Science.gov

Sample records for actin-based motor protein

  1. Direct interaction of microtubule- and actin-based transport motors

    NASA Technical Reports Server (NTRS)

    Huang, J. D.; Brady, S. T.; Richards, B. W.; Stenolen, D.; Resau, J. H.; Copeland, N. G.; Jenkins, N. A.

    1999-01-01

    The microtubule network is thought to be used for long-range transport of cellular components in animal cells whereas the actin network is proposed to be used for short-range transport, although the mechanism(s) by which this transport is coordinated is poorly understood. For example, in sea urchins long-range Ca2+-regulated transport of exocytotic vesicles requires a microtubule-based motor, whereas an actin-based motor is used for short-range transport. In neurons, microtubule-based kinesin motor proteins are used for long-range vesicular transport but microtubules do not extend into the neuronal termini, where actin filaments form the cytoskeletal framework, and kinesins are rapidly degraded upon their arrival in neuronal termini, indicating that vesicles may have to be transferred from microtubules to actin tracks to reach their final destination. Here we show that an actin-based vesicle-transport motor, MyoVA, can interact directly with a microtubule-based transport motor, KhcU. As would be expected if these complexes were functional, they also contain kinesin light chains and the localization of MyoVA and KhcU overlaps in the cell. These results indicate that cellular transport is, in part, coordinated through the direct interaction of different motor molecules.

  2. Multiple actin-based motor genes in Dictyostelium.

    PubMed Central

    Titus, M A; Warrick, H M; Spudich, J A

    1989-01-01

    Dictyostelium cells, devoid of conventional myosin, display a variety of motile activities, consistent with the presence of other molecular motors. The Dictyostelium genome was probed at low stringency with a gene fragment containing the conserved conventional myosin head domain sequences to identify other actin-based motors that may play a role in the observed motility of these mutant cells. One gene (abmA) has been characterized and encodes a polypeptide of approximately 135 kDa with a head region homologous to other myosin head sequences and a tail region that is not predicted to form either an alpha-helical structure of coiled-coil interactions. Comparisons of the amino acid sequences of the tail regions of abmA, Dictyostelium myosin I, and Acanthamoeba myosins IB and IL reveal an area of sequence similarity in the amino terminal half of the tail that may be a membrane-binding domain. The abmA gene, however, does not contain an unusual Gly, Pro, Ala stretch typical of many of the previously described myosin Is. Two additional genes (abmB and abmC) were identified using this approach and also found to contain sequences that encode proteins with typical conserved myosin head sequences. The abm genes may be part of a large family of actin-based motors that play various roles in diverse aspects of cellular motility. Images PMID:2519618

  3. Actin-based motility propelled by molecular motors

    NASA Astrophysics Data System (ADS)

    Upadyayula, Sai Pramod; Rangarajan, Murali

    2012-09-01

    Actin-based motility of Listeria monocytogenes propelled by filament end-tracking molecular motors has been simulated. Such systems may act as potential nanoscale actuators and shuttles useful in sorting and sensing biomolecules. Filaments are modeled as three-dimensional elastic springs distributed on one end of the capsule and persistently attached to the motile bacterial surface through an end-tracking motor complex. Filament distribution is random, and monomer concentration decreases linearly as a function of position on the bacterial surface. Filament growth rate increases with monomer concentration but decreases with the extent of compression. The growing filaments exert push-pull forces on the bacterial surface. In addition to forces, torques arise due to two factors—distribution of motors on the bacterial surface, and coupling of torsion upon growth due to the right-handed helicity of F-actin—causing the motile object to undergo simultaneous translation and rotation. The trajectory of the bacterium is simulated by performing a force and torque balance on the bacterium. All simulations use a fixed value of torsion. Simulations show strong alignment of the filaments and the long axis of the bacterium along the direction of motion. In the absence of torsion, the bacterial surface essentially moves along the direction of the long axis. When a small amount of the torsion is applied to the bacterial surface, the bacterium is seen to move in right-handed helical trajectories, consistent with experimental observations.

  4. Clamped-filament elongation model for actin-based motors.

    PubMed Central

    Dickinson, Richard B; Purich, Daniel L

    2002-01-01

    Although actin-based motility drives cell crawling and intracellular locomotion of organelles and certain pathogens, the underlying mechanism of force generation remains a mystery. Recent experiments demonstrated that Listeria exhibit episodes of 5.4-nm stepwise motion corresponding to the periodicity of the actin filament subunits, and extremely small positional fluctuations during the intermittent pauses [S. C. Kuo and J. L. McGrath. 2000. Nature. 407:1026-1029]. These findings suggest that motile bacteria remain firmly bound to actin filament ends as they elongate, a behavior that appears to rule out previous models for actin-based motility. We propose and analyze a new mechanochemical model (called the "Lock, Load & Fire" mechanism) for force generation by means of affinity-modulated, clamped-filament elongation. During the locking step, the filament's terminal ATP-containing subunit binds tightly to a clamp situated on the surface of a motile object; in the loading step, actin.ATP monomer(s) bind to the filament end, an event that triggers the firing step, wherein ATP hydrolysis on the clamped subunit attenuates the filament's affinity for the clamp. This last step initiates translocation of the new ATP-containing terminus to the clamp, whereupon another cycle begins anew. This model explains how surface-tethered filaments can grow while exerting flexural or tensile force on the motile surface. Moreover, stochastic simulations of the model reproduce the signature motions of Listeria. This elongation motor, which we term actoclampin, exploits actin's intrinsic ATPase activity to provide a simple, high-fidelity enzymatic reaction cycle for force production that does not require elongating filaments to dissociate from the motile surface. This mechanism may operate whenever actin polymerization is called upon to generate the forces that drive cell crawling or intracellular organelle motility. PMID:11806905

  5. Two kinesin-like proteins mediate actin-based chloroplast movement in Arabidopsis thaliana.

    PubMed

    Suetsugu, Noriyuki; Yamada, Noboru; Kagawa, Takatoshi; Yonekura, Hisashi; Uyeda, Taro Q P; Kadota, Akeo; Wada, Masamitsu

    2010-05-11

    Organelle movement is essential for efficient cellular function in eukaryotes. Chloroplast photorelocation movement is important for plant survival as well as for efficient photosynthesis. Chloroplast movement generally is actin dependent and mediated by blue light receptor phototropins. In Arabidopsis thaliana, phototropins mediate chloroplast movement by regulating short actin filaments on chloroplasts (cp-actin filaments), and the chloroplast outer envelope protein CHUP1 is necessary for cp-actin filament accumulation. However, other factors involved in cp-actin filament regulation during chloroplast movement remain to be determined. Here, we report that two kinesin-like proteins, KAC1 and KAC2, are essential for chloroplasts to move and anchor to the plasma membrane. A kac1 mutant showed severely impaired chloroplast accumulation and slow avoidance movement. A kac1kac2 double mutant completely lacked chloroplast photorelocation movement and showed detachment of chloroplasts from the plasma membrane. KAC motor domains are similar to those of the kinesin-14 subfamily (such as Ncd and Kar3) but do not have detectable microtubule-binding activity. The C-terminal domain of KAC1 could interact with F-actin in vitro. Instead of regulating microtubules, KAC proteins mediate chloroplast movement via cp-actin filaments. We conclude that plants have evolved a unique mechanism to regulate actin-based organelle movement using kinesin-like proteins.

  6. Analysis of persistence during intracellular actin-based transport mediated by molecular motors

    NASA Astrophysics Data System (ADS)

    Pallavicini, C.; Despósito, M. A.; Levi, V.; Bruno, L.

    2010-09-01

    The displacement of particles or probes in the cell cytoplasm as a function of time is characterized by different anomalous diffusion regimes. The transport of large cargoes, such as organelles, vesicles or large proteins, involves the action of ATP-consuming molecular motors. We investigate the motion of pigment organelles driven by myosin-V motors in Xenopus laevis melanocytes using a high spatio-temporal resolution tracking technique. By analyzing the turning angles (phi) of the obtained 2D trajectories as a function of the time lag, we determine the critical time of the transition between anticorrelated and directed motion as the time when the turning angles begin to concentrate around phi = 0. We relate this transition with the crossover from subdiffusive to superdiffusive behavior observed in a previous work [5]. We also assayed the properties of the trajectories in cells with inhibited myosin activity, and we can compare the results in the presence and absence of active motors.

  7. Reconstitution of actin-based motility of Listeria and Shigella using pure proteins

    NASA Astrophysics Data System (ADS)

    Loisel, Thomas P.; Boujemaa, Rajaa; Pantaloni, Dominique; Carlier, Marie-France

    1999-10-01

    Actin polymerization is essential for cell locomotion and is thought to generate the force responsible for cellular protrusions. The Arp2/3 complex is required to stimulate actin assembly at the leading edge in response to signalling. The bacteria Listeria and Shigella bypass the signalling pathway and harness the Arp2/3 complex to induce actin assembly and to propel themselves in living cells. However, the Arp2/3 complex alone is insufficient to promote movement. Here we have used pure components of the actin cytoskeleton to reconstitute sustained movement in Listeria and Shigella in vitro. Actin-based propulsion is driven by the free energy released by ATP hydrolysis linked to actin polymerization, and does not require myosin. In addition to actin and activated Arp2/3 complex, actin depolymerizing factor (ADF, or cofilin) and capping protein are also required for motility as they maintain a high steady-state level of G-actin, which controls the rate of unidirectional growth of actin filaments at the surface of the bacterium. The movement is more effective when profilin, α-actinin and VASP (for Listeria) are also included. These results have implications for our understanding of the mechanism of actin-based motility in cells.

  8. Transition to superdiffusive behavior in intracellular actin-based transport mediated by molecular motors

    NASA Astrophysics Data System (ADS)

    Bruno, L.; Levi, V.; Brunstein, M.; Despósito, M. A.

    2009-07-01

    Intracellular transport of large cargoes, such as organelles, vesicles, or large proteins, is a complex dynamical process that involves the interplay of adenosine triphosphate-consuming molecular motors, cytoskeleton filaments, and the viscoelastic cytoplasm. In this work we investigate the motion of pigment organelles (melanosomes) driven by myosin-V motors in Xenopus laevis melanocytes using a high-spatio-temporal resolution tracking technique. By analyzing the obtained trajectories, we show that the melanosomes mean-square displacement undergoes a transition from a subdiffusive to a superdiffusive behavior. A stochastic theoretical model, which explicitly considers the collective action of the molecular motors, is introduced to generalize the interpretation of our data. Starting from a generalized Langevin equation, we derive an analytical expression for the mean square displacement, which also takes into account the experimental noise. By fitting theoretical expressions to experimental data we were able to discriminate the exponents that characterize the passive and active contributions to the dynamics and to estimate the “global” motor forces correctly. Then, our model gives a quantitative description of active transport in living cells with a reduced number of parameters.

  9. Role of Proteins of the Ena/VASP Family in Actin-based Motility of Listeria monocytogenes

    PubMed Central

    Laurent, Valérie; Loisel, Thomas P.; Harbeck, Birgit; Wehman, Ann; Gröbe, Lothar; Jockusch, Brigitte M.; Wehland, Jürgen; Gertler, Frank B.; Carlier, Marie-France

    1999-01-01

    Intracellular propulsion of Listeria monocytogenes is the best understood form of motility dependent on actin polymerization. We have used in vitro motility assays of Listeria in platelet and brain extracts to elucidate the function of the focal adhesion proteins of the Ena (Drosophila Enabled)/VASP (vasodilator-stimulated phosphoprotein) family in actin-based motility. Immunodepletion of VASP from platelet extracts and of Evl (Ena/VASP-like protein) from brain extracts of Mena knockout (−/−) mice combined with add-back of recombinant (bacterial or eukaryotic) VASP and Evl show that VASP, Mena, and Evl play interchangeable roles and are required to transform actin polymerization into active movement and propulsive force. The EVH1 (Ena/VASP homology 1) domain of VASP is in slow association–dissociation equilibrium high-affinity binding to the zyxin-homologous, proline-rich region of ActA. VASP also interacts with F-actin via its COOH-terminal EVH2 domain. Hence VASP/ Ena/Evl link the bacterium to the actin tail, which is required for movement. The affinity of VASP for F-actin is controlled by phosphorylation of serine 157 by cAMP-dependent protein kinase. Phospho-VASP binds with high affinity (0.5 × 108 M−1); dephospho-VASP binds 40-fold less tightly. We propose a molecular ratchet model for insertional polymerization of actin, within which frequent attachment–detachment of VASP to F-actin allows its sliding along the growing filament. PMID:10087267

  10. The Genetic Engineering of Motor Proteins

    NASA Astrophysics Data System (ADS)

    Hartz, Rachael M.

    Molecular motors are a remarkable feature within living organisms that are responsible for directional mechanical motion, which is driven by adenosine triphosphate (ATP) hydrolysis. Actin-binding molecular motors are of specific interest in the field of nanotechnology as filamentous actin is capable of carrying cargo, such as quantum dots, while it is translocated along a motor coated surface. The binding regions of motor proteins, which are known to interact with actin, such as Myosin, have been thoroughly examined and identified. Rapid genetic engineering of the ATP-hydrolyzing enzyme, adenosine kinase, to incorporate these binding regions is possible through the use of site- directed mutagenesis. The sequences, which were mutated into the ADK wt gene, were incorporated in an unstructured loop region. During the phosphate transfer, the mutants switch between open and closed conformational states. The binding affinity of the sequences to the actin is altered during this conformational switch, thus causing the motor to move along actin filament. The ADK mutants and their interaction with filamentous actin was monitored by an in vitro motility assay. Two different mutants of ADK were found to have retained enzymatic functionality after the mutagenesis as well as function as actin-based motor proteins.

  11. Gelsolin, a protein that caps the barbed ends and severs actin filaments, enhances the actin-based motility of Listeria monocytogenes in host cells.

    PubMed

    Laine, R O; Phaneuf, K L; Cunningham, C C; Kwiatkowski, D; Azuma, T; Southwick, F S

    1998-08-01

    The actin-based motility of Listeria monocytogenes requires the addition of actin monomers to the barbed or plus ends of actin filaments. Immunofluorescence micrographs have demonstrated that gelsolin, a protein that both caps barbed ends and severs actin filaments, is concentrated directly behind motile bacteria at the junction between the actin filament rocket tail and the bacterium. In contrast, CapG, a protein that strictly caps actin filaments, fails to localize near intracellular Listeria. To explore the effect of increasing concentrations of gelsolin on bacterial motility, NIH 3T3 fibroblasts stably transfected with gelsolin cDNA were infected with Listeria. The C5 cell line containing 2.25 times control levels of gelsolin supported significantly higher velocities of bacterial movement than did control fibroblasts (mean +/- standard error of the mean, 0.09 +/- 0.003 micro(m)/s [n = 176] versus 0.05 +/- 0.003 micro(m)/s [n = 65]). The rate of disassembly of the Listeria-induced actin filament rocket tail was found to be independent of gelsolin content. Therefore, if increases in gelsolin content result in increases in Listeria-induced rocket tail assembly rates, a positive correlation between gelsolin content and tail length would be expected. BODIPY-phalloidin staining of four different stably transfected NIH 3T3 fibroblast cell lines confirmed this expectation (r = 0.92). Rocket tails were significantly longer in cells with a high gelsolin content. Microinjection of gelsolin 1/2 (consisting of the amino-terminal half of native gelsolin) also increased bacterial velocity by more than 2.2 times. Microinjection of CapG had no effect on bacterial movement. Cultured skin fibroblasts derived from gelsolin-null mice were capable of supporting intracellular Listeria motility at velocities comparable to those supported by wild-type skin fibroblasts. These experiments demonstrated that the surface of Listeria contains a polymerization zone that can block the barbed

  12. Mechanism of Actin-Based Motility

    NASA Astrophysics Data System (ADS)

    Pantaloni, Dominique; Le Clainche, Christophe; Carlier, Marie-France

    2001-05-01

    Spatially controlled polymerization of actin is at the origin of cell motility and is responsible for the formation of cellular protrusions like lamellipodia. The pathogens Listeria monocytogenes and Shigella flexneri, which undergo actin-based propulsion, are acknowledged models of the leading edge of lamellipodia. Actin-based motility of the bacteria or of functionalized microspheres can be reconstituted in vitro from only five pure proteins. Movement results from the regulated site-directed treadmilling of actin filaments, consistent with observations of actin dynamics in living motile cells and with the biochemical properties of the components of the synthetic motility medium.

  13. Neural Wiskott-Aldrich syndrome protein is implicated in the actin-based motility of Shigella flexneri.

    PubMed Central

    Suzuki, T; Miki, H; Takenawa, T; Sasakawa, C

    1998-01-01

    Shigella, the causative agent of bacillary dysentery, is capable of directing its own movement in the cytoplasm of infected epithelial cells. The bacterial surface protein VirG recruits host components mediating actin polymerization, which is thought to serve as the propulsive force. Here, we show that neural Wiskott-Aldrich syndrome protein (N-WASP), which is a critical target for filopodium formation downstream of Cdc42, is required for assembly of the actin tail generated by intracellular S.flexneri. N-WASP accumulates at the front of the actin tail and is capable of interacting with VirG in vitro and in vivo, a phenomenon that is not observed in intracellular Listeria monocytogenes. The verprolin-homology region in N-WASP was required for binding to the glycine-rich repeats domain of VirG, an essential domain for recruitment of F-actin on intracellular S.flexneri. Overexpression of a dominant-negative N-WASP mutant greatly inhibited formation of the actin tail by intracellular S.flexneri. Furthermore, depletion of N-WASP from Xenopus egg extracts shut off Shigella actin tail assembly, and this was restored upon addition of N-WASP protein, suggesting that N-WASP is a critical host factor for the assembly of the actin tail by intracellular Shigella. PMID:9582270

  14. Motor proteins 1: kinesins.

    PubMed

    Bloom, G S; Endow, S A

    1995-01-01

    Progress regarding the kinesins is now being made at a rapid and accelerating rate. The in vivo-functions, and biophysical and enzymatic properties of kinesin itself are being explored at ever increasing levels of detail. The kinesin-related proteins now number several dozen, and although more is known about primary structure than function for most of the proteins, this trend is already reversing. For example, knowledge about the kinesin-related protein, ncd, is expanding rapidly, and more is already known about its three-dimensional structure than is known for kinesin heavy chain. This volume presents a comprehensive review of the major published works on kinesin and kinesin-related proteins. Hopefully, this manuscript will complement other recent review articles [17, 20, 25, 37, 60-62, 67, 69, 75, 85-88, 231, 233, 238, 244, 269-271, 281, 282, 292] or books [49, 227, 293] that have focused on more selective aspects of the kinesin family, or have been aimed more generally at MT motor proteins. In line with the stated purpose of the Protein Profile series, annual updates of the review on the kinesins are planned for at least the next few years.

  15. Physics of protein motility and motor proteins

    NASA Astrophysics Data System (ADS)

    Kolomeisky, Anatoly B.

    2013-09-01

    Motor proteins are enzymatic molecules that transform chemical energy into mechanical motion and work. They are critically important for supporting various cellular activities and functions. In the last 15 years significant progress in understanding the functioning of motor proteins has been achieved due to revolutionary breakthroughs in single-molecule experimental techniques and strong advances in theoretical modelling. However, microscopic mechanisms of protein motility are still not well explained, and the collective efforts of many scientists are needed in order to solve these complex problems. In this special section the reader will find the latest advances on the difficult road to mapping motor proteins dynamics in various systems. Recent experimental developments have allowed researchers to monitor and to influence the activity of single motor proteins with a high spatial and temporal resolution. It has stimulated significant theoretical efforts to understand the non-equilibrium nature of protein motility phenomena. The latest results from all these advances are presented and discussed in this special section. We would like to thank the scientists from all over the world who have reported their latest research results for this special section. We are also grateful to the staff and editors of Journal of Physics: Condensed Matter for their invaluable help in handling all the administrative and refereeing activities. The field of motor proteins and protein motility is fast moving, and we hope that this collection of articles will be a useful source of information in this highly interdisciplinary area. Physics of protein motility and motor proteins contents Physics of protein motility and motor proteinsAnatoly B Kolomeisky Identification of unique interactions between the flexible linker and the RecA-like domains of DEAD-box helicase Mss116 Yuan Zhang, Mirkó Palla, Andrew Sun and Jung-Chi Liao The load dependence of the physical properties of a molecular motor

  16. Diffusion Rate Limitations in Actin-Based Propulsion of Hard and Deformable Particles

    PubMed Central

    Dickinson, Richard B.; Purich, Daniel L.

    2006-01-01

    The mechanism by which actin polymerization propels intracellular vesicles and invasive microorganisms remains an open question. Several recent quantitative studies have examined propulsion of biomimetic particles such as polystyrene microspheres, phospholipid vesicles, and oil droplets. In addition to allowing quantitative measurement of parameters such as the dependence of particle speed on its size, these systems have also revealed characteristic behaviors such a saltatory motion of hard particles and oscillatory deformation of soft particles. Such measurements and observations provide tests for proposed mechanisms of actin-based motility. In the actoclampin filament end-tracking motor model, particle-surface-bound filament end-tracking proteins are involved in load-insensitive processive insertion of actin subunits onto elongating filament plus-ends that are persistently tethered to the surface. In contrast, the tethered-ratchet model assumes working filaments are untethered and the free-ended filaments grow as thermal ratchets in a load-sensitive manner. This article presents a model for the diffusion and consumption of actin monomers during actin-based particle propulsion to predict the monomer concentration field around motile particles. The results suggest that the various behaviors of biomimetic particles, including dynamic saltatory motion of hard particles and oscillatory vesicle deformations, can be quantitatively and self-consistently explained by load-insensitive, diffusion-limited elongation of (+)-end-tethered actin filaments, consistent with predictions of the actoclampin filament-end tracking mechanism. PMID:16731556

  17. Actin-based propulsion of a microswimmer.

    PubMed

    Leshansky, A M

    2006-07-01

    A simple hydrodynamic model of actin-based propulsion of microparticles in dilute cell-free cytoplasmic extracts is presented. Under the basic assumption that actin polymerization at the particle surface acts as a force dipole, pushing apart the load and the free (nonanchored) actin tail, the propulsive velocity of the microparticle is determined as a function of the tail length, porosity, and particle shape. The anticipated velocities of the cargo displacement and the rearward motion of the tail are in good agreement with recently reported results of biomimetic experiments. A more detailed analysis of the particle-tail hydrodynamic interaction is presented and compared to the prediction of the simplified model.

  18. Bacillus anthracis Edema Toxin Impairs Neutrophil Actin-Based Motility▿

    PubMed Central

    Szarowicz, Sarah E.; During, Russell L.; Li, Wei; Quinn, Conrad P.; Tang, Wei-Jen; Southwick, Frederick S.

    2009-01-01

    Inhalation anthrax results in high-grade bacteremia and is accompanied by a delay in the rise of the peripheral polymorphonuclear neutrophil (PMN) count and a paucity of PMNs in the infected pleural fluid and mediastinum. Edema toxin (ET) is one of the major Bacillus anthracis virulence factors and consists of the adenylate cyclase edema factor (EF) and protective antigen (PA). Relatively low concentrations of ET (100 to 500 ng/ml of PA and EF) significantly impair human PMN chemokinesis, chemotaxis, and ability to polarize. These changes are accompanied by a reduction in chemoattractant-stimulated PMN actin assembly. ET also causes a significant decrease in Listeria monocytogenes intracellular actin-based motility within HeLa cells. These defects in actin assembly are accompanied by a >50-fold increase in intracellular cyclic AMP and a >4-fold increase in the phosphorylation of protein kinase A. We have previously shown that anthrax lethal toxin (LT) also impairs neutrophil actin-based motility (R. L. During, W. Li, B. Hao, J. M. Koenig, D. S. Stephens, C. P. Quinn, and F. S. Southwick, J. Infect. Dis. 192:837-845, 2005), and we now find that LT combined with ET causes an additive inhibition of PMN chemokinesis, polarization, chemotaxis, and FMLP (N-formyl-met-leu-phe)-induced actin assembly. We conclude that ET alone or combined with LT impairs PMN actin assembly, resulting in paralysis of PMN chemotaxis. PMID:19349425

  19. Biomimetic systems for studying actin-based motility.

    PubMed

    Upadhyaya, Arpita; van Oudenaarden, Alexander

    2003-09-16

    Actin polymerization provides a major driving force for eukaryotic cell motility. Successive intercalation of monomeric actin subunits between the plasma membrane and the filamentous actin network results in protrusions of the membrane enabling the cell to move or to change shape. One of the challenges in understanding eukaryotic cell motility is to dissect the elementary biochemical and biophysical steps that link actin polymerization to mechanical force generation. Recently, significant progress was made using biomimetic, in vitro systems that are inspired by the actin-based motility of bacterial pathogens such as Listeria monocytogenes. Polystyrene microspheres and synthetic phospholipid vesicles coated with proteins that initiate actin polymerization display motile behavior similar to Listeria, mimicking the leading edge of lamellipodia and filopodia. A major advantage of these biomimetic systems is that both biochemical and physical parameters can be controlled precisely. These systems provide a test bed for validating theoretical models on force generation and polarity establishment resulting from actin polymerization. In this review, we discuss recent experimental progress using biomimetic systems propelled by actin polymerization and discuss these results in the light of recent theoretical models on actin-based motility.

  20. Mechanics model for actin-based motility

    NASA Astrophysics Data System (ADS)

    Lin, Yuan

    2009-02-01

    We present here a mechanics model for the force generation by actin polymerization. The possible adhesions between the actin filaments and the load surface, as well as the nucleation and capping of filament tips, are included in this model on top of the well-known elastic Brownian ratchet formulation. A closed form solution is provided from which the force-velocity relationship, summarizing the mechanics of polymerization, can be drawn. Model predictions on the velocity of moving beads driven by actin polymerization are consistent with experiment observations. This model also seems capable of explaining the enhanced actin-based motility of Listeria monocytogenes and beads by the presence of Vasodilator-stimulated phosphoprotein, as observed in recent experiments.

  1. Mechanics model for actin-based motility.

    PubMed

    Lin, Yuan

    2009-02-01

    We present here a mechanics model for the force generation by actin polymerization. The possible adhesions between the actin filaments and the load surface, as well as the nucleation and capping of filament tips, are included in this model on top of the well-known elastic Brownian ratchet formulation. A closed form solution is provided from which the force-velocity relationship, summarizing the mechanics of polymerization, can be drawn. Model predictions on the velocity of moving beads driven by actin polymerization are consistent with experiment observations. This model also seems capable of explaining the enhanced actin-based motility of Listeria monocytogenes and beads by the presence of Vasodilator-stimulated phosphoprotein, as observed in recent experiments.

  2. Listeria's right-handed helical rocket-tail trajectories: mechanistic implications for force generation in actin-based motility.

    PubMed

    Zeile, William L; Zhang, Fangliang; Dickinson, Richard B; Purich, Daniel L

    2005-02-01

    Listeria monocytogenes forms right-handed helical rocket tail trajectories during actin-based motility in cell-free extracts, and this stereochemical feature is consistent with actoclampin's affinity-modulated, clamped-filament elongation model [Dickinson and Purich, 2002: Biophys J 82:605-617]. In that mechanism, right-handed torque is generated by an end-tracking molecular motor, each comprised of a filament barbed end and clamping protein that processively traces the right-handed helix of its filament partner. By contrast, torque is not a predicted property of those models (e.g., elastic propulsion, elastic Brownian ratchet, tethered ratchet, and insertional polymerization models) requiring filament barbed ends to depart/detach from the motile object's surface during/after each monomer-addition step. Helical trajectories also explain why Listeria undergoes longitudinal-axis rotation on a length-scale matching the helical periodicity of Listeria's rocket tails.

  3. Villin severing activity enhances actin-based motility in vivo.

    PubMed

    Revenu, Céline; Courtois, Matthieu; Michelot, Alphée; Sykes, Cécile; Louvard, Daniel; Robine, Sylvie

    2007-03-01

    Villin, an actin-binding protein associated with the actin bundles that support microvilli, bundles, caps, nucleates, and severs actin in a calcium-dependant manner in vitro. We hypothesized that the severing activity of villin is responsible for its reported role in enhancing cell plasticity and motility. To test this hypothesis, we chose a loss of function strategy and introduced mutations in villin based on sequence comparison with CapG. By pyrene-actin assays, we demonstrate that this mutant has a strongly reduced severing activity, whereas nucleation and capping remain unaffected. The bundling activity and the morphogenic effects of villin in cells are also preserved in this mutant. We thus succeeded in dissociating the severing from the three other activities of villin. The contribution of villin severing to actin dynamics is analyzed in vivo through the actin-based movement of the intracellular bacteria Shigella flexneri in cells expressing villin and its severing variant. The severing mutations abolish the gain of velocity induced by villin. To further analyze this effect, we reconstituted an in vitro actin-based bead movement in which the usual capping protein is replaced by either the wild type or the severing mutant of villin. Confirming the in vivo results, villin-severing activity enhances the velocity of beads by more than two-fold and reduces the density of actin in the comets. We propose a model in which, by severing actin filaments and capping their barbed ends, villin increases the concentration of actin monomers available for polymerization, a mechanism that might be paralleled in vivo when an enterocyte undergoes an epithelio-mesenchymal transition.

  4. Villin Severing Activity Enhances Actin-based Motility In Vivo

    PubMed Central

    Revenu, Céline; Courtois, Matthieu; Michelot, Alphée; Sykes, Cécile; Louvard, Daniel

    2007-01-01

    Villin, an actin-binding protein associated with the actin bundles that support microvilli, bundles, caps, nucleates, and severs actin in a calcium-dependant manner in vitro. We hypothesized that the severing activity of villin is responsible for its reported role in enhancing cell plasticity and motility. To test this hypothesis, we chose a loss of function strategy and introduced mutations in villin based on sequence comparison with CapG. By pyrene-actin assays, we demonstrate that this mutant has a strongly reduced severing activity, whereas nucleation and capping remain unaffected. The bundling activity and the morphogenic effects of villin in cells are also preserved in this mutant. We thus succeeded in dissociating the severing from the three other activities of villin. The contribution of villin severing to actin dynamics is analyzed in vivo through the actin-based movement of the intracellular bacteria Shigella flexneri in cells expressing villin and its severing variant. The severing mutations abolish the gain of velocity induced by villin. To further analyze this effect, we reconstituted an in vitro actin-based bead movement in which the usual capping protein is replaced by either the wild type or the severing mutant of villin. Confirming the in vivo results, villin-severing activity enhances the velocity of beads by more than two-fold and reduces the density of actin in the comets. We propose a model in which, by severing actin filaments and capping their barbed ends, villin increases the concentration of actin monomers available for polymerization, a mechanism that might be paralleled in vivo when an enterocyte undergoes an epithelio-mesenchymal transition. PMID:17182858

  5. Disruption of the Rickettsia rickettsii Sca2 autotransporter inhibits actin-based motility.

    PubMed

    Kleba, Betsy; Clark, Tina R; Lutter, Erika I; Ellison, Damon W; Hackstadt, Ted

    2010-05-01

    Rickettsii rickettsii, the etiologic agent of Rocky Mountain spotted fever, replicates within the cytosol of infected cells and uses actin-based motility to spread inter- and intracellularly. Although the ultrastructure of the actin tail and host proteins associated with it are distinct from those of Listeria or Shigella, comparatively little is known regarding the rickettsial proteins involved in its organization. Here, we have used random transposon mutagenesis of R. rickettsii to generate a small-plaque mutant that is defective in actin-based motility and does not spread directly from cell to cell as is characteristic of spotted fever group rickettsiae. The transposon insertion site of this mutant strain was within Sca2, a member of a family of large autotransporter proteins. Sca2 exhibits several features suggestive of its apparent role in actin-based motility. It displays an N-terminal secretory signal peptide, a C-terminal predicted autotransporter domain, up to four predicted Wasp homology 2 (WH2) domains, and two proline-rich domains, one with similarity to eukaryotic formins. In a guinea pig model of infection, the Sca2 mutant did not elicit fever, suggesting that Sca2 and actin-based motility are virulence factors of spotted fever group rickettsiae.

  6. How Linear Motor Proteins Work

    NASA Astrophysics Data System (ADS)

    Oiwa, K.; Manstein, D. J.

    Most animals perform sophisticated forms of movement such as walking, running, flying and swimming using their skeletal muscles. Although directed movement is not generally associated with plants, cytoplasmic streaming in plant cells can reach velocities greater than 50 μm/s and thus constitutes one of the fastest forms of directed movement. Unicellular eukaryotic organisms and prokaryotes display diverse mechanisms by which they are able to actively move towards a food source, light or other sensory stimuli. On the cellular level active transport of vesicles and organelles is required, since the cytoplasm resembles a gel with a mesh size of approximately 50 nm, which makes the passive transport of organelle-sized particles impossible. For elongated cells such as neurons, even proteins and small metabolites have to be actively transported.

  7. The molecular motor Myosin Va interacts with the cilia-centrosomal protein RPGRIP1L

    PubMed Central

    Assis, L. H. P.; Silva-Junior, R. M. P.; Dolce, L. G.; Alborghetti, M. R.; Honorato, R. V.; Nascimento, A. F. Z.; Melo-Hanchuk, T. D.; Trindade, D. M.; Tonoli, C. C. C.; Santos, C. T.; Oliveira, P. S. L.; Larson, R. E.; Kobarg, J.; Espreafico, E. M.; Giuseppe, P. O.; Murakami, M. T.

    2017-01-01

    Myosin Va (MyoVa) is an actin-based molecular motor abundantly found at the centrosome. However, the role of MyoVa at this organelle has been elusive due to the lack of evidence on interacting partners or functional data. Herein, we combined yeast two-hybrid screen, biochemical studies and cellular assays to demonstrate that MyoVa interacts with RPGRIP1L, a cilia-centrosomal protein that controls ciliary signaling and positioning. MyoVa binds to the C2 domains of RPGRIP1L via residues located near or in the Rab11a-binding site, a conserved site in the globular tail domain (GTD) from class V myosins. According to proximity ligation assays, MyoVa and RPGRIP1L can interact near the cilium base in ciliated RPE cells. Furthermore, we showed that RPE cells expressing dominant-negative constructs of MyoVa are mostly unciliated, providing the first experimental evidence about a possible link between this molecular motor and cilia-related processes. PMID:28266547

  8. Actin-based motility of Listeria: Right-handed helical trajectories

    NASA Astrophysics Data System (ADS)

    Rangarajan, Murali

    2012-06-01

    Bacteria such as Listeria monocytogenes recruit cellular machinery to move in and between cells. Understanding the mechanism of motility, including force and torque generation and the resultant displacements, holds keys to numerous applications in medicine and biosensing. In this work, a simple back-of-the-envelope calculation is presented to illustrate that a biomechanical model of actin-based motility of a rigid surface through persistently attached filaments propelled by affinity-modulated molecular motors can produce a right-handed helical trajectory consistent with experimental observations. The implications of the mechanism to bacterial motility are discussed.

  9. Single-filament kinetic studies provide novel insights into regulation of actin-based motility

    PubMed Central

    Shekhar, Shashank; Carlier, Marie-France

    2016-01-01

    Polarized assembly of actin filaments forms the basis of actin-based motility and is regulated both spatially and temporally. Cells use a variety of mechanisms by which intrinsically slower processes are accelerated, and faster ones decelerated, to match rates observed in vivo. Here we discuss how kinetic studies of individual reactions and cycles that drive actin remodeling have provided a mechanistic and quantitative understanding of such processes. We specifically consider key barbed-end regulators such as capping protein and formins as illustrative examples. We compare and contrast different kinetic approaches, such as the traditional pyrene-polymerization bulk assays, as well as more recently developed single-filament and single-molecule imaging approaches. Recent development of novel biophysical methods for sensing and applying forces will in future allow us to address the very important relationship between mechanical stimulus and kinetics of actin-based motility. PMID:26715420

  10. Fueling and Stabilizing a Biomolecular Motor-Powered Biosensor for Remote Detection Scenarios

    DTIC Science & Technology

    2007-10-01

    D. et al. Assembly and transport of nanocrystal CdSe quantum dot nanocomposites using microtubules and kinesin motor proteins. Nano Letters 4 (5...817-821 (2004). 6 Patolsky, F., Weizmann, Y., & Willner, 1. Actin-based metallic nanowires as bio-nanotransporters. Nature Materials 3 (10), 692-695

  11. Microtubule patterning in the presence of moving motor proteins.

    PubMed

    White, D; de Vries, G; Martin, J; Dawes, A

    2015-10-07

    Cytoskeletal polymers such as microtubules (MTs) interact with motor proteins to form higher-order structures. In vitro experiments have shown that MT patterns such as asters, bundles, and vortices can form under the influence of a single type of dynamic motor protein. MTs also can form anti-parallel bundles, similar to bundles that form the mitotic spindle during cell division, under the influence of two types of moving motors with opposite directionality. Despite the importance of MT structures, their mechanism of formation is not yet understood. We develop an integro-partial differential equation model to describe the dynamic interactions between MTs and moving motor proteins. Our model takes into account motor protein speed, processivity, density, and directionality, as well as MT treadmilling and reorganization due to interactions with motors. Simulation results show that plus-end directed motor proteins can form vortex patterns at low motor density, while minus-end directed motor proteins form aster patterns at similar densities. Also, motor proteins with opposite directionality are able to organize MTs into anti-parallel bundles. Our model is able to provide a quantitative and qualitative description of MT patterning, providing insights into possible mechanisms of spindle formation.

  12. Actin-Based Motility of Intracellular Microbial Pathogens

    PubMed Central

    Goldberg, Marcia B.

    2001-01-01

    A diverse group of intracellular microorganisms, including Listeria monocytogenes, Shigella spp., Rickettsia spp., and vaccinia virus, utilize actin-based motility to move within and spread between mammalian host cells. These organisms have in common a pathogenic life cycle that involves a stage within the cytoplasm of mammalian host cells. Within the cytoplasm of host cells, these organisms activate components of the cellular actin assembly machinery to induce the formation of actin tails on the microbial surface. The assembly of these actin tails provides force that propels the organisms through the cell cytoplasm to the cell periphery or into adjacent cells. Each of these organisms utilizes preexisting mammalian pathways of actin rearrangement to induce its own actin-based motility. Particularly remarkable is that while all of these microbes use the same or overlapping pathways, each intercepts the pathway at a different step. In addition, the microbial molecules involved are each distinctly different from the others. Taken together, these observations suggest that each of these microbes separately and convergently evolved a mechanism to utilize the cellular actin assembly machinery. The current understanding of the molecular mechanisms of microbial actin-based motility is the subject of this review. PMID:11729265

  13. Motor Proteins and Molecular Motors: How to Operate Machines at Nanoscale

    PubMed Central

    Kolomeisky, Anatoly B.

    2013-01-01

    Several classes of biological molecules that transform chemical energy into mechanical work are known as motor proteins or molecular motors. These nanometer-sized machines operate in noisy stochastic isothermal environment, strongly supporting fundamental cellular processes such as transfer of genetic information, transport, organization and functioning. In last two decades motor proteins have become a subject of intense research efforts that were aimed to uncover fundamental principles and mechanisms of molecular motors dynamics. In this review, we critically discuss a recent progress in experimental and theoretical studies on motor proteins. Our focus is on analyzing fundamental concepts and ideas that have been utilized for explaining non-equilibrium nature and mechanisms of molecular motors. PMID:24100357

  14. Motor proteins and molecular motors: how to operate machines at the nanoscale.

    PubMed

    Kolomeisky, Anatoly B

    2013-11-20

    Several classes of biological molecules that transform chemical energy into mechanical work are known as motor proteins or molecular motors. These nanometer-sized machines operate in noisy stochastic isothermal environments, strongly supporting fundamental cellular processes such as the transfer of genetic information, transport, organization and functioning. In the past two decades motor proteins have become a subject of intense research efforts, aimed at uncovering the fundamental principles and mechanisms of molecular motor dynamics. In this review, we critically discuss recent progress in experimental and theoretical studies on motor proteins. Our focus is on analyzing fundamental concepts and ideas that have been utilized to explain the non-equilibrium nature and mechanisms of molecular motors.

  15. Engineered kinesin motor proteins amenable to small-molecule inhibition

    PubMed Central

    Engelke, Martin F.; Winding, Michael; Yue, Yang; Shastry, Shankar; Teloni, Federico; Reddy, Sanjay; Blasius, T. Lynne; Soppina, Pushpanjali; Hancock, William O.; Gelfand, Vladimir I.; Verhey, Kristen J.

    2016-01-01

    The human genome encodes 45 kinesin motor proteins that drive cell division, cell motility, intracellular trafficking and ciliary function. Determining the cellular function of each kinesin would benefit from specific small-molecule inhibitors. However, screens have yielded only a few specific inhibitors. Here we present a novel chemical-genetic approach to engineer kinesin motors that can carry out the function of the wild-type motor yet can also be efficiently inhibited by small, cell-permeable molecules. Using kinesin-1 as a prototype, we develop two independent strategies to generate inhibitable motors, and characterize the resulting inhibition in single-molecule assays and in cells. We further apply these two strategies to create analogously inhibitable kinesin-3 motors. These inhibitable motors will be of great utility to study the functions of specific kinesins in a dynamic manner in cells and animals. Furthermore, these strategies can be used to generate inhibitable versions of any motor protein of interest. PMID:27045608

  16. Mechanisms of DNA Motor Proteins (Helicases)

    NASA Astrophysics Data System (ADS)

    Lohman, Timothy M.

    1996-03-01

    DNA helicases are ubiquitous motor proteins that couple the binding and hydrolysis of NTP to the unwinding of duplex (ds) DNA to form the single stranded (ss) DNA intermediates that are required for replication, recombination and repair. We are studying the DNA unwinding mechanisms catalyzed by two helicases from E. coli: Rep and Helicase II (UvrD) by examining the linkage of DNA binding, protein dimerization and nucleotide binding using both thermodynamic and kinetic approaches. A dimer of the Rep protein is the active form of the helicase; however, the dimer forms only upon binding either ss or ds DNA. There are significant cooperative interactions between the two DNA binding sites on the dimer and nucleotides (ATP, ADP) allosterically control the stabilities of the DNA ligation states of the Rep dimer. Based on these studies we have proposed an "active, rolling" mechanism for the Rep dimer unwinding of duplex DNA. An essential intermediate is a complex, in which ss- and ds-DNA bind simultaneously to each subunit of a Rep dimer. This model predicts that Rep helicase translocation along DNA is coupled to ATP binding, whereas ATP hydrolysis drives unwinding of multiple DNA base pairs for each catalytic event. Rapid chemical quench-flow and stopped-flow fluorescence studies of Rep and UvrD- catalyzed DNA unwinding of a series of non-natural DNA substrates support the "active, rolling" mechanism and rule out a strictly "passive" mechanism of unwinding. Kinetic studies of DNA and nucleotide binding and ATP hydrolysis by wild type and mutant Rep proteins will be discussed that bear on the coupling of ATP binding and hydrolysis to translocation along DNA and DNA unwinding.

  17. Diverse role of survival motor neuron protein.

    PubMed

    Singh, Ravindra N; Howell, Matthew D; Ottesen, Eric W; Singh, Natalia N

    2017-03-01

    The multifunctional Survival Motor Neuron (SMN) protein is required for the survival of all organisms of the animal kingdom. SMN impacts various aspects of RNA metabolism through the formation and/or interaction with ribonucleoprotein (RNP) complexes. SMN regulates biogenesis of small nuclear RNPs, small nucleolar RNPs, small Cajal body-associated RNPs, signal recognition particles and telomerase. SMN also plays an important role in DNA repair, transcription, pre-mRNA splicing, histone mRNA processing, translation, selenoprotein synthesis, macromolecular trafficking, stress granule formation, cell signaling and cytoskeleton maintenance. The tissue-specific requirement of SMN is dictated by the variety and the abundance of its interacting partners. Reduced expression of SMN causes spinal muscular atrophy (SMA), a leading genetic cause of infant mortality. SMA displays a broad spectrum ranging from embryonic lethality to an adult onset. Aberrant expression and/or localization of SMN has also been associated with male infertility, inclusion body myositis, amyotrophic lateral sclerosis and osteoarthritis. This review provides a summary of various SMN functions with implications to a better understanding of SMA and other pathological conditions.

  18. Survival motor neuron protein in motor neurons determines synaptic integrity in spinal muscular atrophy.

    PubMed

    Martinez, Tara L; Kong, Lingling; Wang, Xueyong; Osborne, Melissa A; Crowder, Melissa E; Van Meerbeke, James P; Xu, Xixi; Davis, Crystal; Wooley, Joe; Goldhamer, David J; Lutz, Cathleen M; Rich, Mark M; Sumner, Charlotte J

    2012-06-20

    The inherited motor neuron disease spinal muscular atrophy (SMA) is caused by deficient expression of survival motor neuron (SMN) protein and results in severe muscle weakness. In SMA mice, synaptic dysfunction of both neuromuscular junctions (NMJs) and central sensorimotor synapses precedes motor neuron cell death. To address whether this synaptic dysfunction is due to SMN deficiency in motor neurons, muscle, or both, we generated three lines of conditional SMA mice with tissue-specific increases in SMN expression. All three lines of mice showed increased survival, weights, and improved motor behavior. While increased SMN expression in motor neurons prevented synaptic dysfunction at the NMJ and restored motor neuron somal synapses, increased SMN expression in muscle did not affect synaptic function although it did improve myofiber size. Together these data indicate that both peripheral and central synaptic integrity are dependent on motor neurons in SMA, but SMN may have variable roles in the maintenance of these different synapses. At the NMJ, it functions at the presynaptic terminal in a cell-autonomous fashion, but may be necessary for retrograde trophic signaling to presynaptic inputs onto motor neurons. Importantly, SMN also appears to function in muscle growth and/or maintenance independent of motor neurons. Our data suggest that SMN plays distinct roles in muscle, NMJs, and motor neuron somal synapses and that restored function of SMN at all three sites will be necessary for full recovery of muscle power.

  19. Regulatory mimicry in Listeria monocytogenes actin-based motility

    PubMed Central

    Chong, Ryan; Swiss, Rachel; Briones, Gabriel; Stone, Kathryn L.; Gulcicek, Erol E.; Agaisse, Hervé

    2009-01-01

    Summary The actin-based motility of the intracellular pathogen Listeria monocytogenes relies on ActA, a bacterial factor mimicking the activity of host cell nucleation-promoting factors of the WASP/WAVE family. The activity of WASP and WAVE is tightly regulated in cells. However, it is not known whether the activity of ActA is regulated upon L. monocytogenes infection. Here, we used an RNAi-based genetic approach in combination with computer-assisted image analysis to investigate the role of host factors in L. monocytogenes spread from cell to cell. We showed that the host cell serine/threonine kinase CK2 is required for efficient actin tail formation. We demonstrated that, similar to WASP and WAVE, the affinity of ActA for the ARP2/3 complex is regulated by CK2-mediated phosphorylation. We also demonstrated the importance of this regulatory mechanism in a mouse model of infection. Our work suggests that ActA is a bacterial virulence factor that not only displays a structural mimic of the VCA domain of WASP/WAVE family members, but also co-opted CK2 as the host cell factor regulating its activity, a form of mimicry that we refer to as regulatory mimicry. We present comparative evidence supporting the notion that unrelated pathogens displaying actin-based motility may have evolved a similar strategy. PMID:19748468

  20. Mitotic cells form actin-based bridges with adjacent cells to provide intercellular communication during rounding.

    PubMed

    Fykerud, Tone A; Knudsen, Lars M; Totland, Max Z; Sørensen, Vigdis; Dahal-Koirala, Shiva; Lothe, Ragnhild A; Brech, Andreas; Leithe, Edward

    2016-11-01

    In order to achieve accurate chromosome segregation, eukaryotic cells undergo a dramatic change in morphology to obtain a spherical shape during mitosis. Interphase cells communicate directly with each other by exchanging ions and small molecules via gap junctions, which have important roles in controlling cell growth and differentiation. As cells round up during mitosis, the gap junctional communication between mitotic cells and adjacent interphase cells ceases. Whether mitotic cells use alternative mechanisms for mediating direct cell-cell communication during rounding is currently unknown. Here, we have studied the mechanisms involved in the remodeling of gap junctions during mitosis. We further demonstrate that mitotic cells are able to form actin-based plasma membrane bridges with adjacent cells during rounding. These structures, termed "mitotic nanotubes," were found to be involved in mediating the transport of cytoplasm, including Rab11-positive vesicles, between mitotic cells and adjacent cells. Moreover, a subpool of the gap-junction channel protein connexin43 localized in these intercellular bridges during mitosis. Collectively, the data provide new insights into the mechanisms involved in the remodeling of gap junctions during mitosis and identify actin-based plasma membrane bridges as a novel means of communication between mitotic cells and adjacent cells during rounding.

  1. Mitotic cells form actin-based bridges with adjacent cells to provide intercellular communication during rounding

    PubMed Central

    Fykerud, Tone A.; Knudsen, Lars M.; Totland, Max Z.; Dahal-Koirala, Shiva; Lothe, Ragnhild A.; Brech, Andreas; Leithe, Edward

    2016-01-01

    ABSTRACT In order to achieve accurate chromosome segregation, eukaryotic cells undergo a dramatic change in morphology to obtain a spherical shape during mitosis. Interphase cells communicate directly with each other by exchanging ions and small molecules via gap junctions, which have important roles in controlling cell growth and differentiation. As cells round up during mitosis, the gap junctional communication between mitotic cells and adjacent interphase cells ceases. Whether mitotic cells use alternative mechanisms for mediating direct cell-cell communication during rounding is currently unknown. Here, we have studied the mechanisms involved in the remodeling of gap junctions during mitosis. We further demonstrate that mitotic cells are able to form actin-based plasma membrane bridges with adjacent cells during rounding. These structures, termed “mitotic nanotubes,” were found to be involved in mediating the transport of cytoplasm, including Rab11-positive vesicles, between mitotic cells and adjacent cells. Moreover, a subpool of the gap-junction channel protein connexin43 localized in these intercellular bridges during mitosis. Collectively, the data provide new insights into the mechanisms involved in the remodeling of gap junctions during mitosis and identify actin-based plasma membrane bridges as a novel means of communication between mitotic cells and adjacent cells during rounding. PMID:27625181

  2. Actin-based motility drives baculovirus transit to the nucleus and cell surface

    PubMed Central

    Ohkawa, Taro; Volkman, Loy E.

    2010-01-01

    Most viruses move intracellularly to and from their sites of replication using microtubule-based mechanisms. In this study, we show that nucleocapsids of the baculovirus Autographa californica multiple nucleopolyhedrovirus undergo intracellular motility driven by actin polymerization. Motility requires the viral P78/83 capsid protein and the host Arp2/3 complex. Surprisingly, the virus directs two sequential and coordinated phases of actin-based motility. Immediately after cell entry, motility enables exploration of the cytoplasm and collision with the nuclear periphery, speeding nuclear entry and the initiation of viral gene expression. Nuclear entry itself requires transit through nuclear pore complexes. Later, after the onset of early gene expression, motility is required for accumulation of a subpopulation of nucleocapsids in the tips of actin-rich surface spikes. Temporal coordination of actin-based nuclear and surface translocation likely enables rapid transmission to neighboring cells during infection in insects and represents a distinctive evolutionary strategy for overcoming host defenses. PMID:20660627

  3. Multiscale modeling and simulation of microtubule-motor-protein assemblies

    NASA Astrophysics Data System (ADS)

    Gao, Tong; Blackwell, Robert; Glaser, Matthew A.; Betterton, M. D.; Shelley, Michael J.

    2015-12-01

    Microtubules and motor proteins self-organize into biologically important assemblies including the mitotic spindle and the centrosomal microtubule array. Outside of cells, microtubule-motor mixtures can form novel active liquid-crystalline materials driven out of equilibrium by adenosine triphosphate-consuming motor proteins. Microscopic motor activity causes polarity-dependent interactions between motor proteins and microtubules, but how these interactions yield larger-scale dynamical behavior such as complex flows and defect dynamics is not well understood. We develop a multiscale theory for microtubule-motor systems in which Brownian dynamics simulations of polar microtubules driven by motors are used to study microscopic organization and stresses created by motor-mediated microtubule interactions. We identify polarity-sorting and crosslink tether relaxation as two polar-specific sources of active destabilizing stress. We then develop a continuum Doi-Onsager model that captures polarity sorting and the hydrodynamic flows generated by these polar-specific active stresses. In simulations of active nematic flows on immersed surfaces, the active stresses drive turbulent flow dynamics and continuous generation and annihilation of disclination defects. The dynamics follow from two instabilities, and accounting for the immersed nature of the experiment yields unambiguous characteristic length and time scales. When turning off the hydrodynamics in the Doi-Onsager model, we capture formation of polar lanes as observed in the Brownian dynamics simulation.

  4. Multiscale modeling and simulation of microtubule-motor-protein assemblies.

    PubMed

    Gao, Tong; Blackwell, Robert; Glaser, Matthew A; Betterton, M D; Shelley, Michael J

    2015-01-01

    Microtubules and motor proteins self-organize into biologically important assemblies including the mitotic spindle and the centrosomal microtubule array. Outside of cells, microtubule-motor mixtures can form novel active liquid-crystalline materials driven out of equilibrium by adenosine triphosphate-consuming motor proteins. Microscopic motor activity causes polarity-dependent interactions between motor proteins and microtubules, but how these interactions yield larger-scale dynamical behavior such as complex flows and defect dynamics is not well understood. We develop a multiscale theory for microtubule-motor systems in which Brownian dynamics simulations of polar microtubules driven by motors are used to study microscopic organization and stresses created by motor-mediated microtubule interactions. We identify polarity-sorting and crosslink tether relaxation as two polar-specific sources of active destabilizing stress. We then develop a continuum Doi-Onsager model that captures polarity sorting and the hydrodynamic flows generated by these polar-specific active stresses. In simulations of active nematic flows on immersed surfaces, the active stresses drive turbulent flow dynamics and continuous generation and annihilation of disclination defects. The dynamics follow from two instabilities, and accounting for the immersed nature of the experiment yields unambiguous characteristic length and time scales. When turning off the hydrodynamics in the Doi-Onsager model, we capture formation of polar lanes as observed in the Brownian dynamics simulation.

  5. Multiscale modeling and simulation of microtubule–motor-protein assemblies

    PubMed Central

    Gao, Tong; Blackwell, Robert; Glaser, Matthew A.; Betterton, M. D.; Shelley, Michael J.

    2016-01-01

    Microtubules and motor proteins self-organize into biologically important assemblies including the mitotic spindle and the centrosomal microtubule array. Outside of cells, microtubule-motor mixtures can form novel active liquid-crystalline materials driven out of equilibrium by adenosine triphosphate–consuming motor proteins. Microscopic motor activity causes polarity-dependent interactions between motor proteins and microtubules, but how these interactions yield larger-scale dynamical behavior such as complex flows and defect dynamics is not well understood. We develop a multiscale theory for microtubule-motor systems in which Brownian dynamics simulations of polar microtubules driven by motors are used to study microscopic organization and stresses created by motor-mediated microtubule interactions. We identify polarity-sorting and crosslink tether relaxation as two polar-specific sources of active destabilizing stress. We then develop a continuum Doi-Onsager model that captures polarity sorting and the hydrodynamic flows generated by these polar-specific active stresses. In simulations of active nematic flows on immersed surfaces, the active stresses drive turbulent flow dynamics and continuous generation and annihilation of disclination defects. The dynamics follow from two instabilities, and accounting for the immersed nature of the experiment yields unambiguous characteristic length and time scales. When turning off the hydrodynamics in the Doi-Onsager model, we capture formation of polar lanes as observed in the Brownian dynamics simulation. PMID:26764729

  6. Vinculin Proteolysis Unmasks an ActA Homolog for Actin-based Shigella Motility

    PubMed Central

    Laine, Roney O.; Zeile, William; Kang, Fan; Purich, Daniel L.; Southwick, Frederick S.

    1997-01-01

    To generate the forces needed for motility, the plasma membranes of nonmuscle cells adopt an activated state that dynamically reorganizes the actin cytoskeleton. By usurping components from focal contacts and the actin cytoskeleton, the intracellular pathogens Shigella flexneri and Listeria monocytogenes use molecular mimicry to create their own actin-based motors. We raised an antibody (designated FS-1) against the FEFPPPPTDE sequence of Listeria ActA, and this antibody: (a) localized at the trailing end of motile intracellular Shigella, (b) inhibited intracellular locomotion upon microinjection of Shigella-infected cells, and (c) cross-reacted with the proteolytically derived 90-kD human vinculin head fragment that contains the Vinc-1 oligoproline sequence, PDFPPPPPDL. Antibody FS-1 reacted only weakly with full-length vinculin, suggesting that the Vinc-1 sequence in full-length vinculin may be masked by its tail region and that this sequence is unmasked by proteolysis. Immunofluoresence staining with a monoclonal antibody against the head region of vinculin (Vin 11-5) localized to the back of motile bacteria (an identical staining pattern observed with the anti-ActA FS-1 antibody), indicating that motile bacteria attract a form of vinculin containing an unmasked Vinc-1 oligoproline sequence. Microinjection of submicromolar concentrations of a synthetic Vinc-1 peptide arrested Shigella intracellular motility, underscoring the functional importance of this sequence. Western blots revealed that Shigella infection induces vinculin proteolysis in PtK2 cells and generates p90 head fragment over the same 1–3 h time frame when intracellular bacteria move within the host cell cytoplasm. We also discovered that microinjected p90, but not full-length vinculin, accelerates rates of pathogen motility by a factor of 3 ± 0.4 in Shigella-infected PtK2 cells. These experiments suggest that vinculin p90 is a rate-limiting component in actin-based Shigella motility, and that

  7. Curved trajectories of actin-based motility in two dimensions

    NASA Astrophysics Data System (ADS)

    Wen, Fu-Lai; Leung, Kwan-tai; Chen, Hsuan-Yi

    2012-05-01

    Recent experiments have reported fascinating geometrical trajectories for actin-based motility of bacteria Listeria monocytogenes and functionalized beads. To understand the physical mechanism for these trajectories, we constructed a phenomenological model to study the motion of an actin-propelled disk in two dimensions. In our model, the force and actin density on the surface of the disk are influenced by the translation and rotation of the disk, which in turn is induced by the asymmetric distributions of those densities. We show that this feedback can destabilize a straight trajectory, leading to circular, S-shape and other geometrical trajectories observed in the experiments through bifurcations in the distributions of the force and actin density. The relation between our model and the models for self-propelled deformable particles is emphasized and discussed.

  8. Molecular requirements for actin-based lamella formation in Drosophila S2 cells.

    PubMed

    Rogers, Stephen L; Wiedemann, Ursula; Stuurman, Nico; Vale, Ronald D

    2003-09-15

    Cell migration occurs through the protrusion of the actin-enriched lamella. Here, we investigated the effects of RNAi depletion of approximately 90 proteins implicated in actin function on lamella formation in Drosophila S2 cells. Similar to in vitro reconstitution studies of actin-based Listeria movement, we find that lamellae formation requires a relatively small set of proteins that participate in actin nucleation (Arp2/3 and SCAR), barbed end capping (capping protein), filament depolymerization (cofilin and Aip1), and actin monomer binding (profilin and cyclase-associated protein). Lamellae are initiated by parallel and partially redundant signaling pathways involving Rac GTPases and the adaptor protein Nck, which stimulate SCAR, an Arp2/3 activator. We also show that RNAi of three proteins (kette, Abi, and Sra-1) known to copurify with and inhibit SCAR in vitro leads to SCAR degradation, revealing a novel function of this protein complex in SCAR stability. Our results have identified an essential set of proteins involved in actin dynamics during lamella formation in Drosophila S2 cells.

  9. Transport of organelles by elastically coupled motor proteins.

    PubMed

    Bhat, Deepak; Gopalakrishnan, Manoj

    2016-07-01

    Motor-driven intracellular transport is a complex phenomenon where multiple motor proteins simultaneously attached on to a cargo engage in pulling activity, often leading to tug-of-war, displaying bidirectional motion. However, most mathematical and computational models ignore the details of the motor-cargo interaction. A few studies have focused on more realistic models of cargo transport by including elastic motor-cargo coupling, but either restrict the number of motors and/or use purely phenomenological forms for force-dependent hopping rates. Here, we study a generic model in which N motors are elastically coupled to a cargo, which itself is subjected to thermal noise in the cytoplasm and to an additional external applied force. The motor-hopping rates are chosen to satisfy detailed balance with respect to the energy of elastic stretching. With these assumptions, an (N + 1) -variable master equation is constructed for dynamics of the motor-cargo complex. By expanding the hopping rates to linear order in fluctuations in motor positions, we obtain a linear Fokker-Planck equation. The deterministic equations governing the average quantities are separated out and explicit analytical expressions are obtained for the mean velocity and diffusion coefficient of the cargo. We also study the statistical features of the force experienced by an individual motor and quantitatively characterize the load-sharing among the cargo-bound motors. The mean cargo velocity and the effective diffusion coefficient are found to be decreasing functions of the stiffness. While the increase in the number of motors N does not increase the velocity substantially, it decreases the effective diffusion coefficient which falls as 1/N asymptotically. We further show that the cargo-bound motors share the force exerted on the cargo equally only in the limit of vanishing elastic stiffness; as stiffness is increased, deviations from equal load sharing are observed. Numerical simulations agree with

  10. Vaccinia locomotion in host cells: evidence for the universal involvement of actin-based motility sequences ABM-1 and ABM-2.

    PubMed

    Zeile, W L; Condit, R C; Lewis, J I; Purich, D L; Southwick, F S

    1998-11-10

    Vaccinia uses actin-based motility for virion movement in host cells, but the specific protein components have yet to be defined. A cardinal feature of Listeria and Shigella actin-based motility is the involvement of vasodilator-stimulated phosphoprotein (VASP). This essential adapter recognizes and binds to actin-based motility 1 (ABM-1) consensus sequences [(D/E)FPPPPX(D/E), X = P or T] contained in Listeria ActA and in the p90 host-cell vinculin fragment generated by Shigella infection. VASP, in turn, provides the ABM-2 sequences [XPPPPP, X = G, P, L, S, A] for binding profilin, an actin-regulatory protein that stimulates actin filament assembly. Immunolocalization using rabbit anti-VASP antibody revealed that VASP concentrates behind motile virions in HeLa cells. Profilin was also present in these actin-rich rocket tails, and microinjection of 10 microM (intracellular) ABM-2 peptide (GPPPPP)3 blocked vaccinia actin-based motility. Vinculin did not colocalize with VASP on motile virions and remained in focal adhesion contacts; however, another ABM-1-containing host protein, zyxin, was concentrated at the rear of motile virions. We also examined time-dependent changes in the location of these cytoskeletal proteins during vaccinia infection. VASP and zyxin were redistributed dramatically several hours before the formation of actin rocket tails, concentrating in the viral factories of the perinuclear cytoplasm. Our findings underscore the universal involvement of ABM-1 and ABM-2 docking sites in actin-based motility of Listeria, Shigella, and now vaccinia.

  11. A simple theory of motor protein kinetics and energetics. II.

    PubMed

    Qian, H

    2000-01-10

    A three-state stochastic model of motor protein [Qian, Biophys. Chem. 67 (1997) pp. 263-267] is further developed to illustrate the relationship between the external load on an individual motor protein in aqueous solution with various ATP concentrations and its steady-state velocity. A wide variety of dynamic motor behavior are obtained from this simple model. For the particular case of free-load translocation being the most unfavorable step within the hydrolysis cycle, the load-velocity curve is quasi-linear, V/Vmax = (cF/Fmax-c)/(1-c), in contrast to the hyperbolic relationship proposed by A.V. Hill for macroscopic muscle. Significant deviation from the linearity is expected when the velocity is less than 10% of its maximal (free-load) value--a situation under which the processivity of motor diminishes and experimental observations are less certain. We then investigate the dependence of load-velocity curve on ATP (ADP) concentration. It is shown that the free load Vmax exhibits a Michaelis-Menten like behavior, and the isometric Fmax increases linearly with ln([ATP]/[ADP]). However, the quasi-linear region is independent of the ATP concentration, yielding an apparently ATP-independent maximal force below the true isometric force. Finally, the heat production as a function of ATP concentration and external load are calculated. In simple terms and solved with elementary algebra, the present model provides an integrated picture of biochemical kinetics and mechanical energetics of motor proteins.

  12. Multiscale polar theory of microtubule and motor-protein assemblies.

    PubMed

    Gao, Tong; Blackwell, Robert; Glaser, Matthew A; Betterton, M D; Shelley, Michael J

    2015-01-30

    Microtubules and motor proteins are building blocks of self-organized subcellular biological structures such as the mitotic spindle and the centrosomal microtubule array. These same ingredients can form new "bioactive" liquid-crystalline fluids that are intrinsically out of equilibrium and which display complex flows and defect dynamics. It is not yet well understood how microscopic activity, which involves polarity-dependent interactions between motor proteins and microtubules, yields such larger-scale dynamical structures. In our multiscale theory, Brownian dynamics simulations of polar microtubule ensembles driven by cross-linking motors allow us to study microscopic organization and stresses. Polarity sorting and cross-link relaxation emerge as two polar-specific sources of active destabilizing stress. On larger length scales, our continuum Doi-Onsager theory captures the hydrodynamic flows generated by polarity-dependent active stresses. The results connect local polar structure to flow structures and defect dynamics.

  13. Multiscale Polar Theory of Microtubule and Motor-Protein Assemblies

    NASA Astrophysics Data System (ADS)

    Gao, Tong; Blackwell, Robert; Glaser, Matthew A.; Betterton, M. D.; Shelley, Michael J.

    2015-01-01

    Microtubules and motor proteins are building blocks of self-organized subcellular biological structures such as the mitotic spindle and the centrosomal microtubule array. These same ingredients can form new "bioactive" liquid-crystalline fluids that are intrinsically out of equilibrium and which display complex flows and defect dynamics. It is not yet well understood how microscopic activity, which involves polarity-dependent interactions between motor proteins and microtubules, yields such larger-scale dynamical structures. In our multiscale theory, Brownian dynamics simulations of polar microtubule ensembles driven by cross-linking motors allow us to study microscopic organization and stresses. Polarity sorting and cross-link relaxation emerge as two polar-specific sources of active destabilizing stress. On larger length scales, our continuum Doi-Onsager theory captures the hydrodynamic flows generated by polarity-dependent active stresses. The results connect local polar structure to flow structures and defect dynamics.

  14. Multiscale Polar Theory of Microtubule and Motor-Protein Assemblies

    PubMed Central

    Gao, Tong; Blackwell, Robert; Glaser, Matthew A.; Betterton, M. D.; Shelley, Michael J.

    2015-01-01

    Microtubules and motor proteins are building blocks of self-organized subcellular biological structures such as the mitotic spindle and the centrosomal microtubule array. These same ingredients can form new “bioactive” liquid-crystalline fluids that are intrinsically out of equilibrium and which display complex flows and defect dynamics. It is not yet well understood how microscopic activity, which involves polarity-dependent interactions between motor proteins and microtubules, yields such larger-scale dynamical structures. In our multiscale theory, Brownian dynamics simulations of polar microtubule ensembles driven by cross-linking motors allow us to study microscopic organization and stresses. Polarity sorting and cross-link relaxation emerge as two polar-specific sources of active destabilizing stress. On larger length scales, our continuum Doi-Onsager theory captures the hydrodynamic flows generated by polarity-dependent active stresses. The results connect local polar structure to flow structures and defect dynamics. PMID:25679909

  15. Multiscale polar theory of microtubule and motor-protein assemblies

    DOE PAGES

    Gao, Tong; Blackwell, Robert; Glaser, Matthew A.; ...

    2015-01-27

    Microtubules and motor proteins are building blocks of self-organized subcellular biological structures such as the mitotic spindle and the centrosomal microtubule array. These same ingredients can form new “bioactive” liquid-crystalline fluids that are intrinsically out of equilibrium and which display complex flows and defect dynamics. It is not yet well understood how microscopic activity, which involves polarity-dependent interactions between motor proteins and microtubules, yields such larger-scale dynamical structures. In our multiscale theory, Brownian dynamics simulations of polar microtubule ensembles driven by cross-linking motors allow us to study microscopic organization and stresses. Polarity sorting and cross-link relaxation emerge as two polar-specificmore » sources of active destabilizing stress. On larger length scales, our continuum Doi-Onsager theory captures the hydrodynamic flows generated by polarity-dependent active stresses. Finally, the results connect local polar structure to flow structures and defect dynamics.« less

  16. Multiscale polar theory of microtubule and motor-protein assemblies

    SciTech Connect

    Gao, Tong; Blackwell, Robert; Glaser, Matthew A.; Betterton, Meredith D.; Shelley, Michael J.

    2015-01-27

    Microtubules and motor proteins are building blocks of self-organized subcellular biological structures such as the mitotic spindle and the centrosomal microtubule array. These same ingredients can form new “bioactive” liquid-crystalline fluids that are intrinsically out of equilibrium and which display complex flows and defect dynamics. It is not yet well understood how microscopic activity, which involves polarity-dependent interactions between motor proteins and microtubules, yields such larger-scale dynamical structures. In our multiscale theory, Brownian dynamics simulations of polar microtubule ensembles driven by cross-linking motors allow us to study microscopic organization and stresses. Polarity sorting and cross-link relaxation emerge as two polar-specific sources of active destabilizing stress. On larger length scales, our continuum Doi-Onsager theory captures the hydrodynamic flows generated by polarity-dependent active stresses. Finally, the results connect local polar structure to flow structures and defect dynamics.

  17. Navigation Strategies of Motor Proteins on Decorated Tracks

    PubMed Central

    Bertalan, Zsolt; Budrikis, Zoe; La Porta, Caterina A. M.; Zapperi, Stefano

    2015-01-01

    Motor proteins display widely different stepping patterns as they move on microtubule tracks, from the deterministic linear or helical motion performed by the protein kinesin to the uncoordinated random steps made by dynein. How these different strategies produce an efficient navigation system needed to ensure correct cellular functioning is still unclear. Here, we show by numerical simulations that deterministic and random motor steps yield different outcomes when random obstacles decorate the microtubule tracks: kinesin moves faster on clean tracks but its motion is strongly hindered on decorated tracks, while dynein is slower on clean tracks but more efficient in avoiding obstacles. Further simulations indicate that dynein’s advantage on decorated tracks is due to its ability to step backwards. Our results explain how different navigation strategies are employed by the cell to optimize motor driven cargo transport. PMID:26323095

  18. Tubules of plant reoviruses exploit tropomodulin to regulate actin-based tubule motility in insect vector

    PubMed Central

    Chen, Qian; Zhang, Linghua; Zhang, Yanshuang; Mao, Qianzhuo; Wei, Taiyun

    2017-01-01

    Plant reoviruses are known to exploit virion-packaging tubules formed by virus-encoding non-structural proteins for viral spread in insect vectors. Tubules are propelled by actin-based tubule motility (ABTM) to overcome membrane or tissue barriers in insect vectors. To further understand which insect factors mediate ABTM, we utilized yeast two-hybrid and bimolecular fluorescence complementation assays to test interactions between tubule protein Pns10 of rice dwarf virus (RDV), a plant reovirus, and proteins of its insect vector, the leafhopper Nephotettix cincticeps. Tropomodulin (Tmod), vitellogenin, and lipophorin precursor of N. cincticep displayed positive and strong interaction with Pns10, and actin-associated protein Tmod interacted with Pns10 in pull-down assay and the co-immunoprecipitation system. Further, we determined Pns10 tubules associated with Tmod in cultured cells and midgut of N. cincticep. The expression dynamic of Tmod was consistent with that of Pns10 and the fluctuation of RDV accumulation. Knockdown of Tmod inhibited the Pns10 expression and viral accumulation, thus decreasing the viruliferous rates of leafhopper. These results suggested that Tmod was involved in viral spread by directly interacting with Pns10 tubules, finally promoting RDV infection. This study provided direct evidence of plant reoviruses utilizing an actin-associated protein to manipulate ABTM in insect vectors, thus facilitating viral spread. PMID:28067229

  19. Protein Synthesis Inhibition Blocks Consolidation of an Acrobatic Motor Skill

    ERIC Educational Resources Information Center

    Kaelin-Lang, Alain; Dichgans, Johannes; Schulz, Jorg B.; Luft, Andreas R.; Buitrago, Manuel M.

    2004-01-01

    To investigate whether motor skill learning depends on de novo protein synthesis, adult rats were trained in an acrobatic locomotor task (accelerating rotarod) for 7 d. Animals were systemically injected with cycloheximide (CHX, 0.5 mg/kg, i.p.) 1 h before sessions 1 and 2 or sessions 2 and 3. Control rats received vehicle injections before…

  20. Polarity orientation of microtubules and its applications with motor proteins

    NASA Astrophysics Data System (ADS)

    Yokokawa, Ryuji

    2010-12-01

    We have studied integrations of micro/nano machining (MEMS/NEMS) technologies and biomaterials. One of our research directions is to utilize biomaterials in MEMS/NEMS to reveal new functions that could not be achieved by MEMS/NEMS alone. Here a motor protein system will be introduced as a nano actuator. The motility of kinesin and dynein motor proteins has been integrated with MEMS/NEMS or a microfluidic system. Since these motor proteins move on cytoskeletal filaments—microtubules (MTs)—depending on MT polarity, a key technology is to develop methods to orient MT polarities and then immobilize them. We have developed three methods to define MT polarities by (i) shared flow in a microfluidic channel, (ii) nanostructures and (iii) MEMS tweezers. Once MT polarities were oriented and fixed on a chip, they were ready to serve as rails for nano transport by kinesin and dynein motility. The motility was visualized by attaching cargos to motors, where the cargos were microbeads, silicon structures and quantum dots (Q-dots). This nano transport system can achieve a transport distance of up to ~100 μm, which enables us to focus on the transport of molecules not on bulk molecular flow by conventional microfluidics. Such a bio-hybrid system will be a key factor in realizing nano-scale system integration at the molecular scale.

  1. Extending the molecular clutch beyond actin-based cell motility

    NASA Astrophysics Data System (ADS)

    Havrylenko, Svitlana; Mezanges, Xavier; Batchelder, Ellen; Plastino, Julie

    2014-10-01

    Many cell movements occur via polymerization of the actin cytoskeleton beneath the plasma membrane at the front of the cell, forming a protrusion called a lamellipodium, while myosin contraction squeezes forward the back of the cell. In what is known as the ‘molecular clutch’ description of cell motility, forward movement results from the engagement of the acto-myosin motor with cell-matrix adhesions, thus transmitting force to the substrate and producing movement. However during cell translocation, clutch engagement is not perfect, and as a result, the cytoskeleton slips with respect to the substrate, undergoing backward (retrograde) flow in the direction of the cell body. Retrograde flow is therefore inversely proportional to cell speed and depends on adhesion and acto-myosin dynamics. Here we asked whether the molecular clutch was a general mechanism by measuring motility and retrograde flow for the Caenorhabditis elegans sperm cell in different adhesive conditions. These cells move by adhering to the substrate and emitting a dynamic lamellipodium, but the sperm cell does not contain an acto-myosin cytoskeleton. Instead the lamellipodium is formed by the assembly of major sperm protein, which has no biochemical or structural similarity to actin. We find that these cells display the same molecular clutch characteristics as acto-myosin containing cells. We further show that retrograde flow is produced both by cytoskeletal assembly and contractility in these cells. Overall this study shows that the molecular clutch hypothesis of how polymerization is transduced into motility via adhesions is a general description of cell movement regardless of the composition of the cytoskeleton.

  2. Extending the molecular clutch beyond actin-based cell motility

    PubMed Central

    Havrylenko, Svitlana; Mezanges, Xavier; Batchelder, Ellen; Plastino, Julie

    2014-01-01

    Many cell movements occur via polymerization of the actin cytoskeleton beneath the plasma membrane at the front of the cell, forming a protrusion called a lamellipodium, while myosin contraction squeezes forward the back of the cell. In what is known as the “molecular clutch” description of cell motility, forward movement results from the engagement of the acto-myosin motor with cell-matrix adhesions, thus transmitting force to the substrate and producing movement. However during cell translocation, clutch engagement is not perfect, and as a result, the cytoskeleton slips with respect to the substrate, undergoing backward (retrograde) flow in the direction of the cell body. Retrograde flow is therefore inversely proportional to cell speed and depends on adhesion and acto-myosin dynamics. Here we asked whether the molecular clutch was a general mechanism by measuring motility and retrograde flow for the Caenorhabditis elegans sperm cell in different adhesive conditions. These cells move by adhering to the substrate and emitting a dynamic lamellipodium, but the sperm cell does not contain an acto-myosin cytoskeleton. Instead the lamellipodium is formed by the assembly of Major Sperm Protein (MSP), which has no biochemical or structural similarity to actin. We find that these cells display the same molecular clutch characteristics as acto-myosin containing cells. We further show that retrograde flow is produced both by cytoskeletal assembly and contractility in these cells. Overall this study shows that the molecular clutch hypothesis of how polymerization is transduced into motility via adhesions is a general description of cell movement regardless of the composition of the cytoskeleton. PMID:25383039

  3. In Vitro Assays Demonstrate That Pollen Tube Organelles Use Kinesin-Related Motor Proteins to Move along MicrotubulesW⃞

    PubMed Central

    Romagnoli, Silvia; Cai, Giampiero; Cresti, Mauro

    2003-01-01

    The movement of pollen tube organelles relies on cytoskeletal elements. Although the movement of organelles along actin filaments in the pollen tube has been studied widely and is becoming progressively clear, it remains unclear what role microtubules play. Many uncertainties about the role of microtubules in the active transport of pollen tube organelles and/or in the control of this process remain to be resolved. In an effort to determine if organelles are capable of moving along microtubules in the absence of actin, we extracted organelles from tobacco pollen tubes and analyzed their ability to move along in vitro–polymerized microtubules under different experimental conditions. Regardless of their size, the organelles moved at different rates along microtubules in the presence of ATP. Cytochalasin D did not inhibit organelle movement, indicating that actin filaments are not required for organelle transport in our assay. The movement of organelles was cytosol independent, which suggests that soluble factors are not necessary for the organelle movement to occur and that microtubule-based motor proteins are present on the organelle surface. By washing organelles with KI, it was possible to release proteins capable of gliding carboxylated beads along microtubules. Several membrane fractions, which were separated by Suc density gradient centrifugation, showed microtubule-based movement. Proteins were extracted by KI treatment from the most active organelle fraction and then analyzed with an ATP-sensitive microtubule binding assay. Proteins isolated by the selective binding to microtubules were tested for the ability to glide microtubules in the in vitro motility assay, for the presence of microtubule-stimulated ATPase activity, and for cross-reactivity with anti-kinesin antibodies. We identified and characterized a 105-kD organelle-associated motor protein that is functionally, biochemically, and immunologically related to kinesin. This work provides clear

  4. Decreased function of survival motor neuron protein impairs endocytic pathways

    PubMed Central

    Dimitriadi, Maria; Derdowski, Aaron; Kalloo, Geetika; Maginnis, Melissa S.; O’Hern, Patrick; Bliska, Bryn; Sorkaç, Altar; Nguyen, Ken C. Q.; Cook, Steven J.; Poulogiannis, George; Atwood, Walter J.; Hall, David H.; Hart, Anne C.

    2016-01-01

    Spinal muscular atrophy (SMA) is caused by depletion of the ubiquitously expressed survival motor neuron (SMN) protein, with 1 in 40 Caucasians being heterozygous for a disease allele. SMN is critical for the assembly of numerous ribonucleoprotein complexes, yet it is still unclear how reduced SMN levels affect motor neuron function. Here, we examined the impact of SMN depletion in Caenorhabditis elegans and found that decreased function of the SMN ortholog SMN-1 perturbed endocytic pathways at motor neuron synapses and in other tissues. Diminished SMN-1 levels caused defects in C. elegans neuromuscular function, and smn-1 genetic interactions were consistent with an endocytic defect. Changes were observed in synaptic endocytic proteins when SMN-1 levels decreased. At the ultrastructural level, defects were observed in endosomal compartments, including significantly fewer docked synaptic vesicles. Finally, endocytosis-dependent infection by JC polyomavirus (JCPyV) was reduced in human cells with decreased SMN levels. Collectively, these results demonstrate for the first time, to our knowledge, that SMN depletion causes defects in endosomal trafficking that impair synaptic function, even in the absence of motor neuron cell death. PMID:27402754

  5. Bacterial Shape and ActA Distribution Affect Initiation of Listeria monocytogenes Actin-Based Motility

    PubMed Central

    Rafelski, Susanne M.; Theriot, Julie A.

    2005-01-01

    We have examined the process by which the intracellular bacterial pathogen Listeria monocytogenes initiates actin-based motility and determined the contribution of the variable surface distribution of the ActA protein to initiation and steady-state movement. To directly correlate ActA distributions to actin dynamics and motility of live bacteria, ActA was fused to a monomeric red fluorescent protein (mRFP1). Actin comet tail formation and steady-state bacterial movement rates both depended on ActA distribution, which in turn was tightly coupled to the bacterial cell cycle. Motility initiation was found to be a highly complex, multistep process for bacteria, in contrast to the simple symmetry breaking previously observed for ActA-coated spherical beads. F-actin initially accumulated along the sides of the bacterium and then slowly migrated to the bacterial pole expressing the highest density of ActA as a tail formed. Early movement was highly unstable with extreme changes in speed and frequent stops. Over time, saltatory motility and sensitivity to the immediate environment decreased as bacterial movement became robust at a constant steady-state speed. PMID:15980176

  6. Run-and-pause dynamics of cytoskeletal motor proteins

    PubMed Central

    Hafner, Anne E.; Santen, Ludger; Rieger, Heiko; Shaebani, M. Reza

    2016-01-01

    Cytoskeletal motor proteins are involved in major intracellular transport processes which are vital for maintaining appropriate cellular function. When attached to cytoskeletal filaments, the motor exhibits distinct states of motility: active motion along the filaments, and pause phase in which it remains stationary for a finite time interval. The transition probabilities between motion and pause phases are asymmetric in general, and considerably affected by changes in environmental conditions which influences the efficiency of cargo delivery to specific targets. By considering the motion of individual non-interacting molecular motors on a single filament as well as a dynamic filamentous network, we present an analytical model for the dynamics of self-propelled particles which undergo frequent pause phases. The interplay between motor processivity, structural properties of filamentous network, and transition probabilities between the two states of motility drastically changes the dynamics: multiple transitions between different types of anomalous diffusive dynamics occur and the crossover time to the asymptotic diffusive or ballistic motion varies by several orders of magnitude. We map out the phase diagrams in the space of transition probabilities, and address the role of initial conditions of motion on the resulting dynamics. PMID:27849013

  7. Run-and-pause dynamics of cytoskeletal motor proteins

    NASA Astrophysics Data System (ADS)

    Hafner, Anne E.; Santen, Ludger; Rieger, Heiko; Shaebani, M. Reza

    2016-11-01

    Cytoskeletal motor proteins are involved in major intracellular transport processes which are vital for maintaining appropriate cellular function. When attached to cytoskeletal filaments, the motor exhibits distinct states of motility: active motion along the filaments, and pause phase in which it remains stationary for a finite time interval. The transition probabilities between motion and pause phases are asymmetric in general, and considerably affected by changes in environmental conditions which influences the efficiency of cargo delivery to specific targets. By considering the motion of individual non-interacting molecular motors on a single filament as well as a dynamic filamentous network, we present an analytical model for the dynamics of self-propelled particles which undergo frequent pause phases. The interplay between motor processivity, structural properties of filamentous network, and transition probabilities between the two states of motility drastically changes the dynamics: multiple transitions between different types of anomalous diffusive dynamics occur and the crossover time to the asymptotic diffusive or ballistic motion varies by several orders of magnitude. We map out the phase diagrams in the space of transition probabilities, and address the role of initial conditions of motion on the resulting dynamics.

  8. Dynamic and Active Proteins: Biomolecular Motors in Engineered Nanostructures.

    PubMed

    Vélez, Marisela

    In Nature, proteins perform functions that go well beyond controlled self-assembly at the nano scale. They are the principal components of diverse "biological machines" that can self-assemble into dynamic aggregates that achieve the cold conversion of chemical energy into motion to realize complex functions involved in cell division, cellular transport and cell motility. Nowadays, we have identified many of the proteins involved in these "molecular machines" and know much about their biochemistry, structure and biophysical behavior. Additionally, we have a rich toolbox of resources to engineer the basic dynamic working units into nanostructures to provide them with motion and the capacity to manipulate, transport, separate or sense single molecules to develop in vitro sensors and bioassays. This chapter summarizes some of the progress made in incorporating bio-molecular motors and dynamic self-organizing proteins into protein based functional nanostructures.

  9. Short actin-based mechanism for light-directed chloroplast movement in Arabidopsis.

    PubMed

    Kadota, Akeo; Yamada, Noboru; Suetsugu, Noriyuki; Hirose, Mana; Saito, Chieko; Shoda, Keiko; Ichikawa, Satoshi; Kagawa, Takatoshi; Nakano, Akihiko; Wada, Masamitsu

    2009-08-04

    Organelle movement is essential for proper function of living cells. In plants, these movements generally depend on actin filaments, but the underlying mechanism is unknown. Here, in Arabidopsis, we identify associations of short actin filaments along the chloroplast periphery on the plasma membrane side associated with chloroplast photorelocation and anchoring to the plasma membrane. We have termed these chloroplast-actin filaments (cp-actin filaments). Cp-actin filaments emerge from the chloroplast edge and exhibit rapid turnover. The presence of cp-actin filaments depends on an actin-binding protein, chloroplast unusual positioning1 (CHUP1), localized on the chloroplast envelope. chup1 mutant lacked cp-actin filaments but showed normal cytoplasmic actin filaments. When irradiated with blue light to induce chloroplast movement, cp-actin filaments relocalize to the leading edge of chloroplasts before and during photorelocation and are regulated by 2 phototropins, phot1 and phot2. Our findings suggest that plants evolved a unique actin-based mechanism for organelle movement.

  10. Short actin-based mechanism for light-directed chloroplast movement in Arabidopsis

    PubMed Central

    Kadota, Akeo; Yamada, Noboru; Suetsugu, Noriyuki; Hirose, Mana; Saito, Chieko; Shoda, Keiko; Ichikawa, Satoshi; Kagawa, Takatoshi; Nakano, Akihiko; Wada, Masamitsu

    2009-01-01

    Organelle movement is essential for proper function of living cells. In plants, these movements generally depend on actin filaments, but the underlying mechanism is unknown. Here, in Arabidopsis, we identify associations of short actin filaments along the chloroplast periphery on the plasma membrane side associated with chloroplast photorelocation and anchoring to the plasma membrane. We have termed these chloroplast-actin filaments (cp-actin filaments). Cp-actin filaments emerge from the chloroplast edge and exhibit rapid turnover. The presence of cp-actin filaments depends on an actin-binding protein, chloroplast unusual positioning1 (CHUP1), localized on the chloroplast envelope. chup1 mutant lacked cp-actin filaments but showed normal cytoplasmic actin filaments. When irradiated with blue light to induce chloroplast movement, cp-actin filaments relocalize to the leading edge of chloroplasts before and during photorelocation and are regulated by 2 phototropins, phot1 and phot2. Our findings suggest that plants evolved a unique actin-based mechanism for organelle movement. PMID:19620714

  11. ALS-linked protein disulfide isomerase variants cause motor dysfunction.

    PubMed

    Woehlbier, Ute; Colombo, Alicia; Saaranen, Mirva J; Pérez, Viviana; Ojeda, Jorge; Bustos, Fernando J; Andreu, Catherine I; Torres, Mauricio; Valenzuela, Vicente; Medinas, Danilo B; Rozas, Pablo; Vidal, Rene L; Lopez-Gonzalez, Rodrigo; Salameh, Johnny; Fernandez-Collemann, Sara; Muñoz, Natalia; Matus, Soledad; Armisen, Ricardo; Sagredo, Alfredo; Palma, Karina; Irrazabal, Thergiory; Almeida, Sandra; Gonzalez-Perez, Paloma; Campero, Mario; Gao, Fen-Biao; Henny, Pablo; van Zundert, Brigitte; Ruddock, Lloyd W; Concha, Miguel L; Henriquez, Juan P; Brown, Robert H; Hetz, Claudio

    2016-04-15

    Disturbance of endoplasmic reticulum (ER) proteostasis is a common feature of amyotrophic lateral sclerosis (ALS). Protein disulfide isomerases (PDIs) areERfoldases identified as possibleALSbiomarkers, as well as neuroprotective factors. However, no functional studies have addressed their impact on the disease process. Here, we functionally characterized fourALS-linked mutations recently identified in two majorPDIgenes,PDIA1 andPDIA3/ERp57. Phenotypic screening in zebrafish revealed that the expression of thesePDIvariants induce motor defects associated with a disruption of motoneuron connectivity. Similarly, the expression of mutantPDIs impaired dendritic outgrowth in motoneuron cell culture models. Cellular and biochemical studies identified distinct molecular defects underlying the pathogenicity of thesePDImutants. Finally, targetingERp57 in the nervous system led to severe motor dysfunction in mice associated with a loss of neuromuscular synapses. This study identifiesERproteostasis imbalance as a risk factor forALS, driving initial stages of the disease.

  12. Fluctuation analysis of motor protein movement and single enzyme kinetics.

    PubMed Central

    Svoboda, K; Mitra, P P; Block, S M

    1994-01-01

    We studied fluctuations in the displacement of silica beads driven by single molecules of the motor protein kinesin, moving under low mechanical loads at saturating ATP concentrations. The variance in position was significantly smaller than expected for the case of stepwise movement along a regular lattice of positions with exponentially distributed intervals. The small variance suggests that two or more sequential processes with comparable reaction rates dominate the biochemical cycle. The low value is inconsistent with certain recently proposed thermal ratchet models for motor movement as well as with scenarios where the hydrolysis of a single ATP molecule leads to a cluster of several steps. Fluctuation analysis is a potential powerful tool for studying kinetic behavior whenever the output of a single enzyme can be monitored. PMID:7991536

  13. Lamellipodin Is Important for Cell-to-Cell Spread and Actin-Based Motility in Listeria monocytogenes

    PubMed Central

    Wang, Jiahui; King, Jane E.; Goldrick, Marie; Lowe, Martin; Gertler, Frank B.

    2015-01-01

    Listeria monocytogenes is a foodborne pathogen capable of invading a broad range of cell types and replicating within the host cell cytoplasm. This paper describes the colocalization of host cell lamellipodin (Lpd) with intracellular L. monocytogenes detectable 6 h postinfection of epithelial cells. The association was mediated via interactions between both the peckstrin homology (PH) domain in Lpd and phosphatidylinositol (3,4)-bisphosphate [PI(3,4)P2] on the bacterial surface and by interactions between the C-terminal EVH1 (Ena/VASP [vasodilator-stimulated phosphoprotein] homology domain 1) binding domains of Lpd and the host VASP (vasodilator-stimulated phosphoprotein) recruited to the bacterial cell surface by the listerial ActA protein. Depletion of Lpd by short interfering RNA (siRNA) resulted in reduced plaque size and number, indicating a role for Lpd in cell-to-cell spread. In contrast, overexpression of Lpd resulted in an increase in the number of L. monocytogenes-containing protrusions (listeriopods). Manipulation of the levels of Lpd within the cell also affected the intracellular velocity of L. monocytogenes, with a reduction in Lpd corresponding to an increase in intracellular velocity. These data, together with the observation that Lpd accumulated at the interface between the bacteria and the developing actin tail at the initiation of actin-based movement, indicate a possible role for Lpd in the actin-based movement and the cell-to-cell spread of L. monocytogenes. PMID:26169271

  14. Remote control of myosin and kinesin motors using light-activated gearshifting

    NASA Astrophysics Data System (ADS)

    Nakamura, Muneaki; Chen, Lu; Howes, Stuart C.; Schindler, Tony D.; Nogales, Eva; Bryant, Zev

    2014-09-01

    Cytoskeletal motors perform critical force generation and transport functions in eukaryotic cells. Engineered modifications of motor function provide direct tests of protein structure-function relationships and potential tools for controlling cellular processes or for harnessing molecular transport in artificial systems. Here, we report the design and characterization of a panel of cytoskeletal motors that reversibly change gears—speed up, slow down or switch directions—when exposed to blue light. Our genetically encoded structural designs incorporate a photoactive protein domain to enable light-dependent conformational changes in an engineered lever arm. Using in vitro motility assays, we demonstrate robust spatiotemporal control over motor function and characterize the kinetics of the optical gearshifting mechanism. We have used a modular approach to create optical gearshifting motors for both actin-based and microtubule-based transport.

  15. Five-site model for a motor protein walking on a bead-spring substrate

    NASA Astrophysics Data System (ADS)

    Paudyal, Nabina; Adeli Koudehi, Maral; Luettmer-Strathmann, Jutta

    2014-03-01

    Motor proteins play an important role in many biological processes. For example, kinesin molecules are responsible for the transport of vesicles in nerve cells and their malfunction has been linked to neurodegenerative diseases. Motor proteins are also responsible for the unique mechanical properties of active matter. To study non-equilibrium aspects of motor-substrate systems, biological chain molecules interacting with motor proteins have been investigated in single-chain pulling experiments. Unfortunately, the complexity of motor proteins and their environment makes it difficult to model the detailed dynamics of molecular motors over long time scales. In this work, we develop a simple coarse-grained model for a motor protein on a bead-spring substrate under tension. In our model, different pair potentials describe interactions between substrate and motor, motor components and substrate components. The movement of motor proteins entails ATP hydrolysis, which is modeled in terms of mechano-chemical states that couple positional and chemical degrees of freedom. The goal of this work is to simulate cargo transport in confined geometries and to investigate the mechanical response of a single chain interacting with motor proteins.

  16. Motor protein mechanics: a stochastic model with minimal mechanochemical coupling.

    PubMed Central

    Duke, T; Leibler, S

    1996-01-01

    A stochastic model for the action of motor proteins such as kinesin is presented. The mechanical components of the enzyme are 1) two identical head domains that bind to discrete sites on a microtubule and that are capable of undergoing a conformational change; and 2) an elastic element that connects each head to the rest of the molecule. We investigate the situation in which the strain dependence of the chemical reaction rates is minimal and the heads have independent biochemical cycles. The enzyme advances stochastically along a filament when one head detaches and diffuses to a new binding site, while the other head remains bound to the microtubule. We also investigate the case in which the chemical cycles of the heads are correlated so that the molecule shifts each head alternately. The predictions of the model are found to be in agreement with experimentally measured force-velocity relationships for kinesin-both when the force is applied externally and when the enzyme is loaded by a viscous drag. For reasonable values of the parameters, this agreement is quantitative. The molecular stepping characteristics observed in recent motility assays are also reproduced. A number of experiments are suggested that would provide a more stringent test of the model and help determine whether this simple picture is an appropriate description of motor proteins or whether models that include strain-dependent reaction rates or more complicated types of cooperation of the two heads need to be considered. Images FIGURE 1 FIGURE 2 PMID:8873998

  17. Self-organized optical device driven by motor proteins

    PubMed Central

    Aoyama, Susumu; Shimoike, Masahiko; Hiratsuka, Yuichi

    2013-01-01

    Protein molecules produce diverse functions according to their combination and arrangement as is evident in a living cell. Therefore, they have a great potential for application in future devices. However, it is currently very difficult to construct systems in which a large number of different protein molecules work cooperatively. As an approach to this challenge, we arranged protein molecules in artificial microstructures and assembled an optical device inspired by a molecular system of a fish melanophore. We prepared arrays of cell-like microchambers, each of which contained a scaffold of microtubule seeds at the center. By polymerizing tubulin from the fixed microtubule seeds, we obtained radially arranged microtubules in the chambers. We subsequently prepared pigment granules associated with dynein motors and attached them to the radial microtubule arrays, which made a melanophore-like system. When ATP was added to the system, the color patterns of the chamber successfully changed, due to active transportation of pigments. Furthermore, as an application of the system, image formation on the array of the optical units was performed. This study demonstrates that a properly designed microstructure facilitates arrangement and self-organization of molecules and enables assembly of functional molecular systems. PMID:24065817

  18. Myosin motor function: the ins and outs of actin-based membrane protrusions

    PubMed Central

    Nambiar, Rajalakshmi; McConnell, Russell E.

    2011-01-01

    Cells build plasma membrane protrusions supported by parallel bundles of F-actin to enable a wide variety of biological functions, ranging from motility to host defense. Filopodia, microvilli and stereocilia are three such protrusions that have been the focus of intense biological and biophysical investigation in recent years. While it is evident that actin dynamics play a significant role in the formation of these organelles, members of the myosin superfamily have also been implicated as key players in the maintenance of protrusion architecture and function. Based on a simple analysis of the physical forces that control protrusion formation and morphology, as well as our review of available data, we propose that myosins play two general roles within these structures: (1) as cargo transporters to move critical regulatory components toward distal tips and (2) as mediators of membrane-cytoskeleton adhesion. PMID:20107861

  19. Actin-Based Feedback Circuits in Cell Migration and Endocytosis

    NASA Astrophysics Data System (ADS)

    Wang, Xinxin

    In this thesis, we study the switch and pulse functions of actin during two important cellular processes, cell migration and endocytosis. Actin is an abundant protein that can polymerize to form a dendritic network. The actin network can exert force to push or bend the cell membrane. During cell migration, the actin network behaves like a switch, assembling mostly at one end or at the other end. The end with the majority of the actin network is the leading edge, following which the cell can persistently move in the same direction. The other end, with the minority of the actin network, is the trailing edge, which is dragged by the cell as it moves forward. When subjected to large fluctuations or external stimuli, the leading edge and the trailing edge can interchange and change the direction of motion, like a motion switch. Our model of the actin network in a cell reveals that mechanical force is crucial for forming the motion switch. We find a transition from single state symmetric behavior to switch behavior, when tuning parameters such as the force. The model is studied by both stochastic simulations, and a set of rate equations that are consistent with the simulations. Endocytosis is a process by which cells engulf extracellular substances and recycle the cell membrane. In yeast cells, the actin network is transiently needed to overcome the pressure difference across the cell membrane caused by turgor pressure. The actin network behaves like a pulse, which assembles and then disassembles within about 30 seconds. Using a stochastic model, we reproduce the pulse behaviors of the actin network and one of its regulatory proteins, Las17. The model matches green fluorescence protein (GFP) experiments for wild-type cells. The model also predicts some phenotypes that modify or diminish the pulse behavior. The phenotypes are verified with both experiments performed at Washington University and with other groups' experiments. We find that several feedback mechanisms are

  20. Molecular genetics of myosin motors in Arabidopsis. Final report, July 1, 1992--June 30, 1996

    SciTech Connect

    Schiefelbein, J.

    1997-02-01

    The normal growth and development of plant cells depends on the precise organization and distribution of the cellular contents. The basic goal of this investigation was to define a group of the molecules that are involved in organizing and transporting plant cell components. Based largely on studies of animal and fungal cells, one of the molecules thought to be involved in intracellular trafficking in plants is the actin-based motor protein myosin. Therefore, the major aim of this study was to isolate and analyze plant genes encoding myosin proteins. The plant of choice for these experiments was Arabidopsis thaliana, which offers numerous advantages for molecular genetics research.

  1. CHUP1 mediates actin-based light-induced chloroplast avoidance movement in the moss Physcomitrella patens.

    PubMed

    Usami, Hiroka; Maeda, Takuma; Fujii, Yusuke; Oikawa, Kazusato; Takahashi, Fumio; Kagawa, Takatoshi; Wada, Masamitsu; Kasahara, Masahiro

    2012-12-01

    Chloroplasts change their intracellular distribution in response to light intensity. CHUP1 (CHLOROPLAST UNUSUAL POSITIONING1) is indispensable for this response in Arabidopsis thaliana. However, involvement of CHUP1 in light-induced chloroplast movement is unknown in other plants. In this study, CHUP1 orthologues were isolated from a moss, Physcomitrella patens, and a fern, Adiantum capillus-veneris, by cDNA library screening and PCR cloning based on the P. patens genome sequence. Functional motifs found in CHUP1 of A. thaliana were conserved among the CHUP1 orthologues. In addition to the putative functional regions, the C-terminal regions (approximately 250 amino acids), which are unique in CHUP1s, were highly conserved. Green fluorescent protein (GFP) fusions of P. patens CHUP1s (PpCHUP1A, PpCHUP1B and PpCHUP1C) were transiently expressed in protoplast cells. All GFP fusions were localized on the chloroplasts. Light-induced chloroplast avoidance movement of chup1 disruptants of P. patens was examined in the presence of cytoskeletal inhibitors because of the utilization of both microtubules and actin filaments for the movement in P. patens. When actin filaments were disrupted by cytochalasin B, the wild type (WT) and all chup1 disruptants showed chloroplast avoidance movement. However, when microtubules were disrupted by Oryzalin, chloroplasts in ∆chup1A and ∆chup1A/B rarely moved and stayed in the strong light-irradiated area. On the other hand, WT, ∆chup1B and ∆chup1C showed chloroplast avoidance movement. These results suggest that PpCHUP1A predominantly mediates the actin-based light-induced chloroplast avoidance movement. This study reveals that CHUP1 functions on the chloroplasts and is involved in the actin-based light-induced chloroplast avoidance movement in P. patens.

  2. Creating biomolecular motors based on dynein and actin-binding proteins

    NASA Astrophysics Data System (ADS)

    Furuta, Akane; Amino, Misako; Yoshio, Maki; Oiwa, Kazuhiro; Kojima, Hiroaki; Furuta, Ken'ya

    2016-11-01

    Biomolecular motors such as myosin, kinesin and dynein are protein machines that can drive directional movement along cytoskeletal tracks and have the potential to be used as molecule-sized actuators. Although control of the velocity and directionality of biomolecular motors has been achieved, the design and construction of novel biomolecular motors remains a challenge. Here we show that naturally occurring protein building blocks from different cytoskeletal systems can be combined to create a new series of biomolecular motors. We show that the hybrid motors—combinations of a motor core derived from the microtubule-based dynein motor and non-motor actin-binding proteins—robustly drive the sliding movement of an actin filament. Furthermore, the direction of actin movement can be reversed by simply changing the geometric arrangement of these building blocks. Our synthetic strategy provides an approach to fabricating biomolecular machines that work along artificial tracks at nanoscale dimensions.

  3. Motor neurons with differential vulnerability to degeneration show distinct protein signatures in health and ALS.

    PubMed

    Comley, L; Allodi, I; Nichterwitz, S; Nizzardo, M; Simone, C; Corti, S; Hedlund, E

    2015-04-16

    The lethal disease amyotrophic lateral sclerosis (ALS) is characterized by the loss of somatic motor neurons. However, not all motor neurons are equally vulnerable to disease; certain groups are spared, including those in the oculomotor nucleus controlling eye movement. The reasons for this differential vulnerability remain unknown. Here we have identified a protein signature for resistant oculomotor motor neurons and vulnerable hypoglossal and spinal motor neurons in mouse and man and in health and ALS with the aim of understanding motor neuron resistance. Several proteins with implications for motor neuron resistance, including GABAA receptor α1, guanylate cyclase soluble subunit alpha-3 and parvalbumin were persistently expressed in oculomotor neurons in man and mouse. Vulnerable motor neurons displayed higher protein levels of dynein, peripherin and GABAA receptor α2, which play roles in retrograde transport and excitability, respectively. These were dynamically regulated during disease and thus could place motor neurons at an increased risk. From our analysis is it evident that oculomotor motor neurons have a distinct protein signature compared to vulnerable motor neurons in brain stem and spinal cord, which could in part explain their resistance to degeneration in ALS. Our comparison of human and mouse shows the relative conservation of signals across species and infers that transgenic SOD1G93A mice could be used to predict mechanisms of neuronal vulnerability in man.

  4. Interaction between the motor protein prestin and the transporter protein VAPA.

    PubMed

    Sengupta, Soma; Miller, Katharine K; Homma, Kazuaki; Edge, Roxanne; Cheatham, Mary Ann; Dallos, Peter; Zheng, Jing

    2010-07-01

    Prestin is the motor protein responsible for cochlear outer hair cell (OHC) somatic electromotility. Eliminating this abundant basolateral membrane protein not only causes loss of frequency selectivity and hearing sensitivity, but also leads to OHC death. A membrane-based yeast two-hybrid approach was used to screen an OHC-enriched cDNA (complementary Deoxyribonucleic Acid) library in order to identify prestin-associated proteins. Several proteins were recognized as potential prestin partners, including vesicle-associated membrane protein associated protein A (VAPA or VAP-33). VAPA is an integral membrane protein that plays an important role in membrane trafficking, endoplasmic reticulum homeostasis, and the stress-signaling system. The connection between VAPA and prestin was confirmed through co-immunoprecipitation experiments. This new finding prompted the investigation of the interaction between VAPA and prestin in outer hair cells. By comparing VAPA expression between wild-type OHCs and OHCs derived from prestin-knockout mice, we found that VAPA is expressed in OHCs and the quantity of VAPA expressed is related to the presence of prestin. In other words, less VAPA protein is found in OHCs lacking prestin. Thus, prestin appears to modify the expression of VAPA protein in OHCs. Intriguingly, more prestin protein appears at the plasma membrane when VAPA is co-expressed with prestin. These data suggest that VAPA could be involved in prestin's transportation inside OHCs and may facilitate the targeting of this abundant OHC protein to the plasma membrane.

  5. Analysis of the oligomeric structure of the motor protein prestin.

    PubMed

    Zheng, Jing; Du, Guo-Guang; Anderson, Charles T; Keller, Jacob P; Orem, Alex; Dallos, Peter; Cheatham, MaryAnn

    2006-07-21

    Prestin, a member of the solute carrier family 26, is expressed in the basolateral membrane of outer hair cells. This protein provides the molecular basis for outer hair cell somatic electromotility, which is crucial for the frequency selectivity and sensitivity of mammalian hearing. It has long been known that there are abundantly expressed approximately 11-nM protein particles present in the basolateral membrane. These particles were hypothesized to be the motor proteins that drive electromotility. Because the calculated size of a prestin monomer is too small to form an approximately 11-nM particle, the possibility of prestin oligomerization was examined. We investigated possible quaternary structures of prestin by lithium dodecyl sulfate-PAGE, perfluoro-octanoate-PAGE, a membrane-based yeast two-hybrid system, and chemical cross-linking experiments. Prestin, obtained from different host or native cells, is resistant to dissociation by lithium dodecyl sulfate and behaves as a stable oligomer on lithium dodecyl sulfate-PAGE. In the membrane-based yeast two-hybrid system, homo-oligomeric interactions between prestin-bait/prestin-prey suggest that prestin molecules can associate with each other. Chemical cross-linking experiments, perfluoro-octanoate-PAGE/Western blot, and affinity purification experiments all indicate that prestin exists as a higher order oligomer, such as a tetramer, in prestin-expressing yeast, mammalian cell lines and native outer hair cells. Our data from experiments using hydrophobic and hydrophilic reducing reagents suggest that the prestin dimer is connected by a disulfide bond embedded in the prestin hydrophobic core. This stable dimer may act as the building block for producing the higher order oligomers that form the approximately 11-nM particles in the outer hair cell's basolateral membrane.

  6. Bacterial spread from cell to cell: beyond actin-based motility.

    PubMed

    Kuehl, Carole J; Dragoi, Ana-Maria; Talman, Arthur; Agaisse, Hervé

    2015-09-01

    Several intracellular pathogens display the ability to propagate within host tissues by displaying actin-based motility in the cytosol of infected cells. As motile bacteria reach cell-cell contacts they form plasma membrane protrusions that project into adjacent cells and resolve into vacuoles from which the pathogen escapes, thereby achieving spread from cell to cell. Seminal studies have defined the bacterial and cellular factors that support actin-based motility. By contrast, the mechanisms supporting the formation of protrusions and their resolution into vacuoles have remained elusive. Here, we review recent advances in the field showing that Listeria monocytogenes and Shigella flexneri have evolved pathogen-specific mechanisms of bacterial spread from cell to cell.

  7. Integrated regulation of motor-driven organelle transport by scaffolding proteins.

    PubMed

    Fu, Meng-meng; Holzbaur, Erika L F

    2014-10-01

    Intracellular trafficking pathways, including endocytosis, autophagy, and secretion, rely on directed organelle transport driven by the opposing microtubule motor proteins kinesin and dynein. Precise spatial and temporal targeting of vesicles and organelles requires the integrated regulation of these opposing motors, which are often bound simultaneously to the same cargo. Recent progress demonstrates that organelle-associated scaffolding proteins, including Milton/TRAKs (trafficking kinesin-binding protein), JIP1, JIP3 (JNK-interacting proteins), huntingtin, and Hook1, interact with molecular motors to coordinate activity and sustain unidirectional transport. Scaffolding proteins also bind to upstream regulatory proteins, including kinases and GTPases, to modulate transport in the cell. This integration of regulatory control with motor activity allows for cargo-specific changes in the transport or targeting of organelles in response to cues from the complex cellular environment.

  8. Interactions of Listeria monocytogenes with mammalian cells during entry and actin-based movement: bacterial factors, cellular ligands and signaling.

    PubMed Central

    Cossart, P; Lecuit, M

    1998-01-01

    Although <50 kb of its 3.3 megabase genome is known, Listeria monocytogenes has received much attention and an impressive amount of data has contributed in raising this bacterium among the best understood intracellular pathogens. The mechanisms that Listeria uses to enter cells, escape from the phagocytic vacuole and spread from one cell to another using an actin-based motility process have been analysed in detail. Several bacterial proteins contributing to these events have been identified, including the invasion proteins internalin A (InlA) and B (InlB), the secreted pore-forming toxin listeriolysin O (LLO) which promotes the escape from the phagocytic vacuole, and the surface protein ActA which is required for actin polymerization and bacterial movement. While LLO and ActA are critical for the infectious process and are not redundant with other listerial proteins, the precise role of InlA and InlB in vivo remains unclear. How InlA, InlB, LLO or ActA interact with the mammalian cells is beginning to be deciphered. The picture that emerges is that this bacterium uses general strategies also used by other invasive bacteria but has evolved a panel of specific tools and tricks to exploit mammalian cell functions. Their study may lead to a better understanding of important questions in cell biology such as ligand receptor signalling and dynamics of actin polymerization in mammalian cells. PMID:9669997

  9. Effect of the microtubule-associated protein tau on dynamics of single-headed motor proteins KIF1A

    NASA Astrophysics Data System (ADS)

    Sparacino, J.; Farías, M. G.; Lamberti, P. W.

    2014-02-01

    Intracellular transport based on molecular motors and its regulation are crucial to the functioning of cells. Filamentary tracks of the cells are abundantly decorated with nonmotile microtubule-associated proteins, such as tau. Motivated by experiments on kinesin-tau interactions [Dixit et al., Science 319, 1086 (2008), 10.1126/science.1152993] we developed a stochastic model of interacting single-headed motor proteins KIF1A that also takes into account the interactions between motor proteins and tau molecules. Our model reproduces experimental observations and predicts significant effects of tau on bound time and run length which suggest an important role of tau in regulation of kinesin-based transport.

  10. The role of substrate curvature in actin-based pushing forces.

    PubMed

    Schwartz, Ian M; Ehrenberg, Morton; Bindschadler, Michael; McGrath, James L

    2004-06-22

    The extension of the plasma membrane during cell crawling or spreading is known to require actin polymerization; however, the question of how pushing forces derive from actin polymerization remains open. A leading theory (herein referred to as elastic propulsion) illustrates how elastic stresses in networks growing on curved surfaces can result in forces that push particles. To date all examples of reconstituted motility have used curved surfaces, raising the possibility that such squeezing forces are essential for actin-based pushing. By contrast, other theories, such as molecular ratchets, neither require nor consider surface curvature to explain pushing forces. Here, we critically test the requirement of substrate curvature by reconstituting actin-based motility on polystyrene disks. We find that disks move through extracts in a manner that indicates pushing forces on their flat surfaces and that disks typically move faster than the spheres they are manufactured from. For a subset of actin tails that form on the perimeter of disks, we find no correlation between local surface curvature and tail position. Collectively the data indicate that curvature-dependent mechanisms are not required for actin-based pushing.

  11. Intermolecular forces between the motor protein and the filament.

    PubMed

    Suda, H; Taylor, T W

    1993-03-07

    Intermolecular forces between motor proteins and filaments were evaluated on the basis of the experimental data of an in vitro motility assay by considering the molecular friction in the movement system. The molecular friction was caused by a different mechanism from that of the hydrodynamic drag. However, the molecular frictional forces apparently gave the same expression as the hydrodynamic frictional forces. The resulting equation was very effective in examining the physical properties of the weak interaction in the dynein-microtubules system from basic experiments carried out by Vale et al. (1989). From careful analysis of their experimental data, it was concluded that the hydrodynamic friction was not dominant, even in the weak binding state. The electrostatic interaction between dynein-heads and microtubules in the weak binding state was analyzed by applying the DLVO (Derjaguin-Landau-Verway-Overbeek) theory in colloid science through the ionic dependence of one-dimensional diffusion. The interacting distance between charges which took part in the weak adhesion was estimated to be 3 nm. In the present study, the molecular mechanism of the sliding velocity was also investigated for the myosin-actin filaments and the kinesin-microtubules systems by fitting the ATP-dependence and the ionic dependence in ATP-driven active sliding.

  12. Anion transport by the cochlear motor protein prestin.

    PubMed

    Schänzler, Michael; Fahlke, Christoph

    2012-01-15

    Prestin is a member of the SLC26 solute carrier family and functions as a motor protein in cochlear outer hair cells. While other SLC26 homologues were demonstrated to transport a wide variety of anions, no electrogenic transport activity has been assigned so far to mammalian prestin. We here use heterologous expression in mammalian cells, patch clamp recordings and measurements of expression levels of individual cells to study anion transport by rat prestin. We demonstrated that cells expressing rat prestin exhibit SCN(-) currents that are proportional to the number of prestin molecules. Variation of the SCN(-) concentration resulted in changes of the current reversal potential that obey the Nernst equation indicating that SCN(-) transport is not stoichiometrically coupled to other anions. Application of external SCN(-) causes large increases of anion currents, but only minor changes in non-linear charge movements suggesting that only a very small percentage of prestin molecules function as SCN(-) transporters under these conditions. Unitary current amplitudes are below the resolution limit of noise analysis and thus much smaller than expected for pore-mediated anion transport. A comparison with a non-mammalian prestin from D. rerio - recently shown to function as Cl(-)/SO(4)(2-) antiporter - and an SLC26 anion channel, human SLC26A7, revealed that SCN(-) transport is conserved in these distinct members of the SLC26 family. We conclude that mammalian prestin is capable of mediating electrogenic anion transport and suggest that SLC26 proteins converting membrane voltage oscillations into conformational changes and those functioning as channels or transporters share certain transport capabilities.

  13. Measurements of Myosin-II Motor Activity During Cytokinesis in Fission Yeast.

    PubMed

    Tang, Qing; Pollard, Luther W; Lord, Matthew

    2016-01-01

    Fission yeast myosin-II (Myo2p) represents the critical actin-based motor protein that drives actomyosin ring assembly and constriction during cytokinesis. We detail three different methods to measure Myo2p motor function. Actin-activated ATPases provide a readout of actomyosin ATPase motor activity in a bulk assay; actin filament motility assays reveal the speed and efficiency of myosin-driven actin filament gliding (when motors are anchored); myosin-bead motility assays reveal the speed and efficiency of myosin ensembles traveling along actin filaments (when actin is anchored). Collectively, these methods allow us to combine the standard in vivo approaches common to fission yeast with in vitro biochemical methods to learn more about the mechanistic action of myosin-II during cytokinesis.

  14. Motor Proteins as Nanomachines: The Roles of Thermal Fluctuations in Generating Force and Motion

    NASA Astrophysics Data System (ADS)

    Howard, Jonathon

    Motor proteins are enzymes that convert chemical energy derived from the hydrolysis of a small molecule called ATP into mechanical work used to power directed movement along cytoskeletal filaments inside cells. Motor proteins have essential biological functions such as driving the contraction of muscle, the beating of sperm and cilia, and the transport of intracellular cargoes. Motor proteins are also interesting from a physical point of view because they do what no man-made engines do: they transduce chemical energy directly to mechanical work without using heat or electrical energy as an intermediate. A central issue in the mechanism of this chemomechanical transduction by motor proteins concerns the roles played by thermal fluctuations, diffusion and Brownian motion. In this lecture I discuss several molecular models for motor proteins, including so-called ratchet models, and compare predictions of these models to experimental results for the microtubule-based motor protein kinesin. I argue that kinesin, which has two motor domains or "heads," walks using a "hand-over-hand" mechanism such that at least one head is bound to the microtubule. Diffusion likely plays an essential role by facilitating the search of the unbound head for the next binding site, a distance 8 nm away. During this diffusive phase, the bound head supports the load ensuring that forward motion can still take place even against loads up to several piconewtons.

  15. Life without double-headed non-muscle myosin II motor proteins

    NASA Astrophysics Data System (ADS)

    Betapudi, Venkaiah

    2014-07-01

    Non-muscle myosin II motor proteins (myosin IIA, myosin IIB, and myosin IIC) belong to a class of molecular motor proteins that are known to transduce cellular free-energy into biological work more efficiently than man-made combustion engines. Nature has given a single myosin II motor protein for lower eukaryotes and multiple for mammals but none for plants in order to provide impetus for their life. These specialized nanomachines drive cellular activities necessary for embryogenesis, organogenesis, and immunity. However, these multifunctional myosin II motor proteins are believed to go awry due to unknown reasons and contribute for the onset and progression of many autosomal-dominant disorders, cataract, deafness, infertility, cancer, kidney, neuronal, and inflammatory diseases. Many pathogens like HIV, Dengue, hepatitis C, and Lymphoma viruses as well as Salmonella and Mycobacteria are now known to take hostage of these dedicated myosin II motor proteins for their efficient pathogenesis. Even after four decades since their discovery, we still have a limited knowledge of how these motor proteins drive cell migration and cytokinesis. We need to enrich our current knowledge on these fundamental cellular processes and develop novel therapeutic strategies to fix mutated myosin II motor proteins in pathological conditions. This is the time to think how to relieve the hijacked myosins from pathogens in order to provide a renewed impetus for patients’ life. Understanding how to steer these molecular motors in proliferating and differentiating stem cells will improve stem cell based-therapeutics development. Given the plethora of cellular activities non-muscle myosin motor proteins are involved in, their importance is apparent for human life.

  16. Life without double-headed non-muscle myosin II motor proteins

    PubMed Central

    Betapudi, Venkaiah

    2014-01-01

    Non-muscle myosin II motor proteins (myosin IIA, myosin IIB, and myosin IIC) belong to a class of molecular motor proteins that are known to transduce cellular free-energy into biological work more efficiently than man-made combustion engines. Nature has given a single myosin II motor protein for lower eukaryotes and multiple for mammals but none for plants in order to provide impetus for their life. These specialized nanomachines drive cellular activities necessary for embryogenesis, organogenesis, and immunity. However, these multifunctional myosin II motor proteins are believed to go awry due to unknown reasons and contribute for the onset and progression of many autosomal-dominant disorders, cataract, deafness, infertility, cancer, kidney, neuronal, and inflammatory diseases. Many pathogens like HIV, Dengue, hepatitis C, and Lymphoma viruses as well as Salmonella and Mycobacteria are now known to take hostage of these dedicated myosin II motor proteins for their efficient pathogenesis. Even after four decades since their discovery, we still have a limited knowledge of how these motor proteins drive cell migration and cytokinesis. We need to enrich our current knowledge on these fundamental cellular processes and develop novel therapeutic strategies to fix mutated myosin II motor proteins in pathological conditions. This is the time to think how to relieve the hijacked myosins from pathogens in order to provide a renewed impetus for patients' life. Understanding how to steer these molecular motors in proliferating and differentiating stem cells will improve stem cell based-therapeutics development. Given the plethora of cellular activities non-muscle myosin motor proteins are involved in, their importance is apparent for human life. PMID:25072053

  17. Protein expression of sensory and motor nerves: Two-dimensional gel electrophoresis and mass spectrometry.

    PubMed

    Ren, Zhiwu; Wang, Yu; Peng, Jiang; Zhang, Li; Xu, Wenjing; Liang, Xiangdang; Zhao, Qing; Lu, Shibi

    2012-02-15

    The present study utilized samples from bilateral motor branches of the femoral nerve, as well as saphenous nerves, ventral roots, and dorsal roots of the spinal cord, to detect differential protein expression using two-dimensional gel electrophoresis and nano ultra-high performance liquid chromatography electrospray ionization mass spectrometry tandem mass spectrometry techniques. A mass spectrum was identified using the Mascot search. Results revealed differential expression of 11 proteins, including transgelin, Ig kappa chain precursor, plasma glutathione peroxidase precursor, an unnamed protein product (gi|55628), glyceraldehyde-3-phosphate dehydrogenase-like protein, lactoylglutathione lyase, adenylate kinase isozyme 1, two unnamed proteins products (gi|55628 and gi|1334163), and poly(rC)-binding protein 1 in motor and sensory nerves. Results suggested that these proteins played roles in specific nerve regeneration following peripheral nerve injury and served as specific markers for motor and sensory nerves.

  18. Construction of a Chassis for a Tripartite Protein-Based Molecular Motor.

    PubMed

    Small, Lara S R; Bruning, Marc; Thomson, Andrew R; Boyle, Aimee L; Davies, Roberta B; Curmi, Paul M G; Forde, Nancy R; Linke, Heiner; Woolfson, Derek N; Bromley, Elizabeth H C

    2017-03-14

    Improving our understanding of biological motors, both to fully comprehend their activities in vital processes, and to exploit their impressive abilities for use in bionanotechnology, is highly desirable. One means of understanding these systems is through the production of synthetic molecular motors. We demonstrate the use of orthogonal coiled-coil dimers (including both parallel and antiparallel coiled coils) as a hub for linking other components of a previously described synthetic molecular motor, the Tumbleweed. We use circular dichroism, analytical ultracentrifugation, dynamic light scattering, and disulfide rearrangement studies to demonstrate the ability of this six-peptide set to form the structure designed for the Tumbleweed motor. The successful formation of a suitable hub structure is both a test of the transferability of design rules for protein folding as well as an important step in the production of a synthetic protein-based molecular motor.

  19. Simultaneous nano-tracking of multiple motor proteins via spectral discrimination of quantum dots

    PubMed Central

    Kakizuka, Taishi; Ikezaki, Keigo; Kaneshiro, Junichi; Fujita, Hideaki; Watanabe, Tomonobu M.; Ichimura, Taro

    2016-01-01

    Simultaneous nanometric tracking of multiple motor proteins was achieved by combining multicolor fluorescent labeling of target proteins and imaging spectroscopy, revealing dynamic behaviors of multiple motor proteins at the sub-diffraction-limit scale. Using quantum dot probes of distinct colors, we experimentally verified the localization precision to be a few nanometers at temporal resolution of 30 ms or faster. One-dimensional processive movement of two heads of a single myosin molecule and multiple myosin molecules was successfully traced. Furthermore, the system was modified for two-dimensional measurement and applied to tracking of multiple myosin molecules. Our approach is useful for investigating cooperative movement of proteins in supramolecular nanomachinery. PMID:27446684

  20. Protein Synthesis Inhibition in the Peri-Infarct Cortex Slows Motor Recovery in Rats

    PubMed Central

    Schubring-Giese, Maximilian; Leemburg, Susan; Luft, Andreas Rüdiger; Hosp, Jonas Aurel

    2016-01-01

    Neuroplasticity and reorganization of brain motor networks are thought to enable recovery of motor function after ischemic stroke. Especially in the cortex surrounding the ischemic scar (i.e., peri-infarct cortex), evidence for lasting reorganization has been found at the level of neurons and networks. This reorganization depends on expression of specific genes and subsequent protein synthesis. To test the functional relevance of the peri-infarct cortex for recovery we assessed the effect of protein synthesis inhibition within this region after experimental stroke. Long-Evans rats were trained to perform a skilled-reaching task (SRT) until they reached plateau performance. A photothrombotic stroke was induced in the forelimb representation of the primary motor cortex (M1) contralateral to the trained paw. The SRT was re-trained after stroke while the protein synthesis inhibitor anisomycin (ANI) or saline were injected into the peri-infarct cortex through implanted cannulas. ANI injections reduced protein synthesis within the peri-infarct cortex by 69% and significantly impaired recovery of reaching performance through re-training. Improvement of motor performance within a single training session remained intact, while improvement between training sessions was impaired. ANI injections did not affect infarct size. Thus, protein synthesis inhibition within the peri-infarct cortex impairs recovery of motor deficits after ischemic stroke by interfering with consolidation of motor memory between training sessions but not short-term improvements within one session. PMID:27314672

  1. Comparative proteomic analysis of differentially expressed proteins between peripheral sensory and motor nerves.

    PubMed

    He, Qianru; Man, Lili; Ji, Yuhua; Zhang, Shuqiang; Jiang, Maorong; Ding, Fei; Gu, Xiaosong

    2012-06-01

    Peripheral sensory and motor nerves have different functions and different approaches to regeneration, especially their distinct ability to accurately reinervate terminal nerve pathways. To understand the molecular aspects underlying these differences, the proteomics technique by coupling isobaric tags for relative and absolute quantitation (iTRAQ) with online two-dimensional liquid chromatography tandem mass spectrometry (2D LC-MS/MS) was used to investigate the protein profile of sensory and motor nerve samples from rats. A total of 1472 proteins were identified in either sensory or motor nerve. Of them, 100 proteins showed differential expressions between both nerves, and some of them were validated by quantitative real time RT-PCR, Western blot analysis, and immunohistochemistry. In the light of functional categorization, the differentially expressed proteins in sensory and motor nerves, belonging to a broad range of classes, were related to a diverse array of biological functions, which included cell adhesion, cytoskeleton, neuronal plasticity, neurotrophic activity, calcium-binding, signal transduction, transport, enzyme catalysis, lipid metabolism, DNA-binding, synaptosome function, actin-binding, ATP-binding, extracellular matrix, and commitment to other lineages. The relatively higher expressed proteins in either sensory or motor nerve were tentatively discussed in combination with their specific molecular characteristics. It is anticipated that the database generated in this study will provide a solid foundation for further comprehensive investigation of functional differences between sensory and motor nerves, including the specificity of their regeneration.

  2. Deficiency of the zinc finger protein ZFP106 causes motor and sensory neurodegeneration.

    PubMed

    Joyce, Peter I; Fratta, Pietro; Landman, Allison S; Mcgoldrick, Philip; Wackerhage, Henning; Groves, Michael; Busam, Bharani Shiva; Galino, Jorge; Corrochano, Silvia; Beskina, Olga A; Esapa, Christopher; Ryder, Edward; Carter, Sarah; Stewart, Michelle; Codner, Gemma; Hilton, Helen; Teboul, Lydia; Tucker, Jennifer; Lionikas, Arimantas; Estabel, Jeanne; Ramirez-Solis, Ramiro; White, Jacqueline K; Brandner, Sebastian; Plagnol, Vincent; Bennet, David L H; Abramov, Andrey Y; Greensmith, Linda; Fisher, Elizabeth M C; Acevedo-Arozena, Abraham

    2016-01-15

    Zinc finger motifs are distributed amongst many eukaryotic protein families, directing nucleic acid-protein and protein-protein interactions. Zinc finger protein 106 (ZFP106) has previously been associated with roles in immune response, muscle differentiation, testes development and DNA damage, although little is known about its specific function. To further investigate the function of ZFP106, we performed an in-depth characterization of Zfp106 deficient mice (Zfp106(-/-)), and we report a novel role for ZFP106 in motor and sensory neuronal maintenance and survival. Zfp106(-/-) mice develop severe motor abnormalities, major deficits in muscle strength and histopathological changes in muscle. Intriguingly, despite being highly expressed throughout the central nervous system, Zfp106(-/-) mice undergo selective motor and sensory neuronal and axonal degeneration specific to the spinal cord and peripheral nervous system. Neurodegeneration does not occur during development of Zfp106(-/-) mice, suggesting that ZFP106 is likely required for the maintenance of mature peripheral motor and sensory neurons. Analysis of embryonic Zfp106(-/-) motor neurons revealed deficits in mitochondrial function, with an inhibition of Complex I within the mitochondrial electron transport chain. Our results highlight a vital role for ZFP106 in sensory and motor neuron maintenance and reveal a novel player in mitochondrial dysfunction and neurodegeneration.

  3. Porters versus rowers: a unified stochastic model of motor proteins

    PubMed Central

    1993-01-01

    We present a general phenomenological theory for chemical to mechanical energy transduction by motor enzymes which is based on the classical "tight-coupling" mechanism. The associated minimal stochastic model takes explicitly into account both ATP hydrolysis and thermal noise effects. It provides expressions for the hydrolysis rate and the sliding velocity, as functions of the ATP concentration and the number of motor enzymes. It explains in a unified way many results of recent in vitro motility assays. More importantly, the theory provides a natural classification scheme for the motors: it correlates the biochemical and mechanical differences between "porters" such as cellular kinesins or dyneins, and "rowers" such as muscular myosins or flagellar dyneins. PMID:8509455

  4. Targeting a dynamic protein-protein interaction: fragment screening against the malaria myosin A motor complex.

    PubMed

    Douse, Christopher H; Vrielink, Nina; Wenlin, Zhang; Cota, Ernesto; Tate, Edward W

    2015-01-01

    Motility is a vital feature of the complex life cycle of Plasmodium falciparum, the apicomplexan parasite that causes human malaria. Processes such as host cell invasion are thought to be powered by a conserved actomyosin motor (containing myosin A or myoA), correct localization of which is dependent on a tight interaction with myosin A tail domain interacting protein (MTIP) at the inner membrane of the parasite. Although disruption of this protein-protein interaction represents an attractive means to investigate the putative roles of myoA-based motility and to inhibit the parasitic life cycle, no small molecules have been identified that bind to MTIP. Furthermore, it has not been possible to obtain a crystal structure of the free protein, which is highly dynamic and unstable in the absence of its natural myoA tail partner. Herein we report the de novo identification of the first molecules that bind to and stabilize MTIP via a fragment-based, integrated biophysical approach and structural investigations to examine the binding modes of hit compounds. The challenges of targeting such a dynamic system with traditional fragment screening workflows are addressed throughout.

  5. Deficiency of the zinc finger protein ZFP106 causes motor and sensory neurodegeneration

    PubMed Central

    Joyce, Peter I.; Fratta, Pietro; Landman, Allison S.; Mcgoldrick, Philip; Wackerhage, Henning; Groves, Michael; Busam, Bharani Shiva; Galino, Jorge; Corrochano, Silvia; Beskina, Olga A.; Esapa, Christopher; Ryder, Edward; Carter, Sarah; Stewart, Michelle; Codner, Gemma; Hilton, Helen; Teboul, Lydia; Tucker, Jennifer; Lionikas, Arimantas; Estabel, Jeanne; Ramirez-Solis, Ramiro; White, Jacqueline K.; Brandner, Sebastian; Plagnol, Vincent; Bennet, David L. H.; Abramov, Andrey Y.; Greensmith, Linda; Fisher, Elizabeth M. C.; Acevedo-Arozena, Abraham

    2016-01-01

    Zinc finger motifs are distributed amongst many eukaryotic protein families, directing nucleic acid–protein and protein–protein interactions. Zinc finger protein 106 (ZFP106) has previously been associated with roles in immune response, muscle differentiation, testes development and DNA damage, although little is known about its specific function. To further investigate the function of ZFP106, we performed an in-depth characterization of Zfp106 deficient mice (Zfp106−/−), and we report a novel role for ZFP106 in motor and sensory neuronal maintenance and survival. Zfp106−/− mice develop severe motor abnormalities, major deficits in muscle strength and histopathological changes in muscle. Intriguingly, despite being highly expressed throughout the central nervous system, Zfp106−/− mice undergo selective motor and sensory neuronal and axonal degeneration specific to the spinal cord and peripheral nervous system. Neurodegeneration does not occur during development of Zfp106−/− mice, suggesting that ZFP106 is likely required for the maintenance of mature peripheral motor and sensory neurons. Analysis of embryonic Zfp106−/− motor neurons revealed deficits in mitochondrial function, with an inhibition of Complex I within the mitochondrial electron transport chain. Our results highlight a vital role for ZFP106 in sensory and motor neuron maintenance and reveal a novel player in mitochondrial dysfunction and neurodegeneration. PMID:26604141

  6. Kinesin-Binding Protein Controls Microtubule Dynamics and Cargo Trafficking by Regulating Kinesin Motor Activity.

    PubMed

    Kevenaar, Josta T; Bianchi, Sarah; van Spronsen, Myrrhe; Olieric, Natacha; Lipka, Joanna; Frias, Cátia P; Mikhaylova, Marina; Harterink, Martin; Keijzer, Nanda; Wulf, Phebe S; Hilbert, Manuel; Kapitein, Lukas C; de Graaff, Esther; Ahkmanova, Anna; Steinmetz, Michel O; Hoogenraad, Casper C

    2016-04-04

    Kinesin motor proteins play a fundamental role for normal neuronal development by controlling intracellular cargo transport and microtubule (MT) cytoskeleton organization. Regulating kinesin activity is important to ensure their proper functioning, and their misregulation often leads to severe human neurological disorders. Homozygous nonsense mutations in kinesin-binding protein (KBP)/KIAA1279 cause the neurological disorder Goldberg-Shprintzen syndrome (GOSHS), which is characterized by intellectual disability, microcephaly, and axonal neuropathy. Here, we show that KBP regulates kinesin activity by interacting with the motor domains of a specific subset of kinesins to prevent their association with the MT cytoskeleton. The KBP-interacting kinesins include cargo-transporting motors such as kinesin-3/KIF1A and MT-depolymerizing motor kinesin-8/KIF18A. We found that KBP blocks KIF1A/UNC-104-mediated synaptic vesicle transport in cultured hippocampal neurons and in C. elegans PVD sensory neurons. In contrast, depletion of KBP results in the accumulation of KIF1A motors and synaptic vesicles in the axonal growth cone. We also show that KBP regulates neuronal MT dynamics by controlling KIF18A activity. Our data suggest that KBP functions as a kinesin inhibitor that modulates MT-based cargo motility and depolymerizing activity of a subset of kinesin motors. We propose that misregulation of KBP-controlled kinesin motors may represent the underlying molecular mechanism that contributes to the neuropathological defects observed in GOSHS patients.

  7. Protein translocation channel of mitochondrial inner membrane and matrix-exposed import motor communicate via two-domain coupling protein.

    PubMed

    Banerjee, Rupa; Gladkova, Christina; Mapa, Koyeli; Witte, Gregor; Mokranjac, Dejana

    2015-12-29

    The majority of mitochondrial proteins are targeted to mitochondria by N-terminal presequences and use the TIM23 complex for their translocation across the mitochondrial inner membrane. During import, translocation through the channel in the inner membrane is coupled to the ATP-dependent action of an Hsp70-based import motor at the matrix face. How these two processes are coordinated remained unclear. We show here that the two domain structure of Tim44 plays a central role in this process. The N-terminal domain of Tim44 interacts with the components of the import motor, whereas its C-terminal domain interacts with the translocation channel and is in contact with translocating proteins. Our data suggest that the translocation channel and the import motor of the TIM23 complex communicate through rearrangements of the two domains of Tim44 that are stimulated by translocating proteins.

  8. Low dietary protein content alleviates motor symptoms in mice with mutant dynactin/dynein-mediated neurodegeneration

    PubMed Central

    Wiesner, Diana; Sinniger, Jérome; Henriques, Alexandre; Dieterlé, Stéphane; Müller, Hans-Peter; Rasche, Volker; Ferger, Boris; Dirrig-Grosch, Sylvie; Soylu-Kucharz, Rana; Petersén, Asa; Walther, Paul; Linkus, Birgit; Kassubek, Jan; Wong, Philip C.; Ludolph, Albert C.; Dupuis, Luc

    2015-01-01

    Mutations in components of the molecular motor dynein/dynactin lead to neurodegenerative diseases of the motor system or atypical parkinsonism. These mutations are associated with prominent accumulation of vesicles involved in autophagy and lysosomal pathways, and with protein inclusions. Whether alleviating these defects would affect motor symptoms remain unknown. Here, we show that a mouse model expressing low levels of disease linked-G59S mutant dynactin p150Glued develops motor dysfunction >8 months before loss of motor neurons or dopaminergic degeneration is observed. Abnormal accumulation of autophagosomes and protein inclusions were efficiently corrected by lowering dietary protein content, and this was associated with transcriptional upregulations of key players in autophagy. Most importantly this dietary modification partially rescued overall neurological symptoms in these mice after onset. Similar observations were made in another mouse strain carrying a point mutation in the dynein heavy chain gene. Collectively, our data suggest that stimulating the autophagy/lysosomal system through appropriate nutritional intervention has significant beneficial effects on motor symptoms of dynein/dynactin diseases even after symptom onset. PMID:25552654

  9. Specific transport of target molecules by motor proteins in microfluidic channels.

    PubMed

    Tarhan, Mehmet C; Yokokawa, Ryuji; Morin, Fabrice O; Fujita, Hiroyuki

    2013-06-03

    Direct transport powered by motor proteins can alleviate the challenges presented by miniaturization of microfluidic systems. There have been several recent attempts to build motor-protein-driven transport systems based on simple capturing or transport mechanisms. However, to achieve a multifunctional device for practical applications, a more complex sorting/transport system should be realized. Herein, the proof of concept of a sorting device employing selective capture of distinct target molecules and transport of the sorted molecules to different predefined directions is presented. By combining the bottom-up functionality of biological systems with the top-down handling capabilities of micro-electromechanical systems technology, highly selective molecular recognition and motor-protein-based transport is integrated in a microfluidic channel network.

  10. The Dynamics of Microtubule/Motor-Protein Assemblies in Biology and Physics

    NASA Astrophysics Data System (ADS)

    Shelley, Michael J.

    2016-01-01

    Many important processes in the cell are mediated by stiff microtubule polymers and the active motor proteins moving on them. This includes the transport of subcellular structures (nuclei, chromosomes, organelles) and the self-assembly and positioning of the mitotic spindle. Little is understood of these processes, but they present fascinating problems in fluid-structure interactions. Microtubules and motor proteins are also the building blocks of new biosynthetic active suspensions driven by motor-protein activity. These reduced systems can be probed—and modeled—more easily than can the fully biological ones and demonstrate their own aspects of self-assembly and complex dynamics. I review recent work modeling such systems as fluid-structure interaction problems and as multiscale complex fluids.

  11. The microtubule motor protein KIF13A is involved in intracellular trafficking of the Lassa virus matrix protein Z.

    PubMed

    Fehling, Sarah Katharina; Noda, Takeshi; Maisner, Andrea; Lamp, Boris; Conzelmann, Karl-Klaus; Kawaoka, Yoshihiro; Klenk, Hans-Dieter; Garten, Wolfgang; Strecker, Thomas

    2013-02-01

    The small matrix protein Z of arenaviruses has been identified as the main driving force to promote viral particle production at the plasma membrane. Although multiple functions of Z in the arenaviral life cycle have been uncovered, the mechanism of intracellular transport of Z to the site of virus budding is poorly understood and cellular motor proteins that mediate Z trafficking remain to be identified. In the present study, we report that the Z protein of the Old World arenavirus Lassa virus (LASV) interacts with the kinesin family member 13A (KIF13A), a plus-end-directed microtubule-dependent motor protein. Plasmid-driven overexpression of KIF13A results in relocalization of Z to the cell periphery, while functional blockage of endogenous KIF13A by overexpression of a dominant-negative mutant or KIF13A-specific siRNA causes a perinuclearaccumulation and decreased production of both Z-induced virus-like particles and infectious LASV. The interaction of KIF13A with Z proteins from both Old and New World arenaviruses suggests a conserved intracellular transport mechanism. In contrast, the intracellular distribution of the matrix proteins of prototypic members of the paramyxo- and rhabdovirus family is independent of KIF13A. In summary, our studies identify for the first time a molecular motor protein as a critical mediator for intracellular microtubule-dependent transport of arenavirus matrix proteins.

  12. Altered motor activity of alternative splice variants of the mammalian kinesin-3 protein KIF1B.

    PubMed

    Matsushita, Masafumi; Yamamoto, Ruri; Mitsui, Keiji; Kanazawa, Hiroshi

    2009-11-01

    Several mammalian kinesin motor proteins exist as multiple isoforms that arise from alternative splicing of a single gene. However, the roles of many motor protein splice variants remain unclear. The kinesin-3 motor protein KIF1B has alternatively spliced isoforms distinguished by the presence or absence of insertion sequences in the conserved amino-terminal region of the protein. The insertions are located in the loop region containing the lysine-rich cluster, also known as the K-loop, and in the hinge region adjacent to the motor domain. To clarify the functions of these alternative splice variants of KIF1B, we examined the biochemical properties of recombinant KIF1B with and without insertion sequences. In a microtubule-dependent ATPase assay, KIF1B variants that contained both insertions had higher activity and affinity for microtubules than KIF1B variants that contained no insertions. Mutational analysis of the K-loop insertion revealed that variants with a longer insertion sequence at this site had higher activity. However, the velocity of movement in motility assays was similar between KIF1B with and without insertion sequences. Our results indicate that splicing isoforms of KIF1B that vary in their insertion sequences have different motor activities.

  13. Peripherin-mediated death of motor neurons rescued by overexpression of neurofilament NF-H proteins.

    PubMed

    Beaulieu, Jean-Martin; Julien, Jean-Pierre

    2003-04-01

    In previous studies, we showed that overexpression of peripherin, a neuronal intermediate filament (IF) protein, in mice deficient for neurofilament light (NF-L) subunits induced a progressive adult-onset degeneration of spinal motor neurons characterized by the presence of IF inclusion bodies reminiscent of axonal spheroids found in amyotrophic lateral sclerosis (ALS). In contrast, the overexpression of human neurofilament heavy (NF-H) proteins provoked the formation of massive perikaryal IF protein accumulations with no loss of motor neurons. To further investigate the toxic properties of IF protein inclusions, we generated NF-L null mice that co-express both peripherin and NF-H transgenes. The axonal count in L5 ventral roots from 6 and 8-month-old transgenic mice showed that NF-H overexpression rescued the peripherin-mediated degeneration of motor neurons. Our analysis suggests that the protective effect of extra NF-H proteins is related to the sequestration of peripherin into the perikaryon of motor neurons, thereby abolishing the development of axonal IF inclusions that might block transport. These findings illustrate the importance of IF protein stoichiometry in formation, localization and toxicity of neuronal inclusion bodies.

  14. Nuclear envelope rupture is induced by actin-based nucleus confinement.

    PubMed

    Hatch, Emily M; Hetzer, Martin W

    2016-10-10

    Repeated rounds of nuclear envelope (NE) rupture and repair have been observed in laminopathy and cancer cells and result in intermittent loss of nucleus compartmentalization. Currently, the causes of NE rupture are unclear. Here, we show that NE rupture in cancer cells relies on the assembly of contractile actin bundles that interact with the nucleus via the linker of nucleoskeleton and cytoskeleton (LINC) complex. We found that the loss of actin bundles or the LINC complex did not rescue nuclear lamina defects, a previously identified determinant of nuclear membrane stability, but did decrease the number and size of chromatin hernias. Finally, NE rupture inhibition could be rescued in cells treated with actin-depolymerizing drugs by mechanically constraining nucleus height. These data suggest a model of NE rupture where weak membrane areas, caused by defects in lamina organization, rupture because of an increase in intranuclear pressure from actin-based nucleus confinement.

  15. Techniques for studying protein trafficking and molecular motors in neurons

    PubMed Central

    Feng, Shanxi; Arnold, Don B.

    2016-01-01

    This review focuses on techniques that facilitate the visualization of protein trafficking. In the mid-1990’s the cloning of GFP allowed fluorescently tagged proteins to be expressed in cells and then visualized in real time. This advance allowed a glimpse, for the first time, of the complex system within cells for distributing proteins. It quickly became apparent, however, that time-lapse sequences of exogenously expressed GFP-labeled proteins can be difficult to interpret. Reasons for this include the relatively low signal that comes from moving proteins and high background rates from stationary proteins and other sources, as well as the difficulty of identifying the origins and destinations of specific vesicular carriers. In this review we will examine a range of techniques that have overcome these issues to varying degrees and discuss the insights into protein trafficking that they have enabled. We will concentrate on neurons, as they are highly polarized and, thus, their trafficking systems tend to be accessible for study. PMID:26800506

  16. Effects of motor vehicle exhaust on male reproductive function and associated proteins.

    PubMed

    Rengaraj, Deivendran; Kwon, Woo-Sung; Pang, Myung-Geol

    2015-01-02

    Air pollution is consistently associated with various diseases and subsequent death among children, adult, and elderly people worldwide. Motor vehicle exhaust contributes to a large proportion of the air pollution present. The motor vehicle exhaust systems emit a variety of toxic components, including carbon monoxide, nitrogen oxides, volatile organic compounds, ozone, particulate matter, and polycyclic aromatic hydrocarbons. Several epidemiological studies and laboratory studies have demonstrated that these components are potentially mutagenic, carcinogenic, and endocrine disrupting agents. However, their impact on male reproductive function and associated proteins is not very clear. Therefore, a comprehensive review on the effects of motor vehicle exhaust on male reproductive function and associated proteins is needed to better understand the risks of exhaust exposure for men. We found that motor vehicle exhaust can cause harmful effects on male reproductive functions by altering organ weights, reducing the spermatozoa qualities, and inducing oxidative stress. Remarkably, motor vehicle exhaust exposure causes significant changes in the expression patterns of proteins that are key components involved in spermatogenesis and testosterone synthesis. In conclusion, this review helps to describe the risks of vehicle exhaust exposure and its relationship to potential adverse effects on the male reproduction system.

  17. Cilia/Ift protein and motor-related bone diseases and mouse models

    PubMed Central

    Yuan, Xue; Yang, Shuying

    2015-01-01

    Primary cilia are essential cellular organelles projecting from the cell surface to sense and transduce developmental signaling. They are tiny but have complicated structures containing microtubule (MT)-based internal structures (the axoneme) and mother centriole formed basal body. Intraflagellar transport (Ift) operated by Ift proteins and motors are indispensable for cilia formation and function. Mutations in Ift proteins or Ift motors cause various human diseases, some of which have severe bone defects. Over the last few decades, major advances have occurred in understanding the roles of these proteins and cilia in bone development and remodeling by examining cilia/Ift protein-related human diseases and establishing mouse transgenic models. In this review, we describe current advances in the understanding of the cilia/Ift structure and function. We further summarize cilia/Ift-related human diseases and current mouse models with an emphasis on bone-related phenotypes, cilia morphology, and signaling pathways. PMID:25553465

  18. Cilia/Ift protein and motor -related bone diseases and mouse models.

    PubMed

    Yuan, Xue; Yang, Shuying

    2015-01-01

    Primary cilia are essential cellular organelles projecting from the cell surface to sense and transduce developmental signaling. They are tiny but have complicated structures containing microtubule (MT)-based internal structures (the axoneme) and mother centriole formed basal body. Intraflagellar transport (Ift) operated by Ift proteins and motors are indispensable for cilia formation and function. Mutations in Ift proteins or Ift motors cause various human diseases, some of which have severe bone defects. Over the last few decades, major advances have occurred in understanding the roles of these proteins and cilia in bone development and remodeling by examining cilia/Ift protein-related human diseases and establishing mouse transgenic models. In this review, we describe current advances in the understanding of the cilia/Ift structure and function. We further summarize cilia/Ift-related human diseases and current mouse models with an emphasis on bone-related phenotypes, cilia morphology, and signaling pathways.

  19. Transport of Motor Proteins along Microtubules: A Study by Optical Trapping Method and Analysis of Data

    NASA Astrophysics Data System (ADS)

    McFarlane, Angelique

    The cellular transportation is fundamental for cell function. Under this transportation, organelles bind to motor proteins. These proteins, then move along cellular microfilaments such as microtubules. The optical trapping technique is a method that allows us to monitor the movement of molecular motors along their tracks. In this method, motor proteins are absorbed by micro-sized beads. The beads are captured by the laser and placed close to the microfilaments. Consequently, the motor proteins bind to the track and move along them. This motion can be recorded and analyzed. In this work, we have analyzed many produced trajectories resulted from the motion of a single kinesin along microtubules. We present the design of the experiment, the method of recording and extracting data, as well as the factors that need to be considered to obtain accurate results. Finally, we calculated some of the physical properties resulted from kinesin movement in our experiment. Our outcomes are compatible with previously reported results. I acknowledge the support of NJSGC 2016 during this project. This work was conducted under the supervision of Dr. Mitra Feizabadi.

  20. Diverse high-torque bacterial flagellar motors assemble wider stator rings using a conserved protein scaffold.

    PubMed

    Beeby, Morgan; Ribardo, Deborah A; Brennan, Caitlin A; Ruby, Edward G; Jensen, Grant J; Hendrixson, David R

    2016-03-29

    Although it is known that diverse bacterial flagellar motors produce different torques, the mechanism underlying torque variation is unknown. To understand this difference better, we combined genetic analyses with electron cryo-tomography subtomogram averaging to determine in situ structures of flagellar motors that produce different torques, from Campylobacter and Vibrio species. For the first time, to our knowledge, our results unambiguously locate the torque-generating stator complexes and show that diverse high-torque motors use variants of an ancestrally related family of structures to scaffold incorporation of additional stator complexes at wider radii from the axial driveshaft than in the model enteric motor. We identify the protein components of these additional scaffold structures and elucidate their sequential assembly, demonstrating that they are required for stator-complex incorporation. These proteins are widespread, suggesting that different bacteria have tailored torques to specific environments by scaffolding alternative stator placement and number. Our results quantitatively account for different motor torques, complete the assignment of the locations of the major flagellar components, and provide crucial constraints for understanding mechanisms of torque generation and the evolution of multiprotein complexes.

  1. Why motor proteins team up - Intraflagellar transport in C. elegans cilia.

    PubMed

    Mijalkovic, Jona; Prevo, Bram; Peterman, Erwin J G

    2016-01-01

    Inside the cell, vital processes such as cell division and intracellular transport are driven by the concerted action of different molecular motor proteins. In C. elegans chemosensory cilia, 2 kinesin-2 family motor proteins, kinesin-II and OSM-3, team up to drive intraflagellar transport (IFT) in the anterograde direction, from base to tip, whereas IFT dynein hitchhikes toward the tip and subsequently drives IFT in the opposite, retrograde direction, thereby recycling both kinesins. While it is evident that at least a retrograde and an anterograde motor are necessary to drive IFT, it has remained puzzling why 2 same-polarity kinesins are employed. Recently, we addressed this question by combining advanced genome-engineering tools with ultrasensitive, quantitative fluorescence microscopy to study IFT with single-molecule sensitivity.(1,2) Using this combination of approaches, we uncovered a differentiation in kinesin-2 function, in which the slower kinesin-II operates as an 'importer', loading IFT trains into the cilium before gradually handing them over to the faster OSM-3. OSM-3 subsequently acts as a long-range 'transporter', driving the IFT trains toward the tip. The two kinesin-2 motors combine their unique motility properties to achieve something neither motor can achieve on its own; that is to optimize the amount of cargo inside the cilium. In this commentary, we provide detailed insight into the rationale behind our research approach and comment on our recent findings. Moreover, we discuss the role of IFT dynein and provide an outlook on future studies.

  2. Chaperone-enhanced purification of unconventional myosin 15, a molecular motor specialized for stereocilia protein trafficking

    PubMed Central

    Bird, Jonathan E.; Takagi, Yasuharu; Billington, Neil; Strub, Marie-Paule; Sellers, James R.; Friedman, Thomas B.

    2014-01-01

    Unconventional myosin 15 is a molecular motor expressed in inner ear hair cells that transports protein cargos within developing mechanosensory stereocilia. Mutations of myosin 15 cause profound hearing loss in humans and mice; however, the properties of this motor and its regulation within the stereocilia organelle are unknown. To address these questions, we expressed a subfragment 1-like (S1) truncation of mouse myosin 15, comprising the predicted motor domain plus three light-chain binding sites. Following unsuccessful attempts to express functional myosin 15-S1 using the Spodoptera frugiperda (Sf9)-baculovirus system, we discovered that coexpression of the muscle-myosin–specific chaperone UNC45B, in addition to the chaperone heat-shock protein 90 (HSP90) significantly increased the yield of functional protein. Surprisingly, myosin 15-S1 did not bind calmodulin with high affinity. Instead, the IQ domains bound essential and regulatory light chains that are normally associated with class II myosins. We show that myosin 15-S1 is a barbed-end–directed motor that moves actin filaments in a gliding assay (∼430 nm·s−1 at 30 °C), using a power stroke of 7.9 nm. The maximum ATPase rate (kcat ∼6 s−1) was similar to the actin-detachment rate (kdet = 6.2 s−1) determined in single molecule optical trapping experiments, indicating that myosin 15-S1 was rate limited by transit through strongly actin-bound states, similar to other processive myosin motors. Our data further indicate that in addition to folding muscle myosin, UNC45B facilitates maturation of an unconventional myosin. We speculate that chaperone coexpression may be a simple method to optimize the purification of other myosin motors from Sf9 insect cells. PMID:25114250

  3. Mapping the Geometric Evolution of Protein Folding Motor

    PubMed Central

    Hazam, Prakash Kishore; Shekhar, Shashi

    2016-01-01

    Polypeptide chain has an invariant main-chain and a variant side-chain sequence. How the side-chain sequence determines fold in terms of its chemical constitution has been scrutinized extensively and verified periodically. However, a focussed investigation on the directive effect of side-chain geometry may provide important insights supplementing existing algorithms in mapping the geometrical evolution of protein chains and its structural preferences. Geometrically, folding of protein structure may be envisaged as the evolution of its geometric variables: ϕ, and ψ dihedral angles of polypeptide main-chain directed by χ1, and χ2 of side chain. In this work, protein molecule is metaphorically modelled as a machine with 4 rotors ϕ, ψ, χ1 and χ2, with its evolution to the functional fold is directed by combinations of its rotor directions. We observe that differential rotor motions lead to different secondary structure formations and the combinatorial pattern is unique and consistent for particular secondary structure type. Further, we found that combination of rotor geometries of each amino acid is unique which partly explains how different amino acid sequence combinations have unique structural evolution and functional adaptation. Quantification of these amino acid rotor preferences, resulted in the generation of 3 substitution matrices, which later on plugged in the BLAST tool, for evaluating their efficiency in aligning sequences. We have employed BLOSUM62 and PAM30 as standard for primary evaluation. Generation of substitution matrices is a logical extension of the conceptual framework we attempted to build during the development of this work. Optimization of matrices following the conventional routines and possible application with biologically relevant data sets are beyond the scope of this manuscript, though it is a part of the larger project design. PMID:27716851

  4. ALS-related misfolded protein management in motor neurons and muscle cells.

    PubMed

    Galbiati, Mariarita; Crippa, Valeria; Rusmini, Paola; Cristofani, Riccardo; Cicardi, Maria Elena; Giorgetti, Elisa; Onesto, Elisa; Messi, Elio; Poletti, Angelo

    2014-12-01

    Amyotrophic Lateral Sclerosis (ALS) is the most common form of adult-onset motor neuron disease. It is now considered a multi-factorial and multi-systemic disorder in which alterations of the crosstalk between neuronal and non-neuronal cell types might influence the course of the disease. In this review, we will provide evidence that dysfunctions of affected muscle cells are not only a marginal consequence of denervation associated to motor neurons loss, but a direct consequence of cell muscle toxicity of mutant SOD1. In muscle, the misfolded state of mutant SOD1 protein, unlike in motor neurons, does not appear to have direct effects on protein aggregation and mitochondrial functionality. Muscle cells are, in fact, more capable than motor neurons to handle misfolded proteins, suggesting that mutant SOD1 toxicity in muscle is not mediated by classical mechanisms of intracellular misfolded proteins accumulation. Several recent works indicate that a higher activation of molecular chaperones and degradative systems is present in muscle cells, which for this reason are possibly able to better manage misfolded mutant SOD1. However, several alterations in gene expression and regenerative potential of skeletal muscles have also been reported as a consequence of the expression of mutant SOD1 in muscle. Whether these changes in muscle cells are causative of ALS or a consequence of motor neuron alterations is not yet clear, but their elucidation is very important, since the understanding of the mechanisms involved in mutant SOD1 toxicity in muscle may facilitate the design of treatments directed toward this specific tissue to treat ALS or at least to delay disease progression.

  5. Spontaneous symmetry breaking for geometrical trajectories of actin-based motility in three dimensions

    NASA Astrophysics Data System (ADS)

    Wen, Fu-Lai; Leung, Kwan-tai; Chen, Hsuan-Yi

    2016-07-01

    Actin-based motility is important for many cellular processes. In this article we extend our previous studies of an actin-propelled circular disk in two dimensions to an actin-propelled spherical bead in three dimensions. We find that for an achiral load the couplings between the motion of the load and the actin network induce a series of bifurcations, starting with a transition from rest to moving state, followed by a transition from straight to planar curves, and finally a further transition from motion in a plane to one with torsion. To address the intriguing, experimentally observed chiral motility of the bacterium Listeria monocytogenes, we also study the motility of a spherical load with a built-in chirality. For such a chiral load, stable circular trajectories are no longer found in numerical simulations. Instead, helical trajectories with handedness that depends on the chirality of the load are found. Our results reveal the relation between the symmetry of actin network and the trajectories of actin-propelled loads.

  6. Self-organization of waves and pulse trains by molecular motors in cellular protrusions.

    PubMed

    Yochelis, A; Ebrahim, S; Millis, B; Cui, R; Kachar, B; Naoz, M; Gov, N S

    2015-09-03

    Actin-based cellular protrusions are an ubiquitous feature of cells, performing a variety of critical functions ranging from cell-cell communication to cell motility. The formation and maintenance of these protrusions relies on the transport of proteins via myosin motors, to the protrusion tip. While tip-directed motion leads to accumulation of motors (and their molecular cargo) at the protrusion tip, it is observed that motors also form rearward moving, periodic and isolated aggregates. The origins and mechanisms of these aggregates, and whether they are important for the recycling of motors, remain open puzzles. Motivated by novel myosin-XV experiments, a mass conserving reaction-diffusion-advection model is proposed. The model incorporates a non-linear cooperative interaction between motors, which converts them between an active and an inactive state. Specifically, the type of aggregate formed (traveling waves or pulse-trains) is linked to the kinetics of motors at the protrusion tip which is introduced by a boundary condition. These pattern selection mechanisms are found not only to qualitatively agree with empirical observations but open new vistas to the transport phenomena by molecular motors in general.

  7. Self-organization of waves and pulse trains by molecular motors in cellular protrusions

    PubMed Central

    Yochelis, A.; Ebrahim, S.; Millis, B.; Cui, R.; Kachar, B.; Naoz, M.; Gov, N. S.

    2015-01-01

    Actin-based cellular protrusions are an ubiquitous feature of cells, performing a variety of critical functions ranging from cell-cell communication to cell motility. The formation and maintenance of these protrusions relies on the transport of proteins via myosin motors, to the protrusion tip. While tip-directed motion leads to accumulation of motors (and their molecular cargo) at the protrusion tip, it is observed that motors also form rearward moving, periodic and isolated aggregates. The origins and mechanisms of these aggregates, and whether they are important for the recycling of motors, remain open puzzles. Motivated by novel myosin-XV experiments, a mass conserving reaction-diffusion-advection model is proposed. The model incorporates a non-linear cooperative interaction between motors, which converts them between an active and an inactive state. Specifically, the type of aggregate formed (traveling waves or pulse-trains) is linked to the kinetics of motors at the protrusion tip which is introduced by a boundary condition. These pattern selection mechanisms are found not only to qualitatively agree with empirical observations but open new vistas to the transport phenomena by molecular motors in general. PMID:26335545

  8. Deficiency of the Survival of Motor Neuron Protein Impairs mRNA Localization and Local Translation in the Growth Cone of Motor Neurons

    PubMed Central

    Fallini, Claudia; Donlin-Asp, Paul G.; Rouanet, Jeremy P.

    2016-01-01

    Spinal muscular atrophy (SMA) is a neurodegenerative disease primarily affecting spinal motor neurons. It is caused by reduced levels of the survival of motor neuron (SMN) protein, which plays an essential role in the biogenesis of spliceosomal small nuclear ribonucleoproteins in all tissues. The etiology of the specific defects in the motor circuitry in SMA is still unclear, but SMN has also been implicated in mediating the axonal localization of mRNA-protein complexes, which may contribute to the axonal degeneration observed in SMA. Here, we report that SMN deficiency severely disrupts local protein synthesis within neuronal growth cones. We also identify the cytoskeleton-associated growth-associated protein 43 (GAP43) mRNA as a new target of SMN and show that motor neurons from SMA mouse models have reduced levels of GAP43 mRNA and protein in axons and growth cones. Importantly, overexpression of two mRNA-binding proteins, HuD and IMP1, restores GAP43 mRNA and protein levels in growth cones and rescues axon outgrowth defects in SMA neurons. These findings demonstrate that SMN plays an important role in the localization and local translation of mRNAs with important axonal functions and suggest that disruption of this function may contribute to the axonal defects observed in SMA. SIGNIFICANCE STATEMENT The motor neuron disease spinal muscular atrophy (SMA) is caused by reduced levels of the survival of motor neuron (SMN) protein, which plays a key role in assembling RNA/protein complexes that are essential for mRNA splicing. It remains unclear whether defects in this well characterized housekeeping function cause the specific degeneration of spinal motor neurons observed in SMA. Here, we describe an additional role of SMN in regulating the axonal localization and local translation of the mRNA encoding growth-associated protein 43 (GAP43). This study supports a model whereby SMN deficiency impedes transport and local translation of mRNAs important for neurite

  9. Isolation of microtubule-based motor proteins by ATP release from paclitaxel-stabilized microtubules.

    PubMed

    Sloboda, Roger D

    2015-02-02

    The α-β-tubulin heterodimer is asymmetric, and when asymmetric subunits assemble in a head-to-tail fashion, they produce a polymer that is itself asymmetric. Microtubules are therefore polar polymers having a head (or plus) end and a tail (or minus) end. Both ends can be distinguished kinetically because they add and lose subunits at different rates. Because of this inherent asymmetry, translocation of a particle along a microtubule from the head to the tail is a different molecular event than is translocation from the minus to the plus end. Currently, two classes of microtubule-dependent motor proteins are recognized: Those that are plus-end-directed (i.e., kinesin-like) and those that are minus-end-directed (dynein-like). The kinesin family of proteins in humans contains at least 14 classes of kinesins, a grouping based on tertiary and quaternary structure considerations, as well as on enzymatic activity. The dyneins are organized into two groups: Axonemal dyneins and cytoplasmic dyneins. This protocol provides methods for the enrichment of kinesin or cytoplasmic dynein, based on the differential interactions of each type of motor protein with microtubules in the presence of different nucleotides. For a cleaner preparation of motor proteins, the protocol includes steps for the further separation of kinesin and dynein from one another by sucrose gradient centrifugation.

  10. Post-translational Modifications and Protein Quality Control in Motor Neuron and Polyglutamine Diseases

    PubMed Central

    Sambataro, Fabio; Pennuto, Maria

    2017-01-01

    Neurodegenerative diseases, including motor neuron and polyglutamine (polyQ) diseases, are a broad class of neurological disorders. These diseases are characterized by neuronal dysfunction and death, and by the accumulation of toxic aggregation-prone proteins in the forms of inclusions and micro-aggregates. Protein quality control is a cellular mechanism to reduce the burden of accumulation of misfolded proteins, a function that results from the coordinated actions of chaperones and degradation systems, such as the ubiquitin-proteasome system (UPS) and autophagy-lysosomal degradation system. The rate of turnover, aggregation and degradation of the disease-causing proteins is modulated by post-translational modifications (PTMs), such as phosphorylation, arginine methylation, palmitoylation, acetylation, SUMOylation, ubiquitination, and proteolytic cleavage. Here, we describe how PTMs of proteins linked to motor neuron and polyQ diseases can either enhance or suppress protein quality control check and protein aggregation and degradation. The identification of molecular strategies targeting these modifications may offer novel avenues for the treatment of these yet incurable diseases.

  11. Calcium/calmodulin-dependent protein kinase II expression in motor neurons: effect of axotomy.

    PubMed

    Lund, L M; McQuarrie, I G

    1997-11-20

    Although Ca2+/calmodulin-dependent (CaM) protein kinase II isoforms are present in the nervous system in high amounts, many aspects of in vivo expression, localization, and function remain unexplored. During development, CaM kinase IIalpha and IIbeta are differentially expressed. Here, we examined CaM kinase II isoforms in Sprague-Dawley rat sciatic motor neurons before and after axotomy. We cut the L4-5 spinal nerves unilaterally and exposed the proximal nerve stumps to a fluoroprobe, to retrogradely label the neurons of origin. Anti-CaM kinase IIbeta antibody showed immunoreactivity in motor neurons, which decreased to low levels by 4 days after axotomy. We found a similar response by in situ hybridization with riboprobes. The decrease in expression of mRNA and protein was confined to fluorescent motor neurons. For CaM kinase IIalpha, in situ hybridization showed that the mRNA was in sciatic motor neurons, with a density unaffected by axotomy. However, these neurons were also enlarged, suggesting an up-regulation of expression. Northern blots confirmed an mRNA increase. We were unable to find CaM kinase IIalpha immunoreactivity before or after axotomy in sciatic motor neuron cell bodies, suggesting that CaM kinase IIalpha is in the axons or dendrites, or otherwise unavailable to the antibody. Using rats with crush lesions, we radiolabeled axonal proteins being synthesized in the cell body and used two-dimensional polyacrylamide gel electrophoresis with Western blots to identify CaM kinase IIalpha as a component of slow axonal transport. This differential regulation and expression of kinase isoforms suggests separate and unique intracellular roles. Because we find CaM kinase IIbeta down-regulates during axonal regrowth, its role in these neurons may be related to synaptic transmission. CaM kinase IIalpha appears to support axonal regrowth.

  12. Object-adapted trapping and shape-tracking to probe a bacterial protein chain motor

    NASA Astrophysics Data System (ADS)

    Roth, Julian; Koch, Matthias; Rohrbach, Alexander

    2015-03-01

    The helical bacterium Spiroplasma is a motile plant and anthropod pathogen which swims by propagating pairs of kinks along its cell body. As a well suited model system for bacterial locomotion, understanding the cell's molecular motor is of vital interest also regarding the combat of bacterial diseases. The extensive deformations related to these kinks are caused by a contractile cytoskeletal protein ribbon representing a linear motor in contrast to common rotary motors as, e.g., flagella. We present new insights into the working of this motor through experiments with object-adapted optical traps and shape-tracking techniques. We use the given laser irradiation from the optical trap to hinder bacterial energy (ATP) production through the production of O2 radicals. The results are compared with experiments performed under the influence of an O2-Scavenger and ATP inhibitors, respectively. Our results show clear dependences of the kinking properties on the ATP concentration inside the bacterium. The experiments are supported by a theoretical model which we developed to describe the switching of the ribbon's protein subunits.

  13. Temperature dependent properties of a kinesin-3 motor protein from Thermomyces lanuginosus.

    PubMed

    Rivera, Susan B; Koch, Steven J; Bauer, Joseph M; Edwards, J Matthew; Bachand, George D

    2007-11-01

    Kinesins are cytoskeletal motor proteins that share a common mechanochemical motor domain, and are responsible for trafficking macromolecules. Here we report the cloning and characterization of a monomeric, kinesin-3 (TKIN) from Thermomyces lanuginosus. TKIN displayed a maximum rate of ATP hydrolysis at approximately 55 degrees C; the K(m)(ATP) was also significantly greater at 50 degrees C. Gliding motility rates reached a maximum of 5.5 microms(-1) at 45 degrees C, which is among the highest rates reported for kinesin. Arrhenius energy barriers were calculated to be approximately 103 kJmol(-1), nearly twofold greater than other mesophilic kinesin motors. The enthalpy of activation and entropy activation of TKIN were also significantly greater when compared to other mesophilic kinesins. A thermally induced aggregation of TKIN, which could be moderated by the addition of ATP, was observed at temperatures above 45 degrees C. Together, these results illustrate the kinetic response and stability of this unique motor protein at elevated temperatures.

  14. Active Transport of Nanomaterials Using Motor Proteins -Final Report

    SciTech Connect

    Hess, Henry

    2005-09-01

    During the six months of funding we have focused first on the completion of the research begun at the University of Washington in the previous funding cycle. Specifically, we developed a method to polymerize oriented networks of microtubules on lithographically patterned surfaces (M.S. thesis Robert Doot). The properties of active transport have been studied detail, yielding insights into the dispersion mechanisms (Nitta et al.). The assembly of multifunctional structures with a microtubule core has been investigated (Ramachandran et al.). Isaac Luria (B.S. in physics, U. of Florida 2005) worked on the directed assembly of nanoscale, non-equilibrium structures as a summer intern. He is now a graduate student in my group at the University of Florida. T. Nitta and H. Hess: Dispersion in Active Transport by Kinesin-Powered Molecular Shuttles, Nano Letters, 5, 1337-1342 (2005) S. Ramachandran, K.-H. Ernst, G. D. Bachand, V. Vogel, H. Hess*: Selective Loading of Kinesin-Powered Molecular Shuttles with Protein Cargo and its Application to Biosensing, submitted to Small (2005)

  15. Protein translocation channel of mitochondrial inner membrane and matrix-exposed import motor communicate via two-domain coupling protein

    PubMed Central

    Banerjee, Rupa; Gladkova, Christina; Mapa, Koyeli; Witte, Gregor; Mokranjac, Dejana

    2015-01-01

    The majority of mitochondrial proteins are targeted to mitochondria by N-terminal presequences and use the TIM23 complex for their translocation across the mitochondrial inner membrane. During import, translocation through the channel in the inner membrane is coupled to the ATP-dependent action of an Hsp70-based import motor at the matrix face. How these two processes are coordinated remained unclear. We show here that the two domain structure of Tim44 plays a central role in this process. The N-terminal domain of Tim44 interacts with the components of the import motor, whereas its C-terminal domain interacts with the translocation channel and is in contact with translocating proteins. Our data suggest that the translocation channel and the import motor of the TIM23 complex communicate through rearrangements of the two domains of Tim44 that are stimulated by translocating proteins. DOI: http://dx.doi.org/10.7554/eLife.11897.001 PMID:26714107

  16. Stable Expression of the Motor Protein Prestin in Chinese Hamster Ovary Cells

    NASA Astrophysics Data System (ADS)

    Iida, Koji; Konno, Kazuaki; Oshima, Takeshi; Tsumoto, Kouhei; Ikeda, Katsuhisa; Kumagai, Izumi; Kobayashi, Toshimitsu; Wada, Hiroshi

    Mammalian hearing sensitivity relies on a mechanical amplification mechanism involving the outer hair cells (OHCs), which rapidly alter their longitudinal length in response to changes in their membrane potential. The molecular basis of this mechanism is thought to be a motor protein embedded in the lateral membrane of the OHCs. Recently, this motor protein was identified and termed prestin. Since then, prestin has been researched intensively to elucidate the behavior of the OHCs. However, little progress in the study of prestin at the molecular level has been made because no method of obtaining an adequate amount of prestin has been established. In this study, therefore, an attempt was made to construct a stable expression system of prestin using Chinese hamster ovary (CHO) cells. The expression of prestin in the transfected CHO cells and the activity of prestin on CHO cells were confirmed by immunofluorescence and whole-cell patch-clamp measurements, respectively.

  17. In Silico Reconstitution of Actin-Based Symmetry Breaking and Motility

    PubMed Central

    Dayel, Mark J.; Akin, Orkun; Landeryou, Mark; Risca, Viviana; Mogilner, Alex; Mullins, R. Dyche

    2009-01-01

    Eukaryotic cells assemble viscoelastic networks of crosslinked actin filaments to control their shape, mechanical properties, and motility. One important class of actin network is nucleated by the Arp2/3 complex and drives both membrane protrusion at the leading edge of motile cells and intracellular motility of pathogens such as Listeria monocytogenes. These networks can be reconstituted in vitro from purified components to drive the motility of spherical micron-sized beads. An Elastic Gel model has been successful in explaining how these networks break symmetry, but how they produce directed motile force has been less clear. We have combined numerical simulations with in vitro experiments to reconstitute the behavior of these motile actin networks in silico using an Accumulative Particle-Spring (APS) model that builds on the Elastic Gel model, and demonstrates simple intuitive mechanisms for both symmetry breaking and sustained motility. The APS model explains observed transitions between smooth and pulsatile motion as well as subtle variations in network architecture caused by differences in geometry and conditions. Our findings also explain sideways symmetry breaking and motility of elongated beads, and show that elastic recoil, though important for symmetry breaking and pulsatile motion, is not necessary for smooth directional motility. The APS model demonstrates how a small number of viscoelastic network parameters and construction rules suffice to recapture the complex behavior of motile actin networks. The fact that the model not only mirrors our in vitro observations, but also makes novel predictions that we confirm by experiment, suggests that the model captures much of the essence of actin-based motility in this system. PMID:19771152

  18. Actin-based motility of the intracellular pathogen Listeria monocytogenes: assessing the inhibitory specificity of ABM-1 peptide analogues.

    PubMed

    Purich, D L; Southwick, F S

    1999-06-01

    Actin-Based Motility motifs [ABM-1 sequence = (D/E)FPPPPX(D/E), where X = P or T, and ABM-2 sequence = XPPPPP, where X denotes G, A, L, P, and S] facilitate assembly of an activated motility complex. Potent inhibition of intracellular motility of pathogens by ABM-1 and ABM-2 peptide analogues has served as a criterion for investigating actin-based motility. To assess the specificity of ABM-1 peptide inhibitors, we microinjected proline-rich peptides into Listeria-infected PtK2 host cells. Use of a combinatorial ABM-1 peptide library (empirical formula = D1E2F2P4T1) demonstrated that high-potency inhibition requires a precise sequence, and not merely a particular amino acid composition. Calculated concentrations of specific sequences in this library indicate that the entire (D/E)FPPPPX(D/E) motif is needed to achieve high-affinity inhibition in living cells. The failure of the well known proline-rich SH3 binding antagonists VSL-12 or APP-12 to inhibit Listeria motility also indicates that SH3 interactions are unlikely to control actin-based motility directly.

  19. Motor skill learning enhances the expression of activity-regulated cytoskeleton-associated protein in the rat cerebellum.

    PubMed

    Wang, Dean-Chuan; Lin, Yu-Yi; Chen, Tsan-Ju; Lin, Hwai-Ting

    2014-11-01

    Motor skill learning is essential for environmental adaptations during everyday life. It has been shown that the cerebellum plays an important role in both the adaptation of eye movements and the motor skill learning. However, the neuronal substrates responsible for consolidation of complex motor skills rather than simple reflexes are still uncertain. Because the induction of immediate-early genes activity-regulated cytoskeleton-associated protein (Arc) and zinc finger binding protein clone 268 (Zif268) has been regarded as a marker for recent neuronal activity, therefore, in the present study, a rat paradigm of motor skill learning was used to investigate the protein expression of Arc and zif268 in the cerebellum after motor skill learning. Rats were trained to traverse the runway apparatus for 5 days. Protein samples were collected from the cerebellar cortices 1 hour after the training on days 1, 3, and 5, and analyzed by western blotting. The results showed that the expression of Arc, but not zif268, was significantly increased in the cerebellum following motor skill learning. These findings suggest that motor skill learning induces Arc expression in the cerebellum, which may play a role in acquiring complex motor skills.

  20. Ultra-fast force-clamp laser trapping of single molecular motors and DNA binding proteins

    NASA Astrophysics Data System (ADS)

    Capitanio, Marco; Monico, Carina; Vanzi, Francesco; Pavone, Francesco S.

    2013-09-01

    Forces play a fundamental role in a wide array of biological processes, regulating enzymatic activity, kinetics of molecular bonds, and molecular motors mechanics. Single molecule force spectroscopy techniques have enabled the investigation of such processes, but they are inadequate to probe short-lived (millisecond and sub-millisecond) molecular complexes. We developed an ultrafast force-clamp spectroscopy technique that uses a dual trap configuration to apply constant loads to a single intermittently interacting biological polymer and a binding protein. Our system displays a delay of only ˜10 μs between formation of the molecular bond and application of the force and is capable of detecting interactions as short as 100 μs. The force-clamp configuration in which our assay operates allows direct measurements of load-dependence of lifetimes of single molecular bonds. Moreover, conformational changes of single proteins and molecular motors can be recorded with sub-nanometer accuracy and few tens of microseconds of temporal resolution. We demonstrate our technique on molecular motors, using myosin II from fast skeletal muscle and on protein-DNA interaction, specifically on Lactose repressor (LacI). The apparatus is stabilized to less than 1 nm with both passive and active stabilization, allowing resolving specific binding regions along the actin filament and DNA molecule. Our technique extends single-molecule force-clamp spectroscopy to molecular complexes that have been inaccessible up to now, opening new perspectives for the investigation of the effects of forces on biological processes.

  1. Why motor proteins team up - Intraflagellar transport in C. elegans cilia

    PubMed Central

    Mijalkovic, Jona; Prevo, Bram; Peterman, Erwin J. G.

    2016-01-01

    ABSTRACT Inside the cell, vital processes such as cell division and intracellular transport are driven by the concerted action of different molecular motor proteins. In C. elegans chemosensory cilia, 2 kinesin-2 family motor proteins, kinesin-II and OSM-3, team up to drive intraflagellar transport (IFT) in the anterograde direction, from base to tip, whereas IFT dynein hitchhikes toward the tip and subsequently drives IFT in the opposite, retrograde direction, thereby recycling both kinesins. While it is evident that at least a retrograde and an anterograde motor are necessary to drive IFT, it has remained puzzling why 2 same-polarity kinesins are employed. Recently, we addressed this question by combining advanced genome-engineering tools with ultrasensitive, quantitative fluorescence microscopy to study IFT with single-molecule sensitivity.1,2 Using this combination of approaches, we uncovered a differentiation in kinesin-2 function, in which the slower kinesin-II operates as an ‘importer’, loading IFT trains into the cilium before gradually handing them over to the faster OSM-3. OSM-3 subsequently acts as a long-range ‘transporter’, driving the IFT trains toward the tip. The two kinesin-2 motors combine their unique motility properties to achieve something neither motor can achieve on its own; that is to optimize the amount of cargo inside the cilium. In this commentary, we provide detailed insight into the rationale behind our research approach and comment on our recent findings. Moreover, we discuss the role of IFT dynein and provide an outlook on future studies. PMID:27384150

  2. Traffic jams and shocks of molecular motors inside cellular protrusions.

    PubMed

    Pinkoviezky, I; Gov, N S

    2014-05-01

    Molecular motors are involved in key transport processes inside actin-based cellular protrusions. The motors carry cargo proteins to the protrusion tip which participate in regulating the actin polymerization and play a key role in facilitating the growth and formation of such protrusions. It is observed that the motors accumulate at the tips of cellular protrusions and form aggregates that are found to drift towards the protrusion base at the rate of actin treadmilling. We present a one-dimensional driven lattice model, where motors become inactive after delivering their cargo at the tip, or by loosing their cargo to a cargoless neighbor. The results suggest that the experimental observations may be explained by the formation of traffic jams that form at the tip. The model is solved using a novel application of mean-field and shock analysis. We find a new class of shocks that undergo intermittent collapses. Extensions with attachment and detachment events and relevance to experiments are briefly described.

  3. Ankyrin domain of myosin 16 influences motor function and decreases protein phosphatase catalytic activity.

    PubMed

    Kengyel, András; Bécsi, Bálint; Kónya, Zoltán; Sellers, James R; Erdődi, Ferenc; Nyitrai, Miklós

    2015-05-01

    The unconventional myosin 16 (Myo16), which may have a role in regulation of cell cycle and cell proliferation, can be found in both the nucleus and the cytoplasm. It has a unique, eight ankyrin repeat containing pre-motor domain, the so-called ankyrin domain (My16Ank). Ankyrin repeats are present in several other proteins, e.g., in the regulatory subunit (MYPT1) of the myosin phosphatase holoenzyme, which binds to the protein phosphatase-1 catalytic subunit (PP1c). My16Ank shows sequence similarity to MYPT1. In this work, the interactions of recombinant and isolated My16Ank were examined in vitro. To test the effects of My16Ank on myosin motor function, we used skeletal muscle myosin or nonmuscle myosin 2B. The results showed that My16Ank bound to skeletal muscle myosin (K D ≈ 2.4 µM) and the actin-activated ATPase activity of heavy meromyosin (HMM) was increased in the presence of My16Ank, suggesting that the ankyrin domain can modulate myosin motor activity. My16Ank showed no direct interaction with either globular or filamentous actin. We found, using a surface plasmon resonance-based binding technique, that My16Ank bound to PP1cα (K D ≈ 540 nM) and also to PP1cδ (K D ≈ 600 nM) and decreased its phosphatase activity towards the phosphorylated myosin regulatory light chain. Our results suggest that one function of the ankyrin domain is probably to regulate the function of Myo16. It may influence the motor activity, and in complex with the PP1c isoforms, it can play an important role in the targeted dephosphorylation of certain, as yet unidentified, intracellular proteins.

  4. UCS protein Rng3p is essential for myosin-II motor activity during cytokinesis in fission yeast.

    PubMed

    Stark, Benjamin C; James, Michael L; Pollard, Luther W; Sirotkin, Vladimir; Lord, Matthew

    2013-01-01

    UCS proteins have been proposed to operate as co-chaperones that work with Hsp90 in the de novo folding of myosin motors. The fission yeast UCS protein Rng3p is essential for actomyosin ring assembly and cytokinesis. Here we investigated the role of Rng3p in fission yeast myosin-II (Myo2p) motor activity. Myo2p isolated from an arrested rng3-65 mutant was capable of binding actin, yet lacked stability and activity based on its expression levels and inactivity in ATPase and actin filament gliding assays. Myo2p isolated from a myo2-E1 mutant (a mutant hyper-sensitive to perturbation of Rng3p function) showed similar behavior in the same assays and exhibited an altered motor conformation based on limited proteolysis experiments. We propose that Rng3p is not required for the folding of motors per se, but instead works to ensure the activity of intrinsically unstable myosin-II motors. Rng3p is specific to conventional myosin-II and the actomyosin ring, and is not required for unconventional myosin motor function at other actin structures. However, artificial destabilization of myosin-I motors at endocytic actin patches (using a myo1-E1 mutant) led to recruitment of Rng3p to patches. Thus, while Rng3p is specific to myosin-II, UCS proteins are adaptable and can respond to changes in the stability of other myosin motors.

  5. A Screen for Regulators of Survival of Motor Neuron Protein Levels

    PubMed Central

    Makhortova, Nina R.; Hayhurst, Monica; Cerqueira, Antonio; Sinor-Anderson, Amy D.; Zhao, Wen-Ning; Heiser, Patrick W.; Arvanites, Anthony C.; Davidow, Lance S.; Waldon, Zachary O.; Steen, Judith A.; Lam, Kelvin; Ngo, Hien D.; Rubin, Lee L.

    2011-01-01

    The motor neuron disease Spinal Muscular Atrophy (SMA) results from mutations that lead to low levels of the ubiquitously expressed protein Survival of Motor Neuron (SMN). Ever-increasing data suggest that therapeutics that elevate SMN may be effective in treating SMA. We executed an image-based screen of annotated chemical libraries and discovered multiple classes of compounds that were able to increase cellular SMN. Among the most important was the RTK/PI3K/AKT/GSK-3 signaling cascade. Chemical inhibitors of GSK-3, as well as shRNAs directed against this target, elevate SMN levels primarily by stabilizing the protein. Of particular significance is that GSK-3 chemical inhibitors were also effective in motor neurons, not only in elevating SMN levels, but also in blocking the death that was produced when SMN was acutely reduced by a SMN-specific shRNA. Thus, we have established a screen capable of detecting drug-like compounds that correct the main phenotypic change that underlies SMA. PMID:21685895

  6. Loss of RAD-23 Protects Against Models of Motor Neuron Disease by Enhancing Mutant Protein Clearance

    PubMed Central

    Jablonski, Angela M.; Lamitina, Todd; Liachko, Nicole F.; Sabatella, Mariangela; Lu, Jiayin; Zhang, Lei; Ostrow, Lyle W.; Gupta, Preetika; Wu, Chia-Yen; Doshi, Shachee; Mojsilovic-Petrovic, Jelena; Lans, Hannes; Wang, Jiou; Kraemer, Brian

    2015-01-01

    Misfolded proteins accumulate and aggregate in neurodegenerative disease. The existence of these deposits reflects a derangement in the protein homeostasis machinery. Using a candidate gene screen, we report that loss of RAD-23 protects against the toxicity of proteins known to aggregate in amyotrophic lateral sclerosis. Loss of RAD-23 suppresses the locomotor deficit of Caenorhabditis elegans engineered to express mutTDP-43 or mutSOD1 and also protects against aging and proteotoxic insults. Knockdown of RAD-23 is further neuroprotective against the toxicity of SOD1 and TDP-43 expression in mammalian neurons. Biochemical investigation indicates that RAD-23 modifies mutTDP-43 and mutSOD1 abundance, solubility, and turnover in association with altering the ubiquitination status of these substrates. In human amyotrophic lateral sclerosis spinal cord, we find that RAD-23 abundance is increased and RAD-23 is mislocalized within motor neurons. We propose a novel pathophysiological function for RAD-23 in the stabilization of mutated proteins that cause neurodegeneration. SIGNIFICANCE STATEMENT In this work, we identify RAD-23, a component of the protein homeostasis network and nucleotide excision repair pathway, as a modifier of the toxicity of two disease-causing, misfolding-prone proteins, SOD1 and TDP-43. Reducing the abundance of RAD-23 accelerates the degradation of mutant SOD1 and TDP-43 and reduces the cellular content of the toxic species. The existence of endogenous proteins that act as “anti-chaperones” uncovers new and general targets for therapeutic intervention. PMID:26490867

  7. [Influence of protein-restricted diet on motor response fluctuations in Parkinson's disease].

    PubMed

    Hirata, H; Asanuma, M; Kondo, Y; Ogawa, N

    1992-09-01

    The clinical management of Parkinson's disease has been revolutionized by the introduction of levodopa therapy. It has significantly reduced disability and has extended life expectancies of patients with Parkinson's disease. However, motor response fluctuations frequently appear in patients after long-term treatment with levodopa. In this study, we investigated the effect of protein-restricted diet on fluctuations in eight patients with Parkinson's disease who had been receiving long-term levodopa treatment (mean 12.5 years). Two weeks of protein-restricted daytime diet (7.5 g total at breakfast and lunch) was followed by 12.5 g total at breakfast and lunch. At night, high-protein diet (40-50 g at dinner) was offered to the patients in order to maintain total daily protein intake at Japanese standard level. The medication schedule of levodopa and other antiparkinsonian drugs was not changed within 2 weeks after the study was began. Fluctuations were reduced in 7 of the 8 patients. But in only one patient (case 6), dyskinesia and general condition got worse and stopped this therapy. Body weight, serum protein and albumin levels did not change significantly for at least three month after the study was begun in every 6 patients who were examined. Homovanillic acid level of cerebrospinal fluid reduced in every 4 patients who were examined. We concluded that protein-restricted diet during the daytime offers a fascinating technique for the control of motor response fluctuations in patients with Parkinson's disease undergoing long-term levodopa treatment. But this therapy must be indicated carefully. Mechanism of this therapy may has something to do with improvement of dopamine metabolism in the brain.

  8. Active force generation in cross-linked filament bundles without motor proteins.

    PubMed

    Walcott, Sam; Sun, Sean X

    2010-11-01

    Cytoskeletal filaments often interact laterally through cross-linking proteins, contributing to passive cellular viscoelasticity and, perhaps surprisingly, active force generation. We present a theory, based on the formation and rupture of cross-linker bonds, that relates molecular properties of those interactions to the macroscale mechanics of filament bundles. Computing the force-velocity relation for such a bundle, we demonstrate significant contractile forces in the absence of molecular motors. This theory provides insight into cytokinesis, cytoskeletal mechanics, and stress-fiber contraction.

  9. Parallel changes in cortical neuron biochemistry and motor function in protein-energy malnourished adult rats.

    PubMed

    Alaverdashvili, Mariam; Hackett, Mark J; Caine, Sally; Paterson, Phyllis G

    2017-04-01

    While protein-energy malnutrition in the adult has been reported to induce motor abnormalities and exaggerate motor deficits caused by stroke, it is not known if alterations in mature cortical neurons contribute to the functional deficits. Therefore, we explored if PEM in adult rats provoked changes in the biochemical profile of neurons in the forelimb and hindlimb regions of the motor cortex. Fourier transform infrared spectroscopic imaging using a synchrotron generated light source revealed for the first time altered lipid composition in neurons and subcellular domains (cytosol and nuclei) in a cortical layer and region-specific manner. This change measured by the area under the curve of the δ(CH2) band may indicate modifications in membrane fluidity. These PEM-induced biochemical changes were associated with the development of abnormalities in forelimb use and posture. The findings of this study provide a mechanism by which PEM, if not treated, could exacerbate the course of various neurological disorders and diminish treatment efficacy.

  10. Crystal structure of the Candida albicans Kar3 kinesin motor domain fused to maltose-binding protein

    SciTech Connect

    Delorme, Caroline; Joshi, Monika; Allingham, John S.

    2012-11-30

    Highlights: Black-Right-Pointing-Pointer The Candida albicans Kar3 motor domain structure was solved as a maltose-binding protein fusion. Black-Right-Pointing-Pointer The electrostatic surface and part of the ATPase pocket of the motor domain differs markedly from other kinesins. Black-Right-Pointing-Pointer The MBP-Kar3 interface highlights a new site for intramolecular or intermolecular interactions. -- Abstract: In the human fungal pathogen Candida albicans, the Kinesin-14 motor protein Kar3 (CaKar3) is critical for normal mitotic division, nuclear fusion during mating, and morphogenic transition from the commensal yeast form to the virulent hyphal form. As a first step towards detailed characterization of this motor of potential medical significance, we have crystallized and determined the X-ray structure of the motor domain of CaKar3 as a maltose-binding protein (MBP) fusion. The structure shows strong conservation of overall motor domain topology to other Kar3 kinesins, but with some prominent differences in one of the motifs that compose the nucleotide-binding pocket and the surface charge distribution. The MBP and Kar3 modules are arranged such that MBP interacts with the Kar3 motor domain core at the same site where the neck linker of conventional kinesins docks during the 'ATP state' of the mechanochemical cycle. This site differs from the Kar3 neck-core interface in the recent structure of the ScKar3Vik1 heterodimer. The position of MBP is also completely distinct from the Vik1 subunit in this complex. This may suggest that the site of MBP interaction on the CaKar3 motor domain provides an interface for the neck, or perhaps a partner subunit, at an intermediate state of its motile cycle that has not yet been observed for Kinesin-14 motors.

  11. Survival Motor Neuron (SMN) protein is required for normal mouse liver development

    PubMed Central

    Szunyogova, Eva; Zhou, Haiyan; Maxwell, Gillian K.; Powis, Rachael A.; Francesco, Muntoni; Gillingwater, Thomas H.; Parson, Simon H.

    2016-01-01

    Spinal Muscular Atrophy (SMA) is caused by mutation or deletion of the survival motor neuron 1 (SMN1) gene. Decreased levels of, cell-ubiquitous, SMN protein is associated with a range of systemic pathologies reported in severe patients. Despite high levels of SMN protein in normal liver, there is no comprehensive study of liver pathology in SMA. We describe failed liver development in response to reduced SMN levels, in a mouse model of severe SMA. The SMA liver is dark red, small and has: iron deposition; immature sinusoids congested with blood; persistent erythropoietic elements and increased immature red blood cells; increased and persistent megakaryocytes which release high levels of platelets found as clot-like accumulations in the heart. Myelopoiesis in contrast, was unaffected. Further analysis revealed significant molecular changes in SMA liver, consistent with the morphological findings. Antisense treatment from birth with PMO25, increased lifespan and ameliorated all morphological defects in liver by postnatal day 21. Defects in the liver are evident at birth, prior to motor system pathology, and impair essential liver function in SMA. Liver is a key recipient of SMA therapies, and systemically delivered antisense treatment, completely rescued liver pathology. Liver therefore, represents an important therapeutic target in SMA. PMID:27698380

  12. The endocytic adaptor protein ARH associates with motor and centrosomal proteins and is involved in centrosome assembly and cytokinesis.

    PubMed

    Lehtonen, Sanna; Shah, Mehul; Nielsen, Rikke; Iino, Noriaki; Ryan, Jennifer J; Zhou, Huilin; Farquhar, Marilyn G

    2008-07-01

    Numerous proteins involved in endocytosis at the plasma membrane have been shown to be present at novel intracellular locations and to have previously unrecognized functions. ARH (autosomal recessive hypercholesterolemia) is an endocytic clathrin-associated adaptor protein that sorts members of the LDL receptor superfamily (LDLR, megalin, LRP). We report here that ARH also associates with centrosomes in several cell types. ARH interacts with centrosomal (gamma-tubulin and GPC2 and GPC3) and motor (dynein heavy and intermediate chains) proteins. ARH cofractionates with gamma-tubulin on isolated centrosomes, and gamma-tubulin and ARH interact on isolated membrane vesicles. During mitosis, ARH sequentially localizes to the nuclear membrane, kinetochores, spindle poles and the midbody. Arh(-/-) embryonic fibroblasts (MEFs) show smaller or absent centrosomes suggesting ARH plays a role in centrosome assembly. Rat-1 fibroblasts depleted of ARH by siRNA and Arh(-/-) MEFs exhibit a slower rate of growth and prolonged cytokinesis. Taken together the data suggest that the defects in centrosome assembly in ARH depleted cells may give rise to cell cycle and mitotic/cytokinesis defects. We propose that ARH participates in centrosomal and mitotic dynamics by interacting with centrosomal proteins. Whether the centrosomal and mitotic functions of ARH are related to its endocytic role remains to be established.

  13. Motor protein and microtubule mechanics: Application of a novel high-resolution optical trapping technique

    NASA Astrophysics Data System (ADS)

    Allersma, Miriam W.

    Using optical tweezers and a novel detection technique (a quadrant photodiode at the back focal plane or, BFP-QD), this thesis investigates two problems in biophysics, ncd motility and microtubule flexural rigidity. We use optically trapped microspheres to probe the samples. The technique detects the displacements of the microspheres relative to the trap center by monitoring the laser intensity shifts in the back focal plane of the microscope condenser. We use a quadrant diode to detect the shifts, which are due to far-field interference between the trapping laser and scattered laser light from the trapped object. The method yields high-resolution (nm-spatial and μsec-temporal), two-dimensional data, which is largely independent of trap position in the field of view. We first studied the motility of ncd, a kinesin-related motor protein. Motor proteins are able to harness the energy of ATP hydrolysis to perform mechanical work for the cell. Many ncd molecules were adsorbed onto silica microspheres and their motions along the microtubule surface lattice were observed with the BFP-QD method. Since the method is two-dimensional, we were able to monitor axial and lateral motions simultaneously. The average axial velocity was 230 +/- 30 nm/sec (average +/- SD). The high temporal resolution allowed us to investigate dynamical parameters. Spectral analysis showed an increase in viscous drag near the surface for ncd-driven microspheres. In addition, we found that the binding of the motors to microtubules in the presence of the nonhydrolyzable nucleotide adenylylimidodiphosphate caused an increase in the motor elastic constraint. Using a dual optical trap configuration in conjunction with the BFP-QD, we also investigated the elastic properties of taxol-stabilized microtubules. Cytoskeletal filaments are responsible for myriad structural cell functions. Our results were not readily interpreted by a standard bent strut treatment because of the finite size of the microspheres

  14. Whole genome duplication events in plant evolution reconstructed and predicted using myosin motor proteins

    PubMed Central

    2013-01-01

    Background The evolution of land plants is characterized by whole genome duplications (WGD), which drove species diversification and evolutionary novelties. Detecting these events is especially difficult if they date back to the origin of the plant kingdom. Established methods for reconstructing WGDs include intra- and inter-genome comparisons, KS age distribution analyses, and phylogenetic tree constructions. Results By analysing 67 completely sequenced plant genomes 775 myosins were identified and manually assembled. Phylogenetic trees of the myosin motor domains revealed orthologous and paralogous relationships and were consistent with recent species trees. Based on the myosin inventories and the phylogenetic trees, we have identified duplications of the entire myosin motor protein family at timings consistent with 23 WGDs, that had been reported before. We also predict 6 WGDs based on further protein family duplications. Notably, the myosin data support the two recently reported WGDs in the common ancestor of all extant angiosperms. We predict single WGDs in the Manihot esculenta and Nicotiana benthamiana lineages, two WGDs for Linum usitatissimum and Phoenix dactylifera, and a triplication or two WGDs for Gossypium raimondii. Our data show another myosin duplication in the ancestor of the angiosperms that could be either the result of a single gene duplication or a remnant of a WGD. Conclusions We have shown that the myosin inventories in angiosperms retain evidence of numerous WGDs that happened throughout plant evolution. In contrast to other protein families, many myosins are still present in extant species. They are closely related and have similar domain architectures, and their phylogenetic grouping follows the genome duplications. Because of its broad taxonomic sampling the dataset provides the basis for reliable future identification of further whole genome duplications. PMID:24053117

  15. A novel nuclear structure containing the survival of motor neurons protein.

    PubMed Central

    Liu, Q; Dreyfuss, G

    1996-01-01

    Spinal muscular atrophy (SMA) is a common, often fatal, autosomal recessive disease leading to progressive muscle wasting and paralysis as a result of degeneration of anterior horn cells of the spinal cord. A gene termed survival of motor neurons (SMN), at 5q13, has been identified as the determining gene of SMA (Lefebvre et al., 1995). The SMN gene is deleted in > 98% of SMA patients, but the function of the SMN protein is unknown. In searching for hnRNP-interacting proteins we found that SMN interacts with the RGG box region of hnRNP U, with itself, with fibrillarin and with several novel proteins. We have produced monoclonal antibodies to the SMN protein, and we report here on its striking cellular localization pattern. Immunolocalization studies using SMN monoclonal antibodies show several intense dots in HeLa cell nuclei. These structures are similar in number (2-6) and size (0.1-1.0 micron) to coiled bodies, and frequently are found near or associated with coiled bodies. We term these prominent nuclear structures gems, for Gemini of coiled bodies. Images PMID:8670859

  16. Calcium-energized motor protein forisome controls damage in phloem: potential applications as biomimetic "smart" material.

    PubMed

    Srivastava, Vineet Kumar; Tuteja, Renu; Tuteja, Narendra

    2015-06-01

    Forisomes are ATP independent, mechanically active proteins from the Fabaceae family (also called Leguminosae). These proteins are located in sieve tubes of phloem and function to prevent loss of nutrient-rich photoassimilates, upon mechanical injury/wounding. Forisomes are SEO (sieve element occlusion) gene family proteins that have recently been shown to be involved in wound sealing mechanism. Recent findings suggest that forisomes could act as an ideal model to study self assembly mechanism for the development of nanotechnological devices like microinstruments, the microfluidic system frequently used in space exploration missions. Technology enabling improvement in micro instruments has been identified as a key technology by NASA in future space exploration missions. Forisomes are designated as biomimetic smart materials which are calcium-energized motor proteins. Since forisomes are biomolecules from plant systems it can be doctored through genetic engineering. In contrast, "smart" materials which are not derived from plants are difficult to modify in their properties. Current levels of understanding about forisomes conformational shifts with respect to calcium ions and pH changes requires supplement of future advances with relation to its 3D structure to understand self assembly processes. In plant systems it forms blood clots in the form of occlusions to prevent nutrient fluid leakage and thus proves to be a unique damage control system of phloem tissue.

  17. Regulator of G Protein Signaling 6 (RGS6) Protein Ensures Coordination of Motor Movement by Modulating GABAB Receptor Signaling*

    PubMed Central

    Maity, Biswanath; Stewart, Adele; Yang, Jianqi; Loo, Lipin; Sheff, David; Shepherd, Andrew J.; Mohapatra, Durga P.; Fisher, Rory A.

    2012-01-01

    γ-Aminobutyric acid (GABA) release from inhibitory interneurons located within the cerebellar cortex limits the extent of neuronal excitation in part through activation of metabotropic GABAB receptors. Stimulation of these receptors triggers a number of downstream signaling events, including activation of GIRK channels by the Gβγ dimer resulting in membrane hyperpolarization and inhibition of neurotransmitter release from presynaptic sites. Here, we identify RGS6, a member of the R7 subfamily of RGS proteins, as a key regulator of GABABR signaling in cerebellum. RGS6 is enriched in the granule cell layer of the cerebellum along with neuronal GIRK channel subunits 1 and 2 where RGS6 forms a complex with known binding partners Gβ5 and R7BP. Mice lacking RGS6 exhibit abnormal gait and ataxia characterized by impaired rotarod performance improved by treatment with a GABABR antagonist. RGS6−/− mice administered baclofen also showed exaggerated motor coordination deficits compared with their wild-type counterparts. Isolated cerebellar neurons natively expressed RGS6, GABABR, and GIRK channel subunits, and cerebellar granule neurons from RGS6−/− mice showed a significant delay in the deactivation kinetics of baclofen-induced GIRK channel currents. These results establish RGS6 as a key component of GABABR signaling and represent the first demonstration of an essential role for modulatory actions of RGS proteins in adult cerebellum. Dysregulation of RGS6 expression in human patients could potentially contribute to loss of motor coordination and, thus, pharmacological manipulation of RGS6 levels might represent a viable means to treat patients with ataxias of cerebellar origin. PMID:22179605

  18. The kinesin related motor protein, Eg5, is essential for maintenance of pre-implantation embryogenesis

    SciTech Connect

    Castillo, Andrew; Justice, Monica J. . E-mail: mjustice@bcm.tmc.edu

    2007-06-08

    Eg5 is a plus end directed kinesin related motor protein (KRP) previously shown to be involved in the assembly and maintenance of the mitotic spindle. KRPs are molecular motors capable of generating forces upon microtubules (MTs) in dividing cells and driving structural rearrangements necessary in the developing spindle. In vitro experiments demonstrate that loss of Eg5 results in cell cycle arrest and defective centrosome separation resulting in the development of monopolar spindles. Here we describe mice with a genetrap insertion in Eg5. Heterozygous mutant mice appear phenotypically normal. In contrast, embryos homozygous for the Eg5 null allele recovered at embryonic days 2.5-3.5 display signs of a proliferation defect as reduced cell numbers and failure of compaction and progression to the blastocyst stage was observed. These data, in conjunction with previous in vitro data, suggest that loss of Eg5 results in abnormal spindle structure, cell cycle arrest and thereby reduced cell proliferation of early cleavage pre-implantation embryos. These observations further support the conclusion that Eg5 is essential for cell division early in mouse development, and that maternal contribution may sustain the embryo through the maternal to zygotic transition at which point supplies of functional Eg5 are exhausted, preventing further cell cleavage.

  19. Sensing surface mechanical deformation using active probes driven by motor proteins

    PubMed Central

    Inoue, Daisuke; Nitta, Takahiro; Kabir, Arif Md. Rashedul; Sada, Kazuki; Gong, Jian Ping; Konagaya, Akihiko; Kakugo, Akira

    2016-01-01

    Studying mechanical deformation at the surface of soft materials has been challenging due to the difficulty in separating surface deformation from the bulk elasticity of the materials. Here, we introduce a new approach for studying the surface mechanical deformation of a soft material by utilizing a large number of self-propelled microprobes driven by motor proteins on the surface of the material. Information about the surface mechanical deformation of the soft material is obtained through changes in mobility of the microprobes wandering across the surface of the soft material. The active microprobes respond to mechanical deformation of the surface and readily change their velocity and direction depending on the extent and mode of surface deformation. This highly parallel and reliable method of sensing mechanical deformation at the surface of soft materials is expected to find applications that explore surface mechanics of soft materials and consequently would greatly benefit the surface science. PMID:27694937

  20. Flux of a Ratchet Model and Applications to Processive Motor Proteins

    NASA Astrophysics Data System (ADS)

    Li, Jing-Hui

    2015-10-01

    In this paper, we investigate the stationary probability current (or flux) of a Brownian ratchet model as a function of the flipping rate of the fluctuating potential barrier. It is shown that, with suitably selecting the parameters' values of the ratchet system, we can get the negative resonant activation, the positive resonant activation, the double resonant activation, and the current reversal, for the stationary probability current versus the flipping rate. The appearance of these phenomena is the result of the cooperative effects of the potential's dichotomous fluctuations and the internal thermal fluctuations on the evolution of the flux versus the flipping rate of the fluctuating potential barrier. In addition, some applications of our results to the motor proteins are discussed. Supported by K.C. Wong Magna Fund in Ningbo University in China

  1. Structural protein transport in elongating motor axons after sciatic nerve crush. Effect of a conditioning lesion.

    PubMed

    McQuarrie, I G

    1986-12-01

    In elongating motor axons of the rat sciatic nerve, the maximum outgrowth rate increased from 4.6 to 5.3 mm/d (5.3-6.1 X 10(-8) m/s) when a testing lesion of spinal nerves L4 and L5 was preceded 2 wk earlier by a conditioning lesion of the sciatic nerve. Axonal outgrowth was examined by measuring the transport of 35[S]methionine-labeled structural proteins (tubulin, actin, and neurofilament triplet) from "parent" axon stumps into "daughter" axon sprouts. Since these proteins are conveyed by the slow component of axonal transport at 1-5 mm/d (1.2-6.0 X 10(-8) m/s), the isotope was injected into the spinal cord 1 wk before the testing lesion. Nerves were removed 8 d after the testing lesion, sectioned into 3-mm segments, and homogenized; soluble proteins were separated by polyacrylamide gel electrophoresis. Fluorographs were used as templates to identify gel segments for removal, solubilization, and liquid scintillation counting. Distributions of mean radioactivity for tubulin, actin, and neurofilament triplet were plotted for animals receiving a conditioning vs sham-conditioning lesion. Greater amounts of tubulin and actin were transported into daughter axons in the conditioned group. Tubulin was mainly increased in axon shafts, whereas actin was mainly increased in axon tips. These findings suggest that the axonal transport of tubulin and actin governs the rate of elongation.

  2. Functions of the Snf2/Swi2 family Rad54 motor protein in homologous recombination

    PubMed Central

    Ceballos, Shannon J.; Heyer, Wolf-Dietrich

    2011-01-01

    Homologous recombination is a central pathway to maintain genomic stability and is involved in the repair of DNA damage and replication fork support, as well as accurate chromosome segregation during meiosis. Rad54 is a dsDNA-dependent ATPase of the Snf2/Swi2 family of SF2 helicases, although Rad54 lacks classical helicase activity and cannot carry out the strand displacement reactions typical for DNA helicases. Rad54 is a potent and processive motor protein that translocates on dsDNA, potentially executing several functions in recombinational DNA repair. Rad54 acts in concert with Rad51, the central protein of recombination that performs the key reactions of homology search and DNA strand invasion. Here, we will review the role of the Rad54 protein in homologous recombination with an emphasis on mechanistic studies with the yeast and human enzymes. We will discuss how these results relate to in vivo functions of Rad54 during homologous recombination in somatic cells and during meiosis. PMID:21704205

  3. Semaphorin 4D/Plexin-B1-mediated M-Ras GAP activity regulates actin-based dendrite remodeling through Lamellipodin.

    PubMed

    Tasaka, Gen-Ichi; Negishi, Manabu; Oinuma, Izumi

    2012-06-13

    Semaphorins have been identified as repulsive guidance molecules in the developing nervous system. We recently reported that the semaphorin 4D (Sema4D) receptor Plexin-B1 induces repulsion in axon and dendrites by functioning as a GTPase-activating protein (GAP) for R-Ras and M-Ras, respectively. In axons, Sema4D stimulation induces growth cone collapse, and downregulation of R-Ras activity by Plexin-B1-mediated GAP activity is required for the action. Axonal R-Ras GAP activity downregulates phosphatidylinositol 3-kinase signaling pathway, and thereby induces inactivation of a microtubule assembly promoter protein, CRMP-2. However, in contrast to the well studied roles of semaphorins and plexins in axonal guidance, signaling molecules linking M-Ras GAP to dendritic cytoskeleton remain obscure. Here we identified an Ena/VASP ligand, Lamellipodin (Lpd), as a novel effector of M-Ras in dendrites. Lpd was expressed in F-actin-rich distal dendritic processes and was required for both basal and M-Ras-mediated dendrite development. Subcellular fractionation showed M-Ras-dependent membrane translocation of Lpd, which was suppressed by Sema4D. Furthermore, the Ena/VASP-binding region within Lpd was required for dendrite development, and its membrane targeting was sufficient to overcome the Sema4D-mediated reduction of dendritic outgrowth and disappearance of F-actin from distal dendrites. Furthermore, in utero electroporation experiments also indicated that regulation of the M-Ras-Lpd system by the GAP activity of Plexin is involved in the normal development of cortical dendrites in vivo. Overall, our study sheds light on how repulsive guidance molecules regulate actin cytoskeleton in dendrites, revealing a novel mechanism that the M-Ras-Lpd system regulates actin-based dendrite remodeling by Sema/Plexin in rats or mice of either sex.

  4. Tug of War in Motor Protein Ensembles Revealed with a Programmable DNA Origami Scaffold

    PubMed Central

    Derr, N. D.; Goodman, B. S.; Jungmann, R.; Leschziner, A. E.; Shih, W. M.; Reck-Peterson, S. L.

    2013-01-01

    Cytoplasmic dynein and kinesin-1 are opposite-polarity, microtubule-based motors that transport a wide variety of cargo in eukaryotic cells. Many cellular cargos demonstrate bi-directional movement due to the presence of ensembles of dynein and kinesin, but are ultimately sorted with spatial and temporal precision. To investigate the mechanisms that coordinate motor ensemble behavior, we built a programmable synthetic cargo using three-dimensional DNA origami to which varying numbers of DNA oligonucleotide-linked motors could be attached, allowing control of motor type, number, spacing, and orientation in vitro. In ensembles of 1–7 identical-polarity motors, motor number had minimal affect on directional velocity, while ensembles of opposite-polarity motors engaged in a tug of war resolvable by disengaging one motor species. PMID:23065903

  5. Functional mapping of protein kinase A reveals its importance in adult Schistosoma mansoni motor activity.

    PubMed

    de Saram, Paulu S R; Ressurreição, Margarida; Davies, Angela J; Rollinson, David; Emery, Aidan M; Walker, Anthony J

    2013-01-01

    Cyclic AMP (cAMP)-dependent protein kinase/protein kinase A (PKA) is the major transducer of cAMP signalling in eukaryotic cells. Here, using laser scanning confocal microscopy and 'smart' anti-phospho PKA antibodies that exclusively detect activated PKA, we provide a detailed in situ analysis of PKA signalling in intact adult Schistosoma mansoni, a causative agent of debilitating human intestinal schistosomiasis. In both adult male and female worms, activated PKA was consistently found associated with the tegument, oral and ventral suckers, oesophagus and somatic musculature. In addition, the seminal vesicle and gynaecophoric canal muscles of the male displayed activated PKA whereas in female worms activated PKA localized to the ootype wall, the ovary, and the uterus particularly around eggs during expulsion. Exposure of live worms to the PKA activator forskolin (50 µM) resulted in striking PKA activation in the central and peripheral nervous system including at nerve endings at/near the tegument surface. Such neuronal PKA activation was also observed without forskolin treatment, but only in a single batch of worms. In addition, PKA activation within the central and peripheral nervous systems visibly increased within 15 min of worm-pair separation when compared to that observed in closely coupled worm pairs. Finally, exposure of adult worms to forskolin induced hyperkinesias in a time and dose dependent manner with 100 µM forskolin significantly increasing the frequency of gross worm movements to 5.3 times that of control worms (P≤0.001). Collectively these data are consistent with PKA playing a central part in motor activity and neuronal communication, and possibly interplay between these two systems in S. mansoni. This study, the first to localize a protein kinase when exclusively in an activated state in adult S. mansoni, provides valuable insight into the intricacies of functional protein kinase signalling in the context of whole schistosome physiology.

  6. Selective cell-surface labeling of the molecular motor protein prestin

    SciTech Connect

    McGuire, Ryan M.; Silberg, Jonathan J.; Pereira, Fred A.; Raphael, Robert M.

    2011-06-24

    Highlights: {yields} Trafficking to the plasma membrane is required for prestin function. {yields} Biotin acceptor peptide (BAP) was fused to prestin through a transmembrane domain. {yields} BAP-prestin can be metabolically labeled with biotin in HEK293 cells. {yields} Biotin-BAP-prestin allows for selective imaging of fully trafficked prestin. {yields} The biotin-BAP-prestin displays voltage-sensitive activity. -- Abstract: Prestin, a multipass transmembrane protein whose N- and C-termini are localized to the cytoplasm, must be trafficked to the plasma membrane to fulfill its cellular function as a molecular motor. One challenge in studying prestin sequence-function relationships within living cells is separating the effects of amino acid substitutions on prestin trafficking, plasma membrane localization and function. To develop an approach for directly assessing prestin levels at the plasma membrane, we have investigated whether fusion of prestin to a single pass transmembrane protein results in a functional fusion protein with a surface-exposed N-terminal tag that can be detected in living cells. We find that fusion of the biotin-acceptor peptide (BAP) and transmembrane domain of the platelet-derived growth factor receptor (PDGFR) to the N-terminus of prestin-GFP yields a membrane protein that can be metabolically-labeled with biotin, trafficked to the plasma membrane, and selectively detected at the plasma membrane using fluorescently-tagged streptavidin. Furthermore, we show that the addition of a surface detectable tag and a single-pass transmembrane domain to prestin does not disrupt its voltage-sensitive activity.

  7. The C-terminal region of the motor protein MCAK controls its structure and activity through a conformational switch.

    PubMed

    Talapatra, Sandeep K; Harker, Bethany; Welburn, Julie P I

    2015-04-27

    The precise regulation of microtubule dynamics is essential during cell division. The kinesin-13 motor protein MCAK is a potent microtubule depolymerase. The divergent non-motor regions flanking the ATPase domain are critical in regulating its targeting and activity. However, the molecular basis for the function of the non-motor regions within the context of full-length MCAK is unknown. Here, we determine the structure of MCAK motor domain bound to its regulatory C-terminus. Our analysis reveals that the MCAK C-terminus binds to two motor domains in solution and is displaced allosterically upon microtubule binding, which allows its robust accumulation at microtubule ends. These results demonstrate that MCAK undergoes long-range conformational changes involving its C-terminus during the soluble to microtubule-bound transition and that the C-terminus-motor interaction represents a structural intermediate in the MCAK catalytic cycle. Together, our work reveals intrinsic molecular mechanisms underlying the regulation of kinesin-13 activity.

  8. Importance of anisotropy in detachment rates for force production and cargo transport by a team of motor proteins.

    PubMed

    Takshak, Anjneya; Kunwar, Ambarish

    2016-05-01

    Many cellular processes are driven by collective forces generated by a team consisting of multiple molecular motor proteins. One aspect that has received less attention is the detachment rate of molecular motors under mechanical force/load. While detachment rate of kinesin motors measured under backward force increases rapidly for forces beyond stall-force; this scenario is just reversed for non-yeast dynein motors where detachment rate from microtubule decreases, exhibiting a catch-bond type behavior. It has been shown recently that yeast dynein responds anisotropically to applied load, i.e. detachment rates are different under forward and backward pulling. Here, we use computational modeling to show that these anisotropic detachment rates might help yeast dynein motors to improve their collective force generation in the absence of catch-bond behavior. We further show that the travel distance of cargos would be longer if detachment rates are anisotropic. Our results suggest that anisotropic detachment rates could be an alternative strategy for motors to improve the transport properties and force production by the team.

  9. Motor activity of centromere-associated protein-E contributes to its localization at the center of the midbody to regulate cytokinetic abscission

    PubMed Central

    Ohashi, Akihiro; Ohori, Momoko; Iwai, Kenichi

    2016-01-01

    Accurate control of cytokinesis is critical for genomic stability to complete high-fidelity transmission of genetic material to the next generation. A number of proteins accumulate in the intercellular bridge (midbody) during cytokinesis, and the dynamics of these proteins are temporally and spatially orchestrated to complete the process. In this study, we demonstrated that localization of centromere-associated protein-E (CENP-E) at the midbody is involved in cytokinetic abscission. The motor activity of CENP-E and the C-terminal midbody localization domain, which includes amino acids 2659–2666 (RYFDNSSL), are involved in the anchoring of CENP-E to the center of the midbody. Furthermore, CENP-E motor activity contributes to the accumulation of protein regulator of cytokinesis 1 (PRC1) in the midbody during cytokinesis. Midbody localization of PRC1 is critical to the antiparallel microtubule structure and recruitment of other midbody-associated proteins. Therefore, CENP-E motor activity appears to play important roles in the organization of these proteins to complete cytokinetic abscission. Our findings will be helpful for understanding how each step of cytokinesis is regulated to complete cytokinetic abscission. PMID:27835888

  10. Hox Proteins Coordinate Motor Neuron Differentiation and Connectivity Programs through Ret/Gfrα Genes.

    PubMed

    Catela, Catarina; Shin, Maggie M; Lee, David H; Liu, Jeh-Ping; Dasen, Jeremy S

    2016-03-01

    The accuracy of neural circuit assembly relies on the precise spatial and temporal control of synaptic specificity determinants during development. Hox transcription factors govern key aspects of motor neuron (MN) differentiation; however, the terminal effectors of their actions are largely unknown. We show that Hox/Hox cofactor interactions coordinate MN subtype diversification and connectivity through Ret/Gfrα receptor genes. Hox and Meis proteins determine the levels of Ret in MNs and define the intrasegmental profiles of Gfrα1 and Gfrα3 expression. Loss of Ret or Gfrα3 leads to MN specification and innervation defects similar to those observed in Hox mutants, while expression of Ret and Gfrα1 can bypass the requirement for Hox genes during MN pool differentiation. These studies indicate that Hox proteins contribute to neuronal fate and muscle connectivity through controlling the levels and pattern of cell surface receptor expression, consequently gating the ability of MNs to respond to limb-derived instructive cues.

  11. Two protein trafficking processes at motor nerve endings unveiled by botulinum neurotoxin E.

    PubMed

    Lawrence, Gary; Wang, Jiafu; Chion, C K N Kwo; Aoki, K Roger; Dolly, J Oliver

    2007-01-01

    The unique ability of a family of botulinum neurotoxins to block neuroexocytosis specifically-by selective interaction with peripheral cholinergic nerve endings, endocytotic uptake, translocation to the cytosol, and enzymic cleavage of essential proteins-underlies their increasing therapeutic applications. Although clinical use of type A is most widespread due to its prolonged inactivation of the synaptosomal-associated protein of 25 kDa, botulinum neurotoxin E cleaves this same target but at a different bond and exhibits faster onset of neuromuscular paralysis. Herein, insights were gained into the different dynamics of action of types A and E toxins, which could help in designing variants with new pharmacological profiles. Natural and recombinant type E dichain forms showed similar proteolytic and neuromuscular paralytic activities. The neuroparalysis induced by type E toxin was accelerated between 21 and 35 degrees C and attenuated by bafilomycin A1. Temperature elevation also revealed an unanticipated bipartite dose response indicative of two distinct internalization processes, one being independent of temperature and the other dependent. Although elevating the temperature also hastened intoxication by type A, a second uptake mechanism was not evident. Increasing the frequency of nerve stimulation raised the uptake of type E via both processes, but the enhanced trafficking through the temperature-dependent pathway was only seen at 35 degrees C. These novel observations reveal that two membrane retrieval mechanisms are operative at motor nerve terminals which type E toxin exploits to gain entry via an acidification-dependent step, whereas A uses only one.

  12. Concentration-dependent requirement for local protein synthesis in motor neuron subtype-specific response to axon guidance cues.

    PubMed

    Nédelec, Stéphane; Peljto, Mirza; Shi, Peng; Amoroso, Mackenzie W; Kam, Lance C; Wichterle, Hynek

    2012-01-25

    Formation of functional motor circuits relies on the ability of distinct spinal motor neuron subtypes to project their axons with high precision to appropriate muscle targets. While guidance cues contributing to motor axon pathfinding have been identified, the intracellular pathways underlying subtype-specific responses to these cues remain poorly understood. In particular, it remains controversial whether responses to axon guidance cues depend on axonal protein synthesis. Using a growth cone collapse assay, we demonstrate that mouse embryonic stem cell-derived spinal motor neurons (ES-MNs) respond to ephrin-A5, Sema3f, and Sema3a in a concentration-dependent manner. At low doses, ES-MNs exhibit segmental or subtype-specific responses, while this selectivity is lost at higher concentrations. Response to high doses of semaphorins and to all doses of ephrin-A5 is protein synthesis independent. In contrast, using microfluidic devices and stripe assays, we show that growth cone collapse and guidance at low concentrations of semaphorins rely on local protein synthesis in the axonal compartment. Similar bimodal response to low and high concentrations of guidance cues is observed in human ES-MNs, pointing to a general mechanism by which neurons increase their repertoire of responses to the limited set of guidance cues involved in neural circuit formation.

  13. Prokaryotic and eukaryotic DNA helicases. Essential molecular motor proteins for cellular machinery.

    PubMed

    Tuteja, Narendra; Tuteja, Renu

    2004-05-01

    DNA helicases are ubiquitous molecular motor proteins which harness the chemical free energy of ATP hydrolysis to catalyze the unwinding of energetically stable duplex DNA, and thus play important roles in nearly all aspects of nucleic acid metabolism, including replication, repair, recombination, and transcription. They break the hydrogen bonds between the duplex helix and move unidirectionally along the bound strand. All helicases are also translocases and DNA-dependent ATPases. Most contain conserved helicase motifs that act as an engine to power DNA unwinding. All DNA helicases share some common properties, including nucleic acid binding, NTP binding and hydrolysis, and unwinding of duplex DNA in the 3' to 5' or 5' to 3' direction. The minichromosome maintenance (Mcm) protein complex (Mcm4/6/7) provides a DNA-unwinding function at the origin of replication in all eukaryotes and may act as a licensing factor for DNA replication. The RecQ family of helicases is highly conserved from bacteria to humans and is required for the maintenance of genome integrity. They have also been implicated in a variety of human genetic disorders. Since the discovery of the first DNA helicase in Escherichia coli in 1976, and the first eukaryotic one in the lily in 1978, a large number of these enzymes have been isolated from both prokaryotic and eukaryotic systems, and the number is still growing. In this review we cover the historical background of DNA helicases, helicase assays, biochemical properties, prokaryotic and eukaryotic DNA helicases including Mcm proteins and the RecQ family of helicases. The properties of most of the known DNA helicases from prokaryotic and eukaryotic systems, including viruses and bacteriophages, are summarized in tables.

  14. Molecular motors

    NASA Astrophysics Data System (ADS)

    Allemand, Jean François Desbiolles, Pierre

    2015-10-01

    How do we move? More precisely, what are the molecular mechanisms that can explain that our muscles, made of very small components can move at a osopic scale? To answer these questions we must introduce molecular motors. Those motors are proteins, or small protein assemblies that, in our cells, transform chemical energy into mechanical work. Then, like we could do for a oscopic motor, used in a car or in a fan, we are going to study the basic behavior of these molecular machines, present what are their energy sources, calculate their power, their yield. If molecular motors are crucial for our oscopic movements, we are going to see that they are also essential to cellular transport and that considering the activity of some enzymes as molecular motors bring some interesting new insights on their activity.

  15. Mg2+ coordinating dynamics in Mg:ATP fueled motor proteins

    NASA Astrophysics Data System (ADS)

    Bojovschi, A.; Liu, Ming S.; Sadus, Richard J.

    2014-03-01

    The coordination of Mg2+ with the triphosphate group of adenosine triphosphate (ATP) in motor proteins is investigated using data mining and molecular dynamics. The possible coordination structures available from crystal data for actin, myosin, RNA polymerase, DNA polymerase, DNA helicase, and F1-ATPase are verified and investigated further by molecular dynamics. Coordination states are evaluated using structural analysis and quantified by radial distribution functions, coordination numbers, and pair interaction energy calculations. The results reveal a diverse range of both transitory and stable coordination arrangements between Mg2+ and ATP. The two most stable coordinating states occur when Mg2+ coordinates two or three oxygens from the triphosphate group of ATP. Evidence for five-site coordination is also reported involving water in addition to the triphosphate group. The stable states correspond to a pair interaction energy of either ˜-2750 kJ/mol or -3500 kJ/mol. The role of water molecules in the hydration shell surrounding Mg2+ is also reported.

  16. A motor neuron disease–associated mutation in p150Glued perturbs dynactin function and induces protein aggregation

    PubMed Central

    Levy, Jennifer R.; Sumner, Charlotte J.; Caviston, Juliane P.; Tokito, Mariko K.; Ranganathan, Srikanth; Ligon, Lee A.; Wallace, Karen E.; LaMonte, Bernadette H.; Harmison, George G.; Puls, Imke; Fischbeck, Kenneth H.; Holzbaur, Erika L.F.

    2006-01-01

    The microtubule motor cytoplasmic dynein and its activator dynactin drive vesicular transport and mitotic spindle organization. Dynactin is ubiquitously expressed in eukaryotes, but a G59S mutation in the p150Glued subunit of dynactin results in the specific degeneration of motor neurons. This mutation in the conserved cytoskeleton-associated protein, glycine-rich (CAP-Gly) domain lowers the affinity of p150Glued for microtubules and EB1. Cell lines from patients are morphologically normal but show delayed recovery after nocodazole treatment, consistent with a subtle disruption of dynein/dynactin function. The G59S mutation disrupts the folding of the CAP-Gly domain, resulting in aggregation of the p150Glued protein both in vitro and in vivo, which is accompanied by an increase in cell death in a motor neuron cell line. Overexpression of the chaperone Hsp70 inhibits aggregate formation and prevents cell death. These data support a model in which a point mutation in p150Glued causes both loss of dynein/dynactin function and gain of toxic function, which together lead to motor neuron cell death. PMID:16505168

  17. Actin-based gravity-sensing mechanisms in unicellular plant model systems

    NASA Astrophysics Data System (ADS)

    Braun, Markus; Limbach, Christoph

    2005-08-01

    Considerable progress has been made in the understanding of the molecular and cellular mechanisms underlying gravity sensing and gravity-oriented polarized growth in single-celled rhizoids and protonemata of the characean algae. It is well known that the actin cytoskeleton plays a key role in these processes. Numerous actin-binding proteins control apical actin polymerization and the dynamic remodeling of the actin arrangement. An actomyosin-based system mediates the delivery and incorporation of secretory vesicles at the growing tip and coordinates the tip-high gradient of cytoplasmic free calcium which is required for local exocytosis. Additionally, the actomyosin system precisely controls the position of statoliths and, upon a change in orientation relative to the gravity vector, directs sedimenting statoliths to the confined graviperception sites of the plasma membrane where gravitropic signalling is initiated. The upward growth response of protonemata is preceded by an actin-dependent relocalization of the Ca2+-gradient to the upper flank. The downward growth response of rhizoids, however, is caused by differential growth of the opposite flankes due to a local reduction of cytoplasmic free calcium limited to the plasma membrane area where statoliths are sedimented. Thus, constant actin polymerization in the growing tip and the spatiotemporal control of actin remodeling are essential for gravity sensing and gravity-oriented polarized growth of characean rhizoids and protonemata.

  18. ERK and phosphoinositide 3-kinase temporally coordinate different modes of actin-based motility during embryonic wound healing.

    PubMed

    Li, Jingjing; Zhang, Siwei; Soto, Ximena; Woolner, Sarah; Amaya, Enrique

    2013-11-01

    Embryonic wound healing provides a perfect example of efficient recovery of tissue integrity and homeostasis, which is vital for survival. Tissue movement in embryonic wound healing requires two functionally distinct actin structures: a contractile actomyosin cable and actin protrusions at the leading edge. Here, we report that the discrete formation and function of these two structures is achieved by the temporal segregation of two intracellular upstream signals and distinct downstream targets. The sequential activation of ERK and phosphoinositide 3-kinase (PI3K) signalling divides Xenopus embryonic wound healing into two phases. In the first phase, activated ERK suppresses PI3K activity, and is responsible for the activation of Rho and myosin-2, which drives actomyosin cable formation and constriction. The second phase is dominated by restored PI3K signalling, which enhances Rac and Cdc42 activity, leading to the formation of actin protrusions that drive migration and zippering. These findings reveal a new mechanism for coordinating different modes of actin-based motility in a complex tissue setting, namely embryonic wound healing.

  19. Uni-directional ciliary membrane protein trafficking by a cytoplasmic retrograde IFT motor and ciliary ectosome shedding

    PubMed Central

    Cao, Muqing; Ning, Jue; Hernandez-Lara, Carmen I; Belzile, Olivier; Wang, Qian; Dutcher, Susan K; Liu, Yanjie; Snell, William J

    2015-01-01

    The role of the primary cilium in key signaling pathways depends on dynamic regulation of ciliary membrane protein composition, yet we know little about the motors or membrane events that regulate ciliary membrane protein trafficking in existing organelles. Recently, we showed that cilium-generated signaling in Chlamydomonas induced rapid, anterograde IFT-independent, cytoplasmic microtubule-dependent redistribution of the membrane polypeptide, SAG1-C65, from the plasma membrane to the periciliary region and the ciliary membrane. Here, we report that the retrograde IFT motor, cytoplasmic dynein 1b, is required in the cytoplasm for this rapid redistribution. Furthermore, signaling-induced trafficking of SAG1-C65 into cilia is unidirectional and the entire complement of cellular SAG1-C65 is shed during signaling and can be recovered in the form of ciliary ectosomes that retain signal-inducing activity. Thus, during signaling, cells regulate ciliary membrane protein composition through cytoplasmic action of the retrograde IFT motor and shedding of ciliary ectosomes. DOI: http://dx.doi.org/10.7554/eLife.05242.001 PMID:25688564

  20. Role of heat shock protein Hsp25 in the response of the orofacial nuclei motor system to physiological stress

    NASA Technical Reports Server (NTRS)

    Murashov, A. K.; Talebian, S.; Wolgemuth, D. J.

    1998-01-01

    Although expression of the small heat shock protein family member Hsp25 has been previously observed in the central nervous system (CNS), both constitutively and upon induction, its function in the CNS remains far from clear. In the present study we have characterized the spatial pattern of expression of Hsp25 in the normal adult mouse brain as well as the changes in expression patterns induced by subjecting mice to experimental hyperthermia or hypoxia. Immunohistochemical analysis revealed a surprisingly restricted pattern of constitutive expression of Hsp25 in the brain, limited to the facial, trigeminal, ambiguus, hypoglossal and vagal motor nuclei of the brainstem. After hyperthermia or hypoxia treatment, significant increases in the levels of Hsp25 were observed in these same areas and also in fibers of the facial and trigeminal nerve tracts. Immunoblot analysis of protein lysates from brainstem also showed the same pattern of induction of Hsp25. Surprisingly, no other area in the brain showed expression of Hsp25, in either control or stressed animals. The highly restricted expression of Hsp25 implies that this protein may have a specific physiological role in the orofacial motor nuclei, which govern precise coordination between muscles of mastication and the pharynx, larynx, and face. Its rapid induction after stress further suggests that Hsp25 may serve as a specific molecular chaperone in the lower cholinergic motor neurons and along their fibers under conditions of stress or injury. Copyright 1998 Elsevier Science B.V.

  1. Uni-directional ciliary membrane protein trafficking by a cytoplasmic retrograde IFT motor and ciliary ectosome shedding.

    PubMed

    Cao, Muqing; Ning, Jue; Hernandez-Lara, Carmen I; Belzile, Olivier; Wang, Qian; Dutcher, Susan K; Liu, Yanjie; Snell, William J

    2015-02-17

    The role of the primary cilium in key signaling pathways depends on dynamic regulation of ciliary membrane protein composition, yet we know little about the motors or membrane events that regulate ciliary membrane protein trafficking in existing organelles. Recently, we showed that cilium-generated signaling in Chlamydomonas induced rapid, anterograde IFT-independent, cytoplasmic microtubule-dependent redistribution of the membrane polypeptide, SAG1-C65, from the plasma membrane to the periciliary region and the ciliary membrane. Here, we report that the retrograde IFT motor, cytoplasmic dynein 1b, is required in the cytoplasm for this rapid redistribution. Furthermore, signaling-induced trafficking of SAG1-C65 into cilia is unidirectional and the entire complement of cellular SAG1-C65 is shed during signaling and can be recovered in the form of ciliary ectosomes that retain signal-inducing activity. Thus, during signaling, cells regulate ciliary membrane protein composition through cytoplasmic action of the retrograde IFT motor and shedding of ciliary ectosomes.

  2. The molecular motor F-ATP synthase is targeted by the tumoricidal protein HAMLET.

    PubMed

    Ho, James; Sielaff, Hendrik; Nadeem, Aftab; Svanborg, Catharina; Grüber, Gerhard

    2015-05-22

    HAMLET (human alpha-lactalbumin made lethal to tumor cells) interacts with multiple tumor cell compartments, affecting cell morphology, metabolism, proteasome function, chromatin structure and viability. This study investigated if these diverse effects of HAMLET might be caused, in part, by a direct effect on the ATP synthase and a resulting reduction in cellular ATP levels. A dose-dependent reduction in cellular ATP levels was detected in A549 lung carcinoma cells, and by confocal microscopy, co-localization of HAMLET with the nucleotide-binding subunits α (non-catalytic) and β (catalytic) of the energy converting F1F0 ATP synthase was detected. As shown by fluorescence correlation spectroscopy, HAMLET binds to the F1 domain of the F1F0 ATP synthase with a dissociation constant (KD) of 20.5μM. Increasing concentrations of the tumoricidal protein HAMLET added to the enzymatically active α3β3γ complex of the F-ATP synthase lowered its ATPase activity, demonstrating that HAMLET binding to the F-ATP synthase effects the catalysis of this molecular motor. Single-molecule analysis was applied to study HAMLET-α3β3γ complex interaction. Whereas the α3β3γ complex of the F-ATP synthase rotated in a counterclockwise direction with a mean rotational rate of 3.8±0.7s(-1), no rotation could be observed in the presence of bound HAMLET. Our findings suggest that direct effects of HAMLET on the F-ATP synthase may inhibit ATP-dependent cellular processes.

  3. Effects of motor patterns on water-soluble and membrane proteins and cholinesterase activity in subcellular fractions of rat brain tissue

    NASA Technical Reports Server (NTRS)

    Pevzner, L. Z.; Venkov, L.; Cheresharov, L.

    1980-01-01

    Albino rats were kept for a year under conditions of daily motor load or constant hypokinesia. An increase in motor activity results in a rise in the acetylcholinesterase activity determined in the synaptosomal and purified mitochondrial fractions while hypokinesia induces a pronounced decrease in this enzyme activity. The butyrylcholinesterase activity somewhat decreases in the synaptosomal fraction after hypokinesia but does not change under the motor load pattern. Motor load causes an increase in the amount of synaptosomal water-soluble proteins possessing an intermediate electrophoretic mobility and seem to correspond to the brain-specific protein 14-3-2. In the synaptosomal fraction the amount of membrane proteins with a low electrophoretic mobility and with the cholinesterase activity rises. Hypokinesia, on the contrary, decreases the amount of these membrane proteins.

  4. Controlling kinesin motor proteins in nanoengineered systems through a metal-binding on/off switch.

    PubMed

    Greene, Adrienne C; Trent, Amanda M; Bachand, George D

    2008-10-15

    A significant challenge in utilizing kinesin biomolecular motors in integrated nanoscale systems is the ability to regulate motor function in vitro. Here we report a versatile mechanism for reversibly controlling the function of kinesin biomolecular motors independent of the fuel supply (ATP). Our approach relied on inhibiting conformational changes in the neck-linker region of kinesin, a process necessary for microtubule transport. We introduced a chemical switch into the neck-linker of kinesin by genetically engineering three histidine residues to create a Zn(2+)-binding site. Gliding motility of microtubules by the mutant kinesin was successfully inhibited by >/=10 microM Zn(2+), as well as other divalent metals. Motility was successfully restored by removal of Zn(2+) using a number of different chelators. Lastly, we demonstrated the robust and cyclic nature of the switch using sequential Zn(2+)/chelator additions. Overall, this approach to controlling motor function is highly advantageous as it enables control of individual classes of biomolecular motors while maintaining a consistent level of fuel for all motors in a given system or device.

  5. Thermal drift is enough to drive a single microtubule along its axis even in the absence of motor proteins.

    PubMed Central

    Nakata, T; Sato-Yoshitake, R; Okada, Y; Noda, Y; Hirokawa, N

    1993-01-01

    One-dimensional diffusion of microtubules (MTs), a back-and-forth motion of MTs due to thermal diffusion, was reported in dynein motility assay. The interaction between MTs and dynein that allows such motion was implicated in its importance in the force generating cycle of dynein ATPase cycle. However, it was not known whether the phenomenon is special to motor proteins. Here we show two independent examples of one-dimensional diffusion of MTs in the absence of motor proteins. Dynamin, a MT-activated GTPase, causes a nucleotide dependent back-and-forth movement of single MT up to 1 micron along the longitudinal axes, although the MT never showed unidirectional consistent movement. Quantitative analysis of the motion and its nucleotide condition indicates that the motion is due to a thermal driven diffusion, restricted to one dimension, under the weak interaction between MT and dynamin. However, specific protein-protein interaction is not essential for the motion, because similar back-and-forth movement of MT was achieved on coverslips coated with only 0.8% methylcellulose. Both cases demonstrate that thermal diffusion could provide a considerable sliding of MTs only if MTs are restricted on the surface appropriately. Images FIGURE 1 FIGURE 2 FIGURE 3 PMID:7906153

  6. Viral and cellular SOS-regulated motor proteins: dsDNA translocation mechanisms with divergent functions

    PubMed Central

    2014-01-01

    DNA damage attacks on bacterial cells have been known to activate the SOS response, a transcriptional response affecting chromosome replication, DNA recombination and repair, cell division and prophage induction. All these functions require double-stranded (ds) DNA translocation by ASCE hexameric motors. This review seeks to delineate the structural and functional characteristics of the SOS response and the SOS-regulated DNA translocases FtsK and RuvB with the phi29 bacteriophage packaging motor gp16 ATPase as a prototype to study bacterial motors. While gp16 ATPase, cellular FtsK and RuvB are similarly comprised of hexameric rings encircling dsDNA and functioning as ATP-driven DNA translocases, they utilize different mechanisms to accomplish separate functions, suggesting a convergent evolution of these motors. The gp16 ATPase and FtsK use a novel revolution mechanism, generating a power stroke between subunits through an entropy-DNA affinity switch and pushing dsDNA inward without rotation of DNA and the motor, whereas RuvB seems to employ a rotation mechanism that remains to be further characterized. While FtsK and RuvB perform essential tasks during the SOS response, their roles may be far more significant as SOS response is involved in antibiotic-inducible bacterial vesiculation and biofilm formation as well as the perspective of the bacteria-cancer evolutionary interaction. PMID:24995125

  7. A novel microtubule-based motor protein (KIF4) for organelle transports, whose expression is regulated developmentally

    PubMed Central

    1994-01-01

    To understand the mechanisms of transport for organelles in the axon, we isolated and sequenced the cDNA encoding KIF4 from murine brain, and characterized the molecule biochemically and immunocytochemically. Complete amino acid sequence analysis of KIF4 and ultrastructural studies of KIF4 molecules expressed in Sf9 cells revealed that the protein contains 1,231 amino acid residues (M(r) 139,550) and that the molecule (116-nm rod with globular heads and tail) consists of three domains: an NH2-terminal globular motor domain, a central alpha-helical stalk domain and a COOH-terminal tail domain. KIF4 protein has the property of nucleotide-dependent binding to microtubules, microtubule- activated ATPase activity, and microtubule plus-end-directed motility. Northern blot analysis and in situ hybridization demonstrated that KIF4 is strongly expressed in juvenile tissues including differentiated young neurons, while its expression is decreased considerably in adult mice except in spleen. Immunocytochemical studies revealed that KIF4 colocalized with membranous organelles both in growth cones of differentiated neurons and in the cytoplasm of cultured fibroblasts. During mitotic phase of cell cycle, KIF4 appears to colocalize with membranous organelles in the mitotic spindle. Hence we conclude that KIF4 is a novel microtubule-associated anterograde motor protein for membranous organelles, the expression of which is regulated developmentally. PMID:7929562

  8. Effects of Protein Restriction on Perceptual-Motor Development, Habituation and Learning.

    ERIC Educational Resources Information Center

    Elias, Marjorie F.

    Perceptual motor development, habituation, and learning in squirrel monkeys were studied under controlled rearing and diet history conditions to determine whether the animal's level of behavioral development was similar to well-nourished animals of his own age (agemates) or his own size (sizemates). From birth to 8 weeks of age, the animals were…

  9. NanoShuttles: Harnessing Motor Proteins to Transport Cargo in Synthetic Environments

    NASA Astrophysics Data System (ADS)

    Vogel, V.; Hess, H.

    Motors have become a crucial commodity in our daily lives, from transportation to driving conveyor belts that enable the sequential assembly of cars and other industrial machines. For the sequential assembly of building blocks at the nanoscale that would not assemble spontaneously into larger functional systems, however, active transport systems are not yet available. In contrast, cells have evolved sophisticated molecular machinery that drives movement and active transport. Driven by the conversion of chemical into mechanical energy, namely through hydrolysis of the biological fuel ATP, molecular motors enable cells to operate far away from equilibrium by transporting organelles and molecules to designated locations within the cell, often against concentration gradients. Inspired by the biological concept of active transport, major efforts are underway to learn how to build nanoscale transport systems that are driven by molecular motors. Emerging engineering principles are discussed of how to build tracks and junctions to guide such nanoshuttles, how to load them with cargo and control their speed, how to use active transport to assemble mesoscopic structures that would otherwise not assemble spontaneously and what polymeric materials to choose to integrate motors into MEMS and other biohybrid devices. Finally, two applications that exploit the physical properties of microtubules are discussed, surface imaging by a swarm of microtubules and a self-assembled picoNewton force meter to probe receptor-ligand interactions.

  10. A cell-autonomous defect in skeletal muscle satellite cells expressing low levels of survival of motor neuron protein.

    PubMed

    Hayhurst, Monica; Wagner, Amanda K; Cerletti, Massimiliano; Wagers, Amy J; Rubin, Lee L

    2012-08-15

    Mutations in the Survival of Motor Neuron (SMN) gene underlie the development of spinal muscular atrophy (SMA), which currently represents the leading genetic cause of mortality in infants and toddlers. SMA is characterized by degeneration of spinal cord motor neurons and muscle atrophy. Although SMA is often considered to be a motor neuron disease, accumulating evidence suggests that muscle cells themselves may be affected by low levels of SMN. Here, we examine satellite cells, tissue-resident stem cells that play an essential role in the growth and repair of skeletal muscle, isolated from a severe SMA mouse model (Smn(-/-); SMN2(+/+)). We found similar numbers of satellite cells in the muscles of SMA and wild-type (Smn(+/+); SMN2(+/+)) mice at postnatal day 2 (P2), and, when isolated from skeletal muscle using cell surface marker expression, these cells showed comparable survival and proliferative potential. However, SMA satellite cells differentiate abnormally, revealed by the premature expression of muscle differentiation markers, and, especially, by a reduced efficiency in forming myotubes. These phenotypes suggest a critical role of SMN protein in the intrinsic regulation of muscle differentiation and suggest that abnormal muscle development contributes to the manifestation of SMA symptoms.

  11. Interaction of SQSTM1 with the motor protein dynein--SQSTM1 is required for normal dynein function and trafficking.

    PubMed

    Calderilla-Barbosa, Luis; Seibenhener, M Lamar; Du, Yifeng; Diaz-Meco, Maria-Theresa; Moscat, Jorge; Yan, Jin; Wooten, Marie W; Wooten, Michael C

    2014-09-15

    The dynein motor protein complex is required for retrograde transport of vesicular cargo and for transport of aggregated proteins along microtubules for processing and degradation at perinuclear aggresomes. Disruption of this process leads to dysfunctional endosome accumulation and increased protein aggregation in the cell cytoplasm, both pathological features of neurodegenerative diseases. However, the exact mechanism of dynein functionality in these pathways is still being elucidated. Here, we show that the scaffolding protein SQSTM1 directly interacts with dynein through a previously unidentified dynein-binding site. This interaction is independent of HDAC6, a known interacting protein of both SQSTM1 and dynein. However, knockdown of HDAC6 increases the interaction of SQSTM1 with dynein, indicating a possible competitive interaction. Using different dynein cargoes, we show that SQSTM1 is required for proper dynein motility and trafficking along microtubules. Based on our results, we propose a new model of competitive interaction between SQSTM1 and HDAC6 with dynein. In this model, SQSTM1 would not only affect the association of polyubiquitylated protein aggregates and endosomes with dynein, but would also be required for normal dynein function.

  12. Molecular motors are differentially distributed on Golgi membranes from polarized epithelial cells

    PubMed Central

    1994-01-01

    Microtubules (MT) are required for the efficient transport of membranes from the trans-Golgi and for transcytosis of vesicles from the basolateral membrane to the apical cytoplasm in polarized epithelia. MTs in these cells are primarily oriented with their plus ends basally near the Golgi and their minus-ends in the apical cytoplasm. Here we report that isolated Golgi and Golgi-enriched membranes from intestinal epithelial cells possess the actin based motor myosin-I, the MT minus- end-directed motor cytoplasmic dynein and its in vitro motility activator dynactin (p150/Glued). The Golgi can be separated into stacks, possessing features of the Golgi cisternae, and small membranes enriched in the trans-Golgi network marker TGN 38/41. Whereas myosin-I is present on all membranes in the Golgi fraction, dynein is present only on the small membrane fraction. Dynein, like myosin-I, is associated with membranes as a cytoplasmic peripheral membrane protein. Dynein and myosin-I coassociate with membranes that bind to MTs and cross-link actin filaments and MTs in a nucleotide-dependent manner. We propose that cytoplasmic dynein moves Golgi membranes along MTs to the cell cortex where myosin-I provides local delivery through the actin- rich cytoskeleton to the apical membrane. PMID:8045931

  13. INSIGHTS INTO ANTI-PARALLEL MICROTUBULE CROSSLINKING BY PRC1, A CONSERVED NON-MOTOR MICROTUBULE BINDING PROTEIN

    PubMed Central

    Subramanian, Radhika; Wilson-Kubalek, Elizabeth M.; Arthur, Christopher P.; Bick, Matthew J.; Campbell, Elizabeth A.; Darst, Seth A.; Milligan, Ronald A.; Kapoor, Tarun M.

    2010-01-01

    SUMMARY Formation of microtubule architectures, required for cell shape maintenance in yeast, directional cell expansion in plants and cytokinesis in eukaryotes, depends on antiparallel microtubule crosslinking by the conserved MAP65 protein family. Here, we combine structural and single molecule fluorescence methods to examine how PRC1, the human MAP65, crosslinks antiparallel microtubules. We find that PRC1's microtubule binding is mediated by a structured domain with a spectrin-fold and an unstructured Lys/Arg-rich domain. These two domains, at each end of a homodimer, are connected by a linkage that is flexible on single microtubules, but forms well-defined crossbridges between antiparallel filaments. Further, we show that PRC1 crosslinks do not substantially resist filament sliding by motor proteins in vitro. Together, our data show how MAP65s, by combining structural flexibility and rigidity, tune microtubule associations to establish compliant crosslinks that selectively `mark' antiparallel overlap in dynamic cytoskeletal networks. PMID:20691902

  14. A metal switch for controlling the activity of molecular motor proteins.

    PubMed

    Cochran, Jared C; Zhao, Yu Cheng; Wilcox, Dean E; Kull, F Jon

    2011-12-25

    Kinesins are molecular motors that require a divalent metal ion (for example, Mg(2+)) to convert the energy of ATP hydrolysis into directed force production along microtubules. Here we present the crystal structure of a recombinant kinesin motor domain bound to Mn(2+) and ADP and report on a serine-to-cysteine substitution in the switch 1 motif of kinesin that allows its ATP hydrolysis activity to be controlled by adjusting the ratio of Mn(2+) to Mg(2+). This mutant kinesin binds ATP similarly in the presence of either metal ion, but its ATP hydrolysis activity is greatly diminished in the presence of Mg(2+). In human kinesin-1 and kinesin-5 as well as Drosophila melanogaster kinesin-10 and kinesin-14, this defect is rescued by Mn(2+), providing a way to control both the enzymatic activity and force-generating ability of these nanomachines.

  15. Strategy for treating motor neuron diseases using a fusion protein of botulinum toxin binding domain and streptavidin for viral vector access: work in progress.

    PubMed

    Drachman, Daniel B; Adams, Robert N; Balasubramanian, Uma; Lu, Yang

    2010-12-01

    Although advances in understanding of the pathogenesis of amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA) have suggested attractive treatment strategies, delivery of agents to motor neurons embedded within the spinal cord is problematic. We have designed a strategy based on the specificity of botulinum toxin, to direct entry of viral vectors carrying candidate therapeutic genes into motor neurons. We have engineered and expressed fusion proteins consisting of the binding domain of botulinum toxin type A fused to streptavidin (SAv). This fusion protein will direct biotinylated viral vectors carrying therapeutic genes into motor nerve terminals where they can enter the acidified endosomal compartments, be released and undergo retrograde transport, to deliver the genes to motor neurons. Both ends of the fusion proteins are shown to be functionally intact. The binding domain end binds to mammalian nerve terminals at neuromuscular junctions, ganglioside GT1b (a target of botulinum toxin), and a variety of neuronal cells including primary chick embryo motor neurons, N2A neuroblastoma cells, NG108-15 cells, but not to NG CR72 cells, which lack complex gangliosides. The streptavidin end binds to biotin, and to a biotinylated Alexa 488 fluorescent tag. Further studies are in progress to evaluate the delivery of genes to motor neurons in vivo, by the use of biotinylated viral vectors.

  16. The heterotrimeric motor protein kinesin-II localizes to the midpiece and flagellum of sea urchin and sand dollar sperm.

    PubMed

    Henson, J H; Cole, D G; Roesener, C D; Capuano, S; Mendola, R J; Scholey, J M

    1997-01-01

    We have utilized immunoblotting and light microscopic immunofluorescent staining methods to examine the expression and localization of sea urchin kinesin-II, a heterotrimeric plus end-directed microtubule motor protein (previously referred to as KRP(85/95)), in sea urchin and sand dollar sperm. We demonstrate the presence of the 85 K and 115 K subunits of kinesin-II in sperm and localize these proteins to the sperm flagella and midpiece. The kinesin-II localization pattern is punctate and discontinuous, and in the flagella it is quite distinct from the continuous labeling present in sperm labeled with anti-flagellar dynein. The kinesin-II staining is largely insensitive to prefixation detergent extraction, suggesting that it is not associated with membranous elements in the sperm. In the midpiece the kinesin-II staining is similar to the pattern present in sperm labeled with an anti-centrosomal antibody. To our knowledge, this is the first localization of kinesin-like proteins in mature sperm and corroborates the recent identification and localization of kinesin-like proteins in the flagella and basal body of the unicellular green alga Chlamydomonas. We hypothesize that kinesin-II in the sperm may play functional roles in intraflagellar transport and/or the formation of flagella during spermatogenesis.

  17. A novel human-specific splice isoform alters the critical C-terminus of Survival Motor Neuron protein

    PubMed Central

    Seo, Joonbae; Singh, Natalia N.; Ottesen, Eric W.; Lee, Brian M.; Singh, Ravindra N.

    2016-01-01

    Spinal muscular atrophy (SMA), a leading genetic disease of children and infants, is caused by mutations or deletions of Survival Motor Neuron 1 (SMN1) gene. SMN2, a nearly identical copy of SMN1, fails to compensate for the loss of SMN1 due to skipping of exon 7. SMN2 predominantly produces SMNΔ7, an unstable protein. Here we report exon 6B, a novel exon, generated by exonization of an intronic Alu-like sequence of SMN. We validate the expression of exon 6B-containing transcripts SMN6B and SMN6BΔ7 in human tissues and cell lines. We confirm generation of SMN6B transcripts from both SMN1 and SMN2. We detect expression of SMN6B protein using antibodies raised against a unique polypeptide encoded by exon 6B. We analyze RNA-Seq data to show that hnRNP C is a potential regulator of SMN6B expression and demonstrate that SMN6B is a substrate of nonsense-mediated decay. We show interaction of SMN6B with Gemin2, a critical SMN-interacting protein. We demonstrate that SMN6B is more stable than SMNΔ7 and localizes to both the nucleus and the cytoplasm. Our finding expands the diversity of transcripts generated from human SMN genes and reveals a novel protein isoform predicted to be stably expressed during conditions of stress. PMID:27481219

  18. Intricate effects of primary motor neuronopathy on contractile proteins and metabolic muscle enzymes as revealed by label-free mass spectrometry

    PubMed Central

    Holland, Ashling; Schmitt-John, Thomas; Dowling, Paul; Meleady, Paula; Henry, Michael; Clynes, Martin; Ohlendieck, Kay

    2014-01-01

    While the long-term physiological adaptation of the neuromuscular system to changed functional demands is usually reflected by unilateral skeletal muscle transitions, the progressive degeneration of distinct motor neuron populations is often associated with more complex changes in the abundance and/or isoform expression pattern of contractile proteins and metabolic enzymes. In order to evaluate these intricate effects of primary motor neuronopathy on the skeletal muscle proteome, label-free MS was employed to study global alterations in the WR (wobbler) mouse model of progressive neurodegeneration. In motor neuron disease, fibre-type specification and the metabolic weighting of bioenergetic pathways appear to be strongly influenced by both a differing degree of a subtype-specific vulnerability of neuromuscular synapses and compensatory mechanisms of fibre-type shifting. Proteomic profiling confirmed this pathobiochemical complexity of disease-induced changes and showed distinct alterations in 72 protein species, including a variety of fibre-type-specific isoforms of contractile proteins, metabolic enzymes, metabolite transporters and ion-regulatory proteins, as well as changes in molecular chaperones and various structural proteins. Increases in slow myosin light chains and the troponin complex and a decrease in fast MBP (myosin-binding protein) probably reflect the initial preferential loss of the fast type of neuromuscular synapses in motor neuron disease. PMID:24895011

  19. Entropic potential field formed for a linear-motor protein near a filament: Statistical-mechanical analyses using simple models.

    PubMed

    Amano, Ken-Ichi; Yoshidome, Takashi; Iwaki, Mitsuhiro; Suzuki, Makoto; Kinoshita, Masahiro

    2010-07-28

    We report a new progress in elucidating the mechanism of the unidirectional movement of a linear-motor protein (e.g., myosin) along a filament (e.g., F-actin). The basic concept emphasized here is that a potential field is entropically formed for the protein on the filament immersed in solvent due to the effect of the translational displacement of solvent molecules. The entropic potential field is strongly dependent on geometric features of the protein and the filament, their overall shapes as well as details of the polyatomic structures. The features and the corresponding field are judiciously adjusted by the binding of adenosine triphosphate (ATP) to the protein, hydrolysis of ATP into adenosine diphosphate (ADP)+Pi, and release of Pi and ADP. As the first step, we propose the following physical picture: The potential field formed along the filament for the protein without the binding of ATP or ADP+Pi to it is largely different from that for the protein with the binding, and the directed movement is realized by repeated switches from one of the fields to the other. To illustrate the picture, we analyze the spatial distribution of the entropic potential between a large solute and a large body using the three-dimensional integral equation theory. The solute is modeled as a large hard sphere. Two model filaments are considered as the body: model 1 is a set of one-dimensionally connected large hard spheres and model 2 is a double helical structure formed by two sets of connected large hard spheres. The solute and the filament are immersed in small hard spheres forming the solvent. The major findings are as follows. The solute is strongly confined within a narrow space in contact with the filament. Within the space there are locations with sharply deep local potential minima along the filament, and the distance between two adjacent locations is equal to the diameter of the large spheres constituting the filament. The potential minima form a ringlike domain in model 1

  20. Molecular motors and their functions in plants

    NASA Technical Reports Server (NTRS)

    Reddy, A. S.

    2001-01-01

    mechanisms that perform plant-specific functions are yet to be discovered. Although the identification of motors in plants, especially in Arabidopsis, is progressing at a rapid pace because of the ongoing plant genome sequencing projects, only a few plant motors have been characterized in any detail. Elucidation of function and regulation of this multitude of motors in a given species is going to be a challenging and exciting area of research in plant cell biology. Structural features of some plant motors suggest calcium, through calmodulin, is likely to play a key role in regulating the function of both microtubule- and actin-based motors in plants.

  1. Survival of motor neurone protein is required for normal postnatal development of the spleen.

    PubMed

    Thomson, Alison K; Somers, Eilidh; Powis, Rachael A; Shorrock, Hannah K; Murphy, Kelley; Swoboda, Kathryn J; Gillingwater, Thomas H; Parson, Simon H

    2017-02-01

    Spinal muscular atrophy (SMA), traditionally described as a predominantly childhood form of motor neurone disease, is the leading genetic cause of infant mortality. Although motor neurones are undoubtedly the primary affected cell type, the severe infantile form of SMA (Type I SMA) is now widely recognised to represent a multisystem disorder where a variety of organs and systems in the body are also affected. Here, we report that the spleen is disproportionately small in the 'Taiwanese' murine model of severe SMA (Smn(-/-) ;SMN2(tg/0) ), correlated to low levels of cell proliferation and increased cell death. Spleen lacks its distinctive red appearance and presents with a degenerated capsule and a disorganised fibrotic architecture. Histologically distinct white pulp failed to form and this was reflected in an almost complete absence of B lymphocytes necessary for normal immune function. In addition, megakaryoctyes persisted in the red pulp. However, the vascular density remained unchanged in SMA spleen. Assessment of the spleen in SMA patients with the infantile form of the disease indicated a range of pathologies. We conclude that development of the spleen fails to occur normally in SMA mouse models and human patients. Thus, further analysis of immune function is likely to be required to fully understand the full extent of systemic disease pathology in SMA.

  2. The effects of protein energy malnutrition in early childhood on intellectual and motor abilities in later childhood and adolescence.

    PubMed

    Hoorweg, J; Stanfield, J P

    1976-06-01

    Three groups of Ugandan children (20 in each group) and one comparison group of 20 children were examined between 11 and 17 years of age. The first three groups had been admitted to hospital for treatment of protein energy malnutrition between the ages of eight to 15, 16 to 21 and 22 to 27 months, respectively. The comparison group had not been clinically malnourished throughout the whole period up to 27 months of age. All the children came from one tribe and were individually matched for sex, age, education and home environment. It was found that the three malnourished groups fell significantly below the comparison group in anthropometric measurements and in tests of intellectual and motor abilities. No evidence was found for a relationship between the deficit and age at admission. Further analysis among the 60 malnourished children revealed that anthropometry and intellectual and motor abilities are the more affected the greater the degree of 'chronic undernutrition' at admission, but no correlation was found with the severity of the 'acute malnutrition'. The results show a general impairment of intellectual abilities, with reasoning and spatial abilities most affected, memory and rote learning intermediately and language ability least, if at all, affected. These findings are discussed in the context of a comprehensive and critical appraisal of the existing literature.

  3. Transcriptional induction of the heat shock protein B8 mediates the clearance of misfolded proteins responsible for motor neuron diseases.

    PubMed

    Crippa, Valeria; D'Agostino, Vito G; Cristofani, Riccardo; Rusmini, Paola; Cicardi, Maria E; Messi, Elio; Loffredo, Rosa; Pancher, Michael; Piccolella, Margherita; Galbiati, Mariarita; Meroni, Marco; Cereda, Cristina; Carra, Serena; Provenzani, Alessandro; Poletti, Angelo

    2016-03-10

    Neurodegenerative diseases (NDs) are often associated with the presence of misfolded protein inclusions. The chaperone HSPB8 is upregulated in mice, the human brain and muscle structures affected during NDs progression. HSPB8 exerts a potent pro-degradative activity on several misfolded proteins responsible for familial NDs forms. Here, we demonstrated that HSPB8 also counteracts accumulation of aberrantly localized misfolded forms of TDP-43 and its 25 KDa fragment involved in most sporadic cases of Amyotrophic Lateral Sclerosis (sALS) and of Fronto Lateral Temporal Dementia (FLTD). HSPB8 acts with BAG3 and the HSP70/HSC70-CHIP complex enhancing the autophagic removal of misfolded proteins. We performed a high-through put screening (HTS) to find small molecules capable of inducing HSPB8 in neurons for therapeutic purposes. We identified two compounds, colchicine and doxorubicin, that robustly up-regulated HSPB8 expression. Both colchicine and doxorubicin increased the expression of the master regulator of autophagy TFEB, the autophagy linker p62/SQSTM1 and the autophagosome component LC3. In line, both drugs counteracted the accumulation of TDP-43 and TDP-25 misfolded species responsible for motoneuronal death in sALS. Thus, analogs of colchicine and doxorubicin able to induce HSPB8 and with better safety and tolerability may result beneficial in NDs models.

  4. Transcriptional induction of the heat shock protein B8 mediates the clearance of misfolded proteins responsible for motor neuron diseases

    PubMed Central

    Crippa, Valeria; D’Agostino, Vito G.; Cristofani, Riccardo; Rusmini, Paola; Cicardi, Maria E.; Messi, Elio; Loffredo, Rosa; Pancher, Michael; Piccolella, Margherita; Galbiati, Mariarita; Meroni, Marco; Cereda, Cristina; Carra, Serena; Provenzani, Alessandro; Poletti, Angelo

    2016-01-01

    Neurodegenerative diseases (NDs) are often associated with the presence of misfolded protein inclusions. The chaperone HSPB8 is upregulated in mice, the human brain and muscle structures affected during NDs progression. HSPB8 exerts a potent pro-degradative activity on several misfolded proteins responsible for familial NDs forms. Here, we demonstrated that HSPB8 also counteracts accumulation of aberrantly localized misfolded forms of TDP-43 and its 25 KDa fragment involved in most sporadic cases of Amyotrophic Lateral Sclerosis (sALS) and of Fronto Lateral Temporal Dementia (FLTD). HSPB8 acts with BAG3 and the HSP70/HSC70-CHIP complex enhancing the autophagic removal of misfolded proteins. We performed a high-through put screening (HTS) to find small molecules capable of inducing HSPB8 in neurons for therapeutic purposes. We identified two compounds, colchicine and doxorubicin, that robustly up-regulated HSPB8 expression. Both colchicine and doxorubicin increased the expression of the master regulator of autophagy TFEB, the autophagy linker p62/SQSTM1 and the autophagosome component LC3. In line, both drugs counteracted the accumulation of TDP-43 and TDP-25 misfolded species responsible for motoneuronal death in sALS. Thus, analogs of colchicine and doxorubicin able to induce HSPB8 and with better safety and tolerability may result beneficial in NDs models. PMID:26961006

  5. Drosophila Torsin Protein Regulates Motor Control and Stress Sensitivity and Forms a Complex with Fragile-X Mental Retardation Protein

    PubMed Central

    Ahn, Hyo-Min; Koh, Young Ho

    2016-01-01

    We investigated unknown in vivo functions of Torsin by using Drosophila as a model. Downregulation of Drosophila Torsin (DTor) by DTor-specific inhibitory double-stranded RNA (RNAi) induced abnormal locomotor behavior and increased susceptibility to H2O2. In addition, altered expression of DTor significantly increased the numbers of synaptic boutons. One important biochemical consequence of DTor-RNAi expression in fly brains was upregulation of alcohol dehydrogenase (ADH). Altered expression of ADH has also been reported in Drosophila Fragile-X mental retardation protein (DFMRP) mutant flies. Interestingly, expression of DFMRP was altered in DTor mutant flies, and DTor and DFMRP were present in the same protein complexes. In addition, DTor and DFMRP immunoreactivities were partially colocalized in several cellular organelles in larval muscles. Furthermore, there were no significant differences between synaptic morphologies of dfmrp null mutants and dfmrp mutants expressing DTor-RNAi. Taken together, our evidences suggested that DTor and DFMRP might be present in the same signaling pathway regulating synaptic plasticity. In addition, we also found that human Torsin1A and human FMRP were present in the same protein complexes, suggesting that this phenomenon is evolutionarily conserved. PMID:27313903

  6. In vitro and in cellulo evidences for association of the survival of motor neuron complex with the fragile X mental retardation protein.

    PubMed

    Piazzon, Nathalie; Rage, Florence; Schlotter, Florence; Moine, Hervé; Branlant, Christiane; Massenet, Séverine

    2008-02-29

    Spinal muscular atrophy (SMA) is caused by reduced levels of the survival of motor neuron (SMN) protein. Although the SMN complex is essential for assembly of spliceosomal U small nuclear RNPs, it is still not understood why reduced levels of the SMN protein specifically cause motor neuron degeneration. SMN was recently proposed to have specific functions in mRNA transport and translation regulation in neuronal processes. The defective protein in Fragile X mental retardation syndrome (FMRP) also plays a role in transport of mRNPs and in their translation. Therefore, we examined possible relationships of SMN with FMRP. We observed granules containing both transiently expressed red fluorescent protein(RFP)-tagged SMN and green fluorescent protein(GFP)-tagged FMRP in cell bodies and processes of rat primary neurons of hypothalamus in culture. By immunoprecipitation experiments, we detected an association of FMRP with the SMN complex in human neuroblastoma SH-SY5Y cells and in murine motor neuron MN-1 cells. Then, by in vitro experiments, we demonstrated that the SMN protein is essential for this association. We showed that the COOH-terminal region of FMRP, as well as the conserved YG box and the region encoded by exon 7 of SMN, are required for the interaction. Our findings suggest a link between the SMN complex and FMRP in neuronal cells.

  7. Ubiquitin ligase RNF20/40 facilitates spindle assembly and promotes breast carcinogenesis through stabilizing motor protein Eg5

    PubMed Central

    Duan, Yang; Huo, Dawei; Gao, Jie; Wu, Heng; Ye, Zheng; Liu, Zhe; Zhang, Kai; Shan, Lin; Zhou, Xing; Wang, Yue; Su, Dongxue; Ding, Xiang; Shi, Lei; Wang, Yan; Shang, Yongfeng; Xuan, Chenghao

    2016-01-01

    Whether transcriptional regulators are functionally involved in mitosis is a fundamental question in cell biology. Here we report that the RNF20/40 complex, a major ubiquitin ligase catalysing histone H2B monoubiquitination, interacts with the motor protein Eg5 during mitosis and participates in spindle assembly. We show that the RNF20/40 complex monoubiquitinates and stabilizes Eg5. Loss of RNF20/40 results in spindle assembly defects, cell cycle arrest and apoptosis. Consistently, depletion of either RNF20/40 or Eg5 suppresses breast cancer in vivo. Significantly, RNF20/40 and Eg5 are concurrently upregulated in human breast carcinomas and high Eg5 expression is associated with poorer overall survival of patients with luminal A, or B, breast cancer. Our study uncovers an important spindle assembly role of the RNF20/40 complex, and implicates the RNF20/40-Eg5 axis in breast carcinogenesis, supporting the pursuit of these proteins as potential targets for breast cancer therapeutic interventions. PMID:27557628

  8. Intermediate filament protein accumulation in motor neurons derived from giant axonal neuropathy iPSCs rescued by restoration of gigaxonin

    PubMed Central

    Johnson-Kerner, Bethany L.; Ahmad, Faizzan S.; Diaz, Alejandro Garcia; Greene, John Palmer; Gray, Steven J.; Samulski, Richard Jude; Chung, Wendy K.; Van Coster, Rudy; Maertens, Paul; Noggle, Scott A.; Henderson, Christopher E.; Wichterle, Hynek

    2015-01-01

    Giant axonal neuropathy (GAN) is a progressive neurodegenerative disease caused by autosomal recessive mutations in the GAN gene resulting in a loss of a ubiquitously expressed protein, gigaxonin. Gene replacement therapy is a promising strategy for treatment of the disease; however, the effectiveness and safety of gigaxonin reintroduction have not been tested in human GAN nerve cells. Here we report the derivation of induced pluripotent stem cells (iPSCs) from three GAN patients with different GAN mutations. Motor neurons differentiated from GAN iPSCs exhibit accumulation of neurofilament (NF-L) and peripherin (PRPH) protein and formation of PRPH aggregates, the key pathological phenotypes observed in patients. Introduction of gigaxonin either using a lentiviral vector or as a stable transgene resulted in normalization of NEFL and PRPH levels in GAN neurons and disappearance of PRPH aggregates. Importantly, overexpression of gigaxonin had no adverse effect on survival of GAN neurons, supporting the feasibility of gene replacement therapy. Our findings demonstrate that GAN iPSCs provide a novel model for studying human GAN neuropathologies and for the development and testing of new therapies in relevant cell types. PMID:25398950

  9. Helicobacter pylori CheZ(HP) and ChePep form a novel chemotaxis-regulatory complex distinct from the core chemotaxis signaling proteins and the flagellar motor.

    PubMed

    Lertsethtakarn, Paphavee; Howitt, Michael R; Castellon, Juan; Amieva, Manuel R; Ottemann, Karen M

    2015-09-01

    Chemotaxis is important for Helicobacter pylori to colonize the stomach. Like other bacteria, H. pylori uses chemoreceptors and conserved chemotaxis proteins to phosphorylate the flagellar rotational response regulator, CheY, and modulate the flagellar rotational direction. Phosphorylated CheY is returned to its non-phosphorylated state by phosphatases such as CheZ. In previously studied cases, chemotaxis phosphatases localize to the cellular poles by interactions with either the CheA chemotaxis kinase or flagellar motor proteins. We report here that the H. pylori CheZ, CheZ(HP), localizes to the poles independently of the flagellar motor, CheA, and all typical chemotaxis proteins. Instead, CheZ(HP) localization depends on the chemotaxis regulatory protein ChePep, and reciprocally, ChePep requires CheZ(HP) for its polar localization. We furthermore show that these proteins interact directly. Functional domain mapping of CheZ(HP) determined the polar localization motif lies within the central domain of the protein and that the protein has regions outside of the active site that participate in chemotaxis. Our results suggest that CheZ(HP) and ChePep form a distinct complex. These results therefore suggest the intriguing idea that some phosphatases localize independently of the other chemotaxis and motility proteins, possibly to confer unique regulation on these proteins' activities.

  10. Actin-based movement of Listeria monocytogenes: actin assembly results from the local maintenance of uncapped filament barbed ends at the bacterium surface

    PubMed Central

    1995-01-01

    The thermodynamic basis for actin-based motility of Listeria monocytogenes has been investigated using cytoplasmic extracts of Xenopus eggs, initially developed by Theriot et al. (Theriot, J. A., J. Rosenblatt, D. A. Portnoy, P. J. Goldschmidt-Clermont, and T. J. Mitchison. 1994. Cell. 76:505-517) as an in vitro cell-free system. A large proportion (75%) of actin was found unpolymerized in the extracts. The amount of unassembled actin (12 microM) is accounted for by the sequestering functions of T beta 4Xen (20 microM) and profilin (5 microM), the barbed ends being capped. Movement of Listeria was not abolished by depletion of over 99% of the endogenous profilin. The proline-rich sequences of ActA are unlikely to be the target of profilin. All data support the view that actin assembly at the rear of Listeria results from a local shift in steady state due to a factor, keeping filaments uncapped, bound to the surface of the bacterium, while barbed ends are capped in the bulk cytoplasm. Movement is controlled by the energetic difference (i.e., the difference in critical concentration) between the two ends of the filaments, hence a constant ATP supply and the presence of barbed end capped F-actin in the medium are required to buffer free G-actin at a high concentration. The role of membrane components is demonstrated by the facts that: (a) Listeria movement can be reconstituted in the resuspended pellets of high speed-centrifuged extracts that are enriched in membranes; (b) Actin-based motility of endogenous vesicles, exhibiting the same rocketing movement as Listeria, can be observed in the extracts. PMID:7615635

  11. T cell synapse assembly: proteins, motors and the underlying cell biology.

    PubMed

    Tooley, Aaron J; Jacobelli, Jordan; Moldovan, Maria-Cristina; Douglas, Adam; Krummel, Matthew F

    2005-02-01

    A tantalizing feature of the 'immunological synapse' is the segregation of transmembrane proteins into activating clusters and their underlying signalosomes. The mechanisms by which transmembrane proteins are initially recruited to and then stably segregated at the synapse remains an outstanding question in the field; and one likely to reveal key modes of signaling regulation. Ongoing real-time imaging approaches and a refocusing of efforts upon understanding the basic cell biology of T cells have all contributed to a developing model of T cell behavior; elementary TCR-derived signaling quickly feeds back into the basic cellular programs controlling cell shape, adhesiveness, motility, as well as some poorly understood aspects of membrane fluidity and segregation. It is increasingly clear that the mechanisms for control at this level are shared between T cells and other cell types and may not be revealed in differential genomic screening. To this end, imaging-based genetic screens are now coming online to aid in identifying the ubiquitous proteins that function at polarized signaling surfaces.

  12. Spinocerebellar ataxia type 6 protein aggregates cause deficits in motor learning and cerebellar plasticity.

    PubMed

    Mark, Melanie D; Krause, Martin; Boele, Henk-Jan; Kruse, Wolfgang; Pollok, Stefan; Kuner, Thomas; Dalkara, Deniz; Koekkoek, Sebastiaan; De Zeeuw, Chris I; Herlitze, Stefan

    2015-06-10

    Spinocerebellar ataxia type 6 (SCA6) is linked to poly-glutamine (polyQ) within the C terminus (CT) of the pore-forming subunits of P/Q-type Ca(2+) channels (Cav2.1) and is characterized by CT protein aggregates found in cerebellar Purkinje cells (PCs). One hypothesis regarding SCA6 disease is that a CT fragment of the Cav2.1 channel, which is detected specifically in cytosolic and nuclear fractions in SCA6 patients, is associated with the SCA6 pathogenesis. To test this hypothesis, we expressed P/Q-type channel protein fragments from two different human CT splice variants, as predicted from SCA6 patients, in PCs of mice using viral and transgenic approaches. These splice variants represent a short (CT-short without polyQs) and a long (CT-long with 27 polyQs) CT fragment. Our results show that the different splice variants of the CTs differentially distribute within PCs, i.e., the short CTs reveal predominantly nuclear inclusions, whereas the long CTs prominently reveal both nuclear and cytoplasmic aggregates. Postnatal expression of CTs in PCs in mice reveals that only CT-long causes SCA6-like symptoms, i.e., deficits in eyeblink conditioning (EBC), ataxia, and PC degeneration. The physiological phenotypes associated specifically with the long CT fragment can be explained by an impairment of LTD and LTP at the parallel fiber-to-PC synapse and alteration in spontaneous PC activity. Thus, our results suggest that the polyQ carrying the CT fragment of the P/Q-type channel is sufficient to cause SCA6 pathogenesis in mice and identifies EBC as a new diagnostic strategy to evaluate Ca(2+) channel-mediated human diseases.

  13. Novel benzimidazole inhibitors bind to a unique site in the kinesin spindle protein motor domain.

    PubMed

    Sheth, Payal R; Shipps, Gerald W; Seghezzi, Wolfgang; Smith, Catherine K; Chuang, Cheng-Chi; Sanden, David; Basso, Andrea D; Vilenchik, Lev; Gray, Kimberly; Annis, D Allen; Nickbarg, Elliott; Ma, Yao; Lahue, Brian; Herbst, Ronald; Le, Hung V

    2010-09-28

    Affinity selection-mass spectrometry (AS-MS) screening of kinesin spindle protein (KSP) followed by enzyme inhibition studies and temperature-dependent circular dichroism (TdCD) characterization was utilized to identify a series of benzimidazole compounds. This series also binds in the presence of Ispinesib, a known anticancer KSP inhibitor in phase I/II clinical trials for breast cancer. TdCD and AS-MS analyses support simultaneous binding implying existence of a novel non-Ispinesib binding pocket within KSP. Additional TdCD analyses demonstrate direct binding of these compounds to Ispinesib-resistant mutants (D130V, A133D, and A133D + D130V double mutant), further strengthening the hypothesis that the compounds bind to a distinct binding pocket. Also importantly, binding to this pocket causes uncompetitive inhibition of KSP ATPase activity. The uncompetitive inhibition with respect to ATP is also confirmed by the requirement of nucleotide for binding of the compounds. After preliminary affinity optimization, the benzimidazole series exhibited distinctive antimitotic activity as evidenced by blockade of bipolar spindle formation and appearance of monoasters. Cancer cell growth inhibition was also demonstrated either as a single agent or in combination with Ispinesib. The combination was additive as predicted by the binding studies using TdCD and AS-MS analyses. The available data support the existence of a KSP inhibitory site hitherto unknown in the literature. The data also suggest that targeting this novel site could be a productive strategy for eluding Ispinesib-resistant tumors. Finally, AS-MS and TdCD techniques are general in scope and may enable screening other targets in the presence of known drugs, clinical candidates, or tool compounds that bind to the protein of interest in an effort to identify potency-enhancing small molecules that increase efficacy and impede resistance in combination therapy.

  14. Interaction of motor proteins of various types at melanosome redistribution in melanocytes under action of UV radiation

    NASA Astrophysics Data System (ADS)

    Stolnitz, Mikhail M.; Kudryashov, Alexey A.

    2004-05-01

    In the report the mathematical model of melanosome transport along filaments in intact and UV-irradiated melanocytes is submitted. Processes at three levels are considered: dynamics of the single motor, transport of melanosome by ensemble of motors, and melanosomes distribution along microtubules. A single motor is considered as <> modeling of transitions between internal states described by chemical kinetics equations allows to determine "force-velocity" dependence for motor. The ensemble of motors is described by system of equations for average motor velocities, and transported melanosome moves with average velocity, which in turn is determined by sum of force generated by each elastic-coupled motor (self-consistence problem). Distribution of melanosomes along a microtubule is described by system of equations for bidirectional motion of attached melanosome under coordinated action of "plus-end" and "minus-end" motors and free diffusion of unattached melanosomes. Influence of UV-radiation is resulted in change of number of each type motors simultaneously linked to one melanosome. It induces redistribution of melanosomes between centre and periphery of melanocyte.

  15. Calcium/calmodulin-dependent protein kinase IIbeta isoform is expressed in motor neurons during axon outgrowth and is part of slow axonal transport.

    PubMed

    Lund, Linda M; McQuarrie, Irvine G

    2002-03-15

    Previously, we identified calcium/calmodulin-dependent protein kinase IIbeta (CaMKIIbeta) mRNA in spinal motor neurons with 372 bp inserted in what corresponds to the "association" domain of the protein. This was interesting because known additions and deletions to CaMKIIbeta mRNA are usually less than 100 bp in size and found in the "variable" region. Changes in the association domain of CaMKIIbeta could influence substrate specificity, activity or intracellular targeting. We show that three variations of this insert are found in CNS neurons or sciatic motor neurons of Sprague-Dawley rats. We used PCR and nucleic acid sequencing to identify inserts of 114, 243, or 372 bases. We also show that addition of the 372 bases is associated with outgrowth of the axon (the standard CaMKIIbeta downregulates when axon outgrowth occurs). Radiolabeling, immunoblots, and 2D PAGE identified this larger CaMKIIbeta as part of the group of soluble proteins moving at the slowest rate of axonal transport (SCa) in sciatic motor neurons (similar1 mm/day). This group is composed mainly of structural proteins (e.g., tubulin) used to assemble the cytoskeleton of regrowing axons.

  16. The Role of the Cytoskeleton in the Life Cycle of Viruses and Intracellular Bacteria: Tracks, Motors, and Polymerization Machines

    PubMed Central

    Bearer, E.L.; Satpute-Krishnan, P.

    2013-01-01

    Recent advances in microbiology implicate the cytoskeleton in the life cycle of some pathogens, such as intracellular bacteria, Rickettsia and viruses. The cellular cytoskeleton provides the basis for intracellular movements such as those that transport the pathogen to and from the cell surface to the nuclear region, or those that produce cortical protrusions that project the pathogen outwards from the cell surface towards an adjacent cell. Transport in both directions within the neuron is required for pathogens such as the herpesviruses to travel to and from the nucleus and perinuclear region where replication takes place. This trafficking is likely to depend on cellular motors moving on a combination of microtubule and actin filament tracks. Recently, Bearer et al. reconstituted retrograde transport of herpes simplex virus (HSV) in the giant axon of the squid. These studies identified the tegument proteins as the viral proteins most likely to recruit retrograde motors for the transport of HSV to the neuronal nucleus. Similar microtubule-based intracellular movements are part of the biological behavior of vaccinia, a poxvirus, and of adenovirus. Pathogen-induced surface projections and motility within the cortical cytoplasm also play a role in the life cycle of intracellular pathogens. Such motility is driven by pathogen-mediated actin polymerization. Virulence depends on this actin-based motility, since virulence is reduced in Listeria ActA mutants that lack the ability to recruit Arp2/3 and polymerize actin and in vaccinia virus mutants that cannot stimulate actin polymerization. Inhibition of intracellular movements provides a potential strategy to limit pathogenicity. The host cell motors and tracks, as well as the pathogen factors that interact with them, are potential targets for novel antimicrobial therapy. PMID:12462128

  17. Cerebellar Pathology and Motor Deficits in the Palmitoyl Protein Thioesterase 1-Deficient Mouse

    PubMed Central

    Macauley, Shannon L.; Wozniak, David F.; Kielar, Catherine; Tan, Yun; Cooper, Jonathan D.; Sands, Mark S.

    2009-01-01

    Infantile neuronal ceroid lipofuscinosis (INCL, Infantile Batten Disease) is an inherited, neurodegenerative lysosomal storage disorder. INCL is the result of a CLN1 gene mutation leading to a deficiency in palmitoyl protein thioesterase 1 (PPT1) activity. Studies in the forebrain demonstrate the PPT1-deficient mouse (PPT1−/−) mimics the clinical symptoms and underlying pathology of INCL; however, little is known about changes in cerebellar function or pathology. In this study, we demonstrate Purkinje cell loss beginning at 3 months, which correlates with changes in rotarod performance. Concurrently, we observed an early stage reactive gliosis and a primary pathology in astrocytes, including changes in S100β and GLAST expression. Conversely, there was a late stage granule cell loss, microglial activation, and demyelination. This study suggests that neuronal-glial interactions are the core pathology in the PPT1−/− cerebellum. In addition, these data identify potential endpoints for use in future efficacy studies for the treatment of INCL. PMID:19416667

  18. Distribution and evolution of stable single α-helices (SAH domains) in myosin motor proteins

    PubMed Central

    Simm, Dominic; Hatje, Klas

    2017-01-01

    Stable single-alpha helices (SAHs) are versatile structural elements in many prokaryotic and eukaryotic proteins acting as semi-flexible linkers and constant force springs. This way SAH-domains function as part of the lever of many different myosins. Canonical myosin levers consist of one or several IQ-motifs to which light chains such as calmodulin bind. SAH-domains provide flexibility in length and stiffness to the myosin levers, and may be particularly suited for myosins working in crowded cellular environments. Although the function of the SAH-domains in human class-6 and class-10 myosins has well been characterised, the distribution of the SAH-domain in all myosin subfamilies and across the eukaryotic tree of life remained elusive. Here, we analysed the largest available myosin sequence dataset consisting of 7919 manually annotated myosin sequences from 938 species representing all major eukaryotic branches using the SAH-prediction algorithm of Waggawagga, a recently developed tool for the identification of SAH-domains. With this approach we identified SAH-domains in more than one third of the supposed 79 myosin subfamilies. Depending on the myosin class, the presence of SAH-domains can range from a few to almost all class members indicating complex patterns of independent and taxon-specific SAH-domain gain and loss. PMID:28369123

  19. Recognition of two classes of oligoproline sequences in profilin- mediated acceleration of actin-based Shigella motility

    PubMed Central

    1996-01-01

    The gram negative rod Shigella flexneri uses it surface protein IcsA to induce host cell actin assembly and to achieve intracellular motility. Yet, the IcsA protein lacks the oligoproline sequences found in ActA, the surface protein required for locomotion of the gram positive rod Listeria monocytogenes. Microinjection of a peptide matching the second ActA oligoproline repeat (FEFPPPPTDE) stops Listeria locomotion (Southwick, F.S., and D.L. Purich. 1994a. Proc. Natl. Acad. Sci. USA. 91:5168-5172), and submicromolar concentrations (intracellular concentration 80-800 nM) similarly arrest Shigella rocket-tail assembly and intracellular motility. Coinjection of a binary solution containing profilin and the ActA analogue increased the observed rates of intracellular motility by a factor of three (mean velocity 0.90 +/- 0.07 mu m/s, SD n=16 before injection vs 0.3 +/- 0.1 mu m/s, n=33 postinjection, intracellular concentration = 80 nM profilin plus 80 nM ActA analogue). Recent evidence suggests the ActA analogue may act by displacing the profilin-binding protein VASP (Pistor, S.C., T. Chakaborty, V. Walter, and J. Wehland. 1995. Curr. Biol. 5:517-525). At considerably higher intracellular concentrations (10 muM), the VASP oligoproline sequence (GPPPPP)3 thought to represent the profilin- binding site (Reinhard, M., K. Giehl, K. Abel, C. Haffner, T. Jarchau, V. Hoppe, B.M. Jockusch, and U. Walter. 1995. EMBO (Eur. Mol. Biol. Organ.) J. 14:1583-1589) also inhibited Shigella movement. A binary mixture of the VASP analogue and profilin (each 10 muM intracellular concentration) led to a doubling of Shigella intracellular migration velocity (0.09 +/- 0.06 mu m/s, n = 25 preinjection vs 0.18 +/- 0.10 mu m/s, n = 61 postinjection). Thus, the two structurally divergent bacteria, Listeria and Shigella, have adopted convergent mechanisms involving profilin recognition of VASP oligoproline sequences and VASP recognition of oligoproline sequences in ActA or an ActA-like host protein

  20. Fused in Sarcoma (FUS) Protein Lacking Nuclear Localization Signal (NLS) and Major RNA Binding Motifs Triggers Proteinopathy and Severe Motor Phenotype in Transgenic Mice* ♦

    PubMed Central

    Shelkovnikova, Tatyana A.; Peters, Owen M.; Deykin, Alexey V.; Connor-Robson, Natalie; Robinson, Hannah; Ustyugov, Alexey A.; Bachurin, Sergey O.; Ermolkevich, Tatyana G.; Goldman, Igor L.; Sadchikova, Elena R.; Kovrazhkina, Elena A.; Skvortsova, Veronica I.; Ling, Shuo-Chien; Da Cruz, Sandrine; Parone, Philippe A.; Buchman, Vladimir L.; Ninkina, Natalia N.

    2013-01-01

    Dysfunction of two structurally and functionally related proteins, FUS and TAR DNA-binding protein of 43 kDa (TDP-43), implicated in crucial steps of cellular RNA metabolism can cause amyotrophic lateral sclerosis (ALS) and certain other neurodegenerative diseases. The proteins are intrinsically aggregate-prone and form non-amyloid inclusions in the affected nervous tissues, but the role of these proteinaceous aggregates in disease onset and progression is still uncertain. To address this question, we designed a variant of FUS, FUS 1–359, which is predominantly cytoplasmic, highly aggregate-prone, and lacks a region responsible for RNA recognition and binding. Expression of FUS 1–359 in neurons of transgenic mice, at a level lower than that of endogenous FUS, triggers FUSopathy associated with severe damage of motor neurons and their axons, neuroinflammatory reaction, and eventual loss of selective motor neuron populations. These pathological changes cause abrupt development of a severe motor phenotype at the age of 2.5–4.5 months and death of affected animals within several days of onset. The pattern of pathology in transgenic FUS 1–359 mice recapitulates several key features of human ALS with the dynamics of the disease progression compressed in line with shorter mouse lifespan. Our data indicate that neuronal FUS aggregation is sufficient to cause ALS-like phenotype in transgenic mice. PMID:23867462

  1. Presynaptic G protein-coupled receptors dynamically modify vesicle fusion, synaptic cleft glutamate concentrations and motor behavior

    PubMed Central

    Gerachshenko, Tatyana; Schwartz, Eric; Bleckert, Adam; Photowala, Huzefa; Seymour, Andrew; Alford, Simon

    2009-01-01

    Understanding how neuromodulators regulate behavior requires investigating their effects on functional neural systems, but also their underlying cellular mechanisms. Utilizing extensively characterized lamprey motor circuits, and the unique access to reticulospinal presynaptic terminals in the intact spinal cord that initiate these behaviours, we have investigated effects of presynaptic G protein-coupled receptors on locomotion from the systems level, to the molecular control of vesicle fusion. 5-HT inhibits neurotransmitter release via a Gβγ interaction with the SNARE complex that promotes kiss-and-run vesicle fusion. In the lamprey spinal cord we demonstrate that while presynaptic 5-HT receptors inhibit evoked neurotransmitter release from reticulospinal command neurons, their activation does not abolish locomotion, but rather modulates locomotor rhythms. Liberation of presynaptic Gβγ causes substantial inhibition of AMPA receptor-mediated synaptic responses, but leaves NMDA receptor-mediated components of neurotransmission largely intact. Because Gβγ binding to the SNARE complex is displaced by Ca2+-synaptotagmin binding, 5-HT-mediated inhibition displays Ca2+ sensitivity. We show that as Ca2+ accumulates presynaptically during physiological bouts of activity, 5-HT/Gβγ-mediated presynaptic inhibition is relieved leading to a frequency-dependent increase in synaptic concentrations of glutamate. This frequency dependent phenomenon mirrors a shift in the vesicle fusion mode and a recovery of AMPA receptor-mediated EPSCs from inhibition without a modification of NMDA receptor EPSCs. We conclude that activation of presynaptic 5-HT GPCRs state-dependently alters vesicle fusion properties to shift the weight of NMDA vs AMPA receptor-mediated responses at excitatory synapses. We have therefore identified a novel mechanism in which modification of vesicle fusion modes may profoundly alter locomotor behaviour. PMID:19692597

  2. Motor neuron cell death in wobbler mutant mice follows overexpression of the G-protein-coupled, protease-activated receptor for thrombin.

    PubMed Central

    Festoff, B. W.; D'Andrea, M. R.; Citron, B. A.; Salcedo, R. M.; Smirnova, I. V.; Andrade-Gordon, P.

    2000-01-01

    BACKGROUND: Mechanisms underlying neurodegeneration are actively sought for new therapeutic strategies. Transgenic, knockout and genetic mouse models greatly aid our understanding of the mechanisms for neuronal cell death. A naturally occurring, autosomal recessive mutant, known as wobbler, and mice transgenic for familial amyotrophic lateral sclerosis (FALS) superoxide dismutase (SOD)1 mutations are available, but the molecular mechanisms remain equally unknown. Both phenotypes are detectable after birth. Wobbler is detectable in the third week of life, when homozygotes (wr/wr) exhibit prominent gliosis and significant motor neuron loss in the cervical, but not in lumbar, spinal cord segments. To address molecular mechanisms, we evaluated "death signals" associated with the multifunctional serine protease, thrombin, which leads to apoptotic motor neuronal cell death in culture by cleavage of a G-protein coupled, protease-activated receptor 1 (PAR-1). MATERIALS AND METHODS: Thrombin activities were determined with chromogenic substrate assays, Western immunoblots and immunohistochemistry were performed with anti-PAR-1 to observe localizations of the receptor and anti-GFAP staining was used to monitor astrocytosis. PAR-1 mRNA levels and locations were determined by reverse transcription polymerase chain reaction (qRT-PCR) and in situ hybridizations. Cell death was monitored with in situ DNA fragmentation assays. RESULTS: In preliminary studies we found a 5-fold increase in PAR-1 mRNA in cervical spinal cords from wr/wr, compared with wild-type (wt) littermates. Our current studies suggested that reactive astrocytosis and motor neuron cell death were causally linked with alterations in thrombin signaling. PAR-1 protein expression was increased, as demonstrated by immunocytochemistry and confirmed with in situ hybridization, in phenotypic wr/wr motor neurons, compared with wt, but not in astrocytes. This increase was much greater in cervical, compared with lumbar

  3. G-protein-coupled receptor 30-mediated antiapoptotic effect of estrogen on spinal motor neurons following injury and its underlying mechanisms.

    PubMed

    Chen, Jingyu; Hu, Rong; Ge, Hongfei; Duanmu, Wangsheng; Li, Yuhong; Xue, Xingseng; Hu, Shengli; Feng, Hua

    2015-08-01

    Spinal cord injury (SCI) may result in severe dysfunction of motor neurons. G-protein-coupled receptor 30 (GPR30) expression in the motor neurons of the ventral horn of the spinal cord mediates neuroprotection through estrogen signaling. The present study explored the antiapoptotic effect of estrogen, mediated by GPR30 following SCI, and the mechanisms underlying this effect. Spinal motor neurons from rats were cultured in vitro in order to establish cell models of oxygen and glucose deprivation (OGD). The effects of estrogen, the estrogen agonist, G1, and the estrogen inhibitor, G15, on motor neurons were observed using MTT assays. The effects of E2, G1 and G15 on spinal motor neuron apoptosis following OGD, were detected using flow cytometry. The role of the phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) inhibitor, LY294002, was also determined using flow cytometry. Rat SCI models were established. E2, G1 and E2+LY294002 were administered in vivo. Motor function was scored at 3, 7, 14, 21 and 28 d following injury, using Basso-Beattie-Bresnahan (BBB) standards. Cell activity in the estrogen and G1 groups was higher than that in the solvent group, whereas cell activity in the E2+G15 group was lower than that in the E2 group (P<0.05). Following OGD, the proportion of apoptotic cells significantly increased (P<0.05). The proportion in the estrogen group was significantly lower than that in the solvent group, whereas the proportion of apoptotic cells in the E2+G15 and E2+LY294002 groups was higher than that in the E2 group (P<0.05). Treatment with E2 and G1 led to upregulation of P-Akt expression in normal cells and post-OGD cells. The BBB scores of rats in the E2 and G1 groups were higher than those in the placebo group (P<0.05). The BBB scores of the E2+LY294002 group were lower than those of the E2 group (P<0.05). Estrogen thus appears to exert a protective effect on spinal motor neurons following OGD, via GPR30. The PI3K/Akt pathway may be one of those

  4. Substantially elevating the levels of αB-crystallin in spinal motor neurons of mutant SOD1 mice does not significantly delay paralysis or attenuate mutant protein aggregation.

    PubMed

    Xu, Guilian; Fromholt, Susan; Ayers, Jacob I; Brown, Hilda; Siemienski, Zoe; Crosby, Keith W; Mayer, Christopher A; Janus, Christopher; Borchelt, David R

    2015-05-01

    There has been great interest in enhancing endogenous protein maintenance pathways such as the heat-shock chaperone response, as it is postulated that enhancing clearance of misfolded proteins could have beneficial disease modifying effects in amyotrophic lateral sclerosis and other neurodegenerative disorders. In cultured cell models of mutant SOD1 aggregation, co-expression of αB-crystallin (αB-crys) has been shown to inhibit the formation of detergent-insoluble forms of mutant protein. Here, we describe the generation of a new line of transgenic mice that express αB-crys at > 6-fold the normal level in spinal cord, with robust increases in immunoreactivity throughout the spinal cord grey matter and, specifically, in spinal motor neurons. Surprisingly, spinal cords of mice expressing αB-crys alone contained 20% more motor neurons per section than littermate controls. Raising αB-crys by these levels in mice transgenic for either G93A or L126Z mutant SOD1 had no effect on the age at which paralysis developed. In the G93A mice, which showed the most robust degree of motor neuron loss, the number of these cells declined by the same proportion as in mice expressing the mutant SOD1 alone. In paralyzed bigenic mice, the levels of detergent-insoluble, misfolded, mutant SOD1 were similar to those of mice expressing mutant SOD1 alone. These findings indicate that raising the levels of αB-crys in spinal motor neurons by 6-fold does not produce the therapeutic effects predicted by cell culture models of mutant SOD1 aggregation. Enhancing the protein chaperone function may present a therapeutic approach to amyotrophic lateral sclerosis caused by mutations in SOD1, and other neurodegenerative disorders characterized by cytosolic protein aggregation. Previous studies in cell models suggested that the chaperone known as αB-crystallin (αB-crys) can prevent mutant SOD1 aggregation. We report that transgenic expression of αB-crys at > 6-fold the normal level in spinal

  5. Rapamycin improves motor function, reduces 4-hydroxynonenal adducted protein in brain, and attenuates synaptic injury in a mouse model of synucleinopathy

    PubMed Central

    Bai, Xiang; Wey, Margaret Chia-Ying; Fernandez, Elizabeth; Hart, Matthew J.; Gelfond, Jonathan; Bokov, Alex F.; Rani, Sheela; Strong, Randy

    2015-01-01

    Background Synucleinopathy is any of a group of age-related neurodegenerative disorders including Parkinson's disease, multiple system atrophy, and dementia with Lewy Bodies, which is characterized by α-synuclein inclusions and parkinsonian motor deficits affecting millions of patients worldwide. But there is no cure at present for synucleinopathy. Rapamycin has been shown to be neuroprotective in several in vitro and in vivo synucleinopathy models. However, there are no reports on the long-term effects of RAPA on motor function or measures of neurodegeneration in models of synucleinopathy. Methods We determined whether long-term feeding a rapamycin diet (14 ppm in diet; 2.25 mg/kg body weight/day) improves motor function in neuronal A53T α-synuclein transgenic mice (TG) and explored underlying mechanisms using a variety of behavioral and biochemical approaches. Results After 24 weeks of treatment, rapamycin improved performance on the forepaw stepping adjustment test, accelerating rotarod and pole test. Rapamycin did not alter A53T α-synuclein content. There was no effect of rapamycin treatment on midbrain or striatal monoamines or their metabolites. Proteins adducted to the lipid peroxidation product 4-hydroxynonenal were decreased in brain regions of both wild-type and TG mice treated with rapamycin. Reduced levels of the presynaptic marker synaptophysin were found in several brain regions of TG mice. Rapamycin attenuated the loss of synaptophysin protein in the affected brain regions. Rapamycin also attenuated the loss of synaptophysin protein and prevented the decrease of neurite length in SH-SY5Y cells treated with 4-hydroxynonenal. Conclusion Taken together, these data suggest that rapamycin, an FDA approved drug, may prove useful in the treatment of synucleinopathy. PMID:26306821

  6. Widespread mRNA Association with Cytoskeletal Motor Proteins and Identification and Dynamics of Myosin-Associated mRNAs in S. cerevisiae

    PubMed Central

    Casolari, Jason M.; Thompson, Michael A.; Salzman, Julia; Champion, Lowry M.; Moerner, W. E.; Brown, Patrick O.

    2012-01-01

    Programmed mRNA localization to specific subcellular compartments for localized translation is a fundamental mechanism of post-transcriptional regulation that affects many, and possibly all, mRNAs in eukaryotes. We describe her e a systematic approach to identify the RNA cargoes associated with the cytoskeletal motor proteins of Saccharomyces cerevisiae in combination with live-cell 3D super-localization microscopy of endogenously tagged mRNAs. Our analysis identified widespread association of mRNAs with cytoskeletal motor proteins, including association of Myo3 with mRNAs encoding key regulators of actin branching and endocytosis such as WASP and WIP. Using conventional fluorescence microscopy and expression of MS2-tagged mRNAs from endogenous loci, we observed a strong bias for actin patch nucleator mRNAs to localize to the cell cortex and the actin patch in a Myo3- and F-actin dependent manner. Use of a double-helix point spread function (DH-PSF) microscope allowed super-localization measurements of single mRNPs at a spatial precision of 25 nm in x and y and 50 nm in z in live cells with 50 ms exposure times, allowing quantitative profiling of mRNP dynamics. The actin patch mRNA exhibited distinct and characteristic diffusion coefficients when compared to a control mRNA. In addition, disruption of F-actin significantly expanded the 3D confinement radius of an actin patch nucleator mRNA, providing a quantitative assessment of the contribution of the actin cytoskeleton to mRNP dynamic localization. Our results provide evidence for specific association of mRNAs with cytoskeletal motor proteins in yeast, suggest that different mRNPs have distinct and characteristic dynamics, and lend insight into the mechanism of actin patch nucleator mRNA localization to actin patches. PMID:22359641

  7. Cargo Transport by Two Coupled Myosin Va Motors on Actin Filaments and Bundles.

    PubMed

    Ali, M Yusuf; Vilfan, Andrej; Trybus, Kathleen M; Warshaw, David M

    2016-11-15

    Myosin Va (myoVa) is a processive, actin-based molecular motor essential for intracellular cargo transport. When a cargo is transported by an ensemble of myoVa motors, each motor faces significant physical barriers and directional challenges created by the complex actin cytoskeleton, a network of actin filaments and actin bundles. The principles that govern the interaction of multiple motors attached to the same cargo are still poorly understood. To understand the mechanical interactions between multiple motors, we developed a simple in vitro model in which two individual myoVa motors labeled with different-colored Qdots are linked via a third Qdot that acts as a cargo. The velocity of this two-motor complex was reduced by 27% as compared to a single motor, whereas run length was increased by only 37%, much less than expected from multimotor transport models. Therefore, at low ATP, which allowed us to identify individual motor steps, we investigated the intermotor dynamics within the two-motor complex. The randomness of stepping leads to a buildup of tension in the linkage between motors-which in turn slows down the leading motor-and increases the frequency of backward steps and the detachment rate. We establish a direct relationship between the velocity reduction and the distribution of intermotor distances. The analysis of run lengths and dwell times for the two-motor complex, which has only one motor engaged with the actin track, reveals that half of the runs are terminated by almost simultaneous detachment of both motors. This finding challenges the assumptions of conventional multimotor models based on consecutive motor detachment. Similar, but even more drastic, results were observed with two-motor complexes on actin bundles, which showed a run length that was even shorter than that of a single motor.

  8. Recombinant human TNF-binding protein-1 (rhTBP-1) treatment delays both symptoms progression and motor neuron loss in the wobbler mouse.

    PubMed

    Bigini, Paolo; Repici, Mariaelena; Cantarella, Giuseppina; Fumagalli, Elena; Barbera, Sara; Cagnotto, Alfredo; De Luigi, Ada; Tonelli, Rossella; Bernardini, Renato; Borsello, Tiziana; Mennini, Tiziana

    2008-03-01

    TNF-alpha overexpression may contribute to motor neuron death in amyotrophic lateral sclerosis (ALS). We investigated the intracellular pathway associated with TNF-alpha in the wobbler mouse, a murine model of ALS, at the onset of symptoms. TNF-alpha and TNFR1 overexpression and JNK/p38MAPK phosphorylation occurred in neurons and microglia in early symptomatic mice, suggesting that this activation may contribute to motor neuron damage. The involvement of TNF-alpha was further confirmed by the protective effect of treatment with rhTNF-alpha binding protein (rhTBP-1) from 4 to 9 weeks of age. rhTBP-1 reduced the progression of symptoms, motor neuron loss, gliosis and JNK/p38MAPK phosphorylation in wobbler mice, but did not reduce TNF-alpha and TNFR1 levels. rhTBP-1 might possibly bind TNF-alpha and reduce the downstream phosphorylation of two main effectors of the neuroinflammatory response, p38MAPK and JNK.

  9. Low levels of Survival Motor Neuron protein are sufficient for normal muscle function in the SMNΔ7 mouse model of SMA.

    PubMed

    Iyer, Chitra C; McGovern, Vicki L; Murray, Jason D; Gombash, Sara E; Zaworski, Phillip G; Foust, Kevin D; Janssen, Paul M L; Burghes, Arthur H M

    2015-11-01

    Spinal Muscular Atrophy (SMA) is an autosomal recessive disorder characterized by loss of lower motor neurons. SMA is caused by deletion or mutation of the Survival Motor Neuron 1 (SMN1) gene and retention of the SMN2 gene. The loss of SMN1 results in reduced levels of the SMN protein. SMN levels appear to be particularly important in motor neurons; however SMN levels above that produced by two copies of SMN2 have been suggested to be important in muscle. Studying the spatial requirement of SMN is important in both understanding how SMN deficiency causes SMA and in the development of effective therapies. Using Myf5-Cre, a muscle-specific Cre driver, and the Cre-loxP recombination system, we deleted mouse Smn in the muscle of mice with SMN2 and SMNΔ7 transgenes in the background, thus providing low level of SMN in the muscle. As a reciprocal experiment, we restored normal levels of SMN in the muscle with low SMN levels in all other tissues. We observed that decreasing SMN in the muscle has no phenotypic effect. This was corroborated by muscle physiology studies with twitch force, tetanic and eccentric contraction all being normal. In addition, electrocardiogram and muscle fiber size distribution were also normal. Replacement of Smn in muscle did not rescue SMA mice. Thus the muscle does not appear to require high levels of SMN above what is produced by two copies of SMN2 (and SMNΔ7).

  10. Active Transport of Nanomaterials Using Motor Proteins Final report for DOE-BES grant DE-FG03-03ER46024

    SciTech Connect

    Hess, Henry; Vogel, Viola

    2005-03-16

    During the two year period of funding we have focused on the following topics: Guiding of microtubule movement on kinesin-coated, structured surfaces, directed assembly of oriented microtubule networks, and the interaction between synthetic materials and biological components in hybrid devices based on microtubules and kinesin motors. Additional efforts have been made and are still on- going in controlling the motor activity, and loading and unloading of cargo. In all aspects, the collaboration with the team at Sandia has been critical. A constant intellectual and material connection has been maintained by frequent visits, videoconferences, and exchanges of parts and supplies, such as microfabricated structures and motor proteins. The scientific advances made through this collaboration have been documented in seven publications in high- impact journals and an encyclopedia, discussed in invited talks at the annual meetings of MRS and ACS, and publicized by journalists in The Scientist and Nature Materials Nanozone. One double Ph.D. degree in Bioengineering and Nanotechnology has been completed (John Clemmens).

  11. Regulation of jaw-specific isoforms of myosin-binding protein-C and tropomyosin in regenerating cat temporalis muscle innervated by limb fast and slow motor nerves.

    PubMed

    Kang, Lucia H D; Hoh, Joseph F Y

    2010-11-01

    Cat jaw-closing muscles are a distinct muscle allotype characterized by the expression of masticatory-specific myofibrillar proteins. Transplantation studies showed that expression of masticatory myosin heavy chain (m-MyHC) is promoted by fast motor nerves, but suppressed by slow motor nerves. We investigated whether masticatory myosin-binding protein-C (m-MBP-C) and masticatory tropomyosin (m-Tm) are similarly regulated. Temporalis muscle strips were transplanted into limb muscle beds to allow innervation by fast or slow muscle nerve during regeneration. Regenerated muscles were examined postoperatively up to 168 days by peroxidase IHC using monoclonal antibodies to m-MyHC, m-MBP-C, and m-Tm. Regenerates in both muscle beds expressed fetal and slow MyHCs, m-MyHC, m-MBP-C, and m-Tm during the first 4 weeks. Longer-term regenerates innervated by fast nerve suppressed fetal and slow MyHCs, retaining m-MyHC, m-MBP-C, and m-Tm, whereas fibers innervated by slow nerve suppressed fetal MyHCs and the three masticatory-specific proteins, induced slow MyHC, and showed immunohistochemical characteristics of jaw-slow fibers. We concluded that expression of m-MBP-C and m-Tm is coregulated by m-MyHC and that neural impulses to limb slow muscle are capable of suppressing masticatory-specific proteins and to channel gene expression along the jaw-slow phenotype unique to jaw-closing muscle.

  12. Lovastatin fails to improve motor performance and survival in methyl-CpG-binding protein2-null mice

    PubMed Central

    Villani, Claudia; Sacchetti, Giuseppina; Bagnati, Renzo; Passoni, Alice; Fusco, Federica; Carli, Mirjana; Invernizzi, Roberto William

    2016-01-01

    Previous studies provided evidence for the alteration of brain cholesterol homeostasis in 129.Mecp2-null mice, an experimental model of Rett syndrome. The efficacy of statins in improving motor symptoms and prolonging survival of mutant mice suggested a potential role of statins in the therapy of Rett syndrome. In the present study, we show that Mecp2 deletion had no effect on brain and reduced serum cholesterol levels and lovastatin (1.5 mg/kg, twice weekly as in the previous study) had no effects on motor deficits and survival when Mecp2 deletion was expressed on a background strain (C57BL/6J; B6) differing from that used in the earlier study. These findings indicate that the effects of statins may be background specific and raise important issues to consider when contemplating clinical trials. The reduction of the brain cholesterol metabolite 24S-hydroxycholesterol (24S-OHC) found in B6.Mecp2-null mice suggests the occurrence of changes in brain cholesterol metabolism and the potential utility of using plasma levels of 24S-OHC as a biomarker of brain cholesterol homeostasis in RTT. DOI: http://dx.doi.org/10.7554/eLife.22409.001 PMID:27892851

  13. Cell cycle-controlled proteolysis of a flagellar motor protein that is asymmetrically distributed in the Caulobacter predivisional cell.

    PubMed Central

    Jenal, U; Shapiro, L

    1996-01-01

    Flagellar biogenesis and release are developmental events tightly coupled to the cell cycle of Caulobacter crescentus. A single flagellum is assembled at the swarmer pole of the predivisional cell and is released later in the cell cycle. Here we show that the MS-ring monomer FliF, a central motor component that anchors the flagellum in the cell membrane, is synthesized only in the predivisional cell and is integrated into the membrane at the incipient swarmer cell pole, where it initiates flagellar assembly. FliF is proteolytically turned over during swarmer-to-stalked cell differentiation, coinciding with the loss of the flagellum, suggesting that its degradation is coupled to flagellar release. The membrane topology of FliF was determined and a region of the cytoplasmic C-terminal domain was shown to be required for the interaction with a component of the motor switch. The very C-terminal end of FliF contains a turnover determinant, required for the cell cycle-dependent degradation of the MS-ring. The cell cycle-dependent proteolysis of FliF and the targeting of FliF to the swarmer pole together contribute to the asymmetric localization of the MS-ring in the predivisional cell. Images PMID:8665847

  14. Repeated Baclofen treatment ameliorates motor dysfunction, suppresses reflex activity and decreases the expression of signaling proteins in reticular nuclei and lumbar motoneurons after spinal trauma in rats.

    PubMed

    Kucharíková, Andrea; Schreiberová, Andrea; Závodská, Monika; Gedrová, Štefánia; Hricová, Ľudmila; Pavel, Jaroslav; Gálik, Ján; Maršala, Martin; Lukáčová, Nadežda

    2014-03-01

    The interruption of supraspinal input to the spinal cord leads to motor dysfunction and the development of spasticity. Clinical studies have shown that Baclofen (a GABAB agonist), while effective in modulating spasticity is associated with side-effects and the development of tolerance. The aim of the present study was to assess if discontinued Baclofen treatment and its repeated application leads antispasticity effects, and whether such changes affect neuronal nitric oxide synthase (nNOS) in the brainstem, nNOS and parvalbumin (PV) in lumbar α-motoneurons and glial fibrillary acidic protein in the ventral horn of the spinal cord. Adult male Wistar rats were exposed to Th9 spinal cord transection. Baclofen (30mg/b.w.) diluted in drinking water, was administered for 6 days, starting at week 1 after injury and then repeated till week 4 after injury. The behavior of the animals was tested (tail-flick test, BBB locomotor score) from 1 to 8 weeks. Our results clearly indicate the role of nitric oxide, produced by nNOS in the initiation and the maintenance of spasticity states 1, 6 and 8 weeks after spinal trauma. A considerable decrease of nNOS staining after Baclofen treatment correlates with improvement of motor dysfunction. The findings also show that parvalbumin and astrocytes participate in the regulation of ion concentrations in the sub-acute phase after the injury.

  15. Data on amyloid precursor protein accumulation, spontaneous physical activity, and motor learning after traumatic brain injury in the triple-transgenic mouse model of Alzheimer׳s disease.

    PubMed

    Kishimoto, Yasushi; Shishido, Hajime; Sawanishi, Mayumi; Toyota, Yasunori; Ueno, Masaki; Kubota, Takashi; Kirino, Yutaka; Tamiya, Takashi; Kawai, Nobuyuki

    2016-12-01

    This data article contains supporting information regarding the research article entitled "Traumatic brain injury accelerates amyloid-β deposition and impairs spatial learning in the triple-transgenic mouse model of Alzheimer׳s disease" (H. Shishido, Y. Kishimoto, N. Kawai, Y. Toyota, M. Ueno, T. Kubota, Y. Kirino, T. Tamiya, 2016) [1]. Triple-transgenic (3×Tg)-Alzheimer׳s disease (AD) model mice exhibited significantly poorer spatial learning than sham-treated 3×Tg-AD mice 28 days after traumatic brain injury (TBI). Correspondingly, amyloid-β (Aβ) deposition within the hippocampus was significantly greater in 3×Tg-AD mice 28 days after TBI. However, data regarding the short-term and long-term influences of TBI on amyloid precursor protein (APP) accumulation in AD model mice remain limited. Furthermore, there is little data showing whether physical activity and motor learning are affected by TBI in AD model mice. Here, we provide immunocytochemistry data confirming that TBI induces significant increases in APP accumulation in 3×Tg-AD mice at both 7 days and 28 days after TBI. Furthermore, 3×Tg-AD model mice exhibit a reduced ability to acquire conditioned responses (CRs) during delay eyeblink conditioning compared to sham-treated 3×Tg-AD model mice 28 days after TBI. However, physical activity and motor performance are not significantly changed in TBI-treated 3×Tg-AD model mice.

  16. Molecular Motors from DNA

    NASA Astrophysics Data System (ADS)

    Turberfield, Andrew

    2013-03-01

    DNA is a wonderful material for nanoscale construction: its self-assembly can be programmed by making use of its information-carrying capability and its hybridization or hydrolysis can be used as to provide energy for synthetic molecular machinery. With DNA it is possible to design and build three-dimensional scaffolds, to attach molecular components to them with sub-nanometre precision-and then to make them move. I shall describe our work on autonomous, biomimetic molecular motors powered by chemical fuels and the use of synthetic molecular machinery to control covalent chemical synthesis. I shall demonstrate bipedal motors whose operation depends on the coordination of the chemomechanical cycles of two separate catalytic centres and burnt bridges motors that can be programmed to navigate networks of tracks. I shall also discuss the use of kinesin motor proteins to power synthetic devices.

  17. Motor syndromes.

    PubMed

    Corea, Francesco; Micheli, Sara

    2012-01-01

    Motor disturbances alone or associated with other focal deficits are the most common symptoms suggesting a neurovascular event. An appropriate clinical assessment of these signs and symptoms may help physicians to better diagnose and to both better treat and predict outcome. In this paper the main clinical features of motor deficit are described together with other motor-related events such as ataxia and movement disturbances.

  18. Myosin Vc Interacts with Rab32 and Rab38 Proteins and Works in the Biogenesis and Secretion of Melanosomes*

    PubMed Central

    Bultema, Jarred J.; Boyle, Judith A.; Malenke, Parker B.; Martin, Faye E.; Dell'Angelica, Esteban C.; Cheney, Richard E.; Di Pietro, Santiago M.

    2014-01-01

    Class V myosins are actin-based motors with conserved functions in vesicle and organelle trafficking. Herein we report the discovery of a function for Myosin Vc in melanosome biogenesis as an effector of melanosome-associated Rab GTPases. We isolated Myosin Vc in a yeast two-hybrid screening for proteins that interact with Rab38, a Rab protein involved in the biogenesis of melanosomes and other lysosome-related organelles. Rab38 and its close homolog Rab32 bind to Myosin Vc but not to Myosin Va or Myosin Vb. Binding depends on residues in the switch II region of Rab32 and Rab38 and regions of the Myosin Vc coiled-coil tail domain. Myosin Vc also interacts with Rab7a and Rab8a but not with Rab11, Rab17, and Rab27. Although Myosin Vc is not particularly abundant on pigmented melanosomes, its knockdown in MNT-1 melanocytes caused defects in the trafficking of integral membrane proteins to melanosomes with substantially increased surface expression of Tyrp1, nearly complete loss of Tyrp2, and significant Vamp7 mislocalization. Knockdown of Myosin Vc in MNT-1 cells more than doubled the abundance of pigmented melanosomes but did not change the number of unpigmented melanosomes. Together the data demonstrate a novel role for Myosin Vc in melanosome biogenesis and secretion. PMID:25324551

  19. ATP synthase: two motors, two fuels.

    PubMed

    Oster, G; Wang, H

    1999-04-15

    FoF1 ATPase is the universal protein responsible for ATP synthesis. The enzyme comprises two reversible rotary motors: Fo is either an ion 'turbine' or an ion pump, and F1 is either a hydrolysis motor or an ATP synthesizer. Recent biophysical and biochemical studies have helped to elucidate the operating principles for both motors.

  20. The Evolutionarily Conserved LIM Homeodomain Protein LIM-4/LHX6 Specifies the Terminal Identity of a Cholinergic and Peptidergic C. elegans Sensory/Inter/Motor Neuron-Type.

    PubMed

    Kim, Jinmahn; Yeon, Jihye; Choi, Seong-Kyoon; Huh, Yang Hoon; Fang, Zi; Park, Seo Jin; Kim, Myoung Ok; Ryoo, Zae Young; Kang, Kyeongjin; Kweon, Hee-Seok; Jeon, Won Bae; Li, Chris; Kim, Kyuhyung

    2015-08-01

    The expression of specific transcription factors determines the differentiated features of postmitotic neurons. However, the mechanism by which specific molecules determine neuronal cell fate and the extent to which the functions of transcription factors are conserved in evolution are not fully understood. In C. elegans, the cholinergic and peptidergic SMB sensory/inter/motor neurons innervate muscle quadrants in the head and control the amplitude of sinusoidal movement. Here we show that the LIM homeobox protein LIM-4 determines neuronal characteristics of the SMB neurons. In lim-4 mutant animals, expression of terminal differentiation genes, such as the cholinergic gene battery and the flp-12 neuropeptide gene, is completely abolished and thus the function of the SMB neurons is compromised. LIM-4 activity promotes SMB identity by directly regulating the expression of the SMB marker genes via a distinct cis-regulatory motif. Two human LIM-4 orthologs, LHX6 and LHX8, functionally substitute for LIM-4 in C. elegans. Furthermore, C. elegans LIM-4 or human LHX6 can induce cholinergic and peptidergic characteristics in the human neuronal cell lines. Our results indicate that the evolutionarily conserved LIM-4/LHX6 homeodomain proteins function in generation of precise neuronal subtypes.

  1. The Evolutionarily Conserved LIM Homeodomain Protein LIM-4/LHX6 Specifies the Terminal Identity of a Cholinergic and Peptidergic C. elegans Sensory/Inter/Motor Neuron-Type

    PubMed Central

    Choi, Seong-Kyoon; Huh, Yang Hoon; Fang, Zi; Park, Seo Jin; Kim, Myoung Ok; Ryoo, Zae Young; Kang, Kyeongjin; Kweon, Hee-Seok; Jeon, Won Bae; Li, Chris; Kim, Kyuhyung

    2015-01-01

    The expression of specific transcription factors determines the differentiated features of postmitotic neurons. However, the mechanism by which specific molecules determine neuronal cell fate and the extent to which the functions of transcription factors are conserved in evolution are not fully understood. In C. elegans, the cholinergic and peptidergic SMB sensory/inter/motor neurons innervate muscle quadrants in the head and control the amplitude of sinusoidal movement. Here we show that the LIM homeobox protein LIM-4 determines neuronal characteristics of the SMB neurons. In lim-4 mutant animals, expression of terminal differentiation genes, such as the cholinergic gene battery and the flp-12 neuropeptide gene, is completely abolished and thus the function of the SMB neurons is compromised. LIM-4 activity promotes SMB identity by directly regulating the expression of the SMB marker genes via a distinct cis-regulatory motif. Two human LIM-4 orthologs, LHX6 and LHX8, functionally substitute for LIM-4 in C. elegans. Furthermore, C. elegans LIM-4 or human LHX6 can induce cholinergic and peptidergic characteristics in the human neuronal cell lines. Our results indicate that the evolutionarily conserved LIM-4/LHX6 homeodomain proteins function in generation of precise neuronal subtypes. PMID:26305787

  2. The hsp90-FKBP52 Complex Links the Mineralocorticoid Receptor to Motor Proteins and Persists Bound to the Receptor in Early Nuclear Events▿

    PubMed Central

    Galigniana, Mario D.; Erlejman, Alejandra G.; Monte, Martín; Gomez-Sanchez, Celso; Piwien-Pilipuk, Graciela

    2010-01-01

    In this study, we demonstrate that the subcellular localization of the mineralocorticoid receptor (MR) is regulated by tetratricopeptide domain (TPR) proteins. The high-molecular-weight immunophilin (IMM) FKBP52 links the MR-hsp90 complex to dynein/dynactin motors favoring the cytoplasmic transport of MR to the nucleus. Replacement of this hsp90-binding IMM by FKBP51 or the TPR peptide favored the cytoplasmic localization of MR. The complete movement machinery, including dynein and tubulin, could be recovered from paclitaxel/GTP-stabilized cytosol and was fully reassembled on stripped MR immune pellets. The whole MR-hsp90-based heterocomplex was transiently recovered in the soluble fraction of the nucleus after 10 min of incubation with aldosterone. Moreover, cross-linked MR-hsp90 heterocomplexes accumulated in the nucleus in a hormone-dependent manner, demonstrating that the heterocomplex can pass undissociated through the nuclear pore. On the other hand, a peptide that comprises the DNA-binding domain of MR impaired the nuclear export of MR, suggesting the involvement of this domain in the process. This study represents the first report describing the entire molecular system that commands MR nucleocytoplasmic trafficking and proposes that the MR-hsp90-TPR protein heterocomplex is dissociated in the nucleus rather than in the cytoplasm. PMID:20038533

  3. Fine-Tuning Motile Cilia and Flagella: Evolution of the Dynein Motor Proteins from Plants to Humans at High Resolution

    PubMed Central

    Kollmar, Martin

    2016-01-01

    The flagellum is a key innovation linked to eukaryogenesis. It provides motility by regulated cycles of bending and bend propagation, which are thought to be controlled by a complex arrangement of seven distinct dyneins in repeated patterns of outer- (OAD) and inner-arm dynein (IAD) complexes. Electron tomography showed high similarity of this axonemal repeat pattern across ciliates, algae, and animals, but the diversity of dynein sequences across the eukaryotes has not yet comprehensively been resolved and correlated with structural data. To shed light on the evolution of the axoneme I performed an exhaustive analysis of dyneins using the available sequenced genome data. Evidence from motor domain phylogeny allowed expanding the current set of nine dynein subtypes by eight additional isoforms with, however, restricted taxonomic distributions. I confirmed the presence of the nine dyneins in all eukaryotic super-groups indicating their origin predating the last eukaryotic common ancestor. The comparison of the N-terminal tail domains revealed a most likely axonemal dynein origin of the new classes, a group of chimeric dyneins in plants/algae and Stramenopiles, and the unique domain architecture and origin of the outermost OADs present in green algae and ciliates but not animals. The correlation of sequence and structural data suggests the single-headed class-8 and class-9 dyneins to localize to the distal end of the axonemal repeat and the class-7 dyneins filling the region up to the proximal heterodimeric IAD. Tracing dynein gene duplications across the eukaryotes indicated ongoing diversification and fine-tuning of flagellar functions in extant taxa and species. PMID:27880711

  4. Non-native, N-terminal Hsp70 Molecular Motor Recognition Elements in Transit Peptides Support Plastid Protein Translocation*

    PubMed Central

    Chotewutmontri, Prakitchai; Bruce, Barry D.

    2015-01-01

    Previously, we identified the N-terminal domain of transit peptides (TPs) as a major determinant for the translocation step in plastid protein import. Analysis of Arabidopsis TP dataset revealed that this domain has two overlapping characteristics, highly uncharged and Hsp70-interacting. To investigate these two properties, we replaced the N-terminal domains of the TP of the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase and its reverse peptide with a series of unrelated peptides whose affinities to the chloroplast stromal Hsp70 have been determined. Bioinformatic analysis indicated that eight out of nine peptides in this series are not similar to the TP N terminus. Using in vivo and in vitro protein import assays, the majority of the precursors containing Hsp70-binding elements were targeted to plastids, whereas none of the chimeric precursors lacking an N-terminal Hsp70-binding element were targeted to the plastids. Moreover, a pulse-chase assay showed that two chimeric precursors with the most uncharged peptides failed to translocate into the stroma. The ability of multiple unrelated Hsp70-binding elements to support protein import verified that the majority of TPs utilize an N-terminal Hsp70-binding domain during translocation and expand the mechanistic view of the import process. This work also indicates that synthetic biology may be utilized to create de novo TPs that exceed the targeting activity of naturally occurring sequences. PMID:25645915

  5. Stepper motor

    NASA Technical Reports Server (NTRS)

    Dekramer, Cornelis

    1994-01-01

    The purpose of this document is to describe the more commonly used permanent magnet stepper motors for spaceflight. It will discuss the mechanical and electrical aspects of the devices, their torque behavior, those parameters which need to be controlled and measured, and test methods to be employed. It will also discuss torque margins, compare these to the existing margin requirements, and determine the applicability of these requirements. Finally it will attempt to generate a set of requirements which will be used in any stepper motor procurement and will fully characterize the stepper motor behavior in a consistent and repeatable fashion.

  6. Lipid - Motor Interactions: Soap Opera or Symphony?

    PubMed

    Pathak, Divya; Mallik, Roop

    2016-09-30

    Intracellular transport of organelles can be driven by multiple motor proteins that bind to the lipid membrane of the organelle and work as a team. We review present knowledge on how lipids orchestrate the recruitment of motors to a membrane. Looking beyond recruitment, we also discuss how heterogeneity and local mechanical properties of the membrane may influence function of motor-teams. These issues gain importance because phagocytosed pathogens use lipid-centric strategies to manipulate motors and survive in host cells.

  7. Aging, Alzheimer's, and APOE genotype influence the expression and neuronal distribution patterns of microtubule motor protein dynactin-P50

    PubMed Central

    Aboud, Orwa; Parcon, Paul A.; DeWall, K. Mark; Liu, Ling; Mrak, Robert E.; Griffin, W. Sue T.

    2015-01-01

    Reports from neural cell cultures and experimental animal studies provide evidence of age- and disease-related changes in retrograde transport of spent or misfolded proteins destined for degradation or recycling. However, few studies address these issues in human brain from those who either age without dementia and overt neuropathology, or succumb to Alzheimer's; especially as such propensity may be influenced by APOE genotype. We studied the expression and distribution of the dynein subunit dynactin-P50, the β amyloid precursor protein (βAPP), and hyperphosphorylated tau (P-tau) in tissues and tissue sections of brains from non-demented, neuropathology-free patients and from Alzheimer patients, with either APOE ε3,3 or APOE ε4,4. We found that advanced age in patients without dementia or neuropathological change was associated with coordinated increases in dynactin-P50 and βAPP in neurons in pyramidal layers of the hippocampus. In contrast, in Alzheimer's, βAPP and dynactin were significantly reduced. Furthermore, the dynactin-P50 and βAPP that was present was located primarily in dystrophic neurites in Aβ plaques. Tissues from Alzheimer patients with APOE ε3,3 had less P-tau, more βAPP, dynactin-P50, and synaptophysin than did tissues from Alzheimer patients carrying APOE ε4,4. It is logical to conclude, then, that as neurons age successfully, there is coordination between retrograde delivery and maintenance and repair, as well as between retrograde delivery and degradation and/or recycling of spent proteins. The buildup of proteins slated for repair, synaptic viability, transport, and re-cycling in neuron soma and dystrophic neurites suggest a loss of this coordination in Alzheimer neurons. Inheritance of APOE ε3,3 rather than APOE ε4,4, is associated with neuronal resilience, suggestive of better repair capabilities, more synapses, more efficient transport, and less hyperphosphorylation of tau. We conclude that even in disease the ε3 allele is

  8. Chloride-driven Electromechanical Phase Lags at Acoustic Frequencies Are Generated by SLC26a5, the Outer Hair Cell Motor Protein

    PubMed Central

    Santos-Sacchi, Joseph; Song, Lei

    2014-01-01

    Outer hair cells (OHC) possess voltage-dependent membrane bound molecular motors, identified as the solute carrier protein SLC26a5, that drive somatic motility at acoustic frequencies. The electromotility (eM) of OHCs provides for cochlear amplification, a process that enhances auditory sensitivity by up to three orders of magnitude. In this study, using whole cell voltage clamp and mechanical measurement techniques, we identify disparities between voltage sensing and eM that result from stretched exponential electromechanical behavior of SLC26a5, also known as prestin, for its fast responsiveness. This stretched exponential behavior, which we accurately recapitulate with a new kinetic model, the meno presto model of prestin, influences the protein’s responsiveness to chloride binding and provides for delays in eM relative to membrane voltage driving force. The model predicts that in the frequency domain, these delays would result in eM phase lags that we confirm by measuring OHC eM at acoustic frequencies. These lags may contribute to canceling viscous drag, a requirement for many models of cochlear amplification. PMID:24988347

  9. The Maize Divergent spindle-1 (dv1) Gene Encodes a Kinesin-14A Motor Protein Required for Meiotic Spindle Pole Organization

    PubMed Central

    Higgins, David M.; Nannas, Natalie J.; Dawe, R. Kelly

    2016-01-01

    The classic maize mutant divergent spindle-1 (dv1) causes failures in meiotic spindle assembly and a decrease in pollen viability. By analyzing two independent dv1 alleles we demonstrate that this phenotype is caused by mutations in a member of the kinesin-14A subfamily, a class of C-terminal, minus-end directed microtubule motors. Further analysis demonstrates that defects in early spindle assembly are rare, but that later stages of spindle organization promoting the formation of finely focused spindle poles are strongly dependent on Dv1. Anaphase is error-prone in dv1 lines but not severely so, and the majority of cells show normal chromosome segregation. Live-cell imaging of wild type and mutant plants carrying CFP-tagged β-tubulin confirm that meiosis in dv1 lines fails primarily at the pole-sharpening phase of spindle assembly. These data indicate that plant kinesin-14A proteins help to enforce bipolarity by focusing spindle poles and that this stage of spindle assembly is not required for transition through the spindle checkpoint but improves the accuracy of chromosome segregation. PMID:27610117

  10. Synthetic lethality screen identifies a novel yeast myosin I gene (MYO5): myosin I proteins are required for polarization of the actin cytoskeleton

    PubMed Central

    1996-01-01

    The organization of the actin cytoskeleton plays a critical role in cell physiology in motile and nonmotile organisms. Nonetheless, the function of the actin based motor molecules, members of the myosin superfamily, is not well understood. Deletion of MYO3, a yeast gene encoding a "classic" myosin I, has no detectable phenotype. We used a synthetic lethality screen to uncover genes whose functions might overlap with those of MYO3 and identified a second yeast myosin 1 gene, MYO5. MYO5 shows 86 and 62% identity to MYO3 across the motor and non- motor regions. Both genes contain an amino terminal motor domain, a neck region containing two IQ motifs, and a tail domain consisting of a positively charged region, a proline-rich region containing sequences implicated in ATP-insensitive actin binding, and an SH3 domain. Although myo5 deletion mutants have no detectable phenotype, yeast strains deleted for both MYO3 and MYO5 have severe defects in growth and actin cytoskeletal organization. Double deletion mutants also display phenotypes associated with actin disorganization including accumulation of intracellular membranes and vesicles, cell rounding, random bud site selection, sensitivity to high osmotic strength, and low pH as well as defects in chitin and cell wall deposition, invertase secretion, and fluid phase endocytosis. Indirect immunofluorescence studies using epitope-tagged Myo5p indicate that Myo5p is localized at actin patches. These results indicate that MYO3 and MYO5 encode classical myosin I proteins with overlapping functions and suggest a role for Myo3p and Myo5p in organization of the actin cytoskeleton of Saccharomyces cerevisiae. PMID:8682864

  11. Advanced Motors

    SciTech Connect

    Knoth, Edward A; Chelluri, Bhanumathi; Schumaker, Edward J

    2012-12-14

    vProject Summary Transportation energy usage is predicted to increase substantially by 2020. Hybrid vehicles and fuel cell powered vehicles are destined to become more prominent as fuel prices rise with the demand. Hybrid and fuel cell vehicle platforms are both dependent on high performance electric motors. Electric motors for transportation duty will require sizeable low-speed torque to accelerate the vehicle. As motor speed increases, the torque requirement decreases which results in a nearly constant power motor output. Interior permanent magnet synchronous motors (IPMSM) are well suited for this duty. , , These rotor geometries are configured in straight lines and semi circular arc shapes. These designs are of limited configurations because of the lack of availability of permanent magnets of any other shapes at present. We propose to fabricate rotors via a novel processing approach where we start with magnet powders and compact them into a net shape rotor in a single step. Using this approach, widely different rotor designs can be implemented for efficiency. The current limitation on magnet shape and thickness will be eliminated. This is accomplished by co-filling magnet and soft iron powders at specified locations in intricate shapes using specially designed dies and automatic powder filling station. The process fundamentals for accomplishing occurred under a previous Applied Technology Program titled, Motors and Generators for the 21st Century. New efficient motor designs that are not currently possible (or cost prohibitive) can be accomplished by this approach. Such an approach to motor fabrication opens up a new dimension in motor design. Feasibility Results We were able to optimize a IPMSM rotor to take advantage of the powder co-filling and DMC compaction processing methods. The minimum low speed torque requirement of 5 N-m can be met through an optimized design with magnet material having a Br capability of 0.2 T. This level of magnetic performance can

  12. Cellular prion protein regulates the motor behaviour performance and anxiety-induced responses in genetically modified mice.

    PubMed

    Lobão-Soares, Bruno; Walz, Roger; Carlotti, Carlos Gilberto; Sakamoto, Américo Ceiki; Calvo, Fabrício; Terzian, Ana Luiza Bernardes; da Silva, Juliana Almeida; Wichert-Ana, Lauro; Coimbra, Norberto Cysne; Bianchin, Marino Muxfeldt

    2007-10-01

    The cellular prion protein (PrP(C)) is a sialoglycoprotein involved in neuroplasticity processes and synaptic transmission. This study investigated behavioural responses (balance in the rota-rod test at 24 rpm, motility in the open-field test, anxiety in the elevated plus-maze test) in Zurich developed wild-type adult mice (WT, controls of normal PrP(C) expression), in knockout (KO) mice (Prnp(0/0), with no PrP(C) expression), and in PrP(C) overexpressing Tg-20 mice. After 8 min in the rota-rod test, Tg-20 animals presented significantly fewer falls (1.08+/-1.56 falls) than both WT (7.27+/-4.36) and KO (7.6+/-6.15) mice (p<0.01). In the open field test, Tg-20 animals showed significantly increased motility [rearing=23.4+/-7.85, crossing=97.30+/-32.11) when compared with KO mice (rearing=5.45+/-3.69 and crossing=59.73+/-15.43) or WT mice (rearing=6.5+/-20.23 and crossing=45.18+/-20.33) (p<0.01). In the elevated plus-maze test, Tg-20 mice showed less anxiety (head projections=7.3+/-1.62) when compared with WT animals (3.38+/-0.67) (p<0.05). Moreover, KO mice spent more time in the centre of the plus maze (37.80+/-5.57 s) than did WT mice (22.57+/-3.82) (p<0.05). PrP(C) overexpressing mice evoked increased motility, less anxiety, and increased equilibrium when compared with WT control animals in the behavioural protocols used. KO animals also tended to evoke fewer anxiety-related responses in the elevated plus-maze test. These findings indicate that the levels of PrP(C) in adult life are associated with possible changes in motility, anxiety, and equilibrium.

  13. [Motor rehabilitation].

    PubMed

    Doménech, J; García-Aymerich, V; Juste, J; Ortiz, A

    2002-02-01

    The child's rehabilitation objectives are the same of the early intervention. The early intervention include motor approaches to facilitate the unique way of the newborn's expression: the movement and with it his holistic development. The motor approach is a classic aspect of early intervention but it is not itself early intervention. When the treatment objective is a term or preterm newborn or neonate the motor approach may be the principal method to facilitate perceptions experiences and basic habits. This intervention is not made with a specific physiotherapeutic technique. It is a sequential stimulation or development, without forget that the child must be taken as a whole. This point of view has special importance the first days of life and must be included in perinatal approach routines. In this paper we expose the work method of a Child Rehabilitation Team liked to a Newborn Unit.

  14. Theoretical Analysis of Dynamic Processes for Interacting Molecular Motors.

    PubMed

    Teimouri, Hamid; Kolomeisky, Anatoly B; Mehrabiani, Kareem

    2015-02-13

    Biological transport is supported by collective dynamics of enzymatic molecules that are called motor proteins or molecular motors. Experiments suggest that motor proteins interact locally via short-range potentials. We investigate the fundamental role of these interactions by analyzing a new class of totally asymmetric exclusion processes where interactions are accounted for in a thermodynamically consistent fashion. It allows us to connect explicitly microscopic features of motor proteins with their collective dynamic properties. Theoretical analysis that combines various mean-field calculations and computer simulations suggests that dynamic properties of molecular motors strongly depend on interactions, and correlations are stronger for interacting motor proteins. Surprisingly, it is found that there is an optimal strength of interactions (weak repulsion) that leads to a maximal particle flux. It is also argued that molecular motors transport is more sensitive to attractive interactions. Applications of these results for kinesin motor proteins are discussed.

  15. Theoretical analysis of dynamic processes for interacting molecular motors

    NASA Astrophysics Data System (ADS)

    Teimouri, Hamid; Kolomeisky, Anatoly B.; Mehrabiani, Kareem

    2015-02-01

    Biological transport is supported by the collective dynamics of enzymatic molecules that are called motor proteins or molecular motors. Experiments suggest that motor proteins interact locally via short-range potentials. We investigate the fundamental role of these interactions by carrying out an analysis of a new class of totally asymmetric exclusion processes, in which interactions are accounted for in a thermodynamically consistent fashion. This allows us to explicitly connect microscopic features of motor proteins with their collective dynamic properties. A theoretical analysis that combines various mean-field calculations and computer simulations suggests that the dynamic properties of molecular motors strongly depend on the interactions, and that the correlations are stronger for interacting motor proteins. Surprisingly, it is found that there is an optimal strength of interactions (weak repulsion) that leads to a maximal particle flux. It is also argued that molecular motor transport is more sensitive to attractive interactions. Applications of these results for kinesin motor proteins are discussed.

  16. Involvement of PCH family proteins in cytokinesis and actin distribution.

    PubMed

    Lippincott, J; Li, R

    2000-04-15

    Pombe Cdc15 homology (PCH) proteins constitute an extensive protein family whose members have been found in diverse eukaryotic organisms. These proteins are characterized by the presence of several conserved sequence and structural motifs. Recent studies in yeast and mammalian cultured cells have implicated these proteins in actin-based processes, in particular, cytokinesis. Here we review the recent findings on the in vivo localization, function, and binding partners of PCH family members. We also provide new microscopy data regarding the in vivo dynamics of a budding yeast PCH protein involved in cytokinesis.

  17. Expression of a Mutant SEMA3A Protein with Diminished Signalling Capacity Does Not Alter ALS-Related Motor Decline, or Confer Changes in NMJ Plasticity after BotoxA-Induced Paralysis of Male Gastrocnemic Muscle

    PubMed Central

    Moloney, Elizabeth B.; Hobo, Barbara; De Winter, Fred

    2017-01-01

    Terminal Schwann cells (TSCs) are specialized cells that envelop the motor nerve terminal, and play a role in the maintenance and regeneration of neuromuscular junctions (NMJs). The chemorepulsive protein semaphorin 3A (SEMA3A) is selectively up-regulated in TSCs on fast-fatigable muscle fibers following experimental denervation of the muscle (BotoxA-induced paralysis or crush injury to the sciatic nerve) or in the motor neuron disease amyotrophic lateral sclerosis (ALS). Re-expression of SEMA3A in this subset of TSCs is thought to play a role in the selective plasticity of nerve terminals as observed in ALS and following BotoxA-induced paralysis. Using a mouse model expressing a mutant SEMA3A with diminished signaling capacity, we studied the influence of SEMA3A signaling at the NMJ with two denervation paradigms; a motor neuron disease model (the G93A-hSOD1 ALS mouse line) and an injury model (BotoxA-induced paralysis). ALS mice that either expressed 1 or 2 mutant SEMA3A alleles demonstrated no difference in ALS-induced decline in motor behavior. We also investigated the effects of BotoxA-induced paralysis on the sprouting capacity of NMJs in the K108N-SEMA3A mutant mouse, and observed no change in the differential neuronal plasticity found at NMJs on fast-fatigable or slow muscle fibers due to the presence of the SEMA3A mutant protein. Our data may be explained by the residual repulsive activity of the mutant SEMA3A, or it may imply that SEMA3A alone is not a key component of the molecular signature affecting NMJ plasticity in ALS or BotoxA-induced paralysis. Interestingly, we did observe a sex difference in motor neuron sprouting behavior after BotoxA-induced paralysis in WT mice which we speculate may be an important factor in the sex dimorphic differences seen in ALS. PMID:28103314

  18. Therma motor

    DOEpatents

    Kandarian, R.

    The disclosure is directed to a thermal motor utilizing two tapered prestressed parallel adjacent cylinders lengthwise disposed about one third in a coolant. Heat is applied to contacting portions of the cylinders outside the coolant to cause them to deform and turn. Heat sources such as industrial waste heat, geothermal hot water, solar radiation, etc. can be used.

  19. Motor Controllers

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Kollmorgen Corporation's Mermaid II two person submersible is propeller-driven by a system of five DC brushless motors with new electronic controllers that originated in work performed in a NASA/DOE project managed by Lewis Research Center. A key feature of the system is electric commutation rather than mechanical commutation for converting AC current to DC.

  20. Mechanochemical models of processive molecular motors

    NASA Astrophysics Data System (ADS)

    Lan, Ganhui; Sun, Sean X.

    2012-05-01

    Motor proteins are the molecular engines powering the living cell. These nanometre-sized molecules convert chemical energy, both enthalpic and entropic, into useful mechanical work. High resolution single molecule experiments can now observe motor protein movement with increasing precision. The emerging data must be combined with structural and kinetic measurements to develop a quantitative mechanism. This article describes a modelling framework where quantitative understanding of motor behaviour can be developed based on the protein structure. The framework is applied to myosin motors, with emphasis on how synchrony between motor domains give rise to processive unidirectional movement. The modelling approach shows that the elasticity of protein domains are important in regulating motor function. Simple models of protein domain elasticity are presented. The framework can be generalized to other motor systems, or an ensemble of motors such as muscle contraction. Indeed, for hundreds of myosins, our framework can be reduced to the Huxely-Simmons description of muscle movement in the mean-field limit.

  1. Progressive Motor Deficit is Mediated by the Denervation of Neuromuscular Junctions and Axonal Degeneration in Transgenic Mice Expressing Mutant (P301S) Tau Protein.

    PubMed

    Yin, Zhuoran; Valkenburg, Femke; Hornix, Betty E; Mantingh-Otter, Ietje; Zhou, Xingdong; Mari, Muriel; Reggiori, Fulvio; Van Dam, Debby; Eggen, Bart J L; De Deyn, Peter P; Boddeke, Erik

    2017-02-10

    Tauopathies include a variety of neurodegenerative diseases associated with the pathological aggregation of hyperphosphorylated tau, resulting in progressive cognitive decline and motor impairment. The underlying mechanism for motor deficits related to tauopathy is not yet fully understood. Here, we use a novel transgenic tau mouse line, Tau 58/4, with enhanced neuron-specific expression of P301S mutant tau to investigate the motor abnormalities in association with the peripheral nervous system. Using stationary beam, gait, and rotarod tests, motor deficits were found in Tau 58/4 mice already 3 months after birth, which deteriorated during aging. Hyperphosphorylated tau was detected in the cell bodies and axons of motor neurons. At the age of 9 and 12 months, significant denervation of the neuromuscular junction in the extensor digitorum longus muscle was observed in Tau 58/4 mice, compared to wild-type mice. Muscle hypotrophy was observed in Tau 58/4 mice at 9 and 12 months. Using electron microscopy, we observed ultrastructural changes in the sciatic nerve of 12-month-old Tau 58/4 mice indicative of the loss of large axonal fibers and hypomyelination (assessed by g-ratio). We conclude that the accumulated hyperphosphorylated tau in the axon terminals may induce dying-back axonal degeneration, myelin abnormalities, neuromuscular junction denervation, and muscular atrophy, which may be the mechanisms responsible for the deterioration of the motor function in Tau 58/4 mice. Tau 58/4 mice represent an interesting neuromuscular degeneration model, and the pathological mechanisms might be responsible for motor signs observed in some human tauopathies.

  2. Motor coupling through lipid membranes enhances transport velocities for ensembles of myosin Va

    PubMed Central

    Nelson, Shane R.; Trybus, Kathleen M.; Warshaw, David M.

    2014-01-01

    Myosin Va is an actin-based molecular motor responsible for transport and positioning of a wide array of intracellular cargoes. Although myosin Va motors have been well characterized at the single-molecule level, physiological transport is carried out by ensembles of motors. Studies that explore the behavior of ensembles of molecular motors have used nonphysiological cargoes such as DNA linkers or glass beads, which do not reproduce one key aspect of vesicular systems—the fluid intermotor coupling of biological lipid membranes. Using a system of defined synthetic lipid vesicles (100- to 650-nm diameter) composed of either 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) (fluid at room temperature) or 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) (gel at room temperature) with a range of surface densities of myosin Va motors (32–125 motors per μm2), we demonstrate that the velocity of vesicle transport by ensembles of myosin Va is sensitive to properties of the cargo. Gel-state DPPC vesicles bound with multiple motors travel at velocities equal to or less than vesicles with a single myosin Va (∼450 nm/s), whereas surprisingly, ensembles of myosin Va are able to transport fluid-state DOPC vesicles at velocities significantly faster (>700 nm/s) than a single motor. To explain these data, we developed a Monte Carlo simulation that suggests that these reductions in velocity can be attributed to two distinct mechanisms of intermotor interference (i.e., load-dependent modulation of stepping kinetics and binding-site exclusion), whereas faster transport velocities are consistent with a model wherein the normal stepping behavior of the myosin is supplemented by the preferential detachment of the trailing motor from the actin track. PMID:25201964

  3. Brain distribution of dipeptide repeat proteins in frontotemporal lobar degeneration and motor neurone disease associated with expansions in C9ORF72.

    PubMed

    Davidson, Yvonne S; Barker, Holly; Robinson, Andrew C; Thompson, Jennifer C; Harris, Jenny; Troakes, Claire; Smith, Bradley; Al-Saraj, Safa; Shaw, Chris; Rollinson, Sara; Masuda-Suzukake, Masami; Hasegawa, Masato; Pickering-Brown, Stuart; Snowden, Julie S; Mann, David M

    2014-06-20

    A hexanucleotide (GGGGCC) expansion in C9ORF72 gene is the most common genetic change seen in familial Frontotemporal Lobar Degeneration (FTLD) and familial Motor Neurone Disease (MND). Pathologically, expansion bearers show characteristic p62 positive, TDP-43 negative inclusion bodies within cerebellar and hippocampal neurons which also contain dipeptide repeat proteins (DPR) formed from sense and antisense RAN (repeat associated non ATG-initiated) translation of the expanded repeat region itself. 'Inappropriate' formation, and aggregation, of DPR might therefore confer neurotoxicity and influence clinical phenotype. Consequently, we compared the topographic brain distribution of DPR in 8 patients with Frontotemporal dementia (FTD), 6 with FTD + MND and 7 with MND alone (all 21 patients bearing expansions in C9ORF72) using a polyclonal antibody to poly-GA, and related this to the extent of TDP-43 pathology in key regions of cerebral cortex and hippocampus. There were no significant differences in either the pattern or severity of brain distribution of DPR between FTD, FTD + MND and MND groups, nor was there any relationship between the distribution of DPR and TDP-43 pathologies in expansion bearers. Likewise, there were no significant differences in the extent of TDP-43 pathology between FTLD patients bearing an expansion in C9ORF72 and non-bearers of the expansion. There were no association between the extent of DPR pathology and TMEM106B or APOE genotypes. However, there was a negative correlation between the extent of DPR pathology and age at onset. Present findings therefore suggest that although the presence and topographic distribution of DPR may be of diagnostic relevance in patients bearing expansion in C9ORF72 this has no bearing on the determination of clinical phenotype. Because TDP-43 pathologies are similar in bearers and non-bearers of the expansion, the expansion may act as a major genetic risk factor for FTLD and MND by rendering the brain

  4. Transport efficiency of membrane-anchored kinesin-1 motors depends on motor density and diffusivity.

    PubMed

    Grover, Rahul; Fischer, Janine; Schwarz, Friedrich W; Walter, Wilhelm J; Schwille, Petra; Diez, Stefan

    2016-11-15

    In eukaryotic cells, membranous vesicles and organelles are transported by ensembles of motor proteins. These motors, such as kinesin-1, have been well characterized in vitro as single molecules or as ensembles rigidly attached to nonbiological substrates. However, the collective transport by membrane-anchored motors, that is, motors attached to a fluid lipid bilayer, is poorly understood. Here, we investigate the influence of motors' anchorage to a lipid bilayer on the collective transport characteristics. We reconstituted "membrane-anchored" gliding motility assays using truncated kinesin-1 motors with a streptavidin-binding peptide tag that can attach to streptavidin-loaded, supported lipid bilayers. We found that the diffusing kinesin-1 motors propelled the microtubules in the presence of ATP. Notably, we found the gliding velocity of the microtubules to be strongly dependent on the number of motors and their diffusivity in the lipid bilayer. The microtubule gliding velocity increased with increasing motor density and membrane viscosity, reaching up to the stepping velocity of single motors. This finding is in contrast to conventional gliding motility assays where the density of surface-immobilized kinesin-1 motors does not influence the microtubule velocity over a wide range. We reason that the transport efficiency of membrane-anchored motors is reduced because of their slippage in the lipid bilayer, an effect that we directly observed using single-molecule fluorescence microscopy. Our results illustrate the importance of motor-cargo coupling, which potentially provides cells with an additional means of regulating the efficiency of cargo transport.

  5. Slac2-c (synaptotagmin-like protein homologue lacking C2 domains-c), a novel linker protein that interacts with Rab27, myosin Va/VIIa, and actin.

    PubMed

    Fukuda, Mitsunori; Kuroda, Taruho S

    2002-11-08

    Slac2-a (synaptotagmin-like protein (Slp) homologue lacking C2 domains-a)/melanophilin is a melanosome-associated protein that links Rab27A on melanosomes with myosin Va, an actin-based motor protein, and formation of the tripartite protein complex (Rab27A.Slac2-a.myosin Va) has been suggested to regulate melanosome transport (Fukuda, M., Kuroda, T. S., and Mikoshiba, K. (2002) J. Biol. Chem. 277, 12432-12436). Here we report the structure of a novel form of Slac2, named Slac2-c, that is homologous to Slac2-a. Slac2-a and Slac2-c exhibit the same overall structure, consisting of a highly conserved N-terminal Slp homology domain (about 50% identity) and a less conserved C-terminal myosin Va-binding domain (about 20% identity). As with other Slac2 members and the Slp family, the Slp homology domain of Slac2-c was found to interact specifically with the GTP-bound form of Rab27A/B both in vitro and in intact cells, and the C-terminal domain of Slac2-c interacted with myosin Va and myosin VIIa. In addition, we discovered that the most C-terminal conserved region of Slac2-a (amino acids 400-590) and Slac2-c (amino acids 670-856), which is not essential for myosin Va binding, directly binds actin and that expression of these regions in PC12 cells and melanoma cells colocalized with actin filaments at the cell periphery, suggesting a novel role of Slac2-a/c in capture of Rab27-containing organelles in the actin-enriched cell periphery.

  6. LTD, RP, and Motor Learning.

    PubMed

    Hirano, Tomoo; Yamazaki, Yoshito; Nakamura, Yoji

    2016-02-01

    Long-term depression (LTD) at excitatory synapses between parallel fibers and a Purkinje cell has been regarded as a critical cellular mechanism for motor learning. However, it was demonstrated that normal motor learning occurs under LTD suppression, suggesting that cerebellar plasticity mechanisms other than LTD also contribute to motor learning. One candidate for such plasticity is rebound potentiation (RP), which is long-term potentiation at inhibitory synapses between a stellate cell and a Purkinje cell. Both LTD and RP are induced by the increase in postsynaptic Ca(2+) concentration, and work to suppress the activity of a Purkinje cell. Thus, LTD and RP might work synergistically, and one might compensate defects of the other. RP induction is dependent on the interaction between GABAA receptor and GABAA receptor binding protein (GABARAP). Transgenic mice expressing a peptide which inhibits binding of GABARAP and GABAA receptor only in Purkinje cells show defects in both RP and adaptation of vestibulo-ocular reflex (VOR), a motor learning paradigm. However, another example of motor learning, adaptation of optokinetic response (OKR), is normal in the transgenic mice. Both VOR and OKR are reflex eye movements suppressing the slip of visual image on the retina during head movement. Previously, we reported that delphilin knockout mice show facilitated LTD induction and enhanced OKR adaptation, but we recently found that VOR adaptation was not enhanced in the knockout mice. These results together suggest that animals might use LTD and RP differently depending on motor learning tasks.

  7. Gross motor control

    MedlinePlus

    Gross motor control is the ability to make large, general movements (such as waving an arm or lifting a ... Gross motor control is a milestone in the development of an infant. Infants develop gross motor control before they ...

  8. Starting motor

    SciTech Connect

    Tanaka, T.; Hamano, I

    1989-05-23

    This patent describes a starting motor having a housing, planetary reduction gears including an internal gear in the housing. The improvement consists of an elastic member having a first annular portion mounted in engagement with a fixed annular member of the housing and a plurality of protruding axially extending elastic portions providing a corrugated surface pressed into engagement with an end portion of the internal gear, the elastic member being sandwiched between the internal gear and the housing member, the protruding axially extending elastic portions providing resilient means which flex and incline circumferentially under turning force from the internal gear and exert reactive thrust on the internal gear elastically so that the frictional force at the abutting surfaces of the protruding portions holds the internal gear in resilient engagement with the elastic member and the resilient means acts as a buffer to absorb rotary impact force developing in the planetary reduction gears.

  9. DNA based molecular motors

    NASA Astrophysics Data System (ADS)

    Michaelis, Jens; Muschielok, Adam; Andrecka, Joanna; Kügel, Wolfgang; Moffitt, Jeffrey R.

    2009-12-01

    Most of the essential cellular processes such as polymerisation reactions, gene expression and regulation are governed by mechanical processes. Controlled mechanical investigations of these processes are therefore required in order to take our understanding of molecular biology to the next level. Single-molecule manipulation and force spectroscopy have over the last 15 years been developed into extremely powerful techniques. Applying these techniques to the investigation of proteins and DNA molecules has led to a mechanistic understanding of protein function on the level of single molecules. As examples for DNA based molecular machines we will describe single-molecule experiments on RNA polymerases as well as on the packaging of DNA into a viral capsid-a process that is driven by one of the most powerful molecular motors.

  10. Motor control for a brushless DC motor

    NASA Technical Reports Server (NTRS)

    Peterson, William J. (Inventor); Faulkner, Dennis T. (Inventor)

    1985-01-01

    This invention relates to a motor control system for a brushless DC motor having an inverter responsively coupled to the motor control system and in power transmitting relationship to the motor. The motor control system includes a motor rotor speed detecting unit that provides a pulsed waveform signal proportional to rotor speed. This pulsed waveform signal is delivered to the inverter to thereby cause an inverter fundamental current waveform output to the motor to be switched at a rate proportional to said rotor speed. In addition, the fundamental current waveform is also pulse width modulated at a rate proportional to the rotor speed. A fundamental current waveform phase advance circuit is controllingly coupled to the inverter. The phase advance circuit is coupled to receive the pulsed waveform signal from the motor rotor speed detecting unit and phase advance the pulsed waveform signal as a predetermined function of motor speed to thereby cause the fundamental current waveform to be advanced and thereby compensate for fundamental current waveform lag due to motor winding reactance which allows the motor to operate at higher speeds than the motor is rated while providing optimal torque and therefore increased efficiency.

  11. SMN is required for sensory-motor circuit function in Drosophila.

    PubMed

    Imlach, Wendy L; Beck, Erin S; Choi, Ben Jiwon; Lotti, Francesco; Pellizzoni, Livio; McCabe, Brian D

    2012-10-12

    Spinal muscular atrophy (SMA) is a lethal human disease characterized by motor neuron dysfunction and muscle deterioration due to depletion of the ubiquitous survival motor neuron (SMN) protein. Drosophila SMN mutants have reduced muscle size and defective locomotion, motor rhythm, and motor neuron neurotransmission. Unexpectedly, restoration of SMN in either muscles or motor neurons did not alter these phenotypes. Instead, SMN must be expressed in proprioceptive neurons and interneurons in the motor circuit to nonautonomously correct defects in motor neurons and muscles. SMN depletion disrupts the motor system subsequent to circuit development and can be mimicked by the inhibition of motor network function. Furthermore, increasing motor circuit excitability by genetic or pharmacological inhibition of K(+) channels can correct SMN-dependent phenotypes. These results establish sensory-motor circuit dysfunction as the origin of motor system deficits in this SMA model and suggest that enhancement of motor neural network activity could ameliorate the disease.

  12. Wind motor

    SciTech Connect

    Biscomb, L. I.

    1985-07-09

    A spider-like carrier having at least three generally horizontal arms has a hub mounted to the vertical, rotary-axis input shaft of a load. Each arm has at least one horizontal cross-arm secured to it near its radially outer end, which is supported from the ground by a low-friction support device such as a wheel or set of wheels. Mounted on each arm at the cross-arm or cross-arms is at least one sail, vane, airfoil or similar working member which is erected or spread generally normally to the wind when the respective arm is located for the working member to be blown downwind and is feathered or headed to the wind when the respective arm is located for the working member to be driven upwind. Horizontal axis and vertical axis journalling options for the working members and various sail shapes are shown, including a concave/convex sail and motor-oriented airfoil shape which provides lift when being driven upwind are shown.

  13. Characterization of the axon initial segment (AIS) of motor neurons and identification of a para-AIS and a juxtapara-AIS, organized by protein 4.1B

    PubMed Central

    2011-01-01

    Background The axon initial segment (AIS) plays a crucial role: it is the site where neurons initiate their electrical outputs. Its composition in terms of voltage-gated sodium (Nav) and voltage-gated potassium (Kv) channels, as well as its length and localization determine the neuron's spiking properties. Some neurons are able to modulate their AIS length or distance from the soma in order to adapt their excitability properties to their activity level. It is therefore crucial to characterize all these parameters and determine where the myelin sheath begins in order to assess a neuron's excitability properties and ability to display such plasticity mechanisms. If the myelin sheath starts immediately after the AIS, another question then arises as to how would the axon be organized at its first myelin attachment site; since AISs are different from nodes of Ranvier, would this particular axonal region resemble a hemi-node of Ranvier? Results We have characterized the AIS of mouse somatic motor neurons. In addition to constant determinants of excitability properties, we found heterogeneities, in terms of AIS localization and Nav composition. We also identified in all α motor neurons a hemi-node-type organization, with a contactin-associated protein (Caspr)+ paranode-type, as well as a Caspr2+ and Kv1+ juxtaparanode-type compartment, referred to as a para-AIS and a juxtapara (JXP)-AIS, adjacent to the AIS, where the myelin sheath begins. We found that Kv1 channels appear in the AIS, para-AIS and JXP-AIS concomitantly with myelination and are progressively excluded from the para-AIS. Their expression in the AIS and JXP-AIS is independent from transient axonal glycoprotein-1 (TAG-1)/Caspr2, in contrast to juxtaparanodes, and independent from PSD-93. Data from mice lacking the cytoskeletal linker protein 4.1B show that this protein is necessary to form the Caspr+ para-AIS barrier, ensuring the compartmentalization of Kv1 channels and the segregation of the AIS, para

  14. Actin-binding proteins take the reins in growth cones.

    PubMed

    Pak, Chi W; Flynn, Kevin C; Bamburg, James R

    2008-02-01

    Higher-order actin-based networks (actin superstructures) are important for growth-cone motility and guidance. Principles for generating, organizing and remodelling actin superstructures have emerged from recent findings in cell-free systems, non-neuronal cells and growth cones. This Review examines how actin superstructures are initiated de novo at the leading-edge membrane and how the spontaneous organization of actin superstructures is driven by ensembles of actin-binding proteins. How the regulation of actin-binding proteins can affect growth-cone turning and axonal regeneration is also discussed.

  15. A reconsideration of the link between the energetics of water and of ATP hydrolysis energy in the power strokes of molecular motors in protein structures.

    PubMed

    Widdas, Wilfred F

    2008-09-01

    Mechanical energy from oxygen metabolism by mammalian tissues has been studied since 1837. The production of heat by mechanical work was studied by Fick in about 1860. Prior to Fick's work, energetics were revised by Joule's experiments which founded the First Law of Thermodynamics. Fenn in 1923/24 found that frog muscle contractions generated extra heat proportional to the amount of work done in shortening the muscle. This was fully consistent with the Joule, Helmholtz concept used for the First Law of Thermodynamics. The link between the energetics of water and ATP hydrolysis in molecular motors is recommended for reconsideration.

  16. A Reconsideration of the Link between the Energetics of Water and of ATP Hydrolysis Energy in the Power Strokes of Molecular Motors in Protein Structures

    PubMed Central

    Widdas, Wilfred F.

    2008-01-01

    Mechanical energy from oxygen metabolism by mammalian tissues has been studied since 1837. The production of heat by mechanical work was studied by Fick in about 1860. Prior to Fick’s work, energetics were revised by Joule’s experiments which founded the First Law of Thermodynamics. Fenn in 1923/24 found that frog muscle contractions generated extra heat proportional to the amount of work done in shortening the muscle. This was fully consistent with the Joule, Helmholtz concept used for the First Law of Thermodynamics. The link between the energetics of water and ATP hydrolysis in molecular motors is recommended for reconsideration. PMID:19325829

  17. Proteins.

    ERIC Educational Resources Information Center

    Doolittle, Russell F.

    1985-01-01

    Examines proteins which give rise to structure and, by virtue of selective binding to other molecules, make genes. Binding sites, amino acids, protein evolution, and molecular paleontology are discussed. Work with encoding segments of deoxyribonucleic acid (exons) and noncoding stretches (introns) provides new information for hypotheses. (DH)

  18. GDE2 regulates subtype-specific motor neuron generation through inhibition of Notch signaling.

    PubMed

    Sabharwal, Priyanka; Lee, Changhee; Park, Sungjin; Rao, Meenakshi; Sockanathan, Shanthini

    2011-09-22

    The specification of spinal interneuron and motor neuron identities initiates within progenitor cells, while motor neuron subtype diversification is regulated by hierarchical transcriptional programs implemented postmitotically. Here we find that mice lacking GDE2, a six-transmembrane protein that triggers motor neuron generation, exhibit selective losses of distinct motor neuron subtypes, specifically in defined subsets of limb-innervating motor pools that correlate with the loss of force-generating alpha motor neurons. Mechanistically, GDE2 is expressed by postmitotic motor neurons but utilizes extracellular glycerophosphodiester phosphodiesterase activity to induce motor neuron generation by inhibiting Notch signaling in neighboring motor neuron progenitors. Thus, neuronal GDE2 controls motor neuron subtype diversity through a non-cell-autonomous feedback mechanism that directly regulates progenitor cell differentiation, implying that subtype specification initiates within motor neuron progenitor populations prior to their differentiation into postmitotic motor neurons.

  19. A microrotary motor powered by bacteria

    NASA Astrophysics Data System (ADS)

    Hiratsuka, Yuichi; Miyata, Makoto; Tada, Tetsuya; Uyeda, Taro Q. P.

    2006-09-01

    Biological molecular motors have a number of unique advantages over artificial motors, including efficient conversion of chemical energy into mechanical work and the potential for self-assembly into larger structures, as is seen in muscle sarcomeres and bacterial and eukaryotic flagella. The development of an appropriate interface between such biological materials and synthetic devices should enable us to realize useful hybrid micromachines. Here we describe a microrotary motor composed of a 20-μm-diameter silicon dioxide rotor driven on a silicon track by the gliding bacterium Mycoplasma mobile. This motor is fueled by glucose and inherits some of the properties normally attributed to living systems. glucose | micro actuator | motor protein | nanobiotechnology | Mycoplasma gliding

  20. Directed flux motor

    NASA Technical Reports Server (NTRS)

    Wilson, Andrew (Inventor); Punnoose, Andrew (Inventor); Strausser, Katherine (Inventor); Parikh, Neil (Inventor)

    2011-01-01

    A directed flux motor described utilizes the directed magnetic flux of at least one magnet through ferrous material to drive different planetary gear sets to achieve capabilities in six actuated shafts that are grouped three to a side of the motor. The flux motor also utilizes an interwoven magnet configuration which reduces the overall size of the motor. The motor allows for simple changes to modify the torque to speed ratio of the gearing contained within the motor as well as simple configurations for any number of output shafts up to six. The changes allow for improved manufacturability and reliability within the design.

  1. Validate Mitotic Checkpoint and Kinetochore Motor Proteins in Breast Cancer Cells as Targets for the Development of Novel Anti-Mitotic Drugs

    DTIC Science & Technology

    2004-07-01

    MCC. (Liu et al., p. 46). cdl ckl PP2C rcdkI (311 in- Bcycl nB) .4 - ylnn BCAK G2, inactive M, active Mi- Figure 3.3 Regulation of cdkl activation...CAK. Protein phosphatase 2C ( PP2C ) can reverse the CAK-mediated phosphorylation. Active cdkl-cyclin B can be inactivated by the Myt I protein kinase

  2. Protein

    MedlinePlus

    ... Search for: Harvard T.H. Chan School of Public Health Email People Departments Calendar Careers Give my.harvard ... Nutrition Source Harvard T.H. Chan School of Public Health > The Nutrition Source > What Should I Eat? > Protein ...

  3. Protein

    MedlinePlus

    ... Go lean with protein. • Choose lean meats and poultry. Lean beef cuts include round steaks (top loin, ... main dishes. • Use nuts to replace meat or poultry, not in addition to meat or poultry (i. ...

  4. UNC-16 (JIP3) Acts Through Synapse-Assembly Proteins to Inhibit the Active Transport of Cell Soma Organelles to Caenorhabditis elegans Motor Neuron Axons.

    PubMed

    Edwards, Stacey L; Morrison, Logan M; Yorks, Rosalina M; Hoover, Christopher M; Boominathan, Soorajnath; Miller, Kenneth G

    2015-09-01

    The conserved protein UNC-16 (JIP3) inhibits the active transport of some cell soma organelles, such as lysosomes, early endosomes, and Golgi, to the synaptic region of axons. However, little is known about UNC-16's organelle transport regulatory function, which is distinct from its Kinesin-1 adaptor function. We used an unc-16 suppressor screen in Caenorhabditis elegans to discover that UNC-16 acts through CDK-5 (Cdk5) and two conserved synapse assembly proteins: SAD-1 (SAD-A Kinase), and SYD-2 (Liprin-α). Genetic analysis of all combinations of double and triple mutants in unc-16(+) and unc-16(-) backgrounds showed that the three proteins (CDK-5, SAD-1, and SYD-2) are all part of the same organelle transport regulatory system, which we named the CSS system based on its founder proteins. Further genetic analysis revealed roles for SYD-1 (another synapse assembly protein) and STRADα (a SAD-1-interacting protein) in the CSS system. In an unc-16(-) background, loss of the CSS system improved the sluggish locomotion of unc-16 mutants, inhibited axonal lysosome accumulation, and led to the dynein-dependent accumulation of lysosomes in dendrites. Time-lapse imaging of lysosomes in CSS system mutants in unc-16(+) and unc-16(-) backgrounds revealed active transport defects consistent with the steady-state distributions of lysosomes. UNC-16 also uses the CSS system to regulate the distribution of early endosomes in neurons and, to a lesser extent, Golgi. The data reveal a new and unprecedented role for synapse assembly proteins, acting as part of the newly defined CSS system, in mediating UNC-16's organelle transport regulatory function.

  5. Energy efficient motors

    NASA Astrophysics Data System (ADS)

    1995-01-01

    This TechData Sheet is intended to help activity personnel identify cost effective energy projects for energy efficient motors. With this guide an energy manager can identify when an energy efficient induction motor should be used.

  6. Introduction to ultrasonic motors

    SciTech Connect

    Sashida, Toshiiku; Kenjo, Takashi.

    1993-01-01

    The ultrasonic motor, invented in 1980, utilizes the piezoelectric effect in the ultrasonic frequency range to provide the motive force. (In conventional electric motors the motive force is electromagnetic.) The result is a motor with unusually good low-speed high-torque and power-to-weight characteristics. It has already found applications in camera autofocus mechanisms, medical equipment subject to high magnetic fields, and motorized car accessories. Its applications will increase as designers become more familiar with its unique characteristics. This book is the result of a collaboration between the inventor and an expert in conventional electric motors: the result is an introduction to the general theory presented in a way that links it to conventional motor theory. It will be invaluable both to motor designers and to those who design with and use electric motors as an introduction to this important new invention.

  7. Chronic motor tic disorder

    MedlinePlus

    Chronic vocal tic disorder; Tic - chronic motor tic disorder ... Chronic motor tic disorder is more common than Tourette syndrome . Chronic tics may be forms of Tourette syndrome. Tics usually start ...

  8. Role of the import motor in insertion of transmembrane segments by the mitochondrial TIM23 complex.

    PubMed

    Popov-Čeleketić, Dušan; Waegemann, Karin; Mapa, Koyeli; Neupert, Walter; Mokranjac, Dejana

    2011-06-01

    The TIM23 complex mediates translocation of proteins across, and their lateral insertion into, the mitochondrial inner membrane. Translocation of proteins requires both the membrane-embedded core of the complex and its ATP-dependent import motor. Insertion of some proteins, however, occurs in the absence of ATP, questioning the need for the import motor during lateral insertion. We show here that the import motor associates with laterally inserted proteins even when its ATPase activity is not required. Furthermore, our results suggest a role for the import motor in lateral insertion. Thus, the import motor is involved in ATP-dependent translocation and ATP-independent lateral insertion.

  9. Smart motor technology

    NASA Technical Reports Server (NTRS)

    Packard, D.; Schmitt, D.

    1984-01-01

    Current spacecraft design relies upon microprocessor control; however, motors usually require extensive additional electronic circuitry to interface with these microprocessor controls. An improved control technique that allows a smart brushless motor to connect directly to a microprocessor control system is described. An actuator with smart motors receives a spacecraft command directly and responds in a closed loop control mode. In fact, two or more smart motors can be controlled for synchronous operation.

  10. Piezoelectric ultrasonic motors

    SciTech Connect

    Wallaschek, J.

    1994-12-31

    Piezoelectric ultrasonic motors are a new type of actuator. They are characterized by high torque at low rotational speed, simple mechanical design and good controllability. They also provide a high holding torque even if no power is applied. Compared to electromagnetic actuators the torque per volume ratio of piezoelectric ultrasonic motors can be higher by an order of magnitude. Recently various types of piezoelectric ultrasonic motors have been developed for industrial applications. This paper describes several types of piezoelectric ultrasonic motors.

  11. Towards synthetic molecular motors: a model elastic-network study

    NASA Astrophysics Data System (ADS)

    Sarkar, Amartya; Flechsig, Holger; Mikhailov, Alexander S.

    2016-04-01

    Protein molecular motors play a fundamental role in biological cells and development of their synthetic counterparts is a major challenge. Here, we show how a model motor system with the operation mechanism resembling that of muscle myosin can be designed at the concept level, without addressing the implementation aspects. The model is constructed as an elastic network, similar to the coarse-grained descriptions used for real proteins. We show by numerical simulations that the designed synthetic motor can operate as a deterministic or Brownian ratchet and that there is a continuous transition between such two regimes. The motor operation under external load, approaching the stall condition, is also analysed.

  12. Stages of motor skill learning.

    PubMed

    Luft, Andreas R; Buitrago, Manuel M

    2005-12-01

    Successful learning of a motor skill requires repetitive training. Once the skill is mastered, it can be remembered for a long period of time. The durable memory makes motor skill learning an interesting paradigm for the study of learning and memory mechanisms. To gain better understanding, one scientific approach is to dissect the process into stages and to study these as well as their interactions. This article covers the growing evidence that motor skill learning advances through stages, in which different storage mechanisms predominate. The acquisition phase is characterized by fast (within session) and slow learning (between sessions). For a short period following the initial training sessions, the skill is labile to interference by other skills and by protein synthesis inhibition, indicating that consolidation processes occur during rest periods between training sessions. During training as well as rest periods, activation in different brain regions changes dynamically. Evidence for stages in motor skill learning is provided by experiments using behavioral, electrophysiological, functional imaging, and cellular/molecular methods.

  13. Dopamine Promotes Motor Cortex Plasticity and Motor Skill Learning via PLC Activation.

    PubMed

    Rioult-Pedotti, Mengia-Seraina; Pekanovic, Ana; Atiemo, Clement Osei; Marshall, John; Luft, Andreas Rüdiger

    2015-01-01

    Dopaminergic neurons in the ventral tegmental area, the major midbrain nucleus projecting to the motor cortex, play a key role in motor skill learning and motor cortex synaptic plasticity. Dopamine D1 and D2 receptor antagonists exert parallel effects in the motor system: they impair motor skill learning and reduce long-term potentiation. Traditionally, D1 and D2 receptor modulate adenylyl cyclase activity and cyclic adenosine monophosphate accumulation in opposite directions via different G-proteins and bidirectionally modulate protein kinase A (PKA), leading to distinct physiological and behavioral effects. Here we show that D1 and D2 receptor activity influences motor skill acquisition and long term synaptic potentiation via phospholipase C (PLC) activation in rat primary motor cortex. Learning a new forelimb reaching task is severely impaired in the presence of PLC, but not PKA-inhibitor. Similarly, long term potentiation in motor cortex, a mechanism involved in motor skill learning, is reduced when PLC is inhibited but remains unaffected by the PKA inhibitor. Skill learning deficits and reduced synaptic plasticity caused by dopamine antagonists are prevented by co-administration of a PLC agonist. These results provide evidence for a role of intracellular PLC signaling in motor skill learning and associated cortical synaptic plasticity, challenging the traditional view of bidirectional modulation of PKA by D1 and D2 receptors. These findings reveal a novel and important action of dopamine in motor cortex that might be a future target for selective therapeutic interventions to support learning and recovery of movement resulting from injury and disease.

  14. Molecular crowding creates traffic jams of kinesin motors on microtubules.

    PubMed

    Leduc, Cécile; Padberg-Gehle, Kathrin; Varga, Vladimír; Helbing, Dirk; Diez, Stefan; Howard, Jonathon

    2012-04-17

    Despite the crowdedness of the interior of cells, microtubule-based motor proteins are able to deliver cargoes rapidly and reliably throughout the cytoplasm. We hypothesize that motor proteins may be adapted to operate in crowded environments by having molecular properties that prevent them from forming traffic jams. To test this hypothesis, we reconstituted high-density traffic of purified kinesin-8 motor protein, a highly processive motor with long end-residency time, along microtubules in a total internal-reflection fluorescence microscopy assay. We found that traffic jams, characterized by an abrupt increase in the density of motors with an associated abrupt decrease in motor speed, form even in the absence of other obstructing proteins. To determine the molecular properties that lead to jamming, we altered the concentration of motors, their processivity, and their rate of dissociation from microtubule ends. Traffic jams occurred when the motor density exceeded a critical value (density-induced jams) or when motor dissociation from the microtubule ends was so slow that it resulted in a pileup (bottleneck-induced jams). Through comparison of our experimental results with theoretical models and stochastic simulations, we characterized in detail under which conditions density- and bottleneck-induced traffic jams form or do not form. Our results indicate that transport kinesins, such as kinesin-1, may be evolutionarily adapted to avoid the formation of traffic jams by moving only with moderate processivity and dissociating rapidly from microtubule ends.

  15. Molecular crowding creates traffic jams of kinesin motors on microtubules

    PubMed Central

    Leduc, Cécile; Padberg-Gehle, Kathrin; Varga, Vladimír; Helbing, Dirk; Diez, Stefan; Howard, Jonathon

    2012-01-01

    Despite the crowdedness of the interior of cells, microtubule-based motor proteins are able to deliver cargoes rapidly and reliably throughout the cytoplasm. We hypothesize that motor proteins may be adapted to operate in crowded environments by having molecular properties that prevent them from forming traffic jams. To test this hypothesis, we reconstituted high-density traffic of purified kinesin-8 motor protein, a highly processive motor with long end-residency time, along microtubules in a total internal-reflection fluorescence microscopy assay. We found that traffic jams, characterized by an abrupt increase in the density of motors with an associated abrupt decrease in motor speed, form even in the absence of other obstructing proteins. To determine the molecular properties that lead to jamming, we altered the concentration of motors, their processivity, and their rate of dissociation from microtubule ends. Traffic jams occurred when the motor density exceeded a critical value (density-induced jams) or when motor dissociation from the microtubule ends was so slow that it resulted in a pileup (bottleneck-induced jams). Through comparison of our experimental results with theoretical models and stochastic simulations, we characterized in detail under which conditions density- and bottleneck-induced traffic jams form or do not form. Our results indicate that transport kinesins, such as kinesin-1, may be evolutionarily adapted to avoid the formation of traffic jams by moving only with moderate processivity and dissociating rapidly from microtubule ends. PMID:22431622

  16. A Reconfigurable Stepping Motor

    NASA Astrophysics Data System (ADS)

    Rogers, Charles; Selvaggi, Richard

    2009-04-01

    Multiphase brushless actuators, commonly known as the stepper motors, are ubiquitous for many precision control applications. Developments in the microelectronics have lead to their use as efficient drive motors for modern electric vehicles. Understanding the physics and the control logic for interfacing these transducers continues to be important for scientists and engineers. An overview of the stepping motor principles and interfacing requirements is presented and a simple working model used to teach the concepts of stepper motors is described and demonstrated. This model was used to design a much larger stepper motor required to precisely rotate a massive optical system in the undergraduate advanced physics laboratory.

  17. Motor/generator

    DOEpatents

    Hickam, Christopher Dale

    2008-05-13

    A motor/generator is provided for connecting between a transmission input shaft and an output shaft of a prime mover. The motor/generator may include a motor/generator housing, a stator mounted to the motor/generator housing, a rotor mounted at least partially within the motor/generator housing and rotatable about a rotor rotation axis, and a transmission-shaft coupler drivingly coupled to the rotor. The transmission-shaft coupler may include a clamp, which may include a base attached to the rotor and a plurality of adjustable jaws.

  18. Solid propellant motor

    NASA Technical Reports Server (NTRS)

    Shafer, J. I.; Marsh, H. E., Jr. (Inventor)

    1978-01-01

    A case bonded end burning solid propellant rocket motor is described. A propellant with sufficiently low modulus to avoid chamber buckling on cooling from cure and sufficiently high elongation to sustain the stresses induced without cracking is used. The propellant is zone cured within the motor case at high pressures equal to or approaching the pressure at which the motor will operate during combustion. A solid propellant motor with a burning time long enough that its spacecraft would be limited to a maximum acceleration of less than 1 g is provided by one version of the case bonded end burning solid propellant motor of the invention.

  19. Piezoceramic Ultrasonic Motor Technology

    SciTech Connect

    Burden, J.S.

    1999-02-24

    The objective of this project was to team Aerotech and AlliedSignal FM and T (AS) to develop a cost-efficient process for small-batch, high performance PZT motor production. Aerotech would acquire the basic process expertise in motor fabrication, assembly, and testing from AS. Together, Aerotech and AS were to identify appropriate process improvements, focusing on raw material quality, manufacturing processes, and durability assessment. Aerotech would then design and build a motor in consultation with AS. Aerotech engineering observed motor manufacturing in the AS piezo lab and worked side by side with AS personnel to build and test a prototype motor to facilitate learning the technology. Using information from AS and hands-on experience with the AS motor drive system enabled Aerotech to design and build its own laboratory drive system to operate motors. The team compiled information to establish a potential piezo motor users' list, and an intellectual property search was conducted to understand current patent and IP (intellectual property) status of motor design. Work was initiated to identify and develop an American source for piezo motor elements; however, due to manpower restraints created by the resignation of the AS Ph.D. ceramist responsible for these tasks, the project schedule slipped. The project was subsequently terminated before significant activities were accomplished. AS did, however, provide Aerotech with contacts in Japanese industry that are willing and capable of supplying them with special design motor elements.

  20. Delineating cooperative responses of processive motors in living cells.

    PubMed

    Efremov, Artem K; Radhakrishnan, Anand; Tsao, David S; Bookwalter, Carol S; Trybus, Kathleen M; Diehl, Michael R

    2014-01-21

    Characterizing the collective functions of cytoskeletal motors is critical to understanding mechanisms that regulate the internal organization of eukaryotic cells as well as the roles various transport defects play in human diseases. Though in vitro assays using synthetic motor complexes have generated important insights, dissecting collective motor functions within living cells still remains challenging. Here, we show that the protein heterodimerization switches FKBP-rapalog-FRB can be harnessed in engineered COS-7 cells to compare the collective responses of kinesin-1 and myosinVa motors to changes in motor number and cargo size. The dependence of cargo velocities, travel distances, and position noise on these parameters suggests that multiple myosinVa motors can cooperate more productively than collections of kinesins in COS-7 cells. In contrast to observations with kinesin-1 motors, the velocities and run lengths of peroxisomes driven by multiple myosinVa motors are found to increase with increasing motor density, but are relatively insensitive to the higher loads associated with transporting large peroxisomes in the viscoelastic environment of the COS-7 cell cytoplasm. Moreover, these distinctions appear to be derived from the different sensitivities of kinesin-1 and myosinVa velocities and detachment rates to forces at the single-motor level. The collective behaviors of certain processive motors, like myosinVa, may therefore be more readily tunable and have more substantial roles in intracellular transport regulatory mechanisms compared with those of other cytoskeletal motors.

  1. Motor degradation prediction methods

    SciTech Connect

    Arnold, J.R.; Kelly, J.F.; Delzingaro, M.J.

    1996-12-01

    Motor Operated Valve (MOV) squirrel cage AC motor rotors are susceptible to degradation under certain conditions. Premature failure can result due to high humidity/temperature environments, high running load conditions, extended periods at locked rotor conditions (i.e. > 15 seconds) or exceeding the motor`s duty cycle by frequent starts or multiple valve stroking. Exposure to high heat and moisture due to packing leaks, pressure seal ring leakage or other causes can significantly accelerate the degradation. ComEd and Liberty Technologies have worked together to provide and validate a non-intrusive method using motor power diagnostics to evaluate MOV rotor condition and predict failure. These techniques have provided a quick, low radiation dose method to evaluate inaccessible motors, identify degradation and allow scheduled replacement of motors prior to catastrophic failures.

  2. Motorized support jack

    DOEpatents

    Haney, Steven J.; Herron, Donald Joe

    2001-01-01

    A compact, vacuum compatible motorized jack for supporting heavy loads and adjusting their positions is provided. The motorized jack includes: (a) a housing having a base; (b) a first roller device that provides a first slidable surface and that is secured to the base; (c) a second roller device that provides a second slidable surface and that has an upper surface; (d) a wedge that is slidably positioned between the first roller device and the second roller device so that the wedge is in contact with the first slidable surface and the second slidable surface; (e) a motor; and (d) a drive mechanism that connects the motor and the wedge to cause the motor to controllably move the wedge forwards or backwards. Individual motorized jacks can support and lift of an object at an angle. Two or more motorized jacks can provide tip, tilt and vertical position adjustment capabilities.

  3. Motorized support jack

    DOEpatents

    Haney, Steven J.; Herron, Donald Joe

    2003-05-13

    A compact, vacuum compatible motorized jack for supporting heavy loads and adjusting their positions is provided. The motorized jack includes: (a) a housing having a base; (b) a first roller device that provides a first slidable surface and that is secured to the base; (c) a second roller device that provides a second slidable surface and that has an upper surface; (d) a wedge that is slidably positioned between the first roller device and the second roller device so that the wedge is in contact with the first slidable surface and the second slidable surface; (e) a motor; and (d) a drive mechanism that connects the motor and the wedge to cause the motor to controllably move the wedge forwards or backwards. Individual motorized jacks can support and lift of an object at an angle. Two or more motorized jacks can provide tip, tilt and vertical position adjustment capabilities.

  4. Quality control of a cytoplasmic protein complex: chaperone motors and the ubiquitin-proteasome system govern the fate of orphan fatty acid synthase subunit Fas2 of yeast.

    PubMed

    Scazzari, Mario; Amm, Ingo; Wolf, Dieter H

    2015-02-20

    For the assembly of protein complexes in the cell, the presence of stoichiometric amounts of the respective protein subunits is of utmost importance. A surplus of any of the subunits may trigger unspecific and harmful protein interactions and has to be avoided. A stoichiometric amount of subunits must finally be reached via transcriptional, translational, and/or post-translational regulation. Synthesis of saturated 16 and 18 carbon fatty acids is carried out by fatty acid synthase: in yeast Saccharomyces cerevisiae, a 2.6-MDa molecular mass assembly containing six protomers each of two different subunits, Fas1 (β) and Fas2 (α). The (α)6(β)6 complex carries six copies of all eight enzymatic activities required for fatty acid synthesis. The FAS1 and FAS2 genes in yeast are unlinked and map on two different chromosomes. Here we study the fate of the α-subunit of the complex, Fas2, when its partner, the β-subunit Fas1, is absent. Individual subunits of fatty acid synthase are proteolytically degraded when the respective partner is missing. Elimination of Fas2 is achieved by the proteasome. Here we show that a ubiquitin transfer machinery is required for Fas2 elimination. The major ubiquitin ligase targeting the superfluous Fas2 subunit to the proteasome is Ubr1. The ubiquitin-conjugating enzymes Ubc2 and Ubc4 assist the degradation process. The AAA-ATPase Cdc48 and the Hsp70 chaperone Ssa1 are crucially involved in the elimination of Fas2.

  5. Monte Carlo simulations of single and coupled synthetic molecular motors.

    PubMed

    Chen, C-M; Zuckermann, M

    2012-11-01

    We use a minimal model to study the processive motion of coupled synthetic molecular motors along a DNA track and we present data from Monte Carlo (MC) computer simulations based on this model. The model was originally proposed by Bromley et al. [HFSP J. 3, 204 (2009)] for studying the properties of a synthetic protein motor, the "Tumbleweed" (TW), and involves rigid Y-shaped motors diffusively rotating along the track while controlled by a series of periodically injected ligand pulses into the solution. The advantage of the model is that it mimics the mechanical properties of the TW motor in detail. Both the average first passage time which measures the diffusive motion of the motors, and the average dwell time on the track which measures their processivity are investigated by varying the parameters of the model. The latter includes ligand concentration and the range and strength of the binding interaction between motors and the track. In particular, it is of experimental interest to study the dependence of these dynamic time scales of the motors on the ligand concentration. Single rigid TW motors were first studied since no previous MC simulations of these motors have been performed. We first studied single motors for which we found a logarithmic decrease of the average first passage time and a logarithmic increase of the average dwell time with increasing ligand concentration. For two coupled motors, the dependence on ligand concentration is still logarithmic for the average first passage time but becomes linear for the average dwell time. This suggests a much greater stability in the processive motion of coupled motors as compared to single motors in the limit of large ligand concentration. By increasing the number of coupled motors, m, it was found that the average first passage time of the coupled motors only increases slowly with m while the average dwell time increases exponentially with m. Thus the stability of coupled motors on the track can be

  6. How molecular motors shape the flagellar beat

    PubMed Central

    Riedel-Kruse, Ingmar H.; Hilfinger, Andreas; Howard, Jonathon; Jülicher, Frank

    2007-01-01

    Cilia and eukaryotic flagella are slender cellular appendages whose regular beating propels cells and microorganisms through aqueous media. The beat is an oscillating pattern of propagating bends generated by dynein motor proteins. A key open question is how the activity of the motors is coordinated in space and time. To elucidate the nature of this coordination we inferred the mechanical properties of the motors by analyzing the shape of beating sperm: Steadily beating bull sperm were imaged and their shapes were measured with high precision using a Fourier averaging technique. Comparing our experimental data with wave forms calculated for different scenarios of motor coordination we found that only the scenario of interdoublet sliding regulating motor activity gives rise to satisfactory fits. We propose that the microscopic origin of such “sliding control” is the load dependent detachment rate of motors. Agreement between observed and calculated wave forms was obtained only if significant sliding between microtubules occurred at the base. This suggests a novel mechanism by which changes in basal compliance could reverse the direction of beat propagation. We conclude that the flagellar beat patterns are determined by an interplay of the basal properties of the axoneme and the mechanical feedback of dynein motors. PMID:19404446

  7. Dissociating motor cortex from the motor

    PubMed Central

    Schieber, Marc H

    2011-01-01

    Abstract During closed-loop control of a brain–computer interface, neurons in the primary motor cortex can be intensely active even though the subject may be making no detectable movement or muscle contraction. How can neural activity in the primary motor cortex become dissociated from the movements and muscles of the native limb that it normally controls? Here we examine circumstances in which motor cortex activity is known to dissociate from movement – including mental imagery, visuo-motor dissociation and instructed delay. Many such motor cortex neurons may be related to muscle activity only indirectly. Furthermore, the integration of thousands of synaptic inputs by individual α-motoneurons means that under certain circumstances even cortico-motoneuronal cells, which make monosynaptic connections to α-motoneurons, can become dissociated from muscle activity. The natural ability of motor cortex neurons under voluntarily control to become dissociated from bodily movement may underlie the utility of this cortical area for controlling brain–computer interfaces. PMID:22005673

  8. Loose coupling in the bacterial flagellar motor

    PubMed Central

    Boschert, Ryan; Adler, Frederick R.; Blair, David F.

    2015-01-01

    Physiological properties of the flagellar rotary motor have been taken to indicate a tightly coupled mechanism in which each revolution is driven by a fixed number of energizing ions. Measurements that would directly test the tight-coupling hypothesis have not been made. Energizing ions flow through membrane-bound complexes formed from the proteins MotA and MotB, which are anchored to the cell wall and constitute the stator. Genetic and biochemical evidence points to a “power stroke” mechanism in which the ions interact with an aspartate residue of MotB to drive conformational changes in MotA that are transmitted to the rotor protein FliG. Each stator complex contains two separate ion-binding sites, raising the question of whether the power stroke is driven by one, two, or either number of ions. Here, we describe simulations of a model in which the conformational change can be driven by either one or two ions. This loosely coupled model can account for the observed physiological properties of the motor, including those that have been taken to indicate tight coupling; it also accords with recent measurements of motor torque at high load that are harder to explain in tight-coupling models. Under loads relevant to a swimming cell, the loosely coupled motor would perform about as well as a two-proton motor and significantly better than a one-proton motor. The loosely coupled motor is predicted to be especially advantageous under conditions of diminished energy supply, or of reduced temperature, turning faster than an obligatorily two-proton motor while using fewer ions. PMID:25825730

  9. Mechanical coordination in motor ensembles revealed using engineered artificial myosin filaments

    NASA Astrophysics Data System (ADS)

    Hariadi, R. F.; Sommese, R. F.; Adhikari, A. S.; Taylor, R. E.; Sutton, S.; Spudich, J. A.; Sivaramakrishnan, S.

    2015-08-01

    The sarcomere of muscle is composed of tens of thousands of myosin motors that self-assemble into thick filaments and interact with surrounding actin-based thin filaments in a dense, near-crystalline hexagonal lattice. Together, these actin-myosin interactions enable large-scale movement and force generation, two primary attributes of muscle. Research on isolated fibres has provided considerable insight into the collective properties of muscle, but how actin-myosin interactions are coordinated in an ensemble remains poorly understood. Here, we show that artificial myosin filaments, engineered using a DNA nanotube scaffold, provide precise control over motor number, type and spacing. Using both dimeric myosin V- and myosin VI-labelled nanotubes, we find that neither myosin density nor spacing has a significant effect on the gliding speed of actin filaments. This observation supports a simple model of myosin ensembles as energy reservoirs that buffer individual stochastic events to bring about smooth, continuous motion. Furthermore, gliding speed increases with cross-bridge compliance, but is limited by Brownian effects. As a first step to reconstituting muscle motility, we demonstrate human β-cardiac myosin-driven gliding of actin filaments on DNA nanotubes.

  10. Piezoelectric Motors and Transformers

    NASA Astrophysics Data System (ADS)

    Uchino, K.

    Piezoelectric ceramics forms a new field between electronic and structural ceramics [1-4]. Application fields are classified into three categories: positioners, motors, and vibration suppressors. From the market research result for 80 Japanese component industries in 1992, tiny motors in the range of 5-8 mm are required in large numbers for office and portable equipment; the conventional electromagnetic (EM) motors are rather difficult to produce in this size with sufficient energy efficiency, while Silicon MEMS actuators are too small to be used in practice. Piezoelectric ultrasonic motors whose efficiency is insensitive to size are superior in the millimeter motor area. The manufacturing precision of optical instruments such as lasers and cameras, and the positioning accuracy for fabricating semiconductor chips are of the order of 0.1μm which is much smaller than the backlash of the EM motors. Vibration suppression in space structures and military vehicles also require compact but mighty piezoelectric actuators.

  11. Force-activated substrates for high-precision, high-throughput optical trapping assays of ssDNA motor proteins (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Okoniewski, Stephen; Perkins, Thomas T.

    2016-09-01

    Optical-trapping-based assays can measure individual proteins bind to and move along DNA with sub-nm resolution, and have yielded insight into a broad array of protein-DNA interactions. Unfortunately, collecting large numbers of high-resolution traces remains an ongoing challenge. Studying helicase motion along DNA exemplifies this challenge. One major difficulty is that helicase binding often requires a single stranded (ss)-double stranded (ds) DNA junction flanked by ssDNA with a minimum size and orientation. Historically, creating such DNA substrates is inefficient. More problematic is that data throughput is low in standard surface-based assays since all substrates are unwound upon introduction of ATP. The net result is 2-4 high-resolution traces on a good day. To improve throughput, we sought to turn-on or activate a substrate for a helicase one molecule at a time and thereby sequentially study many molecules on an individual microscope slide. As a first step towards this goal, we engineered a dsDNA that contains two site-specific nicks along the same strand of the dsDNA but no ssDNA. Upon overstretching the DNA (F = 65 pN), the strand between the two nicks was mechanically dissociated. We demonstrated this with two different substrates: one yielding an internal ssDNA region of 1100 nt and the other yielding a 20-bp long hairpin flanked by 30 nt of ssDNA. Unwinding a hairpin yields a 3-fold larger signal while the 30-nt ssDNA serves as the binding site for the helicase. We expect that these force-activated substrates to significantly accelerate high-resolution optical-trapping studies of DNA helicases.

  12. Cryogenic Electric Motor Tested

    NASA Technical Reports Server (NTRS)

    Brown, Gerald V.

    2004-01-01

    Technology for pollution-free "electric flight" is being evaluated in a number of NASA Glenn Research Center programs. One approach is to drive propulsive fans or propellers with electric motors powered by fuel cells running on hydrogen. For large transport aircraft, conventional electric motors are far too heavy to be feasible. However, since hydrogen fuel would almost surely be carried as liquid, a propulsive electric motor could be cooled to near liquid hydrogen temperature (-423 F) by using the fuel for cooling before it goes to the fuel cells. Motor windings could be either superconducting or high purity normal copper or aluminum. The electrical resistance of pure metals can drop to 1/100th or less of their room-temperature resistance at liquid hydrogen temperature. In either case, super or normal, much higher current density is possible in motor windings. This leads to more compact motors that are projected to produce 20 hp/lb or more in large sizes, in comparison to on the order of 2 hp/lb for large conventional motors. High power density is the major goal. To support cryogenic motor development, we have designed and built in-house a small motor (7-in. outside diameter) for operation in liquid nitrogen.

  13. Sensorless, online motor diagnostics

    SciTech Connect

    Kliman, G.B.; Premerlani, W.J.; Yazici, B.; Koegl, R.A.; Mazereeuw, J.

    1997-04-01

    Electric motors play a very important role in the safe and efficient running of any industrial plant. Early detection of abnormalities in the motors will help avoid expensive failures. Motor current signature analysis (MCSA) implemented in a computer-based motor monitor can contribute to such condition-based maintenance functions. Such a system may also detect an abnormality in the process as well as the motor. Extensive online monitoring of the motors can lead to greater plant availability, extended plant life, higher quality product, and smoother plant operation. With advances in digital technology over the last several years, adequate data processing capability is now available on cost-effective, microprocessor-based, protective-relay platforms to monitor motors for a variety of abnormalities in addition to the normal protection functions. Such multifunction monitors, first introduced by Multilin, are displacing the multiplicity of electromechanical devices commonly applied for many years. Following some background information on motor monitoring, this article features recent developments in providing tools for the diagnosis of faults or incipient faults in electric motor drives: Sensorless torque measurement, direct detection of turn-to-turn short circuits, detection of cracked or broken rotor bars, and detection of bearing deterioration.

  14. Hybrid vehicle motor alignment

    DOEpatents

    Levin, Michael Benjamin

    2001-07-03

    A rotor of an electric motor for a motor vehicle is aligned to an axis of rotation for a crankshaft of an internal combustion engine having an internal combustion engine and an electric motor. A locator is provided on the crankshaft, a piloting tool is located radially by the first locator to the crankshaft. A stator of the electric motor is aligned to a second locator provided on the piloting tool. The stator is secured to the engine block. The rotor is aligned to the crankshaft and secured thereto.

  15. Impact of the Motor and Tail Domains of Class III Myosins on Regulating the Formation and Elongation of Actin Protrusions.

    PubMed

    Raval, Manmeet H; Quintero, Omar A; Weck, Meredith L; Unrath, William C; Gallagher, James W; Cui, Runjia; Kachar, Bechara; Tyska, Matthew J; Yengo, Christopher M

    2016-10-21

    Class III myosins (MYO3A and MYO3B) are proposed to function as transporters as well as length and ultrastructure regulators within stable actin-based protrusions such as stereocilia and calycal processes. MYO3A differs from MYO3B in that it contains an extended tail domain with an additional actin-binding motif. We examined how the properties of the motor and tail domains of human class III myosins impact their ability to enhance the formation and elongation of actin protrusions. Direct examination of the motor and enzymatic properties of human MYO3A and MYO3B revealed that MYO3A is a 2-fold faster motor with enhanced ATPase activity and actin affinity. A chimera in which the MYO3A tail was fused to the MYO3B motor demonstrated that motor activity correlates with formation and elongation of actin protrusions. We demonstrate that removal of individual exons (30-34) in the MYO3A tail does not prevent filopodia tip localization but abolishes the ability to enhance actin protrusion formation and elongation in COS7 cells. Interestingly, our results demonstrate that MYO3A slows filopodia dynamics and enhances filopodia lifetime in COS7 cells. We also demonstrate that MYO3A is more efficient than MYO3B at increasing formation and elongation of stable microvilli on the surface of cultured epithelial cells. We propose that the unique features of MYO3A, enhanced motor activity, and an extended tail with tail actin-binding motif, allow it to play an important role in stable actin protrusion length and ultrastructure maintenance.

  16. Advanced Motor and Motor Control Development

    DTIC Science & Technology

    1988-08-01

    dc motor with electronic controller over a wide load and speed range was demonstrated. A centrifugal pump was used as the loading mechanism and hydraulic fluid was pumped in simulation of an aircraft engine fuel pump requirement. A motor speed of 45,000 rpm was reached and a maximum output of 68.5 hp was demonstrated. The response of the system to step commands for speed change was established. Reduction of size and weight of electronic control was established as a primary future goal. The program system concept with minor rotating machine improvements is viable for

  17. Information on stepping motors

    NASA Astrophysics Data System (ADS)

    Fongarland, G.

    1982-04-01

    The principles of the stepping motors which are often used in servomechanisms are reviewed. Variable reluctance as well as permanent magnet stepping motors are considered. Their operation is explained which includes permanent rotation, starting, stopping, and resonance effects. Several application examples, drawn from problems in automation, are outlined.

  18. Stepping motor controller

    DOEpatents

    Bourret, Steven C.; Swansen, James E.

    1984-01-01

    A stepping motor is microprocessingly controlled by digital circuitry which monitors the output of a shaft encoder adjustably secured to the stepping motor and generates a subsequent stepping pulse only after the preceding step has occurred and a fixed delay has expired. The fixed delay is variable on a real-time basis to provide for smooth and controlled deceleration.

  19. Stepping motor controller

    DOEpatents

    Bourret, S.C.; Swansen, J.E.

    1982-07-02

    A stepping motor is microprocessor controlled by digital circuitry which monitors the output of a shaft encoder adjustably secured to the stepping motor and generates a subsequent stepping pulse only after the preceding step has occurred and a fixed delay has expired. The fixed delay is variable on a real-time basis to provide for smooth and controlled deceleration.

  20. Inhibition of formation of filopodia after axotomy by inhibitors of protein tyrosine kinases.

    PubMed

    Goldberg, D J; Wu, D Y

    1995-08-01

    The activity of motile protrusions of the growth cone--filopodia, veils, and lamellipodia--is essential for directed growth of a neuronal process. The regulation of the formation of these protrusions is not well understood. Numerous filopodia and veils or lamellipodia form within minutes of transection of an Aplysia axon in culture, as the initial components of growth cones of regenerating neurites. Axotomy, therefore, provides a robust and reliable protocol for analyzing the formation of these protrusions. We evaluated the involvement of protein phosphorylation in the regulation of protrusive activity. Of the inhibitors of protein kinases assayed, only the inhibitors of protein tyrosine kinases--genistein, lavendustin A, herbimycin A, and erbstatin analogue--suppressed the formation of protrusions, as assessed by high magnification video microscopy. These drugs did not work by preventing resealing of the axon, as evident from visual inspection and by the unimpaired effectiveness of genistein or lavendustin in preventing formation of filopodia when applied after resealing. Inhibition of protein tyrosine kinases not only prevented the formation of actin-based protrusions, but also caused deterioration of the actin network underlying the protrusive area of preexisting growth cones. Consistent with an involvement of protein tyrosine phosphorylation in the generation of protrusive structures, immunocytochemistry revealed that aggregates of phosphotyrosine appeared at the margins of the axon, from which protrusions emerge shortly after axotomy. These results suggest a role for protein tyrosine phosphorylation in the formation and maintenance of actin-based protrusive structures.

  1. Induction motor control

    NASA Astrophysics Data System (ADS)

    Hansen, Irving G.

    Electromechanical actuators developed to date have commonly ultilized permanent magnet (PM) synchronous motors. More recently switched reluctance (SR) motors have been advocated due to their robust characteristics. Implications of work which utilized induction motors and advanced control techniques are discussed. When induction motors are operated from an energy source capable of controlling voltages and frequencies independently, drive characteristics are obtained which are superior to either PM or SR motors. By synthesizing the machine frequency from a high-frequency carrier (nominally 20 kHz), high efficiencies, low distortion, and rapid torque response are available. At this time multiple horsepower machine drives were demonstrated, and work is on-going to develop a 20 hp average, 40 hp peak class of aerospace actuators. This effort is based upon high-frequency power distribution and management techniques developed by NASA for Space Station Freedom.

  2. Induction motor control

    NASA Technical Reports Server (NTRS)

    Hansen, Irving G.

    1990-01-01

    Electromechanical actuators developed to date have commonly utilized permanent magnet (PM) synchronous motors. More recently switched reluctance (SR) motors have been advocated due to their robust characteristics. Implications of work which utilizes induction motors and advanced control techniques are discussed. When induction motors are operated from an energy source capable of controlling voltages and frequencies independently, drive characteristics are obtained which are superior to either PM or SR motors. By synthesizing the machine frequency from a high frequency carrier (nominally 20 kHz), high efficiencies, low distortion, and rapid torque response are available. At this time multiple horsepower machine drives were demonstrated, and work is on-going to develop a 20 hp average, 40 hp peak class of aerospace actuators. This effort is based upon high frequency power distribution and management techniques developed by NASA for Space Station Freedom.

  3. Induction motor control

    NASA Technical Reports Server (NTRS)

    Hansen, Irving G.

    1990-01-01

    Electromechanical actuators developed to date have commonly ultilized permanent magnet (PM) synchronous motors. More recently switched reluctance (SR) motors have been advocated due to their robust characteristics. Implications of work which utilized induction motors and advanced control techniques are discussed. When induction motors are operated from an energy source capable of controlling voltages and frequencies independently, drive characteristics are obtained which are superior to either PM or SR motors. By synthesizing the machine frequency from a high-frequency carrier (nominally 20 kHz), high efficiencies, low distortion, and rapid torque response are available. At this time multiple horsepower machine drives were demonstrated, and work is on-going to develop a 20 hp average, 40 hp peak class of aerospace actuators. This effort is based upon high-frequency power distribution and management techniques developed by NASA for Space Station Freedom.

  4. Proteostasis and Diseases of the Motor Unit

    PubMed Central

    Rinaldi, Carlo; Mäger, Imre; Wood, Matthew J.

    2016-01-01

    The accumulation in neurons of aberrant protein species, the pathological hallmark of many neurodegenerative diseases, results from a global impairment of key cellular processes governing protein synthesis/degradation and repair mechanisms, also known as the proteostasis network (PN). The growing number of connections between dysfunction of this intricate network of pathways and diseases of the motor unit, where both motor neurons and muscle are primarily affected, has provided momentum to investigate the muscle- and motor neuron-specific response to physiological and pathological stressors and to explore the therapeutic opportunities that manipulation of this process may offer. Furthermore, these diseases offer an unparalleled opportunity to deepen our understanding of the molecular mechanisms behind the intertissue communication and transfer of signals of proteostasis. The most compelling aspect of these investigations is their immediate potential for therapeutic impact: targeting muscle to stem degeneration of the motor unit would represent a dramatic paradigm therapeutic shift for treating these devastating diseases. Here we will review the current state of the art of the research on the alterations of the PN in diseases of the motor unit and its potential to result in effective treatments for these devastating neuromuscular disorders. PMID:28082869

  5. High-Pressure Microscopy for Studying Molecular Motors.

    PubMed

    Nishiyama, Masayoshi

    2015-01-01

    Movement is a fundamental characteristic of all living things. This biogenic function is carried out by various nanometer-sized molecular machines. Molecular motor is a typical molecular machinery in which the characteristic features of proteins are integrated; these include enzymatic activity, energy conversion, molecular recognition and self-assembly. These biologically important reactions occur with the association of water molecules that surround the motors. Applied pressures can alter the intermolecular interactions between the motors and water. In this chapter we describe the development of a high-pressure microscope and a new motility assay that enables the visualization of the motility of molecular motors under conditions of high-pressure. Our results demonstrate that applied pressure dynamically changes the motility of molecular motors such as kinesin, F1-ATPase and bacterial flagellar motors.

  6. Ratchet models of molecular motors

    NASA Astrophysics Data System (ADS)

    Jaster, Nicole

    2003-09-01

    Transport processes in and of cells are of major importance for the survival of the organism. Muscles have to be able to contract, chromosomes have to be moved to opposing ends of the cell during mitosis, and organelles, which are compartments enclosed by membranes, have to be transported along molecular tracks. Molecular motors are proteins whose main task is moving other molecules.For that purpose they transform the chemical energy released in the hydrolysis of ATP into mechanical work. The motors of the cytoskeleton belong to the three super families myosin, kinesin and dynein. Their tracks are filaments of the cytoskeleton, namely actin and the microtubuli. Here, we examine stochastic models which are used for describing the movements of these linear molecular motors. The scale of the movements comprises the regime of single steps of a motor protein up to the directed walk along a filament. A single step bridges around 10 nm, depending on the protein, and takes about 10 ms, if there is enough ATP available. Our models comprise M states or conformations the motor can attain during its movement along a one-dimensional track. At K locations along the track transitions between the states are possible. The velocity of the protein depending on the transition rates between the single states can be determined analytically. We calculate this velocity for systems of up to four states and locations and are able to derive a number of rules which are helpful in estimating the behaviour of an arbitrary given system. Beyond that we have a look at decoupled subsystems, i.e., one or a couple of states which have no connection to the remaining system. With a certain probability a motor undergoes a cycle of conformational changes, with another probability an independent other cycle. Active elements in real transport processes by molecular motors will not be limited to the transitions between the states. In distorted networks or starting from the discrete Master equation of the

  7. Measuring collective transport by defined numbers of processive and nonprocessive kinesin motors.

    PubMed

    Furuta, Ken'ya; Furuta, Akane; Toyoshima, Yoko Y; Amino, Misako; Oiwa, Kazuhiro; Kojima, Hiroaki

    2013-01-08

    Intracellular transport is thought to be achieved by teams of motor proteins bound to a cargo. However, the coordination within a team remains poorly understood as a result of the experimental difficulty in controlling the number and composition of motors. Here, we developed an experimental system that links together defined numbers of motors with defined spacing on a DNA scaffold. By using this system, we linked multiple molecules of two different types of kinesin motors, processive kinesin-1 or nonprocessive Ncd (kinesin-14), in vitro. Both types of kinesins markedly increased their processivities with motor number. Remarkably, despite the poor processivity of individual Ncd motors, the coupling of two Ncd motors enables processive movement for more than 1 μm along microtubules (MTs). This improvement was further enhanced with decreasing spacing between motors. Force measurements revealed that the force generated by groups of Ncd is additive when two to four Ncd motors work together, which is much larger than that generated by single motors. By contrast, the force of multiple kinesin-1s depends only weakly on motor number. Numerical simulations and single-molecule unbinding measurements suggest that this additive nature of the force exerted by Ncd relies on fast MT binding kinetics and the large drag force of individual Ncd motors. These features would enable small groups of Ncd motors to crosslink MTs while rapidly modulating their force by forming clusters. Thus, our experimental system may provide a platform to study the collective behavior of motor proteins from the bottom up.

  8. ISRO's solid rocket motors

    NASA Astrophysics Data System (ADS)

    Nagappa, R.; Kurup, M. R.; Muthunayagam, A. E.

    1989-08-01

    Solid rocket motors have been the mainstay of ISRO's sounding rockets and the first generation satellite launch vehicles. For the new launch vehicle under development also, the solid rocket motors contribute significantly to the vehicle's total propulsive power. The rocket motors in use and under development have been developed for a variety of applications and range in size from 30 mm dia employing 450 g of solid propellant—employed for providing a spin to the apogee motors—to the giant 2.8 m dia motor employing nearly 130 tonnes of solid propellant. The initial development, undertaken in 1967 was of small calibre motor of 75 mm dia using a double base charge. The development was essentially to understand the technological elements. Extruded aluminium tubes were used as a rocket motor casing. The fore and aft closures were machined from aluminium rods. The grain was a seven-pointed star with an enlargement of the port at the aft end and was charged into the chamber using a polyester resin system. The nozzle was a metallic heat sink type with graphite throat insert. The motor was ignited with a black powder charge and fired for 2.0 s. Subsequent to this, further developmental activities were undertaken using PVC plastisol based propellants. A class of sounding rockets ranging from 125 to 560 mm calibre were realized. These rocket motors employed improved designs and had delivered lsp ranging from 2060 to 2256 Ns/kg. Case bonding could not be adopted due to the higher cure temperatures of the plastisol propellants but improvements were made in the grain charging techniques and in the design of the igniters and the nozzle. Ablative nozzles based on asbestos phenolic and silica phenolic with graphite inserts were used. For the larger calibre rocket motors, the lsp could be improved by metallic additives. In the early 1970s designs were evolved for larger and more efficient motors. A series of 4 motors for the country's first satellite launch vehicle SLV-3 were

  9. Motor Priming in Neurorehabilitation

    PubMed Central

    Stoykov, Mary Ellen; Madhavan, Sangeetha

    2014-01-01

    Priming is a type of implicit learning wherein a stimulus prompts a change in behavior. Priming has been long studied in the field of psychology. More recently, rehabilitation researchers have studied motor priming as a possible way to facilitate motor learning. For example, priming of the motor cortex is associated with changes in neuroplasticity that are associated with improvements in motor performance. Of the numerous motor priming paradigms under investigation, only a few are practical for the current clinical environment, and the optimal priming modalities for specific clinical presentations are not known. Accordingly, developing an understanding of the various types of motor priming paradigms and their underlying neural mechanisms is an important step for therapists in neurorehabilitation. Most importantly, an understanding of the methods and their underlying mechanisms is essential for optimizing rehabilitation outcomes. The future of neurorehabilitation is likely to include these priming methods, which are delivered prior to or in conjunction with primary neurorehabilitation therapies. In this Special Interest article we discuss those priming paradigms that are supported by the greatest amount of evidence including: (i) stimulation-based priming, (ii) motor imagery and action observation, (iii) sensory priming, (iv) movement-based priming, and (v) pharmacological priming. PMID:25415551

  10. Protein-protein interactions and protein modules in the control of neurotransmitter release.

    PubMed Central

    Benfenati, F; Onofri, F; Giovedí, S

    1999-01-01

    Information transfer among neurons is operated by neurotransmitters stored in synaptic vesicles and released to the extracellular space by an efficient process of regulated exocytosis. Synaptic vesicles are organized into two distinct functional pools, a large reserve pool in which vesicles are restrained by the actin-based cytoskeleton, and a quantitatively smaller releasable pool in which vesicles approach the presynaptic membrane and eventually fuse with it on stimulation. Both synaptic vesicle trafficking and neurotransmitter release depend on a precise sequence of events that include release from the reserve pool, targeting to the active zone, docking, priming, fusion and endocytotic retrieval of synaptic vesicles. These steps are mediated by a series of specific interactions among cytoskeletal, synaptic vesicle, presynaptic membrane and cytosolic proteins that, by acting in concert, promote the spatial and temporal regulation of the exocytotic machinery. The majority of these interactions are mediated by specific protein modules and domains that are found in many proteins and are involved in numerous intracellular processes. In this paper, the possible physiological role of these multiple protein-protein interactions is analysed, with ensuing updating and clarification of the present molecular model of the process of neurotransmitter release. PMID:10212473

  11. A microRNA-initiated DNAzyme motor operating in living cells

    NASA Astrophysics Data System (ADS)

    Peng, Hanyong; Li, Xing-Fang; Zhang, Hongquan; Le, X. Chris

    2017-03-01

    Synthetic DNA motors have great potential to mimic natural protein motors in cells but the operation of synthetic DNA motors in living cells remains challenging and has not been demonstrated. Here we report a DNAzyme motor that operates in living cells in response to a specific intracellular target. The whole motor system is constructed on a 20 nm gold nanoparticle (AuNP) decorated with hundreds of substrate strands serving as DNA tracks and dozens of DNAzyme molecules each silenced by a locking strand. Intracellular interaction of a target molecule with the motor system initiates the autonomous walking of the motor on the AuNP. An example DNAzyme motor responsive to a specific microRNA enables amplified detection of the specific microRNA in individual cancer cells. Activated by specific intracellular targets, these self-powered DNAzyme motors will have diverse applications in the control and modulation of biological functions.

  12. A microRNA-initiated DNAzyme motor operating in living cells

    PubMed Central

    Peng, Hanyong; Li, Xing-Fang; Zhang, Hongquan; Le, X. Chris

    2017-01-01

    Synthetic DNA motors have great potential to mimic natural protein motors in cells but the operation of synthetic DNA motors in living cells remains challenging and has not been demonstrated. Here we report a DNAzyme motor that operates in living cells in response to a specific intracellular target. The whole motor system is constructed on a 20 nm gold nanoparticle (AuNP) decorated with hundreds of substrate strands serving as DNA tracks and dozens of DNAzyme molecules each silenced by a locking strand. Intracellular interaction of a target molecule with the motor system initiates the autonomous walking of the motor on the AuNP. An example DNAzyme motor responsive to a specific microRNA enables amplified detection of the specific microRNA in individual cancer cells. Activated by specific intracellular targets, these self-powered DNAzyme motors will have diverse applications in the control and modulation of biological functions. PMID:28262725

  13. System and method for motor parameter estimation

    DOEpatents

    Luhrs, Bin; Yan, Ting

    2014-03-18

    A system and method for determining unknown values of certain motor parameters includes a motor input device connectable to an electric motor having associated therewith values for known motor parameters and an unknown value of at least one motor parameter. The motor input device includes a processing unit that receives a first input from the electric motor comprising values for the known motor parameters for the electric motor and receive a second input comprising motor data on a plurality of reference motors, including values for motor parameters corresponding to the known motor parameters of the electric motor and values for motor parameters corresponding to the at least one unknown motor parameter value of the electric motor. The processor determines the unknown value of the at least one motor parameter from the first input and the second input and determines a motor management strategy for the electric motor based thereon.

  14. Guiding Molecular Motors with Nano-Imprinted Structures

    NASA Astrophysics Data System (ADS)

    Bunk, Richard; Carlberg, Patrick; Månsson, Alf; Nicholls, Ian A.; Omling, Pär; Sundberg, Mark; Tågerud, Sven; Montelius, Lars

    2005-05-01

    This work, for the first time, demonstrates that nano-imprinted samples, with 100 nm wide polymer lines, can act as guides for molecular motors consisting of motor proteins actin and myosin. The motor protein function was characterized using fluorescence microscopy and compared to actomyosin motility on non-structured nitrocellulose surfaces. Our results open for further use of the nano-imprint technique in the production of disposable chips for bio-nanotechnological applications and miniaturized biological test systems. We discuss how the nano-imprinted motor protein assay system may be optimized and also how it compares to previously tested assay systems involving low-resolution UV-lithography and low throughput but high-resolution electron beam lithography.

  15. Advanced motor and motor control development

    NASA Astrophysics Data System (ADS)

    Wuertz, Kenneth L.; Beauchamp, Edward D.

    1988-08-01

    The capability of operating a high speed permanent magnet brushless dc motor with electronic controller over a wide load and speed range was demonstrated. A centrifugal pump was used as the loading mechanism and hydraulic fluid was pumped in simulation of an aircraft engine fuel pump requirement. A motor speed of 45,000 rpm was reached and a maximum output of 68.5 hp was demonstrated. The response of the system to step commands for speed change was established. Reduction of size and weight of electronic control was established as a primary future goal. The program system concept with minor rotating machine improvements is viable for high speed drive applications up to 100-hp level.

  16. Motor Vehicle Safety

    MedlinePlus

    ... these crashes is one part of motor vehicle safety. Here are some things you can do to ... speed or drive aggressively Don't drive impaired Safety also involves being aware of others. Share the ...

  17. Booster separation motor

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The design, development, fabrication, testing, evaluation and flight qualification of the space shuttle booster separation motor is discussed. Delivery of flight hardware to support the research and development flights of the space shuttle is discussed.

  18. MotorWeek

    ScienceCinema

    None

    2016-07-12

    In 2008, PBS's MotorWeek, television's original automotive magazine, visited Argonne's Transportation Technology R&D Center "to learn what it really takes to make clean power sources a viable reality."

  19. MotorWeek

    SciTech Connect

    2009-01-01

    In 2008, PBS's MotorWeek, television's original automotive magazine, visited Argonne's Transportation Technology R&D Center "to learn what it really takes to make clean power sources a viable reality."

  20. Piezoelectric Rotary Tube Motor

    NASA Technical Reports Server (NTRS)

    Fisher, Charles D.; Badescu, Mircea; Braun, David F.; Culhane, Robert

    2011-01-01

    A custom rotary SQUIGGLE(Registered TradeMark) motor has been developed that sets new benchmarks for small motor size, high position resolution, and high torque without gear reduction. Its capabilities cannot be achieved with conventional electromagnetic motors. It consists of piezoelectric plates mounted on a square flexible tube. The plates are actuated via voltage waveforms 90 out of phase at the resonant frequency of the device to create rotary motion. The motors were incorporated into a two-axis postioner that was designed for fiber-fed spectroscopy for ground-based and space-based projects. The positioner enables large-scale celestial object surveys to take place in a practical amount of time.

  1. High Power Density Motors

    NASA Technical Reports Server (NTRS)

    Kascak, Daniel J.

    2004-01-01

    With the growing concerns of global warming, the need for pollution-free vehicles is ever increasing. Pollution-free flight is one of NASA's goals for the 21" Century. , One method of approaching that goal is hydrogen-fueled aircraft that use fuel cells or turbo- generators to develop electric power that can drive electric motors that turn the aircraft's propulsive fans or propellers. Hydrogen fuel would likely be carried as a liquid, stored in tanks at its boiling point of 20.5 K (-422.5 F). Conventional electric motors, however, are far too heavy (for a given horsepower) to use on aircraft. Fortunately the liquid hydrogen fuel can provide essentially free refrigeration that can be used to cool the windings of motors before the hydrogen is used for fuel. Either High Temperature Superconductors (HTS) or high purity metals such as copper or aluminum may be used in the motor windings. Superconductors have essentially zero electrical resistance to steady current. The electrical resistance of high purity aluminum or copper near liquid hydrogen temperature can be l/lOO* or less of the room temperature resistance. These conductors could provide higher motor efficiency than normal room-temperature motors achieve. But much more importantly, these conductors can carry ten to a hundred times more current than copper conductors do in normal motors operating at room temperature. This is a consequence of the low electrical resistance and of good heat transfer coefficients in boiling LH2. Thus the conductors can produce higher magnetic field strengths and consequently higher motor torque and power. Designs, analysis and actual cryogenic motor tests show that such cryogenic motors could produce three or more times as much power per unit weight as turbine engines can, whereas conventional motors produce only 1/5 as much power per weight as turbine engines. This summer work has been done with Litz wire to maximize the current density. The current is limited by the amount of heat it

  2. Rocket Motor Microphone Investigation

    NASA Technical Reports Server (NTRS)

    Pilkey, Debbie; Herrera, Eric; Gee, Kent L.; Giraud, Jerom H.; Young, Devin J.

    2010-01-01

    At ATK's facility in Utah, large full-scale solid rocket motors are tested. The largest is a five-segment version of the reusable solid rocket motor, which is for use on the Ares I launch vehicle. As a continuous improvement project, ATK and BYU investigated the use of microphones on these static tests, the vibration and temperature to which the instruments are subjected, and in particular the use of vent tubes and the effects these vents have at low frequencies.

  3. Motor Energy Conservation Measures

    SciTech Connect

    Ian Metzger, Jesse Dean

    2010-12-31

    This software requires inputs of simple motor inventory information and calculates the energy and cost benefits of various retrofit opportunities. This tool includes energy conservation measures for: High Efficiency Motor retrofit and Cogged V-belts retrofit. This tool calculates energy savings, demand reduction, cost savings, and building life cycle costs including: simple payback, discounted payback, net-present value, and savings to investment ratio. In addition this tool also displays the environmental benefits of a project.

  4. Maintaining Motor Skill Performance

    DTIC Science & Technology

    1982-06-18

    trials eacb--ac--yIecon- ,, :;. - taed p- --d-t-trias,--P-t- rilk --r. expermenter-difie-d- ovementu con- strained by the stop. The distance between...processing in motor control-i ... and -laIg- e-rr--’- cae -clrsj--98 I Y. ag.L., K. A., & D5oWe-l, M. R. Serial-position effects in motor short-! term

  5. Development Motor-8

    NASA Technical Reports Server (NTRS)

    1980-01-01

    One of the key tests in the effort to return the Space Shuttle to flight following the Challenger accident was testing the development Motor-8 (DM-8). The 126-foot long, 1.2-million-pound motor, designated DM-8, underwent a full-duration horizontal test firing for two minutes at the Thiokol test facility in Utah. It was fitted with more than 500 instruments to measure such things as acceleration, pressure, deflection thrust, strain, temperature, and electrical properties.

  6. Tomosyn-2 is required for normal motor performance in mice and sustains neurotransmission at motor endplates.

    PubMed

    Geerts, Cornelia J; Plomp, Jaap J; Koopmans, Bastijn; Loos, Maarten; van der Pijl, Elizabeth M; van der Valk, Martin A; Verhage, Matthijs; Groffen, Alexander J A

    2015-07-01

    Tomosyn-1 (STXBP5) is a soluble NSF attachment protein receptor complex-binding protein that inhibits vesicle fusion, but the role of tomosyn-2 (STXBP5L) in the mammalian nervous system is still unclear. Here we generated tomosyn-2 null (Tom2(KO/KO)) mice, which showed impaired motor performance. This was accompanied by synaptic changes at the neuromuscular junction, including enhanced spontaneous acetylcholine release frequency and faster depression of muscle motor endplate potentials during repetitive stimulation. The postsynaptic geometric arrangement and function of acetylcholine receptors were normal. We conclude that tomosyn-2 supports motor performance by regulation of transmitter release willingness to sustain synaptic strength during high-frequency transmission, which makes this gene a candidate for involvement in neuromuscular disorders.

  7. Electric vehicle motors and controllers

    NASA Technical Reports Server (NTRS)

    Secunde, R. R.

    1981-01-01

    Improved and advanced components being developed include electronically commutated permanent magnet motors of both drum and disk configuration, an unconventional brush commutated motor, and ac induction motors and various controllers. Test results on developmental motors, controllers, and combinations thereof indicate that efficiencies of 90% and higher for individual components, and 80% to 90% for motor/controller combinations can be obtained at rated power. The simplicity of the developmental motors and the potential for ultimately low cost electronics indicate that one or more of these approaches to electric vehicle propulsion may eventually displace presently used controllers and brush commutated dc motors.

  8. Embedding dual function into molecular motors through collective motion.

    PubMed

    Saito, Nen; Kaneko, Kunihiko

    2017-03-10

    Protein motors, such as kinesins and dyneins, bind to a microtubule and travel along it in a specific direction. Previously, it was thought that the directionality for a given motor was constant in the absence of an external force. However, the directionality of the kinesin-5 Cin8 was recently found to change as the number of motors that bind to the same microtubule is increased. Here, we introduce a simple mechanical model of a microtubule-sliding assay in which multiple motors interact with the filament. We show that, due to the collective phenomenon, the directionality of the motor changes (e.g., from minus- to plus- end directionality), depending on the number of motors. This is induced by a large diffusive component in the directional walk and by the subsequent frustrated motor configuration, in which multiple motors pull the filament in opposite directions, similar to a game of tug-of-war. A possible role of the dual-directional motors for the mitotic spindle formation is also discussed. Our framework provides a general mechanism to embed two conflicting tasks into a single molecular machine, which works context-dependently.

  9. Embedding dual function into molecular motors through collective motion

    PubMed Central

    Saito, Nen; Kaneko, Kunihiko

    2017-01-01

    Protein motors, such as kinesins and dyneins, bind to a microtubule and travel along it in a specific direction. Previously, it was thought that the directionality for a given motor was constant in the absence of an external force. However, the directionality of the kinesin-5 Cin8 was recently found to change as the number of motors that bind to the same microtubule is increased. Here, we introduce a simple mechanical model of a microtubule-sliding assay in which multiple motors interact with the filament. We show that, due to the collective phenomenon, the directionality of the motor changes (e.g., from minus- to plus- end directionality), depending on the number of motors. This is induced by a large diffusive component in the directional walk and by the subsequent frustrated motor configuration, in which multiple motors pull the filament in opposite directions, similar to a game of tug-of-war. A possible role of the dual-directional motors for the mitotic spindle formation is also discussed. Our framework provides a general mechanism to embed two conflicting tasks into a single molecular machine, which works context-dependently. PMID:28281683

  10. Cooperative behavior of molecular motors: Cargo transport and traffic phenomena

    NASA Astrophysics Data System (ADS)

    Lipowsky, Reinhard; Beeg, Janina; Dimova, Rumiana; Klumpp, Stefan; Müller, Melanie J. I.

    2010-01-01

    All eukaryotic cells including those of our own body contain complex transport systems based on molecular motors which walk along cytoskeletal filaments. These motors are rather small and make discrete mechanical steps with a step size of the order of 10 nm but are able to pull cargo particles over much larger distances, from micrometers up to meters. In vivo, the intracellular cargos include large membrane-bounded organelles, smaller vesicles, a subset of mRNAs, cytoskeletal filaments, and various protein building blocks, which are transported between different cell compartments. This cargo transport is usually performed by teams of motors. If all motors belong to the same molecular species, the cooperative action of the motors leads to uni-directional transport with a strongly increased run length and with a characteristic force dependence of the velocity distributions. If two antagonistic teams of motors pull on the same cargo particle, they perform a stochastic tug-of-war, which is characterized by a subtle force balance between the two motor teams and leads to several distinct patterns of bi-directional transport. So far, all experimental observations on bi-directional transport are consistent with such a tug-of-war. If many motors and/or cargo particles are transported along the filaments, one encounters various traffic phenomena. Depending on their mutual interactions and the compartment geometry, the motors form various spatio-temporal patterns such as traffic jams, and undergo nonequilibrium phase transitions between different patterns of transport.

  11. Neuropathology and omics in motor neuron diseases.

    PubMed

    Tanaka, Fumiaki; Ikenaka, Kensuke; Yamamoto, Masahiko; Sobue, Gen

    2012-08-01

    Motor neuron diseases, including amyotrophic lateral sclerosis (ALS), are devastating disorders and effective therapies have not yet been established. One of the reasons for this lack of therapeutics, especially in sporadic ALS (SALS), is attributed to the absence of excellent disease models reflecting its pathology. For this purpose, identifying important key molecules for ALS pathomechanisms and developing disease models is crucial, and omics approaches, including genomics, transcriptomics and proteomics, have been employed. In particular, transcriptome analysis using cDNA microarray is the most popular omics approach and we have previously identified dynactin-1 as an important molecule downregulated in the motor neurons of SALS patients from the early stage of the disease. Dynactin-1 is also known as a causative gene in familial ALS (FALS). Dynactin-1 is a major component of the dynein/dynactin motor protein complex functioning in retrograde axonal transport. In motor neuron diseases as well as other neurodegenerative diseases, the role of axonal transport dysfunction in their pathogenesis always draws attention, but its precise mechanisms remain to be fully elucidated. In this article, we review our previous omics approach to SALS and the role of dynactin-1 in the pathogenesis of ALS. Finally, we emphasize the need for creating novel SALS disease models based on the results of omics analysis, especially based on the observation that dynactin-1 gene expression was downregulated in SALS motor neurons.

  12. A New Type of Motor: Pneumatic Step Motor

    PubMed Central

    Stoianovici, Dan; Patriciu, Alexandru; Petrisor, Doru; Mazilu, Dumitru; Kavoussi, Louis

    2011-01-01

    This paper presents a new type of pneumatic motor, a pneumatic step motor (PneuStep). Directional rotary motion of discrete displacement is achieved by sequentially pressurizing the three ports of the motor. Pulsed pressure waves are generated by a remote pneumatic distributor. The motor assembly includes a motor, gearhead, and incremental position encoder in a compact, central bore construction. A special electronic driver is used to control the new motor with electric stepper indexers and standard motion control cards. The motor accepts open-loop step operation as well as closed-loop control with position feedback from the enclosed sensor. A special control feature is implemented to adapt classic control algorithms to the new motor, and is experimentally validated. The speed performance of the motor degrades with the length of the pneumatic hoses between the distributor and motor. Experimental results are presented to reveal this behavior and set the expectation level. Nevertheless, the stepper achieves easily controllable precise motion unlike other pneumatic motors. The motor was designed to be compatible with magnetic resonance medical imaging equipment, for actuating an image-guided intervention robot, for medical applications. For this reason, the motors were entirely made of nonmagnetic and dielectric materials such as plastics, ceramics, and rubbers. Encoding was performed with fiber optics, so that the motors are electricity free, exclusively using pressure and light. PneuStep is readily applicable to other pneumatic or hydraulic precision-motion applications. PMID:21528106

  13. Advances in motor neurone disease.

    PubMed

    Bäumer, Dirk; Talbot, Kevin; Turner, Martin R

    2014-01-01

    Motor neurone disease (MND), the commonest clinical presentation of which is amyotrophic lateral sclerosis (ALS), is regarded as the most devastating of adult-onset neurodegenerative disorders. The last decade has seen major improvements in patient care, but also rapid scientific advances, so that rational therapies based on key pathogenic mechanisms now seem plausible. ALS is strikingly heterogeneous in both its presentation, with an average one-year delay from first symptoms to diagnosis, and subsequent rate of clinical progression. Although half of patients succumb within 3-4 years of symptom onset, typically through respiratory failure, a significant minority survives into a second decade. Although an apparently sporadic disorder for most patients, without clear environmental triggers, recent genetic studies have identified disease-causing mutations in genes in several seemingly disparate functional pathways, so that motor neuron degeneration may need to be understood as a common final pathway with a number of upstream causes. This apparent aetiological and clinical heterogeneity suggests that therapeutic studies should include detailed biomarker profiling, and consider genetic as well as clinical stratification. The most common mutation, accounting for 10% of all Western hemisphere ALS, is a hexanucleotide repeat expansion in C9orf72. This and several other genes implicate altered RNA processing and protein degradation pathways in the core of ALS pathogenesis. A major gap remains in understanding how such fundamental processes appear to function without obvious deficit in the decades prior to symptom emergence, and the study of pre-symptomatic gene carriers is an important new initiative.

  14. Magnetostrictive direct drive motor

    NASA Technical Reports Server (NTRS)

    Naik, Dipak; Dehoff, P. H.

    1991-01-01

    Highly magnetostrictive materials such as Tb.3Dy.7Fe2, commercially known as TERFENOL-D, have been used to date in a variety of devices such as high power actuators and linear motors. The larger magnetostriction available in twinned single crystal TERFENOL-D, approx. 2000 ppm at moderate magnetic field strengths, makes possible a new generation of magnetomechanical devices. NASA researchers are studying the potential of this material as the basis for a direct microstepping rotary motor with torque densities on the order of industrial hydraulics and five times greater than that of the most efficient, high power electric motors. Such a motor would be a micro-radian stepper, capable of precision movements and self-braking in the power-off state. Innovative mechanical engineering techniques are juxtaposed on proper magnetic circuit design to reduce losses in structural flexures, inertias, thermal expansions, eddy currents, and magneto-mechanical coupling, thus optimizing motor performance and efficiency. Mathematical models are presented, including magnetic, structural, and both linear and nonlinear dynamic calculations and simulations. In addition, test results on prototypes are presented.

  15. Magnetostrictive direct drive motors

    NASA Technical Reports Server (NTRS)

    Naik, Dipak; Dehoff, P. H.

    1990-01-01

    Developing magnetostrictive direct drive research motors to power robot joints is discussed. These type motors are expected to produce extraordinary torque density, to be able to perform microradian incremental steps and to be self-braking and safe with the power off. Several types of motor designs have been attempted using magnetostrictive materials. One of the candidate approaches (the magnetostrictive roller drive) is described. The method in which the design will function is described as is the reason why this approach is inherently superior to the other approaches. Following this, the design will be modelled and its expected performance predicted. This particular candidate design is currently undergoing detailed engineering with prototype construction and testing scheduled for mid 1991.

  16. Micromachine Wedge Stepping Motor

    SciTech Connect

    Allen, J.J.; Schriner, H.K.

    1998-11-04

    A wedge stepping motor, which will index a mechanism, has been designed and fabricated in the surface rnicromachine SUMMiT process. This device has demonstrated the ability to index one gear tooth at a time with speeds up to 205 teeth/see. The wedge stepper motor has the following features, whi:h will be useful in a number of applications. o The ability to precisely position mechanical components. . Simple pulse signals can be used for operation. o Only 2 drive signals are requixed for operation. o Torque and precision capabilities increase with device size . The device to be indexed is restrained at all times by the wedge shaped tooth that is used for actuation. This paper will discuss the theory of operation and desi=m of the wedge stepping motor. The fabrication and testing of I he device will also be presented.

  17. Bent shaft motor

    DOEpatents

    Benavides, Gilbert L.

    1998-01-01

    A nonelectromagnetic motor comprising a base, a bent shaft which is rotable relative to the base wherein the bent shaft comprises a straight portion aligned with a main axis and an offset portion that is offset with respect to the main axis; and a drive means for driving the offset portion of the bent shaft along a generally circular path in a plane perpendicular to the main axis to rotate the bent shaft. The bent shaft and drive means for driving the bent shaft can be selected from piezoelectric, magnetostrictive, rheological and shape memory alloys. The drive means of the nonelectromagnetic motor can additionally comprise a shell which shell surrounds and houses the bent shaft and precesses or gyrates which in turn causes the bent drive shaft to rotate. The nonelectromagnetic motor does not rely on friction for the application of torque upon a rotor.

  18. Bent shaft motor

    DOEpatents

    Benavides, G.L.

    1998-05-05

    A nonelectromagnetic motor comprising a base, a bent shaft which is rotatable relative to the base wherein the bent shaft comprises a straight portion aligned with a main axis and an offset portion that is offset with respect to the main axis; and a drive means for driving the offset portion of the bent shaft along a generally circular path in a plane perpendicular to the main axis to rotate the bent shaft. The bent shaft and drive means for driving the bent shaft can be selected from piezoelectric, magnetostrictive, rheological and shape memory alloys. The drive means of the nonelectromagnetic motor can additionally comprise a shell which shell surrounds and houses the bent shaft and precesses or gyrates which in turn causes the bent drive shaft to rotate. The nonelectromagnetic motor does not rely on friction for the application of torque upon a rotor. 11 figs.

  19. Monte Carlo simulations of single and coupled synthetic molecular motors

    NASA Astrophysics Data System (ADS)

    Chen, C.-M.; Zuckermann, M.

    2012-11-01

    We use a minimal model to study the processive motion of coupled synthetic molecular motors along a DNA track and we present data from Monte Carlo (MC) computer simulations based on this model. The model was originally proposed by Bromley [HFSP J.10.2976/1.3111282 3, 204 (2009)] for studying the properties of a synthetic protein motor, the “Tumbleweed” (TW), and involves rigid Y-shaped motors diffusively rotating along the track while controlled by a series of periodically injected ligand pulses into the solution. The advantage of the model is that it mimics the mechanical properties of the TW motor in detail. Both the average first passage time which measures the diffusive motion of the motors, and the average dwell time on the track which measures their processivity are investigated by varying the parameters of the model. The latter includes ligand concentration and the range and strength of the binding interaction between motors and the track. In particular, it is of experimental interest to study the dependence of these dynamic time scales of the motors on the ligand concentration. Single rigid TW motors were first studied since no previous MC simulations of these motors have been performed. We first studied single motors for which we found a logarithmic decrease of the average first passage time and a logarithmic increase of the average dwell time with increasing ligand concentration. For two coupled motors, the dependence on ligand concentration is still logarithmic for the average first passage time but becomes linear for the average dwell time. This suggests a much greater stability in the processive motion of coupled motors as compared to single motors in the limit of large ligand concentration. By increasing the number of coupled motors, m, it was found that the average first passage time of the coupled motors only increases slowly with m while the average dwell time increases exponentially with m. Thus the stability of coupled motors on the track can

  20. The functional alterations associated with motor imagery training: a comparison between motor execution and motor imagery of sequential finger tapping

    NASA Astrophysics Data System (ADS)

    Zhang, Hang; Yao, Li; Long, Zhiying

    2011-03-01

    Motor imagery training, as an effective strategy, has been more and more applied to mental disorders rehabilitation and motor skill learning. Studies on the neural mechanism underlying motor imagery have suggested that such effectiveness may be related to the functional congruence between motor execution and motor imagery. However, as compared to the studies on motor imagery, the studies on motor imagery training are much fewer. The functional alterations associated with motor imagery training and the effectiveness of motor imagery training on motor performance improvement still needs further investigation. Using fMRI, we employed a sequential finger tapping paradigm to explore the functional alterations associated with motor imagery training in both motor execution and motor imagery task. We hypothesized through 14 consecutive days motor imagery training, the motor performance could be improved and the functional congruence between motor execution and motor imagery would be sustained form pre-training phase to post-training phase. Our results confirmed the effectiveness of motor imagery training in improving motor performance and demonstrated in both pre and post-training phases, motor imagery and motor execution consistently sustained the congruence in functional neuroanatomy, including SMA (supplementary motor cortex), PMA (premotor area); M1( primary motor cortex) and cerebellum. Moreover, for both execution and imagery tasks, a similar functional alteration was observed in fusiform through motor imagery training. These findings provided an insight into the effectiveness of motor imagery training and suggested its potential therapeutic value in motor rehabilitation.

  1. Cell polarity proteins and spermatogenesis.

    PubMed

    Gao, Ying; Xiao, Xiang; Lui, Wing-Yee; Lee, Will M; Mruk, Dolores; Cheng, C Yan

    2016-11-01

    When the cross-section of a seminiferous tubule from an adult rat testes is examined microscopically, Sertoli cells and germ cells in the seminiferous epithelium are notably polarized cells. For instance, Sertoli cell nuclei are found near the basement membrane. On the other hand, tight junction (TJ), basal ectoplasmic specialization (basal ES, a testis-specific actin-rich anchoring junction), gap junction (GJ) and desmosome that constitute the blood-testis barrier (BTB) are also located near the basement membrane. The BTB, in turn, divides the epithelium into the basal and the adluminal (apical) compartments. Within the epithelium, undifferentiated spermatogonia and preleptotene spermatocytes restrictively reside in the basal compartment whereas spermatocytes and post-meiotic spermatids reside in the adluminal compartment. Furthermore, the heads of elongating/elongated spermatids point toward the basement membrane with their elongating tails toward the tubule lumen. However, the involvement of polarity proteins in this unique cellular organization, in particular the underlying molecular mechanism(s) by which polarity proteins confer cellular polarity in the seminiferous epithelium is virtually unknown until recent years. Herein, we discuss latest findings regarding the role of different polarity protein complexes or modules and how these protein complexes are working in concert to modulate Sertoli cell and spermatid polarity. These findings also illustrate polarity proteins exert their effects through the actin-based cytoskeleton mediated by actin binding and regulatory proteins, which in turn modulate adhesion protein complexes at the cell-cell interface since TJ, basal ES and GJ utilize F-actin for attachment. We also propose a hypothetical model which illustrates the antagonistic effects of these polarity proteins. This in turn provides a unique mechanism to modulate junction remodeling in the testis to support germ cell transport across the epithelium in

  2. ac bidirectional motor controller

    NASA Technical Reports Server (NTRS)

    Schreiner, K.

    1988-01-01

    Test data are presented and the design of a high-efficiency motor/generator controller at NASA-Lewis for use with the Space Station power system testbed is described. The bidirectional motor driver is a 20 kHz to variable frequency three-phase ac converter that operates from the high-frequency ac bus being designed for the Space Station. A zero-voltage-switching pulse-density-modulation technique is used in the converter to shape the low-frequency output waveform.

  3. Tuning Multiple Motor Travel Via Single Motor Velocity

    PubMed Central

    Xu, Jing; Shu, Zhanyong; King, Stephen J.; Gross, Steven P.

    2012-01-01

    Microtubule-based molecular motors often work in small groups to transport cargos in cells. A key question in understanding transport (and its regulation in vivo) is to identify the sensitivity of multiple-motor-based motion to various single molecule properties. Whereas both single-motor travel distance and microtubule binding rate have been demonstrated to contribute to cargo travel, the role of single-motor velocity is yet to be explored. Here, we recast a previous theoretical study, and make explicit a potential contribution of velocity to cargo travel. We test this possibility experimentally, and demonstrate a strong negative correlation between single-motor velocity and cargo travel for transport driven by two motors. Our study thus discovers a previously unappreciated role of single-motor velocity in regulating multiple-motor transport. PMID:22672518

  4. Motor current signature analysis method for diagnosing motor operated devices

    DOEpatents

    Haynes, Howard D.; Eissenberg, David M.

    1990-01-01

    A motor current noise signature analysis method and apparatus for remotely monitoring the operating characteristics of an electric motor-operated device such as a motor-operated valve. Frequency domain signal analysis techniques are applied to a conditioned motor current signal to distinctly identify various operating parameters of the motor driven device from the motor current signature. The signature may be recorded and compared with subsequent signatures to detect operating abnormalities and degradation of the device. This diagnostic method does not require special equipment to be installed on the motor-operated device, and the current sensing may be performed at remote control locations, e.g., where the motor-operated devices are used in accessible or hostile environments.

  5. A Delicate Nanoscale Motor Made by Nature—The Bacterial Flagellar Motor

    PubMed Central

    Xue, Ruidong; Ma, Qi

    2015-01-01

    The bacterial flagellar motor (BFM) is a molecular complex ca. 45 nm in diameter that rotates the propeller that makes nearly all bacteria swim. The motor self‐assembles out of ca. 20 different proteins and can not only rotate at up to 50 000 rpm, but can also switch rotational direction in milliseconds and navigate its environment to maneuver, on average, towards regions of greater benefit. The BFM is a pinnacle of evolution that informs and inspires the design of novel nanotechnology in the new era of synthetic biology. PMID:27980978

  6. A rotary motor drives Flavobacterium gliding.

    PubMed

    Shrivastava, Abhishek; Lele, Pushkar P; Berg, Howard C

    2015-02-02

    Cells of Flavobacterium johnsoniae, a rod-shaped bacterium devoid of pili or flagella, glide over glass at speeds of 2-4 μm/s [1]. Gliding is powered by a protonmotive force [2], but the machinery required for this motion is not known. Usually, cells move along straight paths, but sometimes they exhibit a reciprocal motion, attach near one pole and flip end over end, or rotate. This behavior is similar to that of a Cytophaga species described earlier [3]. Development of genetic tools for F. johnsoniae led to discovery of proteins involved in gliding [4]. These include the surface adhesin SprB that forms filaments about 160 nm long by 6 nm in diameter, which, when labeled with a fluorescent antibody [2] or a latex bead [5], are seen to move longitudinally down the length of a cell, occasionally shifting positions to the right or the left. Evidently, interaction of these filaments with a surface produces gliding. To learn more about the gliding motor, we sheared cells to reduce the number and size of SprB filaments and tethered cells to glass by adding anti-SprB antibody. Cells spun about fixed points, mostly counterclockwise, rotating at speeds of 1 Hz or more. The torques required to sustain such speeds were large, comparable to those generated by the flagellar rotary motor. However, we found that a gliding motor runs at constant speed rather than at constant torque. Now, there are three rotary motors powered by protonmotive force: the bacterial flagellar motor, the Fo ATP synthase, and the gliding motor.

  7. Sample solution constraints on motor-driven diagnostic nanodevices.

    PubMed

    Korten, Slobodanka; Albet-Torres, Nuria; Paderi, Francesca; ten Siethoff, Lasse; Diez, Stefan; Korten, Till; te Kronnie, Geertruy; Månsson, Alf

    2013-03-07

    The last decade has seen appreciable advancements in efforts towards increased portability of lab-on-a-chip devices by substituting microfluidics with molecular motor-based transportation. As of now, first proof-of-principle devices have analyzed protein mixtures of low complexity, such as target protein molecules in buffer solutions optimized for molecular motor performance. However, in a diagnostic work-up, lab-on-a-chip devices need to be compatible with complex biological samples. While it has been shown that such samples do not interfere with crucial steps in molecular diagnostics (for example antibody-antigen recognition), their effect on molecular motors is unknown. This critical and long overlooked issue is addressed here. In particular, we studied the effects of blood, cell lysates and solutions containing genomic DNA extracts on actomyosin and kinesin-microtubule-based transport, the two biomolecular motor systems that are most promising for lab-on-a-chip applications. We found that motor function is well preserved at defined dilutions of most of the investigated biological samples and demonstrated a molecular motor-driven label-free blood type test. Our results support the feasibility of molecular-motor driven nanodevices for diagnostic point-of-care applications and also demonstrate important constraints imposed by sample composition and device design that apply both to kinesin-microtubule and actomyosin driven applications.

  8. 46 CFR 169.684 - Overcurrent protection for motors and motor branch circuits.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Overcurrent protection for motors and motor branch... motors and motor branch circuits. (a) Except as provided in paragraph (d) of this section, each motor... motor that is responsive to motor current or to both motor current and temperature may be used. (b)...

  9. 46 CFR 169.684 - Overcurrent protection for motors and motor branch circuits.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Overcurrent protection for motors and motor branch... motors and motor branch circuits. (a) Except as provided in paragraph (d) of this section, each motor... motor that is responsive to motor current or to both motor current and temperature may be used. (b)...

  10. Hybrid-fuel bacterial flagellar motors in Escherichia coli.

    PubMed

    Sowa, Yoshiyuki; Homma, Michio; Ishijima, Akihiko; Berry, Richard M

    2014-03-04

    The bacterial flagellar motor rotates driven by an electrochemical ion gradient across the cytoplasmic membrane, either H(+) or Na(+) ions. The motor consists of a rotor ∼50 nm in diameter surrounded by multiple torque-generating ion-conducting stator units. Stator units exchange spontaneously between the motor and a pool in the cytoplasmic membrane on a timescale of minutes, and their stability in the motor is dependent upon the ion gradient. We report a genetically engineered hybrid-fuel flagellar motor in Escherichia coli that contains both H(+)- and Na(+)-driven stator components and runs on both types of ion gradient. We controlled the number of each type of stator unit in the motor by protein expression levels and Na(+) concentration ([Na(+)]), using speed changes of single motors driving 1-μm polystyrene beads to determine stator unit numbers. De-energized motors changed from locked to freely rotating on a timescale similar to that of spontaneous stator unit exchange. Hybrid motor speed is simply the sum of speeds attributable to individual stator units of each type. With Na(+) and H(+) stator components expressed at high and medium levels, respectively, Na(+) stator units dominate at high [Na(+)] and are replaced by H(+) units when Na(+) is removed. Thus, competition between stator units for spaces in a motor and sensitivity of each type to its own ion gradient combine to allow hybrid motors to adapt to the prevailing ion gradient. We speculate that a similar process may occur in species that naturally express both H(+) and Na(+) stator components sharing a common rotor.

  11. Magnetically Coupled Adjustable Speed Motor Drives - Motor Tip Sheet #13

    SciTech Connect

    2008-07-01

    Alternating current electric motors rotate at a nearly constant speed that is determined by motor design and line frequency. Energy savings of 50% or more may be available when fixed speed systems are modified to allow the motor speed to match variable load requirements of a centrifugal fan or pump.

  12. Method for assessing motor insulation on operating motors

    DOEpatents

    Kueck, J.D.; Otaduy, P.J.

    1997-03-18

    A method for monitoring the condition of electrical-motor-driven devices is disclosed. The method is achieved by monitoring electrical variables associated with the functioning of an operating motor, applying these electrical variables to a three phase equivalent circuit and determining non-symmetrical faults in the operating motor based upon symmetrical components analysis techniques. 15 figs.

  13. Method for assessing motor insulation on operating motors

    DOEpatents

    Kueck, John D.; Otaduy, Pedro J.

    1997-01-01

    A method for monitoring the condition of electrical-motor-driven devices. The method is achieved by monitoring electrical variables associated with the functioning of an operating motor, applying these electrical variables to a three phase equivalent circuit and determining non-symmetrical faults in the operating motor based upon symmetrical components analysis techniques.

  14. Electric motor model repair specifications

    SciTech Connect

    1995-08-01

    These model repair specifications list the minimum requirements for repair and overhaul of polyphase AC squireel cage induction motors. All power ranges, voltages, and speeds of squirrel cage motors are covered.

  15. Reciprocating Linear Electric Motor

    NASA Technical Reports Server (NTRS)

    Goldowsky, M. P.

    1984-01-01

    Features include structural simplicity and good force/displacement characteristics. Reciprocating motor has simple, rugged construction, relatively low reciprocating weight, improved power delivery, and improved force control. Wear reduced by use of magnetic bearings. Intended to provide drivers for long-lived Stirling-cycle cryogenic refrigerators, concept has less exotic applications, such as fuel pumps.

  16. Perceptual-Motor Dysfunction.

    ERIC Educational Resources Information Center

    Pyfer, Jean L.

    Discussed are theoretical and treatment aspects of perceptual motor dysfunction and rehabilitation in 4- to 12-year-old academically failing children involved in a 3-year investigation at the University of Kansas. The program is said to stress increasing the amount of stimulation received by sensory receptors of the vestibular, reflex, and haptic…

  17. Thiokol Solid Rocket Motors

    NASA Technical Reports Server (NTRS)

    Graves, S. R.

    2000-01-01

    This paper presents viewgraphs on thiokol solid rocket motors. The topics include: 1) Communications; 2) Military and government intelligence; 3) Positioning satellites; 4) Remote sensing; 5) Space burial; 6) Science; 7) Space manufacturing; 8) Advertising; 9) Space rescue space debris management; 10) Space tourism; 11) Space settlements; 12) Hazardous waste disposal; 13) Extraterrestrial resources; 14) Fast package delivery; and 15) Space utilities.

  18. The St. Louis Motor

    ERIC Educational Resources Information Center

    Greenslade, Thomas B., Jr.

    2011-01-01

    The St. Louis Motor, invented in 1909, is unique among physics apparatus for being named for a geographical place rather than a physicist. The sturdy little device (Fig. 1) has never been out of production. Any older school or physics department that has not done a catastrophic housecleaning in the last 20 years will certainly have a small flock…

  19. Rotation of artificial rotor axles in rotary molecular motors.

    PubMed

    Baba, Mihori; Iwamoto, Kousuke; Iino, Ryota; Ueno, Hiroshi; Hara, Mayu; Nakanishi, Atsuko; Kishikawa, Jun-Ichi; Noji, Hiroyuki; Yokoyama, Ken

    2016-10-04

    F1- and V1-ATPase are rotary molecular motors that convert chemical energy released upon ATP hydrolysis into torque to rotate a central rotor axle against the surrounding catalytic stator cylinder with high efficiency. How conformational change occurring in the stator is coupled to the rotary motion of the axle is the key unknown in the mechanism of rotary motors. Here, we generated chimeric motor proteins by inserting an exogenous rod protein, FliJ, into the stator ring of F1 or of V1 and tested the rotation properties of these chimeric motors. Both motors showed unidirectional and continuous rotation, despite no obvious homology in amino acid sequence between FliJ and the intrinsic rotor subunit of F1 or V1 These results showed that any residue-specific interactions between the stator and rotor are not a prerequisite for unidirectional rotation of both F1 and V1 The torque of chimeric motors estimated from viscous friction of the rotation probe against medium revealed that whereas the F1-FliJ chimera generates only 10% of WT F1, the V1-FliJ chimera generates torque comparable to that of V1 with the native axle protein that is structurally more similar to FliJ than the native rotor of F1 This suggests that the gross structural mismatch hinders smooth rotation of FliJ accompanied with the stator ring of F1.

  20. Rotation of artificial rotor axles in rotary molecular motors

    PubMed Central

    Baba, Mihori; Iwamoto, Kousuke; Ueno, Hiroshi; Hara, Mayu; Nakanishi, Atsuko; Kishikawa, Jun-ichi; Noji, Hiroyuki; Yokoyama, Ken

    2016-01-01

    F1- and V1-ATPase are rotary molecular motors that convert chemical energy released upon ATP hydrolysis into torque to rotate a central rotor axle against the surrounding catalytic stator cylinder with high efficiency. How conformational change occurring in the stator is coupled to the rotary motion of the axle is the key unknown in the mechanism of rotary motors. Here, we generated chimeric motor proteins by inserting an exogenous rod protein, FliJ, into the stator ring of F1 or of V1 and tested the rotation properties of these chimeric motors. Both motors showed unidirectional and continuous rotation, despite no obvious homology in amino acid sequence between FliJ and the intrinsic rotor subunit of F1 or V1. These results showed that any residue-specific interactions between the stator and rotor are not a prerequisite for unidirectional rotation of both F1 and V1. The torque of chimeric motors estimated from viscous friction of the rotation probe against medium revealed that whereas the F1-FliJ chimera generates only 10% of WT F1, the V1-FliJ chimera generates torque comparable to that of V1 with the native axle protein that is structurally more similar to FliJ than the native rotor of F1. This suggests that the gross structural mismatch hinders smooth rotation of FliJ accompanied with the stator ring of F1. PMID:27647891

  1. Tandem motors reduce well costs

    SciTech Connect

    Hooper, M.; Daigle, C.; Crowe, R.

    1995-10-01

    The new generation of tandem mud motors that recently appeared on the drilling scene is significantly affecting drilling efficiency worldwide. These motors provide drillers with increased horsepower at the bit, higher torque, and faster rates of penetration (ROP). With advanced engineering and more durable materials, motor life is being extended, thereby increasing the time between bit trips and reducing drilling costs. This article reviews the performance, design, and operation of these motors.

  2. The Alzheimer Amyloid Precursor Protein (APP) and Fe65, an APP-Binding Protein, Regulate Cell Movement

    PubMed Central

    Sabo, Shasta L.; Ikin, Annat F.; Buxbaum, Joseph D.; Greengard, Paul

    2001-01-01

    FE65 binds to the Alzheimer amyloid precursor protein (APP), but the function of this interaction has not been identified. Here, we report that APP and FE65 are involved in regulation of cell movement. APP and FE65 colocalize with actin and Mena, an Abl-associated signaling protein thought to regulate actin dynamics, in lamellipodia. APP and FE65 specifically concentrate with β1-integrin in dynamic adhesion sites known as focal complexes, but not in more static adhesion sites known as focal adhesions. Overexpression of APP accelerates cell migration in an MDCK cell wound–healing assay. Coexpression of APP and FE65 dramatically enhances the effect of APP on cell movement, probably by regulating the amount of APP at the cell surface. These data are consistent with a role for FE65 and APP, possibly in a Mena-containing macromolecular complex, in regulation of actin-based motility. PMID:11425871

  3. How Biophysics May Help Us Understand the Flagellar Motor of Bacteria Which Cause Infections.

    PubMed

    Baker, Matthew A B

    2016-01-01

    Motor proteins are molecules which convert chemical energy to mechanical work and are responsible for motility across all levels: for transport within a cell, for the motion of an individual cell in its surroundings, and for movement in multicellular aggregates, such as muscles. The bacterial flagellar motor is one of the canonical examples of a molecular complex made from several motor proteins, which self-assembles on demand and provides the locomotive force for bacteria. This locomotion provides a key aspect of bacteria's prevalence. Here, we outline the biophysics behind the assembly, the energetics, the switching and the rotation of this remarkable nanoscale electric motor that is Nature's first wheel.

  4. Motor Vehicle Theft. Special Report.

    ERIC Educational Resources Information Center

    Harlow, Caroline Wolf

    Thirteen years of data from the National Crime Survey were analyzed to examine the characteristics of motor vehicle theft, to identify trends during the past 13 years, and to determine who are most likely to be victims of motor vehicle theft. All motor vehicle thefts reported to the National Crime Survey from 1973 through 1985 were examined.…

  5. Speed control for synchronous motors

    NASA Technical Reports Server (NTRS)

    Packard, H.; Schott, J.

    1981-01-01

    Feedback circuit controls fluctuations in speed of synchronous ac motor. Voltage proportional to phase angle is developed by phase detector, rectified, amplified, compared to threshold, and reapplied positively or negatively to motor excitation circuit. Speed control reduces wow and flutter of audio turntables and tape recorders, and enhances hunting in gyroscope motors.

  6. Experiments with a DC Motor

    ERIC Educational Resources Information Center

    Kraftmakher, Yaakov

    2010-01-01

    Experiments with an electric motor provide good opportunity to demonstrate some basic laws of electricity and magnetism. The aim of the experiments with a low-power dc motor is to show how the motor approaches its steady rotation and how its torque, mechanical power and efficiency depend on the rotation velocity. The tight relationship between the…

  7. Brushless direct-current motors

    NASA Technical Reports Server (NTRS)

    Bahm, E. J.

    1970-01-01

    Survey results are presented on the use of unconventional motor windings and switching sequences to optimize performance of brushless dc motors. A motor was built, each coil terminal having a separate, accessible lead. With the shaft and all electronics excluded, length and outside diameter measured 1.25 and 0.75 in., respectively.

  8. Motor Education: Educational Development Programs.

    ERIC Educational Resources Information Center

    Tansley, A. E.

    This booklet presents educational programs and activities focusing on motor skills for 5- to 9-year-old children and older children with learning problems. The premise of the activities is that the acquisition of motor skills is essential to basic learning. The role of language as a mediator and controller of motor development is emphasized. The…

  9. Multiple stage miniature stepping motor

    DOEpatents

    Niven, William A.; Shikany, S. David; Shira, Michael L.

    1981-01-01

    A stepping motor comprising a plurality of stages which may be selectively activated to effect stepping movement of the motor, and which are mounted along a common rotor shaft to achieve considerable reduction in motor size and minimum diameter, whereby sequential activation of the stages results in successive rotor steps with direction being determined by the particular activating sequence followed.

  10. Self-organization of microtubules and motors

    NASA Astrophysics Data System (ADS)

    Ndlec, F. J.; Surrey, T.; Maggs, A. C.; Leibler, S.

    1997-09-01

    Cellular structures are established and maintained through a dynamic interplay between assembly and regulatory processes. Self-organization of molecular components provides a variety of possible spatial structures: the regulatory machinery chooses the most appropriate to express a given cellular function. Here we study the extent and the characteristics of self-organization using microtubules and molecular motors as a model system. These components are known to participate in the formation of many cellular structures, such as the dynamic asters found in mitotic and meiotic spindles. Purified motors and microtubules have previously been observed to form asters in vitro. We have reproduced this result with a simple system consisting solely of multi-headed constructs of the motor protein kinesin and stabilized microtubules. We show that dynamic asters can also be obtained from a homogeneous solution of tubulin and motors. By varying the relative concentrations of the components, we obtain a variety of self-organized structures. Further, by studying this process in a constrained geometry of micro-fabricated glass chambers, we demonstrate that the same final structure can be reached through different assembly `pathways'.

  11. Motor sequence learning and motor adaptation in primary cervical dystonia.

    PubMed

    Katschnig-Winter, Petra; Schwingenschuh, Petra; Davare, Marco; Sadnicka, Anna; Schmidt, Reinhold; Rothwell, John C; Bhatia, Kailash P; Edwards, Mark J

    2014-06-01

    Motor sequence learning and motor adaptation rely on overlapping circuits predominantly involving the basal ganglia and cerebellum. Given the importance of these brain regions to the pathophysiology of primary dystonia, and the previous finding of abnormal motor sequence learning in DYT1 gene carriers, we explored motor sequence learning and motor adaptation in patients with primary cervical dystonia. We recruited 12 patients with cervical dystonia and 11 healthy controls matched for age. Subjects used a joystick to move a cursor from a central starting point to radial targets as fast and accurately as possible. Using this device, we recorded baseline motor performance, motor sequence learning and a visuomotor adaptation task. Patients with cervical dystonia had a significantly higher peak velocity than controls. Baseline performance with random target presentation was otherwise normal. Patients and controls had similar levels of motor sequence learning and motor adaptation. Our patients had significantly higher peak velocity compared to controls, with similar movement times, implying a different performance strategy. The preservation of motor sequence learning in cervical dystonia patients contrasts with the previously observed deficit seen in patients with DYT1 gene mutations, supporting the hypothesis of differing pathophysiology in different forms of primary dystonia. Normal motor adaptation is an interesting finding. With our paradigm we did not find evidence that the previously documented cerebellar abnormalities in cervical dystonia have a behavioral correlate, and thus could be compensatory or reflect "contamination" rather than being directly pathological.

  12. Collective transport of weakly interacting molecular motors with Langmuir kinetics

    NASA Astrophysics Data System (ADS)

    Chandel, Sameep; Chaudhuri, Abhishek; Muhuri, Sudipto

    2015-04-01

    Filament-based intracellular transport involves the collective action of molecular motor proteins. Experimental evidences suggest that microtubule (MT) filament bound motor proteins such as kinesins weakly interact among themselves during transport and with the surrounding cellular environment. Motivated by these observations we study a driven lattice gas model for collective unidirectional transport of molecular motors on open filament. This model incorporates short-range next-nearest-neighbour (NNN) interactions between the motors and couples the transport process on filament with surrounding cellular environment through adsorption-desorption Langmuir kinetics (LK) of the motors. We analyse this model within the framework of a mean-field (MF) theory in the limit of weak interactions between the motors. We point to the mapping of this model with the non-conserved version of the Katz-Lebowitz-Spohn (KLS) model. The system exhibits rich phase behavior with a variety of inhomogeneous phases including localized shocks in the bulk of the filament. We obtain the steady-state density and current profiles, analyse their variation as a function of the strength of interaction and construct the non-equilibrium MF phase diagram. We compare these MF results with Monte Carlo simulations and find that the MF analysis shows reasonably good agreement with simulation results as long as the motors are weakly interacting. For sufficently strong NNN interaction between the motors, the mean-field results deviate significantly, and for very strong NNN interaction in the absence of LK, the current in the lattice is determined solely by the NNN interaction parameter and it becomes independent of entry and exit rates of motors at the filament boundaries.

  13. Variation in motor output and motor performance in a centrally generated motor pattern.

    PubMed

    Wenning, Angela; Norris, Brian J; Doloc-Mihu, Anca; Calabrese, Ronald L

    2014-07-01

    Central pattern generators (CPGs) produce motor patterns that ultimately drive motor outputs. We studied how functional motor performance is achieved, specifically, whether the variation seen in motor patterns is reflected in motor performance and whether fictive motor patterns differ from those in vivo. We used the leech heartbeat system in which a bilaterally symmetrical CPG coordinates segmental heart motor neurons and two segmented heart tubes into two mutually exclusive coordination modes: rear-to-front peristaltic on one side and nearly synchronous on the other, with regular side-to-side switches. We assessed individual variability of the motor pattern and the beat pattern in vivo. To quantify the beat pattern we imaged intact adults. To quantify the phase relations between motor neurons and heart constrictions we recorded extracellularly from two heart motor neurons and movement from the corresponding heart segments in minimally dissected leeches. Variation in the motor pattern was reflected in motor performance only in the peristaltic mode, where larger intersegmental phase differences in the motor neurons resulted in larger phase differences between heart constrictions. Fictive motor patterns differed from those in vivo only in the synchronous mode, where intersegmental phase differences in vivo had a larger front-to-rear bias and were more constrained. Additionally, load-influenced constriction timing might explain the amplification of the phase differences between heart segments in the peristaltic mode and the higher variability in motor output due to body shape assumed in this soft-bodied animal. The motor pattern determines the beat pattern, peristaltic or synchronous, but heart mechanics influence the phase relations achieved.

  14. Motor technology for mining applications advances

    SciTech Connect

    Fiscor, S.

    2009-08-15

    AC motors are steadily replacing DC motors in mining and mineral processing equipment, requiring less maintenance. The permanent magnet rotor, or the synchronous motor, has enabled Blador to introduce a line of cooling tower motors. Synchronous motors are soon likely to take over from the induction motor. 1 photo.

  15. Big Savings from Smart Motors

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Chesebrough-Pond's operates 32 plants across the nation and in those plants are more than 10,000 electric motors. In an effort to cut down on waste of electrical power used by these motors, Chesebrough organized a Corporate Advanced Technology Group to devise ways of improving productivity and cut manufacturing costs. Chesebrough used NASA's Marshall Space Flight Center's Power Factor Controller technology as a departure point for development of their own computerized motor controller that enables motors to operate at maximum efficiency regardless of the motor's applications or operating condition.

  16. Molecular Motors and Stochastic Models

    NASA Astrophysics Data System (ADS)

    Lipowsky, Reinhard

    The behavior of single molecular motors such as kinesin or myosin V, which move on linear filaments, involves a nontrivial coupling between the biochemical motor cycle and the stochastic movement. This coupling can be studied in the framework of nonuniform ratchet models which are characterized by spatially localized transition rates between the different internal states of the motor. These models can be classified according to their functional relationships between the motor velocity and the concentration of the fuel molecules. The simplest such relationship applies to two subclasses of models for dimeric kinesin and agrees with experimental observations on this molecular motor.

  17. Velocity Fluctuations in Kinesin-1 Gliding Motility Assays Originate in Motor Attachment Geometry Variations.

    PubMed

    Palacci, Henri; Idan, Ofer; Armstrong, Megan J; Agarwal, Ashutosh; Nitta, Takahiro; Hess, Henry

    2016-08-09

    Motor proteins such as myosin and kinesin play a major role in cellular cargo transport, muscle contraction, cell division, and engineered nanodevices. Quantifying the collective behavior of coupled motors is critical to our understanding of these systems. An excellent model system is the gliding motility assay, where hundreds of surface-adhered motors propel one cytoskeletal filament such as an actin filament or a microtubule. The filament motion can be observed using fluorescence microscopy, revealing fluctuations in gliding velocity. These velocity fluctuations have been previously quantified by a motional diffusion coefficient, which Sekimoto and Tawada explained as arising from the addition and removal of motors from the linear array of motors propelling the filament as it advances, assuming that different motors are not equally efficient in their force generation. A computational model of kinesin head diffusion and binding to the microtubule allowed us to quantify the heterogeneity of motor efficiency arising from the combination of anharmonic tail stiffness and varying attachment geometries assuming random motor locations on the surface and an absence of coordination between motors. Knowledge of the heterogeneity allows the calculation of the proportionality constant between the motional diffusion coefficient and the motor density. The calculated value (0.3) is within a standard error of our measurements of the motional diffusion coefficient on surfaces with varying motor densities calibrated by landing rate experiments. This allowed us to quantify the loss in efficiency of coupled molecular motors arising from heterogeneity in the attachment geometry.

  18. Prospective errors determine motor learning

    PubMed Central

    Takiyama, Ken; Hirashima, Masaya; Nozaki, Daichi

    2015-01-01

    Diverse features of motor learning have been reported by numerous studies, but no single theoretical framework concurrently accounts for these features. Here, we propose a model for motor learning to explain these features in a unified way by extending a motor primitive framework. The model assumes that the recruitment pattern of motor primitives is determined by the predicted movement error of an upcoming movement (prospective error). To validate this idea, we perform a behavioural experiment to examine the model’s novel prediction: after experiencing an environment in which the movement error is more easily predictable, subsequent motor learning should become faster. The experimental results support our prediction, suggesting that the prospective error might be encoded in the motor primitives. Furthermore, we demonstrate that this model has a strong explanatory power to reproduce a wide variety of motor-learning-related phenomena that have been separately explained by different computational models. PMID:25635628

  19. Magnetostrictive direct drive motors

    NASA Technical Reports Server (NTRS)

    Naik, Dipak; Dehoff, P. H.

    1992-01-01

    A new rare earth alloy, Terfenol-D, combines low frequency operation and extremely high energy density with high magnetostriction. Its material properties make it suitable as a drive element for actuators requiring high output torque. The high strains, the high forces and the high controllability of Terfenol alloys provide a powerful and challenging basis for new ways to generate motion in actuators. Two prototypes of motors using Terfenol-D rods were developed at NASA Goddard. The basic principles of operation are provided of the motor along with other relevant details. A conceptual design of a torque limiting safety clutch/brake under development is illustrated. Also, preliminary design drawings of a linear actuator using Terfenol-D is shown.

  20. Ironless armature torque motor

    NASA Technical Reports Server (NTRS)

    Fisher, R. L.

    1972-01-01

    Four iron-less armature torque motors, four Hall device position sensor assemblies, and two test fixtures were fabricated. The design approach utilized samarium cobalt permanent magnets, a large airgap, and a three-phase winding in a stationary ironless armature. Hall devices were employed to sense rotor position. An ironless armature torque motor having an outer diameter of 4.25 inches was developed to produce a torque constant of 65 ounce-inches per ampere with a resistance of 20.5 ohms. The total weight, including structural elements, was 1.58 pounds. Test results indicated that all specifications were met except for generated voltage waveform. It is recommended that investigations be made concerning the generated voltage waveform to determine if it may be improved.

  1. Advanced Motor Drives Studies

    NASA Technical Reports Server (NTRS)

    Ehsani, M.; Tchamdjou, A.

    1997-01-01

    This report presents an evaluation of advanced motor drive systems as a replacement for the hydrazine fueled APU units. The replacement technology must meet several requirements which are particular to the space applications and the Orbiter in general. Some of these requirements are high efficiency, small size, high power density. In the first part of the study several motors are compared, based on their characteristics and in light of the Orbiter requirements. The best candidate, the brushless DC is chosen because of its particularly good performance with regards to efficiency. Several power electronics drive technologies including the conventional three-phase hard switched and several soft-switched inverters are then presented. In the last part of the study, a soft-switched inverter is analyzed and compared to its conventional hard-switched counterpart. Optimal efficiency is a basic requirement for space applications and the soft-switched technology represents an unavoidable trend for the future.

  2. The St. Louis Motor

    NASA Astrophysics Data System (ADS)

    Greenslade, Thomas B.

    2011-10-01

    The St. Louis Motor, invented in 1909, is unique among physics apparatus for being named for a geographical place rather than a physicist. The sturdy little device (Fig. 1) has never been out of production. Any older school or physics department that has not done a catastrophic housecleaning in the last 20 years will certainly have a small flock of them in the back room.

  3. Motor neurone disease.

    PubMed

    2016-03-23

    Essential facts Motor neurone disease describes a group of related diseases, affecting the neurones in the brain and spinal cord. Progressive, incurable and life-limiting, MND is rare, with about 1,100 people developing it each year in the UK and up to 5,000 people affected at any one time. One third of people will die within a year of diagnosis and more than half within two years. About 5% to 10% are alive at ten years.

  4. EPDM rocket motor insulation

    NASA Technical Reports Server (NTRS)

    Guillot, David G. (Inventor); Harvey, Albert R. (Inventor)

    2004-01-01

    A novel and improved EPDM formulation for a solid propellant rocket motor is described wherein hexadiene EPDM monomer components are replaced by alkylidene norbornene components, and, with appropriate adjustment of curing and other additives, functionally required rheological and physical characteristics are achieved with the desired compatibility with any one of a plurality of solid filler materials, e.g., powder silica, carbon fibers or aramid fibers, and with appropriate adhesion and extended storage or shelf-life characteristics.

  5. Libert-E Motor

    ERIC Educational Resources Information Center

    Sieloff, Susan F.; Kinnunen, Raymond; Chevarley, Joseph

    2011-01-01

    Kei Yun Wong has big dreams. She has been entrusted with the United States launch of Libert-E Motor, a new line of Chinese-manufactured electric scooters. With only $750,000 of her original budget of $3 million left, she needs to make sure that the launch succeeds, as it represents the initial step in her desire to create the first Chinese global…

  6. EPDM rocket motor insulation

    NASA Technical Reports Server (NTRS)

    Guillot, David G. (Inventor); Harvey, Albert R. (Inventor)

    2008-01-01

    A novel and improved EPDM formulation for a solid propellant rocket motor is described wherein hexadiene EPDM monomer components are replaced by alkylidene norbornene components, and, with appropriate adjustment of curing and other additives, functionally required rheological and physical characteristics are achieved with the desired compatibility with any one of a plurality of solid filler materials, e.g., powder silica, carbon fibers or aramid fibers, and with appropriate adhesion and extended storage or shelf-life characteristics.

  7. EPDM rocket motor insulation

    NASA Technical Reports Server (NTRS)

    Guillot, David G. (Inventor); Harvey, Albert R. (Inventor)

    2003-01-01

    A novel and improved EPDM formulation for a solid propellant rocket motor is described wherein hexadiene EPDM monomer components are replaced by alkylidene norbornene components and with appropriate adjustment of curing and other additives functionally-required rheological and physical characteristics are achieved with the desired compatibility with any one of a plurality of solid filler materials, e.g. powder silica, carbon fibers or aramid fibers, and with appropriate adhesion and extended storage or shelf life characteristics.

  8. Dyspraxia, motor function and visual-motor integration in autism.

    PubMed

    Miller, M; Chukoskie, L; Zinni, M; Townsend, J; Trauner, D

    2014-08-01

    This project assessed dyspraxia in high-functioning school aged children with autism with a focus on Ideational Praxis. We examined the association of specific underlying motor function including eye movement with ideational dyspraxia (sequences of skilled movements) as well as the possible role of visual-motor integration in dyspraxia. We found that compared to IQ-, sex- and age-matched typically developing children, the children with autism performed significantly worse on: Ideational and Buccofacial praxis; a broad range of motor tests, including measures of simple motor skill, timing and accuracy of saccadic eye movements and motor coordination; and tests of visual-motor integration. Impairments in individual children with autism were heterogeneous in nature, although when we examined the praxis data as a function of a qualitative measure representing motor timing, we found that children with poor motor timing performed worse on all praxis categories and had slower and less accurate eye movements while those with regular timing performed as well as typical children on those same tasks. Our data provide evidence that both motor function and visual-motor integration contribute to dyspraxia. We suggest that dyspraxia in autism involves cerebellar mechanisms of movement control and the integration of these mechanisms with cortical networks implicated in praxis.

  9. Segmentation of the mouse fourth deep lumbrical muscle connectome reveals concentric organisation of motor units.

    PubMed

    Hirst, Theodore C; Ribchester, Richard R

    2013-10-01

    Connectomic analysis of the nervous system aims to discover and establish principles that underpin normal and abnormal neural connectivity and function. Here we performed image analysis of motor unit connectivity in the fourth deep lumbrical muscle (4DL) of mice, using transgenic expression of fluorescent protein in motor neurones as a morphological reporter. We developed a method that accelerated segmentation of confocal image projections of 4DL motor units, by applying high resolution (63×, 1.4 NA objective) imaging or deconvolution only where either proved necessary, in order to resolve axon crossings that produced ambiguities in the correct assignment of axon terminals to identified motor units imaged at lower optical resolution (40×, 1.3 NA). The 4DL muscles contained between 4 and 9 motor units and motor unit sizes ranged in distribution from 3 to 111 motor nerve terminals per unit. Several structural properties of the motor units were consistent with those reported in other muscles, including suboptimal wiring length and distribution of motor unit size. Surprisingly, however, small motor units were confined to a region of the muscle near the nerve entry point, whereas their larger counterparts were progressively more widely dispersed, suggesting a previously unrecognised form of segregated motor innervation in this muscle. We also found small but significant differences in variance of motor endplate length in motor units, which correlated weakly with their motor unit size. Thus, our connectomic analysis has revealed a pattern of concentric innervation that may perhaps also exist in other, cylindrical muscles that have not previously been thought to show segregated motor unit organisation. This organisation may be the outcome of competition during postnatal development based on intrinsic neuronal differences in synaptic size or synaptic strength that generates a territorial hierarchy in motor unit size and disposition.

  10. How molecular motors are arranged on a cargo is important for vesicular transport.

    PubMed

    Erickson, Robert P; Jia, Zhiyuan; Gross, Steven P; Yu, Clare C

    2011-05-01

    The spatial organization of the cell depends upon intracellular trafficking of cargos hauled along microtubules and actin filaments by the molecular motor proteins kinesin, dynein, and myosin. Although much is known about how single motors function, there is significant evidence that cargos in vivo are carried by multiple motors. While some aspects of multiple motor function have received attention, how the cargo itself--and motor organization on the cargo--affects transport has not been considered. To address this, we have developed a three-dimensional Monte Carlo simulation of motors transporting a spherical cargo, subject to thermal fluctuations that produce both rotational and translational diffusion. We found that these fluctuations could exert a load on the motor(s), significantly decreasing the mean travel distance and velocity of large cargos, especially at large viscosities. In addition, the presence of the cargo could dramatically help the motor to bind productively to the microtubule: the relatively slow translational and rotational diffusion of moderately sized cargos gave the motors ample opportunity to bind to a microtubule before the motor/cargo ensemble diffuses out of range of that microtubule. For rapidly diffusing cargos, the probability of their binding to a microtubule was high if there were nearby microtubules that they could easily reach by translational diffusion. Our simulations found that one reason why motors may be approximately 100 nm long is to improve their 'on' rates when attached to comparably sized cargos. Finally, our results suggested that to efficiently regulate the number of active motors, motors should be clustered together rather than spread randomly over the surface of the cargo. While our simulation uses the specific parameters for kinesin, these effects result from generic properties of the motors, cargos, and filaments, so they should apply to other motors as well.

  11. Motor Fuel Excise Taxes

    SciTech Connect

    2015-09-01

    A new report from the National Renewable Energy Laboratory (NREL) explores the role of alternative fuels and energy efficient vehicles in motor fuel taxes. Throughout the United States, it is common practice for federal, state, and local governments to tax motor fuels on a per gallon basis to fund construction and maintenance of our transportation infrastructure. In recent years, however, expenses have outpaced revenues creating substantial funding shortfalls that have required supplemental funding sources. While rising infrastructure costs and the decreasing purchasing power of the gas tax are significant factors contributing to the shortfall, the increased use of alternative fuels and more stringent fuel economy standards are also exacerbating revenue shortfalls. The current dynamic places vehicle efficiency and petroleum use reduction polices at direct odds with policies promoting robust transportation infrastructure. Understanding the energy, transportation, and environmental tradeoffs of motor fuel tax policies can be complicated, but recent experiences at the state level are helping policymakers align their energy and environmental priorities with highway funding requirements.

  12. Motor actuated vacuum door

    NASA Astrophysics Data System (ADS)

    Hanagud, A. V.

    1986-10-01

    Doors that allow scientific instruments to record and retrieve the observed data are often required to be designed and installed as a part of sounding rocket hardware. The motor-actuated vacuum door was designed to maintain a medium vacuum of the order of 0.0001 torr or better while closed, and to provide an opening 15 inches long x 8.5 inches wide while open for cameras to image Halley's comet. When the electric motor receives the instruction to open the door through the payload battery, timer, and relay circuit, the first operation is to unlock the door. After unlatching, the torque transmitted by the motor to the main shaft through the links opens the door. A microswitch actuator, which rides on the linear motion conversion mechanism, is adjusted to trip the limit switch at the end of the travel. The process is repeated in the reverse order to close the door. 'O' rings are designed to maintain the seal. Door mechanisms similar to the one described have flown on Aerobee 17.018 and Black Brant 27.047 payloads.

  13. A Stochastic Model for Microtubule Motors Describes the In Vivo Cytoplasmic Transport of Human Adenovirus

    PubMed Central

    Gazzola, Mattia; Burckhardt, Christoph J.; Bayati, Basil; Engelke, Martin; Greber, Urs F.; Koumoutsakos, Petros

    2009-01-01

    Cytoplasmic transport of organelles, nucleic acids and proteins on microtubules is usually bidirectional with dynein and kinesin motors mediating the delivery of cargoes in the cytoplasm. Here we combine live cell microscopy, single virus tracking and trajectory segmentation to systematically identify the parameters of a stochastic computational model of cargo transport by molecular motors on microtubules. The model parameters are identified using an evolutionary optimization algorithm to minimize the Kullback-Leibler divergence between the in silico and the in vivo run length and velocity distributions of the viruses on microtubules. The present stochastic model suggests that bidirectional transport of human adenoviruses can be explained without explicit motor coordination. The model enables the prediction of the number of motors active on the viral cargo during microtubule-dependent motions as well as the number of motor binding sites, with the protein hexon as the binding site for the motors. PMID:20041204

  14. A stochastic model for microtubule motors describes the in vivo cytoplasmic transport of human adenovirus.

    PubMed

    Gazzola, Mattia; Burckhardt, Christoph J; Bayati, Basil; Engelke, Martin; Greber, Urs F; Koumoutsakos, Petros

    2009-12-01

    Cytoplasmic transport of organelles, nucleic acids and proteins on microtubules is usually bidirectional with dynein and kinesin motors mediating the delivery of cargoes in the cytoplasm. Here we combine live cell microscopy, single virus tracking and trajectory segmentation to systematically identify the parameters of a stochastic computational model of cargo transport by molecular motors on microtubules. The model parameters are identified using an evolutionary optimization algorithm to minimize the Kullback-Leibler divergence between the in silico and the in vivo run length and velocity distributions of the viruses on microtubules. The present stochastic model suggests that bidirectional transport of human adenoviruses can be explained without explicit motor coordination. The model enables the prediction of the number of motors active on the viral cargo during microtubule-dependent motions as well as the number of motor binding sites, with the protein hexon as the binding site for the motors.

  15. Inflammation Effects on Motivation and Motor Activity: Role of Dopamine.

    PubMed

    Felger, Jennifer C; Treadway, Michael T

    2017-01-01

    Motivational and motor deficits are common in patients with depression and other psychiatric disorders, and are related to symptoms of anhedonia and motor retardation. These deficits in motivation and motor function are associated with alterations in corticostriatal neurocircuitry, which may reflect abnormalities in mesolimbic and mesostriatal dopamine (DA). One pathophysiologic pathway that may drive changes in DAergic corticostriatal circuitry is inflammation. Biomarkers of inflammation such as inflammatory cytokines and acute-phase proteins are reliably elevated in a significant proportion of psychiatric patients. A variety of inflammatory stimuli have been found to preferentially target basal ganglia function to lead to impaired motivation and motor activity. Findings have included inflammation-associated reductions in ventral striatal neural responses to reward anticipation, decreased DA and DA metabolites in cerebrospinal fluid, and decreased availability, and release of striatal DA, all of which correlated with symptoms of reduced motivation and/or motor retardation. Importantly, inflammation-associated symptoms are often difficult to treat, and evidence suggests that inflammation may decrease DA synthesis and availability, thus circumventing the efficacy of standard pharmacotherapies. This review will highlight the impact of administration of inflammatory stimuli on the brain in relation to motivation and motor function. Recent data demonstrating similar relationships between increased inflammation and altered DAergic corticostriatal circuitry and behavior in patients with major depressive disorder will also be presented. Finally, we will discuss the mechanisms by which inflammation affects DA neurotransmission and relevance to novel therapeutic strategies to treat reduced motivation and motor symptoms in patients with high inflammation.

  16. A synthetic DNA motor that transports nanoparticles along carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Cha, Tae-Gon; Pan, Jing; Chen, Haorong; Salgado, Janette; Li, Xiang; Mao, Chengde; Choi, Jong Hyun

    2014-01-01

    Intracellular protein motors have evolved to perform specific tasks critical to the function of cells such as intracellular trafficking and cell division. Kinesin and dynein motors, for example, transport cargoes in living cells by walking along microtubules powered by adenosine triphosphate hydrolysis. These motors can make discrete 8 nm centre-of-mass steps and can travel over 1 µm by changing their conformations during the course of adenosine triphosphate binding, hydrolysis and product release. Inspired by such biological machines, synthetic analogues have been developed including self-assembled DNA walkers that can make stepwise movements on RNA/DNA substrates or can function as programmable assembly lines. Here, we show that motors based on RNA-cleaving DNA enzymes can transport nanoparticle cargoes--CdS nanocrystals in this case--along single-walled carbon nanotubes. Our motors extract chemical energy from RNA molecules decorated on the nanotubes and use that energy to fuel autonomous, processive walking through a series of conformational changes along the one-dimensional track. The walking is controllable and adapts to changes in the local environment, which allows us to remotely direct `go' and `stop' actions. The translocation of individual motors can be visualized in real time using the visible fluorescence of the cargo nanoparticle and the near-infared emission of the carbon-nanotube track. We observed unidirectional movements of the molecular motors over 3 µm with a translocation velocity on the order of 1 nm min-1 under our experimental conditions.

  17. Coordinated Switching of Bacterial Flagellar Motors: Evidence for Direct Motor-Motor Coupling?

    NASA Astrophysics Data System (ADS)

    Hu, Bo; Tu, Yuhai

    2013-04-01

    The swimming of Escherichia coli is powered by its multiple flagellar motors. Each motor spins either clockwise or counterclockwise, under the control of an intracellular regulator, CheY-P. There can be two mechanisms (extrinsic and intrinsic) to coordinate the switching of bacterial motors. The extrinsic one arises from the fact that different motors in the same cell sense a common input (CheY-P) which fluctuates near the motors’ response threshold. An alternative, intrinsic mechanism is direct motor-motor coupling which makes synchronized switching energetically favorable. Here, we develop simple models for both mechanisms and uncover their different hallmarks. A quantitative comparison to the recent experiments suggests that the direct coupling mechanism may be accountable for the observed sharp correlation between motors in a single Escherichia coli. Possible origins of this coupling (e.g., hydrodynamic interaction) are discussed.

  18. Confined diffusion of transmembrane proteins and lipids induced by the same actin meshwork lining the plasma membrane.

    PubMed

    Fujiwara, Takahiro K; Iwasawa, Kokoro; Kalay, Ziya; Tsunoyama, Taka A; Watanabe, Yusuke; Umemura, Yasuhiro M; Murakoshi, Hideji; Suzuki, Kenichi G N; Nemoto, Yuri L; Morone, Nobuhiro; Kusumi, Akihiro

    2016-04-01

    The mechanisms by which the diffusion rate in the plasma membrane (PM) is regulated remain unresolved, despite their importance in spatially regulating the reaction rates in the PM. Proposed models include entrapment in nanoscale noncontiguous domains found in PtK2 cells, slow diffusion due to crowding, and actin-induced compartmentalization. Here, by applying single-particle tracking at high time resolutions, mainly to the PtK2-cell PM, we found confined diffusion plus hop movements (termed "hop diffusion") for both a nonraft phospholipid and a transmembrane protein, transferrin receptor, and equal compartment sizes for these two molecules in all five of the cell lines used here (actual sizes were cell dependent), even after treatment with actin-modulating drugs. The cross-section size and the cytoplasmic domain size both affected the hop frequency. Electron tomography identified the actin-based membrane skeleton (MSK) located within 8.8 nm from the PM cytoplasmic surface of PtK2 cells and demonstrated that the MSK mesh size was the same as the compartment size for PM molecular diffusion. The extracellular matrix and extracellular domains of membrane proteins were not involved in hop diffusion. These results support a model of anchored TM-protein pickets lining actin-based MSK as a major mechanism for regulating diffusion.

  19. Confined diffusion of transmembrane proteins and lipids induced by the same actin meshwork lining the plasma membrane

    PubMed Central

    Fujiwara, Takahiro K.; Iwasawa, Kokoro; Kalay, Ziya; Tsunoyama, Taka A.; Watanabe, Yusuke; Umemura, Yasuhiro M.; Murakoshi, Hideji; Suzuki, Kenichi G. N.; Nemoto, Yuri L.; Morone, Nobuhiro; Kusumi, Akihiro

    2016-01-01

    The mechanisms by which the diffusion rate in the plasma membrane (PM) is regulated remain unresolved, despite their importance in spatially regulating the reaction rates in the PM. Proposed models include entrapment in nanoscale noncontiguous domains found in PtK2 cells, slow diffusion due to crowding, and actin-induced compartmentalization. Here, by applying single-particle tracking at high time resolutions, mainly to the PtK2-cell PM, we found confined diffusion plus hop movements (termed “hop diffusion”) for both a nonraft phospholipid and a transmembrane protein, transferrin receptor, and equal compartment sizes for these two molecules in all five of the cell lines used here (actual sizes were cell dependent), even after treatment with actin-modulating drugs. The cross-section size and the cytoplasmic domain size both affected the hop frequency. Electron tomography identified the actin-based membrane skeleton (MSK) located within 8.8 nm from the PM cytoplasmic surface of PtK2 cells and demonstrated that the MSK mesh size was the same as the compartment size for PM molecular diffusion. The extracellular matrix and extracellular domains of membrane proteins were not involved in hop diffusion. These results support a model of anchored TM-protein pickets lining actin-based MSK as a major mechanism for regulating diffusion. PMID:26864625

  20. Cytoskeletal organization by motor and polymerization forces

    NASA Astrophysics Data System (ADS)

    Koenderink, Gijsje

    2014-03-01

    Cells need to constantly change their change to perform vital functions, such as growth, division, and movement. Dysregulation of cell shape can have severe consequences such as cancer. Our goal is to resolve physical mechanisms that contribute to cell shape control. For this purpose, we study simplified experimental model systems reconstituted from purified cellular components. In this talk, I will give two examples of our recent work. The first example concerns active contractility of the actin cortex, which lies underneath the cell membrane and drives shape changes by means of myosin motors. Using in vitro models, we studied how myosin motors and actin filaments collectively self-organize into force-generating arrays. I will show that motors contract actin networks only above a sharp threshold in crosslink density. We discovered that right at this threshold, the motors rupture the network into clusters that exhibit a broad distribution of sizes, as expected in filamentous networks near a percolation threshold. The second example I will discuss concerns cell shape polarization directed by interactions between the actin and microtubule (MT) cytoskeletons. A prominent example is the guidance of MT growth along F-actin bundles towards specific targets, i.e. focal adhesions. It has been suggested that MT end-tracking proteins (+TIPs) that also bind F-actin are responsible for this process. We built an in vitro system involving a simplified actin-MT crosslinker molecule and could show that the interaction between MT ends and actin is sufficient to capture and re-direct MT growth along actin bundles. By keeping MT growth tightly coupled to F-actin, this mechanism allows linear arrays of actin bundles to act as templates for MT organization. Instead, when interacting with single actin filaments, MT ends become the dominant organizing factor, exerting forces that align, pull and even transport actin filaments in the direction of MT growth. We conclude that actin and MTs

  1. Wind motor applications for transportation

    SciTech Connect

    Lysenko, G.P.; Grigoriev, B.V.; Karpin, K.B.

    1996-12-31

    Motion equation for a vehicle equipped with a wind motor allows, taking into account the drag coefficients, to determine the optimal wind drag velocity in the wind motor`s plane, and hence, obtain all the necessary data for the wind wheel blades geometrical parameters definition. This optimal drag velocity significantly differs from the flow drag velocity which determines the maximum wind motor power. Solution of the motion equation with low drag coefficients indicates that the vehicle speed against the wind may be twice as the wind speed. One of possible transportation wind motor applications is its use on various ships. A ship with such a wind motor may be substantially easier to steer, and if certain devices are available, may proceed in autonomous control mode. Besides, it is capable of moving within narrow fairways. The cruise speed of a sailing boat and wind-motored ship were compared provided that the wind velocity direction changes along a harmonic law with regard to the motion direction. Mean dimensionless speed of the wind-motored ship appears to be by 20--25% higher than that of a sailing boat. There was analyzed a possibility of using the wind motors on planet rovers in Mars or Venus atmospheric conditions. A Mars rover power and motor system has been assessed for the power level of 3 kW.

  2. Comparison of capabilities of reluctance synchronous motor and induction motor

    NASA Astrophysics Data System (ADS)

    Štumberger, Gorazd; Hadžiselimović, Miralem; Štumberger, Bojan; Miljavec, Damijan; Dolinar, Drago; Zagradišnik, Ivan

    2006-09-01

    This paper compares the capabilities of a reluctance synchronous motor (RSM) with those of an induction motor (IM). An RSM and IM were designed and made, with the same rated power and speed. They differ only in the rotor portion while their stators, housings and cooling systems are identical. The capabilities of both motors in a variable speed drive are evaluated by comparison of the results obtained by magnetically nonlinear models and by measurements.

  3. dnc-1/dynactin 1 knockdown disrupts transport of autophagosomes and induces motor neuron degeneration.

    PubMed

    Ikenaka, Kensuke; Kawai, Kaori; Katsuno, Masahisa; Huang, Zhe; Jiang, Yue-Mei; Iguchi, Yohei; Kobayashi, Kyogo; Kimata, Tsubasa; Waza, Masahiro; Tanaka, Fumiaki; Mori, Ikue; Sobue, Gen

    2013-01-01

    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the progressive loss of motor neurons. We previously showed that the expression of dynactin 1, an axon motor protein regulating retrograde transport, is markedly reduced in spinal motor neurons of sporadic ALS patients, although the mechanisms by which decreased dynactin 1 levels cause neurodegeneration have yet to be elucidated. The accumulation of autophagosomes in degenerated motor neurons is another key pathological feature of sporadic ALS. Since autophagosomes are cargo of dynein/dynactin complexes and play a crucial role in the turnover of several organelles and proteins, we hypothesized that the quantitative loss of dynactin 1 disrupts the transport of autophagosomes and induces the degeneration of motor neuron. In the present study, we generated a Caenorhabditis elegans model in which the expression of DNC-1, the homolog of dynactin 1, is specifically knocked down in motor neurons. This model exhibited severe motor defects together with axonal and neuronal degeneration. We also observed impaired movement and increased number of autophagosomes in the degenerated neurons. Furthermore, the combination of rapamycin, an activator of autophagy, and trichostatin which facilitates axonal transport dramatically ameliorated the motor phenotype and axonal degeneration of this model. Thus, our results suggest that decreased expression of dynactin 1 induces motor neuron degeneration and that the transport of autophagosomes is a novel and substantial therapeutic target for motor neuron degeneration.

  4. Sensory change following motor learning.

    PubMed

    Mattar, Andrew A G; Nasir, Sazzad M; Darainy, Mohammad; Ostry, David J

    2011-01-01

    Here we describe two studies linking perceptual change with motor learning. In the first, we document persistent changes in somatosensory perception that occur following force field learning. Subjects learned to control a robotic device that applied forces to the hand during arm movements. This led to a change in the sensed position of the limb that lasted at least 24 h. Control experiments revealed that the sensory change depended on motor learning. In the second study, we describe changes in the perception of speech sounds that occur following speech motor learning. Subjects adapted control of speech movements to compensate for loads applied to the jaw by a robot. Perception of speech sounds was measured before and after motor learning. Adapted subjects showed a consistent shift in perception. In contrast, no consistent shift was seen in control subjects and subjects that did not adapt to the load. These studies suggest that motor learning changes both sensory and motor function.

  5. Sport expert's motor imagery: functional imaging of professional motor skills and simple motor skills.

    PubMed

    Wei, Gaoxia; Luo, Jing

    2010-06-23

    Numerous studies provide evidence that motor skill acquisition is associated with dynamic changes in cortical and subcortical regions. Athletes are a professional population who are engaged in extensive motor training for long periods. However, the neural substrates of extreme level motor performance have not been clarified. We used kinesthetic imagery task to induce the mental representation of sport expert's extraordinary performance in view of the shared substrates of executing movement and motor imagery. For the first time, we compared, through functional magnetic resonance imaging (fMRI), the pattern of cerebral activations in 12 professional divers and 12 normal people without extensive training, during imagery of professional skills and imagery of simple motor skills. The sport experts showed significant activation in the parahippocampus during imagery of professional skills relative to the novices, which might reflect the representation adapted to experience-related motor tasks. No significant difference was found between experts and novices when they imagined simple motor skills. These results indicated the experts might utilize their kinesthetic imagery more efficiently than novices, but only for the activity in which they had expertise. The sport experts also demonstrated more focused activation patterns in prefrontal areas in both of imagery tasks, which may be relevant to higher order of motor control during motor imagery. Moreover, this study suggested that the brains of sport experts could be regarded as the ideal subjects to explore the relationship between cerebral plasticity and learning of complex motor skills.

  6. Dissociation of motor maturation.

    PubMed

    DiMario, Francis J

    2003-06-01

    We prospectively acquired clinical data regarding the presentation, evaluation, and developmental progress of all patients identified with dissociated motor maturation to define their clinical outcomes. Children (N = 8) referred for evaluation of suspected cerebral palsy because of delayed sitting or walking and identified to have dissociated motor maturation were followed with serial clinical examination. All displayed the characteristic "sitting on air" posture while held in vertical suspension and had otherwise normal developmental assessments. This posture is composed of the hips held in flexion and abduction with the knees extended and feet plantar or dorsiflexed. Three children were initially evaluated at 10 months of age owing to absence of sitting and five other children were evaluated at a mean of 14 months (range 12-19 months) owing to inability to stand. Follow-up evaluations were conducted over a mean of 10.5 months (range 5-34 months). Five children were born prematurely at 34 to 36 weeks gestation. Denver Developmental Screening Test and general and neurologic examinations were normal except to note hypotonia in six children and the "sitting on air" posture in all of the children. Four children have older siblings or parents who "walked late" (after 15 months). On average, the children attained sitting by 8 months (range 7-10 months). One child did not crawl prior to independent walking, two children scooted rather than crawled, and five children crawled at an average of 13.5 months (range 10-16 months). All children cruised by a mean of 18 months (range 16-21.5 months) and attained independent walking by 20.1 months (range 18-25 months). Neuroimaging and serum creatine kinase enzyme testing were normal in two children who were tested. These eight children conform to the syndrome of dissociated motor maturation. The "sitting on air" posture serves as a diagnostic sign and anticipated excellent prognosis, but follow-up is required to ensure a normal

  7. New Insights into Mechanism and Regulation of Actin Capping Protein

    PubMed Central

    Cooper, John A.; Sept, David

    2008-01-01

    The heterodimeric actin capping protein, referred to here as “CP,” is an essential element of the actin cytoskeleton, binding to the barbed ends of actin filaments and regulating their polymerization. In vitro, CP has a critical role in the dendritic nucleation process of actin assembly mediated by Arp2/3 complex, and in vivo, CP is important for actin assembly and actin-based process of morphogenesis and differentiation. Recent studies have provided new insight into the mechanism of CP binding the barbed end, which raises new possibilities for the dynamics of CP and actin in cells. In addition, a number of molecules that bind and regulate CP have been discovered, suggesting new ideas for how CP may integrate into diverse processes of cell physiology. PMID:18544499

  8. Electric motor analysis at Dofasco

    SciTech Connect

    Brooks, D.; Morgan, V.A.; Nicholas, J.R. Jr.

    1997-03-01

    Initiatives adopted by Dofasco to enhance electric motor reliability and availability include: Enhancement of the electrical repair shop testing and repair capabilities; More stringent standards for motor repair service vendors; Application of predictive technologies to motors in service within manufacturing units; Training of personnel in electrical predictive condition monitoring and analysis methods; and Periodic audit and comparison of central support and operating unit predictive technology application and integration. The basis for the initiative is discussed together with illustrative case histories.

  9. Torque-Summing Brushless Motor

    NASA Technical Reports Server (NTRS)

    Vaidya, J. G.

    1986-01-01

    Torque channels function cooperatively but electrically independent for reliability. Brushless, electronically-commutated dc motor sums electromagnetic torques on four channels and applies them to single shaft. Motor operates with any combination of channels and continues if one or more of channels fail electrically. Motor employs single stator and rotor and mechanically simple; however, each of channels electrically isolated from other so that failure of one does not adversely affect others.

  10. Motor timing under microgravity.

    PubMed

    Semjen, A; Leone, G; Lipshits, M

    1998-01-01

    Five participants were tested on their ability to produce accurate and regular inter-response intervals in the 350 to 530 ms time range. Three of them were members of the French-Russian CASSIOPEE 96 spaceflight mission, and the other two were control subjects tested on the ground. During spaceflight, the target inter-response intervals were increasingly undershot and the timing became more variable (less regular). The increase in the timing variability was mostly attributable to the internal timekeeping processes rather than those involved in motor execution. The results are discussed with reference to the physiological mechanisms possibly underlying the timing of fast serial movements.

  11. The reciprocal coordination and mechanics of molecular motors in living cells.

    PubMed

    Laib, Jeneva A; Marin, John A; Bloodgood, Robert A; Guilford, William H

    2009-03-03

    Molecular motors in living cells are involved in whole-cell locomotion, contractility, developmental shape changes, and organelle movement and positioning. Whether motors of different directionality are functionally coordinated in cells or operate in a semirandom "tug of war" is unclear. We show here that anterograde and retrograde microtubule-based motors in the flagella of Chlamydomonas are regulated such that only motors of a common directionality are engaged at any single time. A laser trap was used to position microspheres on the plasma membrane of immobilized paralyzed Chlamydomonas flagella. The anterograde and retrograde movements of the microsphere were measured with nanometer resolution as microtubule-based motors engaged the transmembrane protein FMG-1. An average of 10 motors acted to move the microsphere in either direction. Reversal of direction during a transport event was uncommon, and quiescent periods separated every transport event, suggesting the coordinated and exclusive action of only a single motor type. After a jump to 32 degrees C, temperature-sensitive mutants of kinesin-2 (fla10) showed exclusively retrograde transport events, driven by 7 motors on average. These data suggest that molecular motors in living cells can be reciprocally coordinated to engage simultaneously in large numbers and for exclusive transport in a single direction, even when a mixed population of motors is present. This offers a unique model for studying the mechanics, regulation, and directional coordination of molecular motors in a living intracellular environment.

  12. New insights into dynamic actin-based chloroplast photorelocation movement.

    PubMed

    Kong, Sam-Geun; Wada, Masamitsu

    2011-09-01

    Chloroplast movement is essential for plants to survive under various environmental light conditions. Phototropins-plant-specific blue-light-activated receptor kinases-mediate the response by perceiving light intensity and direction. Recently, novel chloroplast actin (cp-actin) filaments have been identified as playing a pivotal role in the directional chloroplast photorelocation movement. Encouraging progress has recently been made in this field of research through molecular genetics and cell biological analyses. This review describes factors that have been identified as being involved in chloroplast movement and their roles in the regulation of cp-actin filaments, thus providing a basis for reflection on their biochemical activities and functions.

  13. Interferometric Scattering Microscopy for the Study of Molecular Motors.

    PubMed

    Andrecka, J; Takagi, Y; Mickolajczyk, K J; Lippert, L G; Sellers, J R; Hancock, W O; Goldman, Y E; Kukura, P

    2016-01-01

    Our understanding of molecular motor function has been greatly improved by the development of imaging modalities, which enable real-time observation of their motion at the single-molecule level. Here, we describe the use of a new method, interferometric scattering microscopy, for the investigation of motor protein dynamics by attaching and tracking the motion of metallic nanoparticle labels as small as 20nm diameter. Using myosin-5, kinesin-1, and dynein as examples, we describe the basic assays, labeling strategies, and principles of data analysis. Our approach is relevant not only for motor protein dynamics but also provides a general tool for single-particle tracking with high spatiotemporal precision, which overcomes the limitations of single-molecule fluorescence methods.

  14. A prestin motor in chicken auditory hair cells

    PubMed Central

    Beurg, Maryline; Tan, Xiaodong; Fettiplace, Robert

    2013-01-01

    Active force generation by outer hair cells (OHCs) underlies amplification and frequency tuning in the mammalian cochlea but whether such a process exists in non-mammals is unclear. Here we demonstrate that hair cells of the chicken auditory papilla possess an electromechanical force generator in addition to active hair bundle motion due to mechanotransducer channel gating. The properties of the force generator, its voltage-dependence and susceptibility to salicylate, as well as an associated chloride-sensitive non-linear capacitance, suggest involvement of the chicken homolog of prestin, the OHC motor protein. The presence of chicken prestin in the hair cell lateral membrane was confirmed by immunolabeling studies. The hair bundle and prestin motors together create sufficient force to produce fast lateral displacements of the tectorial membrane. Our results imply that the first use of prestin as a motor protein occurred early in amniote evolution and was not a mammalian invention as is usually supposed. PMID:23746629

  15. Interferometric Scattering Microscopy for the Study of Molecular Motors

    PubMed Central

    Andrecka, J.; Takagi, Y.; Mickolajczyk, K.J.; Lippert, L.G.; Sellers, J.R.; Hancock, W.O.; Goldman, Y.E.; Kukura, P.

    2016-01-01

    Our understanding of molecular motor function has been greatly improved by the development of imaging modalities, which enable real-time observation of their motion at the single-molecule level. Here, we describe the use of a new method, interferometric scattering microscopy, for the investigation of motor protein dynamics by attaching and tracking the motion of metallic nanoparticle labels as small as 20 nm diameter. Using myosin-5, kinesin-1, and dynein as examples, we describe the basic assays, labeling strategies, and principles of data analysis. Our approach is relevant not only for motor protein dynamics but also provides a general tool for single-particle tracking with high spatiotemporal precision, which overcomes the limitations of single-molecule fluorescence methods. PMID:27793291

  16. 76 FR 12792 - Petition for Exemption From the Federal Motor Vehicle Motor Theft Prevention Standard; General...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-08

    ... TRANSPORTATION National Highway Traffic Safety Administration Petition for Exemption From the Federal Motor Vehicle Motor Theft Prevention Standard; General Motors Corporation AGENCY: National Highway Traffic.... SUMMARY: This document grants in full the petition of General Motors Corporation's (GM) petition for...

  17. Motor power control circuit for ac induction motors

    NASA Technical Reports Server (NTRS)

    Nola, F. J. (Inventor)

    1983-01-01

    A motor power control of the type which functions by controlling the power factor wherein one of the parameters of power factor current on time is determined by the on time of a triac through which current is supplied to the motor. By means of a positive feedback circuit, a wider range of control is effected.

  18. 27. View, looking north, of motor house; the electric motor ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. View, looking north, of motor house; the electric motor and electric-powered winch are housed in section of building to the left. Photo by Jet Lowe, HAER, 1989. - Puget Sound Power & Light Company, White River Hydroelectric Project, 600 North River Avenue, Dieringer, Pierce County, WA

  19. Motor vehicle drivers' injuries in train-motor vehicle crashes.

    PubMed

    Zhao, Shanshan; Khattak, Aemal

    2015-01-01

    The objectives of this research were to: (1) identify a more suitable model for modeling injury severity of motor vehicle drivers involved in train-motor vehicle crashes at highway-rail grade crossings from among three commonly used injury severity models and (2) to investigate factors associated with injury severity levels of motor vehicle drivers involved in train-motor vehicle crashes at such crossings. The 2009-2013 highway-rail grade crossing crash data and the national highway-rail crossing inventory data were combined to produce the analysis dataset. Four-year (2009-2012) data were used for model estimation while 2013 data were used for model validation. The three injury severity levels-fatal, injury and no injury-were based on the reported intensity of motor-vehicle drivers' injuries at highway-rail grade crossings. The three injury severity models evaluated were: ordered probit, multinomial logit and random parameter logit. A comparison of the three models based on different criteria showed that the random parameter logit model and multinomial logit model were more suitable for injury severity analysis of motor vehicle drivers involved in crashes at highway-rail grade crossings. Some of the factors that increased the likelihood of more severe crashes included higher train and vehicle speeds, freight trains, older drivers, and female drivers. Where feasible, reducing train and motor vehicle speeds and nighttime lighting may help reduce injury severities of motor vehicle drivers.

  20. To What Extent Can Motor Imagery Replace Motor Execution While Learning a Fine Motor Skill?

    PubMed Central

    Sobierajewicz, Jagna; Szarkiewicz, Sylwia; Przekoracka-Krawczyk, Anna; Jaśkowski, Wojciech; van der Lubbe, Rob

    2016-01-01

    Motor imagery is generally thought to share common mechanisms with motor execution. In the present study, we examined to what extent learning a fine motor skill by motor imagery may substitute physical practice. Learning effects were assessed by manipulating the proportion of motor execution and motor imagery trials. Additionally, learning effects were compared between participants with an explicit motor imagery instruction and a control group. A Go/NoGo discrete sequence production (DSP) task was employed, wherein a five-stimulus sequence presented on each trial indicated the required sequence of finger movements after a Go signal. In the case of a NoGo signal, participants either had to imagine carrying out the response sequence (the motor imagery group), or the response sequence had to be withheld (the control group). Two practice days were followed by a final test day on which all sequences had to be executed. Learning effects were assessed by computing response times (RTs) and the percentages of correct responses (PCs). The electroencephalogram (EEG ) was additionally measured on this test day to examine whether motor preparation and the involvement of visual short term memory (VST M) depended on the amount of physical/mental practice. Accuracy data indicated strong learning effects. However, a substantial amount of physical practice was required to reach an optimal speed. EEG results suggest the involvement of VST M for sequences that had less or no physical practice in both groups. The absence of differences between the motor imagery and the control group underlines the possibility that motor preparation may actually resemble motor imagery. PMID:28154614

  1. To What Extent Can Motor Imagery Replace Motor Execution While Learning a Fine Motor Skill?

    PubMed

    Sobierajewicz, Jagna; Szarkiewicz, Sylwia; Przekoracka-Krawczyk, Anna; Jaśkowski, Wojciech; van der Lubbe, Rob

    2016-01-01

    Motor imagery is generally thought to share common mechanisms with motor execution. In the present study, we examined to what extent learning a fine motor skill by motor imagery may substitute physical practice. Learning effects were assessed by manipulating the proportion of motor execution and motor imagery trials. Additionally, learning effects were compared between participants with an explicit motor imagery instruction and a control group. A Go/NoGo discrete sequence production (DSP) task was employed, wherein a five-stimulus sequence presented on each trial indicated the required sequence of finger movements after a Go signal. In the case of a NoGo signal, participants either had to imagine carrying out the response sequence (the motor imagery group), or the response sequence had to be withheld (the control group). Two practice days were followed by a final test day on which all sequences had to be executed. Learning effects were assessed by computing response times (RTs) and the percentages of correct responses (PCs). The electroencephalogram (EEG ) was additionally measured on this test day to examine whether motor preparation and the involvement of visual short term memory (VST M) depended on the amount of physical/mental practice. Accuracy data indicated strong learning effects. However, a substantial amount of physical practice was required to reach an optimal speed. EEG results suggest the involvement of VST M for sequences that had less or no physical practice in both groups. The absence of differences between the motor imagery and the control group underlines the possibility that motor preparation may actually resemble motor imagery.

  2. Aberrant supplementary motor complex and limbic activity during motor preparation in motor conversion disorder.

    PubMed

    Voon, Valerie; Brezing, Christina; Gallea, Cecile; Hallett, Mark

    2011-11-01

    Conversion disorder (CD) is characterized by unexplained neurological symptoms presumed related to psychological issues. The main hypotheses to explain conversion paralysis, characterized by a lack of movement, include impairments in either motor intention or disruption of motor execution, and further, that hyperactive self-monitoring, limbic processing or top-down regulation from higher order frontal regions may interfere with motor execution. We have recently shown that CD with positive abnormal or excessive motor symptoms was associated with greater amygdala activity to arousing stimuli along with greater functional connectivity between the amygdala and supplementary motor area. Here we studied patients with such symptoms focusing on motor initiation. Subjects performed either an internally or externally generated 2-button action selection task in a functional MRI study. Eleven CD patients without major depression and 11 age- and gender-matched normal volunteers were assessed. During both internally and externally generated movement, conversion disorder patients relative to normal volunteers had lower left supplementary motor area (SMA) (implicated in motor initiation) and higher right amygdala, left anterior insula, and bilateral posterior cingulate activity (implicated in assigning emotional salience). These findings were confirmed in a subgroup analysis of patients with tremor symptoms. During internally versus externally generated action in CD patients, the left SMA had lower functional connectivity with bilateral dorsolateral prefrontal cortices. We propose a theory in which previously mapped conversion motor representations may in an arousing context hijack the voluntary action selection system, which is both hypoactive and functionally disconnected from prefrontal top-down regulation.

  3. Motor Learning: The FoxP2 Puzzle Piece

    PubMed Central

    Teramitsu, Ikuko; White, Stephanie A.

    2009-01-01

    Mutation of the DNA-binding region of the FOXP2 protein causes an inherited language disorder. A recent study provides the first data on mice with this mutation, which exhibit deficits in motor-skill learning and abnormal properties of neural circuits that contribute to these skills. PMID:18430631

  4. Enhanced Diffusion of Molecular Motors in the Presence of Adenosine Triphosphate and External Force

    NASA Astrophysics Data System (ADS)

    Shinagawa, Ryota; Sasaki, Kazuo

    2016-06-01

    The diffusion of a molecular motor in the presence of a constant external force is considered on the basis of a simple theoretical model. The motor is represented by a Brownian particle moving in a series of parabolic potentials placed periodically on a line, and the potential is switched stochastically from one parabola to another by a chemical reaction, which corresponds to the hydrolysis or synthesis of adenosine triphosphate (ATP) in motor proteins. It is found that the diffusion coefficient as a function of the force exhibits peaks. The mechanism of this diffusion enhancement and the possibility of observing it in F1-ATPase, a biological rotary motor, are discussed.

  5. From conformational spread to allosteric and cooperative models of E. coli flagellar motor

    NASA Astrophysics Data System (ADS)

    Pezzotta, A.; Adorisio, M.; Celani, A.

    2017-02-01

    Escherichia coli swims using flagella activated by rotary motors. The direction of rotation of the motors is indirectly regulated by the binding of a single messenger protein. The conformational spread model has been shown to accurately describe the equilibrium properties as well as the dynamics of the flagellar motor. In this paper we study this model from an analytic point of view. By exploiting the separation of timescales observed in experiments, we show how to reduce the conformational spread model to a coarse-grained, cooperative binding model. We show that this simplified model reproduces very well the dynamics of the motor switch.

  6. 46 CFR 111.70-3 - Motor controllers and motor-control centers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Motor controllers and motor-control centers. 111.70-3... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Motor Circuits, Controllers, and Protection § 111.70-3 Motor controllers and motor-control centers. (a) General. The enclosure for each motor controller or...

  7. 46 CFR 111.70-3 - Motor controllers and motor-control centers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Motor controllers and motor-control centers. 111.70-3... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Motor Circuits, Controllers, and Protection § 111.70-3 Motor controllers and motor-control centers. (a) General. The enclosure for each motor controller or...

  8. 46 CFR 111.70-3 - Motor controllers and motor-control centers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Motor controllers and motor-control centers. 111.70-3... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Motor Circuits, Controllers, and Protection § 111.70-3 Motor controllers and motor-control centers. (a) General. The enclosure for each motor controller or...

  9. 46 CFR 111.70-3 - Motor controllers and motor-control centers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Motor controllers and motor-control centers. 111.70-3... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Motor Circuits, Controllers, and Protection § 111.70-3 Motor controllers and motor-control centers. (a) General. The enclosure for each motor controller or...

  10. 46 CFR 111.70-3 - Motor controllers and motor-control centers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Motor controllers and motor-control centers. 111.70-3... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Motor Circuits, Controllers, and Protection § 111.70-3 Motor controllers and motor-control centers. (a) General. The enclosure for each motor controller or...

  11. Genetic heterogeneity of motor neuropathies

    PubMed Central

    Bansagi, Boglarka; Griffin, Helen; Whittaker, Roger G.; Antoniadi, Thalia; Evangelista, Teresinha; Miller, James; Greenslade, Mark; Forester, Natalie; Duff, Jennifer; Bradshaw, Anna; Kleinle, Stephanie; Boczonadi, Veronika; Steele, Hannah; Ramesh, Venkateswaran; Franko, Edit; Pyle, Angela; Lochmüller, Hanns; Chinnery, Patrick F.

    2017-01-01

    Objective: To study the prevalence, molecular cause, and clinical presentation of hereditary motor neuropathies in a large cohort of patients from the North of England. Methods: Detailed neurologic and electrophysiologic assessments and next-generation panel testing or whole exome sequencing were performed in 105 patients with clinical symptoms of distal hereditary motor neuropathy (dHMN, 64 patients), axonal motor neuropathy (motor Charcot-Marie-Tooth disease [CMT2], 16 patients), or complex neurologic disease predominantly affecting the motor nerves (hereditary motor neuropathy plus, 25 patients). Results: The prevalence of dHMN is 2.14 affected individuals per 100,000 inhabitants (95% confidence interval 1.62–2.66) in the North of England. Causative mutations were identified in 26 out of 73 index patients (35.6%). The diagnostic rate in the dHMN subgroup was 32.5%, which is higher than previously reported (20%). We detected a significant defect of neuromuscular transmission in 7 cases and identified potentially causative mutations in 4 patients with multifocal demyelinating motor neuropathy. Conclusions: Many of the genes were shared between dHMN and motor CMT2, indicating identical disease mechanisms; therefore, we suggest changing the classification and including dHMN also as a subcategory of Charcot-Marie-Tooth disease. Abnormal neuromuscular transmission in some genetic forms provides a treatable target to develop therapies. PMID:28251916

  12. Advanced solid propellant motor insulation

    NASA Technical Reports Server (NTRS)

    Smith, P. L.; Russ, R. F.

    1972-01-01

    An advanced lightweight insulation system suitable for use in long duration, low pressure planetary orbiter-type motor applications was developed. Experiments included the screening of various filler and binder materials with optimization studies combining the best of each. Small scale test motor data were used to judge the degree of success.

  13. Computational approaches to motor control.

    PubMed

    Flash, T; Sejnowski, T J

    2001-12-01

    New concepts and computational models that integrate behavioral and neurophysiological observations have addressed several of the most fundamental long-standing problems in motor control. These problems include the selection of particular trajectories among the large number of possibilities, the solution of inverse kinematics and dynamics problems, motor adaptation and the learning of sequential behaviors.

  14. Motors and Bulbs in Series

    ERIC Educational Resources Information Center

    Whitaker, Robert J.

    2009-01-01

    One of Paul Hewitt's "Figuring Physics" that appeared in this journal dealt with the heating of a motor. This phenomenon can be demonstrated with a miniature motor and a bulb as part of a series of activities with "batteries and bulbs." Students examine the effect on the brightness of a single bulb when a second, identical bulb is placed in series…

  15. Motor Coordination and Executive Functions

    ERIC Educational Resources Information Center

    Michel, Eva

    2012-01-01

    Since Piaget, the view that motor and cognitive development are interrelated has gained wide acceptance. However, empirical research on this issue is still rare. Few studies show a correlation of performance in cognitive and motor tasks in typically developing children. More specifically, Diamond A. (2000) hypothesizes an involvement of executive…

  16. Conical Bearingless Motor/Generators

    NASA Technical Reports Server (NTRS)

    Kascak, P.; Jansen, R.; Dever, T.

    2008-01-01

    Motor/generators based on conical magnetic bearings have been invented as an improved alternative to prior such machines based, variously, on radial and/or axial magnetic bearings. Both the present and prior machines are members of the class of so-called bearingless or self bearing (in the sense of not containing mechanical bearings) rotary machines. Each motor/generator provides both a torque and force allowing it to either function as a motor and magnetic bearing or a generator and magnetic bearing concurrently. Because they are not subject to mechanical bearing wear, these machines have potentially long operational lives and can function without lubrication and over wide ranges of speed and temperature that include conditions under which lubricants would become depleted, degraded, or ineffective and mechanical bearings would fail. The figure shows three typical configurations of conical bearingless motor/generators. The main elements of each motor/generator are concentric rotor and stator portions having conically tapered surfaces facing each other across a gap. Because a conical motor/generator imposes both radial and axial magnetic forces, it acts, in effect, as a combination of an axial and a radial magnetic bearing. Therefore, only two conical motor/generators - one at each end of a rotor - are needed to effect complete magnetic leviation of the rotor, whereas previously, it was necessary to use a combination of an axial and a radial magnetic bearing at each end of the rotor to achieve complete magnetic levitation and a separate motor to provide torque.

  17. Power control for ac motor

    NASA Technical Reports Server (NTRS)

    Dabney, R. W. (Inventor)

    1984-01-01

    A motor controller employing a triac through which power is supplied to a motor is described. The open circuit voltage appearing across the triac controls the operation of a timing circuit. This timing circuit triggers on the triac at a time following turn off which varies inversely as a function of the amplitude of the open circuit voltage of the triac.

  18. Individualized Motor-Perceptual Study.

    ERIC Educational Resources Information Center

    Portland Public Schools, OR.

    This guide is being used in the Individualized Motor-Perceptual Study to determine whether working directly with kindergarten children to improve performance on motor-perceptual tasks will affect reading ability at the end of grades one, two, and three. The 5-year project involves six schools. In this guide, there are tips for teaching, suggested…

  19. Torque control for electric motors

    NASA Technical Reports Server (NTRS)

    Bernard, C. A.

    1980-01-01

    Method for adjusting electric-motor torque output to accomodate various loads utilizes phase-lock loop to control relay connected to starting circuit. As load is imposed, motor slows down, and phase lock is lost. Phase-lock signal triggers relay to power starting coil and generate additional torque. Once phase lock is recoverd, relay restores starting circuit to its normal operating mode.

  20. High efficiency motor rewind study

    NASA Astrophysics Data System (ADS)

    Wallace, A. K.; Spee, R.

    1991-02-01

    The objective of performing this work was to evaluate a new technology used for rewinding electric motors. Motor performance evaluation was conducted at the motor test facility at Oregon State University. The test program consisted of comparing new high efficiency motor technology and standard rewind technology with the Unity-Plus system. The Unity-Plus configuration exhibited reduced efficiency over the complete load range compared to the other motors. Appropriately sized capacitors connected to the terminals of the conventional induction motor produced the same power factor improvement as the Unity-Plus system. Torque production and torque pulsation were very similar for all systems. The Unity-Plus configuration drew lower starting currents but the duration of the starting transient was increased. Motor temperature rise was about the same for all systems. Noise levels were about the same in all systems. Although determination of time to failure was not undertaken, the expected lifetime of the Unit-Plus system is probably less due to higher capacitor stress and higher insulation stress. The investigation concludes that a conventional induction motor with terminal capacitors is the most acceptable way of obtaining good efficiency and power factor and the Unity-Plus system cannot be recommended on the basis of any of the evaluation criteria used in this study.

  1. Engineering controllable bidirectional molecular motors based on myosin.

    PubMed

    Chen, Lu; Nakamura, Muneaki; Schindler, Tony D; Parker, David; Bryant, Zev

    2012-02-19

    Cytoskeletal motors drive the transport of organelles and molecular cargoes within cells and have potential applications in molecular detection and diagnostic devices. Engineering molecular motors with controllable properties will allow selective perturbation of mechanical processes in living cells and provide optimized device components for tasks such as molecular sorting and directed assembly. Biological motors have previously been modified by introducing activation/deactivation switches that respond to metal ions and other signals. Here, we show that myosin motors can be engineered to reversibly change their direction of motion in response to a calcium signal. Building on previous protein engineering studies and guided by a structural model for the redirected power stroke of myosin VI, we have constructed bidirectional myosins through the rigid recombination of structural modules. The performance of the motors was confirmed using gliding filament assays and single fluorophore tracking. Our strategy, in which external signals trigger changes in the geometry and mechanics of myosin lever arms, should make it possible to achieve spatiotemporal control over a range of motor properties including processivity, stride size and branchpoint turning.

  2. "Cargo-mooring" as an operating principle for molecular motors.

    PubMed

    Lisowski, Bartosz; Kuśmierz, Łukasz; Żabicki, Michał; Bier, Martin

    2015-06-07

    Navigating through an ever-changing and unsteady environment, and utilizing chemical energy, molecular motors transport the cell׳s crucial components, such as organelles and vesicles filled with neurotransmitter. They generate force and pull cargo, as they literally walk along the polymeric tracks, e.g. microtubules. What we suggest in this paper is that the motor protein is not really pulling its load. The load is subject to diffusion and the motor may be doing little else than rectifying the fluctuations, i.e. ratcheting the load׳s diffusion. Below we present a detailed model to show how such ratcheting can quantitatively account for observed data. The consequence of such a mechanism is the dependence of the transport׳s speed and efficacy not only on the motor, but also on the cargo (especially its size) and on the environment (i.e. its viscosity and structure). Current experimental works rarely provide this type of information for in vivo studies. We suggest that even small differences between assays can impact the outcome. Our results agree with those obtained in wet laboratories and provide novel insight in a molecular motor׳s functioning.

  3. Self-organized pattern formation in motor-microtubule mixtures

    NASA Astrophysics Data System (ADS)

    Sankararaman, Sumithra; Menon, Gautam I.; Sunil Kumar, P. B.

    2004-09-01

    We model the stable self-organized patterns obtained in the nonequilibrium steady states of mixtures of molecular motors and microtubules. In experiments [Nédélec , Nature (London) 389, 305 (1997); Surrey , Science 292, 1167 (2001)] performed in a quasi-two-dimensional geometry, microtubules are oriented by complexes of motor proteins. This interaction yields a variety of patterns, including arrangements of asters, vortices, and disordered configurations. We model this system via a two-dimensional vector field describing the local coarse-grained microtubule orientation and two scalar density fields associated to molecular motors. These scalar fields describe motors which either attach to and move along microtubules or diffuse freely within the solvent. Transitions between single aster, spiral, and vortex states are obtained as a consequence of confinement, as parameters in our model are varied. For systems in which the effects of confinement can be neglected, we present a map of nonequilibrium steady states, which includes arrangements of asters and vortices separately as well as aster-vortex mixtures and fully disordered states. We calculate the steady state distribution of bound and free motors in aster and vortex configurations of microtubules and compare these to our simulation results, providing qualitative arguments for the stability of different patterns in various regimes of parameter space. We study the role of crowding or “saturation” effects on the density profiles of motors in asters, discussing the role of such effects in stabilizing single asters. We also comment on the implications of our results for experiments.

  4. Multiple-motor based transport and its regulation by Tau

    PubMed Central

    Vershinin, Michael; Carter, Brian C.; Razafsky, David S.; King, Stephen J.; Gross, Steven P.

    2007-01-01

    Motor-based intracellular transport and its regulation are crucial to the functioning of a cell. Disruption of transport is linked to Alzheimer's and other neurodegenerative diseases. However, many fundamental aspects of transport are poorly understood. An important issue is how cells achieve and regulate efficient long-distance transport. Mounting evidence suggests that many in vivo cargoes are transported along microtubules by more than one motor, but we do not know how multiple motors work together or can be regulated. Here we first show that multiple kinesin motors, working in conjunction, can achieve very long distance transport and apply significantly larger forces without the need of additional factors. We then demonstrate in vitro that the important microtubule-associated protein, tau, regulates the number of engaged kinesin motors per cargo via its local concentration on microtubules. This function of tau provides a previously unappreciated mechanism to regulate transport. By reducing motor reattachment rates, tau affects cargo travel distance, motive force, and cargo dispersal. We also show that different isoforms of tau, at concentrations similar to those in cells, have dramatically different potency. These results provide a well defined mechanism for how altered tau isoform levels could impair transport and thereby lead to neurodegeneration without the need of any other pathway. PMID:17190808

  5. Activities for a Perceptual Motor Program.

    ERIC Educational Resources Information Center

    Brinning, Dorothy; And Others

    Perceptual motor activities for physically handicapped children are presented in the areas of fine and gross motor skills. Also detailed are activities to develop body image, visual motor skills, and tactile and auditory perception. (JD)

  6. Industrial motor repair in the United States

    SciTech Connect

    Schueler, V.; Leistner, P.; Douglass, J.

    1994-09-01

    This report characterizes the motor repair industry in the United States; summarizes current motor repair and testing practice; and identifies barriers to energy motor repair practice and recommends strategies for overcoming those barriers.

  7. An interacting adiabatic quantum motor

    NASA Astrophysics Data System (ADS)

    Viola Kusminskiy, Silvia; Bruch, Anton; von Oppen, Felix

    We consider the effect of electron-electron interactions on the performance of an adiabatic quantum motor based on a Thouless pump operating in reverse. We model such a device by electrons in a 1d wire coupled to a slowly moving periodic potential associated with the classical mechanical degree of freedom of the motor. This periodic degree of freedom is set into motion by a bias voltage applied to the 1d electron channel. We investigate the Thouless motor with interacting leads modeled as Luttinger liquids. We show that interactions enhance the energy gap opened by the periodic potential and thus the robustness of the Thouless motor against variations in the chemical potential. We show that the motor degree of freedom can be described as a mobile impurity in a Luttinger liquid obeying Langevin dynamics with renormalized coefficients due to interactions, for which we give explicit expressions.

  8. Motor-operated gearbox efficiency

    SciTech Connect

    DeWall, K.G.; Watkins, J.C.; Bramwell, D.; Weidenhamer, G.H.

    1996-12-01

    Researchers at the Idaho National Engineering Laboratory recently conducted tests investigating the operating efficiency of the power train (gearbox) in motor-operators typically used in nuclear power plants to power motor-operated valves. Actual efficiency ratios were determined from in-line measurements of electric motor torque (input to the operator gearbox) and valve stem torque (output from the gearbox) while the operators were subjected to gradually increasing loads until the electric motor stalled. The testing included parametric studies under reduced voltage and elevated temperature conditions. As part of the analysis of the results, the authors compared efficiency values determined from testing to the values published by the operator manufacturer and typically used by the industry in calculations for estimating motor-operator capabilities. The operators they tested under load ran at efficiencies lower than the running efficiency (typically 50%) published by the operator manufacturer.

  9. Multimotor transport in a system of active and inactive kinesin-1 motors.

    PubMed

    Scharrel, Lara; Ma, Rui; Schneider, René; Jülicher, Frank; Diez, Stefan

    2014-07-15

    Long-range directional transport in cells is facilitated by microtubule-based motor proteins. One example is transport in a nerve cell, where small groups of motor proteins, such as kinesins and cytoplasmic dynein, work together to ensure the supply and clearance of cellular material along the axon. Defects in axonal transport have been linked to Alzheimer's and other neurodegenerative diseases. However, it is not known in detail how multimotor-based cargo transport is impaired if a fraction of the motors are defective. To mimic impaired multimotor transport in vitro, we performed gliding motility assays with varying fractions of active kinesin-1 motors and inactive kinesin-1 motor mutants. We found that impaired transport manifests in multiple motility regimes: 1), a fast-motility regime characterized by gliding at velocities close to the single-molecule velocity of the active motors; 2), a slow-motility regime characterized by gliding at close-to zero velocity or full stopping; and 3), a regime in which fast and slow motilities coexist. Notably, the transition from the fast to the slow regime occurred sharply at a threshold fraction of active motors. Based on single-motor parameters, we developed a stochastic model and a mean-field theoretical description that explain our experimental findings. Our results demonstrate that impaired multimotor transport mostly occurs in an either/or fashion: depending on the ratio of active to inactive motors, transport is either performed at close to full speed or is out of action.

  10. Resurrection of the flagellar rotary motor near zero load

    PubMed Central

    Yuan, Junhua; Berg, Howard C.

    2008-01-01

    Flagellated bacteria, such as Escherichia coli, are propelled by helical flagellar filaments, each driven at its base by a reversible rotary motor, powered by a transmembrane proton flux. Torque is generated by the interaction of stator proteins, MotA and MotB, with a rotor protein FliG. The physiology of the motor has been studied extensively in the regime of relatively high load and low speed, where it appears to operate close to thermodynamic equilibrium. Here, we describe an assay that allows systematic study of the motor near zero load, where proton translocation and movement of mechanical components are rate limiting. Sixty-nanometer-diameter gold spheres were attached to hooks of cells lacking flagellar filaments, and light scattered from a sphere was monitored at the image plane of a microscope through a small pinhole. Paralyzed motors of cells carrying a motA point mutation were resurrected at 23°C by expression of wild-type MotA, and speeds jumped from zero to a maximum value (≈300 Hz) in one step. Thus, near zero load, the speed of the motor is independent of the number of torque-generating units. Evidently, the units act independently (they do not interfere with one another), and there are no intervals during which a second unit can add to the speed generated by the first (the duty ratio is close to 1). PMID:18202173

  11. Magnetic bearing and motor

    NASA Technical Reports Server (NTRS)

    Studer, Philip A. (Inventor)

    1983-01-01

    A magnetic bearing assembly (10) has an intermediate rotatable section (33) having an outer cylindrical member (30) coaxially suspended by a torsion wire (72) around an axially polarized cylindrical magnet (32). Axial alignment between the pole faces (40-43) of the intermediate section (33) and end surfaces (50-53) of opposed end bells (20, 22) provides a path of least reluctance across intervening air gaps (60-63) for the magnetic flux emanating from magnet (32). Radial dislocation increases the reluctance and creates a radial restoring force. Substitution of radially polarized magnets 107 fixed to a magnetically permeable cylinder (32') and insertion of pairs of armature coil windings (109-112) between the cylinder pair (33') provides an integral magnetic bearing and torsion motor (100) able to provide arcuately limited rotational drive.

  12. Piezoelectric wave motor

    DOEpatents

    Yerganian, Simon Scott

    2003-02-11

    A piezoelectric motor having a stator in which piezoelectric elements are contained in slots formed in the stator transverse to the desired wave motion. When an electric field is imposed on the elements, deformation of the elements imposes a force perpendicular to the sides of the slot, deforming the stator. Appropriate frequency and phase-shifting of the electric field will produce a wave in the stator and motion in a rotor. In a preferred aspect, the piezoelectric elements are configured so that deformation of the elements in the direction of an imposed electric field, generally referred to as the d.sub.33 direction, is utilized to produce wave motion in the stator. In a further aspect, the elements are compressed into the slots so as to minimize tensile stresses on the elements in use.

  13. Piezoelectric wave motor

    DOEpatents

    Yerganian, Simon Scott

    2001-07-17

    A piezoelectric motor having a stator in which piezoelectric elements are contained in slots formed in the stator transverse to the desired wave motion. When an electric field is imposed on the elements, deformation of the elements imposes a force perpendicular to the sides of the slot, deforming the stator. Appropriate frequency and phase shifting of the electric field will produce a wave in the stator and motion in a rotor. In a preferred aspect, the piezoelectric elements are configured so that deformation of the elements in direction of an imposed electric field, generally referred to as the d.sub.33 direction, is utilized to produce wave motion in the stator. In a further aspect, the elements are compressed into the slots so as to minimize tensile stresses on the elements in use.

  14. Reciprocating linear motor

    NASA Technical Reports Server (NTRS)

    Goldowsky, Michael P. (Inventor)

    1987-01-01

    A reciprocating linear motor is formed with a pair of ring-shaped permanent magnets having opposite radial polarizations, held axially apart by a nonmagnetic yoke, which serves as an axially displaceable armature assembly. A pair of annularly wound coils having axial lengths which differ from the axial lengths of the permanent magnets are serially coupled together in mutual opposition and positioned with an outer cylindrical core in axial symmetry about the armature assembly. One embodiment includes a second pair of annularly wound coils serially coupled together in mutual opposition and an inner cylindrical core positioned in axial symmetry inside the armature radially opposite to the first pair of coils. Application of a potential difference across a serial connection of the two pairs of coils creates a current flow perpendicular to the magnetic field created by the armature magnets, thereby causing limited linear displacement of the magnets relative to the coils.

  15. Evidence for an electrostatic mechanism of force generation by the bacteriophage T4 DNA packaging motor

    NASA Astrophysics Data System (ADS)

    Migliori, Amy D.; Keller, Nicholas; Alam, Tanfis I.; Mahalingam, Marthandan; Rao, Venigalla B.; Arya, Gaurav; Smith, Douglas E.

    2014-06-01

    How viral packaging motors generate enormous forces to translocate DNA into viral capsids remains unknown. Recent structural studies of the bacteriophage T4 packaging motor have led to a proposed mechanism wherein the gp17 motor protein translocates DNA by transitioning between extended and compact states, orchestrated by electrostatic interactions between complimentarily charged residues across the interface between the N- and C-terminal subdomains. Here we show that site-directed alterations in these residues cause force dependent impairments of motor function including lower translocation velocity, lower stall force and higher frequency of pauses and slips. We further show that the measured impairments correlate with computed changes in free-energy differences between the two states. These findings support the proposed structural mechanism and further suggest an energy landscape model of motor activity that couples the free-energy profile of motor conformational states with that of the ATP hydrolysis cycle.

  16. Reduced gap junctional coupling leads to uncorrelated motor neuron firing and precocious neuromuscular synapse elimination.

    PubMed

    Personius, Kirkwood E; Chang, Qiang; Mentis, George Z; O'Donovan, Michael J; Balice-Gordon, Rita J

    2007-07-10

    During late embryonic and early postnatal life, neuromuscular junctions undergo synapse elimination that is modulated by patterns of motor neuron activity. Here, we test the hypothesis that reduced spinal neuron gap junctional coupling decreases temporally correlated motor neuron activity that, in turn, modulates neuromuscular synapse elimination, by using mutant mice lacking connexin 40 (Cx40), a developmentally regulated gap junction protein expressed in motor and other spinal neurons. In Cx40-/- mice, electrical coupling among lumbar motor neurons, measured by whole-cell recordings, was reduced, and single motor unit recordings in awake, behaving neonates showed that temporally correlated motor neuron activity was also reduced. Immunostaining and intracellular recording showed that the neuromuscular synapse elimination was accelerated in muscles from Cx40-/- mice compared with WT littermates. Our work shows that gap junctional coupling modulates neuronal activity patterns that, in turn, mediate synaptic competition, a process that shapes synaptic circuitry in the developing brain.

  17. Reduced gap junctional coupling leads to uncorrelated motor neuron firing and precocious neuromuscular synapse elimination

    PubMed Central

    Personius, Kirkwood E.; Chang, Qiang; Mentis, George Z.; O'Donovan, Michael J.; Balice-Gordon, Rita J.

    2007-01-01

    During late embryonic and early postnatal life, neuromuscular junctions undergo synapse elimination that is modulated by patterns of motor neuron activity. Here, we test the hypothesis that reduced spinal neuron gap junctional coupling decreases temporally correlated motor neuron activity that, in turn, modulates neuromuscular synapse elimination, by using mutant mice lacking connexin 40 (Cx40), a developmentally regulated gap junction protein expressed in motor and other spinal neurons. In Cx40−/− mice, electrical coupling among lumbar motor neurons, measured by whole-cell recordings, was reduced, and single motor unit recordings in awake, behaving neonates showed that temporally correlated motor neuron activity was also reduced. Immunostaining and intracellular recording showed that the neuromuscular synapse elimination was accelerated in muscles from Cx40−/− mice compared with WT littermates. Our work shows that gap junctional coupling modulates neuronal activity patterns that, in turn, mediate synaptic competition, a process that shapes synaptic circuitry in the developing brain. PMID:17609378

  18. Effect of fuel concentration and force on collective transport by a team of dynein motors.

    PubMed

    Takshak, Anjneya; Roy, Tanushree; Tandaiya, Parag; Kunwar, Ambarish

    2017-02-01

    Motor proteins are essential components of intracellular transport inside eukaryotic cells. These protein molecules use chemical energy obtained from hydrolysis of ATP to produce mechanical forces required for transporting cargos inside cells, from one location to another, in a directed manner. Of these motors, cytoplasmic dynein is structurally more complex than other motor proteins involved in intracellular transport, as it shows force and fuel (ATP) concentration dependent step-size. Cytoplasmic dynein motors are known to work in a team during cargo transport and force generation. Here, we use a complete Monte-Carlo model of single dynein constrained by in vitro experiments, which includes the effect of both force and ATP on stepping as well as detachment of motors under force. We then use our complete Monte-Carlo model of single dynein motor to understand collective cargo transport by a team of dynein motors, such as dependence of cargo travel distance and velocity on applied force and fuel concentration. In our model, cargos pulled by a team of dynein motors do not detach rapidly under higher forces, confirming the experimental observation of longer persistence time of dynein team on microtubule under higher forces.

  19. Atypical motor neuron disease and related motor syndromes.

    PubMed

    Verma, A; Bradley, W G

    2001-06-01

    There is an imperative need for the early diagnosis of amyotrophic lateral sclerosis/motor neuron disease (ALS/MND) in the current era of emerging treatments. When evaluating the patient with ALS/MND, the neurologist must consider a number of other motor neuron disorders and related motor syndromes that may have clinical features resembling ALS/MND. The revised Airlie House-El Escorial diagnostic criteria have been established through the consensus of experts meeting at workshops. However, by definition, using these criteria a patient is likely to have fairly advanced disease at the time of a definitive ALS/MND diagnosis. The reasons for the difficulty in making an early ALS/MND diagnosis are several. No surrogate diagnostic marker currently exists for ALS/MND. ALS/MND at its onset is heterogeneous in clinical presentation, its clinical course is variable, and several clinical variants are recognized. In addition, certain motor syndromes, such as monomelic amyotrophy, postpolio muscular atrophy, and multifocal motor neuropathy, can clinically mimic ALS/MND. Therefore, not only may the diagnosis of ALS/MND be clinically missed in the early stages, but worse, the patient may be wrongly labeled as having ALS/MND. The diagnosis of ALS/MND requires a combination of upper motor neuron (UMN) and lower motor neuron (LMN) involvement. Motor syndromes in which the deficit is restricted to the UMN or LMN through the entire course of the disease are described as atypical MND in this review. Approximately 5% of patients with ALS/MND have overt dementia with a characteristic frontal affect. ALS/MND with parkinsonism and dementia is rare outside the western Pacific region. The clinical course of motor disorder in these overlap syndromes does not differ from that in typical ALS/MND.

  20. Calbindin-D28K, parvalbumin and calretinin in primate lower motor neurons.

    PubMed

    Fahandejsaadi, Ashkan; Leung, Elaine; Rahaii, Rhoda; Bu, Jing; Geula, Changiz

    2004-03-01

    It has been suggested that lower motor neurons containing calcium-binding proteins (CBP) may be resistant to degeneration in motor neuron disease. The testing of this hypothesis is hampered by lack of comprehensive information regarding the presence of CBPs in motor neurons. To address this shortcoming, we investigated the distribution of the CBPs calbindin-D28K (CB), parvalbumin (PV) and calretinin (CRT) in lower motor neurons in the normal human and two non-human primates (rhesus monkey and common marmoset) using immunohistochemistry. A variable proportion of motor neurons in cranial nerve motor nuclei contained immunoreactivity for one or more CBPs. A subpopulation of spinal cord alpha-motor neurons was also CBP-positive. Comparison of staining for choline acetyltransferase (ChAT) and CBPs in the human spinal cord demonstrated that approximately 63% of ventral horn motor neurons contained PV, 53% contained CRT and 56% contained CB. CBP immunoreactivity within motor neurons was of variable staining intensity. It remains to be established whether the presence of these CBPs confers protection against the pathogenic mechanisms of motor neuron disease.

  1. The Gemin Associates of Survival Motor Neuron Are Required for Motor Function in Drosophila

    PubMed Central

    Borg, Rebecca; Cauchi, Ruben J.

    2013-01-01

    Membership of the survival motor neuron (SMN) complex extends to nine factors, including the SMN protein, the product of the spinal muscular atrophy (SMA) disease gene, Gemins 2–8 and Unrip. The best-characterised function of this macromolecular machine is the assembly of the Sm-class of uridine-rich small nuclear ribonucleoprotein (snRNP) particles and each SMN complex member has a key role during this process. So far, however, only little is known about the function of the individual Gemin components in vivo. Here, we make use of the Drosophila model organism to uncover loss-of-function phenotypes of Gemin2, Gemin3 and Gemin5, which together with SMN form the minimalistic fly SMN complex. We show that ectopic overexpression of the dead helicase Gem3ΔN mutant or knockdown of Gemin3 result in similar motor phenotypes, when restricted to muscle, and in combination cause lethality, hence suggesting that Gem3ΔN overexpression mimics a loss-of-function. Based on the localisation pattern of Gem3ΔN, we predict that the nucleus is the primary site of the antimorphic or dominant-negative mechanism of Gem3ΔN-mediated interference. Interestingly, phenotypes induced by human SMN overexpression in Drosophila exhibit similarities to those induced by overexpression of Gem3ΔN. Through enhanced knockdown we also uncover a requirement of Gemin2, Gemin3 and Gemin5 for viability and motor behaviour, including locomotion as well as flight, in muscle. Notably, in the case of Gemin3 and Gemin5, such function also depends on adequate levels of the respective protein in neurons. Overall, these findings lead us to speculate that absence of any one member is sufficient to arrest the SMN-Gemins complex function in a nucleocentric pathway, which is critical for motor function in vivo. PMID:24391840

  2. Solid rocket motor witness test

    NASA Technical Reports Server (NTRS)

    Welch, Christopher S.

    1991-01-01

    The Solid Rocket Motor Witness Test was undertaken to examine the potential for using thermal infrared imagery as a tool for monitoring static tests of solid rocket motors. The project consisted of several parts: data acquisition, data analysis, and interpretation. For data acquisition, thermal infrared data were obtained of the DM-9 test of the Space Shuttle Solid Rocket Motor on December 23, 1987, at Thiokol, Inc. test facility near Brigham City, Utah. The data analysis portion consisted of processing the video tapes of the test to produce values of temperature at representative test points on the rocket motor surface as the motor cooled down following the test. Interpretation included formulation of a numerical model and evaluation of some of the conditions of the motor which could be extracted from the data. These parameters included estimates of the insulation remaining following the tests and the thickness of the charred layer of insulation at the end of the test. Also visible was a temperature signature of the star grain pattern in the forward motor segment.

  3. Submersible canned motor transfer pump

    DOEpatents

    Guardiani, Richard F.; Pollick, Richard D.; Nyilas, Charles P.; Denmeade, Timothy J.

    1997-01-01

    A transfer pump used in a waste tank for transferring high-level radioactive liquid waste from a waste tank and having a column assembly, a canned electric motor means, and an impeller assembly with an upper impeller and a lower impeller connected to a shaft of a rotor assembly. The column assembly locates a motor housing with the electric motor means adjacent to the impeller assembly which creates an hydraulic head, and which forces the liquid waste, into the motor housing to cool the electric motor means and to cool and/or lubricate the radial and thrust bearing assemblies. Hard-on-hard bearing surfaces of the bearing assemblies and a ring assembly between the upper impeller and electric motor means grind large particles in the liquid waste flow. Slots in the static bearing member of the radial bearing assemblies further grind down the solid waste particles so that only particles smaller than the clearances in the system can pass therethrough, thereby resisting damage to and the interruption of the operation of the transfer pump. The column assembly is modular so that sections can be easily assembled, disassembled and/or removed. A second embodiment employs a stator jacket which provides an alternate means for cooling the electric motor means and lubricating and/or cooling the bearing assemblies, and a third embodiment employs a variable level suction device which allows liquid waste to be drawn into the transfer pump from varying and discrete levels in the waste tank.

  4. Submersible canned motor mixer pump

    DOEpatents

    Guardiani, R.F.; Pollick, R.D.

    1997-10-07

    A mixer pump is described used in a waste tank for mobilizing high-level radioactive liquid waste having a column assembly containing power cables, a motor housing with electric motor means which includes a stator can of a stator assembly and a rotor can of a rotor assembly, and an impeller assembly with an impeller connected to a shaft of the rotor assembly. The column assembly locates the motor housing with the electric motor means adjacent to the impeller which creates an hydraulic head, and which forces the liquid waste into the motor housing to cool the electric motor means and to lubricate radial and thrust bearing assemblies. Hard-on-hard bearing surfaces of the bearing assemblies and a ring assembly between the impeller and electric motor means act to grind down large particles in the liquid waste flow. These larger particles are received in slots in the static bearing members of the radial bearing assemblies. Only solid waste particles smaller than the clearances in the system can pass there through, thereby resisting damage to and the interruption of the operation of the mixer pump. 10 figs.

  5. Submersible canned motor mixer pump

    DOEpatents

    Guardiani, Richard F.; Pollick, Richard D.

    1997-01-01

    A mixer pump used in a waste tank for mobilizing high-level radioactive liquid waste having a column assembly containing power cables, a motor housing with electric motor means which includes a stator can of a stator assembly and a rotor can of a rotor assembly, and an impeller assembly with an impeller connected to a shaft of the rotor assembly. The column assembly locates the motor housing with the electric motor means adjacent to the impeller which creates an hydraulic head, and which forces the liquid waste into the motor housing to cool the electric motor means and to lubricate radial and thrust bearing assemblies. Hard-on-hard bearing surfaces of the bearing assemblies and a ring assembly between the impeller and electric motor means act to grind down large particles in the liquid waste flow. These larger particles are received in slots in the static bearing members of the radial bearing assemblies. Only solid waste particles smaller than the clearances in the system can pass therethrough, thereby resisting damage to and the interruption of the operation of the mixer pump.

  6. The mechanochemistry of molecular motors.

    PubMed Central

    Keller, D; Bustamante, C

    2000-01-01

    A theory of molecular motors is presented that explains how the energy released in single chemical reactions can generate mechanical motion and force. In the simplest case the fluctuating movements of a motor enzyme are well described by a diffusion process on a two-dimensional potential energy surface, where one dimension is a chemical reaction coordinate and the other is the spatial displacement of the motor. The coupling between chemistry and motion results from the shape of the surface, and motor velocities and forces result from diffusion currents on this surface. This microscopic description is shown to possess an equivalent kinetic mechanism in which the rate constants depend on externally applied forces. By using this equivalence we explore the characteristic properties of several broad classes of motor mechanisms and give general expressions for motor velocity versus load force for any member of each class. We show that in some cases simple plots of 1/velocity vs. 1/concentration can distinguish between classes of motor mechanisms and may be used to determine the step at which movement occurs. PMID:10653770

  7. Physical Properties Determining Self-Organization of Motors and Microtubules

    NASA Astrophysics Data System (ADS)

    Surrey, Thomas; Nédélec, François; Leibler, Stanislas; Karsenti, Eric

    2001-05-01

    In eukaryotic cells, microtubules and their associated motor proteins can be organized into various large-scale patterns. Using a simplified experimental system combined with computer simulations, we examined how the concentrations and kinetic parameters of the motors contribute to their collective behavior. We observed self-organization of generic steady-state structures such as asters, vortices, and a network of interconnected poles. We identified parameter combinations that determine the generation of each of these structures. In general, this approach may become useful for correlating the morphogenetic phenomena taking place in a biological system with the biophysical characteristics of its constituents.

  8. State observer for synchronous motors

    DOEpatents

    Lang, Jeffrey H.

    1994-03-22

    A state observer driven by measurements of phase voltages and currents for estimating the angular orientation of a rotor of a synchronous motor such as a variable reluctance motor (VRM). Phase voltages and currents are detected and serve as inputs to a state observer. The state observer includes a mathematical model of the electromechanical operation of the synchronous motor. The characteristics of the state observer are selected so that the observer estimates converge to the actual rotor angular orientation and velocity, winding phase flux linkages or currents.

  9. The Advanced Solid Rocket Motor

    NASA Technical Reports Server (NTRS)

    Mitchell, Royce E.

    1992-01-01

    The paper describes the Advanced Solid Rocket Motor (ASRM) that is being developed to replace, in 1997, the Redesigned Solid Rocket Motor which currently boosts the Space Shuttle. The ASRM will contain features to improve motor safety (fewer potential leak paths, improved seal materials, stronger case material, and fewer nozzle and case joints), an improved ignition system using through-bulkhead initiators, and highly reproducible manufacturing and inspection techniques with a large number of automated procedures. The ASRM will be able to deliver 12,000 lbs greater payloads to any given orbit of the Shuttle. There are also environmental improvements, realized by waste propellant recovery.

  10. Ultra-Compact Motor Controller

    NASA Technical Reports Server (NTRS)

    Townsend, William T.; Cromwell, Adam; Hauptman, Traveler; Pratt, Gill Andrews

    2012-01-01

    This invention is an electronically commutated brushless motor contro ller that incorporates Hall-array sensing in a small, 42-gram packag e that provides 4096 absolute counts per motor revolution position s ensing. The unit is the size of a miniature hockey puck, and is a 44 -pin male connector that provides many I/O channels, including CANbus , RS-232 communications, general-purpose analog and digital I/O (GPI O), analog and digital Hall inputs, DC power input (18-90 VDC, 0-l0 A), three-phase motor outputs, and a strain gauge amplifier.

  11. 26. View, looking east, of motor house; the electric motor ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. View, looking east, of motor house; the electric motor and electric-powered winch are housed in section of building to the left. The U-bolt and concrete deadman which anchors the cable of the tramway is to the right. Photo by Jet Lowe, HAER, 1989. - Puget Sound Power & Light Company, White River Hydroelectric Project, 600 North River Avenue, Dieringer, Pierce County, WA

  12. Turn Motors Off When Not in Use - Motor Tip Sheet #10

    SciTech Connect

    2008-07-01

    Motors use no energy when turned off. Reducing motor operating time by just 10% usually saves more energy than replacing a standard efficiency motor with a NEMA Premium® efficiency motor. In fact, given that 97% of the life cycle cost of purchasing and operating a motor is energy-related, turning a motor off 10% of the time could reduce energy costs enough to purchase three new motors.

  13. 75 FR 72863 - Motor Carrier Safety Advisory Committee Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-26

    ... Federal Motor Carrier Safety Administration Motor Carrier Safety Advisory Committee Public Meeting AGENCY: Federal Motor Carrier Safety Administration, DOT. ACTION: Notice of Motor Carrier Safety Advisory Committee Meeting. SUMMARY: FMCSA announces that the Agency's Motor Carrier Safety Advisory Committee...

  14. 76 FR 12214 - Motor Carrier Safety Advisory Committee Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-04

    ... Federal Motor Carrier Safety Administration Motor Carrier Safety Advisory Committee Public Meeting AGENCY: Federal Motor Carrier Safety Administration, DOT. ACTION: Notice: Announcement of Motor Carrier Safety Advisory Committee meeting; request for comment. SUMMARY: The Federal Motor Carrier Safety...

  15. 75 FR 50797 - Motor Carrier Safety Advisory Committee Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-17

    ... Federal Motor Carrier Safety Administration Motor Carrier Safety Advisory Committee Public Meeting AGENCY: Federal Motor Carrier Safety Administration (FMCSA), DOT. ACTION: Notice of Motor Carrier Safety Advisory Committee Meeting. SUMMARY: FMCSA announces that its Motor Carrier Safety Advisory Committee (MCSAC)...

  16. 75 FR 29384 - Motor Carrier Safety Advisory Committee Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-25

    ... Federal Motor Carrier Safety Administration Motor Carrier Safety Advisory Committee Public Meeting AGENCY: Federal Motor Carrier Safety Administration (FMCSA), DOT. ACTION: Notice of Motor Carrier Safety Advisory Committee meeting. SUMMARY: FMCSA announces that its Motor Carrier Safety Advisory Committee (MCSAC)...

  17. Mechanical thermal motor

    NASA Technical Reports Server (NTRS)

    Hein, L. A.; Myers, W. N. (Inventor)

    1976-01-01

    An apparatus is described for converting thermal energy such as solar energy into mechanical motion for driving fluid pumps and similar equipment. The thermal motor comprises an inner concentric cylinder carried by a stationary core member. The core member has a cylindrical disc plate fixed adjacent to a lower portion and extending radially from it. An outer concentric cylinder rotatably carried on the disc plate defining a space between the inner and outer concentric cylinders. A spiral tubular member encircles the inner concentric cylinder and is contained within the space between the inner and outer cylinders. One portion is connected to the inner concentric cylinder and a second portion connected to the outer concentric cylinder. A heated fluid is conveyed through the tubular member and is periodically cooled causing the tubular member to expand and contract. This causes the outer concentric cylinder to reciprocally rotate on the base plate accordingly. The reciprocating motion of the outer concentric cylinder is then utilized to drive a pump member in a pump chamber.

  18. Magnetic bearing and motor

    NASA Technical Reports Server (NTRS)

    Studer, P. A. (Inventor)

    1983-01-01

    A magnetic bearing for passively suspending a rotatable element subjected to axial and radial thrust forces is disclosed. The magnetic bearing employs a taut wire stretched along the longitudinal axis of the bearing between opposed end pieces and an intermediate magnetic section. The intermediate section is segmented to provide oppositely directed magnetic flux paths between the end pieces and may include either an axially polarized magnets interposed between the segments. The end pieces, separated from the intermediate section by air gaps, control distribution of magnetic flux between the intermediate section segments. Coaxial alignment of the end pieces with the intermediate section minimizes magnetic reluctance in the flux paths endowing the bearing with self-centering characteristics when subjected to radial loads. In an alternative embodiment, pairs of oppositely wound armature coils are concentrically interposed between segments of the intermediate section in concentric arcs adjacent to radially polarized magnets to equip a magnetic bearing as a torsion drive motor. The magnetic suspension bearing disclosed provides long term reliability without maintenance with application to long term space missions such as the VISSR/VAS scanning mirror instrument in the GOES program.

  19. Controlled wind motor

    SciTech Connect

    Boswell, F.A.

    1983-12-27

    A mechanical sail including a rotatable mast, the mast including a top vane mount and a bottom vane mount, the mounts being spaced from each other on the mast and rotatable therewith, a series of rotatable vanes spaced from and surrounding the mast and supported by and between the mounts, cam operaters extending between the mounts and connected to the vanes for controlling the rotation of the vanes, a first controller associated with the mast below the bottom vane mount for controlling the cam operators, the first controller being movable vertically with respect to the mast, a second controller for moving the first controller vertically with respect to the mast, the vanes being flexible and bowed outwardly, the bottom vane mount being movable with respect to the mast and connected to the second controller whereby when the second controller is operated, the bottom vane mount will move toward the top vane mount causing the vanes to bow outwardly at a desired arc and whereby when the first controller is moved, the vanes are caused to rotate to the desired angle of attack with respect to wind velocity and direction. When the sail is connected to a motor drive, the vessel may be driven forward or rearward depending on the angle of attack of the vanes through 180/sup 0/.

  20. Plasma motor generator system

    NASA Technical Reports Server (NTRS)

    Hite, Gerald E.

    1987-01-01

    The significant potential advantages of a plasma motor generator system over conventional systems for the generation of electrical power and propulsion for spacecraft in low Earth orbits warrants its further investigation. The two main components of such a system are a long insulated wire and the plasma generating hollow cathodes needed to maintain electrical contact with the ionosphere. Results of preliminary theoretical and experimental investigations of this system are presented. The theoretical work involved the equilibrium configurations of the wire and the nature of small oscillation about these equilibrium positions. A particularly interesting result was that two different configurations are allowed when the current is above a critical value. Experimental investigations were made of the optimal starting and running conditions for the proposed, low current hollow cathodes. Although optimal ranges of temperature, argon pressure and discharge voltage were identified, start up became progressively more difficult. This supposed depletion or contamination of the emissive surface could be countered by the addition of new emissive material.