Science.gov

Sample records for actin networks formed

  1. Reversible stress softening of actin networks

    NASA Astrophysics Data System (ADS)

    Chaudhuri, Ovijit; Parekh, Sapun H.; Fletcher, Daniel A.

    2007-01-01

    The mechanical properties of cells play an essential role in numerous physiological processes. Organized networks of semiflexible actin filaments determine cell stiffness and transmit force during mechanotransduction, cytokinesis, cell motility and other cellular shape changes. Although numerous actin-binding proteins have been identified that organize networks, the mechanical properties of actin networks with physiological architectures and concentrations have been difficult to measure quantitatively. Studies of mechanical properties in vitro have found that crosslinked networks of actin filaments formed in solution exhibit stress stiffening arising from the entropic elasticity of individual filaments or crosslinkers resisting extension. Here we report reversible stress-softening behaviour in actin networks reconstituted in vitro that suggests a critical role for filaments resisting compression. Using a modified atomic force microscope to probe dendritic actin networks (like those formed in the lamellipodia of motile cells), we observe stress stiffening followed by a regime of reversible stress softening at higher loads. This softening behaviour can be explained by elastic buckling of individual filaments under compression that avoids catastrophic fracture of the network. The observation of both stress stiffening and softening suggests a complex interplay between entropic and enthalpic elasticity in determining the mechanical properties of actin networks.

  2. Multiple actin binding domains of Ena/VASP proteins determine actin network stiffening.

    PubMed

    Gentry, Brian S; van der Meulen, Stef; Noguera, Philippe; Alonso-Latorre, Baldomero; Plastino, Julie; Koenderink, Gijsje H

    2012-11-01

    Vasodilator-stimulated phosphoprotein (Ena/VASP) is an actin binding protein, important for actin dynamics in motile cells and developing organisms. Though VASP's main activity is the promotion of barbed end growth, it has an F-actin binding site and can form tetramers, and so could additionally play a role in actin crosslinking and bundling in the cell. To test this activity, we performed rheology of reconstituted actin networks in the presence of wild-type VASP or mutants lacking the ability to tetramerize or to bind G-actin and/or F-actin. We show that increasing amounts of wild-type VASP increase network stiffness up to a certain point, beyond which stiffness actually decreases with increasing VASP concentration. The maximum stiffness is 10-fold higher than for pure actin networks. Confocal microscopy shows that VASP forms clustered actin filament bundles, explaining the reduction in network elasticity at high VASP concentration. Removal of the tetramerization site results in significantly reduced bundling and bundle clustering, indicating that VASP's flexible tetrameric structure causes clustering. Removing either the F-actin or the G-actin binding site diminishes VASP's effect on elasticity, but does not eliminate it. Mutating the F-actin and G-actin binding site together, or mutating the F-actin binding site and saturating the G-actin binding site with monomeric actin, eliminates VASP's ability to increase network stiffness. We propose that, in the cell, VASP crosslinking confers only moderate increases in linear network elasticity, and unlike other crosslinkers, VASP's network stiffening activity may be tuned by the local concentration of monomeric actin.

  3. Elasticity of F-actin networks

    NASA Astrophysics Data System (ADS)

    Gardel, Margaret Lise

    This thesis presents a study of the elasticity and microstructure of three filamentous actin (F-actin) based materials. Using bulk rheology, microrheology, multiple particle tracking and imaging techniques, we study the microscopic origins of the mechanical properties of F-actin networks. We briefly introduce aspects of F-actin and rheology essential to provide a background for and motivate this thesis in Chapter 1. In Chapter 2, we describe the materials and methods used. An introduction to microrheology is given in Chapter 3. In Chapter 4, we study solutions of entangled F-actin. We elucidate the microscopic origins of bulk elasticity using microrheology techniques. We also show that multiple particle tracking can also probe the dynamics of the F-actin solution microstructure. We explore the effect of rigid, incompliant chemical cross-links between actin filaments in Chapter 5. We explore changes in the network microstructure as the concentration of cross-links is varied. We find that the elastic stiffness of these networks is extremely sensitive to small changes in cross-link density. Despite this large variation, the linear viscoelasticity of all networks can be scaled onto a universal master curve; this scaling reveals that the mechanical dissipation of the networks is due to thermal fluctuations of F-actin. At large stresses, the mechanical stiffness of these networks diverges. The form of this stress stiffening response is consistent with the non-linear force extension of a single semi-flexible polymer. Thus, over a large range of conditions, the linear and nonlinear mechanical response of rigidly cross-linked networks is entropic in origin. Finally, at very low cross-link and filament densities, we observe a transition to a qualitatively different type of elasticity; this is consistent with a transition to an enthalpic network elasticity dominated by bending of F-actin. In Chapter 6, we study the elastic properties of F-actin networks assembled with a

  4. Formin DAAM1 Organizes Actin Filaments in the Cytoplasmic Nodal Actin Network

    PubMed Central

    Luo, Weiwei; Lieu, Zi Zhao; Manser, Ed; Bershadsky, Alexander D.; Sheetz, Michael P.

    2016-01-01

    A nodal cytoplasmic actin network underlies actin cytoplasm cohesion in the absence of stress fibers. We previously described such a network that forms upon Latrunculin A (LatA) treatment, in which formin DAAM1 was localized at these nodes. Knock down of DAAM1 reduced the mobility of actin nodes but the nodes remained. Here we have investigated DAAM1 containing nodes after LatA washout. DAAM1 was found to be distributed between the cytoplasm and the plasma membrane. The membrane binding likely occurs through an interaction with lipid rafts, but is not required for F-actin assembly. Interesting the forced interaction of DAAM1 with plasma membrane through a rapamycin-dependent linkage, enhanced F-actin assembly at the cell membrane (compared to the cytoplasm) after the LatA washout. However, immediately after addition of both rapamycin and LatA, the cytoplasmic actin nodes formed transiently, before DAAM1 moved to the membrane. This was consistent with the idea that DAAM1 was initially anchored to cytoplasmic actin nodes. Further, photoactivatable tracking of DAAM1 showed DAAM1 was immobilized at these actin nodes. Thus, we suggest that DAAM1 organizes actin filaments into a nodal complex, and such nodal complexes seed actin network recovery after actin depolymerization. PMID:27760153

  5. Computational Analysis of Viscoelastic Properties of Crosslinked Actin Networks

    PubMed Central

    Kim, Taeyoon; Hwang, Wonmuk; Lee, Hyungsuk; Kamm, Roger D.

    2009-01-01

    Mechanical force plays an important role in the physiology of eukaryotic cells whose dominant structural constituent is the actin cytoskeleton composed mainly of actin and actin crosslinking proteins (ACPs). Thus, knowledge of rheological properties of actin networks is crucial for understanding the mechanics and processes of cells. We used Brownian dynamics simulations to study the viscoelasticity of crosslinked actin networks. Two methods were employed, bulk rheology and segment-tracking rheology, where the former measures the stress in response to an applied shear strain, and the latter analyzes thermal fluctuations of individual actin segments of the network. It was demonstrated that the storage shear modulus (G′) increases more by the addition of ACPs that form orthogonal crosslinks than by those that form parallel bundles. In networks with orthogonal crosslinks, as crosslink density increases, the power law exponent of G′ as a function of the oscillation frequency decreases from 0.75, which reflects the transverse thermal motion of actin filaments, to near zero at low frequency. Under increasing prestrain, the network becomes more elastic, and three regimes of behavior are observed, each dominated by different mechanisms: bending of actin filaments, bending of ACPs, and at the highest prestrain tested (55%), stretching of actin filaments and ACPs. In the last case, only a small portion of actin filaments connected via highly stressed ACPs support the strain. We thus introduce the concept of a ‘supportive framework,’ as a subset of the full network, which is responsible for high elasticity. Notably, entropic effects due to thermal fluctuations appear to be important only at relatively low prestrains and when the average crosslinking distance is comparable to or greater than the persistence length of the filament. Taken together, our results suggest that viscoelasticity of the actin network is attributable to different mechanisms depending on the amount

  6. Computational analysis of viscoelastic properties of crosslinked actin networks.

    PubMed

    Kim, Taeyoon; Hwang, Wonmuk; Lee, Hyungsuk; Kamm, Roger D

    2009-07-01

    Mechanical force plays an important role in the physiology of eukaryotic cells whose dominant structural constituent is the actin cytoskeleton composed mainly of actin and actin crosslinking proteins (ACPs). Thus, knowledge of rheological properties of actin networks is crucial for understanding the mechanics and processes of cells. We used Brownian dynamics simulations to study the viscoelasticity of crosslinked actin networks. Two methods were employed, bulk rheology and segment-tracking rheology, where the former measures the stress in response to an applied shear strain, and the latter analyzes thermal fluctuations of individual actin segments of the network. It was demonstrated that the storage shear modulus (G') increases more by the addition of ACPs that form orthogonal crosslinks than by those that form parallel bundles. In networks with orthogonal crosslinks, as crosslink density increases, the power law exponent of G' as a function of the oscillation frequency decreases from 0.75, which reflects the transverse thermal motion of actin filaments, to near zero at low frequency. Under increasing prestrain, the network becomes more elastic, and three regimes of behavior are observed, each dominated by different mechanisms: bending of actin filaments, bending of ACPs, and at the highest prestrain tested (55%), stretching of actin filaments and ACPs. In the last case, only a small portion of actin filaments connected via highly stressed ACPs support the strain. We thus introduce the concept of a 'supportive framework,' as a subset of the full network, which is responsible for high elasticity. Notably, entropic effects due to thermal fluctuations appear to be important only at relatively low prestrains and when the average crosslinking distance is comparable to or greater than the persistence length of the filament. Taken together, our results suggest that viscoelasticity of the actin network is attributable to different mechanisms depending on the amount of

  7. Architecture and Connectivity Govern Actin Network Contractility.

    PubMed

    Ennomani, Hajer; Letort, Gaëlle; Guérin, Christophe; Martiel, Jean-Louis; Cao, Wenxiang; Nédélec, François; De La Cruz, Enrique M; Théry, Manuel; Blanchoin, Laurent

    2016-03-01

    Actomyosin contractility plays a central role in a wide range of cellular processes, including the establishment of cell polarity, cell migration, tissue integrity, and morphogenesis during development. The contractile response is variable and depends on actomyosin network architecture and biochemical composition. To determine how this coupling regulates actomyosin-driven contraction, we used a micropatterning method that enables the spatial control of actin assembly. We generated a variety of actin templates and measured how defined actin structures respond to myosin-induced forces. We found that the same actin filament crosslinkers either enhance or inhibit the contractility of a network, depending on the organization of actin within the network. Numerical simulations unified the roles of actin filament branching and crosslinking during actomyosin contraction. Specifically, we introduce the concept of "network connectivity" and show that the contractions of distinct actin architectures are described by the same master curve when considering their degree of connectivity. This makes it possible to predict the dynamic response of defined actin structures to transient changes in connectivity. We propose that, depending on the connectivity and the architecture, network contraction is dominated by either sarcomeric-like or buckling mechanisms. More generally, this study reveals how actin network contractility depends on its architecture under a defined set of biochemical conditions.

  8. Resemblance of actin-binding protein/actin gels to covalently crosslinked networks

    NASA Astrophysics Data System (ADS)

    Janmey, Paul A.; Hvidt, Søren; Lamb, Jennifer; Stossel, Thomas P.

    1990-05-01

    THE maintainance of the shape of cells is often due to their surface elasticity, which arises mainly from an actin-rich cytoplasmic cortex1,2. On locomotion, phagocytosis or fission, however, these cells become partially fluid-like. The finding of proteins that can bind to actin and control the assembly of, or crosslink, actin filaments, and of intracellular messages that regulate the activities of some of these actin-binding proteins, indicates that such 'gel sol' transformations result from the rearrangement of cortical actin-rich networks3. Alternatively, on the basis of a study of the mechanical properties of mixtures of actin filaments and an Acanthamoeba actin-binding protein, α-actinin, it has been proposed that these transformations can be accounted for by rapid exchange of crosslinks between actin filaments4: the cortical network would be solid when the deformation rate is greater than the rate of crosslink exchange, but would deform or 'creep' when deformation is slow enough to permit crosslinker molecules to rearrange. Here we report, however, that mixtures of actin filaments and actin-binding protein (ABP), an actin crosslinking protein of many higher eukaryotes, form gels Theologically equivalent to covalently crosslinked networks. These gels do not creep in response to applied stress on a time scale compatible with most cell-surface movements. These findings support a more complex and controlled mechanism underlying the dynamic mechanical properties of cortical cytoplasm, and can explain why cells do not collapse under the constant shear forces that often exist in tissues.

  9. Dynamic actin cycling through mitochondrial subpopulations locally regulates the fission–fusion balance within mitochondrial networks

    PubMed Central

    Moore, Andrew S.; Wong, Yvette C.; Simpson, Cory L.; Holzbaur, Erika L. F.

    2016-01-01

    Mitochondria form interconnected networks that dynamically remodel in response to cellular needs. Using live-cell imaging, we investigate the role of the actin cytoskeleton in regulating mitochondrial fission and fusion. We identify cycling of actin filaments onto and off of subsets of cellular mitochondria. The association of actin filaments with mitochondrial subpopulations is transient; actin quickly disassembles, then reassembles around a distinct subpopulation, efficiently cycling through all cellular mitochondria within 14 min. The focal assembly of actin induces local, Drp1-dependent fragmentation of the mitochondrial network. On actin disassembly, fragmented mitochondria undergo rapid fusion, leading to regional recovery of the tubular mitochondrial network. Cycling requires dynamic actin polymerization and is blocked by inhibitors of both Arp2/3 and formins. We propose that cyclic assembly of actin onto mitochondria modulates the fission/fusion balance, promotes network remodelling and content mixing, and thus may serve as an essential mechanism regulating mitochondrial network homeostasis. PMID:27686185

  10. 3D Actin Network Centerline Extraction with Multiple Active Contours

    PubMed Central

    Xu, Ting; Vavylonis, Dimitrios; Huang, Xiaolei

    2013-01-01

    Fluorescence microscopy is frequently used to study two and three dimensional network structures formed by cytoskeletal polymer fibers such as actin filaments and actin cables. While these cytoskeletal structures are often dilute enough to allow imaging of individual filaments or bundles of them, quantitative analysis of these images is challenging. To facilitate quantitative, reproducible and objective analysis of the image data, we propose a semi-automated method to extract actin networks and retrieve their topology in 3D. Our method uses multiple Stretching Open Active Contours (SOACs) that are automatically initialized at image intensity ridges and then evolve along the centerlines of filaments in the network. SOACs can merge, stop at junctions, and reconfigure with others to allow smooth crossing at junctions of filaments. The proposed approach is generally applicable to images of curvilinear networks with low SNR. We demonstrate its potential by extracting the centerlines of synthetic meshwork images, actin networks in 2D Total Internal Reflection Fluorescence Microscopy images, and 3D actin cable meshworks of live fission yeast cells imaged by spinning disk confocal microscopy. Quantitative evaluation of the method using synthetic images shows that for images with SNR above 5.0, the average vertex error measured by the distance between our result and ground truth is 1 voxel, and the average Hausdorff distance is below 10 voxels. PMID:24316442

  11. Microstructure and Mechanical Properties of Composite Actin Networks

    NASA Astrophysics Data System (ADS)

    Gardel, Margaret; Shin, Jennifer; Mahadevan, L.; Matsudaira, Paul; Weitz, D. A.

    2003-03-01

    There exits a family of actin-binding proteins (ABPs) and each protein has a distinct function for bundling, networking, gelating, capping, or simply binding to actin. Whether actin serves as a structural or motile component, its mechanical properties are determined by its degree and kinds of association with different ABPs and these properties are often closely related to its functional needs. For instance, in a cell actin is highly crosslinked with multiple ABPs (fimbrin, alpha-actinin, etc.) to generate thrust and strength for locomotion. In the acrosomal reaction of horseshoe crab sperm, actin exists as a bundle of preassembled filaments crosslinked with scruin to form a rigid structure to penetrate into an egg without yielding. We study the effects three different ABPs (scruin,fimbrin and alpha-actinin) have on the rheology and microstructure of actin networks using multiparticle tracking, imaging, and bulk rheology. From these experiments we can deduce how an evolving microstructure affects the bulk rheological properties and the role different concentrations and kinds of ABPs have in these changes.

  12. Viral Replication Protein Inhibits Cellular Cofilin Actin Depolymerization Factor to Regulate the Actin Network and Promote Viral Replicase Assembly

    PubMed Central

    Kovalev, Nikolay; de Castro Martín, Isabel Fernández; Barajas, Daniel; Risco, Cristina; Nagy, Peter D.

    2016-01-01

    RNA viruses exploit host cells by co-opting host factors and lipids and escaping host antiviral responses. Previous genome-wide screens with Tomato bushy stunt virus (TBSV) in the model host yeast have identified 18 cellular genes that are part of the actin network. In this paper, we show that the p33 viral replication factor interacts with the cellular cofilin (Cof1p), which is an actin depolymerization factor. Using temperature-sensitive (ts) Cof1p or actin (Act1p) mutants at a semi-permissive temperature, we find an increased level of TBSV RNA accumulation in yeast cells and elevated in vitro activity of the tombusvirus replicase. We show that the large p33 containing replication organelle-like structures are located in the close vicinity of actin patches in yeast cells or around actin cable hubs in infected plant cells. Therefore, the actin filaments could be involved in VRC assembly and the formation of large viral replication compartments containing many individual VRCs. Moreover, we show that the actin network affects the recruitment of viral and cellular components, including oxysterol binding proteins and VAP proteins to form membrane contact sites for efficient transfer of sterols to the sites of replication. Altogether, the emerging picture is that TBSV, via direct interaction between the p33 replication protein and Cof1p, controls cofilin activities to obstruct the dynamic actin network that leads to efficient subversion of cellular factors for pro-viral functions. In summary, the discovery that TBSV interacts with cellular cofilin and blocks the severing of existing filaments and the formation of new actin filaments in infected cells opens a new window to unravel the way by which viruses could subvert/co-opt cellular proteins and lipids. By regulating the functions of cofilin and the actin network, which are central nodes in cellular pathways, viruses could gain supremacy in subversion of cellular factors for pro-viral functions. PMID:26863541

  13. Curvature and torsion in growing actin networks

    NASA Astrophysics Data System (ADS)

    Shaevitz, Joshua W.; Fletcher, Daniel A.

    2008-06-01

    Intracellular pathogens such as Listeria monocytogenes and Rickettsia rickettsii move within a host cell by polymerizing a comet-tail of actin fibers that ultimately pushes the cell forward. This dense network of cross-linked actin polymers typically exhibits a striking curvature that causes bacteria to move in gently looping paths. Theoretically, tail curvature has been linked to details of motility by considering force and torque balances from a finite number of polymerizing filaments. Here we track beads coated with a prokaryotic activator of actin polymerization in three dimensions to directly quantify the curvature and torsion of bead motility paths. We find that bead paths are more likely to have low rather than high curvature at any given time. Furthermore, path curvature changes very slowly in time, with an autocorrelation decay time of 200 s. Paths with a small radius of curvature, therefore, remain so for an extended period resulting in loops when confined to two dimensions. When allowed to explore a three-dimensional (3D) space, path loops are less evident. Finally, we quantify the torsion in the bead paths and show that beads do not exhibit a significant left- or right-handed bias to their motion in 3D. These results suggest that paths of actin-propelled objects may be attributed to slow changes in curvature, possibly associated with filament debranching, rather than a fixed torque.

  14. Tau co-organizes dynamic microtubule and actin networks

    PubMed Central

    Elie, Auréliane; Prezel, Elea; Guérin, Christophe; Denarier, Eric; Ramirez-Rios, Sacnicte; Serre, Laurence; Andrieux, Annie; Fourest-Lieuvin, Anne; Blanchoin, Laurent; Arnal, Isabelle

    2015-01-01

    The crosstalk between microtubules and actin is essential for cellular functions. However, mechanisms underlying the microtubule-actin organization by cross-linkers remain largely unexplored. Here, we report that tau, a neuronal microtubule-associated protein, binds to microtubules and actin simultaneously, promoting in vitro co-organization and coupled growth of both networks. By developing an original assay to visualize concomitant microtubule and actin assembly, we show that tau can induce guided polymerization of actin filaments along microtubule tracks and growth of single microtubules along actin filament bundles. Importantly, tau mediates microtubule-actin co-alignment without changing polymer growth properties. Mutagenesis studies further reveal that at least two of the four tau repeated motifs, primarily identified as tubulin-binding sites, are required to connect microtubules and actin. Tau thus represents a molecular linker between microtubule and actin networks, enabling a coordination of the two cytoskeletons that might be essential in various neuronal contexts. PMID:25944224

  15. Actin network architecture can determine myosin motor activity.

    PubMed

    Reymann, Anne-Cécile; Boujemaa-Paterski, Rajaa; Martiel, Jean-Louis; Guérin, Christophe; Cao, Wenxiang; Chin, Harvey F; De La Cruz, Enrique M; Théry, Manuel; Blanchoin, Laurent

    2012-06-01

    The organization of actin filaments into higher-ordered structures governs eukaryotic cell shape and movement. Global actin network size and architecture are maintained in a dynamic steady state through regulated assembly and disassembly. Here, we used experimentally defined actin structures in vitro to investigate how the activity of myosin motors depends on network architecture. Direct visualization of filaments revealed myosin-induced actin network deformation. During this reorganization, myosins selectively contracted and disassembled antiparallel actin structures, while parallel actin bundles remained unaffected. The local distribution of nucleation sites and the resulting orientation of actin filaments appeared to regulate the scalability of the contraction process. This "orientation selection" mechanism for selective contraction and disassembly suggests how the dynamics of the cellular actin cytoskeleton can be spatially controlled by actomyosin contractility.

  16. Encoding Mechano-Memories in Actin Networks

    NASA Astrophysics Data System (ADS)

    Foucard, Louis; Majumdar, Sayantan; Levine, Alex; Gardel, Margaret

    The ability of cells to sense and adapt to external mechanical stimuli is vital to many of its biological functions. A critical question is therefore to understand how mechanosensory mechanisms arise in living matter, with implications in both cell biology and smart materials design. Experimental work has demonstrated that the mechanical properties of semiflexible actin networks in Eukaryotic cells can be modulated (either transiently or irreversibly) via the application of external forces. Previous work has also shown with a combination of numerical simulations and analytic calculations shows that the broken rotational symmetry of the filament orientational distribution in semiflexible networks leads to dramatic changes in the mechanical response. Here we demonstrate with a combination of numerical and analytic calculations that the observed long-lived mechano-memory in the actin networks arise from changes in the nematic order of the constituent filaments. These stress-induced changes in network topology relax slowly under zero stress and can be observed through changes in the nonlinear mechanics. Our results provide a strategy for designing a novel class of materials and demonstrate a new putative mechanism of mechanical sensing in eukaryotic cells.

  17. Actin-myosin network is required for proper assembly of influenza virus particles

    SciTech Connect

    Kumakura, Michiko; Kawaguchi, Atsushi Nagata, Kyosuke

    2015-02-15

    Actin filaments are known to play a central role in cellular dynamics. After polymerization of actin, various actin-crosslinking proteins including non-muscle myosin II facilitate the formation of spatially organized actin filament networks. The actin-myosin network is highly expanded beneath plasma membrane. The genome of influenza virus (vRNA) replicates in the cell nucleus. Then, newly synthesized vRNAs are nuclear-exported to the cytoplasm as ribonucleoprotein complexes (vRNPs), followed by transport to the beneath plasma membrane where virus particles assemble. Here, we found that, by inhibiting actin-myosin network formation, the virus titer tends to be reduced and HA viral spike protein is aggregated on the plasma membrane. These results indicate that the actin-myosin network plays an important role in the virus formation. - Highlights: • Actin-myosin network is important for the influenza virus production. • HA forms aggregations at the plasma membrane in the presence of blebbistatin. • M1 is recruited to the budding site through the actin-myosin network.

  18. An unconventional form of actin in protozoan hemoflagellate, Leishmania.

    PubMed

    Kapoor, Prabodh; Sahasrabuddhe, Amogh A; Kumar, Ashutosh; Mitra, Kalyan; Siddiqi, Mohammad Imran; Gupta, Chhitar M

    2008-08-15

    Leishmania actin was cloned, overexpressed in baculovirus-insect cell system, and purified to homogeneity. The purified protein polymerized optimally in the presence of Mg2+ and ATP, but differed from conventional actins in its following properties: (i) it did not polymerize in the presence of Mg2+ alone, (ii) it polymerized in a restricted range of pH 7.0-8.5, (iii) its critical concentration for polymerization was found to be 3-4-fold lower than of muscle actin, (iv) it predominantly formed bundles rather than single filaments at pH 8.0, (v) it displayed considerably higher ATPase activity during polymerization, (vi) it did not inhibit DNase-I activity, and (vii) it did not bind the F-actin-binding toxin phalloidin or the actin polymerization disrupting agent Latrunculin B. Computational and molecular modeling studies revealed that the observed unconventional behavior of Leishmania actin is related to the diverged amino acid stretches in its sequence, which may lead to changes in the overall charge distribution on its solvent-exposed surface, ATP binding cleft, Mg2+ binding sites, and the hydrophobic loop that is involved in monomer-monomer interactions. Phylogenetically, it is related to ciliate actins, but to the best of our knowledge, no other actin with such unconventional properties has been reported to date. It is therefore suggested that actin in Leishmania may serve as a novel target for design of new antileishmanial drugs. PMID:18539603

  19. Mechanics of composite actin networks: in vitro and cellular perspectives

    NASA Astrophysics Data System (ADS)

    Upadhyaya, Arpita

    2014-03-01

    Actin filaments and associated actin binding proteins play an essential role in governing the mechanical properties of eukaryotic cells. Even though cells have multiple actin binding proteins (ABPs) that exist simultaneously to maintain the structural and mechanical integrity of the cellular cytoskeleton, how these proteins work together to determine the properties of actin networks is not well understood. The ABP, palladin, is essential for the integrity of cell morphology and movement during development. Palladin coexists with alpha-actinin in stress fibers and focal adhesions and binds to both actin and alpha-actinin. To obtain insight into how mutually interacting actin crosslinking proteins modulate the properties of actin networks, we have characterized the micro-structure and mechanics of actin networks crosslinked with palladin and alpha-actinin. Our studies on composite networks of alpha-actinin/palladin/actin show that palladin and alpha-actinin synergistically determine network viscoelasticity. We have further examined the role of palladin in cellular force generation and mechanosensing. Traction force microscopy revealed that TAFs are sensitive to substrate stiffness as they generate larger forces on substrates of increased stiffness. Contrary to expectations, knocking down palladin increased the forces generated by cells, and also inhibited the ability to sense substrate stiffness for very stiff gels. This was accompanied by significant differences in the actin organization and adhesion dynamics of palladin knock down cells. Perturbation experiments also suggest altered myosin activity in palladin KD cells. Our results suggest that the actin crosslinkers such as palladin and myosin motors coordinate for optimal cell function and to prevent aberrant behavior as in cancer metastasis.

  20. EXTRACTION AND ANALYSIS OF ACTIN NETWORKS BASED ON OPEN ACTIVE CONTOUR MODELS

    PubMed Central

    Xu, Ting; Li, Hongsheng; Shen, Tian; Ojkic, Nikola; Vavylonis, Dimitrios; Huang, Xiaolei

    2011-01-01

    Network structures formed by actin filaments are present in many kinds of fluorescence microscopy images. In order to quantify the conformations and dynamics of such actin filaments, we propose a fully automated method to extract actin networks from images and analyze network topology. The method handles well intersecting filaments and, to some extent, overlapping filaments. First we automatically initialize a large number of Stretching Open Active Contours (SOACs) from ridge points detected by searching for plus-to-minus sign changes in the gradient map of the image. These initial SOACs then elongate simultaneously along the bright center-lines of filaments by minimizing an energy function. During their evolution, they may merge or stop growing, thus forming a network that represents the topology of the filament ensemble. We further detect junction points in the network and break the SOACs at junctions to obtain “SOAC segments”. These segments are then re-grouped using a graph-cut spectral clustering method to represent the configuration of actin filaments. The proposed approach is generally applicable to extracting intersecting curvilinear structures in noisy images. We demonstrate its potential using two kinds of data: (1) actin filaments imaged by Total Internal Reflection Fluorescence Microscopy (TIRFM) in vitro; (2) actin cytoskeleton networks in fission yeast imaged by spinning disk confocal microscopy. PMID:21822463

  1. EXTRACTION AND ANALYSIS OF ACTIN NETWORKS BASED ON OPEN ACTIVE CONTOUR MODELS.

    PubMed

    Xu, Ting; Li, Hongsheng; Shen, Tian; Ojkic, Nikola; Vavylonis, Dimitrios; Huang, Xiaolei

    2011-03-30

    Network structures formed by actin filaments are present in many kinds of fluorescence microscopy images. In order to quantify the conformations and dynamics of such actin filaments, we propose a fully automated method to extract actin networks from images and analyze network topology. The method handles well intersecting filaments and, to some extent, overlapping filaments. First we automatically initialize a large number of Stretching Open Active Contours (SOACs) from ridge points detected by searching for plus-to-minus sign changes in the gradient map of the image. These initial SOACs then elongate simultaneously along the bright center-lines of filaments by minimizing an energy function. During their evolution, they may merge or stop growing, thus forming a network that represents the topology of the filament ensemble. We further detect junction points in the network and break the SOACs at junctions to obtain "SOAC segments". These segments are then re-grouped using a graph-cut spectral clustering method to represent the configuration of actin filaments. The proposed approach is generally applicable to extracting intersecting curvilinear structures in noisy images. We demonstrate its potential using two kinds of data: (1) actin filaments imaged by Total Internal Reflection Fluorescence Microscopy (TIRFM) in vitro; (2) actin cytoskeleton networks in fission yeast imaged by spinning disk confocal microscopy. PMID:21822463

  2. Assembly Kinetics Determine the Architecture of α-actinin Crosslinked F-actin Networks

    PubMed Central

    Falzone, Tobias T.; Lenz, Martin; Kovar, David R.; Gardel, Margaret L.

    2013-01-01

    The actin cytoskeleton is organized into diverse meshworks and bundles that support many aspects of cell physiology. Understanding the self-assembly of these actin-based structures is essential for developing predictive models of cytoskeletal organization. Here we show that the competing kinetics of bundle formation with the onset of dynamic arrest arising from filament entanglements and cross-linking determine the architecture of reconstituted actin networks formed with α-actinin cross-links. Cross-link mediated bundle formation only occurs in dilute solutions of highly mobile actin filaments. As actin polymerization proceeds, filament mobility and bundle formation are arrested concomitantly. By controlling the onset of dynamic arrest, perturbations to actin assembly kinetics dramatically alter the architecture of biochemically identical samples. Thus, the morphology of reconstituted F-actin networks is a kinetically determined structure similar to those formed by physical gels and glasses. These results establish mechanisms controlling the structure and mechanics in diverse semi-flexible biopolymer networks. PMID:22643888

  3. Formation of actin networks in microfluidic concentration gradients

    NASA Astrophysics Data System (ADS)

    Strelnikova, Natalja; Herren, Florian; Schoenenberger, Cora-Ann; Pfohl, Thomas

    2016-05-01

    The physical properties of cytoskeletal networks are contributors in a number of mechanical responses of cells including cellular deformation and locomotion, and are crucial for the proper action of living cells. Local chemical gradients modulate cytoskeletal functionality including the interactions of the cytoskeleton with other cellular components. Actin is a major constituent of the cytoskeleton. Introducing a microfluidic-based platform, we explored the impact of concentration gradients on the formation and structural properties of actin networks. Microfluidics-controlled flow-free steady state experimental conditions allow for the generation of chemical gradients of different profiles, such as linear or step-like. We discovered specific features of actin networks emerging in defined gradients. In particular, we analyzed the effects of spatial conditions on network properties, bending rigidities of network links, and the network elasticity.

  4. Multiscale impact of nucleotides and cations on the conformational equilibrium, elasticity and rheology of actin filaments and crosslinked networks.

    PubMed

    Bidone, Tamara Carla; Kim, Taeyoon; Deriu, Marco A; Morbiducci, Umberto; Kamm, Roger D

    2015-10-01

    Cells are able to respond to mechanical forces and deformations. The actin cytoskeleton, a highly dynamic scaffolding structure, plays an important role in cell mechano-sensing. Thus, understanding rheological behaviors of the actin cytoskeleton is critical for delineating mechanical behaviors of cells. The actin cytoskeleton consists of interconnected actin filaments (F-actin) that form via self-assembly of actin monomers. It has been shown that molecular changes of the monomer subunits impact the rigidity of F-actin. However, it remains inconclusive whether or not the molecular changes can propagate to the network level and thus alter the rheological properties of actin networks. Here, we focus on how cation binding and nucleotide state tune the molecular conformation and rigidity of F-actin and a representative rheological behavior of actin networks, strain-stiffening. We employ a multiscale approach by combining established computational techniques: molecular dynamics, normal mode analysis and Brownian dynamics. Our findings indicate that different combinations of nucleotide (ATP, ADP or ADP-Pi) and cation [Formula: see text] or [Formula: see text] at one or multiple sites) binding change the molecular conformation of F-actin by varying inter- and intra-strand interactions which bridge adjacent subunits between and within F-actin helical strands. This is reflected in the rigidity of actin filaments against bending and stretching. We found that differences in extension and bending rigidity of F-actin induced by cation binding to the low-, intermediate- and high-affinity sites vary the strain-stiffening response of actin networks crosslinked by rigid crosslinkers, such as scruin, whereas they minimally impact the strain-stiffening response when compliant crosslinkers, such as filamin A or [Formula: see text]-actinin, are used.

  5. Multiscale impact of nucleotides and cations on the conformational equilibrium, elasticity and rheology of actin filaments and crosslinked networks.

    PubMed

    Bidone, Tamara Carla; Kim, Taeyoon; Deriu, Marco A; Morbiducci, Umberto; Kamm, Roger D

    2015-10-01

    Cells are able to respond to mechanical forces and deformations. The actin cytoskeleton, a highly dynamic scaffolding structure, plays an important role in cell mechano-sensing. Thus, understanding rheological behaviors of the actin cytoskeleton is critical for delineating mechanical behaviors of cells. The actin cytoskeleton consists of interconnected actin filaments (F-actin) that form via self-assembly of actin monomers. It has been shown that molecular changes of the monomer subunits impact the rigidity of F-actin. However, it remains inconclusive whether or not the molecular changes can propagate to the network level and thus alter the rheological properties of actin networks. Here, we focus on how cation binding and nucleotide state tune the molecular conformation and rigidity of F-actin and a representative rheological behavior of actin networks, strain-stiffening. We employ a multiscale approach by combining established computational techniques: molecular dynamics, normal mode analysis and Brownian dynamics. Our findings indicate that different combinations of nucleotide (ATP, ADP or ADP-Pi) and cation [Formula: see text] or [Formula: see text] at one or multiple sites) binding change the molecular conformation of F-actin by varying inter- and intra-strand interactions which bridge adjacent subunits between and within F-actin helical strands. This is reflected in the rigidity of actin filaments against bending and stretching. We found that differences in extension and bending rigidity of F-actin induced by cation binding to the low-, intermediate- and high-affinity sites vary the strain-stiffening response of actin networks crosslinked by rigid crosslinkers, such as scruin, whereas they minimally impact the strain-stiffening response when compliant crosslinkers, such as filamin A or [Formula: see text]-actinin, are used. PMID:25708806

  6. Analysis of the local organization and dynamics of cellular actin networks

    PubMed Central

    Luo, Weiwei; Yu, Cheng-han; Lieu, Zi Zhao; Allard, Jun; Mogilner, Alex; Sheetz, Michael P.

    2013-01-01

    A ctin filaments, with the aid of multiple accessory proteins, self-assemble into a variety of network patterns. We studied the organization and dynamics of the actin network in nonadhesive regions of cells bridging fibronectin-coated adhesive strips. The network was formed by actin nodes associated with and linked by myosin II and containing the formin disheveled-associated activator of morphogenesis 1 (DAAM1) and the cross-linker filamin A (FlnA). After Latrunculin A (LatA) addition, actin nodes appeared to be more prominent and demonstrated drift-diffusion motion. Superresolution microscopy revealed that, in untreated cells, DAAM1 formed patches with a similar spatial arrangement to the actin nodes. Node movement (diffusion coefficient and velocity) in LatA-treated cells was dependent on the level and activity of myosin IIA, DAAM1, and FlnA. Based on our results, we developed a computational model of the dynamic formin-filamin-actin asters that can self-organize into a contractile actomyosin network. We suggest that such networks are critical for connecting distant parts of the cell to maintain the mechanical coherence of the cytoplasm. PMID:24081490

  7. The role of actin networks in cellular mechanosensing

    NASA Astrophysics Data System (ADS)

    Azatov, Mikheil

    Physical processes play an important role in many biological phenomena, such as wound healing, organ development, and tumor metastasis. During these processes, cells constantly interact with and adapt to their environment by exerting forces to mechanically probe the features of their surroundings and generating appropriate biochemical responses. The mechanisms underlying how cells sense the physical properties of their environment are not well understood. In this thesis, I present my studies to investigate cellular responses to the stiffness and topography of the environment. In order to sense the physical properties of their environment, cells dynamically reorganize the structure of their actin cytoskeleton, a dynamic network of biopolymers, altering the shape and spatial distribution of protein assemblies. Several observations suggest that proteins that crosslink actin filaments may play an important role in cellular mechanosensitivity. Palladin is an actin-crosslinking protein that is found in the lamellar actin network, stress fibers and focal adhesions, cellular structures that are critical for mechanosensing of the physical environment. By virtue of its close interactions with these structures in the cell, palladin may play an important role in cell mechanics. However, the role of actin crosslinkers in general, and palladin in particular, in cellular force generation and mechanosensing is not well known. I have investigated the role of palladin in regulating the plasticity of the actin cytoskeleton and cellular force generation in response to alterations in substrate stiffness. I have shown that the expression levels of palladin modulate the forces exerted by cells and their ability to sense substrate stiffness. Perturbation experiments also suggest that palladin levels in cells altered myosin motor activity. These results suggest that the actin crosslinkers, such as palladin, and myosin motors coordinate for optimal cell function and to prevent aberrant

  8. Mechanics of actin networks crosslinked with mutant human α-actinin-4

    NASA Astrophysics Data System (ADS)

    Volkmer, Sabine; Blair, Daniel; Kasza, Karen; Weitz, David

    2007-03-01

    Globular actin can be polymerized in vitro to form F-actin in the presence of various binding proteins. These networks often exhibit dramatic nonlinear rheological response to imposed strains. We study the rheological properties of F-actin networks crosslinked with human α-actinin-4. A single genetic mutation of the α-actinin-4 protein is associated with focal and segmented glomerulosclerosis (FSGS), a genetic disorder which leads to renal failure. Mechanically, the mutant crosslinker has an increased binding strength compared to the wild type. We will show that human α-actinin-4, displays a unique stiffening response. Moreover, we also demonstrate that a single point mutation dramatically effects the inherent relaxation time of the crosslinked network.

  9. FtsA forms actin-like protofilaments

    PubMed Central

    Szwedziak, Piotr; Wang, Qing; Freund, Stefan MV; Löwe, Jan

    2012-01-01

    FtsA is an early component of the Z-ring, the structure that divides most bacteria, formed by tubulin-like FtsZ. FtsA belongs to the actin family of proteins, showing an unusual subdomain architecture. Here we reconstitute the tethering of FtsZ to the membrane via FtsA's C-terminal amphipathic helix in vitro using Thermotoga maritima proteins. A crystal structure of the FtsA:FtsZ interaction reveals 16 amino acids of the FtsZ tail bound to subdomain 2B of FtsA. The same structure and a second crystal form of FtsA reveal that FtsA forms actin-like protofilaments with a repeat of 48 Å. The identical repeat is observed when FtsA is polymerized using a lipid monolayer surface and FtsAs from three organisms form polymers in cells when overexpressed, as observed by electron cryotomography. Mutants that disrupt polymerization also show an elongated cell division phenotype in a temperature-sensitive FtsA background, demonstrating the importance of filament formation for FtsA's function in the Z-ring. PMID:22473211

  10. Surface adsorption and hopping cause probe-size-dependent microrheology of actin networks

    NASA Astrophysics Data System (ADS)

    He, Jun; Tang, Jay X.

    2011-04-01

    A network of filaments formed primarily by the abundant cytoskeletal protein actin gives animal cells their shape and elasticity. The rheological properties of reconstituted actin networks have been studied by tracking micron-sized probe beads embedded within the networks. We investigate how microrheology depends on surface properties of probe particles by varying the stickiness of their surface. For this purpose, we chose carboxylate polystyrene (PS) beads, silica beads, bovine serum albumin (BSA) -coated PS beads, and polyethylene glycol (PEG) -grafted PS beads, which show descending stickiness to actin filaments, characterized by confocal imaging and microrheology. Probe size dependence of microrheology is observed for all four types of beads. For the slippery PEG beads, particle-tracking microrheology detects weaker networks using smaller beads, which tend to diffuse through the network by hopping from one confinement “cage” to another. This trend is reversed for the other three types of beads, for which microrheology measures stiffer networks for smaller beads due to physisorption of nearby filaments to the bead surface. We explain the probe size dependence with two simple models. We also evaluate depletion effect near nonadsorption bead surface using quantitative image analysis and discuss the possible impact of depletion on microrheology. Analysis of these effects is necessary in order to accurately define the actin network rheology both in vitro and in vivo.

  11. Bacterial actin MreB forms antiparallel double filaments

    PubMed Central

    van den Ent, Fusinita; Izoré, Thierry; Bharat, Tanmay AM; Johnson, Christopher M; Löwe, Jan

    2014-01-01

    Filaments of all actin-like proteins known to date are assembled from pairs of protofilaments that are arranged in a parallel fashion, generating polarity. In this study, we show that the prokaryotic actin homologue MreB forms pairs of protofilaments that adopt an antiparallel arrangement in vitro and in vivo. We provide an atomic view of antiparallel protofilaments of Caulobacter MreB as apparent from crystal structures. We show that a protofilament doublet is essential for MreB's function in cell shape maintenance and demonstrate by in vivo site-specific cross-linking the antiparallel orientation of MreB protofilaments in E. coli. 3D cryo-EM shows that pairs of protofilaments of Caulobacter MreB tightly bind to membranes. Crystal structures of different nucleotide and polymerisation states of Caulobacter MreB reveal conserved conformational changes accompanying antiparallel filament formation. Finally, the antimicrobial agents A22/MP265 are shown to bind close to the bound nucleotide of MreB, presumably preventing nucleotide hydrolysis and destabilising double protofilaments. DOI: http://dx.doi.org/10.7554/eLife.02634.001 PMID:24843005

  12. A dynamic formin-dependent deep F-actin network in axons

    PubMed Central

    Ganguly, Archan; Tang, Yong; Wang, Lina; Ladt, Kelsey; Loi, Jonathan; Dargent, Bénédicte; Leterrier, Christophe

    2015-01-01

    Although actin at neuronal growth cones is well-studied, much less is known about actin organization and dynamics along axon shafts and presynaptic boutons. Using probes that selectively label filamentous-actin (F-actin), we found focal “actin hotspots” along axons—spaced ∼3–4 µm apart—where actin undergoes continuous assembly/disassembly. These foci are a nidus for vigorous actin polymerization, generating long filaments spurting bidirectionally along axons—a phenomenon we call “actin trails.” Super-resolution microscopy reveals intra-axonal deep actin filaments in addition to the subplasmalemmal “actin rings” described recently. F-actin hotspots colocalize with stationary axonal endosomes, and blocking vesicle transport diminishes the actin trails, suggesting mechanistic links between vesicles and F-actin kinetics. Actin trails are formin—but not Arp2/3—dependent and help enrich actin at presynaptic boutons. Finally, formin inhibition dramatically disrupts synaptic recycling. Collectively, available data suggest a two-tier F-actin organization in axons, with stable “actin rings” providing mechanical support to the plasma membrane and dynamic "actin trails" generating a flexible cytoskeletal network with putative physiological roles. PMID:26216902

  13. Myosin lever arm directs collective motion on cellular actin network

    PubMed Central

    Hariadi, Rizal F.; Cale, Mario; Sivaramakrishnan, Sivaraj

    2014-01-01

    The molecular motor myosin teams up to drive muscle contraction, membrane traffic, and cell division in biological cells. Myosin function in cells emerges from the interaction of multiple motors tethered to a scaffold, with surrounding actin filaments organized into 3D networks. Despite the importance of myosin function, the influence of intermotor interactions on collective motion remains poorly understood. In this study, we used precisely engineered myosin assemblies to examine emergence in collective myosin movement. We report that tethering multiple myosin VI motors, but not myosin V motors, modifies their movement trajectories on keratocyte actin networks. Single myosin V and VI dimers display similar skewed trajectories, albeit in opposite directions, when traversing the keratocyte actin network. In contrast, tethering myosin VI motors, but not myosin V motors, progressively straightens the trajectories with increasing myosin number. Trajectory shape of multimotor scaffolds positively correlates with the stiffness of the myosin lever arm. Swapping the flexible myosin VI lever arm for the relatively rigid myosin V lever increases trajectory skewness, and vice versa. A simplified model of coupled motor movement demonstrates that the differences in flexural rigidity of the two myosin lever arms is sufficient to account for the differences in observed behavior of groups of myosin V and VI motors. In accordance with this model trajectory, shapes for scaffolds containing both myosin V and VI are dominated by the myosin with a stiffer lever arm. Our findings suggest that structural features unique to each myosin type may confer selective advantages in cellular functions. PMID:24591646

  14. Myosin lever arm directs collective motion on cellular actin network.

    PubMed

    Hariadi, Rizal F; Cale, Mario; Sivaramakrishnan, Sivaraj

    2014-03-18

    The molecular motor myosin teams up to drive muscle contraction, membrane traffic, and cell division in biological cells. Myosin function in cells emerges from the interaction of multiple motors tethered to a scaffold, with surrounding actin filaments organized into 3D networks. Despite the importance of myosin function, the influence of intermotor interactions on collective motion remains poorly understood. In this study, we used precisely engineered myosin assemblies to examine emergence in collective myosin movement. We report that tethering multiple myosin VI motors, but not myosin V motors, modifies their movement trajectories on keratocyte actin networks. Single myosin V and VI dimers display similar skewed trajectories, albeit in opposite directions, when traversing the keratocyte actin network. In contrast, tethering myosin VI motors, but not myosin V motors, progressively straightens the trajectories with increasing myosin number. Trajectory shape of multimotor scaffolds positively correlates with the stiffness of the myosin lever arm. Swapping the flexible myosin VI lever arm for the relatively rigid myosin V lever increases trajectory skewness, and vice versa. A simplified model of coupled motor movement demonstrates that the differences in flexural rigidity of the two myosin lever arms is sufficient to account for the differences in observed behavior of groups of myosin V and VI motors. In accordance with this model trajectory, shapes for scaffolds containing both myosin V and VI are dominated by the myosin with a stiffer lever arm. Our findings suggest that structural features unique to each myosin type may confer selective advantages in cellular functions.

  15. Actin-binding proteins: the long road to understanding the dynamic landscape of cellular actin networks.

    PubMed

    Lappalainen, Pekka

    2016-08-15

    The actin cytoskeleton supports a vast number of cellular processes in nonmuscle cells. It is well established that the organization and dynamics of the actin cytoskeleton are controlled by a large array of actin-binding proteins. However, it was only 40 years ago that the first nonmuscle actin-binding protein, filamin, was identified and characterized. Filamin was shown to bind and cross-link actin filaments into higher-order structures and contribute to phagocytosis in macrophages. Subsequently many other nonmuscle actin-binding proteins were identified and characterized. These proteins regulate almost all steps of the actin filament assembly and disassembly cycles, as well as the arrangement of actin filaments into diverse three-dimensional structures. Although the individual biochemical activities of most actin-regulatory proteins are relatively well understood, knowledge of how these proteins function together in a common cytoplasm to control actin dynamics and architecture is only beginning to emerge. Furthermore, understanding how signaling pathways and mechanical cues control the activities of various actin-binding proteins in different cellular, developmental, and pathological processes will keep researchers busy for decades. PMID:27528696

  16. The Effect of Crosslinking on the Microscale Stress Response and Molecular Deformations in Actin Networks

    NASA Astrophysics Data System (ADS)

    Gurmessa, Bekele; Fitzpatrick, Robert; Valdivia, Jonathon; Anderson, Rae M. R.

    Actin, the most abundant protein in eukaryotic cells, is a semi-flexible biopolymer in the cytoskeleton that plays a crucial structural and mechanical role in cell stability, motion and replication, as well as muscle contraction. Most of these mechanically driven structural changes in cells stem from the complex viscoelastic nature of entangled actin networks and the presence of a myriad of proteins that cross-link actin filaments. Despite their importance, the mechanical response of actin networks is not yet well understood, particularly at the molecular level. Here, we use optical trapping - coupled with fluorescence microscopy - to characterize the microscale stress response and induced filament deformations in entangled and cross-linked actin networks subject to localized mechanical perturbations. In particular, we actively drive a microsphere 10 microns through an entangled or cross- linked actin network at a constant speed and measure the resistive force that the deformed actin filaments exert on the bead during and following strain. We simultaneously visualize and track individual sparsely-labeled actin filaments to directly link force response to molecular deformations, and map the propagation of the initially localized perturbation field throughout the rest of the network (~100 um). By varying the concentration of actin and cross-linkers we directly determine the role of crosslinking and entanglements on the length and time scales of stress propagation, molecular deformation and relaxation mechanisms in actin networks.

  17. Tuning myosin-driven sorting on cellular actin networks

    PubMed Central

    Hariadi, Rizal F; Sommese, Ruth F; Sivaramakrishnan, Sivaraj

    2015-01-01

    Myosin V and VI are antagonistic motors that cohabit membrane vesicles in cells. A systematic study of their collective function, however, is lacking and forms the focus of this study. We functionally reconstitute a two-dimensional actin-myosin interface using myosin V and VI precisely patterned on DNA nanostructures, in combination with a model keratocyte actin meshwork. While scaffolds display solely unidirectional movement, their directional flux is modulated by both actin architecture and the structural properties of the myosin lever arm. This directional flux can be finely-tuned by the relative number of myosin V and VI motors on each scaffold. Pairing computation with experimental observations suggests that the ratio of motor stall forces is a key determinant of the observed competitive outcomes. Overall, our study demonstrates an elegant mechanism for sorting of membrane cargo using equally matched antagonistic motors, simply by modulating the relative number of engagement sites for each motor type. DOI: http://dx.doi.org/10.7554/eLife.05472.001 PMID:25738229

  18. Stability of actin-lysozyme complexes formed in cystic fibrosis disease.

    PubMed

    Mohammadinejad, Sarah; Ghamkhari, Behnoush; Abdolmaleki, Sarah

    2016-08-21

    Finding the conditions for destabilizing actin-lysozyme complexes is of biomedical importance in preventing infections in cystic fibrosis. In this manuscript, the effects of different charge-mutants of lysozyme and salt concentration on the stability of actin-lysozyme complexes are studied using Langevin dynamics simulation. A coarse-grained model of F-actin is used in which both its twist and bending rigidities are considered. We observe that the attraction between F-actins is stronger in the presence of wild-type lysozymes relative to the mutated lysozymes of lower charges. By calculating the potential of mean force between F-actins, we conclude that the stability of actin-lysozyme complexes is decreased by reducing the charge of lysozyme mutants. The distributions of different lysozyme charge-mutants show that wild-type (+9e) lysozymes are mostly accumulated in the center of triangles formed by three adjacent F-actins, while lysozyme mutants of charges +7e and +5e occupy the bridging regions between F-actins. Low-charge mutants of lysozyme (+3e) distribute uniformly around F-actins. A rough estimate of the electrostatic energy for these different distributions proves that the distribution in which lysozymes reside in the center of triangles leads to more stable complexes. Also our results in the presence of a salt suggest that at physiological salt concentration of airway, F-actin complexes are not formed by charge-reduced mutants of lysozyme. The findings are interesting because if we can design charge-reduced lysozyme mutants with considerable antibacterial activity, they are not sequestered inside F-actin aggregates and can play their role as antibacterial agents against airway infection. PMID:27436705

  19. Competition of two distinct actin networks for actin defines a bistable switch for cell polarization

    PubMed Central

    Lomakin, Alexis J.; Lee, Kun-Chun; Han, Sangyoon J.; Bui, D A.; Davidson, Michael; Mogilner, Alex; Danuser, Gaudenz

    2015-01-01

    Symmetry-breaking polarization enables functional plasticity of cells and tissues and is yet not well understood. Here we show that epithelial cells, hard-wired to maintain a static morphology and to preserve tissue organization, can spontaneously switch to a migratory polarized phenotype upon relaxation of the actomyosin cytoskeleton. We find that myosin-II engages actin in the formation of cortical actomyosin bundles and thus makes it unavailable for deployment in the process of dendritic growth normally driving cell motility. At low contractility regimes epithelial cells polarize in a front-back manner due to emergence of actin retrograde flows powered by dendritic polymerization of actin. Coupled to cell movement, the flows transport myosin-II from the front to the back of the cell, where the motor locally “locks” actin in contractile bundles. This polarization mechanism could be employed by embryonic and cancer epithelial cells in microenvironments where high contractility-driven cell motion is inefficient. PMID:26414403

  20. Comparative analysis of tools for live cell imaging of actin network architecture

    PubMed Central

    Belin, Brittany J; Goins, Lauren M; Mullins, R Dyche

    2014-01-01

    Abstract Fluorescent derivatives of actin and actin-binding domains are powerful tools for studying actin filament architecture and dynamics in live cells. Growing evidence, however, indicates that these probes are biased, and their cellular distribution does not accurately reflect that of the cytoskeleton. To understand the strengths and weaknesses of commonly used live-cell probes—fluorescent protein fusions of actin, Lifeact, F-tractin, and actin-binding domains from utrophin—we compared their distributions in cells derived from various model organisms. We focused on five actin networks: the peripheral cortex, lamellipodial and lamellar networks, filopodial bundles, and stress fibers. Using phalloidin as a standard, we identified consistent biases in the distribution of each probe. The localization of F-tractin is the most similar to that of phalloidin but induces organism-specific changes in cell morphology. Both Lifeact and GFP-actin concentrate in lamellipodial actin networks but are excluded from lamellar networks and filopodia. In contrast, the full utrophin actin-binding domain (Utr261) binds filaments of the lamellum but only weakly localizes to lamellipodia, while a shorter variant (Utr230) is restricted to the most stable subpopulations of actin filaments: cortical networks and stress fibers. In some cells, Utr230 also detects Golgi-associated filaments, previously detected by immunofluorescence but not visible by phalloidin staining. Consistent with its localization, Utr230 exhibits slow rates of fluorescence recovery after photobleaching (FRAP) compared to F-tractin, Utr261 and Lifeact, suggesting that it may be more useful for FRAP- and photo-activation-based studies of actin network dynamics. PMID:26317264

  1. Srv2/cyclase-associated protein forms hexameric shurikens that directly catalyze actin filament severing by cofilin

    PubMed Central

    Chaudhry, Faisal; Breitsprecher, Dennis; Little, Kristin; Sharov, Grigory; Sokolova, Olga; Goode, Bruce L.

    2013-01-01

    Actin filament severing is critical for the dynamic turnover of cellular actin networks. Cofilin severs filaments, but additional factors may be required to increase severing efficiency in vivo. Srv2/cyclase-associated protein (CAP) is a widely expressed protein with a role in binding and recycling actin monomers ascribed to domains in its C-terminus (C-Srv2). In this paper, we report a new biochemical and cellular function for Srv2/CAP in directly catalyzing cofilin-mediated severing of filaments. This function is mediated by its N-terminal half (N-Srv2), and is physically and genetically separable from C-Srv2 activities. Using dual-color total internal reflection fluorescence microscopy, we determined that N-Srv2 stimulates filament disassembly by increasing the frequency of cofilin-mediated severing without affecting cofilin binding to filaments. Structural analysis shows that N-Srv2 forms novel hexameric star-shaped structures, and disrupting oligomerization impairs N-Srv2 activities and in vivo function. Further, genetic analysis shows that the combined activities of N-Srv2 and Aip1 are essential in vivo. These observations define a novel mechanism by which the combined activities of cofilin and Srv2/CAP lead to enhanced filament severing and support an emerging view that actin disassembly is controlled not by cofilin alone, but by a more complex set of factors working in concert. PMID:23135996

  2. Passive and active microrheology for cross-linked F-actin networks in vitro.

    PubMed

    Lee, Hyungsuk; Ferrer, Jorge M; Nakamura, Fumihiko; Lang, Matthew J; Kamm, Roger D

    2010-04-01

    Actin filament (F-actin) is one of the dominant structural constituents in the cytoskeleton. Orchestrated by various actin-binding proteins (ABPs), F-actin is assembled into higher-order structures such as bundles and networks that provide mechanical support for the cell and play important roles in numerous cellular processes. Although mechanical properties of F-actin networks have been extensively studied, the underlying mechanisms for network elasticity are not fully understood, in part because different measurements probe different length and force scales. Here, we developed both passive and active microrheology techniques using optical tweezers to estimate the mechanical properties of F-actin networks at a length scale comparable to cells. For the passive approach we tracked the motion of a thermally fluctuating colloidal sphere to estimate the frequency-dependent complex shear modulus of the network. In the active approach, we used an optical trap to oscillate an embedded microsphere and monitored the response in order to obtain network viscoelasticity over a physiologically relevant force range. While both active and passive measurements exhibit similar results at low strain, the F-actin network subject to high strain exhibits non-linear behavior which is analogous to the strain-hardening observed in macroscale measurements. Using confocal and total internal reflection fluorescent microscopy, we also characterize the microstructure of reconstituted F-actin networks in terms of filament length, mesh size and degree of bundling. Finally, we propose a model of network connectivity by investigating the effect of filament length on the mechanical properties and structure. PMID:19883801

  3. A synaptic F-actin network controls otoferlin-dependent exocytosis in auditory inner hair cells

    PubMed Central

    Vincent, Philippe FY; Bouleau, Yohan; Petit, Christine; Dulon, Didier

    2015-01-01

    We show that a cage-shaped F-actin network is essential for maintaining a tight spatial organization of Cav1.3 Ca2+ channels at the synaptic ribbons of auditory inner hair cells. This F-actin network is also found to provide mechanosensitivity to the Cav1.3 channels when varying intracellular hydrostatic pressure. Furthermore, this F-actin mesh network attached to the synaptic ribbons directly influences the efficiency of otoferlin-dependent exocytosis and its sensitivity to intracellular hydrostatic pressure, independently of its action on the Cav1.3 channels. We propose a new mechanistic model for vesicle exocytosis in auditory hair cells where the rate of vesicle recruitment to the ribbons is directly controlled by a synaptic F-actin network and changes in intracellular hydrostatic pressure. DOI: http://dx.doi.org/10.7554/eLife.10988.001 PMID:26568308

  4. Actin kinetics shapes cortical network structure and mechanics

    PubMed Central

    Fritzsche, Marco; Erlenkämper, Christoph; Moeendarbary, Emad; Charras, Guillaume; Kruse, Karsten

    2016-01-01

    The actin cortex of animal cells is the main determinant of cellular mechanics. The continuous turnover of cortical actin filaments enables cells to quickly respond to stimuli. Recent work has shown that most of the cortical actin is generated by only two actin nucleators, the Arp2/3 complex and the formin Diaph1. However, our understanding of their interplay, their kinetics, and the length distribution of the filaments that they nucleate within living cells is poor. Such knowledge is necessary for a thorough comprehension of cellular processes and cell mechanics from basic polymer physics principles. We determined cortical assembly rates in living cells by using single-molecule fluorescence imaging in combination with stochastic simulations. We find that formin-nucleated filaments are, on average, 10 times longer than Arp2/3-nucleated filaments. Although formin-generated filaments represent less than 10% of all actin filaments, mechanical measurements indicate that they are important determinants of cortical elasticity. Tuning the activity of actin nucleators to alter filament length distribution may thus be a mechanism allowing cells to adjust their macroscopic mechanical properties to their physiological needs. PMID:27152338

  5. Fluorescence microscopy techniques for characterizing the microscale mechanical response of entangled actin networks

    NASA Astrophysics Data System (ADS)

    Blair, Savanna; Falzone, Tobias; Robertson-Anderson, Rae

    2015-03-01

    Actin filaments are semiflexible polymers that display complex viscoelastic properties when entangled in networks. In order to characterize the molecular-level physical and mechanical properties of entangled actin networks it is important to know the in-network length distribution and the response of entangled filaments to local forcing. Here we describe two single-molecule microscopy protocols developed to investigate these properties. Using confocal fluorescence microscopy and ImageJ image analysis we have developed a protocol to accurately measure the in-network actin length distribution. To characterize the deformation of actin filaments in response to perturbation, we trap micron size beads embedded in the network with optical tweezers and propagate the beads through the entangled filaments while simultaneously recording images of fluorescent-labeled filaments in the network. A sparse number of labeled filaments dispersed throughout the network allow us to visualize the movement of individual filaments during perturbation. Analysis of images taken during forcing is carried out using a combination of vector mapping and skeletonization techniques to directly reveal the deformation and subsequent relaxation modes induced in entangled actin filaments by microscale strains. We also determine the dependence of deformation modes on the relative filament position relative to the strain.

  6. Novel actin filaments from Bacillus thuringiensis form nanotubules for plasmid DNA segregation

    PubMed Central

    Jiang, Shimin; Narita, Akihiro; Popp, David; Ghoshdastider, Umesh; Lee, Lin Jie; Srinivasan, Ramanujam; Balasubramanian, Mohan K.; Oda, Toshiro; Koh, Fujiet; Larsson, Mårten; Robinson, Robert C.

    2016-01-01

    Here we report the discovery of a bacterial DNA-segregating actin-like protein (BtParM) from Bacillus thuringiensis, which forms novel antiparallel, two-stranded, supercoiled, nonpolar helical filaments, as determined by electron microscopy. The BtParM filament features of supercoiling and forming antiparallel double-strands are unique within the actin fold superfamily, and entirely different to the straight, double-stranded, polar helical filaments of all other known ParMs and of eukaryotic F-actin. The BtParM polymers show dynamic assembly and subsequent disassembly in the presence of ATP. BtParR, the DNA-BtParM linking protein, stimulated ATP hydrolysis/phosphate release by BtParM and paired two supercoiled BtParM filaments to form a cylinder, comprised of four strands with inner and outer diameters of 57 Å and 145 Å, respectively. Thus, in this prokaryote, the actin fold has evolved to produce a filament system with comparable features to the eukaryotic chromosome-segregating microtubule. PMID:26873105

  7. Shortening actin filaments cause force generation in actomyosin network to change from contractile to extensile

    NASA Astrophysics Data System (ADS)

    Kumar, Nitin; Gardel, Margaret

    Motor proteins in conjunction with filamentous proteins convert biochemical energy into mechanical energy which serves a number of cellular processes including cell motility, force generation and intracellular cargo transport. In-vitro experiments suggest that the forces generated by kinesin motors on microtubule bundles are extensile in nature whereas myosin motors on actin filaments are contractile. It is not clear how qualitatively similar systems can show completely different behaviors in terms of the nature of force generation. In order to answer this question, we carry out in vitro experiments where we form quasi 2D filamentous actomyosin networks and vary the length of actin filaments by adding capping protein. We show that when filaments are much shorter than their typical persistence length (approximately 10 microns), the forces generated are extensile and we see active nematic defect propagation, as seen in the microtubule-kinesin system. Based on this observation, we claim that the rigidity of rods plays an important role in dictating the nature of force generation in such systems. In order to understand this transition, we selectively label individual filaments and find that longer filaments show considerable bending and buckling, making them difficult to slide and extend along their length.

  8. Molecular origin of strain softening in cross-linked F-actin networks

    NASA Astrophysics Data System (ADS)

    Lee, Hyungsuk; Ferrer, Jorge M.; Lang, Matthew J.; Kamm, Roger D.

    2010-07-01

    Two types of measurement are presented that relate molecular events to macroscopic behavior of F-actin networks. First, shear modulus is measured by oscillating an embedded microbead. Second, a microbead is translated at constant rate and transitions in the resisting force are observed. The loading rate dependence of the force at the transitions is similar to that of the molecular unbinding force, suggesting that they share a common origin. Reversibility tests of shear modulus provide further evidence that strain softening of F-actin networks is caused by force-induced rupture of cross-links.

  9. Polymorphism of highly cross-linked F-actin networks: Probing multiple length scales

    NASA Astrophysics Data System (ADS)

    Nguyen, Lam T.; Hirst, Linda S.

    2011-03-01

    The assembly properties of F-actin filaments in the presence of different biological cross-linker concentrations and types have been investigated using a combined approach of fluorescence confocal microscopy and coarse-grained molecular dynamics simulation. In particular for highly cross-linked regimes, new network morphologies are observed. Complex network formation and the details of the resulting structure are strongly dependent on the ratio of cross-linkers to actin monomers and cross-linker shape but only weakly dependent on overall actin concentration and filament length. The work presented here may help to provide some fundamental understanding of how excessive cross-linkers interact with the actin filament solution, creating different structures in the cell under high cross-linker concentrations. F-actin is not only of biological importance but also, as an example of a semiflexible polymer, has attracted significant interest in its physical behavior. In combination with different cross-linkers semiflexible filaments may provide new routes to bio-materials development and act as the inspiration for new hierarchical network-based materials.

  10. SHIP-2 forms a tetrameric complex with filamin, actin, and GPIb-IX-V: localization of SHIP-2 to the activated platelet actin cytoskeleton.

    PubMed

    Dyson, Jennifer M; Munday, Adam D; Kong, Anne M; Huysmans, Richard D; Matzaris, Maria; Layton, Meredith J; Nandurkar, Harshal H; Berndt, Michael C; Mitchell, Christina A

    2003-08-01

    The platelet receptor for the von Willebrand factor (VWF) glycoprotein Ib-IX-V (GPIb-IX-V) complex mediates platelet adhesion at sites of vascular injury. The cytoplasmic tail of the GPIbalpha subunit interacts with the actin-binding protein, filamin, anchoring the receptor in the cytoskeleton. In motile cells, the second messenger phosphatidylinositol 3,4,5 trisphosphate (PtdIns(3,4,5)P3) induces submembraneous actin remodeling. The inositol polyphosphate 5-phosphatase, Src homology 2 domain-containing inositol polyphosphate 5-phosphatase-2 (SHIP-2), hydrolyzes PtdIns(3,4,5)P3 forming phosphatidylinositol 3,4 bisphosphate (PtdIns(3,4)P2) and regulates membrane ruffling via complex formation with filamin. In this study we investigate the intracellular location and association of SHIP-2 with filamin, actin, and the GPIb-IX-V complex in platelets. Immunoprecipitation of SHIP-2 from the Triton-soluble fraction of unstimulated platelets demonstrated association between SHIP-2, filamin, actin, and GPIb-IX-V. SHIP-2 associated with filamin or GPIb-IX-V was active and demonstrated PtdIns(3,4,5)P3 5-phosphatase activity. Following thrombin or VWF-induced platelet activation, detection of the SHIP-2, filamin, and receptor complex decreased in the Triton-soluble fraction, although in control studies the level of SHIP-2, filamin, or GPIb-IX-V immunoprecipitated by their respective antibodies did not change following platelet activation. In activated platelets spreading on a VWF matrix, SHIP-2 localized intensely with actin at the central actin ring and colocalized with actin and filamin at filopodia and lamellipodia. In spread platelets, GPIb-IX-V localized to the center of the platelet and showed little colocalization with filamin at the plasma membrane. These studies demonstrate a functionally active complex between SHIP-2, filamin, actin, and GPIb-IX-V that may orchestrate the localized hydrolysis of PtdIns(3,4,5)P3 and thereby regulate cortical and submembraneous actin.

  11. Action of the mechanical disruption of the actin network on the gravisensitivity of the root statocyte

    NASA Astrophysics Data System (ADS)

    Lefranc, A.; Jeune, B.; Driss-Ecole, D.; Perbal, G.

    The effects of the mechanical disruption of the thin actin network of statocytes on gravisensitivity have been studied on lentil roots. Seedling roots were first inverted for 7 min (root tip upward) and then placed in the downward (normal) position for 7 min before gravitropic stimulation in the horizontal position. The period of inversion allowed the amyloplasts to move from the distal part to the proximal part of the statocyte, but did not fully sediment. When the roots were returned to the tip down position, the amyloplasts moved toward the distal part, but also did not completely sediment by the time the roots were placed horizontally. Thus, in these roots the amyloplasts could be still moving toward the distal wall after they had been replaced in the normal position and the actin network should not be fully restored. Gravisensitivity was estimated by the analysis of the dose-response curves of vertical and treated (inverted and returned to downward position) roots. The only effect, which has been observed on treated roots, was a delay of graviresponse for about 1 min. Our interpretation of this result is that in vertical roots the amyloplasts can exert tensions in the actin network that are directly transmitted to mechanoreceptors located in the plasma membrane. In roots with a partially disrupted actin network, a delay of 1 min is necessary for the amyloplasts to activate mechanoreceptors.

  12. Beam forming network

    NASA Technical Reports Server (NTRS)

    Cramer, P. W., Jr. (Inventor)

    1985-01-01

    The network, which is connected to a layer of 134 feed elements that transmit and receive microwaves, consists of a pair of circuit boards parallel to the feed element layer. One of the two boards has 87 dividers that each divide a signal to be transmitted into seven portions, and the other board has 134 combiners that each collect seven transmit signal portions and deliver the sum to one of the feed elements. A similar arrangement is used to handle received signals. The large number of interconnections are made by printed circuit conductors radiating from each of the numerous dividers and combiners, and by providing interconnection pins that interconnect the ends of pairs of conductors lying on the two boards. The printed circuit conductors extend in undulating paths that provide maximum separation of conductors to minimize crosstalk.

  13. Isolation and characterization of a regulated form of actin depolymerizing factor.

    PubMed

    Morgan, T E; Lockerbie, R O; Minamide, L S; Browning, M D; Bamburg, J R

    1993-08-01

    Actin depolymerizing factor (ADF) is an 18.5-kD protein with pH-dependent reciprocal F-actin binding and severing/depolymerizing activities. We previously showed developing muscle down-regulates ADF (J. R. Bamburg and D. Bray. 1987. J. Cell Biol. 105: 2817-2825). To further study this process, we examined ADF expression in chick myocytes cultured in vitro. Surprisingly, ADF immunoreactivity increases during the first 7-10 d in culture. This increase is due to the presence of a new ADF species with higher relative molecular weight which reacts identically to brain ADF with antisera raised against either brain ADF or recombinant ADF. We have purified both ADF isoforms from myocytes and have shown by peptide mapping and partial sequence analysis that the new isoform is structurally related to ADF. Immunoprecipitation of both isoforms from extracts of cells prelabeled with [32P]orthophosphate showed that the new isoform is radiolabeled, predominantly on a serine residue, and hence is called pADF. pADF can be converted into a form which comigrates with ADF on 1-D and 2-D gels by treatment with alkaline phosphatase. pADF has been quantified in a number of cells and tissues where it is present from approximately 18% to 150% of the amount of unphosphorylated ADF. pADF, unlike ADF, does not bind to G-actin, or affect the rate or extent of actin assembly. Four ubiquitous protein kinases failed to phosphorylate ADF in vitro suggesting that ADF phosphorylation in vivo is catalyzed by a more specific kinase. We conclude that the ability to regulate ADF activity is important to muscle development since myocytes have both pre- and posttranslational mechanisms for regulating ADF activity. The latter mechanism is apparently a general one for cell regulation of ADF activity.

  14. Isolation and characterization of a regulated form of actin depolymerizing factor

    PubMed Central

    1993-01-01

    Actin depolymerizing factor (ADF) is an 18.5-kD protein with pH- dependent reciprocal F-actin binding and severing/depolymerizing activities. We previously showed developing muscle down-regulates ADF (J. R. Bamburg and D. Bray. 1987. J. Cell Biol. 105: 2817-2825). To further study this process, we examined ADF expression in chick myocytes cultured in vitro. Surprisingly, ADF immunoreactivity increases during the first 7-10 d in culture. This increase is due to the presence of a new ADF species with higher relative molecular weight which reacts identically to brain ADF with antisera raised against either brain ADF or recombinant ADF. We have purified both ADF isoforms from myocytes and have shown by peptide mapping and partial sequence analysis that the new isoform is structurally related to ADF. Immunoprecipitation of both isoforms from extracts of cells prelabeled with [32P]orthophosphate showed that the new isoform is radiolabeled, predominantly on a serine residue, and hence is called pADF. pADF can be converted into a form which comigrates with ADF on 1-D and 2-D gels by treatment with alkaline phosphatase. pADF has been quantified in a number of cells and tissues where it is present from approximately 18% to 150% of the amount of unphosphorylated ADF. pADF, unlike ADF, does not bind to G-actin, or affect the rate or extent of actin assembly. Four ubiquitous protein kinases failed to phosphorylate ADF in vitro suggesting that ADF phosphorylation in vivo is catalyzed by a more specific kinase. We conclude that the ability to regulate ADF activity is important to muscle development since myocytes have both pre- and posttranslational mechanisms for regulating ADF activity. The latter mechanism is apparently a general one for cell regulation of ADF activity. PMID:7687605

  15. Critical forces for actin filament buckling and force transmission influence transport in actomyosin networks

    NASA Astrophysics Data System (ADS)

    Stam, Samantha; Gardel, Margaret

    Viscoelastic networks of biopolymers coordinate the motion of intracellular objects during transport. These networks have nonlinear mechanical properties due to events such as filament buckling or breaking of cross-links. The influence of such nonlinear properties on the time and length scales of transport is not understood. Here, we use in vitro networks of actin and the motor protein myosin II to clarify how intracellular forces regulate active diffusion. We observe two transitions in the mean-squared displacement of cross-linked actin with increasing motor concentration. The first is a sharp transition from initially subdiffusive to diffusive-like motion that requires filament buckling but does not cause net contraction of the network. Further increase of the motor density produces a second transition to network rupture and ballistic actin transport. This corresponds with an increase in the correlation of motion and thus may be caused when forces propagate far enough for global motion. We conclude that filament buckling and overall network contraction require different amounts of force and produce distinct transport properties. These nonlinear transitions may act as mechanical switches that can be turned on to produce observed motion within cells.

  16. β-Spectrin regulates the hippo signaling pathway and modulates the basal actin network.

    PubMed

    Wong, Kenneth Kin Lam; Li, Wenyang; An, Yanru; Duan, Yangyang; Li, Zhuoheng; Kang, Yibin; Yan, Yan

    2015-03-01

    Emerging evidence suggests functional regulation of the Hippo pathway by the actin cytoskeleton, although the detailed molecular mechanism remains incomplete. In a genetic screen, we identified a requirement for β-Spectrin in the posterior follicle cells for the oocyte repolarization process during Drosophila mid-oogenesis. β-spectrin mutations lead to loss of Hippo signaling activity in the follicle cells. A similar reduction of Hippo signaling activity was observed after β-Spectrin knockdown in mammalian cells. We further demonstrated that β-spectrin mutations disrupt the basal actin network in follicle cells. The abnormal stress fiber-like actin structure on the basal side of follicle cells provides a likely link between the β-spectrin mutations and the loss of the Hippo signaling activity phenotype.

  17. Probe surface chemistry dependence and local polymer network structure in F-actin microrheology.

    PubMed

    Chae, Byeong Seok; Furst, Eric M

    2005-03-29

    We investigate the dependence of F-actin microrheology on probe surface chemistry using diffusing wave spectroscopy. Polystyrene probe particles exhibit subdiffusive mean-squared displacements, where Deltar(2)(t) approximately t(0.77)(+/-)(0.03) consistent with previous experiments and theory. However, polystyrene probes preadsorbed with bovine serum albumin (BSA) interact weakly with the surrounding polymer network and exhibit a scaling exponent similar to pure diffusion Deltar(2)(t) approximately t, which decreases as particle size and actin concentration increases. Using models of particle diffusion in locally heterogeneous viscoelastic microenvironments, we find that the microrheological response of BSA-treated particles is consistent with the formation of a polymer-depleted shell surrounding the probes. The shell thickness scales with particle size but not polymer concentration. These results suggest that the depletion is caused by exclusion or orientation of actin filaments near probes due to their long length and rigidity.

  18. Prestressed F-actin networks cross-linked by hinged filamins replicate mechanical properties of cells

    NASA Astrophysics Data System (ADS)

    Gardel, M. L.; Nakamura, F.; Hartwig, J. H.; Crocker, J. C.; Stossel, T. P.; Weitz, D. A.

    2006-02-01

    We show that actin filaments, shortened to physiological lengths by gelsolin and cross-linked with recombinant human filamins (FLNs), exhibit dynamic elastic properties similar to those reported for live cells. To achieve elasticity values of comparable magnitude to those of cells, the in vitro network must be subjected to external prestress, which directly controls network elasticity. A molecular requirement for the strain-related behavior at physiological conditionsis a flexible hinge found in FLNa and some FLNb molecules. Basic physical properties of the in vitro filamin-F-actin network replicate the essential mechanical properties of living cells. This physical behavior could accommodate passive deformation and internal organelle trafficking at low strains yet resist externally or internally generated high shear forces. cytoskeleton | cell mechanics | nonlinear rheology

  19. Mesoscopic model for filament orientation in growing actin networks: the role of obstacle geometry

    NASA Astrophysics Data System (ADS)

    Weichsel, Julian; Schwarz, Ulrich S.

    2013-03-01

    Propulsion by growing actin networks is a universal mechanism used in many different biological systems, ranging from the sheet-like lamellipodium of crawling animal cells to the actin comet tails induced by certain bacteria and viruses in order to move within their host cells. Although the core molecular machinery for actin network growth is well preserved in all of these cases, the geometry of the propelled obstacle varies considerably. During recent years, filament orientation distribution has emerged as an important observable characterizing the structure and dynamical state of the growing network. Here we derive several continuum equations for the orientation distribution of filaments growing behind stiff obstacles of various shapes and validate the predicted steady state orientation patterns by stochastic computer simulations based on discrete filaments. We use an ordinary differential equation approach to demonstrate that for flat obstacles of finite size, two fundamentally different orientation patterns peaked at either ±35° or +70°/0°/ - 70° exhibit mutually exclusive stability, in agreement with earlier results for flat obstacles of very large lateral extension. We calculate and validate phase diagrams as a function of model parameters and show how this approach can be extended to obstacles with piecewise straight contours. For curved obstacles, we arrive at a partial differential equation in the continuum limit, which again is in good agreement with the computer simulations. In all cases, we can identify the same two fundamentally different orientation patterns, but only within an appropriate reference frame, which is adjusted to the local orientation of the obstacle contour. Our results suggest that two fundamentally different network architectures compete with each other in growing actin networks, irrespective of obstacle geometry, and clarify how simulated and electron tomography data have to be analyzed for non-flat obstacle geometries.

  20. Branching influences force-velocity curves and length fluctuations in actin networks.

    PubMed

    Hansda, Deepak Kumar; Sen, Shamik; Padinhateeri, Ranjith

    2014-12-01

    We investigate collective dynamics of branched actin networks growing against a rigid movable wall constrained by a resistive force. Computing the force velocity relations, we show that the stall force of such networks depends not only on the average number of filaments touching the wall, but also on the amount of fluctuation of the leading edge of the network. These differences arise due to differences in the network architecture, namely, distance between two adjacent branching points and the initial distance of the starting filament from the wall, with their relative magnitudes influencing the nature of the force velocity curves (convex versus concave). We also show that the introduction of branching results in nonmonotonic diffusion constant, a quantity that measures the growth in length fluctuation of the leading edge of the network, as a function of externally applied force. Together our results demonstrate how the collective dynamics of a branched network differs from that of a parallel filament network.

  1. Ena/VASP Enabled is a highly processive actin polymerase tailored to self-assemble parallel-bundled F-actin networks with Fascin.

    PubMed

    Winkelman, Jonathan D; Bilancia, Colleen G; Peifer, Mark; Kovar, David R

    2014-03-18

    Filopodia are exploratory finger-like projections composed of multiple long, straight, parallel-bundled actin filaments that protrude from the leading edge of migrating cells. Drosophila melanogaster Enabled (Ena) is a member of the Ena/vasodilator-stimulated phosphoprotein protein family, which facilitates the assembly of filopodial actin filaments that are bundled by Fascin. However, the mechanism by which Ena and Fascin promote the assembly of uniformly thick F-actin bundles that are capable of producing coordinated protrusive forces without buckling is not well understood. We used multicolor evanescent wave fluorescence microscopy imaging to follow individual Ena molecules on both single and Fascin-bundled F-actin in vitro. Individual Ena tetramers increase the elongation rate approximately two- to threefold and inhibit capping protein by remaining processively associated with the barbed end for an average of ∼10 s in solution, for ∼60 s when immobilized on a surface, and for ∼110 s when multiple Ena tetramers are clustered on a surface. Ena also can gather and simultaneously elongate multiple barbed ends. Collectively, these properties could facilitate the recruitment of Fascin and initiate filopodia formation. Remarkably, we found that Ena's actin-assembly properties are tunable on Fascin-bundled filaments, facilitating the formation of filopodia-like F-actin networks without tapered barbed ends. Ena-associated trailing barbed ends in Fascin-bundled actin filaments have approximately twofold more frequent and approximately fivefold longer processive runs, allowing them to catch up with leading barbed ends efficiently. Therefore, Fascin and Ena cooperate to extend and maintain robust filopodia of uniform thickness with aligned barbed ends by a unique mechanistic cycle.

  2. Action of the mechanical disruption of the actin network on the gravisensitivity of the root statocyte

    NASA Astrophysics Data System (ADS)

    Lefranc, A.; Jeune, B.; Driss-Ecole, D.; Perbal, G.

    Recent analyses on root gravisensing have lead to propose a model of action of statoliths in which mechanoreceptors are located in the plasma membrane. These mechanoreceptors should be connected together by bridging filaments as well as to the actin network. In order to test this hypothesis, we have subjected the actin network to partial disruption caused by the sedimentation of amyloplasts. Seedling roots were first inverted for 7 min and replaced in the upright position for 7 min before gravitropic stimulation. The period of inversion allowed the amyloplasts to move from the distal part to the proximal part of the statocyte, but not to reach a complete sedimentation. The same held true when the root were placed back in the upright position. In these conditions, to sediment the amyloplasts had to disrupt the actin network at least partially and these organelles were moving in the direction of the root tip just before gravistimulus. Gravisensitivity was estimated by the analysis of the dose-response curves of control and treated (inverted and replaced in the vertical position) roots. The only effect which has been observed on treated roots is a delay of about 1 to 2 min in their response to gravistimulus. This delay could correspond to the time which is necessary for the amyloplasts to move toward the lower longitudinal wall This result is in agreement with the hypothesis that with a partially disrupted actin network the amyloplasts have to sediment on the bridging filaments which connect the mechanoreceptors in order to trigger the transduction chain. of the gravitropic reaction.

  3. The spatial response of nonlinear strain propagation in response to actively driven microspheres through entangled actin networks

    NASA Astrophysics Data System (ADS)

    Falzone, Tobias; Blair, Savanna; Robertson-Anderson, Rae

    2015-03-01

    The semiflexible biopolymer actin, a ubiquitous component of nearly all biological organisms, plays an important role in many mechanically-driven processes such as muscle contraction, cancer invasion and cell motility. As such, entangled actin networks, which possess unique and complex viscoelastic properties, have been the subject of much theoretical and experimental work. However, due to this viscoelastic complexity, much is still unknown regarding the correlation of the applied stress on actin networks to the induced filament strain at the molecular and micro scale. Here, we use simultaneous optical trapping and fluorescence microscopy to characterize the link between applied microscopic forces and strain propagation as a function of strain rate and concentration. Specifically, we track fiduciary markers on entangled actin filaments before, during and after actively driving embedded microspheres through the network. These measurements provide much needed insight into the molecular-level dynamics connecting stress and strain in semiflexible polymer networks.

  4. Competition for actin between two distinct F-actin networks defines a bistable switch for cell polarization.

    PubMed

    Lomakin, Alexis J; Lee, Kun-Chun; Han, Sangyoon J; Bui, Duyen A; Davidson, Michael; Mogilner, Alex; Danuser, Gaudenz

    2015-11-01

    Symmetry-breaking polarization enables functional plasticity of cells and tissues and is yet not well understood. Here we show that epithelial cells, hard-wired to maintain a static morphology and to preserve tissue organization, can spontaneously switch to a migratory polarized phenotype after relaxation of the actomyosin cytoskeleton. We find that myosin II engages actin in the formation of cortical actomyosin bundles and thus makes it unavailable for deployment in the process of dendritic growth normally driving cell motility. Under low-contractility regimes, epithelial cells polarize in a front-back manner owing to the emergence of actin retrograde flows powered by dendritic polymerization of actin. Coupled to cell movement, the flows transport myosin II from the front to the back of the cell, where the motor locally 'locks' actin in contractile bundles. This polarization mechanism could be employed by embryonic and cancer epithelial cells in microenvironments where high-contractility-driven cell motion is inefficient.

  5. AKAP220 manages apical actin networks that coordinate aquaporin-2 location and renal water reabsorption.

    PubMed

    Whiting, Jennifer L; Ogier, Leah; Forbush, Katherine A; Bucko, Paula; Gopalan, Janani; Seternes, Ole-Morten; Langeberg, Lorene K; Scott, John D

    2016-07-26

    Filtration through the kidney eliminates toxins, manages electrolyte balance, and controls water homeostasis. Reabsorption of water from the luminal fluid of the nephron occurs through aquaporin-2 (AQP2) water pores in principal cells that line the kidney-collecting duct. This vital process is impeded by formation of an "actin barrier" that obstructs the passive transit of AQP2 to the plasma membrane. Bidirectional control of AQP2 trafficking is managed by hormones and signaling enzymes. We have discovered that vasopressin-independent facets of this homeostatic mechanism are under the control of A-Kinase Anchoring Protein 220 (AKAP220; product of the Akap11 gene). CRISPR/Cas9 gene editing and imaging approaches show that loss of AKAP220 disrupts apical actin networks in organoid cultures. Similar defects are evident in tissue sections from AKAP220-KO mice. Biochemical analysis of AKAP220-null kidney extracts detected reduced levels of active RhoA GTPase, a well-known modulator of the actin cytoskeleton. Fluorescent imaging of kidney sections from these genetically modified mice revealed that RhoA and AQP2 accumulate at the apical surface of the collecting duct. Consequently, these animals are unable to appropriately dilute urine in response to overhydration. We propose that membrane-proximal signaling complexes constrained by AKAP220 impact the actin barrier dynamics and AQP2 trafficking to ensure water homeostasis. PMID:27402760

  6. Viscoelasticity of entangled actin networks studied by long-pulse magnetic bead microrheometry.

    PubMed

    Uhde, Jorg; Ter-Oganessian, Nikita; Pink, David A; Sackmann, Erich; Boulbitch, Alexei

    2005-12-01

    We studied the viscoelastic response of entangled actin networks using embedded microbeads driven by force pulses with amplitudes in the range from 3 to 120 pN and durations up to 60 s. We distinguished three regimes in the time dependence of the compliance J(t) of the network. These were characterized by specific power laws J(t) approximately t(alpha)(i) (i=1, 2, 3). In the short-time regime (i=1), we observed the exponent alpha1 approximately 0.75. In the long-time regime (i=3), we find that alpha3 approximately 1. For the intermediate-time interval (i=2), we observed a novel dynamic regime: for all actin concentrations and all applied forces, it was characterized by the exponent alpha3 approximately 0.5. In both regimes i=2 and i=3, the compliance depended upon the actin concentration c, such as J approximately c(-gamma)(i) with gamma2 approximately 1.1 and gamma 3 approximately 1.4. Using these results, we calculated the shear modulus in the frequency domain and found that the intermediate-time regime in the t domain corresponds to its plateau behavior. PMID:16485983

  7. Mechanical output of myosin II motors is regulated by myosin filament size and actin network mechanics

    NASA Astrophysics Data System (ADS)

    Stam, Samantha; Alberts, Jonathan; Gardel, Margaret; Munro, Edwin

    2013-03-01

    The interactions of bipolar myosin II filaments with actin arrays are a predominate means of generating forces in numerous physiological processes including muscle contraction and cell migration. However, how the spatiotemporal regulation of these forces depends on motor mechanochemistry, bipolar filament size, and local actin mechanics is unknown. Here, we simulate myosin II motors with an agent-based model in which the motors have been benchmarked against experimental measurements. Force generation occurs in two distinct regimes characterized either by stable tension maintenance or by stochastic buildup and release; transitions between these regimes occur by changes to duty ratio and myosin filament size. The time required for building force to stall scales inversely with the stiffness of a network and the actin gliding speed of a motor. Finally, myosin motors are predicted to contract a network toward stiffer regions, which is consistent with experimental observations. Our representation of myosin motors can be used to understand how their mechanical and biochemical properties influence their observed behavior in a variety of in vitro and in vivo contexts.

  8. Membrane Tension Acts Through PLD2 and mTORC2 to Limit Actin Network Assembly During Neutrophil Migration

    PubMed Central

    Diz-Muñoz, Alba; Thurley, Kevin; Chintamen, Sana; Altschuler, Steven J.; Fletcher, Daniel A.; Weiner, Orion D.

    2016-01-01

    For efficient polarity and migration, cells need to regulate the magnitude and spatial distribution of actin assembly. This process is coordinated by reciprocal interactions between the actin cytoskeleton and mechanical forces. Actin polymerization-based protrusion increases tension in the plasma membrane, which in turn acts as a long-range inhibitor of actin assembly. These interactions form a negative feedback circuit that limits the magnitude of membrane tension in neutrophils and prevents expansion of the existing front and the formation of secondary fronts. It has been suggested that the plasma membrane directly inhibits actin assembly by serving as a physical barrier that opposes protrusion. Here we show that efficient control of actin polymerization-based protrusion requires an additional mechanosensory feedback cascade that indirectly links membrane tension with actin assembly. Specifically, elevated membrane tension acts through phospholipase D2 (PLD2) and the mammalian target of rapamycin complex 2 (mTORC2) to limit actin nucleation. In the absence of this pathway, neutrophils exhibit larger leading edges, higher membrane tension, and profoundly defective chemotaxis. Mathematical modeling suggests roles for both the direct (mechanical) and indirect (biochemical via PLD2 and mTORC2) feedback loops in organizing cell polarity and motility—the indirect loop is better suited to enable competition between fronts, whereas the direct loop helps spatially organize actin nucleation for efficient leading edge formation and cell movement. This circuit is essential for polarity, motility, and the control of membrane tension. PMID:27280401

  9. Membrane Tension Acts Through PLD2 and mTORC2 to Limit Actin Network Assembly During Neutrophil Migration.

    PubMed

    Diz-Muñoz, Alba; Thurley, Kevin; Chintamen, Sana; Altschuler, Steven J; Wu, Lani F; Fletcher, Daniel A; Weiner, Orion D

    2016-06-01

    For efficient polarity and migration, cells need to regulate the magnitude and spatial distribution of actin assembly. This process is coordinated by reciprocal interactions between the actin cytoskeleton and mechanical forces. Actin polymerization-based protrusion increases tension in the plasma membrane, which in turn acts as a long-range inhibitor of actin assembly. These interactions form a negative feedback circuit that limits the magnitude of membrane tension in neutrophils and prevents expansion of the existing front and the formation of secondary fronts. It has been suggested that the plasma membrane directly inhibits actin assembly by serving as a physical barrier that opposes protrusion. Here we show that efficient control of actin polymerization-based protrusion requires an additional mechanosensory feedback cascade that indirectly links membrane tension with actin assembly. Specifically, elevated membrane tension acts through phospholipase D2 (PLD2) and the mammalian target of rapamycin complex 2 (mTORC2) to limit actin nucleation. In the absence of this pathway, neutrophils exhibit larger leading edges, higher membrane tension, and profoundly defective chemotaxis. Mathematical modeling suggests roles for both the direct (mechanical) and indirect (biochemical via PLD2 and mTORC2) feedback loops in organizing cell polarity and motility-the indirect loop is better suited to enable competition between fronts, whereas the direct loop helps spatially organize actin nucleation for efficient leading edge formation and cell movement. This circuit is essential for polarity, motility, and the control of membrane tension.

  10. Microstructural model for cyclic hardening in F-actin networks crosslinked by α-actinin

    NASA Astrophysics Data System (ADS)

    López-Menéndez, Horacio; Rodríguez, José Félix

    2016-06-01

    The rheology of F-actin networks has attracted a great attention during the last years. In order to gain a complete understanding of the rheological properties of these novel materials, it is necessary the study in a large deformations regime to alter their internal structure. In this sense, Schmoller et al. (2010) showed that the reconstituted networks of F-actin crosslinked with α-actinin unexpectedly harden when they are subjected to a cyclical shear. This observation contradicts the expected Mullins effect observed in most soft materials, such as rubber and living tissues, where a pronounced softening is observed when they are cyclically deformed. We think that the key to understand this stunning effect is the gelation process. To define it, the most relevant constituents are the chemical crosslinks - α-actinin -, the physical crosslinks - introduced by the entanglement of the semiflexible network - and the interaction between them. As a consequence of this interaction, a pre-stressed network emerges and introduces a feedback effect, where the pre-stress also regulates the adhesion energy of the α-actinin, setting the structure in a metastable reference configuration. Therefore, the external loads and the evolvement of the trapped stress drive the microstructural changes during the cyclic loading protocol. In this work, we propose a micromechanical model into the framework of nonlinear continuum mechanics. The mechanics of the F-actin filaments is modelled using the wormlike chain model for semiflexible filaments and the gelation process is modelled as mesoscale dynamics for the α-actinin and physical crosslink. The model has been validated with reported experimental results.

  11. Stress Enhanced Gelation in α-Actinin-4 Cross-linked Actin Networks

    NASA Astrophysics Data System (ADS)

    Yao, Norman; Broedersz, Chase; Depken, Martin; Becker, Daniel; Pollak, Martin; Mackintosh, Frederick; Weitz, David

    2012-02-01

    A hallmark of biopolymer networks is their exquisite sensitivity to stress, demonstrated for example, by pronounced nonlinear elastic stiffening. Typically, they also yield under increased static load, providing a mechanism to achieve fluid-like behavior. In this talk, I will demonstrate an unexpected dynamical behavior in biopolymer networks consisting of F-actin cross-linked by a physiological actin binding protein, α-Actinin-4. Applied stress actually enhances gelation of these networks by delaying the onset of structural relaxation and network flow, thereby extending the regime of solid-like behavior to much lower frequencies. By using human kidney disease-associated mutant cross-linkers with varying binding affinities, we propose a molecular origin for this stress-enhanced gelation: It arises from the increased binding affinity of the cross-linker under load, characteristic of catch-bond-like behavior. This property may have important biological implications for intracellular mechanics, representing as it does a qualitatively new class of material behavior.

  12. STAR syndrome-associated CDK10/Cyclin M regulates actin network architecture and ciliogenesis.

    PubMed

    Guen, Vincent J; Gamble, Carly; Perez, Dahlia E; Bourassa, Sylvie; Zappel, Hildegard; Gärtner, Jutta; Lees, Jacqueline A; Colas, Pierre

    2016-01-01

    CDK10/CycM is a protein kinase deficient in STAR (toe Syndactyly, Telecanthus and Anogenital and Renal malformations) syndrome, which results from mutations in the X-linked FAM58A gene encoding Cyclin M. The biological functions of CDK10/CycM and etiology of STAR syndrome are poorly understood. Here, we report that deficiency of CDK10/Cyclin M promotes assembly and elongation of primary cilia. We establish that this reflects a key role for CDK10/Cyclin M in regulation of actin network organization, which is known to govern ciliogenesis. In an unbiased screen, we identified the RhoA-associated kinase PKN2 as a CDK10/CycM phosphorylation substrate. We establish that PKN2 is a bone fide regulator of ciliogenesis, acting in a similar manner to CDK10/CycM. We discovered that CDK10/Cyclin M binds and phosphorylates PKN2 on threonines 121 and 124, within PKN2's core RhoA-binding domain. Furthermore, we demonstrate that deficiencies in CDK10/CycM or PKN2, or expression of a non-phosphorylatable version of PKN2, destabilize both the RhoA protein and the actin network architecture. Importantly, we established that ectopic expression of RhoA is sufficient to override the induction of ciliogenesis resulting from CDK10/CycM knockdown, indicating that RhoA regulation is critical for CDK10/CycM's negative effect on ciliogenesis. Finally, we show that kidney sections from a STAR patient display dilated renal tubules and abnormal, elongated cilia. Altogether, these results reveal CDK10/CycM as a key regulator of actin dynamics and a suppressor of ciliogenesis through phosphorylation of PKN2 and promotion of RhoA signaling. Moreover, they suggest that STAR syndrome is a ciliopathy.

  13. A variational approach to the growth dynamics of pre-stressed actin filament networks.

    PubMed

    John, Karin; Stöter, Thomas; Misbah, Chaouqi

    2016-09-21

    In order to model the growth dynamics of elastic bodies with residual stresses a thermodynamically consistent approach is needed such that the cross-coupling between growth and mechanics can be correctly described. In the present work we apply a variational principle to the formulation of the interfacial growth dynamics of dendritic actin filament networks growing from biomimetic beads, an experimentally well studied system, where the buildup of residual stresses governs the network growth. We first introduce the material model for the network via a strain energy density for an isotropic weakly nonlinear elastic material and then derive consistently from this model the dynamic equations for the interfaces, i.e. for a polymerizing internal interface in contact with the bead and a depolymerizing external interface directed towards the solvent. We show that (i) this approach automatically preserves thermodynamic symmetry-properties, which is not the case for the often cited 'rubber-band-model' (Sekimoto et al 2004 Eur. Phys. J. E 13 247-59, Plastino et al 2004 Eur. Biophys. J. 33 310-20) and (ii) leads to a robust morphological instability of the treadmilling network interfaces. The nature of the instability depends on the interplay of the two dynamic interfaces. Depending on the biochemical conditions the network envelope evolves into a comet-like shape (i.e. the actin envelope thins out at one side and thickens on the opposite side of the bead) via a varicose instability or it breaks the symmetry via higher order zigzag modes. We conclude that morphological instabilities due to mechano-chemical coupling mechanisms and the presences of mechancial pre-stresses can play a major role in locally organizing the cytoskeleton of living cells. PMID:27420637

  14. A variational approach to the growth dynamics of pre-stressed actin filament networks

    NASA Astrophysics Data System (ADS)

    John, Karin; Stöter, Thomas; Misbah, Chaouqi

    2016-09-01

    In order to model the growth dynamics of elastic bodies with residual stresses a thermodynamically consistent approach is needed such that the cross-coupling between growth and mechanics can be correctly described. In the present work we apply a variational principle to the formulation of the interfacial growth dynamics of dendritic actin filament networks growing from biomimetic beads, an experimentally well studied system, where the buildup of residual stresses governs the network growth. We first introduce the material model for the network via a strain energy density for an isotropic weakly nonlinear elastic material and then derive consistently from this model the dynamic equations for the interfaces, i.e. for a polymerizing internal interface in contact with the bead and a depolymerizing external interface directed towards the solvent. We show that (i) this approach automatically preserves thermodynamic symmetry-properties, which is not the case for the often cited ‘rubber-band-model’ (Sekimoto et al 2004 Eur. Phys. J. E 13 247–59, Plastino et al 2004 Eur. Biophys. J. 33 310–20) and (ii) leads to a robust morphological instability of the treadmilling network interfaces. The nature of the instability depends on the interplay of the two dynamic interfaces. Depending on the biochemical conditions the network envelope evolves into a comet-like shape (i.e. the actin envelope thins out at one side and thickens on the opposite side of the bead) via a varicose instability or it breaks the symmetry via higher order zigzag modes. We conclude that morphological instabilities due to mechano-chemical coupling mechanisms and the presences of mechancial pre-stresses can play a major role in locally organizing the cytoskeleton of living cells.

  15. A variational approach to the growth dynamics of pre-stressed actin filament networks

    NASA Astrophysics Data System (ADS)

    John, Karin; Stöter, Thomas; Misbah, Chaouqi

    2016-09-01

    In order to model the growth dynamics of elastic bodies with residual stresses a thermodynamically consistent approach is needed such that the cross-coupling between growth and mechanics can be correctly described. In the present work we apply a variational principle to the formulation of the interfacial growth dynamics of dendritic actin filament networks growing from biomimetic beads, an experimentally well studied system, where the buildup of residual stresses governs the network growth. We first introduce the material model for the network via a strain energy density for an isotropic weakly nonlinear elastic material and then derive consistently from this model the dynamic equations for the interfaces, i.e. for a polymerizing internal interface in contact with the bead and a depolymerizing external interface directed towards the solvent. We show that (i) this approach automatically preserves thermodynamic symmetry-properties, which is not the case for the often cited ‘rubber-band-model’ (Sekimoto et al 2004 Eur. Phys. J. E 13 247-59, Plastino et al 2004 Eur. Biophys. J. 33 310-20) and (ii) leads to a robust morphological instability of the treadmilling network interfaces. The nature of the instability depends on the interplay of the two dynamic interfaces. Depending on the biochemical conditions the network envelope evolves into a comet-like shape (i.e. the actin envelope thins out at one side and thickens on the opposite side of the bead) via a varicose instability or it breaks the symmetry via higher order zigzag modes. We conclude that morphological instabilities due to mechano-chemical coupling mechanisms and the presences of mechancial pre-stresses can play a major role in locally organizing the cytoskeleton of living cells.

  16. An affine continuum mechanical model for cross-linked F-actin networks with compliant linker proteins.

    PubMed

    Holzapfel, Gerhard A; Unterberger, Michael J; Ogden, Ray W

    2014-10-01

    Cross-linked actin networks are important building blocks of the cytoskeleton. In order to gain deeper insight into the interpretation of experimental data on actin networks, adequate models are required. In this paper we introduce an affine constitutive network model for cross-linked F-actin networks based on nonlinear continuum mechanics, and specialize it in order to reproduce the experimental behavior of in vitro reconstituted model networks. The model is based on the elastic properties of single filaments embedded in an isotropic matrix such that the overall properties of the composite are described by a free-energy function. In particular, we are able to obtain the experimentally determined shear and normal stress responses of cross-linked actin networks typically observed in rheometer tests. In the present study an extensive analysis is performed by applying the proposed model network to a simple shear deformation. The single filament model is then extended by incorporating the compliance of cross-linker proteins and further extended by including viscoelasticity. All that is needed for the finite element implementation is the constitutive model for the filaments, the linkers and the matrix, and the associated elasticity tensor in either the Lagrangian or Eulerian formulation. The model facilitates parameter studies of experimental setups such as micropipette aspiration experiments and we present such studies to illustrate the efficacy of this modeling approach. PMID:25043658

  17. Elastic Coupling of Nascent apCAM Adhesions to Flowing Actin Networks

    PubMed Central

    Mejean, Cecile O.; Schaefer, Andrew W.; Buck, Kenneth B.; Kress, Holger; Shundrovsky, Alla; Merrill, Jason W.; Dufresne, Eric R.; Forscher, Paul

    2013-01-01

    Adhesions are multi-molecular complexes that transmit forces generated by a cell’s acto-myosin networks to external substrates. While the physical properties of some of the individual components of adhesions have been carefully characterized, the mechanics of the coupling between the cytoskeleton and the adhesion site as a whole are just beginning to be revealed. We characterized the mechanics of nascent adhesions mediated by the immunoglobulin-family cell adhesion molecule apCAM, which is known to interact with actin filaments. Using simultaneous visualization of actin flow and quantification of forces transmitted to apCAM-coated beads restrained with an optical trap, we found that adhesions are dynamic structures capable of transmitting a wide range of forces. For forces in the picoNewton scale, the nascent adhesions’ mechanical properties are dominated by an elastic structure which can be reversibly deformed by up to 1 µm. Large reversible deformations rule out an interface between substrate and cytoskeleton that is dominated by a number of stiff molecular springs in parallel, and favor a compliant cross-linked network. Such a compliant structure may increase the lifetime of a nascent adhesion, facilitating signaling and reinforcement. PMID:24039928

  18. Activation of myosin V-based motility and F-actin-dependent network formation of endoplasmic reticulum during mitosis.

    PubMed

    Wollert, Torsten; Weiss, Dieter G; Gerdes, Hans-Hermann; Kuznetsov, Sergei A

    2002-11-25

    It is widely believed that microtubule- and F-actin-based transport of cytoplasmic organelles and membrane fusion is down-regulated during mitosis. Here we show that during the transition of Xenopus egg extracts from interphase to metaphase myosin V-driven movement of small globular vesicles along F-actin is strongly inhibited. In contrast, the movement of ER and ER network formation on F-actin is up-regulated in metaphase extracts. Our data demonstrate that myosin V-driven motility of distinct organelles is differently controlled during the cell cycle and suggest an active role of F-actin in partitioning, positioning, and membrane fusion of the ER during cell division. PMID:12438410

  19. Structure and Dynamics of an Arp2/3 Complex-independent Component of the Lamellipodial Actin Network

    PubMed Central

    Henson, John H.; Cheung, David; Fried, Christopher A.; Shuster, Charles B.; McClellan, Mary K.; Voss, Meagen K.; Sheridan, John T.; Oldenbourg, Rudolf

    2010-01-01

    Sea urchin coelomocytes contain an unusually broad lamellipodial region and have served as a useful model experimental system for studying the process of actin-based retrograde/centripetal flow. In the current study the small molecule drug 2,3-butanedione monoxime (BDM) was employed as a means of delocalizing the Arp2/3 complex from the cell edge in an effort to investigate the Arp2/3 complex-independent aspects of retrograde flow. Digitally-enhanced phase contrast, fluorescence and polarization light microscopy, along with rotary shadow TEM methods demonstrated that BDM treatment resulted in the centripetal displacement of the Arp2/3 complex and the associated dendritic lamellipodial (LP) actin network from the cell edge. In its wake there remained an array of elongate actin filaments organized into concave arcs that displayed retrograde flow at approximately one quarter the normal rate. Actin polymerization inhibitor experiments indicated that these arcs were generated by polymerization at the cell edge, while active myosin-based contraction in BDM treated cells was demonstrated by localization with anti-phospho-MRLC antibody, the retraction of the cytoskeleton in the presence of BDM, and the response of the BDM arcs to laser-based severing. The results suggest that BDM treatment reveals an Arp2/3 complex-independent actin structure in coelomocytes consisting of elongate filaments integrated into the LP network and that these filaments represent a potential connection between the LP network and the central cytoskeleton. PMID:19530177

  20. Actin nucleators in the nucleus: an emerging theme.

    PubMed

    Weston, Louise; Coutts, Amanda S; La Thangue, Nicholas B

    2012-08-01

    Actin is an integral component of the cytoskeleton, forming a plethora of macromolecular structures that mediate various cellular functions. The formation of such structures relies on the ability of actin monomers to associate into polymers, and this process is regulated by actin nucleation factors. These factors use monomeric actin pools at specific cellular locations, thereby permitting rapid actin filament formation when required. It has now been established that actin is also present in the nucleus, where it is implicated in chromatin remodelling and the regulation of eukaryotic gene transcription. Notably, the presence of typical actin filaments in the nucleus has not been demonstrated directly. However, studies in recent years have provided evidence for the nuclear localisation of actin nucleation factors that promote cytoplasmic actin polymerisation. Their localisation to the nucleus suggests that these proteins mediate collaboration between the cytoskeleton and the nucleus, which might be dependent on their ability to promote actin polymerisation. The nature of this cooperation remains enigmatic and it will be important to elucidate the physiological relevance of the link between cytoskeletal actin networks and nuclear events. This Commentary explores the current evidence for the nuclear roles of actin nucleation factors. Furthermore, the implication of actin-associated proteins in relaying exogenous signals to the nucleus, particularly in response to cellular stress, will be considered.

  1. Shape control of lipid bilayer membranes by confined actin bundles.

    PubMed

    Tsai, Feng-Ching; Koenderink, Gijsje Hendrika

    2015-12-01

    In living cells, lipid membranes and biopolymers determine each other's conformation in a delicate force balance. Cellular polymers such as actin filaments are strongly confined by the plasma membrane in cell protrusions such as lamellipodia and filopodia. Conversely, protrusion formation is facilitated by actin-driven membrane deformation and these protrusions are maintained by dense actin networks or bundles of actin filaments. Here we investigate the mechanical interplay between actin bundles and lipid bilayer membranes by reconstituting a minimal model system based on cell-sized liposomes with encapsulated actin filaments bundled by fascin. To address the competition between the deformability of the membrane and the enclosed actin bundles, we tune the bundle stiffness (through the fascin-to-actin molar ratio) and the membrane rigidity (through protein decoration). Using confocal microscopy and quantitative image analysis, we show that actin bundles deform the liposomes into a rich set of morphologies. For liposomes having a small membrane bending rigidity, the actin bundles tend to generate finger-like membrane protrusions that resemble cellular filopodia. Stiffer bundles formed at high crosslink density stay straight in the liposome body, whereas softer bundles formed at low crosslink density are bent and kinked. When the membrane has a large bending rigidity, membrane protrusions are suppressed. In this case, membrane enclosure forces the actin bundles to organize into cortical rings, to minimize the energy cost associated with filament bending. Our results highlight the importance of taking into account mechanical interactions between the actin cytoskeleton and the membrane to understand cell shape control.

  2. [Cytoskeletal actin and its associated proteins. Some examples in Protista].

    PubMed

    Guillén, N; Carlier, M F; Brugerolle, G; Tardieux, I; Ausseil, J

    1998-06-01

    Many processes, cell motility being an example, require cells to remodel the actin cytoskeleton in response to both intracellular and extracellular signals. Reorganization of the actin cytoskeleton involves the rapid disassembly and reassembly of actin filaments, a phenomenon regulated by the action of particular actin-binding proteins. In recent years, an interest in studying actin regulation in unicellular organisms has arisen. Parasitic protozoan are among these organisms and studies of the cytoskeleton functions of these protozoan are relevant related to either cell biology or pathogenicity. To discuss recent data in this field, a symposium concerning "Actin and actin-binding proteins in protists" was held on May 8-11 in Paris, France, during the XXXV meeting of the French Society of Protistology. As a brief summary of the symposium we report here findings concerning the in vitro actin dynamic assembly, as well as the characterization of several actin-binding proteins from the parasitic protozoan Entamoeba histolytica, Trichomonas vaginalis and Plasmodium knowlesi. In addition, localization of actin in non-pathogen protists such as Prorocentrum micans and Crypthecodinium cohnii is also presented. The data show that some actin-binding proteins facilitate organization of filaments into higher order structures as pseudopods, while others have regulatory functions, indicating very particular roles for actin-binding proteins. One of the proteins discussed during the symposium, the actin depolymerizing factor ADF, was shown to enhance the treadmilling rate of actin filaments. In vitro, ADF binds to the ADP-bound forms of G-actin and F-actin, thereby participating in and changing the rate of actin assembly. Biochemical approaches allowed the identification of a protein complex formed by HSP/C70-cap32-34 which might also be involved in depolymerization of F-actin in P. knowlesi. Molecular and cellular approaches were used to identify proteins such as ABP-120 and myosin

  3. Genome-wide RNAi screen for nuclear actin reveals a network of cofilin regulators

    PubMed Central

    Dopie, Joseph; Rajakylä, Eeva K.; Joensuu, Merja S.; Huet, Guillaume; Ferrantelli, Evelina; Xie, Tiao; Jäälinoja, Harri; Jokitalo, Eija; Vartiainen, Maria K.

    2015-01-01

    ABSTRACT Nuclear actin plays an important role in many processes that regulate gene expression. Cytoplasmic actin dynamics are tightly controlled by numerous actin-binding proteins, but regulation of nuclear actin has remained unclear. Here, we performed a genome-wide RNA interference (RNAi) screen in Drosophila cells to identify proteins that influence either nuclear polymerization or import of actin. We validate 19 factors as specific hits, and show that Chinmo (known as Bach2 in mammals), SNF4Aγ (Prkag1 in mammals) and Rab18 play a role in nuclear localization of actin in both fly and mammalian cells. We identify several new regulators of cofilin activity, and characterize modulators of both cofilin kinases and phosphatase. For example, Chinmo/Bach2, which regulates nuclear actin levels also in vivo, maintains active cofilin by repressing the expression of the kinase Cdi (Tesk in mammals). Finally, we show that Nup98 and lamin are candidates for regulating nuclear actin polymerization. Our screen therefore reveals new aspects of actin regulation and links nuclear actin to many cellular processes. PMID:26021350

  4. Genome-wide RNAi screen for nuclear actin reveals a network of cofilin regulators.

    PubMed

    Dopie, Joseph; Rajakylä, Eeva K; Joensuu, Merja S; Huet, Guillaume; Ferrantelli, Evelina; Xie, Tiao; Jäälinoja, Harri; Jokitalo, Eija; Vartiainen, Maria K

    2015-07-01

    Nuclear actin plays an important role in many processes that regulate gene expression. Cytoplasmic actin dynamics are tightly controlled by numerous actin-binding proteins, but regulation of nuclear actin has remained unclear. Here, we performed a genome-wide RNA interference (RNAi) screen in Drosophila cells to identify proteins that influence either nuclear polymerization or import of actin. We validate 19 factors as specific hits, and show that Chinmo (known as Bach2 in mammals), SNF4Aγ (Prkag1 in mammals) and Rab18 play a role in nuclear localization of actin in both fly and mammalian cells. We identify several new regulators of cofilin activity, and characterize modulators of both cofilin kinases and phosphatase. For example, Chinmo/Bach2, which regulates nuclear actin levels also in vivo, maintains active cofilin by repressing the expression of the kinase Cdi (Tesk in mammals). Finally, we show that Nup98 and lamin are candidates for regulating nuclear actin polymerization. Our screen therefore reveals new aspects of actin regulation and links nuclear actin to many cellular processes.

  5. F-actin waves, actin cortex disassembly and focal exocytosis driven by actin-phosphoinositide positive feedback.

    PubMed

    Masters, Thomas A; Sheetz, Michael P; Gauthier, Nils C

    2016-04-01

    Actin polymerization is controlled by the phosphoinositide composition of the plasma membrane. However, the molecular mechanisms underlying the spatiotemporal regulation of actin network organization over extended length scales are still unclear. To observe phosphoinositide-dependent cytoskeletal dynamics we combined the model system of frustrated phagocytosis, total internal reflection microscopy and manipulation of the buffer tonicity. We found that macrophages interacting with IgG-coated glass substrates formed circular F-actin waves on their ventral surface enclosing a region of plasma membrane devoid of cortical actin. Plasma membrane free of actin cortex was strongly depleted of PI(4,5)P2 , but enriched in PI(3,4)P2 and displayed a fivefold increase in exocytosis. Wave formation could be promoted by application of a hypotonic shock. The actin waves were characteristic of a bistable wavefront at the boundary between the regions of membrane containing and lacking cortical actin. Phosphoinositide modifiers and RhoGTPase activities dramatically redistributed with respect to the wavefronts, which often exhibited spatial oscillations. Perturbation of either lipid or actin cytoskeleton-related pathways led to rapid loss of both the polarized lipid distribution and the wavefront. As waves travelled over the plasma membrane, wavefront actin was seen to rapidly polymerize and depolymerize at pre-existing clusters of FcγRIIA, coincident with rapid changes in lipid composition. Thus the potential of receptors to support rapid F-actin polymerization appears to depend acutely on the local concentrations of multiple lipid species. We propose that interdependence through positive feedback from the cytoskeleton to lipid modifiers leads to coordinated local cortex remodeling, focal exocytosis, and organizes extended actin networks. PMID:26915738

  6. F-actin waves, actin cortex disassembly and focal exocytosis driven by actin-phosphoinositide positive feedback.

    PubMed

    Masters, Thomas A; Sheetz, Michael P; Gauthier, Nils C

    2016-04-01

    Actin polymerization is controlled by the phosphoinositide composition of the plasma membrane. However, the molecular mechanisms underlying the spatiotemporal regulation of actin network organization over extended length scales are still unclear. To observe phosphoinositide-dependent cytoskeletal dynamics we combined the model system of frustrated phagocytosis, total internal reflection microscopy and manipulation of the buffer tonicity. We found that macrophages interacting with IgG-coated glass substrates formed circular F-actin waves on their ventral surface enclosing a region of plasma membrane devoid of cortical actin. Plasma membrane free of actin cortex was strongly depleted of PI(4,5)P2 , but enriched in PI(3,4)P2 and displayed a fivefold increase in exocytosis. Wave formation could be promoted by application of a hypotonic shock. The actin waves were characteristic of a bistable wavefront at the boundary between the regions of membrane containing and lacking cortical actin. Phosphoinositide modifiers and RhoGTPase activities dramatically redistributed with respect to the wavefronts, which often exhibited spatial oscillations. Perturbation of either lipid or actin cytoskeleton-related pathways led to rapid loss of both the polarized lipid distribution and the wavefront. As waves travelled over the plasma membrane, wavefront actin was seen to rapidly polymerize and depolymerize at pre-existing clusters of FcγRIIA, coincident with rapid changes in lipid composition. Thus the potential of receptors to support rapid F-actin polymerization appears to depend acutely on the local concentrations of multiple lipid species. We propose that interdependence through positive feedback from the cytoskeleton to lipid modifiers leads to coordinated local cortex remodeling, focal exocytosis, and organizes extended actin networks.

  7. Plant pathogenic bacteria target the actin microfilament network involved in the trafficking of disease defense components.

    PubMed

    Jelenska, Joanna; Kang, Yongsung; Greenberg, Jean T

    2014-01-01

    Cells of infected organisms transport disease defense-related molecules along actin filaments to deliver them to their sites of action to combat the pathogen. To accommodate higher demand for intracellular traffic, plant F-actin density increases transiently during infection or treatment of Arabidopsis with pathogen-associated molecules. Many animal and plant pathogens interfere with actin polymerization and depolymerization to avoid immune responses. Pseudomonas syringae, a plant extracellular pathogen, injects HopW1 effector into host cells to disrupt the actin cytoskeleton and reduce vesicle movement in order to elude defense responses. In some Arabidopsis accessions, however, HopW1 is recognized and causes resistance via an actin-independent mechanism. HopW1 targets isoform 7 of vegetative actin (ACT7) that is regulated by phytohormones and environmental factors. We hypothesize that dynamic changes of ACT7 filaments are involved in plant immunity. PMID:25551177

  8. The architecture of actin filaments and the ultrastructural location of actin-binding protein in the periphery of lung macrophages.

    PubMed

    Hartwig, J H; Shevlin, P

    1986-09-01

    A highly branched filament network is the principal structure in the periphery of detergent-extracted cytoskeletons of macrophages that have been spread on a surface and either freeze or critical point dried, and then rotary shadowed with platinum-carbon. This array of filaments completely fills lamellae extended from the cell and bifurcates to form 0.2-0.5 micron thick layers on the top and bottom of the cell body. Reaction of the macrophage cytoskeletons with anti-actin IgG and with anti-IgG bound to colloidal gold produces dense staining of these filaments, and incubation with myosin subfragment 1 uniformly decorates these filaments, identifying them as actin. 45% of the total cellular actin and approximately 70% of actin-binding protein remains in the detergent-insoluble cell residue. The soluble actin is not filamentous as determined by sedimentation analysis, the DNAase I inhibition assay, and electron microscopy, indicating that the cytoskeleton is not fragmented by detergent extraction. The spacing between the ramifications of the actin network is 94 +/- 47 nm and 118 +/- 72 nm in cytoskeletons prepared for electron microscopy by freeze drying and critical point drying, respectively. Free filament ends are rare, except for a few which project upward from the body of the network or which extend down to the substrate. Filaments of the network intersect predominantly at right angles to form either T-shaped and X-shaped overlaps having striking perpendicularity or else Y-shaped intersections composed of filaments intersecting at 120-130 degrees angles. The actin filament concentration in the lamellae is high, with an average value of 12.5 mg/ml. The concentration was much more uniform in freeze-dried preparations than in critical point-dried specimens, indicating that there is less collapse associated with the freezing technique. The orthogonal actin network of the macrophage cortical cytoplasm resembles actin gels made with actin-binding protein. Reaction of

  9. Networks Models of Actin Dynamics during Spermatozoa Postejaculatory Life: A Comparison among Human-Made and Text Mining-Based Models

    PubMed Central

    Ordinelli, Alessandra; Ramal Sanchez, Marina; Mattioli, Mauro; Barboni, Barbara

    2016-01-01

    Here we realized a networks-based model representing the process of actin remodelling that occurs during the acquisition of fertilizing ability of human spermatozoa (HumanMade_ActinSpermNetwork, HM_ASN). Then, we compared it with the networks provided by two different text mining tools: Agilent Literature Search (ALS) and PESCADOR. As a reference, we used the data from the online repository Kyoto Encyclopaedia of Genes and Genomes (KEGG), referred to the actin dynamics in a more general biological context. We found that HM_ALS and the networks from KEGG data shared the same scale-free topology following the Barabasi-Albert model, thus suggesting that the information is spread within the network quickly and efficiently. On the contrary, the networks obtained by ALS and PESCADOR have a scale-free hierarchical architecture, which implies a different pattern of information transmission. Also, the hubs identified within the networks are different: HM_ALS and KEGG networks contain as hubs several molecules known to be involved in actin signalling; ALS was unable to find other hubs than “actin,” whereas PESCADOR gave some nonspecific result. This seems to suggest that the human-made information retrieval in the case of a specific event, such as actin dynamics in human spermatozoa, could be a reliable strategy.

  10. Networks Models of Actin Dynamics during Spermatozoa Postejaculatory Life: A Comparison among Human-Made and Text Mining-Based Models

    PubMed Central

    Ordinelli, Alessandra; Ramal Sanchez, Marina; Mattioli, Mauro; Barboni, Barbara

    2016-01-01

    Here we realized a networks-based model representing the process of actin remodelling that occurs during the acquisition of fertilizing ability of human spermatozoa (HumanMade_ActinSpermNetwork, HM_ASN). Then, we compared it with the networks provided by two different text mining tools: Agilent Literature Search (ALS) and PESCADOR. As a reference, we used the data from the online repository Kyoto Encyclopaedia of Genes and Genomes (KEGG), referred to the actin dynamics in a more general biological context. We found that HM_ALS and the networks from KEGG data shared the same scale-free topology following the Barabasi-Albert model, thus suggesting that the information is spread within the network quickly and efficiently. On the contrary, the networks obtained by ALS and PESCADOR have a scale-free hierarchical architecture, which implies a different pattern of information transmission. Also, the hubs identified within the networks are different: HM_ALS and KEGG networks contain as hubs several molecules known to be involved in actin signalling; ALS was unable to find other hubs than “actin,” whereas PESCADOR gave some nonspecific result. This seems to suggest that the human-made information retrieval in the case of a specific event, such as actin dynamics in human spermatozoa, could be a reliable strategy. PMID:27642606

  11. Networks Models of Actin Dynamics during Spermatozoa Postejaculatory Life: A Comparison among Human-Made and Text Mining-Based Models.

    PubMed

    Bernabò, Nicola; Ordinelli, Alessandra; Ramal Sanchez, Marina; Mattioli, Mauro; Barboni, Barbara

    2016-01-01

    Here we realized a networks-based model representing the process of actin remodelling that occurs during the acquisition of fertilizing ability of human spermatozoa (HumanMade_ActinSpermNetwork, HM_ASN). Then, we compared it with the networks provided by two different text mining tools: Agilent Literature Search (ALS) and PESCADOR. As a reference, we used the data from the online repository Kyoto Encyclopaedia of Genes and Genomes (KEGG), referred to the actin dynamics in a more general biological context. We found that HM_ALS and the networks from KEGG data shared the same scale-free topology following the Barabasi-Albert model, thus suggesting that the information is spread within the network quickly and efficiently. On the contrary, the networks obtained by ALS and PESCADOR have a scale-free hierarchical architecture, which implies a different pattern of information transmission. Also, the hubs identified within the networks are different: HM_ALS and KEGG networks contain as hubs several molecules known to be involved in actin signalling; ALS was unable to find other hubs than "actin," whereas PESCADOR gave some nonspecific result. This seems to suggest that the human-made information retrieval in the case of a specific event, such as actin dynamics in human spermatozoa, could be a reliable strategy. PMID:27642606

  12. Actin-Based Feedback Circuits in Cell Migration and Endocytosis

    NASA Astrophysics Data System (ADS)

    Wang, Xinxin

    In this thesis, we study the switch and pulse functions of actin during two important cellular processes, cell migration and endocytosis. Actin is an abundant protein that can polymerize to form a dendritic network. The actin network can exert force to push or bend the cell membrane. During cell migration, the actin network behaves like a switch, assembling mostly at one end or at the other end. The end with the majority of the actin network is the leading edge, following which the cell can persistently move in the same direction. The other end, with the minority of the actin network, is the trailing edge, which is dragged by the cell as it moves forward. When subjected to large fluctuations or external stimuli, the leading edge and the trailing edge can interchange and change the direction of motion, like a motion switch. Our model of the actin network in a cell reveals that mechanical force is crucial for forming the motion switch. We find a transition from single state symmetric behavior to switch behavior, when tuning parameters such as the force. The model is studied by both stochastic simulations, and a set of rate equations that are consistent with the simulations. Endocytosis is a process by which cells engulf extracellular substances and recycle the cell membrane. In yeast cells, the actin network is transiently needed to overcome the pressure difference across the cell membrane caused by turgor pressure. The actin network behaves like a pulse, which assembles and then disassembles within about 30 seconds. Using a stochastic model, we reproduce the pulse behaviors of the actin network and one of its regulatory proteins, Las17. The model matches green fluorescence protein (GFP) experiments for wild-type cells. The model also predicts some phenotypes that modify or diminish the pulse behavior. The phenotypes are verified with both experiments performed at Washington University and with other groups' experiments. We find that several feedback mechanisms are

  13. Actin remodeling by ADF/cofilin is required for cargo sorting at the trans-Golgi network

    PubMed Central

    von Blume, Julia; Duran, Juan M.; Forlanelli, Elena; Alleaume, Anne-Marie; Egorov, Mikhail; Polishchuk, Roman; Molina, Henrik

    2009-01-01

    Knockdown of the actin-severing protein actin-depolymerizing factor (ADF)/cofilin inhibited export of an exogenously expressed soluble secretory protein from Golgi membranes in Drosophila melanogaster and mammalian tissue culture cells. A stable isotope labeling by amino acids in cell culture mass spectrometry–based protein profiling revealed that a large number of endogenous secretory proteins in mammalian cells were not secreted upon ADF/cofilin knockdown. Although many secretory proteins were retained, a Golgi-resident protein and a lysosomal hydrolase were aberrantly secreted upon ADF/cofilin knockdown. Overall, our findings indicate that inactivation of ADF/cofilin perturbed the sorting of a subset of both soluble and integral membrane proteins at the trans-Golgi network (TGN). We suggest that ADF/cofilin-dependent actin trimming generates a sorting domain at the TGN, which filters secretory cargo for export, and that uncontrolled growth of this domain causes missorting of proteins. This type of actin-dependent compartmentalization and filtering of secretory cargo at the TGN by ADF/cofilin could explain sorting of proteins that are destined to the cell surface. PMID:20026655

  14. Actinic Keratosis

    MedlinePlus

    ... rashes clinical tools newsletter | contact Share | Actinic Keratosis (Solar Keratosis) Information for adults A A A Actinic ... the touch. Overview Actinic keratoses, also known as solar keratoses, are small rough or scaly areas of ...

  15. Demonstration of prominent actin filaments in the root columella.

    PubMed

    Collings, D A; Zsuppan, G; Allen, N S; Blancaflor, E B

    2001-02-01

    The distribution of actin filaments within the gravity-sensing columella cells of plant roots remains poorly understood, with studies over numerous years providing inconsistent descriptions of actin organization in these cells. This uncertainty in actin organization, and thus in actin's role in graviperception and gravisignaling, has led us to investigate actin arrangements in the columella cells of Zea mays L., Medicago truncatula Gaertn., Linum usitatissiilium L. and Nicotianla benthamiana Domin. Actin organization was examined using a combination of optimized immunofluorescence techniques, and an improved fluorochrome-conjugated phalloidin labeling method reliant on 3-maleimidobenzoyl-N-hydroxy-succinimide ester (MBS) cross-linking combined with glycerol permeabilization. Confocal microscopy of root sections labeled with anti-actin antibodies revealed patterns suggestive of actin throughout the columella region. These patterns included short and fragmented actin bundles, fluorescent rings around amyloplasts and intense fluorescence originating from the nucleus. Additionally, confocal microscopy of MBS-stabilized and Alexa Fluor-phalloidin-labeled root sections revealed a previously undetected state of actin organization in the columella. Discrete actin structures surrounded the amyloplasts and prominent actin cables radiated from the nuclear surface toward the cell periphery. Furthermore, the cortex of the columella cells contained fine actin bundles (or single filaments) that had a predominant transverse orientation. We also used confocal microscopy of plant roots expressing endoplasmic reticulum (ER)-targeted green fluorescent protein to demonstrate rapid ER movements within the columella cells, suggesting that the imaged actin network is functional. The successful identification of discrete actin structures in the root columella cells forms the perception and signaling. PMID:11289604

  16. Demonstration of prominent actin filaments in the root columella

    NASA Technical Reports Server (NTRS)

    Collings, D. A.; Zsuppan, G.; Allen, N. S.; Blancaflor, E. B.; Brown, C. S. (Principal Investigator)

    2001-01-01

    The distribution of actin filaments within the gravity-sensing columella cells of plant roots remains poorly understood, with studies over numerous years providing inconsistent descriptions of actin organization in these cells. This uncertainty in actin organization, and thus in actin's role in graviperception and gravisignaling, has led us to investigate actin arrangements in the columella cells of Zea mays L., Medicago truncatula Gaertn., Linum usitatissiilium L. and Nicotianla benthamiana Domin. Actin organization was examined using a combination of optimized immunofluorescence techniques, and an improved fluorochrome-conjugated phalloidin labeling method reliant on 3-maleimidobenzoyl-N-hydroxy-succinimide ester (MBS) cross-linking combined with glycerol permeabilization. Confocal microscopy of root sections labeled with anti-actin antibodies revealed patterns suggestive of actin throughout the columella region. These patterns included short and fragmented actin bundles, fluorescent rings around amyloplasts and intense fluorescence originating from the nucleus. Additionally, confocal microscopy of MBS-stabilized and Alexa Fluor-phalloidin-labeled root sections revealed a previously undetected state of actin organization in the columella. Discrete actin structures surrounded the amyloplasts and prominent actin cables radiated from the nuclear surface toward the cell periphery. Furthermore, the cortex of the columella cells contained fine actin bundles (or single filaments) that had a predominant transverse orientation. We also used confocal microscopy of plant roots expressing endoplasmic reticulum (ER)-targeted green fluorescent protein to demonstrate rapid ER movements within the columella cells, suggesting that the imaged actin network is functional. The successful identification of discrete actin structures in the root columella cells forms the perception and signaling.

  17. Septins promote F-actin ring formation by crosslinking actin filaments into curved bundles.

    PubMed

    Mavrakis, Manos; Azou-Gros, Yannick; Tsai, Feng-Ching; Alvarado, José; Bertin, Aurélie; Iv, Francois; Kress, Alla; Brasselet, Sophie; Koenderink, Gijsje H; Lecuit, Thomas

    2014-04-01

    Animal cell cytokinesis requires a contractile ring of crosslinked actin filaments and myosin motors. How contractile rings form and are stabilized in dividing cells remains unclear. We address this problem by focusing on septins, highly conserved proteins in eukaryotes whose precise contribution to cytokinesis remains elusive. We use the cleavage of the Drosophila melanogaster embryo as a model system, where contractile actin rings drive constriction of invaginating membranes to produce an epithelium in a manner akin to cell division. In vivo functional studies show that septins are required for generating curved and tightly packed actin filament networks. In vitro reconstitution assays show that septins alone bundle actin filaments into rings, accounting for the defects in actin ring formation in septin mutants. The bundling and bending activities are conserved for human septins, and highlight unique functions of septins in the organization of contractile actomyosin rings.

  18. The Cauliflower Mosaic Virus Protein P6 Forms Motile Inclusions That Traffic along Actin Microfilaments and Stabilize Microtubules1[W][OA

    PubMed Central

    Harries, Phillip A.; Palanichelvam, Karuppaiah; Yu, Weichang; Schoelz, James E.; Nelson, Richard S.

    2009-01-01

    The gene VI product (P6) of Cauliflower mosaic virus (CaMV) is a multifunctional protein known to be a major component of cytoplasmic inclusion bodies formed during CaMV infection. Although these inclusions are known to contain virions and are thought to be sites of translation from the CaMV 35S polycistronic RNA intermediate, the precise role of these bodies in the CaMV infection cycle remains unclear. Here, we examine the functionality and intracellular location of a fusion between P6 and GFP (P6-GFP). We initially show that the ability of P6-GFP to transactivate translation is comparable to unmodified P6. Consequently, our work has direct application for the large body of literature in which P6 has been expressed ectopically and its functions characterized. We subsequently found that P6-GFP forms highly motile cytoplasmic inclusion bodies and revealed through fluorescence colocalization studies that these P6-GFP bodies associate with the actin/endoplasmic reticulum network as well as microtubules. We demonstrate that while P6-GFP inclusions traffic along microfilaments, those associated with microtubules appear stationary. Additionally, inhibitor studies reveal that the intracellular movement of P6-GFP inclusions is sensitive to the actin inhibitor, latrunculin B, which also inhibits the formation of local lesions by CaMV in Nicotiana edwardsonii leaves. The motility of P6 along microfilaments represents an entirely new property for this protein, and these results imply a role for P6 in intracellular and cell-to-cell movement of CaMV. PMID:19028879

  19. Src64 controls a novel actin network required for proper ring canal formation in the Drosophila male germline.

    PubMed

    Eikenes, Åsmund Husabø; Malerød, Lene; Lie-Jensen, Anette; Sem Wegner, Catherine; Brech, Andreas; Liestøl, Knut; Stenmark, Harald; Haglund, Kaisa

    2015-12-01

    In many organisms, germ cells develop as cysts in which cells are interconnected via ring canals (RCs) as a result of incomplete cytokinesis. However, the molecular mechanisms of incomplete cytokinesis remain poorly understood. Here, we address the role of tyrosine phosphorylation of RCs in the Drosophila male germline. We uncover a hierarchy of tyrosine phosphorylation within germline cysts that positively correlates with RC age. The kinase Src64 is responsible for mediating RC tyrosine phosphorylation, and loss of Src64 causes a reduction in RC diameter within germline cysts. Mechanistically, we show that Src64 controls an actin network around the RCs that depends on Abl and the Rac/SCAR/Arp2/3 pathway. The actin network around RCs is required for correct RC diameter in cysts of developing germ cells. We also identify that Src64 is required for proper germ cell differentiation in the Drosophila male germline independent of its role in RC regulation. In summary, we report that Src64 controls actin dynamics to mediate proper RC formation during incomplete cytokinesis during germline cyst development in vivo. PMID:26628094

  20. Src64 controls a novel actin network required for proper ring canal formation in the Drosophila male germline.

    PubMed

    Eikenes, Åsmund Husabø; Malerød, Lene; Lie-Jensen, Anette; Sem Wegner, Catherine; Brech, Andreas; Liestøl, Knut; Stenmark, Harald; Haglund, Kaisa

    2015-12-01

    In many organisms, germ cells develop as cysts in which cells are interconnected via ring canals (RCs) as a result of incomplete cytokinesis. However, the molecular mechanisms of incomplete cytokinesis remain poorly understood. Here, we address the role of tyrosine phosphorylation of RCs in the Drosophila male germline. We uncover a hierarchy of tyrosine phosphorylation within germline cysts that positively correlates with RC age. The kinase Src64 is responsible for mediating RC tyrosine phosphorylation, and loss of Src64 causes a reduction in RC diameter within germline cysts. Mechanistically, we show that Src64 controls an actin network around the RCs that depends on Abl and the Rac/SCAR/Arp2/3 pathway. The actin network around RCs is required for correct RC diameter in cysts of developing germ cells. We also identify that Src64 is required for proper germ cell differentiation in the Drosophila male germline independent of its role in RC regulation. In summary, we report that Src64 controls actin dynamics to mediate proper RC formation during incomplete cytokinesis during germline cyst development in vivo.

  1. Boolean gates on actin filaments

    NASA Astrophysics Data System (ADS)

    Siccardi, Stefano; Tuszynski, Jack A.; Adamatzky, Andrew

    2016-01-01

    Actin is a globular protein which forms long polar filaments in the eukaryotic cytoskeleton. Actin networks play a key role in cell mechanics and cell motility. They have also been implicated in information transmission and processing, memory and learning in neuronal cells. The actin filaments have been shown to support propagation of voltage pulses. Here we apply a coupled nonlinear transmission line model of actin filaments to study interactions between voltage pulses. To represent digital information we assign a logical TRUTH value to the presence of a voltage pulse in a given location of the actin filament, and FALSE to the pulse's absence, so that information flows along the filament with pulse transmission. When two pulses, representing Boolean values of input variables, interact, then they can facilitate or inhibit further propagation of each other. We explore this phenomenon to construct Boolean logical gates and a one-bit half-adder with interacting voltage pulses. We discuss implications of these findings on cellular process and technological applications.

  2. Capping protein regulatory cycle driven by CARMIL and V-1 may promote actin network assembly at protruding edges

    PubMed Central

    Fujiwara, Ikuko; Remmert, Kirsten; Piszczek, Grzegorz; Hammer, John A.

    2014-01-01

    Although capping protein (CP) terminates actin filament elongation, it promotes Arp2/3-dependent actin network assembly and accelerates actin-based motility both in vitro and in vivo. In vitro, capping protein Arp2/3 myosin I linker (CARMIL) antagonizes CP by reducing its affinity for the barbed end and by uncapping CP-capped filaments, whereas the protein V-1/myotrophin sequesters CP in an inactive complex. Previous work showed that CARMIL can readily retrieve CP from the CP:V-1 complex, thereby converting inactive CP into a version with moderate affinity for the barbed end. Here we further clarify the mechanism of this exchange reaction, and we demonstrate that the CP:CARMIL complex created by complex exchange slows the rate of barbed-end elongation by rapidly associating with, and dissociating from, the barbed end. Importantly, the cellular concentrations of V-1 and CP determined here argue that most CP is sequestered by V-1 at steady state in vivo. Finally, we show that CARMIL is recruited to the plasma membrane and only at cell edges undergoing active protrusion. Assuming that CARMIL is active only at this location, our data argue that a large pool of freely diffusing, inactive CP (CP:V-1) feeds, via CARMIL-driven complex exchange, the formation of weak-capping complexes (CP:CARMIL) at the plasma membrane of protruding edges. In vivo, therefore, CARMIL should promote Arp2/3-dependent actin network assembly at the leading edge by promoting barbed-end capping there. PMID:24778263

  3. Actin dynamics in living mammalian cells.

    PubMed

    Ballestrem, C; Wehrle-Haller, B; Imhof, B A

    1998-06-01

    The actin cytoskeleton maintains the cellular architecture and mediates cell movements. To explore actin cytoskeletal dynamics, the enhanced green fluorescent protein (EGFP) was fused to human &bgr ;-actin. The fusion protein was incorporated into actin fibers which became depolymerized upon cytochalasin B treatment. This functional EGFP-actin construct enabled observation of the actin cytoskeleton in living cells by time lapse fluorescence microscopy. Stable expression of the construct was obtained in mammalian cell lines of different tissue origins. In stationary cells, actin rich, ring-like structured 'actin clouds' were observed in addition to stress fibers. These ruffle-like structures were found to be involved in the reorganization of the actin cytoskeleton. In migratory cells, EGFP-actin was found in the advancing lamellipodium. Immobile actin spots developed in the lamellipodium and thin actin fibers formed parallel to the leading edge. Thus EGFP-actin expressed in living cells unveiled structures involved in the dynamics of the actin cytoskeleton.

  4. Amplification of actin polymerization forces

    PubMed Central

    Dmitrieff, Serge; Nédélec, François

    2016-01-01

    The actin cytoskeleton drives many essential processes in vivo, using molecular motors and actin assembly as force generators. We discuss here the propagation of forces caused by actin polymerization, highlighting simple configurations where the force developed by the network can exceed the sum of the polymerization forces from all filaments. PMID:27002174

  5. Neural network with formed dynamics of activity

    SciTech Connect

    Dunin-Barkovskii, V.L.; Osovets, N.B.

    1995-03-01

    The problem of developing a neural network with a given pattern of the state sequence is considered. A neural network structure and an algorithm, of forming its bond matrix which lead to an approximate but robust solution of the problem are proposed and discussed. Limiting characteristics of the serviceability of the proposed structure are studied. Various methods of visualizing dynamic processes in a neural network are compared. Possible applications of the results obtained for interpretation of neurophysiological data and in neuroinformatics systems are discussed.

  6. Transformation from Spots to Waves in a Model of Actin Pattern Formation

    NASA Astrophysics Data System (ADS)

    Whitelam, Stephen; Bretschneider, Till; Burroughs, Nigel J.

    2009-05-01

    Actin networks in certain single-celled organisms exhibit a complex pattern-forming dynamics that starts with the appearance of static spots of actin on the cell cortex. Spots soon become mobile, executing persistent random walks, and eventually give rise to traveling waves of actin. Here we describe a possible physical mechanism for this distinctive set of dynamic transformations, by equipping an excitable reaction-diffusion model with a field describing the spatial orientation of its chief constituent (which we consider to be actin). The interplay of anisotropic actin growth and spatial inhibition drives a transformation at fixed parameter values from static spots to moving spots to waves.

  7. Transformation from spots to waves in a model of actin pattern formation.

    PubMed

    Whitelam, Stephen; Bretschneider, Till; Burroughs, Nigel J

    2009-05-15

    Actin networks in certain single-celled organisms exhibit a complex pattern-forming dynamics that starts with the appearance of static spots of actin on the cell cortex. Spots soon become mobile, executing persistent random walks, and eventually give rise to traveling waves of actin. Here we describe a possible physical mechanism for this distinctive set of dynamic transformations, by equipping an excitable reaction-diffusion model with a field describing the spatial orientation of its chief constituent (which we consider to be actin). The interplay of anisotropic actin growth and spatial inhibition drives a transformation at fixed parameter values from static spots to moving spots to waves.

  8. Combinatorial genetic analysis of a network of actin disassembly‐promoting factors

    PubMed Central

    Ydenberg, Casey A.; Johnston, Adam; Weinstein, Jaclyn; Bellavance, Danielle; Jansen, Silvia

    2015-01-01

    The patterning of actin cytoskeleton structures in vivo is a product of spatially and temporally regulated polymer assembly balanced by polymer disassembly. While in recent years our understanding of actin assembly mechanisms has grown immensely, our knowledge of actin disassembly machinery and mechanisms has remained comparatively sparse. Saccharomyces cerevisiae is an ideal system to tackle this problem, both because of its amenabilities to genetic manipulation and live‐cell imaging and because only a single gene encodes each of the core disassembly factors: cofilin (COF1), Srv2/CAP (SRV2), Aip1 (AIP1), GMF (GMF1/AIM7), coronin (CRN1), and twinfilin (TWF1). Among these six factors, only the functions of cofilin are essential and have been well defined. Here, we investigated the functions of the nonessential actin disassembly factors by performing genetic and live‐cell imaging analyses on a combinatorial set of isogenic single, double, triple, and quadruple mutants in S. cerevisiae. Our results show that each disassembly factor makes an important contribution to cell viability, actin organization, and endocytosis. Further, our data reveal new relationships among these factors, providing insights into how they work together to orchestrate actin turnover. Finally, we observe specific combinations of mutations that are lethal, e.g., srv2Δ aip1Δ and srv2Δ crn1Δ twf1Δ, demonstrating that while cofilin is essential, it is not sufficient in vivo, and that combinations of the other disassembly factors perform vital functions. © 2015 The Authors. Cytoskeleton Published by Wiley Periodicals, Inc. PMID:26147656

  9. Cofilin-mediated actin dynamics promotes actin bundle formation during Drosophila bristle development

    PubMed Central

    Wu, Jing; Wang, Heng; Guo, Xuan; Chen, Jiong

    2016-01-01

    The actin bundle is an array of linear actin filaments cross-linked by actin-bundling proteins, but its assembly and dynamics are not as well understood as those of the branched actin network. Here we used the Drosophila bristle as a model system to study actin bundle formation. We found that cofilin, a major actin disassembly factor of the branched actin network, promotes the formation and positioning of actin bundles in the developing bristles. Loss of function of cofilin or AIP1, a cofactor of cofilin, each resulted in increased F-actin levels and severe defects in actin bundle organization, with the defects from cofilin deficiency being more severe. Further analyses revealed that cofilin likely regulates actin bundle formation and positioning by the following means. First, cofilin promotes a large G-actin pool both locally and globally, likely ensuring rapid actin polymerization for bundle initiation and growth. Second, cofilin limits the size of a nonbundled actin-myosin network to regulate the positioning of actin bundles. Third, cofilin prevents incorrect assembly of branched and myosin-associated actin filament into bundles. Together these results demonstrate that the interaction between the dynamic dendritic actin network and the assembling actin bundles is critical for actin bundle formation and needs to be closely regulated. PMID:27385345

  10. Cofilin-mediated actin dynamics promotes actin bundle formation during Drosophila bristle development.

    PubMed

    Wu, Jing; Wang, Heng; Guo, Xuan; Chen, Jiong

    2016-08-15

    The actin bundle is an array of linear actin filaments cross-linked by actin-bundling proteins, but its assembly and dynamics are not as well understood as those of the branched actin network. Here we used the Drosophila bristle as a model system to study actin bundle formation. We found that cofilin, a major actin disassembly factor of the branched actin network, promotes the formation and positioning of actin bundles in the developing bristles. Loss of function of cofilin or AIP1, a cofactor of cofilin, each resulted in increased F-actin levels and severe defects in actin bundle organization, with the defects from cofilin deficiency being more severe. Further analyses revealed that cofilin likely regulates actin bundle formation and positioning by the following means. First, cofilin promotes a large G-actin pool both locally and globally, likely ensuring rapid actin polymerization for bundle initiation and growth. Second, cofilin limits the size of a nonbundled actin-myosin network to regulate the positioning of actin bundles. Third, cofilin prevents incorrect assembly of branched and myosin-associated actin filament into bundles. Together these results demonstrate that the interaction between the dynamic dendritic actin network and the assembling actin bundles is critical for actin bundle formation and needs to be closely regulated.

  11. Actin Rings of Power.

    PubMed

    Schwayer, Cornelia; Sikora, Mateusz; Slováková, Jana; Kardos, Roland; Heisenberg, Carl-Philipp

    2016-06-20

    Circular or ring-like actin structures play important roles in various developmental and physiological processes. Commonly, these rings are composed of actin filaments and myosin motors (actomyosin) that, upon activation, trigger ring constriction. Actomyosin ring constriction, in turn, has been implicated in key cellular processes ranging from cytokinesis to wound closure. Non-constricting actin ring-like structures also form at cell-cell contacts, where they exert a stabilizing function. Here, we review recent studies on the formation and function of actin ring-like structures in various morphogenetic processes, shedding light on how those different rings have been adapted to fulfill their specific roles. PMID:27326928

  12. Concentration profiles of actin-binding molecules in lamellipodia

    NASA Astrophysics Data System (ADS)

    Falcke, Martin

    2016-04-01

    Motile cells form lamellipodia in the direction of motion, which are flat membrane protrusions containing an actin filament network. The network flows rearward relative to the leading edge of the lamellipodium due to actin polymerization at the front. Thus, actin binding molecules are subject to transport towards the rear of the cell in the bound state and diffuse freely in the unbound state. We analyze this reaction-diffusion-advection process with respect to the concentration profiles of these species and provide an analytic approximation for them. Network flow may cause a depletion zone of actin binding molecules close to the leading edge. The existence of such zone depends on the free molecule concentration in the cell body, on the ratio of the diffusion length to the distance bound molecules travel rearward with the flow before dissociating, and the ratio of the diffusion length to the width of the region with network flow and actin binding. Our calculations suggest the existence of depletion zones for the F-actin cross-linkers filamin and α-actinin in fish keratocytes (and other cell types), which is in line with the small elastic moduli of the F-actin network close to the leading edge found in measurements of the force motile cells are able to exert.

  13. Cytoskeletal social networking in the growth cone: How +TIPs mediate microtubule-actin cross-linking to drive axon outgrowth and guidance.

    PubMed

    Cammarata, Garrett M; Bearce, Elizabeth A; Lowery, Laura Anne

    2016-09-01

    The growth cone is a unique structure capable of guiding axons to their proper destinations. Within the growth cone, extracellular guidance cues are interpreted and then transduced into physical changes in the actin filament (F-actin) and microtubule cytoskeletons, providing direction and movement. While both cytoskeletal networks individually possess important growth cone-specific functions, recent data over the past several years point towards a more cooperative role between the two systems. Facilitating this interaction between F-actin and microtubules, microtubule plus-end tracking proteins (+TIPs) have been shown to link the two cytoskeletons together. Evidence suggests that many +TIPs can couple microtubules to F-actin dynamics, supporting both microtubule advance and retraction in the growth cone periphery. In addition, growing in vitro and in vivo data support a secondary role for +TIPs in which they may participate as F-actin nucleators, thus directly influencing F-actin dynamics and organization. This review focuses on how +TIPs may link F-actin and microtubules together in the growth cone, and how these interactions may influence axon guidance. © 2016 Wiley Periodicals, Inc.

  14. Kv3.3 Channels Bind Hax-1 and Arp2/3 to Assemble a Stable Local Actin Network that Regulates Channel Gating.

    PubMed

    Zhang, Yalan; Zhang, Xiao-Feng; Fleming, Matthew R; Amiri, Anahita; El-Hassar, Lynda; Surguchev, Alexei A; Hyland, Callen; Jenkins, David P; Desai, Rooma; Brown, Maile R; Gazula, Valeswara-Rao; Waters, Michael F; Large, Charles H; Horvath, Tamas L; Navaratnam, Dhasakumar; Vaccarino, Flora M; Forscher, Paul; Kaczmarek, Leonard K

    2016-04-01

    Mutations in the Kv3.3 potassium channel (KCNC3) cause cerebellar neurodegeneration and impair auditory processing. The cytoplasmic C terminus of Kv3.3 contains a proline-rich domain conserved in proteins that activate actin nucleation through Arp2/3. We found that Kv3.3 recruits Arp2/3 to the plasma membrane, resulting in formation of a relatively stable cortical actin filament network resistant to cytochalasin D that inhibits fast barbed end actin assembly. These Kv3.3-associated actin structures are required to prevent very rapid N-type channel inactivation during short depolarizations of the plasma membrane. The effects of Kv3.3 on the actin cytoskeleton are mediated by the binding of the cytoplasmic C terminus of Kv3.3 to Hax-1, an anti-apoptotic protein that regulates actin nucleation through Arp2/3. A human Kv3.3 mutation within a conserved proline-rich domain produces channels that bind Hax-1 but are impaired in recruiting Arp2/3 to the plasma membrane, resulting in growth cones with deficient actin veils in stem cell-derived neurons.

  15. Kv3.3 Channels Bind Hax-1 and Arp2/3 to Assemble a Stable Local Actin Network that Regulates Channel Gating.

    PubMed

    Zhang, Yalan; Zhang, Xiao-Feng; Fleming, Matthew R; Amiri, Anahita; El-Hassar, Lynda; Surguchev, Alexei A; Hyland, Callen; Jenkins, David P; Desai, Rooma; Brown, Maile R; Gazula, Valeswara-Rao; Waters, Michael F; Large, Charles H; Horvath, Tamas L; Navaratnam, Dhasakumar; Vaccarino, Flora M; Forscher, Paul; Kaczmarek, Leonard K

    2016-04-01

    Mutations in the Kv3.3 potassium channel (KCNC3) cause cerebellar neurodegeneration and impair auditory processing. The cytoplasmic C terminus of Kv3.3 contains a proline-rich domain conserved in proteins that activate actin nucleation through Arp2/3. We found that Kv3.3 recruits Arp2/3 to the plasma membrane, resulting in formation of a relatively stable cortical actin filament network resistant to cytochalasin D that inhibits fast barbed end actin assembly. These Kv3.3-associated actin structures are required to prevent very rapid N-type channel inactivation during short depolarizations of the plasma membrane. The effects of Kv3.3 on the actin cytoskeleton are mediated by the binding of the cytoplasmic C terminus of Kv3.3 to Hax-1, an anti-apoptotic protein that regulates actin nucleation through Arp2/3. A human Kv3.3 mutation within a conserved proline-rich domain produces channels that bind Hax-1 but are impaired in recruiting Arp2/3 to the plasma membrane, resulting in growth cones with deficient actin veils in stem cell-derived neurons. PMID:26997484

  16. The Interaction of Arp2/3 Complex with Actin: Nucleation, High Affinity Pointed End Capping, and Formation of Branching Networks of Filaments

    NASA Astrophysics Data System (ADS)

    Dyche Mullins, R.; Heuser, John A.; Pollard, Thomas D.

    1998-05-01

    The Arp2/3 complex is a stable assembly of seven protein subunits including two actin-related proteins (Arp2 and Arp3) and five novel proteins. Previous work showed that this complex binds to the sides of actin filaments and is concentrated at the leading edges of motile cells. Here, we show that Arp2/3 complex purified from Acanthamoeba caps the pointed ends of actin filaments with high affinity. Arp2/3 complex inhibits both monomer addition and dissociation at the pointed ends of actin filaments with apparent nanomolar affinity and increases the critical concentration for polymerization at the pointed end from 0.6 to 1.0 μ M. The high affinity of Arp2/3 complex for pointed ends and its abundance in amoebae suggest that in vivo all actin filament pointed ends are capped by Arp2/3 complex. Arp2/3 complex also nucleates formation of actin filaments that elongate only from their barbed ends. From kinetic analysis, the nucleation mechanism appears to involve stabilization of polymerization intermediates (probably actin dimers). In electron micrographs of quick-frozen, deep-etched samples, we see Arp2/3 bound to sides and pointed ends of actin filaments and examples of Arp2/3 complex attaching pointed ends of filaments to sides of other filaments. In these cases, the angle of attachment is a remarkably constant 70 ± 7 degrees. From these in vitro biochemical properties, we propose a model for how Arp2/3 complex controls the assembly of a branching network of actin filaments at the leading edge of motile cells.

  17. Spontaneous actin dynamics in contractile rings

    NASA Astrophysics Data System (ADS)

    Kruse, Karsten; Wollrab, Viktoria; Thiagarajan, Raghavan; Wald, Anne; Riveline, Daniel

    Networks of polymerizing actin filaments are known to be capable to self-organize into a variety of structures. For example, spontaneous actin polymerization waves have been observed in living cells in a number of circumstances, notably, in crawling neutrophils and slime molds. During later stages of cell division, they can also spontaneously form a contractile ring that will eventually cleave the cell into two daughter cells. We present a framework for describing networks of polymerizing actin filaments, where assembly is regulated by various proteins. It can also include the effects of molecular motors. We show that the molecular processes driven by these proteins can generate various structures that have been observed in contractile rings of fission yeast and mammalian cells. We discuss a possible functional role of each of these patterns. The work was supported by Agence Nationale de la Recherche, France, (ANR-10-LABX-0030-INRT) and by Deutsche Forschungsgemeinschaft through SFB1027.

  18. Actin Mechanics and Fragmentation*

    PubMed Central

    De La Cruz, Enrique M.; Gardel, Margaret L.

    2015-01-01

    Cell physiological processes require the regulation and coordination of both mechanical and dynamical properties of the actin cytoskeleton. Here we review recent advances in understanding the mechanical properties and stability of actin filaments and how these properties are manifested at larger (network) length scales. We discuss how forces can influence local biochemical interactions, resulting in the formation of mechanically sensitive dynamic steady states. Understanding the regulation of such force-activated chemistries and dynamic steady states reflects an important challenge for future work that will provide valuable insights as to how the actin cytoskeleton engenders mechanoresponsiveness of living cells. PMID:25957404

  19. Control of actin-based motility through localized actin binding.

    PubMed

    Banigan, Edward J; Lee, Kun-Chun; Liu, Andrea J

    2013-12-01

    A wide variety of cell biological and biomimetic systems use actin polymerization to drive motility. It has been suggested that an object such as a bacterium can propel itself by self-assembling a high concentration of actin behind it, if it is repelled by actin. However, it is also known that it is essential for the moving object to bind actin. Therefore, a key question is how the actin tail can propel an object when it both binds and repels the object. We present a physically consistent Brownian dynamics model for actin-based motility that includes the minimal components of the dendritic nucleation model and allows for both attractive and repulsive interactions between actin and a moveable disc. We find that the concentration gradient of filamentous actin generated by polymerization is sufficient to propel the object, even with moderately strong binding interactions. Additionally, actin binding can act as a biophysical cap, and may directly control motility through modulation of network growth. Overall, this mechanism is robust in that it can drive motility against a load up to a stall pressure that depends on the Young's modulus of the actin network and can explain several aspects of actin-based motility.

  20. Mechanochemistry of protein 4.1's spectrin-actin-binding domain: ternary complex interactions, membrane binding, network integration, structural strengthening

    PubMed Central

    1995-01-01

    Mechanical strength of the red cell membrane is dependent on ternary interactions among the skeletal proteins, spectrin, actin, and protein 4.1. Protein 4.1's spectrin-actin-binding (SAB) domain is specified by an alternatively spliced exon encoding 21 amino acid (aa) and a constitutive exon encoding 59 aa. A series of truncated SAB peptides were engineered to define the sequences involved in spectrin-actin interactions, and also membrane strength. Analysis of in vitro supramolecular assemblies showed that gelation activity of SAB peptides correlates with their ability to recruit a critical amount of spectrin into the complex to cross-link actin filaments. Also, several SAB peptides appeared to exhibit a weak, cooperative actin-binding activity which mapped to the first 26 residues of the constitutive 59 aa. Fluorescence-imaged microdeformation was used to show SAB peptide integration into the elastic skeletal network of spectrin, actin, and protein 4.1. In situ membrane-binding and membrane-strengthening abilities of the SAB peptides correlated with their in vitro gelation activity. The findings imply that sites for strong spectrin binding include both the alternative 21-aa cassette and a conserved region near the middle of the 59 aa. However, it is shown that only weak SAB affinity is necessary for physiologically relevant action. Alternatively spliced exons can thus translate into strong modulation of specific protein interactions, economizing protein function in the cell without, in and of themselves, imparting unique function. PMID:7642705

  1. Phosphatidylinositol 3-kinase and the actin network are not required for the stimulation of glucose transport caused by mitochondrial uncoupling: comparison with insulin action.

    PubMed Central

    Tsakiridis, T; Vranic, M; Klip, A

    1995-01-01

    In L6 myotubes insulin stimulates glucose transport through the translocation of glucose transporters GLUT1, GLUT3 and GLUT4 from intracellular stores to the plasma membrane. An intact actin network and phosphatidylinositol 3-kinase activity are required for this process. Glucose transport is also stimulated by the mitochondrial ATP-production uncoupler dinitrophenol. We show here that, in serum-depleted myotubes, dinitrophenol induced translocation of GLUT1 and GLUT4, but not GLUT3. This response was not affected by inhibiting phosphatidylinositol 3-kinase or disassembling the actin network. Insulin, but not dinitrophenol, caused tyrosine phosphorylation of several polypeptides, including the insulin-receptor substrate-1 and mitogen-activated protein kinase. Similarly, insulin, but not dinitrophenol, caused actin reorganization, which was inhibited by wortmannin. We conclude that insulin and dinitrophenol stimulate glucose transport by different mechanisms. Images Figure 2 Figure 3 Figure 4 PMID:7619042

  2. Nuclear actin and protein 4.1: Essential interactions during nuclear assembly in vitro

    SciTech Connect

    Krauss, Sharon Wald; Chen, Cynthia; Penman, Sheldon; Heald, Rebecca

    2003-06-11

    Structural protein 4.1, which has crucial interactions within the spectin-actin lattice of the human red cell membrane skeleton, also is widely distributed at diverse intracellular sites in nucleated cells. We previously showed that 4.1 is essential for assembly of functional nuclei in vitro and that the capacity of 4.1 to bind actin is required. Here we report that 4.1 and actin colocalize in mammalian cell nuclei using fluorescence microscopy and, by higher resolution cell whole mount electron microscopy, are associated on nuclear filaments. We also devised a cell-free assay using Xenopus egg extract containing fluorescent actin to follow actin during nuclear assembly. By directly imaging actin under non-perturbing conditions, the total nuclear actin population is retained and is visualized in situ relative to intact chromatin. We detected actin initially when chromatin and nuclear pores began assembling. As the nuclear lamina assembled, but preceding DNA synthesis, a discrete actin network formed throughout the nucleus. Protein 4.1 epitopes also were detected when actin began to accumulate in nuclei, producing a diffuse coincident pattern. As nuclei matured, actin was detected both coincident with and also independent of 4.1 epitopes. To test whether acquisition of nuclear actin is required for nuclear assembly, the actin inhibitor latrunculin A was added to Xenopus egg extracts during nuclear assembly. Latrunculin A strongly perturbed nuclear assembly and produced distorted nuclear structures containing neither actin nor protein 4.1. Our results suggest that actin as well as 4.1 is necessary for nuclear assembly and that 4.1-actin interactions may be critical.

  3. Actin filament nucleation and elongation factors--structure-function relationships.

    PubMed

    Dominguez, Roberto

    2009-01-01

    The spontaneous and unregulated polymerization of actin filaments is inhibited in cells by actin monomer-binding proteins such as profilin and Tbeta4. Eukaryotic cells and certain pathogens use filament nucleators to stabilize actin polymerization nuclei, whose formation is rate-limiting. Known filament nucleators include the Arp2/3 complex and its large family of nucleation promoting factors (NPFs), formins, Spire, Cobl, VopL/VopF, TARP and Lmod. These molecules control the time and location for polymerization, and additionally influence the structures of the actin networks that they generate. Filament nucleators are generally unrelated, but with the exception of formins they all use the WASP-Homology 2 domain (WH2 or W), a small and versatile actin-binding motif, for interaction with actin. A common architecture, found in Spire, Cobl and VopL/VopF, consists of tandem W domains that bind three to four actin subunits to form a nucleus. Structural considerations suggest that NPFs-Arp2/3 complex can also be viewed as a specialized form of tandem W-based nucleator. Formins are unique in that they use the formin-homology 2 (FH2) domain for interaction with actin and promote not only nucleation, but also processive barbed end elongation. In contrast, the elongation function among W-based nucleators has been "outsourced" to a dedicated family of proteins, Eva/VASP, which are related to WASP-family NPFs.

  4. Plectin reinforces vascular integrity by mediating crosstalk between the vimentin and the actin networks

    PubMed Central

    Osmanagic-Myers, Selma; Rus, Stefanie; Wolfram, Michael; Brunner, Daniela; Goldmann, Wolfgang H.; Bonakdar, Navid; Fischer, Irmgard; Reipert, Siegfried; Zuzuarregui, Aurora; Walko, Gernot; Wiche, Gerhard

    2015-01-01

    ABSTRACT Mutations in the cytoskeletal linker protein plectin result in multisystemic diseases affecting skin and muscle with indications of additional vascular system involvement. To study the mechanisms underlying vascular disorders, we established plectin-deficient endothelial cell and mouse models. We show that apart from perturbing the vimentin cytoskeleton of endothelial cells, plectin deficiency leads to severe distortions of adherens junctions (AJs), as well as tight junctions, accompanied by an upregulation of actin stress fibres and increased cellular contractility. Plectin-deficient endothelial cell layers were more leaky and showed reduced mechanical resilience in fluid-shear stress and mechanical stretch experiments. We suggest that the distorted AJs and upregulated actin stress fibres in plectin-deficient cells are rooted in perturbations of the vimentin cytoskeleton, as similar phenotypes could be mimicked in wild-type cells by disruption of vimentin filaments. In vivo studies in endothelium-restricted conditional plectin-knockout mice revealed significant distortions of AJs in stress-prone aortic arch regions and increased pulmonary vascular leakage. Our study opens a new perspective on cytoskeleton-controlled vascular permeability, where a plectin-organized vimentin scaffold keeps actomyosin contractility ‘in-check’ and maintains AJ homeostasis. PMID:26519478

  5. MamK, a bacterial actin, forms dynamic filaments in vivo that are regulated by the acidic proteins MamJ and LimJ

    PubMed Central

    Draper, Olga; Byrne, Meghan E.; Li, Zhuo; Keyhani, Sepehr; Cueto Barrozo, Joyce; Jensen, Grant; Komeili, Arash

    2011-01-01

    SUMMARY Bacterial actins, in contrast to their eukaryotic counterparts, are highly divergent proteins whose wide-ranging functions are thought to correlate with their evolutionary diversity. One clade, represented by the MamK protein of magnetotactic bacteria, is required for the subcellular organization of magnetosomes, membrane-bound organelles that aid in navigation along the earth’s magnetic field. Using a fluorescence recovery after photobleaching assay in Magnetospirillum magneticum AMB-1, we find that, like traditional actins, MamK forms dynamic filaments that require an intact NTPase motif for their turnover in vivo. We also uncover two proteins, MamJ and LimJ, which perform a redundant function to promote the dynamic behavior of MamK filaments in wildtype cells. The absence of both MamJ and LimJ leads to static filaments, a disrupted magnetosome chain, and an anomalous build-up of cytoskeletal filaments between magnetosomes. Our results suggest that MamK filaments, like eukaryotic actins, are intrinsically stable and rely on regulators for their dynamic behavior, a feature that stands in contrast to some classes of bacterial actins characterized to date. PMID:21883528

  6. Acanthamoeba castellanii: identification and distribution of actin cytoskeleton.

    PubMed

    González-Robles, Arturo; Castañón, Guadalupe; Hernández-Ramírez, Verónica Ivonne; Salazar-Villatoro, Lizbeth; González-Lázaro, Mónica; Omaña-Molina, Maritza; Talamás-Rohana, Patricia; Martínez-Palomo, Adolfo

    2008-07-01

    The presence of the cytoskeleton of Acanthamoeba castellanii was observed by means of cryo-electronmicroscopy and immunofluorescence techniques. This structure is formed largely by fibers and networks of actin located mainly in cytoplasmic locomotion structures as lamellipodia and as well as in various endocytic structures. In addition, the comparison between total actin content in whole extracts among different amoebae was made. The molecular weight of actin in A. castellanii was 44 kDa, and 45 kDa for Naegleria fowleri and Entamoeba histolytica.

  7. Simulation of the effect of confinement in actin ring formation

    NASA Astrophysics Data System (ADS)

    Adeli Koudehi, Maral; Vavylonis, Dimitrios; Haosu Tang Team; Dimitrios Vavylonis Team

    Actin filaments are vital for different network structures in living cells. During cytokinesis, they form a contractile ring containing myosin motor proteins and actin filament cross-linkers to separate one cell into two cells. Recent experimental studies have quantified the bundle, ring, and network structures that form when actin filaments polymerize in confined environments in vitro, in the presence of varying concentrations of cross-linkers. In this study, we performed numerical simulations to investigate the effect of actin spherical confinement and cross-linking in ring formation. We used a spring-bead model and Brownian dynamics to simulate semiflexible actin filaments that polymerize in a confining sphere with a rate proportional to the monomer concentration. Applying the model for different size of the confining spheres shows that the probability of ring formation decreases by increasing the radius (at fixed initial monomer concentration), in agreement with prior experimental data. We describe the effect of persistence length, orientation-dependent cross-linking, and initial actin monomer concentration. Simulations show that equilibrium configurations can be reached through zipping and unzipping of actin filaments in bundles and transient ring formation.

  8. Dynamin at actin tails.

    PubMed

    Lee, Eunkyung; De Camilli, Pietro

    2002-01-01

    Dynamin, the product of the shibire gene of Drosophila, is a GTPase critically required for endocytosis. Some studies have suggested a functional link between dynamin and the actin cytoskeleton. This link is of special interest, because there is evidence implicating actin dynamics in endocytosis. Here we show that endogenous dynamin 2, as well as green fluorescence protein fusion proteins of both dynamin 1 and 2, is present in actin comets generated by Listeria or by type I PIP kinase (PIPK) overexpression. In PIPK-induced tails, dynamin is further enriched at the interface between the tails and the moving organelles. Dynamin mutants harboring mutations in the GTPase domain inhibited nucleation of actin tails induced by PIPK and moderately reduced their speed. Although dynamin localization to the tails required its proline-rich domain, expression of a dynamin mutant lacking this domain also diminished tail formation. In addition, this mutant disrupted a membrane-associated actin scaffold (podosome rosette) previously shown to include dynamin. These findings suggest that dynamin is part of a protein network that controls nucleation of actin from membranes. At endocytic sites, dynamin may couple the fission reaction to the polymerization of an actin pool that functions in the separation of the endocytic vesicles from the plasma membrane. PMID:11782545

  9. Actinic keratosis

    MedlinePlus

    Solar keratosis; Sun-induced skin changes - keratosis; Keratosis - actinic (solar) ... Actinic keratosis is caused by exposure to sunlight. You are more likely to develop it if you: Have fair skin, blue or green eyes, or blond or red hair Had a ...

  10. Reorganization of the cortical actin cytoskeleton during maturation division in the Tubifex egg: possible involvement of protein kinase C.

    PubMed

    Shimizu, T

    1997-08-01

    Tubifex eggs undergo a drastic reorganization of the cortical actin cytoskeleton during metaphase of the second meiosis. At the end of the first meiosis, the egg cortex displays only scattered actin filaments and tiny dots of F-actin; during the following 90 min, cortical F-actin gradually increases in amount, becomes organized into foci that are interlinked by actin bundles, and generates a geodesic dome-like organization. In this study, we have characterized this reorganization of the cortical actin cytoskeleton. In living eggs injected with rhodamine-phalloidin at the beginning of the second meiosis, cortical actin assembly (i.e., formation of actin foci and bundles) proceeds normally, but labeled F-actin is not found to be included significantly in the formed cortical actin network, suggesting that the increase in cortical F-actin is not simply ascribable to the recruitment of preexisting actin filaments. Cortical actin assembly can be induced precociously not only by calcium ionophore A23187 but also by a phorbol ester PMA, an agonist of protein kinase C (PKC). Conversely, the formation of actin foci and bundles is inhibited by PKC antagonists, although cortical F-actin increases to some extent in the presence of these inhibitors. Similar inhibition of the cortical reorganization is elicited in eggs whose intracellular free calcium level ([Ca2+]i) has been clamped low by microinjection of a calcium chelator BAPTA. The treatment of BAPTA-injected eggs with PMA results in the formation of actin foci and bundles. An experiment with eggs injected with fluo-3 shows that [Ca2+]i increases during metaphase of the second meiosis. These results suggest that the reorganization of cortical actin during metaphase of the second meiosis requires activation of PKC, which depends on increases in [Ca2+]i. PMID:9245516

  11. Bistability in the Rac1, PAK, and RhoA Signaling Network Drives Actin Cytoskeleton Dynamics and Cell Motility Switches

    PubMed Central

    Byrne, Kate M.; Monsefi, Naser; Dawson, John C.; Degasperi, Andrea; Bukowski-Wills, Jimi-Carlo; Volinsky, Natalia; Dobrzyński, Maciej; Birtwistle, Marc R.; Tsyganov, Mikhail A.; Kiyatkin, Anatoly; Kida, Katarzyna; Finch, Andrew J.; Carragher, Neil O.; Kolch, Walter; Nguyen, Lan K.; von Kriegsheim, Alex; Kholodenko, Boris N.

    2016-01-01

    Summary Dynamic interactions between RhoA and Rac1, members of the Rho small GTPase family, play a vital role in the control of cell migration. Using predictive mathematical modeling, mass spectrometry-based quantitation of network components, and experimental validation in MDA-MB-231 mesenchymal breast cancer cells, we show that a network containing Rac1, RhoA, and PAK family kinases can produce bistable, switch-like responses to a graded PAK inhibition. Using a small chemical inhibitor of PAK, we demonstrate that cellular RhoA and Rac1 activation levels respond in a history-dependent, bistable manner to PAK inhibition. Consequently, we show that downstream signaling, actin dynamics, and cell migration also behave in a bistable fashion, displaying switches and hysteresis in response to PAK inhibition. Our results demonstrate that PAK is a critical component in the Rac1-RhoA inhibitory crosstalk that governs bistable GTPase activity, cell morphology, and cell migration switches. PMID:27136688

  12. A pathogenic bacterium triggers epithelial signals to form a functional bacterial receptor that mediates actin pseudopod formation.

    PubMed Central

    Rosenshine, I; Ruschkowski, S; Stein, M; Reinscheid, D J; Mills, S D; Finlay, B B

    1996-01-01

    Enteropathogenic E. coli (EPEC) belongs to a group of bacterial pathogens that induce actin accumulation beneath adherent bacteria. We found that EPEC adherence to epithelial cells mediates the formation of fingerlike pseudopods (up to 10 microm) beneath bacteria. These actin-rich structures also contain tyrosine phosphorylated host proteins concentrated at the pseudopod tip beneath adherent EPEC. Intimate bacterial adherence (and pseudopod formation) occurred only after prior bacterial induction of tyrosine phosphorylation of an epithelial membrane protein, Hp90, which then associates directly with an EPEC adhesin, intimin. These interactions lead to cytoskeletal nucleation and pseudopod formation. This is the first example of a bacterial pathogen that triggers signals in epithelial cells which activates receptor binding activity to a specific bacterial ligand and subsequent cytoskeletal rearrangement. Images PMID:8654358

  13. GhCFE1A, a dynamic linker between the ER network and actin cytoskeleton, plays an important role in cotton fibre cell initiation and elongation.

    PubMed

    Lv, Fenni; Wang, Haihai; Wang, Xinyu; Han, Libo; Ma, Yinping; Wang, Sen; Feng, Zhidi; Niu, Xiaowei; Cai, Caiping; Kong, Zhaosheng; Zhang, Tianzhen; Guo, Wangzhen

    2015-04-01

    Fibre cell initiation and elongation is critical for cotton fibre development. However, little is known about the regulation of initiation and elongation during fibre cell development. Here, the regulatory role of a novel protein GhCFE1A was uncovered. GhCFE1A is preferentially expressed at initiation and rapid elongation stages during fibre development; in addition, much higher expression of GhCFE1A was detected at the fibre initiation stage in fibreless cotton mutants than in the fibre-bearing TM-1 wild-type. Importantly, overexpression of GhCFE1A in cotton not only delayed fibre cell elongation but also significantly reduced the density of lint and fuzz fibre initials and stem trichomes. Yeast two-hybrid assay showed that GhCFE1A interacted with several actin proteins, and the interaction was further confirmed by co-sedimentation assay. Interestingly, a subcellular localization assay showed that GhCFE1A resided on the cortical endoplasmic reticulum (ER) network and co-localized with actin cables. Moreover, the density of F-actin filaments was shown to be reduced in GhCFE1A-overexpressing fibres at the rapid elongation stage compared with the wild-type control. Taken together, the results demonstrate that GhCFE1A probably functions as a dynamic linker between the actin cytoskeleton and the ER network, and plays an important role in fibre cell initiation and elongation during cotton fibre development.

  14. Characterization of Ring-Like F-Actin Structure as a Mechanical Partner for Spindle Positioning in Mitosis

    PubMed Central

    Jiang, Hao; Zhu, Tongge; Xia, Peng; Seffens, William; Aikhionbare, Felix; Wang, Dongmei; Dou, Zhen; Yao, Xuebiao

    2014-01-01

    Proper spindle positioning and orientation are essential for accurate mitosis which requires dynamic interactions between microtubule and actin filament (F-actin). Although mounting evidence demonstrates the role of F-actin in cortical cytoskeleton dynamics, it remains elusive as to the structure and function of F-actin-based networks in spindle geometry. Here we showed a ring-like F-actin structure surrounding the mitotic spindle which forms since metaphase and maintains in MG132-arrested metaphase HeLa cells. This cytoplasmic F-actin structure is relatively isotropic and less dynamic. Our computational modeling of spindle position process suggests a possible mechanism by which the ring-like F-actin structure can regulate astral microtubule dynamics and thus mitotic spindle orientation. We further demonstrated that inhibiting Plk1, Mps1 or Myosin, and disruption of microtubules or F-actin polymerization perturbs the formation of the ring-like F-actin structure and alters spindle position and symmetric division. These findings reveal a previously unrecognized but important link between mitotic spindle and ring-like F-actin network in accurate mitosis and enables the development of a method to theoretically illustrate the relationship between mitotic spindle and cytoplasmic F-actin. PMID:25299690

  15. Characterization of ring-like F-actin structure as a mechanical partner for spindle positioning in mitosis.

    PubMed

    Lu, Huan; Zhao, Qun; Jiang, Hao; Zhu, Tongge; Xia, Peng; Seffens, William; Aikhionbare, Felix; Wang, Dongmei; Dou, Zhen; Yao, Xuebiao

    2014-01-01

    Proper spindle positioning and orientation are essential for accurate mitosis which requires dynamic interactions between microtubule and actin filament (F-actin). Although mounting evidence demonstrates the role of F-actin in cortical cytoskeleton dynamics, it remains elusive as to the structure and function of F-actin-based networks in spindle geometry. Here we showed a ring-like F-actin structure surrounding the mitotic spindle which forms since metaphase and maintains in MG132-arrested metaphase HeLa cells. This cytoplasmic F-actin structure is relatively isotropic and less dynamic. Our computational modeling of spindle position process suggests a possible mechanism by which the ring-like F-actin structure can regulate astral microtubule dynamics and thus mitotic spindle orientation. We further demonstrated that inhibiting Plk1, Mps1 or Myosin, and disruption of microtubules or F-actin polymerization perturbs the formation of the ring-like F-actin structure and alters spindle position and symmetric division. These findings reveal a previously unrecognized but important link between mitotic spindle and ring-like F-actin network in accurate mitosis and enables the development of a method to theoretically illustrate the relationship between mitotic spindle and cytoplasmic F-actin. PMID:25299690

  16. Nuclear and cytoplasmic actin in dinoflagellates.

    PubMed

    Soyer-Gobillard, M O; Ausseil, J; Géraud, M L

    1996-01-01

    Experiments using monoclonal and polyclonal anti-actin antibodies allowed us to demonstrate the presence of F- or G-actin in original protists, dinoflagellates, either by biochemistry, immunofluorescence and in TEM. SDS-PAGE electrophoresis and immunoblottings made either from total or nuclear protein extracts revealed the presence of a 44-kDa band reacting with monoclonal anti-actin antibody in two species, Prorocentrum micans and Crypthecodinium cohnii, and thus demonstrated the presence of actin in nuclear and cytoplasmic fractions. After squash preparation of P micans cells, actin was identified within the nucleus and in some regions of the cytoplasm by immunofluorescence microscopy. Labelling of both the nucleolus and the centrosome region was evident together with amorphous nucleoplasmic material surrounding the chromosomes. The use of cryosections of intact P micans and C cohnii cells for immunofluorescence along with staining with DAPI to delineate the chromosomes themselves, yielded finer resolution of the intranuclear network labelling pattern and allowed us to complete our observations, in particular on the cytoplasmic labelling. In P micans, in addition to the centrosome region, the cytoplasmic channels passing through the nucleus in dividing cells are labelled. In C cohnii, the cortex, the centrosome region, the cytoplasmic channels, the region surrounding the nucleus, the filaments linking it to the cortex and the cleavage furrow are also labelled. In the nucleus of the two species, there is a prominent "weft' of fine actin filaments in the nucleoplasm forming a matrix of varying density around the persistent chromosomes. This actin matrix, of unknown function, is most conspicuous at the end of the S-phase of the cell cycle. Fluorescent derivatives of phalloidin, used as diagnostic cytochemical probes for polymeric actin (F-actin), gave similar results. Positive TEM immunolabelling of intranuclear actin confirms its presence in the nucleoplasm, in the

  17. Actinic Cheilitis

    MedlinePlus

    ... is a precancerous condition related to cumulative lifetime sun exposure. The lower lip is most often affected. Individuals ... Wearing barrier clothing (eg, wide-brimmed hats) and sunscreen-containing lip balms can aid in preventing actinic ...

  18. Feedback Interactions of Polymerized Actin with the Cell Membrane: Waves, Pulses, and Oscillations

    NASA Astrophysics Data System (ADS)

    Carlsson, Anders

    Polymerized filaments of the protein actin have crucial functions in cell migration, and in bending the cell membrane to drive endocytosis or the formation of protrusions. The nucleation and polymerization of actin filaments are controlled by upstream agents in the cell membrane, including nucleation-promoting factors (NPFs) that activate the Arp2/3 complex to form new branches on pre-existing filaments. But polymerized actin (F-actin) also feeds back on the assembly of NPFs. We explore the effects of the resulting feedback loop of F-actin and NPFs on two phenomena: actin pulses that drive endocytosis in yeast, and actin waves traveling along the membrane of several cell types. In our model of endocytosis in yeast, the actin network is grown explicitly in three dimensions, exerts a negative feedback interaction on localized patch of NPFs in the membrane, and bends the membrane by exerting a distribution of forces. This model explains observed actin and NPF pulse dynamics, and the effects of several interventions including i) NPF mutations, ii) inhibition of actin polymerization, and iii) deletion of a protein that allows F-actin to bend the cell membrane. The model predicts that mutation of the active region of an NPF will enhance the accumulation of that NPF, and we confirm this prediction by quantitative fluorescence microscopy. For actin waves, we treat a similar model, with NPFs distributed over a larger region of the cell membrane. This model naturally generates actin waves, and predicts a transition from wave behavior to spatially localized oscillations when NPFs are confined to a small region. We also predict a transition from waves to static polarization as the negative-feedback coupling between F-actin and the NPFs is reduced. Supported by NIGMS Grant R01 GM107667.

  19. A chemo-mechanical constitutive model for transiently cross-linked actin networks and a theoretical assessment of their viscoelastic behaviour.

    PubMed

    Fallqvist, B; Kroon, M

    2013-04-01

    Biological materials can undergo large deformations and also show viscoelastic behaviour. One such material is the network of actin filaments found in biological cells, giving the cell much of its mechanical stiffness. A theory for predicting the relaxation behaviour of actin networks cross-linked with the cross-linker α-actinin is proposed. The constitutive model is based on a continuum approach involving a neo-Hookean material model, modified in terms of concentration of chemically activated cross-links. The chemical model builds on work done by Spiros (Doctoral thesis, University of British Columbia, Vancouver, Canada, 1998) and has been modified to respond to mechanical stress experienced by the network. The deformation is split into a viscous and elastic part, and a thermodynamically motivated rate equation is assigned for the evolution of viscous deformation. The model predictions were evaluated for stress relaxation tests at different levels of strain and found to be in good agreement with experimental results for actin networks cross-linked with α-actinin. PMID:22623110

  20. A syndecan-4 binding peptide derived from laminin 5 uses a novel PKCε pathway to induce cross-linked actin network (CLAN) formation in human trabecular meshwork (HTM) cells.

    PubMed

    Filla, Mark S; Clark, Ross; Peters, Donna M

    2014-10-01

    In this study, we examined the role(s) of syndecan-4 in regulating the formation of an actin geodesic dome structure called a cross-linked actin network (CLAN) in which syndecan-4 has previously been localized. CLANs have been described in several different cell types, but they have been most widely studied in human trabecular meshwork (HTM) cells where they may play a key role in controlling intraocular pressure by regulating aqueous humor outflow from the eye. In this study we show that a loss of cell surface synedcan-4 significantly reduces CLAN formation in HTM cells. Analysis of HTM cultures treated with or without dexamethasone shows that laminin 5 deposition within the extracellular matrix is increased by glucocorticoid treatment and that a laminin 5-derived, syndecan-4-binding peptide (PEP75), induces CLAN formation in TM cells. This PEP75-induced CLAN formation was inhibited by heparin and the broad spectrum PKC inhibitor Ro-31-7549. In contrast, the more specific PKCα inhibitor Gö 6976 had no effect, thus excluding PKCα as a downstream effector of syndecan-4 signaling. Analysis of PKC isozyme expression showed that HTM cells also expressed both PKCγ and PKCε. Cells treated with a PKCε agonist formed CLANs while a PKCα/γ agonist had no effect. These data suggest that syndecan-4 is essential for CLAN formation in HTM cells and that a novel PKCε-mediated signaling pathway can regulate formation of this unique actin structure. PMID:25128150

  1. A syndecan-4 binding peptide derived from laminin 5 uses a novel PKCε pathway to induce cross-linked actin network (CLAN) formation in human trabecular meshwork (HTM) cells

    PubMed Central

    Filla, Mark S.; Clark, Ross; Peters, Donna M.

    2014-01-01

    In this study, we examined the role(s) of syndecan-4 in regulating the formation of an actin geodesic dome structure called a cross-linked actin network (CLAN) in which syndecan-4 has previously been localized. CLANs have been described in several different cell types, but they have been most widely studied in human trabecular meshwork (HTM) cells where they may play a key role in controlling intraocular pressure by regulating aqueous humor outflow from the eye. In this study we show that a loss of cell surface synedcan-4 significantly reduces CLAN formation in HTM cells. Analysis of HTM cultures treated with or without dexamethasone shows that laminin 5 deposition within the extracellular matrix is increased by glucocorticoid treatment and that a laminin 5-derived, syndecan-4-binding peptide (PEP75), induces CLAN formation in TM cells. This PEP75-induced CLAN formation was inhibited by heparin and the broad spectrum PKC inhibitor Ro-31-7549. In contrast, the more specific PKCα inhibitor Go 6976 had no effect, thus excluding PKCα as a downstream effector of syndecan-4 signaling. Analysis of PKC isozyme expression showed that HTM cells also expressed both PKCγ and PKCε. Cells treated with a PKCε agonist formed CLANs while a PKCα/γ agonist had no effect. These data suggest that syndecan-4 is essential for CLAN formation in HTM cells and that a novel PKCε-mediated signaling pathway can regulate formation of this unique actin structure. PMID:25128150

  2. Multiscale Modelling for investigating single molecule effects on the mechanics of actin filaments

    NASA Astrophysics Data System (ADS)

    A, Deriu Marco; C, Bidone Tamara; Laura, Carbone; Cristina, Bignardi; M, Montevecchi Franco; Umberto, Morbiducci

    2011-12-01

    This work presents a preliminary multiscale computational investigation of the effects of nucleotides and cations on the mechanics of actin filaments (F-actin). At the molecular level, Molecular Dynamics (MD) simulations are employed to characterize the rearrangements of the actin monomers (G-actin) in terms of secondary structures evolution in physiological conditions. At the mesoscale level, a coarse grain (CG) procedure is adopted where each monomer is represented by means of Elastic Network Modeling (ENM) technique. At the macroscale level, actin filaments up to hundreds of nanometers are assumed as isotropic and elastic beams and characterized via Rotation Translation Block (RTB) analysis. F-actin bound to adenosine triphosphate (ATP) shows a persistence length around 5 μm, while actin filaments bound to adenosine diphosphate (ADP) have a persistence length of about 3 μm. With magnesium bound to the high affinity binding site of G-actin, the persistence length of F-actin decreases to about 2 μm only in the ADP-bound form of the filament, while the same ion has no effects, in terms of stiffness variation, on the ATP-bound form of F-actin. The molecular mechanisms behind these changes in flexibility are herein elucidated. Thus, this study allows to analyze how the local binding of cations and nucleotides on G-actin induce molecular rearrangements that transmit to the overall F-actin, characterizing shifts of mechanical properties, that can be related with physiological and pathological cellular phenomena, as cell migration and spreading. Further, this study provides the basis for upcoming investigating of network and cellular remodelling at higher length scales.

  3. Actin Automata with Memory

    NASA Astrophysics Data System (ADS)

    Alonso-Sanz, Ramón; Adamatzky, Andy

    Actin is a globular protein which forms long polar filaments in eukaryotic. The actin filaments play the roles of cytoskeleton, motility units, information processing and learning. We model actin filament as a double chain of finite state machines, nodes, which take states “0” and “1”. The states are abstractions of absence and presence of a subthreshold charge on actin units corresponding to the nodes. All nodes update their state in parallel to discrete time. A node updates its current state depending on states of two closest neighbors in the node chain and two closest neighbors in the complementary chain. Previous models of actin automata consider momentary state transitions of nodes. We enrich the actin automata model by assuming that states of nodes depend not only on the current states of neighboring node but also on their past states. Thus, we assess the effect of memory of past states on the dynamics of acting automata. We demonstrate in computational experiments that memory slows down propagation of perturbations, decrease entropy of space-time patterns generated, transforms traveling localizations to stationary oscillators, and stationary oscillations to still patterns.

  4. F-actin buckling coordinates contractility and severing in a biomimetic actomyosin cortex

    PubMed Central

    Murrell, Michael P.; Gardel, Margaret L.

    2012-01-01

    Here we develop a minimal model of the cell actomyosin cortex by forming a quasi-2D cross-linked filamentous actin (F-actin) network adhered to a model cell membrane and contracted by myosin thick filaments. Myosin motors generate both compressive and tensile stresses on F-actin and consequently induce large bending fluctuations, which reduces their effective persistence length to <1 μm. Over a large range of conditions, we show the extent of network contraction corresponds exactly to the extent of individual F-actin shortening via buckling. This demonstrates an essential role of buckling in breaking the symmetry between tensile and compressive stresses to facilitate mesoscale network contraction of up to 80% strain. Portions of buckled F-actin with a radius of curvature ∼300 nm are prone to severing and thus compressive stresses mechanically coordinate contractility with F-actin severing, the initial step of F-actin turnover. Finally, the F-actin curvature acquired by myosin-induced stresses can be further constrained by adhesion of the network to a membrane, accelerating filament severing but inhibiting the long-range transmission of the stresses necessary for network contractility. Thus, the extent of membrane adhesion can regulate the coupling between network contraction and F-actin severing. These data demonstrate the essential role of the nonlinear response of F-actin to compressive stresses in potentiating both myosin-mediated contractility and filament severing. This may serve as a general mechanism to mechanically coordinate contractility and cortical dynamics across diverse actomyosin assemblies in smooth muscle and nonmuscle cells. PMID:23213249

  5. Viscoelastic properties of actin-coated membranes

    NASA Astrophysics Data System (ADS)

    Helfer, E.; Harlepp, S.; Bourdieu, L.; Robert, J.; Mackintosh, F. C.; Chatenay, D.

    2001-02-01

    In living cells, cytoskeletal filaments interact with the plasma membrane to form structures that play a key role in cell shape and mechanical properties. To study the interaction between these basic components, we designed an in vitro self-assembled network of actin filaments attached to the outer surface of giant unilamellar vesicles. Optical tweezers and single-particle tracking experiments are used to study the rich dynamics of these actin-coated membranes (ACM). We show that microrheology studies can be carried out on such an individual microscopic object. The principle of the experiment consists in measuring the thermally excited position fluctuations of a probe bead attached biochemically to the membrane. We propose a model that relates the power spectrum of these thermal fluctuations to the viscoelastic properties of the membrane. The presence of the actin network modifies strongly the membrane dynamics with respect to a fluid, lipid bilayer one. It induces first a finite (ω=0) two-dimensional (2D) shear modulus G02D~0.5 to 5 μN/m in the membrane plane. Moreover, the frequency dependence at high frequency of the shear modulus [G'2D(f )~f0.85+/-0.07] and of the bending modulus (κACM(f)~f0.55+/-0.21) demonstrate the viscoelastic behavior of the composite membrane. These results are consistent with a common exponent of 0.75 for both moduli as expected from our model and from prior measurements on actin solutions.

  6. Actin-cytoskeleton dynamics in non-monotonic cell spreading

    PubMed Central

    Heinrich, Doris; Youssef, Simon; Schroth-Diez, Britta; Engel, Ulrike; Aydin, Daniel; Blümmel, Jacques; Spatz, Joachim P

    2008-01-01

    The spreading of motile cells on a substrate surface is accompanied by reorganization of their actin network. We show that spreading in the highly motile cells of Dictyostelium is non-monotonic, and thus differs from the passage of spreading cells through a regular series of stages. Quantification of the gain and loss of contact area revealed fluctuating forces of protrusion and retraction that dominate the interaction of Dictyostelium cells with a substrate. The molecular basis of these fluctuations is elucidated by dual-fluorescence labeling of filamentous actin together with proteins that highlight specific activities in the actin system. Front-to-tail polarity is established by the sorting out of myosin-II from regions where dense actin assemblies are accumulating. Myosin-IB identifies protruding front regions, and the Arp2/3 complex localizes to lamellipodia protruded from the fronts. Coronin is used as a sensitive indicator of actin disassembly to visualize the delicate balance of polymerization and depolymerization in spreading cells. Short-lived actin patches that co-localize with clathrin suggest that membrane internalization occurs even when the substrate-attached cell surface expands. We conclude that non-monotonic cell spreading is characterized by spatiotemporal patterns formed by motor proteins together with regulatory proteins that either promote or terminate actin polymerization on the scale of seconds. PMID:19262103

  7. Soft viscoelastic properties of nuclear actin age oocytes due to gravitational creep.

    PubMed

    Feric, Marina; Broedersz, Chase P; Brangwynne, Clifford P

    2015-11-18

    The actin cytoskeleton helps maintain structural organization within living cells. In large X. laevis oocytes, gravity becomes a dominant force and is countered by a nuclear actin network that prevents liquid-like nuclear bodies from immediate sedimentation and coalescence. However, nuclear actin's mechanical properties, and how they facilitate the stabilization of nuclear bodies, remain unknown. Using active microrheology, we find that nuclear actin forms a weak viscoelastic network, with a modulus of roughly 0.1 Pa. Embedded probe particles subjected to a constant force exhibit continuous displacement, due to viscoelastic creep. Gravitational forces also cause creep displacement of nuclear bodies, resulting in their asymmetric nuclear distribution. Thus, nuclear actin does not indefinitely support the emulsion of nuclear bodies, but only kinetically stabilizes them by slowing down gravitational creep to ~2 months. This is similar to the viability time of large oocytes, suggesting gravitational creep ages oocytes, with fatal consequences on long timescales.

  8. Soft viscoelastic properties of nuclear actin age oocytes due to gravitational creep.

    PubMed

    Feric, Marina; Broedersz, Chase P; Brangwynne, Clifford P

    2015-01-01

    The actin cytoskeleton helps maintain structural organization within living cells. In large X. laevis oocytes, gravity becomes a dominant force and is countered by a nuclear actin network that prevents liquid-like nuclear bodies from immediate sedimentation and coalescence. However, nuclear actin's mechanical properties, and how they facilitate the stabilization of nuclear bodies, remain unknown. Using active microrheology, we find that nuclear actin forms a weak viscoelastic network, with a modulus of roughly 0.1 Pa. Embedded probe particles subjected to a constant force exhibit continuous displacement, due to viscoelastic creep. Gravitational forces also cause creep displacement of nuclear bodies, resulting in their asymmetric nuclear distribution. Thus, nuclear actin does not indefinitely support the emulsion of nuclear bodies, but only kinetically stabilizes them by slowing down gravitational creep to ~2 months. This is similar to the viability time of large oocytes, suggesting gravitational creep ages oocytes, with fatal consequences on long timescales. PMID:26577186

  9. Robustness of a partially interdependent network formed of clustered networks

    NASA Astrophysics Data System (ADS)

    Shao, Shuai; Huang, Xuqing; Stanley, H. Eugene; Havlin, Shlomo

    2014-03-01

    Clustering, or transitivity, a behavior observed in real-world networks, affects network structure and function. This property has been studied extensively, but most of this research has been limited to clustering in single networks. The effect of clustering on the robustness of coupled networks, on the other hand, has received much less attention. Only the case of a pair of fully coupled networks with clustering has recently received study. Here we generalize the study of clustering of a fully coupled pair of networks and apply it to a partially interdependent network of networks with clustering within the network components. We show, both analytically and numerically, how clustering within networks affects the percolation properties of interdependent networks, including the percolation threshold, the size of the giant component, and the critical coupling point at which the first-order phase transition changes to a second-order phase transition as the coupling between the networks is reduced. We study two types of clustering, one proposed by Newman [Phys. Rev. Lett. 103, 058701 (2009), 10.1103/PhysRevLett.103.058701] in which the average degree is kept constant while the clustering is changed, and the other by Hackett et al. [Phys. Rev. E 83, 056107 (2011), 10.1103/PhysRevE.83.056107] in which the degree distribution is kept constant. The first type of clustering is studied both analytically and numerically, and the second is studied numerically.

  10. Intranuclear Actin Regulates Osteogenesis

    PubMed Central

    Sen, Buer; Xie, Zhihui; Uzer, Gunes; Thompson, William R.; Styner, Maya; Wu, Xin; Rubin, Janet

    2016-01-01

    Depolymerization of the actin cytoskeleton induces nuclear trafficking of regulatory proteins and global effects on gene transcription. We here show that in mesenchymal stem cells (MSCs), cytochalasin D treatment causes rapid cofilin-/importin-9-dependent transfer of G-actin into the nucleus. The continued presence of intranuclear actin, which forms rod-like structures that stain with phalloidin, is associated with induction of robust expression of the osteogenic genes osterix and osteocalcin in a Runx2-dependent manner, and leads to acquisition of osteogenic phenotype. Adipogenic differentiation also occurs, but to a lesser degree. Intranuclear actin leads to nuclear export of Yes-associated protein (YAP); maintenance of nuclear YAP inhibits Runx2 initiation of osteogenesis. Injection of cytochalasin into the tibial marrow space of live mice results in abundant bone formation within the space of 1 week. In sum, increased intranuclear actin forces MSC into osteogenic lineage through controlling Runx2 activity; this process may be useful for clinical objectives of forming bone. PMID:26140478

  11. Identification of a hormone-regulated dynamic nuclear actin network associated with estrogen receptor alpha in human breast cancer cell nuclei.

    PubMed

    Ambrosino, Concetta; Tarallo, Roberta; Bamundo, Angela; Cuomo, Danila; Franci, Gianluigi; Nassa, Giovanni; Paris, Ornella; Ravo, Maria; Giovane, Alfonso; Zambrano, Nicola; Lepikhova, Tatiana; Jänne, Olli A; Baumann, Marc; Nyman, Tuula A; Cicatiello, Luigi; Weisz, Alessandro

    2010-06-01

    Estrogen receptor alpha (ERalpha) is a modular protein of the steroid/nuclear receptor family of transcriptional regulators that upon binding to the hormone undergoes structural changes, resulting in its nuclear translocation and docking to specific chromatin sites. In the nucleus, ERalpha assembles in multiprotein complexes that act as final effectors of estrogen signaling to the genome through chromatin remodeling and epigenetic modifications, leading to dynamic and coordinated regulation of hormone-responsive genes. Identification of the molecular partners of ERalpha and understanding their combinatory interactions within functional complexes is a prerequisite to define the molecular basis of estrogen control of cell functions. To this end, affinity purification was applied to map and characterize the ERalpha interactome in hormone-responsive human breast cancer cell nuclei. MCF-7 cell clones expressing human ERalpha fused to a tandem affinity purification tag were generated and used to purify native nuclear ER-containing complexes by IgG-Sepharose affinity chromatography and glycerol gradient centrifugation. Purified complexes were analyzed by two-dimensional DIGE and mass spectrometry, leading to the identification of a ligand-dependent multiprotein complex comprising beta-actin, myosins, and several proteins involved in actin filament organization and dynamics and/or known to participate in actin-mediated regulation of gene transcription, chromatin dynamics, and ribosome biogenesis. Time course analyses indicated that complexes containing ERalpha and actin are assembled in the nucleus early after receptor activation by ligands, and gene knockdown experiments showed that gelsolin and the nuclear isoform of myosin 1c are key determinants for assembly and/or stability of these complexes. Based on these results, we propose that the actin network plays a role in nuclear ERalpha actions in breast cancer cells, including coordinated regulation of target gene

  12. UNC-45/CRO1/She4p (UCS) protein forms elongated dimer and joins two myosin heads near their actin binding region

    PubMed Central

    Shi, Hang; Blobel, Günter

    2010-01-01

    UNC-45/CRO1/She4p (UCS) proteins have variously been proposed to affect the folding, stability, and ATPase activity of myosins. They are the only proteins known to interact directly with the motor domain. To gain more insight into UCS function, we determined the atomic structure of the yeast UCS protein, She4p, at 2.9 Å resolution. We found that 16 helical repeats are organized into an L-shaped superhelix with an amphipathic N-terminal helix dangling off the short arm of the L-shaped molecule. In the crystal, She4p forms a 193-Å-long, zigzag-shaped dimer through three distinct and evolutionary conserved interfaces. We have identified She4p’s C-terminal region as a ligand for a 27-residue-long epitope on the myosin motor domain. Remarkably, this region consists of two adjacent, but distinct, binding epitopes localized at the nucleotide-responsive cleft between the nucleotide- and actin-filament-binding sites. One epitope is situated inside the cleft, the other outside the cleft. After ATP hydrolysis and Pi ejection, the cleft narrows at its base from 20 to 12 Å thereby occluding the inside the cleft epitope, while leaving the adjacent, outside the cleft binding epitope accessible to UCS binding. Hence, one cycle of higher and lower binding affinity would accompany one ATP hydrolysis cycle and a single step in the walk on an actin filament rope. We propose that a UCS dimer links two myosins at their motor domains and thereby functions as one of the determinants for step size of myosin on actin filaments. PMID:21115842

  13. Dynamic actin structures stabilized by profilin.

    PubMed Central

    Finkel, T; Theriot, J A; Dise, K R; Tomaselli, G F; Goldschmidt-Clermont, P J

    1994-01-01

    We describe the production and analysis of clonal cell lines in which we have overexpressed human profilin, a small ubiquitous actin monomer binding protein, to assess the role of profilin on actin function in vivo. The concentration of filamentous actin is increased in cells with higher profilin levels, and actin filament half-life measured in these cells is directly proportional to the steady-state profilin concentration. The distribution of actin filaments is altered by profilin overexpression. While parallel actin bundles crossing the cells are virtually absent in cells overexpressing profilin, the submembranous actin network of these cells is denser than in control cells. These results suggest that in vivo profilin regulates the stability, and thereby distribution, of specific dynamic actin structures. Images PMID:8108438

  14. Mathematical modelling and numerical simulations of actin dynamics in the eukaryotic cell.

    PubMed

    George, Uduak Z; Stéphanou, Angélique; Madzvamuse, Anotida

    2013-02-01

    The aim of this article is to study cell deformation and cell movement by considering both the mechanical and biochemical properties of the cortical network of actin filaments and its concentration. Actin is a polymer that can exist either in filamentous form (F-actin) or in monometric form (G-actin) (Chen et al. in Trends Biochem Sci 25:19-23, 2000) and the filamentous form is arranged in a paired helix of two protofilaments (Ananthakrishnan et al. in Recent Res Devel Biophys 5:39-69, 2006). By assuming that cell deformations are a result of the cortical actin dynamics in the cell cytoskeleton, we consider a continuum mathematical model that couples the mechanics of the network of actin filaments with its bio-chemical dynamics. Numerical treatment of the model is carried out using the moving grid finite element method (Madzvamuse et al. in J Comput Phys 190:478-500, 2003). Furthermore, by assuming slow deformations of the cell, we use linear stability theory to validate the numerical simulation results close to bifurcation points. Far from bifurcation points, we show that the mathematical model is able to describe the complex cell deformations typically observed in experimental results. Our numerical results illustrate cell expansion, cell contraction, cell translation and cell relocation as well as cell protrusions. In all these results, the contractile tonicity formed by the association of actin filaments to the myosin II motor proteins is identified as a key bifurcation parameter. PMID:22434394

  15. Resilience of networks formed of interdependent modular networks

    NASA Astrophysics Data System (ADS)

    Shekhtman, Louis M.; Shai, Saray; Havlin, Shlomo

    2015-12-01

    Many infrastructure networks have a modular structure and are also interdependent with other infrastructures. While significant research has explored the resilience of interdependent networks, there has been no analysis of the effects of modularity. Here we develop a theoretical framework for attacks on interdependent modular networks and support our results through simulations. We focus, for simplicity, on the case where each network has the same number of communities and the dependency links are restricted to be between pairs of communities of different networks. This is particularly realistic for modeling infrastructure across cities. Each city has its own infrastructures and different infrastructures are dependent only within the city. However, each infrastructure is connected within and between cities. For example, a power grid will connect many cities as will a communication network, yet a power station and communication tower that are interdependent will likely be in the same city. It has previously been shown that single networks are very susceptible to the failure of the interconnected nodes (between communities) (Shai et al 2014 arXiv:1404.4748) and that attacks on these nodes are even more crippling than attacks based on betweenness (da Cunha et al 2015 arXiv:1502.00353). In our example of cities these nodes have long range links which are more likely to fail. For both treelike and looplike interdependent modular networks we find distinct regimes depending on the number of modules, m. (i) In the case where there are fewer modules with strong intraconnections, the system first separates into modules in an abrupt first-order transition and then each module undergoes a second percolation transition. (ii) When there are more modules with many interconnections between them, the system undergoes a single transition. Overall, we find that modular structure can significantly influence the type of transitions observed in interdependent networks and should be

  16. β1 and β3 Integrins Cooperate to Induce Syndecan-4-Containing Cross-linked Actin Networks in Human Trabecular Meshwork Cells

    PubMed Central

    Filla, Mark S.; Woods, Anne; Kaufman, Paul L.; Peters, Donna M.

    2006-01-01

    Purpose To characterize the molecular composition of cross-linked actin networks (CLANs) and the regulation of their formation by integrins in normal human trabecular meshwork (TM) cells. CLANs have been observed in steroid-treated and glaucomatous TM cells and have been suggested to contribute to decreased outflow facility by altering the contractility of the TM. Methods Immunofluorescence microscopy was used to identify molecular components of CLANs and quantitate CLAN formation in HTM cells plated on coverslips coated with various extracellular matrix (ECM) proteins (fibronectin, types I and IV collagen, and vitronectin), vascular cell adhesion molecule (VCAM)-1, or activating antibodies against β1, β3, or α2β1 integrins. These integrin antibodies were also used as soluble ligands. Results CLAN vertices contained the actin-binding proteins α-actinin and filamin and the signaling molecules syndecan-4 and PIP2. CLANs lacked Arp3 and cortactin. CLAN formation was dependent on the ECM substrate and was significantly higher on fibronectin and VCAM-1 compared with vitronectin, types I or IV collagen. Adsorbed β1 integrin antibodies also induced CLANs, whereas adsorbed β3 or α2β1 integrin antibodies did not. Soluble β3 integrin antibodies, however, induced CLANs and actually enhanced CLAN formation in cells spread on fibronectin, VCAM-1, type I or type IV collagen, or β1 integrin antibodies. Conclusions CLANs are unique actin-branched networks whose formation can be regulated by β1 and β3 integrin signaling pathways. Thus, integrin-mediated signaling events can modulate the organization of the actin cytoskeleton in TM cells and hence could participate in regulating cytoskeletal events previously demonstrated to be involved in controlling outflow facility. PMID:16639003

  17. New mechanism of γ-H2AX generation: Surfactant-induced actin disruption causes deoxyribonuclease I translocation to the nucleus and forms DNA double-strand breaks.

    PubMed

    Zhao, Xiaoxu; Yang, Gang; Toyooka, Tatsushi; Ibuki, Yuko

    2015-12-01

    We previously showed that nonionic surfactants, nonylphenol polyethoxylates (NPEOs), induced phosphorylation of histone H2AX, forming γ-H2AX. In this study, we analyzed the mechanism of γ-H2AX generation by an NPEO with 15 ethylene oxide units (NPEO(15)). In MCF-7 breast carcinoma cells, NPEO(15) treatment induced γ-H2AX in a dose-dependent manner. EDTA and ZnCl2, two inhibitors of deoxyribonuclease I (DNase I), inhibited both the γ-H2AX and DNA double-strand breaks induced by NPEO(15). NPEO(15) disrupted filamentous actin and released free DNase I as detected by cell fractionation analysis. Based on immunofluorescence staining of DNase I and monitoring DNase I-GFP localization, DNase I was translocated from the cytosol to the nucleus of cells after treatment with NPEO(15). This translocation did not occur with the common DNA damage inducers ultraviolet B irradiation and hydrogen peroxide. Other surfactants, Tween 20, Triton X-100 and Nonidet P-40, also generated γ-H2AX. These results show that γ-H2AX induction by surfactants including NPEOs, occurs via a new mechanism involving release of free DNase I with actin disruption. This mechanism is distinct from the process of γ-H2AX generation caused by direct chemically induced DNA damage.

  18. New mechanism of γ-H2AX generation: Surfactant-induced actin disruption causes deoxyribonuclease I translocation to the nucleus and forms DNA double-strand breaks.

    PubMed

    Zhao, Xiaoxu; Yang, Gang; Toyooka, Tatsushi; Ibuki, Yuko

    2015-12-01

    We previously showed that nonionic surfactants, nonylphenol polyethoxylates (NPEOs), induced phosphorylation of histone H2AX, forming γ-H2AX. In this study, we analyzed the mechanism of γ-H2AX generation by an NPEO with 15 ethylene oxide units (NPEO(15)). In MCF-7 breast carcinoma cells, NPEO(15) treatment induced γ-H2AX in a dose-dependent manner. EDTA and ZnCl2, two inhibitors of deoxyribonuclease I (DNase I), inhibited both the γ-H2AX and DNA double-strand breaks induced by NPEO(15). NPEO(15) disrupted filamentous actin and released free DNase I as detected by cell fractionation analysis. Based on immunofluorescence staining of DNase I and monitoring DNase I-GFP localization, DNase I was translocated from the cytosol to the nucleus of cells after treatment with NPEO(15). This translocation did not occur with the common DNA damage inducers ultraviolet B irradiation and hydrogen peroxide. Other surfactants, Tween 20, Triton X-100 and Nonidet P-40, also generated γ-H2AX. These results show that γ-H2AX induction by surfactants including NPEOs, occurs via a new mechanism involving release of free DNase I with actin disruption. This mechanism is distinct from the process of γ-H2AX generation caused by direct chemically induced DNA damage. PMID:26653977

  19. Photonic Quantum Networks formed from NV(-) centers.

    PubMed

    Nemoto, Kae; Trupke, Michael; Devitt, Simon J; Scharfenberger, Burkhard; Buczak, Kathrin; Schmiedmayer, Jörg; Munro, William J

    2016-01-01

    In this article we present a simple repeater scheme based on the negatively-charged nitrogen vacancy centre in diamond. Each repeater node is built from modules comprising an optical cavity containing a single NV(-), with one nuclear spin from (15)N as quantum memory. The module uses only deterministic processes and interactions to achieve high fidelity operations (>99%), and modules are connected by optical fiber. In the repeater node architecture, the processes between modules by photons can be in principle deterministic, however current limitations on optical components lead the processes to be probabilistic but heralded. Our resource-modest repeater architecture contains two modules at each node, and the repeater nodes are then connected by entangled photon pairs. We discuss the performance of such a quantum repeater network with modest resources and then incorporate more resource-intense strategies step by step. Our architecture should allow large-scale quantum information networks with existing or near future technology. PMID:27215433

  20. Photonic Quantum Networks formed from NV‑ centers

    NASA Astrophysics Data System (ADS)

    Nemoto, Kae; Trupke, Michael; Devitt, Simon J.; Scharfenberger, Burkhard; Buczak, Kathrin; Schmiedmayer, Jörg; Munro, William J.

    2016-05-01

    In this article we present a simple repeater scheme based on the negatively-charged nitrogen vacancy centre in diamond. Each repeater node is built from modules comprising an optical cavity containing a single NV‑, with one nuclear spin from 15N as quantum memory. The module uses only deterministic processes and interactions to achieve high fidelity operations (>99%), and modules are connected by optical fiber. In the repeater node architecture, the processes between modules by photons can be in principle deterministic, however current limitations on optical components lead the processes to be probabilistic but heralded. Our resource-modest repeater architecture contains two modules at each node, and the repeater nodes are then connected by entangled photon pairs. We discuss the performance of such a quantum repeater network with modest resources and then incorporate more resource-intense strategies step by step. Our architecture should allow large-scale quantum information networks with existing or near future technology.

  1. Photonic Quantum Networks formed from NV− centers

    PubMed Central

    Nemoto, Kae; Trupke, Michael; Devitt, Simon J.; Scharfenberger, Burkhard; Buczak, Kathrin; Schmiedmayer, Jörg; Munro, William J.

    2016-01-01

    In this article we present a simple repeater scheme based on the negatively-charged nitrogen vacancy centre in diamond. Each repeater node is built from modules comprising an optical cavity containing a single NV−, with one nuclear spin from 15N as quantum memory. The module uses only deterministic processes and interactions to achieve high fidelity operations (>99%), and modules are connected by optical fiber. In the repeater node architecture, the processes between modules by photons can be in principle deterministic, however current limitations on optical components lead the processes to be probabilistic but heralded. Our resource-modest repeater architecture contains two modules at each node, and the repeater nodes are then connected by entangled photon pairs. We discuss the performance of such a quantum repeater network with modest resources and then incorporate more resource-intense strategies step by step. Our architecture should allow large-scale quantum information networks with existing or near future technology. PMID:27215433

  2. Photonic Quantum Networks formed from NV(-) centers.

    PubMed

    Nemoto, Kae; Trupke, Michael; Devitt, Simon J; Scharfenberger, Burkhard; Buczak, Kathrin; Schmiedmayer, Jörg; Munro, William J

    2016-05-24

    In this article we present a simple repeater scheme based on the negatively-charged nitrogen vacancy centre in diamond. Each repeater node is built from modules comprising an optical cavity containing a single NV(-), with one nuclear spin from (15)N as quantum memory. The module uses only deterministic processes and interactions to achieve high fidelity operations (>99%), and modules are connected by optical fiber. In the repeater node architecture, the processes between modules by photons can be in principle deterministic, however current limitations on optical components lead the processes to be probabilistic but heralded. Our resource-modest repeater architecture contains two modules at each node, and the repeater nodes are then connected by entangled photon pairs. We discuss the performance of such a quantum repeater network with modest resources and then incorporate more resource-intense strategies step by step. Our architecture should allow large-scale quantum information networks with existing or near future technology.

  3. Anti-tropomyosin antibodies co-localise with actin microfilaments and label plasmodesmata.

    PubMed

    Faulkner, Christine R; Blackman, Leila M; Collings, David A; Cordwell, Stuart J; Overall, Robyn L

    2009-06-01

    The actin cytoskeleton and associated actin-binding proteins form a complex network involved in a number of fundamental cellular processes including intracellular trafficking. In plants, both actin and myosin have been localised to plasmodesmata, and thus it is likely that other actin-binding proteins are also associated with plasmodesmata structure or function. A 75-kDa protein, enriched in plasmodesmata-rich cell wall extracts from the green alga Chara corallina, was sequenced and found to contain three peptides with similarity to the animal actin-binding protein tropomyosin. Western blot analysis with anti-tropomyosin antibodies confirmed the identity of this 75-kDa protein as a tropomyosin-like protein and further identified an additional 55-kDa protein, while immunofluorescence microscopy localised the antibodies to plasmodesmata and to the subcortical actin bundles and associated structures. The anti-tropomyosin antibodies detected a single protein at 42.5 kDa in Arabidopsis thaliana extracts and two proteins at 58.5 and 54 kDa in leek extracts, and these localised to plasmodesmata and the cell plate in A. thaliana and to plasmodesmata in leek tissue. Tropomyosin is an actin-binding protein thought to be involved in a range of functions associated with the actin cytoskeleton, including the regulation of myosin binding to actin filaments, but to date no tropomyosin-like proteins have been conclusively identified in plant genomes. Our data suggests that a tropomyosin-like protein is associated with plasmodesmata.

  4. Atomic Force Microscopy and Light Scattering of Small Unilamellar Actin-Containing Liposomes

    PubMed Central

    Palmer, Andre F.; Wingert, Philip; Nickels, Jonathan

    2003-01-01

    Three-dimensional networks of filamentous actin (F-actin) encapsulated inside phosphatidylcholine liposomes are currently being used in an effort to model the cytoskeleton and plasma membrane of eukaryotic cells. In this article, unilamellar lipid vesicles consisting of egg yolk-derived phosphatidylcholine encapsulating monomeric actin (G-actin) were made via extrusion in low ionic strength buffer (G-buffer). Vesicle shape and structure in these dispersions was studied using a combination of fluid-tapping atomic force microscopy, and multiangle static light scattering. After subjecting the liposome dispersion to high ionic strength polymerization buffer (F-buffer) containing K+ ions, atomic force microscopy imaging and light scattering of these liposomes indicated the formation of specialized structures, including an overall liposome structure transformation from spherical to torus, disk-shaped geometries and tubular assemblies. Several atomic force microscopy control measurements were made to ascertain that the specialized structures formed were not due to free G-actin and F-actin self-assembling on the sample surface, plain liposomes exposed to G- and F-buffer, or liposomes encapsulating G-actin. Liposomes encapsulating G-actin assumed mostly thin disk shapes and some large irregularly shaped aggregates. In contrast, liposomes encapsulating polymerized actin assumed mostly torus or disk shapes along with some high aspect ratio tubular structures. PMID:12885667

  5. The polarity protein Inturned links NPHP4 to Daam1 to control the subapical actin network in multiciliated cells

    PubMed Central

    Yasunaga, Takayuki; Hoff, Sylvia; Schell, Christoph; Helmstädter, Martin; Kretz, Oliver; Kuechlin, Sebastian; Yakulov, Toma A.; Engel, Christina; Müller, Barbara; Bensch, Robert; Ronneberger, Olaf; Huber, Tobias B.; Lienkamp, Soeren S.

    2015-01-01

    Motile cilia polarization requires intracellular anchorage to the cytoskeleton; however, the molecular machinery that supports this process remains elusive. We report that Inturned plays a central role in coordinating the interaction between cilia-associated proteins and actin-nucleation factors. We observed that knockdown of nphp4 in multiciliated cells of the Xenopus laevis epidermis compromised ciliogenesis and directional fluid flow. Depletion of nphp4 disrupted the subapical actin layer. Comparison to the structural defects caused by inturned depletion revealed striking similarities. Furthermore, coimmunoprecipitation assays demonstrated that the two proteins interact with each other and that Inturned mediates the formation of ternary protein complexes between NPHP4 and DAAM1. Knockdown of daam1, but not formin-2, resulted in similar disruption of the subapical actin web, whereas nphp4 depletion prevented the association of Inturned with the basal bodies. Thus, Inturned appears to function as an adaptor protein that couples cilia-associated molecules to actin-modifying proteins to rearrange the local actin cytoskeleton. PMID:26644512

  6. The polarity protein Inturned links NPHP4 to Daam1 to control the subapical actin network in multiciliated cells.

    PubMed

    Yasunaga, Takayuki; Hoff, Sylvia; Schell, Christoph; Helmstädter, Martin; Kretz, Oliver; Kuechlin, Sebastian; Yakulov, Toma A; Engel, Christina; Müller, Barbara; Bensch, Robert; Ronneberger, Olaf; Huber, Tobias B; Lienkamp, Soeren S; Walz, Gerd

    2015-12-01

    Motile cilia polarization requires intracellular anchorage to the cytoskeleton; however, the molecular machinery that supports this process remains elusive. We report that Inturned plays a central role in coordinating the interaction between cilia-associated proteins and actin-nucleation factors. We observed that knockdown of nphp4 in multiciliated cells of the Xenopus laevis epidermis compromised ciliogenesis and directional fluid flow. Depletion of nphp4 disrupted the subapical actin layer. Comparison to the structural defects caused by inturned depletion revealed striking similarities. Furthermore, coimmunoprecipitation assays demonstrated that the two proteins interact with each other and that Inturned mediates the formation of ternary protein complexes between NPHP4 and DAAM1. Knockdown of daam1, but not formin-2, resulted in similar disruption of the subapical actin web, whereas nphp4 depletion prevented the association of Inturned with the basal bodies. Thus, Inturned appears to function as an adaptor protein that couples cilia-associated molecules to actin-modifying proteins to rearrange the local actin cytoskeleton.

  7. A unified design space of synthetic stripe-forming networks.

    PubMed

    Schaerli, Yolanda; Munteanu, Andreea; Gili, Magüi; Cotterell, James; Sharpe, James; Isalan, Mark

    2014-09-23

    Synthetic biology is a promising tool to study the function and properties of gene regulatory networks. Gene circuits with predefined behaviours have been successfully built and modelled, but largely on a case-by-case basis. Here we go beyond individual networks and explore both computationally and synthetically the design space of possible dynamical mechanisms for 3-node stripe-forming networks. First, we computationally test every possible 3-node network for stripe formation in a morphogen gradient. We discover four different dynamical mechanisms to form a stripe and identify the minimal network of each group. Next, with the help of newly established engineering criteria we build these four networks synthetically and show that they indeed operate with four fundamentally distinct mechanisms. Finally, this close match between theory and experiment allows us to infer and subsequently build a 2-node network that represents the archetype of the explored design space.

  8. A unified design space of synthetic stripe-forming networks

    PubMed Central

    Schaerli, Yolanda; Munteanu, Andreea; Gili, Magüi; Cotterell, James; Sharpe, James; Isalan, Mark

    2014-01-01

    Synthetic biology is a promising tool to study the function and properties of gene regulatory networks. Gene circuits with predefined behaviours have been successfully built and modelled, but largely on a case-by-case basis. Here we go beyond individual networks and explore both computationally and synthetically the design space of possible dynamical mechanisms for 3-node stripe-forming networks. First, we computationally test every possible 3-node network for stripe formation in a morphogen gradient. We discover four different dynamical mechanisms to form a stripe and identify the minimal network of each group. Next, with the help of newly established engineering criteria we build these four networks synthetically and show that they indeed operate with four fundamentally distinct mechanisms. Finally, this close match between theory and experiment allows us to infer and subsequently build a 2-node network that represents the archetype of the explored design space. PMID:25247316

  9. Phosphatidylinositol 3-Kinase-Associated Protein (PI3KAP)/XB130 Crosslinks Actin Filaments through Its Actin Binding and Multimerization Properties In Vitro and Enhances Endocytosis in HEK293 Cells.

    PubMed

    Yamanaka, Daisuke; Akama, Takeshi; Chida, Kazuhiro; Minami, Shiro; Ito, Koichi; Hakuno, Fumihiko; Takahashi, Shin-Ichiro

    2016-01-01

    Actin-crosslinking proteins control actin filament networks and bundles and contribute to various cellular functions including regulation of cell migration, cell morphology, and endocytosis. Phosphatidylinositol 3-kinase-associated protein (PI3KAP)/XB130 has been reported to be localized to actin filaments (F-actin) and required for cell migration in thyroid carcinoma cells. Here, we show a role for PI3KAP/XB130 as an actin-crosslinking protein. First, we found that the carboxyl terminal region of PI3KAP/XB130 containing amino acid residues 830-840 was required and sufficient for localization to F-actin in NIH3T3 cells, and this region is directly bound to F-actin in vitro. Moreover, actin-crosslinking assay revealed that recombinant PI3KAP/XB130 crosslinked F-actin. In general, actin-crosslinking proteins often multimerize to assemble multiple actin-binding sites. We then investigated whether PI3KAP/XB130 could form a multimer. Blue native-PAGE analysis showed that recombinant PI3KAP/XB130 was detected at 250-1200 kDa although the molecular mass was approximately 125 kDa, suggesting that PI3KAP/XB130 formed multimers. Furthermore, we found that the amino terminal 40 amino acids were required for this multimerization by co-immunoprecipitation assay in HEK293T cells. Deletion mutants of PI3KAP/XB130 lacking the actin-binding region or the multimerizing region did not crosslink actin filaments, indicating that actin binding and multimerization of PI3KAP/XB130 were necessary to crosslink F-actin. Finally, we examined roles of PI3KAP/XB130 on endocytosis, an actin-related biological process. Overexpression of PI3KAP/XB130 enhanced dextran uptake in HEK 293 cells. However, most of the cells transfected with the deletion mutant lacking the actin-binding region incorporated dextran to a similar extent as control cells. Taken together, these results demonstrate that PI3KAP/XB130 crosslinks F-actin through both its actin-binding region and multimerizing region and plays

  10. Actinic Keratoses

    PubMed Central

    Brown, Marc D.

    2009-01-01

    Actinic keratoses are common intra-epidermal neoplasms that lie on a continuum with squamous cell carcinoma. Tightly linked to ultraviolet irradiation, they occur in areas of chronic sun exposure, and early treatment of these lesions may prevent their progression to invasive disease. A large variety of effective treatment modalities exist, and the optimal therapeutic choice is dependent on a variety of patient- and physician-associated variables. Many established and more recent approaches are discussed in this review with a focus on efficacy and administration techniques. Several previously experimental options, such as imiquimod and photodynamic therapy, have become incorporated as first-line options for the treatment of actinic keratoses, while combination treatment strategies have been gaining in popularity. The goal of all therapies is to ultimately limit the morbidity and mortality of squamous cell carcinoma. (J Clin Aesthetic Dermatol. 2009;2(7):43–48.) PMID:20729970

  11. Reconstitution and regulation of actin gel-sol transformation with purified filamin and villin.

    PubMed

    Nunnally, M H; Powell, L D; Craig, S W

    1981-03-10

    Gel-sol transformation of actin filaments, a process essential for cell motility, can be reconstituted in vitro and regulated in a predictable fashion by the combined action of villin and filamin. Measurements made in a low shear falling ball viscometer show that mixtures of actin, villin, and filamin exist either as a gel (yield point greater than or equal to 140 dynes/cm2) or as a low viscosity liquid depending on the relative ration of villin:actin. Filamin induces gelation of F-actin by forming stable cross-links between actin filaments. Villin inhibits filamin-induced F-actin gelation, but the effect can be overcome by increasing the amount of filamin. Sedimentation assays show that villin does not inhibit gelation of actin by preventing filamin from binding to F-actin. Results from viscosity measurements and filament length determinations show that villin increases actin filament number by reducing the average filament length without altering the total amount of polymer. Because the gel point of a fixed amount of polymer is sharply dependent on the ratio of cross-links to number of polymers, the solation effect of villin might be explained by its effect on filament number. Based on the network theory of gel formation, calculations of the amount of additional cross-linker required to overcome the effect of a known increase in the number of actin filaments agree reasonably well with experimental findings. These results document the existence of cellular proteins which could regulate gel-sol transformation in vivo by their effect on actin polymer length and, therefore, on actin filament number.

  12. Actin Assembly at Model-Supported Lipid Bilayers

    PubMed Central

    Heath, George R.; Johnson, Benjamin R.G.; Olmsted, Peter D.; Connell, Simon D.; Evans, Stephen D.

    2013-01-01

    We report on the use of supported lipid bilayers to reveal dynamics of actin polymerization from a nonpolymerizing subphase via cationic phospholipids. Using varying fractions of charged lipid, lipid mobility, and buffer conditions, we show that dynamics at the nanoscale can be used to control the self-assembly of these structures. In the case of fluid-phase lipid bilayers, the actin adsorbs to form a uniform two-dimensional layer with complete surface coverage whereas gel-phase bilayers induce a network of randomly oriented actin filaments, of lower coverage. Reducing the pH increased the polymerization rate, the number of nucleation events, and the total coverage of actin. A model of the adsorption/diffusion process is developed to provide a description of the experimental data and shows that, in the case of fluid-phase bilayers, polymerization arises equally due to the adsorption and diffusion of surface-bound monomers and the addition of monomers directly from the solution phase. In contrast, in the case of gel-phase bilayers, polymerization is dominated by the addition of monomers from solution. In both cases, the filaments are stable for long times even when the G-actin is removed from the supernatant—making this a practical approach for creating stable lipid-actin systems via self-assembly. PMID:24268147

  13. Actin filament organization of foot processes in vertebrate glomerular podocytes.

    PubMed

    Ichimura, Koichiro; Kurihara, Hidetake; Sakai, Tatsuo

    2007-09-01

    We investigated the actin filament organization and immunolocalization of actin-binding proteins (alpha-actinin and cortactin) in the podocyte foot processes of eight vertebrate species (lamprey, carp, newt, frog, gecko, turtle, quail, and rat). Three types of actin cytoskeleton were found in these foot processes. (1) A cortical actin network with cortactin filling the space between the plasma membrane and the other actin cytoskeletons described below was found in all of the species examined here. The data indicated that the cortical actin network was the minimal essential actin cytoskeleton for the formation and maintenance of the foot processes in vertebrate podocytes. (2) An actin bundle with alpha-actinin existing along the longitudinal axis of foot process above the level of slit diaphragms was only observed in quail and rat. (3) An actin fascicle consisting of much fewer numbers of actin filaments than that of the actin bundle was observed in the species other than quail and rat, but at various frequencies. These findings suggest that the actin bundle is an additional actin cytoskeleton reflecting a functional state peculiar to quail and rat glomeruli. Considering the higher intraglomerular pressure and the extremely thin filtration barrier in birds and mammals, the foot processes probably mainly protect the thinner filtration barrier from the higher internal pressure occurring in quail and rat glomeruli. Therefore, we consider that the actin bundle plays a crucial role in the mechanical protection of the filtration barrier. Moreover, the actin fascicle may be a potential precursor of the actin bundle.

  14. Direct interaction of microtubule- and actin-based transport motors

    NASA Technical Reports Server (NTRS)

    Huang, J. D.; Brady, S. T.; Richards, B. W.; Stenolen, D.; Resau, J. H.; Copeland, N. G.; Jenkins, N. A.

    1999-01-01

    The microtubule network is thought to be used for long-range transport of cellular components in animal cells whereas the actin network is proposed to be used for short-range transport, although the mechanism(s) by which this transport is coordinated is poorly understood. For example, in sea urchins long-range Ca2+-regulated transport of exocytotic vesicles requires a microtubule-based motor, whereas an actin-based motor is used for short-range transport. In neurons, microtubule-based kinesin motor proteins are used for long-range vesicular transport but microtubules do not extend into the neuronal termini, where actin filaments form the cytoskeletal framework, and kinesins are rapidly degraded upon their arrival in neuronal termini, indicating that vesicles may have to be transferred from microtubules to actin tracks to reach their final destination. Here we show that an actin-based vesicle-transport motor, MyoVA, can interact directly with a microtubule-based transport motor, KhcU. As would be expected if these complexes were functional, they also contain kinesin light chains and the localization of MyoVA and KhcU overlaps in the cell. These results indicate that cellular transport is, in part, coordinated through the direct interaction of different motor molecules.

  15. NMII forms a contractile transcellular sarcomeric network to regulate apical cell junctions and tissue geometry.

    PubMed

    Ebrahim, Seham; Fujita, Tomoki; Millis, Bryan A; Kozin, Elliott; Ma, Xuefei; Kawamoto, Sachiyo; Baird, Michelle A; Davidson, Michael; Yonemura, Shigenobu; Hisa, Yasuo; Conti, Mary Anne; Adelstein, Robert S; Sakaguchi, Hirofumi; Kachar, Bechara

    2013-04-22

    Nonmuscle myosin II (NMII) is thought to be the master integrator of force within epithelial apical junctions, mediating epithelial tissue morphogenesis and tensional homeostasis. Mutations in NMII are associated with a number of diseases due to failures in cell-cell adhesion. However, the organization and the precise mechanism by which NMII generates and responds to tension along the intercellular junctional line are still not known. We discovered that periodic assemblies of bipolar NMII filaments interlace with perijunctional actin and α-actinin to form a continuous belt of muscle-like sarcomeric units (∼400-600 nm) around each epithelial cell. Remarkably, the sarcomeres of adjacent cells are precisely paired across the junctional line, forming an integrated, transcellular contractile network. The contraction/relaxation of paired sarcomeres concomitantly impacts changes in apical cell shape and tissue geometry. We show differential distribution of NMII isoforms across heterotypic junctions and evidence for compensation between isoforms. Our results provide a model for how NMII force generation is effected along the junctional perimeter of each cell and communicated across neighboring cells in the epithelial organization. The sarcomeric network also provides a well-defined target to investigate the multiple roles of NMII in junctional homeostasis as well as in development and disease.

  16. Soft viscoelastic properties of nuclear actin age oocytes due to gravitational creep

    PubMed Central

    Feric, Marina; Broedersz, Chase P.; Brangwynne, Clifford P.

    2015-01-01

    The actin cytoskeleton helps maintain structural organization within living cells. In large X. laevis oocytes, gravity becomes a dominant force and is countered by a nuclear actin network that prevents liquid-like nuclear bodies from immediate sedimentation and coalescence. However, nuclear actin’s mechanical properties, and how they facilitate the stabilization of nuclear bodies, remain unknown. Using active microrheology, we find that nuclear actin forms a weak viscoelastic network, with a modulus of roughly 0.1 Pa. Embedded probe particles subjected to a constant force exhibit continuous displacement, due to viscoelastic creep. Gravitational forces also cause creep displacement of nuclear bodies, resulting in their asymmetric nuclear distribution. Thus, nuclear actin does not indefinitely support the emulsion of nuclear bodies, but only kinetically stabilizes them by slowing down gravitational creep to ~2 months. This is similar to the viability time of large oocytes, suggesting gravitational creep ages oocytes, with fatal consequences on long timescales. PMID:26577186

  17. Organized F-actin is essential for normal trichome morphogenesis in Arabidopsis.

    PubMed Central

    Szymanski, D B; Marks, M D; Wick, S M

    1999-01-01

    Actin microfilaments form a three-dimensional cytoskeletal network throughout the cell and constitute an essential throughway for organelle and vesicle transport. Development of Arabidopsis trichomes, unicellular structures derived from the epidermis, is being used as a genetic system in which to study actin-dependent growth in plant cells. The present study indicates that filamentous actin (F-actin) plays an important role during Arabidopsis trichome morphogenesis. For example, immunolocalization of actin filaments during trichome morphogenesis identified rearrangements of the cytoskeletal structure during the development of the mature cell. Moreover, pharmacological experiments indicate that there are distinct requirements for actin- and microtubule-dependent function during trichome morphogenesis. The F-actin-disrupting drug cytochalasin D does not affect the establishment of polarity during trichome development; however, maintenance and coordination of the normal pattern of cell growth are very sensitive to this drug. In contrast, oryzalin, an agent that depolymerizes microtubules, severely inhibits cell polarization. Furthermore, cytochalasin D treatment phenocopies a known class of mutations that cause distorted trichome morphology. Results of an analysis of cell shape and microfilament structure in wild-type, mutant, and drug-treated trichomes are consistent with a role for actin in the maintenance and coordination of an established growth pattern. PMID:10590162

  18. Viscoelastic properties of actin-coated membranes.

    PubMed

    Helfer, E; Harlepp, S; Bourdieu, L; Robert, J; MacKintosh, F C; Chatenay, D

    2001-02-01

    In living cells, cytoskeletal filaments interact with the plasma membrane to form structures that play a key role in cell shape and mechanical properties. To study the interaction between these basic components, we designed an in vitro self-assembled network of actin filaments attached to the outer surface of giant unilamellar vesicles. Optical tweezers and single-particle tracking experiments are used to study the rich dynamics of these actin-coated membranes (ACM). We show that microrheology studies can be carried out on such an individual microscopic object. The principle of the experiment consists in measuring the thermally excited position fluctuations of a probe bead attached biochemically to the membrane. We propose a model that relates the power spectrum of these thermal fluctuations to the viscoelastic properties of the membrane. The presence of the actin network modifies strongly the membrane dynamics with respect to a fluid, lipid bilayer one. It induces first a finite (omega=0) two-dimensional (2D) shear modulus G(0)(2D) approximately 0.5 to 5 microN/m in the membrane plane. Moreover, the frequency dependence at high frequency of the shear modulus [G(')(2D)(f ) approximately f(0.85+/-0.07)] and of the bending modulus (kappa(ACM)(f) approximately f(0.55+/-0.21)) demonstrate the viscoelastic behavior of the composite membrane. These results are consistent with a common exponent of 0.75 for both moduli as expected from our model and from prior measurements on actin solutions.

  19. Correlation between polymerizability and conformation in scallop beta-like actin and rabbit skeletal muscle alpha-actin.

    PubMed

    Khaitlina, S; Antropova, O; Kuznetsova, I; Turoverov, K; Collins, J H

    1999-08-01

    In order to investigate the structural basis for functional differences among actin isoforms, we have compared the polymerization properties and conformations of scallop adductor muscle beta-like actin and rabbit skeletal muscle alpha-actin. Polymerization of scallop Ca(2+)-actin was slower than that of skeletal muscle Ca(2+)-actin. Cleavage of the actin polypeptide chain between Gly-42 and Val-43 with Escherichia coli protease ECP 32 impaired the polymerization of scallop Mg(2+)-actin to a greater extent than skeletal muscle Mg(2+)-actin. When monomeric scallop and skeletal muscle Ca(2+)-actins were subjected to limited proteolysis with trypsin, subtilisin, or ECP 32, no differences in the conformation of actin subdomain 2 were detected. At the same time, local differences in the conformations of scallop and skeletal muscle actin subdomains 1 were revealed as intrinsic fluorescence differences. Replacement of tightly bound Ca(2+) with Mg(2+) resulted in more extensive proteolysis of segment 61-69 of scallop actin than in the case of skeletal muscle actin. Furthermore, segment 61-69 was more accessible to proteolysis with subtilisin in polymerized scallop Ca(2+)-actin than in polymerized skeletal muscle Ca(2+)-actin, indicating that, in the polymeric form, the nucleotide-containing cleft is in a more open conformation in beta-like scallop actin than in skeletal muscle alpha-actin. We suggest that this difference between scallop and skeletal muscle actins is due to a less efficient shift of scallop actin subdomain 2 to the position it has in the polymer. The possible consequences of amino acid substitutions in actin subdomain 1 in the allosteric regulation of the actin cleft, and hence in the different stabilities of polymers formed by different actins, are discussed. PMID:10415117

  20. Dynamics of opinion forming in structurally balanced social networks.

    PubMed

    Altafini, Claudio

    2012-01-01

    A structurally balanced social network is a social community that splits into two antagonistic factions (typical example being a two-party political system). The process of opinion forming on such a community is most often highly predictable, with polarized opinions reflecting the bipartition of the network. The aim of this paper is to suggest a class of dynamical systems, called monotone systems, as natural models for the dynamics of opinion forming on structurally balanced social networks. The high predictability of the outcome of a decision process is explained in terms of the order-preserving character of the solutions of this class of dynamical systems. If we represent a social network as a signed graph in which individuals are the nodes and the signs of the edges represent friendly or hostile relationships, then the property of structural balance corresponds to the social community being splittable into two antagonistic factions, each containing only friends.

  1. [Actinic Keratosis].

    PubMed

    Dejaco, D; Hauser, U; Zelger, B; Riechelmann, H

    2015-07-01

    Actinic keratosis is a cutaneous lesion characterized by proliferation of atypical epidermal keratinocytes due to prolonged exposure to exogenous factors such as ultraviolet radiation. AKs are in-situ-squamous cell carcinomas (PEC) of the skin. AK typically presents as erythematous, scaly patch or papule (classic AK), occasionally as thick, adherent scale on an erythematous base. Mostly fair-skinned adults are affected. AKs typically occur in areas of frequent sun exposure (balding scalp, face, "H-region", lateral neck, décolleté, dorsum of the hand and lower extremities). Actinic Cheilitis is the term used for AKs appearing on the lips. The diagnosis of AK is based on clinical examination including inspection and palpation. The typical palpable rough surface of AK often precedes a visible lesion. Dermoscopy may provide additional information. If diagnosis is uncertain and invasion suspected, biopsy and histopathologic evaluation should be performed. The potential for progression to invasive PECs mandates therapeutic intervention. Treatment options include topical and systemic therapies. Topical therapies are classified into physical, medical and combined physical-chemical approaches and a sequential combination of treatment modalities is possible. Topical-physical cryotherapy is the treatment of choice for isolated, non-hypertrophic AK. Topical-medical treatment, e. g. 5-fluoruracil (5FU) cream or Imiquomod or Ingenolmebutat application is used for multiple, non-hypertrophic AKs. For hypertrophic AKs, a dehorning pretreatment with salicinated vaseline is recommended. Isolated hypertrophic AKs often need cryotherapy with prolonged freezing time or several consecutive applications. Sequentially combined approaches are recommended for multiple, hypertrophic AKs. Photodynamic therapy (PDT) as example for a combined physical-chemical approach is an established treatment for multiple, non-hypertrophic and hypertrophic AKs. Prevention includes avoidance of sun and

  2. Localization by indirect immunofluorescence of tetrin, actin, and centrin to the oral apparatus and buccal cavity of the macrostomal form of Tetrahymena vorax.

    PubMed

    McLaughlin, Neil B; Buhse, Howard E

    2004-01-01

    We have taken advantage of the size of the macrostomal oral apparatus of Tetrahymena vorax to investigate the immunofluorescent localization of three cytoskeletal proteins--tetrin, actin, and centrin. Tetrin and actin antibodies co-localize to cross-connectives that anchor the membranelles. These antibodies also recognize the coarse filamentous reticulum, a filament associated with the undulating membrane. Actin-specific localization extends beyond the coarse filamentous reticulum-undulating membrane complex into a region called the specialized cytoplasm. A centrin antibody localizes to the fine filamentous reticulum which, along with microtubules of the oral ribs, circumscribes the cytostomal opening. Models of phagocytic contraction based on these data are presented.

  3. Scattering form factors for self-assembled network junctions

    NASA Astrophysics Data System (ADS)

    Foster, T.; Safran, S. A.; Sottmann, T.; Strey, R.

    2007-11-01

    The equilibrium microstructures in microemulsions and other self-assembled systems show complex, connected shapes such as symmetric bicontinuous spongelike structures and asymmetric bicontinuous networks formed by cylinders interconnected at junctions. In microemulsions, these cylinder network microstructures may mediate the structural transition from a spherical or globular phase to the bicontinuous microstructure. To understand the structural and statistical properties of such cylinder network microstructures as measured by scattering experiments, models are needed to extract the real-space structure from the scattering data. In this paper, we calculate the scattering functions appropriate for cylinder network microstructures. We focus on such networks that contain a high density of network junctions that connect the cylindrical elements. In this limit, the network microstructure can be regarded as an assembly of randomly oriented, closed packed network junctions (i.e., the cylinder scattering contributions are neglected). Accordingly, the scattering spectrum of the network microstructure can be calculated as the product of the junction number density, the junction form factor, which describes the scattering from the surface of a single junction, and a structure factor, which describes the local correlations of different junctions due to junction interactions (including their excluded volume). This approach is applied to analyze the scattering data from a bicontinuous microemulsion with equal volumes of water and oil. In a second approach, we included the cylinder scattering contribution in the junction form factor by calculating the scattering intensity of Y junctions to which three rods with spherical cross section are attached. The respective theoretical predictions are compared with results of neutron scattering measurements on a water-in-oil microemulsion with a connected microstructure.

  4. CapZ regulates autophagosomal membrane shaping by promoting actin assembly inside the isolation membrane.

    PubMed

    Mi, Na; Chen, Yang; Wang, Shuai; Chen, Mengran; Zhao, Mingkun; Yang, Guang; Ma, Meisheng; Su, Qian; Luo, Sai; Shi, Jingwen; Xu, Jia; Guo, Qiang; Gao, Ning; Sun, Yujie; Chen, Zhucheng; Yu, Li

    2015-09-01

    A fundamental question regarding autophagosome formation is how the shape of the double-membrane autophagosomal vesicle is generated. Here we show that in mammalian cells assembly of an actin scaffold inside the isolation membrane (the autophagosomal precursor) is essential for autophagosomal membrane shaping. Actin filaments are depolymerized shortly after starvation and actin is assembled into a network within the isolation membrane. When formation of actin puncta is disrupted by an actin polymerization inhibitor or by knocking down the actin-capping protein CapZβ, isolation membranes and omegasomes collapse into mixed-membrane bundles. Formation of actin puncta is PtdIns(3)P dependent, and inhibition of PtdIns(3)P formation by treating cells with the PI(3)K inhibitor 3-MA, or by knocking down Beclin-1, abolishes the formation of actin puncta. Binding of CapZ to PtdIns(3)P, which is enriched in omegasomes, stimulates actin polymerization. Our findings illuminate the mechanism underlying autophagosomal membrane shaping and provide key insights into how autophagosomes are formed.

  5. Regulation of an Actin Spring

    NASA Astrophysics Data System (ADS)

    Tam, Barney; Shin, Jennifer; Brau, Ricardo; Lang, Matthew; Mahadevan, L.; Matsudaira, Paul

    2006-03-01

    To produce motion, cells rely on the conversion of potential energy into mechanical work. One such example is the dramatic process involving the acrosome reaction of Limulus sperm, whereby a 60 μm-long bundle of actin filaments straightens from a coiled conformation to extend out of the cell in five seconds. This cellular engine and the motion it produces represent a third type of actin-based motility fundamentally different from polymerization or myosin-driven processes. The motive force for this extension originates from stored elastic energy in the overtwisted, pre-formed coil---much like a compressed mechanical spring. When the actin bundle untwists, this energy is converted to mechanical work powering the extension. We report on experiments probing the regulation of this actin spring by extracellular calcium. We find that extracellular calcium needs to be present for the spring to activate, and that calcium regulates the velocity of the extension.

  6. A role for actin arcs in the leading edge advance of migrating cells

    PubMed Central

    Burnette, Dylan T.; Manley, Suliana; Sengupta, Prabuddha; Sougrat, Rachid; Davidson, Michael W.; Kachar, Bechara; Lippincott-Schwartz, Jennifer

    2013-01-01

    The migration of epithelial cells requires coordination of two actin modules at the leading edge: one in the lamellipodium and one in the lamella. How the two modules connect mechanistically to regulate directed edge motion is not understood. Using a combination of live-cell imaging and photoactivation approaches, we demonstrate that the actin network of the lamellipodium evolves spatio-temporally into the lamella. This occurs during the retraction phase of edge motion when myosin II redistributes to the cell edge and condenses the lamellipodial-actin into an arc-like bundle (i.e., actin arc) parallel to the edge. The newly formed actin arc moves rearward and couples to focal adhesions as it enters the lamella. We propose net edge extension occurs by nascent focal adhesions advancing the site at which new actin arcs slow down and form the base of the next protrusion event. The actin arc thus serves as a structural element underlying the temporal and spatial connection between the lamellipodium and lamella to drive directed cell motion. PMID:21423177

  7. Analytical solutions of actin-retrograde-flow in a circular stationary cell: a mechanical point of view.

    PubMed

    Ghasemi, V A; Firoozabadi, B; Saidi, M S

    2014-03-01

    The network of actin filaments in the lamellipodium (LP) of stationary and migrating cells flows in a retrograde direction, from the membrane periphery toward the cell nucleus. We have theoretically studied this phenomenon in the circular stationary (fully spread) cells. Adopting a continuum view on the LP actin network, new closed-form solutions are provided for the actin-retrograde-flow (ARF) in a polar coordinate system. Due to discrepancy in the mechanical models of the actin network in the ARF regime, solutions are provided for both assumptions of solid and fluid behavior. Other involved phenomena, including polymerizing machine at the membrane periphery, cytosol drag, adhesion friction, and membrane tension, are also discussed to provide an overall quantitative view on this problem.

  8. The murine Nck SH2/SH3 adaptors are important for the development of mesoderm-derived embryonic structures and for regulating the cellular actin network.

    PubMed

    Bladt, Friedhelm; Aippersbach, Elke; Gelkop, Sigal; Strasser, Geraldine A; Nash, Piers; Tafuri, Anna; Gertler, Frank B; Pawson, Tony

    2003-07-01

    Mammalian Nck1 and Nck2 are closely related adaptor proteins that possess three SH3 domains, followed by an SH2 domain, and are implicated in coupling phosphotyrosine signals to polypeptides that regulate the actin cytoskeleton. However, the in vivo functions of Nck1 and Nck2 have not been defined. We have mutated the murine Nck1 and Nck2 genes and incorporated beta-galactosidase reporters into the mutant loci. In mouse embryos, the two Nck genes have broad and overlapping expression patterns. They are functionally redundant in the sense that mice deficient for either Nck1 or Nck2 are viable, whereas inactivation of both Nck1 and Nck2 results in profound defects in mesoderm-derived notochord and embryonic lethality at embryonic day 9.5. Fibroblast cell lines derived from Nck1(-/-) Nck2(-/-) embryos have defects in cell motility and in the organization of the lamellipodial actin network. These data suggest that the Nck SH2/SH3 adaptors have important functions in the development of mesodermal structures during embryogenesis, potentially linked to a role in cell movement and cytoskeletal organization.

  9. Actin - a biosensor that determines cell fate in yeasts.

    PubMed

    Smethurst, Daniel G J; Dawes, Ian W; Gourlay, Campbell W

    2014-02-01

    The decision to proliferate, to activate stress response mechanisms or to initiate cell death lies at the heart of the maintenance of a healthy cell population. Within multicellular and colony-forming single-celled organisms, such as yeasts, the functionality of cellular compartments that connect signalling to cell fate must be maintained to maximise adaptability and survival. The actin cytoskeleton is involved in processes such as the regulation of membrane microcompartments, receptor internalisation and the control of master regulatory GTPases, which govern cell decision-making. This affords the actin cytoskeleton a central position within cell response networks. In this sense, a functional actin cytoskeleton is essential to efficiently connect information input to response at the level of the cell. Recent research from fungal, plant and mammalian cells systems has highlighted that actin can trigger apoptotic death in cells that become incompetent to respond to environmental cues. It may also be the case that this property has been appropriated by microorganisms competing for niche environments within a human host. Here, we discuss the research that has been carried out in yeast that links actin to signalling processes and cell fate that supports its role as a biosensor.

  10. Identification of a Putative Network of Actin-Associated Cytoskeletal Proteins in Glomerular Podocytes Defined by Co-Purified mRNAs

    PubMed Central

    Nabet, Behnam; Tsai, Arthur; Tobias, John W.; Carstens, Russ P.

    2009-01-01

    The glomerular podocyte is a highly specialized and polarized kidney cell type that contains major processes and foot processes that extend from the cell body. Foot processes from adjacent podocytes form interdigitations with those of adjacent cells, thereby creating an essential intercellular junctional domain of the renal filtration barrier known as the slit diaphragm. Interesting parallels have been drawn between the slit diaphragm and other sites of cell-cell contact by polarized cells. Notably mutations in several genes encoding proteins localized to the foot processes can lead to proteinuria and kidney failure. Mutations in the Wilm's tumor gene (WT1) can also lead to kidney disease and one isoform of WT1, WT1(+KTS), has been proposed to regulate gene expression post-transcriptionally. We originally sought to identify mRNAs associated with WT1(+KTS) through an RNA immunoprecipitation and microarray approach, hypothesizing that the proteins encoded by these mRNAs might be important for podocyte morphology and function. We identified a subset of mRNAs that were remarkably enriched for transcripts encoding actin-binding proteins and other cytoskeletal proteins including several that are localized at or near the slit diaphragm. Interestingly, these mRNAs included those of α-actinin-4 and non-muscle myosin IIA that are mutated in genetic forms of kidney disease. However, isolation of the mRNAs occurred independently of the expression of WT1, suggesting that the identified mRNAs were serendipitously co-purified on the basis of co-association in a common subcellular fraction. Mass spectroscopy revealed that other components of the actin cytoskeleton co-purified with these mRNAs, namely actin, tubulin, and elongation factor 1α. We propose that these mRNAs encode a number of proteins that comprise a highly specialized protein interactome underlying the slit diaphragm. Collectively, these gene products and their interactions may prove to be important for the

  11. Structural Differences Explain Diverse Functions of Plasmodium Actins

    PubMed Central

    Vahokoski, Juha; Martinez, Silvia Muñico; Ignatev, Alexander; Lepper, Simone; Frischknecht, Friedrich; Sidén-Kiamos, Inga; Sachse, Carsten; Kursula, Inari

    2014-01-01

    Actins are highly conserved proteins and key players in central processes in all eukaryotic cells. The two actins of the malaria parasite are among the most divergent eukaryotic actins and also differ from each other more than isoforms in any other species. Microfilaments have not been directly observed in Plasmodium and are presumed to be short and highly dynamic. We show that actin I cannot complement actin II in male gametogenesis, suggesting critical structural differences. Cryo-EM reveals that Plasmodium actin I has a unique filament structure, whereas actin II filaments resemble canonical F-actin. Both Plasmodium actins hydrolyze ATP more efficiently than α-actin, and unlike any other actin, both parasite actins rapidly form short oligomers induced by ADP. Crystal structures of both isoforms pinpoint several structural changes in the monomers causing the unique polymerization properties. Inserting the canonical D-loop to Plasmodium actin I leads to the formation of long filaments in vitro. In vivo, this chimera restores gametogenesis in parasites lacking actin II, suggesting that stable filaments are required for exflagellation. Together, these data underline the divergence of eukaryotic actins and demonstrate how structural differences in the monomers translate into filaments with different properties, implying that even eukaryotic actins have faced different evolutionary pressures and followed different paths for developing their polymerization properties. PMID:24743229

  12. Actin Age Orchestrates Myosin-5 and Myosin-6 Runlengths

    PubMed Central

    Zimmermann, Dennis; Santos, Alicja; Kovar, David R.; Rock, Ronald S.

    2015-01-01

    Summary Unlike a static and immobile skeleton, the actin cytoskeleton is a highly dynamic network of filamentous actin (F-actin) polymers that continuously turn over. In addition to generating mechanical forces and sensing mechanical deformation, dynamic F-actin networks serve as cellular tracks for myosin motor traffic. However, much of our mechanistic understanding of processive myosins comes from in vitro studies where motility was studied on pre-assembled and artificially stabilized, static F-actin tracks. In this work, we examine the role of actin dynamics in single-molecule myosin motility using assembling F-actin and the two highly processive motors, myosin-5 and myosin-6. These two myosins have distinct functions in the cell and travel in opposite directions along actin filaments [1–3]. Myosin-5 walks towards the barbed ends of F-actin, traveling to sites of actin polymerization at the cell periphery [4]. Myosin-6 walks towards the pointed end of F-actin [5], traveling towards the cell center along older segments of the actin filament. We find that myosin-5 takes 1.3 to 1.5-fold longer runs on ADP•Pi (young) F-actin, while myosin-6 takes 1.7 to 3.6-fold longer runs along ADP (old) F-actin. These results suggest that conformational differences between ADP•Pi and ADP F-actin tailor these myosins to walk farther toward their preferred actin filament end. Taken together, these experiments define a new mechanism by which myosin traffic may sort to different F-actin networks depending on filament age. PMID:26190073

  13. Affinity chromatography of immobilized actin and myosin.

    PubMed Central

    Bottomley, R C; Trayer, I P

    1975-01-01

    Actin and myosin were immobilized by coupling them to agarose matrices. Both immobilized G-actin and immobilized myosin retain most of the properties of the proteins in free solution and are reliable over long periods of time. Sepharose-F-actin, under the conditions used in this study, has proved unstable and variable in its properties. Sepharose-G-actin columns were used to bind heavy meromyosin and myosin subfragment 1 specifically and reversibly. The interaction involved is sensitive to variation in ionic strength, such that myosin itself is not retained by the columns at the high salt concentration required for its complete solubilization. Myosin, rendered soluble at low ionic strength by polyalanylation, will interact successfully with the immobilized actin. The latter can distinguish between active and inactive fractions of the proteolytic and polyalanyl myosin derivatives, and was used in the preparation of these molecules. The complexes formed between the myosin derivatives and Sepharose-G-actin can be dissociated by low concentrations of ATP, ADP and pyrophosphate in both the presence and the absence of Mg2+. The G-actin columns were used to evaluate the results of chemical modifications of myosin subfragments on their interactions with actin. F-Actin in free solution is bound specifically and reversibly to columns of insolubilized myosin. Thus, with elution by either ATP or pyrophosphate, actin has been purified in one step from extracts of acetone-dried muscle powder. PMID:241335

  14. Reversible Membrane Pearling in Live Cells upon Destruction of the Actin Cortex

    PubMed Central

    Heinrich, Doris; Ecke, Mary; Jasnin, Marion; Engel, Ulrike; Gerisch, Günther

    2014-01-01

    Membrane pearling in live cells is observed when the plasma membrane is depleted of its support, the cortical actin network. Upon efficient depolymerization of actin, pearls of variable size are formed, which are connected by nanotubes of ∼40 nm diameter. We show that formation of the membrane tubes and their transition into chains of pearls do not require external tension, and that they neither depend on microtubule-based molecular motors nor pressure generated by myosin-II. Pearling thus differs from blebbing. The pearling state is stable as long as actin is prevented from polymerizing. When polymerization is restored, the pearls are retracted into the cell, indicating continuity of the membrane. Our data suggest that the alternation of pearls and strings is an energetically favored state of the unsupported plasma membrane, and that one of the functions of the actin cortex is to prevent the membrane from spontaneously assuming this configuration. PMID:24606932

  15. Bipartite opinion forming: Towards consensus over coopetition networks

    NASA Astrophysics Data System (ADS)

    Hou, Bo; Chen, Yao; Liu, Guangbin; Sun, Fuchun; Li, Hongbo

    2015-12-01

    Within the framework of signed graph and multi-agent systems, this paper investigates the distributed bipartite opinion forming problem over coopetition networks. Several sufficient algebraic and geometric topology conditions that guarantee consensus, regardless of the magnitudes of individual coupling strengths among the agents, have been derived by exploring the interaction direction patterns. All the criteria presented do not require the global knowledge of the coupling weights of the entire network, and thus are easier to check. The effectiveness of the theoretical results are illustrated by numerical examples.

  16. Ectoparasites and endoparasites of fish form networks with different structures.

    PubMed

    Bellay, S; DE Oliveira, E F; Almeida-Neto, M; Mello, M A R; Takemoto, R M; Luque, J L

    2015-06-01

    Hosts and parasites interact with each other in a variety of ways, and this diversity of interactions is reflected in the networks they form. To test for differences in interaction patterns of ecto- and endoparasites we analysed subnetworks formed by each kind of parasites and their host fish species in fish-parasite networks for 22 localities. We assessed the proportion of parasite species per host species, the relationship between parasite fauna composition and host taxonomy, connectance, nestedness and modularity of each subnetwork (n = 44). Furthermore, we evaluated the similarity in host species composition among modules in ecto- and endoparasite subnetworks. We found several differences between subnetworks of fish ecto- and endoparasites. The association with a higher number of host species observed among endoparasites resulted in higher connectance and nestedness, and lower values of modularity in their subnetworks than in those of ectoparasites. Taxonomically related host species tended to share ecto- or endoparasites with the same interaction intensity, but the species composition of hosts tended to differ between modules formed by ecto- and endoparasites. Our results suggest that different evolutionary and ecological processes are responsible for organizing the networks formed by ecto- and endoparasites and fish.

  17. Actions of cytochalasins on the organization of actin filaments and microtubules in a neuronal growth cone

    PubMed Central

    1988-01-01

    Actions of cytochalasin B (CB) on cytoskeletons and motility of growth cones from cultured Aplysia neurons were studied using a rapid flow perfusion chamber and digital video light microscopy. Living growth cones were observed using differential interference contrast optics and were also fixed at various time points to assay actin filament (F- actin) and microtubule distributions. Treatment with CB reversibly blocked motility and eliminated most of the phalloidin-stainable F- actin from the leading lamella. The loss of F-actin was nearly complete within 2-3 min of CB application and was largely reversed within 5-6 min of CB removal. The loss and recovery of F-actin were found to occur with a very distinctive spatial organization. Within 20-30 s of CB application, F-actin networks receded from the entire peripheral margin of the lamella forming a band devoid of F-actin. This band widened as F- actin receded at rates of 3-6 microns/min. Upon removal of CB, F-actin began to reappear within 20-30 s. The initial reappearance of F-actin took two forms: a coarse isotropic matrix of F-actin bundles throughout the lamella, and a denser matrix along the peripheral margin. The denser peripheral matrix then expanded in width, extending centrally to replace the coarse matrix at rates again between 3-6 microns/min. These results suggest that actin normally polymerizes at the leading edge and then flows rearward at a rate between 3-6 microns/min. CB treatment was also observed to alter the distribution of microtubules, assayed by antitubulin antibody staining. Normally, microtubules are restricted to the neurite shaft and a central growth cone domain. Within approximately 5 min after CB application, however, microtubules began extending into the lamellar region, often reaching the peripheral margin. Upon removal of CB, the microtubules were restored to their former central localization. The timing of these microtubule redistributions is consistent with their being secondary to

  18. The actin cytoskeleton in endothelial cell phenotypes

    PubMed Central

    Prasain, Nutan; Stevens, Troy

    2009-01-01

    Endothelium forms a semi-permeable barrier that separates blood from the underlying tissue. Barrier function is largely determined by cell-cell and cell-matrix adhesions that define the limits of cell borders. Yet, such cell-cell and cell-matrix tethering is critically reliant upon the nature of adherence within the cell itself. Indeed, the actin cytoskeleton fulfills this essential function, to provide a strong, dynamic intracellular scaffold that organizes integral membrane proteins with the cell’s interior, and responds to environmental cues to orchestrate appropriate cell shape. The actin cytoskeleton is comprised of three distinct, but interrelated structures, including actin cross-linking of spectrin within the membrane skeleton, the cortical actin rim, and actomyosin-based stress fibers. This review addresses each of these actin-based structures, and discusses cellular signals that control the disposition of actin in different endothelial cell phenotypes. PMID:19028505

  19. Reconstitution and Protein Composition Analysis of Endocytic Actin Patches

    PubMed Central

    Michelot, Alphée; Costanzo, Michael; Sarkeshik, Ali; Boone, Charles; Yates, John R.; Drubin, David G.

    2010-01-01

    Summary Background Clathrin-actin-mediated endocytosis in yeast involves the progressive assembly of at least 60 different proteins at cortical sites. More than half of these proteins are involved in the assembly of a branched network of actin filaments to provide the forces required for plasma membrane invagination. Results To gain insights into the regulation of endocytic actin patch dynamics, we developed an in vitro actin assembly assay using microbeads functionalized with the nucleation promoting factor (NPF) Las17 (yeast WASP). When incubated in a yeast extract, these beads assembled actin networks and a significant fraction became motile. Multi dimensional Protein Identification Technology (MudPIT) showed that the recruitment of actin binding proteins to these Las17-derived actin networks is selective. None of the proteins known to exclusively regulate the in vivo formation of actin cables or the actin contractile ring were identified. Intriguingly, our analysis also identified components of three other cortical structures, eisosomes, PIK patches and the TORC2 complex, establishing intriguing biochemical connections between four different yeast cortical complexes. Finally, we identified Aim3 as a regulator of actin dynamics at endocytic sites. Conclusions WASP is sufficient to trigger assembly of actin networks composed selectively of actin-patch proteins. These experiments establish that the protein composition of different F-actin structures is determined by the protein factor that initiates the network. The identification of binding partners revealed new biochemical connections between WASP derived networks and other cortical complexes and identified Aim3 as a novel regulator of the endocytic actin patch. PMID:21035341

  20. Process for forming synapses in neural networks and resistor therefor

    DOEpatents

    Fu, Chi Y.

    1996-01-01

    Customizable neural network in which one or more resistors form each synapse. All the resistors in the synaptic array are identical, thus simplifying the processing issues. Highly doped, amorphous silicon is used as the resistor material, to create extremely high resistances occupying very small spaces. Connected in series with each resistor in the array is at least one severable conductor whose uppermost layer has a lower reflectivity of laser energy than typical metal conductors at a desired laser wavelength.

  1. Laser programmable integrated curcuit for forming synapses in neural networks

    DOEpatents

    Fu, Chi Y.

    1997-01-01

    Customizable neural network in which one or more resistors form each synapse. All the resistors in the synaptic array are identical, thus simplifying the processing issues. Highly doped, amorphous silicon is used as the resistor material, to create extremely high resistances occupying very small spaces. Connected in series with each resistor in the array is at least one severable conductor whose uppermost layer has a lower reflectivity of laser energy than typical metal conductors at a desired laser wavelength.

  2. Process for forming synapses in neural networks and resistor therefor

    DOEpatents

    Fu, C.Y.

    1996-07-23

    Customizable neural network in which one or more resistors form each synapse is disclosed. All the resistors in the synaptic array are identical, thus simplifying the processing issues. Highly doped, amorphous silicon is used as the resistor material, to create extremely high resistances occupying very small spaces. Connected in series with each resistor in the array is at least one severable conductor whose uppermost layer has a lower reflectivity of laser energy than typical metal conductors at a desired laser wavelength. 5 figs.

  3. Laser programmable integrated circuit for forming synapses in neural networks

    DOEpatents

    Fu, C.Y.

    1997-02-11

    Customizable neural network in which one or more resistors form each synapse is disclosed. All the resistors in the synaptic array are identical, thus simplifying the processing issues. Highly doped, amorphous silicon is used as the resistor material, to create extremely high resistances occupying very small spaces. Connected in series with each resistor in the array is at least one severable conductor whose uppermost layer has a lower reflectivity of laser energy than typical metal conductors at a desired laser wavelength. 5 figs.

  4. Revised antitrust guidelines. Forming physician network joint ventures.

    PubMed

    Anderson, K R

    1997-02-01

    What do physician executives need to know about antitrust guidelines? This article presents an overview of the revised "Statements of Antitrust Enforcement Policy in the Health Care Area," released in late 1996. Antitrust concepts and implicated federal statutes are described, and implications for forming physician network joint ventures are explored. Requirements of the revised standards used by the agencies to determine a permissible integration are addressed, as well as the factors considered in antitrust scrutiny of physician ventures.

  5. Bifurcation Analysis for Neural Networks in Neutral Form

    NASA Astrophysics Data System (ADS)

    Chen, Hong-Bing; Sun, Xiao-Ke

    2016-06-01

    In this paper, a system of neural networks in neutral form with time delay is investigated. Further, by introducing delay τ as a bifurcation parameter, it is found that Hopf bifurcation occurs when τ is across some critical values. The direction of the Hopf bifurcations and the stability are determined by using normal form method and center manifold theory. Next, the global existence of periodic solution is established by using a global Hopf bifurcation result. Finally, an example is given to support the theoretical predictions.

  6. A new F-actin structure in fungi: actin ring formation around the cell nucleus of Cryptococcus neoformans.

    PubMed

    Kopecká, Marie; Kawamoto, Susumu; Yamaguchi, Masashi

    2013-04-01

    The F-actin cytoskeleton of Cryptococcus neoformans is known to comprise actin cables, cortical patches and cytokinetic ring. Here, we describe a new F-actin structure in fungi, a perinuclear F-actin collar ring around the cell nucleus, by fluorescent microscopic imaging of rhodamine phalloidin-stained F-actin. Perinuclear F-actin rings form in Cryptococcus neoformans treated with the microtubule inhibitor Nocodazole or with the drug solvent dimethyl sulfoxide (DMSO) or grown in yeast extract peptone dextrose (YEPD) medium, but they are absent in cells treated with Latrunculin A. Perinuclear F-actin rings may function as 'funicular cabin' for the cell nucleus, and actin cables as intracellular 'funicular' suspending nucleus in the central position in the cell and moving nucleus along the polarity axis along actin cables.

  7. A Short Splice Form of Xin-Actin Binding Repeat Containing 2 (XIRP2) Lacking the Xin Repeats Is Required for Maintenance of Stereocilia Morphology and Hearing Function

    PubMed Central

    Francis, Shimon P.; Krey, Jocelyn F.; Krystofiak, Evan S.; Cui, Runjia; Nanda, Sonali; Xu, Wenhao; Kachar, Bechara; Barr-Gillespie, Peter G.

    2015-01-01

    Approximately one-third of known deafness genes encode proteins located in the hair bundle, the sensory hair cell's mechanoreceptive organelle. In previous studies, we used mass spectrometry to characterize the hair bundle's proteome, resulting in the discovery of novel bundle proteins. One such protein is Xin-actin binding repeat containing 2 (XIRP2), an actin-cross-linking protein previously reported to be specifically expressed in striated muscle. Because mutations in other actin-cross-linkers result in hearing loss, we investigated the role of XIRP2 in hearing function. In the inner ear, XIRP2 is specifically expressed in hair cells, colocalizing with actin-rich structures in bundles, the underlying cuticular plate, and the circumferential actin belt. Analysis using peptide mass spectrometry revealed that the bundle harbors a previously uncharacterized XIRP2 splice variant, suggesting XIRP2's role in the hair cell differs significantly from that reported in myocytes. To determine the role of XIRP2 in hearing, we applied clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9-mediated genome-editing technology to induce targeted mutations into the mouse Xirp2 gene, resulting in the elimination of XIRP2 protein expression in the inner ear. Functional analysis of hearing in the resulting Xirp2-null mice revealed high-frequency hearing loss, and ultrastructural scanning electron microscopy analyses of hair cells demonstrated stereocilia degeneration in these mice. We thus conclude that XIRP2 is required for long-term maintenance of hair cell stereocilia, and that its dysfunction causes hearing loss in the mouse. PMID:25653358

  8. Contribution of nuclear actin to transcription regulation.

    PubMed

    Yamazaki, Shota; Yamamoto, Koji; Harata, Masahiko

    2015-06-01

    Actin, an integral component of the cytoskeleton, plays crucial roles in a variety of cell functions, including cell migration, adhesion, polarity and shape change. Studies performed during the last couple of decades have revealed that the actin also exists in the nucleus. However, the function and properties of nuclear actin remained elusive so far. Recently, we showed that an actin tagged with EYFP and fused with a nuclear localization signal (EYFP-NLS-actin) formed visible filamentous (F)-actin bundles in cells. To obtain further details about the individual genes that are affected by the nuclear actin, we have used the microarray analysis to determine the changes in the expression levels of RNAs in HeLa cells as a result of EYFP-NLS-actin expression. Our results suggest that the nuclear actin plays a role in the activation of genes rather than their repression. The data has been deposited in the Gene Expression Omnibus (GEO) database under the accession number GSE59799.

  9. Crystal structure of a nuclear actin ternary complex.

    PubMed

    Cao, Tingting; Sun, Lingfei; Jiang, Yuxiang; Huang, Shanjin; Wang, Jiawei; Chen, Zhucheng

    2016-08-01

    Actin polymerizes and forms filamentous structures (F-actin) in the cytoplasm of eukaryotic cells. It also exists in the nucleus and regulates various nucleic acid transactions, particularly through its incorporation into multiple chromatin-remodeling complexes. However, the specific structure of actin and the mechanisms that regulate its polymeric nature inside the nucleus remain unknown. Here, we report the crystal structure of nuclear actin (N-actin) complexed with actin-related protein 4 (Arp4) and the helicase-SANT-associated (HSA) domain of the chromatin remodeler Swr1. The inner face and barbed end of N-actin are sequestered by interactions with Arp4 and the HSA domain, respectively, which prevents N-actin from polymerization and binding to many actin regulators. The two major domains of N-actin are more twisted than those of globular actin (G-actin), and its nucleotide-binding pocket is occluded, freeing N-actin from binding to and regulation by ATP. These findings revealed the salient structural features of N-actin that distinguish it from its cytoplasmic counterpart and provide a rational basis for its functions and regulation inside the nucleus. PMID:27457955

  10. Active microrheology of entangled blends of DNA and Actin link polymer flexibility to induced molecular deformations and stress propagation

    NASA Astrophysics Data System (ADS)

    Fitzpatrick, Robert; Robertson-Anderson, Rae; Anderson Research Team

    Actin is a ubiquitous structural protein in the cytoskeleton that gives cells shape and rigidity, and plays important roles in mechanical processes such as cell motility and division. Actin's diverse roles stem from its ability to polymerize into semiflexible filaments that are less than one persistence length (17 µm) in length, and form entangled networks that display unique viscoelastic properties. We previously found that entangled actin networks propagate microscale forces over several persistence lengths (>60 m) and takes minutes to relax. DNA, oppositely, has thousands of persistence lengths (50 nm) per chain, exhibits minimal force propagation, and takes only seconds to re-equilibrate. To directly determine the role of flexibility in mechanical response and force propagation of entangled networks, we use optical tweezers and fluorescence microscopy to investigate blends of actin and DNA. We use optically driven microspheres to perturb the network far from equilibrium and measure the force the network creates in response to the induced force. We simultaneously track partially labeled actin filaments during the perturbation and subsequent relaxation period. We characterize filament deformation and show explicitly how induced microscale forces propagate through the network.

  11. Neuronal oscillations form parietal/frontal networks during contour integration.

    PubMed

    Castellano, Marta; Plöchl, Michael; Vicente, Raul; Pipa, Gordon

    2014-01-01

    The ability to integrate visual features into a global coherent percept that can be further categorized and manipulated are fundamental abilities of the neural system. While the processing of visual information involves activation of early visual cortices, the recruitment of parietal and frontal cortices has been shown to be crucial for perceptual processes. Yet is it not clear how both cortical and long-range oscillatory activity leads to the integration of visual features into a coherent percept. Here, we will investigate perceptual grouping through the analysis of a contour categorization task, where the local elements that form contour must be linked into a coherent structure, which is then further processed and manipulated to perform the categorization task. The contour formation in our visual stimulus is a dynamic process where, for the first time, visual perception of contours is disentangled from the onset of visual stimulation or from motor preparation, cognitive processes that until now have been behaviorally attached to perceptual processes. Our main finding is that, while local and long-range synchronization at several frequencies seem to be an ongoing phenomena, categorization of a contour could only be predicted through local oscillatory activity within parietal/frontal sources, which in turn, would synchronize at gamma (>30 Hz) frequency. Simultaneously, fronto-parietal beta (13-30 Hz) phase locking forms a network spanning across neural sources that are not category specific. Both long range networks, i.e., the gamma network that is category specific, and the beta network that is not category specific, are functionally distinct but spatially overlapping. Altogether, we show that a critical mechanism underlying contour categorization involves oscillatory activity within parietal/frontal cortices, as well as its synchronization across distal cortical sites.

  12. Neuronal oscillations form parietal/frontal networks during contour integration.

    PubMed

    Castellano, Marta; Plöchl, Michael; Vicente, Raul; Pipa, Gordon

    2014-01-01

    The ability to integrate visual features into a global coherent percept that can be further categorized and manipulated are fundamental abilities of the neural system. While the processing of visual information involves activation of early visual cortices, the recruitment of parietal and frontal cortices has been shown to be crucial for perceptual processes. Yet is it not clear how both cortical and long-range oscillatory activity leads to the integration of visual features into a coherent percept. Here, we will investigate perceptual grouping through the analysis of a contour categorization task, where the local elements that form contour must be linked into a coherent structure, which is then further processed and manipulated to perform the categorization task. The contour formation in our visual stimulus is a dynamic process where, for the first time, visual perception of contours is disentangled from the onset of visual stimulation or from motor preparation, cognitive processes that until now have been behaviorally attached to perceptual processes. Our main finding is that, while local and long-range synchronization at several frequencies seem to be an ongoing phenomena, categorization of a contour could only be predicted through local oscillatory activity within parietal/frontal sources, which in turn, would synchronize at gamma (>30 Hz) frequency. Simultaneously, fronto-parietal beta (13-30 Hz) phase locking forms a network spanning across neural sources that are not category specific. Both long range networks, i.e., the gamma network that is category specific, and the beta network that is not category specific, are functionally distinct but spatially overlapping. Altogether, we show that a critical mechanism underlying contour categorization involves oscillatory activity within parietal/frontal cortices, as well as its synchronization across distal cortical sites. PMID:25165437

  13. Neuronal oscillations form parietal/frontal networks during contour integration

    PubMed Central

    Castellano, Marta; Plöchl, Michael; Vicente, Raul; Pipa, Gordon

    2014-01-01

    The ability to integrate visual features into a global coherent percept that can be further categorized and manipulated are fundamental abilities of the neural system. While the processing of visual information involves activation of early visual cortices, the recruitment of parietal and frontal cortices has been shown to be crucial for perceptual processes. Yet is it not clear how both cortical and long-range oscillatory activity leads to the integration of visual features into a coherent percept. Here, we will investigate perceptual grouping through the analysis of a contour categorization task, where the local elements that form contour must be linked into a coherent structure, which is then further processed and manipulated to perform the categorization task. The contour formation in our visual stimulus is a dynamic process where, for the first time, visual perception of contours is disentangled from the onset of visual stimulation or from motor preparation, cognitive processes that until now have been behaviorally attached to perceptual processes. Our main finding is that, while local and long-range synchronization at several frequencies seem to be an ongoing phenomena, categorization of a contour could only be predicted through local oscillatory activity within parietal/frontal sources, which in turn, would synchronize at gamma (>30 Hz) frequency. Simultaneously, fronto-parietal beta (13–30 Hz) phase locking forms a network spanning across neural sources that are not category specific. Both long range networks, i.e., the gamma network that is category specific, and the beta network that is not category specific, are functionally distinct but spatially overlapping. Altogether, we show that a critical mechanism underlying contour categorization involves oscillatory activity within parietal/frontal cortices, as well as its synchronization across distal cortical sites. PMID:25165437

  14. Mechanical Response of Cytoskeletal Networks

    PubMed Central

    Gardel, Margaret L.; Kasza, Karen E.; Brangwynne, Clifford P.; Liu, Jiayu; Weitz, David A.

    2015-01-01

    The cellular cytoskeleton is a dynamic network of filamentous proteins, consisting of filamentous actin (F-actin), microtubules, and intermediate filaments. However, these networks are not simple linear, elastic solids; they can exhibit highly nonlinear elasticity and athermal dynamics driven by ATP-dependent processes. To build quantitative mechanical models describing complex cellular behaviors, it is necessary to understand the underlying physical principles that regulate force transmission and dynamics within these networks. In this chapter, we review our current understanding of the physics of networks of cytoskeletal proteins formed in vitro. We introduce rheology, the technique used to measure mechanical response. We discuss our current understanding of the mechanical response of F-actin networks, and how the biophysical properties of F-actin and actin cross-linking proteins can dramatically impact the network mechanical response. We discuss how incorporating dynamic and rigid microtubules into F-actin networks can affect the contours of growing microtubules and composite network rigidity. Finally, we discuss the mechanical behaviors of intermediate filaments. PMID:19118688

  15. Actin nucleation and elongation factors: mechanisms and interplay.

    PubMed

    Chesarone, Melissa A; Goode, Bruce L

    2009-02-01

    Cells require actin nucleators to catalyze the de novo assembly of filaments and actin elongation factors to control the rate and extent of polymerization. Nucleation and elongation factors identified to date include Arp2/3 complex, formins, Ena/VASP, and newcomers Spire, Cobl, and Lmod. Here, we discuss recent advances in understanding their activities and mechanisms and new evidence for their cooperation and interaction in vivo. Earlier models had suggested that different nucleators function independently to assemble distinct actin arrays. However, more recent observations indicate that the construction of most cellular actin networks depends on the activities of multiple actin assembly-promoting factors working in concert.

  16. Distributed actin turnover in the lamellipodium and FRAP kinetics.

    PubMed

    Smith, Matthew B; Kiuchi, Tai; Watanabe, Naoki; Vavylonis, Dimitrios

    2013-01-01

    Studies of actin dynamics at the leading edge of motile cells with single-molecule speckle (SiMS) microscopy have shown a broad distribution of EGFP-actin speckle lifetimes and indicated actin polymerization and depolymerization over an extended region. Other experiments using FRAP with the same EGFP-actin as a probe have suggested, by contrast, that polymerization occurs exclusively at the leading edge. We performed FRAP experiments on XTC cells to compare SiMS to FRAP on the same cell type. We used speckle statistics obtained by SiMS to model the steady-state distribution and kinetics of actin in the lamellipodium. We demonstrate that a model with a single diffuse actin species is in good agreement with FRAP experiments. A model including two species of diffuse actin provides an even better agreement. The second species consists of slowly diffusing oligomers that associate to the F-actin network throughout the lamellipodium or break up into monomers after a characteristic time. Our work motivates studies to test the presence and composition of slowly diffusing actin species that may contribute to local remodeling of the actin network and increase the amount of soluble actin.

  17. CNS myelin wrapping is driven by actin disassembly.

    PubMed

    Zuchero, J Bradley; Fu, Meng-Meng; Sloan, Steven A; Ibrahim, Adiljan; Olson, Andrew; Zaremba, Anita; Dugas, Jason C; Wienbar, Sophia; Caprariello, Andrew V; Kantor, Christopher; Leonoudakis, Dmitri; Leonoudakus, Dmitri; Lariosa-Willingham, Karen; Kronenberg, Golo; Gertz, Karen; Soderling, Scott H; Miller, Robert H; Barres, Ben A

    2015-07-27

    Myelin is essential in vertebrates for the rapid propagation of action potentials, but the molecular mechanisms driving its formation remain largely unknown. Here we show that the initial stage of process extension and axon ensheathment by oligodendrocytes requires dynamic actin filament assembly by the Arp2/3 complex. Unexpectedly, subsequent myelin wrapping coincides with the upregulation of actin disassembly proteins and rapid disassembly of the oligodendrocyte actin cytoskeleton and does not require Arp2/3. Inducing loss of actin filaments drives oligodendrocyte membrane spreading and myelin wrapping in vivo, and the actin disassembly factor gelsolin is required for normal wrapping. We show that myelin basic protein, a protein essential for CNS myelin wrapping whose role has been unclear, is required for actin disassembly, and its loss phenocopies loss of actin disassembly proteins. Together, these findings provide insight into the molecular mechanism of myelin wrapping and identify it as an actin-independent form of mammalian cell motility.

  18. Network meta-analysis of the outcome 'participant complete clearance' in nonimmunosuppressed participants of eight interventions for actinic keratosis: a follow-up on a Cochrane review.

    PubMed

    Gupta, A K; Paquet, M

    2013-08-01

    The conclusions of pairwise meta-analyses of interventions for actinic keratosis (AK) are limited due to the lack of direct comparison between some interventions. Consequently, we performed a network meta-analysis for eight treatments [5-aminolaevulinic acid (ALA)-photodynamic therapy (PDT), cryotherapy, diclofenac 3% in 2·5% hyaluronic acid (DCF/HA), 5-fluorouracil (5-FU) 0·5% or 5·0%, imiquimod (IMI) 5%, ingenol mebutate (IMB) 0·015-0·05%, methyl aminolaevulinate (MAL)-PDT and placebo/vehicle (including placebo-PDT)] to determine their relative efficacies. As part of a prior Cochrane systematic review, different databases and grey literature were searched for randomized controlled trials up to April 2012. The inclusion criteria were parallel-group studies with nonimmunosuppressed participants: (i) reporting 'participant complete clearance' and (ii) comparing at least two of the interventions. Thirty-two publications met the criteria and they included the following number of individual or pooled studies (n) and total number of participants (N) for the different interventions: 5-FU 0·5% (n = 4, N = 169), 5-FU 5·0% (n = 2, N = 44), ALA-PDT (n = 6, N = 739), cryotherapy (n = 2, N = 174), DCF/HA (n = 5, N = 299), IMI (n = 14, N = 1411), IMB (n = 3, N = 560), MAL-PDT (n = 7, N = 557) and placebo (n = 32, N = 2520). Network analyses using a random-effects Bayesian model were carried out with the software ADDIS v1.16.1. The interventions were ranked as follows based on calculated probabilities and odd ratios: 5-FU > ALA-PDT ≈ IMI ≈ IMB ≈ MAL-PDT > cryotherapy > DCF/HA > placebo. This efficacy ranking was obtained based on the current available data on 'participant complete clearance' from randomized controlled trials and the analysis model used. However, several other factors should also be considered when prescribing a treatment for AK.

  19. Crystal structure of an archaeal actin homolog.

    PubMed

    Roeben, Annette; Kofler, Christine; Nagy, István; Nickell, Stephan; Hartl, F Ulrich; Bracher, Andreas

    2006-04-21

    Prokaryotic homologs of the eukaryotic structural protein actin, such as MreB and ParM, have been implicated in determination of bacterial cell shape, and in the segregation of genomic and plasmid DNA. In contrast to these bacterial actin homologs, little is known about the archaeal counterparts. As a first step, we expressed a predicted actin homolog of the thermophilic archaeon Thermoplasma acidophilum, Ta0583, and determined its crystal structure at 2.1A resolution. Ta0583 is expressed as a soluble protein in T.acidophilum and is an active ATPase at physiological temperature. In vitro, Ta0583 forms sheets with spacings resembling the crystal lattice, indicating an inherent propensity to form filamentous structures. The fold of Ta0583 contains the core structure of actin and clearly belongs to the actin/Hsp70 superfamily of ATPases. Ta0583 is approximately equidistant from actin and MreB on the structural level, and combines features from both eubacterial actin homologs, MreB and ParM. The structure of Ta0583 co-crystallized with ADP indicates that the nucleotide binds at the interface between the subdomains of Ta0583 in a manner similar to that of actin. However, the conformation of the nucleotide observed in complex with Ta0583 clearly differs from that in complex with actin, but closely resembles the conformation of ParM-bound nucleotide. On the basis of sequence and structural homology, we suggest that Ta0583 derives from a ParM-like actin homolog that was once encoded by a plasmid and was transferred into a common ancestor of Thermoplasma and Ferroplasma. Intriguingly, both genera are characterized by the lack of a cell wall, and therefore Ta0583 could have a function in cellular organization.

  20. Actin cytoskeleton demonstration in Trichomonas vaginalis and in other trichomonads.

    PubMed

    Brugerolle, G; Bricheux, G; Coffe, G

    1996-01-01

    The flagellate form of Trichomonas vaginalis (T v) transforms to amoeboid cells upon adherence to converslips. They grow and their nuclei divide without undergoing cytokinesis, yielding giant cells and a monolayer of T v F-actin was demonstrated in Trichomonas vaginalis by fluorescence microscopy using phalloidin and an anti-actin mAb which labelled the cytoplasm of both the flagellate and amoeboid forms. Comparative electrophoresis and immunoblotting established that the actin band has the same 42 kDa as muscle actin, but 2-D electrophoresis resolved the actin band into four spots; the two major spots observed were superimposable with major muscle actin isoforms. Electron microscopy demonstrated an ectoplasmic microfibrillar layer along the adhesion zone of amoeboid T v adhering to coverslips. Immunogold staining, using anti-actin monoclonal antibodies demonstrated that this layer was mainly composed of actin microfilaments. A comparative immunoblotting study comprising seven trichomonad species showed that all trichomonads studied expressed actin. The mAb Sigma A-4700 specific for an epitope on the actin C-terminal sequence labelled only actin of Trichomonas vaginalis, Tetratrichomonas gallinarum. Trichomitus batrachorum and Hypotrichomonas acosta, but not the actin of Tritrichomonas foetus, Tritrichomonas augusta and Monocercomonas sp. This discrimination between a 'trichomonas branch' and a 'tritrichomonas branch' is congruent with inferred sequence phylogeny from SSu rRNA and with classical phylogeny of trichomonads. PMID:9175265

  1. Regulation of cellular actin architecture by S100A10.

    PubMed

    Jung, M Juliane; Murzik, Ulrike; Wehder, Liane; Hemmerich, Peter; Melle, Christian

    2010-04-15

    Actin structures are involved in several biological processes and the disruption of actin polymerisation induces impaired motility of eukaryotic cells. Different factors are involved in regulation and maintenance of the cytoskeletal actin architecture. Here we show that S100A10 participates in the particular organisation of actin filaments. Down-regulation of S100A10 by specific siRNA triggered a disorganisation of filamentous actin structures without a reduction of the total cellular actin concentration. In contrast, the formation of cytoskeleton structures containing tubulin was unhindered in S100A10 depleted cells. Interestingly, the cellular distribution of annexin A2, an interaction partner of S100A10, was unaffected in S100A10 depleted cells. Cells lacking S100A10 showed an impaired migration activity and were unable to close a scratched wound. Our data provide first insights of S100A10 function as a regulator of the filamentous actin network. PMID:20100475

  2. Actin in Herpesvirus Infection

    PubMed Central

    Roberts, Kari L.; Baines, Joel D.

    2011-01-01

    Actin is important for a variety of cellular processes, including uptake of extracellular material and intracellular transport. Several emerging lines of evidence indicate that herpesviruses exploit actin and actin-associated myosin motors for viral entry, intranuclear transport of capsids, and virion egress. The goal of this review is to explore these processes and to highlight potential future directions for this area of research. PMID:21994736

  3. Lamellipodin promotes actin assembly by clustering Ena/VASP proteins and tethering them to actin filaments.

    PubMed

    Hansen, Scott D; Mullins, R Dyche

    2015-01-01

    Enabled/Vasodilator (Ena/VASP) proteins promote actin filament assembly at multiple locations, including: leading edge membranes, focal adhesions, and the surface of intracellular pathogens. One important Ena/VASP regulator is the mig-10/Lamellipodin/RIAM family of adaptors that promote lamellipod formation in fibroblasts and drive neurite outgrowth and axon guidance in neurons. To better understand how MRL proteins promote actin network formation we studied the interactions between Lamellipodin (Lpd), actin, and VASP, both in vivo and in vitro. We find that Lpd binds directly to actin filaments and that this interaction regulates its subcellular localization and enhances its effect on VASP polymerase activity. We propose that Lpd delivers Ena/VASP proteins to growing barbed ends and increases their polymerase activity by tethering them to filaments. This interaction represents one more pathway by which growing actin filaments produce positive feedback to control localization and activity of proteins that regulate their assembly.

  4. Direct visualisation and kinetic analysis of normal and nemaline myopathy actin polymerisation using total internal reflection microscopy.

    PubMed

    Feng, Juan-Juan; Ushakov, Dmitry S; Ferenczi, Michael A; Laing, Nigel G; Nowak, Kristen J; Marston, Steven B

    2009-01-01

    Actin filaments were formed by elongation of pre-formed nuclei (short crosslinked actin-HMM complexes) that were attached to a microscope cover glass. By using TIRF illumination we could see actin filaments at high contrast despite the presence of 150 nM TRITC-phalloidin in the solution. Actin filaments showed rapid bending and translational movements due to Brownian motion but the presence of the methylcellulose polymer network constrained lateral movement away from the surface. Both the length and the number of filaments increased with time. Some filaments did not change length at all and some filaments joined up end-to-end (annealing). We did not see any decrease in filament length or filament breakage. For quantitative analysis of polymerisation time course we measured the contour length of all the filaments in a frame at a series of time points and also tracked the length of individual filaments over time. Elongation rate was the same measured by both methods (0.23 microm/min at 0.1 microM actin) and was up to 10 times faster than previously published measurements. The annealed filament population reached 30% of the total after 40 min. Polymerisation rate increased linearly with actin concentration. K(on) was 2.07 microm min(-1) microM(-1) (equivalent to 34.5 monomers s(-1) microM(-1)) and critical concentration was less than 20 nM. This technique was used to study polymerisation of a mutant actin (D286G) from a transgenic mouse model. D286G actin elongated at a 40% lower rate than non-transgenic actin.

  5. Economic returns in forming stable R&D networks.

    PubMed

    Alghamdi, Mohamad

    2016-01-01

    The aim of this paper is to study the individual and social benefits behind constructing stable R&D networks. We find that the equilibrium outcomes of a stable network are related to the number of competitors. As they increase, the individual outcomes and the total welfare decrease. This implies that in the individual and social perspectives, small stable networks are more desirable than the large ones. Furthermore, when comparing the stability of the components of a network with a complete network, we conclude two main observations. The first observation shows that the stability of the components of a network does not necessarily guarantee a stable overall network. The second observation suggests that firms prefer to be part of a complete network rather than part of a stable component of a network. This preference depends on the profit of firms where it is maximized when firms are belong to the complete network. PMID:27652143

  6. Shockwave Absorption using Network-forming Ionic glass

    NASA Astrophysics Data System (ADS)

    Lee, Jaejun; Yang, Ke; Moore, Jeffrey; Sottos, Nancy; MURI SWED Collaboration

    2015-06-01

    Network-forming ionic glasses composed of di-ammonium cations and citrate anions exhibit significant potential for dissipation of shock wave energy. The long alkyl side chains in the di-ammonium cation form a soft matrix, while the negatively charged heads of anions segregate into hard nanophase domains. Similar to polyurea, which has microphase separation of soft and hard domains, we hypothesize that shock wave dissipation of the ionic glass occurs by bond breaking in the hard domains and/or pressure-induced phase transition. By employing size-tunable alkyl side chains in the cations, we examine the effect of the relative soft domain size on energy dissipation. A series of thin film (ca. 50 μm) ionic glass specimens are subjected to laser-induced compressive stress waves and the transmitted response measured interferometrically. Structural changes of the ionic glass due to shock wave impact are characterized by x-ray diffraction. When compared directly to polyurea films of identical thickness and geometry, the ionic glass showed superior shock-wave mitigating performance. ONR MURI program.

  7. Beam forming networks for mm-wave satellite communications

    NASA Technical Reports Server (NTRS)

    Sharon, T. E.

    1983-01-01

    Technology features of a beam forming network (BFN) employing ferrite devices to provide multiple beam antenna pattern control for satellites used in telecommunications are described. The BFN produces the phase and amplitude distribution for each horn in an antenna array, with the number of horns in the array being equal to the number of outputs in the BFN. One configuration involves microwave switches and permits illumination of a single feed horn at a time using ferrite latching circulators that function by reversing the circulation direction. A more flexible version, yielding a variable amplitude distribution across the feed horn array to accommodate changing traffic patterns or serving a TDMA system, includes the capability of forming nulls in the system with a variable phase shifter in the input ports. The antenna scan angles in phased arrays can be limited to 8 deg from center. Acceptable insertion losses have been demonstrated in BFN with hundreds of ports and switching rates as high as 10 kHz.

  8. Defining a core set of actin cytoskeletal proteins critical for actin-based motility of Rickettsia.

    PubMed

    Serio, Alisa W; Jeng, Robert L; Haglund, Cat M; Reed, Shawna C; Welch, Matthew D

    2010-05-20

    Many Rickettsia species are intracellular bacterial pathogens that use actin-based motility for spread during infection. However, while other bacteria assemble actin tails consisting of branched networks, Rickettsia assemble long parallel actin bundles, suggesting the use of a distinct mechanism for exploiting actin. To identify the underlying mechanisms and host factors involved in Rickettsia parkeri actin-based motility, we performed an RNAi screen targeting 115 actin cytoskeletal genes in Drosophila cells. The screen delineated a set of four core proteins-profilin, fimbrin/T-plastin, capping protein, and cofilin--as crucial for determining actin tail length, organizing filament architecture, and enabling motility. In mammalian cells, these proteins were localized throughout R. parkeri tails, consistent with a role in motility. Profilin and fimbrin/T-plastin were critical for the motility of R. parkeri but not Listeria monocytogenes. Our results highlight key distinctions between the evolutionary strategies and molecular mechanisms employed by bacterial pathogens to assemble and organize actin. PMID:20478540

  9. Apical domain polarization localizes actin-myosin activity to drive ratchet-like apical constriction.

    PubMed

    Mason, Frank M; Tworoger, Michael; Martin, Adam C

    2013-08-01

    Apical constriction promotes epithelia folding, which changes tissue architecture. During Drosophila gastrulation, mesoderm cells exhibit repeated contractile pulses that are stabilized such that cells apically constrict like a ratchet. The transcription factor Twist is required to stabilize cell shape. However, it is unknown how Twist spatially coordinates downstream signals to prevent cell relaxation. We find that during constriction, Rho-associated kinase (Rok) is polarized to the middle of the apical domain (medioapical cortex), separate from adherens junctions. Rok recruits or stabilizes medioapical myosin II (Myo-II), which contracts dynamic medioapical actin cables. The formin Diaphanous mediates apical actin assembly to suppress medioapical E-cadherin localization and form stable connections between the medioapical contractile network and adherens junctions. Twist is not required for apical Rok recruitment, but instead polarizes Rok medioapically. Therefore, Twist establishes radial cell polarity of Rok/Myo-II and E-cadherin and promotes medioapical actin assembly in mesoderm cells to stabilize cell shape fluctuations.

  10. Direct dynamin–actin interactions regulate the actin cytoskeleton

    PubMed Central

    Gu, Changkyu; Yaddanapudi, Suma; Weins, Astrid; Osborn, Teresia; Reiser, Jochen; Pollak, Martin; Hartwig, John; Sever, Sanja

    2010-01-01

    The large GTPase dynamin assembles into higher order structures that are thought to promote endocytosis. Dynamin also regulates the actin cytoskeleton through an unknown, GTPase-dependent mechanism. Here, we identify a highly conserved site in dynamin that binds directly to actin filaments and aligns them into bundles. Point mutations in the actin-binding domain cause aberrant membrane ruffling and defective actin stress fibre formation in cells. Short actin filaments promote dynamin assembly into higher order structures, which in turn efficiently release the actin-capping protein (CP) gelsolin from barbed actin ends in vitro, allowing for elongation of actin filaments. Together, our results support a model in which assembled dynamin, generated through interactions with short actin filaments, promotes actin polymerization via displacement of actin-CPs. PMID:20935625

  11. Cytoskeletal F-actin patterns in whole-mounted larval and adult salivary glands of the fleshfly, Sarcophaga bullata.

    PubMed

    Meulemans, W; De Loof, A

    1991-01-01

    The patterns of filamentous actin were analysed in different larval, pupal and adult stages in the salivary glands of the fleshfly Sarcophaga bullata. Using the rhodamine labelled phalloidin staining method in combination with detergent extraction specific actin filament distribution was detected. The salivary glands which are histolysed during the process of metamorphosis show distinct cellular morphology and actin filament patterns in larvae and adults. The large third instar larval salivary gland cells contain a well developed apicolateral microvillar zone. In third instar larvae this microvillar zone invaginates and expands in the basal part of the lateral membranes. Larval salivary gland cells also contain numerous parallel basal actin bundles. The larval glands are histolysed during metamorphosis and adult glands are formed out of the imaginal cell group. At the onset of metamorphosis these basal actin bundles form a network of crossing bundles. The filamentous actin patterns of the proximal part of adult gland cells is confined to the apicolateral microvillar membranes. The cells in the distal, tubular part of the adult salivary glands show intense staining of their folded lateral membranes.

  12. Interactions of actin, myosin, and an actin-binding protein of chronic myelogenous leukemia leukocytes.

    PubMed Central

    Boxer, L A; Stossel, T P

    1976-01-01

    Actin, myosin, and a high molecular weight actin-binding protein were purified from chronic myelogenous leukemia (CML) leukocytes. CML leukocyte actin resembled skeletal muscle and other cytoplasmic actins by its subunit molecular weight, by its ability to polymerize in the presence of salts, and to activate the Mg2+-ATPase activity of rabbit skeletal muscle myosin. CML leukocyte myosin was similar to other vertebrate cytoplasmic myosins in having heavy chains and two light subunits. However, its apparent heavy-chain molecular weight and Stokes radius suggested that it was variably degraded during purification. Purified CML leukocyte myosin had average specific EDTA- AND Ca2+-activated ATPase activities of 125 and 151 nmol Pi released/mg protein per min, respectively and low specific Mg2+-ATPase activity. The Mg2+-ATPase activity of CML myosin was increased 200-fold by rabbit skeletal muscle F-actin, but the specific activity relative to that of actin-activated rabbit skeletal muscle myosin was low. CML leukocyte myosin, like other vertebrate cytoplasmic myosins, formed filaments in 0.1 M KCl solutions. Reduced and denatured CML leukocyte-actin-binding protein had a single high molecular weight subunit like a recently described actin-binding protein of rabbit pulmonary macrophages which promotes the polymerization and gelation of actin. Cytoplasmic extracts of CML leukocytes prepared with ice-cold 0.34-M sucrose solutions containing Mg2+-ATP, dithiothreitol, and EDTA at pH 7.0 underwent rapid gelation when warmed to 25 degrees C. Initially, the gel could be liquified by cooling to ice-bath temperature. With time, warmed cytoplasmic extract gels shrunk ("contracted") into aggregates. The following findings indicated that CML leukocyte actin-binding protein promoted the temperature-dependent gelation of actin in the cytoplasmic extracts and that CML leukocyte myosin was involved in the contraction of the actin gels: (a) Cytoplasmic extract gels initially contained

  13. Chemotaxis and Actin Oscillations

    NASA Astrophysics Data System (ADS)

    Bodenschatz, Eberhard; Hsu, Hsin-Fang; Negrete, Jose; Beta, Carsten; Pumir, Alain; Gholami, Azam; Tarantola, Marco; Westendorf, Christian; Zykov, Vladimir

    Recently, self-oscillations of the cytoskeletal actin have been observed in Dictyostelium, a model system for studying chemotaxis. Here we report experimental results on the self-oscillation mechanism and the role of regulatory proteins and myosin II. We stimulate cells rapidly and periodically by using photo un-caging of the chemoattractant in a micro-fluidic device and measured the cellular responses. We found that the response amplitude grows with stimulation strength only in a very narrow region of stimulation, after which the response amplitude reaches a plateau. Moreover, the frequency-response is not constant but rather varies with the strength of external stimuli. To understand the underlying mechanism, we analyzed the polymerization and de-polymerization time in the single cell level. Despite of the large cell-to-cell variability, we found that the polymerization time is independent of external stimuli and the de-polymerization time is prolonged as the stimulation strength increases. Our conclusions will be summarized and the role of noise in the signaling network will be discussed. German Science Foundation CRC 937.

  14. Mechanics model for actin-based motility.

    PubMed

    Lin, Yuan

    2009-02-01

    We present here a mechanics model for the force generation by actin polymerization. The possible adhesions between the actin filaments and the load surface, as well as the nucleation and capping of filament tips, are included in this model on top of the well-known elastic Brownian ratchet formulation. A closed form solution is provided from which the force-velocity relationship, summarizing the mechanics of polymerization, can be drawn. Model predictions on the velocity of moving beads driven by actin polymerization are consistent with experiment observations. This model also seems capable of explaining the enhanced actin-based motility of Listeria monocytogenes and beads by the presence of Vasodilator-stimulated phosphoprotein, as observed in recent experiments.

  15. Mechanics model for actin-based motility

    NASA Astrophysics Data System (ADS)

    Lin, Yuan

    2009-02-01

    We present here a mechanics model for the force generation by actin polymerization. The possible adhesions between the actin filaments and the load surface, as well as the nucleation and capping of filament tips, are included in this model on top of the well-known elastic Brownian ratchet formulation. A closed form solution is provided from which the force-velocity relationship, summarizing the mechanics of polymerization, can be drawn. Model predictions on the velocity of moving beads driven by actin polymerization are consistent with experiment observations. This model also seems capable of explaining the enhanced actin-based motility of Listeria monocytogenes and beads by the presence of Vasodilator-stimulated phosphoprotein, as observed in recent experiments.

  16. Nematic textures in F-actin

    NASA Astrophysics Data System (ADS)

    Das, P.; Roy, J.; Chakrabarti, N.; Basu, S.; Das, U.

    2002-05-01

    Actin filaments, which are protein polymers occurring abundantly and ubiquitously in muscle and nonmuscle cells, are known to align in a shear flow, and with an external magnetic field. They form a nematic liquid crystal of the athermal type at a low concentration. Typical defects and textures of the nematic actin liquid crystal are described in this work. The generation of well-aligned nematic single crystals has been reported, in the vicinity of an air-water interface, with the actin filaments spontaneously aligning normal to the interface. Away from the air-water interface nematic single crystal domains are due to the alignment of the actin filaments parallel to the glass surface. The twist-bend nature of the disclination line of integral strength (m=1) has been attributed to the relative magnitudes of the anisotropic curvature elastic constants, which reflect the filaments' semirigidity.

  17. F-actin cytoskeleton and the fate of organelles in chromaffin cells.

    PubMed

    Villanueva, José; Gimenez-Molina, Yolanda; Viniegra, Salvador; Gutiérrez, Luis M

    2016-06-01

    In addition to playing a fundamental structural role, the F-actin cytoskeleton in neuroendocrine chromaffin cells has a prominent influence on governing the molecular mechanism and regulating the secretory process. Performing such roles, the F-actin network might be essential to first transport, and later locate the cellular organelles participating in the secretory cycle. Chromaffin granules are transported from the internal cytosolic regions to the cell periphery along microtubular and F-actin structures. Once in the cortical region, they are embedded in the F-actin network where these vesicles experience restrictions in motility. Similarly, mitochondria transport is affected by both microtubule and F-actin inhibitors and suffers increasing motion restrictions when they are located in the cortical region. Therefore, the F-actin cortex is a key factor in defining the existence of two populations of cortical and perinuclear granules and mitochondria which could be distinguished by their different location and mobility. Interestingly, other important organelles for controlling intracellular calcium levels, such as the endoplasmic reticulum network, present clear differences in distribution and much lower mobility than chromaffin vesicles and mitochondria. Nevertheless, both mitochondria and the endoplasmic reticulum appear to distribute in the proximity of secretory sites to fulfill a pivotal role, forming triads with calcium channels ensuring the fine tuning of the secretory response. This review presents the contributions that provide the basis for our current view regarding the influence that F-actin has on the distribution of organelles participating in the release of catecholamines in chromaffin cells, and summarizes this knowledge in simple models. In chromaffin cells, organelles such as granules and mitochondria distribute forming cortical and perinuclear populations whereas others like the ER present homogenous distributions. In the present review we discuss

  18. Actin is required for IFT regulation in Chlamydomonas reinhardtii.

    PubMed

    Avasthi, Prachee; Onishi, Masayuki; Karpiak, Joel; Yamamoto, Ryosuke; Mackinder, Luke; Jonikas, Martin C; Sale, Winfield S; Shoichet, Brian; Pringle, John R; Marshall, Wallace F

    2014-09-01

    Assembly of cilia and flagella requires intraflagellar transport (IFT), a highly regulated kinesin-based transport system that moves cargo from the basal body to the tip of flagella [1]. The recruitment of IFT components to basal bodies is a function of flagellar length, with increased recruitment in rapidly growing short flagella [2]. The molecular pathways regulating IFT are largely a mystery. Because actin network disruption leads to changes in ciliary length and number, actin has been proposed to have a role in ciliary assembly. However, the mechanisms involved are unknown. In Chlamydomonas reinhardtii, conventional actin is found in both the cell body and the inner dynein arm complexes within flagella [3, 4]. Previous work showed that treating Chlamydomonas cells with the actin-depolymerizing compound cytochalasin D resulted in reversible flagellar shortening [5], but how actin is related to flagellar length or assembly remains unknown. Here we utilize small-molecule inhibitors and genetic mutants to analyze the role of actin dynamics in flagellar assembly in Chlamydomonas reinhardtii. We demonstrate that actin plays a role in IFT recruitment to basal bodies during flagellar elongation and that when actin is perturbed, the normal dependence of IFT recruitment on flagellar length is lost. We also find that actin is required for sufficient entry of IFT material into flagella during assembly. These same effects are recapitulated with a myosin inhibitor, suggesting that actin may act via myosin in a pathway by which flagellar assembly is regulated by flagellar length.

  19. Excitable actin dynamics in lamellipodial protrusion and retraction.

    PubMed

    Ryan, Gillian L; Petroccia, Heather M; Watanabe, Naoki; Vavylonis, Dimitrios

    2012-04-01

    Many animal cells initiate crawling by protruding lamellipodia, consisting of a dense network of actin filaments, at their leading edge. We imaged XTC cells that exhibit flat lamellipodia on poly-L-lysine-coated coverslips. Using active contours, we tracked the leading edge and measured the total amount of F-actin by summing the pixel intensities within a 5-μm band. We observed protrusion and retraction with period 130-200 s and local wavelike features. Positive (negative) velocities correlated with minimum (maximum) integrated actin concentration. Approximately constant retrograde flow indicated that protrusions and retractions were driven by fluctuations of the actin polymerization rate. We present a model of these actin dynamics as an excitable system in which a diffusive, autocatalytic activator causes actin polymerization; F-actin accumulation in turn inhibits further activator accumulation. Simulations of the model reproduced the pattern of actin polymerization seen in experiments. To explore the model's assumption of an autocatalytic activation mechanism, we imaged cells expressing markers for both F-actin and the p21 subunit of the Arp2/3 complex. We found that integrated Arp2/3-complex concentrations spike several seconds before spikes of F-actin concentration. This suggests that the Arp2/3 complex participates in an activation mechanism that includes additional diffuse components. Response of cells to stimulation by fetal calf serum could be reproduced by the model, further supporting the proposed dynamical picture.

  20. The Yeast Actin Cytoskeleton: from Cellular Function to Biochemical Mechanism

    PubMed Central

    Moseley, James B.; Goode, Bruce L.

    2006-01-01

    All cells undergo rapid remodeling of their actin networks to regulate such critical processes as endocytosis, cytokinesis, cell polarity, and cell morphogenesis. These events are driven by the coordinated activities of a set of 20 to 30 highly conserved actin-associated proteins, in addition to many cell-specific actin-associated proteins and numerous upstream signaling molecules. The combined activities of these factors control with exquisite precision the spatial and temporal assembly of actin structures and ensure dynamic turnover of actin structures such that cells can rapidly alter their cytoskeletons in response to internal and external cues. One of the most exciting principles to emerge from the last decade of research on actin is that the assembly of architecturally diverse actin structures is governed by highly conserved machinery and mechanisms. With this realization, it has become apparent that pioneering efforts in budding yeast have contributed substantially to defining the universal mechanisms regulating actin dynamics in eukaryotes. In this review, we first describe the filamentous actin structures found in Saccharomyces cerevisiae (patches, cables, and rings) and their physiological functions, and then we discuss in detail the specific roles of actin-associated proteins and their biochemical mechanisms of action. PMID:16959963

  1. The de novo missense mutation N117S in skeletal muscle α‑actin 1 causes a mild form of congenital nemaline myopathy.

    PubMed

    Yang, Liu; Yu, Ping; Chen, Xiang; Cai, Tao

    2016-08-01

    Nemaline myopathy (NM) constitutes a spectrum of primary skeletal muscle disorders, the diagnosis of which is based on muscle weakness and the visualization of nemaline bodies in muscle biopsies. Mutations in several NM causal genes have been attributed to the majority of NM cases, particularly mutations in nebulin and skeletal muscle α‑actin 1 (ACTA1), which are responsible for ~70% of cases; therefore, a genetic diagnostic strategy using targeted gene sequencing may potentially improve the diagnosis of suspected NM. The present study identified a de novo mutation in ACTA1 (c.350A>G; p.Asn117Ser) in a Chinese patient using target‑capture sequencing of a panel containing 125 known causal genes for inherited muscle diseases. Clinical analyses revealed that the case described in the present study exhibited a relatively mild phenotype with regards to muscle weakness, as compared with more severe phenotypes reported in several other patients with the same mutation, thus suggesting the existence of genetic modifiers. In conclusion, this approach may be helpful for the identification of clinically undiagnosed patients with highly heterogeneous disorders. PMID:27357517

  2. PMP22 Is Critical for Actin-Mediated Cellular Functions and for Establishing Lipid Rafts

    PubMed Central

    Lee, Sooyeon; Amici, Stephanie; Tavori, Hagai; Zeng, Waylon M.; Freeland, Steven; Fazio, Sergio

    2014-01-01

    Haploinsufficiency of peripheral myelin protein 22 (PMP22) causes hereditary neuropathy with liability to pressure palsies, a peripheral nerve lesion induced by minimal trauma or compression. As PMP22 is localized to cholesterol-enriched membrane domains that are closely linked with the underlying actin network, we asked whether the myelin instability associated with PMP22 deficiency could be mediated by involvement of the protein in actin-dependent cellular functions and/or lipid raft integrity. In peripheral nerves and cells from mice with PMP22 deletion, we assessed the organization of filamentous actin (F-actin), and actin-dependent cellular functions. Using in vitro models, we discovered that, in the absence of PMP22, the migration and adhesion capacity of Schwann cells and fibroblasts are similarly impaired. Furthermore, PMP22-deficient Schwann cells produce shortened myelin internodes, and display compressed axial cell length and collapsed lamellipodia. During early postnatal development, F-actin-enriched Schmidt-Lanterman incisures do not form properly in nerves from PMP22−/− mice, and the expression and localization of molecules associated with uncompacted myelin domains and lipid rafts, including flotillin-1, cholesterol, and GM1 ganglioside, are altered. In addition, we identified changes in the levels and distribution of cholesterol and ApoE when PMP22 is absent. Significantly, cholesterol supplementation of the culture medium corrects the elongation and migration deficits of PMP22−/− Schwann cells, suggesting that the observed functional impairments are directly linked with cholesterol deficiency of the plasma membrane. Our findings support a novel role for PMP22 in the linkage of the actin cytoskeleton with the plasma membrane, likely through regulating the cholesterol content of lipid rafts. PMID:25429154

  3. A Network Meta-Analysis of the Relative Efficacy of Treatments for Actinic Keratosis of the Face or Scalp in Europe

    PubMed Central

    Vegter, Stefan; Tolley, Keith

    2014-01-01

    Background Several treatments are available for actinic keratosis (AK) on the face and scalp. Most treatment modalities were compared to placebo and therefore little is known on their relative efficacy. Objectives To compare the different treatments for mild to moderate AK on the face and scalp available in clinical practice in Europe. Methods A network meta-analysis (NMA) was performed on the outcome “complete patient clearance”. Ten treatment modalities were included: two 5-aminolaevulinic acid photodynamic therapies (ALA-PDT), applied as gel (BF-200 ALA) or patch; methyl-aminolevulinate photodynamic therapy (MAL-PDT); three modalities with imiquimod (IMI), applied as a 4-week or 16-week course with 5% imiquimod, or a 2–3 week course with 3.75% imiquimod; cryotherapy; diclofenac 3% in 2.5% hyaluronic acid; 0.5% 5-fluorouracil (5-FU); and ingenol mebutate (IMB). The only data available for 5% 5-FU was from one small study and was determined to be too limited to be reliably included in the analysis. For BF-200 ALA and MAL-PDT, data from illumination with narrow-band lights were selected as these are typically used in clinical practice. The NMA was performed with a random-effects Bayesian model. Results 25 trials on 5,562 patients were included in the NMA. All active treatments were significantly better than placebo. BF-200 ALA showed the highest efficacy compared to placebo to achieve total patient clearance. BF-200 ALA had the highest probability to be the best treatment and the highest SUCRA score (64.8% and 92.1%), followed by IMI 5% 4 weeks (10.1% and 74.2%) and 5-FU 0.5% (7.2% and 66.8%). Conclusions This NMA showed that BF-200 ALA, using narrow-band lights, was the most efficacious treatment for mild to moderate AK on the face and scalp. This analysis is relevant for clinical decision making and health technology assessment, assisting the improved management of AK. PMID:24892649

  4. The evolution of the actin binding NET superfamily

    PubMed Central

    Hawkins, Timothy J.; Deeks, Michael J.; Wang, Pengwei; Hussey, Patrick J.

    2014-01-01

    The Arabidopsis Networked (NET) superfamily are plant-specific actin binding proteins which specifically label different membrane compartments and identify specialized sites of interaction between actin and membranes unique to plants. There are 13 members of the superfamily in Arabidopsis, which group into four distinct clades or families. NET homologs are absent from the genomes of metazoa and fungi; furthermore, in plantae, NET sequences are also absent from the genome of mosses and more ancient extant plant clades. A single family of the NET proteins is found encoded in the club moss genome, an extant species of the earliest vascular plants. Gymnosperms have examples from families 4 and 3, with a hybrid form of NET1 and 2 which shows characteristics of both NET1 and NET2. In addition to NET3 and 4 families, the NET1 and pollen-expressed NET2 families are found only as independent sequences in Angiosperms. This is consistent with the divergence of reproductive actin. The four families are conserved across Monocots and Eudicots, with the numbers of members of each clade expanding at this point, due, in part, to regions of genome duplication. Since the emergence of the NET superfamily at the dawn of vascular plants, they have continued to develop and diversify in a manner which has mirrored the divergence and increasing complexity of land-plant species. PMID:24926301

  5. The evolution of the actin binding NET superfamily.

    PubMed

    Hawkins, Timothy J; Deeks, Michael J; Wang, Pengwei; Hussey, Patrick J

    2014-01-01

    The Arabidopsis Networked (NET) superfamily are plant-specific actin binding proteins which specifically label different membrane compartments and identify specialized sites of interaction between actin and membranes unique to plants. There are 13 members of the superfamily in Arabidopsis, which group into four distinct clades or families. NET homologs are absent from the genomes of metazoa and fungi; furthermore, in plantae, NET sequences are also absent from the genome of mosses and more ancient extant plant clades. A single family of the NET proteins is found encoded in the club moss genome, an extant species of the earliest vascular plants. Gymnosperms have examples from families 4 and 3, with a hybrid form of NET1 and 2 which shows characteristics of both NET1 and NET2. In addition to NET3 and 4 families, the NET1 and pollen-expressed NET2 families are found only as independent sequences in Angiosperms. This is consistent with the divergence of reproductive actin. The four families are conserved across Monocots and Eudicots, with the numbers of members of each clade expanding at this point, due, in part, to regions of genome duplication. Since the emergence of the NET superfamily at the dawn of vascular plants, they have continued to develop and diversify in a manner which has mirrored the divergence and increasing complexity of land-plant species.

  6. The evolution of the actin binding NET superfamily.

    PubMed

    Hawkins, Timothy J; Deeks, Michael J; Wang, Pengwei; Hussey, Patrick J

    2014-01-01

    The Arabidopsis Networked (NET) superfamily are plant-specific actin binding proteins which specifically label different membrane compartments and identify specialized sites of interaction between actin and membranes unique to plants. There are 13 members of the superfamily in Arabidopsis, which group into four distinct clades or families. NET homologs are absent from the genomes of metazoa and fungi; furthermore, in plantae, NET sequences are also absent from the genome of mosses and more ancient extant plant clades. A single family of the NET proteins is found encoded in the club moss genome, an extant species of the earliest vascular plants. Gymnosperms have examples from families 4 and 3, with a hybrid form of NET1 and 2 which shows characteristics of both NET1 and NET2. In addition to NET3 and 4 families, the NET1 and pollen-expressed NET2 families are found only as independent sequences in Angiosperms. This is consistent with the divergence of reproductive actin. The four families are conserved across Monocots and Eudicots, with the numbers of members of each clade expanding at this point, due, in part, to regions of genome duplication. Since the emergence of the NET superfamily at the dawn of vascular plants, they have continued to develop and diversify in a manner which has mirrored the divergence and increasing complexity of land-plant species. PMID:24926301

  7. Two Functionally Distinct Sources of Actin Monomers Supply the Leading Edge of Lamellipodia

    PubMed Central

    Vitriol, Eric A.; McMillen, Laura M.; Kapustina, Maryna; Gomez, Shawn M.; Vavylonis, Dimitrios; Zheng, James Q.

    2015-01-01

    Summary Lamellipodia, the sheet-like protrusions of motile cells, consist of networks of actin filaments (F-actin) regulated by the ordered assembly from and disassembly into actin monomers (G-actin). Traditionally, G-actin is thought to exist as a homogeneous pool. Here, we show that there are two functionally and molecularly distinct sources of G-actin that supply lamellipodial actin networks. G-actin originating from the cytosolic pool requires the monomer binding protein thymosin β4 (Tβ4) for optimal leading edge localization, is targeted to formins, and is responsible for creating an elevated G/F-actin ratio that promotes membrane protrusion. The second source of G-actin comes from recycled lamellipodia F-actin. Recycling occurs independently of Tβ4 and appears to regulate lamellipodia homeostasis. Tβ4-bound G-actin specifically localizes to the leading edge because it doesn’t interact with Arp2/3-mediated polymerization sites found throughout the lamellipodia. These findings demonstrate that actin networks can be constructed from multiple sources of monomers with discrete spatiotemporal functions. PMID:25865895

  8. Arabidopsis AtADF1 is functionally affected by mutations on actin binding sites.

    PubMed

    Dong, Chun-Hai; Tang, Wei-Ping; Liu, Jia-Yao

    2013-03-01

    The plant actin depolymerizing factor (ADF) binds to both monomeric and filamentous actin, and is directly involved in the depolymerization of actin filaments. To better understand the actin binding sites of the Arabidopsis thaliana L. AtADF1, we generated mutants of AtADF1 and investigated their functions in vitro and in vivo. Analysis of mutants harboring amino acid substitutions revealed that charged residues (Arg98 and Lys100) located at the α-helix 3 and forming an actin binding site together with the N-terminus are essential for both G- and F-actin binding. The basic residues on the β-strand 5 (K82/A) and the α-helix 4 (R135/A, R137/A) form another actin binding site that is important for F-actin binding. Using transient expression of CFP-tagged AtADF1 mutant proteins in onion (Allium cepa) peel epidermal cells and transgenic Arabidopsis thaliana L. plants overexpressing these mutants, we analyzed how these mutant proteins regulate actin organization and affect seedling growth. Our results show that the ADF mutants with a lower affinity for actin filament binding can still be functional, unless the affinity for actin monomers is also affected. The G-actin binding activity of the ADF plays an essential role in actin binding, depolymerization of actin polymers, and therefore in the control of actin organization. PMID:23190411

  9. Computational Study of the Binding Mechanism of Actin-Depolymerizing Factor 1 with Actin in Arabidopsis thaliana

    PubMed Central

    Wang, Xue; Dong, Chun-Hai; Yang, Jian Ming; Yao, Xiao Jun

    2016-01-01

    Actin is a highly conserved protein. It plays important roles in cellular function and exists either in the monomeric (G-actin) or polymeric form (F-actin). Members of the actin-depolymerizing factor (ADF)/cofilin protein family bind to both G-actin and F-actin and play vital roles in actin dynamics by manipulating the rates of filament polymerization and depolymerization. It has been reported that the S6D and R98A/K100A mutants of actin-depolymerizing factor 1 (ADF1) in Arabidopsis thaliana decreased the binding affinity of ADF for the actin monomer. To investigate the binding mechanism and dynamic behavior of the ADF1–actin complex, we constructed a homology model of the AtADF1–actin complex based on the crystal structure of AtADF1 and the twinfilin C-terminal ADF-H domain in a complex with a mouse actin monomer. The model was then refined for subsequent molecular dynamics simulations. Increased binding energy of the mutated system was observed using the Molecular Mechanics Generalized Born Surface Area and Poisson–Boltzmann Surface Area (MM-GB/PBSA) methods. To determine the residues that make decisive contributions to the ADF1 actin-binding affinity, per-residue decomposition and computational alanine scanning analyses were performed, which provided more detailed information on the binding mechanism. Root-mean-square fluctuation and principal component analyses confirmed that the S6D and R98A/K100A mutants induced an increased conformational flexibility. The comprehensive molecular insight gained from this study is of great importance for understanding the binding mechanism of ADF1 and G-actin. PMID:27414648

  10. Computational Study of the Binding Mechanism of Actin-Depolymerizing Factor 1 with Actin in Arabidopsis thaliana.

    PubMed

    Du, Juan; Wang, Xue; Dong, Chun-Hai; Yang, Jian Ming; Yao, Xiao Jun

    2016-01-01

    Actin is a highly conserved protein. It plays important roles in cellular function and exists either in the monomeric (G-actin) or polymeric form (F-actin). Members of the actin-depolymerizing factor (ADF)/cofilin protein family bind to both G-actin and F-actin and play vital roles in actin dynamics by manipulating the rates of filament polymerization and depolymerization. It has been reported that the S6D and R98A/K100A mutants of actin-depolymerizing factor 1 (ADF1) in Arabidopsis thaliana decreased the binding affinity of ADF for the actin monomer. To investigate the binding mechanism and dynamic behavior of the ADF1-actin complex, we constructed a homology model of the AtADF1-actin complex based on the crystal structure of AtADF1 and the twinfilin C-terminal ADF-H domain in a complex with a mouse actin monomer. The model was then refined for subsequent molecular dynamics simulations. Increased binding energy of the mutated system was observed using the Molecular Mechanics Generalized Born Surface Area and Poisson-Boltzmann Surface Area (MM-GB/PBSA) methods. To determine the residues that make decisive contributions to the ADF1 actin-binding affinity, per-residue decomposition and computational alanine scanning analyses were performed, which provided more detailed information on the binding mechanism. Root-mean-square fluctuation and principal component analyses confirmed that the S6D and R98A/K100A mutants induced an increased conformational flexibility. The comprehensive molecular insight gained from this study is of great importance for understanding the binding mechanism of ADF1 and G-actin. PMID:27414648

  11. The Molecular Evolution of Actin

    PubMed Central

    Hightower, Robin C.; Meagher, Richard B.

    1986-01-01

    We have investigated the molecular evolution of plant and nonplant actin genes comparing nucleotide and amino acid sequences of 20 actin genes. Nucleotide changes resulting in amino acid substitutions (replacement substitutions) ranged from 3–7% for all pairwise comparisons of animal actin genes with the following exceptions. Comparisons between higher animal muscle actin gene sequences and comparisons between higher animal cytoplasmic actin gene sequences indicated <3% divergence. Comparisons between plant and nonplant actin genes revealed, with two exceptions, 11–15% replacement substitution. In the analysis of plant actins, replacement substitution between soybean actin genes SAc1, SAc3, SAc4 and maize actin gene MAc1 ranged from 8–10%, whereas these members within the soybean actin gene family ranged from 6–9% replacement substitution. The rate of sequence divergence of plant actin sequences appears to be similar to that observed for animal actins. Furthermore, these and other data suggest that the plant actin gene family is ancient and that the families of soybean and maize actin genes have diverged from a single common ancestral plant actin gene that originated long before the divergence of monocots and dicots. The soybean actin multigene family encodes at least three classes of actin. These classes each contain a pair of actin genes that have been designated kappa (SAc1, SAc6), lambda (SAc2, SAc4) and mu (SAc3, SAc7). The three classes of soybean actin are more divergent in nucleotide sequence from one another than higher animal cytoplasmic actin is divergent from muscle actin. The location and distribution of amino acid changes were compared between actin proteins from all sources. A comparison of the hydropathy of all actin sequences, except from Oxytricha, indicated a strong similarity in hydropathic character between all plant and nonplant actins despite the greater number of replacement substitutions in plant actins. These protein sequence

  12. Actin-Dynamics in Plant Cells: The Function of Actin Perturbing Substances Jasplakinolide, Chondramides, Phalloidin, Cytochalasins, and Latrunculins

    PubMed Central

    Holzinger, Andreas; Blaas, Kathrin

    2016-01-01

    This chapter will give an overview of the most common F-actin perturbing substances, that are used to study actin dynamics in living plant cells in studies on morphogenesis, motility, organelle movement or when apoptosis has to be induced. These substances can be divided into two major subclasses – F-actin stabilizing and polymerizing substances like jasplakinolide, chondramides and F-actin severing compounds like chytochalasins and latrunculins. Jasplakinolide was originally isolated form a marine sponge, and can now be synthesized and has become commercially available, which is responsible for its wide distribution as membrane permeable F-actin stabilizing and polymerizing agent, which may even have anti-cancer activities. Cytochalasins, derived from fungi show an F-actin severing function and many derivatives are commercially available (A, B, C, D, E, H, J), also making it a widely used compound for F-actin disruption. The same can be stated for latrunculins (A, B), derived from red sea sponges, however the mode of action is different by binding to G-actin and inhibiting incorporation into the filament. In the case of swinholide a stable complex with actin dimers is formed resulting also in severing of F-actin. For influencing F-actin dynamics in plant cells only membrane permeable drugs are useful in a broad range. We however introduce also the phallotoxins and synthetic derivatives, as they are widely used to visualize F-actin in fixed cells. A particular uptake mechanism has been shown for hepatocytes, but has also been described in siphonal giant algae. In the present chapter the focus is set on F-actin dynamics in plant cells where alterations in cytoplasmic streaming can be particularly well studied; however methods by fluorescence applications including phalloidin- and antibody staining as well as immunofluorescence-localization of the inhibitor drugs are given. PMID:26498789

  13. Tropomyosin - master regulator of actin filament function in the cytoskeleton.

    PubMed

    Gunning, Peter W; Hardeman, Edna C; Lappalainen, Pekka; Mulvihill, Daniel P

    2015-08-15

    Tropomyosin (Tpm) isoforms are the master regulators of the functions of individual actin filaments in fungi and metazoans. Tpms are coiled-coil parallel dimers that form a head-to-tail polymer along the length of actin filaments. Yeast only has two Tpm isoforms, whereas mammals have over 40. Each cytoskeletal actin filament contains a homopolymer of Tpm homodimers, resulting in a filament of uniform Tpm composition along its length. Evidence for this 'master regulator' role is based on four core sets of observation. First, spatially and functionally distinct actin filaments contain different Tpm isoforms, and recent data suggest that members of the formin family of actin filament nucleators can specify which Tpm isoform is added to the growing actin filament. Second, Tpms regulate whole-organism physiology in terms of morphogenesis, cell proliferation, vesicle trafficking, biomechanics, glucose metabolism and organ size in an isoform-specific manner. Third, Tpms achieve these functional outputs by regulating the interaction of actin filaments with myosin motors and actin-binding proteins in an isoform-specific manner. Last, the assembly of complex structures, such as stress fibers and podosomes involves the collaboration of multiple types of actin filament specified by their Tpm composition. This allows the cell to specify actin filament function in time and space by simply specifying their Tpm isoform composition.

  14. The neuronal and actin commitment: Why do neurons need rings?

    PubMed

    Leite, Sérgio Carvalho; Sousa, Mónica Mendes

    2016-09-01

    The role of the actin cytoskeleton in neurons has been extensively studied in actin-enriched compartments such as the growth cone and dendritic spines. The recent discovery of actin rings in the axon shaft and in dendrites, together with the identification of axon actin trails, has advanced our understanding on actin organization and dynamics in neurons. However, specifically in the case of actin rings, the mechanisms regulating their nucleation and assembly, and the functions that they may exert in axons and dendrites remain largely unexplored. Here we discuss the possible structural, mechanistic and functional properties of the subcortical neuronal cytoskeleton putting the current knowledge in perspective with the information available on actin rings formed in other biological contexts, and with the organization of actin-spectrin lattices in other cell types. The detailed analysis of these novel neuronal actin ring structures, together with the elucidation of the function of actin-binding proteins in neuron biology, has a large potential to uncover new mechanisms of neuronal function under normal conditions that may have impact in our understanding of axon degeneration and regeneration. © 2016 Wiley Periodicals, Inc.

  15. Effect of Tropomyosin on Formin-Bound Actin Filaments

    PubMed Central

    Ujfalusi, Zoltán; Vig, Andrea; Hild, Gábor; Nyitrai, Miklós

    2009-01-01

    Abstract Formins are conservative proteins with important roles in the regulation of the microfilament system in eukaryotic cells. Previous studies showed that the binding of formins to actin made the structure of actin filaments more flexible. Here, the effects of tropomyosin on formin-induced changes in actin filaments were investigated using fluorescence spectroscopic methods. The temperature dependence of the Förster-type resonance energy transfer showed that the formin-induced increase of flexibility of actin filaments was diminished by the binding of tropomyosin to actin. Fluorescence anisotropy decay measurements also revealed that the structure of flexible formin-bound actin filaments was stabilized by the binding of tropomyosin. The stabilizing effect reached its maximum when all binding sites on actin were occupied by tropomyosin. The effect of tropomyosin on actin filaments was independent of ionic strength, but became stronger as the magnesium concentration increased. Based on these observations, we propose that in cells there is a molecular mechanism in which tropomyosin binding to actin plays an important role in forming mechanically stable actin filaments, even in the case of formin-induced rapid filament assembly. PMID:18931257

  16. The neuronal and actin commitment: Why do neurons need rings?

    PubMed

    Leite, Sérgio Carvalho; Sousa, Mónica Mendes

    2016-09-01

    The role of the actin cytoskeleton in neurons has been extensively studied in actin-enriched compartments such as the growth cone and dendritic spines. The recent discovery of actin rings in the axon shaft and in dendrites, together with the identification of axon actin trails, has advanced our understanding on actin organization and dynamics in neurons. However, specifically in the case of actin rings, the mechanisms regulating their nucleation and assembly, and the functions that they may exert in axons and dendrites remain largely unexplored. Here we discuss the possible structural, mechanistic and functional properties of the subcortical neuronal cytoskeleton putting the current knowledge in perspective with the information available on actin rings formed in other biological contexts, and with the organization of actin-spectrin lattices in other cell types. The detailed analysis of these novel neuronal actin ring structures, together with the elucidation of the function of actin-binding proteins in neuron biology, has a large potential to uncover new mechanisms of neuronal function under normal conditions that may have impact in our understanding of axon degeneration and regeneration. © 2016 Wiley Periodicals, Inc. PMID:26784007

  17. Tropomyosin - master regulator of actin filament function in the cytoskeleton.

    PubMed

    Gunning, Peter W; Hardeman, Edna C; Lappalainen, Pekka; Mulvihill, Daniel P

    2015-08-15

    Tropomyosin (Tpm) isoforms are the master regulators of the functions of individual actin filaments in fungi and metazoans. Tpms are coiled-coil parallel dimers that form a head-to-tail polymer along the length of actin filaments. Yeast only has two Tpm isoforms, whereas mammals have over 40. Each cytoskeletal actin filament contains a homopolymer of Tpm homodimers, resulting in a filament of uniform Tpm composition along its length. Evidence for this 'master regulator' role is based on four core sets of observation. First, spatially and functionally distinct actin filaments contain different Tpm isoforms, and recent data suggest that members of the formin family of actin filament nucleators can specify which Tpm isoform is added to the growing actin filament. Second, Tpms regulate whole-organism physiology in terms of morphogenesis, cell proliferation, vesicle trafficking, biomechanics, glucose metabolism and organ size in an isoform-specific manner. Third, Tpms achieve these functional outputs by regulating the interaction of actin filaments with myosin motors and actin-binding proteins in an isoform-specific manner. Last, the assembly of complex structures, such as stress fibers and podosomes involves the collaboration of multiple types of actin filament specified by their Tpm composition. This allows the cell to specify actin filament function in time and space by simply specifying their Tpm isoform composition. PMID:26240174

  18. ROP Gtpase–Dependent Dynamics of Tip-Localized F-Actin Controls Tip Growth in Pollen Tubes

    PubMed Central

    Fu, Ying; Wu, Guang; Yang, Zhenbiao

    2001-01-01

    Tip-growing pollen tubes provide a useful model system to study polar growth. Although roles for tip-focused calcium gradient and tip-localized Rho-family GTPase in pollen tube growth is established, the existence and function of tip-localized F-actin have been controversial. Using the green fluorescent protein–tagged actin-binding domain of mouse talin, we found a dynamic form of tip-localized F-actin in tobacco pollen tubes, termed short actin bundles (SABs). The dynamics of SABs during polar growth in pollen tubes is regulated by Rop1At, a Rop GTPase belonging to the Rho family. When overexpressed, Rop1At transformed SAB into a network of fine filaments and induced a transverse actin band behind the tip, leading to depolarized growth. These changes were due to ectopic Rop1At localization to the apical region of the plasma membrane and were suppressed by guanine dissociation inhibitor overexpression, which removed ectopically localized Rop1At. Rop GTPase–activating protein (RopGAP1) overexpression, or Latrunculin B treatments, also recovered normal actin organization and tip growth in Rop1At-overexpressing tubes. Moreover, overexpression of RopGAP1 alone disrupted SABs and inhibited growth. Finally, SAB oscillates and appears at the tip before growth. Together, these results indicate that the dynamics of tip actin are essential for tip growth and provide the first direct evidence to link Rho GTPase to actin organization in controlling cell polarity and polar growth in plants. PMID:11238457

  19. Unconventional actins and actin-binding proteins in human protozoan parasites.

    PubMed

    Gupta, C M; Thiyagarajan, S; Sahasrabuddhe, A A

    2015-06-01

    Actin and its regulatory proteins play a key role in several essential cellular processes such as cell movement, intracellular trafficking and cytokinesis in most eukaryotes. While these proteins are highly conserved in higher eukaryotes, a number of unicellular eukaryotic organisms contain divergent forms of these proteins which have highly unusual biochemical and structural properties. Here, we review the biochemical and structural properties of these unconventional actins and their core binding proteins which are present in commonly occurring human protozoan parasites.

  20. Force generation by endocytic actin patches in budding yeast.

    PubMed

    Carlsson, Anders E; Bayly, Philip V

    2014-04-15

    Membrane deformation during endocytosis in yeast is driven by local, templated assembly of a sequence of proteins including polymerized actin and curvature-generating coat proteins such as clathrin. Actin polymerization is required for successful endocytosis, but it is not known by what mechanisms actin polymerization generates the required pulling forces. To address this issue, we develop a simulation method in which the actin network at the protein patch is modeled as an active gel. The deformation of the gel is treated using a finite-element approach. We explore the effects and interplay of three different types of force driving invagination: 1), forces perpendicular to the membrane, generated by differences between actin polymerization rates at the edge of the patch and those at the center; 2), the inherent curvature of the coat-protein layer; and 3), forces parallel to the membrane that buckle the coat protein layer, generated by an actomyosin contractile ring. We find that with optimistic estimates for the stall stress of actin gel growth and the shear modulus of the actin gel, actin polymerization can generate almost enough force to overcome the turgor pressure. In combination with the other mechanisms, actin polymerization can the force over the critical value.

  1. Force Generation by Endocytic Actin Patches in Budding Yeast

    PubMed Central

    Carlsson, Anders E.; Bayly, Philip V.

    2014-01-01

    Membrane deformation during endocytosis in yeast is driven by local, templated assembly of a sequence of proteins including polymerized actin and curvature-generating coat proteins such as clathrin. Actin polymerization is required for successful endocytosis, but it is not known by what mechanisms actin polymerization generates the required pulling forces. To address this issue, we develop a simulation method in which the actin network at the protein patch is modeled as an active gel. The deformation of the gel is treated using a finite-element approach. We explore the effects and interplay of three different types of force driving invagination: 1), forces perpendicular to the membrane, generated by differences between actin polymerization rates at the edge of the patch and those at the center; 2), the inherent curvature of the coat-protein layer; and 3), forces parallel to the membrane that buckle the coat protein layer, generated by an actomyosin contractile ring. We find that with optimistic estimates for the stall stress of actin gel growth and the shear modulus of the actin gel, actin polymerization can generate almost enough force to overcome the turgor pressure. In combination with the other mechanisms, actin polymerization can the force over the critical value. PMID:24739159

  2. F-actin dismantling through a redox-driven synergy between Mical and cofilin.

    PubMed

    Grintsevich, Elena E; Yesilyurt, Hunkar Gizem; Rich, Shannon K; Hung, Ruei-Jiun; Terman, Jonathan R; Reisler, Emil

    2016-08-01

    Numerous cellular functions depend on actin filament (F-actin) disassembly. The best-characterized disassembly proteins, the ADF (actin-depolymerizing factor)/cofilins (encoded by the twinstar gene in Drosophila), sever filaments and recycle monomers to promote actin assembly. Cofilin is also a relatively weak actin disassembler, posing questions about mechanisms of cellular F-actin destabilization. Here we uncover a key link to targeted F-actin disassembly by finding that F-actin is efficiently dismantled through a post-translational-mediated synergism between cofilin and the actin-oxidizing enzyme Mical. We find that Mical-mediated oxidation of actin improves cofilin binding to filaments, where their combined effect dramatically accelerates F-actin disassembly compared with either effector alone. This synergism is also necessary and sufficient for F-actin disassembly in vivo, magnifying the effects of both Mical and cofilin on cellular remodelling, axon guidance and Semaphorin-Plexin repulsion. Mical and cofilin, therefore, form a redox-dependent synergistic pair that promotes F-actin instability by rapidly dismantling F-actin and generating post-translationally modified actin that has altered assembly properties. PMID:27454820

  3. Incorporation and turnover of biotin-labeled actin microinjected into fibroblastic cells: an immunoelectron microscopic study

    PubMed Central

    1989-01-01

    We investigated the mechanism of turnover of an actin microfilament system in fibroblastic cells on an electron microscopic level. A new derivative of actin was prepared by labeling muscle actin with biotin. Cultured fibroblastic cells were microinjected with biotinylated actin, and incorporated biotin-actin molecules were detected by immunoelectron microscopy using an anti-biotin antibody and a colloidal gold-labeled secondary antibody. We also analyzed the localization of injected biotin-actin molecules on a molecular level by freeze-drying techniques. Incorporation of biotin-actin was rapid in motile peripheral regions, such as lamellipodia and microspikes. At approximately 1 min after injection, biotin-actin molecules were mainly incorporated into the distal part of actin bundles in the microspikes. Heavily labeled actin filaments were also observed at the distal fringe of the densely packed actin networks in the lamellipodium. By 5 min after injection, most actin polymers in microspikes and lamellipodia were labeled uniformly. These findings suggest that actin subunits are added preferentially at the membrane-associated ends of preexisting actin filaments. At earlier times after injection, we often observed that the labeled segments were continuous with unlabeled segments, suggesting the incorporation of new subunits at the ends of preexisting filaments. Actin incorporation into stress fibers was a slower process. At 2-3 min after injection, microfilaments at the surface of stress fibers incorporated biotin-actin, but filaments in the core region of stress fibers did not. At 5-10 min after injection, increasing density of labeling along stress fibers toward their distal ends was observed. Stress fiber termini are generally associated with focal contacts. There was no rapid nucleation of actin filaments off the membrane of focal contacts and the pattern of actin incorporation at focal contacts was essentially identical to that into distal parts of stress fibers

  4. Cortical actin networks induce spatio-temporal confinement of phospholipids in the plasma membrane - a minimally invasive investigation by STED-FCS

    NASA Astrophysics Data System (ADS)

    Andrade, Débora M.; Clausen, Mathias P.; Keller, Jan; Mueller, Veronika; Wu, Congying; Bear, James E.; Hell, Stefan W.; Lagerholm, B. Christoffer; Eggeling, Christian

    2015-06-01

    Important discoveries in the last decades have changed our view of the plasma membrane organisation. Specifically, the cortical cytoskeleton has emerged as a key modulator of the lateral diffusion of membrane proteins. Cytoskeleton-dependent compartmentalised lipid diffusion has been proposed, but this concept remains controversial because this phenomenon has thus far only been observed with artefact-prone probes in combination with a single technique: single particle tracking. In this paper, we report the first direct observation of compartmentalised phospholipid diffusion in the plasma membrane of living cells using a minimally invasive, fluorescent dye labelled lipid analogue. These observations were made using optical STED nanoscopy in combination with fluorescence correlation spectroscopy (STED-FCS), a technique which allows the study of membrane dynamics on a sub-millisecond time-scale and with a spatial resolution of down to 40 nm. Specifically, we find that compartmentalised phospholipid diffusion depends on the cortical actin cytoskeleton, and that this constrained diffusion is directly dependent on the F-actin branching nucleator Arp2/3. These findings provide solid evidence that the Arp2/3-dependent cortical actin cytoskeleton plays a pivotal role in the dynamic organisation of the plasma membrane, potentially regulating fundamental cellular processes.

  5. Solubilization of native actin monomers from human erythrocyte membranes.

    PubMed

    Tilley, L; Dwyer, M; Ralston, G B

    1986-01-01

    Up to 50% of the actin in erythrocyte membranes can be solubilized at low ionic strength in a form capable of inhibiting DNAse I, in the presence of 0.4 mM ATP and 0.05 mM calcium. In the absence of calcium and ATP, actin is released but is apparently rapidly denatured. Solubilization of G-actin increases with temperature up to 37 degrees C. At higher temperatures, actin is released rapidly but quickly loses its ability to inhibit DNAse I. PMID:3789986

  6. Actin in dendritic spines: connecting dynamics to function

    PubMed Central

    2010-01-01

    Dendritic spines are small actin-rich protrusions from neuronal dendrites that form the postsynaptic part of most excitatory synapses and are major sites of information processing and storage in the brain. Changes in the shape and size of dendritic spines are correlated with the strength of excitatory synaptic connections and heavily depend on remodeling of its underlying actin cytoskeleton. Emerging evidence suggests that most signaling pathways linking synaptic activity to spine morphology influence local actin dynamics. Therefore, specific mechanisms of actin regulation are integral to the formation, maturation, and plasticity of dendritic spines and to learning and memory. PMID:20457765

  7. Environmental toxicants perturb human Sertoli cell adhesive function via changes in F-actin organization mediated by actin regulatory proteins

    PubMed Central

    Xiao, Xiang; Mruk, Dolores D.; Tang, Elizabeth I.; Wong, Chris K.C.; Lee, Will M.; John, Constance M.; Turek, Paul J.; Silvestrini, Bruno; Cheng, C. Yan

    2014-01-01

    STUDY QUESTION Can human Sertoli cells cultured in vitro and that have formed an epithelium be used as a model to monitor toxicant-induced junction disruption and to better understand the mechanism(s) by which toxicants disrupt cell adhesion at the Sertoli cell blood–testis barrier (BTB)? SUMMARY ANSWER Our findings illustrate that human Sertoli cells cultured in vitro serve as a reliable system to monitor the impact of environmental toxicants on the BTB function. WHAT IS KNOWN ALREADY Suspicions of a declining trend in semen quality and a concomitant increase in exposures to environmental toxicants over the past decades reveal the need of an in vitro system that efficiently and reliably monitors the impact of toxicants on male reproductive function. Furthermore, studies in rodents have confirmed that environmental toxicants impede Sertoli cell BTB function in vitro and in vivo. STUDY DESIGN, SIZE AND DURATION We examined the effects of two environmental toxicants: cadmium chloride (0.5–20 µM) and bisphenol A (0.4–200 µM) on human Sertoli cell function. Cultured Sertoli cells from three men were used in this study, which spanned an 18-month period. PARTICIPANTS/MATERIALS, SETTING, METHODS Human Sertoli cells from three subjects were cultured in F12/DMEM containing 5% fetal bovine serum. Changes in protein expression were monitored by immunoblotting using specific antibodies. Immunofluorescence analyses were used to assess changes in the distribution of adhesion proteins, F-actin and actin regulatory proteins following exposure to two toxicants: cadmium chloride and bisphenol A (BPA). MAIN RESULTS AND THE ROLE OF CHANCE Human Sertoli cells were sensitive to cadmium and BPA toxicity. Changes in the localization of cell adhesion proteins were mediated by an alteration of the actin-based cytoskeleton. This alteration of F-actin network in Sertoli cells as manifested by truncation and depolymerization of actin microfilaments at the Sertoli cell BTB was caused by

  8. Capillary suspensions: Particle networks formed through the capillary force

    PubMed Central

    Koos, Erin

    2014-01-01

    The addition of small amounts of a secondary fluid to a suspension can, through the attractive capillary force, lead to particle bridging and network formation. The capillary bridging phenomenon can be used to stabilize particle suspensions and precisely tune their rheological properties. This effect can even occur when the secondary fluid wets the particles less well than the bulk fluid. These materials, so-called capillary suspensions, have been the subject of recent research studying the mechanism for network formation, the properties of these suspensions, and how the material properties can be modified. Recent work in colloidal clusters is summarized and the relationship to capillary suspensions is discussed. Capillary suspensions can also be used as a pathway for new material design and some of these applications are highlighted. Results obtained to date are summarized and central questions that remain to be answered are proposed in this review. PMID:25729316

  9. Optimal Form of Branching Supply and Collection Networks

    NASA Astrophysics Data System (ADS)

    Dodds, Peter Sheridan

    2010-01-01

    For the problem of efficiently supplying material to a spatial region from a single source, we present a simple scaling argument based on branching network volume minimization that identifies limits to the scaling of sink density. We discuss implications for two fundamental and unresolved problems in organismal biology and geomorphology: how basal metabolism scales with body size for homeotherms and the scaling of drainage basin shape on eroding landscapes.

  10. Linear induction accelerator and pulse forming networks therefor

    DOEpatents

    Buttram, Malcolm T.; Ginn, Jerry W.

    1989-01-01

    A linear induction accelerator includes a plurality of adder cavities arranged in a series and provided in a structure which is evacuated so that a vacuum inductance is provided between each adder cavity and the structure. An energy storage system for the adder cavities includes a pulsed current source and a respective plurality of bipolar converting networks connected thereto. The bipolar high-voltage, high-repetition-rate square pulse train sets and resets the cavities.

  11. Preliminary Results form the Japanese Total Lightning Network

    NASA Astrophysics Data System (ADS)

    Hobara, Y.; Ishii, H.; Kumagai, Y.; Liu, C.; Heckman, S.; Price, C. G.; Williams, E. R.

    2015-12-01

    We report on the initial observational results from the first Japanese Total Lightning Detection Network (JTLN) in relation to severe weather phenomena. The University of Electro-Communications (UEC) has deployed the Earth Networks (EN) Total Lightning System over Japan to carry out research on the relationship between thunderstorm activity and severe weather phenomena since 2013. In this paper we first demonstrate the current status of our new network followed by the initial scientific results. The lightning jump algorithm was applied to our total lightning data to study the relationship between total lighting activity and hazardous weather events such as gust fronts and tornadoes over land reported by the JMA (Japanese Meteorological Agency) in 2014. As a result, a clear increase in total lighting flash rate as well as lightning jumps are observed prior to most hazardous weather events (~20 min) indicating potential usefulness for early warning in Japan. Furthermore we are going to demonstrate the relationship of total lightning activities with meteorological radar data focusing particularly on Japanese Tornadic storms.

  12. The Effects of Disease Models of Nuclear Actin Polymerization on the Nucleus

    PubMed Central

    Serebryannyy, Leonid A.; Yuen, Michaela; Parilla, Megan; Cooper, Sandra T.; de Lanerolle, Primal

    2016-01-01

    Actin plays a crucial role in regulating multiple processes within the nucleus, including transcription and chromatin organization. However, the polymerization state of nuclear actin remains controversial, and there is no evidence for persistent actin filaments in a normal interphase nucleus. Further, several disease pathologies are characterized by polymerization of nuclear actin into stable filaments or rods. These include filaments that stain with phalloidin, resulting from point mutations in skeletal α-actin, detected in the human skeletal disease intranuclear rod myopathy, and cofilin/actin rods that form in response to cellular stressors like heatshock. To further elucidate the effects of these pathological actin structures, we examined the nucleus in both cell culture models as well as isolated human tissues. We find these actin structures alter the distribution of both RNA polymerase II and chromatin. Our data suggest that nuclear actin filaments result in disruption of nuclear organization, which may contribute to the disease pathology. PMID:27774069

  13. Actin puts the squeeze on Drosophila glue secretion.

    PubMed

    Merrifield, Christien J

    2016-02-01

    An actin filament coat promotes cargo expulsion from large exocytosing vesicles, but the mechanisms of coat formation and force generation have been poorly characterized. Elegant imaging studies of the Drosophila melanogaster salivary gland now reveal how actin and myosin are recruited, and show that myosin II forms a contractile 'cage' that facilitates exocytosis.

  14. Quantitative fluorescent speckle microscopy (QFSM) to measure actin dynamics.

    PubMed

    Mendoza, Michelle C; Besson, Sebastien; Danuser, Gaudenz

    2012-10-01

    Quantitative fluorescent speckle microscopy (QFSM) is a live-cell imaging method to analyze the dynamics of macromolecular assemblies with high spatial and temporal resolution. Its greatest successes were in the analysis of actin filament and adhesion dynamics in the context of cell migration and microtubule dynamics in interphase and the meiotic/mitotic spindle. Here, focus is on the former application to illustrate the procedures of FSM imaging and the computational image processing that extracts quantitative information from these experiments. QFSM is advantageous over other methods because it measures the movement and turnover kinetics of the actin filament (F-actin) network in living cells across the entire field of view. Experiments begin with the microinjection of fluorophore-labeled actin into cells, which generate a low ratio of fluorescently labeled to endogenously unlabeled actin monomers. Spinning disk confocal or wide-field imaging then visualizes fluorophore clusters (two to eight actin monomers) within the assembled F-actin network as speckles. QFSM software identifies and computationally tracks and utilizes the location, appearance, and disappearance of speckles to derive network flows and maps of the rate of filament assembly and disassembly. PMID:23042526

  15. Modulation of actin structure and function by phosphorylation of Tyr-53 and profilin binding

    SciTech Connect

    Baek, Kyuwon; Liu, Xiong; Ferron, Francois; Shu, Shi; Korn, Edward D.; Dominguez, Roberto

    2008-08-27

    On starvation, Dictyostelium cells aggregate to form multicellular fruiting bodies containing spores that germinate when transferred to nutrient-rich medium. This developmental cycle correlates with the extent of actin phosphorylation at Tyr-53 (pY53-actin), which is low in vegetative cells but high in viable mature spores. Here we describe high-resolution crystal structures of pY53-actin and unphosphorylated actin in complexes with gelsolin segment 1 and profilin. In the structure of pY53-actin, the phosphate group on Tyr-53 makes hydrogen-bonding interactions with residues of the DNase I-binding loop (D-loop) of actin, resulting in a more stable conformation of the D-loop than in the unphosphorylated structures. A more rigidly folded D-loop may explain some of the previously described properties of pY53-actin, including its increased critical concentration for polymerization, reduced rates of nucleation and pointed end elongation, and weak affinity for DNase I. We show here that phosphorylation of Tyr-53 inhibits subtilisin cleavage of the D-loop and reduces the rate of nucleotide exchange on actin. The structure of profilin-Dictyostelium-actin is strikingly similar to previously determined structures of profilin-{beta}-actin and profilin-{alpha}-actin. By comparing this representative set of profilin-actin structures with other structures of actin, we highlight the effects of profilin on the actin conformation. In the profilin-actin complexes, subdomains 1 and 3 of actin close around profilin, producing a 4.7 deg. rotation of the two major domains of actin relative to each other. As a result, the nucleotide cleft becomes moderately more open in the profilin-actin complex, probably explaining the stimulation of nucleotide exchange on actin by profilin.

  16. The Nucleocapsid Domain of Gag Is Dispensable for Actin Incorporation into HIV-1 and for Association of Viral Budding Sites with Cortical F-Actin

    PubMed Central

    Stauffer, Sarah; Rahman, Sheikh Abdul; de Marco, Alex; Carlson, Lars-Anders; Glass, Bärbel; Oberwinkler, Heike; Herold, Nikolas; Briggs, John A. G.; Müller, Barbara

    2014-01-01

    ABSTRACT Actin and actin-binding proteins are incorporated into HIV-1 particles, and F-actin has been suggested to bind the NC domain in HIV-1 Gag. Furthermore, F-actin has been frequently observed in the vicinity of HIV-1 budding sites by cryo-electron tomography (cET). Filamentous structures emanating from viral buds and suggested to correspond to actin filaments have been observed by atomic force microscopy. To determine whether the NC domain of Gag is required for actin association with viral buds and for actin incorporation into HIV-1, we performed comparative analyses of virus-like particles (VLPs) obtained by expression of wild-type HIV-1 Gag or a Gag variant where the entire NC domain had been replaced by a dimerizing leucine zipper [Gag(LZ)]. The latter protein yielded efficient production of VLPs with near-wild-type assembly kinetics and size and exhibited a regular immature Gag lattice. Typical HIV-1 budding sites were detected by using cET in cells expressing either Gag or Gag(LZ), and no difference was observed regarding the association of buds with the F-actin network. Furthermore, actin was equally incorporated into wild-type HIV-1 and Gag- or Gag(LZ)-derived VLPs, with less actin per particle observed than had been reported previously. Incorporation appeared to correlate with the relative intracellular actin concentration, suggesting an uptake of cytosol rather than a specific recruitment of actin. Thus, the NC domain in HIV-1 Gag does not appear to have a role in actin recruitment or actin incorporation into HIV-1 particles. IMPORTANCE HIV-1 particles bud from the plasma membrane, which is lined by a network of actin filaments. Actin was found to interact with the nucleocapsid domain of the viral structural protein Gag and is incorporated in significant amounts into HIV-1 particles, suggesting that it may play an active role in virus release. Using electron microscopy techniques, we previously observed bundles of actin filaments near HIV-1 buds

  17. Fragility of network-forming glasses: A universal dependence on the topological connectivity

    NASA Astrophysics Data System (ADS)

    Sidebottom, D. L.

    2015-12-01

    The fragilities of over 150 different network-forming glass melts are shown to conform to a common dependence on just one parameter: the connectivity of the weakest network structure present in the associated glass solid. This includes both nonoxide network-forming chalcogenide melts as well as a variety of alkali oxide glasses, and spans a broad range of connectivity, ϕ, from polymeric structures (ϕ =2 ) to overconstrained random networks with connectivities well in excess of the rigidity threshold (ϕC=2.4 ) . A theoretical framework for the origin of this universal pattern is offered within the context of entropic models of the glass transition.

  18. Deafness and espin-actin self-organization in stereocilia

    NASA Astrophysics Data System (ADS)

    Wong, Gerard C. L.

    2009-03-01

    Espins are F-actin-bundling proteins associated with large parallel actin bundles found in hair cell stereocilia in the ear, as well as brush border microvilli and Sertoli cell junctions. We examine actin bundle structures formed by different wild-type espin isoforms, fragments, and naturally-occurring human espin mutants linked to deafness and/or vestibular dysfunction. The espin-actin bundle structure consisted of a hexagonal arrangement of parallel actin filaments in a non-native twist state. We delineate the structural consequences caused by mutations in espin's actin-bundling module. For espin mutation with a severely damaged actin-bundling module, which are implicated in deafness in mice and humans, oriented nematic-like actin filament structures, which strongly impinges on bundle mechanical stiffness. Finally, we examine what makes espin different, via a comparative study of bundles formed by espin and those formed by fascin, a prototypical bundling protein found in functionally different regions of the cell, such as filopodia.

  19. Human cytoplasmic actin proteins are encoded by a multigene family

    SciTech Connect

    Engel, J.; Gunning, P.; Kedes, L.

    1982-06-01

    The authors characterized nine human actin genes that they isolated from a library of cloned human DNA. Measurements of the thermal stability of hybrids formed between each cloned actin gene and ..cap alpha..-, ..beta..-, and ..gamma..-actin mRNA demonstrated that only one of the clones is most homologous to sarcomeric actin mRNA, whereas the remaining eight clones are most homologous to cytoplasmic actin mRNA. By the following criteria they show that these nine clones represent nine different actin gene loci rather than different alleles or different parts of a single gene: (i) the restriction enzyme maps of the coding regions are dissimilar; (ii) each clone contains sufficient coding region to encode all or most of an entire actin gene; and (iii) each clone contains sequences homologous to both the 5' and 3' ends of the coding region of a cloned chicken ..beta..-actin cDNA. They conclude, therefore, that the human cytoplasmic actin proteins are encoded by a multigene family.

  20. A new link between the retrograde actin flow and focal adhesions.

    PubMed

    Yamashiro, Sawako; Watanabe, Naoki

    2014-11-01

    The retrograde actin flow, continuous centripetal movement of the cell peripheral actin networks, is widely observed in adherent cells. The retrograde flow is believed to facilitate cell migration when linked to cell adhesion molecules. In this review, we summarize our current knowledge regarding the functional relationship between the retrograde actin flow and focal adhesions (FAs). We also introduce our recent study in which single-molecule speckle (SiMS) microscopy dissected the complex interactions between FAs and the local actin flow. FAs do not simply impede the actin flow, but actively attract and remodel the local actin network. Our findings provide a new insight into the mechanisms for protrusion and traction force generation at the cell leading edge. Furthermore, we discuss possible roles of the actin flow-FA interaction based on the accumulated knowledge and our SiMS study. PMID:25190817

  1. A Mechanism for Actin Filament Severing by Malaria Parasite Actin Depolymerizing Factor 1 via a Low Affinity Binding Interface*

    PubMed Central

    Wong, Wilson; Webb, Andrew I.; Olshina, Maya A.; Infusini, Giuseppe; Tan, Yan Hong; Hanssen, Eric; Catimel, Bruno; Suarez, Cristian; Condron, Melanie; Angrisano, Fiona; NebI, Thomas; Kovar, David R.; Baum, Jake

    2014-01-01

    Actin depolymerizing factor (ADF)/cofilins are essential regulators of actin turnover in eukaryotic cells. These multifunctional proteins facilitate both stabilization and severing of filamentous (F)-actin in a concentration-dependent manner. At high concentrations ADF/cofilins bind stably to F-actin longitudinally between two adjacent actin protomers forming what is called a decorative interaction. Low densities of ADF/cofilins, in contrast, result in the optimal severing of the filament. To date, how these two contrasting modalities are achieved by the same protein remains uncertain. Here, we define the proximate amino acids between the actin filament and the malaria parasite ADF/cofilin, PfADF1 from Plasmodium falciparum. PfADF1 is unique among ADF/cofilins in being able to sever F-actin but do so without stable filament binding. Using chemical cross-linking and mass spectrometry (XL-MS) combined with structure reconstruction we describe a previously overlooked binding interface on the actin filament targeted by PfADF1. This site is distinct from the known binding site that defines decoration. Furthermore, total internal reflection fluorescence (TIRF) microscopy imaging of single actin filaments confirms that this novel low affinity site is required for F-actin severing. Exploring beyond malaria parasites, selective blocking of the decoration site with human cofilin (HsCOF1) using cytochalasin D increases its severing rate. HsCOF1 may therefore also use a decoration-independent site for filament severing. Thus our data suggest that a second, low affinity actin-binding site may be universally used by ADF/cofilins for actin filament severing. PMID:24371134

  2. A small molecule inhibitor of tropomyosin dissociates actin binding from tropomyosin-directed regulation of actin dynamics

    PubMed Central

    Bonello, Teresa T.; Janco, Miro; Hook, Jeff; Byun, Alex; Appaduray, Mark; Dedova, Irina; Hitchcock-DeGregori, Sarah; Hardeman, Edna C.; Stehn, Justine R.; Böcking, Till; Gunning, Peter W.

    2016-01-01

    The tropomyosin family of proteins form end-to-end polymers along the actin filament. Tumour cells rely on specific tropomyosin-containing actin filament populations for growth and survival. To dissect out the role of tropomyosin in actin filament regulation we use the small molecule TR100 directed against the C terminus of the tropomyosin isoform Tpm3.1. TR100 nullifies the effect of Tpm3.1 on actin depolymerisation but surprisingly Tpm3.1 retains the capacity to bind F-actin in a cooperative manner. In vivo analysis also confirms that, in the presence of TR100, fluorescently tagged Tpm3.1 recovers normally into stress fibers. Assembling end-to-end along the actin filament is thereby not sufficient for tropomyosin to fulfil its function. Rather, regulation of F-actin stability by tropomyosin requires fidelity of information communicated at the barbed end of the actin filament. This distinction has significant implications for perturbing tropomyosin-dependent actin filament function in the context of anti-cancer drug development. PMID:26804624

  3. Evolutionarily Divergent, Unstable Filamentous Actin Is Essential for Gliding Motility in Apicomplexan Parasites

    PubMed Central

    Skillman, Kristen M.; Diraviyam, Karthikeyan; Khan, Asis; Tang, Keliang; Sept, David; Sibley, L. David

    2011-01-01

    Apicomplexan parasites rely on a novel form of actin-based motility called gliding, which depends on parasite actin polymerization, to migrate through their hosts and invade cells. However, parasite actins are divergent both in sequence and function and only form short, unstable filaments in contrast to the stability of conventional actin filaments. The molecular basis for parasite actin filament instability and its relationship to gliding motility remain unresolved. We demonstrate that recombinant Toxoplasma (TgACTI) and Plasmodium (PfACTI and PfACTII) actins polymerized into very short filaments in vitro but were induced to form long, stable filaments by addition of equimolar levels of phalloidin. Parasite actins contain a conserved phalloidin-binding site as determined by molecular modeling and computational docking, yet vary in several residues that are predicted to impact filament stability. In particular, two residues were identified that form intermolecular contacts between different protomers in conventional actin filaments and these residues showed non-conservative differences in apicomplexan parasites. Substitution of divergent residues found in TgACTI with those from mammalian actin resulted in formation of longer, more stable filaments in vitro. Expression of these stabilized actins in T. gondii increased sensitivity to the actin-stabilizing compound jasplakinolide and disrupted normal gliding motility in the absence of treatment. These results identify the molecular basis for short, dynamic filaments in apicomplexan parasites and demonstrate that inherent instability of parasite actin filaments is a critical adaptation for gliding motility. PMID:21998582

  4. Robustness of a network formed by n interdependent networks with a one-to-one correspondence of dependent nodes

    NASA Astrophysics Data System (ADS)

    Gao, Jianxi; Buldyrev, S. V.; Havlin, S.; Stanley, H. E.

    2012-06-01

    Many real-world networks interact with and depend upon other networks. We develop an analytical framework for studying a network formed by n fully interdependent randomly connected networks, each composed of the same number of nodes N. The dependency links connecting nodes from different networks establish a unique one-to-one correspondence between the nodes of one network and the nodes of the other network. We study the dynamics of the cascades of failures in such a network of networks (NON) caused by a random initial attack on one of the networks, after which a fraction p of its nodes survives. We find for the fully interdependent loopless NON that the final state of the NON does not depend on the dynamics of the cascades but is determined by a uniquely defined mutual giant component of the NON, which generalizes both the giant component of regular percolation of a single network (n=1) and the recently studied case of the mutual giant component of two interdependent networks (n=2). We also find that the mutual giant component does not depend on the topology of the NON and express it in terms of generating functions of the degree distributions of the network. Our results show that, for any n⩾2 there exists a critical p=pc>0 below which the mutual giant component abruptly collapses from a finite nonzero value for p⩾pc to zero for pnetworks where pc=0 for n=1. We show that, if at least one of the networks in the NON has isolated or singly connected nodes, the NON completely disintegrates for sufficiently large n even if p=1. In contrast, in the absence of such nodes, the NON survives for any n for sufficiently large p. We illustrate this behavior by comparing two exactly solvable examples of NONs composed of Erdős-Rényi (ER) and random regular (RR) networks. We find that the robustness of n coupled RR networks of degree k is dramatically higher compared to the n-coupled ER

  5. Plasmodial vein networks of the slime mold Physarum polycephalum form regular graphs.

    PubMed

    Baumgarten, Werner; Ueda, Tetsuo; Hauser, Marcus J B

    2010-10-01

    The morphology of a typical developing biological transportation network, the vein network of the plasmodium of the myxomycete Physarum polycephalum is analyzed during its free extension. The network forms a classical, regular graph, and has exclusively nodes of degree 3. This contrasts to most real-world transportation networks which show small-world or scale-free properties. The complexity of the vein network arises from the weighting of the lengths, widths, and areas of the vein segments. The lengths and areas follow exponential distributions, while the widths are distributed log-normally. These functional dependencies are robust during the entire evolution of the network, even though the exponents change with time due to the coarsening of the vein network.

  6. Plasmodial vein networks of the slime mold Physarum polycephalum form regular graphs

    NASA Astrophysics Data System (ADS)

    Baumgarten, Werner; Ueda, Tetsuo; Hauser, Marcus J. B.

    2010-10-01

    The morphology of a typical developing biological transportation network, the vein network of the plasmodium of the myxomycete Physarum polycephalum is analyzed during its free extension. The network forms a classical, regular graph, and has exclusively nodes of degree 3. This contrasts to most real-world transportation networks which show small-world or scale-free properties. The complexity of the vein network arises from the weighting of the lengths, widths, and areas of the vein segments. The lengths and areas follow exponential distributions, while the widths are distributed log-normally. These functional dependencies are robust during the entire evolution of the network, even though the exponents change with time due to the coarsening of the vein network.

  7. The centrosome is an actin-organizing center

    PubMed Central

    Farina, Francesca; Gaillard, Jérémie; Guérin, Christophe; Couté, Yohann; Sillibourne, James; Blanchoin, Laurent; Théry, Manuel

    2016-01-01

    Microtubules and actin filaments are the two main cytoskeleton networks supporting intracellular architecture and cell polarity. The centrosome nucleates and anchors microtubules and is therefore considered to be the main microtubule-organizing center. However, recurring, yet unexplained, observations have pointed towards a connection between the centrosome and actin filaments. Here we have used isolated centrosomes to demonstrate that the centrosome can directly promote actin filament assembly. A cloud of centrosome-associated actin filaments could be identified in living cells as well. Actin-filament nucleation at the centrosome was mediated by the nucleation promoting factor WASH in combination with the Arp2/3 complex. Pericentriolar material 1 (PCM1) appeared to modulate the centrosomal actin network by regulating Arp2/3 complex and WASH recruitment to the centrosome. Hence our results reveal an additional facet of the centrosome as an intracellular organizer and provide mechanistic insights into how the centrosome can function as an actin filament-organizing center. PMID:26655833

  8. Viruses that ride on the coat-tails of actin nucleation.

    PubMed

    Newsome, Timothy P; Marzook, N Bishara

    2015-10-01

    Actin nucleation drives a diversity of critical cellular processes and the motility of a select group of viral pathogens. Vaccinia virus and baculovirus, Autographa californica multiple nucleopolyhedrovirus, recruit and activate the cellular actin nucleator, the Arp2/3 complex, at the surface of virus particles thereby instigating highly localized actin nucleation. The extension of these filaments provides a mechanical force that bestows the ability to navigate the intracellular environment and promote their infectious cycles. This review outlines the viral and cellular proteins that initiate and regulate the signalling networks leading to viral modification of the actin cytoskeleton and summarizes recent insights into the role of actin-based virus transport. PMID:26459972

  9. Actin-Based Transport Adapts Polarity Domain Size to Local Cellular Curvature.

    PubMed

    Bonazzi, Daria; Haupt, Armin; Tanimoto, Hirokazu; Delacour, Delphine; Salort, Delphine; Minc, Nicolas

    2015-10-19

    Intracellular structures and organelles such as the nucleus, the centrosome, or the mitotic spindle typically scale their size to cell size [1]. Similarly, cortical polarity domains built around the active form of conserved Rho-GTPases, such as Cdc42p, exhibit widths that may range over two orders of magnitudes in cells with different sizes and shapes [2-6]. The establishment of such domains typically involves positive feedback loops based on reaction-diffusion and/or actin-mediated vesicle transport [3, 7, 8]. How these elements may adapt polarity domain size to cellular geometry is not known. Here, by tracking the width of successive oscillating Cdc42-GTP domains in fission yeast spores [9], we find that domain width scales with local cell-surface radii of curvature over an 8-fold range, independently of absolute cell volume, surface, or Cdc42-GTP concentration. This local scaling requires formin-nucleated cortical actin cables and the fusion of secretory vesicles transported along these cables with the membrane. These data suggest that reaction-diffusion may set a minimal domain size and that secretory vesicle transport along actin cables may dilute and extend polarity domains to adapt their size to local cell-surface curvature. This work reveals that actin networks may act as micrometric curvature sensors and uncovers a generic morphogenetic principle for how polarity domains define their size according to cell morphologies. PMID:26441355

  10. Actin-Based Transport Adapts Polarity Domain Size to Local Cellular Curvature.

    PubMed

    Bonazzi, Daria; Haupt, Armin; Tanimoto, Hirokazu; Delacour, Delphine; Salort, Delphine; Minc, Nicolas

    2015-10-19

    Intracellular structures and organelles such as the nucleus, the centrosome, or the mitotic spindle typically scale their size to cell size [1]. Similarly, cortical polarity domains built around the active form of conserved Rho-GTPases, such as Cdc42p, exhibit widths that may range over two orders of magnitudes in cells with different sizes and shapes [2-6]. The establishment of such domains typically involves positive feedback loops based on reaction-diffusion and/or actin-mediated vesicle transport [3, 7, 8]. How these elements may adapt polarity domain size to cellular geometry is not known. Here, by tracking the width of successive oscillating Cdc42-GTP domains in fission yeast spores [9], we find that domain width scales with local cell-surface radii of curvature over an 8-fold range, independently of absolute cell volume, surface, or Cdc42-GTP concentration. This local scaling requires formin-nucleated cortical actin cables and the fusion of secretory vesicles transported along these cables with the membrane. These data suggest that reaction-diffusion may set a minimal domain size and that secretory vesicle transport along actin cables may dilute and extend polarity domains to adapt their size to local cell-surface curvature. This work reveals that actin networks may act as micrometric curvature sensors and uncovers a generic morphogenetic principle for how polarity domains define their size according to cell morphologies.

  11. Accelerators, Brakes, and Gears of Actin Dynamics in Dendritic Spines

    PubMed Central

    Pontrello, Crystal G.; Ethell, Iryna M.

    2010-01-01

    Dendritic spines are actin-rich structures that accommodate the postsynaptic sites of most excitatory synapses in the brain. Although dendritic spines form and mature as synaptic connections develop, they remain plastic even in the adult brain, where they can rapidly grow, change, or collapse in response to normal physiological changes in synaptic activity that underlie learning and memory. Pathological stimuli can adversely affect dendritic spine shape and number, and this is seen in neurodegenerative disorders and some forms of mental retardation and autism as well. Many of the molecular signals that control these changes in dendritic spines act through the regulation of filamentous actin (F-actin), some through direct interaction with actin, and others via downstream effectors. For example, cortactin, cofilin, and gelsolin are actin-binding proteins that directly regulate actin dynamics in dendritic spines. Activities of these proteins are precisely regulated by intracellular signaling events that control their phosphorylation state and localization. In this review, we discuss how actin-regulating proteins maintain the balance between F-actin assembly and disassembly that is needed to stabilize mature dendritic spines, and how changes in their activities may lead to rapid remodeling of dendritic spines. PMID:20463852

  12. TSC1 controls distribution of actin fibers through its effect on function of Rho family of small GTPases and regulates cell migration and polarity.

    PubMed

    Ohsawa, Maki; Kobayashi, Toshiyuki; Okura, Hidehiro; Igarashi, Takashi; Mizuguchi, Masashi; Hino, Okio

    2013-01-01

    The tumor-suppressor genes TSC1 and TSC2 are mutated in tuberous sclerosis, an autosomal dominant multisystem disorder. The gene products of TSC1 and TSC2 form a protein complex that inhibits the signaling of the mammalian target of rapamycin complex1 (mTORC1) pathway. mTORC1 is a crucial molecule in the regulation of cell growth, proliferation and survival. When the TSC1/TSC2 complex is not functional, uncontrolled mTORC1 activity accelerates the cell cycle and triggers tumorigenesis. Recent studies have suggested that TSC1 and TSC2 also regulate the activities of Rac1 and Rho, members of the Rho family of small GTPases, and thereby influence the ensuing actin cytoskeletal organization at focal adhesions. However, how TSC1 contributes to the establishment of cell polarity is not well understood. Here, the relationship between TSC1 and the formation of the actin cytoskeleton was analyzed in stable TSC1-expressing cell lines originally established from a Tsc1-deficient mouse renal tumor cell line. Our analyses showed that cell proliferation and migration were suppressed when TSC1 was expressed. Rac1 activity in these cells was also decreased as was formation of lamellipodia and filopodia. Furthermore, the number of basal actin stress fibers was reduced; by contrast, apical actin fibers, originating at the level of the tight junction formed a network in TSC1-expressing cells. Treatment with Rho-kinase (ROCK) inhibitor diminished the number of apical actin fibers, but rapamycin had no effect. Thus, the actin fibers were regulated by the Rho-ROCK pathway independently of mTOR. In addition, apical actin fibers appeared in TSC1-deficient cells after inhibition of Rac1 activity. These results suggest that TSC1 regulates cell polarity-associated formation of actin fibers through the spatial regulation of Rho family of small GTPases.

  13. F-actin flow drives affinity maturation and spatial organization of LFA-1 at the immunological synapse

    PubMed Central

    Comrie, William A.; Babich, Alexander

    2015-01-01

    Integrin-dependent interactions between T cells and antigen-presenting cells are vital for proper T cell activation, effector function, and memory. Regulation of integrin function occurs via conformational change, which modulates ligand affinity, and receptor clustering, which modulates valency. Here, we show that conformational intermediates of leukocyte functional antigen 1 (LFA-1) form a concentric array at the immunological synapse. Using an inhibitor cocktail to arrest F-actin dynamics, we show that organization of this array depends on F-actin flow and ligand mobility. Furthermore, F-actin flow is critical for maintaining the high affinity conformation of LFA-1, for increasing valency by recruiting LFA-1 to the immunological synapse, and ultimately for promoting intracellular cell adhesion molecule 1 (ICAM-1) binding. Finally, we show that F-actin forces are opposed by immobilized ICAM-1, which triggers LFA-1 activation through a combination of induced fit and tension-based mechanisms. Our data provide direct support for a model in which the T cell actin network generates mechanical forces that regulate LFA-1 activity at the immunological synapse. PMID:25666810

  14. Guardians of the actin monomer.

    PubMed

    Xue, Bo; Robinson, Robert C

    2013-01-01

    Actin is a universal force provider in eukaryotic cells. Biological processes harness the pressure generated from actin polymerization through dictating the time, place and direction of filament growth. As such, polymerization is initiated and maintained via tightly controlled filament nucleation and elongation machineries. Biological systems integrate force into their activities through recruiting and activating these machineries. In order that actin function as a common force generating polymerization motor, cells must maintain a pool of active, polymerization-ready monomeric actin, and minimize extemporaneous polymerization. Maintenance of the active monomeric actin pool requires the recycling of actin filaments, through depolymerization, nucleotide exchange and reloading of the polymerization machineries, while the levels of monomers are constantly monitored and supplemented, when needed, via the access of a reserve pool of monomers and through gene expression. Throughout its monomeric life, actin needs to be protected against gratuitous nucleation events. Here, we review the proteins that act as custodians of monomeric actin. We estimate their levels on a tissue scale, and calculate the implied concentrations of each actin complex based on reported binding affinities. These estimations predict that monomeric actin is rarely, if ever, alone. Thus, the guardians keep the volatility of actin in check, so that its explosive power is only released in the controlled environments of the nucleation and polymerization machineries. PMID:24268205

  15. Structure of a pentavalent G-actin*MRTF-A complex reveals how G-actin controls nucleocytoplasmic shuttling of a transcriptional coactivator.

    PubMed

    Mouilleron, Stéphane; Langer, Carola A; Guettler, Sebastian; McDonald, Neil Q; Treisman, Richard

    2011-06-14

    Subcellular localization of the actin-binding transcriptional coactivator MRTF-A is controlled by its interaction with monomeric actin (G-actin). Signal-induced decreases in G-actin concentration reduce MRTF-A nuclear export, leading to its nuclear accumulation, whereas artificial increases in G-actin concentration in resting cells block MRTF-A nuclear import, retaining it in the cytoplasm. This regulation is dependent on three actin-binding RPEL motifs in the regulatory domain of MRTF-A. We describe the structures of pentavalent and trivalent G-actin•RPEL domain complexes. In the pentavalent complex, each RPEL motif and the two intervening spacer sequences bound an actin monomer, forming a compact assembly. In contrast, the trivalent complex lacked the C-terminal spacer- and RPEL-actins, both of which bound only weakly in the pentavalent complex. Cytoplasmic localization of MRTF-A in unstimulated fibroblasts also required binding of G-actin to the spacer sequences. The bipartite MRTF-A nuclear localization sequence was buried in the pentameric assembly, explaining how increases in G-actin concentration prevent nuclear import of MRTF-A. Analyses of the pentavalent and trivalent complexes show how actin loads onto the RPEL domain and reveal a molecular mechanism by which actin can control the activity of one of its binding partners.

  16. Actin stress in cell reprogramming

    PubMed Central

    Guo, Jun; Wang, Yuexiu; Sachs, Frederick; Meng, Fanjie

    2014-01-01

    Cell mechanics plays a role in stem cell reprogramming and differentiation. To understand this process better, we created a genetically encoded optical probe, named actin–cpstFRET–actin (AcpA), to report forces in actin in living cells in real time. We showed that stemness was associated with increased force in actin. We reprogrammed HEK-293 cells into stem-like cells using no transcription factors but simply by softening the substrate. However, Madin-Darby canine kidney (MDCK) cell reprogramming required, in addition to a soft substrate, Harvey rat sarcoma viral oncogene homolog expression. Replating the stem-like cells on glass led to redifferentiation and reduced force in actin. The actin force probe was a FRET sensor, called cpstFRET (circularly permuted stretch sensitive FRET), flanked by g-actin subunits. The labeled actin expressed efficiently in HEK, MDCK, 3T3, and bovine aortic endothelial cells and in multiple stable cell lines created from those cells. The viability of the cell lines demonstrated that labeled actin did not significantly affect cell physiology. The labeled actin distribution was similar to that observed with GFP-tagged actin. We also examined the stress in the actin cross-linker actinin. Actinin force was not always correlated with actin force, emphasizing the need for addressing protein specificity when discussing forces. Because actin is a primary structural protein in animal cells, understanding its force distribution is central to understanding animal cell physiology and the many linked reactions such as stress-induced gene expression. This new probe permits measuring actin forces in a wide range of experiments on preparations ranging from isolated proteins to transgenic animals. PMID:25422450

  17. The Switch-associated Protein 70 (SWAP-70) Bundles Actin Filaments and Contributes to the Regulation of F-actin Dynamics*

    PubMed Central

    Chacón-Martínez, Carlos Andrés; Kiessling, Nadine; Winterhoff, Moritz; Faix, Jan; Müller-Reichert, Thomas; Jessberger, Rolf

    2013-01-01

    Coordinated assembly and disassembly of actin into filaments and higher order structures such as stress fibers and lamellipodia are fundamental for cell migration and adhesion. However, the precise spatiotemporal regulation of F-actin structures is not completely understood. SWAP-70, a phosphatidylinositol 3,4,5-trisphosphate-interacting, F-actin-binding protein, participates in actin rearrangements through yet unknown mechanisms. Here, we show that SWAP-70 is an F-actin-bundling protein that oligomerizes through a Gln/Glu-rich stretch within a coiled-coil region. SWAP-70 bundles filaments in parallel and anti-parallel fashion through its C-terminal F-actin binding domain and delays dilution-induced F-actin depolymerization. We further demonstrate that SWAP-70 co-localizes and directly interacts with cofilin, an F-actin severing and depolymerization factor, and contributes to the regulation of cofilin activity in vivo. In line with these activities, upon stem cell factor stimulation, murine bone marrow-derived mast cells lacking SWAP-70 display aberrant regulation of F-actin and actin free barbed ends dynamics. Moreover, proper stem cell factor-dependent cofilin activation via dephosphorylation and subcellular redistribution into a detergent-resistant cytoskeletal compartment also require SWAP-70. Together, these findings reveal an important role of SWAP-70 in the dynamic spatiotemporal regulation of F-actin networks. PMID:23921380

  18. Form and function in gene regulatory networks: the structure of network motifs determines fundamental properties of their dynamical state space.

    PubMed

    Ahnert, S E; Fink, T M A

    2016-07-01

    Network motifs have been studied extensively over the past decade, and certain motifs, such as the feed-forward loop, play an important role in regulatory networks. Recent studies have used Boolean network motifs to explore the link between form and function in gene regulatory networks and have found that the structure of a motif does not strongly determine its function, if this is defined in terms of the gene expression patterns the motif can produce. Here, we offer a different, higher-level definition of the 'function' of a motif, in terms of two fundamental properties of its dynamical state space as a Boolean network. One is the basin entropy, which is a complexity measure of the dynamics of Boolean networks. The other is the diversity of cyclic attractor lengths that a given motif can produce. Using these two measures, we examine all 104 topologically distinct three-node motifs and show that the structural properties of a motif, such as the presence of feedback loops and feed-forward loops, predict fundamental characteristics of its dynamical state space, which in turn determine aspects of its functional versatility. We also show that these higher-level properties have a direct bearing on real regulatory networks, as both basin entropy and cycle length diversity show a close correspondence with the prevalence, in neural and genetic regulatory networks, of the 13 connected motifs without self-interactions that have been studied extensively in the literature. PMID:27440255

  19. Form and function in gene regulatory networks: the structure of network motifs determines fundamental properties of their dynamical state space

    PubMed Central

    Ahnert, S. E.; Fink, T. M. A.

    2016-01-01

    Network motifs have been studied extensively over the past decade, and certain motifs, such as the feed-forward loop, play an important role in regulatory networks. Recent studies have used Boolean network motifs to explore the link between form and function in gene regulatory networks and have found that the structure of a motif does not strongly determine its function, if this is defined in terms of the gene expression patterns the motif can produce. Here, we offer a different, higher-level definition of the ‘function’ of a motif, in terms of two fundamental properties of its dynamical state space as a Boolean network. One is the basin entropy, which is a complexity measure of the dynamics of Boolean networks. The other is the diversity of cyclic attractor lengths that a given motif can produce. Using these two measures, we examine all 104 topologically distinct three-node motifs and show that the structural properties of a motif, such as the presence of feedback loops and feed-forward loops, predict fundamental characteristics of its dynamical state space, which in turn determine aspects of its functional versatility. We also show that these higher-level properties have a direct bearing on real regulatory networks, as both basin entropy and cycle length diversity show a close correspondence with the prevalence, in neural and genetic regulatory networks, of the 13 connected motifs without self-interactions that have been studied extensively in the literature. PMID:27440255

  20. Form and function in gene regulatory networks: the structure of network motifs determines fundamental properties of their dynamical state space.

    PubMed

    Ahnert, S E; Fink, T M A

    2016-07-01

    Network motifs have been studied extensively over the past decade, and certain motifs, such as the feed-forward loop, play an important role in regulatory networks. Recent studies have used Boolean network motifs to explore the link between form and function in gene regulatory networks and have found that the structure of a motif does not strongly determine its function, if this is defined in terms of the gene expression patterns the motif can produce. Here, we offer a different, higher-level definition of the 'function' of a motif, in terms of two fundamental properties of its dynamical state space as a Boolean network. One is the basin entropy, which is a complexity measure of the dynamics of Boolean networks. The other is the diversity of cyclic attractor lengths that a given motif can produce. Using these two measures, we examine all 104 topologically distinct three-node motifs and show that the structural properties of a motif, such as the presence of feedback loops and feed-forward loops, predict fundamental characteristics of its dynamical state space, which in turn determine aspects of its functional versatility. We also show that these higher-level properties have a direct bearing on real regulatory networks, as both basin entropy and cycle length diversity show a close correspondence with the prevalence, in neural and genetic regulatory networks, of the 13 connected motifs without self-interactions that have been studied extensively in the literature.

  1. How capping protein enhances actin filament growth and nucleation on biomimetic beads

    NASA Astrophysics Data System (ADS)

    Wang, Ruizhe; Carlsson, Anders E.

    2015-12-01

    Capping protein (CP), which caps the growing ends of actin filaments, accelerates actin-based motility. Recent experiments on biomimetic beads have shown that CP also enhances the rate of actin filament nucleation. Proposed explanations for these phenomena include (i) the actin funneling hypothesis (AFH), in which the presence of CP increases the free-actin concentration, and (ii) the monomer gating model, in which CP binding to actin filament barbed ends makes more monomers available for filament nucleation. To establish how CP increases the rates of filament elongation and nucleation on biomimetic beads, we perform a quantitative modeling analysis of actin polymerization, using rate equations that include actin filament nucleation, polymerization and capping, as modified by monomer depletion near the surface of the bead. With one adjustable parameter, our simulation results match previously measured time courses of polymerized actin and filament number. The results support a version of the AFH where CP increases the local actin monomer concentration at the bead surface, but leaves the global free-actin concentration nearly constant. Because the rate of filament nucleation increases with the monomer concentration, the increased local monomer concentration enhances actin filament nucleation. We derive a closed-form formula for the characteristic CP concentration where the local free-actin concentration reaches half the bulk value, and find it to be comparable to the global Arp2/3 complex concentration. We also propose an experimental protocol for distinguishing branching nucleation of filaments from spontaneous nucleation.

  2. Microtubule-dependent transport of vimentin filament precursors is regulated by actin and by the concerted action of Rho- and p21-activated kinases.

    PubMed

    Robert, Amélie; Herrmann, Harald; Davidson, Michael W; Gelfand, Vladimir I

    2014-07-01

    Intermediate filaments (IFs) form a dense and dynamic network that is functionally associated with microtubules and actin filaments. We used the GFP-tagged vimentin mutant Y117L to study vimentin-cytoskeletal interactions and transport of vimentin filament precursors. This mutant preserves vimentin interaction with other components of the cytoskeleton, but its assembly is blocked at the unit-length filament (ULF) stage. ULFs are easy to track, and they allow a reliable and quantifiable analysis of movement. Our results show that in cultured human vimentin-negative SW13 cells, 2% of vimentin-ULFs move along microtubules bidirectionally, while the majority are stationary and tightly associated with actin filaments. Rapid motor-dependent transport of ULFs along microtubules is enhanced ≥ 5-fold by depolymerization of actin cytoskeleton with latrunculin B. The microtubule-dependent transport of vimentin ULFs is further regulated by Rho-kinase (ROCK) and p21-activated kinase (PAK): ROCK inhibits ULF transport, while PAK stimulates it. Both kinases act on microtubule transport independently of their effects on actin cytoskeleton. Our study demonstrates the importance of the actin cytoskeleton to restrict IF transport and reveals a new role for PAK and ROCK in the regulation of IF precursor transport.-Robert, A., Herrmann, H., Davidson, M. W., and Gelfand, V. I. Microtubule-dependent transport of vimentin filament precursors is regulated by actin and by the concerted action of Rho- and p21-activated kinases.

  3. Microtubule-dependent transport of vimentin filament precursors is regulated by actin and by the concerted action of Rho- and p21-activated kinases

    PubMed Central

    Robert, Amélie; Herrmann, Harald; Davidson, Michael W.; Gelfand, Vladimir I.

    2014-01-01

    Intermediate filaments (IFs) form a dense and dynamic network that is functionally associated with microtubules and actin filaments. We used the GFP-tagged vimentin mutant Y117L to study vimentin-cytoskeletal interactions and transport of vimentin filament precursors. This mutant preserves vimentin interaction with other components of the cytoskeleton, but its assembly is blocked at the unit-length filament (ULF) stage. ULFs are easy to track, and they allow a reliable and quantifiable analysis of movement. Our results show that in cultured human vimentin-negative SW13 cells, 2% of vimentin-ULFs move along microtubules bidirectionally, while the majority are stationary and tightly associated with actin filaments. Rapid motor-dependent transport of ULFs along microtubules is enhanced ≥5-fold by depolymerization of actin cytoskeleton with latrunculin B. The microtubule-dependent transport of vimentin ULFs is further regulated by Rho-kinase (ROCK) and p21-activated kinase (PAK): ROCK inhibits ULF transport, while PAK stimulates it. Both kinases act on microtubule transport independently of their effects on actin cytoskeleton. Our study demonstrates the importance of the actin cytoskeleton to restrict IF transport and reveals a new role for PAK and ROCK in the regulation of IF precursor transport.—Robert, A., Herrmann, H., Davidson, M. W., and Gelfand, V. I. Microtubule-dependent transport of vimentin filament precursors is regulated by actin and by the concerted action of Rho- and p21-activated kinases. PMID:24652946

  4. Lamellipodin promotes actin assembly by clustering Ena/VASP proteins and tethering them to actin filaments

    PubMed Central

    Hansen, Scott D; Mullins, R Dyche

    2015-01-01

    Enabled/Vasodilator (Ena/VASP) proteins promote actin filament assembly at multiple locations, including: leading edge membranes, focal adhesions, and the surface of intracellular pathogens. One important Ena/VASP regulator is the mig-10/Lamellipodin/RIAM family of adaptors that promote lamellipod formation in fibroblasts and drive neurite outgrowth and axon guidance in neurons. To better understand how MRL proteins promote actin network formation we studied the interactions between Lamellipodin (Lpd), actin, and VASP, both in vivo and in vitro. We find that Lpd binds directly to actin filaments and that this interaction regulates its subcellular localization and enhances its effect on VASP polymerase activity. We propose that Lpd delivers Ena/VASP proteins to growing barbed ends and increases their polymerase activity by tethering them to filaments. This interaction represents one more pathway by which growing actin filaments produce positive feedback to control localization and activity of proteins that regulate their assembly. DOI: http://dx.doi.org/10.7554/eLife.06585.001 PMID:26295568

  5. Single-Molecule Studies of Actin Assembly and Disassembly Factors

    PubMed Central

    Smith, Benjamin A.; Gelles, Jeff; Goode, Bruce L.

    2014-01-01

    The actin cytoskeleton is very dynamic and highly regulated by multiple associated proteins in vivo. Understanding how this system of proteins functions in the processes of actin network assembly and disassembly requires methods to dissect the mechanisms of activity of individual factors and of multiple factors acting in concert. The advent of single-filament and single-molecule fluorescence imaging methods has provided a powerful new approach to discovering actin-regulatory activities and obtaining direct, quantitative insights into the pathways of molecular interactions that regulate actin network architecture and dynamics. Here we describe techniques for acquisition and analysis of single-molecule data, applied to the novel challenges of studying the filament assembly and disassembly activities of actin-associated proteins in vitro. We discuss the advantages of single-molecule analysis in directly visualizing the order of molecular events, measuring the kinetic rates of filament binding and dissociation, and studying the coordination among multiple factors. The methods described here complement traditional biochemical approaches in elucidating actin-regulatory mechanisms in reconstituted filamentous networks. PMID:24630103

  6. Interior decoration: tropomyosin in actin dynamics and cell migration.

    PubMed

    Lees, Justin G; Bach, Cuc T T; O'Neill, Geraldine M

    2011-01-01

    Cell migration and invasion requires the precise temporal and spatial orchestration of a variety of biological processes. Filaments of polymerized actin are critical players in these diverse processes, including the regulation of cell anchorage points (both cell-cell and cell-extracellular matrix), the uptake and delivery of molecules via endocytic pathways and the generation of force for both membrane protrusion and retraction. How the actin filaments are specialized for each of these discrete functions is yet to be comprehensively elucidated. The cytoskeletal tropomyosins are a family of actin associating proteins that form head-to-tail polymers which lay in the major groove of polymerized actin filaments. In the present review we summarize the emerging isoform-specific functions of tropomyosins in cell migration and invasion and discuss their potential roles in the specialization of actin filaments for the diverse cellular processes that together regulate cell migration and invasion.

  7. Actin-associated Proteins in the Pathogenesis of Podocyte Injury

    PubMed Central

    He, Fang-Fang; Chen, Shan; Su, Hua; Meng, Xian-Fang; Zhang, Chun

    2013-01-01

    Podocytes have a complex cellular architecture with interdigitating processes maintained by a precise organization of actin filaments. The actin-based foot processes of podocytes and the interposed slit diaphragm form the final barrier to proteinuria. The function of podocytes is largely based on the maintenance of the normal foot process structure with actin cytoskeleton. Cytoskeletal dynamics play important roles during normal podocyte development, in maintenance of the healthy glomerular filtration barrier, and in the pathogenesis of glomerular diseases. In this review, we focused on recent findings on the mechanisms of organization and reorganization of these actin-related molecules in the pathogenesis of podocyte injury and potential therapeutics targeting the regulation of actin cytoskeleton in podocytopathies. PMID:24396279

  8. Role of Actin Polymerization in Cell Locomotion: Molecules and Models

    PubMed Central

    Bearer, E. L.

    2015-01-01

    Actin filaments forming at the anterior margin of a migrating cell are essential for the formation of filopodia, lamellipodia, and pseudopodia, the “feet” that the cell extends before it. These structures in turn are required for cell locomotion. Yet the molecular nature of the “nucleator” that seeds the polymerization of actin at the leading edge is unknown. Recent advances, including video microscopy of actin dynamics, discovery of proteins unique to the leading edge such as ponticulin, the Mab 2E4 antigen, and ABP 120, and novel experimental models of actin polymerization such as the actin-based movements of intracellular parasites, promise to shed light on this problem in the near future. PMID:8323743

  9. G-actin guides p53 nuclear transport: potential contribution of monomeric actin in altered localization of mutant p53.

    PubMed

    Saha, Taniya; Guha, Deblina; Manna, Argha; Panda, Abir Kumar; Bhat, Jyotsna; Chatterjee, Subhrangsu; Sa, Gaurisankar

    2016-01-01

    p53 preserves genomic integrity by restricting anomaly at the gene level. Till date, limited information is available for cytosol to nuclear shuttling of p53; except microtubule-based trafficking route, which utilizes minus-end directed motor dynein. The present study suggests that monomeric actin (G-actin) guides p53 traffic towards the nucleus. Histidine-tag pull-down assay using purified p53(1-393)-His and G-actin confirms direct physical association between p53 and monomeric G-actin. Co-immunoprecipitation data supports the same. Confocal imaging explores intense perinuclear colocalization between p53 and G-actin. To address atomistic details of the complex, constraint-based docked model of p53:G-actin complex was generated based on crystal structures. MD simulation reveals that p53 DNA-binding domain arrests very well the G-actin protein. Docking benchmark studies have been carried out for a known crystal structure, 1YCS (complex between p53DBD and BP2), which validates the docking protocol we adopted. Co-immunoprecipitation study using "hot-spot" p53 mutants suggested reduced G-actin association with cancer-associated p53 conformational mutants (R175H and R249S). Considering these findings, we hypothesized that point mutation in p53 structure, which diminishes p53:G-actin complexation results in mutant p53 altered subcellular localization. Our model suggests p53Arg249 form polar-contact with Arg357 of G-actin, which upon mutation, destabilizes p53:G-actin interaction and results in cytoplasmic retention of p53R249S. PMID:27601274

  10. G-actin guides p53 nuclear transport: potential contribution of monomeric actin in altered localization of mutant p53

    PubMed Central

    Saha, Taniya; Guha, Deblina; Manna, Argha; Panda, Abir Kumar; Bhat, Jyotsna; Chatterjee, Subhrangsu; Sa, Gaurisankar

    2016-01-01

    p53 preserves genomic integrity by restricting anomaly at the gene level. Till date, limited information is available for cytosol to nuclear shuttling of p53; except microtubule-based trafficking route, which utilizes minus-end directed motor dynein. The present study suggests that monomeric actin (G-actin) guides p53 traffic towards the nucleus. Histidine-tag pull-down assay using purified p53(1–393)-His and G-actin confirms direct physical association between p53 and monomeric G-actin. Co-immunoprecipitation data supports the same. Confocal imaging explores intense perinuclear colocalization between p53 and G-actin. To address atomistic details of the complex, constraint-based docked model of p53:G-actin complex was generated based on crystal structures. MD simulation reveals that p53 DNA-binding domain arrests very well the G-actin protein. Docking benchmark studies have been carried out for a known crystal structure, 1YCS (complex between p53DBD and BP2), which validates the docking protocol we adopted. Co-immunoprecipitation study using “hot-spot” p53 mutants suggested reduced G-actin association with cancer-associated p53 conformational mutants (R175H and R249S). Considering these findings, we hypothesized that point mutation in p53 structure, which diminishes p53:G-actin complexation results in mutant p53 altered subcellular localization. Our model suggests p53Arg249 form polar-contact with Arg357 of G-actin, which upon mutation, destabilizes p53:G-actin interaction and results in cytoplasmic retention of p53R249S. PMID:27601274

  11. Bending Flexibility of Actin Filaments during Motor-Induced Sliding

    PubMed Central

    Vikhorev, Petr G.; Vikhoreva, Natalia N.; Månsson, Alf

    2008-01-01

    Muscle contraction and other forms of cell motility occur as a result of cyclic interactions between myosin molecules and actin filaments. Force generation is generally attributed to ATP-driven structural changes in myosin, whereas a passive role is ascribed to actin. However, some results challenge this view, predicting structural changes in actin during motor activity, e.g., when the actin filaments slide on a myosin-coated surface in vitro. Here, we analyzed statistical properties of the sliding filament paths, allowing us to detect changes of this type. It is interesting to note that evidence for substantial structural changes that led to increased bending flexibility of the filaments was found in phalloidin-stabilized, but not in phalloidin-free, actin filaments. The results are in accordance with the idea that a high-flexibility structural state of actin is a prerequisite for force production, but not the idea that a low-to-high flexibility transition of the actin filament should be an important component of the force-generating step per se. Finally, our data challenge the general view that phalloidin-stabilized filaments behave as native actin filaments in their interaction with myosin. This has important implications, since phalloidin stabilization is a routine procedure in most studies of actomyosin function. PMID:18835897

  12. Evidence That an Unconventional Actin Can Provide Essential F-Actin Function and That a Surveillance System Monitors F-Actin Integrity in Chlamydomonas.

    PubMed

    Onishi, Masayuki; Pringle, John R; Cross, Frederick R

    2016-03-01

    Actin is one of the most conserved eukaryotic proteins. It is thought to have multiple essential cellular roles and to function primarily or exclusively as filaments ("F-actin"). Chlamydomonas has been an enigma, because a null mutation (ida5-1) in its single gene for conventional actin does not affect growth. A highly divergent actin gene, NAP1, is upregulated in ida5-1 cells, but it has been unclear whether NAP1 can form filaments or provide actin function. Here, we used the actin-depolymerizing drug latrunculin B (LatB), the F-actin-specific probe Lifeact-Venus, and genetic and molecular methods to resolve these issues. LatB-treated wild-type cells continue to proliferate; they initially lose Lifeact-stained structures but recover them concomitant with upregulation of NAP1. Thirty-nine LatB-sensitive mutants fell into four genes (NAP1 and LAT1-LAT3) in which we identified the causative mutations using a novel combinatorial pool-sequencing strategy. LAT1-LAT3 are required for NAP1 upregulation upon LatB treatment, and ectopic expression of NAP1 largely rescues the LatB sensitivity of the lat1-lat3 mutants, suggesting that the LAT gene products comprise a regulatory hierarchy with NAP1 expression as the major functional output. Selection of LatB-resistant revertants of a nap1 mutant yielded dominant IDA5 mutations that presumably render F-IDA5 resistant to LatB, and nap1 and lat mutations are synthetically lethal with ida5-1 in the absence of LatB. We conclude that both IDA5 and the divergent NAP1 can form filaments and redundantly provide essential F-actin functions and that a novel surveillance system, probably responding to a loss of F-actin, triggers NAP1 expression and perhaps other compensatory responses. PMID:26715672

  13. The Actin Cortex: A Bridge between Cell Shape and Function.

    PubMed

    Chalut, Kevin J; Paluch, Ewa K

    2016-09-26

    The cortical actin network controls many animal cell shape changes by locally modulating cortical tension. Recent work has provided insight into cortex components and regulators. However, how the network is reorganized in response to cellular signaling, and the role reorganization may play during cell state changes, remain to be determined. PMID:27676427

  14. Characterization of actin microfilaments at the apical pole of thyroid cells.

    PubMed

    Gabrion, J; Travers, F; Benyamin, Y; Sentein, P; Van Thoai, N

    1980-01-01

    In thyroid cells (rat or hog), actin has been detected by immunofluorescence with an antiactin antibody and, in electron microscopy by decoration "in situ" with heavy meromyosin. The antibody as the heavy meromyosin method have shown that actin microfilaments are especially localized at the apical pole of the cells, in a region where thin filaments are usually observed by conventional methods of electron microscopy. These microfilaments are attached to the apical membrane at the ends of the microvilli and form dense bundles at their cores. They are polarized towards the interior of the cell. Decorated filaments are also organized in a clear network, parallel to the apical membrane; they are associated with microvillar bundles, but also with small apical vesicles and lateral membranes, in tight or gap junctions.

  15. Ground test bed design for self-forming network in disaggregated satellites system

    NASA Astrophysics Data System (ADS)

    Liu, Pengfei; Yang, Lei; Chen, Xiaoqian

    2016-02-01

    Disaggregated spacecraft architecture arouses an increasing attention in the realm of distributed space systems in recent years. One of the main technical challenges for disaggregated spacecraft system is self-forming network, in which new satellite nodes are allowed to join in a 'plug-and-play' fashion. To facilitate the protocol design for self-forming network, high-fidelity simulation tools are required. To that end, with the aid of OPNET Modeler's co-simulation mechanism provided by the external system (Esys) module, a ground test bed solution for self-forming network in disaggregated satellites system is presented, and then tested in a self-forming network scenario during the ingress process of a new-added satellite module. Simulation results show that this test bed can support for the evaluation of network performance, as well as mobility modeling which enables reflecting both the effects of orbital dynamic behaviors and in-orbit maneuver or control efforts. Though this test bed is mainly developed for the purpose of further study in disaggregated satellites system, its architecture can also be extended to other satellite network applications.

  16. Identification of actin as a 15-deoxy-Delta12,14-prostaglandin J2 target in neuroblastoma cells: mass spectrometric, computational, and functional approaches to investigate the effect on cytoskeletal derangement.

    PubMed

    Aldini, Giancarlo; Carini, Marina; Vistoli, Giulio; Shibata, Takahiro; Kusano, Yuri; Gamberoni, Luca; Dalle-Donne, Isabella; Milzani, Aldo; Uchida, Koji

    2007-03-13

    A proteomic approach was used to identify 15-deoxy-Delta12,14-prostaglandin J2 (15d-PGJ2) protein targets in human neuroblastoma SH-SY5Y cells. By using biotinylated 15d-PGJ2, beta-actin was found as the major adducted protein; at least 12 proteins were also identified as minor biotin-positive spots, falling in different functional classes, including glycolytic enzymes (enolase and lactate dehydrogenase), redox enzymes (biliverdin reductase), and a eukaryotic regulatory protein (14-3-3gamma). 15d-PGJ2 induced marked morphological changes in the actin filament network and in particular promoted F-actin depolymerization as confirmed by Western blot analysis. By using a mass spectrometric approach, we found that 15d-PGJ2 reacts with isolated G-actin in a 1:1 stoichiometric ratio and selectively binds the Cys374 site through a Michael adduction mechanism. Computational studies showed that the covalent binding of 15d-PGJ2 induces a significant unfolding of actin structure and in particular that 15d-PGJ2 distorts the actin subdomains 2 and 4, which define the nucleotide binding sites impeding the nucleotide exchange. The functional effect of 15d-PGJ2 on G-actin was studied by polymerization measurement: in the presence of 15d-PGJ2, a lower amount of F-actin forms, as followed by the increase in pyrenyl-actin fluorescence intensity, as the major effect of increasing 15d-PGJ2 concentrations occurs on the maximum extent of actin polymerization, whereas it is negligible on the initial rate of reaction. In summary, the results here reported give an insight into the role of 15d-PGJ2 as a cytotoxic compound in neuronal cell dysfunction. Actin is the main protein cellular target of 15d-PGJ2, which specifically binds through a Michael adduction to Cys374, leading to a protein conformational change that can explain the disruption of the actin cytoskeleton, F-actin depolymerization, and impairment of G-actin polymerization. PMID:17297918

  17. Rapid non-equilibrium turnover fluidizes entangled F-actin solutions

    NASA Astrophysics Data System (ADS)

    McCall, Patrick M.; Kovar, David R.; Gardel, Margaret L.

    The actin cytoskeleton of living cells is a semiflexible polymer network which regulates cell division, motility, and morphogenesis by controlling cell shape. These complex shape-changing processes require both mechanical deformation and remodeling of the actin cytoskeleton. Molecular motors generate internal forces to drive deformation, while cytoskeletal remodeling is regulated by non-equilibrium polymer turnover. Although the mechanical properties of equilibrium actin filament (F-actin) networks are well-described by theories of semiflexible polymers, these theories do not incorporate the effects of non-equilibrium turnover. To address this experimentally, we developed a model system in which both the turnover rate and the length distribution of purified F-actin can be tuned independently at steady-state through the combined action of actin regulatory proteins. Specifically we tune the concentrations of cofilin, profilin, and formin to regulate F-actin severing, recycling, and nucleation, respectively. We find that the actin turnover rate can be tuned by cofilin up to 25-fold (31 +/- 2 subunits/sec/filament). Surprisingly, changes in turnover rate have no effect on the steady-state F-actin length distribution, which is instead set by formin concentration. Passive microrheology measurements show that increased turnover leads to striking fluidization in both entangled and crosslinked networks. Non-equilibrium turnover thus enables modulation of network mechanics, which impacts force transmission and material deformation.

  18. Microelectromechanical filter formed from parallel-connected lattice networks of contour-mode resonators

    DOEpatents

    Wojciechowski, Kenneth E; Olsson, III, Roy H; Ziaei-Moayyed, Maryam

    2013-07-30

    A microelectromechanical (MEM) filter is disclosed which has a plurality of lattice networks formed on a substrate and electrically connected together in parallel. Each lattice network has a series resonant frequency and a shunt resonant frequency provided by one or more contour-mode resonators in the lattice network. Different types of contour-mode resonators including single input, single output resonators, differential resonators, balun resonators, and ring resonators can be used in MEM filter. The MEM filter can have a center frequency in the range of 10 MHz-10 GHz, with a filter bandwidth of up to about 1% when all of the lattice networks have the same series resonant frequency and the same shunt resonant frequency. The filter bandwidth can be increased up to about 5% by using unique series and shunt resonant frequencies for the lattice networks.

  19. Endocytosis-dependent coordination of multiple actin regulators is required for wound healing.

    PubMed

    Matsubayashi, Yutaka; Coulson-Gilmer, Camilla; Millard, Tom H

    2015-08-01

    The ability to heal wounds efficiently is essential for life. After wounding of an epithelium, the cells bordering the wound form dynamic actin protrusions and/or a contractile actomyosin cable, and these actin structures drive wound closure. Despite their importance in wound healing, the molecular mechanisms that regulate the assembly of these actin structures at wound edges are not well understood. In this paper, using Drosophila melanogaster embryos, we demonstrate that Diaphanous, SCAR, and WASp play distinct but overlapping roles in regulating actin assembly during wound healing. Moreover, we show that endocytosis is essential for wound edge actin assembly and wound closure. We identify adherens junctions (AJs) as a key target of endocytosis during wound healing and propose that endocytic remodeling of AJs is required to form "signaling centers" along the wound edge that control actin assembly. We conclude that coordination of actin assembly, AJ remodeling, and membrane traffic is required for the construction of a motile leading edge during wound healing.

  20. Force Generation, Polymerization Dynamics and Nucleation of Actin Filaments

    NASA Astrophysics Data System (ADS)

    Wang, Ruizhe

    We study force generation and actin filament dynamics using stochastic and deterministic methods. First, we treat force generation of bundled actin filaments by polymerization via molecular-level stochastic simulations. In the widely-used Brownian Ratchet model, actin filaments grow freely whenever the tip-obstacle gap created by thermal fluctuation exceeds the monomer size. We name this model the Perfect Brownian Ratchet (PBR) model. In the PBR model, actin monomer diffusion is treated implicitly. We perform a series of simulations based on the PBR, in which obstacle motion is treated explicitly; in most previous studies, obstacle motion has been treated implicitly. We find that the cooperativity of filaments is generally weak in the PBR model, meaning that more filaments would grow more slowly given the same force per filament. Closed-form formulas are also developed, which match the simulation results. These portable and accurate formulas provide guidance for experiments and upper and lower bounds for theoretical analyses. We also studied a variation of the PBR, called the Diffusing Brownian Ratchet (DBR) model, in which both actin monomer and obstacle diffusion are treated explicitly. We find that the growth rate of multiple filaments is even lower, compared with that in PBR. This finding challenges the widely-accepted PBR assumption and suggests that pushing the study of actin dynamics down to the sub-nanometer level yields new insights. We subsequently used a rate equation approach to model the effect of local depletion of actin monomers on the nucleation of actin filaments on biomimetic beads, and how the effect is regulated by capping protein (CP). We find that near the bead surface, a higher CP concentration increases local actin concentration, which leads to an enhanced activities of actin filaments' nucleation. Our model analysis matches the experimental results and lends support to an important but undervalued hypothesis proposed by Carlier and

  1. A Structural Basis for Regulation of Actin Polymerization by Pectenotoxins

    PubMed Central

    Allingham, John S.; Miles, Christopher O.; Rayment, Ivan

    2007-01-01

    Pectenotoxins (PTXs) are polyether macrolides found in certain dinoflagellates, sponges and shellfish, and have been associated with diarrhetic shellfish poisoning. In addition to their in vivo toxicity, some PTXs are potently cytotoxic in human cancer cell lines. Recent studies have demonstrated that disruption of the actin cytoskeleton may be a key function of these compounds, although no clarification their mechanism of action at a molecular level was available. We have obtained an X-ray crystal structure of PTX-2 bound to actin which, in combination with analyses of the effect of PTX-2 on purified actin filament dynamics, provides a molecular explanation for its effects on actin. PTX-2 formed a 1:1 complex with actin and engaged a novel site between subdomains 1 and 3. Based on models of the actin filament, PTX binding would disrupt key lateral contacts between the PTX-bound actin monomer and the lower lateral actin monomer within the filament, thereby capping the barbed-end. The location of this binding position within the interior of the filament indicates that it may not be accessible once polymerization has occurred, a hypothesis supported by our observation that PTX-2 caused filament capping without inducing filament severing. This mode of action is unique, as other actin filament destabilizing toxins appear to exclusively disrupt longitudinal monomer contacts allowing many of them to sever filaments in addition to capping them. Examination of the PTX-binding site on actin provides a rationalization for the structure–activity relationships observed in vivo and in vitro, and may provide a basis for predicting toxicity of PTX analogues. PMID:17599353

  2. Cortactin Branches Out: Roles in Regulating Protrusive Actin Dynamics

    PubMed Central

    Ammer, Amanda Gatesman; Weed, Scott A.

    2008-01-01

    Since its discovery in the early 1990’s, cortactin has emerged as a key signaling protein in many cellular processes, including cell adhesion, migration, endocytosis, and tumor invasion. While the list of cellular functions influenced by cortactin grows, the ability of cortactin to interact with and alter the cortical actin network is central to its role in regulating these processes. Recently, several advances have been made in our understanding of the interaction between actin and cortactin, providing insight into how these two proteins work together to provide a framework for normal and altered cellular function. This review examines how regulation of cortactin through post-translational modifications and interactions with multiple binding partners elicits changes in cortical actin cytoskeletal organization, impacting the regulation and formation of actin-rich motility structures. PMID:18615630

  3. Differential effects of caldesmon on the intermediate conformational states of polymerizing actin.

    PubMed

    Huang, Renjian; Grabarek, Zenon; Wang, Chih-Lueh Albert

    2010-01-01

    The actin-binding protein caldesmon (CaD) reversibly inhibits smooth muscle contraction. In non-muscle cells, a shorter CaD isoform co-exists with microfilaments in the stress fibers at the quiescent state, but the phosphorylated CaD is found at the leading edge of migrating cells where dynamic actin filament remodeling occurs. We have studied the effect of a C-terminal fragment of CaD (H32K) on the kinetics of the in vitro actin polymerization by monitoring the fluorescence of pyrene-labeled actin. Addition of H32K or its phosphorylated form either attenuated or accelerated the pyrene emission enhancement, depending on whether it was added at the early or the late phase of actin polymerization. However, the CaD fragment had no effect on the yield of sedimentable actin, nor did it affect the actin ATPase activity. Our findings can be explained by a model in which nascent actin filaments undergo a maturation process that involves at least two intermediate conformational states. If present at early stages of actin polymerization, CaD stabilizes one of the intermediate states and blocks the subsequent filament maturation. Addition of CaD at a later phase accelerates F-actin formation. The fact that CaD is capable of inhibiting actin filament maturation provides a novel function for CaD and suggests an active role in the dynamic reorganization of the actin cytoskeleton.

  4. Mechanical force-induced polymerization and depolymerization of F-actin at water/solid interfaces

    NASA Astrophysics Data System (ADS)

    Zhang, Xueqiang; Hu, Xiuyuan; Lei, Haozhi; Hu, Jun; Zhang, Yi

    2016-03-01

    Actin molecules are among the three main cytoskeleton proteins of cells and undergo rapid cycling to regulate critical processes such as endocytosis, cytokinesis, cell polarity, and cell morphogenesis. Although extensive studies have been carried out on the dynamics as well as biological functions of actin polymerization and depolymerization both in vivo and in vitro, the molecular mechanisms by which cells sense and respond to mechanical signals are not fully understood. In particular, little attention has been paid to the effect of a physical force that is exerted directly on the actin cytoskeleton. In this paper, we have explored how the mechanical force affects the actin polymerization and depolymerization behaviors at water/solid interfaces using an atomic force microscope (AFM) operated in liquid. By raster scanning an AFM probe on a substrate surface with a certain load, it was found that actin monomers could polymerize into filaments without the help of actin related proteins (ARPs). Further study indicated that actin monomers were inclined to form filaments only under a small scanning load. The polymerized actin filaments would be depolymerized when the mechanical force was stronger. A possible mechanism has been suggested to explain the mechanical force induced actin polymerization.Actin molecules are among the three main cytoskeleton proteins of cells and undergo rapid cycling to regulate critical processes such as endocytosis, cytokinesis, cell polarity, and cell morphogenesis. Although extensive studies have been carried out on the dynamics as well as biological functions of actin polymerization and depolymerization both in vivo and in vitro, the molecular mechanisms by which cells sense and respond to mechanical signals are not fully understood. In particular, little attention has been paid to the effect of a physical force that is exerted directly on the actin cytoskeleton. In this paper, we have explored how the mechanical force affects the actin

  5. Artificial neural networks in evaluation and optimization of modified release solid dosage forms.

    PubMed

    Ibrić, Svetlana; Djuriš, Jelena; Parojčić, Jelena; Djurić, Zorica

    2012-10-18

    Implementation of the Quality by Design (QbD) approach in pharmaceutical development has compelled researchers in the pharmaceutical industry to employ Design of Experiments (DoE) as a statistical tool, in product development. Among all DoE techniques, response surface methodology (RSM) is the one most frequently used. Progress of computer science has had an impact on pharmaceutical development as well. Simultaneous with the implementation of statistical methods, machine learning tools took an important place in drug formulation. Twenty years ago, the first papers describing application of artificial neural networks in optimization of modified release products appeared. Since then, a lot of work has been done towards implementation of new techniques, especially Artificial Neural Networks (ANN) in modeling of production, drug release and drug stability of modified release solid dosage forms. The aim of this paper is to review artificial neural networks in evaluation and optimization of modified release solid dosage forms.

  6. Diverse synaptic plasticity mechanisms orchestrated to form and retrieve memories in spiking neural networks

    PubMed Central

    Zenke, Friedemann; Agnes, Everton J.; Gerstner, Wulfram

    2015-01-01

    Synaptic plasticity, the putative basis of learning and memory formation, manifests in various forms and across different timescales. Here we show that the interaction of Hebbian homosynaptic plasticity with rapid non-Hebbian heterosynaptic plasticity is, when complemented with slower homeostatic changes and consolidation, sufficient for assembly formation and memory recall in a spiking recurrent network model of excitatory and inhibitory neurons. In the model, assemblies were formed during repeated sensory stimulation and characterized by strong recurrent excitatory connections. Even days after formation, and despite ongoing network activity and synaptic plasticity, memories could be recalled through selective delay activity following the brief stimulation of a subset of assembly neurons. Blocking any component of plasticity prevented stable functioning as a memory network. Our modelling results suggest that the diversity of plasticity phenomena in the brain is orchestrated towards achieving common functional goals. PMID:25897632

  7. Modeling Multiple Human-Automation Distributed Systems using Network-form Games

    NASA Technical Reports Server (NTRS)

    Brat, Guillaume

    2012-01-01

    The paper describes at a high-level the network-form game framework (based on Bayes net and game theory), which can be used to model and analyze safety issues in large, distributed, mixed human-automation systems such as NextGen.

  8. Soliton quenching NLTL impulse circuit with a pulse forming network at the output

    DOEpatents

    McEwan, T.E.; Dallum, G.E.

    1998-09-08

    An impulse forming circuit is disclosed which produces a clean impulse from a nonlinear transmission line compressed step function without customary soliton ringing by means of a localized pulse shaping and differentiating network which shunts the nonlinear transmission line output to ground. 5 figs.

  9. Soliton quenching NLTL impulse circuit with a pulse forming network at the output

    DOEpatents

    McEwan, Thomas E.; Dallum, Gregory E.

    1998-01-01

    An impulse forming circuit is disclosed which produces a clean impulse from a nonlinear transmission line compressed step function without customary soliton ringing by means of a localized pulse shaping and differentiating network which shunts the nonlinear transmission line output to ground.

  10. Actin filament bundling by fimbrin is important for endocytosis, cytokinesis, and polarization in fission yeast.

    PubMed

    Skau, Colleen T; Courson, David S; Bestul, Andrew J; Winkelman, Jonathan D; Rock, Ronald S; Sirotkin, Vladimir; Kovar, David R

    2011-07-29

    Through the coordinated action of diverse actin-binding proteins, cells simultaneously assemble actin filaments with distinct architectures and dynamics to drive different processes. Actin filament cross-linking proteins organize filaments into higher order networks, although the requirement of cross-linking activity in cells has largely been assumed rather than directly tested. Fission yeast Schizosaccharomyces pombe assembles actin into three discrete structures: endocytic actin patches, polarizing actin cables, and the cytokinetic contractile ring. The fission yeast filament cross-linker fimbrin Fim1 primarily localizes to Arp2/3 complex-nucleated branched filaments of the actin patch and by a lesser amount to bundles of linear antiparallel filaments in the contractile ring. It is unclear whether Fim1 associates with bundles of parallel filaments in actin cables. We previously discovered that a principal role of Fim1 is to control localization of tropomyosin Cdc8, thereby facilitating cofilin-mediated filament turnover. Therefore, we hypothesized that the bundling ability of Fim1 is dispensable for actin patches but is important for the contractile ring and possibly actin cables. By directly visualizing actin filament assembly using total internal reflection fluorescence microscopy, we determined that Fim1 bundles filaments in both parallel and antiparallel orientations and efficiently bundles Arp2/3 complex-branched filaments in the absence but not the presence of actin capping protein. Examination of cells exclusively expressing a truncated version of Fim1 that can bind but not bundle actin filaments revealed that bundling activity of Fim1 is in fact important for all three actin structures. Therefore, fimbrin Fim1 has diverse roles as both a filament "gatekeeper" and as a filament cross-linker.

  11. Role of actin in auxin transport and transduction of gravity

    NASA Astrophysics Data System (ADS)

    Hu, S.; Basu, S.; Brady, S.; Muday, G.

    Transport of the plant hormone auxin is polar and the direction of the hormone movement appears to be controlled by asymmetric distribution of auxin transport protein complexes. Changes in the direction of auxin transport are believed to drive asymmetric growth in response to changes in the gravity vector. To test the possibility that asymmetric distribution of the auxin transport protein complex is mediated by attachment to the actin cytoskeleton, a variety of experimental approaches have been used. The most direct demonstration of the role of the actin cytoskeleton in localization of the protein complex is the ability of one protein in this complex to bind to affinity columns containing actin filaments. Additionally, treatments of plant tissues with drugs that fragment the actin c toskeleton reducey polar transport. In order to explore this actin interaction and the affect of gravity on auxin transport and developmental polarity, embryos of the brown alga, Fucus have been examined. Fucus zygotes are initially symmetrical, but develop asymmetry in response to environmental gradients, with light gradients being the best- characterized signal. Gravity will polarize these embryos and gravity-induced polarity is randomized by clinorotation. Auxin transport also appears necessary for environmental controls of polarity, since auxin efflux inhibitors perturb both photo- and gravity-polarization at a very discrete temporal window within six hours after fertilization. The actin cytoskeleton has previously been shown to reorganize after fertilization of Fucus embryos leading to formation of an actin patch at the site of polar outgrowth. These actin patches still form in Fucus embryos treated with auxin efflux inhibitors, yet the position of these patches is randomized. Together, these results suggest that there are connections between the actin cytoskeleton, auxin transport, and gravity oriented growth and development. (Supported by NASA Grant: NAG2-1203)

  12. Molecular and biochemical characterization of a novel actin bundling protein in Acanthamoeba

    PubMed Central

    Alafag, Joanna It-itan; Moon, Eun-Kyung; Hong, Yeon-Chul; Chung, Dong-Il

    2006-01-01

    Actin binding proteins play key roles in cell structure and movement particularly as regulators of the assembly, stability and localization of actin filaments in the cytoplasm. In the present study, a cDNA clone encoding an actin bundling protein named as AhABP was isolated from Acanthamoeba healyi, a causative agent of granulomatous amebic encephalitis. This clone exhibited high similarity with genes of Physarum polycephalum and Dictyostelium discoideum, which encode actin bundling proteins. Domain search analysis revealed the presence of essential conserved regions, i.e., an active actin binding site and 2 putative calcium binding EF-hands. Transfected amoeba cells demonstrated that AhABP is primarily localized in phagocytic cups, peripheral edges, pseudopods, and in cortical cytoplasm where actins are most abundant. Moreover, AhABP after the deletion of essential regions formed ellipsoidal inclusions within transfected cells. High-speed co-sedimentation assays revealed that AhABP directly interacted with actin in the presence of up to 10 µM of calcium. Under the electron microscope, thick parallel bundles were formed by full length AhABP, in contrast to the thin actin bundles formed by constructs with deletion sites. In the light of these results, we conclude that AhABP is a novel actin bundling protein that is importantly associated with actin filaments in the cytoplasm. PMID:17170575

  13. The many forms of a pleomorphic bacterial pathogen-the developmental network of Legionella pneumophila.

    PubMed

    Robertson, Peter; Abdelhady, Hany; Garduño, Rafael A

    2014-01-01

    Legionella pneumophila is a natural intracellular bacterial parasite of free-living freshwater protozoa and an accidental human pathogen that causes Legionnaires' disease. L. pneumophila differentiates, and does it in style. Recent experimental data on L. pneumophila's differentiation point at the existence of a complex network that involves many developmental forms. We intend readers to: (i) understand the biological relevance of L. pneumophila's forms found in freshwater and their potential to transmit Legionnaires' disease, and (ii) learn that the common depiction of L. pneumophila's differentiation as a biphasic developmental cycle that alternates between a replicative and a transmissive form is but an oversimplification of the actual process. Our specific objectives are to provide updates on the molecular factors that regulate L. pneumophila's differentiation (Section The Differentiation Process and Its Regulation), and describe the developmental network of L. pneumophila (Section Dissecting Lp's Developmental Network), which for clarity's sake we have dissected into five separate developmental cycles. Finally, since each developmental form seems to contribute differently to the human pathogenic process and the transmission of Legionnaires' disease, readers are presented with a challenge to develop novel methods to detect the various L. pneumophila forms present in water (Section Practical Implications), as a means to improve our assessment of risk and more effectively prevent legionellosis outbreaks. PMID:25566200

  14. The many forms of a pleomorphic bacterial pathogen—the developmental network of Legionella pneumophila

    PubMed Central

    Robertson, Peter; Abdelhady, Hany; Garduño, Rafael A.

    2014-01-01

    Legionella pneumophila is a natural intracellular bacterial parasite of free-living freshwater protozoa and an accidental human pathogen that causes Legionnaires' disease. L. pneumophila differentiates, and does it in style. Recent experimental data on L. pneumophila's differentiation point at the existence of a complex network that involves many developmental forms. We intend readers to: (i) understand the biological relevance of L. pneumophila's forms found in freshwater and their potential to transmit Legionnaires' disease, and (ii) learn that the common depiction of L. pneumophila's differentiation as a biphasic developmental cycle that alternates between a replicative and a transmissive form is but an oversimplification of the actual process. Our specific objectives are to provide updates on the molecular factors that regulate L. pneumophila's differentiation (Section The Differentiation Process and Its Regulation), and describe the developmental network of L. pneumophila (Section Dissecting Lp's Developmental Network), which for clarity's sake we have dissected into five separate developmental cycles. Finally, since each developmental form seems to contribute differently to the human pathogenic process and the transmission of Legionnaires' disease, readers are presented with a challenge to develop novel methods to detect the various L. pneumophila forms present in water (Section Practical Implications), as a means to improve our assessment of risk and more effectively prevent legionellosis outbreaks. PMID:25566200

  15. Single Filaments to Reveal the Multiple Flavors of Actin.

    PubMed

    Jégou, Antoine; Romet-Lemonne, Guillaume

    2016-05-24

    A number of key cell processes rely on specific assemblies of actin filaments, which are all constructed from nearly identical building blocks: the abundant and extremely conserved actin protein. A central question in the field is to understand how different filament networks can coexist and be regulated. Discoveries in science are often related to technical advances. Here, we focus on the ongoing single filament revolution and discuss how these techniques have greatly contributed to our understanding of actin assembly. In particular, we highlight how they have refined our understanding of the many protein-based regulatory mechanisms that modulate actin assembly. It is now becoming apparent that other factors give filaments a specific identity that determines which proteins will bind to them. We argue that single filament techniques will play an essential role in the coming years as we try to understand the many ways actin filaments can take different flavors and unveil how these flavors modulate the action of regulatory proteins. We discuss different factors known to make actin filaments distinguishable by regulatory proteins and speculate on their possible consequences.

  16. Dynamics of Actin Cables in Polarized Growth of the Filamentous Fungus Aspergillus nidulans

    PubMed Central

    Bergs, Anna; Ishitsuka, Yuji; Evangelinos, Minoas; Nienhaus, G. U.; Takeshita, Norio

    2016-01-01

    Highly polarized growth of filamentous fungi requires a continuous supply of proteins and lipids to the hyphal tip. This transport is managed by vesicle trafficking via the actin and microtubule cytoskeletons and their associated motor proteins. Particularly, actin cables originating from the hyphal tip are essential for hyphal growth. Although, specific marker proteins have been developed to visualize actin cables in filamentous fungi, the exact organization and dynamics of actin cables has remained elusive. Here, we observed actin cables using tropomyosin (TpmA) and Lifeact fused to fluorescent proteins in living Aspergillus nidulans hyphae and studied the dynamics and regulation. GFP tagged TpmA visualized dynamic actin cables formed from the hyphal tip with cycles of elongation and shrinkage. The elongation and shrinkage rates of actin cables were similar and approximately 0.6 μm/s. Comparison of actin markers revealed that high concentrations of Lifeact reduced actin dynamics. Simultaneous visualization of actin cables and microtubules suggests temporally and spatially coordinated polymerization and depolymerization between the two cytoskeletons. Our results provide new insights into the molecular mechanism of ordered polarized growth regulated by actin cables and microtubules. PMID:27242709

  17. Understanding the Social Networks That Form within the Context of an Obesity Prevention Intervention

    PubMed Central

    Gesell, Sabina B.; Bess, Kimberly D.; Barkin, Shari L.

    2012-01-01

    Background. Antiobesity interventions have generally failed. Research now suggests that interventions must be informed by an understanding of the social environment. Objective. To examine if new social networks form between families participating in a group-level pediatric obesity prevention trial. Methods. Latino parent-preschool child dyads (N = 79) completed the 3-month trial. The intervention met weekly in consistent groups to practice healthy lifestyles. The control met monthly in inconsistent groups to learn about school readiness. UCINET and SIENA were used to examine network dynamics. Results. Children's mean age was 4.2 years (SD = 0.9), and 44% were overweight/obese (BMI ≥ 85th percentile). Parents were predominantly mothers (97%), with a mean age of 31.4 years (SD = 5.4), and 81% were overweight/obese (BMI ≥ 25). Over the study, a new social network evolved among participating families. Parents selectively formed friendship ties based on child BMI z-score, (t = 2.08; P < .05). This reveals the tendency for mothers to form new friendships with mothers whose children have similar body types. Discussion. Participating in a group-level intervention resulted in new social network formation. New ties were greatest with mothers who had children of similar body types. This finding might contribute to the known inability of parents to recognize child overweight. PMID:22655175

  18. Understanding the Social Networks That Form within the Context of an Obesity Prevention Intervention.

    PubMed

    Gesell, Sabina B; Bess, Kimberly D; Barkin, Shari L

    2012-01-01

    Background. Antiobesity interventions have generally failed. Research now suggests that interventions must be informed by an understanding of the social environment. Objective. To examine if new social networks form between families participating in a group-level pediatric obesity prevention trial. Methods. Latino parent-preschool child dyads (N = 79) completed the 3-month trial. The intervention met weekly in consistent groups to practice healthy lifestyles. The control met monthly in inconsistent groups to learn about school readiness. UCINET and SIENA were used to examine network dynamics. Results. Children's mean age was 4.2 years (SD = 0.9), and 44% were overweight/obese (BMI ≥ 85th percentile). Parents were predominantly mothers (97%), with a mean age of 31.4 years (SD = 5.4), and 81% were overweight/obese (BMI ≥ 25). Over the study, a new social network evolved among participating families. Parents selectively formed friendship ties based on child BMI z-score, (t = 2.08; P < .05). This reveals the tendency for mothers to form new friendships with mothers whose children have similar body types. Discussion. Participating in a group-level intervention resulted in new social network formation. New ties were greatest with mothers who had children of similar body types. This finding might contribute to the known inability of parents to recognize child overweight.

  19. Nanosecond electric pulses trigger actin responses in plant cells

    SciTech Connect

    Berghoefer, Thomas; Eing, Christian; Flickinger, Bianca; Hohenberger, Petra; Wegner, Lars H.; Frey, Wolfgang; Nick, Peter

    2009-09-25

    We have analyzed the cellular effects of nanosecond pulsed electrical fields on plant cells using fluorescently tagged marker lines in the tobacco cell line BY-2 and confocal laser scanning microscopy. We observe a disintegration of the cytoskeleton in the cell cortex, followed by contraction of actin filaments towards the nucleus, and disintegration of the nuclear envelope. These responses are accompanied by irreversible permeabilization of the plasma membrane manifest as uptake of Trypan Blue. By pretreatment with the actin-stabilizing drug phalloidin, the detachment of transvacuolar actin from the cell periphery can be suppressed, and this treatment can also suppress the irreversible perforation of the plasma membrane. We discuss these findings in terms of a model, where nanosecond pulsed electric fields trigger actin responses that are key events in the plant-specific form of programmed cell death.

  20. Measuring actin dynamics during phagocytosis using photo-switchable fluorescence

    NASA Astrophysics Data System (ADS)

    Kovari, Daniel T.; Curtis, Jennifer E.

    2013-03-01

    Phagocytosis has traditionally been investigated in terms of the relevant biochemical signaling pathways. However, a growing number of studies investigating the physical aspects of phagocytosis have demonstrated that several distinct forces are exerted throughout particle ingestion. We use variations on FRAP (Fluorescence Recovery After Photobleaching) in combination with photo-switchable fluorescent protein to investigate actin dynamics as a phagocyte attempts to engulf its prey. The goal of our actin studies are to determine the recruitment and polymerization rate of actin in the forming phagosome and whether an organized contractile actin ring is present and responsible for phagosome closure, as proposed in the literature. These experiments are ongoing and contribute to our long term effort of developing a physics based model of phagocytosis.

  1. Captivating New Roles of F-Actin Cortex in Exocytosis and Bulk Endocytosis in Neurosecretory Cells.

    PubMed

    Meunier, Frédéric A; Gutiérrez, Luis M

    2016-09-01

    The cortical actin network is a tight array of filaments located beneath the plasma membrane. In neurosecretory cells, secretory vesicles are recruited on this network via a small insert isoform of myosin VI in a Ca(2+)-dependent manner. Upon secretagogue stimulation, myosin II mediates a relaxation of the actin network leading to synchronous translocation of bound or caged vesicles to the plasma membrane where they undergo exocytosis. F-actin is also recruited to secretory sites, where structural changes are detected immediately preceding and following exocytic events. Here we examine the mechanism underpinning the astonishing multifunctionality of this network in the various stages of vesicular exocytosis and compensatory bulk endocytosis. We propose a theoretical framework incorporating critical roles of the actin network in coupling these processes. PMID:27474993

  2. Rickettsia Sca2 is a bacterial formin-like mediator of actin-based motility

    PubMed Central

    Haglund, Cat M.; Choe, Julie E.; Skau, Colleen T.; Kovar, David R.; Welch, Matthew D.

    2011-01-01

    Diverse intracellular pathogens subvert the host actin polymerization machinery to drive movement within and between cells during infection. Rickettsia in the spotted fever group (SFG) are Gram-negative, obligate intracellular bacterial pathogens that undergo actin-based motility and assemble distinctive ‘comet tails’ that consist of long, unbranched actin filaments1,2. Despite this distinct organization, it was proposed that actin in Rickettsia comet tails is nucleated by the host Arp2/3 complex and the bacterial protein RickA, which assemble branched actin networks3,4. However, a second bacterial gene, sca2, was recently implicated in actin tail formation by R. rickettsii5. Here, we demonstrate that Sca2 is a bacterial actin-assembly factor that functionally mimics eukaryotic formin proteins. Sca2 nucleates unbranched actin filaments, processively associates with growing barbed ends, requires profilin for efficient elongation, and inhibits the activity of capping protein, all properties shared with formins. Sca2 localizes to the Rickettsia surface and is sufficient to promote the assembly of actin filaments in cytoplasmic extract. These results suggest that Sca2 mimics formins to determine the unique organization of actin filaments in Rickettsia tails and drive bacterial motility, independently of host nucleators. PMID:20972427

  3. Mechanical coupling between transsynaptic N-cadherin adhesions and actin flow stabilizes dendritic spines

    PubMed Central

    Chazeau, Anaël; Garcia, Mikael; Czöndör, Katalin; Perrais, David; Tessier, Béatrice; Giannone, Grégory; Thoumine, Olivier

    2015-01-01

    The morphology of neuronal dendritic spines is a critical indicator of synaptic function. It is regulated by several factors, including the intracellular actin/myosin cytoskeleton and transcellular N-cadherin adhesions. To examine the mechanical relationship between these molecular components, we performed quantitative live-imaging experiments in primary hippocampal neurons. We found that actin turnover and structural motility were lower in dendritic spines than in immature filopodia and increased upon expression of a nonadhesive N-cadherin mutant, resulting in an inverse relationship between spine motility and actin enrichment. Furthermore, the pharmacological stimulation of myosin II induced the rearward motion of actin structures in spines, showing that myosin II exerts tension on the actin network. Strikingly, the formation of stable, spine-like structures enriched in actin was induced at contacts between dendritic filopodia and N-cadherin–coated beads or micropatterns. Finally, computer simulations of actin dynamics mimicked various experimental conditions, pointing to the actin flow rate as an important parameter controlling actin enrichment in dendritic spines. Together these data demonstrate that a clutch-like mechanism between N-cadherin adhesions and the actin flow underlies the stabilization of dendritic filopodia into mature spines, a mechanism that may have important implications in synapse initiation, maturation, and plasticity in the developing brain. PMID:25568337

  4. Formin' actin in the nucleus.

    PubMed

    Baarlink, Christian; Grosse, Robert

    2014-01-01

    Many if not most proteins can, under certain conditions, change cellular compartments, such as, for example, shuttling from the cytoplasm to the nucleus. Thus, many proteins may exert functions in various and very different subcellular locations, depending on the signaling context. A large amount of actin regulatory proteins has been detected in the mammalian cell nucleus, although their potential roles are much debated and are just beginning to emerge. Recently, members of the formin family of actin nucleators were also reported to dynamically localize to the nuclear environment. Here we discuss our findings that specific diaphanous-related formins can promote nuclear actin assembly in a signal-dependent manner.

  5. Actin filament turnover drives leading edge growth during myelin sheath formation in the central nervous system.

    PubMed

    Nawaz, Schanila; Sánchez, Paula; Schmitt, Sebastian; Snaidero, Nicolas; Mitkovski, Mišo; Velte, Caroline; Brückner, Bastian R; Alexopoulos, Ioannis; Czopka, Tim; Jung, Sang Y; Rhee, Jeong S; Janshoff, Andreas; Witke, Walter; Schaap, Iwan A T; Lyons, David A; Simons, Mikael

    2015-07-27

    During CNS development, oligodendrocytes wrap their plasma membrane around axons to generate multilamellar myelin sheaths. To drive growth at the leading edge of myelin at the interface with the axon, mechanical forces are necessary, but the underlying mechanisms are not known. Using an interdisciplinary approach that combines morphological, genetic, and biophysical analyses, we identified a key role for actin filament network turnover in myelin growth. At the onset of myelin biogenesis, F-actin is redistributed to the leading edge, where its polymerization-based forces push out non-adhesive and motile protrusions. F-actin disassembly converts protrusions into sheets by reducing surface tension and in turn inducing membrane spreading and adhesion. We identified the actin depolymerizing factor ADF/cofilin1, which mediates high F-actin turnover rates, as an essential factor in this process. We propose that F-actin turnover is the driving force in myelin wrapping by regulating repetitive cycles of leading edge protrusion and spreading.

  6. Myosin Va facilitates the distribution of secretory granules in the F-actin rich cortex of PC12 cells.

    PubMed

    Rudolf, Rüdiger; Kögel, Tanja; Kuznetsov, Sergei A; Salm, Thorsten; Schlicker, Oliver; Hellwig, Andrea; Hammer, John A; Gerdes, Hans-Hermann

    2003-04-01

    Neuroendocrine secretory granules, the storage organelles for neuropeptides and hormones, are formed at the trans-Golgi network, stored inside the cell and exocytosed upon stimulation. Previously, we have reported that newly formed secretory granules of PC12 cells are transported in a microtubule-dependent manner from the trans-Golgi network to the F-actin-rich cell cortex, where they undergo short directed movements and exhibit a homogeneous distribution. Here we provide morphological and biochemical evidence that myosin Va is associated with secretory granules. Expression of a dominant-negative tail domain of myosin Va in PC12 cells led to an extensive clustering of secretory granules close to the cell periphery, a loss of their cortical restriction and a strong reduction in their motility in the actin cortex. Based on this data we propose a model that implies a dual transport system for secretory granules: after microtubule-dependent delivery to the cell periphery, secretory granules exhibit a myosin Va-dependent transport leading to their restriction and even dispersal in the F-actin-rich cortex of PC12 cells. PMID:12615975

  7. Actin Filaments Regulate Exocytosis at the Hair Cell Ribbon Synapse.

    PubMed

    Guillet, Marie; Sendin, Gaston; Bourien, Jérôme; Puel, Jean-Luc; Nouvian, Régis

    2016-01-20

    Exocytosis at the inner hair cell ribbon synapse is achieved through the functional coupling between calcium channels and glutamate-filled synaptic vesicles. Using membrane capacitance measurements, we investigated whether the actin network regulates the exocytosis of synaptic vesicles at the mouse auditory hair cell. Our results suggest that actin network disruption increases exocytosis and that actin filaments may spatially organize a subfraction of synaptic vesicles with respect to the calcium channels. Significance statement: Inner hair cells (IHCs), the auditory sensory cells of the cochlea, release glutamate onto the afferent auditory nerve fibers to encode sound stimulation. To achieve this task, the IHC relies on the recruitment of glutamate-filled vesicles that can be located in close vicinity to the calcium channels or more remotely from them. The molecular determinants responsible for organizing these vesicle pools are not fully identified. Using pharmacological tools in combination with membrane capacitance measurements, we show that actin filament disruption increases exocytosis in IHCs and that actin filaments most likely position a fraction of vesicles away from the calcium channels. PMID:26791198

  8. Isolation of a 5-Kilodalton Actin-Sequestering Peptide from Human Blood Platelets

    NASA Astrophysics Data System (ADS)

    Safer, Daniel; Golla, Rajasree; Nachmias, Vivianne T.

    1990-04-01

    Resting human platelets contain ≈0.3 mM unpolymerized actin. When freshly drawn and washed platelets are treated with saponin, 85-90% of the unpolymerized actin diffuses out. Analysis by polyacrylamide gel electrophoresis under nondenaturing conditions shows that the bulk of this unpolymerized actin migrates with a higher mobility than does pure G-actin, profilactin, or actin-gelsolin complex. When muscle G-actin is added to fresh or boiled saponin extract, the added muscle actin is shifted to the high-mobility form. The saponin extract contains an acidic peptide having a molecular mass in the range of 5 kDa, which has been purified to homogeneity by reverse-phase HPLC. This peptide also shifts muscle actin to the high-mobility form. Addition of either boiled saponin extract or the purified peptide to muscle G-actin also strongly and stoichiometrically inhibits salt-induced polymerization, as assayed by falling-ball viscometry and by sedimentation. We conclude that this peptide binds to the bulk of the unpolymerized actin in platelets and prevents it from polymerizing.

  9. An associative memory that can form hypotheses: a phase-coded neural network.

    PubMed

    Kunstmann, N; Hillermeier, C; Rabus, B; Tavan, P

    1994-01-01

    Nonlinear associative memories as realized, e.g., by Hopfield nets are characterized by attractor-type dynamics. When fed with a starting pattern, they converge to exactly one of the stored patterns which is supposed to be most similar. These systems cannot render hypotheses of classification, i.e., render several possible answers to a given classification problem. Inspired by von der Malsburg's correlation theory of brain function, we extend conventional neural network architectures by introducing additional dynamical variables. Assuming an oscillatory time structure of neural firing, i.e., the existence of neural clocks, we assign a so-called phase to each formal neuron. The phases explicitly describe detailed correlations of neural activities neglected in conventional neural network architectures. Implementing this extension into a simple self-organizing network based on a feature map, we present an associative memory that actually is capable of forming hypotheses of classification.

  10. Pressure-driven transformation of the ordering in amorphous network-forming materials

    NASA Astrophysics Data System (ADS)

    Zeidler, Anita; Salmon, Philip S.

    2016-06-01

    The pressure-induced changes to the structure of disordered oxide and chalcogenide network-forming materials are investigated on the length scales associated with the first three peaks in measured diffraction patterns. The density dependence of a given peak position does not yield the network dimensionality, in contrast to metallic glasses where the results indicate a fractal geometry with a local dimensionality of ≃5 /2 . For oxides, a common relation is found between the intermediate-range ordering, as described by the position of the first sharp diffraction peak, and the oxygen-packing fraction, a parameter that plays a key role in driving changes to the coordination number of local motifs. The first sharp diffraction peak can therefore be used to gauge when topological changes are likely to occur, events that transform network structures and their related physical properties.

  11. Human Inspired Self-developmental Model of Neural Network (HIM): Introducing Content/Form Computing

    NASA Astrophysics Data System (ADS)

    Krajíček, Jiří

    This paper presents cross-disciplinary research between medical/psychological evidence on human abilities and informatics needs to update current models in computer science to support alternative methods for computation and communication. In [10] we have already proposed hypothesis introducing concept of human information model (HIM) as cooperative system. Here we continue on HIM design in detail. In our design, first we introduce Content/Form computing system which is new principle of present methods in evolutionary computing (genetic algorithms, genetic programming). Then we apply this system on HIM (type of artificial neural network) model as basic network self-developmental paradigm. Main inspiration of our natural/human design comes from well known concept of artificial neural networks, medical/psychological evidence and Sheldrake theory of "Nature as Alive" [22].

  12. Structure, dynamics and multiple length-scales in network-forming materials

    NASA Astrophysics Data System (ADS)

    Wilson, Mark

    2016-07-01

    Relationships between the structural and dynamical properties of network-forming materials are investigated. A generic model is utilised for systems of stoichiometry MX2 which are linked in the sense that they can all be usefully considered as constructed from linked MX4 tetrahedra. A single model parameter (the anion polarizability) is varied systematically to control the mean MXM bond angles (and hence the network topologies). The networks evolve from those dominated by corner-sharing units to those dominated by edge-sharing structural motifs. These changes are accompanied by changes in the characteristic length-scales, with the emergence of ordering on intermediate length-scales. Key dynamical properties (the liquid relaxation just above the melting point and the liquid fragility) are studied and their relationship to the underlying static structure analysed.

  13. Long-range conformational effects of proteolytic removal of the last three residues of actin.

    PubMed Central

    Strzelecka-Gołaszewska, H; Mossakowska, M; Woźniak, A; Moraczewska, J; Nakayama, H

    1995-01-01

    Truncated derivatives of actin devoid of either the last two (actin-2C) or three residues (actin-3C) were used to study the role of the C-terminal segment in the polymerization of actin. The monomer critical concentration and polymerization rate increased in the order: intact actin < actin-2C < actin-3C. Conversely, the rate of hydrolysis of actin-bound ATP during spontaneous polymerization of Mg-actin decreased in the same order, so that, for actin-3C, the ATP hydrolysis significantly lagged behind the polymer growth. Probing the conformation of the nucleotide site in the monomer form by measuring the rates of the bound nucleotide exchange revealed a similar change upon removal of either the two or three residues from the C-terminus. The C-terminal truncation also resulted in a slight decrease in the rate of subtilisin cleavage of monomeric actin within the DNAse-I binding loop, whereas in F-actin subunits the susceptibility of this and of another site within this loop, specifically cleaved by a proteinase from Escherichia coli A2 strain, gradually increased upon sequential removal of the two and of the third residue from the C-terminus. From these and other observations made in this work it has been concluded that perturbation of the C-terminal structure in monomeric actin is transmitted to the cleft, where nucleotide and bivalent cation are bound, and to the DNAse-I binding loop on the top of subdomain 2. Further changes at these sites, observed on the polymer level, seem to result from elimination of the intersubunit contact between the C-terminal residues and the DNAse-I binding loop. It is suggested that formation of this contact plays an essential role in regulating the hydrolysis of actin-bound ATP associated with the polymerization process. Images Figure 5 Figure 6 Figure 8 PMID:7733893

  14. Distribution of actin of the human erythrocyte membrane cytoskeleton after interaction with radiographic contrast media.

    PubMed

    Franke, R P; Scharnweber, T; Fuhrmann, R; Krüger, A; Wenzel, F; Mrowietz, C; Jung, F

    2013-01-01

    A type-dependent chemotoxic effect of radiographic contrast media on erythrocytes and endothelial cells was reported several times. While mechanisms of toxicity are still unclear the cellular reactions e.g. echinocyte formation in erythrocytes and the buckling of endothelial cells coincided with deterioration of capillary perfusion (in patients with coronary artery disease) and tissue oxygen tension (in the myocardium of pigs). Whether the shape changes in erythrocytes coincide with changes in the arrangement of actin, the core of the actin-spectrin cytoskeletal network and possible actor in membrane stresses and deformation is not known until now. To get specific informations actin was stained using two different staining methods (antibodies to β-actin staining oligomeric G-actin and polymeric F-actin and Phalloidin-Rhodamin staining polymeric F-actin only). In addition, an advanced version of confocal laser scanning microscopes was used enabling the display of the actin arrangement near substrate surfaces. Blood smears were produced after erythrocyte suspension in autologous plasma or in two different plasma/RCM mixtures. In this study an even homogenous distribution of fine grained globular actin in the normal human erythrocyte could be demonstrated. After suspension of erythrocytes in a plasma/Iodixanol mixture an increased number of membrane protrusions appeared densely filled with intensely stained actin similar to cells suspended in autologous plasma, however, there in less numbers. Suspension in Iopromide, in contrast, induced a complete reorganization of the cytoskeletal actin: the fine grained globular actin distribution disappeared and only few, long and thick actin filaments bundled and possibly polymerized appeared, instead, shown here for the first time.

  15. Three's company: the fission yeast actin cytoskeleton.

    PubMed

    Kovar, David R; Sirotkin, Vladimir; Lord, Matthew

    2011-03-01

    How the actin cytoskeleton assembles into different structures to drive diverse cellular processes is a fundamental cell biological question. In addition to orchestrating the appropriate combination of regulators and actin-binding proteins, different actin-based structures must insulate themselves from one another to maintain specificity within a crowded cytoplasm. Actin specification is particularly challenging in complex eukaryotes where a multitude of protein isoforms and actin structures operate within the same cell. Fission yeast Schizosaccharomyces pombe possesses a single actin isoform that functions in three distinct structures throughout the cell cycle. In this review we explore recent studies in fission yeast that help unravel how different actin structures operate in cells.

  16. F-actin distribution and function during sexual development in Eimeria maxima.

    PubMed

    Frölich, Sonja; Wallach, Michael

    2015-06-01

    To determine the involvement of the actin cytoskeleton in macrogametocyte growth and oocyst wall formation, freshly purified macrogametocytes and oocysts were stained with Oregon Green 514 conjugated phalloidin to visualize F-actin microfilaments, while Evans blue staining was used to detect type 1 wall forming bodies (WFB1s) and the outer oocyst wall. The double-labelled parasites were then analysed at various stages of sexual development using three-dimensional confocal microscopy. The results showed F-actin filaments were distributed throughout the entire cytoplasm of mature Eimeria maxima macrogametocytes forming a web-like meshwork of actin filaments linking the type 1 WFBs together into structures resembling 'beads on a string'. At the early stages of oocyst wall formation, F-actin localization changed in alignment with the egg-shaped morphology of the forming oocysts with F-actin microfilaments making direct contact with the WFB1s. In tissue oocysts, the labelled actin cytoskeleton was situated underneath the forming outer layer of the oocyst wall. Treatment of macrogametocytes in vitro with the actin depolymerizing agents, Cytochalasin D and Latrunculin, led to a reduction in the numbers of mature WFB1s in the cytoplasm of the developing macrogametocytes, indicating that the actin plays an important role in WFB1 transport and oocyst wall formation in E. maxima.

  17. Allosteric regulation by cooperative conformational changes of actin filaments drives mutually exclusive binding with cofilin and myosin

    PubMed Central

    Ngo, Kien Xuan; Umeki, Nobuhisa; Kijima, Saku T.; Kodera, Noriyuki; Ueno, Hiroaki; Furutani-Umezu, Nozomi; Nakajima, Jun; Noguchi, Taro Q. P.; Nagasaki, Akira; Tokuraku, Kiyotaka; Uyeda, Taro Q. P.

    2016-01-01

    Heavy meromyosin (HMM) of myosin II and cofilin each binds to actin filaments cooperatively and forms clusters along the filaments, but it is unknown whether the two cooperative bindings are correlated and what physiological roles they have. Fluorescence microscopy demonstrated that HMM-GFP and cofilin-mCherry each bound cooperatively to different parts of actin filaments when they were added simultaneously in 0.2 μM ATP, indicating that the two cooperative bindings are mutually exclusive. In 0.1 mM ATP, the motor domain of myosin (S1) strongly inhibited the formation of cofilin clusters along actin filaments. Under this condition, most actin protomers were unoccupied by S1 at any given moment, suggesting that transiently bound S1 alters the structure of actin filaments cooperatively and/or persistently to inhibit cofilin binding. Consistently, cosedimentation experiments using copolymers of actin and actin-S1 fusion protein demonstrated that the fusion protein affects the neighboring actin protomers, reducing their affinity for cofilin. In reciprocal experiments, cofilin-actin fusion protein reduced the affinity of neighboring actin protomers for S1. Thus, allosteric regulation by cooperative conformational changes of actin filaments contributes to mutually exclusive cooperative binding of myosin II and cofilin to actin filaments, and presumably to the differential localization of both proteins in cells. PMID:27762277

  18. Feeling for Filaments: Quantification of the Cortical Actin Web in Live Vascular Endothelium

    PubMed Central

    Kronlage, Cornelius; Schäfer-Herte, Marco; Böning, Daniel; Oberleithner, Hans; Fels, Johannes

    2015-01-01

    Contact-mode atomic force microscopy (AFM) has been shown to reveal cortical actin structures. Using live endothelial cells, we visualized cortical actin dynamics simultaneously by AFM and confocal fluorescence microscopy. We present a method that quantifies dynamic changes in the mechanical ultrastructure of the cortical actin web. We argue that the commonly used, so-called error signal imaging in AFM allows a qualitative, but not quantitative, analysis of cortical actin dynamics. The approach we used comprises fast force-curve-based topography imaging and subsequent image processing that enhances local height differences. Dynamic changes in the organization of the cytoskeleton network can be observed and quantified by surface roughness calculations and automated morphometrics. Upon treatment with low concentrations of the actin-destabilizing agent cytochalasin D, the cortical cytoskeleton network is thinned out and the average mesh size increases. In contrast, jasplakinolide, a drug that enhances actin polymerization, consolidates the cytoskeleton network and reduces the average mesh area. In conclusion, cortical actin dynamics can be quantified in live cells. To our knowledge, this opens a new pathway for conducting quantitative structure-function analyses of the endothelial actin web just beneath the apical plasma membrane. PMID:26287621

  19. Feeling for Filaments: Quantification of the Cortical Actin Web in Live Vascular Endothelium.

    PubMed

    Kronlage, Cornelius; Schäfer-Herte, Marco; Böning, Daniel; Oberleithner, Hans; Fels, Johannes

    2015-08-18

    Contact-mode atomic force microscopy (AFM) has been shown to reveal cortical actin structures. Using live endothelial cells, we visualized cortical actin dynamics simultaneously by AFM and confocal fluorescence microscopy. We present a method that quantifies dynamic changes in the mechanical ultrastructure of the cortical actin web. We argue that the commonly used, so-called error signal imaging in AFM allows a qualitative, but not quantitative, analysis of cortical actin dynamics. The approach we used comprises fast force-curve-based topography imaging and subsequent image processing that enhances local height differences. Dynamic changes in the organization of the cytoskeleton network can be observed and quantified by surface roughness calculations and automated morphometrics. Upon treatment with low concentrations of the actin-destabilizing agent cytochalasin D, the cortical cytoskeleton network is thinned out and the average mesh size increases. In contrast, jasplakinolide, a drug that enhances actin polymerization, consolidates the cytoskeleton network and reduces the average mesh area. In conclusion, cortical actin dynamics can be quantified in live cells. To our knowledge, this opens a new pathway for conducting quantitative structure-function analyses of the endothelial actin web just beneath the apical plasma membrane.

  20. Structural insights into de novo actin polymerization

    PubMed Central

    Dominguez, Roberto

    2010-01-01

    Summary Many cellular functions depend on rapid and localized actin polymerization/depolymerization. Yet, the de novo polymerization of actin in cells is kinetically unfavorable because of the instability of polymerization intermediates (small actin oligomers) and the actions of actin monomer binding proteins. Cells use filament nucleation and elongation factors to initiate and sustain polymerization. Structural biology is beginning to shed light on the diverse mechanisms by which these unrelated proteins initiate polymerization, undergo regulation, and mediate the transition of monomeric actin onto actin filaments. A prominent role is played by the W domain, which in some of these proteins occurs in tandem repeats that recruit multiple actin subunits. Pro-rich regions are also abundant and mediate the binding of profilin-actin complexes, which are the main source of polymerization competent actin in cells. Filament nucleation and elongation factors frequently interact with Rho family GTPases, which relay signals from membrane receptors to regulate actin cytoskeleton remodeling. PMID:20096561

  1. Computational Tension Mapping of Adherent Cells Based on Actin Imaging

    PubMed Central

    Manifacier, Ian; Milan, Jean-Louis; Jeanneau, Charlotte; Chmilewsky, Fanny; Chabrand, Patrick; About, Imad

    2016-01-01

    Forces transiting through the cytoskeleton are known to play a role in adherent cell activity. Up to now few approaches haves been able to determine theses intracellular forces. We thus developed a computational mechanical model based on a reconstruction of the cytoskeleton of an adherent cell from fluorescence staining of the actin network and focal adhesions (FA). Our custom made algorithm converted the 2D image of an actin network into a map of contractile interactions inside a 2D node grid, each node representing a group of pixels. We assumed that actin filaments observed under fluorescence microscopy, appear brighter when thicker, we thus presumed that nodes corresponding to pixels with higher actin density were linked by stiffer interactions. This enabled us to create a system of heterogeneous interactions which represent the spatial organization of the contractile actin network. The contractility of this interaction system was then adapted to match the level of force the cell truly exerted on focal adhesions; forces on focal adhesions were estimated from their vinculin expressed size. This enabled the model to compute consistent mechanical forces transiting throughout the cell. After computation, we applied a graphical approach on the original actin image, which enabled us to calculate tension forces throughout the cell, or in a particular region or even in single stress fibers. It also enabled us to study different scenarios which may indicate the mechanical role of other cytoskeletal components such as microtubules. For instance, our results stated that the ratio between intra and extra cellular compression is inversely proportional to intracellular tension. PMID:26812601

  2. In Vivo Imaging and Characterization of Actin Microridges

    PubMed Central

    Lam, Pui-ying; Mangos, Steve; Green, Julie M.; Reiser, Jochen; Huttenlocher, Anna

    2015-01-01

    Actin microridges form labyrinth like patterns on superficial epithelial cells across animal species. This highly organized assembly has been implicated in mucus retention and in the mechanical structure of mucosal surfaces, however the mechanisms that regulate actin microridges remain largely unknown. Here we characterize the composition and dynamics of actin microridges on the surface of zebrafish larvae using live imaging. Microridges contain phospho-tyrosine, cortactin and VASP, but not focal adhesion kinase. Time-lapse imaging reveals dynamic changes in the length and branching of microridges in intact animals. Transient perturbation of the microridge pattern occurs before cell division with rapid re-assembly during and after cytokinesis. Microridge assembly is maintained with constitutive activation of Rho or inhibition of myosin II activity. However, expression of dominant negative RhoA or Rac alters microridge organization, with an increase in distance between microridges. Latrunculin A treatment and photoconversion experiments suggest that the F-actin filaments are actively treadmilling in microridges. Accordingly, inhibition of Arp2/3 or PI3K signaling impairs microridge structure and length. Taken together, actin microridges in zebrafish represent a tractable in vivo model to probe pattern formation and dissect Arp2/3-mediated actin dynamics in vivo. PMID:25629723

  3. Actin Is Involved in Auxin-Dependent Patterning1

    PubMed Central

    Maisch, Jan; Nick, Peter

    2007-01-01

    Polar transport of auxin has been identified as a central element of pattern formation. The polarity of auxin transport is linked to the cycling of pin-formed proteins, a process that is related to actomyosin-dependent vesicle traffic. To get insight into the role of actin for auxin transport, we used patterned cell division to monitor the polarity of auxin fluxes. We show that cell division in the tobacco (Nicotiana tabacum L. cv Bright-Yellow 2) cell line is partially synchronized and that this synchrony can be perturbed by inhibition of auxin transport by 1-N-naphthylphthalamic acid. To address the role of actin in this synchrony, we induced a bundled configuration of actin by overexpressing mouse talin. The bundling of actin impairs the synchrony of cell division and increases the sensitivity to 1-N-naphthylphthalamic acid. Addition of the polarly transported auxins indole-3-acetic acid and 1-naphthyl acetic acid (but not 2,4-dichlorophenoxyacetic acid) restored both the normal organization of actin and the synchrony of cell division. This study suggests that auxin controls its own transport by changing the state of actin filaments. PMID:17337532

  4. Actin is involved in auxin-dependent patterning.

    PubMed

    Maisch, Jan; Nick, Peter

    2007-04-01

    Polar transport of auxin has been identified as a central element of pattern formation. The polarity of auxin transport is linked to the cycling of pin-formed proteins, a process that is related to actomyosin-dependent vesicle traffic. To get insight into the role of actin for auxin transport, we used patterned cell division to monitor the polarity of auxin fluxes. We show that cell division in the tobacco (Nicotiana tabacum L. cv Bright-Yellow 2) cell line is partially synchronized and that this synchrony can be perturbed by inhibition of auxin transport by 1-N-naphthylphthalamic acid. To address the role of actin in this synchrony, we induced a bundled configuration of actin by overexpressing mouse talin. The bundling of actin impairs the synchrony of cell division and increases the sensitivity to 1-N-naphthylphthalamic acid. Addition of the polarly transported auxins indole-3-acetic acid and 1-naphthyl acetic acid (but not 2,4-dichlorophenoxyacetic acid) restored both the normal organization of actin and the synchrony of cell division. This study suggests that auxin controls its own transport by changing the state of actin filaments.

  5. Stable Force Balance between Epithelial Cells Arises from F-Actin Turnover.

    PubMed

    Jodoin, Jeanne N; Coravos, Jonathan S; Chanet, Soline; Vasquez, Claudia G; Tworoger, Michael; Kingston, Elena R; Perkins, Lizabeth A; Perrimon, Norbert; Martin, Adam C

    2015-12-21

    The propagation of force in epithelial tissues requires that the contractile cytoskeletal machinery be stably connected between cells through E-cadherin-containing adherens junctions. In many epithelial tissues, the cells' contractile network is positioned at a distance from the junction. However, the mechanism or mechanisms that connect the contractile networks to the adherens junctions, and thus mechanically connect neighboring cells, are poorly understood. Here, we identified the role for F-actin turnover in regulating the contractile cytoskeletal network's attachment to adherens junctions. Perturbing F-actin turnover via gene depletion or acute drug treatments that slow F-actin turnover destabilized the attachment between the contractile actomyosin network and adherens junctions. Our work identifies a critical role for F-actin turnover in connecting actomyosin to intercellular junctions, defining a dynamic process required for the stability of force balance across intercellular contacts in tissues.

  6. Polymerization of Actin from Maize Pollen.

    PubMed Central

    Yen, L. F.; Liu, X.; Cai, S.

    1995-01-01

    Here we describe the in vitro polymerization of actin from maize (Zea mays) pollen. The purified actin from maize pollen reported in our previous paper (X. Liu, L.F. Yen [1992] Plant Physiol 99: 1151-1155) is biologically active. In the presence of ATP, KCl, and MgCl2 the purified pollen actin polymerized into filaments. During polymerization the spectra of absorbance at 232 nm increased gradually. Polymerization of pollen actin was evidently accompanied by an increase in viscosity of the pollen actin solution. Also, the specific viscosity of pollen F-actin increased in a concentration-dependent manner. The ultraviolet difference spectrum of pollen actin is very similar to that of rabbit muscle actin. The activity of myosin ATPase from rabbit muscle was activated 7-fold by the polymerized pollen actin (F-actin). The actin filaments were visualized under the electron microscope as doubly wound strands of 7 nm diameter. If cytochalasin B was added before staining, no actin filaments were observed. When actin filaments were treated with rabbit heavy meromyosin, the actin filaments were decorated with an arrowhead structure. These results imply that there is much similarity between pollen and muscle actin. PMID:12228343

  7. Modulation of the extracellular matrix patterning of thrombospondins by actin dynamics and thrombospondin oligomer state

    PubMed Central

    Hellewell, Andrew L.; Gong, Xianyun; Schärich, Karsten; Christofidou, Elena D.; Adams, Josephine C.

    2015-01-01

    Thrombospondins (TSPs) are evolutionarily-conserved, secreted glycoproteins that interact with cell surfaces and extracellular matrix (ECM) and have complex roles in cell interactions. Unlike the structural components of the ECM that form networks or fibrils, TSPs are deposited into ECM as arrays of nanoscale puncta. The cellular and molecular mechanisms for the patterning of TSPs in ECM are poorly understood. In the present study, we investigated whether the mechanisms of TSP patterning in cell-derived ECM involves actin cytoskeletal pathways or TSP oligomer state. From tests of a suite of pharmacological inhibitors of small GTPases, actomyosin-based contractility, or actin microfilament integrity and dynamics, cytochalasin D and jasplakinolide treatment of cells were identified to result in altered ECM patterning of a model TSP1 trimer. The strong effect of cytochalasin D indicated that mechanisms controlling puncta patterning depend on global F-actin dynamics. Similar spatial changes were obtained with endogenous TSPs after cytochalasin D treatment, implicating physiological relevance. Under matched experimental conditions with ectopically-expressed TSPs, the magnitude of the effect was markedly lower for pentameric TSP5 and Drosophila TSP, than for trimeric TSP1 or dimeric Ciona TSPA. To distinguish between the variables of protein sequence or oligomer state, we generated novel, chimeric pentamers of TSP1. These proteins accumulated within ECM at higher levels than TSP1 trimers, yet the effect of cytochalasin D on the spatial distribution of puncta was reduced. These findings introduce a novel concept that F-actin dynamics modulate the patterning of TSPs in ECM and that TSP oligomer state is a key determinant of this process. PMID:26182380

  8. Meiotic chromosomes move by linkage to dynamic actin cables with transduction of force through the nuclear envelope.

    PubMed

    Koszul, R; Kim, K P; Prentiss, M; Kleckner, N; Kameoka, S

    2008-06-27

    Chromosome movement is prominent during meiosis. Here, using a combination of in vitro and in vivo approaches, we elucidate the basis for dynamic mid-prophase telomere-led chromosome motion in budding yeast. Diverse findings reveal a process in which, at the pachytene stage, individual telomere/nuclear envelope (NE) ensembles attach passively to, and then move in concert with, nucleus-hugging actin cables that are continuous with the global cytoskeletal actin network. Other chromosomes move in concert with lead chromosome(s). The same process, in modulated form, explains the zygotene "bouquet" configuration in which, immediately preceding pachytene, chromosome ends colocalize dynamically in a restricted region of the NE. Mechanical properties of the system and biological roles of mid-prophase movement for meiosis, including recombination, are discussed. PMID:18585353

  9. γ-Actin is required for cytoskeletal maintenance but not development

    PubMed Central

    Belyantseva, Inna A.; Perrin, Benjamin J.; Sonnemann, Kevin J.; Zhu, Mei; Stepanyan, Ruben; McGee, JoAnn; Frolenkov, Gregory I.; Walsh, Edward J.; Friderici, Karen H.; Friedman, Thomas B.; Ervasti, James M.

    2009-01-01

    βcyto-Actin and γcyto-actin are ubiquitous proteins thought to be essential building blocks of the cytoskeleton in all non-muscle cells. Despite this widely held supposition, we show that γcyto-actin null mice (Actg1−/−) are viable. However, they suffer increased mortality and show progressive hearing loss during adulthood despite compensatory up-regulation of βcyto-actin. The surprising viability and normal hearing of young Actg1−/− mice means that βcyto-actin can likely build all essential non-muscle actin-based cytoskeletal structures including mechanosensory stereocilia of hair cells that are necessary for hearing. Although γcyto-actin–deficient stereocilia form normally, we found that they cannot maintain the integrity of the stereocilia actin core. In the wild-type, γcyto-actin localizes along the length of stereocilia but re-distributes to sites of F-actin core disruptions resulting from animal exposure to damaging noise. In Actg1−/− stereocilia similar disruptions are observed even without noise exposure. We conclude that γcyto-actin is required for reinforcement and long-term stability of F-actin–based structures but is not an essential building block of the developing cytoskeleton. PMID:19497859

  10. Actin and myosin regulate cytoplasm stiffness in plant cells: a study using optical tweezers.

    PubMed

    van der Honing, Hannie S; de Ruijter, Norbert C A; Emons, Anne Mie C; Ketelaar, Tijs

    2010-01-01

    Here, we produced cytoplasmic protrusions with optical tweezers in mature BY-2 suspension cultured cells to study the parameters involved in the movement of actin filaments during changes in cytoplasmic organization and to determine whether stiffness is an actin-related property of plant cytoplasm. Optical tweezers were used to create cytoplasmic protrusions resembling cytoplasmic strands. Simultaneously, the behavior of the actin cytoskeleton was imaged. After actin filament depolymerization, less force was needed to create cytoplasmic protrusions. During treatment with the myosin ATPase inhibitor 2,3-butanedione monoxime, more trapping force was needed to create and maintain cytoplasmic protrusions. Thus, the presence of actin filaments and, even more so, the deactivation of a 2,3-butanedione monoxime-sensitive factor, probably myosin, stiffens the cytoplasm. During 2,3-butanedione monoxime treatment, none of the tweezer-formed protrusions contained filamentous actin, showing that a 2,3-butanedione monoxime-sensitive factor, probably myosin, is responsible for the movement of actin filaments, and implying that myosin serves as a static cross-linker of actin filaments when its motor function is inhibited. The presence of actin filaments does not delay the collapse of cytoplasmic protrusions after tweezer release. Myosin-based reorganization of the existing actin cytoskeleton could be the basis for new cytoplasmic strand formation, and thus the production of an organized cytoarchitecture.

  11. Ubiquitin ligase TRIM3 controls hippocampal plasticity and learning by regulating synaptic γ-actin levels.

    PubMed

    Schreiber, Joerg; Végh, Marlene J; Dawitz, Julia; Kroon, Tim; Loos, Maarten; Labonté, Dorthe; Li, Ka Wan; Van Nierop, Pim; Van Diepen, Michiel T; De Zeeuw, Chris I; Kneussel, Matthias; Meredith, Rhiannon M; Smit, August B; Van Kesteren, Ronald E

    2015-11-01

    Synaptic plasticity requires remodeling of the actin cytoskeleton. Although two actin isoforms, β- and γ-actin, are expressed in dendritic spines, the specific contribution of γ-actin in the expression of synaptic plasticity is unknown. We show that synaptic γ-actin levels are regulated by the E3 ubiquitin ligase TRIM3. TRIM3 protein and Actg1 transcript are colocalized in messenger ribonucleoprotein granules responsible for the dendritic targeting of messenger RNAs. TRIM3 polyubiquitylates γ-actin, most likely cotranslationally at synaptic sites. Trim3(-/-) mice consequently have increased levels of γ-actin at hippocampal synapses, resulting in higher spine densities, increased long-term potentiation, and enhanced short-term contextual fear memory consolidation. Interestingly, hippocampal deletion of Actg1 caused an increase in long-term fear memory. Collectively, our findings suggest that temporal control of γ-actin levels by TRIM3 is required to regulate the timing of hippocampal plasticity. We propose a model in which TRIM3 regulates synaptic γ-actin turnover and actin filament stability and thus forms a transient inhibitory constraint on the expression of hippocampal synaptic plasticity. PMID:26527743

  12. Whole Cell Model of Actin Diffusion and Reaction based on Single Molecule Speckle Microscopy Measurements

    NASA Astrophysics Data System (ADS)

    McMillen, Laura; Vavylonis, Dimitrios; Vavylonis Group Team

    It is debated whether transport of actin across the cell by diffusion alone is sufficiently fast to account for the rapid reorganization of actin filaments at the leading edge of motile cells. In order to investigate this question, we created a 3D model of the whole cell that includes reaction and diffusion of actin using a particle Monte Carlo method. For the lamellipodium of the simulated cell we use the model by Smith et al. Biophys. J 104:247 (2013), which includes two diffuse pools of actin, one which is slowly diffusing and the other which diffuses more quickly, as well as a pool of filamentous actin undergoing retrograde flow towards the cell center. We adjusted this model to fit a circular geometry around the whole cell. We also consider actin in the cell center which is either diffusing or in stationary filamentous form, representing cortical actin or actin in stress fibers. The local rates of polymerization and the lifetime distributions of polymerized actin were estimated from single molecule speckle microscopy experiments by the group of N. Watanabe. With this model we are able to simulate prior experiments that monitored the redistribution of actin after photoactivation or fluorescence recovery after photobleaching in various parts of the cell. We find that transport by diffusion is sufficient to fit these data, without the need for an active transport mechanism, however significant concentration gradients may develop at steady state.

  13. Ubiquitin ligase TRIM3 controls hippocampal plasticity and learning by regulating synaptic γ-actin levels

    PubMed Central

    Schreiber, Joerg; Végh, Marlene J.; Dawitz, Julia; Kroon, Tim; Loos, Maarten; Labonté, Dorthe; Li, Ka Wan; Van Nierop, Pim; Van Diepen, Michiel T.; De Zeeuw, Chris I.; Kneussel, Matthias; Meredith, Rhiannon M.; Smit, August B.

    2015-01-01

    Synaptic plasticity requires remodeling of the actin cytoskeleton. Although two actin isoforms, β- and γ-actin, are expressed in dendritic spines, the specific contribution of γ-actin in the expression of synaptic plasticity is unknown. We show that synaptic γ-actin levels are regulated by the E3 ubiquitin ligase TRIM3. TRIM3 protein and Actg1 transcript are colocalized in messenger ribonucleoprotein granules responsible for the dendritic targeting of messenger RNAs. TRIM3 polyubiquitylates γ-actin, most likely cotranslationally at synaptic sites. Trim3−/− mice consequently have increased levels of γ-actin at hippocampal synapses, resulting in higher spine densities, increased long-term potentiation, and enhanced short-term contextual fear memory consolidation. Interestingly, hippocampal deletion of Actg1 caused an increase in long-term fear memory. Collectively, our findings suggest that temporal control of γ-actin levels by TRIM3 is required to regulate the timing of hippocampal plasticity. We propose a model in which TRIM3 regulates synaptic γ-actin turnover and actin filament stability and thus forms a transient inhibitory constraint on the expression of hippocampal synaptic plasticity. PMID:26527743

  14. Ha-VP39 binding to actin and the influence of F-actin on assembly of progeny virions.

    PubMed

    Lu, S; Ge, G; Qi, Y

    2004-11-01

    We present evidence that actin is necessary for the successful assembly of HaNPV virions. Purified nucleocapsid protein Ha-VP39 of Heliothis armigera nuclear polyhedrosis virus (HaNPV) was found to be able to bind to actin in vitro without assistance, as demonstrated by Western blot and isothermal titration calorimeter. DeltaH and binding constants (K) detected by isothermal titration calorimeter strongly suggested that Ha-VP39 first binds actin to seed the formation of hexamer complex of actin, and the hexamers then link to each other to form filaments, and the filaments finally twist into cable structures. The proliferation of HaNPV was completely inhibited in Hz-AM1 cells cultivated in the medium containing 0.5 microg/ml cytochalasin D (CD) to prevent polymerization of actin, while its yield was reduced to 10(-4) in the presence of 0.1 microg/ml CD. Actin concentration and the viral DNA synthesis were not significantly affected by CD even though the progeny virions assembled in the CD treated cells were morphologically different from normal ones and resulted in fewer plaques in plaque assay.

  15. Interneurons and oligodendrocyte progenitors form a structured synaptic network in the developing neocortex

    PubMed Central

    Orduz, David; Maldonado, Paloma P; Balia, Maddalena; Vélez-Fort, Mateo; de Sars, Vincent; Yanagawa, Yuchio; Emiliani, Valentina; Angulo, Maria Cecilia

    2015-01-01

    NG2 cells, oligodendrocyte progenitors, receive a major synaptic input from interneurons in the developing neocortex. It is presumed that these precursors integrate cortical networks where they act as sensors of neuronal activity. We show that NG2 cells of the developing somatosensory cortex form a transient and structured synaptic network with interneurons that follows its own rules of connectivity. Fast-spiking interneurons, highly connected to NG2 cells, target proximal subcellular domains containing GABAA receptors with γ2 subunits. Conversely, non-fast-spiking interneurons, poorly connected with these progenitors, target distal sites lacking this subunit. In the network, interneuron-NG2 cell connectivity maps exhibit a local spatial arrangement reflecting innervation only by the nearest interneurons. This microcircuit architecture shows a connectivity peak at PN10, coinciding with a switch to massive oligodendrocyte differentiation. Hence, GABAergic innervation of NG2 cells is temporally and spatially regulated from the subcellular to the network level in coordination with the onset of oligodendrogenesis. DOI: http://dx.doi.org/10.7554/eLife.06953.001 PMID:25902404

  16. A Two-step Mechanism for the Folding of Actin by the Yeast Cytosolic Chaperonin

    PubMed Central

    Stuart, Sarah F.; Leatherbarrow, Robin J.; Willison, Keith R.

    2011-01-01

    Actin requires the chaperonin containing TCP1 (CCT), a hexadecameric ATPase essential for cell viability in eukaryotes, to fold to its native state. Following binding of unfolded actin to CCT, the cavity of the chaperone closes and actin is folded and released in an ATP-dependent folding cycle. In yeast, CCT forms a ternary complex with the phosducin-like protein PLP2p to fold actin, and together they can return nascent or chemically denatured actin to its native state in a pure in vitro folding assay. The complexity of the CCT-actin system makes the study of the actin folding mechanism technically challenging. We have established a novel spectroscopic assay through selectively labeling the C terminus of yeast actin with acrylodan and observe significant changes in the acrylodan fluorescence emission spectrum as actin is chemically unfolded and then refolded by the chaperonin. The variation in the polarity of the environment surrounding the fluorescent probe during the unfolding/folding processes has allowed us to monitor actin as it folds on CCT. The rate of actin folding at a range of temperatures and ATP concentrations has been determined for both wild type CCT and a mutant CCT, CCT4anc2, defective in folding actin in vivo. Binding of the non-hydrolysable ATP analog adenosine 5′-(β,γ-imino)triphosphate to the ternary complex leads to 3-fold faster release of actin from CCT following addition of ATP, suggesting a two-step folding process with a conformational change occurring upon closure of the cavity and a subsequent final folding step involving packing of the C terminus to the native-like state. PMID:21056978

  17. The Formin Diaphanous Regulates Myoblast Fusion through Actin Polymerization and Arp2/3 Regulation.

    PubMed

    Deng, Su; Bothe, Ingo; Baylies, Mary K

    2015-08-01

    The formation of multinucleated muscle cells through cell-cell fusion is a conserved process from fruit flies to humans. Numerous studies have shown the importance of Arp2/3, its regulators, and branched actin for the formation of an actin structure, the F-actin focus, at the fusion site. This F-actin focus forms the core of an invasive podosome-like structure that is required for myoblast fusion. In this study, we find that the formin Diaphanous (Dia), which nucleates and facilitates the elongation of actin filaments, is essential for Drosophila myoblast fusion. Following cell recognition and adhesion, Dia is enriched at the myoblast fusion site, concomitant with, and having the same dynamics as, the F-actin focus. Through analysis of Dia loss-of-function conditions using mutant alleles but particularly a dominant negative Dia transgene, we demonstrate that reduction in Dia activity in myoblasts leads to a fusion block. Significantly, no actin focus is detected, and neither branched actin regulators, SCAR or WASp, accumulate at the fusion site when Dia levels are reduced. Expression of constitutively active Dia also causes a fusion block that is associated with an increase in highly dynamic filopodia, altered actin turnover rates and F-actin distribution, and mislocalization of SCAR and WASp at the fusion site. Together our data indicate that Dia plays two roles during invasive podosome formation at the fusion site: it dictates the level of linear F-actin polymerization, and it is required for appropriate branched actin polymerization via localization of SCAR and WASp. These studies provide new insight to the mechanisms of cell-cell fusion, the relationship between different regulators of actin polymerization, and invasive podosome formation that occurs in normal development and in disease.

  18. The effect of mouse twinfilin-1 on the structure and dynamics of monomeric actin.

    PubMed

    Takács-Kollár, Veronika; Nyitrai, Miklós; Hild, Gábor

    2016-07-01

    The effect of twinfilin-1 on the structure and dynamics of monomeric actin was investigated with fluorescence spectroscopy and differential scanning calorimetry experiments. Fluorescence anisotropy measurements proved that G-actin and twinfilin-1 could form a complex. Due to the formation of the complexes the dissociation of the nucleotide slowed down from the nucleotide-binding pocket of actin. Fluorescence quenching experiments showed that the accessibility of the actin bound ε-ATP decreased in the presence of twinfilin-1. Temperature dependent fluorescence resonance energy transfer and differential scanning calorimetry experiments revealed that the protein matrix of actin becomes more rigid and more heat resistant in the presence of twinfilin-1. The results suggest that the nucleotide binding cleft shifted into a more closed and stable conformational state of actin in the presence of twinfilin-1. PMID:27079635

  19. AFAP-1L1-mediated actin filaments crosslinks hinder Trypanosoma cruzi cell invasion and intracellular multiplication.

    PubMed

    de Araújo, Karine Canuto Loureiro; Teixeira, Thaise Lara; Machado, Fabrício Castro; da Silva, Aline Alves; Quintal, Amanda Pifano Neto; da Silva, Claudio Vieira

    2016-10-01

    Host actin cytoskeleton polymerization has been shown to play an important role during Trypanosoma cruzi internalization into mammalian cell. The structure and dynamics of the actin cytoskeleton in cells are regulated by a vast number of actin-binding proteins. Here we aimed to verify the impact of AFAP-1L1, during invasion and multiplication of T. cruzi. Knocking-down AFAP-1L1 increased parasite cell invasion and intracellular multiplication. Thus, we have shown that the integrity of the machinery formed by AFAP-1L1 in actin cytoskeleton polymerization is important to hinder parasite infection.

  20. Aggregation of f-actin in olfactory glomeruli: a common feature of glomeruli across phyla.

    PubMed

    Rössler, Wolfgang; Kuduz, Josko; Schürmann, Friedrich W; Schild, Detlev

    2002-11-01

    Using fluorophore-conjugated phalloidin, we show that filamentous (F)-actin is strongly aggregated in olfactory glomeruli within primary olfactory centers of vertebrates and insects. Our comparative study demonstrates that aggregation of F-actin is a common feature of glomeruli across phyla, and is independent of glomerular architecture and/or the presence or absence of cellular borders around glomeruli formed by neurons or glial cells. The distribution of F-actin in axonal and dendritic compartments within glomeruli, however, appears different between vertebrates and insects. The potential role of the actin-based cytoskeleton in synaptic and structural plasticity within glomeruli is discussed. PMID:12438205

  1. Technical advance: identification of plant actin-binding proteins by F-actin affinity chromatography

    NASA Technical Reports Server (NTRS)

    Hu, S.; Brady, S. R.; Kovar, D. R.; Staiger, C. J.; Clark, G. B.; Roux, S. J.; Muday, G. K.

    2000-01-01

    Proteins that interact with the actin cytoskeleton often modulate the dynamics or organization of the cytoskeleton or use the cytoskeleton to control their localization. In plants, very few actin-binding proteins have been identified and most are thought to modulate cytoskeleton function. To identify actin-binding proteins that are unique to plants, the development of new biochemical procedures will be critical. Affinity columns using actin monomers (globular actin, G-actin) or actin filaments (filamentous actin, F-actin) have been used to identify actin-binding proteins from a wide variety of organisms. Monomeric actin from zucchini (Cucurbita pepo L.) hypocotyl tissue was purified to electrophoretic homogeneity and shown to be native and competent for polymerization to actin filaments. G-actin, F-actin and bovine serum albumin affinity columns were prepared and used to separate samples enriched in either soluble or membrane-associated actin-binding proteins. Extracts of soluble actin-binding proteins yield distinct patterns when eluted from the G-actin and F-actin columns, respectively, leading to the identification of a putative F-actin-binding protein of approximately 40 kDa. When plasma membrane-associated proteins were applied to these columns, two abundant polypeptides eluted selectively from the F-actin column and cross-reacted with antiserum against pea annexins. Additionally, a protein that binds auxin transport inhibitors, the naphthylphthalamic acid binding protein, which has been previously suggested to associate with the actin cytoskeleton, was eluted in a single peak from the F-actin column. These experiments provide a new approach that may help to identify novel actin-binding proteins from plants.

  2. An interconnected network of core-forming melts produced by shear deformation

    PubMed

    Bruhn; Groebner; Kohlstedt

    2000-02-24

    The formation mechanism of terrestrial planetary cores is still poorly understood, and has been the subject of numerous experimental studies. Several mechanisms have been proposed by which metal--mainly iron with some nickel--could have been extracted from a silicate mantle to form the core. Most recent models involve gravitational sinking of molten metal or metal sulphide through a partially or fully molten mantle that is often referred to as a 'magma ocean'. Alternative models invoke percolation of molten metal along an interconnected network (that is, porous flow) through a solid silicate matrix. But experimental studies performed at high pressures have shown that, under hydrostatic conditions, these melts do not form an interconnected network, leading to the widespread assumption that formation of metallic cores requires a magma ocean. In contrast, here we present experiments which demonstrate that shear deformation to large strains can interconnect a significant fraction of initially isolated pockets of metal and metal sulphide melts in a solid matrix of polycrystalline olivine. Therefore, in a dynamic (non-hydrostatic) environment, percolation remains a viable mechanism for the segregation and migration of core-forming melts in a solid silicate mantle. PMID:10706283

  3. An Interconnected Network of Core-Forming Melts Produced by Shear Deformation

    NASA Technical Reports Server (NTRS)

    Bruhn, D.; Groebner, N.; Kohlstedt, D. L.

    2000-01-01

    The formation mechanism of terrestrial planetary is still poorly understood, and has been the subject of numerous experimental studies. Several mechanisms have been proposed by which metal-mainly iron with some nickel-could have been extracted from a silicate mantle to form the core. Most recent models involve gravitational sinking of molten metal or metal sulphide through a partially or fully molten mantle that is often referred to as a'magma ocean. Alternative models invoke percolation of molten metal along an interconnected network (that is, porous flow) through a solid silicate matrix. But experimental studies performed at high pressures have shown that, under hydrostatic conditions, these melts do not form an interconnected network, leading to the widespread assumption that formation of metallic cores requires a magma ocean. In contrast, here we present experiments which demonstrate that shear deformation to large strains can interconnect a significant fraction of initially isolated pockets of metal and metal sulphide melts in a solid matrix of polycrystalline olivine. Therefore, in a dynamic (nonhydrostatic) environment, percolation remains a viable mechanism for the segregation and migration of core-forming melts in a solid silicate mantle.

  4. A Robust Actin Filaments Image Analysis Framework

    PubMed Central

    Alioscha-Perez, Mitchel; Benadiba, Carine; Goossens, Katty; Kasas, Sandor; Dietler, Giovanni; Willaert, Ronnie; Sahli, Hichem

    2016-01-01

    The cytoskeleton is a highly dynamical protein network that plays a central role in numerous cellular physiological processes, and is traditionally divided into three components according to its chemical composition, i.e. actin, tubulin and intermediate filament cytoskeletons. Understanding the cytoskeleton dynamics is of prime importance to unveil mechanisms involved in cell adaptation to any stress type. Fluorescence imaging of cytoskeleton structures allows analyzing the impact of mechanical stimulation in the cytoskeleton, but it also imposes additional challenges in the image processing stage, such as the presence of imaging-related artifacts and heavy blurring introduced by (high-throughput) automated scans. However, although there exists a considerable number of image-based analytical tools to address the image processing and analysis, most of them are unfit to cope with the aforementioned challenges. Filamentous structures in images can be considered as a piecewise composition of quasi-straight segments (at least in some finer or coarser scale). Based on this observation, we propose a three-steps actin filaments extraction methodology: (i) first the input image is decomposed into a ‘cartoon’ part corresponding to the filament structures in the image, and a noise/texture part, (ii) on the ‘cartoon’ image, we apply a multi-scale line detector coupled with a (iii) quasi-straight filaments merging algorithm for fiber extraction. The proposed robust actin filaments image analysis framework allows extracting individual filaments in the presence of noise, artifacts and heavy blurring. Moreover, it provides numerous parameters such as filaments orientation, position and length, useful for further analysis. Cell image decomposition is relatively under-exploited in biological images processing, and our study shows the benefits it provides when addressing such tasks. Experimental validation was conducted using publicly available datasets, and in osteoblasts

  5. A Robust Actin Filaments Image Analysis Framework.

    PubMed

    Alioscha-Perez, Mitchel; Benadiba, Carine; Goossens, Katty; Kasas, Sandor; Dietler, Giovanni; Willaert, Ronnie; Sahli, Hichem

    2016-08-01

    The cytoskeleton is a highly dynamical protein network that plays a central role in numerous cellular physiological processes, and is traditionally divided into three components according to its chemical composition, i.e. actin, tubulin and intermediate filament cytoskeletons. Understanding the cytoskeleton dynamics is of prime importance to unveil mechanisms involved in cell adaptation to any stress type. Fluorescence imaging of cytoskeleton structures allows analyzing the impact of mechanical stimulation in the cytoskeleton, but it also imposes additional challenges in the image processing stage, such as the presence of imaging-related artifacts and heavy blurring introduced by (high-throughput) automated scans. However, although there exists a considerable number of image-based analytical tools to address the image processing and analysis, most of them are unfit to cope with the aforementioned challenges. Filamentous structures in images can be considered as a piecewise composition of quasi-straight segments (at least in some finer or coarser scale). Based on this observation, we propose a three-steps actin filaments extraction methodology: (i) first the input image is decomposed into a 'cartoon' part corresponding to the filament structures in the image, and a noise/texture part, (ii) on the 'cartoon' image, we apply a multi-scale line detector coupled with a (iii) quasi-straight filaments merging algorithm for fiber extraction. The proposed robust actin filaments image analysis framework allows extracting individual filaments in the presence of noise, artifacts and heavy blurring. Moreover, it provides numerous parameters such as filaments orientation, position and length, useful for further analysis. Cell image decomposition is relatively under-exploited in biological images processing, and our study shows the benefits it provides when addressing such tasks. Experimental validation was conducted using publicly available datasets, and in osteoblasts grown in

  6. Involvement of actin filaments in rhizoid morphogenesis of Spirogyra.

    PubMed

    Yoshida, Katsuhisa; Shimmen, Teruo

    2009-01-01

    The role of actin filaments in rhizoid morphogenesis was studied in Spirogyra. When the algal filaments were severed, new terminal cells started tip growth and finally formed rhizoids. Actin inhibitors, latrunculin B and cytochalasin D, reversibly inhibited the process. A mesh-like structure of actin filaments (AFs) was formed at the tip region. Gd(3+) inhibited tip growth and decreased AFs in the tip region. Either a decrease in turgor pressure or lowering of the external Ca(2+) concentration also induced similar results. It was suggested that the mesh-like AF structure is indispensable for the elongation of rhizoids. A possible organization mechanism of the mesh-like AF structure was discussed.

  7. Fullerenol Nanoparticles with Structural Activity Induce Variable Intracellular Actin Filament Morphologies.

    PubMed

    Jin, Junjiang; Dong, Ying; Wang, Ying; Xia, Lin; Gu, Weihong; Bai, Xue; Chang, Yanan; Zhang, Mingyi; Chen, Kui; Li, Juan; Zhao, Lina; Xing, Gengmei

    2016-06-01

    Fullerenol nanoparticles are promising for various biological applications; many studies have shown that they induce variable and diverse biological effects including side effects. Separation and purification of two fractions of fullerenols has demonstrated that they have varied chemical structures on the surfaces of their carbon cages. Actin is an important structural protein that is able to transform functional structures under varied physiological conditions. We assessed the abilities of the two fractions of fullerenols to attach to actin and induce variable morphological features in actin filament structures. Specifically the fullerenol fraction with a surface electric charge of -1.913 ± 0.008q (x10(-6) C) has percentages of C-OH and C=O on the carbon cage of 16.14 ± 0.60 and 17.55 ± 0.69. These features allow it to form intermolecular hydrogen bonds with actin at a stoichiometric ratio of four fullerenols per actin subunit. Molecular simulations revealed these specific binding sites and binding modes in atomic details in the interaction between the active fullerenol and actin filament. Conversely, these interactions were not possible for the other fraction of fullerenol with that percentages of C-OH and C=O on the carbon cage were 15.59 ± 0.01 and 1.94 ± 0.11. Neither sample induced appreciable cytotoxicity or acute cell death. After entering cells, active fullerenol binding to actin induces variable morphological features and may transform ATP-actin to ADP-actin. These changes facilitate the binding of ADF/cofilin, allowing cofilin to sever actin filaments to form cofilin/actin/fullerenol rods. Our findings suggest that fullerenol with structural activity binding disturbs actin filament structure, which may inhibit locomotion of cell or induce chronic side effects in to cells. PMID:27319217

  8. Formation of long and winding nuclear F-actin bundles by nuclear c-Abl tyrosine kinase

    SciTech Connect

    Aoyama, Kazumasa; Yuki, Ryuzaburo; Horiike, Yasuyoshi; Kubota, Sho; Yamaguchi, Noritaka; Morii, Mariko; Ishibashi, Kenichi; Nakayama, Yuji; Kuga, Takahisa; Hashimoto, Yuuki; Tomonaga, Takeshi; Yamaguchi, Naoto

    2013-12-10

    The non-receptor-type tyrosine kinase c-Abl is involved in actin dynamics in the cytoplasm. Having three nuclear localization signals (NLSs) and one nuclear export signal, c-Abl shuttles between the nucleus and the cytoplasm. Although monomeric actin and filamentous actin (F-actin) are present in the nucleus, little is known about the relationship between c-Abl and nuclear actin dynamics. Here, we show that nuclear-localized c-Abl induces nuclear F-actin formation. Adriamycin-induced DNA damage together with leptomycin B treatment accumulates c-Abl into the nucleus and increases the levels of nuclear F-actin. Treatment of c-Abl-knockdown cells with Adriamycin and leptomycin B barely increases the nuclear F-actin levels. Expression of nuclear-targeted c-Abl (NLS-c-Abl) increases the levels of nuclear F-actin even without Adriamycin, and the increased levels of nuclear F-actin are not inhibited by inactivation of Abl kinase activity. Intriguingly, expression of NLS-c-Abl induces the formation of long and winding bundles of F-actin within the nucleus in a c-Abl kinase activity-dependent manner. Furthermore, NLS-c-AblΔC, which lacks the actin-binding domain but has the full tyrosine kinase activity, is incapable of forming nuclear F-actin and in particular long and winding nuclear F-actin bundles. These results suggest that nuclear c-Abl plays critical roles in actin dynamics within the nucleus. - Highlights: • We show the involvement of c-Abl tyrosine kinase in nuclear actin dynamics. • Nuclear F-actin is formed by nuclear-localized c-Abl and its kinase-dead version. • The c-Abl actin-binding domain is prerequisite for nuclear F-actin formation. • Formation of long nuclear F-actin bundles requires nuclear c-Abl kinase activity. • We discuss a role for nuclear F-actin bundle formation in chromatin regulation.

  9. Bacterial Actins? An Evolutionary Perspective

    NASA Technical Reports Server (NTRS)

    Doolittle, Russell F.; York, Amanda L.

    2003-01-01

    According to the conventional wisdom, the existence of a cytoskeleton in eukaryotes and its absence in prokaryotes constitute a fundamental divide between the two domains of life. An integral part of the dogma is that a cytoskeleton enabled an early eukaryote to feed upon prokaryotes, a consequence of which was the occasional endosymbiosis and the eventual evolution of organelles. Two recent papers present compelling evidence that actin, one of the principal components of a cytoskeleton, has a homolog in Bacteria that behaves in many ways like eukaryotic actin. Sequence comparisons reveml that eukaryotic actin and the bacterial homolog (mreB protein), unlike many other proteins common to eukaryotes and Bacteria, have very different and more highly extended evolutionary histories.

  10. F-actin distribution at nodes of Ranvier and Schmidt-Lanterman incisures in mammalian sciatic nerves.

    PubMed

    Kun, Alejandra; Canclini, Lucía; Rosso, Gonzalo; Bresque, Mariana; Romeo, Carlos; Hanusz, Alicia; Cal, Karina; Calliari, Aldo; Sotelo Silveira, José; Sotelo, José R

    2012-07-01

    Very little is known about the function of the F-actin cytoskeleton in the regeneration and pathology of peripheral nerve fibers. The actin cytoskeleton has been associated with maintenance of tissue structure, transmission of traction and contraction forces, and an involvement in cell motility. Therefore, the state of the actin cytoskeleton strongly influences the mechanical properties of cells and intracellular transport therein. In this work, we analyze the distribution of F-actin at Schmidt-Lanterman Incisures (SLI) and nodes of Ranvier (NR) domains in normal, regenerating and pathologic Trembler J (TrJ/+) sciatic nerve fibers, of rats and mice. F-actin was quantified and it was found increased in TrJ/+, both in SLI and NR. However, SLI and NR of regenerating rat sciatic nerve did not show significant differences in F-actin, as compared with normal nerves. Cytochalasin-D and Latrunculin-A were used to disrupt the F-actin network in normal and regenerating rat sciatic nerve fibers. Both drugs disrupt F-actin, but in different ways. Cytochalasin-D did not disrupt Schwann cell (SC) F-actin at the NR. Latrunculin-A did not disrupt F-actin at the boundary region between SC and axon at the NR domain. We surmise that the rearrangement of F-actin in neurological disorders, as presented here, is an important feature of TrJ/+ pathology as a Charcot-Marie-Tooth (CMT) model.

  11. Triggering Actin Comets Versus Membrane Ruffles: Distinctive Effects of Phosphoinositides on Actin Reorganization

    PubMed Central

    Ueno, Tasuku; Falkenburger, Björn H.; Pohlmeyer, Christopher; Inoue, Takanari

    2012-01-01

    A limited set of phosphoinositide membrane lipids regulate diverse cellular functions including proliferation, differentiation, and migration. We developed two techniques based on rapamycin-induced protein dimerization to rapidly change the concentration of plasma membrane phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2]. First, we increased PI(4,5)P2 synthesis from phosphatidylinositol 4-phosphate [PI(4)P] using a membrane recruitable form of PI(4)P 5-kinase, and found that COS-7, HeLa, and HEK293 cells formed bundles of motile actin filaments known as actin comets. In contrast, a second technique that increased the concentration of PI(4,5)P2 without consuming PI(4)P induced membrane ruffles. These distinct phenotypes were mediated by dynamin-mediated vesicular trafficking and mutually inhibitory crosstalk between the small guanosine triphosphatases Rac and RhoA. Our results indicate that the effect of PI(4,5)P2 on actin reorganization depends on the abundance of other phosphoinositides, such as PI(4)P. Thus, combinatorial regulation of phosphoinositide concentrations may contribute to the diversity of phosphoinositide functions. PMID:22169478

  12. Fascin regulates nuclear actin during Drosophila oogenesis.

    PubMed

    Kelpsch, Daniel J; Groen, Christopher M; Fagan, Tiffany N; Sudhir, Sweta; Tootle, Tina L

    2016-10-01

    Drosophila oogenesis provides a developmental system with which to study nuclear actin. During Stages 5-9, nuclear actin levels are high in the oocyte and exhibit variation within the nurse cells. Cofilin and Profilin, which regulate the nuclear import and export of actin, also localize to the nuclei. Expression of GFP-tagged Actin results in nuclear actin rod formation. These findings indicate that nuclear actin must be tightly regulated during oogenesis. One factor mediating this regulation is Fascin. Overexpression of Fascin enhances nuclear GFP-Actin rod formation, and Fascin colocalizes with the rods. Loss of Fascin reduces, whereas overexpression of Fascin increases, the frequency of nurse cells with high levels of nuclear actin, but neither alters the overall nuclear level of actin within the ovary. These data suggest that Fascin regulates the ability of specific cells to accumulate nuclear actin. Evidence indicates that Fascin positively regulates nuclear actin through Cofilin. Loss of Fascin results in decreased nuclear Cofilin. In addition, Fascin and Cofilin genetically interact, as double heterozygotes exhibit a reduction in the number of nurse cells with high nuclear actin levels. These findings are likely applicable beyond Drosophila follicle development, as the localization and functions of Fascin and the mechanisms regulating nuclear actin are widely conserved.

  13. Fascin regulates nuclear actin during Drosophila oogenesis.

    PubMed

    Kelpsch, Daniel J; Groen, Christopher M; Fagan, Tiffany N; Sudhir, Sweta; Tootle, Tina L

    2016-10-01

    Drosophila oogenesis provides a developmental system with which to study nuclear actin. During Stages 5-9, nuclear actin levels are high in the oocyte and exhibit variation within the nurse cells. Cofilin and Profilin, which regulate the nuclear import and export of actin, also localize to the nuclei. Expression of GFP-tagged Actin results in nuclear actin rod formation. These findings indicate that nuclear actin must be tightly regulated during oogenesis. One factor mediating this regulation is Fascin. Overexpression of Fascin enhances nuclear GFP-Actin rod formation, and Fascin colocalizes with the rods. Loss of Fascin reduces, whereas overexpression of Fascin increases, the frequency of nurse cells with high levels of nuclear actin, but neither alters the overall nuclear level of actin within the ovary. These data suggest that Fascin regulates the ability of specific cells to accumulate nuclear actin. Evidence indicates that Fascin positively regulates nuclear actin through Cofilin. Loss of Fascin results in decreased nuclear Cofilin. In addition, Fascin and Cofilin genetically interact, as double heterozygotes exhibit a reduction in the number of nurse cells with high nuclear actin levels. These findings are likely applicable beyond Drosophila follicle development, as the localization and functions of Fascin and the mechanisms regulating nuclear actin are widely conserved. PMID:27535426

  14. Choosing orientation: influence of cargo geometry and ActA polarization on actin comet tails

    PubMed Central

    Lacayo, Catherine I.; Soneral, Paula A. G.; Zhu, Jie; Tsuchida, Mark A.; Footer, Matthew J.; Soo, Frederick S.; Lu, Yu; Xia, Younan; Mogilner, Alexander; Theriot, Julie A.

    2012-01-01

    Networks of polymerizing actin filaments can propel intracellular pathogens and drive movement of artificial particles in reconstituted systems. While biochemical mechanisms activating actin network assembly have been well characterized, it remains unclear how particle geometry and large-scale force balance affect emergent properties of movement. We reconstituted actin-based motility using ellipsoidal beads resembling the geometry of Listeria monocytogenes. Beads coated uniformly with the L. monocytogenes ActA protein migrated equally well in either of two distinct orientations, with their long axes parallel or perpendicular to the direction of motion, while intermediate orientations were unstable. When beads were coated with a fluid lipid bilayer rendering ActA laterally mobile, beads predominantly migrated with their long axes parallel to the direction of motion, mimicking the orientation of motile L. monocytogenes. Generating an accurate biophysical model to account for our observations required the combination of elastic-propulsion and tethered-ratchet actin-polymerization theories. Our results indicate that the characteristic orientation of L. monocytogenes must be due to polarized ActA rather than intrinsic actin network forces. Furthermore, viscoelastic stresses, forces, and torques produced by individual actin filaments and lateral movement of molecular complexes must all be incorporated to correctly predict large-scale behavior in the actin-based movement of nonspherical particles. PMID:22219381

  15. Phosphatase and actin regulator 4 is associated with intermediate filaments in adult neural stem cells and their progenitor astrocytes.

    PubMed

    Cho, Hyo Min; Kim, Joo Yeon; Kim, Hyun; Sun, Woong

    2014-10-01

    Phosphatase and actin regulator 4 (Phactr4) is a newly discovered protein that inhibits protein phosphatase 1 and shows actin-binding activity. We previously found that Phactr4 is expressed in the neurogenic niche in adult mice, although its precise subcellular localization and possible function in neural stem cells (NSCs) is not yet understood. Here, we show that Phactr4 formed punctiform clusters in the cytosol of subventricular zone-derived adult NSCs and their progeny in vitro. These Phactr4 signals were not associated with F-actin fibers but were closely associated with intermediate filaments such as nestin and glial fibrillary acidic protein (GFAP) fibers. Direct binding of Phactr4 with nestin and GFAP filaments was demonstrated using Duolink protein interaction analyses and immunoprecipitation assays. Interestingly, when nestin fibers were de-polymerized during the mitosis or by the phosphatase inhibitor, Phactr4 appeared to be dissociated from nestin, suggesting that their protein interaction is regulated by the protein phosphorylation. These results suggest that Phactr4 forms functional associations with intermediate filament networks in adult NSCs.

  16. Network analysis reveals that bacteria and fungi form modules that correlate independently with soil parameters.

    PubMed

    de Menezes, Alexandre B; Prendergast-Miller, Miranda T; Richardson, Alan E; Toscas, Peter; Farrell, Mark; Macdonald, Lynne M; Baker, Geoff; Wark, Tim; Thrall, Peter H

    2015-08-01

    Network and multivariate statistical analyses were performed to determine interactions between bacterial and fungal community terminal restriction length polymorphisms as well as soil properties in paired woodland and pasture sites. Canonical correspondence analysis (CCA) revealed that shifts in woodland community composition correlated with soil dissolved organic carbon, while changes in pasture community composition correlated with moisture, nitrogen and phosphorus. Weighted correlation network analysis detected two distinct microbial modules per land use. Bacterial and fungal ribotypes did not group separately, rather all modules comprised of both bacterial and fungal ribotypes. Woodland modules had a similar fungal : bacterial ribotype ratio, while in the pasture, one module was fungal dominated. There was no correspondence between pasture and woodland modules in their ribotype composition. The modules had different relationships to soil variables, and these contrasts were not detected without the use of network analysis. This study demonstrated that fungi and bacteria, components of the soil microbial communities usually treated as separate functional groups as in a CCA approach, were co-correlated and formed distinct associations in these adjacent habitats. Understanding these distinct modular associations may shed more light on their niche space in the soil environment, and allow a more realistic description of soil microbial ecology and function.

  17. Force Transmission in the Actin Cytoskeleton

    NASA Astrophysics Data System (ADS)

    Gardel, Margaret

    2012-02-01

    The ability of cells to sense and generate mechanical forces is essential to numerous aspects of their physiology, including adhesion, migration, division and differentiation. To a large degree, cellular tension is regulated by the transmission of myosin II-generated forces through the filamentous actin (F-actin) cytoskeleton. While transmission of myosin-generated stresses from the molecular to cellular length scale is well understood in the context of highly organized sarcomeres found in striated muscle, non-muscle and smooth muscle cells contain a wide variety of bundles and networks lacking sarcomeric organization. I will describe the in vitro and in vivo approaches we use to study force transmission in such disordered actomyosin assemblies. Our in vivo results are showing that highly organized stress fibers contribute surprisingly little to the overall extent of cellular tension as compared to disordered actomyosin meshworks. Our in vitro results are demonstrating the mechanisms of symmetry breaking in disordered actomyosin bundles that facilitate the formation of contractile bundles with well-defined ``contractile elements.'' These results provide insight into the self-organization of actomyosin cytoskeleton in non-muscle cells that regulate and maintain cellular tension.

  18. Actin filament organization in the fish keratocyte lamellipodium

    PubMed Central

    1995-01-01

    From recent studies of locomoting fish keratocytes it was proposed that the dynamic turnover of actin filaments takes place by a nucleation- release mechanism, which predicts the existence of short (less than 0.5 microns) filaments throughout the lamellipodium (Theriot, J. A., and T. J. Mitchison. 1991. Nature (Lond.). 352:126-131). We have tested this model by investigating the structure of whole mount keratocyte cytoskeletons in the electron microscope and phalloidin-labeled cells, after various fixations, in the light microscope. Micrographs of negatively stained keratocyte cytoskeletons produced by Triton extraction showed that the actin filaments of the lamellipodium are organized to a first approximation in a two-dimensional orthogonal network with the filaments subtending an angle of around 45 degrees to the cell front. Actin filament fringes grown onto the front edge of keratocyte cytoskeletons by the addition of exogenous actin showed a uniform polarity when decorated with myosin subfragment-1, consistent with the fast growing ends of the actin filaments abutting the anterior edge. A steady drop in filament density was observed from the mid- region of the lamellipodium to the perinuclear zone and in images of the more posterior regions of lower filament density many of the actin filaments could be seen to be at least several microns in length. Quantitative analysis of the intensity distribution of fluorescent phalloidin staining across the lamellipodium revealed that the gradient of filament density as well as the absolute content of F-actin was dependent on the fixation method. In cells first fixed and then extracted with Triton, a steep gradient of phalloidin staining was observed from the front to the rear of the lamellipodium. With the protocol required to obtain the electron microscope images, namely Triton extraction followed by fixation, phalloidin staining was, significantly and preferentially reduced in the anterior part of the lamellipodium. This

  19. Optogenetics to target actin-mediated synaptic loss in Alzheimer's

    NASA Astrophysics Data System (ADS)

    Zahedi, Atena; DeFea, Kathryn; Ethell, Iryna

    2013-03-01

    Numerous studies in Alzheimer's Disease (AD) animal models show that overproduction of Aβ peptides and their oligomerization can distort dendrites, damage synapses, and decrease the number of dendritic spines and synapses. Aβ may trigger synapse loss by modulating activity of actin-regulating proteins, such as Rac1 and cofilin. Indeed, Aβ1-42 oligomers can activate actin severing protein cofilin through calcineurin-mediated activation of phosphatase slingshot and inhibit an opposing pathway that suppresses cofilin phosphorylation through Rac-mediated activation of LIMK1. Excessive activation of actin-severing protein cofilin triggers the formation of a non-dynamic actin bundles, called rods that are found in AD brains and cause loss of synapses. Hence, regulation of these actin-regulating proteins in dendritic spines could potentially provide useful tools for preventing the synapse/spine loss associated with earlier stages of AD neuropathology. However, lack of spatiotemporal control over their activity is a key limitation. Recently, optogenetic advancements have provided researchers with convenient light-activating proteins such as photoactivatable Rac (PARac). Here, we transfected cultured primary hippocampal neurons and human embryonic kidney (HEK) cells with a PARac/ mCherry-containing plasmid and the mCherry-positive cells were identified and imaged using an inverted fluorescence microscope. Rac1 activation was achieved by irradiation with blue light (480nm) and live changes in dendritic spine morphology were observed using mCherry (587nm). Rac activation was confirmed by immunostaining for phosphorylated form of effector proteinP21 protein-activated kinase 1 (PAK1) and reorganization of actin. Thus, our studies confirm the feasibility of using the PA-Rac construct to trigger actin re-organization in the dendritic spines.

  20. Cooperative symmetry-breaking by actin polymerization in a model for cell motility.

    PubMed

    van Oudenaarden, A; Theriot, J A

    1999-12-01

    Polymerizing networks of actin filaments are capable of exerting significant mechanical forces, used by eukaryotic cells and their prokaryotic pathogens to change shape or to move. Here we show that small beads coated uniformly with a protein that catalyses actin polymerization are initially surrounded by symmetrical clouds of actin filaments. This symmetry is broken spontaneously, after which the beads undergo directional motion. We have developed a stochastic theory, in which each actin filament is modelled as an elastic brownian ratchet, that quantitatively accounts for the observed emergent symmetry-breaking behaviour. Symmetry-breaking can only occur for polymers that have a significant subunit off-rate, such as the biopolymers actin and tubulin.

  1. The reconstitution of actin polymerization on liposomes.

    PubMed

    Stamnes, Mark; Xu, Weidong

    2010-01-01

    Membrane-associated actin polymerization is of considerable interest due to its role in cell migration and the motility of intracellular organelles. Intensive research efforts are underway to investigate the physiological role of membrane-associated actin as well as the regulation and mechanics of actin assembly. Branched actin polymerization on membranes is catalyzed by the Arp2/3 complex. Signaling events leading to the activation of the guanosine triphosphate (GTP)-binding protein Cdc42 stimulate Arp2/3-dependent actin polymerization. We have studied the role of Cdc42 at the Golgi apparatus in part by reconstituting actin polymerization on isolated Golgi membranes and on liposomes. In this manner, we showed that cytosolic proteins are sufficient for actin assembly on a phospholipid bilayer. Here we describe methods for the cell-free reconstitution of membrane-associated actin polymerization using liposomes and brain cytosol.

  2. Upregulation of two actin genes and redistribution of actin during diapause and cold stress in the northern house mosquito, Culex pipiens.

    PubMed Central

    Kim, Mijung; Robich, Rebecca M.; Rinehart, Joseph P.; Denlinger, David L.

    2007-01-01

    Two actin genes cloned from Culex pipiens L. are upregulated during adult diapause. Though actins 1 and 2 were expressed throughout diapause, both genes were most highly expressed early in diapause. These changes in gene expression were accompanied by a conspicuous redistribution of polymerized actin that was most pronounced in the midguts of diapausing mosquitoes that were exposed to low temperature. In nondiapausing mosquitoes reared at 25°C and in diapausing mosquitoes reared at 18°C, polymerized actin was clustered at high concentrations at the intersections of the muscle fibers that form the midgut musculature. When adults 7–10 days post-eclosion were exposed to low temperature (-5°C for 12h), the polymerized actin was evenly distributed along the muscle fibers in both nondiapausing and diapausing mosquitoes. Exposure of older adults (1month post-eclosion) to low temperature (−5°C for 12h) elicited an even greater distribution of polymerized actin, an effect that was especially pronounced in diapausing mosquitoes. These changes in gene expression and actin distribution suggest a role for actins in enhancing survival of diapausing adults during the low temperatures of winter by fortification of the cytoskeleton. PMID:17078965

  3. Association of actin with alpha crystallins

    NASA Technical Reports Server (NTRS)

    Gopalakrishnan, S.; Boyle, D.; Takemoto, L.; Spooner, B. S. (Principal Investigator)

    1993-01-01

    The alpha crystallins are cytosolic proteins that co-localize and co-purify with actin-containing microfilaments. Affinity column chromatography employing both covalently-coupled actin or alpha crystallin was used to demonstrate specific and saturable binding of actin with alpha crystallin. This conclusion was confirmed by direct visualization of alpha aggregates bound to actin polymerized in vitro. The significance of this interaction in relation to the functional properties of these two polypeptides will be discussed.

  4. Cell elasticity is regulated by the tropomyosin isoform composition of the actin cytoskeleton.

    PubMed

    Jalilian, Iman; Heu, Celine; Cheng, Hong; Freittag, Hannah; Desouza, Melissa; Stehn, Justine R; Bryce, Nicole S; Whan, Renee M; Hardeman, Edna C; Fath, Thomas; Schevzov, Galina; Gunning, Peter W

    2015-01-01

    The actin cytoskeleton is the primary polymer system within cells responsible for regulating cellular stiffness. While various actin binding proteins regulate the organization and dynamics of the actin cytoskeleton, the proteins responsible for regulating the mechanical properties of cells are still not fully understood. In the present study, we have addressed the significance of the actin associated protein, tropomyosin (Tpm), in influencing the mechanical properties of cells. Tpms belong to a multi-gene family that form a co-polymer with actin filaments and differentially regulate actin filament stability, function and organization. Tpm isoform expression is highly regulated and together with the ability to sort to specific intracellular sites, result in the generation of distinct Tpm isoform-containing actin filament populations. Nanomechanical measurements conducted with an Atomic Force Microscope using indentation in Peak Force Tapping in indentation/ramping mode, demonstrated that Tpm impacts on cell stiffness and the observed effect occurred in a Tpm isoform-specific manner. Quantitative analysis of the cellular filamentous actin (F-actin) pool conducted both biochemically and with the use of a linear detection algorithm to evaluate actin structures revealed that an altered F-actin pool does not absolutely predict changes in cell stiffness. Inhibition of non-muscle myosin II revealed that intracellular tension generated by myosin II is required for the observed increase in cell stiffness. Lastly, we show that the observed increase in cell stiffness is partially recapitulated in vivo as detected in epididymal fat pads isolated from a Tpm3.1 transgenic mouse line. Together these data are consistent with a role for Tpm in regulating cell stiffness via the generation of specific populations of Tpm isoform-containing actin filaments.

  5. Piccolo Directs Activity Dependent F-Actin Assembly from Presynaptic Active Zones via Daam1

    PubMed Central

    Wagh, Dhananjay; Terry-Lorenzo, Ryan; Waites, Clarissa L.; Leal-Ortiz, Sergio A.; Maas, Christoph; Reimer, Richard J.; Garner, Craig C.

    2015-01-01

    The dynamic assembly of filamentous (F) actin plays essential roles in the assembly of presynaptic boutons, the fusion, mobilization and recycling of synaptic vesicles (SVs), and presynaptic forms of plasticity. However, the molecular mechanisms that regulate the temporal and spatial assembly of presynaptic F-actin remain largely unknown. Similar to other F-actin rich membrane specializations, presynaptic boutons contain a set of molecules that respond to cellular cues and trans-synaptic signals to facilitate activity-dependent assembly of F-actin. The presynaptic active zone (AZ) protein Piccolo has recently been identified as a key regulator of neurotransmitter release during SV cycling. It does so by coordinating the activity-dependent assembly of F-Actin and the dynamics of key plasticity molecules including Synapsin1, Profilin and CaMKII. The multidomain structure of Piccolo, its exquisite association with the AZ, and its ability to interact with a number of actin-associated proteins suggest that Piccolo may function as a platform to coordinate the spatial assembly of F-actin. Here we have identified Daam1, a Formin that functions with Profilin to drive F-actin assembly, as a novel Piccolo binding partner. We also found that within cells Daam1 activation promotes Piccolo binding, an interaction that can spatially direct the polymerization of F-Actin. Moreover, similar to Piccolo and Profilin, Daam1 loss of function impairs presynaptic-F-actin assembly in neurons. These data suggest a model in which Piccolo directs the assembly of presynaptic F-Actin from the AZ by scaffolding key actin regulatory proteins including Daam1. PMID:25897839

  6. Cell-cycle regulation of formin-mediated actin cable assembly.

    PubMed

    Miao, Yansong; Wong, Catherine C L; Mennella, Vito; Michelot, Alphée; Agard, David A; Holt, Liam J; Yates, John R; Drubin, David G

    2013-11-19

    Assembly of appropriately oriented actin cables nucleated by formin proteins is necessary for many biological processes in diverse eukaryotes. However, compared with knowledge of how nucleation of dendritic actin filament arrays by the actin-related protein-2/3 complex is regulated, the in vivo regulatory mechanisms for actin cable formation are less clear. To gain insights into mechanisms for regulating actin cable assembly, we reconstituted the assembly process in vitro by introducing microspheres functionalized with the C terminus of the budding yeast formin Bni1 into extracts prepared from yeast cells at different cell-cycle stages. EM studies showed that unbranched actin filament bundles were reconstituted successfully in the yeast extracts. Only extracts enriched in the mitotic cyclin Clb2 were competent for actin cable assembly, and cyclin-dependent kinase 1 activity was indispensible. Cyclin-dependent kinase 1 activity also was found to regulate cable assembly in vivo. Here we present evidence that formin cell-cycle regulation is conserved in vertebrates. The use of the cable-reconstitution system to test roles for the key actin-binding proteins tropomyosin, capping protein, and cofilin provided important insights into assembly regulation. Furthermore, using mass spectrometry, we identified components of the actin cables formed in yeast extracts, providing the basis for comprehensive understanding of cable assembly and regulation.

  7. Mechanical force-induced polymerization and depolymerization of F-actin at water/solid interfaces.

    PubMed

    Zhang, Xueqiang; Hu, Xiuyuan; Lei, Haozhi; Hu, Jun; Zhang, Yi

    2016-03-21

    Actin molecules are among the three main cytoskeleton proteins of cells and undergo rapid cycling to regulate critical processes such as endocytosis, cytokinesis, cell polarity, and cell morphogenesis. Although extensive studies have been carried out on the dynamics as well as biological functions of actin polymerization and depolymerization both in vivo and in vitro, the molecular mechanisms by which cells sense and respond to mechanical signals are not fully understood. In particular, little attention has been paid to the effect of a physical force that is exerted directly on the actin cytoskeleton. In this paper, we have explored how the mechanical force affects the actin polymerization and depolymerization behaviors at water/solid interfaces using an atomic force microscope (AFM) operated in liquid. By raster scanning an AFM probe on a substrate surface with a certain load, it was found that actin monomers could polymerize into filaments without the help of actin related proteins (ARPs). Further study indicated that actin monomers were inclined to form filaments only under a small scanning load. The polymerized actin filaments would be depolymerized when the mechanical force was stronger. A possible mechanism has been suggested to explain the mechanical force induced actin polymerization.

  8. Myosin II ATPase activity mediates the long-term potentiation-induced exodus of stable F-actin bound by drebrin A from dendritic spines.

    PubMed

    Mizui, Toshiyuki; Sekino, Yuko; Yamazaki, Hiroyuki; Ishizuka, Yuta; Takahashi, Hideto; Kojima, Nobuhiko; Kojima, Masami; Shirao, Tomoaki

    2014-01-01

    The neuronal actin-binding protein drebrin A forms a stable structure with F-actin in dendritic spines. NMDA receptor activation causes an exodus of F-actin bound by drebrin A (DA-actin) from dendritic spines, suggesting a pivotal role for DA-actin exodus in synaptic plasticity. We quantitatively assessed the extent of DA-actin localization to spines using the spine-dendrite ratio of drebrin A in cultured hippocampal neurons, and found that (1) chemical long-term potentiation (LTP) stimulation induces rapid DA-actin exodus and subsequent DA-actin re-entry in dendritic spines, (2) Ca(2+) influx through NMDA receptors regulates the exodus and the basal accumulation of DA-actin, and (3) the DA-actin exodus is blocked by myosin II ATPase inhibitor, but is not blocked by myosin light chain kinase (MLCK) or Rho-associated kinase (ROCK) inhibitors. These results indicate that myosin II mediates the interaction between NMDA receptor activation and DA-actin exodus in LTP induction. Furthermore, myosin II seems to be activated by a rapid actin-linked mechanism rather than slow MLC phosphorylation. Thus the myosin-II mediated DA-actin exodus might be an initial event in LTP induction, triggering actin polymerization and spine enlargement.

  9. Myosin II ATPase Activity Mediates the Long-Term Potentiation-Induced Exodus of Stable F-Actin Bound by Drebrin A from Dendritic Spines

    PubMed Central

    Mizui, Toshiyuki; Sekino, Yuko; Yamazaki, Hiroyuki; Ishizuka, Yuta; Takahashi, Hideto; Kojima, Nobuhiko; Kojima, Masami; Shirao, Tomoaki

    2014-01-01

    The neuronal actin-binding protein drebrin A forms a stable structure with F-actin in dendritic spines. NMDA receptor activation causes an exodus of F-actin bound by drebrin A (DA-actin) from dendritic spines, suggesting a pivotal role for DA-actin exodus in synaptic plasticity. We quantitatively assessed the extent of DA-actin localization to spines using the spine-dendrite ratio of drebrin A in cultured hippocampal neurons, and found that (1) chemical long-term potentiation (LTP) stimulation induces rapid DA-actin exodus and subsequent DA-actin re-entry in dendritic spines, (2) Ca2+ influx through NMDA receptors regulates the exodus and the basal accumulation of DA-actin, and (3) the DA-actin exodus is blocked by myosin II ATPase inhibitor, but is not blocked by myosin light chain kinase (MLCK) or Rho-associated kinase (ROCK) inhibitors. These results indicate that myosin II mediates the interaction between NMDA receptor activation and DA-actin exodus in LTP induction. Furthermore, myosin II seems to be activated by a rapid actin-linked mechanism rather than slow MLC phosphorylation. Thus the myosin-II mediated DA-actin exodus might be an initial event in LTP induction, triggering actin polymerization and spine enlargement. PMID:24465547

  10. Actin dynamics in papilla cells of Brassica rapa during self- and cross-pollination.

    PubMed

    Iwano, Megumi; Shiba, Hiroshi; Matoba, Kyoko; Miwa, Teruhiko; Funato, Miyuki; Entani, Tetsuyuki; Nakayama, Pulla; Shimosato, Hiroko; Takaoka, Akio; Isogai, Akira; Takayama, Seiji

    2007-05-01

    The self-incompatibility system of the plant species Brassica is controlled by the S-locus, which contains S-RECEPTOR KINASE (SRK) and S-LOCUS PROTEIN11 (SP11). SP11 binding to SRK induces SRK autophosphorylation and initiates a signaling cascade leading to the rejection of self pollen. However, the mechanism controlling hydration and germination arrest during self-pollination is unclear. In this study, we examined the role of actin, a key cytoskeletal component regulating the transport system for hydration and germination in the papilla cell during pollination. Using rhodamine-phalloidin staining, we showed that cross-pollination induced actin polymerization, whereas self-pollination induced actin reorganization and likely depolymerization. By monitoring transiently expressed green fluorescent protein fused to the actin-binding domain of mouse talin, we observed the concentration of actin bundles at the cross-pollen attachment site and actin reorganization and likely depolymerization at the self-pollen attachment site; the results correspond to those obtained by rhodamine-phalloidin staining. We further showed that the coat of self pollen is sufficient to mediate this response. The actin-depolymerizing drug cytochalasin D significantly inhibited pollen hydration and germination during cross-pollination, further emphasizing a role for actin in these processes. Additionally, three-dimensional electron microscopic tomography revealed the close association of the actin cytoskeleton with an apical vacuole network. Self-pollination disrupted the vacuole network, whereas cross-pollination led to vacuolar rearrangements toward the site of pollen attachment. Taken together, our data suggest that self- and cross-pollination differentially affect the dynamics of the actin cytoskeleton, leading to changes in vacuolar structure associated with hydration and germination.

  11. The accessibility of etheno-nucleotides to collisional quenchers and the nucleotide cleft in G- and F-actin.

    PubMed Central

    Root, D. D.; Reisler, E.

    1992-01-01

    Recent publication of the atomic structure of G-actin (Kabsch, W., Mannherz, H. G., Suck, D., Pai, E. F., & Holmes, K. C., 1990, Nature 347, 37-44) raises questions about how the conformation of actin changes upon its polymerization. In this work, the effects of various quenchers of etheno-nucleotides bound to G- and F-actin were examined in order to assess polymerization-related changes in the nucleotide phosphate site. The Mg(2+)-induced polymerization of actin quenched the fluorescence of the etheno-nucleotides by approximately 20% simultaneously with the increase in light scattering by actin. A conformational change at the nucleotide binding site was also indicated by greater accessibility of F-actin than G-actin to positively, negatively, and neutrally charged collisional quenchers. The difference in accessibility between G- and F-actin was greatest for I-, indicating that the environment of the etheno group is more positively charged in the polymerized form of actin. Based on calculations of the change in electric potential of the environment of the etheno group, specific polymerization-related movements of charged residues in the atomic structure of G-actin are suggested. The binding of S-1 to epsilon-ATP-G-actin increased the accessibility of the etheno group to I- even over that in Mg(2+)-polymerized actin. The quenching of the etheno group by nitromethane was, however, unaffected by the binding of S-1 to actin. Thus, the binding of S-1 induces conformational changes in the cleft region of actin that are different from those caused by Mg2+ polymerization of actin.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1304380

  12. Analysis of rhodamine and fluorescein-labeled F-actin diffusion in vitro by fluorescence photobleaching recovery.

    PubMed Central

    Simon, J R; Gough, A; Urbanik, E; Wang, F; Lanni, F; Ware, B R; Taylor, D L

    1988-01-01

    Properties of filamentous acetamidofluorescein-labeled actin and acetamidotetramethylrhodamine-labeled actin (AF and ATR-actin, respectively) were examined to resolve discrepancies in the reported translational diffusion coefficients of F-actin measured in vitro by FPR and other techniques. Using falling-ball viscometry and two independent versions of fluorescence photobleaching recovery (FPR), the present data indicate that several factors are responsible for these discrepancies. Gel filtration chromatography profoundly affects the viscosity of actin solutions and filament diffusion coefficients. ATR-actin and, to a lesser degree, AF-actin show a reduction in viscosity in proportion to the fraction labeled, presumably due to filament shortening. Actin filaments containing AF-actin or ATR-actin are susceptible to photoinduced damage, including a covalent cross-linking of actin protomers within filaments and an apparent cleavage of filaments detected by a decrease of the measured viscosity and an increase in the measured filament diffusion coefficients. Quantum yields of the two photoinduced effects are quite different. Multiple cross-links are produced relative to each photobleaching event, whereas less than 1% filament cleavage occurs. Substantial differences in the filament diffusion coefficients measured by FPR are also the result of differences in illumination geometry and sampling time. However, under controlled conditions, FPR can be used as a quantitative tool for measuring the hydrodynamic properties of actin filaments. Incremented filament shortening caused by photoinduced cleavage or incremental addition of filament capping proteins produces a continuous and approximately linear increase of filament diffusion coefficients, indicating that filaments are not associated in solution. Our results indicate that actin filaments exhibit low mobilities and it is inferred that actin filaments formed in vitro by column-purified actin, under standard conditions, are

  13. Actin in hair cells and hearing loss.

    PubMed

    Drummond, Meghan C; Belyantseva, Inna A; Friderici, Karen H; Friedman, Thomas B

    2012-06-01

    Hereditary deafness is genetically heterogeneous such that mutations of many different genes can cause hearing loss. This review focuses on the evidence and implications that several of these deafness genes encode actin-interacting proteins or actin itself. There is a growing appreciation of the contribution of the actin interactome in stereocilia development, maintenance, mechanotransduction and malfunction of the auditory system.

  14. Oral nicotinamide and actinic keratosis: a supplement success story.

    PubMed

    Kim, Burcu; Halliday, Gary M; Damian, Diona L

    2015-01-01

    Nicotinamide has shown potential as a safe and effective intervention for the prevention of malignant and premalignant skin lesions. Recent studies have shown that nicotinamide, in both oral and topical forms, is able to prevent ultraviolet-induced immunosuppression in humans [1,2,3] and mice [4,5]. Immunosuppression is a known factor for the progression of premalignant lesions, such as actinic keratosis [6]. Murine studies have shown that nicotinamide is also able to protect against photocarcinogenesis [4,5]. Preliminary human studies suggest that nicotinamide may help prevent skin cancers and enhance the regression of actinic keratoses.

  15. Oral nicotinamide and actinic keratosis: a supplement success story.

    PubMed

    Kim, Burcu; Halliday, Gary M; Damian, Diona L

    2015-01-01

    Nicotinamide has shown potential as a safe and effective intervention for the prevention of malignant and premalignant skin lesions. Recent studies have shown that nicotinamide, in both oral and topical forms, is able to prevent ultraviolet-induced immunosuppression in humans [1,2,3] and mice [4,5]. Immunosuppression is a known factor for the progression of premalignant lesions, such as actinic keratosis [6]. Murine studies have shown that nicotinamide is also able to protect against photocarcinogenesis [4,5]. Preliminary human studies suggest that nicotinamide may help prevent skin cancers and enhance the regression of actinic keratoses. PMID:25561219

  16. Yersinia effector YopO uses actin as bait to phosphorylate proteins that regulate actin polymerization

    PubMed Central

    Lee, Wei Lin; Grimes, Jonathan M; Robinson, Robert C

    2016-01-01

    Pathogenic Yersinia species evade host immune systems through the injection of Yersinia outer proteins (Yops) into phagocytic cells. One Yop, YopO, also known as YpkA, induces actin-filament disruption, impairing phagocytosis. Here we describe the X-ray structure of Yersinia enterocolitica YopO in complex with actin, which reveals that YopO binds to an actin monomer in a manner that blocks polymerization yet allows the bound actin to interact with host actin-regulating proteins. SILAC-MS and biochemical analyses confirm that actin-polymerization regulators such as VASP, EVL, WASP, gelsolin and the formin diaphanous 1 are directly sequestered and phosphorylated by YopO through formation of ternary complexes with actin. This leads to a model in which YopO at the membrane sequesters actin from polymerization while using the bound actin as bait to recruit, phosphorylate and misregulate host actin-regulating proteins to disrupt phagocytosis. PMID:25664724

  17. Yersinia effector YopO uses actin as bait to phosphorylate proteins that regulate actin polymerization.

    PubMed

    Lee, Wei Lin; Grimes, Jonathan M; Robinson, Robert C

    2015-03-01

    Pathogenic Yersinia species evade host immune systems through the injection of Yersinia outer proteins (Yops) into phagocytic cells. One Yop, YopO, also known as YpkA, induces actin-filament disruption, impairing phagocytosis. Here we describe the X-ray structure of Yersinia enterocolitica YopO in complex with actin, which reveals that YopO binds to an actin monomer in a manner that blocks polymerization yet allows the bound actin to interact with host actin-regulating proteins. SILAC-MS and biochemical analyses confirm that actin-polymerization regulators such as VASP, EVL, WASP, gelsolin and the formin diaphanous 1 are directly sequestered and phosphorylated by YopO through formation of ternary complexes with actin. This leads to a model in which YopO at the membrane sequesters actin from polymerization while using the bound actin as bait to recruit, phosphorylate and misregulate host actin-regulating proteins to disrupt phagocytosis.

  18. Site-specific cation release drives actin filament severing by vertebrate cofilin

    PubMed Central

    Kang, Hyeran; Bradley, Michael J.; Cao, Wenxiang; Zhou, Kaifeng; Grintsevich, Elena E.; Michelot, Alphée; Sindelar, Charles V.; Hochstrasser, Mark; De La Cruz, Enrique M.

    2014-01-01

    Actin polymerization powers the directed motility of eukaryotic cells. Sustained motility requires rapid filament turnover and subunit recycling. The essential regulatory protein cofilin accelerates network remodeling by severing actin filaments and increasing the concentration of ends available for elongation and subunit exchange. Although cofilin effects on actin filament assembly dynamics have been extensively studied, the molecular mechanism of cofilin-induced filament severing is not understood. Here we demonstrate that actin filament severing by vertebrate cofilin is driven by the linked dissociation of a single cation that controls filament structure and mechanical properties. Vertebrate cofilin only weakly severs Saccharomyces cerevisiae actin filaments lacking this “stiffness cation” unless a stiffness cation-binding site is engineered into the actin molecule. Moreover, vertebrate cofilin rescues the viability of a S. cerevisiae cofilin deletion mutant only when the stiffness cation site is simultaneously introduced into actin, demonstrating that filament severing is the essential function of cofilin in cells. This work reveals that site-specific interactions with cations serve a key regulatory function in actin filament fragmentation and dynamics. PMID:25468977

  19. The actin crosslinking protein palladin modulates force generation and mechanosensitivity of tumor associated fibroblasts

    PubMed Central

    Azatov, Mikheil; Goicoechea, Silvia M.; Otey, Carol A.; Upadhyaya, Arpita

    2016-01-01

    Cells organize actin filaments into higher-order structures by regulating the composition, distribution and concentration of actin crosslinkers. Palladin is an actin crosslinker found in the lamellar actin network and stress fibers, which are critical for mechanosensing of the environment. Palladin also serves as a molecular scaffold for α-actinin, another key actin crosslinker. By virtue of its close interactions with actomyosin structures in the cell, palladin may play an important role in cell mechanics. However, the role of palladin in cellular force generation and mechanosensing has not been studied. Here, we investigate the role of palladin in regulating the plasticity of the actin cytoskeleton and cellular force generation in response to alterations in substrate stiffness. Traction force microscopy revealed that tumor-associated fibroblasts generate larger forces on substrates of increased stiffness. Contrary to expectations, knocking down palladin increased the forces generated by cells and inhibited their ability to sense substrate stiffness for very stiff gels. This was accompanied by significant differences in actin organization, adhesion dynamics and altered myosin organization in palladin knock-down cells. Our results suggest that actin crosslinkers such as palladin and myosin motors coordinate for optimal cell function and to prevent aberrant behavior as in cancer metastasis. PMID:27353427

  20. Axon initial segment cytoskeleton comprises a multiprotein submembranous coat containing sparse actin filaments

    PubMed Central

    Jones, Steven L.; Korobova, Farida

    2014-01-01

    The axon initial segment (AIS) of differentiated neurons regulates action potential initiation and axon–dendritic polarity. The latter function depends on actin dynamics, but actin structure and functions at the AIS remain unclear. Using platinum replica electron microscopy (PREM), we have characterized the architecture of the AIS cytoskeleton in mature and developing hippocampal neurons. The AIS cytoskeleton assembly begins with bundling of microtubules and culminates in formation of a dense, fibrillar–globular coat over microtubule bundles. Immunogold PREM revealed that the coat contains a network of known AIS proteins, including ankyrin G, spectrin βIV, neurofascin, neuronal cell adhesion molecule, voltage-gated sodium channels, and actin filaments. Contrary to existing models, we find neither polarized actin arrays, nor dense actin meshworks in the AIS. Instead, the AIS contains two populations of sparse actin filaments: short, stable filaments and slightly longer dynamic filaments. We propose that stable actin filaments play a structural role for formation of the AIS diffusion barrier, whereas dynamic actin may promote AIS coat remodeling. PMID:24711503

  1. An early look at the Organ Procurement and Transplantation Network explant pathology form data.

    PubMed

    Harper, Ann M; Edwards, Erick; Washburn, W Kenneth; Heimbach, Julie

    2016-06-01

    In April 2012, the Organ Procurement and Transplantation Network (OPTN) implemented an online explant pathology form for recipients of liver transplantation who received additional wait-list priority for their diagnosis of hepatocellular carcinoma (HCC). The purpose of the form was to standardize the data being reported to the OPTN, which had been required since 2002 but were submitted to the OPTN in a variety of formats via facsimile. From April 2012 to December 2014, over 4500 explant forms were submitted, allowing for detailed analysis of the characteristics of the explanted livers. Data from the explant pathology forms were used to assess agreement with pretransplant imaging. Explant data were also used to assess the risk of recurrence. Of those with T2 priority, 55.7% were found to be stage T2 on explant. Extrahepatic spread (odds ratio [OR] = 6.8; P < 0.01), poor tumor differentiation (OR = 2.8; P < 0.01), microvascular invasion (OR = 2.6; P < 0.01), macrovascular invasion (OR = 3.2; P < 0.01), and whether the Milan stage based on the number and size of tumors on the explant form was T4 (OR = 2.4; P < 0.01) were the strongest predictors of recurrence. In conclusion, this analysis confirms earlier findings that showed an incomplete agreement between pretransplant imaging and posttransplant pathology in terms of HCC staging, though the number of patients with both no pretransplant treatment and no tumor in the explant was reduced from 20% to <1%. In addition, several factors were identified (eg, tumor burden, age, sex, region, ablative therapy, alpha-fetoprotein, Milan stage, vascular invasion, satellite lesions, etc.) that were predictive of HCC recurrence, allowing for more targeted surveillance of high-risk recipients. Continued evaluation of these data will help shape future guidelines or policy recommendations. Liver Transplantation 22 757-764 2016 AASLD.

  2. Molecular characterization and expression analysis of the β-actin gene from the ridgetail white prawn Exopalaemon carinicauda.

    PubMed

    Liang, J P; Wang, Y; Ge, Q Q; Li, J T; Liu, P; Li, J; Nie, G X

    2016-01-01

    Actin is a highly conserved protein that is found in all eukaryotic cells, and has been widely used as an internal control gene in gene expression studies. In this study, we cloned an actin gene (named Ecβ-actin) from Exopalaemon carinicauda and determined its expression levels. The full-length cDNA of Ecβ-actin was 1335 bp long, comprising a 1131-bp ORF encoding 376 amino acids, a 65-bp 5'-UTR, and a 139-bp 3'-UTR with a poly(A) tail. The A + T content was approximately 79% in the 3'-UTR of the Ecβ-actin mRNA. The 3'-UTR contained two repeats of the AUUUA motif. The putative protein Ecβ-actin showed high identity (97-99%) with other actins from various species. Phylogenetic analysis revealed that Ecβ-actin belongs to Crustacea, although it formed a singleton sub-branch that was located a short distance from crabs and other shrimp species. Ecβ- actin expression was detected in the hepatopancreas, ovary, muscle, gill, stomach, and hemocytes, and was strongly expressed in the hemocytes and ovary of E. carinicauda. Ecβ-actin mRNA expression varied during ovarian development, with high levels observed at stages I and V. Therefore, caution should be taken when using the Ecβ-actin gene as an endogenous control gene. PMID:27173226

  3. Molecular characterization and expression analysis of the β-actin gene from the ridgetail white prawn Exopalaemon carinicauda.

    PubMed

    Liang, J P; Wang, Y; Ge, Q Q; Li, J T; Liu, P; Li, J; Nie, G X

    2016-01-01

    Actin is a highly conserved protein that is found in all eukaryotic cells, and has been widely used as an internal control gene in gene expression studies. In this study, we cloned an actin gene (named Ecβ-actin) from Exopalaemon carinicauda and determined its expression levels. The full-length cDNA of Ecβ-actin was 1335 bp long, comprising a 1131-bp ORF encoding 376 amino acids, a 65-bp 5'-UTR, and a 139-bp 3'-UTR with a poly(A) tail. The A + T content was approximately 79% in the 3'-UTR of the Ecβ-actin mRNA. The 3'-UTR contained two repeats of the AUUUA motif. The putative protein Ecβ-actin showed high identity (97-99%) with other actins from various species. Phylogenetic analysis revealed that Ecβ-actin belongs to Crustacea, although it formed a singleton sub-branch that was located a short distance from crabs and other shrimp species. Ecβ- actin expression was detected in the hepatopancreas, ovary, muscle, gill, stomach, and hemocytes, and was strongly expressed in the hemocytes and ovary of E. carinicauda. Ecβ-actin mRNA expression varied during ovarian development, with high levels observed at stages I and V. Therefore, caution should be taken when using the Ecβ-actin gene as an endogenous control gene.

  4. Hierarchical self-assembly of a striped gyroid formed by threaded chiral mesoscale networks

    PubMed Central

    Kirkensgaard, Jacob J. K.; Evans, Myfanwy E.; de Campo, Liliana; Hyde, Stephen T.

    2014-01-01

    Numerical simulations reveal a family of hierarchical and chiral multicontinuous network structures self-assembled from a melt blend of Y-shaped ABC and ABD three-miktoarm star terpolymers, constrained to have equal-sized A/B and C/D chains, respectively. The C and D majority domains within these patterns form a pair of chiral enantiomeric gyroid labyrinths (srs nets) over a broad range of compositions. The minority A and B components together define a hyperbolic film whose midsurface follows the gyroid minimal surface. A second level of assembly is found within the film, with the minority components also forming labyrinthine domains whose geometry and topology changes systematically as a function of composition. These smaller labyrinths are well described by a family of patterns that tile the hyperbolic plane by regular degree-three trees mapped onto the gyroid. The labyrinths within the gyroid film are densely packed and contain either graphitic hcb nets (chicken wire) or srs nets, forming convoluted intergrowths of multiple nets. Furthermore, each net is ideally a single chiral enantiomer, induced by the gyroid architecture. However, the numerical simulations result in defect-ridden achiral patterns, containing domains of either hand, due to the achiral terpolymeric starting molecules. These mesostructures are among the most topologically complex morphologies identified to date and represent an example of hierarchical ordering within a hyperbolic pattern, a unique mode of soft-matter self-assembly. PMID:24474747

  5. Differential coloring reveals that plastids do not form networks for exchanging macromolecules.

    PubMed

    Schattat, Martin H; Griffiths, Sarah; Mathur, Neeta; Barton, Kiah; Wozny, Michael R; Dunn, Natalie; Greenwood, John S; Mathur, Jaideep

    2012-04-01

    Stroma-filled tubules named stromules are sporadic extensions of plastids. Earlier, photobleaching was used to demonstrate fluorescent protein diffusion between already interconnected plastids and formed the basis for suggesting that all plastids are able to form networks for exchanging macromolecules. However, a critical appraisal of literature shows that this conjecture is not supported by unequivocal experimental evidence. Here, using photoconvertible mEosFP, we created color differences between similar organelles that enabled us to distinguish clearly between organelle fusion and nonfusion events. Individual plastids, despite conveying a strong impression of interactivity and fusion, maintained well-defined boundaries and did not exchange fluorescent proteins. Moreover, the high pleomorphy of etioplasts from dark-grown seedlings, leucoplasts from roots, and assorted plastids in the accumulation and replication of chloroplasts5 (arc5), arc6, and phosphoglucomutase1 mutants of Arabidopsis thaliana suggested that a single plastid unit might be easily mistaken for interconnected plastids. Our observations provide succinct evidence to refute the long-standing dogma of interplastid connectivity. The ability to create and maintain a large number of unique biochemical factories in the form of singular plastids might be a key feature underlying the versatility of green plants as it provides increased internal diversity for them to combat a wide range of environmental fluctuations and stresses.

  6. Tip-localized actin polymerization and remodeling, reflected by the localization of ADF, profilin and villin, are fundamental for gravity-sensing and polar growth in characean rhizoids.

    PubMed

    Braun, Markus; Hauslage, Jens; Czogalla, Aleksander; Limbach, Christoph

    2004-07-01

    Polar organization and gravity-oriented, polarized growth of characean rhizoids are dependent on the actin cytoskeleton. In this report, we demonstrate that the prominent center of the Spitzenkörper serves as the apical actin polymerization site in the extending tip. After cytochalasin D-induced disruption of the actin cytoskeleton, the regeneration of actin microfilaments (MFs) starts with the reappearance of a flat, brightly fluorescing actin array in the outermost tip. The actin array rounds up, produces actin MFs that radiate in all directions and is then relocated into its original central position in the center of the Spitzenkörper. The emerging actin MFs rearrange and cross-link to form the delicate, subapical meshwork, which then controls the statolith positioning, re-establishes the tip-high calcium gradient and mediates the reorganization of the Spitzenkörper with its central ER aggregate and the accumulation of secretory vesicles. Tip growth and gravitropic sensing, which includes control of statolith positioning and gravity-induced sedimentation, are not resumed until the original polar actin organization is completely restored. Immunolocalization of the actin-binding proteins, actin-depolymerizing factor (ADF) and profilin, which both accumulate in the center of the Spitzenkörper, indicates high actin turnover and gives additional support for the actin-polymerizing function of this central, apical area. Association of villin immunofluorescence with two populations of thick undulating actin cables with uniform polarity underlying rotational cytoplasmic streaming in the basal region suggests that villin is the major actin-bundling protein in rhizoids. Our results provide evidence that the precise coordination of apical actin polymerization and dynamic remodeling of actin MFs by actin-binding proteins play a fundamental role in cell polarization, gravity sensing and gravity-oriented polarized growth of characean rhizoids.

  7. The nitrate reductase inhibitor, tungsten, disrupts actin microfilaments in Zea mays L.

    PubMed

    Adamakis, Ioannis-Dimosthenis S; Panteris, Emmanuel; Eleftheriou, Eleftherios P

    2014-05-01

    Tungsten is a widely used inhibitor of nitrate reductase, applied to diminish the nitric oxide levels in plants. It was recently shown that tungsten also has heavy metal attributes. Since information about the toxic effects of tungsten on actin is limited, and considering that actin microfilaments are involved in the entry of tungsten inside plant cells, the effects of tungsten on them were studied in Zea mays seedlings. Treatments with sodium tungstate for 3, 6, 12 or 24 h were performed on intact seedlings and seedlings with truncated roots. Afterwards, actin microfilaments in meristematic root and leaf tissues were stained with fluorescent phalloidin, and the specimens were examined by confocal laser scanning microscopy. While the actin microfilament network was well organized in untreated seedlings, in tungstate-treated ones it was disrupted in a time-dependent manner. In protodermal root cells, the effects of tungsten were stronger as cortical microfilaments were almost completely depolymerized and the intracellular ones appeared highly bundled. Fluorescence intensity measurements confirmed the above results. In the meristematic leaf tissue of intact seedlings, no depolymerization of actin microfilaments was noticed. However, when root tips were severed prior to tungstate application, both cortical and endoplasmic actin networks of leaf cells were disrupted and bundled after 24 h of treatment. The differential response of root and leaf tissues to tungsten toxicity may be due to differential penetration and absorption, while the effects on actin microfilaments could not be attributed to the nitric oxide depletion by tungsten.

  8. Mechanism of Actin-Based Motility

    NASA Astrophysics Data System (ADS)

    Pantaloni, Dominique; Le Clainche, Christophe; Carlier, Marie-France

    2001-05-01

    Spatially controlled polymerization of actin is at the origin of cell motility and is responsible for the formation of cellular protrusions like lamellipodia. The pathogens Listeria monocytogenes and Shigella flexneri, which undergo actin-based propulsion, are acknowledged models of the leading edge of lamellipodia. Actin-based motility of the bacteria or of functionalized microspheres can be reconstituted in vitro from only five pure proteins. Movement results from the regulated site-directed treadmilling of actin filaments, consistent with observations of actin dynamics in living motile cells and with the biochemical properties of the components of the synthetic motility medium.

  9. Fluvial Channel Networks as Analogs for the Ridge-Forming Unit, Sinus Meridiani, Mars

    NASA Technical Reports Server (NTRS)

    Wilkinson, M. J.; du Bois, J. B.

    2010-01-01

    Fluvial models have been generally discounted as analogs for the younger layered rock units of Sinus Meridiani. A fluvial model based on the large fluvial fan provides a possibly close analog for various features of the sinuous ridges of the etched, ridge-forming unit (RFU) in particular. The close spacing of the RFU ridges, their apparently chaotic orientations, and their organization in dense networks all appear unlike classical stream channel patterns. However, drainage patterns on large fluvial fans low-angle, fluvial aggradational features, 100s of km long, documented worldwide by us provide parallels. Some large fan characteristics resemble those of classical floodplains, but many differences have been demonstrated. One major distinction relevant to the RFU is that channel landscapes of large fans can dominate large areas (1.2 million km2 in one S. American study area). We compare channel morphologies on large fans in the southern Sahara Desert with ridge patterns in Sinus Meridiani (fig 1). Stream channels are the dominant landform on large terrestrial fans: they may equate to the ubiquitous, sinuous, elongated ridges of the RFU that cover areas region wide. Networks of convergent/divergent and crossing channels may equate to similar features in the ridge networks. Downslope divergence is absent in channels of terrestrial upland erosional landscapes (fig. 1, left), whereas it is common to both large fans (fig. 1, center) and RFU ridge patterns (fig 1, right downslope defined as the regional NW slope of Sinus Meridiani). RFU ridge orientation, judged from those areas apparently devoid of impact crater control, is broadly parallel with the regional slope (arrow, fig. 1, right), as is mean orientation of major channels on large fans (arrow, fig. 1, center). High densities per unit area characterize fan channels and martian ridges reaching an order of magnitude higher than those in uplands just upstream of the terrestrial study areas fig. 1. In concert with

  10. Coupling social attention to the self forms a network for personal significance.

    PubMed

    Sui, Jie; Rotshtein, Pia; Humphreys, Glyn W

    2013-05-01

    Prior social psychological studies show that newly assigned personal significance can modulate high-level cognitive processes, e.g., memory and social evaluation, with self- and other-related information processed in dissociated prefrontal structure: ventral vs. dorsal, respectively. Here, we demonstrate the impact of personal significance on perception and show the neural network that supports this effect. We used an associative learning procedure in which we "tag" a neutral shape with a self-relevant label. Participants were instructed to associate three neutral shapes with labels for themselves, their best friend, or an unfamiliar other. Functional magnetic resonance imaging data were acquired while participants judged whether the shape-label pairs were maintained or swapped. Behaviorally, participants rapidly tagged a neutral stimulus with self-relevance, showing a robust advantage for self-tagged stimuli. Self-tagging responses were associated with enhanced activity in brain regions linked to self-representation [the ventral medial prefrontal cortex (vmPFC)] and to sensory-driven regions associated with social attention [the left posterior superior temporal sulcus (LpSTS)]. In contrast, associations formed with other people recruited a dorsal frontoparietal control network, with the two networks being inversely correlated. Responses in the vmPFC and LpSTS predicted behavioral self-bias effects. Effective connectivity analyses showed that the vmPFC and the LpSTS were functionally coupled, with the strength of coupling associated with behavioral self-biases. The data show that assignment of personal social significance affects perceptual matching by coupling internal self-representations to brain regions modulating attentional responses to external stimuli.

  11. Impact of actin rearrangement and degranulation on the membrane structure of primary mast cells: a combined atomic force and laser scanning confocal microscopy investigation.

    PubMed

    Deng, Zhao; Zink, Tiffany; Chen, Huan-yuan; Walters, Deron; Liu, Fu-tong; Liu, Gang-yu

    2009-02-18

    Degranulation of bone marrow-derived mast cells (BMMCs) triggered by antigens (e.g., 2,4-dinitrophenylated bovine serum albumin (DNP-BSA) and secretagogues (e.g., poly-L-lysine) was investigated by combined atomic force microscopy (AFM) and laser scanning confocal microscopy (LSCM). This combination enables the simultaneous visualization and correlation of membrane morphology with cytoskeletal actin arrangement and intracellular granules. Two degranulation mechanisms and detailed membrane structures that directly corresponded to the two stimuli were revealed. In DNP-BSA triggered activation, characteristic membrane ridges formed in accordance with the rearrangement of underlying F-actin networks. Individual granules were visualized after they released their contents, indicating a "kiss-and-run" pathway. In BMMCs stimulated by poly-L-lysine, lamellopodia and filopodia were observed in association with the F-actin assemblies at and near the cell periphery, whereas craters were observed on the central membrane lacking F-actin. These craters represent a new membrane feature resulting from the "kiss-and-merge" granule fusion. This work provides what we believe is important new insight into the local membrane structures in correlation with the cytoskeleton arrangement and detailed degranulation processes. PMID:19217878

  12. Stabilization of actin filaments prevents germinal vesicle breakdown and affects microtubule organization in Xenopus oocytes.

    PubMed

    Okada, Iyo; Fujiki, Saburo; Iwase, Shohei; Abe, Hiroshi

    2012-05-01

    In Xenopus oocytes, extremely giant nuclei, termed germinal vesicles, contain a large amount of actin filaments most likely for mechanical integrity. Here, we show that microinjection of phalloidin, an F-actin-stabilizing drug, prevents the germinal vesicle breakdown (GVBD) in oocytes treated with progesterone. These nuclei remained for more 12 h after control oocytes underwent GVBD. Immunostaining showed significant elevation of actin in the remaining nuclei and many actin filament bundles in the cytoplasm. Furthermore, microtubules formed unusual structures in both nuclei and cytoplasm of phalloidin-injected oocytes stimulated by progesterone. Cytoplasmic microtubule arrays and intranuclear microtubules initially formed in phalloidin-injected oocytes as control oocytes exhibited white maturation spots; these structures gradually disappeared and finally converged upon intranuclear short bundles when control oocytes completed maturation. In contrast, treatment of oocytes with jasplakinolide, a cell membrane-permeable actin filament-stabilizing drug, did not affect GVBD. This drug preferentially induced accumulation of actin filaments at the cortex without any increase in cytoplasmic actin staining. Based on these results, intranuclear and cytoplasmic actin filament dynamics appear to be required for the completion of GVBD and critically involved in the regulation of microtubule assembly during oocyte maturation in Xenopus laevis. PMID:22422719

  13. Shock-Induced Ordering in a Nano-segregated Network-Forming Ionic Liquid.

    PubMed

    Yang, Ke; Lee, Jaejun; Sottos, Nancy R; Moore, Jeffrey S

    2015-12-30

    Understanding shockwave-induced physical and chemical changes of impact-absorbing materials is an important step toward the rational design of materials that mitigate the damage. In this work, we report a series of network-forming ionic liquids (NILs) that possess an intriguing shockwave absorption property upon laser-induced shockwave. Microstructure analysis by X-ray scattering suggests nano-segregation of alkyl side chains and charged head groups in NILs. Further post-shock observations indicate changes in the low-Q region, implying that the soft alkyl domain in NILs plays an important role in absorbing shockwaves. Interestingly, we observe a shock-induced ordering in the NIL with the longest (hexyl) side chain, indicating that both nano-segregated structure and shock-induced ordering contribute to NIL's shockwave absorption performance.

  14. Interactive learning in 2×2 normal form games by neural network agents

    NASA Astrophysics Data System (ADS)

    Spiliopoulos, Leonidas

    2012-11-01

    This paper models the learning process of populations of randomly rematched tabula rasa neural network (NN) agents playing randomly generated 2×2 normal form games of all strategic classes. This approach has greater external validity than the existing models in the literature, each of which is usually applicable to narrow subsets of classes of games (often a single game) and/or to fixed matching protocols. The learning prowess of NNs with hidden layers was impressive as they learned to play unique pure strategy equilibria with near certainty, adhered to principles of dominance and iterated dominance, and exhibited a preference for risk-dominant equilibria. In contrast, perceptron NNs were found to perform significantly worse than hidden layer NN agents and human subjects in experimental studies.

  15. Forming an ad-hoc nearby storage, based on IKAROS and social networking services

    NASA Astrophysics Data System (ADS)

    Filippidis, Christos; Cotronis, Yiannis; Markou, Christos

    2014-06-01

    We present an ad-hoc "nearby" storage, based on IKAROS and social networking services, such as Facebook. By design, IKAROS is capable to increase or decrease the number of nodes of the I/O system instance on the fly, without bringing everything down or losing data. IKAROS is capable to decide the file partition distribution schema, by taking on account requests from the user or an application, as well as a domain or a Virtual Organization policy. In this way, it is possible to form multiple instances of smaller capacity higher bandwidth storage utilities capable to respond in an ad-hoc manner. This approach, focusing on flexibility, can scale both up and down and so can provide more cost effective infrastructures for both large scale and smaller size systems. A set of experiments is performed comparing IKAROS with PVFS2 by using multiple clients requests under HPC IOR benchmark and MPICH2.

  16. A pulse-forming network for particle path visualization. [at Ames Aeromechanics Water Tunnel Facility

    NASA Technical Reports Server (NTRS)

    Mcalister, K. W.

    1981-01-01

    A procedure is described for visualizing nonsteady fluid flow patterns over a wide velocity range using discrete nonluminous particles. The paramount element responsible for this capability is a pulse-forming network with variable inductance that is used to modulate the discharge of a fixed amount of electrical energy through a xenon flashtube. The selectable duration of the resultant light emission functions as a variable shutter so that particle path images of constant length can be recorded. The particles employed as flow markers are hydrogen bubbles that are generated by electrolysis in a water tunnel. Data are presented which document the characteristics of the electrical circuit and establish the relation of particle velocity to both section inductance and film exposure.

  17. The role of Arp2/3 in growth cone actin dynamics and guidance is substrate dependent.

    PubMed

    San Miguel-Ruiz, José E; Letourneau, Paul C

    2014-04-23

    During development extrinsic guidance cues modulate the peripheral actin network in growth cones to direct axons to their targets. We wanted to understand the role of the actin nucleator Arp2/3 in growth cone actin dynamics and guidance. Since growth cones migrate in association with diverse adhesive substrates during development, we probed the hypothesis that the functional significance of Arp2/3 is substrate dependent. We report that Arp2/3 inhibition led to a reduction in the number of filopodia and growth cone F-actin content on laminin and L1. However, we found substrate-dependent differences in growth cone motility, actin retrograde flow, and guidance after Arp2/3 inhibition, suggesting that its role, and perhaps that of other actin binding proteins, in growth cone motility is substrate dependent. PMID:24760849

  18. Model for adhesion clutch explains biphasic relationship between actin flow and traction at the cell leading edge

    PubMed Central

    Craig, Erin M.; Stricker, Jonathan; Gardel, Margaret L.; Mogilner, Alex

    2015-01-01

    Cell motility relies on the continuous reorganization of a dynamic actin-myosin-adhesion network at the leading edge of the cell, in order to generate protrusion at the leading edge and traction between the cell and its external environment. We analyze experimentally measured spatial distributions of actin flow, traction force, myosin density, and adhesion density in control and pharmacologically perturbed epithelial cells in order to develop a mechanical model of the actin-adhesion-myosin self-organization at the leading edge. A model in which the F-actin network is treated as a viscous gel, and adhesion clutch engagement is strengthened by myosin but weakened by actin flow, can explain the measured molecular distributions and correctly predict the spatial distributions of the actin flow and traction stress. We test the model by comparing its predictions with measurements of the actin flow and traction stress in cells with fast and slow actin polymerization rates. The model predicts how the location of the lamellipodium-lamellum boundary depends on the actin viscosity and adhesion strength. The model further predicts that the location of the lamellipodium-lamellum boundary is not very sensitive to the level of myosin contraction. PMID:25969948

  19. The actin of muscle and fibroblasts.

    PubMed Central

    Anderson, P J

    1976-01-01

    The isolation and quantification of an 18-residue peptide from the N-terminal region of chicken actin was used to quantify the amount of actin in acetone-dried powders of chicken breast muscle and chicken-embryo fibroblasts. Either isotope dilution or double labelling can be used for peptide quantification. About 17% of the protein of chicken breast muscle was estimated to be actin. However, only 0.25% of the protein of chicken-embryo fibroblasts was determined to be actin by quantification of this peptide. The actin content of fibroblasts may be low or the amino acid sequences of muscle and fibroblast actin may differ in the N-terminal region. The methodology used can be extended to examine whether other regions of muscle actin sequence are present in fibroblasts or other cell types. PMID:938480

  20. Quantifying actin wave modulation on periodic topography

    NASA Astrophysics Data System (ADS)

    Guven, Can; Driscoll, Meghan; Sun, Xiaoyu; Parker, Joshua; Fourkas, John; Carlsson, Anders; Losert, Wolfgang

    2014-03-01

    Actin is the essential builder of the cell cytoskeleton, whose dynamics are responsible for generating the necessary forces for the formation of protrusions. By exposing amoeboid cells to periodic topographical cues, we show that actin can be directionally guided via inducing preferential polymerization waves. To quantify the dynamics of these actin waves and their interaction with the substrate, we modify a technique from computer vision called ``optical flow.'' We obtain vectors that represent the apparent actin flow and cluster these vectors to obtain patches of newly polymerized actin, which represent actin waves. Using this technique, we compare experimental results, including speed distribution of waves and distance from the wave centroid to the closest ridge, with actin polymerization simulations. We hypothesize the modulation of the activity of nucleation promotion factors on ridges (elevated regions of the surface) as a potential mechanism for the wave-substrate coupling. Funded by NIH grant R01GM085574.

  1. Actin and Endocytosis in Budding Yeast

    PubMed Central

    Goode, Bruce L.; Eskin, Julian A.; Wendland, Beverly

    2015-01-01

    Endocytosis, the process whereby the plasma membrane invaginates to form vesicles, is essential for bringing many substances into the cell and for membrane turnover. The mechanism driving clathrin-mediated endocytosis (CME) involves > 50 different protein components assembling at a single location on the plasma membrane in a temporally ordered and hierarchal pathway. These proteins perform precisely choreographed steps that promote receptor recognition and clustering, membrane remodeling, and force-generating actin-filament assembly and turnover to drive membrane invagination and vesicle scission. Many critical aspects of the CME mechanism are conserved from yeast to mammals and were first elucidated in yeast, demonstrating that it is a powerful system for studying endocytosis. In this review, we describe our current mechanistic understanding of each step in the process of yeast CME, and the essential roles played by actin polymerization at these sites, while providing a historical perspective of how the landscape has changed since the preceding version of the YeastBook was published 17 years ago (1997). Finally, we discuss the key unresolved issues and where future studies might be headed. PMID:25657349

  2. Actin binding proteins, spermatid transport and spermiation.

    PubMed

    Qian, Xiaojing; Mruk, Dolores D; Cheng, Yan-Ho; Tang, Elizabeth I; Han, Daishu; Lee, Will M; Wong, Elissa W P; Cheng, C Yan

    2014-06-01

    The transport of germ cells across the seminiferous epithelium is composed of a series of cellular events during the epithelial cycle essential to the completion of spermatogenesis. Without the timely transport of spermatids during spermiogenesis, spermatozoa that are transformed from step 19 spermatids in the rat testis fail to reach the luminal edge of the apical compartment and enter the tubule lumen at spermiation, thereby arriving the epididymis for further maturation. Step 19 spermatids and/or sperms that remain in the epithelium beyond stage VIII of the epithelial cycle will be removed by the Sertoli cell via phagocytosis to form phagosomes and be degraded by lysosomes, leading to subfertility and/or infertility. However, the biology of spermatid transport, in particular the final events that lead to spermiation remain elusive. Based on recent data in the field, we critically evaluate the biology of spermiation herein by focusing on the actin binding proteins (ABPs) that regulate the organization of actin microfilaments at the Sertoli-spermatid interface, which is crucial for spermatid transport during this event. The hypothesis we put forth herein also highlights some specific areas of research that can be pursued by investigators in the years to come.

  3. Percolation mechanism drives actin gels to the critically connected state

    NASA Astrophysics Data System (ADS)

    Lee, Chiu Fan; Pruessner, Gunnar

    2016-05-01

    Cell motility and tissue morphogenesis depend crucially on the dynamic remodeling of actomyosin networks. An actomyosin network consists of an actin polymer network connected by cross-linker proteins and motor protein myosins that generate internal stresses on the network. A recent discovery shows that for a range of experimental parameters, actomyosin networks contract to clusters with a power-law size distribution [J. Alvarado, Nat. Phys. 9, 591 (2013), 10.1038/nphys2715]. Here, we argue that actomyosin networks can exhibit a robust critical signature without fine-tuning because the dynamics of the system can be mapped onto a modified version of percolation with trapping (PT), which is known to show critical behavior belonging to the static percolation universality class without the need for fine-tuning of a control parameter. We further employ our PT model to generate experimentally testable predictions.

  4. Percolation mechanism drives actin gels to the critically connected state.

    PubMed

    Lee, Chiu Fan; Pruessner, Gunnar

    2016-05-01

    Cell motility and tissue morphogenesis depend crucially on the dynamic remodeling of actomyosin networks. An actomyosin network consists of an actin polymer network connected by cross-linker proteins and motor protein myosins that generate internal stresses on the network. A recent discovery shows that for a range of experimental parameters, actomyosin networks contract to clusters with a power-law size distribution [J. Alvarado, Nat. Phys. 9, 591 (2013)1745-247310.1038/nphys2715]. Here, we argue that actomyosin networks can exhibit a robust critical signature without fine-tuning because the dynamics of the system can be mapped onto a modified version of percolation with trapping (PT), which is known to show critical behavior belonging to the static percolation universality class without the need for fine-tuning of a control parameter. We further employ our PT model to generate experimentally testable predictions. PMID:27300931

  5. Dynamic network morphology and tension buildup in a 3D model of cytokinetic ring assembly.

    PubMed

    Bidone, Tamara C; Tang, Haosu; Vavylonis, Dimitrios

    2014-12-01

    During fission yeast cytokinesis, actin filaments nucleated by cortical formin Cdc12 are captured by myosin motors bound to a band of cortical nodes and bundled by cross-linking proteins. The myosin motors exert forces on the actin filaments, resulting in a net pulling of the nodes into a contractile ring, while cross-linking interactions help align actin filaments and nodes into a single bundle. We used these mechanisms in a three-dimensional computational model of contractile ring assembly, with semiflexible actin filaments growing from formins at cortical nodes, capturing of filaments by neighboring nodes, and cross-linking among filaments through attractive interactions. The model was used to predict profiles of actin filament density at the cell cortex, morphologies of condensing node-filament networks, and regimes of cortical tension by varying the node pulling force and strength of cross-linking among actin filaments. Results show that cross-linking interactions can lead to confinement of actin filaments at the simulated cortical boundary. We show that the ring-formation region in parameter space lies close to regions leading to clumps, meshworks or double rings, and stars/cables. Since boundaries between regions are not sharp, transient structures that resemble clumps, stars, and meshworks can appear in the process of ring assembly. These results are consistent with prior experiments with mutations in actin-filament turnover regulators, myosin motor activity, and changes in the concentration of cross-linkers that alter the morphology of the condensing network. Transient star shapes appear in some simulations, and these morphologies offer an explanation for star structures observed in prior experimental images. Finally, we quantify tension along actin filaments and forces on nodes during ring assembly and show that the mechanisms describing ring assembly can also drive ring constriction once the ring is formed.

  6. Dynamic network morphology and tension buildup in a 3D model of cytokinetic ring assembly.

    PubMed

    Bidone, Tamara C; Tang, Haosu; Vavylonis, Dimitrios

    2014-12-01

    During fission yeast cytokinesis, actin filaments nucleated by cortical formin Cdc12 are captured by myosin motors bound to a band of cortical nodes and bundled by cross-linking proteins. The myosin motors exert forces on the actin filaments, resulting in a net pulling of the nodes into a contractile ring, while cross-linking interactions help align actin filaments and nodes into a single bundle. We used these mechanisms in a three-dimensional computational model of contractile ring assembly, with semiflexible actin filaments growing from formins at cortical nodes, capturing of filaments by neighboring nodes, and cross-linking among filaments through attractive interactions. The model was used to predict profiles of actin filament density at the cell cortex, morphologies of condensing node-filament networks, and regimes of cortical tension by varying the node pulling force and strength of cross-linking among actin filaments. Results show that cross-linking interactions can lead to confinement of actin filaments at the simulated cortical boundary. We show that the ring-formation region in parameter space lies close to regions leading to clumps, meshworks or double rings, and stars/cables. Since boundaries between regions are not sharp, transient structures that resemble clumps, stars, and meshworks can appear in the process of ring assembly. These results are consistent with prior experiments with mutations in actin-filament turnover regulators, myosin motor activity, and changes in the concentration of cross-linkers that alter the morphology of the condensing network. Transient star shapes appear in some simulations, and these morphologies offer an explanation for star structures observed in prior experimental images. Finally, we quantify tension along actin filaments and forces on nodes during ring assembly and show that the mechanisms describing ring assembly can also drive ring constriction once the ring is formed. PMID:25468341

  7. Dynamic Network Morphology and Tension Buildup in a 3D Model of Cytokinetic Ring Assembly

    PubMed Central

    Bidone, Tamara C.; Tang, Haosu; Vavylonis, Dimitrios

    2014-01-01

    During fission yeast cytokinesis, actin filaments nucleated by cortical formin Cdc12 are captured by myosin motors bound to a band of cortical nodes and bundled by cross-linking proteins. The myosin motors exert forces on the actin filaments, resulting in a net pulling of the nodes into a contractile ring, while cross-linking interactions help align actin filaments and nodes into a single bundle. We used these mechanisms in a three-dimensional computational model of contractile ring assembly, with semiflexible actin filaments growing from formins at cortical nodes, capturing of filaments by neighboring nodes, and cross-linking among filaments through attractive interactions. The model was used to predict profiles of actin filament density at the cell cortex, morphologies of condensing node-filament networks, and regimes of cortical tension by varying the node pulling force and strength of cross-linking among actin filaments. Results show that cross-linking interactions can lead to confinement of actin filaments at the simulated cortical boundary. We show that the ring-formation region in parameter space lies close to regions leading to clumps, meshworks or double rings, and stars/cables. Since boundaries between regions are not sharp, transient structures that resemble clumps, stars, and meshworks can appear in the process of ring assembly. These results are consistent with prior experiments with mutations in actin-filament turnover regulators, myosin motor activity, and changes in the concentration of cross-linkers that alter the morphology of the condensing network. Transient star shapes appear in some simulations, and these morphologies offer an explanation for star structures observed in prior experimental images. Finally, we quantify tension along actin filaments and forces on nodes during ring assembly and show that the mechanisms describing ring assembly can also drive ring constriction once the ring is formed. PMID:25468341

  8. Role of gelsolin in actin depolymerization of adherent human neutrophils.

    PubMed Central

    Wang, J S; Coburn, J P; Tauber, A I; Zaner, K S

    1997-01-01

    Human neutrophils generally function adherent to an extracellular matrix. We have previously reported that upon adhesion to laminin- or fibronectin-coated, but not uncoated, plastic there is a depolymerization of actin in neutrophils. This phenomenon was not affected by inhibitors of the more well-studied components of the signal transduction pathway, specifically, pertussis toxin, an inhibitor of G-proteins, H-7 or staurosporine, inhibitors of protein kinase C, or herbimycin A, an inhibitor of nonreceptor tyrosine kinase. We therefore focused our attention on actin-binding proteins and measured the changes in the partitioning of gelsolin between the Triton X-100-soluble and -insoluble cellular fractions which occur upon neutrophil adhesion by means of quantitating anti-gelsolin antibody binding to aliquots of these fractions. It was found that approximately 90% of the total cellular gelsolin was found in the Triton X-100-soluble fraction in suspended cells, but that upon adherence to either fibronectin- or laminin-coated plastic about 40% of the soluble gelsolin could be detected in the insoluble fraction. This effect was not observed in cells adherent to uncoated plastic, wherein more than 90% of the gelsolin was found in the soluble fraction. Results of immunofluorescence microscopy of these cell preparations was consistent with this data. A gelsolin translocation to the insoluble cellular actin network may account for a part of the observed actin depolymerization. Images PMID:9017600

  9. Structure of the 34 kDa F-actin-bundling protein ABP34 from Dictyostelium discoideum.

    PubMed

    Kim, Min-Kyu; Kim, Ji-Hye; Kim, Ji-Sun; Kang, Sa-Ouk

    2015-09-01

    The crystal structure of the 34 kDa F-actin-bundling protein ABP34 from Dictyostelium discoideum was solved by Ca(2+)/S-SAD phasing and refined at 1.89 Å resolution. ABP34 is a calcium-regulated actin-binding protein that cross-links actin filaments into bundles. Its in vitro F-actin-binding and F-actin-bundling activities were confirmed by a co-sedimentation assay and transmission electron microscopy. The co-localization of ABP34 with actin in cells was also verified. ABP34 adopts a two-domain structure with an EF-hand-containing N-domain and an actin-binding C-domain, but has no reported overall structural homologues. The EF-hand is occupied by a calcium ion with a pentagonal bipyramidal coordination as in the canonical EF-hand. The C-domain structure resembles a three-helical bundle and superposes well onto the rod-shaped helical structures of some cytoskeletal proteins. Residues 216-244 in the C-domain form part of the strongest actin-binding sites (193-254) and exhibit a conserved sequence with the actin-binding region of α-actinin and ABP120. Furthermore, the second helical region of the C-domain is kinked by a proline break, offering a convex surface towards the solvent area which is implicated in actin binding. The F-actin-binding model suggests that ABP34 binds to the side of the actin filament and residues 216-244 fit into a pocket between actin subdomains -1 and -2 through hydrophobic interactions. These studies provide insights into the calcium coordination in the EF-hand and F-actin-binding site in the C-domain of ABP34, which are associated through interdomain interactions. PMID:26327373

  10. Evidence for a species of nuclear actin distinct from cytoplasmic and muscles actins.

    PubMed

    Bremer, J W; Busch, H; Yeoman, L C

    1981-03-31

    Nuclear actin (protein BJ) has been isolated from the chromatin of Novikoff hepatoma ascites cells and purified to homogeneity by selective extraction, Sepharose CL-6B chromatography, and preparative polyacrylamide gel electrophoresis. A comparison of nuclear and cytoplasmic actins from Novikoff hepatoma cells and rabbit muscle actin was made by amino acid analysis, isoelectric focusing/sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and two-dimensional peptide mapping procedures. By these criteria, all of the proteins compared are actins, but each is chemically distinct. It was concluded, therefore, that nuclear actin is similar to, but not identical with, cytoplasmic actin isolated from Novikoff hepatoma cells. A striking similarity in peptide charge and migration as shown by peptide map analysis was observed for nuclear and rabbit skeletal muscle actins. This may indicate that nuclear actin has the capacity for contractile function. In addition, the actins synthesized in Novikoff hepatoma cells may results from more than two structural genes.

  11. An 8-GW long-pulse generator based on Tesla transformer and pulse forming network

    NASA Astrophysics Data System (ADS)

    Su, Jiancang; Zhang, Xibo; Li, Rui; Zhao, Liang; Sun, Xu; Wang, Limin; Zeng, Bo; Cheng, Jie; Wang, Ying; Peng, Jianchang; Song, Xiaoxin

    2014-06-01

    A long-pulse generator TPG700L based on a Tesla transformer and a series pulse forming network (PFN) is constructed to generate intense electron beams for the purpose of high power microwave (HPM) generation. The TPG700L mainly consists of a 12-stage PFN, a built-in Tesla transformer in a pulse forming line, a three-electrode gas switch, a transmission line with a trigger, and a load. The Tesla transformer and the compact PFN are the key technologies for the development of the TPG700L. This generator can output electrical pulses with a width as long as 200 ns at a level of 8 GW and a repetition rate of 50 Hz. When used to drive a relative backward wave oscillator for HPM generation, the electrical pulse width is about 100 ns on a voltage level of 520 kV. Factors affecting the pulse waveform of the TPG700L are also discussed. At present, the TPG700L performs well for long-pulse HPM generation in our laboratory.

  12. An 8-GW long-pulse generator based on Tesla transformer and pulse forming network.

    PubMed

    Su, Jiancang; Zhang, Xibo; Li, Rui; Zhao, Liang; Sun, Xu; Wang, Limin; Zeng, Bo; Cheng, Jie; Wang, Ying; Peng, Jianchang; Song, Xiaoxin

    2014-06-01

    A long-pulse generator TPG700L based on a Tesla transformer and a series pulse forming network (PFN) is constructed to generate intense electron beams for the purpose of high power microwave (HPM) generation. The TPG700L mainly consists of a 12-stage PFN, a built-in Tesla transformer in a pulse forming line, a three-electrode gas switch, a transmission line with a trigger, and a load. The Tesla transformer and the compact PFN are the key technologies for the development of the TPG700L. This generator can output electrical pulses with a width as long as 200 ns at a level of 8 GW and a repetition rate of 50 Hz. When used to drive a relative backward wave oscillator for HPM generation, the electrical pulse width is about 100 ns on a voltage level of 520 kV. Factors affecting the pulse waveform of the TPG700L are also discussed. At present, the TPG700L performs well for long-pulse HPM generation in our laboratory.

  13. Differentially-charged and sequentially-switched square-wave pulse forming network

    DOEpatents

    North, George G. [Stockton, CA; Vogilin, George E. [Livermore, CA

    1980-04-01

    A pulse forming network for delivering a high-energy square-wave pulse to a load, including a series of inductive-capacitive sections wherein the capacitors are differentially charged higher further from the load. Each charged capacitor is isolated from adjacent sections and the load by means of a normally open switch at the output of each section. The switch between the load and the closest section to the load is closed to begin discharge of the capacitor in that section into the load. During discharge of each capacitor, the voltage thereacross falls to a predetermined potential with respect to the potential across the capacitor in the next adjacent section further from the load. When this potential is reached, it is used to close the switch in the adjacent section further from the load and thereby apply the charge in that section to the load through the adjacent section toward the load. Each successive section further from the load is sequentially switched in this manner to continuously and evenly supply energy to the load over the period of the pulse, with the differentially charged capacitors providing higher potentials away from the load to compensate for the voltage drop across the resistance of each inductor. This arrangement is low in cost and yet provides a high-energy pulse in an acceptable square-wave form.

  14. Differentially-charged and sequentially-switched square-wave pulse forming network

    DOEpatents

    North, G.G.; Vogilin, G.E.

    1980-04-01

    Disclosed is a pulse forming network for delivering a high-energy square-wave pulse to a load, including a series of inductive-capacitive sections wherein the capacitors are differentially charged higher further from the load. Each charged capacitor is isolated from adjacent sections and the load by means of a normally open switch at the output of each section. The switch between the load and the closest section to the load is closed to begin discharge of the capacitor in that section into the load. During discharge of each capacitor, the voltage thereacross falls to a predetermined potential with respect to the potential across the capacitor in the next adjacent section further from the load. When this potential is reached, it is used to close the switch in the adjacent section further from the load and thereby apply the charge in that section to the load through the adjacent section toward the load. Each successive section further from the load is sequentially switched in this manner to continuously and evenly supply energy to the load over the period of the pulse, with the differentially charged capacitors providing higher potentials away from the load to compensate for the voltage drop across the resistance of each inductor. This arrangement is low in cost and yet provides a high-energy pulse in an acceptable square-wave form. 5 figs.

  15. An 8-GW long-pulse generator based on Tesla transformer and pulse forming network

    SciTech Connect

    Su, Jiancang; Zhang, Xibo; Li, Rui; Zhao, Liang Sun, Xu; Wang, Limin; Zeng, Bo; Cheng, Jie; Wang, Ying; Peng, Jianchang; Song, Xiaoxin

    2014-06-15

    A long-pulse generator TPG700L based on a Tesla transformer and a series pulse forming network (PFN) is constructed to generate intense electron beams for the purpose of high power microwave (HPM) generation. The TPG700L mainly consists of a 12-stage PFN, a built-in Tesla transformer in a pulse forming line, a three-electrode gas switch, a transmission line with a trigger, and a load. The Tesla transformer and the compact PFN are the key technologies for the development of the TPG700L. This generator can output electrical pulses with a width as long as 200 ns at a level of 8 GW and a repetition rate of 50 Hz. When used to drive a relative backward wave oscillator for HPM generation, the electrical pulse width is about 100 ns on a voltage level of 520 kV. Factors affecting the pulse waveform of the TPG700L are also discussed. At present, the TPG700L performs well for long-pulse HPM generation in our laboratory.

  16. Moving and stationary actin filaments are involved in spreading of postmitotic PtK2 cells

    PubMed Central

    1993-01-01

    We have investigated spreading of postmitotic PtK2 cells and the behavior of actin filaments in this system by time-lapse microscopy and photoactivation of fluorescence. During mitosis PtK2 cells round up and at cytokinesis the daughter cells spread back to regain their interphase morphology. Normal spreading edges are quite homogenous and are not comprised of two distinct areas (lamellae and lamellipodia) as found in moving edges of interphase motile cells. Spreading edges are connected to a network of long, thin, actin-rich fibers called retraction fibers. A role for retraction fibers in spreading was tested by mechanical disruption of fibers ahead of a spreading edge. Spreading is inhibited over the region of disruption, but not over neighboring intact fibers. Using photoactivation of fluorescence to mark actin filaments, we have determined that the majority of actin filaments move forward in spreading edges at the same rate as the edge. As far as we are aware, this is the first time that forward movement of a cell edge has been correlated with forward movement of actin filaments. In contrast, actin filaments in retraction fibers remain stationary with respect to the substrate. Thus there are at least two dynamic populations of actin polymer in spreading postmitotic cells. This is supported by the observation that actin filaments in some spreading edges not only move forward, but also separate into two fractions or broaden with time. A small fraction of postmitotic cells have a spreading edge with a distinct lamellipodium. In these edges, marked actin polymer fluxes backward with respect to substrate. We suggest that forward movement of actin filaments may participate in generating force for spreading in postmitotic cells and perhaps more generally for cell locomotion. PMID:8349733

  17. 3D Filament Network Segmentation with Multiple Active Contours

    NASA Astrophysics Data System (ADS)

    Xu, Ting; Vavylonis, Dimitrios; Huang, Xiaolei

    2014-03-01

    Fluorescence microscopy is frequently used to study two and three dimensional network structures formed by cytoskeletal polymer fibers such as actin filaments and microtubules. While these cytoskeletal structures are often dilute enough to allow imaging of individual filaments or bundles of them, quantitative analysis of these images is challenging. To facilitate quantitative, reproducible and objective analysis of the image data, we developed a semi-automated method to extract actin networks and retrieve their topology in 3D. Our method uses multiple Stretching Open Active Contours (SOACs) that are automatically initialized at image intensity ridges and then evolve along the centerlines of filaments in the network. SOACs can merge, stop at junctions, and reconfigure with others to allow smooth crossing at junctions of filaments. The proposed approach is generally applicable to images of curvilinear networks with low SNR. We demonstrate its potential by extracting the centerlines of synthetic meshwork images, actin networks in 2D TIRF Microscopy images, and 3D actin cable meshworks of live fission yeast cells imaged by spinning disk confocal microscopy.

  18. Transient assembly of F-actin on the outer mitochondrial membrane contributes to mitochondrial fission

    PubMed Central

    Li, Sunan; Xu, Shan; Roelofs, Brian A.; Boyman, Liron; Lederer, W. Jonathan; Sesaki, Hiromi

    2015-01-01

    In addition to established membrane remodeling roles in various cellular locations, actin has recently emerged as a participant in mitochondrial fission. However, the underlying mechanisms of its participation remain largely unknown. We report that transient de novo F-actin assembly on the mitochondria occurs upon induction of mitochondrial fission and F-actin accumulates on the mitochondria without forming detectable submitochondrial foci. Impairing mitochondrial division through Drp1 knockout or inhibition prolonged the time of mitochondrial accumulation of F-actin and also led to abnormal mitochondrial accumulation of the actin regulatory factors cortactin, cofilin, and Arp2/3 complexes, suggesting that disassembly of mitochondrial F-actin depends on Drp1 activity. Furthermore, down-regulation of actin regulatory proteins led to elongation of mitochondria, associated with mitochondrial accumulation of Drp1. In addition, depletion of cortactin inhibited Mfn2 down-regulation– or FCCP-induced mitochondrial fragmentation. These data indicate that the dynamic assembly and disassembly of F-actin on the mitochondria participates in Drp1-mediated mitochondrial fission. PMID:25547155

  19. DNA vaccine encoding Haemonchus contortus actin induces partial protection in goats.

    PubMed

    Yan, Ruofeng; Wang, Jingjing; Xu, Lixin; Song, Xiaokai; Li, Xiangrui

    2014-10-01

    Actin is a globular multi-functional protein that forms microfilaments, and participates in many important cellular processes. Previous study found that Haemonchus contortus actin could be recognized by the serum of goats infected with the homology parasite. This indicated that H. contortus actin could be a potential candidate for vaccine. In this study, DNA vaccine encoding H. contortus actin was tested for protection against experimental H. contortus infections in goats. Fifteen goats were allocated into three trial groups. The animals of Actin group were vaccinated with the DNA vaccine on day 0 and 14, and challenged with 5000 infective H. contortus third stage larval (L3) on day 28. An unvaccinated positive control group was challenged with L3 at the same time. An unvaccinated negative control group was not challenged with L3. The results showed that DNA vaccine were transcribed at local injection sites and expressed in vivo post immunizations respectively. For goats in Actin vaccinated group, higher levels of serum IgG, serum IgA and mucosal IgA were produced, the percentages of CD4(+) T lymphocytes, CD8(+) T lymphocytes and B lymphocytes and the concentrations of TGF-β were increased significantly (P<0.05). Following L3 challenge, the mean eggs per gram feces (EPG) and worm burdens of Actin group were reduced by 34.4% and 33.1%, respectively. This study suggest that recombinant H. contortus Actin DNA vaccine induced partial immune response and has protective potential against goat haemonchosis.

  20. A dynamin-actin interaction is required for vesicle scission during endocytosis in yeast.

    PubMed

    Palmer, Sarah E; Smaczynska-de Rooij, Iwona I; Marklew, Christopher J; Allwood, Ellen G; Mishra, Ritu; Johnson, Simeon; Goldberg, Martin W; Ayscough, Kathryn R

    2015-03-30

    Actin is critical for endocytosis in yeast cells, and also in mammalian cells under tension. However, questions remain as to how force generated through actin polymerization is transmitted to the plasma membrane to drive invagination and scission. Here, we reveal that the yeast dynamin Vps1 binds and bundles filamentous actin. Mutational analysis of Vps1 in a helix of the stalk domain identifies a mutant RR457-458EE that binds actin more weakly. In vivo analysis of Vps1 function demonstrates that the mutation disrupts endocytosis but not other functions of Vps1 such as vacuolar trafficking or peroxisome fission. The mutant Vps1 is stably expressed in cells and co-localizes with the endocytic reporters Abp1 and the amphiphysin Rvs167. Detailed analysis of individual endocytic patch behavior indicates that the mutation causes aberrant movements in later stages of endocytosis, consistent with a scission defect. Ultrastructural analysis of yeast cells using electron microscopy reveals a significant increase in invagination depth, further supporting a role for the Vps1-actin interaction during scission. In vitro analysis of the mutant protein demonstrates that--like wild-type Vps1--it is able to form oligomeric rings, but, critically, it has lost its ability to bundle actin filaments into higher-order structures. A model is proposed in which actin filaments bind Vps1 during invagination, and this interaction is important to transduce the force of actin polymerization to the membrane to drive successful scission.

  1. Distinct sites on the G-actin molecule bind group-specific component and deoxyribonuclease I.

    PubMed Central

    Goldschmidt-Clermont, P J; Galbraith, R M; Emerson, D L; Marsot, F; Nel, A E; Arnaud, P

    1985-01-01

    Addition of group-specific component (Gc) to G-actin with or without deoxyribonuclease I (DNAase) led to formation of binary complexes (Gc-G-actin) and ternary complexes (Gc-G-actin-DNAase) respectively. The electrophoretic mobility of ternary complexes, as shown by crossed and rocket immunoelectrophoresis, was slower than that of binary complexes, although both were faster than native Gc. In gradient polyacrylamide-gel electrophoresis, such complexes could again be resolved, apparently on the basis of relative molecular size: Gc-G-actin-DNAase (Mr approx. 131000), Gc-G-actin (Mr approx. 98000) and Gc (Mr approx. 56000). In contrast, the pI of ternary complex was indistinguishable by isoelectric focusing from that of binary complex, even though both were clearly more acidic than native Gc. The affinity of Gc for G-actin (affinity constant, Ka, 1.9 X 10(8) M-1) was not significantly altered by additional interaction with DNAase (Ka, 1.5 X 10(8)M-1), and both binary and ternary complexes still bound 25-hydroxycholecalciferol. In addition, the inhibitory effect of G-actin on DNAase activity was not discernibly affected by interaction with Gc. These results demonstrate that the various molecular forms of Gc can be distinguished by physicochemical parameters, and that Gc and DNAase bind to distinct sites on G-actin and can interact both independently and contemporaneously with this molecule. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. PMID:4040363

  2. Cofilin nuclear-cytoplasmic shuttling affects cofilin-actin rod formation during stress.

    PubMed

    Munsie, Lise Nicole; Desmond, Carly R; Truant, Ray

    2012-09-01

    Cofilin protein is involved in regulating the actin cytoskeleton during typical steady state conditions, as well as during cell stress conditions where cofilin saturates F-actin, forming cofilin-actin rods. Cofilin can enter the nucleus through an active nuclear localization signal (NLS), accumulating in nuclear actin rods during stress. Here, we characterize the active nuclear export of cofilin through a leptomycin-B-sensitive, CRM1-dependent, nuclear export signal (NES). We also redefine the NLS of cofilin as a bipartite NLS, with an additional basic epitope required for nuclear localization. Using fluorescence lifetime imaging microscopy (FLIM) and Förster resonant energy transfer (FRET) between cofilin moieties and actin, as well as automated image analysis in live cells, we have defined subtle mutations in the cofilin NLS that allow cofilin to bind actin in vivo and affect cofilin dynamics during stress. We further define the requirement of cofilin-actin rod formation in a system of cell stress by temporal live-cell imaging. We propose that cofilin nuclear shuttling is critical for the cofilin-actin rod stress response with cofilin dynamically communicating between the nucleus and cytoplasm during cell stress.

  3. Astronomy Education and Research With Digital Viewing: Forming a New Network of Small Observatories

    NASA Astrophysics Data System (ADS)

    Bogard, Arthur; Hamilton, T. S.

    2011-01-01

    Small observatories face two major hindrances in teaching astronomy to students: weather and getting students to recognize what they're seeing. The normal astronomy class use of a single telescope with an eyepiece is restricted to good skies, and it allows only one viewer at a time. Since astronomy labs meet at regular times, bad weather can mean the loss of an entire week. As for the second problem, students often have difficulties recognizing what they are seeing through an eyepiece, and the instructor cannot point out the target's features. Commercial multimedia resources, although structured and easy to explain to students, do not give students the same level of interactivity. A professor cannot improvise a new target nor can he adjust the image to view different features of an object. Luckily, advancements in technology provide solutions for both of these limitations without breaking the bank. Astronomical video cameras can automatically stack, align, and integrate still frames, providing instructors with the ability to explain things to groups of students in real time under actual seeing conditions. Using Shawnee State University's Mallincam on an 8" Cassegrain, our students are now able to understand and classify both planetary and deep sky objects better than they can through an eyepiece. To address the problems with weather, SSU proposes forming a network among existing small observatories. With inexpensive software and cameras, telescopes can be aligned and operated over the web, and with reciprocal viewing agreements, users who are clouded out could view from another location. By partnering with institutions in the eastern hemisphere, even daytime viewing would be possible. Not only will this network aid in instruction, but the common user interface will make student research projects much easier.

  4. Integrative microRNA-gene expression network analysis in genetic hypercalciuric stone-forming rat kidney

    PubMed Central

    Lu, Yuchao; Qin, Baolong; Hu, Henglong; Zhang, Jiaqiao; Wang, Yufeng; Wang, Qing

    2016-01-01

    Background. MicroRNAs (miRNAs) influence a variety of biological functions by regulating gene expression post-transcriptionally. Aberrant miRNA expression has been associated with many human diseases. Urolithiasis is a common disease, and idiopathic hypercalciuria (IH) is an important risk factor for calcium urolithiasis. However, miRNA expression patterns and their biological functions in urolithiasis remain unknown. Methods and Results. A multi-step approach combining microarray miRNA and mRNA expression profile and bioinformatics analysis was adopted to analyze dysregulated miRNAs and genes in genetic hypercalciuric stone-forming (GHS) rat kidneys, using normal Sprague-Dawley (SD) rats as controls. We identified 2418 mRNAs and 19 miRNAs as significantly differentially expressed, over 700 gene ontology (GO) terms and 83 KEGG pathways that were significantly enriched in GHS rats. In addition, we constructed an miRNA-gene network that suggested that rno-miR-674-5p, rno-miR-672-5p, rno-miR-138-5p and rno-miR-21-3p may play important roles in the regulatory network. Furthermore, signal-net analysis suggested that NF-kappa B likely plays a crucial role in hypercalciuria urolithiasis. Conclusions. This study presents a global view of mRNA and miRNA expression in GHS rat kidneys, and suggests that miRNAs may be important in the regulation of hypercalciuria. The data provide valuable insights for future research, which should aim at validating the role of the genes featured here in the pathophysiology of hypercalciuria. PMID:27069814

  5. chaoptin, prominin, eyes shut and crumbs form a genetic network controlling the apical compartment of Drosophila photoreceptor cells

    PubMed Central

    Gurudev, Nagananda; Yuan, Michaela; Knust, Elisabeth

    2014-01-01

    ABSTRACT The apical surface of epithelial cells is often highly specialised to fulfil cell type-specific functions. Many epithelial cells expand their apical surface by forming microvilli, actin-based, f