flows from one set of structural brain nodes to other sets of nodes, which is analogous to the message package routing on the Internet from the source node to the destination. Therefore, based on the large-scale structural brain networks constructed from DTI data, we employ a dynamic programming strategy to infer functional information transition routines on structural networks, based on which hub routers that most frequently participate in these routines are identified. It is interesting that a majority of those hub routers are located within the default mode network (DMN), revealing a possible mechanism of the critical functional hub roles played by the DMN in resting state. Also, application of this framework on a post trauma stress disorder (PTSD) dataset demonstrated interesting difference in hub router distributions between PTSD patients and healthy controls.

  16. Incorporation of Condensation Heat Transfer in a Flow Network Code

    NASA Technical Reports Server (NTRS)

    Anthony, Miranda; Majumdar, Alok

    2002-01-01

    Pure water is distilled from waste water in the International Space Station. The distillation assembly consists of an evaporator, a compressor and a condenser. Vapor is periodically purged from the condenser to avoid vapor accumulation. Purged vapor is condensed in a tube by coolant water prior to entering the purge pump. The paper presents a condensation model of purged vapor in a tube. This model is based on the Finite Volume Method. In the Finite Volume Method, the flow domain is discretized into multiple control volumes and a simultaneous analysis is performed.

  17. Flow distribution analysis on the cooling tube network of ITER thermal shield

    SciTech Connect

    Nam, Kwanwoo; Chung, Wooho; Noh, Chang Hyun; Kang, Dong Kwon; Kang, Kyoung-O; Ahn, Hee Jae; Lee, Hyeon Gon

    2014-01-29

    Thermal shield (TS) is to be installed between the vacuum vessel or the cryostat and the magnets in ITER tokamak to reduce the thermal radiation load to the magnets operating at 4.2K. The TS is cooled by pressurized helium gas at the inlet temperature of 80K. The cooling tube is welded on the TS panel surface and the composed flow network of the TS cooling tubes is complex. The flow rate in each panel should be matched to the thermal design value for effective radiation shielding. This paper presents one dimensional analysis on the flow distribution of cooling tube network for the ITER TS. The hydraulic cooling tube network is modeled by an electrical analogy. Only the cooling tube on the TS surface and its connecting pipe from the manifold are considered in the analysis model. Considering the frictional factor and the local loss in the cooling tube, the hydraulic resistance is expressed as a linear function with respect to mass flow rate. Sub-circuits in the TS are analyzed separately because each circuit is controlled by its own control valve independently. It is found that flow rates in some panels are insufficient compared with the design values. In order to improve the flow distribution, two kinds of design modifications are proposed. The first one is to connect the tubes of the adjacent panels. This will increase the resistance of the tube on the panel where the flow rate is excessive. The other design suggestion is that an orifice is installed at the exit of tube routing where the flow rate is to be reduced. The analysis for the design suggestions shows that the flow mal-distribution is improved significantly.

  18. Ion channel networks in the control of cerebral blood flow

    PubMed Central

    Longden, Thomas A; Hill-Eubanks, David C

    2015-01-01

    One hundred and twenty five years ago, Roy and Sherrington made the seminal observation that neuronal stimulation evokes an increase in cerebral blood flow.1 Since this discovery, researchers have attempted to uncover how the cells of the neurovascular unit—neurons, astrocytes, vascular smooth muscle cells, vascular endothelial cells and pericytes—coordinate their activity to control this phenomenon. Recent work has revealed that ionic fluxes through a diverse array of ion channel species allow the cells of the neurovascular unit to engage in multicellular signaling processes that dictate local hemodynamics. In this review we center our discussion on two major themes: (1) the roles of ion channels in the dynamic modulation of parenchymal arteriole smooth muscle membrane potential, which is central to the control of arteriolar diameter and therefore must be harnessed to permit changes in downstream cerebral blood flow, and (2) the striking similarities in the ion channel complements employed in astrocytic endfeet and endothelial cells, enabling dual control of smooth muscle from either side of the blood–brain barrier. We conclude with a discussion of the emerging roles of pericyte and capillary endothelial cell ion channels in neurovascular coupling, which will provide fertile ground for future breakthroughs in the field. PMID:26661232

  19. Multivariate multiscale complex network analysis of vertical upward oil-water two-phase flow in a small diameter pipe

    PubMed Central

    Gao, Zhong-Ke; Yang, Yu-Xuan; Zhai, Lu-Sheng; Dang, Wei-Dong; Yu, Jia-Liang; Jin, Ning-De

    2016-01-01

    High water cut and low velocity vertical upward oil-water two-phase flow is a typical complex system with the features of multiscale, unstable and non-homogenous. We first measure local flow information by using distributed conductance sensor and then develop a multivariate multiscale complex network (MMCN) to reveal the dispersed oil-in-water local flow behavior. Specifically, we infer complex networks at different scales from multi-channel measurements for three typical vertical oil-in-water flow patterns. Then we characterize the generated multiscale complex networks in terms of network clustering measure. The results suggest that the clustering coefficient entropy from the MMCN not only allows indicating the oil-in-water flow pattern transition but also enables to probe the dynamical flow behavior governing the transitions of vertical oil-water two-phase flow. PMID:26833427

  20. Advantages of IP over elastic optical networks using multi-flow transponders from cost and equipment count aspects.

    PubMed

    Tanaka, Takafumi; Hirano, Akira; Jinno, Masahiko

    2014-01-13

    To evaluate the cost efficiency of IP over elastic optical network architectures, we use a multi-layer network design scheme that covers network to node equipment level. An evaluation in a static traffic environment shows that the multi-flow optical transponder-based elastic optical network reduces total cost as well as equipment counts compared to other elastic network models based on fixed-rate, mixed-line-rate and bandwidth-variable transponders.

  1. Tracer diffusion through F-actin: effect of filament length and cross-linking.

    PubMed Central

    Jones, J D; Luby-Phelps, K

    1996-01-01

    We have determined diffusion coefficients for small (50- to 70-nm diameter) fluorescein-thiocarbamoyl-labeled Ficoll tracers through F-actin as a function of filament length and cross-linking. fx45 was used to regulate filament length and avidin/biotinylated actin or ABP-280 was used to prepare cross-linked actin gels. We found that tracer diffusion was generally independent of filament length in agreement with theoretical predictions for diffusion through solutions of rods. However, in some experiments diffusion was slower through short (< or = 1.0 micron) filaments, although this result was not consistently reproducible. Measured diffusion coefficients through unregulated F-actin and filaments of lengths > 1.0 micron were more rapid than predicted by theory for tracer diffusion through rigid, random networks, which was consistent with some degree of actin bundling. Avidin-induced cross-linking of biotinylated F-actin did not affect diffusion through unregulated F-actin, but in cases where diffusion was slower through short filaments this cross-linking method resulted in enhanced tracer diffusion rates indistinguishable from unregulated F-actin. This finding, in conjunction with increased turbidity of 1.0-micron filaments upon avidin cross-linking, indicated that this cross-linking method induces F-actin bundling. By contrast, ABP-280 cross-linking retarded diffusion through unregulated F-actin and decreased turbidity. Tracer diffusion under these conditions was well approximated by the diffusion theory. Both cross-linking procedures resulted in gel formation as determined by falling ball viscometry. These results demonstrate that network microscopic geometry is dependent on the cross-linking method, although both methods markedly increase F-actin macroscopic viscosity. PMID:8913611

  2. A power flow based model for the analysis of vulnerability in power networks

    NASA Astrophysics Data System (ADS)

    Wang, Zhuoyang; Chen, Guo; Hill, David J.; Dong, Zhao Yang

    2016-10-01

    An innovative model which considers power flow, one of the most important characteristics in a power system, is proposed for the analysis of power grid vulnerability. Moreover, based on the complex network theory and the Max-Flow theorem, a new vulnerability index is presented to identify the vulnerable lines in a power grid. In addition, comparative simulations between the power flow based model and existing models are investigated on the IEEE 118-bus system. The simulation results demonstrate that the proposed model and the index are more effective in power grid vulnerability analysis.

  3. Nucleus-associated actin in Amoeba proteus.

    PubMed

    Berdieva, Mariia; Bogolyubov, Dmitry; Podlipaeva, Yuliya; Goodkov, Andrew

    2016-10-01

    The presence, spatial distribution and forms of intranuclear and nucleus-associated cytoplasmic actin were studied in Amoeba proteus with immunocytochemical approaches. Labeling with different anti-actin antibodies and staining with TRITC-phalloidin and fluorescent deoxyribonuclease I were used. We showed that actin is abundant within the nucleus as well as in the cytoplasm of A. proteus cells. According to DNase I experiments, the predominant form of intranuclear actin is G-actin which is associated with chromatin strands. Besides, unpolymerized actin was shown to participate in organization of a prominent actin layer adjacent to the outer surface of nuclear envelope. No significant amount of F-actin was found in the nucleus. At the same time, the amoeba nucleus is enclosed in a basket-like structure formed by circumnuclear actin filaments and bundles connected with global cytoplasmic actin cytoskeleton. A supposed architectural function of actin filaments was studied by treatment with actin-depolymerizing agent latrunculin A. It disassembled the circumnuclear actin system, but did not affect the intranuclear chromatin structure. The results obtained for amoeba cells support the modern concept that actin is involved in fundamental nuclear processes that have evolved in the cells of multicellular organisms.

  4. The Differential Formation of the LINC-Mediated Perinuclear Actin Cap in Pluripotent and Somatic Cells

    PubMed Central

    Khatau, Shyam B.; Kusuma, Sravanti; Hanjaya-Putra, Donny; Mali, Prashant; Cheng, Linzhao; Lee, Jerry S. H.; Gerecht, Sharon; Wirtz, Denis

    2012-01-01

    The actin filament cytoskeleton mediates cell motility and adhesion in somatic cells. However, whether the function and organization of the actin network are fundamentally different in pluripotent stem cells is unknown. Here we show that while conventional actin stress fibers at the basal surface of cells are present before and after onset of differentiation of mouse (mESCs) and human embryonic stem cells (hESCs), actin stress fibers of the actin cap, which wrap around the nucleus, are completely absent from undifferentiated mESCs and hESCs and their formation strongly correlates with differentiation. Similarly, the perinuclear actin cap is absent from human induced pluripotent stem cells (hiPSCs), while it is organized in the parental lung fibroblasts from which these hiPSCs are derived and in a wide range of human somatic cells, including lung, embryonic, and foreskin fibroblasts and endothelial cells. During differentiation, the formation of the actin cap follows the expression and proper localization of nuclear lamin A/C and associated linkers of nucleus and cytoskeleton (LINC) complexes at the nuclear envelope, which physically couple the actin cap to the apical surface of the nucleus. The differentiation of hESCs is accompanied by the progressive formation of a perinuclear actin cap while induced pluripotency is accompanied by the specific elimination of the actin cap, and that, through lamin A/C and LINC complexes, this actin cap is involved in progressively shaping the nucleus of hESCs undergoing differentiation. While, the localization of lamin A/C at the nuclear envelope is required for perinuclear actin cap formation, it is not sufficient to control nuclear shape. PMID:22574215

  5. Mechanics of Biomimetic Liposomes Encapsulating an Actin Shell.

    PubMed

    Guevorkian, Karine; Manzi, John; Pontani, Léa-Lætitia; Brochard-Wyart, Françoise; Sykes, Cécile

    2015-12-15

    Cell-shape changes are insured by a thin, dynamic, cortical layer of cytoskeleton underneath the plasma membrane. How this thin cortical structure impacts the mechanical properties of the whole cell is not fully understood. Here, we study the mechanics of liposomes or giant unilamellar vesicles, when a biomimetic actin cortex is grown at the inner layer of the lipid membrane via actin-nucleation-promoting factors. Using a hydrodynamic tube-pulling technique, we show that tube dynamics is clearly affected by the presence of an actin shell anchored to the lipid bilayer. The same force pulls much shorter tubes in the presence of the actin shell compared to bare membranes. However, in both cases, we observe that the dynamics of tube extrusion has two distinct features characteristic of viscoelastic materials: rapid elastic elongation, followed by a slower elongation phase at a constant rate. We interpret the initial elastic regime by an increase of membrane tension due to the loss of lipids into the tube. Tube length is considerably shorter for cortex liposomes at comparable pulling forces, resulting in a higher spring constant. The presence of the actin shell seems to restrict lipid mobility, as is observed in the corral effect in cells. The viscous regime for bare liposomes corresponds to a leakout of the internal liquid at constant membrane tension. The presence of the actin shell leads to a larger friction coefficient. As the tube is pulled from a patchy surface, membrane tension increases locally, leading to a Marangoni flow of lipids. As a conclusion, the presence of an actin shell is revealed by its action that alters membrane mechanics.

  6. Mechanics of Biomimetic Liposomes Encapsulating an Actin Shell

    PubMed Central

    Guevorkian, Karine; Manzi, John; Pontani, Léa-Lætitia; Brochard-Wyart, Françoise; Sykes, Cécile

    2015-01-01

    Cell-shape changes are insured by a thin, dynamic, cortical layer of cytoskeleton underneath the plasma membrane. How this thin cortical structure impacts the mechanical properties of the whole cell is not fully understood. Here, we study the mechanics of liposomes or giant unilamellar vesicles, when a biomimetic actin cortex is grown at the inner layer of the lipid membrane via actin-nucleation-promoting factors. Using a hydrodynamic tube-pulling technique, we show that tube dynamics is clearly affected by the presence of an actin shell anchored to the lipid bilayer. The same force pulls much shorter tubes in the presence of the actin shell compared to bare membranes. However, in both cases, we observe that the dynamics of tube extrusion has two distinct features characteristic of viscoelastic materials: rapid elastic elongation, followed by a slower elongation phase at a constant rate. We interpret the initial elastic regime by an increase of membrane tension due to the loss of lipids into the tube. Tube length is considerably shorter for cortex liposomes at comparable pulling forces, resulting in a higher spring constant. The presence of the actin shell seems to restrict lipid mobility, as is observed in the corral effect in cells. The viscous regime for bare liposomes corresponds to a leakout of the internal liquid at constant membrane tension. The presence of the actin shell leads to a larger friction coefficient. As the tube is pulled from a patchy surface, membrane tension increases locally, leading to a Marangoni flow of lipids. As a conclusion, the presence of an actin shell is revealed by its action that alters membrane mechanics. PMID:26682806

  7. Single image correlation for blood flow mapping in complex vessel networks

    NASA Astrophysics Data System (ADS)

    Chirico, Giuseppe; Sironi, Laura; Bouzin, Margaux; D'Alfonso, Laura; Collini, Maddalena; Ceffa, Nicolo'G.; Marquezin, Cassia

    2015-05-01

    Microcirculation plays a key role in the maintenance and hemodynamics of tissues and organs also due to its extensive interaction with the immune system. A critical limitation of state-of-the-art clinical techniques to characterize the blood flow is their lack of the spatial resolution required to scale down to individual capillaries. On the other hand the study of the blood flow through auto- or cross-correlation methods fail to correlate the flow speed values with the morphological details required to describe an intricate network of capillaries. Here we propose to use a newly developed technique (FLICS, FLow Image Correlation Spectroscopy) that, by employing a single raster-scanned xy-image acquired in vivo by confocal or multi-photon excitation fluorescence microscopy, allows the quantitative measurement of the blood flow velocity in the whole vessel pattern within the field of view, while simultaneously maintaining the morphological information on the immobile structures of the explored circulatory system. Fluorescent flowing objects produce diagonal lines in the raster-scanned image superimposed to static morphological details. The flow velocity is obtained by computing the Cross Correlation Function (CCF) of the intensity fluctuations detected in pairs of columns of the image. The whole analytical dependence of the CCFs on the flow speed amplitude and the flow direction has been reported recently. We report here the derivation of approximated analytical relations that allows to use the CCF peak lag time and the corresponding CCF value, to directly estimate the flow speed amplitude and the flow direction. The validation has been performed on Zebrafish embryos for which the flow direction was changed systematically by rotating the embryos on the microscope stage. The results indicate that also from the CCF peak lag time it is possible to recover the flow speed amplitude within 13% of uncertainty (overestimation) in a wide range of angles between the flow and

  8. Towards a space-time theory for estimating base flow in river networks

    NASA Astrophysics Data System (ADS)

    Furey, Peter Rankin

    2001-10-01

    The author's thesis is that the statistics and physics of base flow must be connected to develop a theory for estimating base flow in river networks. Developing a framework for base flow estimation which addresses this connection is a first step towards developing a space-time theory for estimating base flow in river networks. A mass balance equation for base flow from a hill serves as the starting point for developing this framework. The equation is simplified under a short-time approximation, not a steady-state solution, and from it two basin-scale equations are developed by treating a river basin as a collection of hills. One equation is a regression model or regression equation which assumes that saturated hydraulic conductivity and hydraulic head vary randomly in space among hills in a basin. The other equation is a filter that can be used to estimate base flow from stream flow data. The regression equation provides a physical explanation for both the temporal and spatial variability of base flow in a river network. The equation is tested using low stream flow data which is dominated by and possibly equal to base flow. Estimates of base flow are needed to test the regression equation at other times of the year. The filter is used to estimate base flow, at all times of year, given stream flow and precipitation data. However, the filter often performs poorly over short time scales, mainly during or right after a rainfall event. Weaknesses in filter performance are shown to be caused by both parameter error and model error. It is demonstrated that parameter error can be improved with rainfall data that are more accurate in space. A simple 2-dimensional dynamical model of stream flow generation from a hill is used to study the performance of a hillscale version of the filter. With this model, the effects of saturated hydraulic conductivity and precipitation magnitude on filter performance are investigated as well as the impact of model error on the filter. It is

  9. Unconventional myosin traffic in cells reveals a selective actin cytoskeleton

    PubMed Central

    Brawley, Crista M.; Rock, Ronald S.

    2009-01-01

    Eukaryotic cells have a self-organizing cytoskeleton where motors transport cargoes along cytoskeletal tracks. To understand the sorting process, we developed a system to observe single-molecule motility in a cellular context. We followed myosin classes V, VI, and X on triton-extracted actin cytoskeletons from Drosophila S2, mammalian COS-7, and mammalian U2OS cells. We find that these cells vary considerably in their global traffic patterns. The S2 and U2OS cells have regions of actin that either enhance or inhibit specific myosin classes. U2OS cells allow for 1 motor class, myosin VI, to move along stress fiber bundles, while motility of myosin V and X are suppressed. Myosin X motors are recruited to filopodia and the lamellar edge in S2 cells, whereas myosin VI motility is excluded from the same regions. Furthermore, we also see different velocities of myosin V motors in central regions of S2 cells, suggesting regional control of motor motility by the actin cytoskeleton. We also find unexpected features of the actin cytoskeletal network, including a population of reversed filaments with the barbed-end toward the cell center. This myosin motor regulation demonstrates that native actin cytoskeletons are more than just a collection of filaments. PMID:19478066

  10. Slow down of actin depolymerization by cross-linking molecules.

    PubMed

    Schmoller, Kurt M; Semmrich, Christine; Bausch, Andreas R

    2011-02-01

    The ability to control the assembly and disassembly dynamics of actin filaments is an essential property of the cellular cytoskeleton. While many different proteins are known which accelerate the polymerization of monomers into filaments or promote their disintegration, much less is known on mechanisms which guarantee the kinetic stability of the cytoskeletal filaments. Previous studies indicate that cross-linking molecules might fulfill these stabilizing tasks, which in addition facilitates their ability to regulate the organization of cytoskeletal structures in vivo. The effect of depolymerization factors on such structures or the mechanism which leads finally to their disintegration remain unknown. Here, we use multiple depolymerization methods in order to directly demonstrate that cross-linking and bundling proteins effectively suppress the actin depolymerization in a concentration dependent manner. Even the actin depolymerizing factor cofilin is not sufficient to facilitate a fast disintegration of highly cross-linked actin networks unless molecular motors are used simultaneously. The drastic modification of actin kinetics by cross-linking molecules can be expected to have wide-ranging implications for our understanding of the cytoskeleton, where cross-linking molecules are omnipresent and essential.

  11. A semi-analytical model for the flow behavior of naturally fractured formations with multi-scale fracture networks

    NASA Astrophysics Data System (ADS)

    Jia, Pin; Cheng, Linsong; Huang, Shijun; Wu, Yonghui

    2016-06-01

    This paper presents a semi-analytical model for the flow behavior of naturally fractured formations with multi-scale fracture networks. The model dynamically couples an analytical dual-porosity model with a numerical discrete fracture model. The small-scale fractures with the matrix are idealized as a dual-porosity continuum and an analytical flow solution is derived based on source functions in Laplace domain. The large-scale fractures are represented explicitly as the major fluid conduits and the flow is numerically modeled, also in Laplace domain. This approach allows us to include finer details of the fracture network characteristics while keeping the computational work manageable. For example, the large-scale fracture network may have complex geometry and varying conductivity, and the computations can be done at predetermined, discrete times, without any grids in the dual-porosity continuum. The validation of the semi-analytical model is demonstrated in comparison to the solution of ECLIPSE reservoir simulator. The simulation is fast, gridless and enables rapid model setup. On the basis of the model, we provide detailed analysis of the flow behavior of a horizontal production well in fractured reservoir with multi-scale fracture networks. The study has shown that the system may exhibit six flow regimes: large-scale fracture network linear flow, bilinear flow, small-scale fracture network linear flow, pseudosteady-state flow, interporosity flow and pseudoradial flow. During the first four flow periods, the large-scale fracture network behaves as if it only drains in the small-scale fracture network; that is, the effect of the matrix is negligibly small. The characteristics of the bilinear flow and the small-scale fracture network linear flow are predominantly determined by the dimensionless large-scale fracture conductivity. And low dimensionless fracture conductivity will generate large pressure drops in the large-scale fractures surrounding the wellbore. With

  12. Estimating surface flow paths on a digital elevation model using a triangular facet network

    NASA Astrophysics Data System (ADS)

    Zhou, Qiming; Pilesjö, Petter; Chen, Yumin

    2011-07-01

    This study attempts to develop a method for the simulation of surface flow paths on a digital elevation model (DEM). The objective is to use a facet-based algorithm to estimate the surface flow paths on a raster DEM. A grid DEM was used to create a triangular facet network (TFN) over which the surface flow paths were determined. Since each facet in the network has a constant slope and aspect, the estimations of, for example, flow direction and divergence/convergence are less complicated compared to traditional raster-based solutions. Experiments were undertaken by estimating the specific catchment area (SCA) over a number of mathematical surfaces, as well as on a real-world DEM. Comparisons were made between the derived SCA by the TFN algorithm with some algorithms reported in the literature. The results show that the TFN algorithm produced the closest outcomes to the theoretical values of the SCA compared with other algorithms, deriving more consistent outcomes and being less influenced by surface shapes. The real-world DEM test also shows that the TFN was capable of modeling flow distribution without noticeable "artifacts," and its ability of tracking flow paths makes it an appropriate platform for dynamic surface flow simulation.

  13. A Study of a Network-Flow Algorithm and a Noncorrecting Algorithm for Test Assembly.

    ERIC Educational Resources Information Center

    Armstrong, R. D.; And Others

    1996-01-01

    When the network-flow algorithm (NFA) and the average growth approximation algorithm (AGAA) were used for automated test assembly with American College Test and Armed Services Vocational Aptitude Battery item banks, results indicate that reasonable error in item parameters is not harmful for test assembly using NFA or AGAA. (SLD)

  14. Higher Education and Global Talent Flows: Brain Drain, Overseas Chinese Intellectuals, and Diasporic Knowledge Networks

    ERIC Educational Resources Information Center

    Welch, Anthony R.; Zhen, Zhang

    2008-01-01

    In the global era, transnational flows of highly skilled individuals are increasing. In the much-touted global knowledge economy, the contribution of such diasporic individuals and the knowledge networks that they sustain are recognized as being of increasing importance. Brain circulation is of critical importance to the "giant…

  15. Network flow model of force transmission in unbonded and bonded granular media

    NASA Astrophysics Data System (ADS)

    Tordesillas, Antoinette; Tobin, Steven T.; Cil, Mehmet; Alshibli, Khalid; Behringer, Robert P.

    2015-06-01

    An established aspect of force transmission in quasistatic deformation of granular media is the existence of a dual network of strongly versus weakly loaded particles. Despite significant interest, the regulation of strong and weak forces through the contact network remains poorly understood. We examine this aspect of force transmission using data on microstructural fabric from: (I) three-dimensional discrete element models of grain agglomerates of bonded subspheres constructed from in situ synchrotron microtomography images of silica sand grains under unconfined compression and (II) two-dimensional assemblies of unbonded photoelastic circular disks submitted to biaxial compression under constant volume. We model force transmission as a network flow and solve the maximum flow-minimum cost (MFMC) problem, the solution to which yields a percolating subnetwork of contacts that transmits the "maximum flow" (i.e., the highest units of force) at "least cost" (i.e., the dissipated energy from such transmission). We find the MFMC describes a two-tier hierarchical architecture. At the local level, it encapsulates intraconnections between particles in individual force chains and in their conjoined 3-cycles, with the most common configuration having at least one force chain contact experiencing frustrated rotation. At the global level, the MFMC encapsulates interconnections between force chains. The MFMC can be used to predict most of the force chain particles without need for any information on contact forces, thereby suggesting the network flow framework may have potential broad utility in the modeling of force transmission in unbonded and bonded granular media.

  16. Network flow model of force transmission in unbonded and bonded granular media.

    PubMed

    Tordesillas, Antoinette; Tobin, Steven T; Cil, Mehmet; Alshibli, Khalid; Behringer, Robert P

    2015-06-01

    An established aspect of force transmission in quasistatic deformation of granular media is the existence of a dual network of strongly versus weakly loaded particles. Despite significant interest, the regulation of strong and weak forces through the contact network remains poorly understood. We examine this aspect of force transmission using data on microstructural fabric from: (I) three-dimensional discrete element models of grain agglomerates of bonded subspheres constructed from in situ synchrotron microtomography images of silica sand grains under unconfined compression and (II) two-dimensional assemblies of unbonded photoelastic circular disks submitted to biaxial compression under constant volume. We model force transmission as a network flow and solve the maximum flow-minimum cost (MFMC) problem, the solution to which yields a percolating subnetwork of contacts that transmits the "maximum flow" (i.e., the highest units of force) at "least cost" (i.e., the dissipated energy from such transmission). We find the MFMC describes a two-tier hierarchical architecture. At the local level, it encapsulates intraconnections between particles in individual force chains and in their conjoined 3-cycles, with the most common configuration having at least one force chain contact experiencing frustrated rotation. At the global level, the MFMC encapsulates interconnections between force chains. The MFMC can be used to predict most of the force chain particles without need for any information on contact forces, thereby suggesting the network flow framework may have potential broad utility in the modeling of force transmission in unbonded and bonded granular media.

  17. Association of cortactin with dynamic actin in lamellipodia and on endosomal vesicles.

    PubMed

    Kaksonen, M; Peng, H B; Rauvala, H

    2000-12-01

    We have used fluorescent protein tagging to study the localization and dynamics of the actin-binding protein cortactin in living NIH 3T3 fibroblast cells. Cortactin was localized to active lamellipodia and to small cytoplasmic spots. Time-lapse imaging revealed that these cortactin labeled structures were very dynamic. In the lamellipodia, cortactin labeled structures formed at the leading edge and then moved toward the cell center. Experiments with green fluorescent protein (GFP)-tagged actin showed that cortactin movement was coincident with the actin retrograde flow in the lamellipodia. Cytoplasmic cortactin spots also contained F-actin and were propelled by actin polymerization. Arp3, a component of the arp2/3 complex which is a key regulator of actin polymerization, co-localized with cortactin. Cytoplasmic cortactin-labeled spots were found to be associated with endosomal vesicles. Association was asymmetric and approximately half of the endosomes were associated with cortactin spots. Time-lapse imaging suggested that these cortactin and F-actin-containing spots propelled endosomes. Actin polymerization based propulsion may be a common mechanism for endomembrane trafficking in the same manner as used in the plasma membrane protrusions. As cortactin is known to interact with membrane-associated signaling proteins it could have a role in linking signaling complexes with dynamic actin on endosomes and in lamellipodia.