Science.gov

Sample records for actin polymerization state

  1. Differential Effects of Caldesmon on the Intermediate Conformational States of Polymerizing Actin*

    PubMed Central

    Huang, Renjian; Grabarek, Zenon; Wang, Chih-Lueh Albert

    2010-01-01

    The actin-binding protein caldesmon (CaD) reversibly inhibits smooth muscle contraction. In non-muscle cells, a shorter CaD isoform co-exists with microfilaments in the stress fibers at the quiescent state, but the phosphorylated CaD is found at the leading edge of migrating cells where dynamic actin filament remodeling occurs. We have studied the effect of a C-terminal fragment of CaD (H32K) on the kinetics of the in vitro actin polymerization by monitoring the fluorescence of pyrene-labeled actin. Addition of H32K or its phosphorylated form either attenuated or accelerated the pyrene emission enhancement, depending on whether it was added at the early or the late phase of actin polymerization. However, the CaD fragment had no effect on the yield of sedimentable actin, nor did it affect the actin ATPase activity. Our findings can be explained by a model in which nascent actin filaments undergo a maturation process that involves at least two intermediate conformational states. If present at early stages of actin polymerization, CaD stabilizes one of the intermediate states and blocks the subsequent filament maturation. Addition of CaD at a later phase accelerates F-actin formation. The fact that CaD is capable of inhibiting actin filament maturation provides a novel function for CaD and suggests an active role in the dynamic reorganization of the actin cytoskeleton. PMID:19889635

  2. Amplification of actin polymerization forces

    PubMed Central

    Dmitrieff, Serge; Nédélec, François

    2016-01-01

    The actin cytoskeleton drives many essential processes in vivo, using molecular motors and actin assembly as force generators. We discuss here the propagation of forces caused by actin polymerization, highlighting simple configurations where the force developed by the network can exceed the sum of the polymerization forces from all filaments. PMID:27002174

  3. Amplification of actin polymerization forces.

    PubMed

    Dmitrieff, Serge; Nédélec, François

    2016-03-28

    The actin cytoskeleton drives many essential processes in vivo, using molecular motors and actin assembly as force generators. We discuss here the propagation of forces caused by actin polymerization, highlighting simple configurations where the force developed by the network can exceed the sum of the polymerization forces from all filaments.

  4. Polymerization of actin by positively charged liposomes

    PubMed Central

    1988-01-01

    By cosedimentation, spectrofluorimetry, and electron microscopy, we have established that actin is induced to polymerize at low salt concentrations by positively charged liposomes. This polymerization occurs only at the surface of the liposomes, and thus monomers not in direct contact with the liposome remain monomeric. The integrity of the liposome membrane is necessary to maintain actin in its polymerized state since disruption of the liposome depolymerizes actin. Actin polymerized at the surface of the liposome is organized into two filamentous structures: sheets of parallel filaments in register and a netlike organization. Spectrofluorimetric analysis with the probe N- pyrenyl-iodoacetamide shows that actin is in the F conformation, at least in the environment of the probe. However, actin assembly induced by the liposome is not accompanied by full ATP hydrolysis as observed in vitro upon addition of salts. PMID:3360852

  5. Actin Polymerization is Stimulated by Actin Crosslinking Protein Palladin

    PubMed Central

    Gurung, Ritu; Yadav, Rahul; Brungardt, Joseph G.; Orlova, Albina; Egelman, Edward H.; Beck, Moriah R.

    2016-01-01

    The actin scaffold protein palladin regulates both normal cell migration and invasive cell motility, processes that require the coordinated regulation of actin dynamics. However, the potential effect of palladin on actin dynamics has remained elusive. Here we show that the actin binding immunoglobulin-like domain of palladin, which is directly responsible for both actin binding and bundling, also stimulates actin polymerization in vitro. Palladin eliminated the lag phase that is characteristic of the slow nucleation step of actin polymerization. Furthermore, palladin dramatically reduced depolymerization, slightly enhanced the elongation rate, and did not alter the critical concentration. Microscopy and in vitro crosslinking assays reveal differences in actin bundle architecture when palladin is incubated with actin before or after polymerization. These results suggest a model whereby palladin stimulates a polymerization-competent form of G-actin, akin to metal ions, either through charge neutralization or conformational changes. PMID:26607837

  6. Actin cytoskeleton: putting a CAP on actin polymerization.

    PubMed

    Stevenson, V A; Theurkauf, W E

    2000-10-05

    Two recent studies have identified a Drosophila homolog of cyclase-associated protein (CAP) as a developmentally important negative regulator of actin polymerization that may also directly mediate signal transduction.

  7. Neurite outgrowth is driven by actin polymerization even in the presence of actin polymerization inhibitors

    PubMed Central

    Chia, Jonathan X.; Efimova, Nadia; Svitkina, Tatyana M.

    2016-01-01

    Actin polymerization is a universal mechanism to drive plasma membrane protrusion in motile cells. One apparent exception to this rule is continuing or even accelerated outgrowth of neuronal processes in the presence of actin polymerization inhibitors. This fact, together with the key role of microtubule dynamics in neurite outgrowth, led to the concept that microtubules directly drive plasma membrane protrusion either in the course of polymerization or by motor-driven sliding. The possibility that unextinguished actin polymerization drives neurite outgrowth in the presence of actin drugs was not explored. We show that cultured hippocampal neurons treated with cytochalasin D or latrunculin B contained dense accumulations of branched actin filaments at ∼50% of neurite tips at all tested drug concentrations (1–10 μM). Actin polymerization is required for neurite outgrowth because only low concentrations of either inhibitor increased the length and/or number of neurites, whereas high concentrations inhibited neurite outgrowth. Of importance, neurites undergoing active elongation invariably contained a bright F-actin patch at the tip, whereas actin-depleted neurites never elongated, even though they still contained dynamic microtubules. Stabilization of microtubules by Taxol treatment did not stop elongation of cytochalasin–treated neurites. We conclude that actin polymerization is indispensable for neurite elongation. PMID:27682586

  8. Actin polymerization is stimulated by actin cross-linking protein palladin.

    PubMed

    Gurung, Ritu; Yadav, Rahul; Brungardt, Joseph G; Orlova, Albina; Egelman, Edward H; Beck, Moriah R

    2016-02-15

    The actin scaffold protein palladin regulates both normal cell migration and invasive cell motility, processes that require the co-ordinated regulation of actin dynamics. However, the potential effect of palladin on actin dynamics has remained elusive. In the present study, we show that the actin-binding immunoglobulin-like domain of palladin, which is directly responsible for both actin binding and bundling, also stimulates actin polymerization in vitro. Palladin eliminated the lag phase that is characteristic of the slow nucleation step of actin polymerization. Furthermore, palladin dramatically reduced depolymerization, slightly enhanced the elongation rate, and did not alter the critical concentration. Microscopy and in vitro cross-linking assays reveal differences in actin bundle architecture when palladin is incubated with actin before or after polymerization. These results suggest a model whereby palladin stimulates a polymerization-competent form of globular or monomeric actin (G-actin), akin to metal ions, either through charge neutralization or through conformational changes.

  9. The unusual dynamics of parasite actin result from isodesmic polymerization.

    PubMed

    Skillman, Kristen M; Ma, Christopher I; Fremont, Daved H; Diraviyam, Karthikeyan; Cooper, John A; Sept, David; Sibley, L David

    2013-01-01

    Previous reports have indicated that parasite actins are short and inherently unstable, despite being required for motility. Here we re-examine the polymerization properties of actin in Toxoplasma gondii, unexpectedly finding that it exhibits isodesmic polymerization in contrast to the conventional nucleation-elongation process of all previously studied actins from both eukaryotes and bacteria. Polymerization kinetics of actin in T. gondii lacks both a lag phase and critical concentration, normally characteristic of actins. Unique among actins, the kinetics of assembly can be fit with a single set of rate constants for all subunit interactions, without need for separate nucleation and elongation rates. This isodesmic model accurately predicts the assembly, disassembly and the size distribution of actin filaments in T. gondii in vitro, providing a mechanistic explanation for actin dynamics in vivo. Our findings expand the repertoire of mechanisms by which actin polymerization is governed and offer clues about the evolution of self-assembling, stabilized protein polymers.

  10. Dynamics of Membranes Driven by Actin Polymerization

    PubMed Central

    Gov, Nir S.; Gopinathan, Ajay

    2006-01-01

    A motile cell, when stimulated, shows a dramatic increase in the activity of its membrane, manifested by the appearance of dynamic membrane structures such as lamellipodia, filopodia, and membrane ruffles. The external stimulus turns on membrane bound activators, like Cdc42 and PIP2, which cause increased branching and polymerization of the actin cytoskeleton in their vicinity leading to a local protrusive force on the membrane. The emergence of the complex membrane structures is a result of the coupling between the dynamics of the membrane, the activators, and the protrusive forces. We present a simple model that treats the dynamics of a membrane under the action of actin polymerization forces that depend on the local density of freely diffusing activators on the membrane. We show that, depending on the spontaneous membrane curvature associated with the activators, the resulting membrane motion can be wavelike, corresponding to membrane ruffling and actin waves, or unstable, indicating the tendency of filopodia to form. Our model also quantitatively explains a variety of related experimental observations and makes several testable predictions. PMID:16239328

  11. The Effects of Disease Models of Nuclear Actin Polymerization on the Nucleus

    PubMed Central

    Serebryannyy, Leonid A.; Yuen, Michaela; Parilla, Megan; Cooper, Sandra T.; de Lanerolle, Primal

    2016-01-01

    Actin plays a crucial role in regulating multiple processes within the nucleus, including transcription and chromatin organization. However, the polymerization state of nuclear actin remains controversial, and there is no evidence for persistent actin filaments in a normal interphase nucleus. Further, several disease pathologies are characterized by polymerization of nuclear actin into stable filaments or rods. These include filaments that stain with phalloidin, resulting from point mutations in skeletal α-actin, detected in the human skeletal disease intranuclear rod myopathy, and cofilin/actin rods that form in response to cellular stressors like heatshock. To further elucidate the effects of these pathological actin structures, we examined the nucleus in both cell culture models as well as isolated human tissues. We find these actin structures alter the distribution of both RNA polymerase II and chromatin. Our data suggest that nuclear actin filaments result in disruption of nuclear organization, which may contribute to the disease pathology. PMID:27774069

  12. Pattern Formation in Polymerizing Actin Flocks: Spirals, Spots, and Waves without Nonlinear Chemistry

    NASA Astrophysics Data System (ADS)

    Le Goff, T.; Liebchen, B.; Marenduzzo, D.

    2016-12-01

    We propose a model solely based on actin treadmilling and polymerization which describes many characteristic states of actin-wave formation: spots, spirals, and traveling waves. In our model, as in experiments on cells recovering motility following actin depolymerization, we choose an isotropic low-density initial condition; polymerization of actin filaments then raises the density towards the Onsager threshold where they align. We show that this alignment, in turn, destabilizes the isotropic phase and generically induces transient actin spots or spirals as part of the dynamical pathway towards a polarized phase which can either be uniform or consist of a series of actin-wave trains (flocks). Our results uncover a universal route to actin-wave formation in the absence of any system-specific nonlinear biochemistry, and it may help to understand the mechanism underlying the observation of actin spots and waves in vivo. They also suggest a minimal setup to design similar patterns in vitro.

  13. The polymerization of actin. A study of the nucleation reaction.

    PubMed Central

    Grazi, E; Ferri, A; Cino, S

    1983-01-01

    We compared the properties of the nuclei that accumulate in 7.5 mM-KCl in ATP-G-actin solutions and of the oligomers that are formed by sonication of either G-actin or F-actin. We found that the ability of the above species to prime the polymerization of actin decays with different rates. The nuclei are stable in 7.5 mM-KCl (they decay with a rate constant of 1.5 X 10(-3) s -1 at pH 7.8 at 22 degrees C in the absence of KCl). The oligomers formed by sonication of either G-actin or F-actin, once the sonication is stopped, revert to simpler structures or evolve into F-actin, depending on the KCl concentration in which they are kept. In 10.5 mM-KCl at pH 7.8 at 22 degrees C their priming ability decays with a rate constant of 6 X 10(-3) s -1. We propose that the nuclei that form spontaneously in 7.5 mM-KCl are not directly susceptible to elongation. They must first be converted into activated nuclei, which exist in very low concentration at the steady state. The activated nuclei are directly susceptible to elongation, they have a short life and they decay rapidly into the ground state unless the elongation reaction occurs. Sonication displaces the steady-state concentration in favour of the activated state. PMID:6615456

  14. Morphological changes in liposomes caused by polymerization of encapsulated actin and spontaneous formation of actin bundles.

    PubMed Central

    Miyata, H; Hotani, H

    1992-01-01

    Spherical giant liposomes that had encapsulated skeletal-muscle G-actin were made by swelling a dried lipid mixture of dimyristoyl phosphatidylcholine/cardiolipin, 1:1 (wt/wt), in a solution of G-actin/CaCl2 at 0 degree C. Polymerization of the encapsulated G-actin into actin filaments was achieved by raising the temperature to 30 degrees C. We observed the subsequent shape changes of the liposomes by dark-field and differential interference-contrast light microscopy. After approximately 40 min, which was required for completion of actin polymerization, two shapes of liposome were evident: dumbbell and disk. Elongation of the dumbbell-shaped liposomes was concomitant with actin polymerization. Polarization microscopy showed that actin filaments formed thick bundles in the liposomes and that these filaments lay contiguous to the periphery of the liposome. Localization of actin filaments in the liposomes was confirmed by observation of rhodamine phalloidin-conjugated actin filaments by fluorescence microscopy. Both dumbbell- and disk-shaped liposomes were rigid and kept their shapes as far as actin filaments were stabilized. In contrast, liposomes containing bovine serum albumin were fragile, and their shapes continually fluctuated from Brownian motion, indicating that the actin bundles served as mechanical support for the liposome shapes. Images PMID:1454846

  15. Polymerization of actin does not regulate desensitization in human basophils

    PubMed Central

    MacGlashan, Donald; Vilariño, Natalia

    2009-01-01

    Previous studies have suggested that maintenance of IgE-mediated signaling results from regulation of the activity of signaling complexes by actin polymerization. This process is also hypothesized to be related to desensitization of basophils and mast cells. Recent studies demonstrated that any signaling process dependent on syk or PI-3K activity cannot be a mechanism of desensitization, and in this context, syk and PI-3K inhibitors were found to inhibit actin polymerization. Inhibitors of actin polymerization were tested for their effect on desensitization of human peripheral blood basophils. Latrunculin A, in particular, removed all resting and stimulated f-actin but did not inhibit desensitization. Cytochalasin D and latrunculin A also did not reverse the loss of syk phosphorylation that accompanies desensitization. These results demonstrate that desensitization mechanisms are not dependent on actin polymerization. In this context, it was also shown that progressive immobilization of FcεRI during aggregation was sensitive to syk or actin polymerization inhibition. Therefore, desensitization is also not dependent on receptor immobilization. These studies demonstrate that desensitization is not the result of two signaling pathways once considered relevant to down-regulation of IgE-mediated signaling. PMID:19150851

  16. Role of Actin Polymerization in Cell Locomotion: Molecules and Models

    PubMed Central

    Bearer, E. L.

    2015-01-01

    Actin filaments forming at the anterior margin of a migrating cell are essential for the formation of filopodia, lamellipodia, and pseudopodia, the “feet” that the cell extends before it. These structures in turn are required for cell locomotion. Yet the molecular nature of the “nucleator” that seeds the polymerization of actin at the leading edge is unknown. Recent advances, including video microscopy of actin dynamics, discovery of proteins unique to the leading edge such as ponticulin, the Mab 2E4 antigen, and ABP 120, and novel experimental models of actin polymerization such as the actin-based movements of intracellular parasites, promise to shed light on this problem in the near future. PMID:8323743

  17. Decavanadate interactions with actin: inhibition of G-actin polymerization and stabilization of decameric vanadate.

    PubMed

    Ramos, Susana; Manuel, Miguel; Tiago, Teresa; Duarte, Rui; Martins, Jorge; Gutiérrez-Merino, Carlos; Moura, José J G; Aureliano, Manuel

    2006-11-01

    Decameric vanadate species (V10) inhibit the rate and the extent of G-actin polymerization with an IC50 of 68+/-22 microM and 17+/-2 microM, respectively, whilst they induce F-actin depolymerization at a lower extent. On contrary, no effect on actin polymerization and depolymerization was detected for 2mM concentration of "metavanadate" solution that contains ortho and metavanadate species, as observed by combining kinetic with (51)V NMR spectroscopy studies. Although at 25 degrees C, decameric vanadate (10 microM) is unstable in the assay medium, and decomposes following a first-order kinetic, in the presence of G-actin (up to 8 microM), the half-life increases 5-fold (from 5 to 27 h). However, the addition of ATP (0.2mM) in the medium not only prevents the inhibition of G-actin polymerization by V10 but it also decreases the half-life of decomposition of decameric vanadate species from 27 to 10h. Decameric vanadate is also stabilized by the sarcoplasmic reticulum vesicles, which raise the half-life time from 5 to 18h whereas no effects were observed in the presence of phosphatidylcholine liposomes, myosin or G-actin alone. It is proposed that the "decavanadate" interaction with G-actin, favored by the G-actin polymerization, stabilizes decameric vanadate species and induces inhibition of G-actin polymerization. Decameric vanadate stabilization by cytoskeletal and transmembrane proteins can account, at least in part, for decavanadate toxicity reported in the evaluation of vanadium (V) effects in biological systems.

  18. 54Mn2+ as a tracer of the polymerization of actin. Intermediate oligomers condense to give F-actin.

    PubMed Central

    Grazi, E

    1984-01-01

    Mg2+, at submicromolar concentrations, is needed for the nucleation of actin [Maruyama (1981) J. Biol. Chem. 256, 1060-1062]. I show here that Mn2+ fulfils the same function. It binds to oligomers present in the ATP-G-actin solutions with a ratio of 2-3 Mn2+ ions per 100 actin monomers and with an association constant of 0.66 X 10(10) M-1 at pH 8.2 at 25 degrees C. The time course of the binding of Mn2+ to polymerizing actin is not affected by the initial concentration of the protein. Analysis of the distribution of the binding shows that, both in the large oligomeric species and in the polymers, 1 Mn2+ ion is bound for every 14-25 actin monomers, whereas in the smaller oligomeric species 1 Mn2+ ion is bound for every 4 actin monomers. The proposal is made that Mn2+ stabilizes actin nuclei and decreases the concentration of the monomers at the steady state. It is also proposed that, at least in some experimental conditions, the direct condensation of oligomers of intermediate length is an effective mechanism of F-actin formation. PMID:6508731

  19. Nanotopography-induced symmetry-breaking and guidance of actin polymerization waves and cell migration

    NASA Astrophysics Data System (ADS)

    Losert, Wolfgang; Guven, Can; Sun, Xiaoyu; Fourkas, John; Carlsson, Anders; Driscoll, Meghan

    2015-03-01

    Many types of eukaryotic cells on a surfaces exhibit reaction diffusion-type waves of actin polymerization. Exposing migrating Dictyostelium discoideum cells to asymmetries at a length scale relevant to actin waves (300 nm) results in guidance of actin polymerization and of the migration of the cells themselves. Quantitative measurements of actin wave speed and direction distributions show that actin polymerization is preferentially localized to nanoridges and directed along the ridges, and that the velocity of guided actin polymerization waves decreases with decreasing ridge spacing. A stochastic growth model of actin polymerization dynamics reproduces these key observations. Supported by NSF-PoLS.

  20. Regulation of actin polymerization by tropomodulin-3 controls megakaryocyte actin organization and platelet biogenesis.

    PubMed

    Sui, Zhenhua; Nowak, Roberta B; Sanada, Chad; Halene, Stephanie; Krause, Diane S; Fowler, Velia M

    2015-07-23

    The actin cytoskeleton is important for platelet biogenesis. Tropomodulin-3 (Tmod3), the only Tmod isoform detected in platelets and megakaryocytes (MKs), caps actin filament (F-actin) pointed ends and binds tropomyosins (TMs), regulating actin polymerization and stability. To determine the function of Tmod3 in platelet biogenesis, we studied Tmod3(-/-) embryos, which are embryonic lethal by E18.5. Tmod3(-/-) embryos often show hemorrhaging at E14.5 with fewer and larger platelets, indicating impaired platelet biogenesis. MK numbers are moderately increased in Tmod3(-/-) fetal livers, with only a slight increase in the 8N population, suggesting that MK differentiation is not significantly affected. However, Tmod3(-/-) MKs fail to develop a normal demarcation membrane system (DMS), and cytoplasmic organelle distribution is abnormal. Moreover, cultured Tmod3(-/-) MKs exhibit impaired proplatelet formation with a wide range of proplatelet bud sizes, including abnormally large proplatelet buds containing incorrect numbers of von Willebrand factor-positive granules. Tmod3(-/-) MKs exhibit F-actin disturbances, and Tmod3(-/-) MKs spreading on collagen fail to polymerize F-actin into actomyosin contractile bundles. Tmod3 associates with TM4 and the F-actin cytoskeleton in wild-type MKs, and confocal microscopy reveals that Tmod3, TM4, and F-actin partially colocalize near the membrane of proplatelet buds. In contrast, the abnormally large proplatelets from Tmod3(-/-) MKs show increased F-actin and redistribution of F-actin and TM4 from the cortex to the cytoplasm, but normal microtubule coil organization. We conclude that F-actin capping by Tmod3 regulates F-actin organization in mouse fetal liver-derived MKs, thereby controlling MK cytoplasmic morphogenesis, including DMS formation and organelle distribution, as well as proplatelet formation and sizing.

  1. Effect of temperature on the mechanism of actin polymerization.

    PubMed

    Zimmerle, C T; Frieden, C

    1986-10-21

    The rate of the Mg2+-induced polymerization of rabbit skeletal muscle G-actin has been measured as as function of temperature at pH 8 by using various concentrations of Mg2+, Ca2+, and G-actin. A polymerization mechanism similar to that proposed at this pH [Frieden, C. (1983) Proc. Natl. Acad. Sci. U.S.A. 80, 6513-6517] was found to fit the data from 10 to 35 degrees C. From the kinetic data, no evidence for actin filament fragmentation was found at any temperature. Dimer formation is the most temperature-sensitive step, with the ratio of forward and reverse rate constants changing 4 orders of magnitude from 10 to 35 degrees C. Over this temperature change, all other ratios of forward and reverse rate constants change 7-fold or less, and the critical concentration remains nearly constant. The reversible Mg2+-induced isomerization of G-actin monomer occurs to a greater extent with increasing temperature, measured either by using N-(iodoacetyl)-N'-(5-sulfo-1-naphthyl)ethylenediamine-labeled actin or by simulation of the full-time course of the polymerization reaction. This is partially due to Mg2+ binding becoming tighter, and Ca2+ binding becoming weaker, with increasing temperature. Elongation rates from the filament-pointed end, determined by using actin nucleated by plasma gelsolin, show a temperature dependence slightly larger than that expected for a diffusion-limited reaction.

  2. Stoichiometry of Nck-dependent actin polymerization in living cells

    PubMed Central

    Ditlev, Jonathon A.; Michalski, Paul J.; Huber, Greg; Rivera, Gonzalo M.; Mohler, William A.

    2012-01-01

    Regulation of actin dynamics through the Nck/N-WASp (neural Wiskott–Aldrich syndrome protein)/Arp2/3 pathway is essential for organogenesis, cell invasiveness, and pathogen infection. Although many of the proteins involved in this pathway are known, the detailed mechanism by which it functions remains undetermined. To examine the signaling mechanism, we used a two-pronged strategy involving computational modeling and quantitative experimentation. We developed predictions for Nck-dependent actin polymerization using the Virtual Cell software system. In addition, we used antibody-induced aggregation of membrane-targeted Nck SH3 domains to test these predictions and to determine how the number of molecules in Nck aggregates and the density of aggregates affected localized actin polymerization in living cells. Our results indicate that the density of Nck molecules in aggregates is a critical determinant of actin polymerization. Furthermore, results from both computational simulations and experimentation support a model in which the Nck/N-WASp/Arp2/3 stoichiometry is 4:2:1. These results provide new insight into activities involving localized actin polymerization, including tumor cell invasion, microbial pathogenesis, and T cell activation. PMID:22613834

  3. Force Generation, Polymerization Dynamics and Nucleation of Actin Filaments

    NASA Astrophysics Data System (ADS)

    Wang, Ruizhe

    We study force generation and actin filament dynamics using stochastic and deterministic methods. First, we treat force generation of bundled actin filaments by polymerization via molecular-level stochastic simulations. In the widely-used Brownian Ratchet model, actin filaments grow freely whenever the tip-obstacle gap created by thermal fluctuation exceeds the monomer size. We name this model the Perfect Brownian Ratchet (PBR) model. In the PBR model, actin monomer diffusion is treated implicitly. We perform a series of simulations based on the PBR, in which obstacle motion is treated explicitly; in most previous studies, obstacle motion has been treated implicitly. We find that the cooperativity of filaments is generally weak in the PBR model, meaning that more filaments would grow more slowly given the same force per filament. Closed-form formulas are also developed, which match the simulation results. These portable and accurate formulas provide guidance for experiments and upper and lower bounds for theoretical analyses. We also studied a variation of the PBR, called the Diffusing Brownian Ratchet (DBR) model, in which both actin monomer and obstacle diffusion are treated explicitly. We find that the growth rate of multiple filaments is even lower, compared with that in PBR. This finding challenges the widely-accepted PBR assumption and suggests that pushing the study of actin dynamics down to the sub-nanometer level yields new insights. We subsequently used a rate equation approach to model the effect of local depletion of actin monomers on the nucleation of actin filaments on biomimetic beads, and how the effect is regulated by capping protein (CP). We find that near the bead surface, a higher CP concentration increases local actin concentration, which leads to an enhanced activities of actin filaments' nucleation. Our model analysis matches the experimental results and lends support to an important but undervalued hypothesis proposed by Carlier and

  4. Bundling of actin filaments by elongation factor 1 alpha inhibits polymerization at filament ends

    PubMed Central

    1996-01-01

    Elongation factor 1 alpha (EF1 alpha) is an abundant protein that binds aminoacyl-tRNA and ribosomes in a GTP-dependent manner. EF1 alpha also interacts with the cytoskeleton by binding and bundling actin filaments and microtubules. In this report, the effect of purified EF1 alpha on actin polymerization and depolymerization is examined. At molar ratios present in the cytosol, EF1 alpha significantly blocks both polymerization and depolymerization of actin filaments and increases the final extent of actin polymer, while at high molar ratios to actin, EF1 alpha nucleates actin polymerization. Although EF1 alpha binds actin monomer, this monomer-binding activity does not explain the effects of EF1 alpha on actin polymerization at physiological molar ratios. The mechanism for the inhibition of polymerization is related to the actin-bundling activity of EF1 alpha. Both ends of the actin filament are inhibited for polymerization and both bundling and the inhibition of actin polymerization are affected by pH within the same physiological range; at high pH both bundling and the inhibition of actin polymerization are reduced. Additionally, it is seen that the binding of aminoacyl-tRNA to EF1 alpha releases EF1 alpha's inhibiting effect on actin polymerization. These data demonstrate that EF1 alpha can alter the assembly of F-actin, a filamentous scaffold on which non- membrane-associated protein translation may be occurring in vivo. PMID:8947553

  5. Accelerated actin filament polymerization from microtubule plus-ends

    PubMed Central

    Henty-Ridilla, Jessica L.; Rankova, Aneliya; Eskin, Julian A.; Kenny, Katelyn; Goode, Bruce L.

    2016-01-01

    Microtubules govern actin network remodeling in a wide range of biological processes, yet the mechanisms underlying this cytoskeletal crosstalk have remained obscure. Here we used single-molecule fluorescence microscopy to show that the microtubule plus-end associated protein CLIP-170 binds tightly to formins to accelerate actin filament elongation. Furthermore, we observed mDia1 dimers and CLIP-170 dimers co-tracking growing filament ends for minutes. CLIP-170-mDia1 complexes promoted actin polymerization approximately 18 times faster than free barbed end growth, while simultaneously enhancing protection from capping protein. We used a microtubule-actin dynamics co-reconstitution system to observe CLIP-170-mDia1 complexes being recruited to growing microtubule ends by EB1. The complexes triggered rapid growth of actin filaments that remained attached to the microtubule surface. These activities of CLIP-170 were required in primary neurons for normal dendritic morphology. Thus, our results reveal a cellular mechanism whereby growing microtubule plus-ends direct rapid actin assembly. PMID:27199431

  6. Effects of polymerization and nucleotide identity on the conformational dynamics of the bacterial actin homolog MreB.

    PubMed

    Colavin, Alexandre; Hsin, Jen; Huang, Kerwyn Casey

    2014-03-04

    The assembly of protein filaments drives many cellular processes, from nucleoid segregation, growth, and division in single cells to muscle contraction in animals. In eukaryotes, shape and motility are regulated through cycles of polymerization and depolymerization of actin cytoskeletal networks. In bacteria, the actin homolog MreB forms filaments that coordinate the cell-wall synthesis machinery to regulate rod-shaped growth and contribute to cellular stiffness through unknown mechanisms. Like actin, MreB is an ATPase and requires ATP to polymerize, and polymerization promotes nucleotide hydrolysis. However, it is unclear whether other similarities exist between MreB and actin because the two proteins share low sequence identity and have distinct cellular roles. Here, we use all-atom molecular dynamics simulations to reveal surprising parallels between MreB and actin structural dynamics. We observe that MreB exhibits actin-like polymerization-dependent structural changes, wherein polymerization induces flattening of MreB subunits, which restructures the nucleotide-binding pocket to favor hydrolysis. MreB filaments exhibited nucleotide-dependent intersubunit bending, with hydrolyzed polymers favoring a straighter conformation. We use steered simulations to demonstrate a coupling between intersubunit bending and the degree of flattening of each subunit, suggesting cooperative bending along a filament. Taken together, our results provide molecular-scale insight into the diversity of structural states of MreB and the relationships among polymerization, hydrolysis, and filament properties, which may be applicable to other members of the broad actin family.

  7. Actin-binding Protein Drebrin Regulates HIV-1-triggered Actin Polymerization and Viral Infection*

    PubMed Central

    Gordón-Alonso, Mónica; Rocha-Perugini, Vera; Álvarez, Susana; Ursa, Ángeles; Izquierdo-Useros, Nuria; Martinez-Picado, Javier; Muñoz-Fernández, María A.; Sánchez-Madrid, Francisco

    2013-01-01

    HIV-1 contact with target cells triggers F-actin rearrangements that are essential for several steps of the viral cycle. Successful HIV entry into CD4+ T cells requires actin reorganization induced by the interaction of the cellular receptor/co-receptor complex CD4/CXCR4 with the viral envelope complex gp120/gp41 (Env). In this report, we analyze the role of the actin modulator drebrin in HIV-1 viral infection and cell to cell fusion. We show that drebrin associates with CXCR4 before and during HIV infection. Drebrin is actively recruited toward cell-virus and Env-driven cell to cell contacts. After viral internalization, drebrin clustering is retained in a fraction of the internalized particles. Through a combination of RNAi-based inhibition of endogenous drebrin and GFP-tagged expression of wild-type and mutant forms, we establish drebrin as a negative regulator of HIV entry and HIV-mediated cell fusion. Down-regulation of drebrin expression promotes HIV-1 entry, decreases F-actin polymerization, and enhances profilin local accumulation in response to HIV-1. These data underscore the negative role of drebrin in HIV infection by modulating viral entry, mainly through the control of actin cytoskeleton polymerization in response to HIV-1. PMID:23926103

  8. Actin Polymerization: An Event Regulated by Tyrosine Phosphorylation During Buffalo Sperm Capacitation.

    PubMed

    Naresh, S; Atreja, S K

    2015-12-01

    In the female reproductive tract, the spermatozoa undergo a series of physiological and biochemical changes, prior to gaining the ability to fertilize, that result to capacitation. However, the actin polymerization and protein tyrosine phosphorylation are the two necessary steps for capacitation. In this study, we have demonstrated the actin polymerization and established the correlation between protein tyrosine phosphorylation and actin reorganization during in vitro capacitation in buffalo (Bubalus bubalis) spermatozoa. Indirect immunofluorescence and Western blot techniques were used to detect actin polymerization and tyrosine phosphorylation. The time-dependent fluorimetric studies revealed that the actin polymerization starts from the tail region and progressed towards the head region of spermatozoa during capacitation. The lysophosphatidyl choline (LPC)-induced acrosome reaction (AR) stimulated quick actin depolymerization. The inhibitor cytochalasin D (CD) blocked the in vitro capacitation by inhibiting the actin polymerization. In addition, we also performed different inhibitor (Genistein, H-89, PD9809 and GF-109) and enhancer (dbcAMP, H(2)O(2) and vanadate) studies on actin tyrosine phosphorylation and actin polymerization. The inhibitors of tyrosine phosphorylation inhibit actin tyrosine phosphorylation and polymerization, whereas enhancers of tyrosine phosphorylation stimulate F-actin formation and tyrosine phosphorylation. These observations suggest that the tyrosine phosphorylation regulates the actin polymerization, and both are coupled processes during capacitation of buffalo spermatozoa.

  9. Early nucleation events in the polymerization of actin, probed by time-resolved small-angle x-ray scattering

    PubMed Central

    Oda, Toshiro; Aihara, Tomoki; Wakabayashi, Katsuzo

    2016-01-01

    Nucleators generating new F-actin filaments play important roles in cell activities. Detailed information concerning the events involved in nucleation of actin alone in vitro is fundamental to understanding these processes, but such information has been hard to come by. We addressed the early process of salt-induced polymerization of actin using the time-resolved synchrotron small-angle X-ray scattering (SAXS). Actin molecules in low salt solution maintain a monomeric state by an electrostatic repulsive force between molecules. On mixing with salts, the repulsive force was rapidly screened, causing an immediate formation of many of non-polymerizable dimers. SAXS kinetic analysis revealed that tetramerization gives the highest energetic barrier to further polymerization, and the major nucleation is the formation of helical tetramers. Filaments start to grow rapidly with the formation of pentamers. These findings suggest an acceleration mechanism of actin assembly by a variety of nucleators in cells. PMID:27775032

  10. Mechanical force-induced polymerization and depolymerization of F-actin at water/solid interfaces

    NASA Astrophysics Data System (ADS)

    Zhang, Xueqiang; Hu, Xiuyuan; Lei, Haozhi; Hu, Jun; Zhang, Yi

    2016-03-01

    Actin molecules are among the three main cytoskeleton proteins of cells and undergo rapid cycling to regulate critical processes such as endocytosis, cytokinesis, cell polarity, and cell morphogenesis. Although extensive studies have been carried out on the dynamics as well as biological functions of actin polymerization and depolymerization both in vivo and in vitro, the molecular mechanisms by which cells sense and respond to mechanical signals are not fully understood. In particular, little attention has been paid to the effect of a physical force that is exerted directly on the actin cytoskeleton. In this paper, we have explored how the mechanical force affects the actin polymerization and depolymerization behaviors at water/solid interfaces using an atomic force microscope (AFM) operated in liquid. By raster scanning an AFM probe on a substrate surface with a certain load, it was found that actin monomers could polymerize into filaments without the help of actin related proteins (ARPs). Further study indicated that actin monomers were inclined to form filaments only under a small scanning load. The polymerized actin filaments would be depolymerized when the mechanical force was stronger. A possible mechanism has been suggested to explain the mechanical force induced actin polymerization.Actin molecules are among the three main cytoskeleton proteins of cells and undergo rapid cycling to regulate critical processes such as endocytosis, cytokinesis, cell polarity, and cell morphogenesis. Although extensive studies have been carried out on the dynamics as well as biological functions of actin polymerization and depolymerization both in vivo and in vitro, the molecular mechanisms by which cells sense and respond to mechanical signals are not fully understood. In particular, little attention has been paid to the effect of a physical force that is exerted directly on the actin cytoskeleton. In this paper, we have explored how the mechanical force affects the actin

  11. Actin polymerization does not provide direct mechanical forces for vesicle fission during clathrin-mediated endocytosis.

    PubMed

    Yao, Li-Hua; Rao, Yan; Bang, Chi; Kurilova, Svetlana; Varga, Kelly; Wang, Chun-Yang; Weller, Brandon D; Cho, Wonhwa; Cheng, Jun; Gong, Liang-Wei

    2013-10-02

    Actin polymerization is important for vesicle fission during clathrin-mediated endocytosis (CME), and it has been proposed that actin polymerization may promote vesicle fission during CME by providing direct mechanical forces. However, there is no direct evidence in support of this hypothesis. In the present study, the role of actin polymerization in vesicle fission was tested by analyzing the kinetics of the endocytic tubular membrane neck (the fission-pore) with cell-attached capacitance measurements to detect CME of single vesicles in a millisecond time resolution in mouse chromaffin cells. Inhibition in dynamin GTPase activity increased the fission-pore conductance (Gp), supporting the mechanical role of dynamin GTPase in vesicle fission. However, disruptions in actin polymerization did not alter the fission-pore conductance Gp, thus arguing against the force-generating role of actin polymerization in vesicle fission during CME. Similar to disruptions of actin polymerization, cholesterol depletion results in an increase in the fission-pore duration, indicating a role for cholesterol-dependent membrane reorganization in vesicle fission. Further experiments suggested that actin polymerization and cholesterol might function in vesicle fission during CME in the same pathway. Our results thus support a model in which actin polymerization promotes vesicle fission during CME by inducing cholesterol-dependent membrane reorganization.

  12. Effects of temperature on actin polymerized by Ca2+. Direct evidence of fragmentation.

    PubMed Central

    Grazi, E; Trombetta, G

    1985-01-01

    When the temperature is lowered from 20 to 4 degrees C, the specific viscosity of actin polymerized in the presence of either 4 mM-CaCl2 or 2 mM-MgCl2, but not of actin polymerized in the presence of 90 mM-KCl, is decreased by 50% in the absence of free ATP. Addition of ATP restores the viscosity of the actin polymerized by Mg2+, but not that of actin polymerized by Ca2+, to the original value. The effect of temperature on actin polymerized in the presence of Ca2+ is due to (a) polymer-into-monomer conversion, (b) latero-lateral aggregation of filaments, and (c) fragmentation of the filaments. Fragmentation, as demonstrated by fractional centrifugation and electron microscopy, was the most important of these. Images PMID:4084236

  13. Plasma membrane restricted RhoGEF activity is sufficient for RhoA-mediated actin polymerization

    PubMed Central

    van Unen, Jakobus; Reinhard, Nathalie R.; Yin, Taofei; Wu, Yi I.; Postma, Marten; Gadella, Theodorus W.J.; Goedhart, Joachim

    2015-01-01

    The small GTPase RhoA is involved in cell morphology and migration. RhoA activity is tightly regulated in time and space and depends on guanine exchange factors (GEFs). However, the kinetics and subcellular localization of GEF activity towards RhoA are poorly defined. To study the mechanism underlying the spatiotemporal control of RhoA activity by GEFs, we performed single cell imaging with an improved FRET sensor reporting on the nucleotide loading state of RhoA. By employing the FRET sensor we show that a plasma membrane located RhoGEF, p63RhoGEF, can rapidly activate RhoA through endogenous GPCRs and that localized RhoA activity at the cell periphery correlates with actin polymerization. Moreover, synthetic recruitment of the catalytic domain derived from p63RhoGEF to the plasma membrane, but not to the Golgi apparatus, is sufficient to activate RhoA. The synthetic system enables local activation of endogenous RhoA and effectively induces actin polymerization and changes in cellular morphology. Together, our data demonstrate that GEF activity at the plasma membrane is sufficient for actin polymerization via local RhoA signaling. PMID:26435194

  14. X-ray scattering study of actin polymerization nuclei assembled by tandem W domains

    SciTech Connect

    Rebowski, Grzegorz; Boczkowska, Malgorzata; Hayes, David B.; Guo, Liang; Irving, Thomas C.; Dominguez, Roberto

    2008-08-27

    The initiation of actin polymerization in cells requires actin filament nucleators. With the exception of formins, known filament nucleators use the Wiskott-Aldrich syndrome protein (WASP) homology 2 (WH2 or W) domain for interaction with actin. A common architecture, found in Spire, Cobl, VopL, and VopF, consists of tandem W domains that tie together three to four actin monomers to form a polymerization nucleus. Uncontrollable polymerization has prevented the structural investigation of such nuclei. We have engineered stable nuclei consisting of an actin dimer and a trimer stabilized by tandem W domain hybrid constructs and studied their structures in solution by x-ray scattering. We show that Spire-like tandem W domains stabilize a polymerization nucleus by lining up actin subunits along the long-pitch helix of the actin filament. Intersubunit contacts in the polymerization nucleus, thought to involve the DNase I-binding loop of actin, coexist with the binding of the W domain in the cleft between actin subdomains 1 and 3. The successful stabilization of filament-like multiactin assemblies opens the way to the crystallographic investigation of intersubunit contacts in the actin filament.

  15. Profilin Regulates Apical Actin Polymerization to Control Polarized Pollen Tube Growth.

    PubMed

    Liu, Xiaonan; Qu, Xiaolu; Jiang, Yuxiang; Chang, Ming; Zhang, Ruihui; Wu, Youjun; Fu, Ying; Huang, Shanjin

    2015-12-07

    Pollen tube growth is an essential step during flowering plant reproduction, whose growth depends on a population of dynamic apical actin filaments. Apical actin filaments were thought to be involved in the regulation of vesicle fusion and targeting in the pollen tube. However, the molecular mechanisms that regulate the construction of apical actin structures in the pollen tube remain largely unclear. Here, we identify profilin as an important player in the regulation of actin polymerization at the apical membrane in the pollen tube. Downregulation of profilin decreased the amount of filamentous actin and induced disorganization of apical actin filaments, and reduced tip-directed vesicle transport and accumulation in the pollen tube. Direct visualization of actin dynamics revealed that the elongation of actin filaments originating at the apical membrane decreased in profilin mutant pollen tubes. Mutant profilin that is defective in binding poly-L-proline only partially rescues the actin polymerization defect in profilin mutant pollen tubes, although it fully rescues the actin turnover phenotype. We propose that profilin controls the construction of actin structures at the pollen tube tip, presumably by favoring formin-mediated actin polymerization at the apical membrane.

  16. A requirement for polymerized actin in DNA double-strand break repair.

    PubMed

    Andrin, Christi; McDonald, Darin; Attwood, Kathleen M; Rodrigue, Amélie; Ghosh, Sunita; Mirzayans, Razmik; Masson, Jean-Yves; Dellaire, Graham; Hendzel, Michael J

    2012-07-01

    Nuclear actin is involved in several nuclear processes from chromatin remodeling to transcription. Here we examined the requirement for actin polymerization in DNA double-strand break repair. Double-strand breaks are considered the most dangerous type of DNA lesion. Double-strand break repair consists of a complex set of events that are tightly regulated. Failure at any step can have catastrophic consequences such as genomic instability, oncogenesis or cell death. Many proteins involved in this repair process have been identified and their roles characterized. We discovered that some DNA double-strand break repair factors are capable of associating with polymeric actin in vitro and specifically, that purified Ku70/80 interacts with polymerized actin under these conditions. We find that the disruption of polymeric actin inhibits DNA double strand break repair both in vitro and in vivo. Introduction of nuclear targeted mutant actin that cannot polymerize, or the depolymerization of endogenous actin filaments by the addition of cytochalasin D, alters the retention of Ku80 at sites of DNA damage in live cells. Our results suggest that polymeric actin is required for proper DNA double-strand break repair and may function through the stabilization of the Ku heterodimer at the DNA damage site.

  17. Feedback Interactions of Polymerized Actin with the Cell Membrane: Waves, Pulses, and Oscillations

    NASA Astrophysics Data System (ADS)

    Carlsson, Anders

    Polymerized filaments of the protein actin have crucial functions in cell migration, and in bending the cell membrane to drive endocytosis or the formation of protrusions. The nucleation and polymerization of actin filaments are controlled by upstream agents in the cell membrane, including nucleation-promoting factors (NPFs) that activate the Arp2/3 complex to form new branches on pre-existing filaments. But polymerized actin (F-actin) also feeds back on the assembly of NPFs. We explore the effects of the resulting feedback loop of F-actin and NPFs on two phenomena: actin pulses that drive endocytosis in yeast, and actin waves traveling along the membrane of several cell types. In our model of endocytosis in yeast, the actin network is grown explicitly in three dimensions, exerts a negative feedback interaction on localized patch of NPFs in the membrane, and bends the membrane by exerting a distribution of forces. This model explains observed actin and NPF pulse dynamics, and the effects of several interventions including i) NPF mutations, ii) inhibition of actin polymerization, and iii) deletion of a protein that allows F-actin to bend the cell membrane. The model predicts that mutation of the active region of an NPF will enhance the accumulation of that NPF, and we confirm this prediction by quantitative fluorescence microscopy. For actin waves, we treat a similar model, with NPFs distributed over a larger region of the cell membrane. This model naturally generates actin waves, and predicts a transition from wave behavior to spatially localized oscillations when NPFs are confined to a small region. We also predict a transition from waves to static polarization as the negative-feedback coupling between F-actin and the NPFs is reduced. Supported by NIGMS Grant R01 GM107667.

  18. Protein Kinase D Controls Actin Polymerization and Cell Motility through Phosphorylation of Cortactin*

    PubMed Central

    Eiseler, Tim; Hausser, Angelika; De Kimpe, Line; Van Lint, Johan; Pfizenmaier, Klaus

    2010-01-01

    We here identify protein kinase D (PKD) as an upstream regulator of the F-actin-binding protein cortactin and the Arp actin polymerization machinery. PKD phosphorylates cortactin in vitro and in vivo at serine 298 thereby generating a 14-3-3 binding motif. In vitro, a phosphorylation-deficient cortactin-S298A protein accelerated VCA-Arp-cortactin-mediated synergistic actin polymerization and showed reduced F-actin binding, indicative of enhanced turnover of nucleation complexes. In vivo, cortactin co-localized with the nucleation promoting factor WAVE2, essential for lamellipodia extension, in the actin polymerization zone in Heregulin-treated MCF-7 cells. Using a 3-dye FRET-based approach we further demonstrate that WAVE2-Arp and cortactin prominently interact at these structures. Accordingly, cortactin-S298A significantly enhanced lamellipodia extension and directed cell migration. Our data thus unravel a previously unrecognized mechanism by which PKD controls cancer cell motility. PMID:20363754

  19. Tropomyosin-dependent filament formation by a polymerization-defective mutant yeast actin (V266G,L267G).

    PubMed

    Wen, K K; Kuang, B; Rubenstein, P A

    2000-12-22

    A major function of tropomyosin (TPM) in nonmuscle cells may be stabilization of F-actin by binding longitudinally along the actin filament axis. However, no clear evidence exists in vitro that TPM can significantly affect the critical concentration of actin. We previously made a polymerization-defective mutant actin, GG (V266G, L267G). This actin will not polymerize alone at 25 degrees C but will in the presence of phalloidin or beryllium fluoride. With beryllium fluoride, but not phalloidin, this polymerization rescue is cold-sensitive. We show here that GG-actin polymerizability was restored by cardiac tropomyosin and yeast TPM1 and TPM2 at 25 degrees C with rescue efficiency inversely proportional to TPM length (TPM2 > TPM1 > cardiac tropomyosin), indicating the importance of the ends in polymerization rescue. In the presence of TPM, the apparent critical concentration of actin is 5.5 microm, 10-15-fold higher than that of wild type actin but well below that of the GG-actin alone (>20 microm). Non N-acetylated TPMs did not rescue GG-actin polymerization. The TPMs did not prevent cold-induced depolymerization of GG F-actin. TPM-dependent GG-actin polymerization did not occur at temperatures below 20 degrees C. Polymerization rescue may depend initially on the capture of unstable GG-F-actin oligomers by the TPM, resulting in the strengthening of actin monomer-monomer contacts along the filament axis.

  20. Combined effects of temperature, pressure, and co-solvents on the polymerization kinetics of actin.

    PubMed

    Rosin, Christopher; Estel, Kathrin; Hälker, Jessica; Winter, Roland

    2015-05-18

    In vivo studies have shown that the cytoskeleton of cells is very sensitive to changes in temperature and pressure. In particular, actin filaments get depolymerized when pressure is increased up to several hundred bars, conditions that are easily encountered in the deep sea. We quantitatively evaluate the effects of temperature, pressure, and osmolytes on the kinetics of the polymerization reaction of actin by high-pressure stopped-flow experiments in combination with fluorescence detection and an integrative stochastic simulation of the polymerization process. We show that the compatible osmolyte trimethylamine-N-oxide is not only able to compensate for the strongly retarding effect of chaotropic agents, such as urea, on actin polymerization, it is also able to largely offset the deteriorating effect of pressure on actin polymerization, thereby allowing biological cells to better cope with extreme environmental conditions.

  1. Directed actin polymerization is the driving force for epithelial cell-cell adhesion.

    PubMed

    Vasioukhin, V; Bauer, C; Yin, M; Fuchs, E

    2000-01-21

    We have found that epithelial cells engage in a process of cadherin-mediated intercellular adhesion that utilizes calcium and actin polymerization in unexpected ways. Calcium stimulates filopodia, which penetrate and embed into neighboring cells. E-cadherin complexes cluster at filopodia tips, generating a two-rowed zipper of embedded puncta. Opposing cell surfaces are clamped by desmosomes, while vinculin, zyxin, VASP, and Mena are recruited to adhesion zippers by a mechanism that requires alpha-catenin. Actin reorganizes and polymerizes to merge puncta into a single row and seal cell borders. In keratinocytes either null for alpha-catenin or blocked in VASP/Mena function, filopodia embed, but actin reorganization/polymerization is prevented, and membranes cannot seal. Taken together, a dynamic mechanism for intercellular adhesion is unveiled involving calcium-activated filopodia penetration and VASP/Mena-dependent actin reorganization/polymerization.

  2. Microtubules as Platforms for Assaying Actin Polymerization In Vivo

    PubMed Central

    Oelkers, J. Margit; Vinzenz, Marlene; Nemethova, Maria; Jacob, Sonja; Lai, Frank P. L.; Block, Jennifer; Szczodrak, Malgorzata; Kerkhoff, Eugen; Backert, Steffen; Schlüter, Kai; Stradal, Theresia E. B.; Small, J. Victor

    2011-01-01

    The actin cytoskeleton is continuously remodeled through cycles of actin filament assembly and disassembly. Filaments are born through nucleation and shaped into supramolecular structures with various essential functions. These range from contractile and protrusive assemblies in muscle and non-muscle cells to actin filament comets propelling vesicles or pathogens through the cytosol. Although nucleation has been extensively studied using purified proteins in vitro, dissection of the process in cells is complicated by the abundance and molecular complexity of actin filament arrays. We here describe the ectopic nucleation of actin filaments on the surface of microtubules, free of endogenous actin and interfering membrane or lipid. All major mechanisms of actin filament nucleation were recapitulated, including filament assembly induced by Arp2/3 complex, formin and Spir. This novel approach allows systematic dissection of actin nucleation in the cytosol of live cells, its genetic re-engineering as well as screening for new modifiers of the process. PMID:21603613

  3. Tubulin binding protein, CacyBP/SIP, induces actin polymerization and may link actin and tubulin cytoskeletons.

    PubMed

    Schneider, Gabriela; Nieznanski, Krzysztof; Jozwiak, Jolanta; Slomnicki, Lukasz P; Redowicz, Maria J; Filipek, Anna

    2010-11-01

    CacyBP/SIP, originally identified as a S100A6 target, was shown to interact with some other S100 proteins as well as with Siah-1, Skp1, tubulin and ERK1/2 kinases (reviewed in Schneider and Filipek, Amino Acids, 2010). Here, we show that CacyBP/SIP interacts and co-localizes with actin in NB2a cells. Using a zero-length cross-linker we found that both proteins bound directly to each other. Co-sedimentation assays revealed that CacyBP/SIP induced G-actin polymerization and formation of unique circular actin filament bundles. The N-terminal fragment of CacyBP/SIP (residues 1-179) had similar effect on actin polymerization as the entire CacyBP/SIP protein, while the C-terminal one (residues 178-229) had not. To check the influence of CacyBP/SIP on cell morphology as well as on cell adhesion and migration, a stable NIH 3T3 cell line with an increased level of CacyBP/SIP was generated. We found that the adhesion and migration rates of the modified cells were changed in comparison with the control ones. Interestingly, the co-sedimentation and proximity ligation assays indicated that CacyBP/SIP could simultaneously interact with tubulin and actin, suggesting that CacyBP/SIP might link actin and tubulin cytoskeletons.

  4. Actin polymerization machinery: the finish line of signaling networks, the starting point of cellular movement.

    PubMed

    Disanza, A; Steffen, A; Hertzog, M; Frittoli, E; Rottner, K; Scita, G

    2005-05-01

    Dynamic assembly of actin filaments generates the forces supporting cell motility. Several recent biochemical and genetic studies have revealed a plethora of different actin binding proteins whose coordinated activity regulates the turnover of actin filaments, thus controlling a variety of actin-based processes, including cell migration. Additionally, emerging evidence is highlighting a scenario whereby the same basic set of actin regulatory proteins is also the convergent node of different signaling pathways emanating from extracellular stimuli, like those from receptor tyrosine kinases. Here, we will focus on the molecular mechanisms of how the machinery of actin polymerization functions and is regulated, in a signaling-dependent mode, to generate site-directed actin assembly leading to cell motility.

  5. Polarized Exocytosis Induces Compensatory Endocytosis by Sec4p-Regulated Cortical Actin Polymerization

    PubMed Central

    Johansen, Jesper; Alfaro, Gabriel; Beh, Christopher T.

    2016-01-01

    Polarized growth is maintained by both polarized exocytosis, which transports membrane components to specific locations on the cell cortex, and endocytosis, which retrieves these components before they can diffuse away. Despite functional links between these two transport pathways, they are generally considered to be separate events. Using live cell imaging, in vivo and in vitro protein binding assays, and in vitro pyrene-actin polymerization assays, we show that the yeast Rab GTPase Sec4p couples polarized exocytosis with cortical actin polymerization, which induces endocytosis. After polarized exocytosis to the plasma membrane, Sec4p binds Las17/Bee1p (yeast Wiskott—Aldrich Syndrome protein [WASp]) in a complex with Sla1p and Sla2p during actin patch assembly. Mutations that inactivate Sec4p, or its guanine nucleotide exchange factor (GEF) Sec2p, inhibit actin patch formation, whereas the activating sec4-Q79L mutation accelerates patch assembly. In vitro assays of Arp2/3-dependent actin polymerization established that GTPγS-Sec4p overrides Sla1p inhibition of Las17p-dependent actin nucleation. These results support a model in which Sec4p relocates along the plasma membrane from polarized sites of exocytic vesicle fusion to nascent sites of endocytosis. Activated Sec4p then promotes actin polymerization and triggers compensatory endocytosis, which controls surface expansion and kinetically refines cell polarization. PMID:27526190

  6. Is there a relationship between phosphatidylinositol trisphosphate and F-actin polymerization in human neutrophils

    SciTech Connect

    Eberle, M.; Traynor-Kaplan, A.E.; Sklar, L.A.; Norgauer, J. )

    1990-10-05

    Stimulation of human neutrophils with the chemoattractant N-formyl peptide caused rapid polymerization of F-actin as detected by right angle light scatter and 7-nitrobenz-2-oxa-1,3-diazol (NBD)-phallacidin staining of F-actin. After labeling neutrophils with 32P, exposure to N-formyl peptide induced a fast decrease of phosphatidylinositol 4-bisphosphate (PIP)2, a slow increase of phosphatidic acid, and a rapid rise of phosphatidylinositol 4-trisphosphate (PIP3). Formation of PIP3 as well as actin polymerization was near maximal at 10 s after stimulation. Half-maximal response and PIP3 formation at early time points resulted from stimulation of neutrophils with 0.01 nM N-formyl peptide or occupation of about 200 receptors. Sustained elevation of PIP3, prolonged right angle light scatter response, and F-actin formation required higher concentrations of N-formyl peptide, occupation of thousands of receptors, and high binding rates. When ligand binding was interrupted with an antagonist, F-actin rapidly depolymerized, transient light scatter response recovered immediately, and elevated (32P)PIP3 levels decayed toward initial values. However, recovery of (32P)PIP2 was not influenced by the antagonist. Based on the parallel time courses and dose response of (32P) PIP3, the right angle light scatter response, and F-actin polymerization, PIP3 is more likely than PIP2 to be involved in modulation of actin polymerization and depolymerization in vivo.

  7. Cytosolic pressure provides a propulsive force comparable to actin polymerization during lamellipod protrusion

    NASA Astrophysics Data System (ADS)

    Manoussaki, Daphne; Shin, William D.; Waterman, Clare M.; Chadwick, Richard S.

    2015-07-01

    Does cytosolic pressure facilitate f-actin polymerization to push the leading edge of a cell forward during self-propelled motion? AFM force-distance (f-d) curves obtained from lamellipodia of live cells often exhibit a signal from which the tension, bending modulus, elastic modulus and thickness in the membrane-cortex complex can be estimated close to the contact point. These measurements permit an estimate of the cytosolic pressure via the canonical Laplace force balance. The deeper portion of the f-d curve allows estimation of the bulk modulus of the cytoskeleton after removal of the bottom effect artifact. These estimates of tension, pressure, cortex thickness and elastic moduli imply that cytosolic pressure both pushes the membrane forward and compresses the actin cortex rearward to facilitate f-actin polymerization. We also estimate that cytosolic pressure fluctuations, most likely induced by myosin, provide a propulsive force comparable to that provided by f-actin polymerization in a lamellipod.

  8. Engineering an artificial amoeba propelled by nanoparticle-triggered actin polymerization

    NASA Astrophysics Data System (ADS)

    Yi, Jinsoo; Schmidt, Jacob; Chien, Aichi; Montemagno, Carlo D.

    2009-02-01

    We have engineered an amoeba system combining nanofabricated inorganic materials with biological components, capable of propelling itself via actin polymerization. The nanofabricated materials have a mechanism similar to the locomotion of the Listeria monocytogenes, food poisoning bacteria. The propulsive force generation utilizes nanoparticles made from nickel and gold functionalized with the Listeria monocytogenes transmembrane protein, ActA. These Listeria-mimic nanoparticles were in concert with actin, actin binding proteins, ATP (adenosine triphosphate) and encapsulated within a lipid vesicle. This system is an artificial cell, such as a vesicle, where artificial nanobacteria and actin polymerization machinery are used in driving force generators inside the cell. The assembled structure was observed to crawl on a glass surface analogously to an amoeba, with the speed of the movement dependent on the amount of actin monomers and ATP present.

  9. A Steric Antagonism of Actin Polymerization by a Salmonella Virulence Protein

    SciTech Connect

    Margarit,S.; Davidson, W.; Frego, L.; Stebbins, F.

    2006-01-01

    Salmonella spp. require the ADP-ribosyltransferase activity of the SpvB protein for intracellular growth and systemic virulence. SpvB covalently modifies actin, causing cytoskeletal disruption and apoptosis. We report here the crystal structure of the catalytic domain of SpvB, and we show by mass spectrometric analysis that SpvB modifies actin at Arg177, inhibiting its ATPase activity. We also describe two crystal structures of SpvB-modified, polymerization-deficient actin. These structures reveal that ADP-ribosylation does not lead to dramatic conformational changes in actin, suggesting a model in which this large family of toxins inhibits actin polymerization primarily through steric disruption of intrafilament contacts.

  10. Engineering an artificial amoeba propelled by nanoparticle-triggered actin polymerization.

    PubMed

    Yi, Jinsoo; Schmidt, Jacob; Chien, Aichi; Montemagno, Carlo D

    2009-02-25

    We have engineered an amoeba system combining nanofabricated inorganic materials with biological components, capable of propelling itself via actin polymerization. The nanofabricated materials have a mechanism similar to the locomotion of the Listeria monocytogenes, food poisoning bacteria. The propulsive force generation utilizes nanoparticles made from nickel and gold functionalized with the Listeria monocytogenes transmembrane protein, ActA. These Listeria-mimic nanoparticles were in concert with actin, actin binding proteins, ATP (adenosine triphosphate) and encapsulated within a lipid vesicle. This system is an artificial cell, such as a vesicle, where artificial nanobacteria and actin polymerization machinery are used in driving force generators inside the cell. The assembled structure was observed to crawl on a glass surface analogously to an amoeba, with the speed of the movement dependent on the amount of actin monomers and ATP present.

  11. Directional Transport of a Bead Bound to Lamellipodial Surface Is Driven by Actin Polymerization

    PubMed Central

    Nobezawa, Daisuke; Ikeda, Sho-ichi; Wada, Eitaro; Nagano, Takashi

    2017-01-01

    The force driving the retrograde flow of actin cytoskeleton is important in the cellular activities involving cell movement (e.g., growth cone motility in axon guidance, wound healing, or cancer metastasis). However, relative importance of the forces generated by actin polymerization and myosin II in this process remains elusive. We have investigated the retrograde movement of the poly-d-lysine-coated bead attached with the optical trap to the edge of lamellipodium of Swiss 3T3 fibroblasts. The velocity of the attached bead drastically decreased by submicromolar concentration of cytochalasin D, latrunculin A, or jasplakinolide, indicating the involvement of actin turnover. On the other hand, the velocity decreased only slightly in the presence of 50 μM (−)-blebbistatin and Y-27632. Comparative fluorescence microscopy of the distribution of actin filaments and that of myosin II revealed that the inhibition of actin turnover by cytochalasin D, latrunculin A, or jasplakinolide greatly diminished the actin filament network. On the other hand, inhibition of myosin II activity by (−)-blebbistatin or Y-27632 little affected the actin network but diminished stress fibers. Based on these results, we conclude that the actin polymerization/depolymerization plays the major role in the retrograde movement, while the myosin II activity is involved in the maintenance of the dynamic turnover of actin in lamellipodium. PMID:28246604

  12. Increased beta-actin and tubulin polymerization in regrowing axons: relationship to the conditioning lesion effect.

    PubMed

    Lund, Linda M; Machado, Victor M; McQuarrie, Irvine G

    2002-12-01

    Spinal motor neurons of Sprague-Dawley rats were examined to determine which of the neuronal isoforms of actin (beta or gamma) upregulate following axon injury. In situ hybridization studies showed greater beta-actin mRNA levels but no change in gamma-actin mRNA levels-suggesting that axon regrowth utilizes beta-actin. We radiolabeled the newly synthesized actin and tubulin that are subsequently transported in the axon to the site of an axotomizing injury. This allowed us to evaluate changes in polymerization as new cytoskeletal elements approach the injury site. Previous studies had shown that the rate of the most rapid subcomponent of actin and tubulin transport (called SCb) accelerates following axotomy (J. Jacob and I. McQuarrie, J. Neurobiol. 22: 570-583, 1991). This rate increase is associated with an increased proportion of SCb tubulin and actin in polymer (vs monomer) form (J. Jacob and I. McQuarrie, J. Neurosci, Res. 43: 412-419, 1996). However, in that study newly synthesized proteins were radiolabeled at 7 days after axotomy-which is at the peak of increased protein synthesis. This time-course did not examine actin and tubulin that were already in transit in axons when the injury occurred. This actin and tubulin would enter the regrowing axons first. Here, we have radiolabeled newly synthesized proteins 3 days prior to axotomy. For beta-tubulin, the ratio of monomer to polymer was unaffected. For actin, the equilibrium shifted strongly toward polymerization. We conclude that the acceleration of axonal outgrowth seen after the second of two serial axotomies (the "conditioning lesion effect") is related to the ability of actin that is already in transit to polymerize in response to the first axotomy.

  13. Macromolecular crowding gives rise to microviscosity, anomalous diffusion and accelerated actin polymerization

    NASA Astrophysics Data System (ADS)

    Rashid, Rafi; Chee, Stella Min Ling; Raghunath, Michael; Wohland, Thorsten

    2015-05-01

    Macromolecular crowding (MMC) has been used in various in vitro experimental systems to mimic in vivo physiology. This is because the crowded cytoplasm of cells contains many different types of solutes dissolved in an aqueous medium. MMC in the extracellular microenvironment is involved in maintaining stem cells in their undifferentiated state (niche) as well as in aiding their differentiation after they have travelled to new locations outside the niche. MMC at physiologically relevant fractional volume occupancies (FVOs) significantly enhances the adipogenic differentiation of human bone marrow-derived mesenchymal stem cells during chemically induced adipogenesis. The mechanism by which MMC produces this enhancement is not entirely known. In the context of extracellular collagen deposition, we have recently reported the importance of optimizing the FVO while minimizing the bulk viscosity. Two opposing properties will determine the net rate of a biochemical reaction: the negative effect of bulk viscosity and the positive effect of the excluded volume, the latter being expressed by the FVO. In this study we have looked more closely at the effect of viscosity on reaction rates. We have used fluorimetry to measure the rate of actin polymerization and fluorescence correlation spectroscopy (FCS) to measure diffusion of various probes in solutions containing the crowder Ficoll at physiological concentrations. Similar to its effect on collagen, Ficoll enhanced the actin polymerization rate despite increasing the bulk viscosity. Our FCS measurements reveal a relatively minor component of anomalous diffusion. In addition, our measurements do suggest that microviscosity becomes relevant in a crowded environment. We ruled out bulk viscosity as a cause of the rate enhancement by performing the actin polymerization assay in glycerol. These opposite effects of Ficoll and glycerol led us to conclude that microviscosity becomes relevant at the length scale of the reacting

  14. Macromolecular crowding gives rise to microviscosity, anomalous diffusion and accelerated actin polymerization.

    PubMed

    Rashid, Rafi; Chee, Stella Min Ling; Raghunath, Michael; Wohland, Thorsten

    2015-04-30

    Macromolecular crowding (MMC) has been used in various in vitro experimental systems to mimic in vivo physiology. This is because the crowded cytoplasm of cells contains many different types of solutes dissolved in an aqueous medium. MMC in the extracellular microenvironment is involved in maintaining stem cells in their undifferentiated state (niche) as well as in aiding their differentiation after they have travelled to new locations outside the niche. MMC at physiologically relevant fractional volume occupancies (FVOs) significantly enhances the adipogenic differentiation of human bone marrow-derived mesenchymal stem cells during chemically induced adipogenesis. The mechanism by which MMC produces this enhancement is not entirely known. In the context of extracellular collagen deposition, we have recently reported the importance of optimizing the FVO while minimizing the bulk viscosity. Two opposing properties will determine the net rate of a biochemical reaction: the negative effect of bulk viscosity and the positive effect of the excluded volume, the latter being expressed by the FVO. In this study we have looked more closely at the effect of viscosity on reaction rates. We have used fluorimetry to measure the rate of actin polymerization and fluorescence correlation spectroscopy (FCS) to measure diffusion of various probes in solutions containing the crowder Ficoll at physiological concentrations. Similar to its effect on collagen, Ficoll enhanced the actin polymerization rate despite increasing the bulk viscosity. Our FCS measurements reveal a relatively minor component of anomalous diffusion. In addition, our measurements do suggest that microviscosity becomes relevant in a crowded environment. We ruled out bulk viscosity as a cause of the rate enhancement by performing the actin polymerization assay in glycerol. These opposite effects of Ficoll and glycerol led us to conclude that microviscosity becomes relevant at the length scale of the reacting

  15. Waves of actin and microtubule polymerization drive microtubule-based transport and neurite growth before single axon formation

    PubMed Central

    Winans, Amy M; Collins, Sean R; Meyer, Tobias

    2016-01-01

    Many developing neurons transition through a multi-polar state with many competing neurites before assuming a unipolar state with one axon and multiple dendrites. Hallmarks of the multi-polar state are large fluctuations in microtubule-based transport into and outgrowth of different neurites, although what drives these fluctuations remains elusive. We show that actin waves, which stochastically migrate from the cell body towards neurite tips, direct microtubule-based transport during the multi-polar state. Our data argue for a mechanical control system whereby actin waves transiently widen the neurite shaft to allow increased microtubule polymerization to direct Kinesin-based transport and create bursts of neurite extension. Actin waves also require microtubule polymerization, arguing that positive feedback links these two components. We propose that actin waves create large stochastic fluctuations in microtubule-based transport and neurite outgrowth, promoting competition between neurites as they explore the environment until sufficient external cues can direct one to become the axon. DOI: http://dx.doi.org/10.7554/eLife.12387.001 PMID:26836307

  16. Chlamydia trachomatis Tarp cooperates with the Arp2/3 complex to increase the rate of actin polymerization.

    PubMed

    Jiwani, Shahanawaz; Ohr, Ryan J; Fischer, Elizabeth R; Hackstadt, Ted; Alvarado, Stephenie; Romero, Adriana; Jewett, Travis J

    2012-04-20

    Actin polymerization is required for Chlamydia trachomatis entry into nonphagocytic host cells. Host and chlamydial actin nucleators are essential for internalization of chlamydiae by eukaryotic cells. The host cell Arp2/3 complex and the chlamydial translocated actin recruiting phosphoprotein (Tarp) are both required for entry. Tarp and the Arp2/3 complex exhibit unique actin polymerization kinetics individually, but the molecular details of how these two actin nucleators cooperate to promote bacterial entry is not understood. In this study we provide biochemical evidence that the two actin nucleators act synergistically by co-opting the unique attributes of each to enhance the dynamics of actin filament formation. This process is independent of Tarp phosphorylation. We further demonstrate that Tarp colocalization with actin filaments is independent of the Tarp phosphorylation domain. The results are consistent with a model in which chlamydial and host cell actin nucleators cooperate to increase the rate of actin filament formation.

  17. Actin Polymerization Driven Mitochondrial Transport in Mating S. cerevisiae by Fourier Imaging Correlation Spectroscopy

    NASA Astrophysics Data System (ADS)

    Senning, Eric; Marcus, Andrew

    2010-03-01

    The dynamic microenvironment of cells depends on macromolecular architecture, equilibrium fluctuations, and non-equilibrium forces generated by cytoskeletal proteins. We studied the influence of these factors on the motions of mitochondria in mating S. cerevisiae using Fourier imaging correlation spectroscopy (FICS). Our measurements provide detailed, length scale dependent information about the dynamic behavior of mitochondria. We investigate the influence of the actin cytoskeleton on mitochondrial motion, and make comparisons between conditions in which actin network assembly and disassembly is varied, either by using disruptive pharmacological agents, or mutations that alter the rates of actin polymerization. We find that non-equilibrium forces associated with actin polymerization lead to a 1.5-fold enhancement of the long-time mitochondrial diffusion coefficient, and a transient sub-diffusive temporal scaling of the mean-square displacement. Our results lend support to an existing model in which these forces are directly coupled to mitochondrial membrane surfaces.

  18. Mena-GRASP65 interaction couples actin polymerization to Golgi ribbon linking.

    PubMed

    Tang, Danming; Zhang, Xiaoyan; Huang, Shijiao; Yuan, Hebao; Li, Jie; Wang, Yanzhuang

    2016-01-01

    In mammalian cells, the Golgi reassembly stacking protein 65 (GRASP65) has been implicated in both Golgi stacking and ribbon linking by forming trans-oligomers through the N-terminal GRASP domain. Because the GRASP domain is globular and relatively small, but the gaps between stacks are large and heterogeneous, it remains puzzling how GRASP65 physically links Golgi stacks into a ribbon. To explore the possibility that other proteins may help GRASP65 in ribbon linking, we used biochemical methods and identified the actin elongation factor Mena as a novel GRASP65-binding protein. Mena is recruited onto the Golgi membranes through interaction with GRASP65. Depleting Mena or disrupting actin polymerization resulted in Golgi fragmentation. In cells, Mena and actin were required for Golgi ribbon formation after nocodazole washout; in vitro, Mena and microfilaments enhanced GRASP65 oligomerization and Golgi membrane fusion. Thus Mena interacts with GRASP65 to promote local actin polymerization, which facilitates Golgi ribbon linking.

  19. Analysis of Shape Dynamics and Actin Polymerization of Collectively Migrating Streams of Cells

    NASA Astrophysics Data System (ADS)

    Wang, Chenlu; Parent, Carole A.; Losert, Wolfgang

    We use Princiapl Component Analysis (PCA) to investigate cell-cell coupling during collective cell migration of Dictyostelium discoideun, and explore the underlying mechanisms that regulate the coupling. From PCA of the cell boundary motion obtained from time-lapse images of multicellular streams, we find that cells in streams exhibit more localized anterior protrusions than individually migrating cells. We also find that traveling protrusion waves along cell boundaries connect from cell to cell with high correlation. Further analysis of actin polymerization indicates that actin polymerization is significantly enhanced at the leading edge of cells at cell-cell contacts. The coupling of waves disappears when reducing F-actin polymerization with Latrunculin A.

  20. A human CXCL13-induced actin polymerization assay measured by fluorescence plate reader.

    PubMed

    Alley, Jennifer; Bloom, Laird; Kasaian, Marion; Gao, Huilan; Berstein, Gabriel; Clark, James D; Miao, Wenyan

    2010-02-01

    The chemokine receptor CXCR5 is predominantly expressed on mature B cells and follicular T-helper cells. CXCR5 and its ligand CXCL13 participate in ectopic germinal center formation at the inflammatory sites of multiple immune diseases such as rheumatoid arthritis, multiple sclerosis, and Sjogren's syndrome. Therefore, disrupting CXCL13-induced chemotaxis may be a fruitful approach for developing therapeutics in treating these diseases. Cells undergo cytoskeletal rearrangement prior to chemotaxis, and therefore actin polymerization can be used as a surrogate readout more proximal to chemokine receptor activation than chemotaxis. Conventionally, actin polymerization is measured by fluorescence microscopy or flow cytometry, which are either of low throughput or in need of special instruments. We developed a 96-well actin polymerization assay that can process 1,000 to 1,500 samples a day. This assay uses a standard laboratory fluorescence microplate reader as the detection instrument and was optimized for various experimental conditions such as cell density, actin filament staining reagent, staining buffer, and cell culture conditions. We demonstrate that this actin polymerization assay in 96-well format exhibits the expected pharmacology for human CXCR5 and is suitable as a primary functional assay to screen neutralizing scFv in crude bacterial peri-preps and a secondary assay for small compound collections.

  1. Antagonistic regulation of F-BAR protein assemblies controls actin polymerization during podosome formation.

    PubMed

    Tsujita, Kazuya; Kondo, Akihiro; Kurisu, Shusaku; Hasegawa, Junya; Itoh, Toshiki; Takenawa, Tadaomi

    2013-05-15

    FBP17, an F-BAR domain protein, has emerged as a crucial factor linking the plasma membrane to WASP-mediated actin polymerization. Although it is well established that FBP17 has a powerful self-polymerizing ability that promotes actin nucleation on membranes in vitro, knowledge of inhibitory factors that counteract this activity in vivo is limited. Here, we demonstrate that the assembly of FBP17 on the plasma membranes is antagonized by PSTPIP2, another F-BAR protein implicated in auto-inflammatory disorder. Knockdown of PSTPIP2 in macrophage promotes the assembly of FBP17 as well as subsequent actin nucleation at podosomes, resulting in an enhancement of matrix degradation. This phenotype is rescued by expression of PSTPIP2 in a manner dependent on its F-BAR domain. Time-lapse total internal reflection fluorescence (TIRF) microscopy observations reveal that the self-assembly of FBP17 at the podosomal membrane initiates actin polymerization, whereas the clustering of PSTPIP2 has an opposite effect. Biochemical analysis and live-cell imaging show that PSTPIP2 inhibits actin polymerization by competing with FBP17 for assembly at artificial as well as the plasma membrane. Interestingly, the assembly of FBP17 is dependent on WASP, and its dissociation by WASP inhibition strongly induces a self-organization of PSTPIP2 at podosomes. Thus, our data uncover a previously unappreciated antagonism between different F-BAR domain assemblies that determines the threshold of actin polymerization for the formation of functional podosomes and may explain how the absence of PSTPIP2 causes auto-inflammatory disorder.

  2. Ostrinia furnacalis integrin β1 may be involved in polymerization of actin to modulate spreading and encapsulation of plasmatocytes.

    PubMed

    Xu, Qiuyun; Yu, Xiaoqiang; Liu, Jia; Zhao, Huafu; Wang, Peng; Hu, Shengfeng; Chen, Jingya; Zhang, Wenqing; Hu, Jian

    2012-07-01

    Insect hemocytes must change their state from non-adhesive to adhesive when they spread on or encapsulate foreign invaders. Although integrin β has been reported to play an important role in hemocyte spreading and encapsulation in several insects, how it is involved in the encapsulation process is still unclear. Here we report that integrin β1 of Ostrinia furnacalis (Ofint β1) may modulate plasmatocyte spreading by regulating polymerization of F-actin and further affecting formation of capsules. In the Sephadex A-25 bead-injected larvae, hemocytes forming capsules expressed approximately ten times more Ofint β1 than hemocytes that are free in circulation in hemolymph. When the expression of Ofint β1 in hemocytes was inhibited by dsRNA of Ofint β1 (dsINT), polymerization of F-actin in hemocytes, especially in plasmatocytes, was significantly decreased, spreading of plasmatocytes was inhibited, and encapsulation rate of Sephadex beads was also significantly decreased. Furthermore, hemocytes formed individual aggregates on beads in the dsINT injected larvae, while hemocytes formed complete capsules surrounding the beads in the control larvae; and most of the hemocytes on the beads in the dsINT-injected larvae assumed round forms rather than spread forms. Based on these results, we speculate that integrins on cellular membranes may modulate hemocyte spreading by regulating polymerization of F-actin and further affecting encapsulation of foreign objects.

  3. The control of actin nucleotide exchange by thymosin beta 4 and profilin. A potential regulatory mechanism for actin polymerization in cells.

    PubMed Central

    Goldschmidt-Clermont, P J; Furman, M I; Wachsstock, D; Safer, D; Nachmias, V T; Pollard, T D

    1992-01-01

    We present evidence for a new mechanism by which two major actin monomer binding proteins, thymosin beta 4 and profilin, may control the rate and the extent of actin polymerization in cells. Both proteins bind actin monomers transiently with a stoichiometry of 1:1. When bound to actin, thymosin beta 4 strongly inhibits the exchange of the nucleotide bound to actin by blocking its dissociation, while profilin catalytically promotes nucleotide exchange. Because both proteins exchange rapidly between actin molecules, low concentrations of profilin can overcome the inhibitory effects of high concentrations of thymosin beta 4 on the nucleotide exchange. These reactions may allow variations in profilin concentration (which may be regulated by membrane polyphosphoinositide metabolism) to control the ratio of ATP-actin to ADP-actin. Because ATP-actin subunits polymerize more readily than ADP-actin subunits, this ratio may play a key regulatory role in the assembly of cellular actin structures, particularly under circumstances of rapid filament turnover. Images PMID:1330091

  4. Propagating cell-membrane waves driven by curved activators of actin polymerization.

    PubMed

    Peleg, Barak; Disanza, Andrea; Scita, Giorgio; Gov, Nir

    2011-04-21

    Cells exhibit propagating membrane waves which involve the actin cytoskeleton. One type of such membranal waves are Circular Dorsal Ruffles (CDR) which are related to endocytosis and receptor internalization. Experimentally, CDRs have been associated with membrane bound activators of actin polymerization of concave shape. We present experimental evidence for the localization of convex membrane proteins in these structures, and their insensitivity to inhibition of myosin II contractility in immortalized mouse embryo fibroblasts cell cultures. These observations lead us to propose a theoretical model which explains the formation of these waves due to the interplay between complexes that contain activators of actin polymerization and membrane-bound curved proteins of both types of curvature (concave and convex). Our model predicts that the activity of both types of curved proteins is essential for sustaining propagating waves, which are abolished when one type of curved activator is removed. Within this model waves are initiated when the level of actin polymerization induced by the curved activators is higher than some threshold value, which allows the cell to control CDR formation. We demonstrate that the model can explain many features of CDRs, and give several testable predictions. This work demonstrates the importance of curved membrane proteins in organizing the actin cytoskeleton and cell shape.

  5. Fluvoxamine, an anti-depressant, inhibits human glioblastoma invasion by disrupting actin polymerization.

    PubMed

    Hayashi, Keiichiro; Michiue, Hiroyuki; Yamada, Hiroshi; Takata, Katsuyoshi; Nakayama, Hiroki; Wei, Fan-Yan; Fujimura, Atsushi; Tazawa, Hiroshi; Asai, Akira; Ogo, Naohisa; Miyachi, Hiroyuki; Nishiki, Tei-ichi; Tomizawa, Kazuhito; Takei, Kohji; Matsui, Hideki

    2016-03-18

    Glioblastoma multiforme (GBM) is the most common malignant brain tumor with a median survival time about one year. Invasion of GBM cells into normal brain is the major cause of poor prognosis and requires dynamic reorganization of the actin cytoskeleton, which includes lamellipodial protrusions, focal adhesions, and stress fibers at the leading edge of GBM. Therefore, we hypothesized that inhibitors of actin polymerization can suppress GBM migration and invasion. First, we adopted a drug repositioning system for screening with a pyrene-actin-based actin polymerization assay and identified fluvoxamine, a clinically used antidepressant. Fluvoxamine, selective serotonin reuptake inhibitor, was a potent inhibitor of actin polymerization and confirmed as drug penetration through the blood-brain barrier (BBB) and accumulation of whole brain including brain tumor with no drug toxicity. Fluvoxamine inhibited serum-induced ruffle formation, cell migration, and invasion of human GBM and glioma stem cells in vitro by suppressing both FAK and Akt/mammalian target of rapamycin signaling. Daily treatment of athymic mice bearing human glioma-initiating cells with fluvoxamine blocked tumor cell invasion and prolonged the survival with almost same dose of anti-depressant effect. In conclusion, fluvoxamine is a promising anti-invasive treatment against GBM with reliable approach.

  6. Structural basis of thymosin-β4/profilin exchange leading to actin filament polymerization.

    PubMed

    Xue, Bo; Leyrat, Cedric; Grimes, Jonathan M; Robinson, Robert C

    2014-10-28

    Thymosin-β4 (Tβ4) and profilin are the two major sequestering proteins that maintain the pool of monomeric actin (G-actin) within cells of higher eukaryotes. Tβ4 prevents G-actin from joining a filament, whereas profilin:actin only supports barbed-end elongation. Here, we report two Tβ4:actin structures. The first structure shows that Tβ4 has two helices that bind at the barbed and pointed faces of G-actin, preventing the incorporation of the bound G-actin into a filament. The second structure displays a more open nucleotide binding cleft on G-actin, which is typical of profilin:actin structures, with a concomitant disruption of the Tβ4 C-terminal helix interaction. These structures, combined with biochemical assays and molecular dynamics simulations, show that the exchange of bound actin between Tβ4 and profilin involves both steric and allosteric components. The sensitivity of profilin to the conformational state of actin indicates a similar allosteric mechanism for the dissociation of profilin during filament elongation.

  7. Guanine nucleotide-induced polymerization of actin in electropermeabilized human neutrophils

    PubMed Central

    1989-01-01

    The effects of exogenous guanine nucleotides on the polymerization of actin in human neutrophils were tested in an electropermeabilized cell preparation. Close to 40% permeabilization was achieved with a single electric discharge as measured by nucleic acid staining with ethidium bromide or propidium iodide with minimal (less than 2%) release of the cytoplasmic marker lactate dehydrogenase. In addition, electropermeabilized neutrophils retained their capacity to produce superoxide anions and to sustain a polymerization of actin in response to surface-receptor dependent stimuli such as chemotactic factors. Electropermeabilization produced a rapid and transient permeabilization that allowed the entry of guanine nucleotides into the cells. GTP and, to a larger extent, its nonhydrolyzable analog guanosine 5'-O-2- thiotriphosphate (GTP[S]), induced a time- and concentration-dependent polymerization of actin, as determined by increased staining with 7- nitrobenz-2-oxa-1,3-diazolylphallacidin. The effects of the aforementioned guanine nucleotides were antagonized by GDP[S], but were insensitive to pertussis toxin. Cholera toxin potentiated to a small degree the amount of actin polymerization induced by GTP[S]. These results provided direct evidence for the involvement of GTP-binding proteins in the regulation of the organization of the cytoskeleton of neutrophils, an event that is of crucial importance to the performance of the defense-oriented functions of these cells. PMID:2768336

  8. Real-Time Measurements of Actin Filament Polymerization by Total Internal Reflection Fluorescence Microscopy

    PubMed Central

    Kuhn, Jeffrey R.; Pollard, Thomas D.

    2005-01-01

    Understanding the mechanism of actin polymerization and its regulation by associated proteins requires an assay to monitor polymerization dynamics and filament topology simultaneously. The only assay meeting these criteria is total internal reflection fluorescence microscopy (Amann and Pollard, 2001; Fujiwara et al., 2002). The fluorescence signal is fourfold stronger with actin labeled on Cys-374 with Oregon green rather than rhodamine. To distinguish growth at barbed and pointed ends we used image drift correction and maximum intensity projections to reveal points where single N-ethylmaleimide inactivated myosins attach filaments to the glass coverslip. We estimated association rates at high actin concentrations and dissociation rates near and below the critical actin concentration. At the barbed end, the association rate constant for Mg-ATP-actin is 7.4 μM−1 s−1 and the dissociation rate constant is 0.89 s−1. At the pointed end the association and dissociation rate constants are 0.56 μM−1 s−1 and 0.19 s−1. When vitamin D binding protein sequesters all free monomers, ADP-actin dissociates from barbed ends at 1.4 s−1 and from pointed ends at 0.16 s−1 regardless of buffer nucleotide. PMID:15556992

  9. F-actin polymerization and retrograde flow drive sustained PLCγ1 signaling during T cell activation

    PubMed Central

    Babich, Alexander; Li, Shuixing; O'Connor, Roddy S.; Milone, Michael C.; Freedman, Bruce D.

    2012-01-01

    Activation of T cells by antigen-presenting cells involves assembly of signaling molecules into dynamic microclusters (MCs) within a specialized membrane domain termed the immunological synapse (IS). Actin and myosin IIA localize to the IS, and depletion of F-actin abrogates MC movement and T cell activation. However, the mechanisms that coordinate actomyosin dynamics and T cell receptor signaling are poorly understood. Using pharmacological inhibitors that perturb individual aspects of actomyosin dynamics without disassembling the network, we demonstrate that F-actin polymerization is the primary driver of actin retrograde flow, whereas myosin IIA promotes long-term integrity of the IS. Disruption of F-actin retrograde flow, but not myosin IIA contraction, arrested MC centralization and inhibited sustained Ca2+ signaling at the level of endoplasmic reticulum store release. Furthermore, perturbation of retrograde flow inhibited PLCγ1 phosphorylation within MCs but left Zap70 activity intact. These studies highlight the importance of ongoing actin polymerization as a central driver of actomyosin retrograde flow, MC centralization, and sustained Ca2+ signaling. PMID:22665519

  10. Host actin polymerization tunes the cell division cycle of an intracellular pathogen.

    PubMed

    Siegrist, M Sloan; Aditham, Arjun K; Espaillat, Akbar; Cameron, Todd A; Whiteside, Sarah A; Cava, Felipe; Portnoy, Daniel A; Bertozzi, Carolyn R

    2015-04-28

    Growth and division are two of the most fundamental capabilities of a bacterial cell. While they are well described for model organisms growing in broth culture, very little is known about the cell division cycle of bacteria replicating in more complex environments. Using a D-alanine reporter strategy, we found that intracellular Listeria monocytogenes (Lm) spend a smaller proportion of their cell cycle dividing compared to Lm growing in broth culture. This alteration to the cell division cycle is independent of bacterial doubling time. Instead, polymerization of host-derived actin at the bacterial cell surface extends the non-dividing elongation period and compresses the division period. By decreasing the relative proportion of dividing Lm, actin polymerization biases the population toward cells with the highest propensity to form actin tails. Thus, there is a positive-feedback loop between the Lm cell division cycle and a physical interaction with the host cytoskeleton.

  11. Visualization of actin polymerization in invasive structures of macrophages and carcinoma cells using photoconvertible β-actin-Dendra2 fusion proteins.

    PubMed

    Dovas, Athanassios; Gligorijevic, Bojana; Chen, Xiaoming; Entenberg, David; Condeelis, John; Cox, Dianne

    2011-02-14

    Actin polymerization controls a range of cellular processes, from intracellular trafficking to cell motility and invasion. Generation and elongation of free barbed ends defines the regions of actively polymerizing actin in cells and, consequently, is of importance in the understanding of the mechanisms through which actin dynamics are regulated. Herein we present a method that does not involve cell permeabilization and provides direct visualization of growing barbed ends using photoswitchable β-actin-Dendra2 constructs expressed in murine macrophage and rat mammary adenocarcinoma cell lines. The method exploits the ability of photoconverted (red) G-actin species to become incorporated into pre-existing (green) actin filaments, visualized in two distinct wavelengths using TIRF microscopy. In growing actin filaments, photoconverted (red) monomers are added to the barbed end while only green monomers are recycled from the pointed end. We demonstrate that incorporation of actin into intact podosomes of macrophages occurs constitutively and is amenable to inhibition by cytochalasin D indicating barbed end incorporation. Additionally, actin polymerization does not occur in quiescent invadopodial precursors of carcinoma cells suggesting that the filaments are capped and following epidermal growth factor stimulation actin incorporation occurs in a single but extended peak. Finally, we show that Dendra2 fused to either the N- or the C-terminus of β-actin profoundly affects its localization and incorporation in distinct F-actin structures in carcinoma cells, thus influencing the ability of monomers to be photoconverted. These data support the use of photoswitchable actin-Dendra2 constructs as powerful tools in the visualization of free barbed ends in living cells.

  12. Actin Polymerization Is Essential for Pollen Tube GrowthV⃞

    PubMed Central

    Vidali, Luis; McKenna, Sylvester T.; Hepler, Peter K.

    2001-01-01

    Actin microfilaments, which are prominent in pollen tubes, have been implicated in the growth process; however, their mechanism of action is not well understood. In the present work we have used profilin and DNAse I injections, as well as latrunculin B and cytochalasin D treatments, under quantitatively controlled conditions, to perturb actin microfilament structure and assembly in an attempt to answer this question. We found that a ∼50% increase in the total profilin pool was necessary to half-maximally inhibit pollen tube growth, whereas a ∼100% increase was necessary for half-maximal inhibition of cytoplasmic streaming. DNAse I showed a similar inhibitory activity but with a threefold more pronounced effect on growth than streaming. Latrunculin B, at only 1–4 nM in the growth medium, has a similar proportion of inhibition of growth over streaming to that of profilin. The fact that tip growth is more sensitive than streaming to the inhibitory substances and that there is no correlation between streaming and growth rates suggests that tip growth requires actin assembly in a process independent of cytoplasmic streaming. PMID:11514633

  13. Changes in molar volume and heat capacity of actin upon polymerization.

    PubMed

    Quirion, F; Gicquaud, C

    1993-11-01

    We have used densimetry and microcalorimetry to measure the changes in molar volume and heat capacity of the actin molecule during Mg(2+)-induced polymerization. Molar volume is decreased by 720 ml/mol. This result is in contradiction with previous measurements by Ikkai and Ooi [(1966) Science 152, 1756-1757], and by Swezey and Somero [(1985) Biochemistry 24, 852-860]: both of these groups reported increases in actin volume during polymerization, of 391 ml/mol and 63 ml/mol respectively. We also observed a decrease in heat capacity of about 69.5 kJ.K-1.mol-1 during polymerization. This is in agreement with the concept of conformational fluctuation of proteins proposed by Lumry and Gregory [(1989) J.Mol. Liq. 42, 113-144]whereby either ligand binding by a protein or monomer-monomer interaction decreases the protein's conformational flexibility.

  14. LeftyA decreases Actin Polymerization and Stiffness in Human Endometrial Cancer Cells

    PubMed Central

    Salker, Madhuri S.; Schierbaum, Nicolas; Alowayed, Nour; Singh, Yogesh; Mack, Andreas F.; Stournaras, Christos; Schäffer, Tilman E.; Lang, Florian

    2016-01-01

    LeftyA, a cytokine regulating stemness and embryonic differentiation, down-regulates cell proliferation and migration. Cell proliferation and motility require actin reorganization, which is under control of ras-related C3 botulinum toxin substrate 1 (Rac1) and p21 protein-activated kinase 1 (PAK1). The present study explored whether LeftyA modifies actin cytoskeleton, shape and stiffness of Ishikawa cells, a well differentiated endometrial carcinoma cell line. The effect of LeftyA on globular over filamentous actin ratio was determined utilizing Western blotting and flow cytometry. Rac1 and PAK1 transcript levels were measured by qRT-PCR as well as active Rac1 and PAK1 by immunoblotting. Cell stiffness (quantified by the elastic modulus), cell surface area and cell volume were studied by atomic force microscopy (AFM). As a result, 2 hours treatment with LeftyA (25 ng/ml) significantly decreased Rac1 and PAK1 transcript levels and activity, depolymerized actin, and decreased cell stiffness, surface area and volume. The effect of LeftyA on actin polymerization was mimicked by pharmacological inhibition of Rac1 and PAK1. In the presence of the Rac1 or PAK1 inhibitor LeftyA did not lead to significant further actin depolymerization. In conclusion, LeftyA leads to disruption of Rac1 and Pak1 activity with subsequent actin depolymerization, cell softening and cell shrinkage. PMID:27404958

  15. Phosphoinositides and membrane curvature switch the mode of actin polymerization via selective recruitment of toca-1 and Snx9.

    PubMed

    Gallop, Jennifer L; Walrant, Astrid; Cantley, Lewis C; Kirschner, Marc W

    2013-04-30

    The membrane-cytosol interface is the major locus of control of actin polymerization. At this interface, phosphoinositides act as second messengers to recruit membrane-binding proteins. We show that curved membranes, but not flat ones, can use phosphatidylinositol 3-phosphate [PI(3)P] along with phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] to stimulate actin polymerization. In this case, actin polymerization requires the small GTPase cell cycle division 42 (Cdc42), the nucleation-promoting factor neural Wiskott-Aldrich syndrome protein (N-WASP) and the actin nucleator the actin-related protein (Arp) 2/3 complex. In liposomes containing PI(4,5)P2 as the sole phosphoinositide, actin polymerization requires transducer of Cdc42 activation-1 (toca-1). In the presence of phosphatidylinositol 3-phosphate, polymerization is both more efficient and independent of toca-1. Under these conditions, sorting nexin 9 (Snx9) can be implicated as a specific adaptor that replaces toca-1 to mobilize neural Wiskott-Aldrich syndrome protein and the Arp2/3 complex. This switch in phosphoinositide and adaptor specificity for actin polymerization from membranes has implications for how different types of actin structures are generated at precise times and locations in the cell.

  16. Actin polymerization-dependent activation of Cas-L promotes immunological synapse stability

    PubMed Central

    Santos, Luís C; Blair, David A; Kumari, Sudha; Cammer, Michael; Iskratsch, Thomas; Herbin, Olivier; Alexandropoulos, Konstantina; Dustin, Michael L; Sheetz, Michael P

    2016-01-01

    The immunological synapse formed between a T-cell and an antigen-presenting cell is important for cell–cell communication during T-cell-mediated immune responses. Immunological synapse formation begins with stimulation of the T-cell receptor (TCR). TCR microclusters are assembled and transported to the center of the immunological synapse in an actin polymerization-dependent process. However, the physical link between TCR and actin remains elusive. Here we show that lymphocyte-specific Crk-associated substrate (Cas-L), a member of a force sensing protein family, is required for transport of TCR microclusters and for establishing synapse stability. We found that Cas-L is phosphorylated at TCR microclusters in an actin polymerization-dependent fashion. Furthermore, Cas-L participates in a positive feedback loop leading to amplification of Ca2+ signaling, inside–out integrin activation, and actomyosin contraction. We propose a new role for Cas-L in T-cell activation as a mechanical transducer linking TCR microclusters to the underlying actin network and coordinating multiple actin-dependent structures in the immunological synapse. Our studies highlight the importance of mechanotransduction processes in T-cell-mediated immune responses. PMID:27359298

  17. Focal adhesion kinase is required for actin polymerization and remodeling of the cytoskeleton during sperm capacitation.

    PubMed

    Roa-Espitia, Ana L; Hernández-Rendón, Eva R; Baltiérrez-Hoyos, Rafael; Muñoz-Gotera, Rafaela J; Cote-Vélez, Antonieta; Jiménez, Irma; González-Márquez, Humberto; Hernández-González, Enrique O

    2016-09-15

    Several focal adhesion proteins are known to cooperate with integrins to link the extracellular matrix to the actin cytoskeleton; as a result, many intracellular signaling pathways are activated and several focal adhesion complexes are formed. However, how these proteins function in mammalian spermatozoa remains unknown. We confirm the presence of focal adhesion proteins in guinea pig spermatozoa, and we explore their role during capacitation and the acrosome reaction, and their relationship with the actin cytoskeleton. Our results suggest the presence of a focal adhesion complex formed by β1-integrin, focal adhesion kinase (FAK), paxillin, vinculin, talin, and α-actinin in the acrosomal region. Inhibition of FAK during capacitation affected the protein tyrosine phosphorylation associated with capacitation that occurs within the first few minutes of capacitation, which caused the acrosome reaction to become increasingly Ca(2+) dependent and inhibited the polymerization of actin. The integration of vinculin and talin into the complex, and the activation of FAK and paxillin during capacitation, suggests that the complex assembles at this time. We identify that vinculin and α-actinin increase their interaction with F-actin while it remodels during capacitation, and that during capacitation focal adhesion complexes are structured. FAK contributes to acrosome integrity, likely by regulating the polymerization and the remodeling of the actin cytoskeleton.

  18. Inhibition of actin polymerization decreases osteogeneic differentiation of mesenchymal stem cells through p38 MAPK pathway

    PubMed Central

    2013-01-01

    Background Mesenchymal Stem Cells (MSC) are important candidates for therapeutic applications due to their ex vivo proliferation and differentiation capacity. MSC differentiation is controlled by both intrinsic and extrinsic factors and actin cytoskeleton plays a major role in the event. In the current study, we tried to understand the initial molecular mechanisms and pathways that regulate the differentiation of MSC into osteocytes or adipocytes. Results We observed that actin modification was important during differentiation and differentially regulated during adipogenesis and osteogenesis. Initial disruption of actin polymerization reduced further differentiation of MSC into osteocytes and osteogenic differentiation was accompanied by increase in ERK1/2 and p38 MAPK phosphorylation. However, only p38 MAPK phosphorylation was down regulated upon inhibition of actin polymerization which as accompanied by decreased CD49E expression. Conclusion Taken together, our results show that actin modification is a pre-requisite for MSC differentiation into osteocytes and adipocytes and osteogenic differentiation is regulated through p38 MAPK phosphorylation. Thus by modifying their cytoskeleton the differentiation potential of MSC could be controlled which might have important implications for tissue repair and regeneration. PMID:24070328

  19. Focal adhesion kinase is required for actin polymerization and remodeling of the cytoskeleton during sperm capacitation

    PubMed Central

    Roa-Espitia, Ana L.; Hernández-Rendón, Eva R.; Baltiérrez-Hoyos, Rafael; Muñoz-Gotera, Rafaela J.; Cote-Vélez, Antonieta; Jiménez, Irma; González-Márquez, Humberto

    2016-01-01

    ABSTRACT Several focal adhesion proteins are known to cooperate with integrins to link the extracellular matrix to the actin cytoskeleton; as a result, many intracellular signaling pathways are activated and several focal adhesion complexes are formed. However, how these proteins function in mammalian spermatozoa remains unknown. We confirm the presence of focal adhesion proteins in guinea pig spermatozoa, and we explore their role during capacitation and the acrosome reaction, and their relationship with the actin cytoskeleton. Our results suggest the presence of a focal adhesion complex formed by β1-integrin, focal adhesion kinase (FAK), paxillin, vinculin, talin, and α-actinin in the acrosomal region. Inhibition of FAK during capacitation affected the protein tyrosine phosphorylation associated with capacitation that occurs within the first few minutes of capacitation, which caused the acrosome reaction to become increasingly Ca2+ dependent and inhibited the polymerization of actin. The integration of vinculin and talin into the complex, and the activation of FAK and paxillin during capacitation, suggests that the complex assembles at this time. We identify that vinculin and α-actinin increase their interaction with F-actin while it remodels during capacitation, and that during capacitation focal adhesion complexes are structured. FAK contributes to acrosome integrity, likely by regulating the polymerization and the remodeling of the actin cytoskeleton. PMID:27402964

  20. Expression of type I collagen and tenascin C is regulated by actin polymerization through MRTF in dedifferentiated chondrocytes.

    PubMed

    Parreno, Justin; Raju, Sneha; Niaki, Mortah Nabavi; Andrejevic, Katarina; Jiang, Amy; Delve, Elizabeth; Kandel, Rita

    2014-10-16

    This study examined actin regulation of fibroblast matrix genes in dedifferentiated chondrocytes. We demonstrated that dedifferentiated chondrocytes exhibit increased actin polymerization, nuclear localization of myocardin related transcription factor (MRTF), increased type I collagen (col1) and tenascin C (Tnc) gene expression, and decreased Sox9 gene expression. Induction of actin depolymerization by latrunculin treatment or cell rounding, reduced MRTF nuclear localization, repressed col1 and Tnc expression, and increased Sox9 gene expression in dedifferentiated chondrocytes. Treatment of passaged chondrocytes with MRTF inhibitor repressed col1 and Tnc expression, but did not affect Sox9 expression. Our results show that actin polymerization regulates fibroblast matrix gene expression through MRTF in passaged chondrocytes.

  1. Cyclase-associated proteins: CAPacity for linking signal transduction and actin polymerization.

    PubMed

    Hubberstey, Andrew V; Mottillo, Emilio P

    2002-04-01

    Many extracellular signals elicit changes in the actin cytoskeleton, which are mediated through an array of signaling proteins and pathways. One family of proteins that plays a role in regulating actin remodeling in response to cellular signals are the cyclase-associated proteins (CAPs). CAPs are highly conserved monomeric actin binding proteins present in a wide range of organisms including yeast, fly, plants, and mammals. The original CAP was isolated as a component of the Saccharomyces cerevisiae adenylyl cyclase complex that serves as an effector of Ras during nutritional signaling. CAPs are multifunctional molecules that contain domains involved in actin binding, adenylyl cyclase association in yeast, SH3 binding, and oligomerization. Genetic studies in yeast have implicated CAPs in vesicle trafficking and endocytosis. CAPs play a developmental role in multicellular organisms, and studies of Drosophila have illuminated the importance of the actin cytoskeleton during eye development and in establishing oocyte polarity. This review will highlight the critical structural and functional domains of CAPs, describe recent studies that have implied important roles for these proteins in linking cell signaling with actin polymerization, and highlight their roles in vesicle trafficking and development.

  2. A WASp-VASP complex regulates actin polymerization at the plasma membrane.

    PubMed

    Castellano, F; Le Clainche, C; Patin, D; Carlier, M F; Chavrier, P

    2001-10-15

    Proteins of the Wiskott-Aldrich syndrome and Ena/VASP families both play essential functions in the regulation of actin dynamics at the cell leading edge. However, possibilities of functional interplay between members of these two families have not been addressed. Here we show that, in hemopoietic cells, recruitment of the C-terminal VCA (Verprolin homology, Cofilin homology, Acidic) domain of WASp at the plasma membrane by a ligand technique using rapamycin as an intermediate is not sufficient to elicit efficient Arp2/3 complex-mediated actin polymerization. Other domains of WASp, in particular the proline-rich domain, are required for the formation of actin-rich structures. An in vitro analysis demonstrates that the proline-rich domain of WASp binds VASP with an affinity of approximately 10(6) M(-1). In addition, WASp and VASP both accumulate in actin-rich phagocytic cups. Finally, in a reconstituted motility medium, VASP enhances actin-based propulsion of WASp-coated beads in a fashion reminiscent of its effect on Listeria movement. We propose that VASP and WASp cooperation is essential in stimulating actin assembly and membrane protrusion at the leading edge.

  3. Increased actin polymerization and stabilization interferes with neuronal function and survival in the AMPKγ mutant Loechrig.

    PubMed

    Cook, Mandy; Bolkan, Bonnie J; Kretzschmar, Doris

    2014-01-01

    loechrig (loe) mutant flies are characterized by progressive neuronal degeneration, behavioral deficits, and early death. The mutation is due to a P-element insertion in the gene for the γ-subunit of the trimeric AMP-activated protein kinase (AMPK) complex, whereby the insertion affects only one of several alternative transcripts encoding a unique neuronal isoform. AMPK is a cellular energy sensor that regulates a plethora of signaling pathways, including cholesterol and isoprenoid synthesis via its downstream target hydroxy-methylglutaryl (HMG)-CoA reductase. We recently showed that loe interferes with isoprenoid synthesis and increases the prenylation and thereby activation of RhoA. During development, RhoA plays an important role in neuronal outgrowth by activating a signaling cascade that regulates actin dynamics. Here we show that the effect of loe/AMPKγ on RhoA prenylation leads to a hyperactivation of this signaling pathway, causing increased phosphorylation of the actin depolymerizating factor cofilin and accumulation of filamentous actin. Furthermore, our results show that the resulting cytoskeletal changes in loe interfere with neuronal growth and disrupt axonal integrity. Surprisingly, these phenotypes were enhanced by expressing the Slingshot (SSH) phosphatase, which during development promotes actin depolymerization by dephosphorylating cofilin. However, our studies suggest that in the adult SSH promotes actin polymerization, supporting in vitro studies using human SSH1 that suggested that SSH can also stabilize and bundle filamentous actin. Together with the observed increase in SSH levels in the loe mutant, our experiments suggest that in mature neurons SSH may function as a stabilization factor for filamentous actin instead of promoting actin depolymerization.

  4. Pearling instability of membrane tubes driven by curved proteins and actin polymerization

    NASA Astrophysics Data System (ADS)

    Jelerčič, U.; Gov, N. S.

    2015-12-01

    Membrane deformation inside living cells is crucial for the proper shaping of various intracellular organelles and is necessary during the fission/fusion processes that allow membrane recycling and transport (e.g. endocytosis). Proteins that induce membrane curvature play a key role in such processes, mostly by adsorbing to the membrane and forming a scaffold that deforms the membrane according to the curvature of the proteins. In this paper we explore the possibility of membrane tube destabilization through a pearling mechanism enabled by the combined effects of the adsorbed curved proteins and the actin polymerization that they recruit. The pearling instability can serve as the initiation for fission of the tube into vesicles. We find that adsorbed curved proteins are more likely to stabilize the tubes, while the actin polymerization can provide the additional constrictive force needed for the robust instability. We discuss the relevance of the theoretical results to in vivo and in vitro experiments.

  5. Polycomb group protein ezh2 controls actin polymerization and cell signaling.

    PubMed

    Su, I-hsin; Dobenecker, Marc-Werner; Dickinson, Ephraim; Oser, Matthew; Basavaraj, Ashwin; Marqueron, Raphael; Viale, Agnes; Reinberg, Danny; Wülfing, Christoph; Tarakhovsky, Alexander

    2005-05-06

    Polycomb group protein Ezh2, one of the key regulators of development in organisms from flies to mice, exerts its epigenetic function through regulation of histone methylation. Here, we report the existence of the cytosolic Ezh2-containing methyltransferase complex and tie the function of this complex to regulation of actin polymerization in various cell types. Genetic evidence supports the essential role of cytosolic Ezh2 in actin polymerization-dependent processes such as antigen receptor signaling in T cells and PDGF-induced dorsal circular ruffle formation in fibroblasts. Revealed function of Ezh2 points to a broader usage of lysine methylation in regulation of both nuclear and extra-nuclear signaling processes.

  6. Yap/Taz transcriptional activity is essential for vascular regression via Ctgf expression and actin polymerization

    PubMed Central

    Nagasawa-Masuda, Ayumi; Terai, Kenta

    2017-01-01

    Vascular regression is essential to remove redundant vessels during the formation of an efficient vascular network that can transport oxygen and nutrient to every corner of the body. However, no mechanism is known to explain how major blood vessels regress during development. Here we use the dorsal part of the caudal vein plexus (dCVP) in Zebrafish to investigate the mechanism of regression and discover a new role of Yap/Taz in vascular regression. During regression, Yap/Taz is activated by blood circulation in the endothelial cells. This leads to induction of Ctgf and actin polymerization. Interference with Yap/Taz activation decreased Ctgf production, which decreased actin polymerization and vascular regression. These results implicate a novel role of Yap/Taz in vascular regression. PMID:28369143

  7. Inhibition of actin polymerization in the NAc shell inhibits morphine-induced CPP by disrupting its reconsolidation

    PubMed Central

    Li, Gongying; Wang, Yanmei; Yan, Min; Xu, Yunshuai; Song, Xiuli; Li, Qingqing; Zhang, Jinxiang; Ma, Hongxia; Wu, Yili

    2015-01-01

    Drug-associated contextual cues contribute to drug craving and relapse after abstinence, which is a major challenge to drug addiction treatment. Previous studies showed that disrupting memory reconsolidation impairs drug reward memory. However, the underlying mechanisms remain elusive. Although actin polymerization is involved in memory formation, its role in the reconsolidation of drug reward memory is unknown. In addition, the specific brain areas responsible for drug memory have not been fully identified. In the present study, we found that inhibiting actin polymerization in the nucleus accumbens (NAc) shell, but not the NAc core, abolishes morphine-induced conditioned place preference (CPP) by disrupting its reconsolidation in rats. Moreover, this effect persists for more than 2 weeks by a single injection of the actin polymerization inhibitor, which is not reversed by a morphine-priming injection. Furthermore, the application of actin polymerization inhibitor outside the reconsolidation window has no effect on morphine-associated contextual memory. Taken together, our findings first demonstrate that inhibiting actin polymerization erases morphine-induced CPP by disrupting its reconsolidation. Our study suggests that inhibition of actin polymerization during drug memory reconsolidation may be a potential approach to prevent drug relapse. PMID:26538334

  8. Inhibition of actin polymerization in the NAc shell inhibits morphine-induced CPP by disrupting its reconsolidation.

    PubMed

    Li, Gongying; Wang, Yanmei; Yan, Min; Xu, Yunshuai; Song, Xiuli; Li, Qingqing; Zhang, Jinxiang; Ma, Hongxia; Wu, Yili

    2015-11-05

    Drug-associated contextual cues contribute to drug craving and relapse after abstinence, which is a major challenge to drug addiction treatment. Previous studies showed that disrupting memory reconsolidation impairs drug reward memory. However, the underlying mechanisms remain elusive. Although actin polymerization is involved in memory formation, its role in the reconsolidation of drug reward memory is unknown. In addition, the specific brain areas responsible for drug memory have not been fully identified. In the present study, we found that inhibiting actin polymerization in the nucleus accumbens (NAc) shell, but not the NAc core, abolishes morphine-induced conditioned place preference (CPP) by disrupting its reconsolidation in rats. Moreover, this effect persists for more than 2 weeks by a single injection of the actin polymerization inhibitor, which is not reversed by a morphine-priming injection. Furthermore, the application of actin polymerization inhibitor outside the reconsolidation window has no effect on morphine-associated contextual memory. Taken together, our findings first demonstrate that inhibiting actin polymerization erases morphine-induced CPP by disrupting its reconsolidation. Our study suggests that inhibition of actin polymerization during drug memory reconsolidation may be a potential approach to prevent drug relapse.

  9. Effects of solution crowding on actin polymerization reveal the energetic basis for nucleotide-dependent filament stability

    PubMed Central

    Frederick, Kendra B.; Sept, David; De La Cruz, Enrique M.

    2008-01-01

    Actin polymerization is a fundamental cellular process involved in cell structure maintenance, force generation, and motility. Phosphate release from filament subunits following ATP hydrolysis destabilizes the filament lattice and increases the critical concentration (Cc) for assembly. The structural differences between ATP- and ADP-actin are still debated, as well as the energetic factors that underlie nucleotide-dependent filament stability, particularly under crowded intracellular conditions. Here, we investigate the effect of crowding agents on ATP- and ADP-actin polymerization, and find that ATP-actin polymerization is largely unaffected by solution crowding, while crowding agents lower the Cc of ADP-actin in a concentration-dependent manner. The stabilities of ATP- and ADP-actin filaments are comparable in the presence of physiological amounts (~30% w/v) and types (sorbitol) of low molecular weight crowding agents. Crowding agents act to stabilize ADP-F-actin by slowing subunit dissociation. These observations suggest that nucleotide hydrolysis and phosphate release per se do not introduce intrinsic differences in the in vivo filament stability. Rather, the preferential disassembly of ADP-actin filaments in cells is driven through interactions with regulatory proteins. Interpretation of the experimental data according to osmotic stress theory implicates water as an allosteric regulator of actin activity and hydration as the molecular basis for nucleotide-dependent filament stability. PMID:18374941

  10. Plant villin, lily P-135-ABP, possesses G-actin binding activity and accelerates the polymerization and depolymerization of actin in a Ca2+-sensitive manner.

    PubMed

    Yokota, Etsuo; Tominaga, Motoki; Mabuchi, Issei; Tsuji, Yasunori; Staiger, Christopher J; Oiwa, Kazuhiro; Shimmen, Teruo

    2005-10-01

    From germinating pollen of lily, two types of villins, P-115-ABP and P-135-ABP, have been identified biochemically. Ca(2+)-CaM-dependent actin-filament binding and bundling activities have been demonstrated for both villins previously. Here, we examined the effects of lily villins on the polymerization and depolymerization of actin. P-115-ABP and P-135-ABP present in a crude protein extract prepared from germinating pollen bound to a DNase I affinity column in a Ca(2+)-dependent manner. Purified P-135-ABP reduced the lag period that precedes actin filament polymerization from monomers in the presence of either Ca(2+) or Ca(2+)-CaM. These results indicated that P-135-ABP can form a complex with G-actin in the presence of Ca(2+) and this complex acts as a nucleus for polymerization of actin filaments. However, the nucleation activity of P-135-ABP is probably not relevant in vivo because the assembly of G-actin saturated with profilin, a situation that mimics conditions found in pollen, was not accelerated in the presence of P-135-ABP. P-135-ABP also enhanced the depolymerization of actin filaments during dilution-mediated disassembly. Growth from filament barbed ends in the presence of Ca(2+)-CaM was also prevented, consistent with filament capping activity. These results suggested that lily villin is involved not only in the arrangement of actin filaments into bundles in the basal and shank region of the pollen tube, but also in regulating and modulating actin dynamics through its capping and depolymerization (or fragmentation) activities in the apical region of the pollen tube, where there is a relatively high concentration of Ca(2+).

  11. The putative pocket protein binding site of Autographa californica nucleopolyhedrovirus BV/ODV-C42 is required for virus-induced nuclear actin polymerization.

    PubMed

    Li, Kun; Wang, Yun; Bai, Huimin; Wang, Qian; Song, Jianhua; Zhou, Yuan; Wu, Chunchen; Chen, Xinwen

    2010-08-01

    Nuclear filamentous actin (F-actin) is essential for nucleocapsid morphogenesis of lepidopteran nucleopolyhedroviruses. Previously, we had demonstrated that Autographa californica multiple nucleopolyhedrovirus (AcMNPV) BV/ODV-C42 (C42) is involved in nuclear actin polymerization by recruiting P78/83, an AcMNPV orf9-encoded N-WASP homology protein that is capable of activating an actin-related-protein 2/3 (Arp2/3) complex to initiate actin polymerization, to the nucleus. To further investigate the role of C42 in virus-induced actin polymerization, the recombinant bacmid vAc(p78/83nls-gfp), with a c42 knockout, p78/83 tagged with a nuclear localization signal coding sequence, and egfp as a reporter gene under the control of the Pp10 promoter, was constructed and transfected to Sf9 cells. In the nuclei of vAc(p78/83nls-gfp)-transfected cells, polymerized F-actin filaments were absent, whereas other actin polymerization elements (i.e., P78/83, G-actin, and Arp2/3 complex) were present. This in vivo evidence indicated that C42 actively participates in the nuclear actin polymerization process as a key element, besides its role in recruiting P78/83 to the nucleus. In order to collect in vitro evidence for the participation of C42 in actin polymerization, an anti-C42 antibody was used to neutralize the viral nucleocapsid, which is capable of initiating actin polymerization in vitro. Both the kinetics of pyrene-actin polymerization and F-actin-specific staining by phalloidin indicated that anti-C42 can significantly attenuate the efficiency of F-actin formation compared to that with control antibodies. Furthermore, we have identified the putative pocket protein binding sequence (PPBS) on C42 that is essential for C42 to exert its function in nuclear actin polymerization.

  12. CaMKII prevents spontaneous acrosomal exocytosis in sperm through induction of actin polymerization.

    PubMed

    Shabtay, Ortal; Breitbart, Haim

    2016-07-01

    In order to interact with the egg and undergo acrosomal exocytosis or the acrosome reaction (AR), mammalian spermatozoa must undergo a series of biochemical changes in the female reproductive tract, collectively called capacitation. We showed that F-actin is formed during sperm capacitation and fast depolymerization occurs prior to the AR. We hypothesized that F-actin protects the sperm from undergoing spontaneous-AR (sAR) which decreases fertilization rate. We show that activation of the actin-severing protein gelsolin induces a significant increase in sAR. Moreover, inhibition of CaMKII or PLD during sperm capacitation, caused an increase in sAR and inhibition of F-actin formation. Spermine, which leads to PLD activation, was able to reverse the effects of CaMKII inhibition on sAR-increase and F-actin-decrease. Furthermore, the increase in sAR and the decrease in F-actin caused by the inactivation of the PLD-pathway, were reversed by activation of CaMKII using H2O2 or by inhibiting protein phosphatase 1 which enhance the phosphorylation and oxidation states of CaMKII. These results indicate that two distinct pathways lead to F-actin formation in the sperm capacitation process which prevents the occurrence of sAR.

  13. Cortactin mediates elevated shear stress-induced mucin hypersecretion via actin polymerization in human airway epithelial cells.

    PubMed

    Liu, Chunyi; Li, Qi; Zhou, Xiangdong; Kolosov, Victor P; Perelman, Juliy M

    2013-12-01

    Mucus hypersecretion is a remarkable pathophysiological manifestation in airway obstructive diseases. These diseases are usually accompanied with elevated shear stress due to bronchoconstriction. Previous studies have reported that shear stress induces mucin5AC (MUC5AC) secretion via actin polymerization in cultured nasal epithelial cells. Furthermore, it is well known that cortactin, an actin binding protein, is a central mediator of actin polymerization. Therefore, we hypothesized that cortactin participates in MUC5AC hypersecretion induced by elevated shear stress via actin polymerization in cultured human airway epithelial cells. Compared with the relevant control groups, Src phosphorylation, cortactin phosphorylation, actin polymerization and MUC5AC secretion were significantly increased after exposure to elevated shear stress. Similar effects were found when pretreating the cells with jasplakinolide, and transfecting with wild-type cortactin. However, these effects were significantly attenuated by pretreating with Src inhibitor, cytochalasin D or transfecting cells with the specific small interfering RNA of cortactin. Collectively, these results suggest that elevated shear stress induces MUC5AC hypersecretion via tyrosine-phosphorylated cortactin-associated actin polymerization in cultured human airway epithelial cells.

  14. Actin polymerization as a key innate immune effector mechanism to control Salmonella infection.

    PubMed

    Man, Si Ming; Ekpenyong, Andrew; Tourlomousis, Panagiotis; Achouri, Sarra; Cammarota, Eugenia; Hughes, Katherine; Rizzo, Alessandro; Ng, Gilbert; Wright, John A; Cicuta, Pietro; Guck, Jochen R; Bryant, Clare E

    2014-12-09

    Salmonellosis is one of the leading causes of food poisoning worldwide. Controlling bacterial burden is essential to surviving infection. Nucleotide-binding oligomerization domain-like receptors (NLRs), such as NLRC4, induce inflammasome effector functions and play a crucial role in controlling Salmonella infection. Inflammasome-dependent production of IL-1β recruits additional immune cells to the site of infection, whereas inflammasome-mediated pyroptosis of macrophages releases bacteria for uptake by neutrophils. Neither of these functions is known to directly kill intracellular salmonellae within macrophages. The mechanism, therefore, governing how inflammasomes mediate intracellular bacterial-killing and clearance in host macrophages remains unknown. Here, we show that actin polymerization is required for NLRC4-dependent regulation of intracellular bacterial burden, inflammasome assembly, pyroptosis, and IL-1β production. NLRC4-induced changes in actin polymerization are physically manifested as increased cellular stiffness, and leads to reduced bacterial uptake, production of antimicrobial molecules, and arrested cellular migration. These processes act in concert to limit bacterial replication in the cell and dissemination in tissues. We show, therefore, a functional link between innate immunity and actin turnover in macrophages that underpins a key host defense mechanism for the control of salmonellosis.

  15. Absence of aryl hydrocarbon receptor alters CDC42 expression and prevents actin polymerization during capacitation.

    PubMed

    Angeles-Floriano, Tania; Roa-Espitia, Ana L; Baltiérrez-Hoyos, Rafael; Cordero-Martínez, Joaquin; Elizondo, Guillermo; Hernández-González, Enrique O

    2016-11-01

    The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that regulates the toxicity of a variety of environmental chemicals. The absence of this receptor causes serious reproductive complications. Ahr-knockout (Ahr-KO) male mice, for example, are considerably less fertile: Half of the few spermatozoa they produce exhibit morphological alterations, and those with typical morphology may have pathologic modifications. We therefore investigated the consequences of AHR loss on capacitation and the acrosome reaction, and asked if these effects are a consequence of changes to actin polymerization and the expression of Cdc42, which encodes Cell division control protein 42 (CDC42), a RHO protein that controls assembly of the actin cytoskeleton in somatic cells as well as during spermatogenesis. Nearly 50% of spermatozoa produced by Ahr-KO mice had alterations in the flagellum. Ahr-KO spermatozoa were frequently capacitated, but showed reduced spontaneous and progesterone-induced acrosome reaction-which is related to low CDC42 abundance and very limited actin polymerization during capacitation. Thus, the expression of CDC42 might be regulated by AHR, and both proteins are fundamental to the development of normal spermatozoa and the acrosome reaction. Mol. Reprod. Dev. 83: 1015-1026, 2016 © 2016 Wiley Periodicals, Inc.

  16. ERK reinforces actin polymerization to power persistent edge protrusion during motility.

    PubMed

    Mendoza, Michelle C; Vilela, Marco; Juarez, Jesus E; Blenis, John; Danuser, Gaudenz

    2015-05-19

    Cells move through perpetual protrusion and retraction cycles at the leading edge. These cycles are coordinated with substrate adhesion and retraction of the cell rear. We tracked spatial and temporal fluctuations in the molecular activities of individual moving cells to elucidate how extracellular signal-regulated kinase (ERK) signaling controlled the dynamics of protrusion and retraction cycles. ERK is activated by many cell surface receptors, and we found that ERK signaling specifically reinforced cellular protrusions so that they translated into rapid, sustained forward motion of the leading edge. Using quantitative fluorescent speckle microscopy and cross-correlation analysis, we showed that ERK controlled the rate and timing of actin polymerization by promoting the recruitment of the actin nucleator Arp2/3 to the leading edge. These findings support a model in which surges in ERK activity induced by extracellular cues enhance Arp2/3-mediated actin polymerization to generate protrusion power phases with enough force to counteract increasing membrane tension and to promote sustained motility.

  17. The effect of toxins on inorganic phosphate release during actin polymerization.

    PubMed

    Vig, Andrea; Ohmacht, Róbert; Jámbor, Eva; Bugyi, Beáta; Nyitrai, Miklós; Hild, Gábor

    2011-05-01

    During the polymerization of actin, hydrolysis of bound ATP occurs in two consecutive steps: chemical cleavage of the high-energy nucleotide and slow release of the γ-phosphate. In this study the effect of phalloidin and jasplakinolide on the kinetics of P(i) release was monitored during the formation of actin filaments. An enzyme-linked assay based spectrophotometric technique was used to follow the liberation of inorganic phosphate. It was verified that jasplakinolide reduced the P(i) release in the same way as phalloidin. It was not possible to demonstrate long-range allosteric effects of the toxins by release of P(i) from F-actin. The products of ATP hydrolysis were released by denaturation of the actin filaments. HPLC analysis of the samples revealed that the ATP in the toxin-bound region was completely hydrolysed into ADP and P(i). The effect of both toxins can be sufficiently explained by local and mechanical blockade of P(i) dissociation.

  18. A new method for direct detection of the sites of actin polymerization in intact cells and its application to differentiated vascular smooth muscle.

    PubMed

    Kim, Hak Rim; Leavis, Paul C; Graceffa, Philip; Gallant, Cynthia; Morgan, Kathleen G

    2010-11-01

    Here we report and validate a new method, suitable broadly, for use in differentiated cells and tissues, for the direct visualization of actin polymerization under physiological conditions. We have designed and tested different versions of fluorescently labeled actin, reversibly attached to the protein transduction tag TAT, and have introduced this novel reagent into intact differentiated vascular smooth muscle cells (dVSMCs). A thiol-reactive version of the TAT peptide was synthesized by adding the amino acids glycine and cysteine to its NH(2)-terminus and forming a thionitrobenzoate adduct: viz. TAT-Cys-S-STNB. This peptide reacts readily with G-actin, and the complex is rapidly taken up by freshly enzymatically isolated dVSMC, as indicated by the fluorescence of a FITC tag on the TAT peptide. By comparing different versions of the construct, we determined that the optimal construct for biological applications is a nonfluorescently labeled TAT peptide conjugated to rhodamine-labeled actin. When TAT-Cys-S-STNB-tagged rhodamine actin (TSSAR) was added to live, freshly enzymatically isolated cells, we observed punctae of incorporated actin at the cortex of the cell. The punctae are indistinguishable from those we have previously reported to occur in the same cell type when rhodamine G-actin is added to permeabilized cells. Thus this new method allows the delivery of labeled G-actin into intact cells without disrupting the native state and will allow its further use to study the effect of physiological intracellular Ca(2+) concentration transients and signal transduction on actin dynamics in intact cells.

  19. act up controls actin polymerization to alter cell shape and restrict Hedgehog signaling in the Drosophila eye disc.

    PubMed

    Benlali, A; Draskovic, I; Hazelett, D J; Treisman, J E

    2000-04-28

    Cells in the morphogenetic furrow of the Drosophila eye disc undergo a striking shape change immediately prior to their neuronal differentiation. We have isolated mutations in a novel gene, act up (acu), that is required for this shape change. acu encodes a homolog of yeast cyclase-associated protein, which sequesters monomeric actin; we show that acu is required to prevent actin filament polymerization in the eye disc. In contrast, profilin promotes actin filament polymerization, acting epistatically to acu. However, both acu and profilin are required to prevent premature Hedgehog-induced photoreceptor differentiation ahead of the morphogenetic furrow. These findings suggest that dynamic changes in actin filaments alter cell shape to control the movement of signals that coordinate a wave of differentiation.

  20. Brownian Ratchets in Biophysics: from Diffusing Phospholipids to Polymerizing Actin Filaments

    NASA Astrophysics Data System (ADS)

    van Oudenaarden, Alexander

    2000-03-01

    In the 'Feynman Lectures on Physics' Feynman introduces a mechanical ratchet and pawl subjected to thermal fluctuations to demonstrate the impossibility to violate the second law of thermodynamics. Since this introduction the Brownian ratchet has evolved from Gedanken experiments to real experiments in the interdisciplinary sciences such as biophysics and biochemistry. In this symposium I will present two experiments in which the concept Brownian ratchet is of key importance. The first experiment addresses a so-called geometrical Brownian ratchet [1]. This ratchet consists of a two-dimensional microfabricated periodic array of asymmetric diffusion barriers. As an experimental realization of a two-dimensional fluid of Brownian particles, a bilayer of phospholipid molecules is used. I will demonstrate that the geometrical Brownian ratchet can be used as a molecular sieve to separate mixtures of membrane molecules without the need to extract them from the membrane. In the second experiment I explore the spontaneous symmetry breaking of polymerizing actin networks [2]. Small submicron size beads coated uniformly with a protein that catalyzes actin polymerization, are initially surrounded by a symmetrical cloud of actin filaments. This symmetry can be broken spontaneously after which the beads undergo directional motion with constant velocity. I will present a simple stochastic theory, in which each filament is modeled as an elastic Brownian ratchet that qualitatively reproduces the experimental results. The presence of the bead couples the dynamics of different filaments which results in a complex collective system of interacting Brownian ratchets that exhibits an emergent symmetry breaking behavior. [1] A. van Oudenaarden and S. G. Boxer, Science 285, 1046 (1999). [2] A. van Oudenaarden and J. A. Theriot, Nature Cell Biology 1, 493 (1999).

  1. Disease causing mutations of troponin alter regulated actin state distributions.

    PubMed

    Chalovich, Joseph M

    2012-12-01

    Striated muscle contraction is regulated primarily through the action of tropomyosin and troponin that are bound to actin. Activation requires Ca(2+) binding to troponin and/or binding of high affinity myosin complexes to actin. Mutations within components of the regulatory complex may lead to familial cardiomyopathies and myopathies. In several cases examined, either physiological or pathological changes in troponin alter the distribution among states of actin-tropomyosin-troponin that differ in their abilities to stimulate myosin ATPase activity. These observations open possibilities for managing disorders of the troponin complex. Furthermore, analyses of mutant forms of troponin give insights into the regulation of striated muscle contraction.

  2. Shwachman-Diamond syndrome neutrophils have altered chemoattractant-induced F-actin polymerization and polarization characteristics.

    PubMed

    Orelio, Claudia; Kuijpers, Taco W

    2009-03-01

    Shwachman-Diamond syndrome is a hereditary disorder characterized by pancreatic insufficiency and bone marrow failure. Most Shwachman-Diamond syndrome patients have mutations in the SBDS gene located at chromosome 7 and suffer from recurrent infections, due to neutropenia in combination with impaired neutrophil chemotaxis. Currently, the role of the actin cytoskeleton in Shwachman-Diamond syndrome neutrophils has not been investigated. Therefore, we performed immunofluorescence for SBDS and F-actin on human neutrophilic cells. Additionally, we examined in control neutrophils and cells from genetically defined Shwachman-Diamond syndrome patients F-actin polymerization and cytoskeletal polarization characteristics upon chemoattractant stimulation. These studies showed that SBDS and F-actin co-localize in neutrophilic cells and that F-actin polymerization and depolymerization characteristics are altered in Shwachman-Diamond syndrome neutrophils as compared to control neutrophils in response to both fMLP and C5a. Moreover, F-actin cytoskeletal polarization is delayed in Shwachman-Diamond syndrome neutrophils. Thus, Shwachman-Diamond syndrome neutrophils have aberrant chemoattractant-induced F-actin properties which might contribute to the impaired neutrophil chemotaxis.

  3. Detection of adenosine triphosphate through polymerization-induced aggregation of actin-conjugated gold/silver nanorods

    NASA Astrophysics Data System (ADS)

    Liao, Yu-Ju; Shiang, Yen-Chun; Chen, Li-Yi; Hsu, Chia-Lun; Huang, Chih-Ching; Chang, Huan-Tsung

    2013-11-01

    We have developed a simple and selective nanosensor for the optical detection of adenosine triphosphate (ATP) using globular actin-conjugated gold/silver nanorods (G-actin-Au/Ag NRs). By simply mixing G-actin and Au/Ag NRs (length ˜56 nm and diameter ˜12 nm), G-actin-Au/Ag NRs were prepared which were stable in physiological solutions (25 mM Tris-HCl, 150 mM NaCl, 5.0 mM KCl, 3.0 mM MgCl2 and 1.0 mM CaCl2; pH 7.4). Introduction of ATP into the G-actin-Au/Ag NR solutions in the presence of excess G-actin induced the formation of filamentous actin-conjugated Au/Ag NR aggregates through ATP-induced polymerization of G-actin. When compared to G-actin-modified spherical Au nanoparticles having a size of 13 nm or 56 nm, G-actin-Au/Ag NRs provided better sensitivity for ATP, mainly because the longitudinal surface plasmon absorbance of the Au/Ag NR has a more sensitive response to aggregation. This G-actin-Au/Ag NR probe provided high sensitivity (limit of detection 25 nM) for ATP with remarkable selectivity (>10-fold) over other adenine nucleotides (adenosine, adenosine monophosphate and adenosine diphosphate) and nucleoside triphosphates (guanosine triphosphate, cytidine triphosphate and uridine triphosphate). It also allowed the determination of ATP concentrations in plasma samples without conducting tedious sample pretreatments; the only necessary step was simple dilution. Our experimental results are in good agreement with those obtained from a commercial luciferin-luciferase bioluminescence assay. Our simple, sensitive and selective approach appears to have a practical potential for the clinical diagnosis of diseases (e.g. cystic fibrosis) associated with changes in ATP concentrations.

  4. Detection of adenosine triphosphate through polymerization-induced aggregation of actin-conjugated gold/silver nanorods.

    PubMed

    Liao, Yu-Ju; Shiang, Yen-Chun; Chen, Li-Yi; Hsu, Chia-Lun; Huang, Chih-Ching; Chang, Huan-Tsung

    2013-11-08

    We have developed a simple and selective nanosensor for the optical detection of adenosine triphosphate (ATP) using globular actin-conjugated gold/silver nanorods (G-actin-Au/Ag NRs). By simply mixing G-actin and Au/Ag NRs (length ~56 nm and diameter ~12 nm), G-actin-Au/Ag NRs were prepared which were stable in physiological solutions (25 mM Tris-HCl, 150 mM NaCl, 5.0 mM KCl, 3.0 mM MgCl2 and 1.0 mM CaCl2; pH 7.4). Introduction of ATP into the G-actin-Au/Ag NR solutions in the presence of excess G-actin induced the formation of filamentous actin-conjugated Au/Ag NR aggregates through ATP-induced polymerization of G-actin. When compared to G-actin-modified spherical Au nanoparticles having a size of 13 nm or 56 nm, G-actin-Au/Ag NRs provided better sensitivity for ATP, mainly because the longitudinal surface plasmon absorbance of the Au/Ag NR has a more sensitive response to aggregation. This G-actin-Au/Ag NR probe provided high sensitivity (limit of detection 25 nM) for ATP with remarkable selectivity (>10-fold) over other adenine nucleotides (adenosine, adenosine monophosphate and adenosine diphosphate) and nucleoside triphosphates (guanosine triphosphate, cytidine triphosphate and uridine triphosphate). It also allowed the determination of ATP concentrations in plasma samples without conducting tedious sample pretreatments; the only necessary step was simple dilution. Our experimental results are in good agreement with those obtained from a commercial luciferin-luciferase bioluminescence assay. Our simple, sensitive and selective approach appears to have a practical potential for the clinical diagnosis of diseases (e.g. cystic fibrosis) associated with changes in ATP concentrations.

  5. State transitions of actin cortices in vitro and in vivo

    NASA Astrophysics Data System (ADS)

    Tan, Tzer Han; Keren, Kinneret; Mackintosh, Fred; Schmidt, Christoph; Fakhri, Nikta

    Most animal cells are enveloped by a thin layer of actin cortex which governs the cell mechanics. A functional cortex must be rigid to provide mechanical support while being flexible to allow for rapid restructuring events such as cell division. To satisfy these requirements, the actin cortex is highly dynamic with fast actin turnover and myosin-driven contractility. The regulatory mechanism responsible for the transition between a mechanically stable state and a restructuring state is not well understood. Here, we develop a technique to map the dynamics of reconstituted actin cortices in emulsion droplets using IR fluorescent single-walled carbon nanotubes (SWNTs). By increasing crosslinker concentration, we find that a homogeneous cortex transitions to an intermediate state with broken rotational symmetry and a globally contractile state which further breaks translational symmetry. We apply this new dynamic mapping technique to cortices of live starfish oocytes in various developmental stages. To identify the regulatory mechanism for steady state transitions, we subject the oocytes to actin and myosin disrupting drugs.

  6. Actin polymerization plays a significant role in asbestos-induced inflammasome activation in mesothelial cells in vitro.

    PubMed

    MacPherson, Maximilian; Westbom, Catherine; Kogan, Helen; Shukla, Arti

    2016-12-24

    Asbestos exposure leads to malignant mesothelioma (MM), a deadly neoplasm of mesothelial cells of various locations. Although there is no doubt about the role of asbestos in MM tumorigenesis, mechanisms are still not well explored. Recently, our group demonstrated that asbestos causes inflammasome priming and activation in mesothelial cells, which in part is dependent on oxidative stress. Our current study sheds light on yet another mechanism of inflammasome activation by asbestos. Here we show the role of actin polymerization in asbestos-induced activation of the nod-like receptor pyrin domain-containing protein 3 (NLRP3) inflammasome. Using human mesothelial cells, we first demonstrate that asbestos and carbon nanotubes induced caspase-1 activation and high-mobility group box 1, interleukin 1 beta and interleukin 18 secretion was blocked by Cytochalasin D (Cyto D) an actin polymerization inhibitor. Next, to understand the mechanism, we assessed whether phagocytosis of fibers by mesothelial cells is affected by actin polymerization inhibition. Transmission electron microscopy showed the inhibition of fiber uptake by mesothelial cells in the presence of Cyto D. Furthermore, localization of components of the inflammasome, apoptotic speck-like protein containing a CARD domain (ASC) and NLRP3, to the perinuclear space in mitochondria or endoplasmic reticulum in response to fiber exposure was also interrupted in the presence of Cyto D. Taken together, our studies suggest that actin polymerization plays important roles in inflammasome activation by fibers via regulation of phagocytosis and/or spatial localization of inflammasome components.

  7. F-actin structure destabilization and DNase I binding loop: fluctuations mutational cross-linking and electron microscopy analysis of loop states and effects on F-actin.

    PubMed

    Oztug Durer, Zeynep A; Diraviyam, Karthikeyan; Sept, David; Kudryashov, Dmitri S; Reisler, Emil

    2010-01-22

    The conformational dynamics of filamentous actin (F-actin) is essential for the regulation and functions of cellular actin networks. The main contribution to F-actin dynamics and its multiple conformational states arises from the mobility and flexibility of the DNase I binding loop (D-loop; residues 40-50) on subdomain 2. Therefore, we explored the structural constraints on D-loop plasticity at the F-actin interprotomer space by probing its dynamic interactions with the hydrophobic loop (H-loop), the C-terminus, and the W-loop via mutational disulfide cross-linking. To this end, residues of the D-loop were mutated to cysteines on yeast actin with a C374A background. These mutants showed no major changes in their polymerization and nucleotide exchange properties compared to wild-type actin. Copper-catalyzed disulfide cross-linking was investigated in equimolar copolymers of cysteine mutants from the D-loop with either wild-type (C374) actin or mutant S265C/C374A (on the H-loop) or mutant F169C/C374A (on the W-loop). Remarkably, all tested residues of the D-loop could be cross-linked to residues 374, 265, and 169 by disulfide bonds, demonstrating the plasticity of the interprotomer region. However, each cross-link resulted in different effects on the filament structure, as detected by electron microscopy and light-scattering measurements. Disulfide cross-linking in the longitudinal orientation produced mostly no visible changes in filament morphology, whereas the cross-linking of D-loop residues >45 to the H-loop, in the lateral direction, resulted in filament disruption and the presence of amorphous aggregates on electron microscopy images. A similar aggregation was also observed upon cross-linking the residues of the D-loop (>41) to residue 169. The effects of disulfide cross-links on F-actin stability were only partially accounted for by the simulations of current F-actin models. Thus, our results present evidence for the high level of conformational plasticity in

  8. Towards the Structure Determination of a Modulated Protein Crystal: The Semicrystalline State of Profilin:Actin

    NASA Technical Reports Server (NTRS)

    Borgstahl, G.; Lovelace, J.; Snell, E. H.; Bellamy, H.

    2003-01-01

    microfilament system to be restructured in a controlled manner via polymerization, depolymerization, severing, cross-linking, and anchorage. The structure the semicrystalline state of profilin:actin will challenge and validate current models of muscle contraction and cell motility. The methodology and theory under development will be easily extendable to other systems.

  9. Aggregated LDL in contact with macrophages induces local increases in free cholesterol levels that regulate local actin polymerization

    PubMed Central

    Grosheva, Inna; Haka, Abigail S.; Qin, Chunbo; Pierini, Lynda M.; Maxfield, Frederick R.

    2009-01-01

    Objective Interaction of macrophages with aggregated matrix-anchored lipoprotein deposits is an important initial step in atherogenesis. Aggregated lipoproteins require different cellular uptake processes than those used for endocytosis of monomeric lipoproteins. In this study, we tested the hypothesis that engagement of aggregated LDL (agLDL) by macrophages could lead to local increases in free cholesterol levels and that these increases in free cholesterol regulate signals that control cellular actin. Methods and Results AgLDL resides for prolonged periods in surface-connected compartments. While agLDL is still extracellular, we demonstrate that an increase in free cholesterol occurs at sites of contact between agLDL and cells due to hydrolysis of agLDL-derived cholesteryl ester. This increase in free cholesterol causes enhanced actin polymerization around the agLDL. Inhibition of cholesteryl ester hydrolysis results in decreased actin polymerization. Conclusions We describe a novel process that occurs during agLDL-macrophage interactions in which local release of free cholesterol causes local actin polymerization, promoting a pathologic positive feedback loop for increased catabolism of agLDL and eventual foam cell formation. PMID:19556523

  10. Mitogen Activated Protein Kinase Activated Protein Kinase 2 Regulates Actin Polymerization and Vascular Leak in Ventilator Associated Lung Injury

    PubMed Central

    Damarla, Mahendra; Hasan, Emile; Boueiz, Adel; Le, Anne; Pae, Hyun Hae; Montouchet, Calypso; Kolb, Todd; Simms, Tiffany; Myers, Allen; Kayyali, Usamah S.; Gaestel, Matthias; Peng, Xinqi; Reddy, Sekhar P.; Damico, Rachel; Hassoun, Paul M.

    2009-01-01

    Mechanical ventilation, a fundamental therapy for acute lung injury, worsens pulmonary vascular permeability by exacting mechanical stress on various components of the respiratory system causing ventilator associated lung injury. We postulated that MK2 activation via p38 MAP kinase induced HSP25 phosphorylation, in response to mechanical stress, leading to actin stress fiber formation and endothelial barrier dysfunction. We sought to determine the role of p38 MAP kinase and its downstream effector MK2 on HSP25 phosphorylation and actin stress fiber formation in ventilator associated lung injury. Wild type and MK2−/− mice received mechanical ventilation with high (20 ml/kg) or low (7 ml/kg) tidal volumes up to 4 hrs, after which lungs were harvested for immunohistochemistry, immunoblotting and lung permeability assays. High tidal volume mechanical ventilation resulted in significant phosphorylation of p38 MAP kinase, MK2, HSP25, actin polymerization, and an increase in pulmonary vascular permeability in wild type mice as compared to spontaneous breathing or low tidal volume mechanical ventilation. However, pretreatment of wild type mice with specific p38 MAP kinase or MK2 inhibitors abrogated HSP25 phosphorylation and actin polymerization, and protected against increased lung permeability. Finally, MK2−/− mice were unable to phosphorylate HSP25 or increase actin polymerization from baseline, and were resistant to increases in lung permeability in response to HVT MV. Our results suggest that p38 MAP kinase and its downstream effector MK2 mediate lung permeability in ventilator associated lung injury by regulating HSP25 phosphorylation and actin cytoskeletal remodeling. PMID:19240800

  11. Crk Adaptors Negatively Regulate Actin Polymerization in Pedestals Formed by Enteropathogenic Escherichia coli (EPEC) by Binding to Tir Effector

    PubMed Central

    Martín-Villa, José Manuel; Benito-León, María; Martinez-Quiles, Narcisa

    2014-01-01

    Infections by enteropathogenic Escherichia coli (EPEC) cause diarrhea linked to high infant mortality in developing countries. EPEC adheres to epithelial cells and induces the formation of actin pedestals. Actin polymerization is driven fundamentally through signaling mediated by Tir bacterial effector protein, which inserts in the plasma membrane of the infected cell. Tir binds Nck adaptor proteins, which in turn recruit and activate N-WASP, a ubiquitous member of the Wiskott-Aldrich syndrome family of proteins. N-WASP activates the Arp2/3 complex to promote actin polymerization. Other proteins aside from components of the Tir-Nck-N-WASP pathway are recruited to the pedestals but their functions are unknown. Here we investigate the function of two alternatively spliced isoforms of Crk adaptors (CrkI/II) and the paralog protein CrkL during pedestal formation by EPEC. We found that the Crk isoforms act as redundant inhibitors of pedestal formation. The SH2 domain of CrkII and CrkL binds to phosphorylated tyrosine 474 of Tir and competes with Nck to bind Tir, preventing its recruitment to pedestals and thereby inhibiting actin polymerization. EPEC infection induces phosphorylation of the major regulatory tyrosine in CrkII and CrkL, possibly preventing the SH2 domain of these proteins from interacting with Tir. Phosphorylated CrkII and CrkL proteins localize specifically to the plasma membrane in contact with EPEC. Our study uncovers a novel role for Crk adaptors at pedestals, opening a new perspective in how these oncoproteins regulate actin polymerization. PMID:24675776

  12. Reaction-diffusion waves of actin filament polymerization/depolymerization in Dictyostelium pseudopodium extension and cell locomotion.

    PubMed

    Vicker, M G

    2000-04-14

    Cell surface movements and the intracellular spatial patterns and dynamics of actin filament (F-actin) were investigated in living and formalin-fixed cells of Dictyostelium discoideum by confocal microscopy. Excitation waves of F-actin assembly developed and propagated several micrometers at up to 26 microm/min in cells which had been intracellularly loaded with fluorescently labeled actin monomer. Wave propagation and extinction corresponded with the initiation and attenuation of pseudopodium extension and cell advance, respectively. The identification of chemical waves was supported by the ring, sphere, spiral and scroll wave patterns, which were observed in the extensions of fixed cells stained with phalloidin-rhodamine, and by the similar, asymmetrical [F-actin] distribution in wavefronts in living and fixed cells. These F-actin patterns and dynamics in Dictyostelium provide evidence for a new supramolecular state of actin, which propagates as a self-organized, reaction-diffusion wave of reversible F-actin assembly and affects pseudopodium extension. Actin's properties of oscillation and self-organization might also fundamentally determine the nature of the eukaryotic cell's reactions of adaptation, timing and signal response.

  13. Formation and ingression of division furrow can progress under the inhibitory condition of actin polymerization in ciliate Tetrahymena pyriformis.

    PubMed

    Shimizu, Yuhta; Kushida, Yasuharu; Kiriyama, Shuhei; Nakano, Kentaro; Numata, Osamu

    2013-12-01

    In eukaryotic cells that multiply by binary fission, the interaction of actin filaments with myosin II in the contractile ring is widely recognized to generate force for membrane ingression into the cleavage furrow; however, the expression of myosin II is restricted in animals, yeast, fungi, and amoeba (collectively, unikonts). No corresponding motor protein capable of forming mini-filaments that could exert sufficient tension to cleave the cell body is found in bikonts, consisting of planta, algae, and most protozoa; however, cells in some bikont lineages multiply by binary fission, as do animal cells. Of these, the ciliate Tetrahymena is known to form an actin ring beneath the division furrow in cytokinesis. Here, we investigated the role of filamentous actin in the cytokinesis of Tetrahymena pyriformis by treating synchronized dividing cells with an actin-inhibiting drug, Latrunculin-A. Video microscopic observation of live cells undergoing cytokinesis was performed, and contrary to expectation, we found that initiation of furrow ingression and its progress are not suppressed under the inhibitory condition of actin polymerization in Tetrahymena cells. We suggest that an actin filament-independent mechanism of binary fission may have been acquired during the evolution in this organism.

  14. Fusion of mitochondria in tobacco suspension cultured cells is dependent on the cellular ATP level but not on actin polymerization.

    PubMed

    Wakamatsu, Kairo; Fujimoto, Masaru; Nakazono, Mikio; Arimura, Shin-ichi; Tsutsumi, Nobuhiro

    2010-10-01

    Mitochondria in plant cells undergo fusion and fission frequently. Although the mechanisms and proteins of mitochondrial fusion are well known in yeast and mammalian cells, they remain poorly understood in plant cells. To clarify the physiological requirements for plant mitochondrial fusion, we investigated the fusion frequency of mitochondria in tobacco cultured cells using the photoconvertible fluorescent protein Kaede and some physiological inhibitors. The latter included two uncouplers, 2,4-dinitrophenol (DNP) and carbonyl cyanide m-chlorophenylhydrazone (CCCP), an inhibitor of mitochondrial ATP synthase, oligomycin, and an actin polymerization inhibitor, latrunculin B (Lat B). The frequency of mitochondrial fusion was clearly reduced by DNP, CCCP and oligomycin, but not by Lat B, although Lat B severely inhibited mitochondrial movement. Moreover, DNP, CCCP and oligomycin evidently lowered the cellular ATP levels. These results indicate that plant mitochondrial fusion depends on the cellular ATP level, but not on actin polymerization.

  15. Wound Closure in the Lamellipodia of Single Cells: Mediation by Actin Polymerization in the Absence of an Actomyosin Purse String

    PubMed Central

    Henson, John H.; Nazarian, Ronniel; Schulberg, Katrina L.; Trabosh, Valerie A.; Kolnik, Sarah E.; Burns, Andrew R.; McPartland, Kenneth J.

    2002-01-01

    The actomyosin purse string is an evolutionarily conserved contractile structure that is involved in cytokinesis, morphogenesis, and wound healing. Recent studies suggested that an actomyosin purse string is crucial for the closure of wounds in single cells. In the present study, morphological and pharmacological methods were used to investigate the role of this structure in the closure of wounds in the peripheral cytoplasm of sea urchin coelomocytes. These discoidal shaped cells underwent a dramatic form of actin-based centripetal/retrograde flow and occasionally opened and closed spontaneous wounds in their lamellipodia. Fluorescent phalloidin staining indicated that a well defined fringe of actin filaments assembles from the margin of these holes, and drug studies with cytochalasin D and latrunculin A indicated that actin polymerization is required for wound closure. Additional evidence that actin polymerization is involved in wound closure was provided by the localization of components of the Arp2/3 complex to the wound margin. Significantly, myosin II immunolocalization demonstrated that it is not associated with wound margins despite being present in the perinuclear region. Pharmacological evidence for the lack of myosin II involvement in wound closure comes from experiments in which a microneedle was used to produce wounds in cells in which actomyosin contraction was inhibited by treatment with kinase inhibitors. Wounds produced in kinase inhibitor-treated cells closed in a manner similar to that seen with control cells. Taken together, our results suggest that an actomyosin purse string mechanism is not responsible for the closure of lamellar wounds in coelomocytes. We hypothesize that the wounds heal by means of a combination of the force produced by actin polymerization alone and centripetal flow. Interestingly, these cells did assemble an actomyosin structure around the margin of phagosome-like membrane invaginations, indicating that myosin is not simply

  16. ACTG2 variants impair actin polymerization in sporadic Megacystis Microcolon Intestinal Hypoperistalsis Syndrome.

    PubMed

    Halim, Danny; Hofstra, Robert M W; Signorile, Luca; Verdijk, Rob M; van der Werf, Christine S; Sribudiani, Yunia; Brouwer, Rutger W W; van IJcken, Wilfred F J; Dahl, Niklas; Verheij, Joke B G M; Baumann, Clarisse; Kerner, John; van Bever, Yolande; Galjart, Niels; Wijnen, Rene M H; Tibboel, Dick; Burns, Alan J; Muller, Françoise; Brooks, Alice S; Alves, Maria M

    2016-02-01

    Megacystis Microcolon Intestinal Hypoperistalsis Syndrome (MMIHS) is a rare congenital disorder, in which heterozygous missense variants in the Enteric Smooth Muscle actin γ-2 (ACTG2) gene have been recently identified. To investigate the mechanism by which ACTG2 variants lead to MMIHS, we screened a cohort of eleven MMIHS patients, eight sporadic and three familial cases, and performed immunohistochemistry, molecular modeling and molecular dynamics (MD) simulations, and in vitro assays. In all sporadic cases, a heterozygous missense variant in ACTG2 was identified. ACTG2 expression was detected in all intestinal layers where smooth muscle cells are present in different stages of human development. No histopathological abnormalities were found in the patients. Using molecular modeling and MD simulations, we predicted that ACTG2 variants lead to significant changes to the protein function. This was confirmed by in vitro studies, which showed that the identified variants not only impair ACTG2 polymerization, but also contribute to reduced cell contractility. Taken together, our results confirm the involvement of ACTG2 in sporadic MMIHS, and bring new insights to MMIHS pathogenesis.

  17. Caspase-11 promotes the fusion of phagosomes harboring pathogenic bacteria with lysosomes by modulating actin polymerization.

    PubMed

    Akhter, Anwari; Caution, Kyle; Abu Khweek, Arwa; Tazi, Mia; Abdulrahman, Basant A; Abdelaziz, Dalia H A; Voss, Oliver H; Doseff, Andrea I; Hassan, Hoda; Azad, Abul K; Schlesinger, Larry S; Wewers, Mark D; Gavrilin, Mikhail A; Amer, Amal O

    2012-07-27

    Inflammasomes are multiprotein complexes that include members of the NLR (nucleotide-binding domain leucine-rich repeat containing) family and caspase-1. Once bacterial molecules are sensed within the macrophage, the inflammasome is assembled, mediating the activation of caspase-1. Caspase-11 mediates caspase-1 activation in response to lipopolysaccharide and bacterial toxins, and yet its role during bacterial infection is unknown. Here, we demonstrated that caspase-11 was dispensable for caspase-1 activation in response to Legionella, Salmonella, Francisella, and Listeria. We also determined that active mouse caspase-11 was required for restriction of L. pneumophila infection. Similarly, human caspase-4 and caspase-5, homologs of mouse caspase-11, cooperated to restrict L. pneumophila infection in human macrophages. Caspase-11 promoted the fusion of the L. pneumophila vacuole with lysosomes by modulating actin polymerization through cofilin. However, caspase-11 was dispensable for the fusion of lysosomes with phagosomes containing nonpathogenic bacteria, uncovering a fundamental difference in the trafficking of phagosomes according to their cargo.

  18. Caspase-11 promotes the fusion of phagosomes harboring pathogenic bacteria with lysosomes by modulating actin polymerization

    PubMed Central

    Akhter, Anwari; Caution, Kyle; Khweek, Arwa Abu; Tazi, Mia; Abdulrahman, Basant A.; Abdelaziz, Dalia H.A.; Voss, Oliver H.; Doseff, Andrea I.; Hassan, Hoda; Azad, Abul K.; Schlesinger, Larry S.; Wewers, Mark D.; Gavrilin, Mikhail A.; Amer, Amal O.

    2012-01-01

    Summary Inflammasomes are multiprotein complexes that include members of the NLR (nucleotide-binding domain leucine-rich repeat containing) family and caspase-1. Once bacterial molecules are sensed within the macrophage, the inflammasome is assembled mediating the activation of caspase-1. Caspase-11 mediates caspase-1 activation in response to lipopolysaccharide and bacterial toxins. Yet, its role during bacterial infection is unknown. Here, we demonstrated that caspase-11 was dispensable for caspase-1 activation in response to Legionella, Salmonella, Francisella and Listeria. We also determined that active mouse caspase-11 was required for restriction of L. pneumophila infection. Similarly, human caspase-4 and 5, homologs of mouse caspase-11, cooperated to restrict L. pneumophila infection in human macrophages. Caspase-11 promoted the fusion of the L. pneumophila- vacuole with lysosomes by modulating actin polymerization through cofilin. However, caspase-11 was dispensable for the fusion of lysosomes with phagosomes containing non-pathogenic bacteria, uncovering a fundamental difference in the trafficking of phagosomes according to their cargo. PMID:22658523

  19. Fz2 and Cdc42 Mediate Melanization and Actin Polymerization but Are Dispensable for Plasmodium Killing in the Mosquito Midgut

    PubMed Central

    Zachary, Daniel; Hoffmann, Jules A; Levashina, Elena A

    2006-01-01

    The midgut epithelium of the mosquito malaria vector Anopheles is a hostile environment for Plasmodium, with most parasites succumbing to host defenses. This study addresses morphological and ultrastructural features associated with Plasmodium berghei ookinete invasion in Anopheles gambiae midguts to define the sites and possible mechanisms of parasite killing. We show by transmission electron microscopy and immunofluorescence that the majority of ookinetes are killed in the extracellular space. Dead or dying ookinetes are surrounded by a polymerized actin zone formed within the basal cytoplasm of adjacent host epithelial cells. In refractory strain mosquitoes, we found that formation of this zone is strongly linked to prophenoloxidase activation leading to melanization. Furthermore, we identify two factors controlling both phenomena: the transmembrane receptor frizzled-2 and the guanosine triphosphate–binding protein cell division cycle 42. However, the disruption of actin polymerization and melanization by double-stranded RNA inhibition did not affect ookinete survival. Our results separate the mechanisms of parasite killing from subsequent reactions manifested by actin polymerization and prophenoloxidase activation in the A. gambiae–P. berghei model. These latter processes are reminiscent of wound healing in other organisms, and we propose that they represent a form of wound-healing response directed towards a moribund ookinete, which is perceived as damaged tissue. PMID:17196037

  20. A role for actin polymerization in persistent pulmonary hypertension of the newborn.

    PubMed

    Fediuk, Jena; Dakshinamurti, Shyamala

    2015-03-01

    Persistent pulmonary hypertension of the newborn (PPHN) is defined as the failure of normal pulmonary vascular relaxation at birth. Hypoxia is known to impede postnatal disassembly of the actin cytoskeleton in pulmonary arterial myocytes, resulting in elevation of smooth muscle α-actin and γ-actin content in elastic and resistance pulmonary arteries in PPHN compared with age-matched controls. This review examines the original histological characterization of PPHN with attention to cytoskeletal structural remodeling and actin isoform abundance, reviews the existing evidence for understanding the biophysical and biochemical forces at play during neonatal circulatory transition, and specifically addresses the role of the cortical actin architecture, primarily identified as γ-actin, in the transduction of mechanical force in the hypoxic PPHN pulmonary circuit.

  1. Elevated Glucose Levels Promote Contractile and Cytoskeletal Gene Expression in Vascular Smooth Muscle via Rho/Protein Kinase C and Actin Polymerization*

    PubMed Central

    Hien, Tran Thi; Turczyńska, Karolina M.; Dahan, Diana; Ekman, Mari; Grossi, Mario; Sjögren, Johan; Nilsson, Johan; Braun, Thomas; Boettger, Thomas; Garcia-Vaz, Eliana; Stenkula, Karin; Swärd, Karl; Gomez, Maria F.; Albinsson, Sebastian

    2016-01-01

    Both type 1 and type 2 diabetes are associated with increased risk of cardiovascular disease. This is in part attributed to the effects of hyperglycemia on vascular endothelial and smooth muscle cells, but the underlying mechanisms are not fully understood. In diabetic animal models, hyperglycemia results in hypercontractility of vascular smooth muscle possibly due to increased activation of Rho-kinase. The aim of the present study was to investigate the regulation of contractile smooth muscle markers by glucose and to determine the signaling pathways that are activated by hyperglycemia in smooth muscle cells. Microarray, quantitative PCR, and Western blot analyses revealed that both mRNA and protein expression of contractile smooth muscle markers were increased in isolated smooth muscle cells cultured under high compared with low glucose conditions. This effect was also observed in hyperglycemic Akita mice and in diabetic patients. Elevated glucose activated the protein kinase C and Rho/Rho-kinase signaling pathways and stimulated actin polymerization. Glucose-induced expression of contractile smooth muscle markers in cultured cells could be partially or completely repressed by inhibitors of advanced glycation end products, L-type calcium channels, protein kinase C, Rho-kinase, actin polymerization, and myocardin-related transcription factors. Furthermore, genetic ablation of the miR-143/145 cluster prevented the effects of glucose on smooth muscle marker expression. In conclusion, these data demonstrate a possible link between hyperglycemia and vascular disease states associated with smooth muscle contractility. PMID:26683376

  2. Caspase-11 and caspase-1 differentially modulate actin polymerization via RhoA and Slingshot proteins to promote bacterial clearance

    PubMed Central

    Caution, Kyle; Gavrilin, Mikhail A.; Tazi, Mia; Kanneganti, Apurva; Layman, Daniel; Hoque, Sheshadri; Krause, Kathrin; Amer, Amal O.

    2015-01-01

    Inflammasomes are multiprotein complexes that include members of the NOD-like receptor family and caspase-1. Caspase-1 is required for the fusion of the Legionella vacuole with lysosomes. Caspase-11, independently of the inflammasome, also promotes phagolysosomal fusion. However, it is unclear how these proteases alter intracellular trafficking. Here, we show that caspase-11 and caspase-1 function in opposing manners to phosphorylate and dephosphorylate cofilin, respectively upon infection with Legionella. Caspase-11 targets cofilin via the RhoA GTPase, whereas caspase-1 engages the Slingshot phosphatase. The absence of either caspase-11 or caspase-1 maintains actin in the polymerized or depolymerized form, respectively and averts the fusion of pathogen-containing vacuoles with lysosomes. Therefore, caspase-11 and caspase-1 converge on the actin machinery with opposing effects to promote vesicular trafficking. PMID:26686473

  3. The RhoA effector mDia is induced during T cell activation and regulates actin polymerization and cell migration in T lymphocytes.

    PubMed

    Vicente-Manzanares, Miguel; Rey, Mercedes; Pérez-Martínez, Manuel; Yáñez-Mó, María; Sancho, David; Cabrero, José Román; Barreiro, Olga; de la Fuente, Hortensia; Itoh, Kazuyuki; Sánchez-Madrid, Francisco

    2003-07-15

    Regulation of actin polymerization is critical for many different functions of T lymphocytes, including cell migration. Here we show that the RhoA effector mDia is induced in vitro in activated PBL and is highly expressed in vivo in diseased tissue-infiltrating activated lymphocytes. mDia localizes at the leading edge of polarized T lymphoblasts in an area immediately posterior to the leading lamella, in which its effector protein profilin is also concentrated. Overexpression of an activated mutant of mDia results in an inhibition of both spontaneous and chemokine-directed T cell motility. mDia does not regulate the shape of the cell, which involves another RhoA effector, p160 Rho-coiled coil kinase, and is not involved in integrin-mediated cell adhesion. However, mDia activation blocked CD3- and PMA-mediated cell spreading. mDia activation increased polymerized actin levels, which resulted in the blockade of chemokine-induced actin polymerization by depletion of monomeric actin. Moreover, mDia was shown to regulate the function of the small GTPase Rac1 through the control of actin availability. Together, our data demonstrate that RhoA is involved in the control of the filamentous actin/monomeric actin balance through mDia, and that this balance is critical for T cell responses.

  4. Vault-poly-ADP-ribose polymerase in the Octopus vulgaris brain: a regulatory factor of actin polymerization dynamic.

    PubMed

    De Maio, Anna; Natale, Emiliana; Rotondo, Sergio; Di Cosmo, Anna; Faraone-Mennella, Maria Rosaria

    2013-09-01

    Our previous behavioural, biochemical and immunohistochemical analyses conducted in selected regions (supra/sub oesophageal masses) of the Octopus vulgaris brain detected a cytoplasmic poly-ADP-ribose polymerase (more than 90% of total enzyme activity). The protein was identified as the vault-free form of vault-poly-ADP-ribose polymerase. The present research extends and integrates the biochemical characterization of poly-ADP-ribosylation system, namely, reaction product, i.e., poly-ADP-ribose, and acceptor proteins, in the O. vulgaris brain. Immunochemical analyses evidenced that the sole poly-ADP-ribose acceptor was the octopus cytoskeleton 50-kDa actin. It was present in both free, endogenously poly-ADP-ribosylated form (70kDa) and in complex with V-poly-ADP-ribose polymerase and poly-ADP-ribose (260kDa). The components of this complex, alkali and high salt sensitive, were purified and characterized. The kind and the length of poly-ADP-ribose corresponded to linear chains of 30-35 ADP-ribose units, in accordance with the features of the polymer synthesized by the known vault-poly-ADP-ribose polymerase. In vitro experiments showed that V-poly-ADP-ribose polymerase activity of brain cytoplasmic fraction containing endogenous actin increased upon the addition of commercial actin and was highly reduced by ATP. Anti-actin immunoblot of the mixture in the presence and absence of ATP showed that the poly-ADP-ribosylation of octopus actin is a dynamic process balanced by the ATP-dependent polymerization of the cytoskeleton protein, a fundamental mechanism for synaptic plasticity.

  5. Myosin light chain kinase-regulated endothelial cell contraction: the relationship between isometric tension, actin polymerization, and myosin phosphorylation

    PubMed Central

    1995-01-01

    The phosphorylation of regulatory myosin light chains by the Ca2+/calmodulin-dependent enzyme myosin light chain kinase (MLCK) has been shown to be essential and sufficient for initiation of endothelial cell retraction in saponin permeabilized monolayers (Wysolmerski, R. B. and D. Lagunoff. 1990. Proc. Natl. Acad. Sci. USA. 87:16-20). We now report the effects of thrombin stimulation on human umbilical vein endothelial cell (HUVE) actin, myosin II and the functional correlate of the activated actomyosin based contractile system, isometric tension development. Using a newly designed isometric tension apparatus, we recorded quantitative changes in isometric tension from paired monolayers. Thrombin stimulation results in a rapid sustained isometric contraction that increases 2- to 2.5-fold within 5 min and remains elevated for at least 60 min. The phosphorylatable myosin light chains from HUVE were found to exist as two isoforms, differing in their molecular weights and isoelectric points. Resting isometric tension is associated with a basal phosphorylation of 0.54 mol PO4/mol myosin light chain. After thrombin treatment, phosphorylation rapidly increases to 1.61 mol PO4/mol myosin light chain within 60 s and remains elevated for the duration of the experiment. Myosin light chain phosphorylation precedes the development of isometric tension and maximal phosphorylation is maintained during the sustained phase of isometric contraction. Tryptic phosphopeptide maps from both control and thrombin-stimulated cultures resolve both monophosphorylated Ser-19 and diphosphorylated Ser-19/Thr-18 peptides indicative of MLCK activation. Changes in the polymerization of actin and association of myosin II correlate temporally with the phosphorylation of myosin II and development of isometric tension. Activation results in a 57% increase in F-actin content within 90 s and 90% of the soluble myosin II associates with the reorganizing F-actin. Furthermore, the disposition of actin and

  6. The Arabidopsis Wave Complex: Mechanisms Of Localized Actin Polymerization And Growth

    SciTech Connect

    Daniel Szymanski

    2012-10-23

    The objective of this project was to discover the protein complexes and control mechanisms that determine the location of actin filament roadways in plant cells. Our work provided the first molecular description of protein complexes that are converted from inactive complexes to active actin filament nucleators in the cell. These discoveries provided a conceptual framework to control to roadways in plant cells that determine the location and delivery of plant metabolites and storage molecules that are relevant to the bioenergy economy.

  7. Mechano-chemical energy transduction in biological systems. The effect of mechanical stimulation on the polymerization of actin: a kinetic study.

    PubMed Central

    Ferri, A; Grazi, E

    1982-01-01

    Mechanical stimulation (forced circulation in narrow tubing) accelerates as much as 10-fold the rate of polymerization of actin. The increase in the rate is proportional to the intensity of the stimulation for flow rates between 0 and 3 cm/s. This supports the hypothesis that a statistical factor (the orientation of the flowing particles) is influenced by the flow. Comparison of the kinetics of the polymerization of resting and of mechanically stimulated actin solutions shows that both the nucleation and the elongation steps are accelerated. It is thus concluded that flow orients not only the oligomeric structures but also the actin monomers. The elongation reaction, also in the flow-stimulated samples, occurs always by the addition of ATP--G-actin (or ATP-containing oligomers) and not by the fusion of ADP-containing oligomeric structures. PMID:7138502

  8. Correlation between ECM guidance and actin polymerization on osteogenic differentiation of human adipose-derived stem cells.

    PubMed

    Keller, Vivian; Deiwick, Andrea; Pflaum, Michael; Schlie-Wolter, Sabrina

    2016-10-01

    The correlation between extracellular matrix (ECM) components, cell shape, and stem cell guidance can shed light in understanding and mimicking the functionality of stem cell niches for various applications. This interplay on osteogenic guidance of human adipose-derived stem cells (hASCs) was focus of this study. Proliferation and osteogenic markers like alkaline phosphatase activity and calcium mineralization were slightly increased by the ECM components laminin (LA), collagen I (COL), and fibronectin (FIB); with control medium no differentiation occurred. ECM guided differentiation was rather dependent on osterix than on Runx2 pathway. FIB significantly enhanced cell elongation even in presence of actin polymerization blockers cytochalasin D (CytoD) and ROCK inhibitor Y-27632, which generally caused more rounded cells. Except for the COL surface, both inhibitors increased the extent of osterix, while the Runx2 pathway was more sensitive to the culture condition. Both inhibitors did not affect hASC proliferation. CytoD enabled osteogenic differentiation independently from the ECM, while it was rather blocked via Y-27632 treatment; on FIB the general highest extent of differentiation occurred. Taken together, the ECM effect on hASCs occurs indirectly and selectively via a dominant role of FIB: it sustains osteogenic differentiation in case of a tension-dependent control of actin polymerization.

  9. Intracellular calcium rise is not a necessary step for the stimulated actin polymerization

    SciTech Connect

    Yassin, R.

    1986-03-01

    Stimulation of rabbit peritoneal neutrophils by many chemotactic (formyl Methionyl-Leucyl-Phenylalanine (fMLP), Leukotriene B/sub 4/ (LTB/sub 4/)) and non-chemotactic (phorbol 12-myristate, 13-acetate (PMA), platelet activating factor (PAF), and the calcium ionophore A23187) factors produces rapid and dose dependent increases in the amount of actin associated with the cytoskeleton. The stimulated increase in cytoskeletal actin does not appear to require a rise in the intracellular concentration of free calcium. The increase in cytoskeletal actin produced by A23187 is transient and does not depend on the presence of calcium in the suspending medium. In the presence of extracellular calcium, the effect of the ionophore is biphasic with respect to concentration. The increases in actin association with cytoskeletal produced by fMLP, LTB/sub 4/, and A23187 but not by PMA, are inhibited by hyperosmolarity and pertussis toxin pretreatment. On the other hand, the addition of hyperosmolarity or pertussis toxin has small effect on the rise in the intracellular calcium produced by A23187. The results presented here suggest that an increase in the intracellular concentration of free calcium is not necessary for the stimulated increases in cytoskeletal actin.

  10. A 45,000-mol-wt protein from unfertilized sea urchin eggs severs actin filaments in a calcium-dependent manner and increases the steady-state concentration of nonfilamentous actin

    PubMed Central

    1984-01-01

    A 45,000-mol-wt protein has been purified from unfertilized sea urchin (Strongylocentrotus purpuratus) eggs. The isolation scheme includes DEAE cellulose ion-exchange chromatography, gel filtration, and hydroxylapatite chromatography. The homogeneity of the isolated protein is greater than 90% by SDS PAGE. The 45,000-mol-wt protein reduces the viscosity of actin filaments in a Ca2+-dependent manner. The free calcium concentration required for the activity of this protein is in the micromolar range. Electron microscopic studies reveal that the formation of short filaments parallels the decrease in viscosity. Energy transfer and sedimentation experiments indicate a net disassembly of actin filaments and an increase in the steady-state nonfilamentous actin concentration in the presence of Ca2+ ions and the 45,000-mol-wt protein. The increase in the steady-state nonfilamentous actin concentration is proportional to the amount of 45,000-mol-wt protein added. The actin molecules disassembled by the addition of the 45,000-mol-wt protein are capable of polymerization. PMID:6540784

  11. Pasteurella multocida toxin (PMT) activates RhoGTPases, induces actin polymerization and inhibits migration of human dendritic cells, but does not influence macropinocytosis.

    PubMed

    Blöcker, Dagmar; Berod, Luciana; Fluhr, Joachim W; Orth, Joachim; Idzko, Marco; Aktories, Klaus; Norgauer, Johannes

    2006-03-01

    Dendritic cells (DCs) are considered as one of the principal initiators of immune responses. In their immature state, they migrate into peripheral tissue in order to uptake antigen and to patrol for danger signals. Upon maturation, they acquire the ability to migrate to the lymph nodes and present the captured antigens to T cells in order to direct the development of specific immune responses. There is evidence that microbial compounds interfere with proper functions of DCs in order to block innate and specific immunity. Here we characterized the influence of Pasteurella multocida toxin (PMT) on monocyte-derived DCs. Using pull-down assays with recombinant rhotekin or p21-activated kinase, we demonstrated the activation of RhoGTPases by PMT in DCs. Moreover, PMT induced changes in DC morphology and actin polymerization, impaired chemotaxin-induced actin re-organization and inhibited their migration response. However, macropinocytosis was not influenced by PMT. In summary, these data indicate that PMT inhibits proper function of the motility machinery in DCs, which might limit the development of adaptive immune surveillance during infection with Pasteurella multocida.

  12. Nuclear Actin in Development and Transcriptional Reprogramming.

    PubMed

    Misu, Shinji; Takebayashi, Marina; Miyamoto, Kei

    2017-01-01

    Actin is a highly abundant protein in eukaryotic cells and dynamically changes its polymerized states with the help of actin-binding proteins. Its critical function as a constituent of cytoskeleton has been well-documented. Growing evidence demonstrates that actin is also present in nuclei, referred to as nuclear actin, and is involved in a number of nuclear processes, including transcriptional regulation and chromatin remodeling. The contribution of nuclear actin to transcriptional regulation can be explained by its direct interaction with transcription machineries and chromatin remodeling factors and by controlling the activities of transcription factors. In both cases, polymerized states of nuclear actin affect the transcriptional outcome. Nuclear actin also plays an important role in activating strongly silenced genes in somatic cells for transcriptional reprogramming. When these nuclear functions of actin are considered, it is plausible to speculate that nuclear actin is also implicated in embryonic development, in which numerous genes need to be activated in a well-coordinated manner. In this review, we especially focus on nuclear actin's roles in transcriptional activation, reprogramming and development, including stem cell differentiation and we discuss how nuclear actin can be an important player in development and cell differentiation.

  13. Formin-mediated actin polymerization at cell–cell junctions stabilizes E-cadherin and maintains monolayer integrity during wound repair

    PubMed Central

    Rao, Megha Vaman; Zaidel-Bar, Ronen

    2016-01-01

    Cadherin-mediated cell–cell adhesion is required for epithelial tissue integrity in homeostasis, during development, and in tissue repair. E-cadherin stability depends on F-actin, but the mechanisms regulating actin polymerization at cell–cell junctions remain poorly understood. Here we investigated a role for formin-mediated actin polymerization at cell–cell junctions. We identify mDia1 and Fmnl3 as major factors enhancing actin polymerization and stabilizing E-cadherin at epithelial junctions. Fmnl3 localizes to adherens junctions downstream of Src and Cdc42 and its depletion leads to a reduction in F-actin and E-cadherin at junctions and a weakening of cell–cell adhesion. Of importance, Fmnl3 expression is up-regulated and junctional localization increases during collective cell migration. Depletion of Fmnl3 or mDia1 in migrating monolayers results in dissociation of leader cells and impaired wound repair. In summary, our results show that formin activity at epithelial cell–cell junctions is important for adhesion and the maintenance of epithelial cohesion during dynamic processes, such as wound repair. PMID:27440924

  14. Bacterial nucleators: actin' on actin

    PubMed Central

    Bugalhão, Joana N.; Mota, Luís Jaime; Franco, Irina S.

    2015-01-01

    The actin cytoskeleton is a key target of numerous microbial pathogens, including protozoa, fungi, bacteria and viruses. In particular, bacterial pathogens produce and deliver virulence effector proteins that hijack actin dynamics to enable bacterial invasion of host cells, allow movement within the host cytosol, facilitate intercellular spread or block phagocytosis. Many of these effector proteins directly or indirectly target the major eukaryotic actin nucleator, the Arp2/3 complex, by either mimicking nucleation promoting factors or activating upstream small GTPases. In contrast, this review is focused on a recently identified class of effector proteins from Gram-negative bacteria that function as direct actin nucleators. These effector proteins mimic functional activities of formins, WH2-nucleators and Ena/VASP assembly promoting factors demonstrating that bacteria have coopted the complete set of eukaryotic actin assembly pathways. Structural and functional analyses of these nucleators have revealed several motifs and/or mechanistic activities that are shared with eukaryotic actin nucleators. However, functional effects of these proteins during infection extend beyond plain actin polymerization leading to interference with other host cell functions such as vesicle trafficking, cell cycle progression and cell death. Therefore, their use as model systems could not only help in the understanding of the mechanistic details of actin polymerization but also provide novel insights into the connection between actin dynamics and other cellular pathways. PMID:26416078

  15. Nuclear Actin in Development and Transcriptional Reprogramming

    PubMed Central

    Misu, Shinji; Takebayashi, Marina; Miyamoto, Kei

    2017-01-01

    Actin is a highly abundant protein in eukaryotic cells and dynamically changes its polymerized states with the help of actin-binding proteins. Its critical function as a constituent of cytoskeleton has been well-documented. Growing evidence demonstrates that actin is also present in nuclei, referred to as nuclear actin, and is involved in a number of nuclear processes, including transcriptional regulation and chromatin remodeling. The contribution of nuclear actin to transcriptional regulation can be explained by its direct interaction with transcription machineries and chromatin remodeling factors and by controlling the activities of transcription factors. In both cases, polymerized states of nuclear actin affect the transcriptional outcome. Nuclear actin also plays an important role in activating strongly silenced genes in somatic cells for transcriptional reprogramming. When these nuclear functions of actin are considered, it is plausible to speculate that nuclear actin is also implicated in embryonic development, in which numerous genes need to be activated in a well-coordinated manner. In this review, we especially focus on nuclear actin’s roles in transcriptional activation, reprogramming and development, including stem cell differentiation and we discuss how nuclear actin can be an important player in development and cell differentiation. PMID:28326098

  16. Cytoskeletal remodeling in differentiated vascular smooth muscle is actin isoform dependent and stimulus dependent.

    PubMed

    Kim, Hak Rim; Gallant, Cynthia; Leavis, Paul C; Gunst, Susan J; Morgan, Kathleen G

    2008-09-01

    Dynamic remodeling of the actin cytoskeleton plays an essential role in the migration and proliferation of vascular smooth muscle cells. It has been suggested that actin remodeling may also play an important functional role in nonmigrating, nonproliferating differentiated vascular smooth muscle (dVSM). In the present study, we show that contractile agonists increase the net polymerization of actin in dVSM, as measured by the differential ultracentrifugation of vascular smooth muscle tissue and the costaining of single freshly dissociated cells with fluorescent probes specific for globular and filamentous actin. Furthermore, induced alterations of the actin polymerization state, as well as actin decoy peptides, inhibit contractility in a stimulus-dependent manner. Latrunculin pretreatment or actin decoy peptides significantly inhibit contractility induced by a phorbol ester or an alpha-agonist, but these procedures have no effect on contractions induced by KCl. Aorta dVSM expresses alpha-smooth muscle actin, beta-actin, nonmuscle gamma-actin, and smooth muscle gamma-actin. The incorporation of isoform-specific cell-permeant synthetic actin decoy peptides, as well as isoform-specific probing of cell fractions and two-dimensional gels, demonstrates that actin remodeling during alpha-agonist contractions involves the remodeling of primarily gamma-actin and, to a lesser extent, beta-actin. Taken together, these results show that net isoform- and agonist-dependent increases in actin polymerization regulate vascular contractility.

  17. Regulation of actin polymerization and adhesion-dependent cell edge protrusion by the Abl-related gene (Arg) tyrosine kinase and N-WASp.

    PubMed

    Miller, Matthew M; Lapetina, Stefanie; MacGrath, Stacey M; Sfakianos, Mindan K; Pollard, Thomas D; Koleske, Anthony J

    2010-03-16

    Extracellular cues stimulate the Abl family nonreceptor tyrosine kinase Arg to promote actin-based cell edge protrusions. Several Arg-interacting proteins are potential links to the actin cytoskeleton, but exactly how Arg stimulates actin polymerization and cellular protrusion has not yet been fully elucidated. We used affinity purification to identify N-WASp as a novel binding partner of Arg. N-WASp activates the Arp2/3 complex and is an effector of Abl. We find that the Arg SH3 domain binds directly to N-WASp. Arg phosphorylates N-WASp on Y256, modestly increasing the affinity of Arg for N-WASp, an interaction that does not require the Arg SH2 domain. The Arg SH3 domain stimulates N-WASp-dependent actin polymerization in vitro, and Arg phosphorylation of N-WASp weakly stimulates this effect. Arg and N-WASp colocalize to adhesion-dependent cell edge protrusions in vivo. The cell edge protrusion defects of arg-/- fibroblasts can be complemented by re-expression of an Arg-yellow fluorescent protein (YFP) fusion, but not by an N-WASp binding-deficient Arg SH3 domain point mutant. These results suggest that Arg promotes actin-based protrusions in response to extracellular stimuli through phosphorylation of and physical interactions with N-WASp.

  18. Toxoplasma gondii profilin acts primarily to sequester G-actin while formins efficiently nucleate actin filament formation in vitro.

    PubMed

    Skillman, Kristen M; Daher, Wassim; Ma, Christopher I; Soldati-Favre, Dominique; Sibley, L David

    2012-03-27

    Apicomplexan parasites employ gliding motility that depends on the polymerization of parasite actin filaments for host cell entry. Despite this requirement, parasite actin remains almost entirely unpolymerized at steady state; formation of filaments required for motility relies on a small repertoire of actin-binding proteins. Previous studies have shown that apicomplexan formins and profilin exhibit canonical functions on heterologous actins from higher eukaryotes; however, their biochemical properties on parasite actins are unknown. We therefore analyzed the impact of T. gondii profilin (TgPRF) and FH1-FH2 domains of two formin isoforms in T. gondii (TgFRM1 and TgFRM2) on the polymerization of T. gondii actin (TgACTI). Our findings based on in vitro assays demonstrate that TgFRM1-FH1-FH2 and TgFRM2-FH1-FH2 dramatically enhanced TgACTI polymerization in the absence of profilin, making them the sole protein factors known to initiate polymerization of this normally unstable actin. In addition, T. gondii formin domains were shown to both initiate polymerization and induce bundling of TgACTI filaments; however, they did not rely on TgPRF for these activities. In contrast, TgPRF sequestered TgACTI monomers, thus inhibiting polymerization even in the presence of formins. Collectively, these findings provide insight into the unusual control mechanisms of actin dynamics within the parasite.

  19. Impairment of CCR6+ and CXCR3+ Th Cell Migration in HIV-1 Infection Is Rescued by Modulating Actin Polymerization

    PubMed Central

    Bernasconi, Enos; Speck, Roberto F.; Proietti, Michele; Sauermann, Ulrike; D’Agostino, Gianluca; Danelon, Gabriela; Rezzonico Jost, Tanja; Grassi, Fabio; Raeli, Lorenzo; Schöni-Affolter, Franziska; Stahl-Hennig, Christiane

    2017-01-01

    CD4+ T cell repopulation of the gut is rarely achieved in HIV-1–infected individuals who are receiving clinically effective antiretroviral therapy. Alterations in the integrity of the mucosal barrier have been indicated as a cause for chronic immune activation and disease progression. In this study, we present evidence that persistent immune activation causes impairment of lymphocytes to respond to chemotactic stimuli, thus preventing their trafficking from the blood stream to peripheral organs. CCR6+ and CXCR3+ Th cells accumulate in the blood of aviremic HIV-1–infected patients on long-term antiretroviral therapy, and their frequency in the circulation positively correlates to levels of soluble CD14 in plasma, a marker of chronic immune activation. Th cells show an impaired response to chemotactic stimuli both in humans and in the pathogenic model of SIV infection, and this defect is due to hyperactivation of cofilin and inefficient actin polymerization. Taking advantage of a murine model of chronic immune activation, we demonstrate that cytoskeleton remodeling, induced by okadaic acid, restores lymphocyte migration in response to chemokines, both in vitro and in vivo. This study calls for novel pharmacological approaches in those pathological conditions characterized by persistent immune activation and loss of trafficking of T cell subsets to niches that sustain their maturation and activities. PMID:27895171

  20. A Balance of Capping Protein and Profilin Functions Is Required to Regulate Actin Polymerization in Drosophila Bristle

    PubMed Central

    Hopmann, Roberta; Miller, Kathryn G.

    2003-01-01

    Profilin is a well-characterized protein known to be important for regulating actin filament assembly. Relatively few studies have addressed how profilin interacts with other actin-binding proteins in vivo to regulate assembly of complex actin structures. To investigate the function of profilin in the context of a differentiating cell, we have studied an instructive genetic interaction between mutations in profilin (chickadee) and capping protein (cpb). Capping protein is the principal protein in cells that caps actin filament barbed ends. When its function is reduced in the Drosophila bristle, F-actin levels increase and the actin cytoskeleton becomes disorganized, causing abnormal bristle morphology. chickadee mutations suppress the abnormal bristle phenotype and associated abnormalities of the actin cytoskeleton seen in cpb mutants. Furthermore, overexpression of profilin in the bristle mimics many features of the cpb loss-of-function phenotype. The interaction between cpb and chickadee suggests that profilin promotes actin assembly in the bristle and that a balance between capping protein and profilin activities is important for the proper regulation of F-actin levels. Furthermore, this balance of activities affects the association of actin structures with the membrane, suggesting a link between actin filament dynamics and localization of actin structures within the cell. PMID:12529431

  1. Identification of regions within the Legionella pneumophila VipA effector protein involved in actin binding and polymerization and in interference with eukaryotic organelle trafficking.

    PubMed

    Bugalhão, Joana N; Mota, Luís Jaime; Franco, Irina S

    2016-02-01

    The Legionella pneumophila effector protein VipA is an actin nucleator that co-localizes with actin filaments and early endosomes in infected macrophages and which interferes with organelle trafficking when expressed in yeast. To identify the regions of VipA involved in its subcellular localization and functions, we ectopically expressed specific VipA mutant proteins in eukaryotic cells. This indicated that the characteristic punctate distribution of VipA depends on its NH2 -terminal (amino acid residues 1-133) and central coiled-coil (amino acid residues 133-206) regions, and suggested a role for the COOH-terminal (amino acid residues 206-339) region in association with actin filaments and for the NH2 -terminal in co-localization with early endosomes. Co-immunoprecipitation and in vitro assays showed that the COOH-terminal region of VipA is necessary and sufficient to mediate actin binding, and is essential but insufficient to induce microfilament formation. Assays in yeast revealed that the NH2 and the COOH-terminal regions, and possibly an NPY motif within the NH2 region of VipA, are necessary for interference with organelle trafficking. Overall, this suggests that subversion of eukaryotic vesicular trafficking by VipA involves both its ability to associate with early endosomes via its NH2 -terminal region and its capacity to bind and polymerize actin through its COOH-terminal region.

  2. Ampakines promote spine actin polymerization, long-term potentiation, and learning in a mouse model of Angelman syndrome.

    PubMed

    Baudry, Michel; Kramar, Eniko; Xu, Xiaobo; Zadran, Homera; Moreno, Stephanie; Lynch, Gary; Gall, Christine; Bi, Xiaoning

    2012-08-01

    Angelman syndrome (AS) is a neurodevelopmental disorder largely due to abnormal maternal expression of the UBE3A gene leading to the deletion of E6-associated protein. AS subjects have severe cognitive impairments for which there are no therapeutic interventions. Mouse models (knockouts of the maternal Ube3a gene: 'AS mice') of the disorder have substantial deficits in long-term potentiation (LTP) and learning. Here we report a clinically plausible pharmacological treatment that ameliorates both deficits. AS mice were injected ip twice daily for 5 days with vehicle or the ampakine CX929; drugs of this type enhance fast EPSCs by positively modulating AMPA receptors. Theta burst stimulation (TBS) produced a normal enhancement of field EPSPs in hippocampal slices prepared from vehicle-treated AS mice but LTP decreased steadily to baseline; however, LTP in slices from ampakine-treated AS mice stabilized at levels found in wild-type controls. TBS-induced actin polymerization within dendritic spines, an essential event for stabilizing LTP, was severely impaired in slices from vehicle-treated AS mice but not in those from ampakine-treated AS mice. Long-term memory scores in a fear conditioning paradigm were reduced by 50% in vehicle-treated AS mice but were comparable to values for littermate controls in the ampakine-treated AS mice. We propose that AS is associated with a profound defect in activity-driven spine cytoskeletal reorganization, resulting in a loss of the synaptic plasticity required for the encoding of long-term memory. Notably, the spine abnormality along with the LTP and learning impairments can be reduced by a minimally invasive drug treatment.

  3. Papaverine Prevents Vasospasm by Regulation of Myosin Light Chain Phosphorylation and Actin Polymerization in Human Saphenous Vein

    PubMed Central

    Hocking, Kyle M.; Putumbaka, Gowthami; Wise, Eric S.; Cheung-Flynn, Joyce; Brophy, Colleen M.; Komalavilas, Padmini

    2016-01-01

    Objective Papaverine is used to prevent vasospasm in human saphenous veins (HSV) during vein graft preparation prior to implantation as a bypass conduit. Papaverine is a nonspecific inhibitor of phosphodiesterases, leading to increases in both intracellular cGMP and cAMP. We hypothesized that papaverine reduces force by decreasing intracellular calcium concentrations ([Ca2+]i) and myosin light chain phosphorylation, and increasing actin depolymerization via regulation of actin regulatory protein phosphorylation. Approach and Results HSV was equilibrated in a muscle bath, pre-treated with 1 mM papaverine followed by 5 μM norepinephrine, and force along with [Ca2+]i levels were concurrently measured. Filamentous actin (F-actin) level was measured by an in vitro actin assay. Tissue was snap frozen to measure myosin light chain and actin regulatory protein phosphorylation. Pre-treatment with papaverine completely inhibited norepinephrine-induced force generation, blocked increases in [Ca2+]i and led to a decrease in the phosphorylation of myosin light chain. Papaverine pre-treatment also led to increased phosphorylation of the heat shock-related protein 20 (HSPB6) and the vasodilator stimulated phosphoprotein (VASP), as well as decreased filamentous actin (F-actin) levels suggesting depolymerization of actin. Conclusions These results suggest that papaverine-induced force inhibition of HSV involves [Ca2+]i-mediated inhibition of myosin light chain phosphorylation and actin regulatory protein phosphorylation-mediated actin depolymerization. Thus, papaverine induces sustained inhibition of contraction of HSV by the modulation of both myosin cross-bridge formation and actin cytoskeletal dynamics and is a pharmacological alternative to high pressure distention to prevent vasospasm. PMID:27136356

  4. Percolation mechanism drives actin gels to the critically connected state

    NASA Astrophysics Data System (ADS)

    Lee, Chiu Fan; Pruessner, Gunnar

    2016-05-01

    Cell motility and tissue morphogenesis depend crucially on the dynamic remodeling of actomyosin networks. An actomyosin network consists of an actin polymer network connected by cross-linker proteins and motor protein myosins that generate internal stresses on the network. A recent discovery shows that for a range of experimental parameters, actomyosin networks contract to clusters with a power-law size distribution [J. Alvarado, Nat. Phys. 9, 591 (2013), 10.1038/nphys2715]. Here, we argue that actomyosin networks can exhibit a robust critical signature without fine-tuning because the dynamics of the system can be mapped onto a modified version of percolation with trapping (PT), which is known to show critical behavior belonging to the static percolation universality class without the need for fine-tuning of a control parameter. We further employ our PT model to generate experimentally testable predictions.

  5. The Impact of the Current United States Guidelines on the Management of Actinic Keratosis

    PubMed Central

    2010-01-01

    Actinic keratosis is one of the most common diagnoses made by dermatologists. Many experts recommend treating all actinic keratoses because of their potential to progress to invasive squamous cell carcinoma. Physicians have a large armamentarium of actinic keratosis treatment modalities available to them, including destructive therapies, such as cryotherapy, curettage and electrodessication, chemical peels, photodynamic therapy, and topical therapies, including 5-fluorouracil, imiquimod, and diclofenac. In addition to standardized monotherapy regimens, combinations of two concomitant or sequential therapies and alternative topical dosing regimens have been studied in a number of clinical trials. Such therapeutic courses are used to maintain or enhance efficacy while improving tolerability, convenience, and/or patient adherence. This abundance of treatment options prompted development of several actinic keratosis management guidelines. Whereas two sets of treatment guidelines were published by European organizations within the past three years, the most recent United States-based guidelines for dermatologists were published by the American Academy of Dermatology in 1995. Because they are not up to date, the 1995 United States guidelines lack recent clinical developments and an evidence rating system and can no longer effectively guide practitioners. While there are benefits and potential limitations to developing an updated set of United States-based guidelines, there is a clearly defined need for a unified, comprehensive, evidence-based guideline approach to actinic keratosis treatment that balances the need to tailor long-term management of the disease to the needs of the individual patient. PMID:21103312

  6. Distributed actin turnover in the lamellipodium and FRAP kinetics.

    PubMed

    Smith, Matthew B; Kiuchi, Tai; Watanabe, Naoki; Vavylonis, Dimitrios

    2013-01-08

    Studies of actin dynamics at the leading edge of motile cells with single-molecule speckle (SiMS) microscopy have shown a broad distribution of EGFP-actin speckle lifetimes and indicated actin polymerization and depolymerization over an extended region. Other experiments using FRAP with the same EGFP-actin as a probe have suggested, by contrast, that polymerization occurs exclusively at the leading edge. We performed FRAP experiments on XTC cells to compare SiMS to FRAP on the same cell type. We used speckle statistics obtained by SiMS to model the steady-state distribution and kinetics of actin in the lamellipodium. We demonstrate that a model with a single diffuse actin species is in good agreement with FRAP experiments. A model including two species of diffuse actin provides an even better agreement. The second species consists of slowly diffusing oligomers that associate to the F-actin network throughout the lamellipodium or break up into monomers after a characteristic time. Our work motivates studies to test the presence and composition of slowly diffusing actin species that may contribute to local remodeling of the actin network and increase the amount of soluble actin.

  7. Polymerization of actin in RBL-2H3 cells can be triggered through either the IgE receptor or the adenosine receptor but different signaling pathways are used.

    PubMed Central

    Apgar, J R

    1994-01-01

    Crosslinking of the IgE receptor on rat basophilic leukemia (RBL) cells using the multivalent antigen DNP-BSA leads to a rapid and sustained increase in the filamentous actin content of the cells. Stimulation of RBL cells through the adenosine receptor also induces a very rapid polymerization of actin, which peaks in 45-60 s and is equivalent in magnitude to the F-actin response elicited through stimulation of the IgE receptor. However, in contrast to the IgE mediated response, which remains elevated for over 30 min, the F-actin increase induced by the adenosine analogue 5'-(N-ethylcarboxamido)-adenosine (NECA) is relatively transient and returns to baseline values within 5-10 min. While previous work has shown that the polymerization of actin in RBL cells stimulated through the IgE receptor is mediated by protein kinase C (PKC), protein kinase inhibitors have no effect on the F-actin response activated through the adenosine receptor. In contrast, pretreatment of the cells with pertussis toxin completely inhibits the F-actin response to NECA but has relatively little effect on the response induced through the IgE receptor. Stimulation of RBL cells through either receptor causes increased production of phosphatidylinositol mono-phosphate (PIP) and phosphatidylinositol bis-phosphate (PIP2), which correlates with the F-actin response. Production of PIP and PIP2 may be important downstream signals since these polyphosphoinositides are able to regulate the interaction of gelsolin and profilin with actin. Thus the polymerization of actin can be triggered through either the adenosine receptor or the IgE receptor, but different upstream signaling pathways are being used. The IgE mediated response requires the activation of PKC while stimulation through the adenosine receptor is PKC independent but involves a G protein. PMID:8049523

  8. Actinous enigma or enigmatic actin

    PubMed Central

    Povarova, Olga I; Uversky, Vladimir N; Kuznetsova, Irina M; Turoverov, Konstantin K

    2014-01-01

    Being the most abundant protein of the eukaryotic cell, actin continues to keep its secrets for more than 60 years. Everything about this protein, its structure, functions, and folding, is mysteriously counterintuitive, and this review represents an attempt to solve some of the riddles and conundrums commonly found in the field of actin research. In fact, actin is a promiscuous binder with a wide spectrum of biological activities. It can exist in at least three structural forms, globular, fibrillar, and inactive (G-, F-, and I-actin, respectively). G-actin represents a thermodynamically instable, quasi-stationary state, which is formed in vivo as a result of the energy-intensive, complex posttranslational folding events controlled and driven by cellular folding machinery. The G-actin structure is dependent on the ATP and Mg2+ binding (which in vitro is typically substituted by Ca2+) and protein is easily converted to the I-actin by the removal of metal ions and by action of various denaturing agents (pH, temperature, and chemical denaturants). I-actin cannot be converted back to the G-form. Foldable and “natively folded” forms of actin are always involved in interactions either with the specific protein partners, such as Hsp70 chaperone, prefoldin, and the CCT chaperonin during the actin folding in vivo or with Mg2+ and ATP as it takes place in the G-form. We emphasize that the solutions for the mysteries of actin multifunctionality, multistructurality, and trapped unfolding can be found in the quasi-stationary nature of this enigmatic protein, which clearly possesses many features attributed to both globular and intrinsically disordered proteins.

  9. 2-Aminoethoxydiphenyl borate (2-APB) reduces alkaline phosphatase release, CD63 expression, F-actin polymerization and chemotaxis without affecting the phagocytosis activity in bovine neutrophils.

    PubMed

    Conejeros, I; Velásquez, Z D; Carretta, M D; Alarcón, P; Hidalgo, M A; Burgos, R A

    2012-01-15

    2-Aminoethoxydiphenyl borate (2-APB) interferes with the Ca(2+) influx and reduces the ROS production, gelatinase secretion and CD11b expression in bovine neutrophils. Moreover, it has been suggested that inhibition of the Ca(2+) channel involved in the store operated Ca(2+) entry (SOCE) is a potential target for the development of new anti-inflammatory drugs in cattle, however it is unknown whether 2-APB affects neutrophil functions associated with the innate immune response. This study describes the effect of 2-APB, a putative SOCE inhibitor, on alkaline phosphatase activity a marker of secretory vesicles, CD63 a marker for azurophil granules, F-actin polymerization and in vitro chemotaxis in bovine neutrophils stimulated with platelet-activating factor (PAF). Also, we evaluated the effect of 2-APB in the phagocytic activity against Escherichia coli and Staphylococcus aureus bioparticles. We observed that doses of 2-APB ≥10 μM significantly reduced alkaline phosphatase activity and in vitro chemotaxis, whereas concentrations of 2-APB ≥50 μM reduced CD63 expression and F-actin polymerization. Finally, we observed that 2-APB did not affect the phagocytic activity in neutrophils incubated with E. coli and S. aureus bioparticles. We concluded that inhibition of Ca(2+) influx could be a useful strategy to reduce inflammatory process in cattle.

  10. cAMP signaling by anthrax edema toxin induces transendothelial cell tunnels, which are resealed by MIM via Arp2/3-driven actin polymerization.

    PubMed

    Maddugoda, Madhavi P; Stefani, Caroline; Gonzalez-Rodriguez, David; Saarikangas, Juha; Torrino, Stéphanie; Janel, Sebastien; Munro, Patrick; Doye, Anne; Prodon, François; Aurrand-Lions, Michel; Goossens, Pierre L; Lafont, Frank; Bassereau, Patricia; Lappalainen, Pekka; Brochard, Françoise; Lemichez, Emmanuel

    2011-11-17

    RhoA-inhibitory bacterial toxins, such as Staphylococcus aureus EDIN toxin, induce large transendothelial cell macroaperture (TEM) tunnels that rupture the host endothelium barrier and promote bacterial dissemination. Host cells repair these tunnels by extending actin-rich membrane waves from the TEM edges. We reveal that cyclic-AMP signaling produced by Bacillus anthracis edema toxin (ET) also induces TEM formation, which correlates with increased vascular permeability. We show that ET-induced TEM formation resembles liquid dewetting, a physical process of nucleation and growth of holes within a thin liquid film. We also identify the cellular mechanisms of tunnel closure and reveal that the I-BAR domain protein Missing in Metastasis (MIM) senses de novo membrane curvature generated by the TEM, accumulates at the TEM edge, and triggers Arp2/3-dependent actin polymerization, which induces actin-rich membrane waves that close the TEM. Thus, the balance between ET-induced TEM formation and resealing likely determines the integrity of the host endothelium barrier.

  11. Prevention of RhoA activation and cofilin-mediated actin polymerization mediates the antihypertrophic effect of adenosine receptor agonists in angiotensin II- and endothelin-1-treated cardiomyocytes.

    PubMed

    Zeidan, Asad; Gan, Xiaohong Tracey; Thomas, Ashley; Karmazyn, Morris

    2014-01-01

    Adenosine receptor activation has been shown to be associated with diminution of cardiac hypertrophy and it has been suggested that endogenously produced adenosine may serve to blunt pro-hypertrophic processes. In the present study, we determined the effects of two pro-hypertrophic stimuli, angiotensin II (Ang II, 100 nM) and endothelin-1 (ET-1, 10 nM) on Ras homolog gene family, member A (RhoA)/Rho-associated, coiled-coil containing protein kinase (ROCK) activation in cultured neonatal rat ventricular myocytes and whether the latter serves as a target for the anti-hypertrophic effect of adenosine receptor activation. Both hypertrophic stimuli potently increased RhoA activity with peak activation occurring 15-30 min following agonist addition. These effects were associated with significantly increased phosphorylation (inactivation) of cofilin, a downstream mediator of RhoA, an increase in actin polymerization, and increased activation and nuclear import of p38 mitogen activated protein kinase. The ability of both Ang II and ET-1 to activate the RhoA pathway was completely prevented by the adenosine A1 receptor agonist N (6)-cyclopentyladenosine, the A2a receptor agonist 2-p-(2-carboxyethyl)-phenethylamino-5'-N-ethylcarboxamidoadenosine, the A3 receptor agonist N (6)-(3-iodobenzyl)adenosine-5'-methyluronamide as well as the nonspecific adenosine analog 2-chloro adenosine. All effects of specific receptor agonists were prevented by their respective receptor antagonists. Moreover, all adenosine agonists prevented either Ang II- or ET-1-induced hypertrophy, a property shared by the RhoA inhibitor Clostridium botulinum C3 exoenzyme, the ROCK inhibitor Y-27632 or the actin depolymerizing agent latrunculin B. Our study therefore demonstrates that both Ang II and ET-1 can activate the RhoA pathway and that prevention of the hypertrophic response to both agonists by adenosine receptor activation is mediated by prevention of RhoA stimulation and actin polymerization.

  12. The Actin Cytoskeleton as a Therapeutic Target for the Prevention of Relapse to Methamphetamine Use.

    PubMed

    Young, Erica J; Briggs, Sherri B; Miller, Courtney A

    2015-01-01

    A high rate of relapse is a defining characteristic of substance use disorder for which few treatments are available. Exposure to environmental cues associated with previous drug use can elicit relapse by causing the involuntary retrieval of deeply engrained associative memories that trigger a strong motivation to seek out drugs. Our lab is focused on identifying and disrupting mechanisms that support these powerful consolidated memories, with the goal of developing therapeutics. A particularly promising mechanism is regulation of synaptic dynamics by actin polymerization within dendritic spines. Emerging evidence indicates that memory is supported by structural and functional plasticity dendritic spines, for which actin polymerization is critical, and that prior drug use increases both spine and actin dynamics. Indeed we have found that inhibiting amygdala (AMY) actin polymerization immediately or twenty-four hours prior to testing disrupted methamphetamine (METH)-associated memories, but not food reward or fear memories. Furthermore, METH training increased AMY spine density which was reversed by actin depolymerization treatment. Actin dynamics were also shifted to a more dynamic state by METH training. While promising, actin polymerization inhibitors are not a viable therapeutic, as a multitude of peripheral process (e.g. cardiac function) rely on dynamic actin. For this reason, we have shifted our focus upstream of actin polymerization to nonmuscle myosin II. We and others have demonstrated that myosin IIb imparts a mechanical force that triggers spine actin polymerization in response to synaptic stimulation. Similar to an actin depolymerizing compound, pre-test inhibition of myosin II ATPase activity in the AMY produced a rapid and lasting disruption of drug-seeking behavior. While many questions remain, these findings indicate that myosin II represents a potential therapeutic avenue to target the actin cytoskeleton and disrupt the powerful, extinction

  13. Membrane targeting of WAVE2 is not sufficient for WAVE2-dependent actin polymerization: a role for IRSp53 in mediating the interaction between Rac and WAVE2.

    PubMed

    Abou-Kheir, Wassim; Isaac, Beth; Yamaguchi, Hideki; Cox, Dianne

    2008-02-01

    Wiskott-Aldrich syndrome protein (WASP)-family verprolin homologous (WAVE) proteins play a major role in Rac-induced actin dynamics, but Rac does not bind directly to WAVE proteins. It has been proposed that either the insulin receptor substrate protein 53 (IRSp53) or a complex of proteins containing Abelson interactor protein 1 (Abi1) mediates the interaction of WAVE2 and Rac. Depletion of endogenous IRSp53 by RNA-mediated interference (RNAi) in a RAW/LR5 macrophage cell line resulted in a significant reduction of Rac1Q61L-induced surface ruffles and colony-stimulating factor 1 (CSF-1)-induced actin polymerization, protrusion and cell migration. However, IRSp53 was not essential for Fcgamma-R-mediated phagocytosis, formation of podosomes or for formation of Cdc42V12-induced filopodia. IRSp53 was found to be present in an immunoprecipitable complex with WAVE2 and Abi1 in a Rac1-activation-dependent manner in RAW/LR5 cells in vivo. Importantly, reduction of endogenous IRSp53 or expression of IRSp53 lacking the WAVE2-binding site (IRSp53DeltaSH3) resulted in a significant reduction in the association of Rac1 with WAVE2 and Abi1, indicating that the association of Rac1 with WAVE2 and Abi1 is IRSp53 dependent. While it has been proposed that WAVE2 activity is regulated by membrane recruitment, membrane targeting of WAVE2 in RAW/LR5 and Cos-7 cells did not induce actin polymerization or protrusion, suggesting that membrane recruitment was insufficient for regulation of WAVE2. Combined, these data suggest that IRSp53 links Rac1 to WAVE2 in vivo and its function is crucial for production of CSF-1-induced F-actin-rich protrusions and cell migration in macrophages. This study indicates that Rac1, along with IRSp53 and Abi1, is involved in a more complex and tight regulation of WAVE2 than one operating solely through membrane localization.

  14. Structural reorganization of parallel actin bundles by crosslinking proteins: Incommensurate states of twist

    NASA Astrophysics Data System (ADS)

    Shin, Homin; Grason, Gregory M.

    2010-11-01

    We construct a coarse-grained model of parallel actin bundles crosslinked by compact globular bundling proteins, such as fascin and espin, necessary components of filopodial and mechanosensory bundles. Consistent with structural observations of bundles, we find that the optimal geometry for crosslinking is overtwisted, requiring a coherent structural change of the helical geometry of the filaments. We study the linker-dependent thermodynamic transition of bundled actin filaments from their native state to the overtwisted state and map out the “twist-state” phase diagram in terms of the availability as well as the flexibility of crosslinker proteins. We predict that the transition from the uncrosslinked to fully crosslinked state is highly sensitive to linker flexibility: flexible crosslinking smoothly distorts the twist state of bundled filaments, while rigidly crosslinked bundles undergo a phase transition, rapidly overtwisting filaments over a narrow range of free crosslinker concentrations. Additionally, we predict a rich spectrum of intermediate structures, composed of alternating domains of sparsely bound (untwisted) and strongly bound (overtwisted) filaments. This model reveals that subtle differences in crosslinking agents themselves modify not only the detailed structure of parallel actin bundles, but also the thermodynamic pathway by which they form.

  15. Imaging Modulated Reflections from a Semi-Crystalline State of Profilin:Actin Crystals

    NASA Technical Reports Server (NTRS)

    Lovelace, J.; Bellamy, H.; Snell, E. H.; Borgstahl, G.

    2003-01-01

    Commensurate and incommensurate modulation in protein crystals remain terra incognita for crystallographers. While small molecule crystallographers have successfully wrestled with this type of structure, no modulated macromolecular structures have been determined to date. In this work, methods and strategies have been developed to collect and analyze data from modulated macromolecular crystals. Preliminary data using these methods are presented for a semi-crystalline state of profilin:actin.

  16. Cross-linking study on skeletal muscle actin: properties of suberimidate-treated actin.

    PubMed

    Ohara, O; Takahashi, S; Ooi, T; Fujiyoshi, Y

    1982-06-01

    Cross-linking experiments were performed on muscle skeletal actin, using imidoesters of various chain lengths. Chemical analyses on all products except one (derived from succinimidate) show evidence of the presence of intramolecular cross-links in the molecule. The detailed properties of suberimidate-treated actin (SA) are as follows: SA contains nearly 1 mol of intramolecular cross-link per mol of actin and less than 15% of intermolecularly cross-linked products. Even at a low salt concentration, SA is polymeric, exchanges slowly its bound nucleotide with free nucleotides in solution, and shows an F-actin-type CD spectrum. Electron micrographs of SA reveal that SA exists actually as fibrous polymers in solutions of low ionic strength, although the fibers seem to be less rigid than those at high salt concentration. The F-form of SA at a high salt concentration is indistinguishable from intact F-actin. SA can bind heavy meromyosin and activate the ATPase of heavy meromyosin as observed for intact F-actin. Tropomyosin binds SA only at a high salt concentration. These results show that SA possesses the properties of F-actin even in media of low salt concentration, which are favorable for depolymerization of F-actin. Thus, we may infer that the conformation of SA is frozen in the F-state of actin by the introduction of intramolecular cross-links in the protein.

  17. Persistent nuclear actin filaments inhibit transcription by RNA polymerase II.

    PubMed

    Serebryannyy, Leonid A; Parilla, Megan; Annibale, Paolo; Cruz, Christina M; Laster, Kyle; Gratton, Enrico; Kudryashov, Dmitri; Kosak, Steven T; Gottardi, Cara J; de Lanerolle, Primal

    2016-09-15

    Actin is abundant in the nucleus and it is clear that nuclear actin has important functions. However, mystery surrounds the absence of classical actin filaments in the nucleus. To address this question, we investigated how polymerizing nuclear actin into persistent nuclear actin filaments affected transcription by RNA polymerase II. Nuclear filaments impaired nuclear actin dynamics by polymerizing and sequestering nuclear actin. Polymerizing actin into stable nuclear filaments disrupted the interaction of actin with RNA polymerase II and correlated with impaired RNA polymerase II localization, dynamics, gene recruitment, and reduced global transcription and cell proliferation. Polymerizing and crosslinking nuclear actin in vitro similarly disrupted the actin-RNA-polymerase-II interaction and inhibited transcription. These data rationalize the general absence of stable actin filaments in mammalian somatic nuclei. They also suggest a dynamic pool of nuclear actin is required for the proper localization and activity of RNA polymerase II.

  18. Actin-Dynamics in Plant Cells: The Function of Actin-Perturbing Substances: Jasplakinolide, Chondramides, Phalloidin, Cytochalasins, and Latrunculins.

    PubMed

    Holzinger, Andreas; Blaas, Kathrin

    2016-01-01

    This chapter gives an overview of the most common F-actin-perturbing substances that are used to study actin dynamics in living plant cells in studies on morphogenesis, motility, organelle movement, or when apoptosis has to be induced. These substances can be divided into two major subclasses: F-actin-stabilizing and -polymerizing substances like jasplakinolide and chondramides and F-actin-severing compounds like chytochalasins and latrunculins. Jasplakinolide was originally isolated form a marine sponge, and can now be synthesized and has become commercially available, which is responsible for its wide distribution as membrane-permeable F-actin-stabilizing and -polymerizing agent, which may even have anticancer activities. Cytochalasins, derived from fungi, show an F-actin-severing function and many derivatives are commercially available (A, B, C, D, E, H, J), also making it a widely used compound for F-actin disruption. The same can be stated for latrunculins (A, B), derived from red sea sponges; however the mode of action is different by binding to G-actin and inhibiting incorporation into the filament. In the case of swinholide a stable complex with actin dimers is formed resulting also in severing of F-actin. For influencing F-actin dynamics in plant cells only membrane permeable drugs are useful in a broad range. We however introduce also the phallotoxins and synthetic derivatives, as they are widely used to visualize F-actin in fixed cells. A particular uptake mechanism has been shown for hepatocytes, but has also been described in siphonal giant algae. In the present chapter the focus is set on F-actin dynamics in plant cells where alterations in cytoplasmic streaming can be particularly well studied; however methods by fluorescence applications including phalloidin and antibody staining as well as immunofluorescence-localization of the inhibitor drugs are given.

  19. Actin-Dynamics in Plant Cells: The Function of Actin Perturbing Substances Jasplakinolide, Chondramides, Phalloidin, Cytochalasins, and Latrunculins

    PubMed Central

    Holzinger, Andreas; Blaas, Kathrin

    2016-01-01

    This chapter will give an overview of the most common F-actin perturbing substances, that are used to study actin dynamics in living plant cells in studies on morphogenesis, motility, organelle movement or when apoptosis has to be induced. These substances can be divided into two major subclasses – F-actin stabilizing and polymerizing substances like jasplakinolide, chondramides and F-actin severing compounds like chytochalasins and latrunculins. Jasplakinolide was originally isolated form a marine sponge, and can now be synthesized and has become commercially available, which is responsible for its wide distribution as membrane permeable F-actin stabilizing and polymerizing agent, which may even have anti-cancer activities. Cytochalasins, derived from fungi show an F-actin severing function and many derivatives are commercially available (A, B, C, D, E, H, J), also making it a widely used compound for F-actin disruption. The same can be stated for latrunculins (A, B), derived from red sea sponges, however the mode of action is different by binding to G-actin and inhibiting incorporation into the filament. In the case of swinholide a stable complex with actin dimers is formed resulting also in severing of F-actin. For influencing F-actin dynamics in plant cells only membrane permeable drugs are useful in a broad range. We however introduce also the phallotoxins and synthetic derivatives, as they are widely used to visualize F-actin in fixed cells. A particular uptake mechanism has been shown for hepatocytes, but has also been described in siphonal giant algae. In the present chapter the focus is set on F-actin dynamics in plant cells where alterations in cytoplasmic streaming can be particularly well studied; however methods by fluorescence applications including phalloidin- and antibody staining as well as immunofluorescence-localization of the inhibitor drugs are given. PMID:26498789

  20. AmpA protein functions by different mechanisms to influence early cell type specification and to modulate cell adhesion and actin polymerization in Dictyostelium discoideum.

    PubMed

    Cost, Hoa N; Noratel, Elizabeth F; Blumberg, Daphne D

    2013-01-01

    The Dictyostelium discoideum ampA gene encodes a multifunctional regulator protein that modulates cell-cell and cell-substrate adhesions and actin polymerization during growth and is necessary for correct cell type specification and patterning during development. Insertional inactivation of the ampA gene results in defects that define two distinct roles for the ampA gene during development. AmpA is necessary in a non-cell autonomous manner to prevent premature expression of a prespore gene marker. It is also necessary in a cell autonomous manner for the anterior like cells, which express the ampA gene, to migrate to the upper cup during culmination. It is also necessary to prevent excessive cell-cell agglutination when cells are developed in a submerged suspension culture. Here, we demonstrate that a supernatant source of AmpA protein, added extracellularly, can prevent the premature mis-expression of the prespore marker. Synthetic oligopeptides are used to identify the domain of the AmpA protein that is important for preventing cells from mis-expressing the prespore gene. We further demonstrate that a factor capable of inducing additional cells to express the prespore gene marker accumulates extracellularly in the absence of AmpA protein. While the secreted AmpA acts extracellularly to suppress prespore gene expression, the effects of AmpA on cell agglutination and on actin polymerization in growing cells are not due to an extracellular role of secreted AmpA protein. Rather, these effects appear to reflect a distinct cell autonomous role of the ampA gene. Finally, we show that secretion of AmpA protein is brought about by elevating the levels of expression of ampA so that the protein accumulates to an excessive level.

  1. Nuclear role of WASp in gene transcription is uncoupled from its ARP2/3-dependent cytoplasmic role in actin polymerization.

    PubMed

    Sadhukhan, Sanjoy; Sarkar, Koustav; Taylor, Matthew; Candotti, Fabio; Vyas, Yatin M

    2014-07-01

    Defects in Wiskott-Aldrich Syndrome protein (WASp) underlie development of WAS, an X-linked immunodeficiency and autoimmunity disorder of childhood. Nucleation-promoting factors (NPFs) of the WASp family generate F-actin in the cytosol via the VCA (verprolin-homology, cofilin-homology, and acidic) domain and support RNA polymerase II-dependent transcription in the nucleus. Whether nuclear-WASp requires the integration of its actin-related protein (ARP)2/3-dependent cytoplasmic function to reprogram gene transcription, however, remains unresolved. Using the model of human TH cell differentiation, we find that WASp has a functional nuclear localizing and nuclear exit sequences, and accordingly, its effects on transcription are controlled mainly at the level of its nuclear entry and exit via the nuclear pore. Human WASp does not use its VCA-dependent, ARP2/3-driven, cytoplasmic effector mechanisms to support histone H3K4 methyltransferase activity in the nucleus of TH1-skewed cells. Accordingly, an isolated deficiency of nuclear-WASp is sufficient to impair the transcriptional reprogramming of TBX21 and IFNG promoters in TH1-skewed cells, whereas an isolated deficiency of cytosolic-WASp does not impair this process. In contrast, nuclear presence of WASp in TH2-skewed cells is small, and its loss does not impair transcriptional reprogramming of GATA3 and IL4 promoters. Our study unveils an ARP2/3:VCA-independent function of nuclear-WASp in TH1 gene activation that is uncoupled from its cytoplasmic role in actin polymerization.

  2. Thymoquinone decreases F-actin polymerization and the proliferation of human multiple myeloma cells by suppressing STAT3 phosphorylation and Bcl2/Bcl-XL expression

    PubMed Central

    2011-01-01

    Background Thymoquinone (TQ), the major active component of the medicinal herb Nigella sativa Linn., has been described as a chemopreventive and chemotherapeutic compound. Methods In this study, we investigated the effect of TQ on survival, actin cytoskeletal reorganization, proliferation and signal transduction in multiple myeloma (MM) cells. Results We found that TQ induces growth arrest in both MDN and XG2 cells in a dose- and time-dependent manner. TQ also inhibited CXC ligand-12 (CXCL-12)-mediated actin polymerization and cellular proliferation, as shown by flow cytometry. The signal transducer and activator of transcription (STAT) and B-cell lymphoma-2 (Bcl-2) signaling pathways may play important roles in the malignant transformation of a number of human malignancies. The constitutive activation of the STAT3 and Bcl-2 pathways is frequently observed in several cancer cell lines, including MM cells. Using flow cytometry, we found that TQ markedly decreased STAT3 phosphorylation and Bcl-2 and Bcl-XL expression without modulating STAT5 phosphorylation in MM cells. Using western blotting, we confirmed the inhibitory effect of TQ on STAT3 phosphorylation and Bcl-2 and Bcl-XL expression. Conclusions Taken together, our data suggests that TQ could potentially be applied toward the treatment of MM and other malignancies. PMID:22177381

  3. Effects of polychlorinated biphenyls, hexachlorocyclohexanes, and mercury on human neutrophil apoptosis, actin cytoskelton, and oxidative state

    USGS Publications Warehouse

    Sweet, L.I.; Passino-Reader, D. R.; Meier, P.G.; Omann, G.M.

    2006-01-01

    Apoptosis, or programmed cell death, has been proposed as a biomarker for environmental contaminant effects. In this work, we test the hypothesis that in vitro assays of apoptosis are sensitive indicators of immunological effects of polychlorinated biphenyls, hexachlorocyclohexanes, and mercury on human neutrophils. Apoptosis, necrosis, and viability as well as the related indicators F-actin levels, and active thiol state were measured in purified human neutrophils after treatment with contaminants. Effective concentrations observed were 0.3 μM (60 μg/L) mercury, 750 μg/L Aroclor 1254, and 50 μM (14,500 μg/L) hexachlorocylcohexanes. Concentrations of contaminants that induced apoptosis also decreased cellular F-actin levels. Active thiols were altered by mercury, but not organochlorines. Comparison of these data with levels of contaminants reported to be threats to human health indicate neutrophil apoptosis is a sensitive indicator of mercury toxicity.

  4. Why is Actin Patchy?

    NASA Astrophysics Data System (ADS)

    Carlsson, Anders

    2009-03-01

    The intracellular protein actin, by reversibly polymerizing into filaments, generates forces for motion and shape changes of many types of biological cells. Fluorescence imaging studies show that actin often occurs in the form of localized patches of size roughly one micrometer at the cell membrane. Patch formation is most prevalent when the free-actin concentration is low. I investigate possible mechanisms for the formation of actin patches by numerically simulating the ``dendritic nucleation'' model of actin network growth. The simulations include filament growth, capping, branching, severing, and debranching. The attachment of membrane-bound activators to actin filaments, and subsequent membrane diffusion of unattached activators, are also included. It is found that as the actin concentration increases from zero, the actin occurs in patches at lower actin concentrations, and the size of the patches increases with increasing actin concentration. At a critical value of the actin concentration, the system undergoes a transition to complete coverage. The results are interpreted within the framework of reaction-diffusion equations in two dimensions.

  5. Novel actin depolymerizing macrolide aplyronine A.

    PubMed

    Saito, S; Watabe, S; Ozaki, H; Kigoshi, H; Yamada, K; Fusetani, N; Karaki, H

    1996-09-01

    Aplyronine A is a macrolide isolated from Aplysia kurodai. By monitoring fluorescent intensity of pyrenyl-actin, it was found that aplyronine A inhibited both the velocity and the degree of actin polymerization. Aplyronine A also quickly depolymerized F-actin. The kinetics of depolymerization suggest that aplyronine A severs F-actin. The relationship between the concentration of total actin and F-actin at different concentrations of aplyronine A suggests that aplyronine A forms a 1:1 complex with G-actin. From these results, it is concluded that aplyronine A inhibits actin polymerization and depolymerizes F-actin by nibbling. Comparison of the chemical structure of aplyronine A and another actin-depolymerizing macrolide, mycalolide B, suggests that the side-chain but not the macrolide ring of aplyronine A may account for its actin binding and severing activity.

  6. Reconstitution of actin-based motility of Listeria and Shigella using pure proteins

    NASA Astrophysics Data System (ADS)

    Loisel, Thomas P.; Boujemaa, Rajaa; Pantaloni, Dominique; Carlier, Marie-France

    1999-10-01

    Actin polymerization is essential for cell locomotion and is thought to generate the force responsible for cellular protrusions. The Arp2/3 complex is required to stimulate actin assembly at the leading edge in response to signalling. The bacteria Listeria and Shigella bypass the signalling pathway and harness the Arp2/3 complex to induce actin assembly and to propel themselves in living cells. However, the Arp2/3 complex alone is insufficient to promote movement. Here we have used pure components of the actin cytoskeleton to reconstitute sustained movement in Listeria and Shigella in vitro. Actin-based propulsion is driven by the free energy released by ATP hydrolysis linked to actin polymerization, and does not require myosin. In addition to actin and activated Arp2/3 complex, actin depolymerizing factor (ADF, or cofilin) and capping protein are also required for motility as they maintain a high steady-state level of G-actin, which controls the rate of unidirectional growth of actin filaments at the surface of the bacterium. The movement is more effective when profilin, α-actinin and VASP (for Listeria) are also included. These results have implications for our understanding of the mechanism of actin-based motility in cells.

  7. State of actin cytoskeleton and development of slow-frozen and vitrified rabbit pronuclear zygotes.

    PubMed

    Kulíková, Barbora; Jiménez-Trigos, Estrella; Makarevich, Alexander V; Chrenek, Peter; Vicente, José S; Marco-Jiménez, Francisco

    2016-02-01

    This study was focused on the effect of cryopreservation on the state of actin cytoskeleton and development of rabbit pronuclear zygotes. Zygotes were collected from superovulated females and immediately used for 1) slow-freezing in a solution containing 1.5 M 1,2-propanediol and 0.2 M sucrose, or 2) vitrification in a solution containing 42.0% (v/v) of ethylene glycol, 18.0% (w/v) of dextran and 0.3 M sucrose as cryoprotectants. After thawing or warming, respectively, zygotes were evaluated for 1) actin distribution, 2) in vitro or 3) in vivo development to blastocyst. Comparing actin filaments distribution, a significantly higher number of vitrified zygotes with actin distributed in cell border was observed (55 ± 7.7 vs. 74 ± 6.1% for slow-frozen vs. vitrified, respectively). After 24 and 72 h of in vitro development, significant differences in the cleavage and morula rate among the groups were observed (9 ± 2.4 and 3 ± 1.3 vs. 44 ± 3.0 and 28 ± 2.7% for slow-frozen vs. vitrified, respectively). None of the slow-frozen zygotes reached the blastocyst stage, in contrast to the vitrified counterparts (11 ± 1.9%). Under in vivo culture conditions, a significant difference in blastocyst rate was observed between vitrified and fresh embryos (6 ± 1.5 vs. 35 ± 4.4% respectively). Our results showed that alterations in actin cytoskeleton and deteriorated development are more evident in slow-frozen than vitrified pronuclear zygotes. Vitrification method seems to be a more effective option for rabbit zygotes cryopreservation, although pronuclear zygotes manipulation per se resulted in a notable decrease in embryo development.

  8. Mitochondrial Dysfunction, Disruption of F-Actin Polymerization, and Transcriptomic Alterations in Zebrafish Larvae Exposed to Trichloroethylene.

    PubMed

    Wirbisky, Sara E; Damayanti, Nur P; Mahapatra, Cecon T; Sepúlveda, Maria S; Irudayaraj, Joseph; Freeman, Jennifer L

    2016-02-15

    Trichloroethylene (TCE) is primarily used as an industrial degreasing agent and has been in use since the 1940s. TCE is released into the soil, surface, and groundwater. From an environmental and regulatory standpoint, more than half of Superfund hazardous waste sites on the National Priority List are contaminated with TCE. Occupational exposure to TCE occurs primarily via inhalation, while environmental TCE exposure also occurs through ingestion of contaminated drinking water. Current literature links TCE exposure to various adverse health effects including cardiovascular toxicity. Current studies aiming to address developmental cardiovascular toxicity utilized rodent and avian models, with the majority of studies using relatively higher parts per million (mg/L) doses. In this study, to further investigate developmental cardiotoxicity of TCE, zebrafish embryos were treated with 0, 10, 100, or 500 parts per billion (ppb; μg/L) TCE during embryogenesis and/or through early larval stages. After the appropriate exposure period, angiogenesis, F-actin, and mitochondrial function were assessed. A significant dose-response decrease in angiogenesis, F-actin, and mitochondrial function was observed. To further complement this data, a transcriptomic profile of zebrafish larvae was completed to identify gene alterations associated with the 10 ppb TCE exposure. Results from the transcriptomic data revealed that embryonic TCE exposure caused significant changes in genes associated with cardiovascular disease, cancer, and organismal injury and abnormalities with a number of targets in the FAK signaling pathway. Overall, results from our study support TCE as a developmental cardiovascular toxicant, provide molecular targets and pathways for investigation in future studies, and indicate a need for continued priority for environmental regulation.

  9. Perinuclear Arp2/3-driven actin polymerization enables nuclear deformation to facilitate cell migration through complex environments

    PubMed Central

    Thiam, Hawa-Racine; Vargas, Pablo; Carpi, Nicolas; Crespo, Carolina Lage; Raab, Matthew; Terriac, Emmanuel; King, Megan C.; Jacobelli, Jordan; Alberts, Arthur S.; Stradal, Theresia; Lennon-Dumenil, Ana-Maria; Piel, Matthieu

    2016-01-01

    Cell migration has two opposite faces: although necessary for physiological processes such as immune responses, it can also have detrimental effects by enabling metastatic cells to invade new organs. In vivo, migration occurs in complex environments and often requires a high cellular deformability, a property limited by the cell nucleus. Here we show that dendritic cells, the sentinels of the immune system, possess a mechanism to pass through micrometric constrictions. This mechanism is based on a rapid Arp2/3-dependent actin nucleation around the nucleus that disrupts the nuclear lamina, the main structure limiting nuclear deformability. The cells' requirement for Arp2/3 to pass through constrictions can be relieved when nuclear stiffness is decreased by suppressing lamin A/C expression. We propose a new role for Arp2/3 in three-dimensional cell migration, allowing fast-moving cells such as leukocytes to rapidly and efficiently migrate through narrow gaps, a process probably important for their function. PMID:26975831

  10. Perinuclear Arp2/3-driven actin polymerization enables nuclear deformation to facilitate cell migration through complex environments.

    PubMed

    Thiam, Hawa-Racine; Vargas, Pablo; Carpi, Nicolas; Crespo, Carolina Lage; Raab, Matthew; Terriac, Emmanuel; King, Megan C; Jacobelli, Jordan; Alberts, Arthur S; Stradal, Theresia; Lennon-Dumenil, Ana-Maria; Piel, Matthieu

    2016-03-15

    Cell migration has two opposite faces: although necessary for physiological processes such as immune responses, it can also have detrimental effects by enabling metastatic cells to invade new organs. In vivo, migration occurs in complex environments and often requires a high cellular deformability, a property limited by the cell nucleus. Here we show that dendritic cells, the sentinels of the immune system, possess a mechanism to pass through micrometric constrictions. This mechanism is based on a rapid Arp2/3-dependent actin nucleation around the nucleus that disrupts the nuclear lamina, the main structure limiting nuclear deformability. The cells' requirement for Arp2/3 to pass through constrictions can be relieved when nuclear stiffness is decreased by suppressing lamin A/C expression. We propose a new role for Arp2/3 in three-dimensional cell migration, allowing fast-moving cells such as leukocytes to rapidly and efficiently migrate through narrow gaps, a process probably important for their function.

  11. The impact of the current United States guidelines on the management of actinic keratosis: is it time for an update?

    PubMed

    Martin, George

    2010-11-01

    Actinic keratosis is one of the most common diagnoses made by dermatologists. Many experts recommend treating all actinic keratoses because of their potential to progress to invasive squamous cell carcinoma. Physicians have a large armamentarium of actinic keratosis treatment modalities available to them, including destructive therapies, such as cryotherapy, curettage and electrodessication, chemical peels, photodynamic therapy, and topical therapies, including 5-fluorouracil, imiquimod, and diclofenac. In addition to standardized monotherapy regimens, combinations of two concomitant or sequential therapies and alternative topical dosing regimens have been studied in a number of clinical trials. Such therapeutic courses are used to maintain or enhance efficacy while improving tolerability, convenience, and/or patient adherence. This abundance of treatment options prompted development of several actinic keratosis management guidelines. Whereas two sets of treatment guidelines were published by European organizations within the past three years, the most recent United States-based guidelines for dermatologists were published by the American Academy of Dermatology in 1995. Because they are not up to date, the 1995 United States guidelines lack recent clinical developments and an evidence rating system and can no longer effectively guide practitioners. While there are benefits and potential limitations to developing an updated set of United States-based guidelines, there is a clearly defined need for a unified, comprehensive, evidence-based guideline approach to actinic keratosis treatment that balances the need to tailor long-term management of the disease to the needs of the individual patient.

  12. β- and γ-Actins in the nucleus of human melanoma A375 cells.

    PubMed

    Migocka-Patrzałek, Marta; Makowiecka, Aleksandra; Nowak, Dorota; Mazur, Antonina J; Hofmann, Wilma A; Malicka-Błaszkiewicz, Maria

    2015-11-01

    Actin is a highly conserved protein that is expressed in all eukaryotic cells and has essential functions in the cytoplasm and the nucleus. Nuclear actin is involved in transcription by all three RNA polymerases, chromatin remodelling, RNA processing, intranuclear transport, nuclear export and in maintenance of the nuclear architecture. The nuclear actin level and polymerization state are important factors regulating nuclear processes such as transcription. Our study shows that, in contrast to the cytoplasm, the majority of endogenous nuclear actin is unpolymerized in human melanoma A375 cells. Most mammalian cells express the two non-muscle β- and γ-actin isoforms that differ in only four amino acids. Despite their sequence similarity, studies analysing the cytoplasmic functions of these isoforms demonstrated that β- and γ-actins show differences in localization and function. However, little is known about the involvement of the individual actin isoforms in nuclear processes. Here, we used the human melanoma A375 cell line to analyse actin isoforms in regard to their nuclear localization. We show that both β- and γ-non-muscle actin isoforms are present in nuclei of these cells. Immunolocalization studies demonstrate that both isoforms co-localize with RNA polymerase II and hnRNP U. However, we observe differences in the ratio of cytoplasmic to nuclear actin distribution between the isoforms. We show that β-actin has a significantly higher nucleus-to-cytoplasm ratio than γ-actin.

  13. Coordinated integrin activation by actin-dependent force during T-cell migration.

    PubMed

    Nordenfelt, Pontus; Elliott, Hunter L; Springer, Timothy A

    2016-10-10

    For a cell to move forward it must convert chemical energy into mechanical propulsion. Force produced by actin polymerization can generate traction across the plasma membrane by transmission through integrins to their ligands. However, the role this force plays in integrin activation is unknown. Here we show that integrin activity and cytoskeletal dynamics are reciprocally linked, where actin-dependent force itself appears to regulate integrin activity. We generated fluorescent tension-sensing constructs of integrin αLβ2 (LFA-1) to visualize intramolecular tension during cell migration. Using quantitative imaging of migrating T cells, we correlate tension in the αL or β2 subunit with cell and actin dynamics. We find that actin engagement produces tension within the β2 subunit to induce and stabilize an active integrin conformational state and that this requires intact talin and kindlin motifs. This supports a general mechanism where localized actin polymerization can coordinate activation of the complex machinery required for cell migration.

  14. Plasma Membrane Calcium ATPase Activity Is Regulated by Actin Oligomers through Direct Interaction*

    PubMed Central

    Dalghi, Marianela G.; Fernández, Marisa M.; Ferreira-Gomes, Mariela; Mangialavori, Irene C.; Malchiodi, Emilio L.; Strehler, Emanuel E.; Rossi, Juan Pablo F. C.

    2013-01-01

    As recently described by our group, plasma membrane calcium ATPase (PMCA) activity can be regulated by the actin cytoskeleton. In this study, we characterize the interaction of purified G-actin with isolated PMCA and examine the effect of G-actin during the first polymerization steps. As measured by surface plasmon resonance, G-actin directly interacts with PMCA with an apparent 1:1 stoichiometry in the presence of Ca2+ with an apparent affinity in the micromolar range. As assessed by the photoactivatable probe 1-O-hexadecanoyl-2-O-[9-[[[2-[125I]iodo-4-(trifluoromethyl-3H-diazirin-3-yl)benzyl]oxy]carbonyl]nonanoyl]-sn-glycero-3-phosphocholine, the association of PMCA to actin produced a shift in the distribution of the conformers of the pump toward a calmodulin-activated conformation. G-actin stimulates Ca2+-ATPase activity of the enzyme when incubated under polymerizing conditions, displaying a cooperative behavior. The increase in the Ca2+-ATPase activity was related to an increase in the apparent affinity for Ca2+ and an increase in the phosphoenzyme levels at steady state. Although surface plasmon resonance experiments revealed only one binding site for G-actin, results clearly indicate that more than one molecule of G-actin was needed for a regulatory effect on the pump. Polymerization studies showed that the experimental conditions are compatible with the presence of actin in the first stages of assembly. Altogether, these observations suggest that the stimulatory effect is exerted by short oligomers of actin. The functional interaction between actin oligomers and PMCA represents a novel regulatory pathway by which the cortical actin cytoskeleton participates in the regulation of cytosolic Ca2+ homeostasis. PMID:23803603

  15. Plasma membrane calcium ATPase activity is regulated by actin oligomers through direct interaction.

    PubMed

    Dalghi, Marianela G; Fernández, Marisa M; Ferreira-Gomes, Mariela; Mangialavori, Irene C; Malchiodi, Emilio L; Strehler, Emanuel E; Rossi, Juan Pablo F C

    2013-08-09

    As recently described by our group, plasma membrane calcium ATPase (PMCA) activity can be regulated by the actin cytoskeleton. In this study, we characterize the interaction of purified G-actin with isolated PMCA and examine the effect of G-actin during the first polymerization steps. As measured by surface plasmon resonance, G-actin directly interacts with PMCA with an apparent 1:1 stoichiometry in the presence of Ca(2+) with an apparent affinity in the micromolar range. As assessed by the photoactivatable probe 1-O-hexadecanoyl-2-O-[9-[[[2-[(125)I]iodo-4-(trifluoromethyl-3H-diazirin-3-yl)benzyl]oxy]carbonyl]nonanoyl]-sn-glycero-3-phosphocholine, the association of PMCA to actin produced a shift in the distribution of the conformers of the pump toward a calmodulin-activated conformation. G-actin stimulates Ca(2+)-ATPase activity of the enzyme when incubated under polymerizing conditions, displaying a cooperative behavior. The increase in the Ca(2+)-ATPase activity was related to an increase in the apparent affinity for Ca(2+) and an increase in the phosphoenzyme levels at steady state. Although surface plasmon resonance experiments revealed only one binding site for G-actin, results clearly indicate that more than one molecule of G-actin was needed for a regulatory effect on the pump. Polymerization studies showed that the experimental conditions are compatible with the presence of actin in the first stages of assembly. Altogether, these observations suggest that the stimulatory effect is exerted by short oligomers of actin. The functional interaction between actin oligomers and PMCA represents a novel regulatory pathway by which the cortical actin cytoskeleton participates in the regulation of cytosolic Ca(2+) homeostasis.

  16. Labeling F-actin barbed ends with rhodamine-actin in permeabilized neuronal growth cones.

    PubMed

    Marsick, Bonnie M; Letourneau, Paul C

    2011-03-17

    The motile tips of growing axons are called growth cones. Growth cones lead navigating axons through developing tissues by interacting with locally expressed molecular guidance cues that bind growth cone receptors and regulate the dynamics and organization of the growth cone cytoskeleton. The main target of these navigational signals is the actin filament meshwork that fills the growth cone periphery and that drives growth cone motility through continual actin polymerization and dynamic remodeling. Positive or attractive guidance cues induce growth cone turning by stimulating actin filament (F-actin) polymerization in the region of the growth cone periphery that is nearer the source of the attractant cue. This actin polymerization drives local growth cone protrusion, adhesion of the leading margin and axonal elongation toward the attractant. Actin filament polymerization depends on the availability of sufficient actin monomer and on polymerization nuclei or actin filament barbed ends for the addition of monomer. Actin monomer is abundantly available in chick retinal and dorsal root ganglion (DRG) growth cones. Consequently, polymerization increases rapidly when free F-actin barbed ends become available for monomer addition. This occurs in chick DRG and retinal growth cones via the local activation of the F-actin severing protein actin depolymerizing factor (ADF/cofilin) in the growth cone region closer to an attractant. This heightened ADF/cofilin activity severs actin filaments to create new F-actin barbed ends for polymerization. The following method demonstrates this mechanism. Total content of F-actin is visualized by staining with fluorescent phalloidin. F-actin barbed ends are visualized by the incorporation of rhodamine-actin within growth cones that are permeabilized with the procedure described in the following, which is adapted from previous studies of other motile cells. When rhodamine-actin is added at a concentration above the critical concentration

  17. Excited-state Raman spectroscopy with and without actinic excitation: S{sub 1} Raman spectra of trans-azobenzene

    SciTech Connect

    Dobryakov, A. L.; Quick, M.; Ioffe, I. N.; Granovsky, A. A.; Ernsting, N. P.; Kovalenko, S. A.

    2014-05-14

    We show that femtosecond stimulated Raman spectroscopy can record excited-state spectra in the absence of actinic excitation, if the Raman pump is in resonance with an electronic transition. The approach is illustrated by recording S{sub 1} and S{sub 0} spectra of trans-azobenzene in n-hexane. The S{sub 1} spectra were also measured conventionally, upon nπ* (S{sub 0} → S{sub 1}) actinic excitation. The results are discussed and compared to earlier reports.

  18. Synthetic mimetics of actin-binding macrolides: rational design of actin-targeted drugs.

    PubMed

    Perrins, Richard D; Cecere, Giuseppe; Paterson, Ian; Marriott, Gerard

    2008-03-01

    Actin polymerization and dynamics are involved in a wide range of cellular processes such as cell division and migration of tumor cells. At sites of cell lysis, such as those occurring during a stroke or inflammatory lung diseases, actin is released into the serum where it polymerizes, leading to problems with clot dissolution and sputum viscosity. Therefore, drugs that target these actin-mediated processes may provide one mechanism to treat these conditions. Marine-organism-derived macrolides, such as reidispongiolide A, can bind to, sever, and inhibit polymerization of actin. Our studies show that the function of these complex macrolides resides in their tail region, whereas the head group stabilizes the actin-drug complex. Synthetic compounds derived from this tail region could therefore be used as a mimetic of the natural product, providing a range of designer compounds to treat actin-associated diseases or as probes to study actin polymerization.

  19. Actin Dynamics: From Nanoscale to Microscale

    PubMed Central

    Carlsson, Anders E.

    2010-01-01

    The dynamic nature of actin in cells manifests itself in many ways: Polymerization near the cell edge is balanced by depolymerization in the interior, externally induced actin polymerization is followed by depolymerization, and spontaneous oscillations of the cell periphery are frequently seen. I discuss how mathematical modeling relates quantitative measures of actin dynamics to the rates of underlying molecular level processes. The rate of actin incorporation at the leading edge of a moving cell is roughly consistent with existing theories, and the factors determining the characteristic time of actin polymerization are fairly well understood. However, our understanding of actin disassembly is limited, in particular the interplay between severing and depolymerization and the role of specific combinations of proteins in implementing disassembly events. The origins of cell-edge oscillations, and their possible relation to actin waves, are a fruitful area of future research. PMID:20462375

  20. Effects of recombinant baculovirus AcMNPV-BmK IT on the formation of early cables and nuclear polymerization of actin in Sf9 cells.

    PubMed

    Fu, Yuejun; Lin, Taotao; Liang, Aihua; Hu, Fengyun

    2016-05-01

    Autographa californica nuclearpoly hedrosis virus (AcMNPV) is one of the most important baculoviridae. However, the application of AcMNPV as a biocontrol agent has been limited. Previously, we engineered Buthus martensii Karsch insect toxin (BmK IT) gene into the genome of AcMNPV. The bioassay data indicated that the recombinant baculovirus AcMNPV-BmK IT significantly enhanced the anti-insect efficacy of the virus. The actin cytoskeleton is the major component beneath the surface of eukaryotic cells. In this report, the effects of AcMNPV-BmK IT on the formation of early cables of actin and nuclear filamentous-actin (F-actin) were studied. The results indicated that these baculovirus induced rearrangement of the actin cytoskeleton of host cells during infection and actin might participate in the transportation of baculovirus from cytoplasm to the nuclei. AcMNPV-BmK IT delayed the formation of early cables of actin and nuclear F-actin and accelerated the clearance of actin in the nuclei.

  1. Formation and Destabilization of Actin Filaments with Tetramethylrhodamine-Modified Actin

    PubMed Central

    Kudryashov, Dmitry S.; Phillips, Martin; Reisler, Emil

    2004-01-01

    Actin labeling at Cys374 with tethramethylrhodamine derivatives (TMR-actin) has been widely used for direct observation of the in vitro filaments growth, branching, and treadmilling, as well as for the in vivo visualization of actin cytoskeleton. The advantage of TMR-actin is that it does not lock actin in filaments (as rhodamine-phalloidin does), possibly allowing for its use in investigating the dynamic assembly behavior of actin polymers. Although it is established that TMR-actin alone is polymerization incompetent, the impact of its copolymerization with unlabeled actin on filament structure and dynamics has not been tested yet. In this study, we show that TMR-actin perturbs the filaments structure when copolymerized with unlabeled actin; the resulting filaments are more fragile and shorter than the control filaments. Due to the increased severing of copolymer filaments, TMR-actin accelerates the polymerization of unlabeled actin in solution also at mole ratios lower than those used in most fluorescence microscopy experiments. The destabilizing and severing effect of TMR-actin is countered by filament stabilizing factors, phalloidin, S1, and tropomyosin. These results point to an analogy between the effects of TMR-actin and severing proteins on F-actin, and imply that TMR-actin may be inappropriate for investigations of actin filaments dynamics. PMID:15298916

  2. Cofilin-mediated actin dynamics promotes actin bundle formation during Drosophila bristle development

    PubMed Central

    Wu, Jing; Wang, Heng; Guo, Xuan; Chen, Jiong

    2016-01-01

    The actin bundle is an array of linear actin filaments cross-linked by actin-bundling proteins, but its assembly and dynamics are not as well understood as those of the branched actin network. Here we used the Drosophila bristle as a model system to study actin bundle formation. We found that cofilin, a major actin disassembly factor of the branched actin network, promotes the formation and positioning of actin bundles in the developing bristles. Loss of function of cofilin or AIP1, a cofactor of cofilin, each resulted in increased F-actin levels and severe defects in actin bundle organization, with the defects from cofilin deficiency being more severe. Further analyses revealed that cofilin likely regulates actin bundle formation and positioning by the following means. First, cofilin promotes a large G-actin pool both locally and globally, likely ensuring rapid actin polymerization for bundle initiation and growth. Second, cofilin limits the size of a nonbundled actin-myosin network to regulate the positioning of actin bundles. Third, cofilin prevents incorrect assembly of branched and myosin-associated actin filament into bundles. Together these results demonstrate that the interaction between the dynamic dendritic actin network and the assembling actin bundles is critical for actin bundle formation and needs to be closely regulated. PMID:27385345

  3. Differential Effects of G- and F-Actin on the Plasma Membrane Calcium Pump Activity

    PubMed Central

    Vanagas, Laura; de La Fuente, María Candelaria; Dalghi, Marianela; Ferreira-Gomes, Mariela; Rossi, Rolando C.; Strehler, Emanuel E.; Rossi, Juan P. F. C.

    2014-01-01

    We have previously shown that plasma membrane calcium ATPase (PMCA) pump activity is affected by the membrane protein concentration (Vanagas et al., Biochim Biophys Acta 1768:1641–1644, 2007). Results show evidences for the involvement of the actin cytoskeleton. In this study, we explored the relationship between the polymerization state of actin and its effects on purified PMCA activity. Our results show that PMCA associates with the actin cytoskeleton and this interaction causes a modulation of the catalytic activity involving the phosphorylated intermediate of the pump. The state of actin polymerization determines whether it acts as an activator or an inhibitor of the pump: G-actin and/or short oligomers activate the pump, while F-actin inhibits it. The effects of actin on PMCA are the consequence of direct interaction as demonstrated by immunoblotting and cosedimentation experiments. Taken together, these findings suggest that interactions with actin play a dynamic role in the regulation of PMCA-mediated Ca2+ extrusion through the membrane. Our results provide further evidence of the activation–inhibition phenomenon as a property of many cytoskeleton-associated membrane proteins where the cytoskeleton is no longer restricted to a mechanical function but is dynamically involved in modulating the activity of integral proteins with which it interacts. PMID:23152090

  4. Identification of another actin-related protein (Arp) 2/3 complex binding site in neural Wiskott-Aldrich syndrome protein (N-WASP) that complements actin polymerization induced by the Arp2/3 complex activating (VCA) domain of N-WASP.

    PubMed

    Suetsugu, S; Miki, H; Takenawa, T

    2001-08-31

    Neural Wiskott-Aldrich syndrome protein (N-WASP) is an essential regulator of actin cytoskeleton formation via its association with the actin-related protein (Arp) 2/3 complex. It is believed that the C-terminal Arp2/3 complex-activating domain (verprolin homology, cofilin homology, and acidic (VCA) or C-terminal region of WASP family proteins domain) of N-WASP is usually kept masked (autoinhibition) but is opened upon cooperative binding of upstream regulators such as Cdc42 and phosphatidylinositol 4,5-bisphosphate (PIP2). However, the mechanisms of autoinhibition and association with Arp2/3 complex are still unclear. We focused on the acidic region of N-WASP because it is thought to interact with Arp2/3 complex and may be involved in autoinhibition. Partial deletion of acidic residues from the VCA portion alone greatly reduced actin polymerization activity, demonstrating that the acidic region contributes to Arp2/3 complex-mediated actin polymerization. Surprisingly, the same partial deletion of the acidic region in full-length N-WASP led to constitutive activity comparable with the activity seen with the VCA portion. Therefore, the acidic region in full-length N-WASP plays an indispensable role in the formation of the autoinhibited structure. This mutant contains WASP-homology (WH) 1 domain with weak affinity to the Arp2/3 complex, leading to activity in the absence of part of the acidic region. Furthermore, the actin comet formed by the DeltaWH1 mutant of N-WASP was much smaller than that of wild-type N-WASP. Partial deletion of acidic residues did not affect actin comet size, indicating the importance of the WH1 domain in actin structure formation. Collectively, the acidic region of N-WASP plays an essential role in Arp2/3 complex activation as well as in the formation of the autoinhibited structure, whereas the WH1 domain complements the activation of the Arp2/3 complex achieved through the VCA portion.

  5. Ca2+ regulation of gelsolin activity: binding and severing of F-actin.

    PubMed Central

    Kinosian, H J; Newman, J; Lincoln, B; Selden, L A; Gershman, L C; Estes, J E

    1998-01-01

    Regulation of the F-actin severing activity of gelsolin by Ca2+ has been investigated under physiologic ionic conditions. Tryptophan fluorescence intensity measurements indicate that gelsolin contains at least two Ca2+ binding sites with affinities of 2.5 x 10(7) M-1 and 1.5 x 10(5) M-1. At F-actin and gelsolin concentrations in the range of those found intracellularly, gelsolin is able to bind F-actin with half-maximum binding at 0.14 microM free Ca2+ concentration. Steady-state measurements of gelsolin-induced actin depolymerization suggest that half-maximum depolymerization occurs at approximately 0.4 microM free Ca2+ concentration. Dynamic light scattering measurements of the translational diffusion coefficient for actin filaments and nucleated polymerization assays for number concentration of actin filaments both indicate that severing of F-actin occurs slowly at micromolar free Ca2+ concentrations. The data suggest that binding of Ca2+ to the gelsolin-F-actin complex is the rate-limiting step for F-actin severing by gelsolin; this Ca2+ binding event is a committed step that results in a Ca2+ ion bound at a high-affinity, EGTA-resistant site. The very high affinity of gelsolin for the barbed end of an actin filament drives the binding reaction equilibrium toward completion under conditions where the reaction rate is slow. PMID:9826630

  6. The actin cytoskeleton may control the polar distribution of an auxin transport protein

    NASA Technical Reports Server (NTRS)

    Muday, G. K.; Hu, S.; Brady, S. R.; Davies, E. (Principal Investigator)

    2000-01-01

    The gravitropic bending of plants has long been linked to the changes in the transport of the plant hormone auxin. To understand the mechanism by which gravity alters auxin movement, it is critical to know how polar auxin transport is initially established. In shoots, polar auxin transport is basipetal (i.e., from the shoot apex toward the base). It is driven by the basal localization of the auxin efflux carrier complex. One mechanism for localizing this efflux carrier complex to the basal membrane may be through attachment to the actin cytoskeleton. The efflux carrier protein complex is believed to consist of several polypeptides, including a regulatory subunit that binds auxin transport inhibitors, such as naphthylphthalamic acid (NPA). Several lines of experimentation have been used to determine if the NPA binding protein interacts with actin filaments. The NPA binding protein has been shown to partition with the actin cytoskeleton during detergent extraction. Agents that specifically alter the polymerization state of the actin cytoskeleton change the amount of NPA binding protein and actin recovered in these cytoskeletal pellets. Actin-affinity columns were prepared with polymers of actin purified from zucchini hypocotyl tissue. NPA binding activity was eluted in a single peak from the actin filament column. Cytochalasin D, which fragments the actin cytoskeleton, was shown to reduce polar auxin transport in zucchini hypocotyls. The interaction of the NPA binding protein with the actin cytoskeleton may localize it in one plane of the plasma membrane, and thereby control the polarity of auxin transport.

  7. Actinic keratosis

    MedlinePlus

    Solar keratosis; Sun-induced skin changes - keratosis; Keratosis - actinic (solar); Skin lesion - actinic keratosis ... likely to develop it if you: Have fair skin, blue or green eyes, or blond or red ...

  8. Technical advance: identification of plant actin-binding proteins by F-actin affinity chromatography

    NASA Technical Reports Server (NTRS)

    Hu, S.; Brady, S. R.; Kovar, D. R.; Staiger, C. J.; Clark, G. B.; Roux, S. J.; Muday, G. K.

    2000-01-01

    Proteins that interact with the actin cytoskeleton often modulate the dynamics or organization of the cytoskeleton or use the cytoskeleton to control their localization. In plants, very few actin-binding proteins have been identified and most are thought to modulate cytoskeleton function. To identify actin-binding proteins that are unique to plants, the development of new biochemical procedures will be critical. Affinity columns using actin monomers (globular actin, G-actin) or actin filaments (filamentous actin, F-actin) have been used to identify actin-binding proteins from a wide variety of organisms. Monomeric actin from zucchini (Cucurbita pepo L.) hypocotyl tissue was purified to electrophoretic homogeneity and shown to be native and competent for polymerization to actin filaments. G-actin, F-actin and bovine serum albumin affinity columns were prepared and used to separate samples enriched in either soluble or membrane-associated actin-binding proteins. Extracts of soluble actin-binding proteins yield distinct patterns when eluted from the G-actin and F-actin columns, respectively, leading to the identification of a putative F-actin-binding protein of approximately 40 kDa. When plasma membrane-associated proteins were applied to these columns, two abundant polypeptides eluted selectively from the F-actin column and cross-reacted with antiserum against pea annexins. Additionally, a protein that binds auxin transport inhibitors, the naphthylphthalamic acid binding protein, which has been previously suggested to associate with the actin cytoskeleton, was eluted in a single peak from the F-actin column. These experiments provide a new approach that may help to identify novel actin-binding proteins from plants.

  9. Dynamic interaction between actin and nesprin2 maintain the cell nucleus in a prestressed state

    NASA Astrophysics Data System (ADS)

    Kumar, Abhishek; Shivashankar, G. V.

    2016-12-01

    Mechanical coupling between the nucleus and the cytoskeleton is indispensable for direct force transduction from the extra cellular matrix (ECM) to the chromatin. Although this physical coupling has been shown to be crucial for nuclear positioning and its function, the quantification of nuclear-cytoskeleton interaction has been lacking. In this paper, using various quantitative fluorescence spectroscopy techniques, we investigate the nature of this connection. High-resolution 3D imaging shows that nesprin2G forms short linear structures along actin stress fibers (ASFs) in the apical region of the nucleus. Fluorescence recovery after photobleaching (FRAP) revealed that the alignment of nesprin2G becomes heterogeneous when cell shape is engineered from elongated rectangular shape to square using micropatterned substrates. Further, fluorescence cross-correlation spectroscopy (FCCS) revealed that actin interacts transiently with outer nuclear membrane protein nesprin2G with a time scale of 12 ms. In addition, fluorescence resonance energy transfer (FRET) experiments show that the apical ASFs and nesprin2G are in close physical proximity. This interaction is spatially heterogeneous with high FRET along the ASFs. Lastly, we show that the disruption of actin to nuclear connection by over-expression of Dominant Negative Klarsicht, ANC-1, Syne Homology (DNKASH) leads to an increase in nuclear height. These results not only reveal the characteristics of actin-nesprin2G interaction and its significance in regulating nuclear morphology, but also validate the utility of quantitative fluorescence techniques in deciphering physical connections that are essential for mechanotransduction.

  10. Actin-Based Feedback Circuits in Cell Migration and Endocytosis

    NASA Astrophysics Data System (ADS)

    Wang, Xinxin

    In this thesis, we study the switch and pulse functions of actin during two important cellular processes, cell migration and endocytosis. Actin is an abundant protein that can polymerize to form a dendritic network. The actin network can exert force to push or bend the cell membrane. During cell migration, the actin network behaves like a switch, assembling mostly at one end or at the other end. The end with the majority of the actin network is the leading edge, following which the cell can persistently move in the same direction. The other end, with the minority of the actin network, is the trailing edge, which is dragged by the cell as it moves forward. When subjected to large fluctuations or external stimuli, the leading edge and the trailing edge can interchange and change the direction of motion, like a motion switch. Our model of the actin network in a cell reveals that mechanical force is crucial for forming the motion switch. We find a transition from single state symmetric behavior to switch behavior, when tuning parameters such as the force. The model is studied by both stochastic simulations, and a set of rate equations that are consistent with the simulations. Endocytosis is a process by which cells engulf extracellular substances and recycle the cell membrane. In yeast cells, the actin network is transiently needed to overcome the pressure difference across the cell membrane caused by turgor pressure. The actin network behaves like a pulse, which assembles and then disassembles within about 30 seconds. Using a stochastic model, we reproduce the pulse behaviors of the actin network and one of its regulatory proteins, Las17. The model matches green fluorescence protein (GFP) experiments for wild-type cells. The model also predicts some phenotypes that modify or diminish the pulse behavior. The phenotypes are verified with both experiments performed at Washington University and with other groups' experiments. We find that several feedback mechanisms are

  11. S-NO-actin: S-nitrosylation kinetics and the effect on isolated vascular smooth muscle.

    PubMed

    Dalle-Donne, I; Milzani, A; Giustarini, D; Di Simplicio, P; Colombo, R; Rossi, R

    2000-02-01

    We describe the modification of reactive actin sulfhydryls by S-nitrosoglutathione. Kinetics of S-nitrosylation and denitrosylation suggest that only one cysteine of actin is involved in the reactions. By using the bifunctional sulfhydryl cross-linking reagent N,N'-1,4-phenylenebismaleimide and the monofunctional reagent N-iodoacetyl-N'-(5-sulpho-1-naphthyl)ethylenediamine, we identified this residue as Cys374. The time course of filament formation followed by high-shear viscosity changes revealed that S-nitrosylated G-actin polymerizes less efficiently than native monomers. The observed decrease in specific viscosity at steady state is due mainly to a marked inhibition of filament end-to-end annealing and, partially, to a reduction in F-actin concentration. Finally, S-nitrosylated actin acts as nitric oxide donor showing a fast, potent vasodilating activity at unusually low concentrations, being comparable with that of low molecular weight nitrosothiols.

  12. Actin Mechanics and Fragmentation*

    PubMed Central

    De La Cruz, Enrique M.; Gardel, Margaret L.

    2015-01-01

    Cell physiological processes require the regulation and coordination of both mechanical and dynamical properties of the actin cytoskeleton. Here we review recent advances in understanding the mechanical properties and stability of actin filaments and how these properties are manifested at larger (network) length scales. We discuss how forces can influence local biochemical interactions, resulting in the formation of mechanically sensitive dynamic steady states. Understanding the regulation of such force-activated chemistries and dynamic steady states reflects an important challenge for future work that will provide valuable insights as to how the actin cytoskeleton engenders mechanoresponsiveness of living cells. PMID:25957404

  13. State-dependent diffusion of actin-depolymerizing factor/cofilin underlies the enlargement and shrinkage of dendritic spines

    PubMed Central

    Noguchi, Jun; Hayama, Tatsuya; Watanabe, Satoshi; Ucar, Hasan; Yagishita, Sho; Takahashi, Noriko; Kasai, Haruo

    2016-01-01

    Dendritic spines are the postsynaptic sites of most excitatory synapses in the brain, and spine enlargement and shrinkage give rise to long-term potentiation and depression of synapses, respectively. Because spine structural plasticity is accompanied by remodeling of actin scaffolds, we hypothesized that the filamentous actin regulatory protein cofilin plays a crucial role in this process. Here we investigated the diffusional properties of cofilin, the actin-severing and depolymerizing actions of which are activated by dephosphorylation. Cofilin diffusion was measured using fluorescently labeled cofilin fusion proteins and two-photon imaging. We show that cofilins are highly diffusible along dendrites in the resting state. However, during spine enlargement, wild-type cofilin and a phosphomimetic cofilin mutant remain confined to the stimulated spine, whereas a nonphosphorylatable mutant does not. Moreover, inhibition of cofilin phosphorylation with a competitive peptide disables spine enlargement, suggesting that phosphorylated-cofilin accumulation is a key regulator of enlargement, which is localized to individual spines. Conversely, spine shrinkage spreads to neighboring spines, even though triggered by weaker stimuli than enlargement. Diffusion of exogenous cofilin injected into a pyramidal neuron soma causes spine shrinkage and reduced PSD95 in spines, suggesting that diffusion of dephosphorylated endogenous cofilin underlies the spreading of spine shrinkage and long-term depression. PMID:27595610

  14. Mechanism of Actin-Based Motility

    NASA Astrophysics Data System (ADS)

    Pantaloni, Dominique; Le Clainche, Christophe; Carlier, Marie-France

    2001-05-01

    Spatially controlled polymerization of actin is at the origin of cell motility and is responsible for the formation of cellular protrusions like lamellipodia. The pathogens Listeria monocytogenes and Shigella flexneri, which undergo actin-based propulsion, are acknowledged models of the leading edge of lamellipodia. Actin-based motility of the bacteria or of functionalized microspheres can be reconstituted in vitro from only five pure proteins. Movement results from the regulated site-directed treadmilling of actin filaments, consistent with observations of actin dynamics in living motile cells and with the biochemical properties of the components of the synthetic motility medium.

  15. Bacterial Actins and Their Interactors.

    PubMed

    Gayathri, Pananghat

    2017-01-01

    Bacterial actins polymerize in the presence of nucleotide (preferably ATP), form a common arrangement of monomeric interfaces within a protofilament, and undergo ATP hydrolysis-dependent change in stability of the filament-all of which contribute to performing their respective functions. The relative stability of the filament in the ADP-bound form compared to that of ATP and the rate of addition of monomers at the two ends decide the filament dynamics. One of the major differences between eukaryotic actin and bacterial actins is the variety in protofilament arrangements and dynamics exhibited by the latter. The filament structure and the polymerization dynamics enable them to perform various functions such as shape determination in rod-shaped bacteria (MreB), cell division (FtsA), plasmid segregation (ParM family of actin-like proteins), and organelle positioning (MamK). Though the architecture and dynamics of a few representative filaments have been studied, information on the effect of interacting partners on bacterial actin filament dynamics is not very well known. The chapter reviews some of the structural and functional aspects of bacterial actins, with special focus on the effect that interacting partners exert on the dynamics of bacterial actins, and how these assist them to carry out the functions within the bacterial cell.

  16. Polycation induced actin bundles.

    PubMed

    Muhlrad, Andras; Grintsevich, Elena E; Reisler, Emil

    2011-04-01

    Three polycations, polylysine, the polyamine spermine and the polycationic protein lysozyme were used to study the formation, structure, ionic strength sensitivity and dissociation of polycation-induced actin bundles. Bundles form fast, simultaneously with the polymerization of MgATP-G-actins, upon the addition of polycations to solutions of actins at low ionic strength conditions. This indicates that nuclei and/or nascent filaments bundle due to attractive, electrostatic effect of polycations and the neutralization of repulsive interactions of negative charges on actin. The attractive forces between the filaments are strong, as shown by the low (in nanomolar range) critical concentration of their bundling at low ionic strength. These bundles are sensitive to ionic strength and disassemble partially in 100 mM NaCl, but both the dissociation and ionic strength sensitivity can be countered by higher polycation concentrations. Cys374 residues of actin monomers residing on neighboring filaments in the bundles can be cross-linked by the short span (5.4Å) MTS-1 (1,1-methanedyl bismethanethiosulfonate) cross-linker, which indicates a tight packing of filaments in the bundles. The interfilament cross-links, which connect monomers located on oppositely oriented filaments, prevent disassembly of bundles at high ionic strength. Cofilin and the polysaccharide polyanion heparin disassemble lysozyme induced actin bundles more effectively than the polylysine-induced bundles. The actin-lysozyme bundles are pathologically significant as both proteins are found in the pulmonary airways of cystic fibrosis patients. Their bundles contribute to the formation of viscous mucus, which is the main cause of breathing difficulties and eventual death in this disorder.

  17. From dense monomer salt crystals to CO2 selective microporous polyimides via solid-state polymerization.

    PubMed

    Unterlass, Miriam M; Emmerling, Franziska; Antonietti, Markus; Weber, Jens

    2014-01-14

    Fully aromatic polyimides are synthesized via solid-state polymerization of the corresponding monomer salts. The crystal structure of salts shows strong hydrogen bonding of the reactive groups and thereby paves the way for solid-state transformations. The polycondensation yields copies of the initial salt crystallite habits, accompanied by the development of a porosity especially suited for CO2.

  18. Dendritic Actin Nucleation Causes Traveling Waves and Patches

    NASA Astrophysics Data System (ADS)

    Carlsson, Anders

    2010-03-01

    Reversible polymerization of the intracellular protein actin into semiflexible filaments is crucial for cell motion and environmental sensing. Recent studies have shown that polymerized actin can spontaneously form traveling waves and/or moving patches. I investigate possible mechanisms for such phenomena by numerically simulating the ``dendritic nucleation'' model of actin network growth. The simulations treat the growth of an actin network on a flat portion of a cell membrane, using a stochastic-growth method which calculates an explicit three-dimensional network structure. The calculations treat processes including filament growth, capping, branching, severing, and Brownian motion. The dynamics of membrane proteins stimulating actin polymerization are also included: they diffuse in the membrane, and detach/deactivate in the presence of polymerized actin. The simulations show three types of polymerized-actin behavior: 1) traveling waves, 2) coherently moving patches, and 3) random fluctuations with occasional moving patches. Wave formation is favored at low free-actin concentrations by a long reattachment time for the membrane proteins, and by weakness of the attractive interaction between filaments and the membrane. Raising the free-actin concentration results in a randomly varying distribution of polymerized actin. Lowering the free-actin concentration below the optimal value for waves causes the waves to break up into patches which, however, move coherently. Effects of similar magnitude are predicted when other intracellular protein concentrations are varied. Diffusion of the membrane proteins slows the waves, and, if fast enough, stops them completely, resulting in the formation of a static spot.

  19. An actin cytoskeleton with evolutionarily conserved functions in the absence of canonical actin-binding proteins

    PubMed Central

    Paredez, Alexander R.; Assaf, Zoe June; Sept, David; Timofejeva, Ljudmilla; Dawson, Scott C.; Wang, Chung-Ju Rachel; Cande, W. Z.

    2011-01-01

    Giardia intestinalis, a human intestinal parasite and member of what is perhaps the earliest-diverging eukaryotic lineage, contains the most divergent eukaryotic actin identified to date and is the first eukaryote known to lack all canonical actin-binding proteins (ABPs). We sought to investigate the properties and functions of the actin cytoskeleton in Giardia to determine whether Giardia actin (giActin) has reduced or conserved roles in core cellular processes. In vitro polymerization of giActin produced filaments, indicating that this divergent actin is a true filament-forming actin. We generated an anti-giActin antibody to localize giActin throughout the cell cycle. GiActin localized to the cortex, nuclei, internal axonemes, and formed C-shaped filaments along the anterior of the cell and a flagella-bundling helix. These structures were regulated with the cell cycle and in encysting cells giActin was recruited to the Golgi-like cyst wall processing vesicles. Knockdown of giActin demonstrated that giActin functions in cell morphogenesis, membrane trafficking, and cytokinesis. Additionally, Giardia contains a single G protein, giRac, which affects the Giardia actin cytoskeleton independently of known target ABPs. These results imply that there exist ancestral and perhaps conserved roles for actin in core cellular processes that are independent of canonical ABPs. Of medical significance, the divergent giActin cytoskeleton is essential and commonly used actin-disrupting drugs do not depolymerize giActin structures. Therefore, the giActin cytoskeleton is a promising drug target for treating giardiasis, as we predict drugs that interfere with the Giardia actin cytoskeleton will not affect the mammalian host. PMID:21444821

  20. An actin cytoskeleton with evolutionarily conserved functions in the absence of canonical actin-binding proteins.

    PubMed

    Paredez, Alexander R; Assaf, Zoe June; Sept, David; Timofejeva, Ljudmilla; Dawson, Scott C; Wang, Chung-Ju Rachel; Cande, W Z

    2011-04-12

    Giardia intestinalis, a human intestinal parasite and member of what is perhaps the earliest-diverging eukaryotic lineage, contains the most divergent eukaryotic actin identified to date and is the first eukaryote known to lack all canonical actin-binding proteins (ABPs). We sought to investigate the properties and functions of the actin cytoskeleton in Giardia to determine whether Giardia actin (giActin) has reduced or conserved roles in core cellular processes. In vitro polymerization of giActin produced filaments, indicating that this divergent actin is a true filament-forming actin. We generated an anti-giActin antibody to localize giActin throughout the cell cycle. GiActin localized to the cortex, nuclei, internal axonemes, and formed C-shaped filaments along the anterior of the cell and a flagella-bundling helix. These structures were regulated with the cell cycle and in encysting cells giActin was recruited to the Golgi-like cyst wall processing vesicles. Knockdown of giActin demonstrated that giActin functions in cell morphogenesis, membrane trafficking, and cytokinesis. Additionally, Giardia contains a single G protein, giRac, which affects the Giardia actin cytoskeleton independently of known target ABPs. These results imply that there exist ancestral and perhaps conserved roles for actin in core cellular processes that are independent of canonical ABPs. Of medical significance, the divergent giActin cytoskeleton is essential and commonly used actin-disrupting drugs do not depolymerize giActin structures. Therefore, the giActin cytoskeleton is a promising drug target for treating giardiasis, as we predict drugs that interfere with the Giardia actin cytoskeleton will not affect the mammalian host.

  1. Actin organization in chick embryo fibroblasts after influenza virus infection. I. Isolation and characterization of actin from chick embryo cells.

    PubMed

    Krizanová, O; Závodská, E; Solariková, L; Ciampor, F; Kocisková, D

    1984-05-01

    Comparison of two starting materials for actin purification has shown that preparation of actin from aceton-dried cytoskeleton was more effective than from native chick embryos (CE). The isolated actin formed a single band of Mr = 42-43000 in SDS-PAGE; less purified samples revealed additional faint bands. G form of actin (non-polymerized) inhibited the activity of DNase I, electron microscopy showed actin filaments and bundles formed upon its polymerization. The freshly purified homogeneous actin has not lost its DNase I-inhibiting activity when incubated for 60 min at 35 degrees or 45 degrees C. Older or less purified actin samples kept under similar conditions showed 18-25% decrease of their DNase I-inhibiting activity and a loss of their polymerization ability. Digestion with trypsin caused a decrease of DNase I-inhibiting activity of fresh as well as for older actin samples.

  2. Reconstituted polymeric materials derived from post-consumer waste, industrial scrap and virgin resins made by solid state pulverization

    DOEpatents

    Khait, Klementina

    1998-09-29

    A method of making polymeric particulates wherein polymeric scrap material, virgin polymeric material and mixtures thereof are supplied to intermeshing extruder screws which are rotated to transport the polymeric material along their length and subject the polymeric material to solid state shear pulverization and in-situ polymer compatibilization, if two or more incompatible polymers are present. Uniform pulverized particulates are produced without addition of a compatibilizing agent. The pulverized particulates are directly melt processable (as powder feedstock) and surprisingly yield a substantially homogeneous light color product.

  3. Reconstituted polymeric materials derived from post-consumer waste, industrial scrap and virgin resins made by solid state shear pulverization

    DOEpatents

    Khait, Klementina

    2001-01-30

    A method of making polymeric particulates wherein polymeric scrap material, virgin polymeric material and mixtures thereof are supplied to intermeshing extruder screws which are rotated to transport the polymeric material along their length and subject the polymeric material to solid state shear pulverization and in-situ polymer compatibilization, if two or more incompatible polymers are present. Uniform pulverized particulates are produced without addition of a compatibilizing agent. The pulverized particulates are directly melt processable (as powder feedstock) and surprisingly yield a substantially homogeneous light color product.

  4. Reconstituted Polymeric Materials Derived From Post-Consumer Waste, Industrial Scrap And Virgin Resins Made By Solid State Shear Pulverizat

    DOEpatents

    Khait, Klementina

    2005-02-01

    A method of making polymeric particulates wherein polymeric scrap material, virgin polymeric material and mixtures thereof are supplied to intermeshing extruder screws which are rotated to transport the polymeric material along their length and subject the polymeric material to solid state shear pulverization and in-situ polymer compatibilization, if two or more incompatible polymers are present. Uniform pulverized particulates are produced without addition of a compatibilizing agent. The pulverized particulates are directly melt processable (as powder feedstock) and surprisingly yield a substantially homogeneous light color product.

  5. Reconstituted polymeric materials derived from post-consumer waste, industrial scrap and virgin resins made by solid state pulverization

    DOEpatents

    Khait, K.

    1998-09-29

    A method of making polymeric particulates is described wherein polymeric scrap material, virgin polymeric material and mixtures thereof are supplied to intermeshing extruder screws which are rotated to transport the polymeric material along their length and subject the polymeric material to solid state shear pulverization and in-situ polymer compatibilization, if two or more incompatible polymers are present. Uniform pulverized particulates are produced without addition of a compatible agent. The pulverized particulates are directly melt processable (as powder feedstock) and surprisingly yield a substantially homogeneous light color product. 29 figs.

  6. Dye Photodestruction in a Solid-State Dye Laser with a Polymeric Gain Medium

    NASA Astrophysics Data System (ADS)

    Popov, Sergei

    1998-09-01

    The process of dye photodestruction in a solid-state dye laser is studied, and implemented is a polymeric gain medium doped with a strongly concentrated dye. The behavior of the conversion efficiency in the polymeric gain medium pumped with different laser-pulse repetition rates and the process of dye photobleaching are analyzed. The contribution of the heating of the host material into the dye molecules deactivation is discussed. The negative effect of high dye concentration on the dye stability under a high pump repetition rate is reported and analyzed for the first time to my knowledge. A comparison of the present results with recently published data demonstrates the major role of photodestruction, rather than direct thermodestruction, in the dye stability of the solid-state gain medium. The role of additives with low molecular weights in the polymeric matrix, for increasing the stability of the gain material, is discussed.

  7. Dye photodestruction in a solid-state dye laser with a polymeric gain medium.

    PubMed

    Popov, S

    1998-09-20

    The process of dye photodestruction in a solid-state dye laser is studied, and implemented is a polymeric gain medium doped with a strongly concentrated dye. The behavior of the conversion efficiency in the polymeric gain medium pumped with different laser-pulse repetition rates and the process of dye photobleaching are analyzed. The contribution of the heating of the host material into the dye molecules' deactivation is discussed. The negative effect of high dye concentration on the dye stability under a high pump repetition rate is reported and analyzed for the first time to my knowledge. A comparison of the present results with recently published data demonstrates the major role of photodestruction, rather than direct thermodestruction, in the dye stability of the solid-state gain medium. The role of additives with low molecular weights in the polymeric matrix, for increasing the stability of the gain material, is discussed.

  8. Structural Differences Explain Diverse Functions of Plasmodium Actins

    PubMed Central

    Vahokoski, Juha; Martinez, Silvia Muñico; Ignatev, Alexander; Lepper, Simone; Frischknecht, Friedrich; Sidén-Kiamos, Inga; Sachse, Carsten; Kursula, Inari

    2014-01-01

    Actins are highly conserved proteins and key players in central processes in all eukaryotic cells. The two actins of the malaria parasite are among the most divergent eukaryotic actins and also differ from each other more than isoforms in any other species. Microfilaments have not been directly observed in Plasmodium and are presumed to be short and highly dynamic. We show that actin I cannot complement actin II in male gametogenesis, suggesting critical structural differences. Cryo-EM reveals that Plasmodium actin I has a unique filament structure, whereas actin II filaments resemble canonical F-actin. Both Plasmodium actins hydrolyze ATP more efficiently than α-actin, and unlike any other actin, both parasite actins rapidly form short oligomers induced by ADP. Crystal structures of both isoforms pinpoint several structural changes in the monomers causing the unique polymerization properties. Inserting the canonical D-loop to Plasmodium actin I leads to the formation of long filaments in vitro. In vivo, this chimera restores gametogenesis in parasites lacking actin II, suggesting that stable filaments are required for exflagellation. Together, these data underline the divergence of eukaryotic actins and demonstrate how structural differences in the monomers translate into filaments with different properties, implying that even eukaryotic actins have faced different evolutionary pressures and followed different paths for developing their polymerization properties. PMID:24743229

  9. Crystal structure of a nuclear actin ternary complex.

    PubMed

    Cao, Tingting; Sun, Lingfei; Jiang, Yuxiang; Huang, Shanjin; Wang, Jiawei; Chen, Zhucheng

    2016-08-09

    Actin polymerizes and forms filamentous structures (F-actin) in the cytoplasm of eukaryotic cells. It also exists in the nucleus and regulates various nucleic acid transactions, particularly through its incorporation into multiple chromatin-remodeling complexes. However, the specific structure of actin and the mechanisms that regulate its polymeric nature inside the nucleus remain unknown. Here, we report the crystal structure of nuclear actin (N-actin) complexed with actin-related protein 4 (Arp4) and the helicase-SANT-associated (HSA) domain of the chromatin remodeler Swr1. The inner face and barbed end of N-actin are sequestered by interactions with Arp4 and the HSA domain, respectively, which prevents N-actin from polymerization and binding to many actin regulators. The two major domains of N-actin are more twisted than those of globular actin (G-actin), and its nucleotide-binding pocket is occluded, freeing N-actin from binding to and regulation by ATP. These findings revealed the salient structural features of N-actin that distinguish it from its cytoplasmic counterpart and provide a rational basis for its functions and regulation inside the nucleus.

  10. Crystal structure of a nuclear actin ternary complex

    PubMed Central

    Cao, Tingting; Sun, Lingfei; Jiang, Yuxiang; Huang, Shanjin; Wang, Jiawei; Chen, Zhucheng

    2016-01-01

    Actin polymerizes and forms filamentous structures (F-actin) in the cytoplasm of eukaryotic cells. It also exists in the nucleus and regulates various nucleic acid transactions, particularly through its incorporation into multiple chromatin-remodeling complexes. However, the specific structure of actin and the mechanisms that regulate its polymeric nature inside the nucleus remain unknown. Here, we report the crystal structure of nuclear actin (N-actin) complexed with actin-related protein 4 (Arp4) and the helicase-SANT–associated (HSA) domain of the chromatin remodeler Swr1. The inner face and barbed end of N-actin are sequestered by interactions with Arp4 and the HSA domain, respectively, which prevents N-actin from polymerization and binding to many actin regulators. The two major domains of N-actin are more twisted than those of globular actin (G-actin), and its nucleotide-binding pocket is occluded, freeing N-actin from binding to and regulation by ATP. These findings revealed the salient structural features of N-actin that distinguish it from its cytoplasmic counterpart and provide a rational basis for its functions and regulation inside the nucleus. PMID:27457955

  11. Effect of mesoscale ordering on the density of States of polymeric semiconductors.

    PubMed

    Gemünden, Patrick; Poelking, Carl; Kremer, Kurt; Daoulas, Kostas; Andrienko, Denis

    2015-06-01

    A multiscale simulation scheme, which incorporates both long-range conformational disorder and local molecular ordering, is proposed for predicting large-scale morphologies and charge transport properties of polymeric semiconductors. Using poly(3-hexylthiophene) as an example, it is illustrated how the energy landscape and its spatial correlations evolve with increasing degree of structural order in mesophases with amorphous, uniaxial, and biaxial nematic ordering. It is shown that the formation of low-lying energy states in more ordered systems is mostly due to larger (on average) conjugation lengths and not due to electrostatic interactions. The proposed scheme is general and can be applied to a wide range of polymeric organic materials.

  12. Solid-state dye laser based on Coumarin 540A-doped polymeric matrices

    NASA Astrophysics Data System (ADS)

    Costela, A.; Garcia-Moreno, I.; Figuera, J. M.; Amat-Guerri, F.; Barroso, J.; Sastre, R.

    1996-02-01

    Coumarin 540-A has been dissolved in a copolymer of 2-hydroxyethyl methacrylate (HEMA) and methyl methacrylate (MMA) 1:1 v/v and in a pure poly(methyl methacrylate) homopolymer (PMMA). Laser action has been induced in the resulting solid-state solutions pumped with 1.2 mJ pulses at 337 nm from a nitrogen laser. The effects on the laser performance of different polymerization methods, dye concentration and polymeric matrix composition have been evaluated. Energy conversion efficiencies of 11% and lifetimes of about 2000 pulses at 2 Hz repetition rate have been demonstrated.

  13. Instantaneous inactivation of cofilin reveals its function of F-actin disassembly in lamellipodia.

    PubMed

    Vitriol, Eric A; Wise, Ariel L; Berginski, Mathew E; Bamburg, James R; Zheng, James Q

    2013-07-01

    Cofilin is a key regulator of the actin cytoskeleton. It can sever actin filaments, accelerate filament disassembly, act as a nucleation factor, recruit or antagonize other actin regulators, and control the pool of polymerization-competent actin monomers. In cells these actions have complex functional outputs. The timing and localization of cofilin activity are carefully regulated, and thus global, long-term perturbations may not be sufficient to probe its precise function. To better understand cofilin's spatiotemporal action in cells, we implemented chromophore-assisted laser inactivation (CALI) to instantly and specifically inactivate it. In addition to globally inhibiting actin turnover, CALI of cofilin generated several profound effects on the lamellipodia, including an increase of F-actin, a rearward expansion of the actin network, and a reduction in retrograde flow speed. These results support the hypothesis that the principal role of cofilin in lamellipodia at steady state is to break down F-actin, control filament turnover, and regulate the rate of retrograde flow.

  14. Conformational polymorphs and solid-state polymerization of 9-(1,3-butadiynyl)carbazole derivatives

    NASA Astrophysics Data System (ADS)

    Tabata, Hideyuki; Kuwamoto, Kazunori; Okuno, Tsunehisa

    2016-02-01

    The novel diacetylenes, 9-(5-(4-nitrophenoxy)penta-1,3-diyn-1-yl)-9H-carbazole (1) and 4-((5-(9H-carbazol-9-yl)penta-2,4-diyn-1-yl)oxy)benzonitrile (2), were prepared and characterized by crystallographic analyses. Compound 1 gave two conformational polymorphs, 1-(I) and 1-(II), whose differences were concluded to originate in intermolecular interactions among nitrophenyl groups. Crystal 1-(I) and 2 had suitable molecular arrangements for solid-state polymerization and polymerized by thermal annealing to give crystalline polydiacetylenes (PDAs). While an arrangement of 1-(II) was unsuitable for the polymerization. The PDAs showed broad absorption from UV to near IR region (ca. 900 nm), suggesting effective expansion of π-conjugated system by carbazolyl groups.

  15. Role of ATP-bound divalent metal ion in the conformation and function of actin. Comparison of Mg-ATP, Ca-ATP, and metal ion-free ATP-actin.

    PubMed

    Valentin-Ranc, C; Carlier, M F

    1991-04-25

    The fluorescence of N-acetyl-N'-(sulfo-1-naphthyl)ethylenediamine (AEDANS) covalently bound to Cys-374 of actin is used as a probe for different conformational states of G-actin according to whether Ca-ATP, Mg-ATP, or unchelated ATP is bound to the nucleotide site. Upon addition of large amounts (greater than 10(2)-fold molar excess) of EDTA to G-actin, metal ion-free ATP-G-actin is obtained with EDTA bound. Metal ion free ATP-G-actin is characterized by a higher AEDANS fluorescence than Mg-ATP-G-actin, which itself has a higher fluorescence than Ca-ATP-G-actin. Evidence for EDTA binding to G-actin is shown using difference spectrophotometry. Upon binding of EDTA, the rate of dissociation of the divalent metal ion from G-actin is increased (2-fold for Ca2+, 10-fold for Mg2+) in a range of pH from 7.0 to 8.0. A model is proposed that quantitatively accounts for the kinetic data. The affinity of ATP is weakened 10(6)-fold upon removal of the metal ion. Metal ion-free ATP-G-actin is in a partially open conformation, as indicated by the greater accessibility of -SH residues, yet it retains functional properties of polymerization and ATP hydrolysis that appear almost identical to those of Ca-ATP-actin, therefore different from those of Mg-ATP-actin. These results are discussed in terms of the role of the ATP-bound metal ion in actin structure and function.

  16. Mechanics model for actin-based motility

    NASA Astrophysics Data System (ADS)

    Lin, Yuan

    2009-02-01

    We present here a mechanics model for the force generation by actin polymerization. The possible adhesions between the actin filaments and the load surface, as well as the nucleation and capping of filament tips, are included in this model on top of the well-known elastic Brownian ratchet formulation. A closed form solution is provided from which the force-velocity relationship, summarizing the mechanics of polymerization, can be drawn. Model predictions on the velocity of moving beads driven by actin polymerization are consistent with experiment observations. This model also seems capable of explaining the enhanced actin-based motility of Listeria monocytogenes and beads by the presence of Vasodilator-stimulated phosphoprotein, as observed in recent experiments.

  17. Mechanics model for actin-based motility.

    PubMed

    Lin, Yuan

    2009-02-01

    We present here a mechanics model for the force generation by actin polymerization. The possible adhesions between the actin filaments and the load surface, as well as the nucleation and capping of filament tips, are included in this model on top of the well-known elastic Brownian ratchet formulation. A closed form solution is provided from which the force-velocity relationship, summarizing the mechanics of polymerization, can be drawn. Model predictions on the velocity of moving beads driven by actin polymerization are consistent with experiment observations. This model also seems capable of explaining the enhanced actin-based motility of Listeria monocytogenes and beads by the presence of Vasodilator-stimulated phosphoprotein, as observed in recent experiments.

  18. Computational model of polarized actin cables and cytokinetic actin ring formation in budding yeast

    PubMed Central

    Tang, Haosu; Bidone, Tamara C.

    2015-01-01

    The budding yeast actin cables and contractile ring are important for polarized growth and division, revealing basic aspects of cytoskeletal function. To study these formin-nucleated structures, we built a 3D computational model with actin filaments represented as beads connected by springs. Polymerization by formins at the bud tip and bud neck, crosslinking, severing, and myosin pulling, are included. Parameter values were estimated from prior experiments. The model generates actin cable structures and dynamics similar to those of wild type and formin deletion mutant cells. Simulations with increased polymerization rate result in long, wavy cables. Simulated pulling by type V myosin stretches actin cables. Increasing the affinity of actin filaments for the bud neck together with reduced myosin V pulling promotes the formation of a bundle of antiparallel filaments at the bud neck, which we suggest as a model for the assembly of actin filaments to the contractile ring. PMID:26538307

  19. F-actin waves, actin cortex disassembly and focal exocytosis driven by actin-phosphoinositide positive feedback.

    PubMed

    Masters, Thomas A; Sheetz, Michael P; Gauthier, Nils C

    2016-04-01

    Actin polymerization is controlled by the phosphoinositide composition of the plasma membrane. However, the molecular mechanisms underlying the spatiotemporal regulation of actin network organization over extended length scales are still unclear. To observe phosphoinositide-dependent cytoskeletal dynamics we combined the model system of frustrated phagocytosis, total internal reflection microscopy and manipulation of the buffer tonicity. We found that macrophages interacting with IgG-coated glass substrates formed circular F-actin waves on their ventral surface enclosing a region of plasma membrane devoid of cortical actin. Plasma membrane free of actin cortex was strongly depleted of PI(4,5)P2 , but enriched in PI(3,4)P2 and displayed a fivefold increase in exocytosis. Wave formation could be promoted by application of a hypotonic shock. The actin waves were characteristic of a bistable wavefront at the boundary between the regions of membrane containing and lacking cortical actin. Phosphoinositide modifiers and RhoGTPase activities dramatically redistributed with respect to the wavefronts, which often exhibited spatial oscillations. Perturbation of either lipid or actin cytoskeleton-related pathways led to rapid loss of both the polarized lipid distribution and the wavefront. As waves travelled over the plasma membrane, wavefront actin was seen to rapidly polymerize and depolymerize at pre-existing clusters of FcγRIIA, coincident with rapid changes in lipid composition. Thus the potential of receptors to support rapid F-actin polymerization appears to depend acutely on the local concentrations of multiple lipid species. We propose that interdependence through positive feedback from the cytoskeleton to lipid modifiers leads to coordinated local cortex remodeling, focal exocytosis, and organizes extended actin networks.

  20. Novel actin-like filament structure from Clostridium tetani.

    PubMed

    Popp, David; Narita, Akihiro; Lee, Lin Jie; Ghoshdastider, Umesh; Xue, Bo; Srinivasan, Ramanujam; Balasubramanian, Mohan K; Tanaka, Toshitsugu; Robinson, Robert C

    2012-06-15

    Eukaryotic F-actin is constructed from two protofilaments that gently wind around each other to form a helical polymer. Several bacterial actin-like proteins (Alps) are also known to form F-actin-like helical arrangements from two protofilaments, yet with varied helical geometries. Here, we report a unique filament architecture of Alp12 from Clostridium tetani that is constructed from four protofilaments. Through fitting of an Alp12 monomer homology model into the electron microscopy data, the filament was determined to be constructed from two antiparallel strands, each composed of two parallel protofilaments. These four protofilaments form an open helical cylinder separated by a wide cleft. The molecular interactions within single protofilaments are similar to F-actin, yet interactions between protofilaments differ from those in F-actin. The filament structure and assembly and disassembly kinetics suggest Alp12 to be a dynamically unstable force-generating motor involved in segregating the pE88 plasmid, which encodes the lethal tetanus toxin, and thus a potential target for drug design. Alp12 can be repeatedly cycled between states of polymerization and dissociation, making it a novel candidate for incorporation into fuel-propelled nanobiopolymer machines.

  1. PEGylated-thymoquinone-nanoparticle mediated retardation of breast cancer cell migration by deregulation of cytoskeletal actin polymerization through miR-34a.

    PubMed

    Bhattacharya, Saurav; Ahir, Manisha; Patra, Prasun; Mukherjee, Sudeshna; Ghosh, Swatilekha; Mazumdar, Minakshi; Chattopadhyay, Sreya; Das, Tanya; Chattopadhyay, Dhrubajyoti; Adhikary, Arghya

    2015-05-01

    Thymoquinone (TQ), a major active constituent of black seeds of Nigella sativa, has potential medical applications including spectrum of therapeutic properties against different cancers. However, little is known about their effect on breast cancer cell migration, which is the cause of over 90% of deaths worldwide. Herein, we have synthesized TQ-encapsulated nanoparticles using biodegradable, hydrophilic polymers like polyvinylpyrrolidone (PVP) and polyethyleneglycol (PEG) to overcome TQ's poor aqueous solubility, thermal and light sensitivity as well as consequently, minimal systemic bioavailability which can greatly improve the cancer treatment efficiency. Sizes of synthesized TQ-Nps were found to be below 50 nm and they were mostly spherical in shape with smooth surface texture. Estimation of the zeta potential also revealed that all the three TQ-Nps were negatively charged which also facilitated their cellular uptake. In the present investigation, we provide direct evidence that TQ-Nps showed more efficiency in killing cancer cells as well as proved to be less toxic to normal cells at a significantly lower dose than TQ. Interestingly, evaluation of the anti-migratory effect of the TQ-Nps, revealed that PEG4000-TQ-Nps showed much potent anti-migratory properties than the other types. Further studies indicated that PEG4000-TQ-Nps could significantly increase the expression of miR-34a through p53. Moreover, NPs mediated miR-34a up-regulation directly down-regulated Rac1 expression followed by actin depolymerisation thereby disrupting the actin cytoskeleton which leads to significant reduction in the lamellipodia and filopodia formation on cell surfaces thus retarding cell migration. Considering the biodegradability, non-toxicity and effectivity of PEG4000-TQ-Nps against cancer cell migration, TQ-Nps may provide new insights into specific therapeutic approach for cancer treatment.

  2. Regulation of Sodium Channel Activity by Capping of Actin Filaments

    PubMed Central

    Shumilina, Ekaterina V.; Negulyaev, Yuri A.; Morachevskaya, Elena A.; Hinssen, Horst; Khaitlina, Sofia Yu

    2003-01-01

    Ion transport in various tissues can be regulated by the cortical actin cytoskeleton. Specifically, involvement of actin dynamics in the regulation of nonvoltage-gated sodium channels has been shown. Herein, inside-out patch clamp experiments were performed to study the effect of the heterodimeric actin capping protein CapZ on sodium channel regulation in leukemia K562 cells. The channels were activated by cytochalasin-induced disruption of actin filaments and inactivated by G-actin under ionic conditions promoting rapid actin polymerization. CapZ had no direct effect on channel activity. However, being added together with G-actin, CapZ prevented actin-induced channel inactivation, and this effect occurred at CapZ/actin molar ratios from 1:5 to 1:100. When actin was allowed to polymerize at the plasma membrane to induce partial channel inactivation, subsequent addition of CapZ restored the channel activity. These results can be explained by CapZ-induced inhibition of further assembly of actin filaments at the plasma membrane due to the modification of actin dynamics by CapZ. No effect on the channel activity was observed in response to F-actin, confirming that the mechanism of channel inactivation does not involve interaction of the channel with preformed filaments. Our data show that actin-capping protein can participate in the cytoskeleton-associated regulation of sodium transport in nonexcitable cells. PMID:12686620

  3. Autographa californica Multiple Nucleopolyhedrovirus Ac34 Protein Retains Cellular Actin-Related Protein 2/3 Complex in the Nucleus by Subversion of CRM1-Dependent Nuclear Export

    PubMed Central

    Mu, Jingfang; Zhang, Yongli; Hu, Yangyang; Hu, Xue; Zhou, Yuan; Pei, Rongjuan; Wu, Chunchen; Chen, Jizheng; van Oers, Monique M.; Chen, Xinwen; Wang, Yun

    2016-01-01

    Actin, nucleation-promoting factors (NPFs), and the actin-related protein 2/3 complex (Arp2/3) are key elements of the cellular actin polymerization machinery. With nuclear actin polymerization implicated in ever-expanding biological processes and the discovery of the nuclear import mechanisms of actin and NPFs, determining Arp2/3 nucleo-cytoplasmic shuttling mechanism is important for understanding the function of nuclear actin. A unique feature of alphabaculovirus infection of insect cells is the robust nuclear accumulation of Arp2/3, which induces actin polymerization in the nucleus to assist in virus replication. We found that Ac34, a viral late gene product encoded by the alphabaculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV), is involved in Arp2/3 nuclear accumulation during virus infection. Further assays revealed that the subcellular distribution of Arp2/3 under steady-state conditions is controlled by chromosomal maintenance 1 (CRM1)-dependent nuclear export. Upon AcMNPV infection, Ac34 inhibits CRM1 pathway and leads to Arp2/3 retention in the nucleus. PMID:27802336

  4. Actin-Regulator Feedback Interactions during Endocytosis

    PubMed Central

    Wang, Xinxin; Galletta, Brian J.; Cooper, John A.; Carlsson, Anders E.

    2016-01-01

    Endocytosis mediated by clathrin, a cellular process by which cells internalize membrane receptors and their extracellular ligands, is an important component of cell signaling regulation. Actin polymerization is involved in endocytosis in varying degrees depending on the cellular context. In yeast, clathrin-mediated endocytosis requires a pulse of polymerized actin and its regulators, which recruit and activate the Arp2/3 complex. In this article, we seek to identify the main protein-protein interactions that 1) cause actin and its regulators to appear in pulses, and 2) determine the effects of key mutations and drug treatments on actin and regulator assembly. We perform a joint modeling/experimental study of actin and regulator dynamics during endocytosis in the budding yeast Saccharomyces cerevisiae. We treat both a stochastic model that grows an explicit three-dimensional actin network, and a simpler two-variable Fitzhugh-Nagumo type model. The models include a negative-feedback interaction of F-actin onto the Arp2/3 regulators. Both models explain the pulse time courses and the effects of interventions on actin polymerization: the surprising increase in the peak F-actin count caused by reduced regulator branching activity, the increase in F-actin resulting from slowing of actin disassembly, and the increased Arp2/3 regulator lifetime resulting from latrunculin treatment. In addition, they predict that decreases in the regulator branching activity lead to increases in accumulation of regulators, and we confirmed this prediction with experiments on yeast harboring mutations in the Arp2/3 regulators, using quantitative fluorescence microscopy. Our experimental measurements suggest that the regulators act quasi-independently, in the sense that accumulation of a particular regulator is most strongly affected by mutations of that regulator, as opposed to the others. PMID:27028652

  5. Actinic reticuloid

    SciTech Connect

    Marx, J.L.; Vale, M.; Dermer, P.; Ragaz, A.; Michaelides, P.; Gladstein, A.H.

    1982-09-01

    A 58-year-old man has his condition diagnosed as actinic reticuloid on the basis of clinical and histologic findings and phototesting data. He had clinical features resembling mycosis fungoides in light-exposed areas. Histologic findings disclosed a bandlike infiltrate with atypical mononuclear cells in the dermis and scattered atypical cells in the epidermis. Electron microscopy disclosed mononuclear cells with bizarre, convoluted nuclei, resembling cerebriform cells of Lutzner. Phototesting disclosed a diminished minimal erythemal threshold to UV-B and UV-A. Microscopic changes resembling actinic reticuloid were reproduced in this patient 24 and 72 hours after exposure to 15 minimal erythemal doses of UV-B.

  6. Functional characterization of skeletal F-actin labeled on the NH2-terminal segment of residues 1-28.

    PubMed

    Bertrand, R; Chaussepied, P; Audemard, E; Kassab, R

    1989-05-15

    Rabbit skeletal alpha-actin was covalently labeled in the filamentous state by the fluorescent nucleophile, N-(5-sulfo-1-naphthyl)ethylenediamine (EDANS) in the presence of the carboxyl group activator 1-(3-dimethyl-aminopropyl)-3-ethylcarbodiimide (EDC). The coupling reaction was continued until the incorporation of nearly 1 mol EDANS/mol actin. After limited proteolytic digestion of the labeled protein and chromatographic identification of the EDANS-peptides, about 80% of the attached fluorophore was found on the actin segment of residues 1-28, most probably within the N-terminal acidic region of residues 1-7. A minor labeling site was located on the segment that consists of residues 40-113. No label was incorporated into the COOH-terminal moiety consisting of residues 113-375. The isolated EDANS-G-actin undergoes polymerization in the presence of salts but at a rate significantly greater than unlabeled actin. The EDANS-F-actin could be complexed to skeletal chymotryptic myosin subfragment 1 (S-1) and to tropomyosin. The complex formed between EDANS-F-actin and S-1 could not be further crosslinked by EDC but the two proteins were readily joined by glutaraldehyde as observed for native actin-S-1, suggesting that the EDANS-substituted carboxyl site is also involved in the EDC crosslinking of native actin to S-1. Moreover, the EDANS labeling of F-actin resulted in a 20-fold increase in the Km of the actin-activated Mg2+.ATPase of S-1. Thus, this labeling, while it did not much affect the rigor actin-S-1 interaction, changes the actin binding to the S-1-nucleotide complexes significantly. The selective introduction of a variety of spectral probes, like EDANS, or other classes of fluorophores, on the N-terminal region of actin, through the reported carbodiimide coupling reaction, would provide several different derivatives valuable for assessing the functional role of the negatively charged N-terminus of actin during its interaction with myosin and other actin

  7. Chemotaxis and Actin Oscillations

    NASA Astrophysics Data System (ADS)

    Bodenschatz, Eberhard; Hsu, Hsin-Fang; Negrete, Jose; Beta, Carsten; Pumir, Alain; Gholami, Azam; Tarantola, Marco; Westendorf, Christian; Zykov, Vladimir

    Recently, self-oscillations of the cytoskeletal actin have been observed in Dictyostelium, a model system for studying chemotaxis. Here we report experimental results on the self-oscillation mechanism and the role of regulatory proteins and myosin II. We stimulate cells rapidly and periodically by using photo un-caging of the chemoattractant in a micro-fluidic device and measured the cellular responses. We found that the response amplitude grows with stimulation strength only in a very narrow region of stimulation, after which the response amplitude reaches a plateau. Moreover, the frequency-response is not constant but rather varies with the strength of external stimuli. To understand the underlying mechanism, we analyzed the polymerization and de-polymerization time in the single cell level. Despite of the large cell-to-cell variability, we found that the polymerization time is independent of external stimuli and the de-polymerization time is prolonged as the stimulation strength increases. Our conclusions will be summarized and the role of noise in the signaling network will be discussed. German Science Foundation CRC 937.

  8. Actin from pig and rat uterus.

    PubMed Central

    Elce, J S; Elbrecht, A S; Middlestadt, M U; McIntyre, E J; Anderson, P J

    1981-01-01

    Smooth-muscle actin was isolated from pig uterus and from pregnant-rat uterus. Methods involving acetone-dried powders were unsuccessful, and a column-chromatographic procedure was developed, with proteinase inhibitors and avoiding polymerization as a purification step. The yield of pure actin was 0.8--1.5 mg/g wet wt. of uterus, which should be compared with an expected yield of actin from skeletal muscle of 2--4 mg/g wet wt. The actin was pure as judged by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis, and exhibited alpha-, beta-, and gamma-forms on isoelectric focusing. It possessed a blocked N-terminal amino acid residue, and its amino acid analysis conformed to those of other actins. The rat uterine actin was available only in small amounts (5--10 mg) and did not polymerize. The pig uterine actin could be obtained in amounts up to 30 mg, polymerized reversibly, and activated a skeletal myosin Mg2+-dependent ATPase. Images Fig. 2. Fig. 4. PMID:6458278

  9. Biomimetic systems for studying actin-based motility.

    PubMed

    Upadhyaya, Arpita; van Oudenaarden, Alexander

    2003-09-16

    Actin polymerization provides a major driving force for eukaryotic cell motility. Successive intercalation of monomeric actin subunits between the plasma membrane and the filamentous actin network results in protrusions of the membrane enabling the cell to move or to change shape. One of the challenges in understanding eukaryotic cell motility is to dissect the elementary biochemical and biophysical steps that link actin polymerization to mechanical force generation. Recently, significant progress was made using biomimetic, in vitro systems that are inspired by the actin-based motility of bacterial pathogens such as Listeria monocytogenes. Polystyrene microspheres and synthetic phospholipid vesicles coated with proteins that initiate actin polymerization display motile behavior similar to Listeria, mimicking the leading edge of lamellipodia and filopodia. A major advantage of these biomimetic systems is that both biochemical and physical parameters can be controlled precisely. These systems provide a test bed for validating theoretical models on force generation and polarity establishment resulting from actin polymerization. In this review, we discuss recent experimental progress using biomimetic systems propelled by actin polymerization and discuss these results in the light of recent theoretical models on actin-based motility.

  10. p38α regulates actin cytoskeleton and cytokinesis in hepatocytes during development and aging

    PubMed Central

    Jorques, María; Rada, Patricia; Ramirez, Lorena; Valverde, Ángela M.; Nebreda, Ángel R.; Sastre, Juan

    2017-01-01

    Background Hepatocyte poliploidization is an age-dependent process, being cytokinesis failure the main mechanism of polyploid hepatocyte formation. Our aim was to study the role of p38α MAPK in the regulation of actin cytoskeleton and cytokinesis in hepatocytes during development and aging. Methods Wild type and p38α liver-specific knock out mice at different ages (after weaning, adults and old) were used. Results We show that p38α MAPK deficiency induces actin disassembly upon aging and also cytokinesis failure leading to enhanced binucleation. Although the steady state levels of cyclin D1 in wild type and p38α knock out old livers remained unaffected, cyclin B1- a marker for G2/M transition- was significantly overexpressed in p38α knock out mice. Our findings suggest that hepatocytes do enter into S phase but they do not complete cell division upon p38α deficiency leading to cytokinesis failure and binucleation. Moreover, old liver-specific p38α MAPK knock out mice exhibited reduced F-actin polymerization and a dramatic loss of actin cytoskeleton. This was associated with abnormal hyperactivation of RhoA and Cdc42 GTPases. Long-term p38α deficiency drives to inactivation of HSP27, which seems to account for the impairment in actin cytoskeleton as Hsp27-silencing decreased the number and length of actin filaments in isolated hepatocytes. Conclusions p38α MAPK is essential for actin dynamics with age in hepatocytes. PMID:28166285

  11. Statistics of actin-propelled trajectories in noisy environments

    NASA Astrophysics Data System (ADS)

    Wen, Fu-Lai; Chen, Hsuan-Yi; Leung, Kwan-tai

    2016-06-01

    Actin polymerization is ubiquitously utilized to power the locomotion of eukaryotic cells and pathogenic bacteria in living systems. Inevitably, actin polymerization and depolymerization proceed in a fluctuating environment that renders the locomotion stochastic. Previously, we have introduced a deterministic model that manages to reproduce actin-propelled trajectories in experiments, but not to address fluctuations around them. To remedy this, here we supplement the deterministic model with noise terms. It enables us to compute the effects of fluctuating actin density and forces on the trajectories. Specifically, the mean-squared displacement (MSD) of the trajectories is computed and found to show a super-ballistic scaling with an exponent 3 in the early stage, followed by a crossover to a normal, diffusive scaling of exponent 1 in the late stage. For open-end trajectories such as straights and S-shaped curves, the time of crossover matches the decay time of orientational order of the velocities along trajectories, suggesting that it is the spreading of velocities that leads to the crossover. We show that the super-ballistic scaling of MSD arises from the initial, linearly increasing correlation of velocities, before time translational symmetry is established. When the spreading of velocities reaches a steady state in the long-time limit, short-range correlation then yields a diffusive scaling in MSD. In contrast, close-loop trajectories like circles exhibit localized periodic motion, which inhibits spreading. The initial super-ballistic scaling of MSD arises from velocity correlation that both linearly increases and oscillates in time. Finally, we find that the above statistical features of the trajectories transcend the nature of noises, be it additive or multiplicative, and generalize to other self-propelled systems that are not necessarily actin based.

  12. Dendritic Actin Filament Nucleation Causes Traveling Waves and Patches

    PubMed Central

    Carlsson, Anders E

    2010-01-01

    The polymerization of actin via branching at a cell membrane containing nucleation-promoting factors (NPFs) is simulated using a stochastic-growth methodology. The polymerized-actin distribution displays three types of behavior: a) traveling waves, b) moving patches, and c) random fluctuations. Increasing actin concentration causes a transition from patches to waves. The waves and patches move by a treadmilling mechanism which does not require myosin II. The effects of downregulation of key proteins on actin wave behavior are evaluated. PMID:20867207

  13. Synthesis, Biophysical Properties and Pharmacokinetics of Ultrahigh Molecular Weight Tense and Relaxed State Polymerized Bovine Hemoglobins

    PubMed Central

    Buehler, Paul W.; Zhou, Yipin; Cabrales, Pedro; Jia, Yiping; Sun, Guoyong; Harris, David R.; Tsai, Amy; Intaglietta, Marcos; Palmer, Andre F.

    2010-01-01

    Hemoglobin-based oxygen carriers (HBOC) are currently being developed as red blood cell (RBC) substitutes for use in transfusion medicine. Despite significant commercial development, late stage clinical results of polymerized hemoglobin (PolyHb) solutions hamper development. We synthesized two types of PolyHbs with ultrahigh molecular weights: tense (T) state PolyHb (MW = 16.59 MDa and P50 = 41 mm Hg) and relaxed (R) state PolyHb (MW = 26.33 MDa and P50 = 0.66 mm Hg). By maintaining Hb in either the T- or R-state during the polymerization reaction, we were able to synthesize ultrahigh molecular weight PolyHbs in distinct quaternary states with no tetrameric Hb, high viscosity, low colloid osmotic pressure and the ability to maintain O2 dissociation, CO association and NO dioxygenation reactions. The PolyHbs elicited some in vitro RBC aggregation that was less than 6% dextran (500 kDa) but more than 5% human serum albumin. In vitro, T-state PolybHb autoxidized faster than R-state PolybHb as expected from previously reported studies, conversely, when administered to guinea pigs as a 20% exchange transfusion, R-state PolybHb oxidized faster and to a greater extent than T-state PolybHb, suggesting a more complex oxidative processes in vivo. Our findings also demonstrate that T-state PolybHb exhibited a longer circulating half-life, slower clearance and longer systemic exposure time compared to R-state PolybHb. PMID:20149433

  14. Coordinated integrin activation by actin-dependent force during T-cell migration

    PubMed Central

    Nordenfelt, Pontus; Elliott, Hunter L.; Springer, Timothy A.

    2016-01-01

    For a cell to move forward it must convert chemical energy into mechanical propulsion. Force produced by actin polymerization can generate traction across the plasma membrane by transmission through integrins to their ligands. However, the role this force plays in integrin activation is unknown. Here we show that integrin activity and cytoskeletal dynamics are reciprocally linked, where actin-dependent force itself appears to regulate integrin activity. We generated fluorescent tension-sensing constructs of integrin αLβ2 (LFA-1) to visualize intramolecular tension during cell migration. Using quantitative imaging of migrating T cells, we correlate tension in the αL or β2 subunit with cell and actin dynamics. We find that actin engagement produces tension within the β2 subunit to induce and stabilize an active integrin conformational state and that this requires intact talin and kindlin motifs. This supports a general mechanism where localized actin polymerization can coordinate activation of the complex machinery required for cell migration. PMID:27721490

  15. Spontaneous actin dynamics in contractile rings

    NASA Astrophysics Data System (ADS)

    Kruse, Karsten; Wollrab, Viktoria; Thiagarajan, Raghavan; Wald, Anne; Riveline, Daniel

    Networks of polymerizing actin filaments are known to be capable to self-organize into a variety of structures. For example, spontaneous actin polymerization waves have been observed in living cells in a number of circumstances, notably, in crawling neutrophils and slime molds. During later stages of cell division, they can also spontaneously form a contractile ring that will eventually cleave the cell into two daughter cells. We present a framework for describing networks of polymerizing actin filaments, where assembly is regulated by various proteins. It can also include the effects of molecular motors. We show that the molecular processes driven by these proteins can generate various structures that have been observed in contractile rings of fission yeast and mammalian cells. We discuss a possible functional role of each of these patterns. The work was supported by Agence Nationale de la Recherche, France, (ANR-10-LABX-0030-INRT) and by Deutsche Forschungsgemeinschaft through SFB1027.

  16. The Yeast V159N Actin Mutant Reveals Roles for Actin Dynamics In Vivo

    PubMed Central

    Belmont, Lisa D.; Drubin, David G.

    1998-01-01

    Actin with a Val 159 to Asn mutation (V159N) forms actin filaments that depolymerize slowly because of a failure to undergo a conformational change after inorganic phosphate release. Here we demonstrate that expression of this actin results in reduced actin dynamics in vivo, and we make use of this property to study the roles of rapid actin filament turnover. Yeast strains expressing the V159N mutant (act1-159) as their only source of actin have larger cortical actin patches and more actin cables than wild-type yeast. Rapid actin dynamics are not essential for cortical actin patch motility or establishment of cell polarity. However, fluid phase endocytosis is defective in act1-159 strains. act1-159 is synthetically lethal with cofilin and profilin mutants, supporting the conclusion that mutations in all of these genes impair the polymerization/ depolymerization cycle. In contrast, act1-159 partially suppresses the temperature sensitivity of a tropomyosin mutant, and the loss of cytoplasmic cables seen in fimbrin, Mdm20p, and tropomyosin null mutants, suggesting filament stabilizing functions for these actin-binding proteins. Analysis of the cables in these double-mutant cells supports a role for fimbrin in organizing cytoplasmic cables and for Mdm20p and tropomyosin in excluding cofilin from the cables. PMID:9732289

  17. F- and G-actin homeostasis regulates mechanosensitive actin nucleation by formins.

    PubMed

    Higashida, Chiharu; Kiuchi, Tai; Akiba, Yushi; Mizuno, Hiroaki; Maruoka, Masahiro; Narumiya, Shuh; Mizuno, Kensaku; Watanabe, Naoki

    2013-04-01

    Physical force evokes rearrangement of the actin cytoskeleton. Signalling pathways such as tyrosine kinases, stretch-activated Ca(2+) channels and Rho GTPases are involved in force sensing. However, how signals are transduced to actin assembly remains obscure. Here we show mechanosensitive actin polymerization by formins (formin homology proteins). Cells overexpressing mDia1 increased the amount of F-actin on release of cell tension. Fluorescence single-molecule speckle microscopy revealed rapid induction of processive actin assembly by mDia1 on cell cortex deformation. mDia1 lacking the Rho-binding domain and other formins exhibited mechanosensitive actin nucleation, suggesting Rho-independent activation. Mechanosensitive actin nucleation by mDia1 required neither Ca(2+) nor kinase signalling. Overexpressing LIM kinase abrogated the induction of processive mDia1. Furthermore, s-FDAPplus (sequential fluorescence decay after photoactivation) analysis revealed a rapid actin monomer increase on cell cortex deformation. Our direct visualization of the molecular behaviour reveals a mechanosensitive actin filament regeneration mechanism in which G-actin released by actin remodelling plays a pivotal role.

  18. Structure of a Longitudinal Actin Dimer Assembled by Tandem W Domains: Implications for Actin Filament Nucleation

    SciTech Connect

    Rebowski, Grzegorz; Namgoong, Suk; Boczkowska, Malgorzata; Leavis, Paul C.; Navaza, Jorge; Dominguez, Roberto

    2013-11-20

    Actin filament nucleators initiate polymerization in cells in a regulated manner. A common architecture among these molecules consists of tandem WASP homology 2 domains (W domains) that recruit three to four actin subunits to form a polymerization nucleus. We describe a low-resolution crystal structure of an actin dimer assembled by tandem W domains, where the first W domain is cross-linked to Cys374 of the actin subunit bound to it, whereas the last W domain is followed by the C-terminal pointed end-capping helix of thymosin {beta}4. While the arrangement of actin subunits in the dimer resembles that of a long-pitch helix of the actin filament, important differences are observed. These differences result from steric hindrance of the W domain with intersubunit contacts in the actin filament. We also determined the structure of the first W domain of Vibrio parahaemolyticus VopL cross-linked to actin Cys374 and show it to be nearly identical with non-cross-linked W-Actin structures. This result validates the use of cross-linking as a tool for the study of actin nucleation complexes, whose natural tendency to polymerize interferes with most structural methods. Combined with a biochemical analysis of nucleation, the structures may explain why nucleators based on tandem W domains with short inter-W linkers have relatively weak activity, cannot stay bound to filaments after nucleation, and are unlikely to influence filament elongation. The findings may also explain why nucleation-promoting factors of the Arp2/3 complex, which are related to tandem-W-domain nucleators, are ejected from branch junctions after nucleation. We finally show that the simple addition of the C-terminal pointed end-capping helix of thymosin {beta}4 to tandem W domains can change their activity from actin filament nucleation to monomer sequestration.

  19. Structure of a longitudinal actin dimer assembled by tandem w domains: implications for actin filament nucleation.

    PubMed

    Rebowski, Grzegorz; Namgoong, Suk; Boczkowska, Malgorzata; Leavis, Paul C; Navaza, Jorge; Dominguez, Roberto

    2010-10-15

    Actin filament nucleators initiate polymerization in cells in a regulated manner. A common architecture among these molecules consists of tandem WASP homology 2 domains (W domains) that recruit three to four actin subunits to form a polymerization nucleus. We describe a low-resolution crystal structure of an actin dimer assembled by tandem W domains, where the first W domain is cross-linked to Cys374 of the actin subunit bound to it, whereas the last W domain is followed by the C-terminal pointed end-capping helix of thymosin β4. While the arrangement of actin subunits in the dimer resembles that of a long-pitch helix of the actin filament, important differences are observed. These differences result from steric hindrance of the W domain with intersubunit contacts in the actin filament. We also determined the structure of the first W domain of Vibrio parahaemolyticus VopL cross-linked to actin Cys374 and show it to be nearly identical with non-cross-linked W-Actin structures. This result validates the use of cross-linking as a tool for the study of actin nucleation complexes, whose natural tendency to polymerize interferes with most structural methods. Combined with a biochemical analysis of nucleation, the structures may explain why nucleators based on tandem W domains with short inter-W linkers have relatively weak activity, cannot stay bound to filaments after nucleation, and are unlikely to influence filament elongation. The findings may also explain why nucleation-promoting factors of the Arp2/3 complex, which are related to tandem-W-domain nucleators, are ejected from branch junctions after nucleation. We finally show that the simple addition of the C-terminal pointed end-capping helix of thymosin β4 to tandem W domains can change their activity from actin filament nucleation to monomer sequestration.

  20. Serpin Inhibition Mechanism: A Delicate Balance between Native Metastable State and Polymerization.

    PubMed

    Khan, Mohammad Sazzad; Singh, Poonam; Azhar, Asim; Naseem, Asma; Rashid, Qudsia; Kabir, Mohammad Anaul; Jairajpuri, Mohamad Aman

    2011-01-01

    The serpins (serine proteinase inhibitors) are structurally similar but functionally diverse proteins that fold into a conserved structure and employ a unique suicide substrate-like inhibitory mechanism. Serpins play absolutely critical role in the control of proteases involved in the inflammatory, complement, coagulation and fibrinolytic pathways and are associated with many conformational diseases. Serpin's native state is a metastable state which transforms to a more stable state during its inhibitory mechanism. Serpin in the native form is in the stressed (S) conformation that undergoes a transition to a relaxed (R) conformation for the protease inhibition. During this transition the region called as reactive center loop which interacts with target proteases, inserts itself into the center of β-sheet A to form an extra strand. Serpin is delicately balanced to perform its function with many critical residues involved in maintaining metastability. However due to its typical mechanism of inhibition, naturally occurring serpin variants produces conformational instability that allows insertion of RCL of one molecule into the β-sheet A of another to form a loop-sheet linkage leading to its polymerization and aggregation. Thus understanding the molecular basis and amino acid involved in serpin polymerization mechanism is critical to devising strategies for its cure.

  1. F-actin aggregates in transformed cells

    PubMed Central

    1981-01-01

    Polymerized actin has been found aggregated into distinctive patches inside transformed cells in culture. The F-actin-specific fluorescent probe, nitrobenzoxadiazole-phallacidin, labels these F-actin aggregates near the ventral cell surface of cells transformed by RNA or DNA tumor viruses, or by chemical mutagens, or spontaneously. Their appearance in all eight transformed cell types studied suggests their ubiquity and involvement in transformation morphology. Actin patches developed in normal rat kidney (NRK) cells transformed by a temperature-sensitive mutant of Rous sarcoma virus (LA23-NRK) within 30 min after a shift from the nonpermissive (39 degrees C) to the permissive temperature (32 degrees C). Patch appearance paralleling viral src gene expression tends to implicate pp60src kinase activity in destabilizing the cytoskeleton. However, appearance of the actin aggregates in cells not transformed by retrovirus calls for alternative mechanisms, perhaps involving an endogenous kinase, for this apparently common trait. PMID:6270163

  2. Actin-based propulsion of a microswimmer.

    PubMed

    Leshansky, A M

    2006-07-01

    A simple hydrodynamic model of actin-based propulsion of microparticles in dilute cell-free cytoplasmic extracts is presented. Under the basic assumption that actin polymerization at the particle surface acts as a force dipole, pushing apart the load and the free (nonanchored) actin tail, the propulsive velocity of the microparticle is determined as a function of the tail length, porosity, and particle shape. The anticipated velocities of the cargo displacement and the rearward motion of the tail are in good agreement with recently reported results of biomimetic experiments. A more detailed analysis of the particle-tail hydrodynamic interaction is presented and compared to the prediction of the simplified model.

  3. Chlamydial TARP is a bacterial nucleator of actin.

    PubMed

    Jewett, Travis J; Fischer, Elizabeth R; Mead, David J; Hackstadt, Ted

    2006-10-17

    Chlamydia trachomatis entry into host cells results from a parasite-directed remodeling of the actin cytoskeleton. A type III secreted effector, TARP (translocated actin recruiting phosphoprotein), has been implicated in the recruitment of actin to the site of internalization. To elucidate the role of TARP in actin recruitment, we identified host cell proteins that associated with recombinant GST-TARP fusions. TARP directly associated with actin, and this interaction promoted actin nucleation as determined by in vitro polymerization assays. Domain analysis of TARP identified an actin-binding domain that bears structural and primary amino acid sequence similarity to WH2 domain family proteins. In addition, a proline-rich domain was found to promote TARP oligomerization and was required for TARP-dependent nucleation of new actin filaments. Our findings reveal a mechanism by which chlamydiae induce localized cytoskeletal changes by the translocated effector TARP during entry into host cells.

  4. A novel solid state photocatalyst for living radical polymerization under UV irradiation

    NASA Astrophysics Data System (ADS)

    Fu, Qiang; McKenzie, Thomas G.; Ren, Jing M.; Tan, Shereen; Nam, Eunhyung; Qiao, Greg G.

    2016-02-01

    This study presents the development of a novel solid state photocatalyst for the photoinduced controlled radical polymerization of methacrylates under mild UV irradiation (λmax ≈ 365 nm) in the absence of conventional photoinitiators, metal-catalysts or dye sensitizers. The photocatalyst design was based on our previous finding that organic amines can act in a synergistic photochemical reaction with thiocarbonylthio compounds to afford well controlled polymethacrylates under UV irradiation. Therefore, in the current contribution an amine-rich polymer was covalently grafted onto a solid substrate, thus creating a heterogeneous catalyst that would allow for facile removal, recovery and recyclability when employed for such photopolymerization reactions. Importantly, the polymethacrylates synthesized using the solid state photocatalyst (ssPC) show similarly excellent chemical and structural integrity as those catalysed by free amines. Moreover, the ssPC could be readily recovered and re-used, with multiple cycles of polymerization showing minimal effect on the integrity of the catalyst. Finally, the ssPC was employed in various photo-“click” reactions, permitting high yielding conjugations under photochemical control.

  5. Thermally Stimulated Discharge Current Analysis of Polymeric Solid-State Ionic Conductors

    NASA Astrophysics Data System (ADS)

    Xu, Haisheng; Gu, Qingchao; Fan, Maosen; Yang, Changzheng

    1997-06-01

    Thermally Stimulated Discharge Current (TSDC) analysis was used to study the electrical properties of two systems of polymeric solid-state ionic conductors. One system consisted of LiClO4 doped polyethylene glycol polyurethaneureas (PEUU) characterized by bi-ionic conduction and the other system was based on a sulfonated polyethylene oxide polyurethane ionomer (SPUI) characterized by a single-ion transport mechanism. TSDC spectra of the PEUU as well as SPUI matrices showed four peaks (, , , and ). These peaks are found to be related to the local motion of polyether soft segments, glass transition, Maxwell-Wagner-Sillars interfacial polarization and transport of charged ionic species, respectively. The discharge currents without polarization varying with temperature for both, the PEUU-LiClO4 complex and SPUI, are also measured. These curves of discharge current show only one peak which is attributed to transport of charged ionic species. The temperature range in which the discharge current exhibits a steep increase is consistent with the temperature range in which a turning point appears on the plot of lg i versus 1000/T obtained by ac impedance analysis. The experimental results demonstrate that the TSDC analysis is a valuable tool for studying polymeric solid-state ionic conductors.

  6. A novel solid state photocatalyst for living radical polymerization under UV irradiation

    PubMed Central

    Fu, Qiang; McKenzie, Thomas G.; Ren, Jing M.; Tan, Shereen; Nam, Eunhyung; Qiao, Greg G.

    2016-01-01

    This study presents the development of a novel solid state photocatalyst for the photoinduced controlled radical polymerization of methacrylates under mild UV irradiation (λmax ≈ 365 nm) in the absence of conventional photoinitiators, metal-catalysts or dye sensitizers. The photocatalyst design was based on our previous finding that organic amines can act in a synergistic photochemical reaction with thiocarbonylthio compounds to afford well controlled polymethacrylates under UV irradiation. Therefore, in the current contribution an amine-rich polymer was covalently grafted onto a solid substrate, thus creating a heterogeneous catalyst that would allow for facile removal, recovery and recyclability when employed for such photopolymerization reactions. Importantly, the polymethacrylates synthesized using the solid state photocatalyst (ssPC) show similarly excellent chemical and structural integrity as those catalysed by free amines. Moreover, the ssPC could be readily recovered and re-used, with multiple cycles of polymerization showing minimal effect on the integrity of the catalyst. Finally, the ssPC was employed in various photo-“click” reactions, permitting high yielding conjugations under photochemical control. PMID:26863939

  7. A novel solid state photocatalyst for living radical polymerization under UV irradiation.

    PubMed

    Fu, Qiang; McKenzie, Thomas G; Ren, Jing M; Tan, Shereen; Nam, Eunhyung; Qiao, Greg G

    2016-02-11

    This study presents the development of a novel solid state photocatalyst for the photoinduced controlled radical polymerization of methacrylates under mild UV irradiation (λmax ≈ 365 nm) in the absence of conventional photoinitiators, metal-catalysts or dye sensitizers. The photocatalyst design was based on our previous finding that organic amines can act in a synergistic photochemical reaction with thiocarbonylthio compounds to afford well controlled polymethacrylates under UV irradiation. Therefore, in the current contribution an amine-rich polymer was covalently grafted onto a solid substrate, thus creating a heterogeneous catalyst that would allow for facile removal, recovery and recyclability when employed for such photopolymerization reactions. Importantly, the polymethacrylates synthesized using the solid state photocatalyst (ssPC) show similarly excellent chemical and structural integrity as those catalysed by free amines. Moreover, the ssPC could be readily recovered and re-used, with multiple cycles of polymerization showing minimal effect on the integrity of the catalyst. Finally, the ssPC was employed in various photo-"click" reactions, permitting high yielding conjugations under photochemical control.

  8. Cytoplasmic Actin: Purification and Single Molecule Assembly Assays

    PubMed Central

    Hansen, Scott D.; Zuchero, J. Bradley; Mullins, R. Dyche

    2014-01-01

    The actin cytoskeleton is essential to all eukaryotic cells. In addition to playing important structural roles, assembly of actin into filaments powers diverse cellular processes, including cell motility, cytokinesis, and endocytosis. Actin polymerization is tightly regulated by its numerous cofactors, which control spatial and temporal assembly of actin as well as the physical properties of these filaments. Development of an in vitro model of actin polymerization from purified components has allowed for great advances in determining the effects of these proteins on the actin cytoskeleton. Here we describe how to use the pyrene actin assembly assay to determine the effect of a protein on the kinetics of actin assembly, either directly or as mediated by proteins such as nucleation or capping factors. Secondly, we show how fluorescently labeled phalloidin can be used to visualize the filaments that are created in vitro to give insight into how proteins regulate actin filament structure. Finally, we describe a method for visualizing dynamic assembly and disassembly of single actin filaments and fluorescently labeled actin binding proteins using total internal reflection fluorescence (TIRF) microscopy. PMID:23868587

  9. Arp2/3 complex and actin dynamics are required for actin-based mitochondrial motility in yeast

    PubMed Central

    Boldogh, Istvan R.; Yang, Hyeong-Cheol; Nowakowski, W. Dan; Karmon, Sharon L.; Hays, Lara G.; Yates, John R.; Pon, Liza A.

    2001-01-01

    The Arp2/3 complex is implicated in actin polymerization-driven movement of Listeria monocytogenes. Here, we find that Arp2p and Arc15p, two subunits of this complex, show tight, actin-independent association with isolated yeast mitochondria. Arp2p colocalizes with mitochondria. Consistent with this result, we detect Arp2p-dependent formation of actin clouds around mitochondria in intact yeast. Cells bearing mutations in ARP2 or ARC15 genes show decreased velocities of mitochondrial movement, loss of all directed movement and defects in mitochondrial morphology. Finally, we observe a decrease in the velocity and extent of mitochondrial movement in yeast in which actin dynamics are reduced but actin cytoskeletal structure is intact. These results support the idea that the movement of mitochondria in yeast is actin polymerization driven and that this movement requires Arp2/3 complex. PMID:11248049

  10. Production of fungal antibiotics using polymeric solid supports in solid-state and liquid fermentation.

    PubMed

    Bigelis, Ramunas; He, Haiyin; Yang, Hui Y; Chang, Li-Ping; Greenstein, Michael

    2006-10-01

    The use of inert absorbent polymeric supports for cellular attachment in solid-state fungal fermentation influenced growth, morphology, and production of bioactive secondary metabolites. Two filamentous fungi exemplified the utility of this approach to facilitate the discovery of new antimicrobial compounds. Cylindrocarpon sp. LL-Cyan426 produced pyrrocidines A and B and Acremonium sp. LL-Cyan416 produced acremonidins A-E when grown on agar bearing moist polyester-cellulose paper and generated distinctly different metabolite profiles than the conventional shaken or stationary liquid fermentations. Differences were also apparent when tenfold concentrated methanol extracts from these fermentations were tested against antibiotic-susceptible and antibiotic-resistant Gram-positive bacteria, and zones of inhibition were compared. Shaken broth cultures of Acremonium sp. or Cylindrocarpon sp. showed complex HPLC patterns, lower levels of target compounds, and high levels of unwanted compounds and medium components, while agar/solid support cultures showed significantly increased yields of pyrrocidines A and B and acremonidins A-E, respectively. This method, mixed-phase fermentation (fermentation with an inert solid support bearing liquid medium), exploited the increase in surface area available for fungal growth on the supports and the tendency of some microorganisms to adhere to solid surfaces, possibly mimicking their natural growth habits. The production of dimeric anthraquinones by Penicillium sp. LL-WF159 was investigated in liquid fermentation using various inert polymeric immobilization supports composed of polypropylene, polypropylene cellulose, polyester-cellulose, or polyurethane. This culture produced rugulosin, skyrin, flavomannin, and a new bisanthracene, WF159-A, after fermentation in the presence and absence of polymeric supports for mycelial attachment. The physical nature of the different support systems influenced culture morphology and relative

  11. Preparation of filamentous actin for polarized total internal reflection fluorescence microscopy (polTIRFM) motility assays.

    PubMed

    Beausang, John F; Sun, Yujie; Quinlan, Margot E; Forkey, Joseph N; Goldman, Yale E

    2012-05-01

    Polarized total internal reflection fluorescence microscopy (polTIRFM) can be used to detect the spatial orientation and rotational dynamics of single molecules. polTIRFM determines the three-dimensional angular orientation and the extent of wobble of a fluorescent probe bound to the macromolecule of interest. In this protocol, filamentous actin (F-actin) is polymerized from purified, monomeric actin (G-actin) for use in polTIRFM motility assays in which actin interacts with myosin. The procedures include (1) the preparation of unlabeled F-actin from G-actin; (2) the preparation of F-actin that is sparsely labeled with 6'-IATR (6'-iodoacetamidotetramethylrhodamine); and (3) the preparation of F-actin with a combination of unlabeled, biotinylated, and rhodamine-labeled monomers. Rhodamine-phalloidin actin, also used in polTIRFM assays, can be prepared using a procedure similar to the one for unlabeled actin.

  12. Actinic Prurigo.

    PubMed

    Rodríguez-Carreón, Alma Angélica; Rodríguez-Lobato, Erika; Rodríguez-Gutiérrez, Georgina; Cuevas-González, Juan Carlos; Mancheno-Valencia, Alexandra; Solís-Arias, Martha Patricia; Vega-Memije, María Elisa; Hojyo-Tomoka, María Teresa; Domínguez-Soto, Luciano

    2015-01-01

    Actinic prurigo is an idiopathic photodermatosis that affects the skin, as well as the labial and conjunctival mucosa in indigenous and mestizo populations of Latin America. It starts predominantly in childhood, has a chronic course, and is exacerbated with solar exposure. Little is known of its pathophysiology, including the known mechanisms of the participation of HLA-DR4 and an abnormal immunologic response with increase of T CD4+ lymphocytes. The presence of IgE, eosinophils, and mast cells suggests that it is a hypersensitivity reaction (likely type IVa or b). The diagnosis is clinical, and the presence of lymphoid follicles in the mucosal histopathologic study of mucosa is pathognomonic. The best available treatment to date is thalidomide, despite its secondary effects.

  13. Profilin connects actin assembly with microtubule dynamics

    PubMed Central

    Nejedla, Michaela; Sadi, Sara; Sulimenko, Vadym; de Almeida, Francisca Nunes; Blom, Hans; Draber, Pavel; Aspenström, Pontus; Karlsson, Roger

    2016-01-01

    Profilin controls actin nucleation and assembly processes in eukaryotic cells. Actin nucleation and elongation promoting factors (NEPFs) such as Ena/VASP, formins, and WASP-family proteins recruit profilin:actin for filament formation. Some of these are found to be microtubule associated, making actin polymerization from microtubule-associated platforms possible. Microtubules are implicated in focal adhesion turnover, cell polarity establishment, and migration, illustrating the coupling between actin and microtubule systems. Here we demonstrate that profilin is functionally linked to microtubules with formins and point to formins as major mediators of this association. To reach this conclusion, we combined different fluorescence microscopy techniques, including superresolution microscopy, with siRNA modulation of profilin expression and drug treatments to interfere with actin dynamics. Our studies show that profilin dynamically associates with microtubules and this fraction of profilin contributes to balance actin assembly during homeostatic cell growth and affects micro­tubule dynamics. Hence profilin functions as a regulator of microtubule (+)-end turnover in addition to being an actin control element. PMID:27307590

  14. Incorporation of isosorbide into poly(butylene terephthalate) via solid-state polymerization.

    PubMed

    Sablong, Rafaël; Duchateau, Robbert; Koning, Cor E; de Wit, Gert; va Es, Daan; Koelewijn, Roelof; van Haveren, Jacco

    2008-11-01

    The biomass-based monomer isosorbide was incorporated into poly(butylene terephthalate) (PBT) by solid-state polymerization (SSP) using the macrodiol monomer BTITB-(OH) 2, which consists of isosorbide (I), terephthalic acid (T), and 1,4-butandiol (B) residues. This macromonomer can be synthesized by a simple one-pot, two-step reaction. Polymers with number-average molecular weights up to 100,000 g x mol (-1) were readily synthesized from various ratios of PBT/BTITB-(OH) 2. Their molecular weights, thermal properties, and colors were compared with corresponding copolyesters that were obtained by melt polycondensation. We found that T m, T c, and especially T g were superior for materials that were obtained by SSP. This is ascribed to differences in the microstructures of both types of copolyesters; the SSP products exhibit a more blocky structure than do the more random melt-polymerized counterparts. The SSP method resulted in much higher molecular weights and much less colored polymers, and it seems to be the preferred route for incorporating biobased monomers that exhibit limited thermal stability into engineering plastics.

  15. New directions for high-performance materials via postextrusion solid state polymerization

    NASA Astrophysics Data System (ADS)

    Almonacil, Celine

    Solid state polymerization (SSP) usually consists of heating condensation polymers to temperatures below their melting point and holding there for a significant time to raise their molecular weight. The process is common in the polymer industry for the production of high molecular weight polyesters and polyamides for industrial fibers and molded products. Recent research has shown that post-extrusion SSP, where polymerization is performed on extruded products such as thin films or fibers, has the potential to lead to high performance materials. Although literature on SSP is abundant, the mechanisms and possible morphological consequences have remained largely unexplored. The purpose of this work is to explore the potential for generating high performance oriented polymer morphologies by performing a fundamental analysis of the mechanisms and morphological consequences of post-extrusion SSP in oriented polymers. It is based on recent research that has shown that interchange reactions can play a fundamental role during many solid state polymerizations by providing the primary mechanism for migration of functionality. It is also based on the recent recognition that these reactions can cause profound changes in the morphology of the polymer. A coarse-grained model which can be used to explore quantitatively the effect of interchange reactions on the topological distribution of chains in inter-crystalline regions is presented here. It includes a novel thermodynamic scheme, coupled with Monte Carlo Rotational Isomeric State simulations, to determine quantitatively the relative probabilities of morphologically different reaction pathways. The results show the role of intrinsic molecular rigidity on interconversions of bridges and loops during SSP of different polymers. The generalized scheme presented here can serve to identify, via gedanken experiments, appropriate semi-rigid systems to explore through real synthesis and processing of high mechanical performance polymers

  16. Time-resolved fluorescence measurements of actin-phalloidin interactions

    NASA Astrophysics Data System (ADS)

    Helms, Michael K.; French, Todd E.

    2000-03-01

    Compounds that interact with the cytoskeleton affect mobility and division, making them useful for treatment of certain types of cancer. Actin binding drugs such as the phallotoxins (small, bicyclic peptides) bind to and stabilize actin polymers (F-actin) without binding to actin monomers (G-actin). It has been shown that the intensity of fluorescently labeled phallotoxins such as fluorescein- phalloidin and rhodamine-phalloidin increases upon bind F- actin. We used LJL BioSystems' new FLAReTM technology to measure excited state lifetime changes of fluorescein- phalloidin and rhodamine-phalloidin upon binding to F- actin.

  17. Actin Age Orchestrates Myosin-5 and Myosin-6 Runlengths

    PubMed Central

    Zimmermann, Dennis; Santos, Alicja; Kovar, David R.; Rock, Ronald S.

    2015-01-01

    Summary Unlike a static and immobile skeleton, the actin cytoskeleton is a highly dynamic network of filamentous actin (F-actin) polymers that continuously turn over. In addition to generating mechanical forces and sensing mechanical deformation, dynamic F-actin networks serve as cellular tracks for myosin motor traffic. However, much of our mechanistic understanding of processive myosins comes from in vitro studies where motility was studied on pre-assembled and artificially stabilized, static F-actin tracks. In this work, we examine the role of actin dynamics in single-molecule myosin motility using assembling F-actin and the two highly processive motors, myosin-5 and myosin-6. These two myosins have distinct functions in the cell and travel in opposite directions along actin filaments [1–3]. Myosin-5 walks towards the barbed ends of F-actin, traveling to sites of actin polymerization at the cell periphery [4]. Myosin-6 walks towards the pointed end of F-actin [5], traveling towards the cell center along older segments of the actin filament. We find that myosin-5 takes 1.3 to 1.5-fold longer runs on ADP•Pi (young) F-actin, while myosin-6 takes 1.7 to 3.6-fold longer runs along ADP (old) F-actin. These results suggest that conformational differences between ADP•Pi and ADP F-actin tailor these myosins to walk farther toward their preferred actin filament end. Taken together, these experiments define a new mechanism by which myosin traffic may sort to different F-actin networks depending on filament age. PMID:26190073

  18. Evidence for filamentous actin in ookinetes of a malarial parasite.

    PubMed

    Siden-Kiamos, Inga; Louis, Christos; Matuschewski, Kai

    2012-02-01

    Extracellular stages of apicomplexan parasites utilize their own actin myosin motor machinery for gliding locomotion, penetration of cell barriers, and host cell invasion. Thus far, filamentous actin could not be visualized by standard microscopic techniques in vivo. Here, we describe the generation of a novel peptide antibody against the divergent amino-terminal portion of the major Plasmodium isoform, actin I. We show that our antiserum, termed Ab-actinI-I, is conformation-specific. In motile ookinetes it recognizes actin in rod-like structures, which are sensitive to inhibitors interfering with actin polymerization. The average size of the rods is 600 nm, which is considerably longer than what has been detected in in vitro studies of actin filaments.

  19. Confinement induces actin flow in a meiotic cytoplasm

    PubMed Central

    Pinot, Mathieu; Steiner, Villier; Dehapiot, Benoit; Yoo, Byung-Kuk; Chesnel, Franck; Blanchoin, Laurent; Kervrann, Charles; Gueroui, Zoher

    2012-01-01

    In vivo, F-actin flows are observed at different cell life stages and participate in various developmental processes during asymmetric divisions in vertebrate oocytes, cell migration, or wound healing. Here, we show that confinement has a dramatic effect on F-actin spatiotemporal organization. We reconstitute in vitro the spontaneous generation of F-actin flow using Xenopus meiotic extracts artificially confined within a geometry mimicking the cell boundary. Perturbations of actin polymerization kinetics or F-actin nucleation sites strongly modify the network flow dynamics. A combination of quantitative image analysis and biochemical perturbations shows that both spatial localization of F-actin nucleators and actin turnover play a decisive role in generating flow. Interestingly, our in vitro assay recapitulates several symmetry-breaking processes observed in oocytes and early embryonic cells. PMID:22753521

  20. New Insights into Mechanism and Regulation of Actin Capping Protein

    PubMed Central

    Cooper, John A.; Sept, David

    2008-01-01

    The heterodimeric actin capping protein, referred to here as “CP,” is an essential element of the actin cytoskeleton, binding to the barbed ends of actin filaments and regulating their polymerization. In vitro, CP has a critical role in the dendritic nucleation process of actin assembly mediated by Arp2/3 complex, and in vivo, CP is important for actin assembly and actin-based process of morphogenesis and differentiation. Recent studies have provided new insight into the mechanism of CP binding the barbed end, which raises new possibilities for the dynamics of CP and actin in cells. In addition, a number of molecules that bind and regulate CP have been discovered, suggesting new ideas for how CP may integrate into diverse processes of cell physiology. PMID:18544499

  1. A dynamic formin-dependent deep F-actin network in axons

    PubMed Central

    Ganguly, Archan; Tang, Yong; Wang, Lina; Ladt, Kelsey; Loi, Jonathan; Dargent, Bénédicte; Leterrier, Christophe

    2015-01-01

    Although actin at neuronal growth cones is well-studied, much less is known about actin organization and dynamics along axon shafts and presynaptic boutons. Using probes that selectively label filamentous-actin (F-actin), we found focal “actin hotspots” along axons—spaced ∼3–4 µm apart—where actin undergoes continuous assembly/disassembly. These foci are a nidus for vigorous actin polymerization, generating long filaments spurting bidirectionally along axons—a phenomenon we call “actin trails.” Super-resolution microscopy reveals intra-axonal deep actin filaments in addition to the subplasmalemmal “actin rings” described recently. F-actin hotspots colocalize with stationary axonal endosomes, and blocking vesicle transport diminishes the actin trails, suggesting mechanistic links between vesicles and F-actin kinetics. Actin trails are formin—but not Arp2/3—dependent and help enrich actin at presynaptic boutons. Finally, formin inhibition dramatically disrupts synaptic recycling. Collectively, available data suggest a two-tier F-actin organization in axons, with stable “actin rings” providing mechanical support to the plasma membrane and dynamic "actin trails" generating a flexible cytoskeletal network with putative physiological roles. PMID:26216902

  2. Ca2+-dependent actin coating of lamellar bodies after exocytotic fusion: a prerequisite for content release or kiss-and-run.

    PubMed

    Miklavc, Pika; Wittekindt, Oliver H; Felder, Edward; Dietl, Paul

    2009-01-01

    Type II pneumocytes secrete surfactant, a lipoprotein-like substance reducing the surface tension in the lung, by regulated exocytosis of secretory vesicles termed lamellar bodies (LBs). This secretory process is characterized by a protracted postfusion phase in which fusion pores open slowly and may act as mechanical barriers for release. Combining dark-field with fluorescence microscopy, we show in ss-actin green fluorescent protein-transfected pneumocytes that LB fusion with the plasma membrane is followed by actin coating of the fused LB. This is inhibited by cytoplasmic Ca(2+) chelation or the phospholipase D inhibitor C2 ceramide. Actin coating occurs by polymerization of actin monomers, as evidenced by staining with Alexa 568 phalloidin. After actin coating of the fused LB, it either shrinks while releasing surfactant ("kiss-coat-and-release"), remains in this fused state without further action ("kiss-coat-and-wait"), or is retrieved and pushed forward in the cell on top of an actin tail ("kiss-coat-and-run"). In the absence of actin coating, no release or run was observed. These data suggest that actin coating creates a force needed for either extrusion of vesicle contents or retrieval and intracellular propulsion.

  3. Resonance Femtosecond-Stimulated Raman Spectroscopy without Actinic Excitation Showing Low-Frequency Vibrational Activity in the S2 State of All-Trans β-Carotene.

    PubMed

    Quick, Martin; Dobryakov, Alexander L; Kovalenko, Sergey A; Ernsting, Nikolaus P

    2015-04-02

    Raman scattering with stimulating femtosecond probe pulses (FSR) was used to observe vibrational activity of all-trans β-carotene in n-hexane. The short-lived excited electronic state S2 was accessed in two ways: (i) by transient FSR after an actinic pulse to populate the S2 state, exploiting resonance from an Sx ← S2 transition, and (ii) by FSR without actinic excitation, using S2 ↔ S0 resonance exclusively and narrow-band Raman/broad-band femtosecond probe pulses only. The two approaches have nonlinear optical susceptibilities χ((5)) and χ((3)), respectively. Both methods show low-frequency bands of the S2 state at 200, 400, and ∼600 cm(-1), which are reported for the first time. With (ii) the intensities of low-frequency vibrational resonances in S2 are larger compared to those in S0, implying strong anharmonicities/mode mixing in the excited state. In principle, for short-lived electronic states, the χ((3)) method should allow the best characterization of low-frequency modes.

  4. An Investigation of the Solid-State Condensation Polymerization Reaction in Vapor-Deposited Poly(amic acid)

    NASA Astrophysics Data System (ADS)

    Anthamatten, Mitchell; Letts, Stephan A.; Day, Katherine; Cook, Robert C.; Gies, Anthony P.; Nonidez, William K.

    2004-03-01

    The condensation polymerization reaction of 4,4'-oxydianiline (ODA) with pyromellitic dianhydride (PMDA) to form poly(amic acid) and the subsequent imidization reaction to form polyimide were investigated for films prepared using vapor deposition polymerization techniques. Fourier-transform infrared spectroscopy (FTIR), thermal analysis, and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of films prepared at different temperatures indicate that additional solid-state polymerization occurs prior to imidization reactions. Experiments suggest that poly(amic acid) oligomers form upon vapor-deposition and have a number-average molecular weights of about 1500 Daltons. Between 100-130 °C these chains undergo additional condensation reactions to form slightly higher molecular weight oligomers. This work was performed under the auspices of the U.S. Department of Energy by the University of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

  5. Fabrication of superhydrophobic films with robust adhesion and dual pinning state via in situ polymerization.

    PubMed

    Raza, Aikifa; Si, Yang; Ding, Bin; Yu, Jianyong; Sun, Gang

    2013-04-01

    Superhydrophobic films on glass substrate with robust adhesion and dual pinning to the water droplets were fabricated utilizing a novel in situ polymerized fluorinated polybenzoxazine (F-PBZ) having drooping aliphatic chains and incorporated SiO2 nanoparticles (SiO2 NPs). By employing the F-PBZ/SiO2 NPs modification, the as-prepared composite films possess the robust adhesion to the glass substrate and superhydrophobic pinned state with water contact angle (WCA) of 150° and the non-pinned state with WCA approaching to 165°. Surface morphological studies have indicated that the wettability of the resultant films could be controlled by tuning the surface composition as well as the hierarchical structures. The key role of micro and sub-micro-sized structures and the nanometer sized voids is discussed by the investigation into static contact angle, contact angle hysteresis, droplet evaporation, and propensity for air pocket formation. The as-prepared films exhibited high adhesion toward the glass substrate with considerable durability in corrosive water and proved their simultaneous use in the transportation of micro-droplets, which could be helpful to design large-area and highly scalable superhydrophobic films.

  6. Association of actin filaments with axonal microtubule tracts.

    PubMed

    Bearer, E L; Reese, T S

    1999-02-01

    Axoplasmic organelles move on actin as well as microtubules in vitro and axons contain a large amount of actin, but little is known about the organization and distribution of actin filaments within the axon. Here we undertake to define the relationship of the microtubule bundles typically found in axons to actin filaments by applying three microscopic techniques: laser-scanning confocal microscopy of immuno-labeled squid axoplasm; electronmicroscopy of conventionally prepared thin sections; and electronmicroscopy of touch preparations-a thin layer of axoplasm transferred to a specimen grid and negatively stained. Light microscopy shows that longitudinal actin filaments are abundant and usually coincide with longitudinal microtubule bundles. Electron microscopy shows that microfilaments are interwoven with the longitudinal bundles of microtubules. These bundles maintain their integrity when neurofilaments are extracted. Some, though not all microfilaments decorate with the S1 fragment of myosin, and some also act as nucleation sites for polymerization of exogenous actin, and hence are definitively identified as actin filaments. These actin filaments range in minimum length from 0.5 to 1.5 microm with some at least as long as 3.5 microm. We conclude that the microtubule-based tracks for fast organelle transport also include actin filaments. These actin filaments are sufficiently long and abundant to be ancillary or supportive of fast transport along microtubules within bundles, or to extend transport outside of the bundle. These actin filaments could also be essential for maintaining the structural integrity of the microtubule bundles.

  7. Actin filaments as dynamic reservoirs for Drp1 recruitment

    PubMed Central

    Hatch, Anna L.; Ji, Wei-Ke; Merrill, Ronald A.; Strack, Stefan; Higgs, Henry N.

    2016-01-01

    Drp1 is a dynamin-family GTPase recruited to mitochondria and peroxisomes, where it oligomerizes and drives membrane fission. Regulation of mitochondrial Drp1 recruitment is not fully understood. We previously showed that Drp1 binds actin filaments directly, and actin polymerization is necessary for mitochondrial Drp1 oligomerization in mammals. Here we show the Drp1/actin interaction displays unusual properties that are influenced by several factors. At saturation, only a fraction Drp1 binds actin filaments, and the off-rate of actin-bound Drp1 is significantly increased by unbound Drp1. GDP and GTP accelerate and decelerate Drp1/actin binding dynamics, respectively. Actin has a biphasic effect on Drp1 GTP hydrolysis, increasing at low actin:Drp1 ratio but returning to baseline at high ratio. Drp1 also bundles filaments. Bundles have reduced dynamics but follow the same trends as single filaments. Drp1 preferentially incorporates into bundles at higher ionic strength. We measure Drp1 concentration to be ∼0.5 μM in U2OS cell cytosol, suggesting the actin-binding affinity measured here (Kd = 0.6 μM) is in the physiologically relevant range. The ability of Drp1 to bind actin filaments in a highly dynamic manner provides potential for actin filaments to serve as reservoirs of oligomerization-competent Drp1 that can be accessed for mitochondrial fission. PMID:27559132

  8. Direct Observation of Tropomyosin Binding to Actin Filaments

    PubMed Central

    Schmidt, William M.; Lehman, William; Moore, Jeffrey R.

    2015-01-01

    Tropomyosin is an elongated α-helical coiled-coil that binds to seven consecutive actin subunits along the long-pitch helix of actin filaments. Once bound, tropomyosin polymerizes end-to-end and both stabilizes F-actin and regulates access of various actin binding proteins including myosin in muscle and non-muscle cells. Single tropomyosin molecules bind weakly to F-actin with millimolar Kd, whereas the end-to-end linked tropomyosin associates with about a one thousand-fold greater affinity. Despite years of study, the assembly mechanism of tropomyosin onto actin filaments remains unclear. In the current study, we used total internal reflection fluorescence (TIRF) microscopy to directly monitor the cooperative binding of fluorescently labeled tropomyosin molecules to phalloidin-stabilized actin filaments. We find that tropomyosin molecules assemble from multiple growth sites following random low affinity binding of single molecules to actin. As the length of the tropomyosin chain increases, the probability of detachment decreases, which leads to further chain growth. Tropomyosin chain extension is linearly dependent on tropomyosin concentration, occurring at approximately 100 monomers/(μM*s). The random tropomyosin binding to F-actin leads to discontinuous end-to-end association where gaps in the chain continuity smaller than the required seven sequential actin monomers are available. Direct observation of tropomyosin detachment revealed the number of gaps in actin-bound tropomyosin, the time course of gap annealing, and the eventual filament saturation process. PMID:26033920

  9. Curvature and torsion in growing actin networks

    PubMed Central

    Shaevitz, Joshua W; Fletcher, Daniel A

    2011-01-01

    Intracellular pathogens such as Listeria monocytogenes and Rickettsia rickettsii move within a host cell by polymerizing a comet-tail of actin fibers that ultimately pushes the cell forward. This dense network of cross-linked actin polymers typically exhibits a striking curvature that causes bacteria to move in gently looping paths. Theoretically, tail curvature has been linked to details of motility by considering force and torque balances from a finite number of polymerizing filaments. Here we track beads coated with a prokaryotic activator of actin polymerization in three dimensions to directly quantify the curvature and torsion of bead motility paths. We find that bead paths are more likely to have low rather than high curvature at any given time. Furthermore, path curvature changes very slowly in time, with an autocorrelation decay time of 200 s. Paths with a small radius of curvature, therefore, remain so for an extended period resulting in loops when confined to two dimensions. When allowed to explore a three-dimensional (3D) space, path loops are less evident. Finally, we quantify the torsion in the bead paths and show that beads do not exhibit a significant left- or right-handed bias to their motion in 3D. These results suggest that paths of actin-propelled objects may be attributed to slow changes in curvature, possibly associated with filament debranching, rather than a fixed torque. PMID:18560043

  10. Curvature and torsion in growing actin networks

    NASA Astrophysics Data System (ADS)

    Shaevitz, Joshua W.; Fletcher, Daniel A.

    2008-06-01

    Intracellular pathogens such as Listeria monocytogenes and Rickettsia rickettsii move within a host cell by polymerizing a comet-tail of actin fibers that ultimately pushes the cell forward. This dense network of cross-linked actin polymers typically exhibits a striking curvature that causes bacteria to move in gently looping paths. Theoretically, tail curvature has been linked to details of motility by considering force and torque balances from a finite number of polymerizing filaments. Here we track beads coated with a prokaryotic activator of actin polymerization in three dimensions to directly quantify the curvature and torsion of bead motility paths. We find that bead paths are more likely to have low rather than high curvature at any given time. Furthermore, path curvature changes very slowly in time, with an autocorrelation decay time of 200 s. Paths with a small radius of curvature, therefore, remain so for an extended period resulting in loops when confined to two dimensions. When allowed to explore a three-dimensional (3D) space, path loops are less evident. Finally, we quantify the torsion in the bead paths and show that beads do not exhibit a significant left- or right-handed bias to their motion in 3D. These results suggest that paths of actin-propelled objects may be attributed to slow changes in curvature, possibly associated with filament debranching, rather than a fixed torque.

  11. Damage effects of protoporphyrin IX - sonodynamic therapy on the cytoskeletal F-actin of Ehrlich ascites carcinoma cells.

    PubMed

    Zhao, Xia; Liu, Quanhong; Tang, Wei; Wang, Xiaobing; Wang, Pan; Gong, Liyan; Wang, Yuan

    2009-01-01

    In this study, we report evidence of the damage effects of sonodynamic therapy (SDT) on a novel intracellular target, cytoskeletal F-actin, that has great importance for cancer treatment. Ehrlich ascites carcinoma (EAC) cells suspended in PBS were exposed to ultrasound at 1.34 MHz for up to 60s in the presence and absence of protoporphyrin IX (PPIX). To evaluate the polymeric state and distribution of actin filaments (AF) we employed FITC-Phalloidin staining. The percentage of cells with intact AF was decreased with 10-80 microM PPIX after ultrasonic exposure, while only few cells with disturbed F-actin were observed with 80 microM PPIX alone. The fluorescence intensity of FITC-Phalloidin labeled cells was detected by flow cytometry. The morphological changes of EAC cells were observed by scanning electron microscope (SEM). The nuclei were stained with Hoechst 33258 to determine apoptosis. Cytoskeletal F-actin and cell morphological changes were dependent on the time after SDT. Some cells suffered deformations of plasma membrane as blebs that reacted positively to FITC-Phalloidin at 2h after SDT treatment. Many of the cells showed the typically apoptotic chromatin fragmentation. The alterations were more significant 4h later. Our results showed that cytoskeletal F-actin might represent an important target for the SDT treatment and the observed effect on F-actin and the subsequent bleb formation mainly due to apoptosis formation due to the treatment.

  12. Plasma Gelsolin Levels Decrease in Diabetic State and Increase upon Treatment with F-Actin Depolymerizing Versions of Gelsolin

    PubMed Central

    Khatri, Neeraj; Sagar, Amin; Peddada, Nagesh; Choudhary, Vikas; Chopra, Bhupinder Singh; Garg, Veena; Ashish

    2014-01-01

    The study aims to map plasma gelsolin (pGSN) levels in diabetic humans and mice models of type II diabetes and to evaluate the efficacy of gelsolin therapy in improvement of diabetes in mice. We report that pGSN values decrease by a factor of 0.45 to 0.5 in the blood of type II diabetic humans and mice models. Oral glucose tolerance test in mice models showed that subcutaneous administration of recombinant pGSN and its F-actin depolymerizing competent versions brought down blood sugar levels comparable to Sitagliptin, a drug used to manage hyperglycemic condition. Further, daily dose of pGSN or its truncated versions to diabetic mice for a week kept sugar levels close to normal values. Also, diabetic mice treated with Sitagliptin for 7 days, showed increase in their pGSN values with the decrease in blood glucose as compared to their levels at the start of treatment. Gelsolin helped in improving glycemic control in diabetic mice. We propose that gelsolin level monitoring and replacement of F-actin severing capable gelsolin(s) should be considered in diabetic care. PMID:25478578

  13. Identification of sucrose synthase as an actin-binding protein

    NASA Technical Reports Server (NTRS)

    Winter, H.; Huber, J. L.; Huber, S. C.; Davies, E. (Principal Investigator)

    1998-01-01

    Several lines of evidence indicate that sucrose synthase (SuSy) binds both G- and F-actin: (i) presence of SuSy in the Triton X-100-insoluble fraction of microsomal membranes (i.e. crude cytoskeleton fraction); (ii) co-immunoprecipitation of actin with anti-SuSy monoclonal antibodies; (iii) association of SuSy with in situ phalloidin-stabilized F-actin filaments; and (iv) direct binding to F-actin, polymerized in vitro. Aldolase, well known to interact with F-actin, interfered with binding of SuSy, suggesting that a common or overlapping binding site may be involved. We postulate that some of the soluble SuSy in the cytosol may be associated with the actin cytoskeleton in vivo.

  14. Aligned carbon nanotube film enables thermally induced state transformations in layered polymeric materials.

    PubMed

    Lee, Jeonyoon; Stein, Itai Y; Kessler, Seth S; Wardle, Brian L

    2015-04-29

    The energy losses and geometric constraints associated with conventional curing techniques of polymeric systems motivate the study of a highly scalable out-of-oven curing method using a nanostructured resistive heater comprised of aligned carbon nanotubes (A-CNT). The experimental results indicate that, when compared to conventional oven based techniques, the use of an "out-of-oven" A-CNT integrated heater leads to orders of magnitude reductions in the energy required to process polymeric layered structures such as composites. Integration of this technology into structural systems enables the in situ curing of large-scale polymeric systems at high efficiencies, while adding sensing and control capabilities.

  15. Thermal Properties and Morphological Analyses of poly(ethylene terephthalate)[PET] Solid State Polymerized

    NASA Astrophysics Data System (ADS)

    Medellin-Rodriguez, F. J.; Lopez-Guillen, R.

    1997-03-01

    High molecular weight PET was obtained through solid state polymerization of commercial PET. After optimizing synthesis variables such as time and reaction temperature, catalyst and gas flow rate, bulk crystallization studies were made with the products in terms of crystallization time and temperature. Molecular crystallization analyses were then performed for the highest molecular weight PET and also for the commercial reference. Isothermal crystallization and melting experiments were systematically practiced in order to characterize the high molecular weight PET. Bulk crystallization studies indicated changes in nucleation patterns from instantaneous to sporadic as the molecular weight was increased. When the molecular crystallization results were correlated with secondary nucleation theory and Regime III, a proportional relationship between the elementary jump activation energy and molecular weight was found. Melting experiments indicated that the main effect of increasing molecular weight is an increase in the second melting endotherm when this feature is present. The support by CONACyT through grant No. 0667P-A is greatly appreciated.

  16. The History of Current State of the Art of Propylene Polymerization Catalysts.

    ERIC Educational Resources Information Center

    Goodall, Brian L.

    1986-01-01

    Outlines the development of the modern catalysts for propylene polymerization, considering the historical background; structure of titanium chloride catalysts; first-generation catalysts; cocatalysts; second-generation catalysts; catalysts morphology; and third-generation (supported catalysts). (JN)

  17. Fission yeast IQGAP arranges actin filaments into the cytokinetic contractile ring

    PubMed Central

    Takaine, Masak; Numata, Osamu; Nakano, Kentaro

    2009-01-01

    The contractile ring (CR) consists of bundled actin filaments and myosin II; however, the actin-bundling factor remains elusive. We show that the fission yeast Schizosaccharomyces pombe IQGAP Rng2 is involved in the generation of CR F-actin and required for its arrangement into a ring. An N-terminal fragment of Rng2 is necessary for the function of Rng2 and is localized to CR F-actin. In vitro the fragment promotes actin polymerization and forms linear arrays of F-actin, which are resistant to the depolymerization induced by the actin-depolymerizing factor Adf1. Our findings indicate that Rng2 is involved in the generation of CR F-actin and simultaneously bundles the filaments and regulates its dynamics by counteracting the effects of Adf1, thus enabling the reconstruction of CR F-actin bundles, which provides an insight into the physical properties of the building blocks that comprise the CR. PMID:19713940

  18. State of the art, challenges and perspectives in the design of nitric oxide-releasing polymeric nanomaterials for biomedical applications.

    PubMed

    Seabra, Amedea B; Justo, Giselle Z; Haddad, Paula S

    2015-11-01

    Recently, an increasing number of publications have demonstrated the importance of the small molecule nitric oxide (NO) in several physiological and pathophysiological processes. NO acts as a key modulator in cardiovascular, immunological, neurological, and respiratory systems, and deficiencies in the production of NO or its inactivation has been associated with several pathologic conditions, ranging from hypertension to sexual dysfunction. Although the clinical administration of NO is still a challenge owing to its transient chemical nature, the combination of NO and nanocarriers based on biocompatible polymeric scaffolds has emerged as an efficient approach to overcome the difficulties associated with the biomedical administration of NO. Indeed, significant progress has been achieved by designing NO-releasing polymeric nanomaterials able to promote the spatiotemporal generation of physiologically relevant amounts of NO in diverse pharmacological applications. In this review, we summarize the recent advances in the preparation of versatile NO-releasing nanocarriers based on polymeric nanoparticles, dendrimers and micelles. Despite the significant innovative progress achieved using nanomaterials to tailor NO release, certain drawbacks still need to be overcome to successfully translate these research innovations into clinical applications. In this regard, this review discusses the state of the art regarding the preparation of innovative NO-releasing polymeric nanomaterials, their impact in the biological field and the challenges that need to be overcome. We hope to inspire new research in this exciting area based on NO and nanotechnology.

  19. SWAP70 Organizes the Actin Cytoskeleton and Is Essential for Phagocytosis.

    PubMed

    Baranov, Maksim V; Revelo, Natalia H; Dingjan, Ilse; Maraspini, Riccardo; Ter Beest, Martin; Honigmann, Alf; van den Bogaart, Geert

    2016-11-01

    Actin plays a critical role during the early stages of pathogenic microbe internalization by immune cells. In this study, we identified a key mechanism of actin filament tethering and stabilization to the surface of phagosomes in human dendritic cells. We found that the actin-binding protein SWAP70 is specifically recruited to nascent phagosomes by binding to the lipid phosphatidylinositol (3,4)-bisphosphate. Multi-color super-resolution stimulated emission depletion (STED) microscopy revealed that the actin cage surrounding early phagosomes is formed by multiple concentric rings containing SWAP70. SWAP70 colocalized with and stimulated activation of RAC1, a known activator of actin polymerization, on phagosomes. Genetic ablation of SWAP70 impaired actin polymerization around phagosomes and resulted in a phagocytic defect. These data show a key role for SWAP70 as a scaffold for tethering the peripheral actin cage to phagosomes.

  20. A Gly65Val substitution in an actin, GhACT_LI1, disrupts cell polarity and membrane anchoring of F-actin resulting in dwarf, lintless Li1 cotton plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Actin polymerizes to form the cytoskeleton and organize polar growth in all eukaryotic cells. Species with numerous actin genes are especially useful for the dissection of actin molecular function due to redundancy and neofunctionalization. Here, we investigated the role of a cotton (Gossypium hi...

  1. The Platelet Actin Cytoskeleton Associates with SNAREs and Participates in α-Granule Secretion†

    PubMed Central

    Woronowicz, Kamil; Dilks, James R.; Rozenvayn, Nataliya; Dowal, Louisa; Blair, Price S.; Peters, Christian G.; Woronowicz, Lucyna; Flaumenhaft, Robert

    2010-01-01

    Following platelet activation, platelets undergo a dramatic shape change mediated by the actin cytoskeleton and accompanied by secretion of granule contents. While the actin cytoskeleton is thought to influence platelet granule secretion, the mechanism for this putative regulation is not known. We found that disruption of the actin cytoskeleton by latrunculin A inhibited α-granule secretion induced by several different platelet agonists without significantly affecting activation-induced platelet aggregation. In a cell-free secretory system, platelet cytosol was required for α-granule secretion. Inhibition of actin polymerization prevented α-granule secretion in this system and purified platelet actin could substitute for platelet cytosol to support α–granule secretion. To determine whether SNAREs physically associate with the actin cytoskeleton, we isolated the Triton X-100 insoluble actin cytoskeleton from platelets. VAMP-8 and syntaxin-2 associated only with actin cytoskeletons of activated platelets. Syntaxin-4 and SNAP-23 associated with cytoskeletons isolated from either resting or activated platelets. When syntaxin-4 and SNAP-23 were tested for actin binding in a purified protein system, only syntaxin-4 associated directly with polymerized platelet actin. These data show that the platelet cytoskeleton interacts with select SNAREs and that actin polymerization facilitates α-granule release. PMID:20429610

  2. Actin dynamics in Phytophthora infestans; rapidly reorganizing cables and immobile, long-lived plaques.

    PubMed

    Meijer, Harold J G; Hua, Chenlei; Kots, Kiki; Ketelaar, Tijs; Govers, Francine

    2014-06-01

    The actin cytoskeleton is a dynamic but well-organized intracellular framework that is essential for proper functioning of eukaryotic cells. Here, we use the actin binding peptide Lifeact to investigate the in vivo actin cytoskeleton dynamics in the oomycete plant pathogen Phytophthora infestans. Lifeact-eGFP labelled thick and thin actin bundles and actin filament plaques allowing visualization of actin dynamics. All actin structures in the hyphae were cortically localized. In growing hyphae actin filament cables were axially oriented in the sub-apical region whereas in the extreme apex in growing hyphae, waves of fine F-actin polymerization were observed. Upon growth termination, actin filament plaques appeared in the hyphal tip. The distance between a hyphal tip and the first actin filament plaque correlated strongly with hyphal growth velocity. The actin filament plaques were nearly immobile with average lifetimes exceeding 1 h, relatively long when compared to the lifetime of actin patches known in other eukaryotes. Plaque assembly required ∼30 s while disassembly was accomplished in ∼10 s. Remarkably, plaque disassembly was not accompanied with internalization and the formation of endocytic vesicles. These findings suggest that the functions of actin plaques in oomycetes differ from those of actin patches present in other organisms.

  3. Extremely low polymerizability of a highly-divergent Chlamydomonas actin (NAP).

    PubMed

    Kato-Minoura, Takako

    2011-09-09

    Novel actin-like protein (NAP) is a highly divergent actin expressed in Chlamydomonas. With its low sequence similarity, it is uncertain whether NAP can polymerize into filaments. Here I assessed it by ectopically expressing enhanced green fluorescent protein-tagged NAP (EGFP-NAP) in cultured cells. EGFP-NAP was excluded from stress fibres but partially co-localized with endogenous actin in the cell periphery. In fluorescence recovery after photobleaching experiment, turnover rate of EGFP-NAP was similar to the estimated diffusion rate of monomeric actin. Therefore, EGFP-NAP likely accumulates by diffusion. These findings suggest that NAP has extremely poor ability to polymerize.

  4. Long-range conformational effects of proteolytic removal of the last three residues of actin.

    PubMed Central

    Strzelecka-Gołaszewska, H; Mossakowska, M; Woźniak, A; Moraczewska, J; Nakayama, H

    1995-01-01

    Truncated derivatives of actin devoid of either the last two (actin-2C) or three residues (actin-3C) were used to study the role of the C-terminal segment in the polymerization of actin. The monomer critical concentration and polymerization rate increased in the order: intact actin < actin-2C < actin-3C. Conversely, the rate of hydrolysis of actin-bound ATP during spontaneous polymerization of Mg-actin decreased in the same order, so that, for actin-3C, the ATP hydrolysis significantly lagged behind the polymer growth. Probing the conformation of the nucleotide site in the monomer form by measuring the rates of the bound nucleotide exchange revealed a similar change upon removal of either the two or three residues from the C-terminus. The C-terminal truncation also resulted in a slight decrease in the rate of subtilisin cleavage of monomeric actin within the DNAse-I binding loop, whereas in F-actin subunits the susceptibility of this and of another site within this loop, specifically cleaved by a proteinase from Escherichia coli A2 strain, gradually increased upon sequential removal of the two and of the third residue from the C-terminus. From these and other observations made in this work it has been concluded that perturbation of the C-terminal structure in monomeric actin is transmitted to the cleft, where nucleotide and bivalent cation are bound, and to the DNAse-I binding loop on the top of subdomain 2. Further changes at these sites, observed on the polymer level, seem to result from elimination of the intersubunit contact between the C-terminal residues and the DNAse-I binding loop. It is suggested that formation of this contact plays an essential role in regulating the hydrolysis of actin-bound ATP associated with the polymerization process. Images Figure 5 Figure 6 Figure 8 PMID:7733893

  5. Bulkiness or aromatic nature of tyrosine-143 of actin is important for the weak binding between F-actin and myosin-ADP-phosphate

    SciTech Connect

    Gomibuchi, Yuki; Uyeda, Taro Q.P.; Wakabayashi, Takeyuki

    2013-11-29

    Highlights: •The effect of mutation of Tyr143 that becomes more exposed on assembly was examined. •Mutation of tyrosine-143 of Dictyostelium actin changed actin polymerizability. •The bulkiness or aromatic nature of Tyr143 is important for the weak binding. •The weak interaction between myosin and actin strengthened by Tyr143Trp mutation. -- Abstract: Actin filaments (F-actin) interact with myosin and activate its ATPase to support force generation. By comparing crystal structures of G-actin and the quasi-atomic model of F-actin based on high-resolution cryo-electron microscopy, the tyrosine-143 was found to be exposed more than 60 Å{sup 2} to the solvent in F-actin. Because tyrosine-143 flanks the hydrophobic cleft near the hydrophobic helix that binds to myosin, the mutant actins, of which the tyrosine-143 was replaced with tryptophan, phenylalanine, or isoleucine, were generated using the Dictyostelium expression system. It polymerized significantly poorly when induced by NaCl, but almost normally by KCl. In the presence of phalloidin and KCl, the extents of the polymerization of all the mutant actins were comparable to that of the wild-type actin so that the actin-activated myosin ATPase activity could be reliably compared. The affinity of skeletal heavy meromyosin to F-actin and the maximum ATPase activity (V{sub max}) were estimated by a double reciprocal plot. The Tyr143Trp-actin showed the higher affinity (smaller K{sub app}) than that of the wild-type actin, with the V{sub max} being almost unchanged. The K{sub app} and V{sub max} of the Tyr143Phe-actin were similar to those of the wild-type actin. However, the activation by Tyr143Ile-actin was much smaller than the wild-type actin and the accurate determination of K{sub app} was difficult. Comparison of the myosin ATPase activated by the various mutant actins at the same concentration of F-actin showed that the extent of activation correlates well with the solvent-accessible surface areas (ASA

  6. Xenopus egg cytoplasm with intact actin.

    PubMed

    Field, Christine M; Nguyen, Phuong A; Ishihara, Keisuke; Groen, Aaron C; Mitchison, Timothy J

    2014-01-01

    We report optimized methods for preparing Xenopus egg extracts without cytochalasin D, that we term "actin-intact egg extract." These are undiluted egg cytoplasm that contains abundant organelles, and glycogen which supplies energy, and represents the least perturbed cell-free cytoplasm preparation we know of. We used this system to probe cell cycle regulation of actin and myosin-II dynamics (Field et al., 2011), and to reconstitute the large, interphase asters that organize early Xenopus embryos (Mitchison et al., 2012; Wühr, Tan, Parker, Detrich, & Mitchison, 2010). Actin-intact Xenopus egg extracts are useful for analysis of actin dynamics, and interaction of actin with other cytoplasmic systems, in a cell-free system that closely mimics egg physiology, and more generally for probing the biochemistry and biophysics of the egg, zygote, and early embryo. Detailed protocols are provided along with assays used to check cell cycle state and tips for handling and storing undiluted egg extracts.

  7. ASP-56, a new actin sequestering protein from pig platelets with homology to CAP, an adenylate cyclase-associated protein from yeast.

    PubMed

    Gieselmann, R; Mann, K

    1992-02-24

    A new 56 kDa actin-binding protein (ASP-56) was isolated from pig platelet lysate. In falling ball viscosimetry it caused a reduction in viscosity that could be attributed to a decrease in the concentration of polymeric actin. Fluorescence measurements with NBD-labelled actin showed reduction of polymeric actin, too. These results could be explained by sequestering of actin in a non-polymerizable 1:1 ASP-56/actin complex. Sequencing of about 20 tryptic peptides of ASP-56 and comparison with known sequences revealed about 60% homology to the adenylate cyclase-associated protein (CAP) from yeast.

  8. Actin network architecture can determine myosin motor activity.

    PubMed

    Reymann, Anne-Cécile; Boujemaa-Paterski, Rajaa; Martiel, Jean-Louis; Guérin, Christophe; Cao, Wenxiang; Chin, Harvey F; De La Cruz, Enrique M; Théry, Manuel; Blanchoin, Laurent

    2012-06-08

    The organization of actin filaments into higher-ordered structures governs eukaryotic cell shape and movement. Global actin network size and architecture are maintained in a dynamic steady state through regulated assembly and disassembly. Here, we used experimentally defined actin structures in vitro to investigate how the activity of myosin motors depends on network architecture. Direct visualization of filaments revealed myosin-induced actin network deformation. During this reorganization, myosins selectively contracted and disassembled antiparallel actin structures, while parallel actin bundles remained unaffected. The local distribution of nucleation sites and the resulting orientation of actin filaments appeared to regulate the scalability of the contraction process. This "orientation selection" mechanism for selective contraction and disassembly suggests how the dynamics of the cellular actin cytoskeleton can be spatially controlled by actomyosin contractility.

  9. Evolutionarily divergent, unstable filamentous actin is essential for gliding motility in apicomplexan parasites.

    PubMed

    Skillman, Kristen M; Diraviyam, Karthikeyan; Khan, Asis; Tang, Keliang; Sept, David; Sibley, L David

    2011-10-01

    Apicomplexan parasites rely on a novel form of actin-based motility called gliding, which depends on parasite actin polymerization, to migrate through their hosts and invade cells. However, parasite actins are divergent both in sequence and function and only form short, unstable filaments in contrast to the stability of conventional actin filaments. The molecular basis for parasite actin filament instability and its relationship to gliding motility remain unresolved. We demonstrate that recombinant Toxoplasma (TgACTI) and Plasmodium (PfACTI and PfACTII) actins polymerized into very short filaments in vitro but were induced to form long, stable filaments by addition of equimolar levels of phalloidin. Parasite actins contain a conserved phalloidin-binding site as determined by molecular modeling and computational docking, yet vary in several residues that are predicted to impact filament stability. In particular, two residues were identified that form intermolecular contacts between different protomers in conventional actin filaments and these residues showed non-conservative differences in apicomplexan parasites. Substitution of divergent residues found in TgACTI with those from mammalian actin resulted in formation of longer, more stable filaments in vitro. Expression of these stabilized actins in T. gondii increased sensitivity to the actin-stabilizing compound jasplakinolide and disrupted normal gliding motility in the absence of treatment. These results identify the molecular basis for short, dynamic filaments in apicomplexan parasites and demonstrate that inherent instability of parasite actin filaments is a critical adaptation for gliding motility.

  10. Evolutionarily Divergent, Unstable Filamentous Actin Is Essential for Gliding Motility in Apicomplexan Parasites

    PubMed Central

    Skillman, Kristen M.; Diraviyam, Karthikeyan; Khan, Asis; Tang, Keliang; Sept, David; Sibley, L. David

    2011-01-01

    Apicomplexan parasites rely on a novel form of actin-based motility called gliding, which depends on parasite actin polymerization, to migrate through their hosts and invade cells. However, parasite actins are divergent both in sequence and function and only form short, unstable filaments in contrast to the stability of conventional actin filaments. The molecular basis for parasite actin filament instability and its relationship to gliding motility remain unresolved. We demonstrate that recombinant Toxoplasma (TgACTI) and Plasmodium (PfACTI and PfACTII) actins polymerized into very short filaments in vitro but were induced to form long, stable filaments by addition of equimolar levels of phalloidin. Parasite actins contain a conserved phalloidin-binding site as determined by molecular modeling and computational docking, yet vary in several residues that are predicted to impact filament stability. In particular, two residues were identified that form intermolecular contacts between different protomers in conventional actin filaments and these residues showed non-conservative differences in apicomplexan parasites. Substitution of divergent residues found in TgACTI with those from mammalian actin resulted in formation of longer, more stable filaments in vitro. Expression of these stabilized actins in T. gondii increased sensitivity to the actin-stabilizing compound jasplakinolide and disrupted normal gliding motility in the absence of treatment. These results identify the molecular basis for short, dynamic filaments in apicomplexan parasites and demonstrate that inherent instability of parasite actin filaments is a critical adaptation for gliding motility. PMID:21998582

  11. Upregulation of two actin genes and redistribution of actin during diapause and cold stress in the northern house mosquito, Culex pipiens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two actin genes cloned from Culex pipiens L. are upregulated during adult diapause. Though actins 1 and 2 were expressed throughout diapause, both genes were most highly expressed early in diapause. These changes in gene expression were accompanied by a conspicuous redistribution of polymerized acti...

  12. Upregulation of two actin genes and redistribution of actin during diapause and cold stress in the northern house mosquito, Culex pipiens.

    PubMed Central

    Kim, Mijung; Robich, Rebecca M.; Rinehart, Joseph P.; Denlinger, David L.

    2007-01-01

    Two actin genes cloned from Culex pipiens L. are upregulated during adult diapause. Though actins 1 and 2 were expressed throughout diapause, both genes were most highly expressed early in diapause. These changes in gene expression were accompanied by a conspicuous redistribution of polymerized actin that was most pronounced in the midguts of diapausing mosquitoes that were exposed to low temperature. In nondiapausing mosquitoes reared at 25°C and in diapausing mosquitoes reared at 18°C, polymerized actin was clustered at high concentrations at the intersections of the muscle fibers that form the midgut musculature. When adults 7–10 days post-eclosion were exposed to low temperature (-5°C for 12h), the polymerized actin was evenly distributed along the muscle fibers in both nondiapausing and diapausing mosquitoes. Exposure of older adults (1month post-eclosion) to low temperature (−5°C for 12h) elicited an even greater distribution of polymerized actin, an effect that was especially pronounced in diapausing mosquitoes. These changes in gene expression and actin distribution suggest a role for actins in enhancing survival of diapausing adults during the low temperatures of winter by fortification of the cytoskeleton. PMID:17078965

  13. Involvement of actin rearrangements within the amygdala and the dorsal hippocampus in aversive memories of drug withdrawal in acute morphine-dependent rats.

    PubMed

    Hou, Yuan-Yuan; Lu, Bin; Li, Mu; Liu, Yao; Chen, Jie; Chi, Zhi-Qiang; Liu, Jing-Gen

    2009-09-30

    Aversive memories of drug withdrawal can generate a motivational state leading to compulsive drug taking. Changes in synaptic plasticity may be involved in the formation of aversive memories. Dynamic rearrangement of the cytoskeletal actin, a major structural component of the dendritic spine, regulates synaptic plasticity. Here, the potential involvement of actin rearrangements in the induction of aversive memories of morphine withdrawal was examined. We found that lesions of the amygdala or dorsal hippocampus (DH) but not nucleus accumbens (NAc) impaired conditioned place aversion (CPA) of acute morphine-dependent rats. Accordingly, conditioned morphine withdrawal induced actin rearrangements in the amygdala and the DH but not in the NAc. In addition, we found that conditioned morphine withdrawal also increased activity-regulated cytoskeletal-associated protein (Arc) expression in the amygdala but not in the DH, although actin rearrangements were observed in both areas. We further found that inhibition of actin rearrangements by intra-amygdala or intra-DH injections of latrunculin A, an inhibitor of actin polymerization, significantly attenuated CPA. Furthermore, we found that manipulation of amygdala beta-adrenoceptor activity by its antagonist propranolol and agonist clenbuterol differentially altered actin rearrangements in the DH. Therefore, our findings reveal that actin rearrangements in the amygdala and the DH are required for the acquisition and consolidation of the aversive memories of drug withdrawal and that the beta-noradrenergic system within the amygdala modulates aversive memory consolidation by regulating actin rearrangements but not Arc protein expression in the DH, which is distinct from its role in modulation of inhibitory avoidance memory.

  14. Mechanically Induced Actin-mediated Rocketing of Phagosomes

    PubMed Central

    Müller-Taubenberger, Annette; Anderson, Kurt I.; Engel, Ulrike; Gerisch, Günther

    2006-01-01

    Actin polymerization can be induced in Dictyostelium by compressing the cells to bring phagosomes filled with large particles into contact with the plasma membrane. Asymmetric actin assembly results in rocketing movement of the phagosomes. We show that the compression-induced assembly of actin at the cytoplasmic face of the plasma membrane involves the Arp2/3 complex. We also identify two other proteins associated with the mechanically induced actin assembly. The class I myosin MyoB accumulates at the plasma membrane–phagosome interface early during the initiation of the response, and coronin is recruited as the actin filaments are disassembling. The forces generated by rocketing phagosomes are sufficient to push the entire microtubule apparatus forward and to dislocate the nucleus. PMID:16971511

  15. Actin purification from a gel of rat brain extracts.

    PubMed

    Levilliers, N; Peron-Renner, M; Coffe, G; Pudles, J

    1984-01-01

    Actin, 99% pure, has been recovered from rat brain with a high yield (greater than 15 mg/100 g brain). We have shown that: 1. a low ionic strength extract from rat brain tissue is capable of giving rise to a gel; 2. actin is the main gel component and its proportion is one order of magnitude higher than in the original extract; 3. actin can be isolated from this extract by a three-step procedure involving gelation, dissociation of the gel in 0.6 M KCl, followed by one or two depolymerization-polymerization cycles.

  16. Dynamic actin cycling through mitochondrial subpopulations locally regulates the fission–fusion balance within mitochondrial networks

    PubMed Central

    Moore, Andrew S.; Wong, Yvette C.; Simpson, Cory L.; Holzbaur, Erika L. F.

    2016-01-01

    Mitochondria form interconnected networks that dynamically remodel in response to cellular needs. Using live-cell imaging, we investigate the role of the actin cytoskeleton in regulating mitochondrial fission and fusion. We identify cycling of actin filaments onto and off of subsets of cellular mitochondria. The association of actin filaments with mitochondrial subpopulations is transient; actin quickly disassembles, then reassembles around a distinct subpopulation, efficiently cycling through all cellular mitochondria within 14 min. The focal assembly of actin induces local, Drp1-dependent fragmentation of the mitochondrial network. On actin disassembly, fragmented mitochondria undergo rapid fusion, leading to regional recovery of the tubular mitochondrial network. Cycling requires dynamic actin polymerization and is blocked by inhibitors of both Arp2/3 and formins. We propose that cyclic assembly of actin onto mitochondria modulates the fission/fusion balance, promotes network remodelling and content mixing, and thus may serve as an essential mechanism regulating mitochondrial network homeostasis. PMID:27686185

  17. Myosin IIIB uses an actin-binding motif in its espin-1 cargo to reach the tips of actin protrusions.

    PubMed

    Merritt, Raymond C; Manor, Uri; Salles, Felipe T; Grati, M'hamed; Dose, Andrea C; Unrath, William C; Quintero, Omar A; Yengo, Christopher M; Kachar, Bechara

    2012-02-21

    Myosin IIIA (MYO3A) targets actin protrusion tips using a motility mechanism dependent on both motor and tail actin-binding activity [1]. We show that myosin IIIB (MYO3B) lacks tail actin-binding activity and is unable to target COS7 cell filopodia tips, yet is somehow able to target stereocilia tips. Strikingly, when MYO3B is coexpressed with espin-1 (ESPN1), a MYO3A cargo protein endogenously expressed in stereocilia [2], MYO3B targets and carries ESPN1 to COS7 filopodia tips. We show that this tip localization is lost when we remove the ESPN1 C terminus actin-binding site. We also demonstrate that, like MYO3A [2], MYO3B can elongate filopodia by transporting ESPN1 to the polymerizing end of actin filaments. The mutual dependence of MYO3B and ESPN1 for tip localization reveals a novel mechanism for the cell to regulate myosin tip localization via a reciprocal relationship with cargo that directly participates in actin binding for motility. Our results are consistent with a novel form of motility for class III myosins that requires both motor and tail domain actin-binding activity and show that the actin-binding tail can be replaced by actin-binding cargo. This study also provides a framework to better understand the late-onset hearing loss phenotype in patients with MYO3A mutations.

  18. Fetal akinesia caused by a novel actin filament aggregate myopathy skeletal muscle actin gene (ACTA1) mutation.

    PubMed

    Stenzel, Werner; Prokop, Stefan; Kress, Wolfram; Huppmann, Stephanie; Loui, Andrea; Sarioglu, Nanette M E; Laing, Nigel G; Sparrow, John C; Heppner, Frank L; Goebel, Hans H

    2010-08-01

    We report a female newborn, diagnosed with fetal akinesia in utero, who died one hour after birth. Post-mortem muscle biopsy demonstrated actin-filament myopathy based on immunolabelling for sarcomeric actin, and large areas of filaments, without rod formation, ultrastructurally. Analysis of DNA extracted from the muscle disclosed a novel de novo heterozygous c.44G>A, GGC>GAC, 'p.Gly15Asp' mutation in the ACTA1 gene. Analysis of the location of the mutated amino-acid in the actin molecule suggests the mutation most likely causes abnormal nucleotide binding, and consequent pathological actin polymerization. This case emphasizes the association of fetal akinesia with actin-filament myopathy.

  19. Actin dynamics shape microglia effector functions.

    PubMed

    Uhlemann, Ria; Gertz, Karen; Boehmerle, Wolfgang; Schwarz, Tobias; Nolte, Christiane; Freyer, Dorette; Kettenmann, Helmut; Endres, Matthias; Kronenberg, Golo

    2016-06-01

    Impaired actin filament dynamics have been associated with cellular senescence. Microglia, the resident immune cells of the brain, are emerging as a central pathophysiological player in neurodegeneration. Microglia activation, which ranges on a continuum between classical and alternative, may be of critical importance to brain disease. Using genetic and pharmacological manipulations, we studied the effects of alterations in actin dynamics on microglia effector functions. Disruption of actin dynamics did not affect transcription of genes involved in the LPS-triggered classical inflammatory response. By contrast, in consequence of impaired nuclear translocation of phospho-STAT6, genes involved in IL-4 induced alternative activation were strongly downregulated. Functionally, impaired actin dynamics resulted in reduced NO secretion and reduced release of TNFalpha and IL-6 from LPS-stimulated microglia and of IGF-1 from IL-4 stimulated microglia. However, pathological stabilization of the actin cytoskeleton increased LPS-induced release of IL-1beta and IL-18, which belong to an unconventional secretory pathway. Reduced NO release was associated with decreased cytoplasmic iNOS protein expression and decreased intracellular arginine uptake. Furthermore, disruption of actin dynamics resulted in reduced microglia migration, proliferation and phagocytosis. Finally, baseline and ATP-induced [Ca(2+)]int levels were significantly increased in microglia lacking gelsolin, a key actin-severing protein. Together, the dynamic state of the actin cytoskeleton profoundly and distinctly affects microglia behaviours. Disruption of actin dynamics attenuates M2 polarization by inhibiting transcription of alternative activation genes. In classical activation, the role of actin remodelling is complex, does not relate to gene transcription and shows a major divergence between cytokines following conventional and unconventional secretion.

  20. Solid state polymerization and crystallography of polyimide precursors. Ph.D. Thesis - Va. Univ.

    NASA Technical Reports Server (NTRS)

    Wakelyn, N. T.

    1974-01-01

    Although the production of crystallinity in a polymeric system has historically led to commerically useful properties, the polyimides, prized for their high temperature characteristics, as customarily synthesized by melt or solution casting, are amorphous. It is shown that polymide containing residual crystallinity can be synthesized by isothermal annealing of crystals of the salt of the diisopropyl ester of pyromellitic acid and phenylene diamine. The reaction is topochemical in that the geometry of the polymer product is dependent upon that of the crystalline precursor. Infrared spectroscopy reveals the presence of imide absorption in the polymer, while powder diffractometry suggests residual crystallinity. Single crystal X-ray analysis of the monomer yields a structure of chains of alternating acid and base suggesting that the monomer is amenable to polymerization with a minimum of geometrical disruption.

  1. Differences in G-actin containing bound ATP or ADP: the Mg2+-induced conformational change requires ATP.

    PubMed

    Frieden, C; Patane, K

    1985-07-16

    The role of adenosine 5'-triphosphate (ATP) in the Mg2+-induced conformational change of rabbit skeletal muscle G-actin has been investigated by comparing actin containing bound ADP with actin containing bound ATP. As previously described [Frieden, C. (1982) J. Biol. Chem. 257, 2882-2886], N-acetyl-N'-(5-sulfo-1-naphthyl)ethylenediamine-labeled G-actin containing ATP undergoes a time-dependent Mg2+-induced fluorescence change that reflects a conformational change in the actin. Addition of Mg2+ to labeled G-actin containing ADP gives no fluorescence change, suggesting that the conformational change does not occur. The fluorescence change can be restored on the addition of ATP. Examination of the time courses of these experiments suggests that ATP must replace ADP prior to the Mg2+-induced change. The Mg2+-induced polymerization of actin containing ADP is extraordinarily slow compared to that of actin containing ATP. The lack of the Mg2+-induced conformational change, which is an essential step in the Mg2+-induced polymerization, is probably the cause for the very slow polymerization of actin containing ADP. On the other hand, at 20 degrees C, at pH 8, and in 2 mM Mg2+, the elongation rate from the slow growing end of an actin filament, measured by using the protein brevin to block growth at the fast growing end, is only 4 times slower for actin containing ADP than for actin containing ATP.

  2. Stereoengineering of poly(1,3-methylenecyclohexane) via two-state living coordination polymerization of 1,6-heptadiene.

    PubMed

    Crawford, Kaitlyn E; Sita, Lawrence R

    2013-06-19

    External control over the rate of dynamic methyl group exchange between configurationally stable active species and configurationally unstable dormant species with respect to chain-growth propagation within a highly stereoselective and regiospecific living coordination polymerization of 1,6-heptadiene has been used to generate a spectrum of different physical forms of poly(1,3-methylenecyclohexane) (PMCH) in which the stereochemical microstructure has been systematically varied between two limiting forms. The application of this strategy to manipulate the bulk properties of PMCH and the solid-state microphase behavior of well-defined PMCH-b-poly(1-hexene) block copolymers is further demonstrated.

  3. Modulation of the interaction between G-actin and thymosin beta 4 by the ATP/ADP ratio: possible implication in the regulation of actin dynamics.

    PubMed Central

    Carlier, M F; Jean, C; Rieger, K J; Lenfant, M; Pantaloni, D

    1993-01-01

    The interaction of G-actin with thymosin beta 4 (T beta 4), the major G-actin-sequestering protein in motile and proliferating cells, has been analyzed in vitro. T beta 4 is found to have a 50-fold higher affinity for MgATP-actin than for MgADP-actin. These results imply that in resting platelets and neutrophils, actin is sequestered by T beta 4 as MgATP-G-actin. Kinetic experiments and theoretical calculations demonstrate that this ATP/ADP dependence of T beta 4 affinity for G-actin can generate a mechanism of desequestration of G-actin by ADP, in the presence of physiological concentrations of T beta 4 (approximately 0.1 mM). The desequestration of G-actin by ADP is kinetically enhanced by profilin, which accelerates the dissociation of ATP from G-actin. Whether a local drop in the ATP/ADP ratio can allow local, transient desequestration and polymerization of actin either close to the plasma membrane, following platelet or neutrophil stimulation, or behind the Listeria bacterium in the host cell, while the surrounding cytoplasm contains sequestered ATP-G-actin, is an open issue raised by the present work. PMID:8506348

  4. Actin-binding proteins implicated in the formation of the punctate actin foci stimulated by the self-incompatibility response in Papaver.

    PubMed

    Poulter, Natalie S; Staiger, Christopher J; Rappoport, Joshua Z; Franklin-Tong, Vernonica E

    2010-03-01

    The actin cytoskeleton is a key target for signaling networks and plays a central role in translating signals into cellular responses in eukaryotic cells. Self-incompatibility (SI) is an important mechanism responsible for preventing self-fertilization. The SI system of Papaver rhoeas pollen involves a Ca(2+)-dependent signaling network, including massive actin depolymerization as one of the earliest cellular responses, followed by the formation of large actin foci. However, no analysis of these structures, which appear to be aggregates of filamentous (F-)actin based on phalloidin staining, has been carried out to date. Here, we characterize and quantify the formation of F-actin foci in incompatible Papaver pollen tubes over time. The F-actin foci increase in size over time, and we provide evidence that their formation requires actin polymerization. Once formed, these SI-induced structures are unusually stable, being resistant to treatments with latrunculin B. Furthermore, their formation is associated with changes in the intracellular localization of two actin-binding proteins, cyclase-associated protein and actin-depolymerizing factor. Two other regulators of actin dynamics, profilin and fimbrin, do not associate with the F-actin foci. This study provides, to our knowledge, the first insights into the actin-binding proteins and mechanisms involved in the formation of these intriguing structures, which appear to be actively formed during the SI response.

  5. Human CAP1 is a key factor in the recycling of cofilin and actin for rapid actin turnover.

    PubMed

    Moriyama, Kenji; Yahara, Ichiro

    2002-04-15

    Cofilin-ADF (actin-depolymerizing factor) is an essential driver of actin-based motility. We discovered two proteins, p65 and p55, that are components of the actin-cofilin complex in a human HEK293 cell extract and identified p55 as CAP1/ASP56, a human homologue of yeast CAP/SRV2 (cyclase-associated protein). CAP is a bifunctional protein with an N-terminal domain that binds to Ras-responsive adenylyl cyclase and a C-terminal domain that inhibits actin polymerization. Surprisingly, we found that the N-terminal domain of CAP1, but not the C-terminal domain, is responsible for the interaction with the actin-cofilin complex. The N-terminal domain of CAP1 was also found to accelerate the depolymerization of F-actin at the pointed end, which was further enhanced in the presence of cofilin and/or the C-terminal domain of CAP1. Moreover, CAP1 and its C-terminal domain were observed to facilitate filament elongation at the barbed end and to stimulate ADP-ATP exchange on G-actin, a process that regenerates easily polymerizable G-actin. Although cofilin inhibited the nucleotide exchange on G-actin even in the presence of the C-terminal domain of CAP1, its N-terminal domain relieved this inhibition. Thus, CAP1 plays a key role in speeding up the turnover of actin filaments by effectively recycling cofilin and actin and through its effect on both ends of actin filament.

  6. The conserved Tarp actin binding domain is important for chlamydial invasion.

    PubMed

    Jewett, Travis J; Miller, Natalie J; Dooley, Cheryl A; Hackstadt, Ted

    2010-07-15

    The translocated actin recruiting phosphoprotein (Tarp) is conserved among all pathogenic chlamydial species. Previous reports identified single C. trachomatis Tarp actin binding and proline rich domains required for Tarp mediated actin nucleation. A peptide antiserum specific for the Tarp actin binding domain was generated and inhibited actin polymerization in vitro and C. trachomatis entry in vivo, indicating an essential role for Tarp in chlamydial pathogenesis. Sequence analysis of Tarp orthologs from additional chlamydial species and C. trachomatis serovars indicated multiple putative actin binding sites. In order to determine whether the identified actin binding domains are functionally conserved, GST-Tarp fusions from multiple chlamydial species were examined for their ability to bind and nucleate actin. Chlamydial Tarps harbored variable numbers of actin binding sites and promoted actin nucleation as determined by in vitro polymerization assays. Our findings indicate that Tarp mediated actin binding and nucleation is a conserved feature among diverse chlamydial species and this function plays a critical role in bacterial invasion of host cells.

  7. ATP-dependent membrane assembly of F-actin facilitates membrane fusion.

    PubMed

    Jahraus, A; Egeberg, M; Hinner, B; Habermann, A; Sackman, E; Pralle, A; Faulstich, H; Rybin, V; Defacque, H; Griffiths, G

    2001-01-01

    We recently established an in vitro assay that monitors the fusion between latex-bead phagosomes and endocytic organelles in the presence of J774 macrophage cytosol (). Here, we show that different reagents affecting the actin cytoskeleton can either inhibit or stimulate this fusion process. Because the membranes of purified phagosomes can assemble F-actin de novo from pure actin with ATP (), we focused here on the ability of membranes to nucleate actin in the presence of J774 cytosolic extracts. For this, we used F-actin sedimentation, pyrene actin assays, and torsional rheometry, a biophysical approach that could provide kinetic information on actin polymerization and gel formation. We make two major conclusions. First, under our standard in vitro conditions (4 mg/ml cytosol and 1 mM ATP), the presence of membranes actively catalyzed the assembly of cytosolic F-actin, which assembled into highly viscoelastic gels. A model is discussed that links these results to how the actin may facilitate fusion. Second, cytosolic actin paradoxically polymerized more under ATP depletion than under high-ATP conditions, even in the absence of membranes; we discuss these data in the context of the well described, large increases in F-actin seen in many cells during ischemia.

  8. Fibronectin matrix polymerization regulates smooth muscle cell phenotype through a Rac1 dependent mechanism.

    PubMed

    Shi, Feng; Long, Xiaochun; Hendershot, Allison; Miano, Joseph M; Sottile, Jane

    2014-01-01

    Smooth muscle cells are maintained in a differentiated state in the vessel wall, but can be modulated to a synthetic phenotype following injury. Smooth muscle phenotypic modulation is thought to play an important role in the pathology of vascular occlusive diseases. Phenotypically modulated smooth muscle cells exhibit increased proliferative and migratory properties that accompany the downregulation of smooth muscle cell marker proteins. Extracellular matrix proteins, including fibronectin, can regulate the smooth muscle phenotype when used as adhesive substrates. However, cells produce and organize a 3-dimensional fibrillar extracellular matrix, which can affect cell behavior in distinct ways from the protomeric 2-dimensional matrix proteins that are used as adhesive substrates. We previously showed that the deposition/polymerization of fibronectin into the extracellular matrix can regulate the deposition and organization of other extracellular matrix molecules in vitro. Further, our published data show that the presence of a fibronectin polymerization inhibitor results in increased expression of smooth muscle cell differentiation proteins and inhibits vascular remodeling in vivo. In this manuscript, we used an in vitro cell culture system to determine the mechanism by which fibronectin polymerization affects smooth muscle phenotypic modulation. Our data show that fibronectin polymerization decreases the mRNA levels of multiple smooth muscle differentiation genes, and downregulates the levels of smooth muscle α-actin and calponin proteins by a Rac1-dependent mechanism. The expression of smooth muscle genes is transcriptionally regulated by fibronectin polymerization, as evidenced by the increased activity of luciferase reporter constructs in the presence of a fibronectin polymerization inhibitor. Fibronectin polymerization also promotes smooth muscle cell growth, and decreases the levels of actin stress fibers. These data define a Rac1-dependent pathway wherein

  9. LIM Kinase 1 Modulates Cortical Actin and CXCR4 Cycling and Is Activated by HIV-1 to Initiate Viral Infection*

    PubMed Central

    Vorster, Paul J.; Guo, Jia; Yoder, Alyson; Wang, Weifeng; Zheng, Yanfang; Xu, Xuehua; Yu, Dongyang; Spear, Mark; Wu, Yuntao

    2011-01-01

    Almost all viral pathogens utilize a cytoskeleton for their entry and intracellular transport. In HIV-1 infection, binding of the virus to blood resting CD4 T cells initiates a temporal course of cortical actin polymerization and depolymerization, a process mimicking the chemotactic response initiated from chemokine receptors. The actin depolymerization has been suggested to promote viral intracellular migration through cofilin-mediated actin treadmilling. However, the role of the virus-mediated actin polymerization in HIV infection is unknown, and the signaling molecules involved remain unidentified. Here we describe a pathogenic mechanism for triggering early actin polymerization through HIV-1 envelope-mediated transient activation of the LIM domain kinase (LIMK), a protein that phosphorylates cofilin. We demonstrate that HIV-mediated LIMK activation is through gp120-triggered transient activation of the Rack-PAK-LIMK pathway, and that knockdown of LIMK through siRNA decreases filamentous actin, increases CXCR4 trafficking, and diminishes viral DNA synthesis. These results suggest that HIV-mediated early actin polymerization may directly regulate the CXCR4 receptor during viral entry and is involved in viral DNA synthesis. Furthermore, we also demonstrate that in resting CD4 T cells, actin polymerization can be triggered through transient treatment with a pharmacological agent, okadaic acid, that activates LIMK and promotes HIV latent infection of resting CD4 T cells. Taken together, our results suggest that HIV hijacks LIMK to control the cortical actin dynamics for the initiation of viral infection of CD4 T cells. PMID:21321123

  10. A mitochondria-anchored isoform of the actin-nucleating spire protein regulates mitochondrial division

    PubMed Central

    Manor, Uri; Bartholomew, Sadie; Golani, Gonen; Christenson, Eric; Kozlov, Michael; Higgs, Henry; Spudich, James; Lippincott-Schwartz, Jennifer

    2015-01-01

    Mitochondrial division, essential for survival in mammals, is enhanced by an inter-organellar process involving ER tubules encircling and constricting mitochondria. The force for constriction is thought to involve actin polymerization by the ER-anchored isoform of the formin protein inverted formin 2 (INF2). Unknown is the mechanism triggering INF2-mediated actin polymerization at ER-mitochondria intersections. We show that a novel isoform of the formin-binding, actin-nucleating protein Spire, Spire1C, localizes to mitochondria and directly links mitochondria to the actin cytoskeleton and the ER. Spire1C binds INF2 and promotes actin assembly on mitochondrial surfaces. Disrupting either Spire1C actin- or formin-binding activities reduces mitochondrial constriction and division. We propose Spire1C cooperates with INF2 to regulate actin assembly at ER-mitochondrial contacts. Simulations support this model's feasibility and demonstrate polymerizing actin filaments can induce mitochondrial constriction. Thus, Spire1C is optimally positioned to serve as a molecular hub that links mitochondria to actin and the ER for regulation of mitochondrial division. DOI: http://dx.doi.org/10.7554/eLife.08828.001 PMID:26305500

  11. Association of cortactin with dynamic actin in lamellipodia and on endosomal vesicles.

    PubMed

    Kaksonen, M; Peng, H B; Rauvala, H

    2000-12-01

    We have used fluorescent protein tagging to study the localization and dynamics of the actin-binding protein cortactin in living NIH 3T3 fibroblast cells. Cortactin was localized to active lamellipodia and to small cytoplasmic spots. Time-lapse imaging revealed that these cortactin labeled structures were very dynamic. In the lamellipodia, cortactin labeled structures formed at the leading edge and then moved toward the cell center. Experiments with green fluorescent protein (GFP)-tagged actin showed that cortactin movement was coincident with the actin retrograde flow in the lamellipodia. Cytoplasmic cortactin spots also contained F-actin and were propelled by actin polymerization. Arp3, a component of the arp2/3 complex which is a key regulator of actin polymerization, co-localized with cortactin. Cytoplasmic cortactin-labeled spots were found to be associated with endosomal vesicles. Association was asymmetric and approximately half of the endosomes were associated with cortactin spots. Time-lapse imaging suggested that these cortactin and F-actin-containing spots propelled endosomes. Actin polymerization based propulsion may be a common mechanism for endomembrane trafficking in the same manner as used in the plasma membrane protrusions. As cortactin is known to interact with membrane-associated signaling proteins it could have a role in linking signaling complexes with dynamic actin on endosomes and in lamellipodia.

  12. A mitochondria-anchored isoform of the actin-nucleating spire protein regulates mitochondrial division.

    PubMed

    Manor, Uri; Bartholomew, Sadie; Golani, Gonen; Christenson, Eric; Kozlov, Michael; Higgs, Henry; Spudich, James; Lippincott-Schwartz, Jennifer

    2015-08-25

    Mitochondrial division, essential for survival in mammals, is enhanced by an inter-organellar process involving ER tubules encircling and constricting mitochondria. The force for constriction is thought to involve actin polymerization by the ER-anchored isoform of the formin protein inverted formin 2 (INF2). Unknown is the mechanism triggering INF2-mediated actin polymerization at ER-mitochondria intersections. We show that a novel isoform of the formin-binding, actin-nucleating protein Spire, Spire1C, localizes to mitochondria and directly links mitochondria to the actin cytoskeleton and the ER. Spire1C binds INF2 and promotes actin assembly on mitochondrial surfaces. Disrupting either Spire1C actin- or formin-binding activities reduces mitochondrial constriction and division. We propose Spire1C cooperates with INF2 to regulate actin assembly at ER-mitochondrial contacts. Simulations support this model's feasibility and demonstrate polymerizing actin filaments can induce mitochondrial constriction. Thus, Spire1C is optimally positioned to serve as a molecular hub that links mitochondria to actin and the ER for regulation of mitochondrial division.

  13. Exploring the Stability Limits of Actin and Its Suprastructures

    PubMed Central

    Rosin, Christopher; Erlkamp, Mirko; Ecken, Julian von der; Raunser, Stefan; Winter, Roland

    2014-01-01

    Actin is the main component of the microfilament system in eukaryotic cells and can be found in distinct morphological states. Global (G)-actin is able to assemble into highly organized, supramolecular cellular structures known as filamentous (F)-actin and bundled (B)-actin. To evaluate the structure and stability of G-, F-, and B-actin over a wide range of temperatures and pressures, we used Fourier transform infrared spectroscopy in combination with differential scanning and pressure perturbation calorimetry, small-angle x-ray scattering, laser confocal scanning microscopy, and transmission electron microscopy. Our analysis was designed to provide new (to our knowledge) insights into the stabilizing forces of actin self-assembly and to reveal the stability of the actin polymorphs, including in conditions encountered in extreme environments. In addition, we sought to explain the limited pressure stability of actin self-assembly observed in vivo. G-actin is not only the least temperature-stable but also the least pressure-stable actin species. Under abyssal conditions, where temperatures as low as 1–4°C and pressures up to 1 kbar are reached, G-actin is hardly stable. However, the supramolecular assemblies of actin are stable enough to withstand the extreme conditions usually encountered on Earth. Beyond ∼3–4 kbar, filamentous structures disassemble, and beyond ∼4 kbar, complete dissociation of F-actin structures is observed. Between ∼1 and 2 kbar, some disordering of actin assemblies commences, in agreement with in vivo observations. The limited pressure stability of the monomeric building block seems to be responsible for the suppression of actin assembly in the kbar pressure range. PMID:25517163

  14. Demonstration of prominent actin filaments in the root columella

    NASA Technical Reports Server (NTRS)

    Collings, D. A.; Zsuppan, G.; Allen, N. S.; Blancaflor, E. B.; Brown, C. S. (Principal Investigator)

    2001-01-01

    The distribution of actin filaments within the gravity-sensing columella cells of plant roots remains poorly understood, with studies over numerous years providing inconsistent descriptions of actin organization in these cells. This uncertainty in actin organization, and thus in actin's role in graviperception and gravisignaling, has led us to investigate actin arrangements in the columella cells of Zea mays L., Medicago truncatula Gaertn., Linum usitatissiilium L. and Nicotianla benthamiana Domin. Actin organization was examined using a combination of optimized immunofluorescence techniques, and an improved fluorochrome-conjugated phalloidin labeling method reliant on 3-maleimidobenzoyl-N-hydroxy-succinimide ester (MBS) cross-linking combined with glycerol permeabilization. Confocal microscopy of root sections labeled with anti-actin antibodies revealed patterns suggestive of actin throughout the columella region. These patterns included short and fragmented actin bundles, fluorescent rings around amyloplasts and intense fluorescence originating from the nucleus. Additionally, confocal microscopy of MBS-stabilized and Alexa Fluor-phalloidin-labeled root sections revealed a previously undetected state of actin organization in the columella. Discrete actin structures surrounded the amyloplasts and prominent actin cables radiated from the nuclear surface toward the cell periphery. Furthermore, the cortex of the columella cells contained fine actin bundles (or single filaments) that had a predominant transverse orientation. We also used confocal microscopy of plant roots expressing endoplasmic reticulum (ER)-targeted green fluorescent protein to demonstrate rapid ER movements within the columella cells, suggesting that the imaged actin network is functional. The successful identification of discrete actin structures in the root columella cells forms the perception and signaling.

  15. Distribution of actin of the human erythrocyte membrane cytoskeleton after interaction with radiographic contrast media.

    PubMed

    Franke, R P; Scharnweber, T; Fuhrmann, R; Krüger, A; Wenzel, F; Mrowietz, C; Jung, F

    2013-01-01

    A type-dependent chemotoxic effect of radiographic contrast media on erythrocytes and endothelial cells was reported several times. While mechanisms of toxicity are still unclear the cellular reactions e.g. echinocyte formation in erythrocytes and the buckling of endothelial cells coincided with deterioration of capillary perfusion (in patients with coronary artery disease) and tissue oxygen tension (in the myocardium of pigs). Whether the shape changes in erythrocytes coincide with changes in the arrangement of actin, the core of the actin-spectrin cytoskeletal network and possible actor in membrane stresses and deformation is not known until now. To get specific informations actin was stained using two different staining methods (antibodies to β-actin staining oligomeric G-actin and polymeric F-actin and Phalloidin-Rhodamin staining polymeric F-actin only). In addition, an advanced version of confocal laser scanning microscopes was used enabling the display of the actin arrangement near substrate surfaces. Blood smears were produced after erythrocyte suspension in autologous plasma or in two different plasma/RCM mixtures. In this study an even homogenous distribution of fine grained globular actin in the normal human erythrocyte could be demonstrated. After suspension of erythrocytes in a plasma/Iodixanol mixture an increased number of membrane protrusions appeared densely filled with intensely stained actin similar to cells suspended in autologous plasma, however, there in less numbers. Suspension in Iopromide, in contrast, induced a complete reorganization of the cytoskeletal actin: the fine grained globular actin distribution disappeared and only few, long and thick actin filaments bundled and possibly polymerized appeared, instead, shown here for the first time.

  16. Actin-Capping Protein and the Hippo pathway regulate F-actin and tissue growth in Drosophila.

    PubMed

    Fernández, Beatriz García; Gaspar, Pedro; Brás-Pereira, Catarina; Jezowska, Barbara; Rebelo, Sofia Raquel; Janody, Florence

    2011-06-01

    The conserved Hippo tumor suppressor pathway is a key kinase cascade that controls tissue growth by regulating the nuclear import and activity of the transcription co-activator Yorkie. Here, we report that the actin-Capping Protein αβ heterodimer, which regulates actin polymerization, also functions to suppress inappropriate tissue growth by inhibiting Yorkie activity. Loss of Capping Protein activity results in abnormal accumulation of apical F-actin, reduced Hippo pathway activity and the ectopic expression of several Yorkie target genes that promote cell survival and proliferation. Reduction of two other actin-regulatory proteins, Cofilin and the cyclase-associated protein Capulet, cause abnormal F-actin accumulation, but only the loss of Capulet, like that of Capping Protein, induces ectopic Yorkie activity. Interestingly, F-actin also accumulates abnormally when Hippo pathway activity is reduced or abolished, independently of Yorkie activity, whereas overexpression of the Hippo pathway component expanded can partially reverse the abnormal accumulation of F-actin in cells depleted for Capping Protein. Taken together, these findings indicate a novel interplay between Hippo pathway activity and actin filament dynamics that is essential for normal growth control.

  17. F-actin retains a memory of angular order.

    PubMed Central

    Orlova, A; Egelman, E H

    2000-01-01

    Modifications can be made to F-actin that do not interfere with the binding of myosin but inhibit force generation, suggesting that actin's internal dynamics are important for muscle contraction. Observations from electron microscopy and x-ray diffraction have shown that subunits in F-actin have a relatively fixed axial rise but a variable twist. One possible explanation for this is that the actin subunits randomly exist in different discrete states of "twist, " with a significant energy barrier separating these states. This would result in very slow torsional transitions. Paracrystals impose increased order on F-actin filaments by reducing the variability in twist. By looking at filaments that have recently been dissociated from paracrystals, we find that F-actin retains a "memory" of its previous environment that persists for many seconds. This would be consistent with slow torsional transitions between discrete states of twist. PMID:10733996

  18. Competition between diagonal and off-diagonal coupling gives rise to charge-transfer states in polymeric solar cells

    PubMed Central

    Yao, Yao; Zhou, Nengji; Prior, Javier; Zhao, Yang

    2015-01-01

    It has long been a puzzle on what drives charge separation in artificial polymeric solar cells as a consensus has yet to emerge among rivaling theories based upon electronic localization and delocalization pictures. Here we propose an alternative using the two-bath spin-boson model with simultaneous diagonal and off-diagonal coupling: the critical phase, which is born out of the competition of the two coupling types, and is neither localized nor delocalized. The decoherence-free feature of the critical phase also helps explain sustained coherence of the charge-transfer state. Exploiting Hamiltonian symmetries in an enhanced algorithm of density-matrix renormalization group, we map out boundaries of the critical phase to a precision previously unattainable, and determine the bath spectral densities inducive to the existence of the charge-transfer state. PMID:26412693

  19. Cell Motility Resulting form Spontaneous Polymerization Waves

    NASA Astrophysics Data System (ADS)

    Kruse, Karsten

    2014-03-01

    The crawling of living cells on solid substrates is often driven by the actin cytoskeleton, a network of structurally polar filamentous proteins that is intrinsically driven by the hydrolysis of ATP. How cells organize their actin network during crawling is still poorly understood. A possible general mechanism underlying actin organization has been offered by the observation of spontaneous actin polymerization waves in various different cell types. We use a theoretical approach to investigate the possible role of spontaneous actin waves on cell crawling. To this end, we develop a meanfield framework for studying spatiotemporal aspects of actin assembly dynamics, which helped to identify possible origins of self-organized actin waves. The impact of these waves on cell crawling is then investigated by using a phase-field approach to confine the actin network to a cellular domain. We find that spontaneous actin waves can lead to directional or amoeboidal crawling. In the latter case, the cell performs a random walk. Within our deterministic framework, this behavior is due to complex spiral waves inside the cell. Finally, we compare the seemingly random motion of our model cells to the dynamics of cells of the human immune system. These cells patrol the body in search for infected cells and we discuss possible implications of our theory for the search process' efficiency. Work was funded by the DFG through KR3430/1, GK1276, and SFB 1027.

  20. Myopathy mutations in alpha-skeletal-muscle actin cause a range of molecular defects.

    PubMed

    Costa, Céline F; Rommelaere, Heidi; Waterschoot, Davy; Sethi, Kamaljit K; Nowak, Kristen J; Laing, Nigel G; Ampe, Christophe; Machesky, Laura M

    2004-07-01

    Mutations in the gene encoding alpha-skeletal-muscle actin, ACTA1, cause congenital myopathies of various phenotypes that have been studied since their discovery in 1999. Although much is now known about the clinical aspects of myopathies resulting from over 60 different ACTA1 mutations, we have very little evidence for how mutations alter the behavior of the actin protein and thus lead to disease. We used a combination of biochemical and cell biological analysis to classify 19 myopathy mutants and found a range of defects in the actin. Using in vitro expression systems, we probed actin folding and actin's capacity to interact with actin-binding proteins and polymerization. Only two mutants failed to fold; these represent recessive alleles, causing severe myopathy, indicating that patients produce nonfunctional actin. Four other mutants bound tightly to cyclase-associated protein, indicating a possible instability in the nucleotide-binding pocket, and formed rods and aggregates in cells. Eleven mutants showed defects in the ability to co-polymerize with wild-type actin. Some of these could incorporate into normal actin structures in NIH 3T3 fibroblasts, but two of the three tested also formed aggregates. Four mutants showed no defect in vitro but two of these formed aggregates in cells, indicating functional defects that we have not yet tested for. Overall, we found a range of defects and behaviors of the mutants in vitro and in cultured cells, paralleling the complexity of actin-based muscle myopathy phenotypes.

  1. External stimulation strength controls actin response dynamics in Dictyostelium cells

    NASA Astrophysics Data System (ADS)

    Hsu, Hsin-Fang; Westendorf, Christian; Tarantola, Marco; Zykov, Vladimir; Bodenschatz, Eberhard; Beta, Carsten

    2015-03-01

    Self-sustained oscillation and the resonance frequency of the cytoskeletal actin polymerization/depolymerization have recently been observed in Dictyostelium, a model system for studying chemotaxis. Here we report that the resonance frequency is not constant but rather varies with the strength of external stimuli. To understand the underlying mechanism, we analyzed the polymerization and depolymerization time at different levels of external stimulation. We found that polymerization time is independent of external stimuli but the depolymerization time is prolonged as the stimulation increases. These observations can be successfully reproduced in the frame work of our time delayed differential equation model.

  2. Microtubule and Actin Interplay Drive Intracellular c-Src Trafficking.

    PubMed

    Arnette, Christopher; Frye, Keyada; Kaverina, Irina

    2016-01-01

    The proto-oncogene c-Src is involved in a variety of signaling processes. Therefore, c-Src spatiotemporal localization is critical for interaction with downstream targets. However, the mechanisms regulating this localization have remained elusive. Previous studies have shown that c-Src trafficking is a microtubule-dependent process that facilitates c-Src turnover in neuronal growth cones. As such, microtubule depolymerization lead to the inhibition of c-Src recycling. Alternatively, c-Src trafficking was also shown to be regulated by RhoB-dependent actin polymerization. Our results show that c-Src vesicles primarily exhibit microtubule-dependent trafficking; however, microtubule depolymerization does not inhibit vesicle movement. Instead, vesicular movement becomes both faster and less directional. This movement was associated with actin polymerization directly at c-Src vesicle membranes. Interestingly, it has been shown previously that c-Src delivery is an actin polymerization-dependent process that relies on small GTPase RhoB at c-Src vesicles. In agreement with this finding, microtubule depolymerization induced significant activation of RhoB, together with actin comet tail formation. These effects occurred downstream of GTP-exchange factor, GEF-H1, which was released from depolymerizing MTs. Accordingly, GEF-H1 activity was necessary for actin comet tail formation at the Src vesicles. Our results indicate that regulation of c-Src trafficking requires both microtubules and actin polymerization, and that GEF-H1 coordinates c-Src trafficking, acting as a molecular switch between these two mechanisms.

  3. Recent advances into vanadyl, vanadate and decavanadate interactions with actin.

    PubMed

    Ramos, S; Moura, J J G; Aureliano, M

    2012-01-01

    Although the number of papers about "vanadium" has doubled in the last decade, the studies about "vanadium and actin" are scarce. In the present review, the effects of vanadyl, vanadate and decavanadate on actin structure and function are compared. Decavanadate (51)V NMR signals, at -516 ppm, broadened and decreased in intensity upon actin titration, whereas no effects were observed for vanadate monomers, at -560 ppm. Decavanadate is the only species inducing actin cysteine oxidation and vanadyl formation, both processes being prevented by the natural ligand of the protein, ATP. Vanadyl titration with monomeric actin (G-actin), analysed by EPR spectroscopy, reveals a 1:1 binding stoichiometry and a K(d) of 7.5 μM(-1). Both decavanadate and vanadyl inhibited G-actin polymerization into actin filaments (F-actin), with a IC(50) of 68 and 300 μM, respectively, as analysed by light scattering assays, whereas no effects were detected for vanadate up to 2 mM. However, only vanadyl (up to 200 μM) induces 100% of G-actin intrinsic fluorescence quenching, whereas decavanadate shows an opposite effect, which suggests the presence of vanadyl high affinity actin binding sites. Decavanadate increases (2.6-fold) the actin hydrophobic surface, evaluated using the ANSA probe, whereas vanadyl decreases it (15%). Both vanadium species increased the ε-ATP exchange rate (k = 6.5 × 10(-3) s(-1) and 4.47 × 10(-3) s(-1) for decavanadate and vanadyl, respectively). Finally, (1)H NMR spectra of G-actin treated with 0.1 mM decavanadate clearly indicate that major alterations occur in protein structure, which are much less visible in the presence of ATP, confirming the preventive effect of the nucleotide on the decavanadate interaction with the protein. Putting it all together, it is suggested that actin, which is involved in many cellular processes, might be a potential target not only for decavanadate but above all for vanadyl. By affecting actin structure and function, vanadium can

  4. Axonal actin in action: Imaging actin dynamics in neurons.

    PubMed

    Ladt, Kelsey; Ganguly, Archan; Roy, Subhojit

    2016-01-01

    Actin is a highly conserved, key cytoskeletal protein involved in numerous structural and functional roles. In neurons, actin has been intensively investigated in axon terminals-growth cones-and dendritic spines, but details about actin structure and dynamics in axon shafts have remained obscure for decades. A major barrier in the field has been imaging actin. Actin exists as soluble monomers (G-actin) as well as actin filaments (F-actin), and labeling actin with conventional fluorescent probes like GFP/RFP typically leads to a diffuse haze that makes it difficult to discern kinetic behaviors. In a recent publication, we used F-actin selective probes to visualize actin dynamics in axons, resolving striking actin behaviors that have not been described before. However, using these probes to visualize actin dynamics is challenging as they can cause bundling of actin filaments; thus, experimental parameters need to be strictly optimized. Here we describe some practical methodological details related to using these probes for visualizing F-actin dynamics in axons.

  5. Lamellipodial actin mechanically links myosin activity with adhesion site formation

    PubMed Central

    Giannone, Gregory; Dubin-Thaler, Benjamin; Rossier, Olivier; Cai, Yunfei; Chaga, Oleg; Jiang, Guoying; Beaver, William; Döbereiner, Hans-Günther; Freund, Yoav; Borisy, Gary; Sheetz, Michael P.

    2013-01-01

    Summary Cell motility proceeds by cycles of edge protrusion, adhesion and retraction. Whether these functions are coordinated by biochemical or biomechanical processes is unknown. We find that myosin II pulls the rear of the lamellipodial actin network, causing upward bending, edge retraction and initiation of new adhesion sites. The network then separates from the edge and condenses over the myosin. Protrusion resumes as lamellipodial actin regenerates from the front and extends rearward until it reaches newly assembled myosin, initiating the next cycle. Upward bending, observed by evanescence and electron microscopy, results in ruffle formation when adhesion strength is low. Correlative fluorescence and electron microscopy shows that the regenerating lamellipodium forms a cohesive, separable layer of actin above the lamellum. Thus, actin polymerization periodically builds a mechanical link, the lamellipodium, connecting myosin motors with the initiation of adhesion sites, suggesting that the major functions driving motility are coordinated by a biomechanical process. PMID:17289574

  6. Measuring actin dynamics during phagocytosis using photo-switchable fluorescence

    NASA Astrophysics Data System (ADS)

    Kovari, Daniel T.; Curtis, Jennifer E.

    2013-03-01

    Phagocytosis has traditionally been investigated in terms of the relevant biochemical signaling pathways. However, a growing number of studies investigating the physical aspects of phagocytosis have demonstrated that several distinct forces are exerted throughout particle ingestion. We use variations on FRAP (Fluorescence Recovery After Photobleaching) in combination with photo-switchable fluorescent protein to investigate actin dynamics as a phagocyte attempts to engulf its prey. The goal of our actin studies are to determine the recruitment and polymerization rate of actin in the forming phagosome and whether an organized contractile actin ring is present and responsible for phagosome closure, as proposed in the literature. These experiments are ongoing and contribute to our long term effort of developing a physics based model of phagocytosis.

  7. Growing actin networks regulated by obstacle size and shape

    NASA Astrophysics Data System (ADS)

    Gong, Bo; Lin, Ji; Qian, Jin

    2017-01-01

    Growing actin networks provide the driving force for the motility of cells and intracellular pathogens. Based on the molecular-level processes of actin polymerization, branching, capping, and depolymerization, we have developed a modeling framework to simulate the stochastic and cooperative behaviors of growing actin networks in propelling obstacles, with an emphasis on the size and shape effects on work capacity and filament orientation in the growing process. Our results show that the characteristic size of obstacles changes the protrusion power per unit length, without influencing the orientation distribution of actin filaments in growing networks. In contrast, the geometry of obstacles has a profound effect on filament patterning, which influences the orientation of filaments differently when the drag coefficient of environment is small, intermediate, or large. We also discuss the role of various parameters, such as the aspect ratio of obstacles, branching rate, and capping rate, in affecting the protrusion power of network growth.

  8. Villin severing activity enhances actin-based motility in vivo.

    PubMed

    Revenu, Céline; Courtois, Matthieu; Michelot, Alphée; Sykes, Cécile; Louvard, Daniel; Robine, Sylvie

    2007-03-01

    Villin, an actin-binding protein associated with the actin bundles that support microvilli, bundles, caps, nucleates, and severs actin in a calcium-dependant manner in vitro. We hypothesized that the severing activity of villin is responsible for its reported role in enhancing cell plasticity and motility. To test this hypothesis, we chose a loss of function strategy and introduced mutations in villin based on sequence comparison with CapG. By pyrene-actin assays, we demonstrate that this mutant has a strongly reduced severing activity, whereas nucleation and capping remain unaffected. The bundling activity and the morphogenic effects of villin in cells are also preserved in this mutant. We thus succeeded in dissociating the severing from the three other activities of villin. The contribution of villin severing to actin dynamics is analyzed in vivo through the actin-based movement of the intracellular bacteria Shigella flexneri in cells expressing villin and its severing variant. The severing mutations abolish the gain of velocity induced by villin. To further analyze this effect, we reconstituted an in vitro actin-based bead movement in which the usual capping protein is replaced by either the wild type or the severing mutant of villin. Confirming the in vivo results, villin-severing activity enhances the velocity of beads by more than two-fold and reduces the density of actin in the comets. We propose a model in which, by severing actin filaments and capping their barbed ends, villin increases the concentration of actin monomers available for polymerization, a mechanism that might be paralleled in vivo when an enterocyte undergoes an epithelio-mesenchymal transition.

  9. Villin Severing Activity Enhances Actin-based Motility In Vivo

    PubMed Central

    Revenu, Céline; Courtois, Matthieu; Michelot, Alphée; Sykes, Cécile; Louvard, Daniel

    2007-01-01

    Villin, an actin-binding protein associated with the actin bundles that support microvilli, bundles, caps, nucleates, and severs actin in a calcium-dependant manner in vitro. We hypothesized that the severing activity of villin is responsible for its reported role in enhancing cell plasticity and motility. To test this hypothesis, we chose a loss of function strategy and introduced mutations in villin based on sequence comparison with CapG. By pyrene-actin assays, we demonstrate that this mutant has a strongly reduced severing activity, whereas nucleation and capping remain unaffected. The bundling activity and the morphogenic effects of villin in cells are also preserved in this mutant. We thus succeeded in dissociating the severing from the three other activities of villin. The contribution of villin severing to actin dynamics is analyzed in vivo through the actin-based movement of the intracellular bacteria Shigella flexneri in cells expressing villin and its severing variant. The severing mutations abolish the gain of velocity induced by villin. To further analyze this effect, we reconstituted an in vitro actin-based bead movement in which the usual capping protein is replaced by either the wild type or the severing mutant of villin. Confirming the in vivo results, villin-severing activity enhances the velocity of beads by more than two-fold and reduces the density of actin in the comets. We propose a model in which, by severing actin filaments and capping their barbed ends, villin increases the concentration of actin monomers available for polymerization, a mechanism that might be paralleled in vivo when an enterocyte undergoes an epithelio-mesenchymal transition. PMID:17182858

  10. Polymeric microspheres

    DOEpatents

    Walt, David R.; Mandal, Tarun K.; Fleming, Michael S.

    2004-04-13

    The invention features core-shell microsphere compositions, hollow polymeric microspheres, and methods for making the microspheres. The microspheres are characterized as having a polymeric shell with consistent shell thickness.

  11. Cells Lacking β-Actin are Genetically Reprogrammed and Maintain Conditional Migratory Capacity*

    PubMed Central

    Tondeleir, Davina; Lambrechts, Anja; Müller, Matthias; Jonckheere, Veronique; Doll, Thierry; Vandamme, Drieke; Bakkali, Karima; Waterschoot, Davy; Lemaistre, Marianne; Debeir, Olivier; Decaestecker, Christine; Hinz, Boris; Staes, An; Timmerman, Evy; Colaert, Niklaas; Gevaert, Kris; Vandekerckhove, Joël; Ampe, Christophe

    2012-01-01

    Vertebrate nonmuscle cells express two actin isoforms: cytoplasmic β- and γ-actin. Because of the presence and localized translation of β-actin at the leading edge, this isoform is generally accepted to specifically generate protrusive forces for cell migration. Recent evidence also implicates β-actin in gene regulation. Cell migration without β-actin has remained unstudied until recently and it is unclear whether other actin isoforms can compensate for this cytoplasmic function and/or for its nuclear role. Primary mouse embryonic fibroblasts lacking β-actin display compensatory expression of other actin isoforms. Consistent with this preservation of polymerization capacity, β-actin knockout cells have unchanged lamellipodial protrusion rates despite a severe migration defect. To solve this paradox we applied quantitative proteomics revealing a broad genetic reprogramming of β-actin knockout cells. This also explains why reintroducing β-actin in knockout cells does not restore the affected cell migration. Pathway analysis suggested increased Rho-ROCK signaling, consistent with observed phenotypic changes. We therefore developed and tested a model explaining the phenotypes in β-actin knockout cells based on increased Rho-ROCK signaling and increased TGFβ production resulting in increased adhesion and contractility in the knockout cells. Inhibiting ROCK or myosin restores migration of β-actin knockout cells indicating that other actins compensate for β-actin in this process. Consequently, isoactins act redundantly in providing propulsive forces for cell migration, but β-actin has a unique nuclear function, regulating expression on transcriptional and post-translational levels, thereby preventing myogenic differentiation. PMID:22448045

  12. Reversal of cell polarity and actin-myosin cytoskeleton reorganization under mechanical and chemical stimulation.

    PubMed

    Dalous, Jérémie; Burghardt, Emmanuel; Müller-Taubenberger, Annette; Bruckert, Franz; Gerisch, Günther; Bretschneider, Till

    2008-02-01

    To study reorganization of the actin system in cells that invert their polarity, we stimulated Dictyostelium cells by mechanical forces from alternating directions. The cells oriented in a fluid flow by establishing a protruding front directed against the flow and a retracting tail. Labels for polymerized actin and filamentous myosin-II marked front and tail. At 2.1 Pa, actin first disassembled at the previous front before it began to polymerize at the newly induced front. In contrast, myosin-II slowly disappeared from the previous tail and continuously redistributed to the new tail. Front specification was myosin-II independent and accumulation of polymerized actin was even more focused in mutants lacking myosin-II heavy chains. We conclude that under mechanical stimulation, the inversion of cell polarity is initiated by a global internal signal that turns down actin polymerization in the entire cell. It is thought to be elicited at the most strongly stimulated site of the cell, the incipient front region, and to be counterbalanced by a slowly generated, short-range signal that locally activates actin polymerization at the front. Similar pattern of front and tail interconversion were observed in cells reorienting in strong gradients of the chemoattractant cyclic AMP.

  13. Maleimidobenzoyl-G-actin: Structural properties and interaction with skeletal myosin subfragment-1

    SciTech Connect

    Bettache, N.; Bertrand, R.; Kassab, R. )

    1990-09-25

    The authors have investigated various structural and interaction properties of maleimidobenzoyl-G-actin (MBS-actin), a new, internally cross-linked G-actin derivative that does not exhibit, at moderate protein concentration, the salt-and myosin subfragment 1 (S-1)--induced polymerizations of G-actin and reacts reversibly and covalently in solution with S-1 at or near the F-actin binding region of the heavy chain. The far-ultraviolet CD spectrum and {alpha}-helix content of the MBS-actin were identical with those displayed by native G-actin. {sup 45}Ca{sup 2+} measurements showed the same content of tightly bound Ca{sup 2+} in MBS-actin as in G-actin and the EDTA treatment of the modified protein promoted the same red shift of the intrinsic fluorescence spectrum as observed with native G-actin. Incubation of concentrated MBS-actin solutions with 100 mM KCl+5 mM MgCl{sub 2} led to the polymerization of the actin derivative when the critical monomer concentration reached 1.6mg/mL, at 25{degree}C, pH 8.0. The MBS-F-actin formed activated the Mg{sup 2+}-ATPase of S-1 to the same extent as native F-actin. The MBS-G-actin exhibited a DNase I inhibitor activity very close to that found with native G-actin and was to be at all affected by its specific covalent conjugation to S-1. This finding led them to isolate, for the first time, by gel filtration, a ternary complex comprising DNase I tightly bound to MBS-actin cross-linked to the S-1 heavy chain, demonstrating that S-1 and DNase I bind at distinct sites on G-actin. Collectively, the data illustrate further the nativeness of the MBS-G-actin and its potential use in solution studies of the actin-myosin head interactions.

  14. Competition for actin between two distinct F-actin networks defines a bistable switch for cell polarization.

    PubMed

    Lomakin, Alexis J; Lee, Kun-Chun; Han, Sangyoon J; Bui, Duyen A; Davidson, Michael; Mogilner, Alex; Danuser, Gaudenz

    2015-11-01

    Symmetry-breaking polarization enables functional plasticity of cells and tissues and is yet not well understood. Here we show that epithelial cells, hard-wired to maintain a static morphology and to preserve tissue organization, can spontaneously switch to a migratory polarized phenotype after relaxation of the actomyosin cytoskeleton. We find that myosin II engages actin in the formation of cortical actomyosin bundles and thus makes it unavailable for deployment in the process of dendritic growth normally driving cell motility. Under low-contractility regimes, epithelial cells polarize in a front-back manner owing to the emergence of actin retrograde flows powered by dendritic polymerization of actin. Coupled to cell movement, the flows transport myosin II from the front to the back of the cell, where the motor locally 'locks' actin in contractile bundles. This polarization mechanism could be employed by embryonic and cancer epithelial cells in microenvironments where high-contractility-driven cell motion is inefficient.

  15. α-Synuclein and Its A30P Mutant Affect Actin Cytoskeletal Structure and Dynamics

    PubMed Central

    Sousa, Vítor L.; Bellani, Serena; Giannandrea, Maila; Yousuf, Malikmohamed; Valtorta, Flavia; Meldolesi, Jacopo

    2009-01-01

    The function of α-synuclein, a soluble protein abundant in the brain and concentrated at presynaptic terminals, is still undefined. Yet, α-synuclein overexpression and the expression of its A30P mutant are associated with familial Parkinson's disease. Working in cell-free conditions, in two cell lines as well as in primary neurons we demonstrate that α-synuclein and its A30P mutant have different effects on actin polymerization. Wild-type α-synuclein binds actin, slows down its polymerization and accelerates its depolymerization, probably by monomer sequestration; A30P mutant α-synuclein increases the rate of actin polymerization and disrupts the cytoskeleton during reassembly of actin filaments. Consequently, in cells expressing mutant α-synuclein, cytoskeleton-dependent processes, such as cell migration, are inhibited, while exo- and endocytic traffic is altered. In hippocampal neurons from mice carrying a deletion of the α-synuclein gene, electroporation of wild-type α-synuclein increases actin instability during remodeling, with growth of lamellipodia-like structures and apparent cell enlargement, whereas A30P α-synuclein induces discrete actin-rich foci during cytoskeleton reassembly. In conclusion, α-synuclein appears to play a major role in actin cytoskeletal dynamics and various aspects of microfilament function. Actin cytoskeletal disruption induced by the A30P mutant might alter various cellular processes and thereby play a role in the pathogenesis of neurodegeneration. PMID:19553474

  16. Symmetry breaking in actin gels - Implications for cellular motility

    NASA Astrophysics Data System (ADS)

    John, Karin; Peyla, Philippe; Misbah, Chaouqi

    2007-03-01

    The physical origin of cell motility is not fully understood. Recently minimal model systems have shown, that polymerizing actin itself can produce a motile force, without the help of motor proteins. Pathogens like Shigella or Listeria use actin to propel themselves forward in their host cell. The same process can be mimicked with polystyrene beads covered with the activating protein ActA, which reside in a solution containing actin monomers. ActA induces the growth of an actin gel at the bead surface. Initially the gel grows symmetrically around the bead until a critical size is reached. Subsequently one observes a symmetry breaking and the gel starts to grow asymmetrically around the bead developing a tail of actin at one side. This symmetry breaking is accompanied by a directed movement of the bead, with the actin tail trailing behind the bead. Force generation relies on the combination of two properties: growth and elasticity of the actin gel. We study this phenomenon theoretically within the framework of a linear elasticity theory and linear flux-force relationships for the evolution of an elastic gel around a hard sphere. Conditions for a parity symmetry breaking are identified analytically and illustrated numerically with the help of a phasefield model.

  17. G-actin sequestering protein thymosin-β4 regulates the activity of myocardin-related transcription factor.

    PubMed

    Morita, Tsuyoshi; Hayashi, Ken'ichiro

    2013-08-02

    Myocardin-related transcription factors (MRTFs) are robust coactivators of serum response factor (SRF). MRTFs contain three copies of the RPEL motif at their N-terminus, and they bind to monomeric globular actin (G-actin). Previous studies illustrate that G-actin binding inhibits MRTF activity by preventing the MRTFs nuclear accumulation. In the living cells, the majority of G-actin is sequestered by G-actin binding proteins that prevent spontaneous actin polymerization. Here, we demonstrate that the most abundant G-actin sequestering protein thymosin-β4 (Tβ4) was involved in the regulation of subcellular localization and activity of MRTF-A. Tβ4 competed with MRTF-A for G-actin binding; thus, interfering with G-actin-MRTF-A complex formation. Tβ4 overexpression induced the MRTF-A nuclear accumulation and activation of MRTF-SRF signaling. The activation rate of MRTF-A by the Tβ4 mutant L17A, whose affinity for G-actin is very low, was lower than that by wild-type Tβ4. In contrast, the β-actin mutant 3DA, which has a lower affinity for Tβ4, more effectively suppressed MRTF-A activity than wild-type β-actin. Furthermore, ectopic Tβ4 increased the endogenous expression of SRF-dependent actin cytoskeletal genes. Thus, Tβ4 is an important MRTF regulator that controls the G-actin-MRTFs interaction.

  18. The association of myosin IB with actin waves in dictyostelium requires both the plasma membrane-binding site and actin-binding region in the myosin tail.

    PubMed

    Brzeska, Hanna; Pridham, Kevin; Chery, Godefroy; Titus, Margaret A; Korn, Edward D

    2014-01-01

    F-actin structures and their distribution are important determinants of the dynamic shapes and functions of eukaryotic cells. Actin waves are F-actin formations that move along the ventral cell membrane driven by actin polymerization. Dictyostelium myosin IB is associated with actin waves but its role in the wave is unknown. Myosin IB is a monomeric, non-filamentous myosin with a globular head that binds to F-actin and has motor activity, and a non-helical tail comprising a basic region, a glycine-proline-glutamine-rich region and an SH3-domain. The basic region binds to acidic phospholipids in the plasma membrane through a short basic-hydrophobic site and the Gly-Pro-Gln region binds F-actin. In the current work we found that both the basic-hydrophobic site in the basic region and the Gly-Pro-Gln region of the tail are required for the association of myosin IB with actin waves. This is the first evidence that the Gly-Pro-Gln region is required for localization of myosin IB to a specific actin structure in situ. The head is not required for myosin IB association with actin waves but binding of the head to F-actin strengthens the association of myosin IB with waves and stabilizes waves. Neither the SH3-domain nor motor activity is required for association of myosin IB with actin waves. We conclude that myosin IB contributes to anchoring actin waves to the plasma membranes by binding of the basic-hydrophobic site to acidic phospholipids in the plasma membrane and binding of the Gly-Pro-Gln region to F-actin in the wave.

  19. The Association of Myosin IB with Actin Waves in Dictyostelium Requires Both the Plasma Membrane-Binding Site and Actin-Binding Region in the Myosin Tail

    PubMed Central

    Brzeska, Hanna; Pridham, Kevin; Chery, Godefroy; Titus, Margaret A.; Korn, Edward D.

    2014-01-01

    F-actin structures and their distribution are important determinants of the dynamic shapes and functions of eukaryotic cells. Actin waves are F-actin formations that move along the ventral cell membrane driven by actin polymerization. Dictyostelium myosin IB is associated with actin waves but its role in the wave is unknown. Myosin IB is a monomeric, non-filamentous myosin with a globular head that binds to F-actin and has motor activity, and a non-helical tail comprising a basic region, a glycine-proline-glutamine-rich region and an SH3-domain. The basic region binds to acidic phospholipids in the plasma membrane through a short basic-hydrophobic site and the Gly-Pro-Gln region binds F-actin. In the current work we found that both the basic-hydrophobic site in the basic region and the Gly-Pro-Gln region of the tail are required for the association of myosin IB with actin waves. This is the first evidence that the Gly-Pro-Gln region is required for localization of myosin IB to a specific actin structure in situ. The head is not required for myosin IB association with actin waves but binding of the head to F-actin strengthens the association of myosin IB with waves and stabilizes waves. Neither the SH3-domain nor motor activity is required for association of myosin IB with actin waves. We conclude that myosin IB contributes to anchoring actin waves to the plasma membranes by binding of the basic-hydrophobic site to acidic phospholipids in the plasma membrane and binding of the Gly-Pro-Gln region to F-actin in the wave. PMID:24747353

  20. In vitro and in vivo evidence for actin association of the naphthylphthalamic acid-binding protein from zucchini hypocotyls

    NASA Technical Reports Server (NTRS)

    Butler, J. H.; Hu, S.; Brady, S. R.; Dixon, M. W.; Muday, G. K.

    1998-01-01

    The N-1-naphthylphthalamic acid (NPA)-binding protein is part of the auxin efflux carrier, the protein complex that controls polar auxin transport in plant tissues. This study tested the hypothesis that the NPA-binding protein (NBP) is associated with the actin cytoskeleton in vitro and that an intact actin cytoskeleton is required for polar auxin transport in vivo. Cytoskeletal polymerization was altered in extracts of zucchini hypocotyls with reagents that stabilized either the polymeric or monomeric forms of actin or tubulin. Phalloidin treatment altered actin polymerization, as demonstrated by immunoblot analyses following native and denaturing electrophoresis. Phalloidin increased both filamentous actin (F-actin) and NPA-binding activity, while cytochalasin D and Tris decreased both F-actin and NPA-binding activity in cytoskeletal pellets. The microtubule stabilizing drug taxol increased pelletable tubulin, but did not alter either the amount of pelletable actin or NPA-binding activity. Treatment of etiolated zucchini hypocotyls with cytochalasin D decreased the amount of auxin transport and its regulation by NPA. These experimental results are consistent with an in vitro actin cytoskeletal association of the NPA-binding protein and with the requirement of an intact actin cytoskeleton for maximal polar auxin transport in vivo.

  1. eNOS S-nitrosylates β-actin on Cys374 and regulates PKC-θ at the immune synapse by impairing actin binding to profilin-1.

    PubMed

    García-Ortiz, Almudena; Martín-Cofreces, Noa B; Ibiza, Sales; Ortega, Ángel; Izquierdo-Álvarez, Alicia; Trullo, Antonio; Victor, Víctor M; Calvo, Enrique; Sot, Begoña; Martínez-Ruiz, Antonio; Vázquez, Jesús; Sánchez-Madrid, Francisco; Serrador, Juan M

    2017-04-01

    The actin cytoskeleton coordinates the organization of signaling microclusters at the immune synapse (IS); however, the mechanisms involved remain poorly understood. We show here that nitric oxide (NO) generated by endothelial nitric oxide synthase (eNOS) controls the coalescence of protein kinase C-θ (PKC-θ) at the central supramolecular activation cluster (c-SMAC) of the IS. eNOS translocated with the Golgi to the IS and partially colocalized with F-actin around the c-SMAC. This resulted in reduced actin polymerization and centripetal retrograde flow of β-actin and PKC-θ from the lamellipodium-like distal (d)-SMAC, promoting PKC-θ activation. Furthermore, eNOS-derived NO S-nitrosylated β-actin on Cys374 and impaired actin binding to profilin-1 (PFN1), as confirmed with the transnitrosylating agent S-nitroso-L-cysteine (Cys-NO). The importance of NO and the formation of PFN1-actin complexes on the regulation of PKC-θ was corroborated by overexpression of PFN1- and actin-binding defective mutants of β-actin (C374S) and PFN1 (H119E), respectively, which reduced the coalescence of PKC-θ at the c-SMAC. These findings unveil a novel NO-dependent mechanism by which the actin cytoskeleton controls the organization and activation of signaling microclusters at the IS.

  2. Multiple crystal structures of actin dimers and their implications for interactions in the actin filament

    PubMed Central

    Sawaya, Michael R.; Kudryashov, D. S.; Pashkov, Inna; Adisetiyo, Helty; Reisler, Emil; Yeates, Todd O.

    2008-01-01

    The structure of actin in its monomeric form is known at high resolution, while the structure of filamentous F-actin is only understood at considerably lower resolution. Knowing pre­cisely how the monomers of actin fit together would lead to a deeper understanding of the dynamic behavior of the actin filament. Here, a series of crystal structures of actin dimers are reported which were prepared by cross-linking in either the longitudinal or the lateral direction in the filament state. Laterally cross-linked dimers, comprised of monomers belonging to different protofilaments, are found to adopt configurations in crystals that are not related to the native structure of filamentous actin. In contrast, multiple structures of longitudinal dimers consistently reveal the same interface between monomers within a single protofilament. The re­appearance of the same longitudinal interface in multiple crystal structures adds weight to arguments that the interface visualized is similar to that in actin filaments. Highly conserved atomic interactions involving residues 199–205 and 287–291 are highlighted. PMID:18391412

  3. Differential remodeling of actin cytoskeleton architecture by profilin isoforms leads to distinct effects on cell migration and invasion.

    PubMed

    Mouneimne, Ghassan; Hansen, Scott D; Selfors, Laura M; Petrak, Lara; Hickey, Michele M; Gallegos, Lisa L; Simpson, Kaylene J; Lim, James; Gertler, Frank B; Hartwig, John H; Mullins, R Dyche; Brugge, Joan S

    2012-11-13

    Dynamic actin cytoskeletal reorganization is integral to cell motility. Profilins are well-characterized regulators of actin polymerization; however, functional differences among coexpressed profilin isoforms are not well defined. Here, we demonstrate that profilin-1 and profilin-2 differentially regulate membrane protrusion, motility, and invasion; these processes are promoted by profilin-1 and suppressed by profilin-2. Compared to profilin-1, profilin-2 preferentially drives actin polymerization by the Ena/VASP protein, EVL. Profilin-2 and EVL suppress protrusive activity and cell motility by an actomyosin contractility-dependent mechanism. Importantly, EVL or profilin-2 downregulation enhances invasion in vitro and in vivo. In human breast cancer, lower EVL expression correlates with high invasiveness and poor patient outcome. We propose that profilin-2/EVL-mediated actin polymerization enhances actin bundling and suppresses breast cancer cell invasion.

  4. Pharmacological targeting of actin-dependent dynamin oligomerization ameliorates chronic kidney disease in diverse animal models

    PubMed Central

    Schiffer, Mario; Teng, Beina; Gu, Changkyu; Shchedrina, Valentina A.; Kasaikina, Marina; Pham, Vincent A.; Hanke, Nils; Rong, Song; Gueler, Faikah; Schroder, Patricia; Tossidou, Irini; Park, Joon-Keun; Staggs, Lynne; Haller, Hermann; Erschow, Sergej; Hilfiker-Kleiner, Denise; Wei, Changli; Chen, Chuang; Tardi, Nicholas; Hakroush, Samy; Selig, Martin K.; Vasilyev, Aleksandr; Merscher, Sandra; Reiser, Jochen; Sever, Sanja

    2015-01-01

    Dysregulation of the actin cytoskeleton in podocytes represents a common pathway in the pathogenesis of proteinuria across a spectrum of chronic kidney diseases (CKD). The GTPase dynamin has been implicated in the maintenance of cellular architecture in podocytes through its direct interaction with actin. Furthermore, the propensity of dynamin to oligomerize into higher-order structures in an actin-dependent manner and to crosslink actin microfilaments into higher order structures have been correlated with increased actin polymerization and global organization of the actin cytoskeleton in the cell. We found that use of the small molecule Bis-T-23, which promotes actin-dependent dynamin oligomerization and thus increased actin polymerization in injured podocytes, was sufficient to improve renal health in diverse models of both transient kidney disease and of CKD. In particular, administration of Bis-T-23 in these renal disease models restored the normal ultrastructure of podocyte foot processes, lowered proteinuria, lowered collagen IV deposits in the mesangial matrix, diminished mesangial matrix expansion and extended lifespan. These results further establish that alterations in the actin cytoskeleton of kidney podocytes is a common hallmark of CKD, while also underscoring the significant regenerative potential of injured glomeruli and that targeting the oligomerization cycle of dynamin represents an attractive potential therapeutic target to treat CKD. PMID:25962121

  5. Involvement of LIM kinase 1 in actin polarization in human CD4 T cells

    PubMed Central

    Xu, Xuehua; Guo, Jia; Vorster, Paul; Wu, Yuntao

    2012-01-01

    Chemokine binding to cognate receptors induces actin dynamics that are a major driving force for T cell migration and chemotactic motility. HIV-1 binding to the chemokine coreceptor CXCR4 initiates chemotactic signaling, mimicking chemokine-induced actin dynamics to facilitate infection processes such as entry, early DNA synthesis, and nuclear migration. Recently, we identified that HIV-triggered early actin polymerization is mediated through the Rac1-PAK1/2-LIMK1-cofilin pathway. Inhibition of LIMK1 (LIM domain kinase 1), a kinase phosphorylating cofilin, through shRNA knockdown decreases actin polymerization and T cell chemotaxis toward SDF-1. The LIMK1 knockdown T cells also supported lower viral entry, DNA synthesis and nuclear migration, suggesting a critical role of LIMK1-mediated actin dynamics in the initiation of HIV-1 infection. Surprisingly, LIMK1 knockdown in CEM-SS T cells did not lead to an overall change in the ratio of phospho-cofilin to total cofilin although there was a measurable decrease in the amount of actin filaments in cells. The decrease in filamentous actin in LIMK1 knockdown cells was found to mainly occur in polarized cap region rich in F-actin. These results suggest that LIMK1 may be involved in spontaneous actin polarization in transformed T cells. The inhibition of T cell chemotaxis by LIMK1 knockdown likely result from inhibition of localized LIMK1 activation and cofilin phosphorylation that are required for polarized actin polymerization for directional cell migration. The inhibition of HIV-1 infection by LIMK1 knockdown may also result from the decrease of actin-rich membrane protrusions that may be preferred viral entry sites in T cells. PMID:23060964

  6. Regulation of Sperm Capacitation and the Acrosome Reaction by PIP 2 and Actin Modulation.

    PubMed

    Breitbart, Haim; Finkelstein, Maya

    2015-01-01

    Actin polymerization and development of hyperactivated (HA) motility are two processes that take place during sperm capacitation. Actin polymerization occurs during capacitation and prior to the acrosome reaction, fast F-actin breakdown takes place. The increase in F-actin during capacitation depends upon inactivation of the actin severing protein, gelsolin, by its binding to phosphatydilinositol-4, 5-bisphosphate (PIP 2 ) and its phosphorylation on tyrosine-438 by Src. Activation of gelsolin following its release from PIP 2 is known to cause F-actin breakdown and inhibition of sperm motility, which can be restored by adding PIP 2 to the cells. Reduction of PIP 2 synthesis inhibits actin polymerization and motility, while increasing PIP 2 synthesis enhances these activities. Furthermore, sperm demonstrating low motility contained low levels of PIP 2 and F-actin. During capacitation there was an increase in PIP 2 and F-actin levels in the sperm head and a decrease in the tail. In spermatozoa with high motility, gelsolin was mainly localized to the sperm head before capacitation, whereas in low motility sperm, most of the gelsolin was localized to the tail before capacitation and translocated to the head during capacitation. We also showed that phosphorylation of gelsolin on tyrosine-438 depends upon its binding to PIP 2 . Stimulation of phospholipase C, by Ca 2 + -ionophore or by activating the epidermal-growth-factor-receptor, inhibits tyrosine phosphorylation of gelsolin and enhances enzyme activity. In conclusion, these data indicate that the increase of PIP 2 and/or F-actin in the head during capacitation enhances gelsolin translocation to the head. As a result, the decrease of gelsolin in the tail allows the maintenance of high levels of F-actin in this structure, which is essential for the development of HA motility.

  7. Regulation of sperm capacitation and the acrosome reaction by PIP2 and actin modulation

    PubMed Central

    Breitbart, Haim; Finkelstein, Maya

    2015-01-01

    Actin polymerization and development of hyperactivated (HA) motility are two processes that take place during sperm capacitation. Actin polymerization occurs during capacitation and prior to the acrosome reaction, fast F-actin breakdown takes place. The increase in F-actin during capacitation depends upon inactivation of the actin severing protein, gelsolin, by its binding to phosphatydilinositol-4, 5-bisphosphate (PIP2) and its phosphorylation on tyrosine-438 by Src. Activation of gelsolin following its release from PIP2 is known to cause F-actin breakdown and inhibition of sperm motility, which can be restored by adding PIP2 to the cells. Reduction of PIP2 synthesis inhibits actin polymerization and motility, while increasing PIP2 synthesis enhances these activities. Furthermore, sperm demonstrating low motility contained low levels of PIP2 and F-actin. During capacitation there was an increase in PIP2 and F-actin levels in the sperm head and a decrease in the tail. In spermatozoa with high motility, gelsolin was mainly localized to the sperm head before capacitation, whereas in low motility sperm, most of the gelsolin was localized to the tail before capacitation and translocated to the head during capacitation. We also showed that phosphorylation of gelsolin on tyrosine-438 depends upon its binding to PIP2. Stimulation of phospholipase C, by Ca2+-ionophore or by activating the epidermal-growth-factor-receptor, inhibits tyrosine phosphorylation of gelsolin and enhances enzyme activity. In conclusion, these data indicate that the increase of PIP2 and/or F-actin in the head during capacitation enhances gelsolin translocation to the head. As a result, the decrease of gelsolin in the tail allows the maintenance of high levels of F-actin in this structure, which is essential for the development of HA motility. PMID:25966627

  8. Total synthesis of (-)-doliculide, structure-activity relationship studies and its binding to F-actin.

    PubMed

    Matcha, Kiran; Madduri, Ashoka V R; Roy, Sayantani; Ziegler, Slava; Waldmann, Herbert; Hirsch, Anna K H; Minnaard, Adriaan J

    2012-11-26

    Actin, an abundant protein in most eukaryotic cells, is one of the targets in cancer research. Recently, a great deal of attention has been paid to the synthesis and function of actin-targeting compounds and their use as effective molecular probes in chemical biology. In this study, we have developed an efficient synthesis of (-)-doliculide, a very potent actin binder with a higher cell-membrane permeability than phalloidin. Actin polymerization assays with (-)-doliculide and two analogues on HeLa and BSC-1 cells, together with a prediction of their binding mode to F-actin by unbiased computational docking, show that doliculide stabilizes F-actin in a similar way to jasplakinolide and chondramide C.

  9. Xenopus oocyte wound healing as a model system for analysis of microtubule-actin interactions.

    PubMed

    Zhang, Tong; Mandato, Craig A

    2007-01-01

    Microtubule-actin interactions are fundamental to many cellular processes such as cytokinesis and cellular locomotion. Investigating the mechanism of microtubule-actin interactions is the key to understand the cellular morphogenesis and related pathological processes. The abundance and highly dynamic nature of microtubules and F-actin raise a serious challenge when trying to distinguish between the real and fortuitous interactions within a cell. Xenopus oocyte wound model represents an ideal system to study microtubule-actin interactions as well as microtubule-dependent control of the actin polymerization. Here, we describe a series of cytoskeleton specific treatments in Xenopus oocyte wound healing experiments and use confocal fluorescence microscopy to analyze fixed oocytes to examine microtubule-actin interactions.

  10. Profilin as a regulator of the membrane-actin cytoskeleton interface in plant cells.

    PubMed

    Sun, Tiantian; Li, Shanwei; Ren, Haiyun

    2013-12-19

    Membrane structures and cytoskeleton dynamics are intimately inter-connected in the eukaryotic cell. Recently, the molecular mechanisms operating at this interface have been progressively addressed. Many experiments have revealed that the actin cytoskeleton can interact with membranes through various discrete membrane domains. The actin-binding protein, profilin has been proven to inhibit actin polymerization and to promote F-actin elongation. This is dependent on many factors, such as the profilin/G-actin ratio and the ionic environment of the cell. Additionally, profilin has specific domains that interact with phosphoinositides and poly-L-proline rich proteins; theoretically, this gives profilin the opportunity to interact with membranes, and a large number of experiments have confirmed this possibility. In this article, we summarize recent findings in plant cells, and discuss the evidence of the connections among actin cytoskeleton, profilin and biomembranes through direct or indirect relationships.

  11. Directed actin assembly and motility.

    PubMed

    Boujemaa-Paterski, Rajaa; Galland, Rémi; Suarez, Cristian; Guérin, Christophe; Théry, Manuel; Blanchoin, Laurent

    2014-01-01

    The actin cytoskeleton is a key component of the cellular architecture. However, understanding actin organization and dynamics in vivo is a complex challenge. Reconstitution of actin structures in vitro, in simplified media, allows one to pinpoint the cellular biochemical components and their molecular interactions underlying the architecture and dynamics of the actin network. Previously, little was known about the extent to which geometrical constraints influence the dynamic ultrastructure of these networks. Therefore, in order to study the balance between biochemical and geometrical control of complex actin organization, we used the innovative methodologies of UV and laser patterning to design a wide repertoire of nucleation geometries from which we assembled branched actin networks. Using these methods, we were able to reconstitute complex actin network organizations, closely related to cellular architecture, to precisely direct and control their 3D connections. This methodology mimics the actin networks encountered in cells and can serve in the fabrication of innovative bioinspired systems.

  12. Nervous Wreck and Cdc42 cooperate to regulate endocytic actin assembly during synaptic growth

    PubMed Central

    Rodal, Avital A.; Motola-Barnes, Rebecca N.; Littleton, J. Troy

    2008-01-01

    Regulation of synaptic morphology depends on endocytosis of activated growth signal receptors, but the mechanisms regulating this membrane trafficking event are unclear. Actin polymerization mediated by WASp (Wiskott-Aldrich Syndrome Protein) and the Arp2/3 (Actin related protein 2/3) complex generates forces at multiple stages of endocytosis. F-BAR/SH3 domain proteins play key roles in this process by coordinating membrane deformation with WASp-dependent actin polymerization. However, it is not known how other WASp ligands, such as the small GTPase Cdc42, coordinate with F-BAR/SH3 proteins to regulate actin polymerization at membranes. Nervous Wreck (Nwk) is a conserved neuronal F-BAR/SH3 protein that localizes to periactive zones at the Drosophila larval neuromuscular junction (NMJ) and is required for regulation of synaptic growth via BMP signaling. Here we show that Nwk interacts with the endocytic proteins dynamin and Dap160 and functions together with Cdc42 to promote WASp-mediated actin polymerization in vitro and to regulate synaptic growth in vivo. Cdc42 function is associated with Rab11-dependent recycling endosomes, and we show that Rab11 co-localizes with Nwk at the NMJ. Taken together, our results suggest that synaptic growth activated by growth factor signaling is controlled at an endosomal compartment via coordinated Nwk and Cdc42-dependent actin assembly. PMID:18701694

  13. The Nf-actin gene is an important factor for food-cup formation and cytotoxicity of pathogenic Naegleria fowleri.

    PubMed

    Sohn, Hae-Jin; Kim, Jong-Hyun; Shin, Myeong-Heon; Song, Kyoung-Ju; Shin, Ho-Joon

    2010-03-01

    Naegleria fowleri destroys target cells by trogocytosis, a phagocytosis mechanism, and a process of piecemeal ingestion of target cells by food-cups. Phagocytosis is an actin-dependent process that involves polymerization of monomeric G-actin into filamentous F-actin. However, despite the numerous studies concerning phagocytosis, its role in the N. fowleri food-cup formation related with trogocytosis has been poorly reported. In this study, we cloned and characterized an Nf-actin gene to elucidate the role of Nf-actin gene in N. fowleri pathogenesis. The Nf-actin gene is composed of 1,128-bp and produced a 54.1-kDa recombinant protein (Nf-actin). The sequence identity was 82% with nonpathogenic Naegleria gruberi but has no sequence identity with other mammals or human actin gene. Anti-Nf-actin polyclonal antibody was produced in BALB/c mice immunized with recombinant Nf-actin. The Nf-actin was localized on the cytoplasm, pseudopodia, and especially, food-cup structure (amoebastome) in N. fowleri trophozoites using immunofluorescence assay. When N. fowleri co-cultured with Chinese hamster ovary cells, Nf-actin was observed to localize around on phagocytic food-cups. We also observed that N. fowleri treated with cytochalasin D as actin polymerization inhibitor or transfected with antisense oligomer of Nf-actin gene had shown the reduced ability of food-cup formation and in vitro cytotoxicity. Finally, it suggests that Nf-actin plays an important role in phagocytic activity of pathogenic N. fowleri.

  14. Formins: Actin nucleators that regulate cytoskeletal dynamics during spermatogenesis

    PubMed Central

    Li, Nan; Mruk, Dolores D; Tang, Elizabeth I; Wong, Chris KC; Lee, Will M; Silvestrini, Bruno; Cheng, C Yan

    2015-01-01

    Formins are a growing class of actin nucleation proteins that promote the polymerization of actin microfilaments, forming long stretches of actin microfilaments to confer actin filament bundling in mammalian cells. As such, microfilament bundles can be formed in specific cellular domains, in particular in motile mammalian cells, such as filopodia. Since ectoplasmic specialization (ES), a testis-specific adherens junction (AJ), at the Sertoli cell-cell and Sertoli-spermatid interface is constituted by arrays of actin microfilament bundles, it is likely that formins are playing a significant physiological role on the homeostasis of ES during the epithelial cycle of spermatogenesis. In this Commentary, we provide a timely discussion on formin 1 which was recently shown to be a crucial regulator of actin microfilaments at the ES in the rat testis (Li N et al. Endocrinology, 2015, in press; DOI: 10.1210/en.2015-1161, PMID:25901598). We also highlight research that is needed to unravel the functional significance of formins in spermatogenesis. PMID:26413414

  15. The Role of Actin Cytoskeleton in Memory Formation in Amygdala

    PubMed Central

    Lamprecht, Raphael

    2016-01-01

    The central, lateral and basolateral amygdala (BLA) nuclei are essential for the formation of long-term memories including emotional and drug-related memories. Studying cellular and molecular mechanisms of memory in amygdala may lead to better understanding of how memory is formed and of fear and addiction-related disorders. A challenge is to identify molecules activated by learning that subserve cellular changes needed for memory formation and maintenance in amygdala. Recent studies show that activation of synaptic receptors during fear and drug-related learning leads to alteration in actin cytoskeleton dynamics and structure in amygdala. Such changes in actin cytoskeleton in amygdala are essential for fear and drug-related memories formation. Moreover, the actin cytoskeleton subserves, after learning, changes in neuronal morphogenesis and glutamate receptors trafficking in amygdala. These cellular events are involved in fear and drug-related memories formation. Actin polymerization is also needed for the maintenance of drug-associated memories in amygdala. Thus, the actin cytoskeleton is a key mediator between receptor activation during learning and cellular changes subserving long-term memory (LTM) in amygdala. The actin cytoskeleton may serve as a target for pharmacological treatment of fear memory associated with fear and anxiety disorders and drug addiction to prevent the debilitating consequences of these diseases. PMID:27065800

  16. Formins: Actin nucleators that regulate cytoskeletal dynamics during spermatogenesis.

    PubMed

    Li, Nan; Mruk, Dolores D; Tang, Elizabeth I; Wong, Chris Kc; Lee, Will M; Silvestrini, Bruno; Cheng, C Yan

    2015-01-01

    Formins are a growing class of actin nucleation proteins that promote the polymerization of actin microfilaments, forming long stretches of actin microfilaments to confer actin filament bundling in mammalian cells. As such, microfilament bundles can be formed in specific cellular domains, in particular in motile mammalian cells, such as filopodia. Since ectoplasmic specialization (ES), a testis-specific adherens junction (AJ), at the Sertoli cell-cell and Sertoli-spermatid interface is constituted by arrays of actin microfilament bundles, it is likely that formins are playing a significant physiological role on the homeostasis of ES during the epithelial cycle of spermatogenesis. In this Commentary, we provide a timely discussion on formin 1 which was recently shown to be a crucial regulator of actin microfilaments at the ES in the rat testis (Li N et al. Endocrinology, 2015, in press; DOI: 10.1210/en.2015-1161, PMID:25901598). We also highlight research that is needed to unravel the functional significance of formins in spermatogenesis.

  17. PLEKHG3 enhances polarized cell migration by activating actin filaments at the cell front

    PubMed Central

    Nguyen, Trang Thi Thu; Park, Wei Sun; Park, Byung Ouk; Kim, Cha Yeon; Oh, Yohan; Kim, Jin Man; Choi, Hana; Kyung, Taeyoon; Kim, Cheol-Hee; Lee, Gabsang; Hahn, Klaus M.; Meyer, Tobias; Heo, Won Do

    2016-01-01

    Cells migrate by directing Ras-related C3 botulinum toxin substrate 1 (Rac1) and cell division control protein 42 (Cdc42) activities and by polymerizing actin toward the leading edge of the cell. Previous studies have proposed that this polarization process requires a local positive feedback in the leading edge involving Rac small GTPase and actin polymerization with PI3K likely playing a coordinating role. Here, we show that the pleckstrin homology and RhoGEF domain containing G3 (PLEKHG3) is a PI3K-regulated Rho guanine nucleotide exchange factor (RhoGEF) for Rac1 and Cdc42 that selectively binds to newly polymerized actin at the leading edge of migrating fibroblasts. Optogenetic inactivation of PLEKHG3 showed that PLEKHG3 is indispensable both for inducing and for maintaining cell polarity. By selectively binding to newly polymerized actin, PLEKHG3 promotes local Rac1/Cdc42 activation to induce more local actin polymerization, which in turn promotes the recruitment of more PLEKHG3 to induce and maintain cell front. Thus, autocatalytic reinforcement of PLEKHG3 localization to the leading edge of the cell provides a molecular basis for the proposed positive feedback loop that is required for cell polarization and directed migration. PMID:27555588

  18. Actinic keratosis. Current treatment options.

    PubMed

    Jeffes, E W; Tang, E H

    2000-01-01

    Actinic keratoses are hyperkeratotic skin lesions that represent focal abnormal proliferation of epidermal keratinocytes. Some actinic keratoses evolve into squamous cell carcinoma of the skin, while others resolve spontaneously. The conversion rate of actinic keratosis to squamous cell carcinoma is not accurately known, but appears to be in the range of 0.25 to 1% per year. Although there is a low rate of conversion of actinic keratoses to squamous cell carcinoma, 60% of squamous cell carcinomas of the skin probably arise from actinic keratoses. The main cause of actinic keratoses in otherwise healthy Caucasians appears to be the sun. Therapy for actinic keratoses begins with prevention which starts with sun avoidance and physical protection. Sunprotection with sunscreens actually slows the return of actinic keratoses in patients already getting actinic keratoses. Interestingly, a few studies are available that demonstrate that a high fat diet is associated with the production of more actinic keratoses than is a low fat diet. One of the mainstays of therapy has been local destruction of the actinic keratoses with cryotherapy, and curettage and electrodesiccation. A new addition to this group of therapies to treat individual actinic keratoses is photodynamic therapy with topical aminolevulinic acid and light. In patients who have numerous actinic keratoses in an area of severely sun damaged skin, therapies which are applied to the whole actinic keratosis area are used. The goal of treating such an area of skin is to treat all of the early as well as the numerous clinically evident actinic keratoses at the same time. The classical approaches for treating areas of photodamaged skin without treating actinic keratoses individually include: the use of topically applied fluorouracil cream, dermabrasion, and cutaneous peels with various agents like trichloroacetic acid. Both topically as well as orally administered retinoids have been used to treat actinic keratoses but

  19. The C-terminal dimerization motif of cyclase-associated protein is essential for actin monomer regulation.

    PubMed

    Iwase, Shohei; Ono, Shoichiro

    2016-12-01

    Cyclase-associated protein (CAP) is a conserved actin-regulatory protein that functions together with actin depolymerizing factor (ADF)/cofilin to enhance actin filament dynamics. CAP has multiple functional domains, and the function to regulate actin monomers is carried out by its C-terminal half containing a Wiskott-Aldrich Syndrome protein homology 2 (WH2) domain, a CAP and X-linked retinitis pigmentosa 2 (CARP) domain, and a dimerization motif. WH2 and CARP are implicated in binding to actin monomers and important for enhancing filament turnover. However, the role of the dimerization motif is unknown. Here, we investigated the function of the dimerization motif of CAS-2, a CAP isoform in the nematode Caenorhabditis elegans, in actin monomer regulation. CAS-2 promotes ATP-dependent recycling of ADF/cofilin-bound actin monomers for polymerization by enhancing exchange of actin-bound nucleotides. The C-terminal half of CAS-2 (CAS-2C) has nearly as strong activity as full-length CAS-2. Maltose-binding protein (MBP)-tagged CAS-2C is a dimer. However, MBP-CAS-2C with a truncation of either one or two C-terminal β-strands is monomeric. Truncations of the dimerization motif in MBP-CAS-2C nearly completely abolish its activity to sequester actin monomers from polymerization and enhance nucleotide exchange on actin monomers. As a result, these CAS-2C variants, also in the context of full-length CAS-2, fail to compete with ADF/cofilin to release actin monomers for polymerization. CAS-2C variants lacking the dimerization motif exhibit enhanced binding to actin filaments, which is mediated by WH2. Taken together, these results suggest that the evolutionarily conserved dimerization motif of CAP is essential for its C-terminal region to exert the actin monomer-specific regulatory function.

  20. Mechanical detection of a long-range actin network emanating from a biomimetic cortex.

    PubMed

    Bussonnier, Matthias; Carvalho, Kevin; Lemière, Joël; Joanny, Jean-François; Sykes, Cécile; Betz, Timo

    2014-08-19

    Actin is ubiquitous globular protein that polymerizes into filaments and forms networks that participate in the force generation of eukaryotic cells. Such forces are used for cell motility, cytokinesis, and tissue remodeling. Among those actin networks, we focus on the actin cortex, a dense branched network beneath the plasma membrane that is of particular importance for the mechanical properties of the cell. Here we reproduce the cellular cortex by activating actin filament growth on a solid surface. We unveil the existence of a sparse actin network that emanates from the surface and extends over a distance that is at least 10 times larger than the cortex itself. We call this sparse actin network the "actin cloud" and characterize its mechanical properties with optical tweezers. We show, both experimentally and theoretically, that the actin cloud is mechanically relevant and that it should be taken into account because it can sustain forces as high as several picoNewtons (pN). In particular, it is known that in plant cells, actin networks similar to the actin cloud have a role in positioning the nucleus; in large oocytes, they play a role in driving chromosome movement. Recent evidence shows that such networks even prevent granule condensation in large cells.

  1. All solid-state redox supercapacitors based on supramolecular 1,5-diaminoanthraquinone oligomeric electrode and polymeric electrolytes

    NASA Astrophysics Data System (ADS)

    Hashmi, S. A.; Suematsu, Shunzo; Naoi, Katsuhiko

    Supramolecular conducting oligomeric 1,5-diaminoanthraquinone (DAAQ)-based all solid-state redox supercapacitors have been fabricated with the solid polymer electrolyte, poly vinyl alcohol (PVA)-H 3PO 4 blend and polymeric gel electrolyte poly methyl methacrylate (PMMA)-ethylene carbonate (EC)-propylene carbonate (PC)-tetra ethyl ammonium perchlorate (TEAClO 4) system. The films of gel electrolyte of the optimized composition PMMA (35 wt.%)-EC:PC (1:1 v/v)-1 M TEAClO 4 and polymer electrolyte PVA-H 3PO 4 (50:50 w/w) blend exhibited high ionic conductivity (10 -4 to 10 -3 S cm -1 at room temperature) with good mechanical strength, suitable for application in electrochemical supercapacitors. The capacitors have been characterized using a.c. impedance spectroscopy, linear sweep voltammetry and prolonged cyclic test. The maximum capacitance value of 3.7-5.4 mF cm -2 (equivalent to single electrode capacitance 125-184 F g -1 of DAAQ electrode) has been observed for the PMMA-gel electrolyte based capacitor. This corresponds to the energy density 92-135 Wh kg -1. System based on the proton-conducting PVA-H 3PO 4 polymer blend, however has relatively lower capacitance of 1.1-4.0 mF cm -2 (equivalent to single electrode capacitance of 36-136 F g -1).

  2. A dynamin-actin interaction is required for vesicle scission during endocytosis in yeast.

    PubMed

    Palmer, Sarah E; Smaczynska-de Rooij, Iwona I; Marklew, Christopher J; Allwood, Ellen G; Mishra, Ritu; Johnson, Simeon; Goldberg, Martin W; Ayscough, Kathryn R

    2015-03-30

    Actin is critical for endocytosis in yeast cells, and also in mammalian cells under tension. However, questions remain as to how force generated through actin polymerization is transmitted to the plasma membrane to drive invagination and scission. Here, we reveal that the yeast dynamin Vps1 binds and bundles filamentous actin. Mutational analysis of Vps1 in a helix of the stalk domain identifies a mutant RR457-458EE that binds actin more weakly. In vivo analysis of Vps1 function demonstrates that the mutation disrupts endocytosis but not other functions of Vps1 such as vacuolar trafficking or peroxisome fission. The mutant Vps1 is stably expressed in cells and co-localizes with the endocytic reporters Abp1 and the amphiphysin Rvs167. Detailed analysis of individual endocytic patch behavior indicates that the mutation causes aberrant movements in later stages of endocytosis, consistent with a scission defect. Ultrastructural analysis of yeast cells using electron microscopy reveals a significant increase in invagination depth, further supporting a role for the Vps1-actin interaction during scission. In vitro analysis of the mutant protein demonstrates that--like wild-type Vps1--it is able to form oligomeric rings, but, critically, it has lost its ability to bundle actin filaments into higher-order structures. A model is proposed in which actin filaments bind Vps1 during invagination, and this interaction is important to transduce the force of actin polymerization to the membrane to drive successful scission.

  3. New skeletal 3D polymeric inorganic cluster [W4S16Cu16Cl16]n with Cu in mixed-valence states: solid-state synthesis, crystal structure, and third-order nonlinear optical properties.

    PubMed

    Cai, Ya; Wang, Yan; Li, Yizhi; Wang, Xiaoshu; Xin, Xinquan; Liu, Caiming; Zheng, Hegen

    2005-12-12

    A new 3D polymeric inorganic cluster with Cu in mixed-valence states was synthesized by the solid-state reaction of (NH4)2WS4, S8, CuCl, and Et4NCl; S8 may be regarded as the oxidizing agent converting Cu(I) to Cu(II) and causing the polymerization of [WS4]2-. The third-order nonlinear optical (NLO) properties are determined, and the results show that the cluster exhibits both large NLO absorptive and strong refractive behaviors.

  4. Dynamics of an actin spring

    NASA Astrophysics Data System (ADS)

    Riera, Christophe; Mahadevan, L.; Shin, Jennifer; Matsudaira, Paul

    2003-03-01

    The acrosome of the sperm of the horseshoe crab (Limulus Polyphemus) is an unusual actin based system that shows a spectacular dynamical transition in the presence of Ca++ that is present in abundance in the neighborhood of the egg. During this process, the bundle, which is initially bent and twisted uncoils and becomes straight in a matter of a few seconds. Based on microstructural data, we propose a model for the dynamics of uncoiling that is best represented by a triple-well potential corresponding to the different structural arrangements of the supertwisted filaments. Each of the false, true and coiled states corresponds to a local minimum of the energy, with the true state being the one with the lowest energy. Using an evolution equation derived by balancing torques, we investigate the nucleation and propagation of the phase transition and compare the results with those of experiments. Our model quantifies the hypothesis that the acrosomal bundle behaves like a mechano-chemical spring.

  5. Polymerization of defect states at dislocation cores in InAs

    SciTech Connect

    Park, Ji-Sang; Yang, Ji-Hui; McMahon, W. E.; Kang, Joongoo; Wei, Su-Huai

    2016-01-28

    Dislocations are essentially lines of point defects which can act as recombination centers in semiconductor devices. These point defects do not behave as isolated defects. Their spatial proximity enables them to hybridize into a one-dimensional band, and the distribution of resulting defect-band states is determined by both the position of the band and its dispersion. In the case of glissile 90° partial dislocations in III-V semiconductors, the dislocation core can adopt a variety of different reconstructions. Each of these reconstructions has a different arrangement of point defects, which affects the hybridization into defect bands and their associated dispersion. Here, we illustrate these principles by performing first-principles calculations for InAs and find that some defect levels for InAs dislocations lie outside of the band gap where they cannot act as recombination centers. To provide some insight into the electronic structure of dislocations in ternary alloys, some examples relevant to InGaAs and GaAsP are included.

  6. Force of an actin spring

    NASA Astrophysics Data System (ADS)

    Shin, Jennifer; Mahadevan, L.; Matsudaira, Paul

    2003-03-01

    The acrosomal process of the horseshoe crab sperm is a novel mechanochemical molecular spring that converts its elastic stain energy to mechanical work upon the chemical activation by Ca2+. Twisted and bent, the initial state of the acrosomal bundle features a high degree of complexity in its structure and the energy is believed to be stored in the highly strained actin filaments as an elastic potential energy. When activated, the bundle relaxes from the coil of the highly twisted and bent filaments to its straight conformation at a mean velocity of 15um/s. The mean extension velocity increases dramatically from 3um/s to 27um/s when temperature of the medium is changed from 9.6C to 32C (respective viscosities of 1.25-0.75cp), yet it exhibits a very weak dependence on changes in the medium viscosity (1cp-33cp). These experiments suggest that the uncoiling of the actin spring should be limited not by the viscosity of the medium but by the unlatching events of involved proteins at a molecular level. Unlike the viscosity-limited processes, where force is directly related to the rate of the reaction, a direct measurement is required to obtain the spring force of the acrosomal process. The extending acrosomal bundle is forced to push against a barrier and its elastic buckling response is analyzed to measure the force generated during the uncoiling.

  7. Interplay between cytoskeletal polymerization and the chondrogenic phenotype in chondrocytes passaged in monolayer culture.

    PubMed

    Parreno, Justin; Nabavi Niaki, Mortah; Andrejevic, Katarina; Jiang, Amy; Wu, Po-Han; Kandel, Rita A

    2017-02-01

    Tubulin and actin exist as monomeric units that polymerize to form either microtubules or filamentous actin. As the polymerization status (monomeric/polymeric ratio) of tubulin and/or actin have been shown to be important in regulating gene expression and phenotype in non-chondrocyte cells, the objective of this study was to examine the role of cytoskeletal polymerization on the chondrocyte phenotype. We hypothesized that actin and/or tubulin polymerization status modulates the chondrocyte phenotype during monolayer culture as well as in 3D culture during redifferentiation. To test this hypothesis, articular chondrocytes were grown and passaged in 2D monolayer culture. Cell phenotype was investigated by assessing cell morphology (area and circularity), actin/tubulin content, organization and polymerization status, as well as by determination of proliferation, fibroblast and cartilage matrix gene expression with passage number. Bovine chondrocytes became larger, more elongated, and had significantly (P < 0.05) increased gene expression of proliferation-associated molecules (cyclin D1 and ki67), as well as significantly (P < 0.05) decreased cartilage matrix (type II collagen and aggrecan) and increased fibroblast-like matrix, type I collagen (COL1), gene expression by passage 2 (P2). Although tubulin polymerization status was not significantly (P > 0.05) modulated, actin polymerization was increased in bovine P2 cells. Actin depolymerization, but not tubulin depolymerization, promoted the chondrocyte phenotype by inducing cell rounding, increasing aggrecan and reducing COL1 expression. Knockdown of actin depolymerization factor, cofilin, in these cells induced further P2 cell actin polymerization and increased COL1 gene expression. To confirm that actin status regulated COL1 gene expression in human P2 chondrocytes, human P2 chondrocytes were exposed to cytochalasin D. Cytochalasin D decreased COL1 gene expression in human passaged chondrocytes. Furthermore

  8. Actin stress in cell reprogramming

    PubMed Central

    Guo, Jun; Wang, Yuexiu; Sachs, Frederick; Meng, Fanjie

    2014-01-01

    Cell mechanics plays a role in stem cell reprogramming and differentiation. To understand this process better, we created a genetically encoded optical probe, named actin–cpstFRET–actin (AcpA), to report forces in actin in living cells in real time. We showed that stemness was associated with increased force in actin. We reprogrammed HEK-293 cells into stem-like cells using no transcription factors but simply by softening the substrate. However, Madin-Darby canine kidney (MDCK) cell reprogramming required, in addition to a soft substrate, Harvey rat sarcoma viral oncogene homolog expression. Replating the stem-like cells on glass led to redifferentiation and reduced force in actin. The actin force probe was a FRET sensor, called cpstFRET (circularly permuted stretch sensitive FRET), flanked by g-actin subunits. The labeled actin expressed efficiently in HEK, MDCK, 3T3, and bovine aortic endothelial cells and in multiple stable cell lines created from those cells. The viability of the cell lines demonstrated that labeled actin did not significantly affect cell physiology. The labeled actin distribution was similar to that observed with GFP-tagged actin. We also examined the stress in the actin cross-linker actinin. Actinin force was not always correlated with actin force, emphasizing the need for addressing protein specificity when discussing forces. Because actin is a primary structural protein in animal cells, understanding its force distribution is central to understanding animal cell physiology and the many linked reactions such as stress-induced gene expression. This new probe permits measuring actin forces in a wide range of experiments on preparations ranging from isolated proteins to transgenic animals. PMID:25422450

  9. Expression of expanded polyglutamine targets profilin for degradation and alters actin dynamics

    PubMed Central

    Burnett, Barrington G.; Andrews, Jaime; Ranganathan, Srikanth; Fischbeck, Kenneth H.; Di Prospero, Nicholas A.

    2008-01-01

    Huntington’s disease is caused by polyglutamine expansion in the huntingtin protein. Huntingtin directly interacts with profilin, a major actin monomer sequestering protein and a key integrator of signals leading to actin polymerization. We observed a progressive loss of profilin in the cerebral cortex of Huntington’s disease patients, and in cell culture and Drosophila models of polyglutamine disease. This loss of profilin is likely due to increased degradation through the ubiquitin-proteasome system. Profilin loss reduces the F/G actin ratio, indicating a shift in actin polymerization. Overexpression of profilin abolishes mutant huntingtin toxicity in cells and partially ameliorates the morphological and functional eye phenotype and extends lifespan in a transgenic polyglutamine Drosophila model. These results indicate a link between huntingtin and profilin and implicate profilin in Huntington’s disease pathogenesis. PMID:18417352

  10. Mechanism of interaction of Dictyostelium severin with actin filaments

    PubMed Central

    1982-01-01

    Severin, a 40,000-dalton protein from Dictyostelium that disassembles actin filaments in a Ca2+ -dependent manner, was purified 500-fold to greater than 99% homogeneity by modifications of the procedure reported by Brown, Yamamoto, and Spudich (1982. J. Cell Biol. 93:205-210). Severin has a Stokes radius of 29 A and consists of a single polypeptide chain. It contains a single methionyl and five cysteinyl residues. We studied the action of severin on actin filaments by electron microscopy, viscometry, sedimentation, nanosecond emission anisotropy, and fluorescence energy transfer spectroscopy. Nanosecond emission anisotropy of fluoresence-labeled severin shows that this protein changes its conformation on binding Ca2+. Actin filaments are rapidly fragmented on addition of severin and Ca2+, but severin does not interact with actin filaments in the absence of Ca2+. Fluorescence energy transfer measurements indicate that fragmentation of actin filaments by severin leads to a partial depolymerization (t1/2 approximately equal to 30 s). Depolymerization is followed by exchange of a limited number of subunits in the filament fragments with the disassembled actin pool (t1/2 approximately equal to 5 min). Disassembly and exchange are probably restricted to the ends of the filament fragments since only a few subunits in each fragment participate in the disassembly or exchange process. Steady state hydrolysis of ATP by actin in the presence of Ca2+-severin is maximal at an actin: severin molar ratio of approximately 10:1, which further supports the inference that subunit exchange is limited to the ends of actin filaments. The observation of sequential depolymerization and subunit exchange following the fragmentation of actin by severin suggests that severin may regulate site-specific disassembly and turnover of actin filament arrays in vivo. PMID:6897549

  11. Actin, microvilli, and the fertilization cone of sea urchin eggs

    PubMed Central

    1980-01-01

    Sea urchin eggs and oocytes at the germinal vesicle stage were fixed at various times after insemination, and thin sections were examined. Actin filaments can first be found in the cortical cytoplasm 1 min after insemination, and by 2 min enormous numbers of filaments are present. At these early stages, the filaments are only occasionally organized into bundles, but one end of many filaments contacts the plasma membrane. By 3 min, and even more dramatically by 5 min after insemination, the filaments become progressively more often found in bundles that lie parallel to the long axis of the microvilli and the fertilization cones. By 7 min, the bundles of filaments in the cone are maximally pronounced, with virtually all the filaments lying parallel to one another. Decoration of the filaments with subfragment 1 of myosin shows that, in both the microvilli and the cones, the filaments are unidirectionally polarized with the arrowheads pointing towards the cell center. The efflux of H+ from the eggs was measured as a function of time after insemination. The rapid phase of H+ efflux occurs at the same time as actin polymerization. From these results it appears that the formation of bundles of actin filaments in microvilli and in cones is a two-step process, involving actin polymerization to form filaments, randomly oriented but in most cases having one end in contact with the plasma membrane, followed by the zippering together of the filaments by macromolecular bridges. PMID:6893988

  12. Aluminum modifies the viscosity of filamentous actin solutions as measured by optical displacement microviscometry.

    PubMed

    Arnoys, E J; Schindler, M

    2000-01-01

    A microtechnique has been developed that is capable of measuring the viscosity of filamentous actin (F-actin) solutions. This method, called optical displacement microviscometry (ODM), was utilized to determine the changes in viscosity of solutions of rabbit muscle, human platelet, and maize pollen actin when measured in the absence and presence of aluminum. Measurements demonstrated that the viscosity of the different actin solutions decreased with aluminum concentration. In contrast, increases in viscosity were observed when aluminum was added to F-actin solutions containing filamin (chicken gizzard), a protein that bundles actin filaments. Confocal fluorescence imaging of pure actin solutions in the presence of aluminum showed a disrupted actin network composed of fragmented actin filaments in the form of small aggregates. In contrast, in the presence of filamin, aluminum promoted the formation of thicker actin filaments. These measurements demonstrate that aluminum can affect actin filaments differentially depending on the presence of an actin-binding protein. In addition, a strong correlation is observed between the changes in viscosity as measured by ODM and the thickness and assembled state of bundles of actin filaments.

  13. How Actin Initiates the Motor Activity of Myosin

    PubMed Central

    Llinas, Paola; Isabet, Tatiana; Song, Lin; Ropars, Virginie; Zong, Bin; Benisty, Hannah; Sirigu, Serena; Morris, Carl; Kikuti, Carlos; Safer, Dan; Sweeney, H. Lee; Houdusse, Anne

    2015-01-01

    SUMMARY Fundamental to cellular processes are directional movements driven by molecular motors. A common theme for these and other molecular machines driven by ATP is that controlled release of hydrolysis products is essential to use the chemical energy efficiently. Mechanochemical transduction by myosin motors on actin is coupled to unknown structural changes that result in the sequential release of inorganic phosphate (Pi) and MgADP. We present here a myosin structure possessing an actin-binding interface and a tunnel (back door) that creates an escape route for Pi with a minimal rotation of the myosin lever arm that drives movements. We propose that this state represents the beginning of the powerstroke on actin, and that Pi translocation from the nucleotide pocket triggered by actin binding initiates myosin force generation. This elucidates how actin initiates force generation and movement, and may represent a strategy common to many molecular machines. PMID:25936506

  14. How actin initiates the motor activity of Myosin.

    PubMed

    Llinas, Paola; Isabet, Tatiana; Song, Lin; Ropars, Virginie; Zong, Bin; Benisty, Hannah; Sirigu, Serena; Morris, Carl; Kikuti, Carlos; Safer, Dan; Sweeney, H Lee; Houdusse, Anne

    2015-05-26

    Fundamental to cellular processes are directional movements driven by molecular motors. A common theme for these and other molecular machines driven by ATP is that controlled release of hydrolysis products is essential for using the chemical energy efficiently. Mechanochemical transduction by myosin motors on actin is coupled to unknown structural changes that result in the sequential release of inorganic phosphate (Pi) and MgADP. We present here a myosin structure possessing an actin-binding interface and a tunnel (back door) that creates an escape route for Pi with a minimal rotation of the myosin lever arm that drives movements. We propose that this state represents the beginning of the powerstroke on actin and that Pi translocation from the nucleotide pocket triggered by actin binding initiates myosin force generation. This elucidates how actin initiates force generation and movement and may represent a strategy common to many molecular machines.

  15. Spatiotemporal Patterns of Noise-Driven Confined Actin Waves in Living Cells

    NASA Astrophysics Data System (ADS)

    Bernitt, Erik; Döbereiner, Hans-Günther

    2017-01-01

    Cells utilize waves of polymerizing actin to reshape their morphologies, which is central to physiological and pathological processes alike. Here, we force dorsal actin waves to propagate on one-dimensional domains with periodic boundary conditions, which results in striking spatiotemporal patterns with a clear signature of noise-driven dynamics. We show that these patterns can be very closely reproduced with a noise-driven active medium at coherence resonance.

  16. Deafness and espin-actin self-organization in stereocilia

    NASA Astrophysics Data System (ADS)

    Wong, Gerard C. L.

    2009-03-01

    Espins are F-actin-bundling proteins associated with large parallel actin bundles found in hair cell stereocilia in the ear, as well as brush border microvilli and Sertoli cell junctions. We examine actin bundle structures formed by different wild-type espin isoforms, fragments, and naturally-occurring human espin mutants linked to deafness and/or vestibular dysfunction. The espin-actin bundle structure consisted of a hexagonal arrangement of parallel actin filaments in a non-native twist state. We delineate the structural consequences caused by mutations in espin's actin-bundling module. For espin mutation with a severely damaged actin-bundling module, which are implicated in deafness in mice and humans, oriented nematic-like actin filament structures, which strongly impinges on bundle mechanical stiffness. Finally, we examine what makes espin different, via a comparative study of bundles formed by espin and those formed by fascin, a prototypical bundling protein found in functionally different regions of the cell, such as filopodia.

  17. Global treadmilling coordinates actin turnover and controls the size of actin networks.

    PubMed

    Carlier, Marie-France; Shekhar, Shashank

    2017-03-01

    Various cellular processes (including cell motility) are driven by the regulated, polarized assembly of actin filaments into distinct force-producing arrays of defined size and architecture. Branched, linear, contractile and cytosolic arrays coexist in vivo, and cells intricately control the number, length and assembly rate of filaments in these arrays. Recent in vitro and in vivo studies have revealed novel molecular mechanisms that regulate the number of filament barbed and pointed ends and their respective assembly and disassembly rates, thus defining classes of dynamically different filaments, which coexist in the same cell. We propose that a global treadmilling process, in which a steady-state amount of polymerizable actin monomers is established by the dynamics of each network, is responsible for defining the size and turnover of coexisting actin networks. Furthermore, signal-induced changes in the partitioning of actin to distinct arrays (mediated by RHO GTPases) result in the establishment of various steady-state concentrations of polymerizable monomers, thereby globally influencing the growth rate of actin filaments.

  18. Actin depolymerization affects stress-induced translational activity of potato tuber tissue

    PubMed

    Morelli; Zhou; Yu; Lu; Vayda

    1998-04-01

    Changes in polymerized actin during stress conditions were correlated with potato (Solanum tuberosum L.) tuber protein synthesis. Fluorescence microscopy and immunoblot analyses indicated that filamentous actin was nearly undetectable in mature, quiescent aerobic tubers. Mechanical wounding of postharvest tubers resulted in a localized increase of polymerized actin, and microfilament bundles were visible in cells of the wounded periderm within 12 h after wounding. During this same period translational activity increased 8-fold. By contrast, low-oxygen stress caused rapid reduction of polymerized actin coincident with acute inhibition of protein synthesis. Treatment of aerobic tubers with cytochalasin D, an agent that disrupts actin filaments, reduced wound-induced protein synthesis in vivo. This effect was not observed when colchicine, an agent that depolymerizes microtubules, was used. Neither of these drugs had a significant effect in vitro on run-off translation of isolated polysomes. However, cytochalasin D did reduce translational competence in vitro of a crude cellular fraction containing both polysomes and cytoskeletal elements. These results demonstrate the dependence of wound-induced protein synthesis on the integrity of microfilaments and suggest that the dynamics of the actin cytoskeleton may affect translational activity during stress conditions.

  19. Generation of membrane structures during phagocytosis and chemotaxis of macrophages: role and regulation of the actin cytoskeleton

    PubMed Central

    Rougerie, Pablo; Miskolci, Veronika; Cox, Dianne

    2013-01-01

    Summary Macrophages are best known for their protective search and destroy functions against invading micro-organisms. These processes are commonly known as chemotaxis and phagocytosis. Both of these processes require actin cytoskeletal remodeling to produce distinct F-actin rich membrane structures called lamellipodia and phagocytic cups. This review will focus on the mechanisms by which macrophages regulate actin polymerization through initial receptor signaling and subsequent Arp2/3 activation by nucleation promoting factors like the WASP/WAVE family, followed by remodeling of actin networks to produce these very distinct structures. PMID:24117824

  20. Actin-myosin network is required for proper assembly of influenza virus particles

    SciTech Connect

    Kumakura, Michiko; Kawaguchi, Atsushi Nagata, Kyosuke

    2015-02-15

    Actin filaments are known to play a central role in cellular dynamics. After polymerization of actin, various actin-crosslinking proteins including non-muscle myosin II facilitate the formation of spatially organized actin filament networks. The actin-myosin network is highly expanded beneath plasma membrane. The genome of influenza virus (vRNA) replicates in the cell nucleus. Then, newly synthesized vRNAs are nuclear-exported to the cytoplasm as ribonucleoprotein complexes (vRNPs), followed by transport to the beneath plasma membrane where virus particles assemble. Here, we found that, by inhibiting actin-myosin network formation, the virus titer tends to be reduced and HA viral spike protein is aggregated on the plasma membrane. These results indicate that the actin-myosin network plays an important role in the virus formation. - Highlights: • Actin-myosin network is important for the influenza virus production. • HA forms aggregations at the plasma membrane in the presence of blebbistatin. • M1 is recruited to the budding site through the actin-myosin network.

  1. Espin cross-links cause the elongation of microvillus-type parallel actin bundles in vivo.

    PubMed

    Loomis, Patricia A; Zheng, Lili; Sekerková, Gabriella; Changyaleket, Benjarat; Mugnaini, Enrico; Bartles, James R

    2003-12-08

    The espin actin-bundling proteins, which are the target of the jerker deafness mutation, caused a dramatic, concentration-dependent lengthening of LLC-PK1-CL4 cell microvilli and their parallel actin bundles. Espin level was also positively correlated with stereocilium length in hair cells. Villin, but not fascin or fimbrin, also produced noticeable lengthening. The espin COOH-terminal peptide, which contains the actin-bundling module, was necessary and sufficient for lengthening. Lengthening was blocked by 100 nM cytochalasin D. Espin cross-links slowed actin depolymerization in vitro less than twofold. Elimination of an actin monomer-binding WASP homology 2 domain and a profilin-binding proline-rich domain from espin did not decrease lengthening, but made it possible to demonstrate that actin incorporation was restricted to the microvillar tip and that bundles continued to undergo actin treadmilling at approximately 1.5 s-1 during and after lengthening. Thus, through relatively subtle effects on actin polymerization/depolymerization reactions in a treadmilling parallel actin bundle, espin cross-links cause pronounced barbed-end elongation and, thereby, make a longer bundle without joining shorter modules.

  2. Synthetic chondramide A analogues stabilize filamentous actin and block invasion by Toxoplasma gondii.

    PubMed

    Ma, Christopher I; Diraviyam, Karthikeyan; Maier, Martin E; Sept, David; Sibley, L David

    2013-09-27

    Apicomplexan parasites such as Toxoplasma gondii rely on actin-based motility to cross biological barriers and invade host cells. Key structural and biochemical differences in host and parasite actins make this an attractive target for small-molecule inhibitors. Here we took advantage of recent advances in the synthesis of cyclic depsipeptide compounds that stabilize filamentous actin to test the ability of chondramides to disrupt growth of T. gondii in vitro. Structural modeling of chondramide A (2) binding to an actin filament model revealed variations in the binding site between host and parasite actins. A series of 10 previously synthesized analogues (2b-k) with substitutions in the β-tyrosine moiety blocked parasite growth on host cell monolayers with EC₅₀ values that ranged from 0.3 to 1.3 μM. In vitro polymerization assays using highly purified recombinant actin from T. gondii verified that synthetic and natural product chondramides target the actin cytoskeleton. Consistent with this, chondramide treatment blocked parasite invasion into host cells and was more rapidly effective than pyrimethamine, a standard therapeutic agent. Although the current compounds lack specificity for parasite vs host actin, these studies provide a platform for the future design and synthesis of synthetic cyclic peptide inhibitors that selectively disrupt actin dynamics in parasites.

  3. Myosin II ATPase activity mediates the long-term potentiation-induced exodus of stable F-actin bound by drebrin A from dendritic spines.

    PubMed

    Mizui, Toshiyuki; Sekino, Yuko; Yamazaki, Hiroyuki; Ishizuka, Yuta; Takahashi, Hideto; Kojima, Nobuhiko; Kojima, Masami; Shirao, Tomoaki

    2014-01-01

    The neuronal actin-binding protein drebrin A forms a stable structure with F-actin in dendritic spines. NMDA receptor activation causes an exodus of F-actin bound by drebrin A (DA-actin) from dendritic spines, suggesting a pivotal role for DA-actin exodus in synaptic plasticity. We quantitatively assessed the extent of DA-actin localization to spines using the spine-dendrite ratio of drebrin A in cultured hippocampal neurons, and found that (1) chemical long-term potentiation (LTP) stimulation induces rapid DA-actin exodus and subsequent DA-actin re-entry in dendritic spines, (2) Ca(2+) influx through NMDA receptors regulates the exodus and the basal accumulation of DA-actin, and (3) the DA-actin exodus is blocked by myosin II ATPase inhibitor, but is not blocked by myosin light chain kinase (MLCK) or Rho-associated kinase (ROCK) inhibitors. These results indicate that myosin II mediates the interaction between NMDA receptor activation and DA-actin exodus in LTP induction. Furthermore, myosin II seems to be activated by a rapid actin-linked mechanism rather than slow MLC phosphorylation. Thus the myosin-II mediated DA-actin exodus might be an initial event in LTP induction, triggering actin polymerization and spine enlargement.

  4. Holding back the microfilament--structural insights into actin and the actin-monomer-binding proteins of apicomplexan parasites.

    PubMed

    Olshina, Maya A; Wong, Wilson; Baum, Jake

    2012-05-01

    Parasites from the phylum Apicomplexa are responsible for several major diseases of man, including malaria and toxoplasmosis. These highly motile protozoa use a conserved actomyosin-based mode of movement to power tissue traversal and host cell invasion. The mode termed as 'gliding motility' relies on the dynamic turnover of actin, whose polymerisation state is controlled by a markedly limited number of identifiable regulators when compared with other eukaryotic cells. Recent studies of apicomplexan actin regulator structure-in particular those of the core triad of monomer-binding proteins, actin-depolymerising factor/cofilin, cyclase-associated protein/Srv2, and profilin-have provided new insights into possible mechanisms of actin regulation in parasite cells, highlighting divergent structural features and functions to regulators from other cellular systems. Furthermore, the unusual nature of apicomplexan actin itself is increasingly coming into the spotlight. Here, we review recent advances in understanding of the structure and function of actin and its regulators in apicomplexan parasites. In particular we explore the paradox between there being an abundance of unpolymerised actin, its having a seemingly increased potential to form filaments relative to vertebrate actin, and the apparent lack of visible, stable filaments in parasite cells.

  5. As functional nuclear actin comes into view, is it globular, filamentous, or both?

    PubMed Central

    Pederson, Thoru

    2008-01-01

    The idea that actin may have an important function in the nucleus has undergone a rapid transition from one greeted with skepticism to a now rapidly advancing research field. Actin has now been implicated in transcription by all three RNA polymerases, but the structural form it adopts in these processes remains unclear. Recently, a claim was made that monomeric nuclear actin plays a role in signal transduction, while a just-published study of RNA polymerase I transcription has implicated polymeric actin, consorting with an isoform of its classical partner myosin. Both studies are critically discussed here, and although there are several issues to be resolved, it now seems reasonable to start thinking about functions for both monomeric and assembled actin in the nucleus. PMID:18347069

  6. Addition of electrophilic lipids to actin alters filament structure

    SciTech Connect

    Gayarre, Javier; Sanchez, David; Sanchez-Gomez, Francisco J.; Terron, Maria C.; Llorca, Oscar; Perez-Sala, Dolores . E-mail: dperezsala@cib.csic.es

    2006-11-03

    Pathophysiological processes associated with oxidative stress lead to the generation of reactive lipid species. Among them, lipids bearing unsaturated aldehyde or ketone moieties can form covalent adducts with cysteine residues and modulate protein function. Through proteomic techniques we have identified actin as a target for the addition of biotinylated analogs of the cyclopentenone prostaglandins 15-deoxy-{delta}{sup 12,14}-PGJ{sub 2} (15d-PGJ{sub 2}) and PGA{sub 1} in NIH-3T3 fibroblasts. This modification could take place in vitro and mapped to the protein C-terminal end. Other electrophilic lipids, like the isoprostane 8-iso-PGA{sub 1} and 4-hydroxy-2-nonenal, also bound to actin. The C-terminal region of actin is important for monomer-monomer interactions and polymerization. Electron microscopy showed that actin treated with 15d-PGJ{sub 2} or 4-hydroxy-2-nonenal formed filaments which were less abundant and displayed shorter length and altered structure. Streptavidin-gold staining allowed mapping of biotinylated 15d-PGJ{sub 2} at sites of filament disruption. These results shed light on the structural implications of actin modification by lipid electrophiles.

  7. Cortactin Adopts a Globular Conformation and Bundles Actin into Sheets

    SciTech Connect

    Cowieson, Nathan P.; King, Gordon; Cookson, David; Ross, Ian; Huber, Thomas; Hume, David A.; Kobe, Bostjan; Martin, Jennifer L.

    2008-08-21

    Cortactin is a filamentous actin-binding protein that plays a pivotal role in translating environmental signals into coordinated rearrangement of the cytoskeleton. The dynamic reorganization of actin in the cytoskeleton drives processes including changes in cell morphology, cell migration, and phagocytosis. In general, structural proteins of the cytoskeleton bind in the N-terminal region of cortactin and regulatory proteins in the C-terminal region. Previous structural studies have reported an extended conformation for cortactin. It is therefore unclear how cortactin facilitates cross-talk between structural proteins and their regulators. In the study presented here, circular dichroism, chemical cross-linking, and small angle x-ray scattering are used to demonstrate that cortactin adopts a globular conformation, thereby bringing distant parts of the molecule into close proximity. In addition, the actin bundling activity of cortactin is characterized, showing that fully polymerized actin filaments are bundled into sheet-like structures. We present a low resolution structure that suggests how the various domains of cortactin interact to coordinate its array of binding partners at sites of actin branching.

  8. Slow down of actin depolymerization by cross-linking molecules.

    PubMed

    Schmoller, Kurt M; Semmrich, Christine; Bausch, Andreas R

    2011-02-01

    The ability to control the assembly and disassembly dynamics of actin filaments is an essential property of the cellular cytoskeleton. While many different proteins are known which accelerate the polymerization of monomers into filaments or promote their disintegration, much less is known on mechanisms which guarantee the kinetic stability of the cytoskeletal filaments. Previous studies indicate that cross-linking molecules might fulfill these stabilizing tasks, which in addition facilitates their ability to regulate the organization of cytoskeletal structures in vivo. The effect of depolymerization factors on such structures or the mechanism which leads finally to their disintegration remain unknown. Here, we use multiple depolymerization methods in order to directly demonstrate that cross-linking and bundling proteins effectively suppress the actin depolymerization in a concentration dependent manner. Even the actin depolymerizing factor cofilin is not sufficient to facilitate a fast disintegration of highly cross-linked actin networks unless molecular motors are used simultaneously. The drastic modification of actin kinetics by cross-linking molecules can be expected to have wide-ranging implications for our understanding of the cytoskeleton, where cross-linking molecules are omnipresent and essential.

  9. Addition of electrophilic lipids to actin alters filament structure.

    PubMed

    Gayarre, Javier; Sánchez, David; Sánchez-Gómez, Francisco J; Terrón, María C; Llorca, Oscar; Pérez-Sala, Dolores

    2006-11-03

    Pathophysiological processes associated with oxidative stress lead to the generation of reactive lipid species. Among them, lipids bearing unsaturated aldehyde or ketone moieties can form covalent adducts with cysteine residues and modulate protein function. Through proteomic techniques we have identified actin as a target for the addition of biotinylated analogs of the cyclopentenone prostaglandins 15-deoxy-Delta(12,14)-PGJ(2) (15d-PGJ(2)) and PGA(1) in NIH-3T3 fibroblasts. This modification could take place in vitro and mapped to the protein C-terminal end. Other electrophilic lipids, like the isoprostane 8-iso-PGA(1) and 4-hydroxy-2-nonenal, also bound to actin. The C-terminal region of actin is important for monomer-monomer interactions and polymerization. Electron microscopy showed that actin treated with 15d-PGJ(2) or 4-hydroxy-2-nonenal formed filaments which were less abundant and displayed shorter length and altered structure. Streptavidin-gold staining allowed mapping of biotinylated 15d-PGJ(2) at sites of filament disruption. These results shed light on the structural implications of actin modification by lipid electrophiles.

  10. Fabrication of solid state dye sensitized solar cells utilizing vapor phase polymerized poly(3,4-ethylenedioxythiophene) hole conducting layer

    NASA Astrophysics Data System (ADS)

    Skorenko, Kenneth H.

    There is a need for sustainable and renewable energy sources that can be used in both grid and off-grid structured systems. Photovoltaic devices have been used to generate electrical energy by capturing and converting photons from the sun. Dye sensitized solar cells (DSSC) have gained attention due to their consistent energy generation during indirect sunlight. Furthermore, DSSC can be applied as a flexible device and gain benefits from the low cost roll to roll manufacturing. With this in mind, we have taken steps toward optimizing a DSSC device for use as a solid state solar cell using conducting polymers. Typically DSSC use a liquid electrolyte as a hole conducting layer used to direct the separation of electron -- hole pairs. This liquid electrolyte comes with problems that can be subverted using conducting polymers. Poly(3,4 -- ethylenedioxythiophene) (PEDOT), is a conducting thiophene that is tailored to have enhanced conductivity. We show that a vapor phase polymerization (VPP) of PEDOT can be used as a hole conducting layer in a solid state DSSC device. To this end we have investigated the electrical properties of the VPP PEDOT films in order to understand how the morphology and conductive domains relate to a polymers conductivity. Using 4 point probe we have measure the sheet resistance of the film, as well as how the films resistance is altered during stress tests. Scanning electron microscopy has been utilized to compare morphologies of different PEDOT films and see how surface morphology impacts the conductance measured. Using conductive atomic force microscopy we can look at the conductive domains between VPP PEDOT and PEDOT:PSS films. We saw that conductive domains of the VPP PEDOT are not only more conductive but also much larger in size and widespread throughout the film. We show that there is formation of PEDOT through optical spectroscopy and structural characterization such as UV/Vis and Raman spectroscopy as well as X-ray diffraction. When

  11. Periodic actin structures in neuronal axons are required to maintain microtubules

    PubMed Central

    Qu, Yue; Hahn, Ines; Webb, Stephen E.D.; Pearce, Simon P.; Prokop, Andreas

    2017-01-01

    Axons are cable-like neuronal processes wiring the nervous system. They contain parallel bundles of microtubules as structural backbones, surrounded by regularly spaced actin rings termed the periodic membrane skeleton (PMS). Despite being an evolutionarily conserved, ubiquitous, highly ordered feature of axons, the function of PMS is unknown. Here we studied PMS abundance, organization, and function, combining versatile Drosophila genetics with superresolution microscopy and various functional readouts. Analyses with 11 actin regulators and three actin-targeting drugs suggest that PMS contains short actin filaments that are depolymerization resistant and sensitive to spectrin, adducin, and nucleator deficiency, consistent with microscopy-derived models proposing PMS as specialized cortical actin. Upon actin removal, we observed gaps in microtubule bundles, reduced microtubule polymerization, and reduced axon numbers, suggesting a role of PMS in microtubule organization. These effects become strongly enhanced when carried out in neurons lacking the microtubule-stabilizing protein Short stop (Shot). Combining the aforementioned actin manipulations with Shot deficiency revealed a close correlation between PMS abundance and microtubule regulation, consistent with a model in which PMS-dependent microtubule polymerization contributes to their maintenance in axons. We discuss potential implications of this novel PMS function along axon shafts for axon maintenance and regeneration. PMID:27881663

  12. Actin-based gravity-sensing mechanisms in unicellular plant model systems

    NASA Astrophysics Data System (ADS)

    Braun, Markus; Limbach, Christoph

    2005-08-01

    Considerable progress has been made in the understanding of the molecular and cellular mechanisms underlying gravity sensing and gravity-oriented polarized growth in single-celled rhizoids and protonemata of the characean algae. It is well known that the actin cytoskeleton plays a key role in these processes. Numerous actin-binding proteins control apical actin polymerization and the dynamic remodeling of the actin arrangement. An actomyosin-based system mediates the delivery and incorporation of secretory vesicles at the growing tip and coordinates the tip-high gradient of cytoplasmic free calcium which is required for local exocytosis. Additionally, the actomyosin system precisely controls the position of statoliths and, upon a change in orientation relative to the gravity vector, directs sedimenting statoliths to the confined graviperception sites of the plasma membrane where gravitropic signalling is initiated. The upward growth response of protonemata is preceded by an actin-dependent relocalization of the Ca2+-gradient to the upper flank. The downward growth response of rhizoids, however, is caused by differential growth of the opposite flankes due to a local reduction of cytoplasmic free calcium limited to the plasma membrane area where statoliths are sedimented. Thus, constant actin polymerization in the growing tip and the spatiotemporal control of actin remodeling are essential for gravity sensing and gravity-oriented polarized growth of characean rhizoids and protonemata.

  13. A glycolytic metabolon in Saccharomyces cerevisiae is stabilized by F-actin.

    PubMed

    Araiza-Olivera, Daniela; Chiquete-Felix, Natalia; Rosas-Lemus, Mónica; Sampedro, José G; Peña, Antonio; Mujica, Adela; Uribe-Carvajal, Salvador

    2013-08-01

    In the Saccharomyces cerevisiae glycolytic pathway, 11 enzymes catalyze the stepwise conversion of glucose to two molecules of ethanol plus two CO₂ molecules. In the highly crowded cytoplasm, this pathway would be very inefficient if it were dependent on substrate/enzyme diffusion. Therefore, the existence of a multi-enzymatic glycolytic complex has been suggested. This complex probably uses the cytoskeleton to stabilize the interaction of the various enzymes. Here, the role of filamentous actin (F-actin) in stabilization of a putative glycolytic metabolon is reported. Experiments were performed in isolated enzyme/actin mixtures, cytoplasmic extracts and permeabilized yeast cells. Polymerization of actin was promoted using phalloidin or inhibited using cytochalasin D or latrunculin. The polymeric filamentous F-actin, but not the monomeric globular G-actin, stabilized both the interaction of isolated glycolytic pathway enzyme mixtures and the whole fermentation pathway, leading to higher fermentation activity. The associated complexes were resistant against inhibition as a result of viscosity (promoted by the disaccharide trehalose) or inactivation (using specific enzyme antibodies). In S. cerevisiae, a glycolytic metabolon appear to assemble in association with F-actin. In this complex, fermentation activity is enhanced and enzymes are partially protected against inhibition by trehalose or by antibodies.

  14. The interplay between neuronal activity and actin dynamics mimic the setting of an LTD synaptic tag

    PubMed Central

    Szabó, Eszter C.; Manguinhas, Rita; Fonseca, Rosalina

    2016-01-01

    Persistent forms of plasticity, such as long-term depression (LTD), are dependent on the interplay between activity-dependent synaptic tags and the capture of plasticity-related proteins. We propose that the synaptic tag represents a structural alteration that turns synapses permissive to change. We found that modulation of actin dynamics has different roles in the induction and maintenance of LTD. Inhibition of either actin depolymerisation or polymerization blocks LTD induction whereas only the inhibition of actin depolymerisation blocks LTD maintenance. Interestingly, we found that actin depolymerisation and CaMKII activation are involved in LTD synaptic-tagging and capture. Moreover, inhibition of actin polymerisation mimics the setting of a synaptic tag, in an activity-dependent manner, allowing the expression of LTD in non-stimulated synapses. Suspending synaptic activation also restricts the time window of synaptic capture, which can be restored by inhibiting actin polymerization. Our results support our hypothesis that modulation of the actin cytoskeleton provides an input-specific signal for synaptic protein capture. PMID:27650071

  15. Decavanadate interactions with actin: cysteine oxidation and vanadyl formation.

    PubMed

    Ramos, Susana; Duarte, Rui O; Moura, José J G; Aureliano, Manuel

    2009-10-14

    Incubation of actin with decavanadate induces cysteine oxidation and oxidovanadium(IV) formation. The studies were performed combining kinetic with spectroscopic (NMR and EPR) methodologies. Although decavanadate is converted to labile oxovanadates, the rate of deoligomerization can be very slow (half-life time of 5.4 h, at 25 degrees C, with a first order kinetics), which effectively allows decavanadate to exist for some time under experimental conditions. It was observed that decavanadate inhibits F-actin-stimulated myosin ATPase activity with an IC(50) of 0.8 microM V(10) species, whereas 50 microM of vanadate or oxidovanadium(IV) only inhibits enzyme activity up to 25%. Moreover, from these three vanadium forms, only decavanadate induces the oxidation of the so called "fast" cysteines (or exposed cysteine, Cys-374) when the enzyme is in the polymerized and active form, F-actin, with an IC(50) of 1 microM V(10) species. Decavanadate exposition to F- and G-actin (monomeric form) promotes vanadate reduction since a typical EPR oxidovanadium(IV) spectrum was observed. Upon observation that V(10) reduces to oxidovanadium(IV), it is proposed that this cation interacts with G-actin (K(d) of 7.48 +/- 1.11 microM), and with F-actin (K(d) = 43.05 +/- 5.34 microM) with 1:1 and 4:1 stoichiometries, respectively, as observed by EPR upon protein titration with oxidovanadium(IV). The interaction of oxidovanadium(IV) with the protein may occur close to the ATP binding site of actin, eventually with lysine-336 and 3 water molecules.

  16. Clamped-filament elongation model for actin-based motors.

    PubMed Central

    Dickinson, Richard B; Purich, Daniel L

    2002-01-01

    Although actin-based motility drives cell crawling and intracellular locomotion of organelles and certain pathogens, the underlying mechanism of force generation remains a mystery. Recent experiments demonstrated that Listeria exhibit episodes of 5.4-nm stepwise motion corresponding to the periodicity of the actin filament subunits, and extremely small positional fluctuations during the intermittent pauses [S. C. Kuo and J. L. McGrath. 2000. Nature. 407:1026-1029]. These findings suggest that motile bacteria remain firmly bound to actin filament ends as they elongate, a behavior that appears to rule out previous models for actin-based motility. We propose and analyze a new mechanochemical model (called the "Lock, Load & Fire" mechanism) for force generation by means of affinity-modulated, clamped-filament elongation. During the locking step, the filament's terminal ATP-containing subunit binds tightly to a clamp situated on the surface of a motile object; in the loading step, actin.ATP monomer(s) bind to the filament end, an event that triggers the firing step, wherein ATP hydrolysis on the clamped subunit attenuates the filament's affinity for the clamp. This last step initiates translocation of the new ATP-containing terminus to the clamp, whereupon another cycle begins anew. This model explains how surface-tethered filaments can grow while exerting flexural or tensile force on the motile surface. Moreover, stochastic simulations of the model reproduce the signature motions of Listeria. This elongation motor, which we term actoclampin, exploits actin's intrinsic ATPase activity to provide a simple, high-fidelity enzymatic reaction cycle for force production that does not require elongating filaments to dissociate from the motile surface. This mechanism may operate whenever actin polymerization is called upon to generate the forces that drive cell crawling or intracellular organelle motility. PMID:11806905

  17. Formin 1 Regulates Ectoplasmic Specialization in the Rat Testis Through Its Actin Nucleation and Bundling Activity

    PubMed Central

    Li, Nan; Mruk, Dolores D.; Wong, Chris K. C.; Han, Daishu; Lee, Will M.

    2015-01-01

    During spermatogenesis, developing spermatids and preleptotene spermatocytes are transported across the adluminal compartment and the blood-testis barrier (BTB), respectively, so that spermatids line up near the luminal edge to prepare for spermiation, whereas preleptotene spermatocytes enter the adluminal compartment to differentiate into late spermatocytes to prepare for meiosis I/II. These cellular events involve actin microfilament reorganization at the testis-specific, actin-rich Sertoli-spermatid and Sertoli-Sertoli cell junction called apical and basal ectoplasmic specialization (ES). Formin 1, an actin nucleation protein known to promote actin microfilament elongation and bundling, was expressed at the apical ES but limited to stage VII of the epithelial cycle, whereas its expression at the basal ES/BTB stretched from stage III to stage VI, diminished in stage VII, and was undetectable in stage VIII tubules. Using an in vitro model of studying Sertoli cell BTB function by RNA interference and biochemical assays to monitor actin bundling and polymerization activity, a knockdown of formin 1 in Sertoli cells by approximately 70% impeded the tight junction-permeability function. This disruptive effect on the tight junction barrier was mediated by a loss of actin microfilament bundling and actin polymerization capability mediated by changes in the localization of branched actin-inducing protein Arp3 (actin-related protein 3), and actin bundling proteins Eps8 (epidermal growth factor receptor pathway substrate 8) and palladin, thereby disrupting cell adhesion. Formin 1 knockdown in vivo was found to impede spermatid adhesion, transport, and polarity, causing defects in spermiation in which elongated spermatids remained embedded into the epithelium in stage IX tubules, mediated by changes in the spatiotemporal expression of Arp3, Eps8, and palladin. In summary, formin 1 is a regulator of ES dynamics. PMID:25901598

  18. Membrane Tension Acts Through PLD2 and mTORC2 to Limit Actin Network Assembly During Neutrophil Migration

    PubMed Central

    Diz-Muñoz, Alba; Thurley, Kevin; Chintamen, Sana; Altschuler, Steven J.; Fletcher, Daniel A.; Weiner, Orion D.

    2016-01-01

    For efficient polarity and migration, cells need to regulate the magnitude and spatial distribution of actin assembly. This process is coordinated by reciprocal interactions between the actin cytoskeleton and mechanical forces. Actin polymerization-based protrusion increases tension in the plasma membrane, which in turn acts as a long-range inhibitor of actin assembly. These interactions form a negative feedback circuit that limits the magnitude of membrane tension in neutrophils and prevents expansion of the existing front and the formation of secondary fronts. It has been suggested that the plasma membrane directly inhibits actin assembly by serving as a physical barrier that opposes protrusion. Here we show that efficient control of actin polymerization-based protrusion requires an additional mechanosensory feedback cascade that indirectly links membrane tension with actin assembly. Specifically, elevated membrane tension acts through phospholipase D2 (PLD2) and the mammalian target of rapamycin complex 2 (mTORC2) to limit actin nucleation. In the absence of this pathway, neutrophils exhibit larger leading edges, higher membrane tension, and profoundly defective chemotaxis. Mathematical modeling suggests roles for both the direct (mechanical) and indirect (biochemical via PLD2 and mTORC2) feedback loops in organizing cell polarity and motility—the indirect loop is better suited to enable competition between fronts, whereas the direct loop helps spatially organize actin nucleation for efficient leading edge formation and cell movement. This circuit is essential for polarity, motility, and the control of membrane tension. PMID:27280401

  19. Toxoplasma gondii F-actin forms an extensive filamentous network required for material exchange and parasite maturation

    PubMed Central

    Periz, Javier; Whitelaw, Jamie; Harding, Clare; Gras, Simon; Del Rosario Minina, Mario Igor; Latorre-Barragan, Fernanda; Lemgruber, Leandro; Reimer, Madita Alice; Insall, Robert; Heaslip, Aoife; Meissner, Markus

    2017-01-01

    Apicomplexan actin is important during the parasite's life cycle. Its polymerization kinetics are unusual, permitting only short, unstable F-actin filaments. It has not been possible to study actin in vivo and so its physiological roles have remained obscure, leading to models distinct from conventional actin behaviour. Here a modified version of the commercially available actin-chromobody was tested as a novel tool for visualising F-actin dynamics in Toxoplasma gondii. Cb labels filamentous actin structures within the parasite cytosol and labels an extensive F-actin network that connects parasites within the parasitophorous vacuole and allows vesicles to be exchanged between parasites. In the absence of actin, parasites lack a residual body and inter-parasite connections and grow in an asynchronous and disorganized manner. Collectively, these data identify new roles for actin in the intracellular phase of the parasites lytic cycle and provide a robust new tool for imaging parasitic F-actin dynamics. DOI: http://dx.doi.org/10.7554/eLife.24119.001 PMID:28322189

  20. Solution Properties of Tetramethylrhodamine-Modified G-Actin

    PubMed Central

    Kudryashov, Dmitry S.; Reisler, Emil

    2003-01-01

    In the recently solved structure of TMR-modified ADP-G-actin, the nucleotide cleft is in a closed state conformation, and the D-loop contains an α-helix (L. R. Otterbein, P. Graceffa, and R. Dominguez, 2001, Science, 293:708–711). Subsequently, questions were raised regarding the possible role of the TMR label on Cys374 in determining these aspects of G-actin structure. We show here that the susceptibility of D-loop on G-actin to subtilisin cleavage, and ATP/ADP-dependent changes in this cleavage, are not affected by TMR-labeling of actin. The TMR modification inhibits nucleotide exchange, but has no effect on DNase I binding and the fast phase of tryptic digestion of actin. These results show an absence of allosteric effects of TMR on subdomain 2, while confirming ATP/ADP-dependent changes in D-loop structure. In conjunction with similar results obtained on actin-gelsolin segment 1 complex, this works reveals the limitations of solution methods in probing the putative open and closed nucleotide cleft states of G-actin. PMID:14507709

  1. Spontaneous Motility of Actin Lamellar Fragments

    NASA Astrophysics Data System (ADS)

    Blanch-Mercader, C.; Casademunt, J.

    2013-02-01

    We show that actin lamellar fragments driven solely by polymerization forces at the bounding membrane are generically motile when the circular symmetry is spontaneously broken, with no need of molecular motors or global polarization. We base our study on a nonlinear analysis of a recently introduced minimal model [Callan-Jones et al., Phys. Rev. Lett. 100, 258106 (2008)PRLTAO0031-900710.1103/PhysRevLett.100.258106]. We prove the nonlinear instability of the center of mass and find an exact and simple relation between shape and center-of-mass velocity. A complex subcritical bifurcation scenario into traveling solutions is unfolded, where finite velocities appear through a nonadiabatic mechanism. Examples of traveling solutions and their stability are studied numerically.

  2. Synthesis of a 35-Member Stereoisomer Library of Bistramide A: Evaluation of Effects on Actin State, Cell Cycle and Tumor Cell Growth

    PubMed Central

    Wrona, Iwona E.; Lowe, Jason T.; Turbyville, Thomas J.; Johnson, Tanya R.; Beignet, Julien; Beutler, John A.; Panek, James S.

    2011-01-01

    Synthesis and preliminary biological evaluation of a 35-member library of bistramide A stereoisomers are reported. All eight stereoisomers of the C1-C13 tetrahydropyran fragment of the molecule were prepared utilizing crotylsilane reagents 9 and 10 in our [4+2]-annulation methodology. In addition, the four isomers of the C14-C18 γ-amino acid unit were accessed via a Lewis acid mediated crotylation reaction using both enantiomers of organosilane 11. The spiroketal subunit of bistramide A was modified at the C39-alcohol to give another point of stereochemical diversification. The fragments were coupled using standard peptide coupling protocol to provide 35 stereoisomers of the natural product. These stereochemical analogs were screened for their effects on cellular actin and cytotoxicity against cancer cell lines (UO-31 renal and SF-295 CNS). The results of these assays identified one analog, 1.21, with enhanced potency relative to the natural product, bistramide A. PMID:19191575

  3. Curved tails in polymerization-based bacterial motility

    NASA Astrophysics Data System (ADS)

    Rutenberg, Andrew D.; Grant, Martin

    2001-08-01

    The curved actin ``comet-tail'' of the bacterium Listeria monocytogenes is a visually striking signature of actin polymerization-based motility. Similar actin tails are associated with Shigella flexneri, spotted-fever Rickettsiae, the Vaccinia virus, and vesicles and microspheres in related in vitro systems. We show that the torque required to produce the curvature in the tail can arise from randomly placed actin filaments pushing the bacterium or particle. We find that the curvature magnitude determines the number of actively pushing filaments, independent of viscosity and of the molecular details of force generation. The variation of the curvature with time can be used to infer the dynamics of actin filaments at the bacterial surface.

  4. Actin and Endocytosis in Budding Yeast

    PubMed Central

    Goode, Bruce L.; Eskin, Julian A.; Wendland, Beverly

    2015-01-01

    Endocytosis, the process whereby the plasma membrane invaginates to form vesicles, is essential for bringing many substances into the cell and for membrane turnover. The mechanism driving clathrin-mediated endocytosis (CME) involves > 50 different protein components assembling at a single location on the plasma membrane in a temporally ordered and hierarchal pathway. These proteins perform precisely choreographed steps that promote receptor recognition and clustering, membrane remodeling, and force-generating actin-filament assembly and turnover to drive membrane invagination and vesicle scission. Many critical aspects of the CME mechanism are conserved from yeast to mammals and were first elucidated in yeast, demonstrating that it is a powerful system for studying endocytosis. In this review, we describe our current mechanistic understanding of each step in the process of yeast CME, and the essential roles played by actin polymerization at these sites, while providing a historical perspective of how the landscape has changed since the preceding version of the YeastBook was published 17 years ago (1997). Finally, we discuss the key unresolved issues and where future studies might be headed. PMID:25657349

  5. Liquid crystal domains and thixotropy of filamentous actin suspensions.

    PubMed

    Kerst, A; Chmielewski, C; Livesay, C; Buxbaum, R E; Heidemann, S R

    1990-06-01

    The thixotropic properties of filamentous actin suspensions were examined by a step-function shearing protocol. Samples of purified filamentous actin were sheared at 0.2 sec-1 in a cone and plate rheometer. We noted a sharp stress overshoot upon the initiation of shear, indicative of a gel state, and a nearly instantaneous drop to zero stress upon cessation of shear. Stress-overshoot recovery was almost complete after 5 min of "rest" before samples were again sheared at 0.2 sec-1. Overshoot recovery increased linearly with the square root of rest time, suggesting that gel-state recovery is diffusion limited. Actin suspensions subjected to oscillatory shearing at frequencies from 0.003 to 30 radians/sec confirmed the existence of a 5-min time scale in the gel, similar to that for stress-overshoot recovery. Flow of filamentous actin was visualized by polarized light observations. Actin from 6 mg/ml to 20 mg/ml showed the "polycrystalline" texture of birefringence typical for liquid crystal structure. At shear rates less than 1 sec-1, flow occurred by the relative movement of irregular, roughly ellipsoidal actin domains 40-140 microns long; the appearance was similar to moving ice floes. At shear rates greater than 1 sec-1, domains decreased in size, possibly by frictional interactions among domains. Eventually domains flow in a "river" of actin aligned by the flow. Our observations confirm our previous domain-friction model for actin rheology. The similarities between the unusual flow properties of actin and cytoplasm argue that cytoplasm also may flow as domains.

  6. Polymeric nanoparticles

    PubMed Central

    Bolhassani, Azam; Javanzad, Shabnam; Saleh, Tayebeh; Hashemi, Mehrdad; Aghasadeghi, Mohammad Reza; Sadat, Seyed Mehdi

    2014-01-01

    Nanocarriers with various compositions and biological properties have been extensively applied for in vitro/in vivo drug and gene delivery. The family of nanocarriers includes polymeric nanoparticles, lipid-based carriers (liposomes/micelles), dendrimers, carbon nanotubes, and gold nanoparticles (nanoshells/nanocages). Among different delivery systems, polymeric carriers have several properties such as: easy to synthesize, inexpensive, biocompatible, biodegradable, non-immunogenic, non-toxic, and water soluble. In addition, cationic polymers seem to produce more stable complexes led to a more protection during cellular trafficking than cationic lipids. Nanoparticles often show significant adjuvant effects in vaccine delivery since they may be easily taken up by antigen presenting cells (APCs). Natural polymers such as polysaccharides and synthetic polymers have demonstrated great potential to form vaccine nanoparticles. The development of new adjuvants or delivery systems for DNA and protein immunization is an expanding research field. This review describes polymeric carriers especially PLGA, chitosan, and PEI as vaccine delivery systems. PMID:24128651

  7. Cooperativity and Frustration in Protein-Mediated Parallel Actin Bundles

    NASA Astrophysics Data System (ADS)

    Shin, Homin; Drew, Kirstin R. Purdy; Bartles, James R.; Wong, Gerard C. L.; Grason, Gregory M.

    2009-12-01

    We examine the mechanism of bundling of cytoskeletal actin filaments by two representative bundling proteins, fascin and espin. Small-angle x-ray studies show that increased binding from linkers drives a systematic overtwist of actin filaments from their native state, which occurs in a linker-dependent fashion. Fascin bundles actin into a continuous spectrum of intermediate twist states, while espin only allows for untwisted actin filaments and fully overtwisted bundles. Based on a coarse-grained, statistical model of protein binding, we show that the interplay between binding geometry and the intrinsic flexibility of linkers mediates cooperative binding in the bundle. We attribute the respective continuous (discontinuous) bundling mechanisms of fascin (espin) to difference in the stiffness of linker bonds themselves.

  8. Ring closure in actin polymers

    NASA Astrophysics Data System (ADS)

    Sinha, Supurna; Chattopadhyay, Sebanti

    2017-03-01

    We present an analysis for the ring closure probability of semiflexible polymers within the pure bend Worm Like Chain (WLC) model. The ring closure probability predicted from our analysis can be tested against fluorescent actin cyclization experiments. We also discuss the effect of ring closure on bend angle fluctuations in actin polymers.

  9. Atrophy of myoepithelial cells in parotid glands of diabetic mice; detection using skeletal muscle actin, a novel marker☆

    PubMed Central

    Nashida, Tomoko; Yoshie, Sumio; Haga-Tsujimura, Maiko; Imai, Akane; Shimomura, Hiromi

    2013-01-01

    In mouse parotid glands, we found expression of skeletal muscle actin (actin-α1) protein and mRNA. We isolated myoepithelial cells from the mouse parotid glands and investigated their actin-α1 expression because smooth muscle actin (actin-α2) has been used as a marker for myoepithelial cells. We used actin-α1 expression to identify pathological changes in diabetic non-obese diabetic (NOD; NOD/ShiJcl) mice—a mouse model for Sjögren's syndrome—and found myoepithelial cells to be decreased or atrophied in the diabetic state. PMID:23772384

  10. Identification of Arabidopsis cyclase-associated protein 1 as the first nucleotide exchange factor for plant actin.

    PubMed

    Chaudhry, Faisal; Guérin, Christophe; von Witsch, Matthias; Blanchoin, Laurent; Staiger, Christopher J

    2007-08-01

    The actin cytoskeleton powers organelle movements, orchestrates responses to abiotic stresses, and generates an amazing array of cell shapes. Underpinning these diverse functions of the actin cytoskeleton are several dozen accessory proteins that coordinate actin filament dynamics and construct higher-order assemblies. Many actin-binding proteins from the plant kingdom have been characterized and their function is often surprisingly distinct from mammalian and fungal counterparts. The adenylyl cyclase-associated protein (CAP) has recently been shown to be an important regulator of actin dynamics in vivo and in vitro. The disruption of actin organization in cap mutant plants indicates defects in actin dynamics or the regulated assembly and disassembly of actin subunits into filaments. Current models for actin dynamics maintain that actin-depolymerizing factor (ADF)/cofilin removes ADP-actin subunits from filament ends and that profilin recharges these monomers with ATP by enhancing nucleotide exchange and delivery of subunits onto filament barbed ends. Plant profilins, however, lack the essential ability to stimulate nucleotide exchange on actin, suggesting that there might be a missing link yet to be discovered from plants. Here, we show that Arabidopsis thaliana CAP1 (AtCAP1) is an abundant cytoplasmic protein; it is present at a 1:3 M ratio with total actin in suspension cells. AtCAP1 has equivalent affinities for ADP- and ATP-monomeric actin (Kd approximately 1.3 microM). Binding of AtCAP1 to ATP-actin monomers inhibits polymerization, consistent with AtCAP1 being an actin sequestering protein. However, we demonstrate that AtCAP1 is the first plant protein to increase the rate of nucleotide exchange on actin. Even in the presence of ADF/cofilin, AtCAP1 can recharge actin monomers and presumably provide a polymerizable pool of subunits to profilin for addition onto filament ends. In turnover assays, plant profilin, ADF, and CAP act cooperatively to promote flux

  11. Role of actin cytoskeleton in prostaglandin-induced protection against ethanol in an intestinal epithelial cell line.

    PubMed

    Banan, A; Smith, G S; Kokoska, E R; Miller, T A

    2000-02-01

    Prostaglandins (PGs) protect a variety of gastrointestinal cells against injury induced by ethanol and other noxious agents. This investigation attempted to discern the mechanism of cytoprotection as it relates to the relationship between actin and PGs in IEC-6 cells (a rat intestinal epithelial cell line). IEC-6 cells were incubated in Dulbecco's modified Eagle's medium +/- 16,16-dimethyl prostaglandin E(2) (dmPG, 2.6 microM) for 15 min and subsequently incubated in medium containing 1, 2.5, 5, 7.5, and 10% ethanol (EtOH). Cells were then processed for immunocytochemistry using FITC-phalloidin in order to stain the actin cytoskeleton, and cell viability was determined by trypan blue exclusion. Quantitative Western immunoblotting of fractioned G-actin (nonpolymerized; S1) and F-actin (polymerized; S2) was also carried out. EtOH concentrations equal to and greater than 5% led to the collapse of the actin cytoskeleton as depicted by extensive disorganization and fragmentation. In addition, these same EtOH concentrations significantly decreased the S2 fraction and increased the S1 pool of actin. Preincubation with dmPG prevented collapse of the actin cytoskeleton, significantly increased the S2 polymerized fraction as determined by quantitative immunoblotting, and increased cell viability in EtOH-treated cultures. Prior incubation with cytochalasin D, an actin disruptive agent, not only reduced cell viability but also prevented the cytoprotective effects of dmPG. Phalloidin, an actin stabilizing agent, had effects similar to that of dmPG as demonstrated by stability of the actin cytoskeleton and increased cellular viability. Such findings indicate that PGs are important in the organization and stability of actin under in vitro conditions. These effects on actin may play an essential role in the mechanism of PG-induced cytoprotection.

  12. Feeling for Filaments: Quantification of the Cortical Actin Web in Live Vascular Endothelium

    PubMed Central

    Kronlage, Cornelius; Schäfer-Herte, Marco; Böning, Daniel; Oberleithner, Hans; Fels, Johannes

    2015-01-01

    Contact-mode atomic force microscopy (AFM) has been shown to reveal cortical actin structures. Using live endothelial cells, we visualized cortical actin dynamics simultaneously by AFM and confocal fluorescence microscopy. We present a method that quantifies dynamic changes in the mechanical ultrastructure of the cortical actin web. We argue that the commonly used, so-called error signal imaging in AFM allows a qualitative, but not quantitative, analysis of cortical actin dynamics. The approach we used comprises fast force-curve-based topography imaging and subsequent image processing that enhances local height differences. Dynamic changes in the organization of the cytoskeleton network can be observed and quantified by surface roughness calculations and automated morphometrics. Upon treatment with low concentrations of the actin-destabilizing agent cytochalasin D, the cortical cytoskeleton network is thinned out and the average mesh size increases. In contrast, jasplakinolide, a drug that enhances actin polymerization, consolidates the cytoskeleton network and reduces the average mesh area. In conclusion, cortical actin dynamics can be quantified in live cells. To our knowledge, this opens a new pathway for conducting quantitative structure-function analyses of the endothelial actin web just beneath the apical plasma membrane. PMID:26287621

  13. Changes in actin dynamics are involved in salicylic acid signaling pathway.

    PubMed

    Matoušková, Jindřiška; Janda, Martin; Fišer, Radovan; Sašek, Vladimír; Kocourková, Daniela; Burketová, Lenka; Dušková, Jiřina; Martinec, Jan; Valentová, Olga

    2014-06-01

    Changes in actin cytoskeleton dynamics are one of the crucial players in many physiological as well as non-physiological processes in plant cells. Positioning of actin filament arrays is necessary for successful establishment of primary lines of defense toward pathogen attack, depolymerization leads very often to the enhanced susceptibility to the invading pathogen. On the other hand it was also shown that the disruption of actin cytoskeleton leads to the induction of defense response leading to the expression of PATHOGENESIS RELATED proteins (PR). In this study we show that pharmacological actin depolymerization leads to the specific induction of genes in salicylic acid pathway but not that involved in jasmonic acid signaling. Life imaging of leafs of Arabidopsis thaliana with GFP-tagged fimbrin (GFP-fABD2) treated with 1 mM salicylic acid revealed rapid disruption of actin filaments resembling the pattern viewed after treatment with 200 nM latrunculin B. The effect of salicylic acid on actin filament fragmentation was prevented by exogenous addition of phosphatidic acid, which binds to the capping protein and thus promotes actin polymerization. The quantitative evaluation of actin filament dynamics is also presented.

  14. Spectroscopic study of conformational changes in subdomain 1 of G-actin: influence of divalent cations.

    PubMed

    Nyitrai, M; Hild, G; Belágyi, J; Somogyi, B

    1997-10-01

    Temperature dependence of the fluorescence intensity and anisotropy decay of N-(iodoacetyl)-N'-(5-sulfo-1-naphthyl)ethylenediamine attached to Cys374 of actin monomer was investigated to characterize conformational differences between Ca- and Mg-G-actin. The fluorescence lifetime is longer in Mg-G-actin than that in Ca-G-actin in the temperature range of 5-34 degrees C. The width of the lifetime distribution is smaller by 30% in Mg-saturated actin monomer at 5 degrees C, and the difference becomes negligible above 30 degrees C. The semiangle of the cone within which the fluorophore can rotate is larger in Ca-G-actin at all temperatures. Electron paramagnetic resonance measurements on maleimide spin-labeled (on Cys374) monomer actin gave evidence that exchange of Ca2+ for Mg2+ induced a rapid decrease in the mobility of the label immediately after the addition of Mg2+. These results suggest that the C-terminal region of the monomer becomes more rigid as a result of the replacement of Ca2+ by Mg2+. The change can be related to the difference between the polymerization abilities of the two forms of G-actin.

  15. Nuclear actin depolymerization in transcriptionally active avian and amphibian oocytes leads to collapse of intranuclear structures

    PubMed Central

    Maslova, Antonina; Krasikova, Alla

    2012-01-01

    Actin, which is normally depleted in the nuclei of somatic cells, accumulates in high amounts in giant nuclei of amphibian oocytes. The supramolecular organization and functions of this nuclear pool of actin in growing vertebrate oocyte are controversial. Here, we investigated the role of nuclear actin in the maintenance of the spatial architecture of intranuclear structures in avian and amphibian growing oocytes. A meshwork of filamentous actin was not detected in freshly isolated or fixed oocyte nuclei of Xenopus, chicken or quail. We found that the actin meshwork inside the oocyte nucleus could be induced by phalloidin treatment. Actin polymerization is demonstrated to be required to stabilize the specific spatial organization of nuclear structures in avian and amphibian growing oocytes. In experiments with the actin depolymerizing drugs cytochalasin D and latrunculin A, we showed that disassembly of nuclear actin polymers led to chromosome condensation and their transportation to a limited space within the oocyte nucleus. Experimentally induced “collapsing” of chromosomes and nuclear bodies, together with global inhibition of transcription, strongly resembled the process of karyosphere formation during oocyte growth. PMID:22572951

  16. Site-specific cation release drives actin filament severing by vertebrate cofilin

    PubMed Central

    Kang, Hyeran; Bradley, Michael J.; Cao, Wenxiang; Zhou, Kaifeng; Grintsevich, Elena E.; Michelot, Alphée; Sindelar, Charles V.; Hochstrasser, Mark; De La Cruz, Enrique M.

    2014-01-01

    Actin polymerization powers the directed motility of eukaryotic cells. Sustained motility requires rapid filament turnover and subunit recycling. The essential regulatory protein cofilin accelerates network remodeling by severing actin filaments and increasing the concentration of ends available for elongation and subunit exchange. Although cofilin effects on actin filament assembly dynamics have been extensively studied, the molecular mechanism of cofilin-induced filament severing is not understood. Here we demonstrate that actin filament severing by vertebrate cofilin is driven by the linked dissociation of a single cation that controls filament structure and mechanical properties. Vertebrate cofilin only weakly severs Saccharomyces cerevisiae actin filaments lacking this “stiffness cation” unless a stiffness cation-binding site is engineered into the actin molecule. Moreover, vertebrate cofilin rescues the viability of a S. cerevisiae cofilin deletion mutant only when the stiffness cation site is simultaneously introduced into actin, demonstrating that filament severing is the essential function of cofilin in cells. This work reveals that site-specific interactions with cations serve a key regulatory function in actin filament fragmentation and dynamics. PMID:25468977

  17. Game of Zones: how actin-binding proteins organize muscle contraction

    PubMed Central

    Butkevich, Eugenia; Klopfenstein, Dieter R.; Schmidt, Christoph F.

    2016-01-01

    ABSTRACT Locomotion of C. elegans requires coordinated, efficient transmission of forces generated on the molecular scale by myosin and actin filaments in myocytes to dense bodies and the hypodermis and cuticle enveloping body wall muscles. The complex organization of the acto-myosin scaffold with its accessory proteins provides a fine-tuned machinery regulated by effectors that guarantees that sarcomere units undergo controlled, reversible cycles of contraction and relaxation. Actin filaments in sarcomeres dynamically undergo polymerization and depolymerization. In a recent study, the actin-binding protein DBN-1, the C. elegans ortholog of human drebrin and drebrin-like proteins, was discovered to stabilize actin in muscle cells. DBN-1 reversibly changes location between actin filaments and myosin-rich regions during muscle contraction. Mutations in DBN-1 result in mislocalization of other actin-binding proteins. Here we discuss implications of this finding for the regulation of sarcomere actin stability and the organization of other actin-binding proteins. PMID:27383012

  18. Actin dynamics tune the integrated stress response by regulating eukaryotic initiation factor 2α dephosphorylation

    PubMed Central

    Chambers, Joseph E; Dalton, Lucy E; Clarke, Hanna J; Malzer, Elke; Dominicus, Caia S; Patel, Vruti; Moorhead, Greg; Ron, David; Marciniak, Stefan J

    2015-01-01

    Four stress-sensing kinases phosphorylate the alpha subunit of eukaryotic translation initiation factor 2 (eIF2α) to activate the integrated stress response (ISR). In animals, the ISR is antagonised by selective eIF2α phosphatases comprising a catalytic protein phosphatase 1 (PP1) subunit in complex with a PPP1R15-type regulatory subunit. An unbiased search for additional conserved components of the PPP1R15-PP1 phosphatase identified monomeric G-actin. Like PP1, G-actin associated with the functional core of PPP1R15 family members and G-actin depletion, by the marine toxin jasplakinolide, destabilised the endogenous PPP1R15A-PP1 complex. The abundance of the ternary PPP1R15-PP1-G-actin complex was responsive to global changes in the polymeric status of actin, as was its eIF2α-directed phosphatase activity, while localised G-actin depletion at sites enriched for PPP1R15 enhanced eIF2α phosphorylation and the downstream ISR. G-actin's role as a stabilizer of the PPP1R15-containing holophosphatase provides a mechanism for integrating signals regulating actin dynamics with stresses that trigger the ISR. DOI: http://dx.doi.org/10.7554/eLife.04872.001 PMID:25774599

  19. Identification of a novel regulatory sequence of actin nucleation promoting factor encoded by Autographa californica multiple nucleopolyhedrovirus.

    PubMed

    Wang, Yun; Zhang, Yongli; Han, Shili; Hu, Xue; Zhou, Yuan; Mu, Jingfang; Pei, Rongjuan; Wu, Chunchen; Chen, Xinwen

    2015-04-10

    Actin polymerization induced by nucleation promoting factors (NPFs) is one of the most fundamental biological processes in eukaryotic cells. NPFs contain a conserved output domain (VCA domain) near the C terminus, which interacts with and activates the cellular actin-related protein 2/3 complex (Arp2/3) to induce actin polymerization and a diverse regulatory domain near the N terminus. Autographa californica multiple nucleopolyhedrovirus (AcMNPV) nucleocapsid protein P78/83 is a virus-encoded NPF that contains a C-terminal VCA domain and induces actin polymerization in virus-infected cells. However, there is no similarity between the N terminus of P78/83 and that of other identified NPFs, suggesting that P78/83 may possess a unique regulatory mechanism. In this study, we identified a multifunctional regulatory sequence (MRS) located near the N terminus of P78/83 and determined that one of its functions is to serve as a degron to mediate P78/83 degradation in a proteasome-dependent manner. In AcMNPV-infected cells, the MRS also binds to another nucleocapsid protein, BV/ODV-C42, which stabilizes P78/83 and modulates the P78/83-Arp2/3 interaction to orchestrate actin polymerization. In addition, the MRS is also essential for the incorporation of P78/83 into the nucleocapsid, ensuring virion mobility powered by P78/83-induced actin polymerization. The triple functions of the MRS enable P78/83 to serve as an essential viral protein in the AcMNPV replication cycle, and the possible roles of the MRS in orchestrating the virus-induced actin polymerization and viral genome decapsidation are discussed.

  20. Yeast Rsp5 ubiquitin ligase affects the actin cytoskeleton in vivo and in vitro.

    PubMed

    Kaminska, Joanna; Spiess, Matthias; Stawiecka-Mirota, Marta; Monkaityte, Rasa; Haguenauer-Tsapis, Rosine; Urban-Grimal, Daniele; Winsor, Barbara; Zoladek, Teresa

    2011-12-01

    Yeast Rsp5 ubiquitin ligase is involved in several cellular processes, including endocytosis. Actin patches are sites of endocytosis, a process involving actin assembly and disassembly. Here we show Rsp5 localization in cortical patches and demonstrate its involvement in actin cytoskeleton organization and dynamics. We found that the Rsp5-F1-GFP2 N-terminal fragment and full length GFP-Rsp5 were recruited to peripheral patches that temporarily co-localized with Abp1-mCherry, a marker of actin patches. Actin cytoskeleton organization was defective in a strain lacking RSP5 or overexpressing RSP5, and this phenotype was accompanied by morphological abnormalities. Overexpression of RSP5 caused hypersensitivity of cells to Latrunculin A, an actin-depolymerizing drug and was toxic to cells lacking Las17, an activator of actin nucleation. Moreover, Rsp5 was required for efficient actin polymerization in a whole cell extract based in vitro system. Rsp5 interacted with Las17 and Las17-binding proteins, Lsb1 and Lsb2, in a GST-Rsp5-WW2/3 pull down assay. Rsp5 ubiquitinated Lsb1-HA and Lsb2-HA without directing them for degradation. Overexpression of RSP5 increased the cellular level of HA-Las17 in wild type and in lsb1Δ lsb2Δ strains in which the basal level of Las17 was already elevated. This increase was prevented in a strain devoid of Las17-binding protein Sla1 which is also a target of Rsp5 ubiquitination. Thus, Rsp5 together with Lsb1, Lsb2 and Sla1 regulate the level of Las17, an important activator of actin polymerization.

  1. Biochemical analysis of actin in crane-fly gonial cells: evidence for actin in spermatocytes and spermatids--but not sperm

    PubMed Central

    1980-01-01

    A biochemical assay employing DNase-I affinity chromatography, two- dimensional peptide analysis and SDS polyacrylamide gel electrophoresis was used to isolate, identify, and assess the amount of actin from gonial cells of the crane fly, Nephrotoma suturalis. Based on the analysis of cell homogenates under conditions in which all cellular actin is converted to the monomeric DNase-binding form, actin comprises approximately 1% of the total protein in homogenates of spermatocytes and spermatids. SDS gel analysis of mature sperm reveals no polypeptides with a molecular weight similar to that of actin. Under conditions that preserve native supramolecular states of actin, approximately 80% of the spermatocyte actin is in a sedimentable form whereas only approximately 30% of the spermatid actin is sedimentable. These differences could be meaningful with regard to strutural changes that occur during spermiogenesis. A comparative analysis of two- dimensional peptide maps of several radioiodinated actins reveals similarities among spermatocyte, spermatid, and human erythrocyte actins. The results suggest the general applicability of this approach to other cell types that contain limited amounts of actin. PMID:6893453

  2. Mammalian CARMIL Inhibits Actin Filament Capping by Capping Protein

    PubMed Central

    Yang, Changsong; Pring, Martin; Wear, Martin A.; Huang, Minzhou; Cooper, John A.; Svitkina, Tatyana M.; Zigmond, Sally H.

    2009-01-01

    Summary Actin polymerization in cells occurs via filament elongation at the barbed end. Proteins that cap the barbed end terminate this elongation. Heterodimeric capping protein (CP) is an abundant and ubiquitous protein that caps the barbed end. We find that the mouse homolog of the adaptor protein CARMIL (mCARMIL) binds CP with high affinity and decreases its affinity for the barbed end. Addition of mCARMIL to cell extracts increases the rate and extent of Arp2/3 or spectrin-actin seed-induced polymerization. In cells, GFP-mCARMIL concentrates in lamellipodia and increases the fraction of cells with large lamellipodia. Decreasing mCARMIL levels by siRNA transfection lowers theF-actin level and slows cell migration through a mechanism that includes decreased lamellipodia protrusion. This phenotype is reversed by full-length mCARMIL but not mCARMIL lacking the domain that binds CP. Thus, mCARMIL is a key regulator of CP and has profound effects on cell behavior. PMID:16054028

  3. Apoptotic effect of imatinib on human colon adenocarcinoma cells: influence on actin cytoskeleton organization and cell migration.

    PubMed

    Popow-Woźniak, Agnieszka; Woźniakowska, Aleksandra; Kaczmarek, Lukasz; Malicka-Błaszkiewicz, Maria; Nowak, Dorota

    2011-09-30

    Imatinib mesylate (STI571) is the first member of a new class of agents that act by inhibiting specific tyrosine kinases, rather than killing all rapidly dividing cells. This drug is usually used in the treatment of chronic myelogenous leukemia and gastrointestinal stromal tumors. It was recognized to inhibit activity of kinases such as Bcr/Abl, platelet-derived growth factor receptor, and c-kit. These proteins play important roles in cell growth, motility, and survival. Therefore, studies on the biological effects of imatinib on different cellular models are very important. Human colon adenocarcinoma LS180 cell line was used in the studies presented. Cells were exposed to 0.1-100 μM imatinib for 24 and 48 h. Dose-dependent decreases in cell viability and morphological changes were observed. Moreover, the apoptotic effect of imatinib (10 μM, 50 μM) after 24 h of exposure was demonstrated as evaluated by translocation of phosphatidylserine to external membrane leaflet and by increased activity of caspase-3. Special attention was focused on imatinib influence on actin cytoskeleton organization and migration ability of LS180 cells. Distinct alterations in actin cytoskeleton architecture occurred in response to drug treatment, accompanied by appearance of filamentous actin aggregates and decrease in actin polymerization state. These changes were correlated with remarkable decrease in cell migration capacity. In summary, our data clearly demonstrate that imatinib induces apoptosis and inhibits human colon adenocarcinoma cell migration. Therefore, this drug may have potential in colon cancer therapy in the future.

  4. Contractile properties of thin (actin) filament-reconstituted muscle fibers.

    PubMed

    Ishiwata, S; Funatsu, T; Fujita, H

    1998-01-01

    Selective removal and reconstitution of the components of muscle fibers (fibrils) is a useful means of examining the molecular mechanism underlying the formation of the contractile apparatus. In addition, this approach is powerful for examining the structure-function relationship of a specific component of the contractile system. In previous studies, we have achieved the partial structural and functional reconstitution of thin filaments in the skeletal contractile apparatus and full reconstitution in the cardiac contractile apparatus. First, all thin filaments other than short fragments at the Z line were removed by treatment with plasma gelsolin, an actin filament-severing protein. Under these conditions, no active tension could be generated. By incorporating exogenous actin into these thin filament-free fibers, actin filaments were reconstituted by polymerization on the short actin fragments remaining at the Z line, and active tension, which was insensitive to Ca2+, was restored. The active tension after the reconstitution of thin filaments reached as high as 30% of the original level in skeletal muscle, while it reached 140% in cardiac muscle. The augmentation of tension in cardiac muscle is mainly attributable to the elongation of reconstituted filaments, longer than the average length of thin filaments in an intact muscle. These results indicate that a muscle contractile apparatus with a high order structure and function can be constructed by the self-assembly of constituent proteins. Recently, we applied this reconstitution system to the study of the mechanism of spontaneous oscillatory contraction (SPOC) in thin (actin) filament-reconstituted cardiac muscle fibers. As a result, we found that SPOC occurs even in regulatory protein-free actin filament-reconstituted fibers (Fujita & Ishiwata, manuscript submitted), although the SPOC conditions were slightly different from the standard SPOC conditions. This result strongly suggests that spontaneous oscillation

  5. The role of cyclase-associated protein in regulating actin filament dynamics - more than a monomer-sequestration factor.

    PubMed

    Ono, Shoichiro

    2013-08-01

    Dynamic reorganization of the actin cytoskeleton is fundamental to a number of cell biological events. A variety of actin-regulatory proteins modulate polymerization and depolymerization of actin and contribute to actin cytoskeletal reorganization. Cyclase-associated protein (CAP) is a conserved actin-monomer-binding protein that has been studied for over 20 years. Early studies have shown that CAP sequesters actin monomers; recent studies, however, have revealed more active roles of CAP in actin filament dynamics. CAP enhances the recharging of actin monomers with ATP antagonistically to ADF/cofilin, and also promotes the severing of actin filaments in cooperation with ADF/cofilin. Self-oligomerization and binding to other proteins regulate activities and localization of CAP. CAP has crucial roles in cell signaling, development, vesicle trafficking, cell migration and muscle sarcomere assembly. This Commentary discusses the recent advances in our understanding of the functions of CAP and its implications as an important regulator of actin cytoskeletal dynamics, which are involved in various cellular activities.

  6. Unusual Kinetic and Structural Properties Control Rapid Assembly and Turnover of Actin in the Parasite Toxoplasma gondiiD⃞

    PubMed Central

    Sahoo, Nivedita; Beatty, Wandy; Heuser, John; Sept, David; Sibley, L. David

    2006-01-01

    Toxoplasma is a protozoan parasite in the phylum Apicomplexa, which contains a number of medically important parasites that rely on a highly unusual form of motility termed gliding to actively penetrate their host cells. Parasite actin filaments regulate gliding motility, yet paradoxically filamentous actin is rarely detected in these parasites. To investigate the kinetics of this unusual parasite actin, we expressed TgACT1 in baculovirus and purified it to homogeneity. Biochemical analysis showed that Toxoplasma actin (TgACT1) rapidly polymerized into filaments at a critical concentration that was 3-4-fold lower than conventional actins, yet it failed to copolymerize with mammalian actin. Electron microscopic analysis revealed that TgACT1 filaments were 10 times shorter and less stable than rabbit actin. Phylogenetic comparison of actins revealed a limited number of apicomplexan-specific residues that likely govern the unusual behavior of parasite actin. Molecular modeling identified several key alterations that affect interactions between monomers and that are predicted to destabilize filaments. Our findings suggest that conserved molecular differences in parasite actin favor rapid cycles of assembly and disassembly that govern the unusual form of gliding motility utilized by apicomplexans. PMID:16319175

  7. Role of the DNase-I-binding loop in dynamic properties of actin filament.

    PubMed

    Khaitlina, Sofia Yu; Strzelecka-Gołaszewska, Hanna

    2002-01-01

    Effects of proteolytic modifications of the DNase-I-binding loop (residues 39-51) in subdomain 2 of actin on F-actin dynamics were investigated by measuring the rates of the polymer subunit exchange with the monomer pool at steady state and of ATP hydrolysis associated with it, and by determination of relative rate constants for monomer addition to and dissociation from the polymer ends. Cleavage of actin between Gly-42 and Val-43 by protease ECP32 resulted in enhancement of the turnover rate of polymer subunits by an order of magnitude or more, in contrast to less than a threefold increase produced by subtilisin cleavage between Met-47 and Gly-48. Probing the structure of the modified actins by limited digestion with trypsin revealed a correlation between the increased F-actin dynamics and a change in the conformation of subdomain 2, indicating a more open state of the filament subunits relative to intact F-actin. The cleavage with trypsin and steady-state ATPase were cooperatively inhibited by phalloidin, with half-maximal effects at phalloidin to actin molar ratio of 1:8 and full inhibition at a 1:1 ratio. The results support F-actin models in which only the N-terminal segment of loop 39-51 is involved in monomer-monomer contacts, and suggest a possibility of regulation of actin dynamics in the cell through allosteric effects on this segment of the actin polypeptide chain.

  8. Interdependence of endomembrane trafficking and actin dynamics during polarized growth of Arabidopsis pollen tubes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    During polarized growth of pollen tubes, endomembrane trafficking and actin polymerization are two critical processes that establish membrane/wall homeostasis and maintain growth polarity. Fine-tuned interactions between these two processes are therefore necessary but poorly understood. To better un...

  9. The role of substrate curvature in actin-based pushing forces.

    PubMed

    Schwartz, Ian M; Ehrenberg, Morton; Bindschadler, Michael; McGrath, James L

    2004-06-22

    The extension of the plasma membrane during cell crawling or spreading is known to require actin polymerization; however, the question of how pushing forces derive from actin polymerization remains open. A leading theory (herein referred to as elastic propulsion) illustrates how elastic stresses in networks growing on curved surfaces can result in forces that push particles. To date all examples of reconstituted motility have used curved surfaces, raising the possibility that such squeezing forces are essential for actin-based pushing. By contrast, other theories, such as molecular ratchets, neither require nor consider surface curvature to explain pushing forces. Here, we critically test the requirement of substrate curvature by reconstituting actin-based motility on polystyrene disks. We find that disks move through extracts in a manner that indicates pushing forces on their flat surfaces and that disks typically move faster than the spheres they are manufactured from. For a subset of actin tails that form on the perimeter of disks, we find no correlation between local surface curvature and tail position. Collectively the data indicate that curvature-dependent mechanisms are not required for actin-based pushing.

  10. Formin' actin in the nucleus.

    PubMed

    Baarlink, Christian; Grosse, Robert

    2014-01-01

    Many if not most proteins can, under certain conditions, change cellular compartments, such as, for example, shuttling from the cytoplasm to the nucleus. Thus, many proteins may exert functions in various and very different subcellular locations, depending on the signaling context. A large amount of actin regulatory proteins has been detected in the mammalian cell nucleus, although their potential roles are much debated and are just beginning to emerge. Recently, members of the formin family of actin nucleators were also reported to dynamically localize to the nuclear environment. Here we discuss our findings that specific diaphanous-related formins can promote nuclear actin assembly in a signal-dependent manner.

  11. Actin dynamics and cofilin-actin rods in Alzheimer disease

    PubMed Central

    Bamburg, James R.; Bernstein, Barbara W.

    2017-01-01

    Cytoskeletal abnormalities and synaptic loss, typical of both familial and sporadic Alzheimer disease (AD), are induced by diverse stresses such as neuroinflammation, oxidative stress, and energetic stress, each of which may be initiated or enhanced by proinflammatory cytokines or amyloid-β (Aβ) peptides. Extracellular Aβ-containing plaques and intracellular phospho-tau-containing neurofibrillary tangles are postmortem pathologies required to confirm AD and have been the focus of most studies. However, AD brain, but not normal brain, also have increased levels of cytoplasmic rod-shaped bundles of filaments composed of ADF/cofilin-actin in a 1:1 complex (rods). Cofilin, the major ADF/cofilin isoform in mammalian neurons, severs actin filaments at low cofilin/actin ratios and stabilizes filaments at high cofilin/actin ratios. It binds cooperatively to ADP-actin subunits in F-actin. Cofilin is activated by dephosphorylation and may be oxidized in stressed neurons to form disulfide-linked dimers, required for bundling cofilin-actin filaments into stable rods. Rods form within neurites causing synaptic dysfunction by sequestering cofilin, disrupting normal actin dynamics, blocking transport, and exacerbating mitochondrial membrane potential loss. Aβ and proinflammatory cytokines induce rods through a cellular prion protein-dependent activation of NADPH oxidase and production of reactive oxygen species. Here we review recent advances in our understanding of cofilin biochemistry, rod formation, and the development of cognitive deficits. We will then discuss rod formation as a molecular pathway for synapse loss that may be common between all three prominent current AD hypotheses, thus making rods an attractive therapeutic target. PMID:26873625

  12. Quantifying a pathway: kinetic analysis of actin dendritic nucleation.

    PubMed

    Kraikivski, Pavel; Slepchenko, Boris M

    2010-08-04

    Progress in uncovering the reaction networks that underlie important cell functions is laying the groundwork for quantitative identification of protein-interaction pathways. Since direct measurement of rate constants is not always feasible, the parameters are often inferred from multiple pieces of data using kinetic analyses based on appropriate mathematical models. The success of this approach relies on the sufficiency of available experimental data for a unique parameterization of the network. The concept of a rate-limiting step is applied to the analysis of experimental data that are usually used to quantify a pathway of actin dendritic nucleation, the Arp2/3-mediated mechanism that enables rapid changes of cell shape in response to external cues. The method yields analytical descriptions of the dynamics of polymerized actin and provides insights into how the experimental curves should be analyzed. It is shown that dynamics measured by pyrene-labeled actin assays with varying Arp2/3 concentrations are equally well described by two different rate-limiting steps: 1), binding of a nucleating complex to the side of a preexisting filament; or 2), its subsequent activation. To distinguish between the alternatives, we propose experiments with varying concentrations of actin monomers, taking advantage of the fact that the number of branches in the two cases depends differently on the initial monomer concentration. The idea is tested by simulating the proposed experiments with the use of spatial stochastic modeling.

  13. Dual pools of actin at presynaptic terminals.

    PubMed

    Bleckert, Adam; Photowala, Huzefa; Alford, Simon

    2012-06-01

    We investigated actin's function in vesicle recycling and exocytosis at lamprey synapses and show that FM1-43 puncta and phalloidin-labeled filamentous actin (F-actin) structures are colocalized, yet recycling vesicles are not contained within F-actin clusters. Additionally, phalloidin also labels a plasma membrane-associated cortical actin. Injection of fluorescent G-actin revealed activity-independent dynamic actin incorporation into presynaptic synaptic vesicle clusters but not into cortical actin. Latrunculin-A, which sequesters G-actin, dispersed vesicle-associated actin structures and prevented subsequent labeled G-actin and phalloidin accumulation at presynaptic puncta, yet cortical phalloidin labeling persisted. Dispersal of presynaptic F-actin structures by latrunculin-A did not disrupt vesicle clustering or recycling or alter the amplitude or kinetics of excitatory postsynaptic currents (EPSCs). However, it slightly enhanced release during repetitive stimulation. While dispersal of presynaptic actin puncta with latrunculin-A failed to disperse synaptic vesicles or inhibit synaptic transmission, presynaptic phalloidin injection blocked exocytosis and reduced endocytosis measured by action potential-evoked FM1-43 staining. Furthermore, phalloidin stabilization of only cortical actin following pretreatment with latrunculin-A was sufficient to inhibit synaptic transmission. Conversely, treatment of axons with jasplakinolide, which induces F-actin accumulation but disrupts F-actin structures in vivo, resulted in increased synaptic transmission accompanied by a loss of phalloidin labeling of cortical actin but no loss of actin labeling within vesicle clusters. Marked synaptic deficits seen with phalloidin stabilization of cortical F-actin, in contrast to the minimal effects of disruption of a synaptic vesicle-associated F-actin, led us to conclude that two structurally and functionally distinct pools of actin exist at presynaptic sites.

  14. [Photodynamic therapy for actinic cheilitis].

    PubMed

    Castaño, E; Comunión, A; Arias, D; Miñano, R; Romero, A; Borbujo, J

    2009-12-01

    Actinic cheilitis is a subtype of actinic keratosis that mainly affects the lower lip and has a higher risk of malignant transformation. Its location on the labial mucosa influences the therapeutic approach. Vermilionectomy requires local or general anesthetic and is associated with a risk of an unsightly scar, and the treatment with 5-fluorouracil or imiquimod lasts for several weeks and the inflammatory reaction can be very intense. A number of authors have used photodynamic therapy as an alternative to the usual treatments. We present 3 patients with histologically confirmed actinic cheilitis treated using photodynamic therapy with methyl aminolevulinic acid as the photosensitizer and red light at 630 nm. The clinical response was good, with no recurrences after 3 to 6 months of follow-up. Our experience supports the use of photodynamic therapy as a good alternative for the treatment of actinic cheilitis.

  15. Mechanics of biomimetic systems propelled by actin comet tails

    NASA Astrophysics Data System (ADS)

    Kang, Hyeran; Tambe, Dhananjay; Shenoy, Vivek; Tang, Jay

    2009-03-01

    The motility of intracellular bacterial pathogens such as Listeria monocytogenes is driven by filamentous actin comet tails in a variety of trajectories. Here, we present the in vitro study on the actin-based movements using spherical beads of different sizes coated with VCA protein, a partial domain of N-Wasp, in platelet extracts. Long term two-dimensional trajectories of the spherical beads motility show characteristic difference than those observed for bacteria, which have both elongated shape and asymmetric expression of the polymerization inducing enzyme. The trajectories also vary sensitively with the bead size and shape. These results provide a useful test to our new analytical model including the rotation of the bead relative to the tail.

  16. Single-filament kinetic studies provide novel insights into regulation of actin-based motility

    PubMed Central

    Shekhar, Shashank; Carlier, Marie-France

    2016-01-01

    Polarized assembly of actin filaments forms the basis of actin-based motility and is regulated both spatially and temporally. Cells use a variety of mechanisms by which intrinsically slower processes are accelerated, and faster ones decelerated, to match rates observed in vivo. Here we discuss how kinetic studies of individual reactions and cycles that drive actin remodeling have provided a mechanistic and quantitative understanding of such processes. We specifically consider key barbed-end regulators such as capping protein and formins as illustrative examples. We compare and contrast different kinetic approaches, such as the traditional pyrene-polymerization bulk assays, as well as more recently developed single-filament and single-molecule imaging approaches. Recent development of novel biophysical methods for sensing and applying forces will in future allow us to address the very important relationship between mechanical stimulus and kinetics of actin-based motility. PMID:26715420

  17. F-actin-binding protein drebrin regulates CXCR4 recruitment to the immune synapse.

    PubMed

    Pérez-Martínez, Manuel; Gordón-Alonso, Mónica; Cabrero, José Román; Barrero-Villar, Marta; Rey, Mercedes; Mittelbrunn, María; Lamana, Amalia; Morlino, Giulia; Calabia, Carmen; Yamazaki, Hiroyuki; Shirao, Tomoaki; Vázquez, Jesús; González-Amaro, Roberto; Veiga, Esteban; Sánchez-Madrid, Francisco

    2010-04-01

    The adaptive immune response depends on the interaction of T cells and antigen-presenting cells at the immune synapse. Formation of the immune synapse and the subsequent T-cell activation are highly dependent on the actin cytoskeleton. In this work, we describe that T cells express drebrin, a neuronal actin-binding protein. Drebrin colocalizes with the chemokine receptor CXCR4 and F-actin at the peripheral supramolecular activation cluster in the immune synapse. Drebrin interacts with the cytoplasmic tail of CXCR4 and both proteins redistribute to the immune synapse with similar kinetics. Drebrin knockdown in T cells impairs the redistribution of CXCR4 and inhibits actin polymerization at the immune synapse as well as IL-2 production. Our data indicate that drebrin exerts an unexpected and relevant functional role in T cells during the generation of the immune response.

  18. The ATP binding cassette transporter, ABCG1, localizes to cortical actin filaments

    PubMed Central

    Pandzic, Elvis; Gelissen, Ingrid C.; Whan, Renee; Barter, Philip J.; Sviridov, Dmitri; Gaus, Katharina; Rye, Kerry-Anne; Cochran, Blake J.

    2017-01-01

    The ATP-binding cassette sub-family G member 1 (ABCG1) exports cellular cholesterol to high-density lipoproteins (HDL). However, a number of recent studies have suggested ABCG1 is predominantly localised to intracellular membranes. In this study, we found that ABCG1 was organized into two distinct cellular pools: one at the plasma membrane and the other associated with the endoplasmic reticulum (ER). The plasma membrane fraction was organized into filamentous structures that were associated with cortical actin filaments. Inhibition of actin polymerization resulted in complete disruption of ABCG1 filaments. Cholesterol loading of the cells increased the formation of the filamentous ABCG1, the proximity of filamentous ABCG1 to actin filaments and the diffusion rate of membrane associated ABCG1. Our findings suggest that the actin cytoskeleton plays a critical role in the plasma membrane localization of ABCG1. PMID:28165022

  19. F-actin and myosin II accelerate catecholamine release from chromaffin granules

    PubMed Central

    Berberian, Khajak; Torres, Alexis J; Fang, Qinghua; Kisler, Kassandra

    2009-01-01

    The roles of non-muscle myosin II and cortical actin filaments in chromaffin granule exocytosis were studied by confocal fluorescence microscopy, amperometry, and cell-attached capacitance measurements. Fluorescence imaging indicated decreased mobility of granules near the plasma membrane following inhibition of myosin II function with Blebbistatin. Slower fusion pore expansion rates and longer fusion pore lifetimes were observed after inhibition of actin polymerization using Cytochalasin-D. Amperometric recordings revealed increased amperometric spike half-widths without change in quantal size after either myosin II inhibition or actin disruption. These results suggest that actin and myosin II facilitate release from individual chromaffin granules by accelerating dissociation of catecholamines from the intragranular matrix possibly through generation of mechanical forces. PMID:19158310

  20. Kinetic heterogeneity of F-actin polymers. Further evidence that the elongation reaction may occur through condensation of the actin filaments with small aggregates.

    PubMed Central

    Grazi, E; Magri, E

    1987-01-01

    We have shown that F-actin, polymerized in 50 mM-KCl at 20 degrees C and pH 8.0, can be resolved by centrifugation into two polymer populations, which differ morphologically as well as kinetically. The first population represents about 10% of the overall polymer and is composed of small amorphous aggregates. It rapidly exchanges the bound nucleotide with free ATP in the medium, either directly or through the monomers. The second population is composed of long actin filaments. These are labelled by free ATP in the medium only through condensation with labelled small amorphous aggregates. Images Fig. 1. PMID:3435480

  1. Rho GTPases, phosphoinositides, and actin

    PubMed Central

    Croisé, Pauline; Estay-Ahumada, Catherine; Gasman, Stéphane; Ory, Stéphane

    2014-01-01

    Rho GTPases are well known regulators of the actin cytoskeleton that act by binding and activating actin nucleators. They are therefore involved in many actin-based processes, including cell migration, cell polarity, and membrane trafficking. With the identification of phosphoinositide kinases and phosphatases as potential binding partners or effectors, Rho GTPases also appear to participate in the regulation of phosphoinositide metabolism. Since both actin dynamics and phosphoinositide turnover affect the efficiency and the fidelity of vesicle transport between cell compartments, Rho GTPases have emerged as critical players in membrane trafficking. Rho GTPase activity, actin remodeling, and phosphoinositide metabolism need to be coordinated in both space and time to ensure the progression of vesicles along membrane trafficking pathways. Although most molecular pathways are still unclear, in this review, we will highlight recent advances made in our understanding of how Rho-dependent signaling pathways organize actin dynamics and phosphoinositides and how phosphoinositides potentially provide negative feedback to Rho GTPases during endocytosis, exocytosis and membrane exchange between intracellular compartments. PMID:24914539

  2. Actin filaments align into hollow comets for rapid VASP-mediated propulsion.

    PubMed

    Plastino, Julie; Olivier, Stéphane; Sykes, Cécile

    2004-10-05

    For cells, the growth of a dense array of branched actin filaments organized by the actin-related proteins 2 and 3 (Arp2/3) complex at the plasma membrane offers an explanation as to how movement is produced, and this arrangement is considered to be optimal for motility. Here, we challenged this assumption by using an in vitro system of polystyrene beads in cell extracts that contained a complex mix of actin polymerization proteins as in vivo. We employed the surface of the bead as a reactor where we mixed two different actin polymerization-activating factors, the Arp2/3 complex and the vasodilator-stimulated phosphoprotein (VASP), to examine their contribution to actin-based movement and filament organization. We varied the coating of the bead surface but left the extracts identical for all assays. We found that the degree of filament alignment in the actin comet tails depended on the surface ratio of VASP to Arp2/3. Alignment of actin filaments parallel to the direction of bead movement in the presence of VASP was accompanied by an abrupt 7-fold increase in velocity that was independent of bead size and by hollowing out of the comets. The actin filament-bundling proteins fimbrin and fascin did not appear to play a role in this transformation. Together with the idea that VASP enhances filament detachment and with the presence of pulling forces at the rear of the bead, a mesoscopic analysis of movement provides a possible explanation for our results.

  3. The integral membrane protein, ponticulin, acts as a monomer in nucleating actin assembly

    PubMed Central

    1993-01-01

    Ponticulin, an F-actin binding transmembrane glycoprotein in Dictyostelium plasma membranes, was isolated by detergent extraction from cytoskeletons and purified to homogeneity. Ponticulin is an abundant membrane protein, averaging approximately 10(6) copies/cell, with an estimated surface density of approximately 300 per microns2. Ponticulin solubilized in octylglucoside exhibited hydrodynamic properties consistent with a ponticulin monomer in a spherical or slightly ellipsoidal detergent micelle with a total molecular mass of 56 +/- 6 kD. Purified ponticulin nucleated actin polymerization when reconstituted into Dictyostelium lipid vesicles, but not when a number of commercially available lipids and lipid mixtures were substituted for the endogenous lipid. The specific activity was consistent with that expected for a protein comprising 0.7 +/- 0.4%, by mass, of the plasma membrane protein. Ponticulin in octylglucoside micelles bound F- actin but did not nucleate actin assembly. Thus, ponticulin-mediated nucleation activity was sensitive to the lipid environment, a result frequently observed with transmembrane proteins. At most concentrations of Dictyostelium lipid, nucleation activity increased linearly with increasing amounts of ponticulin, suggesting that the nucleating species is a ponticulin monomer. Consistent with previous observations of lateral interactions between actin filaments and Dictyostelium plasma membranes, both ends of ponticulin-nucleated actin filaments appeared to be free for monomer assembly and disassembly. Our results indicate that ponticulin is a major membrane protein in Dictyostelium and that, in the proper lipid matrix, it is sufficient for lateral nucleation of actin assembly. To date, ponticulin is the only integral membrane protein known to directly nucleate actin polymerization. PMID:8432731

  4. Actin protofilament orientation in deformation of the erythrocyte membrane skeleton.

    PubMed Central

    Picart, C; Dalhaimer, P; Discher, D E

    2000-01-01

    The red cell's spectrin-actin network is known to sustain local states of shear, dilation, and condensation, and yet the short actin filaments are found to maintain membrane-tangent and near-random azimuthal orientations. When calibrated with polarization results for single actin filaments, imaging of micropipette-deformed red cell ghosts has allowed an assessment of actin orientations and possible reorientations in the network. At the hemispherical cap of the aspirated projection, where the network can be dilated severalfold, filaments have the same membrane-tangent orientation as on a relatively unstrained portion of membrane. Likewise, over the length of the network projection pulled into the micropipette, where the network is strongly sheared in axial extension and circumferential contraction, actin maintains its tangent orientation and is only very weakly aligned with network extension. Similar results are found for the integral membrane protein Band 3. Allowing for thermal fluctuations, we deduce a bound for the effective coupling constant, alpha, between network shear and azimuthal orientation of the protofilament. The finding that alpha must be about an order of magnitude or more below its tight-coupling value illustrates how nanostructural kinematics can decouple from more macroscopic responses. Monte Carlo simulations of spectrin-actin networks at approximately 10-nm resolution further support this conclusion and substantiate an image of protofilaments as elements of a high-temperature spin glass. PMID:11106606

  5. A DOCK8-WIP-WASp complex links T cell receptors to the actin cytoskeleton

    PubMed Central

    Janssen, Erin; Tohme, Mira; Hedayat, Mona; Leick, Marion; Kumari, Sudha; Ramesh, Narayanaswamy; Massaad, Michel J.; Ullas, Sumana; Azcutia, Veronica; Goodnow, Christopher C.; Randall, Katrina L.; Qiao, Qi; Wu, Hao; Al-Herz, Waleed; Cox, Dianne; Hartwig, John; Irvine, Darrell J.; Luscinskas, Francis W.; Geha, Raif S.

    2016-01-01

    Wiskott-Aldrich syndrome (WAS) is associated with mutations in the WAS protein (WASp), which plays a critical role in the initiation of T cell receptor–driven (TCR-driven) actin polymerization. The clinical phenotype of WAS includes susceptibility to infection, allergy, autoimmunity, and malignancy and overlaps with the symptoms of dedicator of cytokinesis 8 (DOCK8) deficiency, suggesting that the 2 syndromes share common pathogenic mechanisms. Here, we demonstrated that the WASp-interacting protein (WIP) bridges DOCK8 to WASp and actin in T cells. We determined that the guanine nucleotide exchange factor activity of DOCK8 is essential for the integrity of the subcortical actin cytoskeleton as well as for TCR-driven WASp activation, F-actin assembly, immune synapse formation, actin foci formation, mechanotransduction, T cell transendothelial migration, and homing to lymph nodes, all of which also depend on WASp. These results indicate that DOCK8 and WASp are in the same signaling pathway that links TCRs to the actin cytoskeleton in TCR-driven actin assembly. Further, they provide an explanation for similarities in the clinical phenotypes of WAS and DOCK8 deficiency. PMID:27599296

  6. The chloroplast outer membrane protein CHUP1 interacts with actin and profilin.

    PubMed

    Schmidt von Braun, Serena; Schleiff, Enrico

    2008-04-01

    Chloroplasts accumulate in response to low light, whereas high light induces an actin-dependent avoidance movement. This is a long known process, but its molecular base is barely understood. Only recently first components of the blue light perceiving signal cascade initiating this process were described. Among these, a protein was identified by the analysis of a deletion mutant in the corresponding gene resulting in a chloroplast unusual positioning phenotype. The protein was termed CHUP1 and initial results suggested chloroplast localization. We demonstrate that the protein is indeed exclusively and directly targeted to the chloroplast surface. The analysis of the deletion mutant of CHUP1 using microarray analysis shows an influence on the expression of genes found to be up-regulated, but not on genes found to be down-regulated upon high light exposure in wild-type. Analyzing a putative role of CHUP1 as a linker between chloroplasts and the cytoskeleton, we demonstrate an interaction with actin, which is independent on the filamentation status of actin. Moreover, binding of CHUP1 to profilin -- an actin modifying protein -- could be shown and an enhancing effect of CHUP1 on the interaction of profilin to actin is demonstrated. Therefore, a role of CHUP1 in bridging chloroplasts to actin filaments and a regulatory function in actin polymerization can be discussed.

  7. Aberrant actin depolymerization triggers the pyrin inflammasome and autoinflammatory disease that is dependent on IL-18, not IL-1β

    PubMed Central

    Kim, Man Lyang; Chae, Jae Jin; Park, Yong Hwan; De Nardo, Dominic; Stirzaker, Roslynn A.; Ko, Hyun-Ja; Tye, Hazel; Cengia, Louise; DiRago, Ladina; Metcalf, Donald; Roberts, Andrew W.; Kastner, Daniel L.; Lew, Andrew M.; Lyras, Dena; Kile, Benjamin T.; Croker, Ben A.

    2015-01-01

    Gain-of-function mutations that activate the innate immune system can cause systemic autoinflammatory diseases associated with increased IL-1β production. This cytokine is activated identically to IL-18 by an intracellular protein complex known as the inflammasome; however, IL-18 has not yet been specifically implicated in the pathogenesis of hereditary autoinflammatory disorders. We have now identified an autoinflammatory disease in mice driven by IL-18, but not IL-1β, resulting from an inactivating mutation of the actin-depolymerizing cofactor Wdr1. This perturbation of actin polymerization leads to systemic autoinflammation that is reduced when IL-18 is deleted but not when IL-1 signaling is removed. Remarkably, inflammasome activation in mature macrophages is unaltered, but IL-18 production from monocytes is greatly exaggerated, and depletion of monocytes in vivo prevents the disease. Small-molecule inhibition of actin polymerization can remove potential danger signals from the system and prevents monocyte IL-18 production. Finally, we show that the inflammasome sensor of actin dynamics in this system requires caspase-1, apoptosis-associated speck-like protein containing a caspase recruitment domain, and the innate immune receptor pyrin. Previously, perturbation of actin polymerization by pathogens was shown to activate the pyrin inflammasome, so our data now extend this guard hypothesis to host-regulated actin-dependent processes and autoinflammatory disease. PMID:26008898

  8. Aberrant actin depolymerization triggers the pyrin inflammasome and autoinflammatory disease that is dependent on IL-18, not IL-1β.

    PubMed

    Kim, Man Lyang; Chae, Jae Jin; Park, Yong Hwan; De Nardo, Dominic; Stirzaker, Roslynn A; Ko, Hyun-Ja; Tye, Hazel; Cengia, Louise; DiRago, Ladina; Metcalf, Donald; Roberts, Andrew W; Kastner, Daniel L; Lew, Andrew M; Lyras, Dena; Kile, Benjamin T; Croker, Ben A; Masters, Seth L

    2015-06-01

    Gain-of-function mutations that activate the innate immune system can cause systemic autoinflammatory diseases associated with increased IL-1β production. This cytokine is activated identically to IL-18 by an intracellular protein complex known as the inflammasome; however, IL-18 has not yet been specifically implicated in the pathogenesis of hereditary autoinflammatory disorders. We have now identified an autoinflammatory disease in mice driven by IL-18, but not IL-1β, resulting from an inactivating mutation of the actin-depolymerizing cofactor Wdr1. This perturbation of actin polymerization leads to systemic autoinflammation that is reduced when IL-18 is deleted but not when IL-1 signaling is removed. Remarkably, inflammasome activation in mature macrophages is unaltered, but IL-18 production from monocytes is greatly exaggerated, and depletion of monocytes in vivo prevents the disease. Small-molecule inhibition of actin polymerization can remove potential danger signals from the system and prevents monocyte IL-18 production. Finally, we show that the inflammasome sensor of actin dynamics in this system requires caspase-1, apoptosis-associated speck-like protein containing a caspase recruitment domain, and the innate immune receptor pyrin. Previously, perturbation of actin polymerization by pathogens was shown to activate the pyrin inflammasome, so our data now extend this guard hypothesis to host-regulated actin-dependent processes and autoinflammatory disease.

  9. Sub-10 ns single-shot dynamic recording in holographic polymeric medium by nonlinear absorption using excited state absorption process

    NASA Astrophysics Data System (ADS)

    Kamada, Kenji; Satoh, Kazuyuki; Tanaka, Yoshito

    2016-09-01

    Optical recording by a single shot of an 8 ns laser pulse in a dye-doped holographic polymeric medium was demonstrated with a peak power as low as 71 W at a wavelength of 402 nm. Nonlinear absorption triggered by two-photon absorption and enhanced by the succeeding process allows high-speed recording corresponding to 125 Mbps (3.4 times the recording speed of a Blu-ray Disc). The preformed holographic grating in the medium enhanced the readout signal through diffraction, resulting in a signal-to-noise ratio of about 15 dB. The recording capacity was estimated at ca. 80 GB/side for 100 µm/side by recording 20 layers, but that of over TB/side class would be possible for optical optimization. Theoretically, it can be improved to 10 TB/side for 800 µm/side by recording 400 layers.

  10. Assessment of Actin FS and Actin FSL sensitivity to specific clotting factor deficiencies.

    PubMed

    Lawrie, A S; Kitchen, S; Purdy, G; Mackie, I J; Preston, F E; Machin, S J

    1998-06-01

    We present a two centre study designed to assess the sensitivity of Actin FS and Actin FSL to deficiencies of factor VIII, IX, XI or XII. The study was undertaken at two centres to avoid bias due to the investigations being undertaken on one analyser. Samples from patients with a factor VIII (n = 36, F VIII = < 1.0-50 iu/dl), factor IX (n = 22, F IX = 2-48 iu/dl), factor XI (n = 23, F XI = 5-50 u/dl) or a factor XII (n = 18, F XII = 1-50 u/dl) deficient state were studied. Activated partial thromboplastin times (APTT) were determined using two batches of Actin FS and of Actin FSL; comparison of APTT results between centres was facilitated by the conversion of clotting times to ratios (test divided by geometric mean normal clotting time). APTT ratios were considered to be elevated if greater than two standard deviations above the mean normal. The factor deficient status of each sample was verified by assaying all samples for factors VIII, IX, XI and XII. Clotting factor assays were performed on a Sysmex CA-1000 fitted with research software, which permitted the auto-dilution and testing of three serial dilution of both a reference preparation and each patient's sample. Assay results were calculated using parallel-line Bioassay principles. This procedure allowed for variation in clotting times due to the effect of temporal drift of any of the reagents within the assay system. Actin FS and Actin FSL demonstrate acceptable sensitivity to factor VIII deficiency, however, both reagents failed to detect a large proportion of factor XI (17.4% and 30.4% of samples, respectively) and factor XII (66.7% and 72.2%, respectively) deficiencies. The detection rate with Actin FSL for factor IX deficiency was also poor (36.4% not detected). As factor IX and XI deficiencies are both associated with haemorrhagic disorders, the inability of these reagents to detect such abnormalities gave cause for concern.

  11. Chain Reaction Polymerization.

    ERIC Educational Resources Information Center

    McGrath, James E.

    1981-01-01

    The salient features and importance of chain-reaction polymerization are discussed, including such topics as the thermodynamics of polymerization, free-radical polymerization kinetics, radical polymerization processes, copolymers, and free-radical chain, anionic, cationic, coordination, and ring-opening polymerizations. (JN)

  12. Boron nitride nanotube-mediated stimulation modulates F/G-actin ratio and mechanical properties of human dermal fibroblasts

    NASA Astrophysics Data System (ADS)

    Ricotti, Leonardo; das Neves, Ricardo Pires; Ciofani, Gianni; Canale, Claudio; Nitti, Simone; Mattoli, Virgilio; Mazzolai, Barbara; Ferreira, Lino; Menciassi, Arianna

    2014-02-01

    F/G-actin ratio modulation is known to have an important role in many cell functions and in the regulation of specific cell behaviors. Several attempts have been made in the latest decades to finely control actin production and polymerization, in order to promote certain cell responses. In this paper we demonstrate the possibility of modulating F/G-actin ratio and mechanical properties of normal human dermal fibroblasts by using boron nitride nanotubes dispersed in the culture medium and by stimulating them with ultrasound transducers. Increasing concentrations of nanotubes were tested with the cells, without any evidence of cytotoxicity up to 10 μg/ml concentration of nanoparticles. Cells treated with nanoparticles and ultrasound stimulation showed a significantly higher F/G-actin ratio in comparison with the controls, as well as a higher Young's modulus. Assessment of Cdc42 activity revealed that actin nucleation/polymerization pathways, involving Rho GTPases, are probably influenced by nanotube-mediated stimulation, but they do not play a primary role in the significant increase of F/G-actin ratio of treated cells, such effect being mainly due to actin overexpression.

  13. Dynamin-2 Regulates Fusion Pore Expansion and Quantal Release through a Mechanism that Involves Actin Dynamics in Neuroendocrine Chromaffin Cells

    PubMed Central

    González-Jamett, Arlek M.; Momboisse, Fanny; Guerra, María José; Ory, Stéphane; Báez-Matus, Ximena; Barraza, Natalia; Calco, Valerie; Houy, Sébastien; Couve, Eduardo; Neely, Alan; Martínez, Agustín D.; Gasman, Stéphane; Cárdenas, Ana M.

    2013-01-01

    Over the past years, dynamin has been implicated in tuning the amount and nature of transmitter released during exocytosis. However, the mechanism involved remains poorly understood. Here, using bovine adrenal chromaffin cells, we investigated whether this mechanism rely on dynamin’s ability to remodel actin cytoskeleton. According to this idea, inhibition of dynamin GTPase activity suppressed the calcium-dependent de novo cortical actin and altered the cortical actin network. Similarly, expression of a small interfering RNA directed against dynamin-2, an isoform highly expressed in chromaffin cells, changed the cortical actin network pattern. Disruption of dynamin-2 function, as well as the pharmacological inhibition of actin polymerization with cytochalasine-D, slowed down fusion pore expansion and increased the quantal size of individual exocytotic events. The effects of cytochalasine-D and dynamin-2 disruption were not additive indicating that dynamin-2 and F-actin regulate the late steps of exocytosis by a common mechanism. Together our data support a model in which dynamin-2 directs actin polymerization at the exocytosis site where both, in concert, adjust the hormone quantal release to efficiently respond to physiological demands. PMID:23940613

  14. Nucleus-associated actin in Amoeba proteus.

    PubMed

    Berdieva, Mariia; Bogolyubov, Dmitry; Podlipaeva, Yuliya; Goodkov, Andrew

    2016-10-01

    The presence, spatial distribution and forms of intranuclear and nucleus-associated cytoplasmic actin were studied in Amoeba proteus with immunocytochemical approaches. Labeling with different anti-actin antibodies and staining with TRITC-phalloidin and fluorescent deoxyribonuclease I were used. We showed that actin is abundant within the nucleus as well as in the cytoplasm of A. proteus cells. According to DNase I experiments, the predominant form of intranuclear actin is G-actin which is associated with chromatin strands. Besides, unpolymerized actin was shown to participate in organization of a prominent actin layer adjacent to the outer surface of nuclear envelope. No significant amount of F-actin was found in the nucleus. At the same time, the amoeba nucleus is enclosed in a basket-like structure formed by circumnuclear actin filaments and bundles connected with global cytoplasmic actin cytoskeleton. A supposed architectural function of actin filaments was studied by treatment with actin-depolymerizing agent latrunculin A. It disassembled the circumnuclear actin system, but did not affect the intranuclear chromatin structure. The results obtained for amoeba cells support the modern concept that actin is involved in fundamental nuclear processes that have evolved in the cells of multicellular organisms.

  15. Biokompatible Polymere

    NASA Astrophysics Data System (ADS)

    Ha, Suk-Woo; Wintermantel, Erich; Maier, Gerhard

    Der klinische Einsatz von synthetischen Polymeren begann in den 60-er Jahren in Form von Einwegartikeln, wie beispielsweise Spritzen und Kathetern, vor allem aufgrund der Tatsache, dass Infektionen infolge nicht ausreichender Sterilität der wiederverwendbaren Artikel aus Glas und metallischen Werkstoffen durch den Einsatz von sterilen Einwegartikeln signifikant reduziert werden konnten [1]. Die Einführung der medizinischen Einwegartikel aus Polymeren erfolgte somit nicht nur aus ökonomischen, sondern auch aus hygienischen Gründen. Wegen der steigenden Anzahl synthetischer Polymere und dem zunehmenden Bedarf an ärztlicher Versorgung reicht die Anwendung von Polymeren in der Medizin von preisgünstigen Einwegartikeln, die nur kurzzeitig intrakorporal eingesetzt werden, bis hin zu Implantaten, welche über eine längere Zeit grossen Beanspruchungen im menschlichen Körper ausgesetzt sind. Die steigende Verbreitung von klinisch eingesetzten Polymeren ist auf ihre einfache und preisgünstige Verarbeitbarkeit in eine Vielzahl von Formen und Geometrien sowie auf ihr breites Eigenschaftsspektrum zurückzuführen. Polymere werden daher in fast allen medizinischen Bereichen eingesetzt.

  16. Noisy Oscillations in the Actin Cytoskeleton of Chemotactic Amoeba

    NASA Astrophysics Data System (ADS)

    Negrete, Jose; Pumir, Alain; Hsu, Hsin-Fang; Westendorf, Christian; Tarantola, Marco; Beta, Carsten; Bodenschatz, Eberhard

    2016-09-01

    Biological systems with their complex biochemical networks are known to be intrinsically noisy. Here we investigate the dynamics of actin polymerization of amoeboid cells, which are close to the onset of oscillations. We show that the large phenotypic variability in the polymerization dynamics can be accurately captured by a generic nonlinear oscillator model in the presence of noise. We determine the relative role of the noise with a single dimensionless, experimentally accessible parameter, thus providing a quantitative description of the variability in a population of cells. Our approach, which rests on a generic description of a system close to a Hopf bifurcation and includes the effect of noise, can characterize the dynamics of a large class of noisy systems close to an oscillatory instability.

  17. Gelsolin, a protein that caps the barbed ends and severs actin filaments, enhances the actin-based motility of Listeria monocytogenes in host cells.

    PubMed

    Laine, R O; Phaneuf, K L; Cunningham, C C; Kwiatkowski, D; Azuma, T; Southwick, F S

    1998-08-01

    The actin-based motility of Listeria monocytogenes requires the addition of actin monomers to the barbed or plus ends of actin filaments. Immunofluorescence micrographs have demonstrated that gelsolin, a protein that both caps barbed ends and severs actin filaments, is concentrated directly behind motile bacteria at the junction between the actin filament rocket tail and the bacterium. In contrast, CapG, a protein that strictly caps actin filaments, fails to localize near intracellular Listeria. To explore the effect of increasing concentrations of gelsolin on bacterial motility, NIH 3T3 fibroblasts stably transfected with gelsolin cDNA were infected with Listeria. The C5 cell line containing 2.25 times control levels of gelsolin supported significantly higher velocities of bacterial movement than did control fibroblasts (mean +/- standard error of the mean, 0.09 +/- 0.003 micro(m)/s [n = 176] versus 0.05 +/- 0.003 micro(m)/s [n = 65]). The rate of disassembly of the Listeria-induced actin filament rocket tail was found to be independent of gelsolin content. Therefore, if increases in gelsolin content result in increases in Listeria-induced rocket tail assembly rates, a positive correlation between gelsolin content and tail length would be expected. BODIPY-phalloidin staining of four different stably transfected NIH 3T3 fibroblast cell lines confirmed this expectation (r = 0.92). Rocket tails were significantly longer in cells with a high gelsolin content. Microinjection of gelsolin 1/2 (consisting of the amino-terminal half of native gelsolin) also increased bacterial velocity by more than 2.2 times. Microinjection of CapG had no effect on bacterial movement. Cultured skin fibroblasts derived from gelsolin-null mice were capable of supporting intracellular Listeria motility at velocities comparable to those supported by wild-type skin fibroblasts. These experiments demonstrated that the surface of Listeria contains a polymerization zone that can block the barbed

  18. Boolean gates on actin filaments

    NASA Astrophysics Data System (ADS)

    Siccardi, Stefano; Tuszynski, Jack A.; Adamatzky, Andrew

    2016-01-01

    Actin is a globular protein which forms long polar filaments in the eukaryotic cytoskeleton. Actin networks play a key role in cell mechanics and cell motility. They have also been implicated in information transmission and processing, memory and learning in neuronal cells. The actin filaments have been shown to support propagation of voltage pulses. Here we apply a coupled nonlinear transmission line model of actin filaments to study interactions between voltage pulses. To represent digital information we assign a logical TRUTH value to the presence of a voltage pulse in a given location of the actin filament, and FALSE to the pulse's absence, so that information flows along the filament with pulse transmission. When two pulses, representing Boolean values of input variables, interact, then they can facilitate or inhibit further propagation of each other. We explore this phenomenon to construct Boolean logical gates and a one-bit half-adder with interacting voltage pulses. We discuss implications of these findings on cellular process and technological applications.

  19. Nuclear F-actin enhances the transcriptional activity of β-catenin by increasing its nuclear localization and binding to chromatin.

    PubMed

    Yamazaki, Shota; Yamamoto, Koji; de Lanerolle, Primal; Harata, Masahiko

    2016-04-01

    Actin plays multiple roles both in the cytoplasm and in the nucleus. Cytoplasmic actin, in addition to its structural role in the cytoskeleton, also contributes to the subcellular localization of transcription factors by interacting with them or their partners. The transcriptional cofactor β-catenin, which acts as an intracellular transducer of canonical Wnt signaling, indirectly associates with the cytoplasmic filamentous actin (F-actin). Recently, it has been observed that F-actin is transiently formed within the nucleus in response to serum stimulation and integrin signaling, and also during gene reprogramming. Despite these earlier observations, information about the function of nuclear F-actin is poorly defined. Here, by facilitating the accumulation of nuclear actin artificially, we demonstrate that polymerizing nuclear actin enhanced the nuclear accumulation and transcriptional function of β-catenin. Our results also show that the nuclear F-actin colocalizes with β-catenin and enhances the binding of β-catenin to the downstream target genes of the Wnt/β-catenin signaling pathway, including the genes for the cell cycle regulators c-myc and cyclin D, and the OCT4 gene. Nuclear F-actin itself also associated with these genes. Since Wnt/β-catenin signaling has important roles in cell differentiation and pluripotency, our observations suggest that nuclear F-actin formed during these biological processes is involved in regulating Wnt/β-catenin signaling.

  20. Self-organized DNA/F-actin gels: entangled networks of nematic domains with tunable density

    NASA Astrophysics Data System (ADS)

    Butler, John; Zribi, Olena; Smalyukh, Ivan; Hwee Lai, Ghee; Golestanian, Ramin; Angelini, Thomas; Wong, Gerard

    2008-03-01

    We examine mixtures of DNA and F-actin as a model system of like-charged rigid rods and flexible chains. Confocal microscopy reveals the formation of elongated nematic F-actin domains reticulated via defect-free vertices into a network, all embedded in a mesh of random DNA. Synchrotron x-ray scattering results indicate that the DNA mesh squeezes the F-actin domains into a nematic state via the osmotic pressure of uncondensed counterions, so that the inter-actin spacing within the domains decreases with increasing DNA concentration. These observations are consistent with arguments based on electrostatics and nematic elasticity.

  1. G-actin regulates rapid induction of actin nucleation by mDia1 to restore cellular actin polymers.

    PubMed

    Higashida, Chiharu; Suetsugu, Shiro; Tsuji, Takahiro; Monypenny, James; Narumiya, Shuh; Watanabe, Naoki

    2008-10-15

    mDia1 belongs to the formin family of proteins that share FH1 and FH2 domains. Although formins play a critical role in the formation of many actin-based cellular structures, the physiological regulation of formin-mediated actin assembly within the cell is still unknown. Here we show that cells possess an acute actin polymer restoration mechanism involving mDia1. By using single-molecule live-cell imaging, we found that several treatments including low-dose G-actin-sequestering drugs and unpolymerizable actin mutants activate mDia1 to initiate fast directional movement. The FH2 region, the core domain for actin nucleation, is sufficient to respond to latrunculin B (LatB) to increase its actin nucleation frequency. Simulation analysis revealed an unexpected paradoxical effect of LatB that leads to a several fold increase in free G-actin along with an increase in total G-actin. These results indicate that in cells, the actin nucleation frequency of mDia1 is enhanced not only by Rho, but also strongly through increased catalytic efficiency of the FH2 domain. Consistently, frequent actin nucleation by mDia1 was found around sites of vigorous actin disassembly. Another major actin nucleator, the Arp2/3 complex, was not affected by the G-actin increase induced by LatB. Taken together, we propose that transient accumulation of G-actin works as a cue to promote mDia1-catalyzed actin nucleation to execute rapid reassembly of actin filaments.

  2. Molecular Mechanical Differences between Isoforms of Contractile Actin in the Presence of Isoforms of Smooth Muscle Tropomyosin

    PubMed Central

    Hilbert, Lennart; Bates, Genevieve; Roman, Horia N.; Blumenthal, Jenna L.; Zitouni, Nedjma B.; Sobieszek, Apolinary; Mackey, Michael C.; Lauzon, Anne-Marie

    2013-01-01

    The proteins involved in smooth muscle's molecular contractile mechanism – the anti-parallel motion of actin and myosin filaments driven by myosin heads interacting with actin – are found as different isoforms. While their expression levels are altered in disease states, their relevance to the mechanical interaction of myosin with actin is not sufficiently understood. Here, we analyzed in vitro actin filament propulsion by smooth muscle myosin for -actin (A), -actin-tropomyosin- (A-Tm), -actin-tropomyosin- (A-Tm), -actin (A), -actin-tropomyosin- (A-Tm), and -actin-tropomoysin- (A-Tm). Actin sliding analysis with our specifically developed video analysis software followed by statistical assessment (Bootstrapped Principal Component Analysis) indicated that the in vitro motility of A, A, and A-Tm is not distinguishable. Compared to these three ‘baseline conditions’, statistically significant differences () were: A-Tm – actin sliding velocity increased 1.12-fold, A-Tm – motile fraction decreased to 0.96-fold, stop time elevated 1.6-fold, A-Tm – run time elevated 1.7-fold. We constructed a mathematical model, simulated actin sliding data, and adjusted the kinetic parameters so as to mimic the experimentally observed differences: A-Tm – myosin binding to actin, the main, and the secondary myosin power stroke are accelerated, A-Tm – mechanical coupling between myosins is stronger, A-Tm – the secondary power stroke is decelerated and mechanical coupling between myosins is weaker. In summary, our results explain the different regulatory effects that specific combinations of actin and smooth muscle tropomyosin have on smooth muscle actin-myosin interaction kinetics. PMID:24204225

  3. Interaction between Calcium and Actin in Guard Cell and Pollen Signaling Networks

    PubMed Central

    Chen, Dong-Hua; Acharya, Biswa R.; Liu, Wei; Zhang, Wei

    2013-01-01

    Calcium (Ca2+) plays important roles in plant growth, development, and signal transduction. It is a vital nutrient for plant physical design, such as cell wall and membrane, and also serves as a counter-cation for biochemical, inorganic, and organic anions, and more particularly, its concentration change in cytosol is a ubiquitous second messenger in plant physiological signaling in responses to developmental and environmental stimuli. Actin cytoskeleton is well known for its importance in cellular architecture maintenance and its significance in cytoplasmic streaming and cell division. In plant cell system, the actin dynamics is a process of polymerization and de-polymerization of globular actin and filamentous actin and that acts as an active regulator for calcium signaling by controlling calcium evoked physiological responses. The elucidation of the interaction between calcium and actin dynamics will be helpful for further investigation of plant cell signaling networks at molecular level. This review mainly focuses on the recent advances in understanding the interaction between the two aforementioned signaling components in two well-established model systems of plant, guard cell, and pollen. PMID:27137395

  4. Actin-dependence of the chloroplast cold positioning response in the liverwort Marchantia polymorpha L.

    PubMed

    Kimura, Shun; Kodama, Yutaka

    2016-01-01

    The subcellular positioning of chloroplasts can be changed by alterations in the environment such as light and temperature. For example, in leaf mesophyll cells, chloroplasts localize along anticlinal cell walls under high-intensity light, and along periclinal cell walls under low-intensity light. These types of positioning responses are involved in photosynthetic optimization. In light-mediated chloroplast positioning responses, chloroplasts move to the appropriate positions in an actin-dependent manner, although some exceptions also depend on microtubule. Even under low-intensity light, at low temperature (e.g., 5°C), chloroplasts localize along anticlinal cell walls; this phenomenon is termed chloroplast cold positioning. In this study, we analyzed whether chloroplast cold positioning is dependent on actin filaments and/or microtubules in the liverwort Marchantia polymorpha L. When liverwort cells were treated with drugs for the de-polymerization of actin filaments, chloroplast cold positioning was completely inhibited. In contrast, chloroplast cold positioning was not affected by treatment with a drug for the de-polymerization of microtubules. These observations indicate the actin-dependence of chloroplast cold positioning in M. polymorpha. Actin filaments during the chloroplast cold positioning response were visualized by using fluorescent probes based on fluorescent proteins in living liverwort cells, and thus, their behavior during the chloroplast cold positioning response was documented.

  5. Actin-dependence of the chloroplast cold positioning response in the liverwort Marchantia polymorpha L.

    PubMed Central

    Kimura, Shun

    2016-01-01

    The subcellular positioning of chloroplasts can be changed by alterations in the environment such as light and temperature. For example, in leaf mesophyll cells, chloroplasts localize along anticlinal cell walls under high-intensity light, and along periclinal cell walls under low-intensity light. These types of positioning responses are involved in photosynthetic optimization. In light-mediated chloroplast positioning responses, chloroplasts move to the appropriate positions in an actin-dependent manner, although some exceptions also depend on microtubule. Even under low-intensity light, at low temperature (e.g., 5°C), chloroplasts localize along anticlinal cell walls; this phenomenon is termed chloroplast cold positioning. In this study, we analyzed whether chloroplast cold positioning is dependent on actin filaments and/or microtubules in the liverwort Marchantia polymorpha L. When liverwort cells were treated with drugs for the de-polymerization of actin filaments, chloroplast cold positioning was completely inhibited. In contrast, chloroplast cold positioning was not affected by treatment with a drug for the de-polymerization of microtubules. These observations indicate the actin-dependence of chloroplast cold positioning in M. polymorpha. Actin filaments during the chloroplast cold positioning response were visualized by using fluorescent probes based on fluorescent proteins in living liverwort cells, and thus, their behavior during the chloroplast cold positioning response was documented. PMID:27703856

  6. Structural Analysis of Human Cofilin 2/Filamentous Actin Assemblies: Atomic-Resolution Insights from Magic Angle Spinning NMR Spectroscopy

    PubMed Central

    Yehl, Jenna; Kudryashova, Elena; Reisler, Emil; Kudryashov, Dmitri; Polenova, Tatyana

    2017-01-01

    Cellular actin dynamics is an essential element of numerous cellular processes, such as cell motility, cell division and endocytosis. Actin’s involvement in these processes is mediated by many actin-binding proteins, among which the cofilin family plays unique and essential role in accelerating actin treadmilling in filamentous actin (F-actin) in a nucleotide-state dependent manner. Cofilin preferentially interacts with older filaments by recognizing time-dependent changes in F-actin structure associated with the hydrolysis of ATP and release of inorganic phosphate (Pi) from the nucleotide cleft of actin. The structure of cofilin on F-actin and the details of the intermolecular interface remain poorly understood at atomic resolution. Here we report atomic-level characterization by magic angle spinning (MAS) NMR of the muscle isoform of human cofilin 2 (CFL2) bound to F-actin. We demonstrate that resonance assignments for the majority of atoms are readily accomplished and we derive the intermolecular interface between CFL2 and F-actin. The MAS NMR approach reported here establishes the foundation for atomic-resolution characterization of a broad range of actin-associated proteins bound to F-actin. PMID:28303963

  7. Bacterial Actins? An Evolutionary Perspective

    NASA Technical Reports Server (NTRS)

    Doolittle, Russell F.; York, Amanda L.

    2003-01-01

    According to the conventional wisdom, the existence of a cytoskeleton in eukaryotes and its absence in prokaryotes constitute a fundamental divide between the two domains of life. An integral part of the dogma is that a cytoskeleton enabled an early eukaryote to feed upon prokaryotes, a consequence of which was the occasional endosymbiosis and the eventual evolution of organelles. Two recent papers present compelling evidence that actin, one of the principal components of a cytoskeleton, has a homolog in Bacteria that behaves in many ways like eukaryotic actin. Sequence comparisons reveml that eukaryotic actin and the bacterial homolog (mreB protein), unlike many other proteins common to eukaryotes and Bacteria, have very different and more highly extended evolutionary histories.

  8. Structural complexity of filaments formed from the actin and tubulin folds

    PubMed Central

    Jiang, Shimin; Ghoshdastider, Umesh; Narita, Akihiro; Popp, David

    2016-01-01

    ABSTRACT From yeast to man, an evolutionary distance of 1.3 billion years, the F-actin filament structure has been conserved largely in line with the 94% sequence identity. The situation is entirely different in bacteria. In comparison to eukaryotic actins, the bacterial actin-like proteins (ALPs) show medium to low levels of sequence identity. This is extrem