Science.gov

Sample records for actin-severing protein cofilin

  1. Cyclase-associated protein (CAP) acts directly on F-actin to accelerate cofilin-mediated actin severing across the range of physiological pH.

    PubMed

    Normoyle, Kieran P M; Brieher, William M

    2012-10-12

    Fast actin depolymerization is necessary for cells to rapidly reorganize actin filament networks. Utilizing a Listeria fluorescent actin comet tail assay to monitor actin disassembly rates, we observed that although a mixture of actin disassembly factors (cofilin, coronin, and actin-interacting protein 1 is sufficient to disassemble actin comet tails in the presence of physiological G-actin concentrations this mixture was insufficient to disassemble actin comet tails in the presence of physiological F-actin concentrations. Using biochemical complementation, we purified cyclase-associated protein (CAP) from thymus extracts as a factor that protects against the inhibition of excess F-actin. CAP has been shown to participate in actin dynamics but has been thought to act by liberating cofilin from ADP·G-actin monomers to restore cofilin activity. However, we found that CAP augments cofilin-mediated disassembly by accelerating the rate of cofilin-mediated severing. We also demonstrated that CAP acts directly on F-actin and severs actin filaments at acidic, but not neutral, pH. At the neutral pH characteristic of cytosol in most mammalian cells, we demonstrated that neither CAP nor cofilin are capable of severing actin filaments. However, the combination of CAP and cofilin rapidly severed actin at all pH values across the physiological range. Therefore, our results reveal a new function for CAP in accelerating cofilin-mediated actin filament severing and provide a mechanism through which cells can maintain high actin turnover rates without having to alkalinize cytosol, which would affect many biochemical reactions beyond actin depolymerization.

  2. The ADF/cofilin family: actin-remodeling proteins.

    PubMed

    Maciver, Sutherland K; Hussey, Patrick J

    2002-01-01

    The ADF/cofilins are a family of actin-binding proteins expressed in all eukaryotic cells so far examined. Members of this family remodel the actin cytoskeleton, for example during cytokinesis, when the actin-rich contractile ring shrinks as it contracts through the interaction of ADF/cofilins with both monomeric and filamentous actin. The depolymerizing activity is twofold: ADF/cofilins sever actin filaments and also increase the rate at which monomers leave the filament's pointed end. The three-dimensional structure of ADF/cofilins is similar to a fold in members of the gelsolin family of actin-binding proteins in which this fold is typically repeated three or six times; although both families bind polyphosphoinositide lipids and actin in a pH-dependent manner, they share no obvious sequence similarity. Plants and animals have multiple ADF/cofilin genes, belonging in vertebrates to two types, ADF and cofilins. Other eukaryotes (such as yeast, Acanthamoeba and slime moulds) have a single ADF/cofilin gene. Phylogenetic analysis of the ADF/cofilins reveals that, with few exceptions, their relationships reflect conventional views of the relationships between the major groups of organisms.

  3. Cofilin takes the lead.

    PubMed

    DesMarais, Vera; Ghosh, Mousumi; Eddy, Robert; Condeelis, John

    2005-01-01

    Cofilin has emerged as a key regulator of actin dynamics at the leading edge of motile cells. Through its actin-severing activity, it creates new actin barbed ends for polymerization and also depolymerizes old actin filaments. Its function is tightly regulated in the cell. Spatially, its activity is restricted by other actin-binding proteins, such as tropomyosin, which compete for accessibility of actin filament populations in different regions of the cell. At the molecular level, it is regulated by phosphorylation, pH and phosphatidylinositol (4,5)-bisphosphate binding downstream of signaling cascades. In addition, it also appears to be regulated by interactions with 14-3-3zeta and cyclase-associated protein. In vivo, cofilin acts synergistically with the Arp2/3 complex to amplify local actin polymerization responses upon cell stimulation, which gives it a central role in setting the direction of motility in crawling cells.

  4. Enhancement of radiosensitivity in H1299 cancer cells by actin-associated protein cofilin

    SciTech Connect

    Lee, Y.-J. . E-mail: lee_yi_jang@hotmail.com; Sheu, T.-J.; Keng, Peter C.

    2005-09-23

    Cofilin is an actin-associated protein that belongs to the actin depolymerization factor/cofilin family and is important for regulation of actin dynamics. Cofilin can import actin monomers into the nucleus under certain stress conditions, however the biological effects of nuclear transport are unclear. In this study, we found that over-expression of cofilin led to increased radiation sensitivity in human non-small lung cancer H1299 cells. Cell survival as determined by colony forming assay showed that cells over-expressing cofilin were more sensitive to ionizing radiation (IR) than normal cells. To determine whether the DNA repair capacity was altered in cofilin over-expressing cells, comet assays were performed on irradiated cells. Repair of DNA damage caused by ionizing radiation was detected in cofilin over-expressing cells after 24 h of recovery. Consistent with this observation, the key components for repair of DNA double-strand breaks, including Rad51, Rad52, and Ku70/Ku80, were down-regulated in cofilin over-expressing cells after IR exposure. These findings suggest that cofilin can influence radiosensitivity by altering DNA repair capacity.

  5. Cofilin inhibition restores neuronal cell death in oxygen glucose deprivation model of ischemia

    PubMed Central

    Madineni, Anusha; Alhadidi, Qasim; Shah, Zahoor A.

    2014-01-01

    Ischemia is a condition associated with decreased blood supply to the brain, eventually leading to death of neurons. It is associated with a diverse cascade of responses involving both degenerative and regenerative mechanisms. At the cellular level, the changes are initiated prominently in the neuronal cytoskeleton. Cofilin, a cytoskeletal actin severing protein, is known to be involved in the early stages of apoptotic cell death. Evidence supports its intervention in the progression of disease states like Alzheimer's and ischemic kidney disease. In the present study, we have hypothesized the possible involvement of cofilin in ischemia. Using PC12 cells and mouse primary cultures of cortical neurons, we investigated the potential role of cofilin in ischemia in two different in vitro ischemic models: chemical induced oxidative stress and oxygen-glucose deprivation/reperfusion (OGD/R). The expression profile studies demonstrated a decrease in phosphocofilin levels in all models of ischemia, implying stress-induced cofilin activation. Furthermore, calcineurin and slingshot 1L (SSH) phosphatases were found to be the signaling mediators of the cofilin activation. In primary cultures of cortical neurons, cofilin was found to be significantly activated after 1 h of OGD. To delineate the role of activated cofilin in ischemia, we knocked down cofilin by siRNA technique and tested the impact of cofilin silencing on neuronal viability. Cofilin siRNA-treated neurons showed a significant reduction of cofilin levels in all treatment groups (control, OGD and OGD/R). Additionally, cofilin siRNA reduced cofilin mitochondrial translocation and caspase 3 cleavage, with a concomitant increase in neuronal viability. These results strongly support the active role of cofilin in ischemia-induced neuronal degeneration and apoptosis. We believe that targeting this protein mediator has a potential for therapeutic intervention in ischemic brain injury and stroke. PMID:25526862

  6. Cofilin Inhibition Restores Neuronal Cell Death in Oxygen-Glucose Deprivation Model of Ischemia.

    PubMed

    Madineni, Anusha; Alhadidi, Qasim; Shah, Zahoor A

    2016-03-01

    Ischemia is a condition associated with decreased blood supply to the brain, eventually leading to death of neurons. It is associated with a diverse cascade of responses involving both degenerative and regenerative mechanisms. At the cellular level, the changes are initiated prominently in the neuronal cytoskeleton. Cofilin, a cytoskeletal actin severing protein, is known to be involved in the early stages of apoptotic cell death. Evidence supports its intervention in the progression of disease states like Alzheimer's and ischemic kidney disease. In the present study, we have hypothesized the possible involvement of cofilin in ischemia. Using PC12 cells and mouse primary cultures of cortical neurons, we investigated the potential role of cofilin in ischemia in two different in vitro ischemic models: chemical induced oxidative stress and oxygen-glucose deprivation/reperfusion (OGD/R). The expression profile studies demonstrated a decrease in phosphocofilin levels in all models of ischemia, implying stress-induced cofilin activation. Furthermore, calcineurin and slingshot 1L (SSH) phosphatases were found to be the signaling mediators of the cofilin activation. In primary cultures of cortical neurons, cofilin was found to be significantly activated after 1 h of OGD. To delineate the role of activated cofilin in ischemia, we knocked down cofilin by small interfering RNA (siRNA) technique and tested the impact of cofilin silencing on neuronal viability. Cofilin siRNA-treated neurons showed a significant reduction of cofilin levels in all treatment groups (control, OGD, and OGD/R). Additionally, cofilin siRNA-reduced cofilin mitochondrial translocation and caspase 3 cleavage, with a concomitant increase in neuronal viability. These results strongly support the active role of cofilin in ischemia-induced neuronal degeneration and apoptosis. We believe that targeting this protein mediator has a potential for therapeutic intervention in ischemic brain injury and stroke.

  7. State-dependent diffusion of actin-depolymerizing factor/cofilin underlies the enlargement and shrinkage of dendritic spines

    PubMed Central

    Noguchi, Jun; Hayama, Tatsuya; Watanabe, Satoshi; Ucar, Hasan; Yagishita, Sho; Takahashi, Noriko; Kasai, Haruo

    2016-01-01

    Dendritic spines are the postsynaptic sites of most excitatory synapses in the brain, and spine enlargement and shrinkage give rise to long-term potentiation and depression of synapses, respectively. Because spine structural plasticity is accompanied by remodeling of actin scaffolds, we hypothesized that the filamentous actin regulatory protein cofilin plays a crucial role in this process. Here we investigated the diffusional properties of cofilin, the actin-severing and depolymerizing actions of which are activated by dephosphorylation. Cofilin diffusion was measured using fluorescently labeled cofilin fusion proteins and two-photon imaging. We show that cofilins are highly diffusible along dendrites in the resting state. However, during spine enlargement, wild-type cofilin and a phosphomimetic cofilin mutant remain confined to the stimulated spine, whereas a nonphosphorylatable mutant does not. Moreover, inhibition of cofilin phosphorylation with a competitive peptide disables spine enlargement, suggesting that phosphorylated-cofilin accumulation is a key regulator of enlargement, which is localized to individual spines. Conversely, spine shrinkage spreads to neighboring spines, even though triggered by weaker stimuli than enlargement. Diffusion of exogenous cofilin injected into a pyramidal neuron soma causes spine shrinkage and reduced PSD95 in spines, suggesting that diffusion of dephosphorylated endogenous cofilin underlies the spreading of spine shrinkage and long-term depression. PMID:27595610

  8. Activated ADF/cofilin sequesters phosphorylated microtubule-associated-protein during the assembly of Alzheimer-like neuritic cytoskeletal striations

    PubMed Central

    Whiteman, Ineka T.; Gervasio, Othon L.; Cullen, Karen M.; Guillemin, Gilles J.; Jeong, Erica V.; Witting, Paul K.; Antao, Shane T.; Minamide, Laurie S.; Bamburg, James R.; Goldsbury, Claire

    2009-01-01

    In Alzheimer disease (AD), rod-like cofilin aggregates (cofilin-actin rods) and thread-like inclusions containing phosphorylated microtubule-associated protein (pMAP) tau form in the brain (neuropil threads) and the extent of their presence correlates with cognitive decline and disease progression. The assembly mechanism of these respective pathological lesions and the relationship between them is poorly understood, yet vital to understanding the causes of sporadic AD. We demonstrate that during mitochondrial inhibition, activated actin-depolymerizing factor (ADF)/cofilin assemble into rods along processes of cultured primary neurons that recruit pMAP/tau and mimic neuropil threads. Fluorescence Resonance Energy Transfer (FRET) analysis revealed co-localization of cofilin-GFP and pMAP in rods, suggesting their close proximity within a cytoskeletal inclusion complex. The relationship between pMAP and cofilin-actin rods was further investigated using actin-modifying drugs and siRNA knockdown of ADF/cofilin in primary neurons. The results suggest that activation of ADF/cofilin and generation of cofilin-actin rods is required for the subsequent recruitment of pMAP into the inclusions. Additionally we were able to induce the formation of pMAP-positive ADF/cofilin rods by exposing cells to exogenous Aβ peptides. These results reveal a common pathway for pMAP and cofilin accumulation in neuronal processes. The requirement of activated ADF/cofilin for the sequestration of pMAP suggests that neuropil thread structures in the AD brain may be initiated by elevated cofilin activation and F-actin bundling that can be caused by oxidative stress, mitochondrial dysfunction or Aβ peptides, all suspected initiators of synaptic loss and neurodegeneration in AD. PMID:19828813

  9. Dephosphorylation of cofilin in stimulated platelets: roles for a GTP-binding protein and Ca2+.

    PubMed Central

    Davidson, M M; Haslam, R J

    1994-01-01

    In human platelets, thrombin not only stimulates the phosphorylation of pleckstrin (P47) and of myosin P-light chains, but also induces the dephosphorylation of an 18-19 kDa phosphoprotein (P18) [Imaoka, Lynham and Haslam (1983) J. Biol. Chem. 258, 11404-11414]. We have now studied this protein in detail. The thrombin-induced dephosphorylation reaction did not begin until the phosphorylation of myosin P-light chains and the secretion of dense-granule 5-hydroxytryptamine were nearly complete, but did parallel the later stages of platelet aggregation. Experiments with ionophore A23187 and phorbol 12-myristate 13-acetate indicated that dephosphorylation of P18 was stimulated by Ca2+, but not by protein kinase C. Two-dimensional analysis of platelet proteins, using non-equilibrium pH gradient electrophoresis followed by SDS/PAGE, showed that thrombin decreased the amount of phosphorylated P18 in platelets by up to 70% and slightly increased the amount of a more basic unlabelled protein that was present in 3-fold excess of P18 in unstimulated platelets. These two proteins were identified as the phosphorylated and non-phosphorylated forms of the pH-sensitive actin-depolymerizing protein, cofilin, by sequencing of peptide fragments and immunoblotting with a monoclonal antibody specific for cofilin. The molar concentration of cofilin in platelets was approx. 10% that of actin. Platelet cofilin was phosphorylated exclusively on serine. Experiments with electropermeabilized platelets showed that dephosphorylation of cofilin could be stimulated by guanosine 5'-[gamma-thio]triphosphate (GTP[S]) in the absence of Ca2+ or by a free Ca2+ concentration of 10 microM. This GTP[S]-induced dephosphorylation reaction was inhibited by 1-naphthyl phosphate, but not by okadaic acid. Our results add cofilin to the actin-binding proteins that may regulate the platelet cytoskeleton, and suggest that platelet cofilin can be activated by dephosphorylation reactions initiated either by a GTP

  10. Phosphorylation of the cytoskeletal protein CAP1 controls its association with cofilin and actin

    PubMed Central

    Zhou, Guo-Lei; Zhang, Haitao; Wu, Huhehasi; Ghai, Pooja; Field, Jeffrey

    2014-01-01

    ABSTRACT Cell signaling can control the dynamic balance between filamentous and monomeric actin by modulating actin regulatory proteins. One family of actin regulating proteins that controls actin dynamics comprises cyclase-associated proteins 1 and 2 (CAP1 and 2, respectively). However, cell signals that regulate CAPs remained unknown. We mapped phosphorylation sites on mouse CAP1 and found S307 and S309 to be regulatory sites. We further identified glycogen synthase kinase 3 as a kinase phosphorylating S309. The phosphomimetic mutant S307D/S309D lost binding to its partner cofilin and, when expressed in cells, caused accumulation of actin stress fibers similar to that in cells with reduced CAP expression. In contrast, the non-phosphorylatable S307A/S309A mutant showed drastically increased cofilin binding and reduced binding to actin. These results suggest that the phosphorylation serves to facilitate release of cofilin for a subsequent cycle of actin filament severing. Moreover, our results suggest that S307 and S309 function in tandem; neither the alterations in binding cofilin and/or actin, nor the defects in rescuing the phenotype of the enlarged cell size in CAP1 knockdown cells was observed in point mutants of either S307 or S309. In summary, we identify a novel regulatory mechanism of CAP1 through phosphorylation. PMID:25315833

  11. Phosphorylation of the cytoskeletal protein CAP1 controls its association with cofilin and actin.

    PubMed

    Zhou, Guo-Lei; Zhang, Haitao; Wu, Huhehasi; Ghai, Pooja; Field, Jeffrey

    2014-12-01

    Cell signaling can control the dynamic balance between filamentous and monomeric actin by modulating actin regulatory proteins. One family of actin regulating proteins that controls actin dynamics comprises cyclase-associated proteins 1 and 2 (CAP1 and 2, respectively). However, cell signals that regulate CAPs remained unknown. We mapped phosphorylation sites on mouse CAP1 and found S307 and S309 to be regulatory sites. We further identified glycogen synthase kinase 3 as a kinase phosphorylating S309. The phosphomimetic mutant S307D/S309D lost binding to its partner cofilin and, when expressed in cells, caused accumulation of actin stress fibers similar to that in cells with reduced CAP expression. In contrast, the non-phosphorylatable S307A/S309A mutant showed drastically increased cofilin binding and reduced binding to actin. These results suggest that the phosphorylation serves to facilitate release of cofilin for a subsequent cycle of actin filament severing. Moreover, our results suggest that S307 and S309 function in tandem; neither the alterations in binding cofilin and/or actin, nor the defects in rescuing the phenotype of the enlarged cell size in CAP1 knockdown cells was observed in point mutants of either S307 or S309. In summary, we identify a novel regulatory mechanism of CAP1 through phosphorylation.

  12. The role and importance of cofilin in human sperm capacitation and the acrosome reaction.

    PubMed

    Megnagi, Bar; Finkelstein, Maya; Shabtay, Ortal; Breitbart, Haim

    2015-12-01

    The spermatozoon is capable of fertilizing an oocyte only after undergoing several biochemical changes in the female reproductive tract, referred to as capacitation. The capacitated spermatozoon interacts with the egg zona pellucida and undergoes the acrosome reaction, which enables its penetration into the egg and fertilization. Actin dynamics play a major role throughout all these processes. Actin polymerization occurs during capacitation, whereas prior to the acrosome reaction, F-actin must undergo depolymerization. In the present study, we describe the presence of the actin-severing protein, cofilin, in human sperm. We examined the function and regulation of cofilin during human sperm capacitation and compared it to gelsolin, an actin-severing protein that was previously investigated by our group. In contrast to gelsolin, we found that cofilin is mainly phosphorylated/inhibited at the beginning of capacitation, and dephosphorylation occurs towards the end of the process. In addition, unlike gelsolin, cofilin phosphorylation is not affected by changing the cellular levels of PIP2. Despite the different regulation of the two proteins, the role of cofilin appears similar to that of gelsolin, and its activation leads to actin depolymerization, inhibition of sperm motility and induction of the acrosome reaction. Moreover, like gelsolin, cofilin translocates from the tail to the head during capacitation. In summary, gelsolin and cofilin play a similar role in F-actin depolymerization prior to the acrosome reaction but their pattern of phosphorylation/inactivation during the capacitation process is different. Thus, for the sperm to achieve high levels of F-actin along the capacitation process, both proteins must be inactivated at different times and, in order to depolymerize F-actin, both must be activated prior to the acrosome reaction.

  13. Srv2/cyclase-associated protein forms hexameric shurikens that directly catalyze actin filament severing by cofilin.

    PubMed

    Chaudhry, Faisal; Breitsprecher, Dennis; Little, Kristin; Sharov, Grigory; Sokolova, Olga; Goode, Bruce L

    2013-01-01

    Actin filament severing is critical for the dynamic turnover of cellular actin networks. Cofilin severs filaments, but additional factors may be required to increase severing efficiency in vivo. Srv2/cyclase-associated protein (CAP) is a widely expressed protein with a role in binding and recycling actin monomers ascribed to domains in its C-terminus (C-Srv2). In this paper, we report a new biochemical and cellular function for Srv2/CAP in directly catalyzing cofilin-mediated severing of filaments. This function is mediated by its N-terminal half (N-Srv2), and is physically and genetically separable from C-Srv2 activities. Using dual-color total internal reflection fluorescence microscopy, we determined that N-Srv2 stimulates filament disassembly by increasing the frequency of cofilin-mediated severing without affecting cofilin binding to filaments. Structural analysis shows that N-Srv2 forms novel hexameric star-shaped structures, and disrupting oligomerization impairs N-Srv2 activities and in vivo function. Further, genetic analysis shows that the combined activities of N-Srv2 and Aip1 are essential in vivo. These observations define a novel mechanism by which the combined activities of cofilin and Srv2/CAP lead to enhanced filament severing and support an emerging view that actin disassembly is controlled not by cofilin alone, but by a more complex set of factors working in concert.

  14. Slingshot-Cofilin activation mediates mitochondrial and synaptic dysfunction via Aβ ligation to β1-integrin conformers

    PubMed Central

    Woo, J A; Zhao, X; Khan, H; Penn, C; Wang, X; Joly-Amado, A; Weeber, E; Morgan, D; Kang, D E

    2015-01-01

    The accumulation of amyloid-β protein (Aβ) is an early event associated with synaptic and mitochondrial damage in Alzheimer's disease (AD). Recent studies have implicated the filamentous actin (F-actin) severing protein, Cofilin, in synaptic remodeling, mitochondrial dysfunction, and AD pathogenesis. However, whether Cofilin is an essential component of the AD pathogenic process and how Aβ impinges its signals to Cofilin from the neuronal surface are unknown. In this study, we found that Aβ42 oligomers (Aβ42O, amyloid-β protein 1–42 oligomers) bind with high affinity to low or intermediate activation conformers of β1-integrin, resulting in the loss of surface β1-integrin and activation of Cofilin via Slingshot homology-1 (SSH1) activation. Specifically, conditional loss of β1-integrin prevented Aβ42O-induced Cofilin activation, and allosteric modulation or activation of β1-integrin significantly reduced Aβ42O binding to neurons while blocking Aβ42O-induced reactive oxygen species (ROS) production, mitochondrial dysfunction, depletion of F-actin/focal Vinculin, and apoptosis. Cofilin, in turn, was required for Aβ42O-induced loss of cell surface β1-integrin, disruption of F-actin/focal Talin–Vinculin, and depletion of F-actin-associated postsynaptic proteins. SSH1 reduction, which mitigated Cofilin activation, prevented Aβ42O-induced mitochondrial Cofilin translocation and apoptosis, while AD brain mitochondria contained significantly increased activated/oxidized Cofilin. In mechanistic support in vivo, AD mouse model (APP (amyloid precursor protein)/PS1) brains contained increased SSH1/Cofilin and decreased SSH1/14-3-3 complexes, indicative of SSH1–Cofilin activation via release of SSH1 from 14-3-3. Finally, genetic reduction in Cofilin rescued APP/Aβ-induced synaptic protein loss and gliosis in vivo as well as deficits in long-term potentiation (LTP) and contextual memory in APP/PS1 mice. These novel findings therefore implicate the essential

  15. Cyclase-associated protein 1 (CAP1) promotes cofilin-induced actin dynamics in mammalian nonmuscle cells.

    PubMed

    Bertling, Enni; Hotulainen, Pirta; Mattila, Pieta K; Matilainen, Tanja; Salminen, Marjo; Lappalainen, Pekka

    2004-05-01

    Cyclase-associated proteins (CAPs) are highly conserved actin monomer binding proteins present in all eukaryotes. However, the mechanism by which CAPs contribute to actin dynamics has been elusive. In mammals, the situation is further complicated by the presence of two CAP isoforms whose differences have not been characterized. Here, we show that CAP1 is widely expressed in mouse nonmuscle cells, whereas CAP2 is the predominant isoform in developing striated muscles. In cultured NIH3T3 and B16F1 cells, CAP1 is a highly abundant protein that colocalizes with cofilin-1 to dynamic regions of the cortical actin cytoskeleton. Analysis of CAP1 knockdown cells demonstrated that this protein promotes rapid actin filament depolymerization and is important for cell morphology, migration, and endocytosis. Interestingly, depletion of CAP1 leads to an accumulation of cofilin-1 into abnormal cytoplasmic aggregates and to similar cytoskeletal defects to those seen in cofilin-1 knockdown cells, demonstrating that CAP1 is required for proper subcellular localization and function of ADF/cofilin. Together, these data provide the first direct in vivo evidence that CAP promotes rapid actin dynamics in conjunction with ADF/cofilin and is required for several central cellular processes in mammals.

  16. Memo is a cofilin-interacting protein that influences PLCgamma1 and cofilin activities, and is essential for maintaining directionality during ErbB2-induced tumor-cell migration.

    PubMed

    Meira, Maria; Masson, Régis; Stagljar, Igor; Lienhard, Susanne; Maurer, Francisca; Boulay, Anne; Hynes, Nancy E

    2009-03-15

    Heregulin (HRG) activates ErbB2-ErbB3 heterodimers thereby stimulating many cellular responses, including motility. Memo and PLCgamma1 interact with ErbB2 autophosphorylation sites and are essential for HRG-induced chemotaxis. By tracing HRG-stimulated cell migration in Dunn chambers, we found that Memo- or PLCgamma1 knockdown (KD) strongly impairs cell directionality. Memo has no obvious enzymatic activity and was discovered via its ability to complex with ErbB2. Using the yeast two-hybrid approach to gain insight into Memo function, an interaction between Memo and cofilin, a regulator of actin dynamics, was uncovered. The interaction was confirmed in vitro using recombinant proteins and in vivo in co-immunoprecipitation experiments where Memo was detected in complexes with cofilin, ErbB2 and PLCgamma1. Interestingly, in Memo KD cells, HRG-induced PLCgamma1 phosphorylation was decreased, suggesting that Memo regulates PLCgamma1 activation. Furthermore, HRG-induced recruitment of GFP-cofilin to lamellipodia is impaired in Memo and in PLCgamma1 KD cells, suggesting that both proteins lie upstream of cofilin in models of ErbB2-driven tumor-cell migration. Finally, in vitro F-actin binding and depolymerization assays showed that Memo enhances cofilin depolymerizing and severing activity. In summary, these data indicate that Memo also regulates actin dynamics by interacting with cofilin and enhancing its function.

  17. Severe protein aggregate myopathy in a knockout mouse model points to an essential role of cofilin2 in sarcomeric actin exchange and muscle maintenance.

    PubMed

    Gurniak, Christine B; Chevessier, Frédéric; Jokwitz, Melanie; Jönsson, Friederike; Perlas, Emerald; Richter, Hendrik; Matern, Gabi; Boyl, Pietro Pilo; Chaponnier, Christine; Fürst, Dieter; Schröder, Rolf; Witke, Walter

    2014-01-01

    Mutations in the human actin depolymerizing factor cofilin2 result in an autosomal dominant form of nemaline myopathy. Here, we report on the targeted ablation of murine cofilin2, which leads to a severe skeletal muscle specific phenotype within the first two weeks after birth. Apart from skeletal muscle, cofilin2 is also expressed in heart and CNS, however the pathology was restricted to skeletal muscle. The two close family members of cofilin2 - ADF and cofilin1 - were co-expressed in muscle, but unable to compensate for the loss of cofilin2. While primary myofibril assembly and muscle development were unaffected in cofilin2 mutant mice, progressive muscle degeneration was observed between postnatal days 3 and 7. Muscle pathology was characterized by sarcoplasmic protein aggregates, fiber size disproportion, mitochondrial abnormalities and internal nuclei. The observed muscle pathology differed from nemaline myopathy, but showed combined features of actin-associated myopathy and myofibrillar myopathy. In cofilin2 mutant mice, the postnatal expression pattern and turnover of sarcomeric α-actin isoforms were altered. Levels of smooth muscle α-actin were increased and remained high in developing muscles, suggesting that cofilin2 plays a crucial role during the exchange of α-actin isoforms during the early postnatal remodeling of the sarcomere.

  18. Cofilin nuclear-cytoplasmic shuttling affects cofilin-actin rod formation during stress.

    PubMed

    Munsie, Lise Nicole; Desmond, Carly R; Truant, Ray

    2012-09-01

    Cofilin protein is involved in regulating the actin cytoskeleton during typical steady state conditions, as well as during cell stress conditions where cofilin saturates F-actin, forming cofilin-actin rods. Cofilin can enter the nucleus through an active nuclear localization signal (NLS), accumulating in nuclear actin rods during stress. Here, we characterize the active nuclear export of cofilin through a leptomycin-B-sensitive, CRM1-dependent, nuclear export signal (NES). We also redefine the NLS of cofilin as a bipartite NLS, with an additional basic epitope required for nuclear localization. Using fluorescence lifetime imaging microscopy (FLIM) and Förster resonant energy transfer (FRET) between cofilin moieties and actin, as well as automated image analysis in live cells, we have defined subtle mutations in the cofilin NLS that allow cofilin to bind actin in vivo and affect cofilin dynamics during stress. We further define the requirement of cofilin-actin rod formation in a system of cell stress by temporal live-cell imaging. We propose that cofilin nuclear shuttling is critical for the cofilin-actin rod stress response with cofilin dynamically communicating between the nucleus and cytoplasm during cell stress.

  19. Cofilin-mediated sorting and export of specific cargo from the Golgi apparatus in yeast

    PubMed Central

    Curwin, Amy J.; von Blume, Julia; Malhotra, Vivek

    2012-01-01

    The mechanism of cargo sorting at the trans-Golgi network (TGN) for secretion is poorly understood. We previously reported the involvement of the actin-severing protein cofilin and the Ca2+ ATPase secretory pathway calcium ATPase 1 (SPCA1) in the sorting of soluble secretory cargo at the TGN in mammalian cells. Now we report that cofilin in yeast is required for export of selective secretory cargo at the late Golgi membranes. In cofilin mutant (cof1-8) cells, the cell wall protein Bgl2 was secreted at a reduced rate and retained in a late Golgi compartment, whereas the plasma membrane H+ ATPase Pma1, which is transported in the same class of carriers, reached the cell surface. In addition, sorting of carboxypeptidase Y (CPY) to the vacuole was delayed, and CPY was secreted from cof1-8 cells. Loss of the yeast orthologue of SPCA1 (Pmr1) exhibited similar sorting defects and displayed synthetic sickness with cof1-8. In addition, overexpression of PMR1 restored Bgl2 secretion in cof1-8 cells. These findings highlight the conserved role of cofilin and SPCA1/Pmr1 in sorting of the soluble secretory proteins at the TGN/late Golgi membranes in eukaryotes. PMID:22553351

  20. Viral Replication Protein Inhibits Cellular Cofilin Actin Depolymerization Factor to Regulate the Actin Network and Promote Viral Replicase Assembly

    PubMed Central

    Kovalev, Nikolay; de Castro Martín, Isabel Fernández; Barajas, Daniel; Risco, Cristina; Nagy, Peter D.

    2016-01-01

    RNA viruses exploit host cells by co-opting host factors and lipids and escaping host antiviral responses. Previous genome-wide screens with Tomato bushy stunt virus (TBSV) in the model host yeast have identified 18 cellular genes that are part of the actin network. In this paper, we show that the p33 viral replication factor interacts with the cellular cofilin (Cof1p), which is an actin depolymerization factor. Using temperature-sensitive (ts) Cof1p or actin (Act1p) mutants at a semi-permissive temperature, we find an increased level of TBSV RNA accumulation in yeast cells and elevated in vitro activity of the tombusvirus replicase. We show that the large p33 containing replication organelle-like structures are located in the close vicinity of actin patches in yeast cells or around actin cable hubs in infected plant cells. Therefore, the actin filaments could be involved in VRC assembly and the formation of large viral replication compartments containing many individual VRCs. Moreover, we show that the actin network affects the recruitment of viral and cellular components, including oxysterol binding proteins and VAP proteins to form membrane contact sites for efficient transfer of sterols to the sites of replication. Altogether, the emerging picture is that TBSV, via direct interaction between the p33 replication protein and Cof1p, controls cofilin activities to obstruct the dynamic actin network that leads to efficient subversion of cellular factors for pro-viral functions. In summary, the discovery that TBSV interacts with cellular cofilin and blocks the severing of existing filaments and the formation of new actin filaments in infected cells opens a new window to unravel the way by which viruses could subvert/co-opt cellular proteins and lipids. By regulating the functions of cofilin and the actin network, which are central nodes in cellular pathways, viruses could gain supremacy in subversion of cellular factors for pro-viral functions. PMID:26863541

  1. Cofilin is an essential component of the yeast cortical cytoskeleton

    PubMed Central

    1993-01-01

    We have biochemically identified the Saccharomyces cerevisiae homologue of the mammalian actin binding protein cofilin. Cofilin and related proteins isolated from diverse organisms are low molecular weight proteins (15-20 kD) that possess several activities in vitro. All bind to monomeric actin and sever filaments, and some can stably associate with filaments. In this study, we demonstrate using viscosity, sedimentation, and actin assembly rate assays that yeast cofilin (16 kD) possesses all of these properties. Cloning and sequencing of the S. cerevisiae cofilin gene (COF1) revealed that yeast cofilin is 41% identical in amino acid sequence to mammalian cofilin and, surprisingly, has homology to a protein outside the family of cofilin- like proteins. The NH2-terminal 16kD of Abp1p, a 65-kD yeast protein identified by its ability to bind to actin filaments, is 23% identical to yeast cofilin. Immunofluorescence experiments showed that, like Abp1p, cofilin is associated with the membrane actin cytoskeleton. A complete disruption of the COF1 gene was created in diploid cells. Sporulation and tetrad analysis revealed that yeast cofilin has an essential function in vivo. Although Abp1p shares sequence similarity with cofilin and has the same distribution as cofilin in the cell, multiple copies of the ABP1 gene cannot compensate for the loss of cofilin. Thus, cofilin and Abp1p are structurally related but functionally distinct components of the yeast membrane cytoskeleton. PMID:8421056

  2. Cofilin drives cell-invasive and metastatic responses to TGF-β in prostate cancer.

    PubMed

    Collazo, Joanne; Zhu, Beibei; Larkin, Spencer; Martin, Sarah K; Pu, Hong; Horbinski, Craig; Koochekpour, Shahriar; Kyprianou, Natasha

    2014-04-15

    Cofilin (CFL) is an F-actin-severing protein required for the cytoskeleton reorganization and filopodia formation, which drives cell migration. CFL binding and severing of F-actin is controlled by Ser3 phosphorylation, but the contributions of this step to cell migration during invasion and metastasis of cancer cells are unclear. In this study, we addressed the question in prostate cancer cells, including the response to TGF-β, a critical regulator of migration. In cells expressing wild-type CFL, TGF-β treatment increased LIMK-2 activity and cofilin phosphorylation, decreasing filopodia formation. Conversely, constitutively active CFL (SerAla) promoted filipodia formation and cell migration mediated by TGF-β. Notably, in cocultures of prostate cancer epithelial cells and cancer-associated fibroblasts, active CFL promoted invasive migration in response to TGF-β in the microenvironment. Further, constitutively active CFL elevated the metastatic ability of prostate cancer cells in vivo. We found that levels of active CFL correlated with metastasis in a mouse model of prostate tumor and that in human prostate cancer, CFL expression was increased significantly in metastatic tumors. Our findings show that the actin-severing protein CFL coordinates responses to TGF-β that are needed for invasive cancer migration and metastasis.

  3. Reelin and cofilin cooperate during the migration of cortical neurons: a quantitative morphological analysis.

    PubMed

    Chai, Xuejun; Zhao, Shanting; Fan, Li; Zhang, Wei; Lu, Xi; Shao, Hong; Wang, Shaobo; Song, Lingzhen; Failla, Antonio Virgilio; Zobiak, Bernd; Mannherz, Hans G; Frotscher, Michael

    2016-03-15

    In reeler mutant mice, which are deficient in reelin (Reln), the lamination of the cerebral cortex is disrupted. Reelin signaling induces phosphorylation of LIM kinase 1, which phosphorylates the actin-depolymerizing protein cofilin in migrating neurons. Conditional cofilin mutants show neuronal migration defects. Thus, both reelin and cofilin are indispensable during cortical development. To analyze the effects of cofilin phosphorylation on neuronal migration we used in utero electroporation to transfect E14.5 wild-type cortical neurons with pCAG-EGFP plasmids encoding either a nonphosphorylatable form of cofilin 1 (cofilin(S3A)), a pseudophosphorylated form (cofilin(S3E)) or wild-type cofilin 1 (cofilin(WT)). Wild-type controls and reeler neurons were transfected with pCAG-EGFP. Real-time microscopy and histological analyses revealed that overexpression of cofilin(WT) and both phosphomutants induced migration defects and morphological abnormalities of cortical neurons. Of note, reeler neurons and cofilin(S3A)- and cofilin(S3E)-transfected neurons showed aberrant backward migration towards the ventricular zone. Overexpression of cofilin(S3E), the pseudophosphorylated form, partially rescued the migration defect of reeler neurons, as did overexpression of Limk1. Collectively, the results indicate that reelin and cofilin cooperate in controlling cytoskeletal dynamics during neuronal migration.

  4. Integrins control motile strategy through a Rho–cofilin pathway

    PubMed Central

    Danen, Erik H.J.; van Rheenen, Jacco; Franken, Willeke; Huveneers, Stephan; Sonneveld, Petra; Jalink, Kees; Sonnenberg, Arnoud

    2005-01-01

    During wound healing, angiogenesis, and tumor invasion, cells often change their expression profiles of fibronectin-binding integrins. Here, we show that β1 integrins promote random migration, whereas β3 integrins promote persistent migration in the same epithelial cell background. Adhesion to fibronectin by αvβ3 supports extensive actin cytoskeletal reorganization through the actin-severing protein cofilin, resulting in a single broad lamellipod with static cell–matrix adhesions at the leading edge. Adhesion by α5β1 instead leads to the phosphorylation/inactivation of cofilin, and these cells fail to polarize their cytoskeleton but extend thin protrusions containing highly dynamic cell–matrix adhesions in multiple directions. The activity of the small GTPase RhoA is particularly high in cells adhering by α5β1, and inhibition of Rho signaling causes a switch from a β1- to a β3-associated mode of migration, whereas increased Rho activity has the opposite effect. Thus, alterations in integrin expression profiles allow cells to modulate several critical aspects of the motile machinery through Rho GTPases. PMID:15866889

  5. ATP-dependent regulation of actin monomer-filament equilibrium by cyclase-associated protein and ADF/cofilin.

    PubMed

    Nomura, Kazumi; Ono, Shoichiro

    2013-07-15

    CAP (cyclase-associated protein) is a conserved regulator of actin filament dynamics. In the nematode Caenorhabditis elegans, CAS-1 is an isoform of CAP that is expressed in striated muscle and regulates sarcomeric actin assembly. In the present study, we report that CAS-2, a second CAP isoform in C. elegans, attenuates the actin-monomer-sequestering effect of ADF (actin depolymerizing factor)/cofilin to increase the steady-state levels of actin filaments in an ATP-dependent manner. CAS-2 binds to actin monomers without a strong preference for either ATP- or ADP-actin. CAS-2 strongly enhances the exchange of actin-bound nucleotides even in the presence of UNC-60A, a C. elegans ADF/cofilin that inhibits nucleotide exchange. UNC-60A induces the depolymerization of actin filaments and sequesters actin monomers, whereas CAS-2 reverses the monomer-sequestering effect of UNC-60A in the presence of ATP, but not in the presence of only ADP or the absence of ATP or ADP. A 1:100 molar ratio of CAS-2 to UNC-60A is sufficient to increase actin filaments. CAS-2 has two independent actin-binding sites in its N- and C-terminal halves, and the C-terminal half is necessary and sufficient for the observed activities of the full-length CAS-2. These results suggest that CAS-2 (CAP) and UNC-60A (ADF/cofilin) are important in the ATP-dependent regulation of the actin monomer-filament equilibrium.

  6. Mammalian adenylyl cyclase-associated protein 1 (CAP1) regulates cofilin function, the actin cytoskeleton, and cell adhesion.

    PubMed

    Zhang, Haitao; Ghai, Pooja; Wu, Huhehasi; Wang, Changhui; Field, Jeffrey; Zhou, Guo-Lei

    2013-07-19

    CAP (adenylyl cyclase-associated protein) was first identified in yeast as a protein that regulates both the actin cytoskeleton and the Ras/cAMP pathway. Although the role in Ras signaling does not extend beyond yeast, evidence supports that CAP regulates the actin cytoskeleton in all eukaryotes including mammals. In vitro actin polymerization assays show that both mammalian and yeast CAP homologues facilitate cofilin-driven actin filament turnover. We generated HeLa cells with stable CAP1 knockdown using RNA interference. Depletion of CAP1 led to larger cell size and remarkably developed lamellipodia as well as accumulation of filamentous actin (F-actin). Moreover, we found that CAP1 depletion also led to changes in cofilin phosphorylation and localization as well as activation of focal adhesion kinase (FAK) and enhanced cell spreading. CAP1 forms complexes with the adhesion molecules FAK and Talin, which likely underlie the cell adhesion phenotypes through inside-out activation of integrin signaling. CAP1-depleted HeLa cells also had substantially elevated cell motility as well as invasion through Matrigel. In summary, in addition to generating in vitro and in vivo evidence further establishing the role of mammalian CAP1 in actin dynamics, we identified a novel cellular function for CAP1 in regulating cell adhesion.

  7. Identification of cofilin and LIM-domain-containing protein kinase 1 as novel interaction partners of 14-3-3 zeta.

    PubMed Central

    Birkenfeld, Jörg; Betz, Heinrich; Roth, Dagmar

    2003-01-01

    Proteins of the 14-3-3 family have been implicated in various physiological processes, and are thought to function as adaptors in various signal transduction pathways. In addition, 14-3-3 proteins may contribute to the reorganization of the actin cytoskeleton by interacting with as yet unidentified actin-binding proteins. Here we show that the 14-3-3 zeta isoform interacts with both the actin-depolymerizing factor cofilin and its regulatory kinase, LIM (Lin-11/Isl-1/Mec-3)-domain-containing protein kinase 1 (LIMK1). In both yeast two-hybrid assays and glutathione S-transferase pull-down experiments, these proteins bound efficiently to 14-3-3 zeta. Deletion analysis revealed consensus 14-3-3 binding sites on both cofilin and LIMK1. Furthermore, the C-terminal region of 14-3-3 zeta inhibited the binding of cofilin to actin in co-sedimentation experiments. Upon co-transfection into COS-7 cells, 14-3-3 zeta-specific immunoreactivity was redistributed into characteristic LIMK1-induced actin aggregations. Our data are consistent with 14-3-3-protein-induced changes to the actin cytoskeleton resulting from interactions with cofilin and/or LIMK1. PMID:12323073

  8. Actin-interacting Protein 1 Promotes Disassembly of Actin-depolymerizing Factor/Cofilin-bound Actin Filaments in a pH-dependent Manner*

    PubMed Central

    Nomura, Kazumi; Hayakawa, Kimihide; Tatsumi, Hitoshi; Ono, Shoichiro

    2016-01-01

    Actin-interacting protein 1 (AIP1) is a conserved WD repeat protein that promotes disassembly of actin filaments when actin-depolymerizing factor (ADF)/cofilin is present. Although AIP1 is known to be essential for a number of cellular events involving dynamic rearrangement of the actin cytoskeleton, the regulatory mechanism of the function of AIP1 is unknown. In this study, we report that two AIP1 isoforms from the nematode Caenorhabditis elegans, known as UNC-78 and AIPL-1, are pH-sensitive in enhancement of actin filament disassembly. Both AIP1 isoforms only weakly enhance disassembly of ADF/cofilin-bound actin filaments at an acidic pH but show stronger disassembly activity at neutral and basic pH values. However, a severing-defective mutant of UNC-78 shows pH-insensitive binding to ADF/cofilin-decorated actin filaments, suggesting that the process of filament severing or disassembly, but not filament binding, is pH-dependent. His-60 of AIP1 is located near the predicted binding surface for the ADF/cofilin-actin complex, and an H60K mutation of AIP1 partially impairs its pH sensitivity, suggesting that His-60 is involved in the pH sensor for AIP1. These biochemical results suggest that pH-dependent changes in AIP1 activity might be a novel regulatory mechanism of actin filament dynamics. PMID:26747606

  9. RhoGAP18B Isoforms Act on Distinct Rho-Family GTPases and Regulate Behavioral Responses to Alcohol via Cofilin

    PubMed Central

    Kalahasti, Geetha; Rodan, Aylin R.; Rothenfluh, Adrian

    2015-01-01

    Responses to the effects of ethanol are highly conserved across organisms, with reduced responses to the sedating effects of ethanol being predictive of increased risk for human alcohol dependence. Previously, we described that regulators of actin dynamics, such as the Rho-family GTPases Rac1, Rho1, and Cdc42, alter Drosophila’s sensitivity to ethanol-induced sedation. The GTPase activating protein RhoGAP18B also affects sensitivity to ethanol. To better understand how different RhoGAP18B isoforms affect ethanol sedation, we examined them for their effects on cell shape, GTP-loading of Rho-family GTPase, activation of the actin-severing cofilin, and actin filamentation. Our results suggest that the RhoGAP18B-PA isoform acts on Cdc42, while PC and PD act via Rac1 and Rho1 to activate cofilin. In vivo, a loss-of-function mutation in the cofilin-encoding gene twinstar leads to reduced ethanol-sensitivity and acts in concert with RhoGAP18B. Different RhoGAP18B isoforms, therefore, act on distinct subsets of Rho-family GTPases to modulate cofilin activity, actin dynamics, and ethanol-induced behaviors. PMID:26366560

  10. A 36 kDa monomeric protein and its complex with a 10 kDa protein both isolated from bovine aorta are calpactin-like proteins that differ in their Ca2+-dependent calmodulin-binding and actin-severing properties.

    PubMed Central

    Martin, F; Derancourt, J; Capony, J P; Watrin, A; Cavadore, J C

    1988-01-01

    Interaction of plasma membrane with the cytoskeleton involves a large number of proteins, among them a 36 kDa protein that was found to be involved in the interaction with actin filaments. We have isolated a 36 kDa protein from bovine aorta as a monomer and in a complex with a 10 kDa protein. Partial amino acid sequence determinations show that the 36 kDa and 10 kDa proteins isolated from bovine aorta are analogous to or identical with corresponding proteins purified from bovine intestine already described by Kristensen, Saris, Hunter, Hicks, Noonan, Glenney & Tack [(1986) Biochemistry 25, 4497-4503]. We report here that the association of the 10 kDa protein with the 36 kDa protein confers specific calmodulin-binding and actin-severing properties on the complex that are not possessed by the 36 kDa monomer alone. These findings suggest that the protein complex could be involved in thin-filament-related structures or could modulate some Ca2+-regulated events mediated by calmodulin. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 5. Fig. 7. PMID:2970844

  11. Roles of cofilin in development and its mechanisms of regulation.

    PubMed

    Ohashi, Kazumasa

    2015-05-01

    Reorganization of the actin cytoskeleton is essential for cellular processes during animal development. Cofilin and actin depolymerizing factor (ADF) are potent actin-binding proteins that sever and depolymerize actin filaments, acting to generate the dynamics of the actin cytoskeleton. The activity of cofilin is spatially and temporally regulated by a variety of intracellular molecular mechanisms. Cofilin is regulated by cofilin binding molecules, is phosphorylated at Ser-3 (inactivation) by LIM-kinases (LIMKs) and testicular protein kinases (TESKs), and is dephosphorylated (reactivation) by slingshot protein phosphatases (SSHs). Although studies of the molecular mechanisms of cofilin-induced reorganization of the actin cytoskeleton have been ongoing for decades, the multicellular functions of cofilin and its regulation in development are just becoming apparent. This review describes the molecular mechanisms of generating actin dynamics by cofilin and the intracellular signaling pathways for regulating cofilin activity. Furthermore, recent findings of the roles of cofilin in the development of several tissues and organs, especially neural tissues and cells, in model animals are described. Recent developmental studies have indicated that cofilin and its regulatory mechanisms are involved in cellular proliferation and migration, the establishment of cellular polarity, and the dynamic regulation of organ morphology.

  12. Following the Viterbi Path to Deduce Flagellar Actin-Interacting Proteins of Leishmania spp.: Report on Cofilins and Twinfilins

    NASA Astrophysics Data System (ADS)

    Pacheco, Ana Carolina L.; Araújo, Fabiana F.; Kamimura, Michel T.; Medeiros, Sarah R.; Viana, Daniel A.; Oliveira, Fátima de Cássia E.; Filho, Raimundo Araújo; Costa, Marcília P.; Oliveira, Diana M.

    2007-11-01

    For performing vital cellular processes, such as motility, eukaryotic cells rely on the actin cytoskeleton, whose structure and dynamics are tightly controlled by a large number of actin-interacting (AIP) or actin-related/regulating (ARP) proteins. Trypanosomatid protozoa, such as Leishmania, rely on their flagellum for motility and sensory reception, which are believed to allow parasite migration, adhesion, invasion and even persistence on mammalian host tissues to cause disease. Actin can determine cell stiffness and transmit force during mechanotransduction, cytokinesis, cell motility and other cellular shape changes, while the identification and analyses of AIPs can help to improve understanding of their mechanical properties on physiological architectures, such as the present case regarding Leishmania flagellar apparatus. This work conveniently apply bioinformatics tools in some refined pattern recognition techniques (such as hidden Markov models (HMMs) through the Viterbi algorithm/path) in order to improve the recognition of actin-binding/interacting activity through identification of AIPs in genomes, transcriptomes and proteomes of Leishmania species. We here report cofilin and twinfilin as putative components of the flagellar apparatus, a direct bioinformatics contribution in the secondary annotation of Leishmania and trypanosomatid genomes.

  13. Computational spatiotemporal analysis identifies WAVE2 and Cofilin as joint regulators of costimulation-mediated T cell actin dynamics

    PubMed Central

    Roybal, Kole T.; Buck, Taráz E.; Ruan, Xiongtao; Cho, Baek Hwan; Clark, Danielle J.; Ambler, Rachel; Tunbridge, Helen M.; Zhang, Jianwei; Verkade, Paul; Wülfing, Christoph; Murphy, Robert F.

    2016-01-01

    Fluorescence microscopy is one of the most important tools in cell biology research and it provides spatial and temporal information to investigate regulatory systems inside cells. This technique can generate data in the form of signal intensities at thousands of positions resolved inside individual live cells; however, given extensive cell-to-cell variation, methods do not currently exist to assemble these data into three- or four-dimensional maps of protein concentration that can be compared across different cells and conditions. Here, we have developed one such method and applied it to investigate actin dynamics in T cell activation. Antigen recognition in T cells by the T cell receptor (TCR) is amplified by engagement of the costimulatory receptor CD28 and we have determined how CD28 modulates actin dynamics. We imaged actin and eight core actin regulators under conditions where CD28 in the context of a strong TCR signal was engaged or blocked to yield over a thousand movies. Our computational analysis identified diminished recruitment of the activator of actin nucleation WAVE2 and the actin severing protein cofilin to F-actin as the dominant difference upon costimulation blockade. Reconstitution of WAVE2 and cofilin activity restored the defect in actin signaling dynamics upon costimulation blockade. Thus we have developed and validated an approach to quantify protein distributions in time and space for analysis of complex regulatory systems. PMID:27095595

  14. Cofilin-1 and Other ADF/Cofilin Superfamily Members in Human Malignant Cells

    PubMed Central

    Shishkin, Sergey; Eremina, Lidia; Pashintseva, Natalya; Kovalev, Leonid; Kovaleva, Marina

    2016-01-01

    Identification of actin-depolymerizing factor homology (ADF-H) domains in the structures of several related proteins led first to the formation of the ADF/cofilin family, which then expanded to the ADF/cofilin superfamily. This superfamily includes the well-studied cofilin-1 (Cfl-1) and about a dozen different human proteins that interact directly or indirectly with the actin cytoskeleton, provide its remodeling, and alter cell motility. According to some data, Cfl-1 is contained in various human malignant cells (HMCs) and is involved in the formation of malignant properties, including invasiveness, metastatic potential, and resistance to chemotherapeutic drugs. The presence of other ADF/cofilin superfamily proteins in HMCs and their involvement in the regulation of cell motility were discovered with the use of various OMICS technologies. In our review, we discuss the results of the study of Cfl-1 and other ADF/cofilin superfamily proteins, which may be of interest for solving different problems of molecular oncology, as well as for the prospects of further investigations of these proteins in HMCs. PMID:28025492

  15. Cofilin and Vangl2 cooperate in the initiation of planar cell polarity in the mouse embryo

    PubMed Central

    Mahaffey, James P.; Grego-Bessa, Joaquim; Liem, Karel F.; Anderson, Kathryn V.

    2013-01-01

    The planar cell polarity (PCP; non-canonical Wnt) pathway is required to orient the cells within the plane of an epithelium. Here, we show that cofilin 1 (Cfl1), an actin-severing protein, and Vangl2, a core PCP protein, cooperate to control PCP in the early mouse embryo. Two aspects of planar polarity can be analyzed quantitatively at cellular resolution in the mouse embryo: convergent extension of the axial midline; and posterior positioning of cilia on cells of the node. Analysis of the spatial distribution of brachyury+ midline cells shows that the Cfl1 mutant midline is normal, whereas Vangl2 mutants have a slightly wider midline. By contrast, midline convergent extension fails completely in Vangl2 Cfl1 double mutants. Planar polarity is required for the posterior positioning of cilia on cells in the mouse node, which is essential for the initiation of left-right asymmetry. Node cilia are correctly positioned in Cfl1 and Vangl2 single mutants, but cilia remain in the center of the cell in Vangl2 Cfl1 double mutants, leading to randomization of left-right asymmetry. In both the midline and node, the defect in planar polarity in the double mutants arises because PCP protein complexes fail to traffic to the apical cell membrane, although other aspects of apical-basal polarity are unaffected. Genetic and pharmacological experiments demonstrate that F-actin remodeling is essential for the initiation, but not maintenance, of PCP. We propose that Vangl2 and cofilin cooperate to target Rab11+ vesicles containing PCP proteins to the apical membrane during the initiation of planar cell polarity. PMID:23406901

  16. Cofilin cooperates with fascin to disassemble filopodial actin filaments

    PubMed Central

    Breitsprecher, Dennis; Koestler, Stefan A.; Chizhov, Igor; Nemethova, Maria; Mueller, Jan; Goode, Bruce L.; Small, J. Victor; Rottner, Klemens; Faix, Jan

    2011-01-01

    Cells use a large repertoire of proteins to remodel the actin cytoskeleton. Depending on the proteins involved, F-actin is organized in specialized protrusions such as lamellipodia or filopodia, which serve diverse functions in cell migration and sensing. Although factors responsible for directed filament assembly in filopodia have been extensively characterized, the mechanisms of filament disassembly in these structures are mostly unknown. We investigated how the actin-depolymerizing factor cofilin-1 affects the dynamics of fascincrosslinked actin filaments in vitro and in live cells. By multicolor total internal reflection fluorescence microscopy and fluorimetric assays, we found that cofilin-mediated severing is enhanced in fascin-crosslinked bundles compared with isolated filaments, and that fascin and cofilin act synergistically in filament severing. Immunolabeling experiments demonstrated for the first time that besides its known localization in lamellipodia and membrane ruffles, endogenous cofilin can also accumulate in the tips and shafts of filopodia. Live-cell imaging of fluorescently tagged proteins revealed that cofilin is specifically targeted to filopodia upon stalling of protrusion and during their retraction. Subsequent electron tomography established filopodial actin filament and/or bundle fragmentation to precisely correlate with cofilin accumulation. These results identify a new mechanism of filopodium disassembly involving both fascin and cofilin. PMID:21940796

  17. Malignant progressive tumor cell clone exhibits significant up-regulation of cofilin-2 and 27-kDa modified form of cofilin-1 compared to regressive clone.

    PubMed

    Kuramitsu, Yasuhiro; Wang, Yufeng; Okada, Futoshi; Baron, Byron; Tokuda, Kazuhiro; Kitagawa, Takao; Akada, Junko; Nakamura, Kazuyuki

    2013-09-01

    QR-32 is a regressive murine fibrosarcoma cell clone which cannot grow when they are transplanted in mice; QRsP-11 is a progressive malignant tumor cell clone derived from QR-32 which shows strong tumorigenicity. A recent study showed there to be differentially expressed up-regulated and down-regulated proteins in these cells, which were identified by proteomic differential display analyses by using two-dimensional gel electrophoresis and mass spectrometry. Cofilins are small proteins of less than 20 kDa. Their function is the regulation of actin assembly. Cofilin-1 is a small ubiquitous protein, and regulates actin dynamics by means of binding to actin filaments. Cofilin-1 plays roles in cell migration, proliferation and phagocytosis. Cofilin-2 is also a small protein, but it is mainly expressed in skeletal and cardiac muscles. There are many reports showing the positive correlation between the level of cofilin-1 and cancer progression. We have also reported an increased expression of cofilin-1 in pancreatic cancer tissues compared to adjacent paired normal tissues. On the other hand, cofilin-2 was significantly less expressed in pancreatic cancer tissues. Therefore, the present study investigated the comparison of the levels of cofilin-1 and cofilin-2 in regressive QR-32 and progressive QRsP-11cells by western blotting. Cofilin-2 was significantly up-regulated in QRsP-11 compared to QR-32 cells (p<0.001). On the other hand, the difference of the intensities of the bands of cofilin-1 (18 kDa) in QR-32 and QRsP-11 was not significant. However, bands of 27 kDa showed a quite different intensity between QR-32 and QRsP-11, with much higher intensities in QRsP-11 compared to QR-32 (p<0.001). These results suggested that the 27-kDa protein recognized by the antibody against cofilin-1 is a possible biomarker for progressive tumor cells.

  18. Cofilin is correlated with sperm quality and influences sperm fertilizing capacity in humans.

    PubMed

    Chen, S M; Chen, X M; Lu, Y L; Liu, B; Jiang, M; Ma, Y X

    2016-11-01

    Spermatozoa should undergo a series of biochemical modifications in female reproduction tract, which is collectively called sperm capacitation. The capacitated spermatozoa can bind to the egg zona pellucida, resulting in the occurrence of acrosome reaction which enabled spermatozoa penetrate into the egg. The formation of actin plays an important role in these processes. Actin polymerized during sperm capacitation, but the polymers dispersed before acrosome reaction. In this study, we take our focus on actin-binding protein, cofilin. Our results showed that the % and intensity of sperm expressing cofilin in normal sperm were significantly higher than in abnormal sperm, and the sperm expressing cofilin was correlated with sperm quality. Furthermore, treatment with anti-cofilin antibody increased the percentage of sperm capacitation and inhibited progesterone- or A23187- induced acrosome reaction in a dose-dependent manner. The presence of 100 ng/mL anti-cofilin antibodies markedly blocked the sperm penetration of zona-free hamster eggs. Besides, immunofluorescence results revealed that cofilin was colocalized with F-actin in the midpiece of spermatozoa; however, phospho-cofilin was expressed in the tail rather than in the midpiece of spermatozoa, which was not colocalized with F-actin in spermatozoa. Moreover, western blot revealed that phospho-cofilin increased in sperm capacitation, and the total cofilin and cofilin in insoluble fraction increased in acrosome reaction; immunofluorescence results showed that the amount of cofilin in acrosome increased in sperm capacitation. In conclusion, our study revealed that cofilin expression in human sperm is correlated with sperm quality and the alterations of cofilin and phospho-cofilin in fertilization affects sperm capacitation, acrosome reaction, and spermatozoa-oocyte fusion.

  19. Actin dynamics and cofilin-actin rods in Alzheimer disease

    PubMed Central

    Bamburg, James R.; Bernstein, Barbara W.

    2017-01-01

    Cytoskeletal abnormalities and synaptic loss, typical of both familial and sporadic Alzheimer disease (AD), are induced by diverse stresses such as neuroinflammation, oxidative stress, and energetic stress, each of which may be initiated or enhanced by proinflammatory cytokines or amyloid-β (Aβ) peptides. Extracellular Aβ-containing plaques and intracellular phospho-tau-containing neurofibrillary tangles are postmortem pathologies required to confirm AD and have been the focus of most studies. However, AD brain, but not normal brain, also have increased levels of cytoplasmic rod-shaped bundles of filaments composed of ADF/cofilin-actin in a 1:1 complex (rods). Cofilin, the major ADF/cofilin isoform in mammalian neurons, severs actin filaments at low cofilin/actin ratios and stabilizes filaments at high cofilin/actin ratios. It binds cooperatively to ADP-actin subunits in F-actin. Cofilin is activated by dephosphorylation and may be oxidized in stressed neurons to form disulfide-linked dimers, required for bundling cofilin-actin filaments into stable rods. Rods form within neurites causing synaptic dysfunction by sequestering cofilin, disrupting normal actin dynamics, blocking transport, and exacerbating mitochondrial membrane potential loss. Aβ and proinflammatory cytokines induce rods through a cellular prion protein-dependent activation of NADPH oxidase and production of reactive oxygen species. Here we review recent advances in our understanding of cofilin biochemistry, rod formation, and the development of cognitive deficits. We will then discuss rod formation as a molecular pathway for synapse loss that may be common between all three prominent current AD hypotheses, thus making rods an attractive therapeutic target. PMID:26873625

  20. Amyloid-β and proinflammatory cytokines utilize a prion protein-dependent pathway to activate NADPH oxidase and induce cofilin-actin rods in hippocampal neurons.

    PubMed

    Walsh, Keifer P; Minamide, Laurie S; Kane, Sarah J; Shaw, Alisa E; Brown, David R; Pulford, Bruce; Zabel, Mark D; Lambeth, J David; Kuhn, Thomas B; Bamburg, James R

    2014-01-01

    Neurites of neurons under acute or chronic stress form bundles of filaments (rods) containing 1∶1 cofilin∶actin, which impair transport and synaptic function. Rods contain disulfide cross-linked cofilin and are induced by treatments resulting in oxidative stress. Rods form rapidly (5-30 min) in >80% of cultured hippocampal or cortical neurons treated with excitotoxic levels of glutamate or energy depleted (hypoxia/ischemia or mitochondrial inhibitors). In contrast, slow rod formation (50% of maximum response in ∼6 h) occurs in a subpopulation (∼20%) of hippocampal neurons upon exposure to soluble human amyloid-β dimer/trimer (Aβd/t) at subnanomolar concentrations. Here we show that proinflammatory cytokines (TNFα, IL-1β, IL-6) also induce rods at the same rate and within the same neuronal population as Aβd/t. Neurons from prion (PrP(C))-null mice form rods in response to glutamate or antimycin A, but not in response to proinflammatory cytokines or Aβd/t. Two pathways inducing rod formation were confirmed by demonstrating that NADPH-oxidase (NOX) activity is required for prion-dependent rod formation, but not for rods induced by glutamate or energy depletion. Surprisingly, overexpression of PrP(C) is by itself sufficient to induce rods in over 40% of hippocampal neurons through the NOX-dependent pathway. Persistence of PrP(C)-dependent rods requires the continuous activity of NOX. Removing inducers or inhibiting NOX activity in cells containing PrP(C)-dependent rods causes rod disappearance with a half-life of about 36 min. Cofilin-actin rods provide a mechanism for synapse loss bridging the amyloid and cytokine hypotheses for Alzheimer disease, and may explain how functionally diverse Aβ-binding membrane proteins induce synaptic dysfunction.

  1. Signaling mechanisms and functional roles of cofilin phosphorylation and dephosphorylation.

    PubMed

    Mizuno, Kensaku

    2013-02-01

    Cofilin and actin-depolymerizing factor (ADF) are actin-binding proteins that play an essential role in regulating actin filament dynamics and reorganization by stimulating the severance and depolymerization of actin filaments. Cofilin/ADF are inactivated by phosphorylation at the serine residue at position 3 by LIM-kinases (LIMKs) and testicular protein kinases (TESKs) and are reactivated by dephosphorylation by the slingshot (SSH) family of protein phosphatases and chronophin. This review describes recent advances in our understanding of the signaling mechanisms regulating LIMKs and SSHs and the functional roles of cofilin phospho-regulation in cell migration, tumor invasion, mitosis, neuronal development, and synaptic plasticity. Accumulating evidence demonstrates that the phospho-regulation of cofilin/ADF is a key convergence point of cell signaling networks that link extracellular stimuli to actin cytoskeletal dynamics and that spatiotemporal control of cofilin/ADF activity by LIMKs and SSHs plays a crucial role in a diverse array of cellular and physiological processes. Perturbations in the normal control of cofilin/ADF activity underlie many pathological conditions, including cancer metastasis and neurological and cardiovascular disorders.

  2. Assessments of urine cofilin-1 in patients hospitalized in the intensive care units with acute kidney injury

    NASA Astrophysics Data System (ADS)

    Lee, Yi-Jang; Chao, Cheng-Han; Chang, Ying-Feng; Chou, Chien

    2013-02-01

    The actin depolymerizing factor (ADF)/cofilin protein family has been reported to be associated with ischemia induced renal disorders. Here we examine if cofilin-1 is associated with acute kidney injury (AKI). We exploited a 96-well based fiber-optic biosensor that uses conjugated gold nanoparticles and a sandwich immunoassay to detect the urine cofilin-1 level of AKI patients. The mean urine cofilin-1 level of the AKI patients was two-fold higher than that of healthy adults. The receiver operating characteristic (ROC) curve showed that cofilin-1 is a potential biomarker for discriminating AKI patients from healthy adults for intensive care patients.

  3. Mitochondrial translocation and interaction of cofilin and Drp1 are required for erucin-induced mitochondrial fission and apoptosis.

    PubMed

    Li, Guobing; Zhou, Jing; Budhraja, Amit; Hu, Xiaoye; Chen, Yibiao; Cheng, Qi; Liu, Lei; Zhou, Ting; Li, Ping; Liu, Ehu; Gao, Ning

    2015-01-30

    Cofilin is a member of the actin-depolymerizing factor (ADF) family protein, which plays an essential role in regulation of the mitochondrial apoptosis. It remains unclear how cofilin regulates the mitochondrial apoptosis. Here, we report for the first time that natural compound 4-methylthiobutyl isothiocyanate (erucin) found in consumable cruciferous vegetables induces mitochondrial fission and apoptosis in human breast cancer cells through the mitochondrial translocation of cofilin. Importantly, cofilin regulates erucin-induced mitochondrial fission by interacting with dynamin-related protein (Drp1). Knockdown of cofilin or Drp1 markedly reduced erucin-mediated mitochondrial translocation and interaction of cofilin and Drp1, mitochondrial fission, and apoptosis. Only dephosphorylated cofilin (Ser 3) and Drp1 (Ser 637) are translocated to the mitochondria. Cofilin S3E and Drp1 S637D mutants, which mimick the phosphorylated forms, suppressed mitochondrial translocation, fission, and apoptosis. Moreover, both dephosphorylation and mitochondrial translocation of cofilin and Drp1 are dependent on ROCK1 activation. In vivo findings confirmed that erucin-mediated inhibition of tumor growth in a breast cancer cell xenograft mouse model is associated with the mitochondrial translocation of cofilin and Drp1, fission and apoptosis. Our study reveals a novel role of cofilin in regulation of mitochondrial fission and suggests erucin as a potential drug for treatment of breast cancer.

  4. Cooperative and non-cooperative conformational changes of F-actin induced by cofilin

    SciTech Connect

    Aihara, Tomoki; Oda, Toshiro

    2013-05-31

    Highlights: •Mobility of MTSL attached to C374 in F-actin became high upon addition of cofilin. •Change of motility of MTSL attached to C374 with cofilin-binding was cooperative. •Mobility of MTSL attached to V43C in F-actin became high upon addition of cofilin. •Change of motility of MTSL attached to V43C with cofilin-binding was linear. -- Abstract: Cofilin is an actin-binding protein that promotes F-actin depolymerization. It is well-known that cofilin-coated F-actin is more twisted than naked F-actin, and that the protomer is more tilted. However, the means by which the local changes induced by the binding of individual cofilin proteins proceed to the global conformational changes of the whole F-actin molecule remain unknown. Here we investigated the cofilin-induced changes in several parts of F-actin, through site-directed spin-label electron paramagnetic resonance spectroscopy analyses of recombinant actins containing single reactive cysteines. We found that the global, cooperative conformational changes induced by cofilin-binding, which were detected by the spin-label attached to the Cys374 residue, occurred without the detachment of the D-loop in subdomain 2 from the neighboring protomer. The two processes of local and global changes do not necessarily proceed in sequence.

  5. A Reducing Milieu Renders Cofilin Insensitive to Phosphatidylinositol 4,5-Bisphosphate (PIP2) Inhibition*

    PubMed Central

    Schulte, Bianca; John, Isabel; Simon, Bernd; Brockmann, Christoph; Oelmeier, Stefan A.; Jahraus, Beate; Kirchgessner, Henning; Riplinger, Selina; Carlomagno, Teresa; Wabnitz, Guido H.; Samstag, Yvonne

    2013-01-01

    Oxidative stress can lead to T cell hyporesponsiveness. A reducing micromilieu (e.g. provided by dendritic cells) can rescue T cells from such oxidant-induced dysfunction. However, the reducing effects on proteins leading to restored T cell activation remained unknown. One key molecule of T cell activation is the actin-remodeling protein cofilin, which is dephosphorylated on serine 3 upon T cell costimulation and has an essential role in formation of mature immune synapses between T cells and antigen-presenting cells. Cofilin is spatiotemporally regulated; at the plasma membrane, it can be inhibited by phosphatidylinositol 4,5-bisphosphate (PIP2). Here, we show by NMR spectroscopy that a reducing milieu led to structural changes in the cofilin molecule predominantly located on the protein surface. They overlapped with the PIP2- but not actin-binding sites. Accordingly, reduction of cofilin had no effect on F-actin binding and depolymerization and did not influence the cofilin phosphorylation state. However, it did prevent inhibition of cofilin activity through PIP2. Therefore, a reducing milieu may generate an additional pool of active cofilin at the plasma membrane. Consistently, in-flow microscopy revealed increased actin dynamics in the immune synapse of untransformed human T cells under reducing conditions. Altogether, we introduce a novel mechanism of redox regulation: reduction of the actin-remodeling protein cofilin renders it insensitive to PIP2 inhibition, resulting in enhanced actin dynamics. PMID:24003227

  6. Cofilin-1 Inactivation Leads to Proteinuria – Studies in Zebrafish, Mice and Humans

    PubMed Central

    Kaufeld, Jessica; Miller, Emily; Tossidou, Irini; Englert, Christoph; Bollig, Frank; Staggs, Lynne; Roberts, Ian S. D.; Park, Joon-Keun; Haller, Hermann; Schiffer, Mario

    2010-01-01

    Background Podocytes are highly specialized epithelial cells on the visceral side of the glomerulus. Their interdigitating primary and secondary foot processes contain an actin based contractile apparatus that can adjust to changes in the glomerular perfusion pressure. Thus, the dynamic regulation of actin bundles in the foot processes is critical for maintenance of a well functioning glomerular filtration barrier. Since the actin binding protein, cofilin-1, plays a significant role in the regulation of actin dynamics, we examined its role in podocytes to determine the impact of cofilin-1 dysfunction on glomerular filtration. Methods and Findings We evaluated zebrafish pronephros function by dextran clearance and structure by TEM in cofilin-1 morphant and mutant zebrafish and we found that cofilin-1 deficiency led to foot process effacement and proteinuria. In vitro studies in murine and human podocytes revealed that PMA stimulation induced activation of cofilin-1, whereas treatment with TGF-β resulted in cofilin-1 inactivation. Silencing of cofilin-1 led to an accumulation of F-actin fibers and significantly decreased podocyte migration ability. When we analyzed normal and diseased murine and human glomerular tissues to determine cofilin-1 localization and activity in podocytes, we found that in normal kidney tissues unphosphorylated, active cofilin-1 was distributed throughout the cell. However, in glomerular diseases that affect podocytes, cofilin-1 was inactivated by phosphorylation and observed in the nucleus. Conclusions Based on these in vitro and in vivo studies we concluded cofilin-1 is an essential regulator for actin filament recycling that is required for the dynamic nature of podocyte foot processes. Therefore, we describe a novel pathomechanism of proteinuria development. PMID:20838616

  7. Site-specific cation release drives actin filament severing by vertebrate cofilin

    PubMed Central

    Kang, Hyeran; Bradley, Michael J.; Cao, Wenxiang; Zhou, Kaifeng; Grintsevich, Elena E.; Michelot, Alphée; Sindelar, Charles V.; Hochstrasser, Mark; De La Cruz, Enrique M.

    2014-01-01

    Actin polymerization powers the directed motility of eukaryotic cells. Sustained motility requires rapid filament turnover and subunit recycling. The essential regulatory protein cofilin accelerates network remodeling by severing actin filaments and increasing the concentration of ends available for elongation and subunit exchange. Although cofilin effects on actin filament assembly dynamics have been extensively studied, the molecular mechanism of cofilin-induced filament severing is not understood. Here we demonstrate that actin filament severing by vertebrate cofilin is driven by the linked dissociation of a single cation that controls filament structure and mechanical properties. Vertebrate cofilin only weakly severs Saccharomyces cerevisiae actin filaments lacking this “stiffness cation” unless a stiffness cation-binding site is engineered into the actin molecule. Moreover, vertebrate cofilin rescues the viability of a S. cerevisiae cofilin deletion mutant only when the stiffness cation site is simultaneously introduced into actin, demonstrating that filament severing is the essential function of cofilin in cells. This work reveals that site-specific interactions with cations serve a key regulatory function in actin filament fragmentation and dynamics. PMID:25468977

  8. Cofilin-mediated actin dynamics promotes actin bundle formation during Drosophila bristle development

    PubMed Central

    Wu, Jing; Wang, Heng; Guo, Xuan; Chen, Jiong

    2016-01-01

    The actin bundle is an array of linear actin filaments cross-linked by actin-bundling proteins, but its assembly and dynamics are not as well understood as those of the branched actin network. Here we used the Drosophila bristle as a model system to study actin bundle formation. We found that cofilin, a major actin disassembly factor of the branched actin network, promotes the formation and positioning of actin bundles in the developing bristles. Loss of function of cofilin or AIP1, a cofactor of cofilin, each resulted in increased F-actin levels and severe defects in actin bundle organization, with the defects from cofilin deficiency being more severe. Further analyses revealed that cofilin likely regulates actin bundle formation and positioning by the following means. First, cofilin promotes a large G-actin pool both locally and globally, likely ensuring rapid actin polymerization for bundle initiation and growth. Second, cofilin limits the size of a nonbundled actin-myosin network to regulate the positioning of actin bundles. Third, cofilin prevents incorrect assembly of branched and myosin-associated actin filament into bundles. Together these results demonstrate that the interaction between the dynamic dendritic actin network and the assembling actin bundles is critical for actin bundle formation and needs to be closely regulated. PMID:27385345

  9. Localization of cofilin gene to 1q25

    SciTech Connect

    Hung, W.Y.; Deng, H.X.; Hentati, H.A.

    1994-09-01

    Cofilin is a 21 kD actin-binding protein which has recently been identified as an important intracellular messenger that activates resting T-lymphocytes for clonal growth and expression of their functional repertoires. To determine the chromosomal location of the cofilin gene, a cDNA fragment, 276 bp downstream from initial codon to poly A tail, was used as a probe to screen a human genomic DNA lamda phage library. Four positive phage clones were isolated from 400,000 phage plaques. The size of the genomic inserts ranged from 14 kb to 20 kb. The DNA from these phage clones were labeled with digoxigenin and hybridized to metaphase chromosome preparations. The hybridization signals were detected with sheep anti-digoxigenin and FITC-conjugated rabbit anti-sheep antibodies. Fluorescence signal was amplified once with FITC-conjugated goat anti-rabbit antibody. The results indicate that cofilin gene is located at chromosome 1q25.

  10. Identification of new surfaces of cofilin that link mitochondrial function to the control of multi-drug resistance

    PubMed Central

    Kotiadis, Vassilios N.; Leadsham, Jane E.; Bastow, Emma L.; Gheeraert, Aline; Whybrew, Jennafer M.; Bard, Martin; Lappalainen, Pekka; Gourlay, Campbell W.

    2012-01-01

    ADF/cofilin family proteins are essential regulators of actin cytoskeletal dynamics. Recent evidence also implicates cofilin in the regulation of mitochondrial function. Here, we identify new functional surfaces of cofilin that are linked with mitochondrial function and stress responses in the budding yeast Saccharomyces cerevisiae. Our data link surfaces of cofilin that are involved in separable activities of actin filament disassembly or stabilisation, to the regulation of mitochondrial morphology and the activation status of Ras, respectively. Importantly, charge alterations to conserved surfaces of cofilin that do not interfere with its actin regulatory activity lead to a dramatic increase in respiratory function that triggers a retrograde signal to upregulate a battery of ABC transporters and concurrent metabolic changes that support multi-drug resistance. We hypothesise that cofilin functions within a bio-sensing system that connects the cytoskeleton and mitochondrial function to environmental challenge. PMID:22344251

  11. Identification of new surfaces of cofilin that link mitochondrial function to the control of multi-drug resistance.

    PubMed

    Kotiadis, Vassilios N; Leadsham, Jane E; Bastow, Emma L; Gheeraert, Aline; Whybrew, Jennafer M; Bard, Martin; Lappalainen, Pekka; Gourlay, Campbell W

    2012-05-01

    ADF/cofilin family proteins are essential regulators of actin cytoskeletal dynamics. Recent evidence also implicates cofilin in the regulation of mitochondrial function. Here, we identify new functional surfaces of cofilin that are linked with mitochondrial function and stress responses in the budding yeast Saccharomyces cerevisiae. Our data link surfaces of cofilin that are involved in separable activities of actin filament disassembly or stabilisation, to the regulation of mitochondrial morphology and the activation status of Ras, respectively. Importantly, charge alterations to conserved surfaces of cofilin that do not interfere with its actin regulatory activity lead to a dramatic increase in respiratory function that triggers a retrograde signal to upregulate a battery of ABC transporters and concurrent metabolic changes that support multi-drug resistance. We hypothesise that cofilin functions within a bio-sensing system that connects the cytoskeleton and mitochondrial function to environmental challenge.

  12. Determination of urine cofilin-1 level in acute kidney injury using a high-throughput localized surface plasmon-coupled fluorescence biosensor

    NASA Astrophysics Data System (ADS)

    Chang, Ying-Feng; Chao, Cheng-Han; Lin, Lih-Yuan; Tsai, Cheng-Han; Chou, Chien; Lee, Yi-Jang

    2014-01-01

    The actin-depolymerizing factor (ADF)/cofilin protein family has been reported to be associated with ischemia-induced renal disorders. We examine whether cofilin-1 is associated with acute kidney injury (AKI) using human urine samples. We exploited a 96-well based high-throughput biosensor that uses gold nanoparticles and a sandwich immunoassay to detect the urine cofilin-1 level of AKI patients. The mean urine cofilin-1 level of the AKI patients (n=37 from 47 cases analyzed) was twofold higher than that of healthy adults (n=21 from 29 cases analyzed). The receiver operating characteristic (ROC) curve showed that cofilin-1 was acceptable for discriminating AKI patients from healthy adults. However, an increase of the sample size is required to conclude the importance of urine cofilin-1 on AKI diagnosis, and the high-throughput ultrasensitive biosensor used in this study would greatly accelerate the measurement of urine cofilin-1 in an increased sample size.

  13. Structural Basis for pH-mediated Regulation of F-actin Severing by Gelsolin Domain 1

    PubMed Central

    Fan, Jing-song; Goh, Honzhen; Ding, Ke; Xue, Bo; Robinson, Robert C.; Yang, Daiwen

    2017-01-01

    Six-domain gelsolin regulates actin structural dynamics through its abilities to sever, cap and uncap F-actin. These activities are modulated by various cellular parameters like Ca2+ and pH. Until now, only the molecular activation mechanism of gelsolin by Ca2+ has been understood relatively well. The fragment comprising the first domain and six residues from the linker region into the second domain has been shown to be similar to the full-length protein in F-actin severing activity in the absence of Ca2+ at pH 5. To understand how this gelsolin fragment is activated for F-actin severing by lowering pH, we solved its NMR structures at both pH 7.3 and 5 in the absence of Ca2+ and measured the pKa values of acidic amino acid residues and histidine residues. The overall structure and dynamics of the fragment are not affected significantly by pH. Nevertheless, local structural changes caused by protonation of His29 and Asp109 result in the activation on lowering the pH, and protonation of His151 directly effects filament binding since it resides in the gelsolin/actin interface. Mutagenesis studies support that His29, Asp109 and His151 play important roles in the pH-dependent severing activity of the gelsolin fragment. PMID:28349924

  14. Insulin Receptor Substrate-4 Binds to Slingshot-1 Phosphatase and Promotes Cofilin Dephosphorylation*

    PubMed Central

    Homma, Yuta; Kanno, Shin-ichiro; Sasaki, Kazutaka; Nishita, Michiru; Yasui, Akira; Asano, Tomoichiro; Ohashi, Kazumasa; Mizuno, Kensaku

    2014-01-01

    Cofilin plays an essential role in cell migration and morphogenesis by enhancing actin filament dynamics via its actin filament-severing activity. Slingshot-1 (SSH1) is a protein phosphatase that plays a crucial role in regulating actin dynamics by dephosphorylating and reactivating cofilin. In this study, we identified insulin receptor substrate (IRS)-4 as a novel SSH1-binding protein. Co-precipitation assays revealed the direct endogenous binding of IRS4 to SSH1. IRS4, but not IRS1 or IRS2, was bound to SSH1. IRS4 was bound to SSH1 mainly through the unique region (amino acids 335–400) adjacent to the C terminus of the phosphotyrosine-binding domain of IRS4. The N-terminal A, B, and phosphatase domains of SSH1 were bound to IRS4 independently. Whereas in vitro phosphatase assays revealed that IRS4 does not directly affect the cofilin phosphatase activity of SSH1, knockdown of IRS4 increased cofilin phosphorylation in cultured cells. Knockdown of IRS4 decreased phosphatidylinositol 3-kinase (PI3K) activity, and treatment with an inhibitor of PI3K increased cofilin phosphorylation. Akt preferentially phosphorylated SSH1 at Thr-826, but expression of a non-phosphorylatable T826A mutant of SSH1 did not affect insulin-induced cofilin dephosphorylation, and an inhibitor of Akt did not increase cofilin phosphorylation. These results suggest that IRS4 promotes cofilin dephosphorylation through sequential activation of PI3K and SSH1 but not through Akt. In addition, IRS4 co-localized with SSH1 in F-actin-rich membrane protrusions in insulin-stimulated cells, which suggests that the association of IRS4 with SSH1 contributes to localized activation of cofilin in membrane protrusions. PMID:25100728

  15. Peptide regulation of cofilin activity in the CNS: A novel therapeutic approach for treatment of multiple neurological disorders.

    PubMed

    Shaw, Alisa E; Bamburg, James R

    2017-02-20

    Cofilin is a ubiquitous protein which cooperates with many other actin-binding proteins in regulating actin dynamics. Cofilin has essential functions in nervous system development including neuritogenesis, neurite elongation, growth cone pathfinding, dendritic spine formation, and the regulation of neurotransmission and spine function, components of synaptic plasticity essential for learning and memory. Cofilin's phosphoregulation is a downstream target of many transmembrane signaling processes, and its misregulation in neurons has been linked in rodent models to many different neurodegenerative and neurological disorders including Alzheimer disease (AD), aggression due to neonatal isolation, autism, manic/bipolar disorder, and sleep deprivation. Cognitive and behavioral deficits of these rodent models have been largely abrogated by modulation of cofilin activity using viral-mediated, genetic, and/or small molecule or peptide therapeutic approaches. Neuropathic pain in rats from sciatic nerve compression has also been reduced by modulating the cofilin pathway within neurons of the dorsal root ganglia. Neuroinflammation, which occurs following cerebral ischemia/reperfusion, but which also accompanies many other neurodegenerative syndromes, is markedly reduced by peptides targeting specific chemokine receptors, which also modulate cofilin activity. Thus, peptide therapeutics offer potential for cost-effective treatment of a wide variety of neurological disorders. Here we discuss some recent results from rodent models using therapeutic peptides with a surprising ability to cross the rodent blood brain barrier and alter cofilin activity in brain. We also offer suggestions as to how neuronal-specific cofilin regulation might be achieved.

  16. Allosteric regulation by cooperative conformational changes of actin filaments drives mutually exclusive binding with cofilin and myosin.

    PubMed

    Ngo, Kien Xuan; Umeki, Nobuhisa; Kijima, Saku T; Kodera, Noriyuki; Ueno, Hiroaki; Furutani-Umezu, Nozomi; Nakajima, Jun; Noguchi, Taro Q P; Nagasaki, Akira; Tokuraku, Kiyotaka; Uyeda, Taro Q P

    2016-10-20

    Heavy meromyosin (HMM) of myosin II and cofilin each binds to actin filaments cooperatively and forms clusters along the filaments, but it is unknown whether the two cooperative bindings are correlated and what physiological roles they have. Fluorescence microscopy demonstrated that HMM-GFP and cofilin-mCherry each bound cooperatively to different parts of actin filaments when they were added simultaneously in 0.2 μM ATP, indicating that the two cooperative bindings are mutually exclusive. In 0.1 mM ATP, the motor domain of myosin (S1) strongly inhibited the formation of cofilin clusters along actin filaments. Under this condition, most actin protomers were unoccupied by S1 at any given moment, suggesting that transiently bound S1 alters the structure of actin filaments cooperatively and/or persistently to inhibit cofilin binding. Consistently, cosedimentation experiments using copolymers of actin and actin-S1 fusion protein demonstrated that the fusion protein affects the neighboring actin protomers, reducing their affinity for cofilin. In reciprocal experiments, cofilin-actin fusion protein reduced the affinity of neighboring actin protomers for S1. Thus, allosteric regulation by cooperative conformational changes of actin filaments contributes to mutually exclusive cooperative binding of myosin II and cofilin to actin filaments, and presumably to the differential localization of both proteins in cells.

  17. Allosteric regulation by cooperative conformational changes of actin filaments drives mutually exclusive binding with cofilin and myosin

    PubMed Central

    Ngo, Kien Xuan; Umeki, Nobuhisa; Kijima, Saku T.; Kodera, Noriyuki; Ueno, Hiroaki; Furutani-Umezu, Nozomi; Nakajima, Jun; Noguchi, Taro Q. P.; Nagasaki, Akira; Tokuraku, Kiyotaka; Uyeda, Taro Q. P.

    2016-01-01

    Heavy meromyosin (HMM) of myosin II and cofilin each binds to actin filaments cooperatively and forms clusters along the filaments, but it is unknown whether the two cooperative bindings are correlated and what physiological roles they have. Fluorescence microscopy demonstrated that HMM-GFP and cofilin-mCherry each bound cooperatively to different parts of actin filaments when they were added simultaneously in 0.2 μM ATP, indicating that the two cooperative bindings are mutually exclusive. In 0.1 mM ATP, the motor domain of myosin (S1) strongly inhibited the formation of cofilin clusters along actin filaments. Under this condition, most actin protomers were unoccupied by S1 at any given moment, suggesting that transiently bound S1 alters the structure of actin filaments cooperatively and/or persistently to inhibit cofilin binding. Consistently, cosedimentation experiments using copolymers of actin and actin-S1 fusion protein demonstrated that the fusion protein affects the neighboring actin protomers, reducing their affinity for cofilin. In reciprocal experiments, cofilin-actin fusion protein reduced the affinity of neighboring actin protomers for S1. Thus, allosteric regulation by cooperative conformational changes of actin filaments contributes to mutually exclusive cooperative binding of myosin II and cofilin to actin filaments, and presumably to the differential localization of both proteins in cells. PMID:27762277

  18. CD74 interacts with CD44 and enhances tumorigenesis and metastasis via RHOA-mediated cofilin phosphorylation in human breast cancer cells

    PubMed Central

    Liu, Zhiyong; Chu, Shuzhou; Yao, Shun; Li, Yu; Fan, Songqing; Sun, Xiaoyang; Su, Ling; Liu, Xiangguo

    2016-01-01

    CD74, also known as Ii, was initially considered to participate primarily in antigen presentation. Subsequent studies have shown that CD74 is highly expressed in various types of tumor cells and has multiple roles in a variety of biological processes. CD74 is thought to promote breast cancer metastasis, but the molecular mechanism remains elusive. In the present study, our results showed that CD74 was more highly expressed on the membrane and in the cytoplasm of breast cancer tissues than in control breast tissues. Consistently, CD74 downregulation reduced MDA-MB-231 cell invasion and migration and suppressed protrusions in breast cancer cells. Moreover, CD74 overexpression promoted the phosphorylation of the actin-severing protein cofilin (CFL1), resulting in actin polymerization in breast cancer cells. CD44 was required for the up-regulation of CFL1 phosphorylation by CD74 because CD44 knockdown downregulated CD74-induced CFL1 phosphorylation, while CD74 overexpression could not rescue CFL1 phosphorylation. Moreover, RHOA is necessary for CFL1 phosphorylation and cell migration induced by CD74 in breast cancer cells. Our findings highlight the critical role of CD74 in breast cancer metastasis. New drugs and antibodies targeting CD74 may be effective strategies for breast cancer therapy. PMID:27626171

  19. Cofilin is a Component of Intranuclear and Cytoplasmic Actin Rods Induced in Cultured Cells

    NASA Astrophysics Data System (ADS)

    Nishida, Eisuke; Iida, Kazuko; Yonezawa, Naoto; Koyasu, Shigeo; Yahara, Ichiro; Sakai, Hikoichi

    1987-08-01

    Incubation of cultured cells under specific conditions induces a dramatic change in the actin organization: induction of intranuclear and/or cytoplasmic actin rods (actin paracrystal-like intracellular structures). We have found that cofilin, a 21-kDa actin-binding protein, is a component of these rods. Antibodies directed against cofilin labeled intranuclear actin rods induced in cells treated with dimethyl sulfoxide or exposed to heat shock and also labeled cytoplasmic actin rods induced in cells incubated in specific salt buffers. Moreover, we found that these actin rods are not stained with fluorescent phalloidin derivatives at all and appear to be right-handed helices, different from straight bundles of F-actin such as stress fibers. In vitro experiments revealed that cofilin and phalloidin compete with each other for binding to F-actin. Since cofilin and phalloidin have the ability to stoichiometrically bind actin molecule in the filament in vitro, the above results seem to suggest that cofilin directly binds to actin molecule in nearly an equimolar ratio in these rods. We call these rods ``actin/cofilin rods.''

  20. F-actin dismantling through a Redox-driven synergy between Mical and cofilin

    PubMed Central

    Grintsevich, Elena E.; Yesilyurt, Hunkar Gizem; Rich, Shannon K.; Hung, Ruei-Jiun; Terman, Jonathan R.; Reisler, Emil

    2016-01-01

    Numerous cellular functions depend on actin filament (F-actin) disassembly. The best-characterized disassembly proteins, the ADF/cofilins/twinstar, sever filaments and recycle monomers to promote actin assembly. Cofilin is also a relatively weak actin disassembler, posing questions about mechanisms of cellular F-actin destabilization. Here we uncover a key link to targeted F-actin disassembly by finding that F-actin is efficiently dismantled through a post-translational-mediated synergism between cofilin and the actin-oxidizing enzyme Mical. We find that Mical-mediated oxidation of actin improves cofilin binding to filaments, where their combined effect dramatically accelerates F-actin disassembly compared to either effector alone. This synergism is also necessary and sufficient for F-actin disassembly in vivo, magnifying the effects of both Mical and cofilin on cellular remodeling, axon guidance, and Semaphorin/Plexin repulsion. Mical and cofilin, therefore, form a Redox-dependent synergistic pair that promotes F-actin instability by rapidly dismantling F-actin and generating post-translationally modified actin that has altered assembly properties. PMID:27454820

  1. Cyclic stretch promotes osteogenesis-related gene expression in osteoblast-like cells through a cofilin-associated mechanism

    PubMed Central

    GAO, JIE; FU, SHANMIN; ZENG, ZHAOBIN; LI, FEIFEI; NIU, QIANNAN; JING, DA; FENG, XUE

    2016-01-01

    Osteoblasts have the capacity to perceive and transduce mechanical signals, and thus, regulate the mRNA and protein expression of a variety of genes associated with osteogenesis. Cytoskeletal reconstruction, as one of the earliest perception events for external mechanical stimulation, has previously been demonstrated to be essential for mechanotransduction in bone cells. However, the mechanism by which mechanical signals induce cytoskeletal deformation remains poorly understood. The actin-binding protein, cofilin, promotes the depolymerization of actin and is understood to be important in the regulation of activities in various cell types, including endothelial, neuronal and muscle cells. However, to the best of our knowledge, the importance of cofilin in osteoblastic mechanotransduction has not been previously investigated. In the present study, osteoblast-like MG-63 cells were subjected to physiological cyclic stretch stimulation (12% elongation) for 1, 4, 8, 12 and 24 h, and the expression levels of cofilin and osteogenesis-associated genes were quantified with reverse transcription-quantitative polymerase chain reaction, immunofluorescence staining and western blotting analyses. Additionally, knockdown of cofilin using RNA interference was conducted, and the mRNA levels of osteogenesis-associated genes were compared between osteoblast-like cells in the presence and absence of cofilin gene knockdown. The results of the present study demonstrated that cyclic stretch stimulates the expression of genes associated with osteoblastic activities in MG-63 cells, including alkaline phosphatase (ALP), osteocalcin (OCN), runt-related transcription factor 2 (Runx2) and collagen-1 (COL-1). Cyclic stretch also regulates the mRNA and protein expression of cofilin in MG-63 cells. Furthermore, stretch-induced increases in the levels of osteogenesis-associated genes, including ALP, OCN, Runx2 and COL-1, were reduced following cofilin gene knockdown. Together, these results

  2. The actin depolymerizing factor (ADF)/cofilin signaling pathway and DNA damage responses in cancer.

    PubMed

    Chang, Chun-Yuan; Leu, Jyh-Der; Lee, Yi-Jang

    2015-02-13

    The actin depolymerizing factor (ADF)/cofilin protein family is essential for actin dynamics, cell division, chemotaxis and tumor metastasis. Cofilin-1 (CFL-1) is a primary non-muscle isoform of the ADF/cofilin protein family accelerating the actin filamental turnover in vitro and in vivo. In response to environmental stimulation, CFL-1 enters the nucleus to regulate the actin dynamics. Although the purpose of this cytoplasm-nucleus transition remains unclear, it is speculated that the interaction between CFL-1 and DNA may influence various biological responses, including DNA damage repair. In this review, we will discuss the possible involvement of CFL-1 in DNA damage responses (DDR) induced by ionizing radiation (IR), and the implications for cancer radiotherapy.

  3. Enterocyte loss of polarity and gut wound healing rely upon the F-actin-severing function of villin.

    PubMed

    Ubelmann, Florent; Chamaillard, Mathias; El-Marjou, Fatima; Simon, Anthony; Netter, Jeanne; Vignjevic, Danijela; Nichols, Buford L; Quezada-Calvillo, Roberto; Grandjean, Teddy; Louvard, Daniel; Revenu, Céline; Robine, Sylvie

    2013-04-09

    Efficient wound healing is required to maintain the integrity of the intestinal epithelial barrier because of its constant exposure to a large variety of environmental stresses. This process implies a partial cell depolarization and the acquisition of a motile phenotype that involves rearrangements of the actin cytoskeleton. Here we address how polarized enterocytes harboring actin-rich apical microvilli undergo extensive cell remodeling to drive injury repair. Using live imaging technologies, we demonstrate that enterocytes in vitro and in vivo rapidly depolarize their microvilli at the wound edge. Through its F-actin-severing activity, the microvillar actin-binding protein villin drives both apical microvilli disassembly in vitro and in vivo and promotes lamellipodial extension. Photoactivation experiments indicate that microvillar actin is mobilized at the lamellipodium, allowing optimal migration. Finally, efficient repair of colonic mechanical injuries requires villin severing of F-actin, emphasizing the importance of villin function in intestinal homeostasis. Thus, villin severs F-actin to ensure microvillus depolarization and enterocyte remodeling upon injury. This work highlights the importance of specialized apical pole disassembly for the repolarization of epithelial cells initiating migration.

  4. Cofilin as a Promising Therapeutic Target for Ischemic and Hemorrhagic Stroke.

    PubMed

    Alhadidi, Qasim; Bin Sayeed, Muhammad Shahdaat; Shah, Zahoor A

    2016-02-01

    Neurovascular unit (NVU) is considered as a conceptual framework for investigating the mechanisms as well as developing therapeutic targets for ischemic and hemorrhagic stroke. From a molecular perspective, oxidative stress, excitotoxicity, inflammation, and disruption of the blood brain barrier are broad pathophysiological frameworks on the basis on which potential therapeutic candidates for ischemic and hemorrhagic stroke could be discussed. Cofilin is a potent actin-binding protein that severs and depolymerizes actin filaments in order to generate the dynamics of the actin cytoskeleton. Although studies of the molecular mechanisms of cofilin-induced reorganization of the actin cytoskeleton have been ongoing for decades, the multicellular functions of cofilin and its regulation in different molecular pathways are expanding beyond its primary role in actin cytoskeleton. This review focuses on the role of cofilin in oxidative stress, excitotoxicity, inflammation, and disruption of the blood brain barrier in the context of NVU as well as how and why cofilin could be studied further as a potential target for ischemic and hemorrhagic stroke.

  5. Locomotor proteins in tissues of primary tumors and metastases of ovarian and breast cancer

    NASA Astrophysics Data System (ADS)

    Kondakova, I. V.; Yunusova, N. V.; Spirina, L. V.; Shashova, E. E.; Kolegova, E. S.; Kolomiets, L. A.; Slonimskaya, E. M.; Villert, A. B.

    2016-08-01

    The paper discusses the capability for active movement in an extracellular matrix, wherein remodeling of the cytoskeleton by actin binding proteins plays a significant role in metastases formation. We studied the expression of actin binding proteins and β-catenin in tissues of primary tumors and metastases of ovarian and breast cancer. Contents of p45 Ser β-catenin and the actin severing protein gelsolin were decreased in metastases of ovarian cancer relative to primary tumors. The level of the cofilin, functionally similar to gelsolin, was significantly higher in metastases compared to primary ovarian and breast tumor tissue. In breast cancer, significant increase in the number of an actin monomer binder protein thymosin-β4 was observed in metastases as compared to primary tumors. The data obtained suggest the involvement of locomotor proteins in metastases formation in ovarian and breast cancer.

  6. Functions of cofilin in cell locomotion and invasion

    PubMed Central

    Bravo-Cordero, Jose Javier; Magalhaes, Marco A. O.; Eddy, Robert J.; Hodgson, Louis; Condeelis, John

    2013-01-01

    Recently, a consensus has emerged that cofilin severing activity can generate free actin filament ends that are accessible for F-actin polymerization and depolymerization without changing the rate of G-actin association and dissociation at either filament end. The structural basis of actin filament severing by cofilin is now better understood. These results have been integrated with recently discovered mechanisms for cofilin activation in migrating cells, which led to new models for cofilin function that provide insights into how cofilin regulation determines the temporal and spatial control of cell behaviour. PMID:23778968

  7. Aggregatibacter actinomycetemcomitans leukotoxin (LtxA; Leukothera) induces cofilin dephosphorylation and actin depolymerization during killing of malignant monocytes

    PubMed Central

    Kaur, Manpreet

    2014-01-01

    Leukotoxin (LtxA; Leukothera), a protein toxin secreted by the oral bacterium Aggregatibacter actinomycetemcomitans, specifically kills white blood cells (WBCs). LtxA binds to the receptor known as lymphocyte function associated antigen-1 (LFA-1), a β2 integrin expressed only on the surface of WBCs. LtxA is being studied as a virulence factor that helps A. actinomycetemcomitans evade host defences and as a potential therapeutic agent for the treatment of WBC diseases. LtxA-mediated cell death in monocytes involves both caspases and lysosomes; however, the signalling proteins that regulate and mediate cell death remain largely unknown. We used a 2D-gel proteomics approach to analyse the global protein expression changes that occur in response to LtxA. This approach identified the protein cofilin, which underwent dephosphorylation upon LtxA treatment. Cofilin is a ubiquitous actin-binding protein known to regulate actin dynamics and is regulated by LIM kinase (LIMK)-mediated phosphorylation. LtxA-mediated cofilin dephosphorylation was dependent on LFA-1 and cofilin dephosphorylation did not occur when LFA-1 bound to its natural ligand, ICAM-1. Treatment of cells with an inhibitor of LIMK (LIMKi) also led to cofilin dephosphorylation and enhanced killing by LtxA. This enhanced sensitivity to LtxA coincided with an increase in lysosomal disruption, and an increase in LFA-1 surface expression and clustering. Both LIMKi and LtxA treatment also induced actin depolymerization, which could play a role in trafficking and surface distribution of LFA-1. We propose a model in which LtxA-mediated cofilin dephosphorylation leads to actin depolymerization, LFA-1 overexpression/clustering, and enhanced lysosomal-mediated cell death. PMID:25169107

  8. Methylmercury disrupts the balance between phosphorylated and non-phosphorylated cofilin in primary cultures of mice cerebellar granule cells A proteomic study

    SciTech Connect

    Vendrell, Iolanda; Carrascal, Montserrat; Abian, Joaquin

    2010-01-01

    Methylmercury is an environmental contaminant that is particularly toxic to the developing central nervous system; cerebellar granule neurons are especially vulnerable. Here, primary cultures of cerebellar granule cells (CGCs) were continuously exposed to methylmercury for up to 16 days in vitro (div). LC50 values were 508 +- 199, 345 +- 47, and 243 +- 45 nM after exposure for 6, 11, and 16 div, respectively. Proteins from cultured mouse CGCs were separated by 2DE. Seventy-one protein spots were identified by MALDI-TOF PMF and MALDI-TOF/TOF sequencing. Prolonged exposure to a subcytotoxic concentration of methylmercury significantly increased non-phosphorylated cofilin both in cell protein extracts (1.4-fold; p < 0.01) and in mitochondrial-enriched fractions (1.7-fold; p < 0.01). The decrease in P-cofilin induced by methylmercury was concentration-dependent and occurred after different exposure times. The percentage of P-cofilin relative to total cofilin significantly decreased to 49 +- 13% vs. control cells after exposure to 300 nM methylmercury for 5 div. The balance between the phosphorylated and non-phosphorylated form of cofilin regulates actin dynamics and facilitates actin filament turnover. Filamentous actin dynamics and reorganization are responsible of neuron shape change, migration, polarity formation, regulation of synaptic structures and function, and cell apoptosis. An alteration of the complex regulation of the cofilin phosphorylation/dephosphorylation pathway could be envisaged as an underlying mechanism compatible with reported signs of methylmercury-induced neurotoxicity.

  9. Immunological Responses and Actin Dynamics in Macrophages Are Controlled by N-Cofilin but Are Independent from ADF

    PubMed Central

    Jönsson, Friederike; Gurniak, Christine B.; Fleischer, Bernhard; Kirfel, Gregor; Witke, Walter

    2012-01-01

    Dynamic changes in the actin cytoskeleton are essential for immune cell function and a number of immune deficiencies have been linked to mutations, which disturb the actin cytoskeleton. In macrophages and dendritic cells, actin remodelling is critical for motility, phagocytosis and antigen presentation, however the actin binding proteins, which control antigen presentation have been poorly characterized. Here we dissect the specific roles of the family of ADF/cofilin F-actin depolymerizing factors in macrophages and in local immune responses. Macrophage migration, cell polarization and antigen presentation to T-cells require n-cofilin mediated F-actin remodelling. Using a conditional mouse model, we show that n-cofilin also controls MHC class II-dependent antigen presentation. Other cellular processes such as phagocytosis and antigen processing were found to be independent of n-cofilin. Our data identify n-cofilin as a novel regulator of antigen presentation, while ADF on the other hand is dispensable for macrophage motility and antigen presentation. PMID:22558315

  10. Potential crosstalk between cofilin-1 and EGFR pathways in cisplatin resistance of non-small-cell lung cancer

    PubMed Central

    Becker, Matheus; França, Fernanda Stapenhorst; Branco, Mariane Araujo; Castro, Mauro Antônio Alves; Klamt, Fábio

    2015-01-01

    Current challenge in oncology is to establish the concept of personalized medicine in clinical practice. In this context, non-small-cell lung cancer (NSCLC) presents clinical, histological and molecular heterogeneity, being one of the most genomically diverse of all cancers. Recent advances added Epidermal Growth Factor Receptor (EGFR) as a predictive biomarker for patients with advanced NSCLC. In tumors with activating EGFR mutations, tyrosine kinase inhibitors (TKI) are indicated as first-line treatment, although restricted to a very small target population. In this context, cofilin-1 (a cytosolic protein involved with actin dynamics) has been widely studied as a biomarker of an aggressive phenotype in tumors, and overexpression of cofilin-1 is associated with cisplatin resistance and poor prognosis in NSCLC. Here, we gather information about the predictive potential of cofilin-1 and reviewed the crosstalk between cofilin-1/EGFR pathways. We aimed to highlight new perspectives of how these interactions might affect cisplatin resistance in NSCLC. We propose that cofilin-1 quantification in clinical samples in combination with presence/absence of EGFR mutation could be used to select patients that would benefit from TKI's treatment. This information is of paramount importance and could result in a possibility of guiding more effective treatments to NSCLC patients. PMID:25784483

  11. Human CAP1 is a key factor in the recycling of cofilin and actin for rapid actin turnover.

    PubMed

    Moriyama, Kenji; Yahara, Ichiro

    2002-04-15

    Cofilin-ADF (actin-depolymerizing factor) is an essential driver of actin-based motility. We discovered two proteins, p65 and p55, that are components of the actin-cofilin complex in a human HEK293 cell extract and identified p55 as CAP1/ASP56, a human homologue of yeast CAP/SRV2 (cyclase-associated protein). CAP is a bifunctional protein with an N-terminal domain that binds to Ras-responsive adenylyl cyclase and a C-terminal domain that inhibits actin polymerization. Surprisingly, we found that the N-terminal domain of CAP1, but not the C-terminal domain, is responsible for the interaction with the actin-cofilin complex. The N-terminal domain of CAP1 was also found to accelerate the depolymerization of F-actin at the pointed end, which was further enhanced in the presence of cofilin and/or the C-terminal domain of CAP1. Moreover, CAP1 and its C-terminal domain were observed to facilitate filament elongation at the barbed end and to stimulate ADP-ATP exchange on G-actin, a process that regenerates easily polymerizable G-actin. Although cofilin inhibited the nucleotide exchange on G-actin even in the presence of the C-terminal domain of CAP1, its N-terminal domain relieved this inhibition. Thus, CAP1 plays a key role in speeding up the turnover of actin filaments by effectively recycling cofilin and actin and through its effect on both ends of actin filament.

  12. GPCR-mediated PLCβγ/PKCβ/PKD signaling pathway regulates the cofilin phosphatase slingshot 2 in neutrophil chemotaxis

    PubMed Central

    Xu, Xuehua; Gera, Nidhi; Li, Hongyan; Yun, Michelle; Zhang, Liyong; Wang, Youhong; Wang, Q. Jane; Jin, Tian

    2015-01-01

    Chemotaxis requires precisely coordinated polymerization and depolymerization of the actin cytoskeleton at leading fronts of migrating cells. However, GPCR activation-controlled F-actin depolymerization remains largely elusive. Here, we reveal a novel signaling pathway, including Gαi, PLC, PKCβ, protein kinase D (PKD), and SSH2, in control of cofilin phosphorylation and actin cytoskeletal reorganization, which is essential for neutrophil chemotaxis. We show that PKD is essential for neutrophil chemotaxis and that GPCR-mediated PKD activation depends on PLC/PKC signaling. More importantly, we discover that GPCR activation recruits/activates PLCγ2 in a PI3K-dependent manner. We further verify that PKCβ specifically interacts with PKD1 and is required for chemotaxis. Finally, we identify slingshot 2 (SSH2), a phosphatase of cofilin (actin depolymerization factor), as a target of PKD1 that regulates cofilin phosphorylation and remodeling of the actin cytoskeleton during neutrophil chemotaxis. PMID:25568344

  13. Mitochondrial shuttling of CAP1 promotes actin- and cofilin-dependent apoptosis.

    PubMed

    Wang, Changhui; Zhou, Guo-Lei; Vedantam, Srilakshmi; Li, Peng; Field, Jeffrey

    2008-09-01

    Mitochondria play a central role in regulating apoptosis by releasing proapoptotic contents such as cytochrome c, and generating reactive oxygen species (ROS). Early in apoptosis, proteins translocate to mitochondria to promote the release of their contents. Here, we show that the actin- and cofilin-interacting protein CAP1 has a role in apoptosis. When we induced apoptosis, CAP1 rapidly translocated to the mitochondria independently of caspase activation. Translocation was proapoptotic because CAP1-knockdown cells were resistant to apoptosis inducers. Overexpression of wild-type CAP1 did not stimulate apoptosis on its own, but stimulated cofilin-induced apoptosis. Apoptosis induction required a mitochondrial-targeting domain, localized in the N-terminus and also the actin-binding domain in the C-terminus. Taken together, these studies suggest that CAP1 provides a direct link from the actin cytoskeleton to the mitochondria by functioning as an actin shuttle.

  14. A new role for cofilin in retinal neovascularization

    PubMed Central

    Kumar, Raj; Janjanam, Jagadeesh; Singh, Nikhlesh K.; Rao, Gadiparthi N.

    2016-01-01

    ABSTRACT Pak1 plays an important role in several cellular processes, including cell migration, but its role in pathological angiogenesis is not known. Here, we have determined its role in pathological retinal angiogenesis using an oxygen-induced retinopathy (OIR) model. VEGFA induced phosphorylation of Pak1 and its effector cofilin in a manner that was dependent on time as well as p38MAPKβ (also known as MAPK11) in human retinal microvascular endothelial cells (HRMVECs). Depletion of the levels of any of these molecules inhibited VEGFA-induced HRMVEC F-actin stress fiber formation, migration, proliferation, sprouting and tube formation. In accordance with these observations, hypoxia induced Pak1 and cofilin phosphorylation with p38MAPKβ being downstream to Pak1 and upstream to cofilin in mouse retina. Furthermore, Pak1 deficiency abolished hypoxia-induced p38MAPKβ and cofilin phosphorylation and abrogated retinal endothelial cell proliferation, tip cell formation and neovascularization. In addition, small interfering RNA (siRNA)-mediated downregulation of p38MAPKβ or cofilin levels in the wild-type mouse retina also diminished endothelial cell proliferation, tip cell formation and neovascularization. Taken together, these observations suggest that, although the p38MAPKβ–Pak1–cofilin axis is required for HRMVEC migration, proliferation, sprouting and tubulogenesis, Pak1–p38MAPKβ–cofilin signaling is also essential for hypoxia-induced mouse retinal endothelial cell proliferation, tip cell formation and neovascularization. PMID:26857814

  15. Visualization of cofilin-actin and Ras-Raf interactions by bimolecular fluorescence complementation assays using a new pair of split Venus fragments.

    PubMed

    Ohashi, Kazumasa; Kiuchi, Tai; Shoji, Kazuyasu; Sampei, Kaori; Mizuno, Kensaku

    2012-01-01

    The bimolecular fluorescence complementation (BiFC) assay is a method for visualizing protein-protein interactions in living cells. To visualize the cofilin-actin interaction in living cells, a series of combinations of the N- and C-terminal fragments of Venus fused upstream or downstream of cofilin and actin were screened systematically. A new pair of split Venus fragments, Venus (1-210) fused upstream of cofilin and Venus (210-238) fused downstream of actin, was the most effective combination for visualizing the specific interaction between cofilin and actin in living cells. This pair of Venus fragments was also effective for detecting the active Ras-dependent interaction between H-Ras and Raf1 and the Ca(2+)-dependent interaction between calmodulin and its target M13 peptide. In vitro BiFC assays using the pair of purified BiFC probes provided the means to detect the specific interactions between cofilin and actin and between H-Ras and Raf1. In vivo and in vitro BiFC assays using the newly identified pair of Venus fragments will serve as a useful tool for measuring protein-protein interactions with high specificity and low background fluorescence and could be applied to the screening of inhibitors that block protein-protein interactions.

  16. Cofilin Regulates Nuclear Architecture through a Myosin-II Dependent Mechanotransduction Module

    PubMed Central

    Wiggan, O’Neil; Schroder, Bryce; Krapf, Diego; Bamburg, James R.; DeLuca, Jennifer G.

    2017-01-01

    Structural features of the nucleus including shape, size and deformability impact its function affecting normal cellular processes such as cell differentiation and pathological conditions such as tumor cell migration. Despite the fact that abnormal nuclear morphology has long been a defining characteristic for diseases such as cancer relatively little is known about the mechanisms that control normal nuclear architecture. Mounting evidence suggests close coupling between F-actin cytoskeletal organization and nuclear morphology however, mechanisms regulating this coupling are lacking. Here we identify that Cofilin/ADF-family F-actin remodeling proteins are essential for normal nuclear structure in different cell types. siRNA mediated silencing of Cofilin/ADF provokes striking nuclear defects including aberrant shapes, nuclear lamina disruption and reductions to peripheral heterochromatin. We provide evidence that these anomalies are primarily due to Rho kinase (ROCK) controlled excessive contractile myosin-II activity and not to elevated F-actin polymerization. Furthermore, we demonstrate a requirement for nuclear envelope LINC (linker of nucleoskeleton and cytoskeleton) complex proteins together with lamin A/C for nuclear aberrations induced by Cofilin/ADF loss. Our study elucidates a pivotal regulatory mechanism responsible for normal nuclear structure and which is expected to fundamentally influence nuclear function. PMID:28102353

  17. Cellular functions of the ADF/cofilin family at a glance.

    PubMed

    Kanellos, Georgios; Frame, Margaret C

    2016-09-01

    The actin depolymerizing factor (ADF)/cofilin family comprises small actin-binding proteins with crucial roles in development, tissue homeostasis and disease. They are best known for their roles in regulating actin dynamics by promoting actin treadmilling and thereby driving membrane protrusion and cell motility. However, recent discoveries have increased our understanding of the functions of these proteins beyond their well-characterized roles. This Cell Science at a Glance article and the accompanying poster serve as an introduction to the diverse roles of the ADF/cofilin family in cells. The first part of the article summarizes their actions in actin treadmilling and the main mechanisms for their intracellular regulation; the second part aims to provide an outline of the emerging cellular roles attributed to the ADF/cofilin family, besides their actions in actin turnover. The latter part discusses an array of diverse processes, which include regulation of intracellular contractility, maintenance of nuclear integrity, transcriptional regulation, nuclear actin monomer transfer, apoptosis and lipid metabolism. Some of these could, of course, be indirect consequences of actin treadmilling functions, and this is discussed.

  18. Cofilin Regulates Nuclear Architecture through a Myosin-II Dependent Mechanotransduction Module.

    PubMed

    Wiggan, O'Neil; Schroder, Bryce; Krapf, Diego; Bamburg, James R; DeLuca, Jennifer G

    2017-01-19

    Structural features of the nucleus including shape, size and deformability impact its function affecting normal cellular processes such as cell differentiation and pathological conditions such as tumor cell migration. Despite the fact that abnormal nuclear morphology has long been a defining characteristic for diseases such as cancer relatively little is known about the mechanisms that control normal nuclear architecture. Mounting evidence suggests close coupling between F-actin cytoskeletal organization and nuclear morphology however, mechanisms regulating this coupling are lacking. Here we identify that Cofilin/ADF-family F-actin remodeling proteins are essential for normal nuclear structure in different cell types. siRNA mediated silencing of Cofilin/ADF provokes striking nuclear defects including aberrant shapes, nuclear lamina disruption and reductions to peripheral heterochromatin. We provide evidence that these anomalies are primarily due to Rho kinase (ROCK) controlled excessive contractile myosin-II activity and not to elevated F-actin polymerization. Furthermore, we demonstrate a requirement for nuclear envelope LINC (linker of nucleoskeleton and cytoskeleton) complex proteins together with lamin A/C for nuclear aberrations induced by Cofilin/ADF loss. Our study elucidates a pivotal regulatory mechanism responsible for normal nuclear structure and which is expected to fundamentally influence nuclear function.

  19. Structural Analysis of Human Cofilin 2/Filamentous Actin Assemblies: Atomic-Resolution Insights from Magic Angle Spinning NMR Spectroscopy

    PubMed Central

    Yehl, Jenna; Kudryashova, Elena; Reisler, Emil; Kudryashov, Dmitri; Polenova, Tatyana

    2017-01-01

    Cellular actin dynamics is an essential element of numerous cellular processes, such as cell motility, cell division and endocytosis. Actin’s involvement in these processes is mediated by many actin-binding proteins, among which the cofilin family plays unique and essential role in accelerating actin treadmilling in filamentous actin (F-actin) in a nucleotide-state dependent manner. Cofilin preferentially interacts with older filaments by recognizing time-dependent changes in F-actin structure associated with the hydrolysis of ATP and release of inorganic phosphate (Pi) from the nucleotide cleft of actin. The structure of cofilin on F-actin and the details of the intermolecular interface remain poorly understood at atomic resolution. Here we report atomic-level characterization by magic angle spinning (MAS) NMR of the muscle isoform of human cofilin 2 (CFL2) bound to F-actin. We demonstrate that resonance assignments for the majority of atoms are readily accomplished and we derive the intermolecular interface between CFL2 and F-actin. The MAS NMR approach reported here establishes the foundation for atomic-resolution characterization of a broad range of actin-associated proteins bound to F-actin. PMID:28303963

  20. Partial Amelioration of Synaptic and Cognitive Deficits by Inhibiting Cofilin Dephosphorylation in an Animal Model of Alzheimer's Disease.

    PubMed

    Deng, Yulei; Wei, Jing; Cheng, Jia; Zhong, Ping; Xiong, Zhe; Liu, Aiyi; Lin, Lin; Chen, Shengdi; Yan, Zhen

    2016-06-28

    The loss of synaptic structure and function has been linked to the cognitive impairment of Alzheimer's disease (AD). Dysregulation of the actin cytoskeleton, which plays a key role in regulating the integrity of synapses and the transport of synaptic proteins, has been suggested to contribute to the pathology of AD. In this study, we found that glutamate receptor surface expression and synaptic function in frontal cortical neurons were significant diminished in a familial AD (FAD) model, which was correlated with the reduction of phosphorylated cofilin, a key protein regulating the dynamics of actin filaments. Injecting a cofilin dephosphorylation inhibitory peptide to FAD mice led to the partial rescue of the surface expression of AMPA and NMDA receptor subunits, as well as the partial restoration of AMPAR- and NMDAR-mediated synaptic currents. Moreover, the impaired working memory and novel object recognition memory in FAD mice were partially ameliorated by injections of the cofilin dephosphorylation inhibitory peptide. These results suggest that targeting the cofilin-actin signaling holds promise to mitigate the physiological and behavioral abnormality in AD.

  1. ADF/cofilin is not essential but is critically important for actin activities during phagocytosis in Tetrahymena thermophila.

    PubMed

    Shiozaki, Nanami; Nakano, Kentaro; Kushida, Yasuharu; Noguchi, Taro Q P; Uyeda, Taro Q P; Wloga, Dorota; Dave, Drashti; Vasudevan, Krishna Kumar; Gaertig, Jacek; Numata, Osamu

    2013-08-01

    ADF/cofilin is a highly conserved actin-modulating protein. Reorganization of the actin cytoskeleton in vivo through severing and depolymerizing of F-actin by this protein is essential for various cellular events, such as endocytosis, phagocytosis, cytokinesis, and cell migration. We show that in the ciliate Tetrahymena thermophila, the ADF/cofilin homologue Adf73p associates with actin on nascent food vacuoles. Overexpression of Adf73p disrupted the proper localization of actin and inhibited the formation of food vacuoles. In vitro, recombinant Adf73p promoted the depolymerization of filaments made of T. thermophila actin (Act1p). Knockout cells lacking the ADF73 gene are viable but grow extremely slowly and have a severely decreased rate of food vacuole formation. Knockout cells have abnormal aggregates of actin in the cytoplasm. Surprisingly, unlike the case in animals and yeasts, in Tetrahymena, ADF/cofilin is not required for cytokinesis. Thus, the Tetrahymena model shows promise for future studies of the role of ADF/cofilin in vivo.

  2. Slingshot-3 dephosphorylates ADF/cofilin but is dispensable for mouse development.

    PubMed

    Kousaka, Kazuyoshi; Kiyonari, Hiroshi; Oshima, Naoko; Nagafuchi, Akira; Shima, Yasuyuki; Chisaka, Osamu; Uemura, Tadashi

    2008-05-01

    Actin-depolymerizing factor (ADF) and cofilin constitute a family of key regulators of actin filament dynamics. ADF/cofilin is inactivated by phosphorylation at Ser-3 by LIM-kinases and reactivated by dephosphorylation by Slingshot (SSH) family phosphatases. Defects in LIM kinases or ADF/cofilin have been implicated in morbidity in human or mice; however, the roles of mammalian SSH in vivo have not been addressed. In this study, we examined the endogenous expression of each mouse SSH member in various cell lines and tissues, and showed that SSH-3L protein was strongly expressed in epithelial cells. Our structure-function analysis of SSH-3L suggested the possibility that the C-tail unique to SSH-3L negatively regulates the catalytic activity of this phosphatase. Furthermore we made ssh-3 knockout mice to examine its potential in vivo roles. Unexpectedly, ssh-3 was not essential for viability, fertility, or development of epithelial tissues; and ssh-3 did not genetically modify the corneal disorder of the corn1/ADF/destrin mutant.

  3. An MEK-cofilin signalling module controls migration of human T cells in 3D but not 2D environments.

    PubMed

    Klemke, Martin; Kramer, Elisabeth; Konstandin, Mathias H; Wabnitz, Guido H; Samstag, Yvonne

    2010-09-01

    T cells infiltrate peripheral tissues to execute immunosurveillance and effector functions. For this purpose, T cells first migrate on the two-dimensional (2D) surface of endothelial cells to undergo transendothelial migration. Then they change their mode of movement to undergo migration within the three-dimensional (3D)-extracellular matrix of the infiltrated tissue. As yet, no molecular mechanisms are known, which control migration exclusively in either 2D or 3D environments. Here, we describe a signalling module that controls T-cell chemotaxis specifically in 3D environments. In chemotaxing T cells, Ras activity is spatially restricted to the lamellipodium. There, Ras initiates activation of MEK, which in turn inhibits LIM-kinase 1 activity, thereby allowing dephosphorylation of the F-actin-remodelling protein cofilin. Interference with this MEK-cofilin module by either inhibition of MEK or by knockdown of cofilin reduces speed and directionality of chemotactic migration in 3D-extracellular matrices, but not on 2D substrates. This MEK-cofilin module may have an important function in the tissue positioning of T cells during an immune response.

  4. Polarized cell motility induces hydrogen peroxide to inhibit cofilin via cysteine oxidation.

    PubMed

    Cameron, Jenifer M; Gabrielsen, Mads; Chim, Ya Hua; Munro, June; McGhee, Ewan J; Sumpton, David; Eaton, Philip; Anderson, Kurt I; Yin, Huabing; Olson, Michael F

    2015-06-01

    Mesenchymal cell motility is driven by polarized actin polymerization [1]. Signals at the leading edge recruit actin polymerization machinery to promote membrane protrusion, while matrix adhesion generates tractive force to propel forward movement. To work effectively, cell motility is regulated by a complex network of signaling events that affect protein activity and localization. H2O2 has an important role as a diffusible second messenger [2], and mediates its effects through oxidation of cysteine thiols. One cell activity influenced by H2O2 is motility [3]. However, a lack of sensitive and H2O2-specific probes for measurements in live cells has not allowed for direct observation of H2O2 accumulation in migrating cells or protrusions. In addition, the identities of proteins oxidized by H2O2 that contribute to actin dynamics and cell motility have not been characterized. We now show, as determined by fluorescence lifetime imaging microscopy, that motile cells generate H2O2 at membranes and cell protrusions and that H2O2 inhibits cofilin activity through oxidation of cysteines 139 (C139) and 147 (C147). Molecular modeling suggests that C139 oxidation would sterically hinder actin association, while the increased negative charge of oxidized C147 would lead to electrostatic repulsion of the opposite negatively charged surface. Expression of oxidation-resistant cofilin impairs cell spreading, adhesion, and directional migration. These findings indicate that H2O2 production contributes to polarized cell motility through localized cofilin inhibition and that there are additional proteins oxidized during cell migration that might have similar roles.

  5. Reconstitution and dissection of the 600-kDa Srv2/CAP complex: roles for oligomerization and cofilin-actin binding in driving actin turnover.

    PubMed

    Quintero-Monzon, Omar; Jonasson, Erin M; Bertling, Enni; Talarico, Lou; Chaudhry, Faisal; Sihvo, Maarit; Lappalainen, Pekka; Goode, Bruce L

    2009-04-17

    Srv2/cyclase-associated protein is expressed in virtually all plant, animal, and fungal organisms and has a conserved role in promoting actin depolymerizing factor/cofilin-mediated actin turnover. This is achieved by the abilities of Srv2 to recycle cofilin from ADP-actin monomers and to promote nucleotide exchange (ATP for ADP) on actin monomers. Despite this important and universal role in facilitating actin turnover, the mechanism underlying Srv2 function has remained elusive. Previous studies have demonstrated a critical functional role for the G-actin-binding C-terminal half of Srv2. Here we describe an equally important role in vivo for the N-terminal half of Srv2 in driving actin turnover. We pinpoint this activity to a conserved patch of surface residues on the N-terminal dimeric helical folded domain of Srv2, and we show that this functional site interacts with cofilin-actin complexes. Furthermore, we show that this site is essential for Srv2 acceleration of cofilin-mediated actin turnover in vitro. A cognate Srv2-binding site is identified on a conserved surface of cofilin, suggesting that this function likely extends to other organisms. In addition, our analyses reveal that higher order oligomerization of Srv2 depends on its N-terminal predicted coiled coil domain and that oligomerization optimizes Srv2 function in vitro and in vivo. Based on these data, we present a revised model for the mechanism by which Srv2 promotes actin turnover, in which coordinated activities of its N- and C-terminal halves catalyze sequential steps in recycling cofilin and actin monomers.

  6. NudC regulates actin dynamics and ciliogenesis by stabilizing cofilin 1

    PubMed Central

    Zhang, Cheng; Zhang, Wen; Lu, Yi; Yan, Xiaoyi; Yan, Xiumin; Zhu, Xueliang; Liu, Wei; Yang, Yuehong; Zhou, Tianhua

    2016-01-01

    Emerging data indicate that actin dynamics is associated with ciliogenesis. However, the underlying mechanism remains unclear. Here we find that nuclear distribution gene C (NudC), an Hsp90 co-chaperone, is required for actin organization and dynamics. Depletion of NudC promotes cilia elongation and increases the percentage of ciliated cells. Further results show that NudC binds to and stabilizes cofilin 1, a key regulator of actin dynamics. Knockdown of cofilin 1 also facilitates ciliogenesis. Moreover, depletion of either NudC or cofilin 1 causes similar ciliary defects in zebrafish, including curved body, pericardial edema and defective left-right asymmetry. Ectopic expression of cofilin 1 significantly reverses the phenotypes induced by NudC depletion in both cultured cells and zebrafish. Thus, our data suggest that NudC regulates actin cytoskeleton and ciliogenesis by stabilizing cofilin 1. PMID:26704451

  7. Anti-cancer effect of ursolic acid activates apoptosis through ROCK/PTEN mediated mitochondrial translocation of cofilin-1 in prostate cancer

    PubMed Central

    Gai, Wen-Tao; Yu, Da-Peng; Wang, Xin-Sheng; Wang, Pei-Tao

    2016-01-01

    Ursolic acid is a type of pentacyclic triterpene compound with multiple pharmacological activities including cancer resistance, protection from liver injury, antisepsis, anti-inflammation and antiviral activity. The present study aimed to investigate the anticancer effect of ursolic acid. Ursolic acid activates cell apoptosis and its pro-apoptotic mechanism remains to be fully elucidated. Cell Counting kit-8 assays, flow cytometric analysis and analysis of caspase-3 and caspase-9 activity were used to estimate the anticancer effect of ursolic acid on DU145 prostate cancer cells. The protein expression of cytochrome c, rho-associated protein kinase (ROCK), phosphatase and tensin homolog (PTEN) and cofilin-1 were examined using western blot analysis. In the present study, ursolic acid significantly suppressed cell growth and induced apoptosis, as well as increasing caspase-3 and caspase-9 activities of DU145 cells. Furthermore, cytoplasmic and mitochondrial cytochrome c protein expression was significantly activated and suppressed, respectively, by ursolic acid. Ursolic acid significantly suppressed the ROCK/PTEN signaling pathway and inhibited cofilin-1 protein expression in DU145 cells. The results of the present study indicate that the anticancer effect of ursolic acid activates cell apoptosis through ROCK/PTEN mediated mitochondrial translocation of cofilin-1 in prostate cancer. PMID:27698874

  8. Identification of Cofilin-1 Induces G0/G1 Arrest and Autophagy in Angiotensin-(1-7)-treated Human Aortic Endothelial Cells from iTRAQ Quantitative Proteomics

    PubMed Central

    Wang, Huang-Joe; Chen, Sung-Fang; Lo, Wan-Yu

    2016-01-01

    The angiotensin-converting enzyme 2/angiotensin-(1-7)/Mas axis is a pathway that acts against the detrimental effects of the renin-angiotensin system. However, the effects of angiotensin-(1-7) on endothelial protein expression and the related phenotypes are unclear. We performed a duplicate of iTRAQ quantitative proteomic analysis on human aortic endothelial cells (HAECs) treated with angiotensin-(1-7) for 6 hours. Cofilin-1 was identified as a highly abundant candidate with consistent >30% coverage and >1.2-fold overexpression in the angiotensin-(1-7)-treated group. Gene ontology analysis showed that the “regulation_of_mitosis” was significantly altered, and cell cycle analysis indicated that the 6-hour angiotensin-(1-7) treatment significantly induced G0/G1 arrest. Knockdown of the cofilin-1 (CFL1) gene suggested the G0/G1 phase arrest was mediated by the modulation of p27 and the p21/Cyclin/CDK complex by Cofilin-1. Interestingly, quiescent HAECs escaped G0/G1 arrest upon angiotensin-(1-7) treatment for 24 hours, and angiotensin-(1-7) induced autophagy by upregulating Beclin-1 and microtubule-associated protein 1 light chain 3b-II expression, which was also attenuated by A779 pre-treatment and CFL1 knockdown. After pre-treatment with 3-methyladenine (3MA), treatment with angiotensin-(1-7) for 24 h induced significant G0/G1 phase arrest and apoptosis, suggesting a pro-survival role of autophagy in this context. In conclusion, Cofilin-1 plays a dominant role in angiotensin-(1-7)-induced G0/G1 arrest and autophagy to maintain cellular homeostasis in HAECs. PMID:27748441

  9. The epidermal growth factor receptor regulates cofilin activity and promotes transmissible gastroenteritis virus entry into intestinal epithelial cells

    PubMed Central

    Hu, Weiwei; Zhu, Liqi; Yang, Xing; Lin, Jian; Yang, Qian

    2016-01-01

    Transmissible gastroenteritis virus (TGEV), a coronavirus, causes severe diarrhea and high mortality in newborn piglets. The porcine intestinal epithelium is the target of TGEV infection, but the mechanisms that TGEV disrupts the actin cytoskeleton and invades the host epithelium remain largely unknown. We not only found that TGEV infection stimulates F-actin to gather at the cell membrane but the disruption of F-actin inhibits TGEV entry as well. Cofilin is involved in F-actin reorganization and TGEV entry. The TGEV spike protein is capable of binding with EGFR, activating the downstream phosphoinositide-3 kinase (PI3K), then causing the phosphorylation of cofilin and F-actin polymerization via Rac1/Cdc42 GTPases. Inhibition of EGFR and PI3K decreases the entry of TGEV. EGFR is also the upstream activator of mitogen-activated protein kinase (MAPK) signaling pathways that is involved in F-actin reorganization. Additionally, lipid rafts act as signal platforms for the EGFR-associated signaling cascade and correlate with the adhesion of TGEV. In conlusion, these results provide valuable data of the mechanisms which are responsible for the TGEV pathogenesis and may lead to the development of new methods about controlling TGEV. PMID:26933809

  10. Proteomic Approaches Identify Members of Cofilin Pathway Involved in Oral Tumorigenesis

    PubMed Central

    Polachini, Giovana M.; Sobral, Lays M.; Mercante, Ana M. C.; Paes-Leme, Adriana F.; Xavier, Flávia C. A.; Henrique, Tiago; Guimarães, Douglas M.; Vidotto, Alessandra; Fukuyama, Erica E.; Góis-Filho, José F.; Cury, Patricia M.; Curioni, Otávio A.; Michaluart Jr, Pedro; Silva, Adriana M. A.; Wünsch-Filho, Victor; Nunes, Fabio D.; Leopoldino, Andréia M.; Tajara, Eloiza H.

    2012-01-01

    The prediction of tumor behavior for patients with oral carcinomas remains a challenge for clinicians. The presence of lymph node metastasis is the most important prognostic factor but it is limited in predicting local relapse or survival. This highlights the need for identifying biomarkers that may effectively contribute to prediction of recurrence and tumor spread. In this study, we used one- and two-dimensional gel electrophoresis, mass spectrometry and immunodetection methods to analyze protein expression in oral squamous cell carcinomas. Using a refinement for classifying oral carcinomas in regard to prognosis, we analyzed small but lymph node metastasis-positive versus large, lymph node metastasis-negative tumors in order to contribute to the molecular characterization of subgroups with risk of dissemination. Specific protein patterns favoring metastasis were observed in the “more-aggressive” group defined by the present study. This group displayed upregulation of proteins involved in migration, adhesion, angiogenesis, cell cycle regulation, anti-apoptosis and epithelial to mesenchymal transition, whereas the “less-aggressive” group was engaged in keratinocyte differentiation, epidermis development, inflammation and immune response. Besides the identification of several proteins not yet described as deregulated in oral carcinomas, the present study demonstrated for the first time the role of cofilin-1 in modulating cell invasion in oral carcinomas. PMID:23227181

  11. Cofilin recruits F-actin to SPCA1 and promotes Ca2+-mediated secretory cargo sorting.

    PubMed

    Kienzle, Christine; Basnet, Nirakar; Crevenna, Alvaro H; Beck, Gisela; Habermann, Bianca; Mizuno, Naoko; von Blume, Julia

    2014-09-01

    The actin filament severing protein cofilin-1 (CFL-1) is required for actin and P-type ATPase secretory pathway calcium ATPase (SPCA)-dependent sorting of secretory proteins at the trans-Golgi network (TGN). How these proteins interact and activate the pump to facilitate cargo sorting, however, is not known. We used purified proteins to assess interaction of the cytoplasmic domains of SPCA1 with actin and CFL-1. A 132-amino acid portion of the SPCA1 phosphorylation domain (P-domain) interacted with actin in a CFL-1-dependent manner. This domain, coupled to nickel nitrilotriacetic acid (Ni-NTA) agarose beads, specifically recruited F-actin in the presence of CFL-1 and, when expressed in HeLa cells, inhibited Ca(2+) entry into the TGN and secretory cargo sorting. Mutagenesis of four amino acids in SPCA1 that represent the CFL-1 binding site also affected Ca(2+) import into the TGN and secretory cargo sorting. Altogether, our findings reveal the mechanism of CFL-1-dependent recruitment of actin to SPCA1 and the significance of this interaction for Ca(2+) influx and secretory cargo sorting.

  12. Jak3 enables chemokine-dependent actin cytoskeleton reorganization by regulating cofilin and Rac/Rhoa GTPases activation.

    PubMed

    Ambriz-Peña, Xochitl; García-Zepeda, Eduardo Alberto; Meza, Isaura; Soldevila, Gloria

    2014-01-01

    We have previously shown that Jak3 is involved in the signaling pathways of CCR7, CCR9 and CXCR4 in murine T lymphocytes and that Jak3⁻/⁻ lymphocytes display an intrinsic defect in homing to peripheral lymph nodes. However, the molecular mechanism underlying the defective migration observed in Jak3⁻/⁻ lymphocytes remains elusive. Here, it is demonstrated for the first time, that Jak3 is required for the actin cytoskeleton reorganization in T lymphocytes responding to chemokines. It was found that Jak3 regulates actin polymerization by controlling cofilin inactivation in response to CCL21 and CXCL12. Interestingly, cofilin inactivation was not precluded in PTX- treated cells despite their impaired actin polymerization. Additionally, Jak3 was required for small GTPases Rac1 and RhoA activation, which are indispensable for acquisition of the migratory cell phenotype and the generation of a functional leading edge and uropod, respectively. This defect correlates with data obtained by time-lapse video-microscopy showing an incompetent uropod formation and impaired motility in Jak3-pharmacologically inhibited T lymphocytes. Our data support a new model in which Jak3 and heterotrimeric G proteins can use independent, but complementary, signaling pathways to regulate actin cytoskeleton dynamics during cell migration in response to chemokines.

  13. Aerobic exercise regulates Rho/cofilin pathways to rescue synaptic loss in aged rats

    PubMed Central

    Li, Yan; Zhao, Li; Gu, Boya; Cai, Jiajia; Lv, Yuanyuan; Yu, Laikang

    2017-01-01

    Purpose The role of exercise to prevent or reverse aging-induced cognitive decline has been widely reported. This neuroprotection is associated with changes in the synaptic structure plasticity. However, the mechanisms of exercise-induced synaptic plasticity in the aging brain are still unclear. Thus, the aim of the present study is to investigate the aging-related alterations of Rho-GTPase and the modulatory influences of exercise training. Methods Young and old rats were used in this study. Old rats were subjected to different schedules of aerobic exercise (12 m/min, 60 min/d, 3d/w or 5d/w) or kept sedentary for 12 w. After 12 w of aerobic exercise, the synapse density in the cortex and hippocampus was detected with immunofluorescent staining using synaptophysin as a marker. The total protein levels of RhoA, Rac1, Cdc42 and cofilin in the cortex and hippocampus were detected with Western Blot. The activities of RhoA, Rac1 and Cdc42 were determined using a pull down assay. Results We found that synapse loss occurred in aging rats. However, the change of expression and activity of RhoA, Rac1 and Cdc42 was different in the cortex and hippocampus. In the cortex, the expression and activity of Rac1 and Cdc42 was greatly increased with aging, whereas there were no changes in the expression and activity of RhoA. In the hippocampus, the expression and activity of Rac1 and Cdc42 was greatly decreased and there were no changes in the expression and activity of RhoA. As a major downstream substrate of the Rho GTPase family, the increased expression of cofilin was only observed in the cortex. High frequency exercise ameliorated all aging-related changes in the cortex and hippocampus. Conclusions These data suggest that aerobic exercise reverses synapse loss in the cortex and hippocampus in aging rats, which might be related to the regulation of Rho GTPases. PMID:28152068

  14. Cofilin1 Controls Transcolumnar Plasticity in Dendritic Spines in Adult Barrel Cortex

    PubMed Central

    Tsubota, Tadashi; Okubo-Suzuki, Reiko; Ohashi, Yohei; Tamura, Keita; Ogata, Koshin; Yaguchi, Masae; Matsuyama, Makoto; Inokuchi, Kaoru; Miyashita, Yasushi

    2015-01-01

    During sensory deprivation, the barrel cortex undergoes expansion of a functional column representing spared inputs (spared column), into the neighboring deprived columns (representing deprived inputs) which are in turn shrunk. As a result, the neurons in a deprived column simultaneously increase and decrease their responses to spared and deprived inputs, respectively. Previous studies revealed that dendritic spines are remodeled during this barrel map plasticity. Because cofilin1, a predominant regulator of actin filament turnover, governs both the expansion and shrinkage of the dendritic spine structure in vitro, it hypothetically regulates both responses in barrel map plasticity. However, this hypothesis remains untested. Using lentiviral vectors, we knocked down cofilin1 locally within layer 2/3 neurons in a deprived column. Cofilin1-knocked-down neurons were optogenetically labeled using channelrhodopsin-2, and electrophysiological recordings were targeted to these knocked-down neurons. We showed that cofilin1 knockdown impaired response increases to spared inputs but preserved response decreases to deprived inputs, indicating that cofilin1 dependency is dissociated in these two types of barrel map plasticity. To explore the structural basis of this dissociation, we then analyzed spine densities on deprived column dendritic branches, which were supposed to receive dense horizontal transcolumnar projections from the spared column. We found that spine number increased in a cofilin1-dependent manner selectively in the distal part of the supragranular layer, where most of the transcolumnar projections existed. Our findings suggest that cofilin1-mediated actin dynamics regulate functional map plasticity in an input-specific manner through the dendritic spine remodeling that occurs in the horizontal transcolumnar circuits. These new mechanistic insights into transcolumnar plasticity in adult rats may have a general significance for understanding reorganization of

  15. Cloning and transcriptional activity analysis of the porcine cofilin 2 gene promoter.

    PubMed

    Wang, Jia-Mei; Lang, Bin; Zhu, Hong-yan; Du, Hai-ting; Tian, Yu-min; Su, Yu-hong

    2014-09-01

    Cofilins (CFL), including CFL1 and CFL2, are members of the family of actin-binding proteins in eukaryote. CFL2 is predominantly expressed in mammalian skeletal muscle and heart and is important to muscle fiber formation and muscular regeneration. To study transcriptional regulation of porcine CFL2, a 2.5 kb upstream sequence starting from the major CFL2 transcriptional start site was cloned by genome walking. Twelve DNA fragments of the 5' flank region of the porcine CFL2 gene were further isolated from porcine genomic DNA via PCR and inserted into the luciferase reporter vector pGL4.10 to make 12 CFL2 reporter constructs. All reporter vectors were transfected into C2C12, NIH3T3, or Hela cells and their relative luciferase activity measured after 48 h, respectively. Bioinformatics analysis suggested that there were two TATA-boxes at the -508 bp and -453 bp, as well as a GC-box and a CAAT-box in this sequence. Additional transcription factor binding sites including SP1, AP1, AP2, and GATA-1 sites were also predicted. The transcriptional activity of pGL4.10-1554 (1502 bp to +51 bp) was the strongest, and the promoter's active region was mapped to a region from -1502 bp to -1317 bp. Our data provide a foundation for future studies into transcriptional regulation of CFL2.

  16. Instantaneous inactivation of cofilin reveals its function of F-actin disassembly in lamellipodia.

    PubMed

    Vitriol, Eric A; Wise, Ariel L; Berginski, Mathew E; Bamburg, James R; Zheng, James Q

    2013-07-01

    Cofilin is a key regulator of the actin cytoskeleton. It can sever actin filaments, accelerate filament disassembly, act as a nucleation factor, recruit or antagonize other actin regulators, and control the pool of polymerization-competent actin monomers. In cells these actions have complex functional outputs. The timing and localization of cofilin activity are carefully regulated, and thus global, long-term perturbations may not be sufficient to probe its precise function. To better understand cofilin's spatiotemporal action in cells, we implemented chromophore-assisted laser inactivation (CALI) to instantly and specifically inactivate it. In addition to globally inhibiting actin turnover, CALI of cofilin generated several profound effects on the lamellipodia, including an increase of F-actin, a rearward expansion of the actin network, and a reduction in retrograde flow speed. These results support the hypothesis that the principal role of cofilin in lamellipodia at steady state is to break down F-actin, control filament turnover, and regulate the rate of retrograde flow.

  17. Cofilin-induced unidirectional cooperative conformational changes in actin filaments revealed by high-speed atomic force microscopy

    PubMed Central

    Ngo, Kien Xuan; Kodera, Noriyuki; Katayama, Eisaku; Ando, Toshio; Uyeda, Taro QP

    2015-01-01

    High-speed atomic force microscopy was employed to observe structural changes in actin filaments induced by cofilin binding. Consistent with previous electron and fluorescence microscopic studies, cofilin formed clusters along actin filaments, where the filaments were 2-nm thicker and the helical pitch was ∼25% shorter, compared to control filaments. Interestingly, the shortened helical pitch was propagated to the neighboring bare zone on the pointed-end side of the cluster, while the pitch on the barbed-end side was similar to the control. Thus, cofilin clusters induce distinctively asymmetric conformational changes in filaments. Consistent with the idea that cofilin favors actin structures with a shorter helical pitch, cofilin clusters grew unidirectionally toward the pointed-end of the filament. Severing was often observed near the boundaries between bare zones and clusters, but not necessarily at the boundaries. DOI: http://dx.doi.org/10.7554/eLife.04806.001 PMID:25642645

  18. The Zuo Jin Wan Formula Induces Mitochondrial Apoptosis of Cisplatin-Resistant Gastric Cancer Cells via Cofilin-1

    PubMed Central

    Tang, Qing-Feng; Sun, Jian; Yu, Hui; Shi, Xiao-Jing; Lv, Rong

    2016-01-01

    Despite the status of cisplatin (DDP) as a classical chemotherapeutic agent in the treatment of cancer, the development of multidrug resistance often leads to a failure of DDP therapy. Here we found that phosphorylated cofilin-1 (p-cofilin-1) was overexpressed in the DDP-resistant human gastric cancer cell lines SGC7901/DDP and BGC823/DDP, relative to the respective parent cell lines (SGC7901 and BGC823), and that DDP induced the dephosphorylation of p-cofilin-1 in both parent lines but not in the DDP-resistant lines. However, we noted that the traditional Chinese medicine formula Zuo Jin Wan (ZJW) could induce the dephosphorylation of p-cofilin-1 and promote cofilin-1 translocation from the cytoplasm into the mitochondria in both SGC7901/DDP and BGC823/DDP cells. This mitochondrial translocation of cofilin-1 was found to induce the conversion of filamentous actin to globular-actin, activate mitochondrial damage and calcium overloading, and induce the mitochondrial apoptosis pathway. We further observed that these effects of ZJW on DDP-resistant human gastric cancer cell lines could be reversed via transfection with cofilin-1-specific siRNA, or treatment with a PP1 and PP2A inhibitor. These results suggest that ZJW is an effective drug therapy for patients with DDP-resistant gastric cancer. PMID:27872653

  19. Phylogenetic Patterns of Codon Evolution in the ACTIN-DEPOLYMERIZING FACTOR/COFILIN (ADF/CFL) Gene Family.

    PubMed

    Roy-Zokan, Eileen M; Dyer, Kelly A; Meagher, Richard B

    2015-01-01

    The actin-depolymerizing factor/cofilin (ADF/CFL) gene family encodes a diverse group of relatively small proteins. Once known strictly as modulators of actin filament dynamics, recent research has demonstrated that these proteins are involved in a variety of cellular processes, from signal transduction to the cytonuclear trafficking of actin. In both plant and animal lineages, expression patterns of paralogs in the ADF/CFL gene family vary among tissue types and developmental stages. In this study we use computational approaches to investigate the evolutionary forces responsible for the diversification of the ADF/CFL gene family. Estimating the rate of non-synonymous to synonymous mutations (dN/dS) across phylogenetic lineages revealed that the majority of ADF/CFL codon positions were under strong purifying selection, with rare episodic events of accelerated protein evolution. In both plants and animals these instances of accelerated evolution were ADF/CFL subclass specific, and all of the sites under selection were located in regions of the protein that could serve in new functional roles. We suggest these sites may have been important in the functional diversification of ADF/CFL proteins.

  20. Actin disassembly by cofilin, coronin, and Aip1 occurs in bursts and is inhibited by barbed-end cappers

    PubMed Central

    Kueh, Hao Yuan; Charras, Guillaume T.; Mitchison, Timothy J.; Brieher, William M.

    2008-01-01

    Turnover of actin filaments in cells requires rapid actin disassembly in a cytoplasmic environment that thermodynamically favors assembly because of high concentrations of polymerizable monomers. We here image the disassembly of single actin filaments by cofilin, coronin, and actin-interacting protein 1, a purified protein system that reconstitutes rapid, monomer-insensitive disassembly (Brieher, W.M., H.Y. Kueh, B.A. Ballif, and T.J. Mitchison. 2006. J. Cell Biol. 175:315–324). In this three-component system, filaments disassemble in abrupt bursts that initiate preferentially, but not exclusively, from both filament ends. Bursting disassembly generates unstable reaction intermediates with lowered affinity for CapZ at barbed ends. CapZ and cytochalasin D (CytoD), a barbed-end capping drug, strongly inhibit bursting disassembly. CytoD also inhibits actin disassembly in mammalian cells, whereas latrunculin B, a monomer sequestering drug, does not. We propose that bursts of disassembly arise from cooperative separation of the two filament strands near an end. The differential effects of drugs in cells argue for physiological relevance of this new disassembly pathway and potentially explain discordant results previously found with these drugs. PMID:18663144

  1. Methyl antcinate A from Antrodia camphorata induces apoptosis in human liver cancer cells through oxidant-mediated cofilin- and Bax-triggered mitochondrial pathway.

    PubMed

    Hsieh, Yun-Chih; Rao, Yerra Koteswara; Wu, Chun-Chi; Huang, Chi-Ying F; Geethangili, Madamanchi; Hsu, Shih-Lan; Tzeng, Yew-Min

    2010-07-19

    We investigated the effects of antcin A, antcin C, and methyl antcinate A (MAA) isolated from Antrodia camphorata on the proliferation of human liver cancer cell lines Huh7, HepG2, and Hep3B and the normal cell rat hepatocytes. The three compounds selectively inhibit the proliferation of tumor cells rather than normal cells, with IC(50) values ranging from 30.2 to 286.4 microM. The compound MAA was a more potent cytotoxic agent than antcins A and C with IC(50) values of 52.2, 78.0, and 30.2 microM against HepG2, Hep3B, and Huh7 cells, respectively. To elucidate the molecular mechanism, treatment of Huh7 cells with 100 microM MAA induced an apoptotic cell death, which was characterized by the appearance of sub-G1 population, DNA fragmentation, TUNEL positive cells, and caspase activation. MAA triggered the mitochondrial apoptotic pathway, as indicated by an increase in the protein expression of Bax, Bak, and PUMA, as well as a decrease in Bcl-(XL) and Bcl-2 and disruption of mitochondrial membrane potential and promotion of mitochondrial cytochrome c release, as well as activation of caspases-2, -3, and -9. We also found that pretreatment with inhibitors of caspases-2, -3, and -9 noticeably blocked MAA-triggered apoptosis. Furthermore, intracellular reactive oxygen species (ROS) generation and NADPH oxidase activation were observed in MAA-stimulated Huh7 cells. Mechanistic studies showed that MAA induces mitochondrial translocation of cofilin. When Huh7 cells were treated with cyclosporine A and bongkrekic acid, an inhibitor of the mitochondria permeability transition pore, the levels of cell death induced by MAA were significantly attenuated. Additionally, pretreatment of Huh7 cells with antioxidants ascorbic acid and N-acetyl cysteine markedly attenuated the MAA-induced apoptosis by upregulation of Bax, Bak, and PUMA, mitochondrial translocation of cofilin, activation of caspase-3, and cell death. Taken together, our results provide the first evidence of the

  2. LIM kinase/cofilin dysregulation promotes macrothrombocytopenia in severe von Willebrand disease-type 2B

    PubMed Central

    Poirault-Chassac, Sonia; Adam, Frédéric; Muczynski, Vincent; Aymé, Gabriel; Casari, Caterina; Bordet, Jean-Claude; Soukaseum, Christelle; Rothschild, Chantal; Proulle, Valérie; Pietrzyk-Nivau, Audrey; Berrou, Eliane; Christophe, Olivier D.; Rosa, Jean-Philippe; Lenting, Peter J.; Bryckaert, Marijke; Baruch, Dominique

    2016-01-01

    von Willebrand disease type 2B (VWD-type 2B) is characterized by gain-of-function mutations of von Willebrand factor (vWF) that enhance its binding to platelet glycoprotein Ibα and alter the protein’s multimeric structure. Patients with VWD-type 2B display variable extents of bleeding associated with macrothrombocytopenia and sometimes with thrombopathy. Here, we addressed the molecular mechanism underlying the severe macrothrombocytopenia both in a knockin murine model for VWD-type 2B by introducing the p.V1316M mutation in the murine Vwf gene and in a patient bearing this mutation. We provide evidence of a profound defect in megakaryocyte (MK) function since: (a) the extent of proplatelet formation was drastically decreased in 2B MKs, with thick proplatelet extensions and large swellings; and (b) 2B MKs presented actin disorganization that was controlled by upregulation of the RhoA/LIM kinase (LIMK)/cofilin pathway. In vitro and in vivo inhibition of the LIMK/cofilin signaling pathway rescued actin turnover and restored normal proplatelet formation, platelet count, and platelet size. These data indicate, to our knowledge for the first time, that the severe macrothrombocytopenia in VWD-type 2B p.V1316M is due to an MK dysfunction that originates from a constitutive activation of the RhoA/LIMK/cofilin pathway and actin disorganization. This suggests a potentially new function of vWF during platelet formation that involves regulation of actin dynamics. PMID:27734030

  3. Rho-GTPase effector ROCK phosphorylates cofilin in actin-meditated cytokinesis during mouse oocyte meiosis.

    PubMed

    Duan, Xing; Liu, Jun; Dai, Xiao-Xin; Liu, Hong-Lin; Cui, Xiang-Shun; Kim, Nam-Hyung; Wang, Zhen-Bo; Wang, Qiang; Sun, Shao-Chen

    2014-02-01

    During oocyte meiosis, a spindle forms in the central cytoplasm and migrates to the cortex. Subsequently, the oocyte extrudes a small body and forms a highly polarized egg; this process is regulated primarily by actin. ROCK is a Rho-GTPase effector that is involved in various cellular functions, such as stress fiber formation, cell migration, tumor cell invasion, and cell motility. In this study, we investigated possible roles for ROCK in mouse oocyte meiosis. ROCK was localized around spindles after germinal vesicle breakdown and was colocalized with cytoplasmic actin and mitochondria. Disrupting ROCK activity by RNAi or an inhibitor resulted in cell cycle progression and polar body extrusion failure. Time-lapse microscopy showed that this may have been due to spindle migration and cytokinesis defects, as chromosomes segregated but failed to extrude a polar body and then realigned. Actin expression at oocyte membranes and in cytoplasm was significantly decreased after these treatments. Actin caps were also disrupted, which was confirmed by a failure to form cortical granule-free domains. The mitochondrial distribution was also disrupted, which indicated that mitochondria were involved in the ROCK-mediated actin assembly. In addition, the phosphorylation levels of Cofilin, a downstream molecule of ROCK, decreased after disrupting ROCK activity. Thus, our results indicated that a ROCK-Cofilin-actin pathway regulated meiotic spindle migration and cytokinesis during mouse oocyte maturation.

  4. Entamoeba invadens: identification of ADF/cofilin and their expression analysis in relation to encystation and excystation.

    PubMed

    Makioka, Asao; Kumagai, Masahiro; Hiranuka, Kazushi; Kobayashi, Seiki; Takeuchi, Tsutomu

    2011-01-01

    The differentiation processes of excystation and encystation of Entamoeba are essential for infection and completion of their life-cycle, and the processes need cell motility and its control by actin cytoskeletal reorganization. This study investigated actin depolymerizing factor (ADF)/cofilin (Cfl) family proteins, which are important molecules in actin cytoskeletal reorganization, in Entamoeba invadens in relation to the encystation and excystation. Axenic culture systems were used to induce encystation and excystation. A homology search of the E. invadens genome database and molecular cloning identified three ADF/Cfl family proteins of the parasite (named for short as EiCfl-1, EiCfl-2, and EiCfl-3). This is different from other Entamoeba species, i.e. Entamoeba histolytica and Entamoeba dispar, each of which has only one ADF/Cfl family protein. These ADF/Cfl of E. invadens do not have Ser3 (serine locates third from first methionine), similar to E. histolytica, E. dispar, Saccharomyces cerevisiae and Schizosaccharomyces pombe, although the activity of ADF/Cfl is negatively regulated by phosphorylation of the Ser3 in metazoans. Phylogenetic analysis revealed that Entamoeba Cfl formed a distinctive clade that is separate from other organisms, and the branches of the tree were separated in two consistent with the presence and absence of Ser3. Rabbit anti-EiCfl-2 serum reacted with all recombinant EiCfls and EiCfl in lysates of cysts, trophozoites and metacystic amoebae. Immunofluorescence staining with this antiserum showed co-localization of EiCfl with actin beneath the cell membrane through the life stages. Both proteins proved to be rich in pseudopodia of trophozoites and metacystic amoebae. Real-time RT-PCR showed that mRNAs of EiCfl-2 and actins were highly expressed, but there were few mRNA of EiCfl-1 and EiCfl-3. Remarkably decreased mRNA levels were observed in EiCfl-2 and actins during encystation. All three EiCfls and actins became transcribed after the

  5. KCC2 Gates Activity-Driven AMPA Receptor Traffic through Cofilin Phosphorylation.

    PubMed

    Chevy, Quentin; Heubl, Martin; Goutierre, Marie; Backer, Stéphanie; Moutkine, Imane; Eugène, Emmanuel; Bloch-Gallego, Evelyne; Lévi, Sabine; Poncer, Jean Christophe

    2015-12-02

    Expression of the neuronal K/Cl transporter KCC2 is tightly regulated throughout development and by both normal and pathological neuronal activity. Changes in KCC2 expression have often been associated with altered chloride homeostasis and GABA signaling. However, recent evidence supports a role of KCC2 in the development and function of glutamatergic synapses through mechanisms that remain poorly understood. Here we show that suppressing KCC2 expression in rat hippocampal neurons precludes long-term potentiation of glutamatergic synapses specifically by preventing activity-driven membrane delivery of AMPA receptors. This effect is independent of KCC2 transporter function and can be accounted for by increased Rac1/PAK- and LIMK-dependent cofilin phosphorylation and actin polymerization in dendritic spines. Our results demonstrate that KCC2 plays a critical role in the regulation of spine actin cytoskeleton and gates long-term plasticity at excitatory synapses in cortical neurons.

  6. Dephosphorylation and mitochondrial translocation of cofilin sensitizes human leukemia cells to cerulenin-induced apoptosis via the ROCK1/Akt/JNK signaling pathway.

    PubMed

    Zhang, Yanhao; Fu, Ruoqiu; Liu, Yanxia; Li, Jing; Zhang, Hongwei; Hu, Xiaoye; Chen, Yibiao; Liu, Xin; Li, Yunong; Li, Ping; Liu, Ehu; Gao, Ning

    2016-04-12

    In this study, we determined that cerulenin, a natural product inhibitor of fatty acid synthase, induces mitochondrial injury and apoptosis in human leukemia cells through the mitochondrial translocation of cofilin. Only dephosphorylated cofilin could translocate to mitochondria during cerulenin-induced apoptosis. Disruption of the ROCK1/Akt/JNK signaling pathway plays a critical role in the cerulenin-mediated dephosphorylation and mitochondrial translocation of cofilin and apoptosis. In vivo studies demonstrated that cerulenin-mediated inhibition of tumor growth in a mouse xenograft model of leukemia was associated with mitochondrial translocation of cofilin and apoptosis. These data are consistent with a hierarchical model in which induction of apoptosis by cerulenin primarily results from activation of ROCK1, inactivation of Akt, and activation of JNK. This leads to the dephosphorylation and mitochondrial translocation of cofilin and culminates with cytochrome c release, caspase activation, and apoptosis. Our study has revealed a novel role of cofilin in the regulation of mitochondrial injury and apoptosis and suggests that cerulenin is a potential drug for the treatment of leukemia.

  7. Dephosphorylation and mitochondrial translocation of cofilin sensitizes human leukemia cells to cerulenin-induced apoptosis via the ROCK1/Akt/JNK signaling pathway

    PubMed Central

    Liu, Yanxia; Li, Jing; Zhang, Hongwei; Hu, Xiaoye; Chen, Yibiao; Liu, Xin; Li, Yunong; Li, Ping; Liu, Ehu; Gao, Ning

    2016-01-01

    In this study, we determined that cerulenin, a natural product inhibitor of fatty acid synthase, induces mitochondrial injury and apoptosis in human leukemia cells through the mitochondrial translocation of cofilin. Only dephosphorylated cofilin could translocate to mitochondria during cerulenin-induced apoptosis. Disruption of the ROCK1/Akt/JNK signaling pathway plays a critical role in the cerulenin-mediated dephosphorylation and mitochondrial translocation of cofilin and apoptosis. In vivo studies demonstrated that cerulenin-mediated inhibition of tumor growth in a mouse xenograft model of leukemia was associated with mitochondrial translocation of cofilin and apoptosis. These data are consistent with a hierarchical model in which induction of apoptosis by cerulenin primarily results from activation of ROCK1, inactivation of Akt, and activation of JNK. This leads to the dephosphorylation and mitochondrial translocation of cofilin and culminates with cytochrome c release, caspase activation, and apoptosis. Our study has revealed a novel role of cofilin in the regulation of mitochondrial injury and apoptosis and suggests that cerulenin is a potential drug for the treatment of leukemia. PMID:26967395

  8. Spinoculation Triggers Dynamic Actin and Cofilin Activity That Facilitates HIV-1 Infection of Transformed and Resting CD4 T Cells▿

    PubMed Central

    Guo, Jia; Wang, Weifeng; Yu, Dongyang; Wu, Yuntao

    2011-01-01

    Centrifugal inoculation, or spinoculation, is widely used in virology research to enhance viral infection. However, the mechanism remained obscure. Using HIV-1 infection of human T cells as a model, we demonstrate that spinoculation triggers dynamic actin and cofilin activity, probably resulting from cellular responses to centrifugal stress. This actin activity also leads to the upregulation of the HIV-1 receptor and coreceptor, CD4 and CXCR4, enhancing viral binding and entry. We also demonstrate that an actin inhibitor, jasplakinolide, diminishes spin-mediated enhancement. In addition, small interfering RNA (siRNA) knockdown of LIMK1, a cofilin kinase, decreases the enhancement. These results suggest that spin-mediated enhancement cannot be explained simply by a virus-concentrating effect; rather, it is coupled with spin-induced cytoskeletal dynamics that promote receptor mobilization, viral entry, and postentry processes. Our results highlight the importance of cofilin and a dynamic cytoskeleton for the initiation of viral infection. Our results also indicate that caution needs to be taken in data interpretation when cells are spinoculated; some of the spin-induced cellular permissiveness may be beyond the natural capacity of an infecting virus. PMID:21795326

  9. Aurora kinase A induces papillary thyroid cancer lymph node metastasis by promoting cofilin-1 activity.

    PubMed

    Maimaiti, Yusufu; Jie, Tan; Jing, Zhou; Changwen, Wang; Pan, Yu; Chen, Chen; Tao, Huang

    2016-04-22

    Aurora-A (Aur-A), a member of the serine/threonine Aurora kinase family, plays an important role in ensuring genetic stability during cell division. Previous studies indicated that Aur-A possesses oncogenic activity and may be a valuable therapeutic target in cancer therapy. However, the role of Aur-A in the most common thyroid cancer, papillary thyroid cancer (PTC), remains largely unknown. In patients with PTC, cancer cell migration and invasion account for most of the metastasis, recurrence, and cancer-related deaths. Cofilin-1 (CFL-1) is the most important effector of actin polymerization and depolymerization, determining the direction of cell migration. Here, we assessed the correlation between Aur-A and CFL-1 in PTC with lymph node metastasis. Tissue microarray data showed that simultaneous overexpression of Aur-A and CFL-1 correlated with lymph node metastasis in thyroid cancer tissue. Inhibition of Aur-A suppressed thyroid cancer cell migration in vitro and decreased lymph node metastasis in nude mice. Importantly, Aur-A increased the non-phosphorylated, active form of CFL-1 in TPC-1 cells, thus promoting cancer cell migration and thyroid cancer lymph node metastasis. Our findings indicate that the combination of Aur-A and CFL-1 may be useful as a molecular prediction model for lymph node metastasis in thyroid cancer and raise the possibility of targeting Aur-A and CFL-1 for more effective treatment of thyroid cancer.

  10. A PLCβ/PI3Kγ-GSK3 signaling pathway regulates cofilin phosphatase slingshot2 and neutrophil polarization and chemotaxis

    PubMed Central

    Tang, Wenwen; Zhang, Yong; Xu, Wenwen; Harden, T. Kendall; Sondek, John; Sun, Le; Li, Lin

    2011-01-01

    SUMMARY Neutrophils, in response to a chemoattractant gradient, undergo dynamic F actin remodeling, a process important for their directional migration or chemotaxis. However, signaling mechanisms for chemoattractants to regulate the process are incompletely understood. Here, we characterized chemoattractant-activated signaling mechanisms that regulate cofilin dephosphorylation and actin cytoskeleton reorganization and are critical for neutrophil polarization and chemotaxis. In neutrophils, chemoattractants induced phosphorylation and inhibition of GSK3 via both PLCβ-PKC and PI3Kγ-AKT pathways, leading to the attenuation of GSK3-mediated phosphorylation and inhibition of the cofilin phosphatase slingshot2 and an increase in dephosphorylated, active cofilin. The relative contribution of this GSK3-mediated pathway to neutrophil chemotaxis regulation depended on neutrophil polarity preset by integrin-induced polarization of PIP5K1C. Therefore, our study characterizes a signaling mechanism for chemoattractant-induced actin cytoskeleton remodeling and elucidates its context-dependent role in regulating neutrophil polarization and chemotaxis. PMID:22172670

  11. Prevention of RhoA activation and cofilin-mediated actin polymerization mediates the antihypertrophic effect of adenosine receptor agonists in angiotensin II- and endothelin-1-treated cardiomyocytes.

    PubMed

    Zeidan, Asad; Gan, Xiaohong Tracey; Thomas, Ashley; Karmazyn, Morris

    2014-01-01

    Adenosine receptor activation has been shown to be associated with diminution of cardiac hypertrophy and it has been suggested that endogenously produced adenosine may serve to blunt pro-hypertrophic processes. In the present study, we determined the effects of two pro-hypertrophic stimuli, angiotensin II (Ang II, 100 nM) and endothelin-1 (ET-1, 10 nM) on Ras homolog gene family, member A (RhoA)/Rho-associated, coiled-coil containing protein kinase (ROCK) activation in cultured neonatal rat ventricular myocytes and whether the latter serves as a target for the anti-hypertrophic effect of adenosine receptor activation. Both hypertrophic stimuli potently increased RhoA activity with peak activation occurring 15-30 min following agonist addition. These effects were associated with significantly increased phosphorylation (inactivation) of cofilin, a downstream mediator of RhoA, an increase in actin polymerization, and increased activation and nuclear import of p38 mitogen activated protein kinase. The ability of both Ang II and ET-1 to activate the RhoA pathway was completely prevented by the adenosine A1 receptor agonist N (6)-cyclopentyladenosine, the A2a receptor agonist 2-p-(2-carboxyethyl)-phenethylamino-5'-N-ethylcarboxamidoadenosine, the A3 receptor agonist N (6)-(3-iodobenzyl)adenosine-5'-methyluronamide as well as the nonspecific adenosine analog 2-chloro adenosine. All effects of specific receptor agonists were prevented by their respective receptor antagonists. Moreover, all adenosine agonists prevented either Ang II- or ET-1-induced hypertrophy, a property shared by the RhoA inhibitor Clostridium botulinum C3 exoenzyme, the ROCK inhibitor Y-27632 or the actin depolymerizing agent latrunculin B. Our study therefore demonstrates that both Ang II and ET-1 can activate the RhoA pathway and that prevention of the hypertrophic response to both agonists by adenosine receptor activation is mediated by prevention of RhoA stimulation and actin polymerization.

  12. Downregulation of LIMK1–ADF/cofilin by DADS inhibits the migration and invasion of colon cancer

    PubMed Central

    Su, Jian; Zhou, Yujuan; Pan, Zhibing; Shi, Ling; Yang, Jing; Liao, Aijun; Liao, Qianjin; Su, Qi

    2017-01-01

    This study aimed to explore whether the downregulation of LIM kinase 1 (LIMK1)-actin depolymerization factor (ADF, also known as destrin)/cofilin by diallyl disulfide (DADS) inhibited the migration and invasion of colon cancer. Previous studies have shown that silencing LIMK1 could significantly enhance the inhibitory effect of DADS on colon cancer cell migration and invasion, suggesting that LIMK1 was a target molecule of DADS, which needed further confirmation. This study reported that LIMK1 and destrin were highly expressed in colon cancer and associated with poor prognosis of patients with colon cancer. Also, the expression of LIMK1 was positively correlated with the expression of destrin. The overexpression of LIMK1 significantly promoted colon cancer cell migration and invasion. DADS obviously inhibited migration and invasion by suppressing the phosphorylation of ADF/cofilin via downregulation of LIMK1 in colon cancer cells. Furthermore, DADS-induced suppression of cell proliferation was enhanced and antagonized by the knockdown and overexpression of LIMK1 in vitro and in vivo, respectively. Similar results were observed for DADS-induced changes in the expression of vimentin, CD34, Ki-67, and E-cadherin in xenografted tumors. These results indicated that LIMK1 was a potential target molecule for the inhibitory effect of DADS on colon cancer cell migration and invasion. PMID:28358024

  13. The Rho-GTPase effector ROCK regulates meiotic maturation of the bovine oocyte via myosin light chain phosphorylation and cofilin phosphorylation.

    PubMed

    Lee, So-Rim; Xu, Yong-Nan; Jo, Yu-Jin; Namgoong, Suk; Kim, Nam-Hyung

    2015-11-01

    Oocyte meiosis involves a unique asymmetric division involving spindle movement from the central cytoplasm to the cortex, followed by polar body extrusion. ROCK is a Rho-GTPase effector involved in various cellular functions in somatic cells as well as oocyte meiosis. ROCK was previously shown to promote actin organization by phosphorylating several downstream targets, including LIM domain kinase (LIMK), phosphorylated cofilin (p-cofilin), and myosin light chain (MLC). In this study, we investigated the roles of ROCK and MLC during bovine oocyte meiosis. We found that ROCK was localized around the nucleus at the oocyte's germinal-vesicle (GV) stage, but spreads to the rest of the cytoplasm in later developmental stages. On the other hand, phosphorylated MLC (p-MLC) localized at the cortex, and its abundance decreased by the metaphase-II stage. Disrupting ROCK activity, via RNAi or the chemical inhibitor Y-27632, blocked both cell cycle progression and polar body extrusion. ROCK inhibition also resulted in decreased cortical actin, p-cofilin, and p-MLC levels. Similar to the phenotype associated with inhibition of ROCK activity, inhibition of MLC kinase by the chemical inhibitor ML-7 caused defects in polar body extrusion. Collectively, our results suggest that the ROCK/MLC/actomyosin as well as ROCK/LIMK/cofilin pathways regulate meiotic spindle migration and cytokinesis during bovine oocyte maturation.

  14. Phosphorylation of cofilin-1 by ERK confers HDAC inhibitor resistance in hepatocellular carcinoma cells via decreased ROS-mediated mitochondria injury.

    PubMed

    Liao, P-H; Hsu, H-H; Chen, T-S; Chen, M-C; Day, C-H; Tu, C-C; Lin, Y-M; Tsai, F-J; Kuo, W-W; Huang, C-Y

    2017-04-06

    Hepatocellular carcinoma (HCC) is the most common type of liver cancer. Despite the availability of several treatment strategies, resistance to chemotherapeutic agents, which limits the effectiveness of anticancer drugs, is a major problem in cancer therapy. In this study, we used a histone deacetylases inhibitor (HDACi) to establish drug-resistant HCC cells and further analyzed the molecular mechanisms underlying the development of resistance in HCC cells. Compared with the parental cells, HDACi-resistant cells showed high metastatic and pro-survival abilities. Two-dimensional electrophoresis data showed that the cofilin-1 (CFL-1) protein was altered in HDACi-resistant cells and was highly expressed in resistant cells compared with parental cells. The molecular function of CFL-1 is actin depolymerization, and it is involved in tumor metastasis. In this study, we showed that CFL-1 inhibition decreased cell migration and increased cell apoptosis in HDACi-resistant cells. We observed that HDACi induced ROS accumulation in cells and apoptosis via promotion of the CFL-1 interaction with Bax and CFL-1 translocation to the mitochondria, resulting in cytochrome C release. Importantly, phosphorylation of CFL-1 by activated extracellular signal-regulated kinases 1 and 2 (ERK1/2) confers strong protection against HDAC inhibitor-induced cell injury. p-CFL-1 shows a loss of affinity with Bax and will not translocate to mitochondria, stably remaining in the cytoplasm. These results indicate that phosphorylation to inactivate CFL-1 decreased the chemosensitivity to HDAC inhibitors and resulting in drug resistance of HCC cells.

  15. The Shigella Virulence Factor IcsA Relieves N-WASP Autoinhibition by Displacing the Verprolin Homology/Cofilin/Acidic (VCA) Domain*

    PubMed Central

    Mauricio, Rui P. M.; Jeffries, Cy M.; Svergun, Dmitri I.; Deane, Janet E.

    2017-01-01

    Shigella flexneri is a bacterial pathogen that invades cells of the gastrointestinal tract, causing severe dysentery. Shigella mediates intracellular motility and spreading via actin comet tail formation. This process is dependent on the surface-exposed, membrane-embedded virulence factor IcsA, which recruits the host actin regulator N-WASP. Although it is clear that Shigella requires N-WASP for this process, the molecular details of this interaction and the mechanism of N-WASP activation remain poorly understood. Here, we show that co-expression of full-length IcsA and the Shigella membrane protease IcsP yields highly pure IcsA passenger domain (residues 53–758). We show that IcsA is monomeric and describe the solution structure of the passenger domain obtained by small-angle X-ray scattering (SAXS) analysis. The SAXS-derived models suggest that IcsA has an elongated shape but, unlike most other autotransporter proteins, possesses a central kink revealing a distinctly curved structure. Pull-down experiments show direct binding of the IcsA passenger domain to both the WASP homology 1 (WH1) domain and the GTPase binding domain (GBD) of N-WASP and no binding to the verprolin homology/cofilin/acidic (VCA) region. Using fluorescence polarization experiments, we demonstrate that IcsA binding to the GBD region displaces the VCA peptide and that this effect is synergistically enhanced upon IcsA binding to the WH1 region. Additionally, domain mapping of the IcsA interaction interface reveals that different regions of IcsA bind to the WH1 and GBD domains of N-WASP. Taken together, our data support a model where IcsA and N-WASP form a tight complex releasing the N-WASP VCA domain to recruit the host cell machinery for actin tail formation. PMID:27881679

  16. Structure and mechanism of mouse cyclase-associated protein (CAP1) in regulating actin dynamics.

    PubMed

    Jansen, Silvia; Collins, Agnieszka; Golden, Leslie; Sokolova, Olga; Goode, Bruce L

    2014-10-31

    Srv2/CAP is a conserved actin-binding protein with important roles in driving cellular actin dynamics in diverse animal, fungal, and plant species. However, there have been conflicting reports about whether the activities of Srv2/CAP are conserved, particularly between yeast and mammalian homologs. Yeast Srv2 has two distinct functions in actin turnover: its hexameric N-terminal-half enhances cofilin-mediated severing of filaments, while its C-terminal-half catalyzes dissociation of cofilin from ADP-actin monomers and stimulates nucleotide exchange. Here, we dissected the structure and function of mouse CAP1 to better understand its mechanistic relationship to yeast Srv2. Although CAP1 has a shorter N-terminal oligomerization sequence compared with Srv2, we find that the N-terminal-half of CAP1 (N-CAP1) forms hexameric structures with six protrusions, similar to N-Srv2. Further, N-CAP1 autonomously binds to F-actin and decorates the sides and ends of filaments, altering F-actin structure and enhancing cofilin-mediated severing. These activities depend on conserved surface residues on the helical-folded domain. Moreover, N-CAP1 enhances yeast cofilin-mediated severing, and conversely, yeast N-Srv2 enhances human cofilin-mediated severing, highlighting the mechanistic conservation between yeast and mammals. Further, we demonstrate that the C-terminal actin-binding β-sheet domain of CAP1 is sufficient to catalyze nucleotide-exchange of ADP-actin monomers, while in the presence of cofilin this activity additionally requires the WH2 domain. Thus, the structures, activities, and mechanisms of mouse and yeast Srv2/CAP homologs are remarkably well conserved, suggesting that the same activities and mechanisms underlie many of the diverse actin-based functions ascribed to Srv2/CAP homologs in different organisms.

  17. Reorganization of actin filaments by ADF/cofilin is involved in formation of microtubule structures during Xenopus oocyte maturation

    PubMed Central

    Yamagishi, Yuka; Abe, Hiroshi

    2015-01-01

    We examined the reorganization of actin filaments and microtubules during Xenopus oocyte maturation. Surrounding the germinal vesicle (GV) in immature oocytes, the cytoplasmic actin filaments reorganized to accumulate beneath the vegetal side of the GV, where the microtubule-organizing center and transient microtubule array (MTOC-TMA) assembled, just before GV breakdown (GVBD). Immediately after GVBD, both Xenopus ADF/cofilin (XAC) and its phosphatase Slingshot (XSSH) accumulated into the nuclei and intranuclear actin filaments disassembled from the vegetal side with the shrinkage of the GV. As the MTOC-TMA developed well, cytoplasmic actin filaments were retained at the MTOC-TMA base region. Suppression of XAC dephosphorylation by anti-XSSH antibody injection inhibited both actin filament reorganization and proper formation and localization of both the MTOC-TMA and meiotic spindles. Stabilization of actin filaments by phalloidin also inhibited formation of the MTOC-TMA and disassembly of intranuclear actin filaments without affecting nuclear shrinkage. Nocodazole also caused the MTOC-TMA and the cytoplasmic actin filaments at its base region to disappear, which further impeded disassembly of intranuclear actin filaments from the vegetal side. XAC appears to reorganize cytoplasmic actin filaments required for precise assembly of the MTOC and, together with the MTOC-TMA, regulate the intranuclear actin filament disassembly essential for meiotic spindle formation. PMID:26424802

  18. Reduced corporal fibrosis to protect erectile function by inhibiting the Rho-kinase/LIM-kinase/cofilin pathway in the aged transgenic rat harboring human tissue kallikrein 1

    PubMed Central

    Cui, Kai; Luan, Yang; Wang, Tao; Zhuan, Li; Rao, Ke; Wang, Shao-Gang; Ye, Zhang-Qun; Liu, Ji-Hong; Wang, Dao-Wen

    2017-01-01

    Our previous studies have demonstrated that erectile function was preserved in aged transgenic rats (TGR) harboring the human tissue kallikrein 1 (hKLK1), while the molecular level of hKLK1 on corporal fibrosis to inhibit age-related erectile dysfunction (ED) is poorly understood. Male wild-type Sprague-Dawley rats (WTR) and TGR harboring the hKLK1 gene were fed to 4- or 18-month-old and divided into three groups: young WTR (yWTR) as the control, aged WTR (aWTR), and aged TGR (aTGR). Erectile function of all rats was assessed by cavernous nerve electrostimulation method. Masson's trichrome staining was used to evaluate corporal fibrosis in the corpus cavernosum. We found that the erectile function of rats in the aWTR group was significantly lower than that of other two groups. Masson's trichrome staining revealed that compared with those of the yWTR and aTGR groups, the ratio of smooth muscle cell (SMC)/collagen (C) was significantly lower in the aWTR group. Immunohistochemistry and Western blotting analysis were performed, and results demonstrated that expression of α-SMA was lower, while expressions of transforming growth factor-β 1 (TGF-β1), RhoA, ROCK1, p-MYPT1, p-LIMK2, and p-cofilin were higher in the aWTR group compared with those in other two groups. However, LIMK2 and cofilin expressions did not differ among three groups. Taken together, these results indicated that the RhoA/ROCK1/LIMK/cofilin pathway may be involved in the corporal fibrosis caused by advanced age, and hKLK1 may reduce this corporal fibrosis by inhibiting the activation of this pathway to ameliorate age-related ED. PMID:27678468

  19. Competition between Tropomyosin, Fimbrin, and ADF/Cofilin drives their sorting to distinct actin filament networks.

    PubMed

    Christensen, Jenna R; Hocky, Glen M; Homa, Kaitlin E; Morganthaler, Alisha N; Hitchcock-DeGregori, Sarah E; Voth, Gregory A; Kovar, David R

    2017-03-10

    The fission yeast actin cytoskeleton is an ideal, simplified system to investigate fundamental mechanisms behind cellular self-organization. By focusing on the stabilizing protein tropomyosin Cdc8, bundling protein fimbrin Fim1, and severing protein coffin Adf1, we examined how their pairwise and collective interactions with actin filaments regulate their activity and segregation to functionally diverse F-actin networks. Utilizing multi-color TIRF microscopy of in vitro reconstituted F-actin networks, we observed and characterized two distinct Cdc8 cables loading and spreading cooperatively on individual actin filaments. Furthermore, Cdc8, Fim1, and Adf1 all compete for association with F-actin by different mechanisms, and their cooperative association with actin filaments affects their ability to compete. Finally, competition between Fim1 and Adf1 for F-actin synergizes their activities, promoting rapid displacement of Cdc8 from a dense F-actin network. Our findings reveal that competitive and cooperative interactions between actin binding proteins help define their associations with different F-actin networks.

  20. Identification of sennoside A as a novel inhibitor of the slingshot (SSH) family proteins related to cancer metastasis.

    PubMed

    Lee, Seon Young; Kim, Wooil; Lee, Young Geun; Kang, Hyo Jin; Lee, Sang-Hyun; Park, Sun Young; Min, Jeong-Ki; Lee, Sang-Rae; Chung, Sang J

    2017-03-06

    Phospho-cofilin (p-cofilin), which has a phosphate group on Ser-3, is involved in actin polymerization. Its dephosphorylated form promotes filopodia formation and cell migration by enhancing actin depolymerization. Protein phosphatase slingshot homologs (SSHs), known as dual-specificity phosphatases, catalyze hydrolytic removal of the Ser-3 phosphate group from phospho-cofilin. Aberrant SSH activity results in cancer metastasis, implicating SSHs as potential therapeutic targets for cancer metastasis. In this study, we screened 658 natural products purified from traditional oriental medicinal plants to identify three potent SSH inhibitors with submicromolar or single-digit micromolar Ki values: gossypol, hypericin, and sennoside A. The three compounds were purified from cottonseed, Saint John's wort, and rhubarb, respectively. Sennoside A markedly increased cofilin phosphorylation in pancreatic cancer cells, leading to impaired actin dynamics in pancreatic cancer cells with or without EGF stimulation and reduced motility and invasiveness in vitro and in vivo. Collaboratively, these results demonstrate that sennoside A is a novel inhibitor of SSHs and suggest that it may be valuable in the development of pharmaceutical drugs for treating cancer metastasis.

  1. Sleep deprivation causes memory deficits by negatively impacting neuronal connectivity in hippocampal area CA1

    PubMed Central

    Havekes, Robbert; Park, Alan J; Tudor, Jennifer C; Luczak, Vincent G; Hansen, Rolf T; Ferri, Sarah L; Bruinenberg, Vibeke M; Poplawski, Shane G; Day, Jonathan P; Aton, Sara J; Radwańska, Kasia; Meerlo, Peter; Houslay, Miles D; Baillie, George S; Abel, Ted

    2016-01-01

    Brief periods of sleep loss have long-lasting consequences such as impaired memory consolidation. Structural changes in synaptic connectivity have been proposed as a substrate of memory storage. Here, we examine the impact of brief periods of sleep deprivation on dendritic structure. In mice, we find that five hours of sleep deprivation decreases dendritic spine numbers selectively in hippocampal area CA1 and increased activity of the filamentous actin severing protein cofilin. Recovery sleep normalizes these structural alterations. Suppression of cofilin function prevents spine loss, deficits in hippocampal synaptic plasticity, and impairments in long-term memory caused by sleep deprivation. The elevated cofilin activity is caused by cAMP-degrading phosphodiesterase-4A5 (PDE4A5), which hampers cAMP-PKA-LIMK signaling. Attenuating PDE4A5 function prevents changes in cAMP-PKA-LIMK-cofilin signaling and cognitive deficits associated with sleep deprivation. Our work demonstrates the necessity of an intact cAMP-PDE4-PKA-LIMK-cofilin activation-signaling pathway for sleep deprivation-induced memory disruption and reduction in hippocampal spine density. DOI: http://dx.doi.org/10.7554/eLife.13424.001 PMID:27549340

  2. Calcineurin-dependent cofilin activation and increased retrograde actin flow drive 5-HT-dependent neurite outgrowth in Aplysia bag cell neurons.

    PubMed

    Zhang, Xiao-Feng; Hyland, Callen; Van Goor, David; Forscher, Paul

    2012-12-01

    Neurite outgrowth in response to soluble growth factors often involves changes in intracellular Ca(2+); however, mechanistic roles for Ca(2+) in controlling the underlying dynamic cytoskeletal processes have remained enigmatic. Bag cell neurons exposed to serotonin (5-hydroxytryptamine [5-HT]) respond with a threefold increase in neurite outgrowth rates. Outgrowth depends on phospholipase C (PLC) → inositol trisphosphate → Ca(2+) → calcineurin signaling and is accompanied by increased rates of retrograde actin network flow in the growth cone P domain. Calcineurin inhibitors had no effect on Ca(2+) release or basal levels of retrograde actin flow; however, they completely suppressed 5-HT-dependent outgrowth and F-actin flow acceleration. 5-HT treatments were accompanied by calcineurin-dependent increases in cofilin activity in the growth cone P domain. 5-HT effects were mimicked by direct activation of PLC, suggesting that increased actin network treadmilling may be a widespread mechanism for promoting neurite outgrowth in response to neurotrophic factors.

  3. Optogenetics to target actin-mediated synaptic loss in Alzheimer's

    NASA Astrophysics Data System (ADS)

    Zahedi, Atena; DeFea, Kathryn; Ethell, Iryna

    2013-03-01

    Numerous studies in Alzheimer's Disease (AD) animal models show that overproduction of Aβ peptides and their oligomerization can distort dendrites, damage synapses, and decrease the number of dendritic spines and synapses. Aβ may trigger synapse loss by modulating activity of actin-regulating proteins, such as Rac1 and cofilin. Indeed, Aβ1-42 oligomers can activate actin severing protein cofilin through calcineurin-mediated activation of phosphatase slingshot and inhibit an opposing pathway that suppresses cofilin phosphorylation through Rac-mediated activation of LIMK1. Excessive activation of actin-severing protein cofilin triggers the formation of a non-dynamic actin bundles, called rods that are found in AD brains and cause loss of synapses. Hence, regulation of these actin-regulating proteins in dendritic spines could potentially provide useful tools for preventing the synapse/spine loss associated with earlier stages of AD neuropathology. However, lack of spatiotemporal control over their activity is a key limitation. Recently, optogenetic advancements have provided researchers with convenient light-activating proteins such as photoactivatable Rac (PARac). Here, we transfected cultured primary hippocampal neurons and human embryonic kidney (HEK) cells with a PARac/ mCherry-containing plasmid and the mCherry-positive cells were identified and imaged using an inverted fluorescence microscope. Rac1 activation was achieved by irradiation with blue light (480nm) and live changes in dendritic spine morphology were observed using mCherry (587nm). Rac activation was confirmed by immunostaining for phosphorylated form of effector proteinP21 protein-activated kinase 1 (PAK1) and reorganization of actin. Thus, our studies confirm the feasibility of using the PA-Rac construct to trigger actin re-organization in the dendritic spines.

  4. CAS-1, a C. elegans cyclase-associated protein, is required for sarcomeric actin assembly in striated muscle.

    PubMed

    Nomura, Kazumi; Ono, Kanako; Ono, Shoichiro

    2012-09-01

    Assembly of contractile apparatuses in striated muscle requires precisely regulated reorganization of the actin cytoskeletal proteins into sarcomeric organization. Regulation of actin filament dynamics is one of the essential processes of myofibril assembly, but the mechanism of actin regulation in striated muscle is not clearly understood. Actin depolymerizing factor (ADF)/cofilin is a key enhancer of actin filament dynamics in striated muscle in both vertebrates and nematodes. Here, we report that CAS-1, a cyclase-associated protein in Caenorhabditis elegans, promotes ADF/cofilin-dependent actin filament turnover in vitro and is required for sarcomeric actin organization in striated muscle. CAS-1 is predominantly expressed in striated muscle from embryos to adults. In vitro, CAS-1 binds to actin monomers and enhances exchange of actin-bound ATP/ADP even in the presence of UNC-60B, a muscle-specific ADF/cofilin that inhibits the nucleotide exchange. As a result, CAS-1 and UNC-60B cooperatively enhance actin filament turnover. The two proteins also cooperate to shorten actin filaments. A cas-1 mutation is homozygous lethal with defects in sarcomeric actin organization. cas-1-mutant embryos and worms have aggregates of actin in muscle cells, and UNC-60B is mislocalized to the aggregates. These results provide genetic and biochemical evidence that cyclase-associated protein is a critical regulator of sarcomeric actin organization in striated muscle.

  5. Tankyrase-binding protein TNKS1BP1 regulates actin cytoskeleton rearrangement and cancer cell invasion.

    PubMed

    Ohishi, Tomokazu; Yoshida, Haruka; Katori, Masamichi; Migita, Toshiro; Muramatsu, Yukiko; Miyake, Mao; Ishikawa, Yuichi; Saiura, Akio; Iemura, Shun-Ichiro; Natsume, Tohru; Seimiya, Hiroyuki

    2017-02-15

    Tankyrase, a poly(ADP-ribose) polymerase (PARP) that promotes telomere elongation and Wnt/β-catenin signaling, has various binding partners, suggesting that it has as-yet unidentified functions. Here we report that the tankyrase-binding protein TNKS1BP1 regulates actin cytoskeleton and cancer cell invasion, which is closely associated with cancer progression. TNKS1BP1 colocalized with actin filaments and negatively regulated cell invasion. In TNKS1BP1-depleted cells, actin filament dynamics, focal adhesion, and lamellipodia ruffling were increased with activation of the ROCK-LIMK-cofilin pathway. TNKS1BP1 bound the actin capping protein CapZA2. TNKS1BP1 depletion dissociated CapZA2 from the cytoskeleton, leading to cofilin phosphorylation and enhanced cell invasion. Tankyrase overexpression increased cofilin phosphorylation, dissociated CapZA2 from cytoskeleton, and enhanced cell invasion in a PARP activity-dependent manner. In clinical samples of pancreatic cancer, TNKS1BP1 expression was reduced in invasive regions. We propose that the tankyrase-TNKS1BP1 axis constitutes a post-translational modulator of cell invasion whose aberration promotes cancer malignancy.

  6. A high-affinity interaction with ADP-actin monomers underlies the mechanism and in vivo function of Srv2/cyclase-associated protein.

    PubMed

    Mattila, Pieta K; Quintero-Monzon, Omar; Kugler, Jamie; Moseley, James B; Almo, Steven C; Lappalainen, Pekka; Goode, Bruce L

    2004-11-01

    Cyclase-associated protein (CAP), also called Srv2 in Saccharomyces cerevisiae, is a conserved actin monomer-binding protein that promotes cofilin-dependent actin turnover in vitro and in vivo. However, little is known about the mechanism underlying this function. Here, we show that S. cerevisiae CAP binds with strong preference to ADP-G-actin (Kd 0.02 microM) compared with ATP-G-actin (Kd 1.9 microM) and competes directly with cofilin for binding ADP-G-actin. Further, CAP blocks actin monomer addition specifically to barbed ends of filaments, in contrast to profilin, which blocks monomer addition to pointed ends of filaments. The actin-binding domain of CAP is more extensive than previously suggested and includes a recently solved beta-sheet structure in the C-terminus of CAP and adjacent sequences. Using site-directed mutagenesis, we define evolutionarily conserved residues that mediate binding to ADP-G-actin and demonstrate that these activities are required for CAP function in vivo in directing actin organization and polarized cell growth. Together, our data suggest that in vivo CAP competes with cofilin for binding ADP-actin monomers, allows rapid nucleotide exchange to occur on actin, and then because of its 100-fold weaker binding affinity for ATP-actin compared with ADP-actin, allows other cellular factors such as profilin to take the handoff of ATP-actin and facilitate barbed end assembly.

  7. Actin-Interacting Protein 1 Contributes to Intranuclear Rod Assembly in Dictyostelium discoideum

    PubMed Central

    Ishikawa-Ankerhold, Hellen C.; Daszkiewicz, Wioleta; Schleicher, Michael; Müller-Taubenberger, Annette

    2017-01-01

    Intranuclear rods are aggregates consisting of actin and cofilin that are formed in the nucleus in consequence of chemical or mechanical stress conditions. The formation of rods is implicated in a variety of pathological conditions, such as certain myopathies and some neurological disorders. It is still not well understood what exactly triggers the formation of intranuclear rods, whether other proteins are involved, and what the underlying mechanisms of rod assembly or disassembly are. In this study, Dictyostelium discoideum was used to examine appearance, stages of assembly, composition, stability, and dismantling of rods. Our data show that intranuclear rods, in addition to actin and cofilin, are composed of a distinct set of other proteins comprising actin-interacting protein 1 (Aip1), coronin (CorA), filactin (Fia), and the 34 kDa actin-bundling protein B (AbpB). A finely tuned spatio-temporal pattern of protein recruitment was found during formation of rods. Aip1 is important for the final state of rod compaction indicating that Aip1 plays a major role in shaping the intranuclear rods. In the absence of both Aip1 and CorA, rods are not formed in the nucleus, suggesting that a sufficient supply of monomeric actin is a prerequisite for rod formation. PMID:28074884

  8. Proteins.

    ERIC Educational Resources Information Center

    Doolittle, Russell F.

    1985-01-01

    Examines proteins which give rise to structure and, by virtue of selective binding to other molecules, make genes. Binding sites, amino acids, protein evolution, and molecular paleontology are discussed. Work with encoding segments of deoxyribonucleic acid (exons) and noncoding stretches (introns) provides new information for hypotheses. (DH)

  9. The C-terminal dimerization motif of cyclase-associated protein is essential for actin monomer regulation.

    PubMed

    Iwase, Shohei; Ono, Shoichiro

    2016-12-01

    Cyclase-associated protein (CAP) is a conserved actin-regulatory protein that functions together with actin depolymerizing factor (ADF)/cofilin to enhance actin filament dynamics. CAP has multiple functional domains, and the function to regulate actin monomers is carried out by its C-terminal half containing a Wiskott-Aldrich Syndrome protein homology 2 (WH2) domain, a CAP and X-linked retinitis pigmentosa 2 (CARP) domain, and a dimerization motif. WH2 and CARP are implicated in binding to actin monomers and important for enhancing filament turnover. However, the role of the dimerization motif is unknown. Here, we investigated the function of the dimerization motif of CAS-2, a CAP isoform in the nematode Caenorhabditis elegans, in actin monomer regulation. CAS-2 promotes ATP-dependent recycling of ADF/cofilin-bound actin monomers for polymerization by enhancing exchange of actin-bound nucleotides. The C-terminal half of CAS-2 (CAS-2C) has nearly as strong activity as full-length CAS-2. Maltose-binding protein (MBP)-tagged CAS-2C is a dimer. However, MBP-CAS-2C with a truncation of either one or two C-terminal β-strands is monomeric. Truncations of the dimerization motif in MBP-CAS-2C nearly completely abolish its activity to sequester actin monomers from polymerization and enhance nucleotide exchange on actin monomers. As a result, these CAS-2C variants, also in the context of full-length CAS-2, fail to compete with ADF/cofilin to release actin monomers for polymerization. CAS-2C variants lacking the dimerization motif exhibit enhanced binding to actin filaments, which is mediated by WH2. Taken together, these results suggest that the evolutionarily conserved dimerization motif of CAP is essential for its C-terminal region to exert the actin monomer-specific regulatory function.

  10. Protein

    MedlinePlus

    ... Search for: Harvard T.H. Chan School of Public Health Email People Departments Calendar Careers Give my.harvard ... Nutrition Source Harvard T.H. Chan School of Public Health > The Nutrition Source > What Should I Eat? > Protein ...

  11. Protein

    MedlinePlus

    ... Go lean with protein. • Choose lean meats and poultry. Lean beef cuts include round steaks (top loin, ... main dishes. • Use nuts to replace meat or poultry, not in addition to meat or poultry (i. ...

  12. Mammalian and malaria parasite cyclase-associated proteins catalyze nucleotide exchange on G-actin through a conserved mechanism.

    PubMed

    Makkonen, Maarit; Bertling, Enni; Chebotareva, Natalia A; Baum, Jake; Lappalainen, Pekka

    2013-01-11

    Cyclase-associated proteins (CAPs) are among the most highly conserved regulators of actin dynamics, being present in organisms from mammals to apicomplexan parasites. Yeast, plant, and mammalian CAPs are large multidomain proteins, which catalyze nucleotide exchange on actin monomers from ADP to ATP and recycle actin monomers from actin-depolymerizing factor (ADF)/cofilin for new rounds of filament assembly. However, the mechanism by which CAPs promote nucleotide exchange is not known. Furthermore, how apicomplexan CAPs, which lack many domains present in yeast and mammalian CAPs, contribute to actin dynamics is not understood. We show that, like yeast Srv2/CAP, mouse CAP1 interacts with ADF/cofilin and ADP-G-actin through its N-terminal α-helical and C-terminal β-strand domains, respectively. However, in the variation to yeast Srv2/CAP, mouse CAP1 has two adjacent profilin-binding sites, and it interacts with ATP-actin monomers with high affinity through its WH2 domain. Importantly, we revealed that the C-terminal β-sheet domain of mouse CAP1 is essential and sufficient for catalyzing nucleotide exchange on actin monomers, although the adjacent WH2 domain is not required for this function. Supporting these data, we show that the malaria parasite Plasmodium falciparum CAP, which is entirely composed of the β-sheet domain, efficiently promotes nucleotide exchange on actin monomers. Collectively, this study provides evidence that catalyzing nucleotide exchange on actin monomers via the β-sheet domain is the most highly conserved function of CAPs from mammals to apicomplexan parasites. Other functions, including interactions with profilin and ADF/cofilin, evolved in more complex organisms to adjust the specific role of CAPs in actin dynamics.

  13. The role of cyclase-associated protein in regulating actin filament dynamics - more than a monomer-sequestration factor.

    PubMed

    Ono, Shoichiro

    2013-08-01

    Dynamic reorganization of the actin cytoskeleton is fundamental to a number of cell biological events. A variety of actin-regulatory proteins modulate polymerization and depolymerization of actin and contribute to actin cytoskeletal reorganization. Cyclase-associated protein (CAP) is a conserved actin-monomer-binding protein that has been studied for over 20 years. Early studies have shown that CAP sequesters actin monomers; recent studies, however, have revealed more active roles of CAP in actin filament dynamics. CAP enhances the recharging of actin monomers with ATP antagonistically to ADF/cofilin, and also promotes the severing of actin filaments in cooperation with ADF/cofilin. Self-oligomerization and binding to other proteins regulate activities and localization of CAP. CAP has crucial roles in cell signaling, development, vesicle trafficking, cell migration and muscle sarcomere assembly. This Commentary discusses the recent advances in our understanding of the functions of CAP and its implications as an important regulator of actin cytoskeletal dynamics, which are involved in various cellular activities.

  14. AMP-activated protein kinase induces actin cytoskeleton reorganization in epithelial cells.

    PubMed

    Miranda, Lisa; Carpentier, Sarah; Platek, Anna; Hussain, Nusrat; Gueuning, Marie-Agnès; Vertommen, Didier; Ozkan, Yurda; Sid, Brice; Hue, Louis; Courtoy, Pierre J; Rider, Mark H; Horman, Sandrine

    2010-06-04

    AMP-activated protein kinase (AMPK), a known regulator of cellular and systemic energy balance, is now recognized to control cell division, cell polarity and cell migration, all of which depend on the actin cytoskeleton. Here we report the effects of A769662, a pharmacological activator of AMPK, on cytoskeletal organization and signalling in epithelial Madin-Darby canine kidney (MDCK) cells. We show that AMPK activation induced shortening or radiation of stress fibers, uncoupling from paxillin and predominance of cortical F-actin. In parallel, Rho-kinase downstream targets, namely myosin regulatory light chain and cofilin, were phosphorylated. These effects resembled the morphological changes in MDCK cells exposed to hyperosmotic shock, which led to Ca(2+)-dependent AMPK activation via calmodulin-dependent protein kinase kinase-beta(CaMKKbeta), a known upstream kinase of AMPK. Indeed, hypertonicity-induced AMPK activation was markedly reduced by the STO-609 CaMKKbeta inhibitor, as was the increase in MLC and cofilin phosphorylation. We suggest that AMPK links osmotic stress to the reorganization of the actin cytoskeleton.

  15. A protein phosphatase 2A catalytic subunit modulates blue light-induced chloroplast avoidance movements through regulating actin cytoskeleton in Arabidopsis.

    PubMed

    Wen, Feng; Wang, Jinqian; Xing, Da

    2012-08-01

    Chloroplast avoidance movements mediated by phototropin 2 (phot2) are one of most important physiological events in the response to high-fluence blue light (BL), which reduces damage to the photosynthetic machinery under excess light. Protein phosphatase 2A-2 (PP2A-2) is an isoform of the catalytic subunit of PP2A, which regulates a number of developmental processes. To investigate whether PP2A-2 was involved in high-fluence BL-induced chloroplast avoidance movements, we first analyzed chloroplast migration in the leaves of the pp2a-2 mutant in response to BL. The data showed that PP2A-2 might act as a positive regulator in phot2-mediated chloroplast avoidance movements, but not in phot1-mediated chloroplast accumulation movements. Then, the effect of okadaic acid (OA) and cantharidin (selective PP2A inhibitors) on high-fluence BL response was further investigated in Arabidopsis thaliana mesophyll cells. Within a certain concentration range, exogenously applied OA or cantharidin inhibited the high-fluence BL-induced chloroplast movements in a concentration-dependent manner. Actin depolymerizing factor (ADF)/cofilin phosphorylation assays demonstrated that PP2A-2 can activate/dephosphorylate ADF/cofilin, an actin-binding protein, in Arabidopsis mesophyll cells. Consistent with this observation, the experiments showed that OA could inhibit ADF1 binding to the actin and suppress the reorganization of the actin cytoskeleton after high-fluence BL irradiation. The adf1 and adf3 mutants also exhibited reduced high-fluence BL-induced chloroplast avoidance movements. In conclusion, we identified that PP2A-2 regulated the activation of ADF/cofilin, which, in turn, regulated actin cytoskeleton remodeling and was involved in phot2-mediated chloroplast avoidance movements.

  16. Cell Permeant Peptide Analogues of the Small Heat Shock Protein, HSP20, Reduce TGF-β1-Induced CTGF Expression in Keloid Fibroblasts

    PubMed Central

    Lopes, Luciana B.; Furnish, Elizabeth J.; Komalavilas, Padmini; Flynn, Charles R.; Ashby, Patricia; Hansen, Adam; Ly, Daphne P.; Yang, George P.; Longaker, Michael T.; Panitch, Alyssa; Brophy, Colleen M.

    2009-01-01

    A growing body of evidence suggests the involvement of connective tissue growth factor (CTGF) in the development and maintenance of fibrosis and excessive scarring. As the expression of this protein requires an intact actin cytoskeleton, disruption of the cytoskeleton represents an attractive strategy to decrease CTGF expression and, consequently, excessive scarring. The small heat-shock-related protein (HSP20), when phosphorylated by cyclic nucleotide signaling cascades, displaces phospho-cofilin from the 14-3-3 scaffolding protein leading to activation of cofilin as an actin-depolymerizing protein. In the present study, we evaluated the effect of AZX100, a phosphopeptide analogue of HSP20, on transforming growth factor-β-1 (TGF-β1)-induced CTGF and collagen expression in human keloid fibroblasts. We also examined the effect of AZX100 on scar formation in vivo in dermal wounds in a Siberian hamster model. AZX100 decreased the expression of CTGF and type I collagen induced by TGF-β1, endothelin, and lysophosphatidic acid. Treatment with AZX100 decreased stress fiber formation and altered the morphology of human dermal keloid fibroblasts. In vivo, AZX100 significantly improved collagen organization in a Siberian hamster scarring model. Taken together, these results suggest the potential use of AZX100 as a strategy to prevent excessive scarring and fibrotic disorders. PMID:18787533

  17. Drebrin-like protein DBN-1 is a sarcomere component that stabilizes actin filaments during muscle contraction.

    PubMed

    Butkevich, Eugenia; Bodensiek, Kai; Fakhri, Nikta; von Roden, Kerstin; Schaap, Iwan A T; Majoul, Irina; Schmidt, Christoph F; Klopfenstein, Dieter R

    2015-07-06

    Actin filament organization and stability in the sarcomeres of muscle cells are critical for force generation. Here we identify and functionally characterize a Caenorhabditis elegans drebrin-like protein DBN-1 as a novel constituent of the muscle contraction machinery. In vitro, DBN-1 exhibits actin filament binding and bundling activity. In vivo, DBN-1 is expressed in body wall muscles of C. elegans. During the muscle contraction cycle, DBN-1 alternates location between myosin- and actin-rich regions of the sarcomere. In contracted muscle, DBN-1 is accumulated at I-bands where it likely regulates proper spacing of α-actinin and tropomyosin and protects actin filaments from the interaction with ADF/cofilin. DBN-1 loss of function results in the partial depolymerization of F-actin during muscle contraction. Taken together, our data show that DBN-1 organizes the muscle contractile apparatus maintaining the spatial relationship between actin-binding proteins such as α-actinin, tropomyosin and ADF/cofilin and possibly strengthening actin filaments by bundling.

  18. Actin capping protein alpha maintains vestigial-expressing cells within the Drosophila wing disc epithelium.

    PubMed

    Janody, Florence; Treisman, Jessica E

    2006-09-01

    Tissue patterning must be translated into morphogenesis through cell shape changes mediated by remodeling of the actin cytoskeleton. We have found that Capping protein alpha (Cpa) and Capping protein beta (Cpb), which prevent extension of the barbed ends of actin filaments, are specifically required in the wing blade primordium of the Drosophila wing disc. cpa or cpb mutant cells in this region, but not in the remainder of the wing disc, are extruded from the epithelium and undergo apoptosis. Excessive actin filament polymerization is not sufficient to explain this phenotype, as loss of Cofilin or Cyclase-associated protein does not cause cell extrusion or death. Misexpression of Vestigial, the transcription factor that specifies the wing blade, both increases cpa transcription and makes cells dependent on cpa for their maintenance in the epithelium. Our results suggest that Vestigial specifies the cytoskeletal changes that lead to morphogenesis of the adult wing.

  19. Enrichment of distinct microfilament-associated and GTP-binding-proteins in membrane/microvilli fractions from lymphoid cells

    PubMed Central

    Hao, Jian-Jiang; Wang, Guanghui; Pisitkun, Trairak; Patino-Lopez, Genaro; Nagashima, Kunio; Knepper, Mark A.; Shen, Rong-Fong; Shaw, Stephen

    2008-01-01

    Summary Lymphocyte microvilli mediate initial adhesion to endothelium during lymphocyte transition from blood into tissue but their molecular organization is incompletely understood. We modified a shear-based procedure to prepare biochemical fractions enriched for membrane/microvilli (MMV) from both human peripheral blood T-lymphocytes (PBT) and a mouse pre-B lymphocyte line (300.19). Enrichment of proteins in MMV relative to post nuclear lysate was determined by LC/MS/MS analysis and label-free quantitation. Subsequent analysis emphasized the 291 proteins shared by PBT and 300.19 and estimated by MS peak area to be highest abundance. Validity of the label-free quantitation was confirmed by many internal consistencies and by comparison with Western blot analyses. The MMV fraction was enriched primarily for subsets of cytoskeletal proteins, transmembrane proteins and G-proteins, with similar patterns in both lymphoid cell types. The most enriched cytoskeletal proteins were microfilament-related proteins NHERF1, Ezrin/Radixin/Moesin (ERMs), ADF/cofilin and Myosin1G. Other microfilament proteins such as talin, gelsolin, myosin II and profilin were markedly reduced in MMV, as were intermediate filament- and microtubule-related proteins. Heterotrimeric G-proteins and some small G-proteins (especially Ras and Rap1) were enriched in the MMV preparation. Two notable general observations also emerged. There was less overlap between the two cells in their transmembrane proteins than in other classes of proteins, consistent with a special role of plasma membrane proteins in differentiation. Second, unstimulated primary T-lymphocytes have an unusually high concentration of actin and other microfilament related proteins, consistent with the singular role of actin-mediated motility in the immunological surveillance performed by these primary cells. Lymphocyte microvilli initiate adhesion to endothelium during movement from blood into tissue. Using LC/MS/MS and label

  20. Reaching Out to Send a Message: Proteins Associated with Neurite Outgrowth and Neurotransmission are Altered with Age in the Long-Lived Naked Mole-Rat.

    PubMed

    Triplett, Judy C; Swomley, Aaron M; Kirk, Jessime; Grimes, Kelly M; Lewis, Kaitilyn N; Orr, Miranda E; Rodriguez, Karl A; Cai, Jian; Klein, Jon B; Buffenstein, Rochelle; Butterfield, D Allan

    2016-07-01

    Aging is the greatest risk factor for developing neurodegenerative diseases, which are associated with diminished neurotransmission as well as neuronal structure and function. However, several traits seemingly evolved to avert or delay age-related deterioration in the brain of the longest-lived rodent, the naked mole-rat (NMR). The NMR remarkably also exhibits negligible senescence, maintaining an extended healthspan for ~75 % of its life span. Using a proteomic approach, statistically significant changes with age in expression and/or phosphorylation levels of proteins associated with neurite outgrowth and neurotransmission were identified in the brain of the NMR and include: cofilin-1; collapsin response mediator protein 2; actin depolymerizing factor; spectrin alpha chain; septin-7; syntaxin-binding protein 1; synapsin-2 isoform IIB; and dynamin 1. We hypothesize that such changes may contribute to the extended lifespan and healthspan of the NMR.

  1. Enterocyte loss of polarity and gut wound healing rely upon the F-actin-severing function of villin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Efficient wound healing is required to maintain the integrity of the intestinal epithelial barrier because of its constant exposure to a large variety of environmental stresses. This process implies a partial cell depolarization and the acquisition of a motile phenotype that involves rearrangements ...

  2. Identification of the proteins related to SET-mediated hepatic cytotoxicity of trichloroethylene by proteomic analysis.

    PubMed

    Ren, Xiaohu; Yang, Xifei; Hong, Wen-Xu; Huang, Peiwu; Wang, Yong; Liu, Wei; Ye, Jinbo; Huang, Haiyan; Huang, Xinfeng; Shen, Liming; Yang, Linqing; Zhuang, Zhixiong; Liu, Jianjun

    2014-05-16

    Trichloroethylene (TCE) is an effective solvent for a variety of organic materials. Since the wide use of TCE as industrial degreasing of metals, adhesive paint and polyvinyl chloride production, TCE has turned into an environmental and occupational toxicant. Exposure to TCE could cause severe hepatotoxicity; however, the toxic mechanisms of TCE remain poorly understood. Recently, we reported that SET protein mediated TCE-induced cytotoxicity in L-02 cells. Here, we further identified the proteins related to SET-mediated hepatic cytotoxicity of TCE using the techniques of DIGE (differential gel electrophoresis) and MALDI-TOF-MS/MS. Among the 20 differential proteins identified, 8 were found to be modulated by SET in TCE-induced cytotoxicity and three of them (cofilin-1, peroxiredoxin-2 and S100-A11) were validated by Western-blot analysis. The functional analysis revealed that most of the identified SET-modulated proteins are apoptosis-associated proteins. These data indicated that these proteins may be involved in SET-mediated hepatic cytotoxicity of TCE in L-02 cells.

  3. Protein thiol oxidation and formation of S-glutathionylated cyclophilin A in cells exposed to chloramines and hypochlorous acid.

    PubMed

    Stacey, Melissa M; Cuddihy, Sarah L; Hampton, Mark B; Winterbourn, Christine C

    2012-11-01

    Neutrophil oxidants, including the myeloperoxidase products, HOCl and chloramines, have been linked to endothelial dysfunction in inflammatory diseases such as atherosclerosis. As they react preferentially with sulfur centers, thiol proteins are likely to be cellular targets. Our objectives were to establish whether there is selective protein oxidation in vascular endothelial cells treated with HOCl or chloramines, and to identify sensitive proteins. Cells were treated with HOCl, glycine chloramine and monochloramine, reversibly oxidized cysteines were labeled and separated by 1D or 2D SDS-PAGE, and proteins were characterized by mass spectrometry. Selective protein oxidation was observed, with chloramines and HOCl causing more changes than H(2)O(2). Cyclophilin A was one of the most sensitive targets, particularly with glycine chloramine. Cyclophilin A was also oxidized in Jurkat T cells where its identity was confirmed using a knockout cell line. The product was a mixed disulfide with glutathione, with glutathionylation at Cys-161. Glyceraldehyde-3-phosphate dehydrogenase, peroxiredoxins and cofilin were also highly sensitive to HOCl/chloramines. Cyclophilins are becoming recognized as redox regulatory proteins, and glutathionylation is an important mechanism for redox regulation. Cells lacking Cyclophilin A showed more glutathionylation of other proteins than wild-type cells, suggesting that cyclophilin-regulated deglutathionylation could contribute to redox changes in HOCl/chloramine-exposed cells.

  4. Ice-age endurance: the effects of cryopreservation on proteins of sperm of common carp, Cyprinus carpio L.

    PubMed

    Li, P; Hulak, M; Koubek, P; Sulc, M; Dzyuba, B; Boryshpolets, S; Rodina, M; Gela, D; Manaskova-Postlerova, P; Peknicova, J; Linhart, O

    2010-08-01

    Damage to spermatozoa during cryopreservation is regarded as a major obstacle to the expansion of sperm storage technology. The authors used two-dimensional polyacrylamide gel electrophoresis and matrix-associated laser desorption/ionization time-of-flight mass spectrometry to explore whether the protein profile of common carp (Cyprinus carpio) spermatozoa is affected by cryopreservation. Fourteen protein spots were significantly altered following cryopreservation. Eleven of these were identified: three as specific membrane proteins (N-ethylmaleimide-sensitive fusion protein attachment protein alpha, cofilin 2, and annexin A4) involved in membrane trafficking, organization, and cell movement; six as cytoplasmic enzymes (S-Adenosylhomocysteine hydrolase, Si:dkey-180p18.9 protein, lactate dehydrogenase B, phosphoglycerate kinase 1, transaldolase 1, and esterase D/formylglutathione hydrolase) involved in cell metabolism, oxidoreductase activity, and signal transduction; and two as transferrin variant C and F. Based on these findings, the authors hypothesize that transferrin in cryopreserved sperm may protect spermatozoa against oxidative damage during the freeze-thaw process. Cryopreservation caused changes in spermatozoa protein profiles that may lead to decreased spermatozoa velocity, motility, and fertilization success, and to subsequent ova hatching rate.

  5. Protein alterations in infiltrating ductal carcinomas of the breast as detected by nonequilibrium pH gradient electrophoresis and mass spectrometry.

    PubMed

    Kabbage, Maria; Chahed, Karim; Hamrita, Bechr; Guillier, Christelle Lemaitre; Trimeche, Mounir; Remadi, Sami; Hoebeke, Johan; Chouchane, Lotfi

    2008-01-01

    Improvement of breast-cancer detection through the identification of potential cancer biomarkers is considered as a promising strategy for effective assessment of the disease. The current study has used nonequilibrium pH gradient electrophoresis with subsequent analysis by mass spectrometry to identify protein alterations in invasive ductal carcinomas of the breast from Tunisian women. We have identified multiple protein alterations in tumor tissues that were picked, processed, and unambiguously assigned identities by matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF). The proteins identified span a wide range of functions and are believed to have potential clinical applications as cancer biomarkers. They include glycolytic enzymes, molecular chaperones, cytoskeletal-related proteins, antioxydant enzymes, and immunologic related proteins. Among these proteins, enolase 1, phosphoglycerate kinase 1, deoxyhemoglobin, Mn-superoxyde dismutase, alpha-B-crystallin, HSP27, Raf kinase inhibitor protein, heterogeneous nuclear ribonucleoprotein A2/B1, cofilin 1, and peptidylprolyl isomerase A were overexpressed in tumors compared with normal tissues. In contrast, the IGHG1 protein, the complement C3 component C3c, which are two newly identified protein markers, were downregulated in IDCA tissues.

  6. Protein Alterations in Infiltrating Ductal Carcinomas of the Breast as Detected by Nonequilibrium pH Gradient Electrophoresis and Mass Spectrometry

    PubMed Central

    Kabbage, Maria; Chahed, Karim; Hamrita, Bechr; Guillier, Christelle Lemaitre; Trimeche, Mounir; Remadi, Sami; Hoebeke, Johan; Chouchane, Lotfi

    2008-01-01

    Improvement of breast-cancer detection through the identification of potential cancer biomarkers is considered as a promising strategy for effective assessment of the disease. The current study has used nonequilibrium pH gradient electrophoresis with subsequent analysis by mass spectrometry to identify protein alterations in invasive ductal carcinomas of the breast from Tunisian women. We have identified multiple protein alterations in tumor tissues that were picked, processed, and unambiguously assigned identities by matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF). The proteins identified span a wide range of functions and are believed to have potential clinical applications as cancer biomarkers. They include glycolytic enzymes, molecular chaperones, cytoskeletal-related proteins, antioxydant enzymes, and immunologic related proteins. Among these proteins, enolase 1, phosphoglycerate kinase 1, deoxyhemoglobin, Mn-superoxyde dismutase, α-B-crystallin, HSP27, Raf kinase inhibitor protein, heterogeneous nuclear ribonucleoprotein A2/B1, cofilin 1, and peptidylprolyl isomerase A were overexpressed in tumors compared with normal tissues. In contrast, the IGHG1 protein, the complement C3 component C3c, which are two newly identified protein markers, were downregulated in IDCA tissues. PMID:18401453

  7. Tetracycline-inducible protein expression in pancreatic cancer cells: Effects of CapG overexpression

    PubMed Central

    Tonack, Sarah; Patel, Sabina; Jalali, Mehdi; Nedjadi, Taoufik; Jenkins, Rosalind E; Goldring, Christopher; Neoptolemos, John; Costello, Eithne

    2011-01-01

    AIM: To establish stable tetracycline-inducible pancreatic cancer cell lines. METHODS: Suit-2, MiaPaca-2, and Panc-1 cells were transfected with a second generation reverse tetracycline-controlled transactivator protein (rtTA2S-M2), under the control of either a cytomegalovirus (CMV) or a chicken β-actin promoter, and the resulting clones were characterised. RESULTS: Use of the chicken (β-actin) promoter proved superior for both the production and maintenance of doxycycline-inducible cell lines. The system proved versatile, enabling transient inducible expression of a variety of genes, including GST-P, CYP2E1, S100A6, and the actin capping protein, CapG. To determine the physiological utility of this system in pancreatic cancer cells, stable inducible CapG expressors were established. Overexpressed CapG was localised to the cytoplasm and the nuclear membrane, but was not observed in the nucleus. High CapG levels were associated with enhanced motility, but not with changes to the cell cycle, or cellular proliferation. In CapG-overexpressing cells, the levels and phosphorylation status of other actin-moduating proteins (Cofilin and Ezrin/Radixin) were not altered. However, preliminary analyses suggest that the levels of other cellular proteins, such as ornithine aminotransferase and enolase, are altered upon CapG induction. CONCLUSION: We have generated pancreatic-cancer derived cell lines in which gene expression is fully controllable. PMID:21528072

  8. Crystal structure of human coactosin-like protein at 1.9 Å resolution

    PubMed Central

    Li, Xuemei; Liu, Xueqi; Lou, Zhiyong; Duan, Xin; Wu, Hao; Liu, Yiwei; Rao, Zihe

    2004-01-01

    Human coactosin-like protein (CLP) shares high homology with coactosin, a filamentous (F)-actin binding protein, and interacts with 5LO and F-actin. As a tumor antigen, CLP is overexpressed in tumor tissue cells or cell lines, and the encoded epitopes can be recognized by cellular and humoral immune systems. To gain a better understanding of its various functions and interactions with related proteins, the crystal structure of CLP expressed in Escherichia coli has been determined to 1.9 Å resolution. The structure features a central β-sheet surrounded by helices, with two very tight hydrophobic cores on each side of the sheet. CLP belongs to the actin depolymerizing protein superfamily, and is similar to yeast cofilin and actophilin. Based on our structural analysis, we observed that CLP forms a polymer along the crystallographic b axis with the exact same repeat distance as F-actin. A model for the CLP polymer and F-actin binding has therefore been proposed. PMID:15459340

  9. Actin-Capping Protein and the Hippo pathway regulate F-actin and tissue growth in Drosophila.

    PubMed

    Fernández, Beatriz García; Gaspar, Pedro; Brás-Pereira, Catarina; Jezowska, Barbara; Rebelo, Sofia Raquel; Janody, Florence

    2011-06-01

    The conserved Hippo tumor suppressor pathway is a key kinase cascade that controls tissue growth by regulating the nuclear import and activity of the transcription co-activator Yorkie. Here, we report that the actin-Capping Protein αβ heterodimer, which regulates actin polymerization, also functions to suppress inappropriate tissue growth by inhibiting Yorkie activity. Loss of Capping Protein activity results in abnormal accumulation of apical F-actin, reduced Hippo pathway activity and the ectopic expression of several Yorkie target genes that promote cell survival and proliferation. Reduction of two other actin-regulatory proteins, Cofilin and the cyclase-associated protein Capulet, cause abnormal F-actin accumulation, but only the loss of Capulet, like that of Capping Protein, induces ectopic Yorkie activity. Interestingly, F-actin also accumulates abnormally when Hippo pathway activity is reduced or abolished, independently of Yorkie activity, whereas overexpression of the Hippo pathway component expanded can partially reverse the abnormal accumulation of F-actin in cells depleted for Capping Protein. Taken together, these findings indicate a novel interplay between Hippo pathway activity and actin filament dynamics that is essential for normal growth control.

  10. Solution structure and dynamics of ADF from Toxoplasma gondii.

    PubMed

    Yadav, Rahul; Pathak, Prem Prakash; Shukla, Vaibhav Kumar; Jain, Anupam; Srivastava, Shubhra; Tripathi, Sarita; Krishna Pulavarti, S V S R; Mehta, Simren; Sibley, L David; Arora, Ashish

    2011-10-01

    Toxoplasma gondii ADF (TgADF) belongs to a functional subtype characterized by strong G-actin sequestering activity and low F-actin severing activity. Among the characterized ADF/cofilin proteins, TgADF has the shortest length and is missing a C-terminal helix implicated in F-actin binding. In order to understand its characteristic properties, we have determined the solution structure of TgADF and studied its backbone dynamics from ¹⁵N-relaxation measurements. TgADF has conserved ADF/cofilin fold consisting of a central mixed β-sheet comprised of six β-strands that are partially surrounded by three α-helices and a C-terminal helical turn. The high G-actin sequestering activity of TgADF relies on highly structurally and dynamically optimized interactions between G-actin and G-actin binding surface of TgADF. The equilibrium dissociation constant for TgADF and rabbit muscle G-actin was 23.81 nM, as measured by ITC, which reflects very strong affinity of TgADF and G-actin interactions. The F-actin binding site of TgADF is partially formed, with a shortened F-loop that does not project out of the ellipsoid structure and a C-terminal helical turn in place of the C-terminal helix α4. Yet, it is more rigid than the F-actin binding site of Leishmania donovani cofilin. Experimental observations and structural features do not support the interaction of PIP2 with TgADF, and PIP2 does not affect the interaction of TgADF with G-actin. Overall, this study suggests that conformational flexibility of G-actin binding sites enhances the affinity of TgADF for G-actin, while conformational rigidity of F-actin binding sites of conventional ADF/cofilins is necessary for stable binding to F-actin.

  11. Identification of Arabidopsis cyclase-associated protein 1 as the first nucleotide exchange factor for plant actin.

    PubMed

    Chaudhry, Faisal; Guérin, Christophe; von Witsch, Matthias; Blanchoin, Laurent; Staiger, Christopher J

    2007-08-01

    The actin cytoskeleton powers organelle movements, orchestrates responses to abiotic stresses, and generates an amazing array of cell shapes. Underpinning these diverse functions of the actin cytoskeleton are several dozen accessory proteins that coordinate actin filament dynamics and construct higher-order assemblies. Many actin-binding proteins from the plant kingdom have been characterized and their function is often surprisingly distinct from mammalian and fungal counterparts. The adenylyl cyclase-associated protein (CAP) has recently been shown to be an important regulator of actin dynamics in vivo and in vitro. The disruption of actin organization in cap mutant plants indicates defects in actin dynamics or the regulated assembly and disassembly of actin subunits into filaments. Current models for actin dynamics maintain that actin-depolymerizing factor (ADF)/cofilin removes ADP-actin subunits from filament ends and that profilin recharges these monomers with ATP by enhancing nucleotide exchange and delivery of subunits onto filament barbed ends. Plant profilins, however, lack the essential ability to stimulate nucleotide exchange on actin, suggesting that there might be a missing link yet to be discovered from plants. Here, we show that Arabidopsis thaliana CAP1 (AtCAP1) is an abundant cytoplasmic protein; it is present at a 1:3 M ratio with total actin in suspension cells. AtCAP1 has equivalent affinities for ADP- and ATP-monomeric actin (Kd approximately 1.3 microM). Binding of AtCAP1 to ATP-actin monomers inhibits polymerization, consistent with AtCAP1 being an actin sequestering protein. However, we demonstrate that AtCAP1 is the first plant protein to increase the rate of nucleotide exchange on actin. Even in the presence of ADF/cofilin, AtCAP1 can recharge actin monomers and presumably provide a polymerizable pool of subunits to profilin for addition onto filament ends. In turnover assays, plant profilin, ADF, and CAP act cooperatively to promote flux

  12. Mbh 1: a novel gelsolin/severin-related protein which binds actin in vitro and exhibits nuclear localization in vivo.

    PubMed Central

    Prendergast, G C; Ziff, E B

    1991-01-01

    We describe the characterization of a novel cDNA, mbh1 (myc basic motif homolog-1), which was found during a search for candidate factors which might interact with the c-Myc oncoprotein. Embedded within the amino acid sequence encoded by mbh1 is a region distantly related to the basic/helix-loop-helix (B/HLH) DNA-binding motif and a potential nuclear localization signal. Mbh1 encodes a polypeptide structurally similar to the actin-severing proteins gelsolin and severin. Translation of mbh1 RNA in rabbit reticulocyte extracts produces an approximately 45 kd protein capable of binding actin-coupled agarose beads in vitro in a Ca2(+)-dependent manner. Antiserum raised to a trpE/mbh1 bacterial fusion protein recognizes an approximately 45 kb protein in murine 3T3 fibroblasts, suggesting that the cDNA encodes the complete Mbh1 protein. Examination of Mbh1 localization in 3T3 fibroblasts by indirect immunofluorescence reveals a larger cell population showing diffuse staining, and a smaller population exhibiting a distinct nuclear stain. Western analysis corroborates this intracellular localization and indicates that total cellular levels and localization of Mbh1 are not affected by the cell growth state. The data suggest that Mbh1 may play a role in regulating cytoplasmic and/or nuclear architecture through potential interactions with actin. Images PMID:1849072

  13. Arabidopsis microtubule-destabilizing protein 25 functions in pollen tube growth by severing actin filaments.

    PubMed

    Qin, Tao; Liu, Xiaomin; Li, Jiejie; Sun, Jingbo; Song, Leina; Mao, Tonglin

    2014-01-01

    The formation of distinct actin filament arrays in the subapical region of pollen tubes is crucial for pollen tube growth. However, the molecular mechanisms underlying the organization and dynamics of the actin filaments in this region remain to be determined. This study shows that Arabidopsis thaliana MICROTUBULE-DESTABILIZING PROTEIN25 (MDP25) has the actin filament-severing activity of an actin binding protein. This protein negatively regulated pollen tube growth by modulating the organization and dynamics of actin filaments in the subapical region of pollen tubes. MDP25 loss of function resulted in enhanced pollen tube elongation and inefficient fertilization. MDP25 bound directly to actin filaments and severed individual actin filaments, in a manner that was dramatically enhanced by Ca(2+), in vitro. Analysis of a mutant that bears a point mutation at the Ca(2+) binding sites demonstrated that the subcellular localization of MDP25 was determined by cytosolic Ca(2+) level in the subapical region of pollen tubes, where MDP25 was disassociated from the plasma membrane and moved into the cytosol. Time-lapse analysis showed that the F-actin-severing frequency significantly decreased and a high density of actin filaments was observed in the subapical region of mdp25-1 pollen tubes. This study reveals a mechanism whereby calcium enhances the actin filament-severing activity of MDP25 in the subapical region of pollen tubes to modulate pollen tube growth.

  14. Oxytocin Increases Neurite Length and Expression of Cytoskeletal Proteins Associated with Neuronal Growth.

    PubMed

    Lestanova, Z; Bacova, Z; Kiss, A; Havranek, T; Strbak, V; Bakos, J

    2016-06-01

    Neuropeptide oxytocin acts as a growth and differentiation factor; however, its effects on neurite growth are poorly understood. The aims of the present study were (1) to evaluate time effects of oxytocin on expression of nestin and MAP2; (2) to measure the effect of oxytocin on gene expression of β-actin, vimentin, cofilin, and drebrin; and (3) to measure changes in neurite length and number in response to oxytocin/oxytocin receptor antagonist L-371,257. Exposure of SH-SY5Y cells to 1 μM oxytocin resulted in a significant increase in gene expression and protein levels of nestin after 12, 24, and 48 h. Oxytocin treatment induced no changes in gene expression of MAP2; however, a decrease of protein levels was observed in all time intervals. Gene expression of β-actin, vimentin, and drebrin increased in response to oxytocin. Oxytocin induced significant elongation of neurites after 12, 24, and 48 h. No change in neurite length was observed in the presence of the combination of retinoic acid and oxytocin receptor antagonist L-371,257. Oxytocin treatment for 12 h increased the number of neurites. Overall, the present data suggest that oxytocin contributes to the regulation of expression of cytoskeletal proteins associated with growth of neuronal cones and induces neurite elongation mediated by oxytocin receptors at least in certain types of neuronal cells.

  15. Modeling of Protein Binary Complexes Using Structural Mass Spectrometry Data

    SciTech Connect

    Amisha Kamal,J.; Chance, M.

    2008-01-01

    In this article, we describe a general approach to modeling the structure of binary protein complexes using structural mass spectrometry data combined with molecular docking. In the first step, hydroxyl radical mediated oxidative protein footprinting is used to identify residues that experience conformational reorganization due to binding or participate in the binding interface. In the second step, a three-dimensional atomic structure of the complex is derived by computational modeling. Homology modeling approaches are used to define the structures of the individual proteins if footprinting detects significant conformational reorganization as a function of complex formation. A three-dimensional model of the complex is constructed from these binary partners using the ClusPro program, which is composed of docking, energy filtering, and clustering steps. Footprinting data are used to incorporate constraints--positive and/or negative--in the docking step and are also used to decide the type of energy filter--electrostatics or desolvation--in the successive energy-filtering step. By using this approach, we examine the structure of a number of binary complexes of monomeric actin and compare the results to crystallographic data. Based on docking alone, a number of competing models with widely varying structures are observed, one of which is likely to agree with crystallographic data. When the docking steps are guided by footprinting data, accurate models emerge as top scoring. We demonstrate this method with the actin/gelsolin segment-1 complex. We also provide a structural model for the actin/cofilin complex using this approach which does not have a crystal or NMR structure.

  16. New host factors important for respiratory syncytial virus (RSV) replication revealed by a novel microfluidics screen for interactors of matrix (M) protein.

    PubMed

    Kipper, Sarit; Hamad, Samar; Caly, Leon; Avrahami, Dorit; Bacharach, Eran; Jans, David A; Gerber, Doron; Bajorek, Monika

    2015-03-01

    Although human respiratory syncytial virus (RSV) is the most common cause of bronchiolitis and pneumonia in infants and elderly worldwide, there is no licensed RSV vaccine or effective drug treatment available. The RSV Matrix protein plays key roles in virus life cycle, being found in the nucleus early in infection in a transcriptional inhibitory role, and later localizing in viral inclusion bodies before coordinating viral assembly and budding at the plasma membrane. In this study, we used a novel, high throughput microfluidics platform and custom human open reading frame library to identify novel host cell binding partners of RSV matrix. Novel interactors identified included proteins involved in host transcription regulation, the innate immunity response, cytoskeletal regulation, membrane remodeling, and cellular trafficking. A number of these interactions were confirmed by immunoprecipitation and cellular colocalization approaches. Importantly, the physiological significance of matrix interaction with the actin-binding protein cofilin 1, caveolae protein Caveolin 2, and the zinc finger protein ZNF502 was confirmed. siRNA knockdown of the host protein levels resulted in reduced RSV virus production in infected cells. These results have important implications for future antiviral strategies aimed at targets of RSV matrix in the host cell.

  17. Increased expression of Myosin binding protein H in the skeletal muscle of amyotrophic lateral sclerosis patients.

    PubMed

    Conti, Antonio; Riva, Nilo; Pesca, Mariasabina; Iannaccone, Sandro; Cannistraci, Carlo V; Corbo, Massimo; Previtali, Stefano C; Quattrini, Angelo; Alessio, Massimo

    2014-01-01

    Amyotrophic lateral sclerosis (ALS) is a severe and fatal neurodegenerative disease of still unknown pathogenesis. Recent findings suggest that the skeletal muscle may play an active pathogenetic role. To investigate ALS's pathogenesis and to seek diagnostic markers, we analyzed skeletal muscle biopsies with the differential expression proteomic approach. We studied skeletal muscle biopsies from healthy controls (CN), sporadic ALS (sALS), motor neuropathies (MN) and myopathies (M). Pre-eminently among several differentially expressed proteins, Myosin binding protein H (MyBP-H) expression in ALS samples was anomalously high. MyBP-H is a component of the thick filaments of the skeletal muscle and has strong affinity for myosin, but its function is still unclear. High MyBP-H expression level was associated with abnormal expression of Rho kinase 2 (ROCK2), LIM domain kinase 1 (LIMK1) and cofilin2, that might affect the actin-myosin interaction. We propose that MyBP-H expression level serves, as a putative biomarker in the skeletal muscle, to discriminate ALS from motor neuropathies, and that it signals the onset of dysregulation in actin-myosin interaction; this in turn might contribute to the pathogenesis of ALS.

  18. Analysis of skin and secretions of Dybowski's frogs (Rana dybowskii) exposed to Staphylococcus aureus or Escherichia coli identifies immune response proteins.

    PubMed

    Xiao, Xiang-Hong; Miao, Hui-Min; Xu, Yi-Gang; Zhang, Jing-Yu; Chai, Long-Hui; Xu, Jia-Jia

    2014-04-01

    The aim of the present study was to investigate responses in Dybowski's frogs (Rana dybowskii) exposed to bacteria, using proteomic and transcriptomic approaches. Staphylococcus aureus and Escherichia coli were used as representative Gram-positive and Gram-negative bacteria, respectively, in an infectious challenge model. Frog skin and skin secretions were collected and protein expression in infected frogs compared to control frogs by two-dimensional gel electrophoresis, silver staining, and image analysis. Proteins that demonstrated differential expression were analysed by mass spectrometry and identified by searching protein databases. More than 180 protein spots demonstrated differential expression in E. coli- or S. aureus-challenged groups and, of these, more than 55 spots were up- or down-regulated at least sixfold, post-infection. Proteins with a potential function in the immune response were identified, such as stathmin 1a, annexin A1, superoxide dismutase A, C-type lectin, lysozyme, antimicrobial peptides, cofilin-1-B, mannose receptor, histone H4, prohormone convertase 1, carbonyl reductase 1 and some components of the Toll-like receptor (TLR) signalling pathway. These molecules are potential candidates for further investigation of immune mechanisms in R. dybowskii; in particular, TLR-mediated responses, which might be activated in frogs exposed to pathogenic bacteria as part of innate immune defence, but which might also impact on adaptive immunity to infection.

  19. Arabidopsis Microtubule-Destabilizing Protein 25 Functions in Pollen Tube Growth by Severing Actin Filaments[W

    PubMed Central

    Qin, Tao; Liu, Xiaomin; Li, Jiejie; Sun, Jingbo; Song, Leina; Mao, Tonglin

    2014-01-01

    The formation of distinct actin filament arrays in the subapical region of pollen tubes is crucial for pollen tube growth. However, the molecular mechanisms underlying the organization and dynamics of the actin filaments in this region remain to be determined. This study shows that Arabidopsis thaliana MICROTUBULE-DESTABILIZING PROTEIN25 (MDP25) has the actin filament–severing activity of an actin binding protein. This protein negatively regulated pollen tube growth by modulating the organization and dynamics of actin filaments in the subapical region of pollen tubes. MDP25 loss of function resulted in enhanced pollen tube elongation and inefficient fertilization. MDP25 bound directly to actin filaments and severed individual actin filaments, in a manner that was dramatically enhanced by Ca2+, in vitro. Analysis of a mutant that bears a point mutation at the Ca2+ binding sites demonstrated that the subcellular localization of MDP25 was determined by cytosolic Ca2+ level in the subapical region of pollen tubes, where MDP25 was disassociated from the plasma membrane and moved into the cytosol. Time-lapse analysis showed that the F-actin-severing frequency significantly decreased and a high density of actin filaments was observed in the subapical region of mdp25-1 pollen tubes. This study reveals a mechanism whereby calcium enhances the actin filament–severing activity of MDP25 in the subapical region of pollen tubes to modulate pollen tube growth. PMID:24424096

  20. Mammalian CAP (Cyclase-associated protein) in the world of cell migration: Roles in actin filament dynamics and beyond.

    PubMed

    Zhou, Guo-Lei; Zhang, Haitao; Field, Jeffrey

    2014-01-01

    Cell migration is essential for a variety of fundamental biological processes such as embryonic development, wound healing, and immune response. Aberrant cell migration also underlies pathological conditions such as cancer metastasis, in which morphological transformation promotes spreading of cancer to new sites. Cell migration is driven by actin dynamics, which is the repeated cycling of monomeric actin (G-actin) into and out of filamentous actin (F-actin). CAP (Cyclase-associated protein, also called Srv2) is a conserved actin-regulatory protein, which is implicated in cell motility and the invasiveness of human cancers. It cooperates with another actin regulatory protein, cofilin, to accelerate actin dynamics. Hence, knockdown of CAP1 slows down actin filament turnover, which in most cells leads to reduced cell motility. However, depletion of CAP1 in HeLa cells, while causing reduction in dynamics, actually led to increased cell motility. The increases in motility are likely through activation of cell adhesion signals through an inside-out signaling. The potential to activate adhesion signaling competes with the negative effect of CAP1 depletion on actin dynamics, which would reduce cell migration. In this commentary, we provide a brief overview of the roles of mammalian CAP1 in cell migration, and highlight a likely mechanism underlying the activation of cell adhesion signaling and elevated motility caused by depletion of CAP1.

  1. Age-dependent decline of nogo-a protein in the mouse cerebrum.

    PubMed

    Kumari, Anita; Thakur, M K

    2014-11-01

    Nogo-A, a myelin-associated neurite growth inhibitory protein, is implicated in synaptic plasticity. It binds to its receptor namely the Nogo-66 receptor1 (NgR1) and regulates filamentous (F) actin dynamics via small GTPases of the Rho family, RhoA kinase (ROCK), LimK and cofilin. These proteins are associated with the structural plasticity, one of the components of synaptic plasticity, which is known to decline with normal aging. So, the level of Nogo-A and its receptor NgR1 are likely to vary during normal brain aging. However, it is not clearly understood how the levels of Nogo-A and its receptor NgR1 change in the cerebrum during aging. Several studies show an age- and gender-dependent decline in synaptic plasticity. Therefore, the present study was planned to analyze the relative changes in the mRNA and protein levels of Nogo-A and NgR1 in both male and female mice cerebrum during normal aging. Western blot analysis has shown decrease in Nogo-A protein level during aging in both male and female mice cerebrum. This was further confirmed by immunofluorescence analysis. RT-PCR analysis of Nogo-A mRNA showed no significant difference in the above-mentioned groups. This was also supported by in situ hybridization. NgR1 protein and its mRNA expression levels showed no significant alteration with aging in the cerebrum of both male and female mice. Taken together, we speculate that the downregulation of Nogo-A protein might have a role in the altered synaptic plasticity during aging.

  2. Reconstitution of actin-based motility of Listeria and Shigella using pure proteins

    NASA Astrophysics Data System (ADS)

    Loisel, Thomas P.; Boujemaa, Rajaa; Pantaloni, Dominique; Carlier, Marie-France

    1999-10-01

    Actin polymerization is essential for cell locomotion and is thought to generate the force responsible for cellular protrusions. The Arp2/3 complex is required to stimulate actin assembly at the leading edge in response to signalling. The bacteria Listeria and Shigella bypass the signalling pathway and harness the Arp2/3 complex to induce actin assembly and to propel themselves in living cells. However, the Arp2/3 complex alone is insufficient to promote movement. Here we have used pure components of the actin cytoskeleton to reconstitute sustained movement in Listeria and Shigella in vitro. Actin-based propulsion is driven by the free energy released by ATP hydrolysis linked to actin polymerization, and does not require myosin. In addition to actin and activated Arp2/3 complex, actin depolymerizing factor (ADF, or cofilin) and capping protein are also required for motility as they maintain a high steady-state level of G-actin, which controls the rate of unidirectional growth of actin filaments at the surface of the bacterium. The movement is more effective when profilin, α-actinin and VASP (for Listeria) are also included. These results have implications for our understanding of the mechanism of actin-based motility in cells.

  3. Holding back the microfilament--structural insights into actin and the actin-monomer-binding proteins of apicomplexan parasites.

    PubMed

    Olshina, Maya A; Wong, Wilson; Baum, Jake

    2012-05-01

    Parasites from the phylum Apicomplexa are responsible for several major diseases of man, including malaria and toxoplasmosis. These highly motile protozoa use a conserved actomyosin-based mode of movement to power tissue traversal and host cell invasion. The mode termed as 'gliding motility' relies on the dynamic turnover of actin, whose polymerisation state is controlled by a markedly limited number of identifiable regulators when compared with other eukaryotic cells. Recent studies of apicomplexan actin regulator structure-in particular those of the core triad of monomer-binding proteins, actin-depolymerising factor/cofilin, cyclase-associated protein/Srv2, and profilin-have provided new insights into possible mechanisms of actin regulation in parasite cells, highlighting divergent structural features and functions to regulators from other cellular systems. Furthermore, the unusual nature of apicomplexan actin itself is increasingly coming into the spotlight. Here, we review recent advances in understanding of the structure and function of actin and its regulators in apicomplexan parasites. In particular we explore the paradox between there being an abundance of unpolymerised actin, its having a seemingly increased potential to form filaments relative to vertebrate actin, and the apparent lack of visible, stable filaments in parasite cells.

  4. Mechanism of sperm capacitation and the acrosome reaction: role of protein kinases

    PubMed Central

    Ickowicz, Debby; Finkelstein, Maya; Breitbart, Haim

    2012-01-01

    Mammalian sperm must undergo a series of biochemical and physiological modifications, collectively called capacitation, in the female reproductive tract prior to the acrosome reaction (AR). The mechanisms of these modifications are not well characterized though protein kinases were shown to be involved in the regulation of intracellular Ca2+ during both capacitation and the AR. In the present review, we summarize some of the signaling events that are involved in capacitation. During the capacitation process, phosphatidyl-inositol-3-kinase (PI3K) is phosphorylated/activated via a protein kinase A (PKA)-dependent cascade, and downregulated by protein kinase C α (PKCα). PKCα is active at the beginning of capacitation, resulting in PI3K inactivation. During capacitation, PKCα as well as PP1γ2 is degraded by a PKA-dependent mechanism, allowing the activation of PI3K. The activation of PKA during capacitation depends mainly on cyclic adenosine monophosphate (cAMP) produced by the bicarbonate-dependent soluble adenylyl cyclase. This activation of PKA leads to an increase in actin polymerization, an essential process for the development of hyperactivated motility, which is necessary for successful fertilization. Actin polymerization is mediated by PIP2 in two ways: first, PIP2 acts as a cofactor for phospholipase D (PLD) activation, and second, as a molecule that binds and inhibits actin-severing proteins such as gelsolin. Tyrosine phosphorylation of gelsolin during capacitation by Src family kinase (SFK) is also important for its inactivation. Prior to the AR, gelsolin is released from PIP2 and undergoes dephosphorylation/activation, resulting in fast F-actin depolymerization, leading to the AR. PMID:23001443

  5. Adipose tissue proteomes of intrauterine growth-restricted piglets artificially reared on a high-protein neonatal formula.

    PubMed

    Sarr, Ousseynou; Louveau, Isabelle; Le Huërou-Luron, Isabelle; Gondret, Florence

    2012-11-01

    The eventuality that adipose tissues adapt to neonatal nutrition in a way that may program later adiposity or obesity in adulthood is receiving increasing attention in neonatology. This study assessed the immediate effects of a high-protein neonatal formula on proteome profiles of adipose tissues in newborn piglets with intrauterine growth restriction. Piglets (10th percentile) were fed milk replacers formulated to provide an adequate (AP) or a high (HP) protein supply from day 2 to the day prior weaning (day 28, n=5 per group). Adipocytes with small diameters were present in greater proportions in subcutaneous and perirenal adipose tissues from HP piglets compared with AP ones at this age. Two-dimensional gel electrophoresis analysis of adipose tissue depots revealed a total of 32 protein spots being up- or down-regulated (P<.10) for HP piglets compared with AP piglets; 18 of them were unambiguously identified by mass spectrometry. These proteins were notably related to signal transduction (annexin 2), redox status (peroxiredoxin 6, glutathione S-transferase omega 1, cyclophilin-A), carbohydrate metabolism (ribose-5-phosphate dehydrogenase, lactate dehydrogenase), amino acid metabolism (glutamate dehydrogenase 1) and cell cytoskeleton dynamics (dynactin and cofilin-1). Proteomic changes occurred mainly in dorsal subcutaneous adipose tissue, with the notable exception of annexin 1 involved in lipid metabolic process having a lower abundance in HP piglets for perirenal adipose tissue only. Together, modulation in those proteins could represent a novel starting point for elucidating catch-up fat growth observed in later life in growing animals having been fed HP formula.

  6. PLPP/CIN regulates bidirectional synaptic plasticity via GluN2A interaction with postsynaptic proteins

    PubMed Central

    Kim, Ji-Eun; Kim, Yeon-Joo; Lee, Duk-Shin; Kim, Ji Yang; Ko, Ah-Reum; Hyun, Hye-Won; Kim, Min Ju; Kang, Tae-Cheon

    2016-01-01

    Dendritic spines are dynamic structures whose efficacies and morphologies are modulated by activity-dependent synaptic plasticity. The actin cytoskeleton plays an important role in stabilization and structural modification of spines. However, the regulatory mechanism by which it alters the plasticity threshold remains elusive. Here, we demonstrate the role of pyridoxal-5′-phosphate phosphatase/chronophin (PLPP/CIN), one of the cofilin-mediated F-actin regulators, in modulating synaptic plasticity in vivo. PLPP/CIN transgenic (Tg) mice had immature spines with small heads, while PLPP/CIN knockout (KO) mice had gigantic spines. Furthermore, PLPP/CIN Tg mice exhibited enhanced synaptic plasticity, but KO mice showed abnormal synaptic plasticity. The PLPP/CIN-induced alterations in synaptic plasticity were consistent with the acquisition and the recall capacity of spatial learning. PLPP/CIN also enhanced N-methyl-D-aspartate receptor (GluN) functionality by regulating the coupling of GluN2A with interacting proteins, particularly postsynaptic density-95 (PSD95). Therefore, these results suggest that PLPP/CIN may be an important factor for regulating the plasticity threshold. PMID:27212638

  7. Treponema denticola Major Outer Sheath Protein Induces Actin Assembly at Free Barbed Ends by a PIP2-Dependent Uncapping Mechanism in Fibroblasts

    PubMed Central

    Visser, Michelle B.; Koh, Adeline; Glogauer, Michael; Ellen, Richard P.

    2011-01-01

    The major outer sheath protein (Msp) of Treponema denticola perturbs actin dynamics in fibroblasts by inducing actin reorganization, including subcortical actin filament assembly, leading to defective calcium flux, diminished integrin engagement of collagen, and retarded cell migration. Yet, its mechanisms of action are unknown. We challenged Rat-2 fibroblasts with enriched native Msp. Msp activated the small GTPases Rac1, RhoA and Ras, but not Cdc42, yet only Rac1 localized to areas of actin rearrangement. We used Rac1 dominant negative transfection and chemical inhibition of phosphatidylinositol-3 kinase (PI3K) to show that even though Rac1 activation was PI3K-dependent, neither was required for Msp-induced actin rearrangement. Actin free barbed end formation (FBE) by Msp was also PI3K-independent. Immunoblotting experiments showed that gelsolin and CapZ were released from actin filaments, whereas cofilin remained in an inactive state. Msp induced phosphatidylinositol (4,5)-bisphosphate (PIP2) formation through activation of a phosphoinositide 3-phosphatase and its recruitment to areas of actin assembly at the plasma membrane. Using a PIP2 binding peptide or lipid phosphatase inhibitor, PIP2 was shown to be required for Msp-mediated actin uncapping and FBE formation. Evidently, Msp induces actin assembly in fibroblasts by production and recruitment of PIP2 and release of the capping proteins CapZ and gelsolin from actin barbed ends. PMID:21901132

  8. N-WASP, a novel actin-depolymerizing protein, regulates the cortical cytoskeletal rearrangement in a PIP2-dependent manner downstream of tyrosine kinases.

    PubMed Central

    Miki, H; Miura, K; Takenawa, T

    1996-01-01

    Here we identify a 65 kDa protein (N-WASP) from brain that binds the SH3 domains of Ash/Grb2. The sequence is homologous to Wiskott-Aldrich syndrome protein (WASP). N-WASP has several functional motifs, such as a pleckstrin homology (PH) domain and cofilin-homologous region, through which N-WASP depolymerizes actin filaments. When overexpressed in COS 7 cells, the wild-type N-WASP causes several surface protrusions where N-WASP co-localizes with actin filaments. Epidermal growth factor (EGF) treatment induces the complex formation of EGF receptors and N-WASP, and produces microspikes. On the other hand, two mutants, C38W (a point mutation in the PH domain) and deltaVCA (deletion of the actin binding domain), localize predominantly in the nucleus and do not cause a change in the cytoskeleton, irrespective of EGF treatment. Interestingly, the C38W PH domain binds less effectively to phosphatidylinositol 4,5-bisphosphate (PIP2) than the wild-type PH domain. These results suggest the importance of the PIP2 binding ability of the PH domain and the actin binding for retention in membranes. Collectively, we conclude that N-WASP transmits signals from tyrosine kinases to cause a polarized rearrangement of cortical actin filaments dependent on PIP2. Images PMID:8895577

  9. Protein Condensation

    NASA Astrophysics Data System (ADS)

    Gunton, James D.; Shiryayev, Andrey; Pagan, Daniel L.

    2007-09-01

    Preface; 1. Introduction; 2. Globular protein structure; 3. Experimental methods; 4. Thermodynamics and statistical mechanics; 5. Protein-protein interactions; 6. Theoretical studies of equilibrium; 7. Nucleation theory; 8. Experimental studies of nucleation; 9. Lysozyme; 10. Some other globular proteins; 11. Membrane proteins; 12. Crystallins and cataracts; 13. Sickle hemoglobin and sickle cell anemia; 14, Alzheimer's disease; Index.

  10. Protein Condensation

    NASA Astrophysics Data System (ADS)

    Gunton, James D.; Shiryayev, Andrey; Pagan, Daniel L.

    2014-07-01

    Preface; 1. Introduction; 2. Globular protein structure; 3. Experimental methods; 4. Thermodynamics and statistical mechanics; 5. Protein-protein interactions; 6. Theoretical studies of equilibrium; 7. Nucleation theory; 8. Experimental studies of nucleation; 9. Lysozyme; 10. Some other globular proteins; 11. Membrane proteins; 12. Crystallins and cataracts; 13. Sickle hemoglobin and sickle cell anemia; 14, Alzheimer's disease; Index.

  11. Ginseng (Panax quinquefolius) attenuates leptin-induced cardiac hypertrophy through inhibition of p115Rho guanine nucleotide exchange factor-RhoA/Rho-associated, coiled-coil containing protein kinase-dependent mitogen-activated protein kinase pathway activation.

    PubMed

    Moey, Melissa; Rajapurohitam, Venkatesh; Zeidan, Asad; Karmazyn, Morris

    2011-12-01

    Leptin is a 16-kDa peptide primarily derived from white adipocytes and is typically elevated in plasma of obese individuals. Although leptin plays a critical role in appetite regulation, leptin receptors have been identified in numerous tissues including the heart and have been shown to directly mediate cardiac hypertrophy through RhoA/ROCK (Ras homolog gene family, member A/Rho-associated, coiled-coil containing protein kinase)-dependent p38 mitogen-activated protein kinase (MAPK) activation; however, the basis for RhoA stimulation is unknown. Rho guanine nucleotide exchange factors (GEFs) catalyze the exchange of GDP for GTP resulting in Rho activation and may be the potential upstream factors mediating leptin-induced RhoA activation and therefore a potential target for inhibition. We investigated the effects of North American ginseng (Panax quinquefolius), reported to reduce cardiac hypertrophy, on RhoA/ROCK and MAPK activation in ventricular cardiomyocytes exposed to leptin (50 ng/ml) and the possible role of p115RhoGEF and p63RhoGEF in these responses. Leptin produced a robust hypertrophic response that was associated with RhoA/ROCK activation resulting in a significant increase in cofilin-2 phosphorylation and actin polymerization, the latter evidenced by a reduction in the G/F actin ratio. These effects were prevented by ginseng (10 μg/ml). The stimulation of RhoA/ROCK by leptin was associated with significantly increased p115RhoGEF gene and protein expression and exchange activity, all of which were completely prevented by ginseng. The ability of ginseng to prevent leptin-induced activation of RhoA/ROCK was further associated with diminished p38 MAPK activation and nuclear translocation. These results demonstrate a potent inhibitory effect of ginseng against leptin-induced cardiac hypertrophy, an effect associated with prevention of p115RhoGEF-RhoA/ROCK-dependent p38 MAPK activation.

  12. Sub-lethal concentrations of CdCl2 disrupt cell migration and cytoskeletal proteins in cultured mouse TM4 Sertoli cells.

    PubMed

    Egbowon, Biola F; Harris, Wayne; Arnott, Gordon; Mills, Chris Lloyd; Hargreaves, Alan J

    2016-04-01

    The aims of this study were to examine the effects of CdCl2 on the viability, migration and cytoskeleton of cultured mouse TM4 Sertoli cells. Time- and concentration-dependent changes were exhibited by the cells but 1 μM CdCl2 was sub-cytotoxic at all time-points. Exposure to 1 and 12 μM CdCl2 for 4 h resulted in disruption of the leading edge, as determined by chemical staining. Cell migration was inhibited by both 1 and 12 μM CdCl2 in a scratch assay monitored by live cell imaging, although exposure to the higher concentration was associated with cell death. Western blotting and immunofluorescence staining indicated that CdCl2 caused a concentration dependent reduction in actin and tubulin levels. Exposure to Cd(2+) also resulted in significant changes in the levels and/or phosphorylation status of the microtubule and microfilament destabilising proteins cofilin and stathmin, suggesting disruption of cytoskeletal dynamics. Given that 1-12 μM Cd(2+) is attainable in vivo, our findings are consistent with the possibility that Cd(2+) induced impairment of testicular development and reproductive health may involve a combination of reduced Sertoli cell migration and impaired Sertoli cell viability depending on the timing, level and duration of exposure.

  13. NDR proteins

    PubMed Central

    Jones, Alan M

    2010-01-01

    N-myc downregulated (NDR) genes were discovered more than fifteen years ago. Indirect evidence support a role in tumor progression and cellular differentiation, but their biochemical function is still unknown. Our detailed analyses on Arabidopsis NDR proteins (deisgnated NDR-like, NDL) show their involvement in altering auxin transport, local auxin gradients and expression level of auxin transport proteins. Animal NDL proteins may be involved in membrane recycling of E-cadherin and effector for the small GTPase. In light of these findings, we hypothesize that NDL proteins regulate vesicular trafficking of auxin transport facilitator PIN proteins by biochemically alterating the local lipid environment of PIN proteins. PMID:20724844

  14. Selective alterations of the host cell architecture upon infection with parvovirus minute virus of mice

    SciTech Connect

    Nueesch, Juerg P.F. . E-mail: jpf.nuesch@dkfz-heidelberg.de; Lachmann, Sylvie; Rommelaere, Jean

    2005-01-05

    During a productive infection, the prototype strain of parvovirus minute virus of mice (MVMp) induces dramatic morphological alterations to the fibroblast host cell A9, resulting in cell lysis and progeny virus release. In order to understand the mechanisms underlying these changes, we characterized the fate of various cytoskeletal filaments and investigated the nuclear/cytoplasmic compartmentalization of infected cells. While most pronounced effects could be seen on micro- and intermediate filaments, manifest in dramatic rearrangements and degradation of filamentous (F-)actin and vimentin structures, only little impact could be seen on microtubules or the nuclear envelope during the entire monitored time of infection. To further analyze the disruption of the cytoskeletal structures, we investigated the viral impact on selective regulatory pathways. Thereby, we found a correlation between microtubule stability and MVM-induced phosphorylation of {alpha}/{beta} tubulin. In contrast, disassembly of actin filaments late in infection could be traced back to the disregulation of two F-actin associated proteins gelsolin and Wiscott-Aldrich Syndrome Protein (WASP). Thereby, an increase in the amount of gelsolin, an F-actin severing protein was observed during infection, accounting for the disruption of stress fibers upon infection. Concomitantly, the actin polymerization activity also diminished due to a loss of WASP, the activator protein of the actin polymerization machinery the Arp2/3 complex. No effects could be seen in amount and distribution of other F-actin regulatory factors such as cortactin, cofilin, and profilin. In summary, the selective attack of MVM towards distinct host cell cytoskeletal structures argues for a regulatory feature during infection, rather than a collapse of the host cell as a mere side effect of virus production.

  15. Proteins (image)

    MedlinePlus

    ... is an important nutrient that builds muscles and bones and provides energy. Protein can help with weight control because it helps you feel full and satisfied from your meals. The healthiest proteins are the leanest. This means ...

  16. Protein Structure

    ERIC Educational Resources Information Center

    Asmus, Elaine Garbarino

    2007-01-01

    Individual students model specific amino acids and then, through dehydration synthesis, a class of students models a protein. The students clearly learn amino acid structure, primary, secondary, tertiary, and quaternary structure in proteins and the nature of the bonds maintaining a protein's shape. This activity is fun, concrete, inexpensive and…

  17. Therapeutic proteins.

    PubMed

    Dimitrov, Dimiter S

    2012-01-01

    Protein-based therapeutics are highly successful in clinic and currently enjoy unprecedented recognition of their potential. More than 100 genuine and similar number of modified therapeutic proteins are approved for clinical use in the European Union and the USA with 2010 sales of US$108 bln; monoclonal antibodies (mAbs) accounted for almost half (48%) of the sales. Based on their pharmacological activity, they can be divided into five groups: (a) replacing a protein that is deficient or abnormal; (b) augmenting an existing pathway; (c) providing a novel function or activity; (d) interfering with a molecule or organism; and (e) delivering other compounds or proteins, such as a radionuclide, cytotoxic drug, or effector proteins. Therapeutic proteins can also be grouped based on their molecular types that include antibody-based drugs, Fc fusion proteins, anticoagulants, blood factors, bone morphogenetic proteins, engineered protein scaffolds, enzymes, growth factors, hormones, interferons, interleukins, and thrombolytics. They can also be classified based on their molecular mechanism of activity as (a) binding non-covalently to target, e.g., mAbs; (b) affecting covalent bonds, e.g., enzymes; and (c) exerting activity without specific interactions, e.g., serum albumin. Most protein therapeutics currently on the market are recombinant and hundreds of them are in clinical trials for therapy of cancers, immune disorders, infections, and other diseases. New engineered proteins, including bispecific mAbs and multispecific fusion proteins, mAbs conjugated with small molecule drugs, and proteins with optimized pharmacokinetics, are currently under development. However, in the last several decades, there are no conceptually new methodological developments comparable, e.g., to genetic engineering leading to the development of recombinant therapeutic proteins. It appears that a paradigm change in methodologies and understanding of mechanisms is needed to overcome major

  18. Whey Protein

    MedlinePlus

    ... inflammation (polymyalgia rheumatica). Taking whey protein in a dairy product twice daily for 8 weeks does not improve muscle function, walking speed, or other movement tests in people with polymyalgia rheumatica. Other conditions. More evidence is needed to rate whey protein for these uses.

  19. Labeling F-actin barbed ends with rhodamine-actin in permeabilized neuronal growth cones.

    PubMed

    Marsick, Bonnie M; Letourneau, Paul C

    2011-03-17

    The motile tips of growing axons are called growth cones. Growth cones lead navigating axons through developing tissues by interacting with locally expressed molecular guidance cues that bind growth cone receptors and regulate the dynamics and organization of the growth cone cytoskeleton. The main target of these navigational signals is the actin filament meshwork that fills the growth cone periphery and that drives growth cone motility through continual actin polymerization and dynamic remodeling. Positive or attractive guidance cues induce growth cone turning by stimulating actin filament (F-actin) polymerization in the region of the growth cone periphery that is nearer the source of the attractant cue. This actin polymerization drives local growth cone protrusion, adhesion of the leading margin and axonal elongation toward the attractant. Actin filament polymerization depends on the availability of sufficient actin monomer and on polymerization nuclei or actin filament barbed ends for the addition of monomer. Actin monomer is abundantly available in chick retinal and dorsal root ganglion (DRG) growth cones. Consequently, polymerization increases rapidly when free F-actin barbed ends become available for monomer addition. This occurs in chick DRG and retinal growth cones via the local activation of the F-actin severing protein actin depolymerizing factor (ADF/cofilin) in the growth cone region closer to an attractant. This heightened ADF/cofilin activity severs actin filaments to create new F-actin barbed ends for polymerization. The following method demonstrates this mechanism. Total content of F-actin is visualized by staining with fluorescent phalloidin. F-actin barbed ends are visualized by the incorporation of rhodamine-actin within growth cones that are permeabilized with the procedure described in the following, which is adapted from previous studies of other motile cells. When rhodamine-actin is added at a concentration above the critical concentration

  20. Total protein

    MedlinePlus

    ... 2016:chap 215. Read More Agammaglobulinemia Albumin - blood (serum) test Amino acids Antibody Burns Chronic Congenital nephrotic syndrome Fibrinogen blood test Glomerulonephritis Hemoglobin Liver disease Malabsorption Multiple myeloma Polycythemia vera Protein in diet ...

  1. Protein Crystallizability.

    PubMed

    Smialowski, Pawel; Wong, Philip

    2016-01-01

    Obtaining diffracting quality crystals remains a major challenge in protein structure research. We summarize and compare methods for selecting the best protein targets for crystallization, construct optimization and crystallization condition design. Target selection methods are divided into algorithms predicting the chance of successful progression through all stages of structural determination (from cloning to solving the structure) and those focusing only on the crystallization step. We tried to highlight pros and cons of different approaches examining the following aspects: data size, redundancy and representativeness, overfitting during model construction, and results evaluation. In summary, although in recent years progress was made and several sequence properties were reported to be relevant for crystallization, the successful prediction of protein crystallization behavior and selection of corresponding crystallization conditions continue to challenge structural researchers.

  2. Protein Crystallization

    NASA Technical Reports Server (NTRS)

    Chernov, Alexander A.

    2005-01-01

    Nucleation, growth and perfection of protein crystals will be overviewed along with crystal mechanical properties. The knowledge is based on experiments using optical and force crystals behave similar to inorganic crystals, though with a difference in orders of magnitude in growing parameters. For example, the low incorporation rate of large biomolecules requires up to 100 times larger supersaturation to grow protein, rather than inorganic crystals. Nucleation is often poorly reproducible, partly because of turbulence accompanying the mixing of precipitant with protein solution. Light scattering reveals fluctuations of molecular cluster size, its growth, surface energies and increased clustering as protein ages. Growth most often occurs layer-by-layer resulting in faceted crystals. New molecular layer on crystal face is terminated by a step where molecular incorporation occurs. Quantitative data on the incorporation rate will be discussed. Rounded crystals with molecularly disordered interfaces will be explained. Defects in crystals compromise the x-ray diffraction resolution crucially needed to find the 3D atomic structure of biomolecules. The defects are immobile so that birth defects stay forever. All lattice defects known for inorganics are revealed in protein crystals. Contribution of molecular conformations to lattice disorder is important, but not studied. This contribution may be enhanced by stress field from other defects. Homologous impurities (e.g., dimers, acetylated molecules) are trapped more willingly by a growing crystal than foreign protein impurities. The trapped impurities induce internal stress eliminated in crystals exceeding a critical size (part of mni for ferritin, lysozyme). Lesser impurities are trapped from stagnant, as compared to the flowing, solution. Freezing may induce much more defects unless quickly amorphysizing intracrystalline water.

  3. Identification of new autoantibody specificities directed at proteins involved in the transforming growth factor β pathway in patients with systemic sclerosis

    PubMed Central

    2011-01-01

    Introduction Antinuclear antibodies (ANAs), usually detected by indirect immunofluorescence on HEp-2 cells, are identified in 90% of patients with systemic sclerosis (SSc). Thus, approximately 10% of SSc patients have no routinely detectable autoantibodies, and for 20% to 40% of those with detectable ANAs, the ANAs do not have identified specificity (unidentified ANAs). In this work, we aimed to identify new target autoantigens in SSc patients. Methods Using a proteomic approach combining two-dimensional electrophoresis and immunoblotting with HEp-2 cell total and enriched nuclear protein extracts as sources of autoantigens, we systematically analysed autoantibodies in SSc patients. Sera from 45 SSc patients were tested in 15 pools from groups of three patients with the same phenotype. A sera pool from 12 healthy individuals was used as a control. Proteins of interest were identified by mass spectrometry and analysed using Pathway Studio software. Results We identified 974 and 832 protein spots in HEp-2 cell total and enriched nuclear protein extracts, respectively. Interestingly, α-enolase was recognised by immunoglobulin G (IgG) from all pools of patients in both extracts. Fourteen and four proteins were recognised by IgG from at least 75% of the 15 pools in total and enriched nuclear protein extracts, respectively, whereas 15 protein spots were specifically recognised by IgG from at least four of the ten pools from patients with unidentified ANAs. The IgG intensity for a number of antigens was higher in sera from patients than in sera from healthy controls. These antigens included triosephosphate isomerase, superoxide dismutase mitochondrial precursor, heterogeneous nuclear ribonucleoprotein L and lamin A/C. In addition, peroxiredoxin 2, cofilin 1 and calreticulin were specifically recognised by sera from phenotypic subsets of patients with unidentified ANAs. Interestingly, several identified target antigens were involved in the transforming growth factor

  4. Recombinant protein production technology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recombinant protein production is an important technology for antibody production, biochemical activity study, and structural determination during the post-genomic era. Limiting factors in recombinant protein production include low-level protein expression, protein precipitation, and loss of protein...

  5. Protein inference: A protein quantification perspective.

    PubMed

    He, Zengyou; Huang, Ting; Liu, Xiaoqing; Zhu, Peijun; Teng, Ben; Deng, Shengchun

    2016-08-01

    In mass spectrometry-based shotgun proteomics, protein quantification and protein identification are two major computational problems. To quantify the protein abundance, a list of proteins must be firstly inferred from the raw data. Then the relative or absolute protein abundance is estimated with quantification methods, such as spectral counting. Until now, most researchers have been dealing with these two processes separately. In fact, the protein inference problem can be regarded as a special protein quantification problem in the sense that truly present proteins are those proteins whose abundance values are not zero. Some recent published papers have conceptually discussed this possibility. However, there is still a lack of rigorous experimental studies to test this hypothesis. In this paper, we investigate the feasibility of using protein quantification methods to solve the protein inference problem. Protein inference methods aim to determine whether each candidate protein is present in the sample or not. Protein quantification methods estimate the abundance value of each inferred protein. Naturally, the abundance value of an absent protein should be zero. Thus, we argue that the protein inference problem can be viewed as a special protein quantification problem in which one protein is considered to be present if its abundance is not zero. Based on this idea, our paper tries to use three simple protein quantification methods to solve the protein inference problem effectively. The experimental results on six data sets show that these three methods are competitive with previous protein inference algorithms. This demonstrates that it is plausible to model the protein inference problem as a special protein quantification task, which opens the door of devising more effective protein inference algorithms from a quantification perspective. The source codes of our methods are available at: http://code.google.com/p/protein-inference/.

  6. Learning about Proteins

    MedlinePlus

    ... What Happens in the Operating Room? Learning About Proteins KidsHealth > For Kids > Learning About Proteins A A ... the foods you eat. continue Different Kinds of Protein Protein from animal sources, such as meat and ...

  7. Protein Microarray Technology

    PubMed Central

    Hall, David A.; Ptacek, Jason

    2007-01-01

    Protein chips have emerged as a promising approach for a wide variety of applications including the identification of protein-protein interactions, protein-phospholipid interactions, small molecule targets, and substrates of proteins kinases. They can also be used for clinical diagnostics and monitoring disease states. This article reviews current methods in the generation and applications of protein microarrays. PMID:17126887

  8. Length, protein protein interactions, and complexity

    NASA Astrophysics Data System (ADS)

    Tan, Taison; Frenkel, Daan; Gupta, Vishal; Deem, Michael W.

    2005-05-01

    The evolutionary reason for the increase in gene length from archaea to prokaryotes to eukaryotes observed in large-scale genome sequencing efforts has been unclear. We propose here that the increasing complexity of protein-protein interactions has driven the selection of longer proteins, as they are more able to distinguish among a larger number of distinct interactions due to their greater average surface area. Annotated protein sequences available from the SWISS-PROT database were analyzed for 13 eukaryotes, eight bacteria, and two archaea species. The number of subcellular locations to which each protein is associated is used as a measure of the number of interactions to which a protein participates. Two databases of yeast protein-protein interactions were used as another measure of the number of interactions to which each S. cerevisiae protein participates. Protein length is shown to correlate with both number of subcellular locations to which a protein is associated and number of interactions as measured by yeast two-hybrid experiments. Protein length is also shown to correlate with the probability that the protein is encoded by an essential gene. Interestingly, average protein length and number of subcellular locations are not significantly different between all human proteins and protein targets of known, marketed drugs. Increased protein length appears to be a significant mechanism by which the increasing complexity of protein-protein interaction networks is accommodated within the natural evolution of species. Consideration of protein length may be a valuable tool in drug design, one that predicts different strategies for inhibiting interactions in aberrant and normal pathways.

  9. Caspase-11 and caspase-1 differentially modulate actin polymerization via RhoA and Slingshot proteins to promote bacterial clearance

    PubMed Central

    Caution, Kyle; Gavrilin, Mikhail A.; Tazi, Mia; Kanneganti, Apurva; Layman, Daniel; Hoque, Sheshadri; Krause, Kathrin; Amer, Amal O.

    2015-01-01

    Inflammasomes are multiprotein complexes that include members of the NOD-like receptor family and caspase-1. Caspase-1 is required for the fusion of the Legionella vacuole with lysosomes. Caspase-11, independently of the inflammasome, also promotes phagolysosomal fusion. However, it is unclear how these proteases alter intracellular trafficking. Here, we show that caspase-11 and caspase-1 function in opposing manners to phosphorylate and dephosphorylate cofilin, respectively upon infection with Legionella. Caspase-11 targets cofilin via the RhoA GTPase, whereas caspase-1 engages the Slingshot phosphatase. The absence of either caspase-11 or caspase-1 maintains actin in the polymerized or depolymerized form, respectively and averts the fusion of pathogen-containing vacuoles with lysosomes. Therefore, caspase-11 and caspase-1 converge on the actin machinery with opposing effects to promote vesicular trafficking. PMID:26686473

  10. EDITORIAL: Precision proteins Precision proteins

    NASA Astrophysics Data System (ADS)

    Demming, Anna

    2010-06-01

    Since the birth of modern day medicine, during the times of Hippocrates in ancient Greece, the profession has developed from the rudimentary classification of disease into a rigorous science with an inspiring capability to treat and cure. Scientific methodology has distilled clinical diagnostic tools from the early arts of prognosis, which used to rely as much on revelation and prophecy, as intuition and judgement [1]. Over the past decade, research into the interactions between proteins and nanosystems has provided some ingenious and apt techniques for delving into the intricacies of anatomical systems. In vivo biosensing has emerged as a vibrant field of research, as much of medical diagnosis relies on the detection of substances or an imbalance in the chemicals in the body. The inherent properties of nanoscale structures, such as cantilevers, make them well suited to biosensing applications that demand the detection of molecules at very low concentrations. Measurable deflections in cantilevers functionalised with antibodies provide quantitative indicators of the presence of specific antigens when the two react. Such developments have roused mounting interest in the interactions of proteins with nanostructures, such as carbon nanotubes [3], which have demonstrated great potential as generic biomarkers. Plasmonic properties are also being exploited in sensing applications, such as the molecular sentinel recently devised by researchers in the US. The device uses the plasmonic properties of a silver nanoparticle linked to a Raman labelled hairpin DNA probe to signal changes in the probe geometry resulting from interactions with substances in the environment. Success stories so far include the detection of two specific genes associated with breast cancer [4]. A greater understanding of how RNA interference regulates gene expression has highlighted the potential of using this natural process as another agent for combating disease in personalized medicine. However, the

  11. Shotgun protein sequencing.

    SciTech Connect

    Faulon, Jean-Loup Michel; Heffelfinger, Grant S.

    2009-06-01

    A novel experimental and computational technique based on multiple enzymatic digestion of a protein or protein mixture that reconstructs protein sequences from sequences of overlapping peptides is described in this SAND report. This approach, analogous to shotgun sequencing of DNA, is to be used to sequence alternative spliced proteins, to identify post-translational modifications, and to sequence genetically engineered proteins.

  12. Protein Crystal Based Nanomaterials

    NASA Technical Reports Server (NTRS)

    Bell, Jeffrey A.; VanRoey, Patrick

    2001-01-01

    This is the final report on a NASA Grant. It concerns a description of work done, which includes: (1) Protein crystals cross-linked to form fibers; (2) Engineering of protein to favor crystallization; (3) Better knowledge-based potentials for protein-protein contacts; (4) Simulation of protein crystallization.

  13. Protein-losing enteropathy

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/007338.htm Protein-losing enteropathy To use the sharing features on this page, please enable JavaScript. Protein-losing enteropathy is an abnormal loss of protein ...

  14. Protein in diet

    MedlinePlus

    ... basic structure of protein is a chain of amino acids. You need protein in your diet to help ... Protein foods are broken down into parts called amino acids during digestion. The human body needs a number ...

  15. Protein splicing: selfish genes invade cellular proteins.

    PubMed

    Neff, N F

    1993-12-01

    Protein splicing is a series of enzymatic events involving intramolecular protein breakage, rejoining and intron homing, in which introns are able to promote the recombinative transposition of their own coding sequences. Eukaryotic and prokaryotic spliced proteins have conserved similar gene structure, but little amino acid identity. The genes coding for these spliced proteins contain internal in-frame introns that encode polypeptides that apparently self-excise from the resulting host protein sequences. Excision of the 'protein intron' is coupled with joining of the two flanking protein regions encoded by exons of the host gene. Some introns of this type encode DNA endonucleases, related to Group I RNA intron gene products, that stimulate gene conversion and self-transmission.

  16. Identification of another actin-related protein (Arp) 2/3 complex binding site in neural Wiskott-Aldrich syndrome protein (N-WASP) that complements actin polymerization induced by the Arp2/3 complex activating (VCA) domain of N-WASP.

    PubMed

    Suetsugu, S; Miki, H; Takenawa, T

    2001-08-31

    Neural Wiskott-Aldrich syndrome protein (N-WASP) is an essential regulator of actin cytoskeleton formation via its association with the actin-related protein (Arp) 2/3 complex. It is believed that the C-terminal Arp2/3 complex-activating domain (verprolin homology, cofilin homology, and acidic (VCA) or C-terminal region of WASP family proteins domain) of N-WASP is usually kept masked (autoinhibition) but is opened upon cooperative binding of upstream regulators such as Cdc42 and phosphatidylinositol 4,5-bisphosphate (PIP2). However, the mechanisms of autoinhibition and association with Arp2/3 complex are still unclear. We focused on the acidic region of N-WASP because it is thought to interact with Arp2/3 complex and may be involved in autoinhibition. Partial deletion of acidic residues from the VCA portion alone greatly reduced actin polymerization activity, demonstrating that the acidic region contributes to Arp2/3 complex-mediated actin polymerization. Surprisingly, the same partial deletion of the acidic region in full-length N-WASP led to constitutive activity comparable with the activity seen with the VCA portion. Therefore, the acidic region in full-length N-WASP plays an indispensable role in the formation of the autoinhibited structure. This mutant contains WASP-homology (WH) 1 domain with weak affinity to the Arp2/3 complex, leading to activity in the absence of part of the acidic region. Furthermore, the actin comet formed by the DeltaWH1 mutant of N-WASP was much smaller than that of wild-type N-WASP. Partial deletion of acidic residues did not affect actin comet size, indicating the importance of the WH1 domain in actin structure formation. Collectively, the acidic region of N-WASP plays an essential role in Arp2/3 complex activation as well as in the formation of the autoinhibited structure, whereas the WH1 domain complements the activation of the Arp2/3 complex achieved through the VCA portion.

  17. PREFACE: Protein protein interactions: principles and predictions

    NASA Astrophysics Data System (ADS)

    Nussinov, Ruth; Tsai, Chung-Jung

    2005-06-01

    Proteins are the `workhorses' of the cell. Their roles span functions as diverse as being molecular machines and signalling. They carry out catalytic reactions, transport, form viral capsids, traverse membranes and form regulated channels, transmit information from DNA to RNA, making possible the synthesis of new proteins, and they are responsible for the degradation of unnecessary proteins and nucleic acids. They are the vehicles of the immune response and are responsible for viral entry into the cell. Given their importance, considerable effort has been centered on the prediction of protein function. A prime way to do this is through identification of binding partners. If the function of at least one of the components with which the protein interacts is known, that should let us assign its function(s) and the pathway(s) in which it plays a role. This holds since the vast majority of their chores in the living cell involve protein-protein interactions. Hence, through the intricate network of these interactions we can map cellular pathways, their interconnectivities and their dynamic regulation. Their identification is at the heart of functional genomics; their prediction is crucial for drug discovery. Knowledge of the pathway, its topology, length, and dynamics may provide useful information for forecasting side effects. The goal of predicting protein-protein interactions is daunting. Some associations are obligatory, others are continuously forming and dissociating. In principle, from the physical standpoint, any two proteins can interact, but under what conditions and at which strength? The principles of protein-protein interactions are general: the non-covalent interactions of two proteins are largely the outcome of the hydrophobic effect, which drives the interactions. In addition, hydrogen bonds and electrostatic interactions play important roles. Thus, many of the interactions observed in vitro are the outcome of experimental overexpression. Protein disorder

  18. Protein sequence comparison and protein evolution

    SciTech Connect

    Pearson, W.R.

    1995-12-31

    This tutorial was one of eight tutorials selected to be presented at the Third International Conference on Intelligent Systems for Molecular Biology which was held in the United Kingdom from July 16 to 19, 1995. This tutorial examines how the information conserved during the evolution of a protein molecule can be used to infer reliably homology, and thus a shared proteinfold and possibly a shared active site or function. The authors start by reviewing a geological/evolutionary time scale. Next they look at the evolution of several protein families. During the tutorial, these families will be used to demonstrate that homologous protein ancestry can be inferred with confidence. They also examine different modes of protein evolution and consider some hypotheses that have been presented to explain the very earliest events in protein evolution. The next part of the tutorial will examine the technical aspects of protein sequence comparison. Both optimal and heuristic algorithms and their associated parameters that are used to characterize protein sequence similarities are discussed. Perhaps more importantly, they survey the statistics of local similarity scores, and how these statistics can both be used to improve the selectivity of a search and to evaluate the significance of a match. They them examine distantly related members of three protein families, the serine proteases, the glutathione transferases, and the G-protein-coupled receptors (GCRs). Finally, the discuss how sequence similarity can be used to examine internal repeated or mosaic structures in proteins.

  19. Whey protein fractionation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Concentrated whey protein products from cheese whey, such as whey protein concentrate (WPC) and whey protein isolate (WPI), contain more than seven different types of proteins: alpha-lactalbumin (alpha-LA), beta-lactoglobulin (beta-LG), bovine serum albumin (BSA), immunoglobulins (Igs), lactoferrin ...

  20. Protein- protein interaction detection system using fluorescent protein microdomains

    DOEpatents

    Waldo, Geoffrey S.; Cabantous, Stephanie

    2010-02-23

    The invention provides a protein labeling and interaction detection system based on engineered fragments of fluorescent and chromophoric proteins that require fused interacting polypeptides to drive the association of the fragments, and further are soluble and stable, and do not change the solubility of polypeptides to which they are fused. In one embodiment, a test protein X is fused to a sixteen amino acid fragment of GFP (.beta.-strand 10, amino acids 198-214), engineered to not perturb fusion protein solubility. A second test protein Y is fused to a sixteen amino acid fragment of GFP (.beta.-strand 11, amino acids 215-230), engineered to not perturb fusion protein solubility. When X and Y interact, they bring the GFP strands into proximity, and are detected by complementation with a third GFP fragment consisting of GFP amino acids 1-198 (strands 1-9). When GFP strands 10 and 11 are held together by interaction of protein X and Y, they spontaneous association with GFP strands 1-9, resulting in structural complementation, folding, and concomitant GFP fluorescence.

  1. Molecular modelling of protein-protein/protein-solvent interactions

    NASA Astrophysics Data System (ADS)

    Luchko, Tyler

    The inner workings of individual cells are based on intricate networks of protein-protein interactions. However, each of these individual protein interactions requires a complex physical interaction between proteins and their aqueous environment at the atomic scale. In this thesis, molecular dynamics simulations are used in three theoretical studies to gain insight at the atomic scale about protein hydration, protein structure and tubulin-tubulin (protein-protein) interactions, as found in microtubules. Also presented, in a fourth project, is a molecular model of solvation coupled with the Amber molecular modelling package, to facilitate further studies without the need of explicitly modelled water. Basic properties of a minimally solvated protein were calculated through an extended study of myoglobin hydration with explicit solvent, directly investigating water and protein polarization. Results indicate a close correlation between polarization of both water and protein and the onset of protein function. The methodology of explicit solvent molecular dynamics was further used to study tubulin and microtubules. Extensive conformational sampling of the carboxy-terminal tails of 8-tubulin was performed via replica exchange molecular dynamics, allowing the characterisation of the flexibility, secondary structure and binding domains of the C-terminal tails through statistical analysis methods. Mechanical properties of tubulin and microtubules were calculated with adaptive biasing force molecular dynamics. The function of the M-loop in microtubule stability was demonstrated in these simulations. The flexibility of this loop allowed constant contacts between the protofilaments to be maintained during simulations while the smooth deformation provided a spring-like restoring force. Additionally, calculating the free energy profile between the straight and bent tubulin configurations was used to test the proposed conformational change in tubulin, thought to cause microtubule

  2. Deciphering the Role of Emx1 in Neurogenesis: A Neuroproteomics Approach

    PubMed Central

    Kobeissy, Firas H.; Hansen, Katharina; Neumann, Melanie; Fu, Shuping; Jin, Kulin; Liu, Jialing

    2016-01-01

    Emx1 has long been implicated in embryonic brain development. Previously we found that mice null of Emx1 gene had smaller dentate gyri and reduced neurogenesis, although the molecular mechanisms underlying this defect was not well understood. To decipher the role of Emx1 gene in neural regeneration and the timing of its involvement, we determine the frequency of neural stem cells (NSCs) in embryonic and adult forebrains of Emx1 wild type (WT) and knock out (KO) mice in the neurosphere assay. Emx1 gene deletion reduced the frequency and self-renewal capacity of NSCs of the embryonic brain but did not affect neuronal or glial differentiation. Emx1 KO NSCs also exhibited a reduced migratory capacity in response to serum or vascular endothelial growth factor (VEGF) in the Boyden chamber migration assay compared to their WT counterparts. A thorough comparison between NSC lysates from Emx1 WT and KO mice utilizing 2D-PAGE coupled with tandem mass spectrometry revealed 38 proteins differentially expressed between genotypes, including the F-actin depolymerization factor Cofilin. A global systems biology and cluster analysis identified several potential mechanisms and cellular pathways implicated in altered neurogenesis, all involving Cofilin1. Protein interaction network maps with functional enrichment analysis further indicated that the differentially expressed proteins participated in neural-specific functions including brain development, axonal guidance, synaptic transmission, neurogenesis, and hippocampal morphology, with VEGF as the upstream regulator intertwined with Cofilin1 and Emx1. Functional validation analysis indicated that apart from the overall reduced level of phosphorylated Cofilin1 (p-Cofilin1) in the Emx1 KO NSCs compared to WT NSCs as demonstrated in the western blot analysis, VEGF was able to induce more Cofilin1 phosphorylation and FLK expression only in the latter. Our results suggest that a defect in Cofilin1 phosphorylation induced by VEGF or other

  3. Surface Mediated Protein Disaggregation

    NASA Astrophysics Data System (ADS)

    Radhakrishna, Mithun; Kumar, Sanat K.

    2014-03-01

    Preventing protein aggregation is of both biological and industrial importance. Biologically these aggregates are known to cause amyloid type diseases like Alzheimer's and Parkinson's disease. Protein aggregation leads to reduced activity of the enzymes in industrial applications. Inter-protein interactions between the hydrophobic residues of the protein are known to be the major driving force for protein aggregation. In the current paper we show how surface chemistry and curvature can be tuned to mitigate these inter-protein interactions. Our results calculated in the framework of the Hydrophobic-Polar (HP) lattice model show that, inter-protein interactions can be drastically reduced by increasing the surface hydrophobicity to a critical value corresponding to the adsorption transition of the protein. At this value of surface hydrophobicity, proteins lose inter-protein contacts to gain surface contacts and thus the surface helps in reducing the inter-protein interactions. Further, we show that the adsorption of the proteins inside hydrophobic pores of optimal sizes are most efficient both in reducing inter-protein contacts and simultaneously retaining most of the native-contacts due to strong protein-surface interactions coupled with stabilization due to the confinement. Department of Energy (Grant No DE-FG02-11ER46811).

  4. Physics of protein motility and motor proteins

    NASA Astrophysics Data System (ADS)

    Kolomeisky, Anatoly B.

    2013-09-01

    Motor proteins are enzymatic molecules that transform chemical energy into mechanical motion and work. They are critically important for supporting various cellular activities and functions. In the last 15 years significant progress in understanding the functioning of motor proteins has been achieved due to revolutionary breakthroughs in single-molecule experimental techniques and strong advances in theoretical modelling. However, microscopic mechanisms of protein motility are still not well explained, and the collective efforts of many scientists are needed in order to solve these complex problems. In this special section the reader will find the latest advances on the difficult road to mapping motor proteins dynamics in various systems. Recent experimental developments have allowed researchers to monitor and to influence the activity of single motor proteins with a high spatial and temporal resolution. It has stimulated significant theoretical efforts to understand the non-equilibrium nature of protein motility phenomena. The latest results from all these advances are presented and discussed in this special section. We would like to thank the scientists from all over the world who have reported their latest research results for this special section. We are also grateful to the staff and editors of Journal of Physics: Condensed Matter for their invaluable help in handling all the administrative and refereeing activities. The field of motor proteins and protein motility is fast moving, and we hope that this collection of articles will be a useful source of information in this highly interdisciplinary area. Physics of protein motility and motor proteins contents Physics of protein motility and motor proteinsAnatoly B Kolomeisky Identification of unique interactions between the flexible linker and the RecA-like domains of DEAD-box helicase Mss116 Yuan Zhang, Mirkó Palla, Andrew Sun and Jung-Chi Liao The load dependence of the physical properties of a molecular motor

  5. Protein C blood test

    MedlinePlus

    ... a normal substance in the body that prevents blood clotting. A blood test can be done to see ... history of blood clots. Protein C helps control blood clotting. A lack of this protein or problem with ...

  6. Protein S blood test

    MedlinePlus

    ... a normal substance in your body that prevents blood clotting. A blood test can be done to see ... family history of blood clots. Protein S helps control blood clotting. A lack of this protein or problem with ...

  7. Learning about Proteins

    MedlinePlus

    ... body, and protecting you from disease. All About Amino Acids When you eat foods that contain protein, the ... called amino (say: uh-MEE-no) acids. The amino acids then can be reused to make the proteins ...

  8. Modeling Protein Self Assembly

    ERIC Educational Resources Information Center

    Baker, William P.; Jones, Carleton Buck; Hull, Elizabeth

    2004-01-01

    Understanding the structure and function of proteins is an important part of the standards-based science curriculum. Proteins serve vital roles within the cell and malfunctions in protein self assembly are implicated in degenerative diseases. Experience indicates that this topic is a difficult one for many students. We have found that the concept…

  9. CSF total protein

    MedlinePlus

    CSF total protein is a test to determine the amount of protein in your spinal fluid, also called cerebrospinal fluid (CSF). ... The normal protein range varies from lab to lab, but is typically about 15 to 60 milligrams per deciliter (mg/dL) ...

  10. Modeling Protein Domain Function

    ERIC Educational Resources Information Center

    Baker, William P.; Jones, Carleton "Buck"; Hull, Elizabeth

    2007-01-01

    This simple but effective laboratory exercise helps students understand the concept of protein domain function. They use foam beads, Styrofoam craft balls, and pipe cleaners to explore how domains within protein active sites interact to form a functional protein. The activity allows students to gain content mastery and an understanding of the…

  11. Destabilized bioluminescent proteins

    DOEpatents

    Allen, Michael S.; Rakesh, Gupta; Gary, Sayler S.

    2007-07-31

    Purified nucleic acids, vectors and cells containing a gene cassette encoding at least one modified bioluminescent protein, wherein the modification includes the addition of a peptide sequence. The duration of bioluminescence emitted by the modified bioluminescent protein is shorter than the duration of bioluminescence emitted by an unmodified form of the bioluminescent protein.

  12. Texturized dairy proteins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dairy proteins are amenable to structural modifications induced by high temperature, shear and moisture; in particular, whey proteins can change conformation to new unfolded states. The change in protein state is a basis for creating new foods. The dairy products, nonfat dried milk (NDM), whey prote...

  13. Overview of Protein Microarrays

    PubMed Central

    Reymond Sutandy, FX; Qian, Jiang; Chen, Chien-Sheng; Zhu, Heng

    2013-01-01

    Protein microarray is an emerging technology that provides a versatile platform for characterization of hundreds of thousands of proteins in a highly parallel and high-throughput way. Two major classes of protein microarrays are defined to describe their applications: analytical and functional protein microarrays. In addition, tissue or cell lysates can also be fractionated and spotted on a slide to form a reverse-phase protein microarray. While the fabrication technology is maturing, applications of protein microarrays, especially functional protein microarrays, have flourished during the past decade. Here, we will first review recent advances in the protein microarray technologies, and then present a series of examples to illustrate the applications of analytical and functional protein microarrays in both basic and clinical research. The research areas will include detection of various binding properties of proteins, study of protein posttranslational modifications, analysis of host-microbe interactions, profiling antibody specificity, and identification of biomarkers in autoimmune diseases. As a powerful technology platform, it would not be surprising if protein microarrays will become one of the leading technologies in proteomic and diagnostic fields in the next decade. PMID:23546620

  14. The E5 Proteins

    PubMed Central

    DiMaio, Daniel; Petti, Lisa

    2013-01-01

    The E5 proteins are short transmembrane proteins encoded by many animal and human papillomaviruses. These proteins display transforming activity in cultured cells and animals, and they presumably also play a role in the productive virus life cycle. The E5 proteins are thought to act by modulating the activity of cellular proteins. Here, we describe the biological activities of the best-studied E5 proteins and discuss the evidence implicating specific protein targets and pathways in mediating these activities. The primary target of the 44-amino acid BPV1 E5 is the PDGF β receptor, whereas the EGF receptor appears to be an important target of the 83-amino acid HPV16 E5 protein. Both E5 proteins also bind to the vacuolar ATPase and affect MHC class I expression and cell-cell communication. Continued studies of the E5 proteins will elucidate important aspects of transmembrane protein-protein interactions, cellular signal transduction, cell biology, virus replication, and tumorigenesis. PMID:23731971

  15. Protopia: a protein-protein interaction tool

    PubMed Central

    Real-Chicharro, Alejandro; Ruiz-Mostazo, Iván; Navas-Delgado, Ismael; Kerzazi, Amine; Chniber, Othmane; Sánchez-Jiménez, Francisca; Medina, Miguel Ángel; Aldana-Montes, José F

    2009-01-01

    Background Protein-protein interactions can be considered the basic skeleton for living organism self-organization and homeostasis. Impressive quantities of experimental data are being obtained and computational tools are essential to integrate and to organize this information. This paper presents Protopia, a biological tool that offers a way of searching for proteins and their interactions in different Protein Interaction Web Databases, as a part of a multidisciplinary initiative of our institution for the integration of biological data . Results The tool accesses the different Databases (at present, the free version of Transfac, DIP, Hprd, Int-Act and iHop), and results are expressed with biological protein names or databases codes and can be depicted as a vector or a matrix. They can be represented and handled interactively as an organic graph. Comparison among databases is carried out using the Uniprot codes annotated for each protein. Conclusion The tool locates and integrates the current information stored in the aforementioned databases, and redundancies among them are detected. Results are compatible with the most important network analysers, so that they can be compared and analysed by other world-wide known tools and platforms. The visualization possibilities help to attain this goal and they are especially interesting for handling multiple-step or complex networks. PMID:19828077

  16. Protein-protein interactions in multienzyme megasynthetases.

    PubMed

    Weissman, Kira J; Müller, Rolf

    2008-04-14

    The multienzyme polyketide synthases (PKSs), nonribosomal polypeptide synthetases (NRPSs), and their hybrids are responsible for the construction in bacteria of numerous natural products of clinical value. These systems generate high structural complexity by using a simple biosynthetic logic--that of the assembly line. Each of the individual steps in building the metabolites is designated to an independently folded domain within gigantic polypeptides. The domains are clustered into functional modules, and the modules are strung out along the proteins in the order in which they act. Every metabolite results, therefore, from the successive action of up to 100 individual catalysts. Despite the conceptual simplicity of this division-of-labor organization, we are only beginning to decipher the molecular details of the numerous protein-protein interactions that support assembly-line biosynthesis, and which are critical to attempts to re-engineer these systems as a tool in drug discovery. This review aims to summarize the state of knowledge about several aspects of protein-protein interactions, including current architectural models for PKS and NRPS systems, the central role of carrier proteins, and the structural basis for intersubunit recognition.

  17. Highly thermostable fluorescent proteins

    DOEpatents

    Bradbury, Andrew M [Santa Fe, NM; Waldo, Geoffrey S [Santa Fe, NM; Kiss, Csaba [Los Alamos, NM

    2012-05-01

    Thermostable fluorescent proteins (TSFPs), methods for generating these and other stability-enhanced proteins, polynucleotides encoding such proteins, and assays and method for using the TSFPs and TSFP-encoding nucleic acid molecules are provided. The TSFPs of the invention show extremely enhanced levels of stability and thermotolerance. In one case, for example, a TSFP of the invention is so stable it can be heated to 99.degree. C. for short periods of time without denaturing, and retains 85% of its fluorescence when heated to 80.degree. C. for several minutes. The invention also provides a method for generating stability-enhanced variants of a protein, including but not limited to fluorescent proteins.

  18. Highly thermostable fluorescent proteins

    DOEpatents

    Bradbury, Andrew M.; Waldo, Geoffrey S.; Kiss, Csaba

    2011-03-22

    Thermostable fluorescent proteins (TSFPs), methods for generating these and other stability-enhanced proteins, polynucleotides encoding such proteins, and assays and method for using the TSFPs and TSFP-encoding nucleic acid molecules are provided. The TSFPs of the invention show extremely enhanced levels of stability and thermotolerance. In one case, for example, a TSFP of the invention is so stable it can be heated to 99.degree. C. for short periods of time without denaturing, and retains 85% of its fluorescence when heated to 80.degree. C. for several minutes. The invention also provides a method for generating stability-enhanced variants of a protein, including but not limited to fluorescent proteins.

  19. Highly thermostable fluorescent proteins

    DOEpatents

    Bradbury, Andrew M [Santa Fe, NM; Waldo, Geoffrey S [Santa Fe, NM; Kiss, Csaba [Los Alamos, NM

    2011-11-29

    Thermostable fluorescent proteins (TSFPs), methods for generating these and other stability-enhanced proteins, polynucleotides encoding such proteins, and assays and method for using the TSFPs and TSFP-encoding nucleic acid molecules are provided. The TSFPs of the invention show extremely enhanced levels of stability and thermotolerance. In one case, for example, a TSFP of the invention is so stable it can be heated to 99.degree. C. for short periods of time without denaturing, and retains 85% of its fluorescence when heated to 80.degree. C. for several minutes. The invention also provides a method for generating stability-enhanced variants of a protein, including but not limited to fluorescent proteins.

  20. Protein crystallization with paper

    NASA Astrophysics Data System (ADS)

    Matsuoka, Miki; Kakinouchi, Keisuke; Adachi, Hiroaki; Maruyama, Mihoko; Sugiyama, Shigeru; Sano, Satoshi; Yoshikawa, Hiroshi Y.; Takahashi, Yoshinori; Yoshimura, Masashi; Matsumura, Hiroyoshi; Murakami, Satoshi; Inoue, Tsuyoshi; Mori, Yusuke; Takano, Kazufumi

    2016-05-01

    We developed a new protein crystallization method that incorporates paper. A small piece of paper, such as facial tissue or KimWipes, was added to a drop of protein solution in the traditional sitting drop vapor diffusion technique, and protein crystals grew by incorporating paper. By this method, we achieved the growth of protein crystals with reducing osmotic shock. Because the technique is very simple and the materials are easy to obtain, this method will come into wide use for protein crystallization. In the future, it could be applied to nanoliter-scale crystallization screening on a paper sheet such as in inkjet printing.

  1. [Atypical ubiquitination of proteins].

    PubMed

    Buneeva, O A; Medvedev, A E

    2016-07-01

    Ubiquitination is a type of posttranslational modification of intracellular proteins characterized by covalent attachment of one (monoubiquitination) or several (polyubiquitination) of ubiquitin molecules to target proteins. In the case of polyubiquitination, linear or branched polyubiquitin chains are formed. Their formation involves various lysine residues of monomeric ubiquitin. The best studied is Lys48-polyubiquitination, which targets proteins for proteasomal degradation. In this review we have considered examples of so-called atypical polyubiquitination, which mainly involves other lysine residues (Lys6, Lys11, Lys27, Lys29, Lys33, Lys63) and also N-terminal methionine. The considered examples convincingly demonstrate that polyubiquitination of proteins not necessarily targets proteins for their proteolytic degradation in proteasomes. Atypically polyubiquitinated proteins are involved in regulation of various processes and altered polyubiquitination of certain proteins is crucial for development of serious diseases.

  2. Protein and vegetarian diets.

    PubMed

    Marsh, Kate A; Munn, Elizabeth A; Baines, Surinder K

    2013-08-19

    A vegetarian diet can easily meet human dietary protein requirements as long as energy needs are met and a variety of foods are eaten. Vegetarians should obtain protein from a variety of plant sources, including legumes, soy products, grains, nuts and seeds. Eggs and dairy products also provide protein for those following a lacto-ovo-vegetarian diet. There is no need to consciously combine different plant proteins at each meal as long as a variety of foods are eaten from day to day, because the human body maintains a pool of amino acids which can be used to complement dietary protein. The consumption of plant proteins rather than animal proteins by vegetarians may contribute to their reduced risk of chronic diseases such as diabetes and heart disease.

  3. Protein solubility modeling

    NASA Technical Reports Server (NTRS)

    Agena, S. M.; Pusey, M. L.; Bogle, I. D.

    1999-01-01

    A thermodynamic framework (UNIQUAC model with temperature dependent parameters) is applied to model the salt-induced protein crystallization equilibrium, i.e., protein solubility. The framework introduces a term for the solubility product describing protein transfer between the liquid and solid phase and a term for the solution behavior describing deviation from ideal solution. Protein solubility is modeled as a function of salt concentration and temperature for a four-component system consisting of a protein, pseudo solvent (water and buffer), cation, and anion (salt). Two different systems, lysozyme with sodium chloride and concanavalin A with ammonium sulfate, are investigated. Comparison of the modeled and experimental protein solubility data results in an average root mean square deviation of 5.8%, demonstrating that the model closely follows the experimental behavior. Model calculations and model parameters are reviewed to examine the model and protein crystallization process. Copyright 1999 John Wiley & Sons, Inc.

  4. Predictions of Protein-Protein Interfaces within Membrane Protein Complexes

    PubMed Central

    Asadabadi, Ebrahim Barzegari; Abdolmaleki, Parviz

    2013-01-01

    Background Prediction of interaction sites within the membrane protein complexes using the sequence data is of a great importance, because it would find applications in modification of molecules transport through membrane, signaling pathways and drug targets of many diseases. Nevertheless, it has gained little attention from the protein structural bioinformatics community. Methods In this study, a wide variety of prediction and classification tools were applied to distinguish the residues at the interfaces of membrane proteins from those not in the interfaces. Results The tuned SVM model achieved the high accuracy of 86.95% and the AUC of 0.812 which outperforms the results of the only previous similar study. Nevertheless, prediction performances obtained using most employed models cannot be used in applied fields and needs more effort to improve. Conclusion Considering the variety of the applied tools in this study, the present investigation could be a good starting point to develop more efficient tools to predict the membrane protein interaction site residues. PMID:23919118

  5. Modeling Protein Expression and Protein Signaling Pathways

    PubMed Central

    Telesca, Donatello; Müller, Peter; Kornblau, Steven M.; Suchard, Marc A.; Ji, Yuan

    2015-01-01

    High-throughput functional proteomic technologies provide a way to quantify the expression of proteins of interest. Statistical inference centers on identifying the activation state of proteins and their patterns of molecular interaction formalized as dependence structure. Inference on dependence structure is particularly important when proteins are selected because they are part of a common molecular pathway. In that case, inference on dependence structure reveals properties of the underlying pathway. We propose a probability model that represents molecular interactions at the level of hidden binary latent variables that can be interpreted as indicators for active versus inactive states of the proteins. The proposed approach exploits available expert knowledge about the target pathway to define an informative prior on the hidden conditional dependence structure. An important feature of this prior is that it provides an instrument to explicitly anchor the model space to a set of interactions of interest, favoring a local search approach to model determination. We apply our model to reverse-phase protein array data from a study on acute myeloid leukemia. Our inference identifies relevant subpathways in relation to the unfolding of the biological process under study. PMID:26246646

  6. Protein kinesis: The dynamics of protein trafficking and stability

    SciTech Connect

    1995-12-31

    The purpose of this conference is to provide a multidisciplinary forum for exchange of state-of-the-art information on protein kinesis. This volume contains abstracts of papers in the following areas: protein folding and modification in the endoplasmic reticulum; protein trafficking; protein translocation and folding; protein degradation; polarity; nuclear trafficking; membrane dynamics; and protein import into organelles.

  7. Protein flexibility as a biosignal.

    PubMed

    Zhao, Qinyi

    2010-01-01

    Dynamic properties of a protein are crucial for all protein functions, and those of signaling proteins are closely related to the biological function of living beings. The protein flexibility signal concept can be used to analyze this relationship. Protein flexibility controls the rate of protein conformational change and influences protein function. The modification of protein flexibility results in a change of protein activity. The logical nature of protein flexibility cannot be explained by applying the principles of protein three-dimensional structure theory or conformation concept. Signaling proteins show high protein flexibility. Many properties of signaling can be traced back to the dynamic natures of signaling protein. The action mechanism of volatile anesthetics and universal cellular reactions are related to flexibility in the change of signaling proteins. We conclude that protein dynamics is an enzyme-enhanced process, called dynamicase.

  8. Antimicrobial proteins: From old proteins, new tricks.

    PubMed

    Smith, Valerie J; Dyrynda, Elisabeth A

    2015-12-01

    This review describes the main types of antimicrobial peptides (AMPs) synthesised by crustaceans, primarily those identified in shrimp, crayfish, crab and lobster. It includes an overview of their range of microbicidal activities and the current landscape of our understanding of their gene expression patterns in different body tissues. It further summarises how their expression might change following various types of immune challenges. The review further considers proteins or protein fragments from crustaceans that have antimicrobial properties but are more usually associated with other biological functions, or are derived from such proteins. It discusses how these unconventional AMPs might be generated at, or delivered to, sites of infection and how they might contribute to crustacean host defence in vivo. It also highlights recent work that is starting to reveal the extent of multi-functionality displayed by some decapod AMPs, particularly their participation in other aspects of host protection. Examples of such activities include proteinase inhibition, phagocytosis, antiviral activity and haematopoiesis.

  9. Protein-protein Interactions using Radiolytic Footprinting

    SciTech Connect

    Takamoto,K.; Chance, M.

    2006-01-01

    Structural proteomics approaches using mass spectrometry are increasingly used in biology to examine the composition and structure of macromolecules. Hydroxyl radical-mediated protein footprinting using mass spectrometry has recently been developed to define structure, assembly, and conformational changes of macromolecules in solution based on measurements of reactivity of amino acid side chain groups with covalent modification reagents. Accurate measurements of side chain reactivity are achieved using quantitative liquid-chromatography-coupled mass spectrometry, whereas the side chain modification sites are identified using tandem mass spectrometry. In addition, the use of footprinting data in conjunction with computational modeling approaches is a powerful new method for testing and refining structural models of macromolecules and their complexes. In this review, we discuss the basic chemistry of hydroxyl radical reactions with peptides and proteins, highlight various approaches to map protein structure using radical oxidation methods, and describe state-of-the-art approaches to combine computational and footprinting data.

  10. Mechanisms Regulating Protein Localization.

    PubMed

    Bauer, Nicholas C; Doetsch, Paul W; Corbett, Anita H

    2015-10-01

    Cellular functions are dictated by protein content and activity. There are numerous strategies to regulate proteins varying from modulating gene expression to post-translational modifications. One commonly used mode of regulation in eukaryotes is targeted localization. By specifically redirecting the localization of a pool of existing protein, cells can achieve rapid changes in local protein function. Eukaryotic cells have evolved elegant targeting pathways to direct proteins to the appropriate cellular location or locations. Here, we provide a general overview of these localization pathways, with a focus on nuclear and mitochondrial transport, and present a survey of the evolutionarily conserved regulatory strategies identified thus far. We end with a description of several specific examples of proteins that exploit localization as an important mode of regulation.

  11. Mayaro virus proteins.

    PubMed

    Mezencio, J M; Rebello, M A

    1993-01-01

    Mayaro virus was grown in BHK-21 cells and purified by centrifugation in a potassium-tartrate gradient (5-50%). The electron microscopy analyses of the purified virus showed an homogeneous population of enveloped particles with 69 +/- 2.3 nm in diameter. Three structural virus proteins were identified and designated p1, p2 and p3. Their average molecular weight were p1, 54 KDa; p2, 50 KDa and p3, 34 KDa. In Mayaro virus infected Aedes albopictus cells and in BHK-21 infected cells we detected six viral proteins, in which three of them are the structural virus proteins and the other three were products from processing of precursors of viral proteins, whose molecular weights are 62 KDa, 64 KDa and 110 KDa. The 34 KDa protein was the first viral protein synthesized at 5 hours post-infection in both cell lines studied.

  12. TRIM proteins and diseases.

    PubMed

    Watanabe, Masashi; Hatakeyama, Shigetsugu

    2017-01-07

    Ubiquitination is one of the posttranslational modifications that regulates a number of intracellular events including signal transduction, protein quality control, transcription, cell cycle, apoptosis and development. The ubiquitin system functions as a garbage machine to degrade target proteins and as a regulator for several signalling pathways. Biochemical reaction of ubiquitination requires several enzymes including E1, E2 and E3, and E3 ubiquitin ligases play roles as receptors for recognizing target proteins. Most of the tripartite motif (TRIM) proteins are E3 ubiquitin ligases. Recent studies have shown that some TRIM proteins function as important regulators for a variety of diseases including cancer, inflammatory diseases, infectious diseases, neuropsychiatric disorders, chromosomal abnormalities and developmental diseases. In this review, we summarize the involvement of TRIM proteins in the aetiology of various diseases.

  13. Biofilm Matrix Proteins

    PubMed Central

    Fong, Jiunn N. C.; Yildiz, Fitnat H.

    2015-01-01

    Proteinaceous components of the biofilm matrix include secreted extracellular proteins, cell surface adhesins and protein subunits of cell appendages such as flagella and pili. Biofilm matrix proteins play diverse roles in biofilm formation and dissolution. They are involved in attaching cells to surfaces, stabilizing the biofilm matrix via interactions with exopolysaccharide and nucleic acid components, developing three-dimensional biofilm architectures, and dissolving biofilm matrix via enzymatic degradation of polysaccharides, proteins, and nucleic acids. In this chapter, we will review functions of matrix proteins in a selected set of microorganisms, studies of the matrix proteomes of Vibrio cholerae and Pseudomonas aeruginosa, and roles of outer membrane vesicles and of nucleoid-binding proteins in biofilm formation. PMID:26104709

  14. Protein oxidation and peroxidation

    PubMed Central

    Davies, Michael J.

    2016-01-01

    Proteins are major targets for radicals and two-electron oxidants in biological systems due to their abundance and high rate constants for reaction. With highly reactive radicals damage occurs at multiple side-chain and backbone sites. Less reactive species show greater selectivity with regard to the residues targeted and their spatial location. Modification can result in increased side-chain hydrophilicity, side-chain and backbone fragmentation, aggregation via covalent cross-linking or hydrophobic interactions, protein unfolding and altered conformation, altered interactions with biological partners and modified turnover. In the presence of O2, high yields of peroxyl radicals and peroxides (protein peroxidation) are formed; the latter account for up to 70% of the initial oxidant flux. Protein peroxides can oxidize both proteins and other targets. One-electron reduction results in additional radicals and chain reactions with alcohols and carbonyls as major products; the latter are commonly used markers of protein damage. Direct oxidation of cysteine (and less commonly) methionine residues is a major reaction; this is typically faster than with H2O2, and results in altered protein activity and function. Unlike H2O2, which is rapidly removed by protective enzymes, protein peroxides are only slowly removed, and catabolism is a major fate. Although turnover of modified proteins by proteasomal and lysosomal enzymes, and other proteases (e.g. mitochondrial Lon), can be efficient, protein hydroperoxides inhibit these pathways and this may contribute to the accumulation of modified proteins in cells. Available evidence supports an association between protein oxidation and multiple human pathologies, but whether this link is causal remains to be established. PMID:27026395

  15. Computer Models of Proteins

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Dr. Marc Pusey (seated) and Dr. Craig Kundrot use computers to analyze x-ray maps and generate three-dimensional models of protein structures. With this information, scientists at Marshall Space Flight Center can learn how proteins are made and how they work. The computer screen depicts a proten structure as a ball-and-stick model. Other models depict the actual volume occupied by the atoms, or the ribbon-like structures that are crucial to a protein's function.

  16. Protein Crystal Quality Studies

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Eddie Snell, Post-Doctoral Fellow the National Research Council (NRC) uses a reciprocal space mapping diffractometer for macromolecular crystal quality studies. The diffractometer is used in mapping the structure of macromolecules such as proteins to determine their structure and thus understand how they function with other proteins in the body. This is one of several analytical tools used on proteins crystallized on Earth and in space experiments. Photo credit: NASA/Marshall Space Flight Center (MSFC)

  17. Pressure cryocooling protein crystals

    DOEpatents

    Kim, Chae Un; Gruner, Sol M.

    2011-10-04

    Preparation of cryocooled protein crystal is provided by use of helium pressurizing and cryocooling to obtain cryocooled protein crystal allowing collection of high resolution data and by heavier noble gas (krypton or xenon) binding followed by helium pressurizing and cryocooling to obtain cryocooled protein crystal for collection of high resolution data and SAD phasing simultaneously. The helium pressurizing is carried out on crystal coated to prevent dehydration or on crystal grown in aqueous solution in a capillary.

  18. Chemical Synthesis of Proteins

    PubMed Central

    Nilsson, Bradley L.; Soellner, Matthew B.; Raines, Ronald T.

    2010-01-01

    Proteins have become accessible targets for chemical synthesis. The basic strategy is to use native chemical ligation, Staudinger ligation, or other orthogonal chemical reactions to couple synthetic peptides. The ligation reactions are compatible with a variety of solvents and proceed in solution or on a solid support. Chemical synthesis enables a level of control on protein composition that greatly exceeds that attainable with ribosome-mediated biosynthesis. Accordingly, the chemical synthesis of proteins is providing previously unattainable insight into the structure and function of proteins. PMID:15869385

  19. PIC: Protein Interactions Calculator

    PubMed Central

    Tina, K. G.; Bhadra, R.; Srinivasan, N.

    2007-01-01

    Interactions within a protein structure and interactions between proteins in an assembly are essential considerations in understanding molecular basis of stability and functions of proteins and their complexes. There are several weak and strong interactions that render stability to a protein structure or an assembly. Protein Interactions Calculator (PIC) is a server which, given the coordinate set of 3D structure of a protein or an assembly, computes various interactions such as disulphide bonds, interactions between hydrophobic residues, ionic interactions, hydrogen bonds, aromatic–aromatic interactions, aromatic–sulphur interactions and cation–π interactions within a protein or between proteins in a complex. Interactions are calculated on the basis of standard, published criteria. The identified interactions between residues can be visualized using a RasMol and Jmol interface. The advantage with PIC server is the easy availability of inter-residue interaction calculations in a single site. It also determines the accessible surface area and residue-depth, which is the distance of a residue from the surface of the protein. User can also recognize specific kind of interactions, such as apolar–apolar residue interactions or ionic interactions, that are formed between buried or exposed residues or near the surface or deep inside. PMID:17584791

  20. PIC: Protein Interactions Calculator.

    PubMed

    Tina, K G; Bhadra, R; Srinivasan, N

    2007-07-01

    Interactions within a protein structure and interactions between proteins in an assembly are essential considerations in understanding molecular basis of stability and functions of proteins and their complexes. There are several weak and strong interactions that render stability to a protein structure or an assembly. Protein Interactions Calculator (PIC) is a server which, given the coordinate set of 3D structure of a protein or an assembly, computes various interactions such as disulphide bonds, interactions between hydrophobic residues, ionic interactions, hydrogen bonds, aromatic-aromatic interactions, aromatic-sulphur interactions and cation-pi interactions within a protein or between proteins in a complex. Interactions are calculated on the basis of standard, published criteria. The identified interactions between residues can be visualized using a RasMol and Jmol interface. The advantage with PIC server is the easy availability of inter-residue interaction calculations in a single site. It also determines the accessible surface area and residue-depth, which is the distance of a residue from the surface of the protein. User can also recognize specific kind of interactions, such as apolar-apolar residue interactions or ionic interactions, that are formed between buried or exposed residues or near the surface or deep inside.

  1. Dietary proteins and angiogenesis.

    PubMed

    Medina, Miguel Ángel; Quesada, Ana R

    2014-01-17

    Both defective and persistent angiogenesis are linked to pathological situations in the adult. Compounds able to modulate angiogenesis have a potential value for the treatment of such pathologies. Several small molecules present in the diet have been shown to have modulatory effects on angiogenesis. This review presents the current state of knowledge on the potential modulatory roles of dietary proteins on angiogenesis. There is currently limited available information on the topic. Milk contains at least three proteins for which modulatory effects on angiogenesis have been previously demonstrated. On the other hand, there is some scarce information on the potential of dietary lectins, edible plant proteins and high protein diets to modulate angiogenesis.

  2. Consensus protein design

    PubMed Central

    Porebski, Benjamin T.; Buckle, Ashley M.

    2016-01-01

    A popular and successful strategy in semi-rational design of protein stability is the use of evolutionary information encapsulated in homologous protein sequences. Consensus design is based on the hypothesis that at a given position, the respective consensus amino acid contributes more than average to the stability of the protein than non-conserved amino acids. Here, we review the consensus design approach, its theoretical underpinnings, successes, limitations and challenges, as well as providing a detailed guide to its application in protein engineering. PMID:27274091

  3. Human Mitochondrial Protein Database

    National Institute of Standards and Technology Data Gateway

    SRD 131 Human Mitochondrial Protein Database (Web, free access)   The Human Mitochondrial Protein Database (HMPDb) provides comprehensive data on mitochondrial and human nuclear encoded proteins involved in mitochondrial biogenesis and function. This database consolidates information from SwissProt, LocusLink, Protein Data Bank (PDB), GenBank, Genome Database (GDB), Online Mendelian Inheritance in Man (OMIM), Human Mitochondrial Genome Database (mtDB), MITOMAP, Neuromuscular Disease Center and Human 2-D PAGE Databases. This database is intended as a tool not only to aid in studying the mitochondrion but in studying the associated diseases.

  4. TRIM proteins in development.

    PubMed

    Petrera, Francesca; Meroni, Germana

    2012-01-01

    TRIM proteins play important roles in several patho-physiological processes. Their common activity within the ubiquitylation pathway makes them amenable to a number of diverse biological roles. Many of the TRIM genes are highly and sometimes specifically expressed during embryogenesis, it is therefore not surprising that several of them might be involved in developmental processes. Here, we primarily discuss the developmental implications of two subgroups of TRIM proteins that conserved domain composition and functions from their invertebrate ancestors. The two groups are: the TRIM-NHL proteins implicated in miRNA processing regulation and the TRIM-FN3 proteins involved in ventral midline development.

  5. Engineering therapeutic protein disaggregases

    PubMed Central

    Shorter, James

    2016-01-01

    Therapeutic agents are urgently required to cure several common and fatal neurodegenerative disorders caused by protein misfolding and aggregation, including amyotrophic lateral sclerosis (ALS), Parkinson’s disease (PD), and Alzheimer’s disease (AD). Protein disaggregases that reverse protein misfolding and restore proteins to native structure, function, and localization could mitigate neurodegeneration by simultaneously reversing 1) any toxic gain of function of the misfolded form and 2) any loss of function due to misfolding. Potentiated variants of Hsp104, a hexameric AAA+ ATPase and protein disaggregase from yeast, have been engineered to robustly disaggregate misfolded proteins connected with ALS (e.g., TDP-43 and FUS) and PD (e.g., α-synuclein). However, Hsp104 has no metazoan homologue. Metazoa possess protein disaggregase systems distinct from Hsp104, including Hsp110, Hsp70, and Hsp40, as well as HtrA1, which might be harnessed to reverse deleterious protein misfolding. Nevertheless, vicissitudes of aging, environment, or genetics conspire to negate these disaggregase systems in neurodegenerative disease. Thus, engineering potentiated human protein disaggregases or isolating small-molecule enhancers of their activity could yield transformative therapeutics for ALS, PD, and AD. PMID:27255695

  6. Acanthamoeba castellanii STAT Protein

    PubMed Central

    Kicinska, Anna; Leluk, Jacek; Jarmuszkiewicz, Wieslawa

    2014-01-01

    STAT (signal transducers and activators of transcription) proteins are one of the important mediators of phosphotyrosine-regulated signaling in metazoan cells. We described the presence of STAT protein in a unicellular, free-living amoebae with a simple life cycle, Acanthamoeba castellanii. A. castellanii is the only, studied to date, Amoebozoan that does not belong to Mycetozoa but possesses STATs. A sequence of the A. castellanii STAT protein includes domains similar to those of the Dictyostelium STAT proteins: a coiled coil (characteristic for Dictyostelium STAT coiled coil), a STAT DNA-binding domain and a Src-homology domain. The search for protein sequences homologous to A. castellanii STAT revealed 17 additional sequences from lower eukaryotes. Interestingly, all of these sequences come from Amoebozoa organisms that belong to either Mycetozoa (slime molds) or Centramoebida. We showed that there are four separated clades within the slime mold STAT proteins. The A. castellanii STAT protein branches next to a group of STATc proteins from Mycetozoa. We also demonstrate that Amoebozoa form a distinct monophyletic lineage within the STAT protein world that is well separated from the other groups. PMID:25338074

  7. Protein intakes in India.

    PubMed

    Swaminathan, Sumathi; Vaz, Mario; Kurpad, Anura V

    2012-08-01

    Indian diets derive almost 60 % of their protein from cereals with relatively low digestibility and quality. There have been several surveys of diets and protein intakes in India by the National Nutrition Monitoring Board (NNMB) over the last 25 years, in urban and rural, as well as in slum dwellers and tribal populations. Data of disadvantaged populations from slums, tribals and sedentary rural Indian populations show that the protein intake (mainly from cereals) is about 1 gm/kg/day. However, the protein intake looks less promising in terms of the protein digestibility corrected amino acid score (PDCAAS), using lysine as the first limiting amino acid, where all populations, particularly rural and tribal, appear to have an inadequate quality to their protein intake. The protein: energy (PE) ratio is a measure of dietary quality, and has been used in the 2007 WHO/FAO/UNU report to define reference requirement values with which the adequacy of diets can be evaluated in terms of a protein quality corrected PE ratio. It is likely that about one third of this sedentary rural population is at risk of not meeting their requirements. These levels of risk of deficiency are in a population with relatively low BMI populations, whose diets are also inadequate in fruits and vegetables. Therefore, while the burden of enhancing the quality of protein intake in rural India exists, the quality of the diet, in general, represents a challenge that must be met.

  8. Self assembling proteins

    DOEpatents

    Yeates, Todd O.; Padilla, Jennifer; Colovos, Chris

    2004-06-29

    Novel fusion proteins capable of self-assembling into regular structures, as well as nucleic acids encoding the same, are provided. The subject fusion proteins comprise at least two oligomerization domains rigidly linked together, e.g. through an alpha helical linking group. Also provided are regular structures comprising a plurality of self-assembled fusion proteins of the subject invention, and methods for producing the same. The subject fusion proteins find use in the preparation of a variety of nanostructures, where such structures include: cages, shells, double-layer rings, two-dimensional layers, three-dimensional crystals, filaments, and tubes.

  9. Ultrafiltration of pegylated proteins

    NASA Astrophysics Data System (ADS)

    Molek, Jessica R.

    There is considerable clinical interest in the use of "second-generation" therapeutics produced by conjugation of a native protein with various polymers including polyethylene glycol (PEG). PEG--protein conjugates, so-called PEGylated proteins, can exhibit enhanced stability, half-life, and bioavailability. One of the challenges in the commercial production of PEGylated proteins is the purification required to remove unreacted polymer, native protein, and in many cases PEGylated proteins with nonoptimal degrees of conjugation. The overall objective of this thesis was to examine the use of ultrafiltration for the purification of PEGylated proteins. This included: (1) analysis of size-based separation of PEGylated proteins using conventional ultrafiltration membranes, (2) use of electrically-charged membranes to exploit differences in electrostatic interactions, and (3) examination of the effects of PEGylation on protein fouling. The experimental results were analyzed using appropriate theoretical models, with the underlying physical properties of the PEGylated proteins evaluated using size exclusion chromatography, capillary electrophoresis, dynamic light scattering, and reverse phase chromatography. PEGylated proteins were produced by covalent attachment of activated PEG to a protein via primary amines on the lysine residues. A simple model was developed for the reaction kinetics, which was used to explore the effect of reaction conditions and mode of operation on the distribution of PEGylated products. The effective size of the PEGylated proteins was evaluated using size exclusion chromatography, with appropriate correlations developed for the size in terms of the molecular weight of the native protein and attached PEG. The electrophoretic mobility of the PEGylated proteins were evaluated by capillary electrophoresis with the data in good agreement with a simple model accounting for the increase in protein size and the reduction in the number of protonated amine

  10. Regulation of protein secretion by ... protein secretion?

    PubMed

    Atmakuri, Krishnamohan; Fortune, Sarah M

    2008-09-11

    Mycobacterium tuberculosis (Mtb) requires an alternative protein secretion system, ESX1, for virulence. Recently, Raghavan et al. (2008) reported a new regulatory circuit that may explain how ESX1 activity is controlled during infection. Mtb appears to regulate ESX1 by modulating transcription of associated genes rather than structural components of the secretion system itself.

  11. Human Plasma Protein C

    PubMed Central

    Kisiel, Walter

    1979-01-01

    Protein C is a vitamin K-dependent protein, which exists in bovine plasma as a precursor of a serine protease. In this study, protein C was isolated to homogeneity from human plasma by barium citrate adsorption and elution, ammonium sulfate fractionation, DEAE-Sephadex chromatography, dextran sulfate agarose chromatography, and preparative polyacrylamide gel electrophoresis. Human protein C (Mr = 62,000) contains 23% carbohydrate and is composed of a light chain (Mr = 21,000) and a heavy chain (Mr = 41,000) held together by a disulfide bond(s). The light chain has an amino-terminal sequence of Ala-Asn-Ser-Phe-Leu- and the heavy chain has an aminoterminal sequence of Asp-Pro-Glu-Asp-Gln. The residues that are identical to bovine protein C are underlined. Incubation of human protein C with human α-thrombin at an enzyme to substrate weight ratio of 1:50 resulted in the formation of activated protein C, an enzyme with serine amidase activity. In the activation reaction, the apparent molecular weight of the heavy chain decreased from 41,000 to 40,000 as determined by gel electrophoresis in the presence of sodium dodecyl sulfate. No apparent change in the molecular weight of the light chain was observed in the activation process. The heavy chain of human activated protein C also contains the active-site serine residue as evidenced by its ability to react with radiolabeled diisopropyl fluorophosphate. Human activated protein C markedly prolongs the kaolin-cephalin clotting time of human plasma, but not that of bovine plasma. The amidolytic and anticoagulant activities of human activated protein C were completely obviated by prior incubation of the enzyme with diisopropyl fluorophosphate. These results indicate that human protein C, like its bovine counterpart, exists in plasma as a zymogen and is converted to a serine protease by limited proteolysis with attendant anticoagulant activity. Images PMID:468991

  12. Engineered Protein Polymers

    DTIC Science & Technology

    2010-05-31

    of each pure polymer, we plan to combine the various polymer solutions in different ratios to tune the composition and physico-chemical properties...protein materials as vehicles for storage and delivery of small molecules. Each protein polymer under concentrations for particle formation ( vida

  13. Multidomain proteins under force.

    PubMed

    Valle-Orero, Jessica; Rivas-Pardo, Jaime Andrés; Popa, Ionel

    2017-04-28

    Advancements in single-molecule force spectroscopy techniques such as atomic force microscopy and magnetic tweezers allow investigation of how domain folding under force can play a physiological role. Combining these techniques with protein engineering and HaloTag covalent attachment, we investigate similarities and differences between four model proteins: I10 and I91-two immunoglobulin-like domains from the muscle protein titin, and two α + β fold proteins-ubiquitin and protein L. These proteins show a different mechanical response and have unique extensions under force. Remarkably, when normalized to their contour length, the size of the unfolding and refolding steps as a function of force reduces to a single master curve. This curve can be described using standard models of polymer elasticity, explaining the entropic nature of the measured steps. We further validate our measurements with a simple energy landscape model, which combines protein folding with polymer physics and accounts for the complex nature of tandem domains under force. This model can become a useful tool to help in deciphering the complexity of multidomain proteins operating under force.

  14. Archaeal chromatin proteins.

    PubMed

    Zhang, ZhenFeng; Guo, Li; Huang, Li

    2012-05-01

    Archaea, along with Bacteria and Eukarya, are the three domains of life. In all living cells, chromatin proteins serve a crucial role in maintaining the integrity of the structure and function of the genome. An array of small, abundant and basic DNA-binding proteins, considered candidates for chromatin proteins, has been isolated from the Euryarchaeota and the Crenarchaeota, the two major phyla in Archaea. While most euryarchaea encode proteins resembling eukaryotic histones, crenarchaea appear to synthesize a number of unique DNA-binding proteins likely involved in chromosomal organization. Several of these proteins (e.g., archaeal histones, Sac10b homologs, Sul7d, Cren7, CC1, etc.) have been extensively studied. However, whether they are chromatin proteins and how they function in vivo remain to be fully understood. Future investigation of archaeal chromatin proteins will lead to a better understanding of chromosomal organization and gene expression in Archaea and provide valuable information on the evolution of DNA packaging in cellular life.

  15. Protein Attachment on Nanodiamonds.

    PubMed

    Lin, Chung-Lun; Lin, Cheng-Huang; Chang, Huan-Cheng; Su, Meng-Chih

    2015-07-16

    A recent advance in nanotechnology is the scale-up production of small and nonaggregated diamond nanoparticles suitable for biological applications. Using detonation nanodiamonds (NDs) with an average diameter of ∼4 nm as the adsorbents, we have studied the static attachment of three proteins (myoglobin, bovine serum albumin, and insulin) onto the nanoparticles by optical spectroscopy, mass spectrometry, and dynamic light scattering, and electrophoretic zeta potential measurements. Results show that the protein surface coverage is predominantly determined by the competition between protein-protein and protein-ND interactions, giving each protein a unique and characteristic structural configuration in its own complex. Specifically, both myoglobin and bovine serum albumin show a Langmuir-type adsorption behavior, forming 1:1 complexes at saturation, whereas insulin folds into a tightly bound multimer before adsorption. The markedly different adsorption patterns appear to be independent of the protein concentration and are closely related to the affinity of the individual proteins for the NDs. The present study provides a fundamental understanding for the use of NDs as a platform for nanomedical drug delivery.

  16. Poxviral Ankyrin Proteins

    PubMed Central

    Herbert, Michael H.; Squire, Christopher J.; Mercer, Andrew A

    2015-01-01

    Multiple repeats of the ankyrin motif (ANK) are ubiquitous throughout the kingdoms of life but are absent from most viruses. The main exception to this is the poxvirus family, and specifically the chordopoxviruses, with ANK repeat proteins present in all but three species from separate genera. The poxviral ANK repeat proteins belong to distinct orthologue groups spread over different species, and align well with the phylogeny of their genera. This distribution throughout the chordopoxviruses indicates these proteins were present in an ancestral vertebrate poxvirus, and have since undergone numerous duplication events. Most poxviral ANK repeat proteins contain an unusual topology of multiple ANK motifs starting at the N-terminus with a C-terminal poxviral homologue of the cellular F-box enabling interaction with the cellular SCF ubiquitin ligase complex. The subtle variations between ANK repeat proteins of individual poxviruses suggest an array of different substrates may be bound by these protein-protein interaction domains and, via the F-box, potentially directed to cellular ubiquitination pathways and possible degradation. Known interaction partners of several of these proteins indicate that the NF-κB coordinated anti-viral response is a key target, whilst some poxviral ANK repeat domains also have an F-box independent affect on viral host-range. PMID:25690795

  17. Protein Kinases and Addiction

    PubMed Central

    Lee, Anna M.; Messing, Robert O.

    2011-01-01

    Although drugs of abuse have different chemical structures and interact with different protein targets, all appear to usurp common neuronal systems that regulate reward and motivation. Addiction is a complex disease that is thought to involve drug-induced changes in synaptic plasticity due to alterations in cell signaling, gene transcription, and protein synthesis. Recent evidence suggests that drugs of abuse interact with and change a common network of signaling pathways that include a subset of specific protein kinases. The best studied of these kinases are reviewed here and include extracellular signal-regulated kinase, cAMP-dependent protein kinase, cyclin-dependent protein kinase 5, protein kinase C, calcium/calmodulin-dependent protein kinase II, and Fyn tyrosine kinase. These kinases have been implicated in various aspects of drug addiction including acute drug effects, drug self-administration, withdrawal, reinforcement, sensitization, and tolerance. Identifying protein kinase substrates and signaling pathways that contribute to the addicted state may provide novel approaches for new pharma-cotherapies to treat drug addiction. PMID:18991950

  18. Sac phosphatase domain proteins.

    PubMed Central

    Hughes, W E; Cooke, F T; Parker, P J

    2000-01-01

    Advances in our understanding of the roles of phosphatidylinositol phosphates in controlling cellular functions such as endocytosis, exocytosis and the actin cytoskeleton have included new insights into the phosphatases that are responsible for the interconversion of these lipids. One of these is an entirely novel class of phosphatase domain found in a number of well characterized proteins. Proteins containing this Sac phosphatase domain include the yeast Saccharomyces cerevisiae proteins Sac1p and Fig4p. The Sac phosphatase domain is also found within the mammalian phosphoinositide 5-phosphatase synaptojanin and the yeast synaptojanin homologues Inp51p, Inp52p and Inp53p. These proteins therefore contain both Sac phosphatase and 5-phosphatase domains. This review describes the Sac phosphatase domain-containing proteins and their actions, with particular reference to the genetic and biochemical insights provided by study of the yeast Saccharomyces cerevisiae. PMID:10947947

  19. Proteins in unexpected locations.

    PubMed Central

    Smalheiser, N R

    1996-01-01

    Members of all classes of proteins--cytoskeletal components, secreted growth factors, glycolytic enzymes, kinases, transcription factors, chaperones, transmembrane proteins, and extracellular matrix proteins--have been identified in cellular compartments other than their conventional sites of action. Some of these proteins are expressed as distinct compartment-specific isoforms, have novel mechanisms for intercompartmental translocation, have distinct endogenous biological actions within each compartment, and are regulated in a compartment-specific manner as a function of physiologic state. The possibility that many, if not most, proteins have distinct roles in more than one cellular compartment has implications for the evolution of cell organization and may be important for understanding pathological conditions such as Alzheimer's disease and cancer. PMID:8862516

  20. Structures of membrane proteins

    PubMed Central

    Vinothkumar, Kutti R.; Henderson, Richard

    2010-01-01

    In reviewing the structures of membrane proteins determined up to the end of 2009, we present in words and pictures the most informative examples from each family. We group the structures together according to their function and architecture to provide an overview of the major principles and variations on the most common themes. The first structures, determined 20 years ago, were those of naturally abundant proteins with limited conformational variability, and each membrane protein structure determined was a major landmark. With the advent of complete genome sequences and efficient expression systems, there has been an explosion in the rate of membrane protein structure determination, with many classes represented. New structures are published every month and more than 150 unique membrane protein structures have been determined. This review analyses the reasons for this success, discusses the challenges that still lie ahead, and presents a concise summary of the key achievements with illustrated examples selected from each class. PMID:20667175

  1. Transdermal delivery of proteins.

    PubMed

    Kalluri, Haripriya; Banga, Ajay K

    2011-03-01

    Transdermal delivery of peptides and proteins avoids the disadvantages associated with the invasive parenteral route of administration and other alternative routes such as the pulmonary and nasal routes. Since proteins have a large size and are hydrophilic in nature, they cannot permeate passively across the skin due to the stratum corneum which allows the transport of only small lipophilic drug molecules. Enhancement techniques such as chemical enhancers, iontophoresis, microneedles, electroporation, sonophoresis, thermal ablation, laser ablation, radiofrequency ablation and noninvasive jet injectors aid in the delivery of proteins by overcoming the skin barrier in different ways. In this review, these enhancement techniques that can enable the transdermal delivery of proteins are discussed, including a discussion of mechanisms, sterility requirements, and commercial development of products. Combination of enhancement techniques may result in a synergistic effect allowing increased protein delivery and these are also discussed.

  2. Protein crystallization in microgravity.

    PubMed

    Aibara, S; Shibata, K; Morita, Y

    1997-12-01

    A space experiment involving protein crystallization was conducted in a microgravity environment using the space shuttle "Endeavour" of STS-47, on a 9-day mission from September 12th to 20th in 1992. The crystallization was carried out according to a batch method, and 5 proteins were selected as flight samples for crystallization. Two of these proteins: hen egg-white lysozyme and co-amino acid: pyruvate aminotransferase from Pseudomonas sp. F-126, were obtained as single crystals of good diffraction quality. Since 1992 we have carried out several space experiments for protein crystallization aboard space shuttles and the space station MIR. Our experimental results obtained mainly from hen egg-white lysozyme are described below, focusing on the effects of microgravity on protein crystal growth.

  3. Protein expression-yeast.

    PubMed

    Nielsen, Klaus H

    2014-01-01

    Yeast is an excellent system for the expression of recombinant eukaryotic proteins. Both endogenous and heterologous proteins can be overexpressed in yeast (Phan et al., 2001; Ton and Rao, 2004). Because yeast is easy to manipulate genetically, a strain can be optimized for the expression of a specific protein. Many eukaryotic proteins contain posttranslational modifications that can be performed in yeast but not in bacterial expression systems. In comparison with mammalian cell culture expression systems, growing yeast is both faster and less expensive, and large-scale cultures can be performed using fermentation. While several different yeast expression systems exist, this chapter focuses on the budding yeast Saccharomyces cerevisiae and will briefly describe some options to consider when selecting vectors and tags to be used for protein expression. Throughout this chapter, the expression and purification of yeast eIF3 is shown as an example alongside a general scheme outline.

  4. Protein Unfolding and Alzheimer's

    NASA Astrophysics Data System (ADS)

    Cheng, Kelvin

    2012-10-01

    Early interaction events of beta-amyloid (Aβ) proteins with neurons have been associated with the pathogenesis of Alzheimer's disease. Knowledge pertaining to the role of lipid molecules, particularly cholesterol, in modulating the single Aβ interactions with neurons at the atomic length and picosecond time resolutions, remains unclear. In our research, we have used atomistic molecular dynamics simulations to explore early molecular events including protein insertion kinetics, protein unfolding, and protein-induced membrane disruption of Aβ in lipid domains that mimic the nanoscopic raft and non-raft regions of the neural membrane. In this talk, I will summarize our current work on investigating the role of cholesterol in regulating the Aβ interaction events with membranes at the molecular level. I will also explain how our results will provide new insights into understanding the pathogenesis of Alzheimer's disease associated with the Aβ proteins.

  5. Junin virus structural proteins.

    PubMed Central

    De Martínez Segovia, Z M; De Mitri, M I

    1977-01-01

    Polyacrylamide gel electrophoresis of purified Junin virus revealed six distinct structural polypeptides, two major and four minor ones. Four of these polypeptides appeared to be covalently linked with carbohydrate. The molecular weights of the six proteins, estimated by coelectrophoresis with marker proteins, ranged from 25,000 to 91,000. One of the two major components (number 3) was identified as a nucleoprotein and had a molecular weight of 64,000. It was the most prominent protein and was nonglycosylated. The other major protein (number 5), with a molecular weight of 38,000, was a glucoprotein and a component of the viral envelope. The location on the virion of three additional glycopeptides with molecular weights of 91,000, 72,000, and 52,000, together with a protein with a molecular weight of 25,000, was not well defined. PMID:189088

  6. Manipulating and Visualizing Proteins

    SciTech Connect

    Simon, Horst D.

    2003-12-05

    ProteinShop Gives Researchers a Hands-On Tool for Manipulating, Visualizing Protein Structures. The Human Genome Project and other biological research efforts are creating an avalanche of new data about the chemical makeup and genetic codes of living organisms. But in order to make sense of this raw data, researchers need software tools which let them explore and model data in a more intuitive fashion. With this in mind, researchers at Lawrence Berkeley National Laboratory and the University of California, Davis, have developed ProteinShop, a visualization and modeling program which allows researchers to manipulate protein structures with pinpoint control, guided in large part by their own biological and experimental instincts. Biologists have spent the last half century trying to unravel the ''protein folding problem,'' which refers to the way chains of amino acids physically fold themselves into three-dimensional proteins. This final shape, which resembles a crumpled ribbon or piece of origami, is what determines how the protein functions and translates genetic information. Understanding and modeling this geometrically complex formation is no easy matter. ProteinShop takes a given sequence of amino acids and uses visualization guides to help generate predictions about the secondary structures, identifying alpha helices and flat beta strands, and the coil regions that bind them. Once secondary structures are in place, researchers can twist and turn these pre-configurations until they come up with a number of possible tertiary structure conformations. In turn, these are fed into a computationally intensive optimization procedure that tries to find the final, three-dimensional protein structure. Most importantly, ProteinShop allows users to add human knowledge and intuition to the protein structure prediction process, thus bypassing bad configurations that would otherwise be fruitless for optimization. This saves compute cycles and accelerates the entire process, so

  7. Protein disulfide engineering.

    PubMed

    Dombkowski, Alan A; Sultana, Kazi Zakia; Craig, Douglas B

    2014-01-21

    Improving the stability of proteins is an important goal in many biomedical and industrial applications. A logical approach is to emulate stabilizing molecular interactions found in nature. Disulfide bonds are covalent interactions that provide substantial stability to many proteins and conform to well-defined geometric conformations, thus making them appealing candidates in protein engineering efforts. Disulfide engineering is the directed design of novel disulfide bonds into target proteins. This important biotechnological tool has achieved considerable success in a wide range of applications, yet the rules that govern the stabilizing effects of disulfide bonds are not fully characterized. Contrary to expectations, many designed disulfide bonds have resulted in decreased stability of the modified protein. We review progress in disulfide engineering, with an emphasis on the issue of stability and computational methods that facilitate engineering efforts.

  8. Proteins, fluctuations and complexity

    SciTech Connect

    Frauenfelder, Hans; Chen, Guo; Fenimore, Paul W

    2008-01-01

    Glasses, supercooled liquids, and proteins share common properties, in particular the existence of two different types of fluctuations, {alpha} and {beta}. While the effect of the {alpha} fluctuations on proteins has been known for a few years, the effect of {beta} fluctuations has not been understood. By comparing neutron scattering data on the protein myoglobin with the {beta} fluctuations in the hydration shell measured by dielectric spectroscopy we show that the internal protein motions are slaved to these fluctuations. We also show that there is no 'dynamic transition' in proteins near 200 K. The rapid increase in the mean square displacement with temperature in many neutron scattering experiments is quantitatively predicted by the {beta} fluctuations in the hydration shell.

  9. [Controversies around diet proteins].

    PubMed

    Cichosz, Grazyna; Czeczot, Hanna

    2013-12-01

    Critical theories regarding proteins of anima origin are still and still popularized, though they are ungrounded from scientific point of view. Predominance of soya proteins over the animal ones in relation to their influence on calcium metabolism, bone break risk or risk of osteoporosis morbidity has not been confirmed in any honest, reliable research experiment. Statement, that sulphur amino acids influence disadvantageously on calcium metabolism of human organism and bone status, is completely groundless, the more so as presence of sulphur amino acids in diet (animal proteins are their best source) is the condition of endogenic synthesis of glutathione, the key antioxidant of the organism, and taurine stimulating brain functioning. Deficiency of proteins in the diet produce weakness of intellectual effectiveness and immune response. There is no doubt that limitation of consumption of animal proteins of standard value is not good for health.

  10. Drugging Membrane Protein Interactions

    PubMed Central

    Yin, Hang; Flynn, Aaron D.

    2016-01-01

    The majority of therapeutics target membrane proteins, accessible on the surface of cells, to alter cellular signaling. Cells use membrane proteins to transduce signals into cells, transport ions and molecules, bind the cell to a surface or substrate, and catalyze reactions. Newly devised technologies allow us to drug conventionally “undruggable” regions of membrane proteins, enabling modulation of protein–protein, protein–lipid, and protein–nucleic acid interactions. In this review, we survey the state of the art in high-throughput screening and rational design in drug discovery, and we evaluate the advances in biological understanding and technological capacity that will drive pharmacotherapy forward against unorthodox membrane protein targets. PMID:26863923

  11. Protein crystal growth

    NASA Technical Reports Server (NTRS)

    Bugg, Charles E.

    1993-01-01

    Proteins account for 50% or more of the dry weight of most living systems and play a crucial role in virtually all biological processes. Since the specific functions of essentially all biological molecules are determined by their three-dimensional structures, it is obvious that a detailed understanding of the structural makeup of a protein is essential to any systematic research pertaining to it. At the present time, protein crystallography has no substitute, it is the only technique available for elucidating the atomic arrangements within complicated biological molecules. Most macromolecules are extremely difficult to crystallize, and many otherwise exciting and promising projects have terminated at the crystal growth stage. There is a pressing need to better understand protein crystal growth, and to develop new techniques that can be used to enhance the size and quality of protein crystals. There are several aspects of microgravity that might be exploited to enhance protein crystal growth. The major factor that might be expected to alter crystal growth processes in space is the elimination of density-driven convective flow. Another factor that can be readily controlled in the absence of gravity is the sedimentation of growing crystal in a gravitational field. Another potential advantage of microgravity for protein crystal growth is the option of doing containerless crystal growth. One can readily understand why the microgravity environment established by Earth-orbiting vehicles is perceived to offer unique opportunities for the protein crystallographer. The near term objectives of the Protein Crystal Growth in a Microgravity Environment (PCG/ME) project is to continue to improve the techniques, procedures, and hardware systems used to grow protein crystals in Earth orbit.

  12. Regulation of protein turnover by heat shock proteins.

    PubMed

    Bozaykut, Perinur; Ozer, Nesrin Kartal; Karademir, Betul

    2014-12-01

    Protein turnover reflects the balance between synthesis and degradation of proteins, and it is a crucial process for the maintenance of the cellular protein pool. The folding of proteins, refolding of misfolded proteins, and also degradation of misfolded and damaged proteins are involved in the protein quality control (PQC) system. Correct protein folding and degradation are controlled by many different factors, one of the most important of which is the heat shock protein family. Heat shock proteins (HSPs) are in the class of molecular chaperones, which may prevent the inappropriate interaction of proteins and induce correct folding. On the other hand, these proteins play significant roles in the degradation pathways, including endoplasmic reticulum-associated degradation (ERAD), the ubiquitin-proteasome system, and autophagy. This review focuses on the emerging role of HSPs in the regulation of protein turnover; the effects of HSPs on the degradation machineries ERAD, autophagy, and proteasome; as well as the role of posttranslational modifications in the PQC system.

  13. Purifying protein complexes for mass spectrometry: applications to protein translation.

    PubMed

    Link, Andrew J; Fleischer, Tracey C; Weaver, Connie M; Gerbasi, Vincent R; Jennings, Jennifer L

    2005-03-01

    Proteins control and mediate most of the biological activities in the cell. In most cases, proteins either interact with regulatory proteins or function in large molecular assemblies to carryout biological processes. Understanding the functions of individual proteins requires the identification of these interacting proteins. With its speed and sensitivity, mass spectrometry has become the dominant method for identifying components of protein complexes. This article reviews and discusses various approaches to purify protein complexes and analyze the proteins using mass spectrometry. As examples, methods to isolate and analyze protein complexes responsible for the translation of messenger RNAs into polypeptides are described.

  14. Novel LIMK2 Inhibitor Blocks Panc-1 Tumor Growth in a mouse xenograft model

    PubMed Central

    Rak, Roni; Haklai, Roni; Elad-Tzfadia, Galit; Wolfson, Haim J.; Carmeli, Shmuel; Kloog, Yoel

    2014-01-01

    LIM kinases (LIMKs) are important cell cytoskeleton regulators that play a prominent role in cancer manifestation and neuronal diseases. The LIMK family consists of two homologues, LIMK1 and LIMK2, which differ from one another in expression profile, intercellular localization, and function. The main substrate of LIMK is cofilin, a member of the actin-depolymerizing factor (ADF) protein family. When phosphorylated by LIMK, cofilin is inactive. LIMKs play a contributory role in several neurodevelopmental disorders and in cancer growth and metastasis. We recently reported the development and validation of a novel LIMK inhibitor, referred to here as T56-LIMKi, using a combination of computational methods and classical biochemistry techniques. Here we report that T56-LIMKi inhibits LIMK2 with high specificity, and shows little or no cross-reactivity with LIMK1. We found that T56-LIMKi decreases phosphorylated cofilin (p-cofilin) levels and thus inhibits growth of several cancerous cell lines, including those of pancreatic cancer, glioma and schwannoma. Because the most promising in-vitro effect of T56-LIMKi was observed in the pancreatic cancer cell line Panc-1, we tested the inhibitor on a nude mouse Panc-1 xenograft model. T56-LIMKi reduced tumor size and p-cofilin levels in the Panc-1 tumors, leading us to propose T56-LIMKi as a candidate drug for cancer therapy. PMID:25593987

  15. Prediction of protein-protein interactions: unifying evolution and structure at protein interfaces.

    PubMed

    Tuncbag, Nurcan; Gursoy, Attila; Keskin, Ozlem

    2011-06-01

    The vast majority of the chores in the living cell involve protein-protein interactions. Providing details of protein interactions at the residue level and incorporating them into protein interaction networks are crucial toward the elucidation of a dynamic picture of cells. Despite the rapid increase in the number of structurally known protein complexes, we are still far away from a complete network. Given experimental limitations, computational modeling of protein interactions is a prerequisite to proceed on the way to complete structural networks. In this work, we focus on the question 'how do proteins interact?' rather than 'which proteins interact?' and we review structure-based protein-protein interaction prediction approaches. As a sample approach for modeling protein interactions, PRISM is detailed which combines structural similarity and evolutionary conservation in protein interfaces to infer structures of complexes in the protein interaction network. This will ultimately help us to understand the role of protein interfaces in predicting bound conformations.

  16. NMCP/LINC proteins

    PubMed Central

    Ciska, Malgorzata; Moreno Díaz de la Espina, Susana

    2013-01-01

    Lamins are the main components of the metazoan lamina, and while the organization of the nuclear lamina of metazoans and plants is similar, there are apparently no genes encoding lamins or most lamin-binding proteins in plants. Thus, the plant lamina is not lamin-based and the proteins that form this structure are still to be characterized. Members of the plant NMCP/LINC/CRWN protein family share the typical tripartite structure of lamins, although the 2 exhibit no sequence similarity. However, given the many similarities between NMCP/LINC/CRWN proteins and lamins (structural organization, position of conserved regions, sub-nuclear distribution, solubility, and pattern of expression), these proteins are good candidates to carry out the functions of lamins in plants. Moreover, functional analysis of NMCP/LINC mutants has revealed their involvement in maintaining nuclear size and shape, another activity fulfilled by lamins. This review summarizes the current understanding of NMCP/LINC proteins and discusses future studies that will be required to demonstrate definitively that these proteins are plant analogs of lamins. PMID:24128696

  17. TRIM proteins in cancer.

    PubMed

    Cambiaghi, Valeria; Giuliani, Virginia; Lombardi, Sara; Marinelli, Cristiano; Toffalorio, Francesca; Pelicci, Pier Giuseppe

    2012-01-01

    Some members of the tripartite motif (TRIM/RBCC) protein family are thought to be important regulators of carcinogenesis. This is not surprising as the TRIM proteins are involved in several biological processes, such as cell growth, development and cellular differentiation and alteration of these proteins can affect transcriptional regulation, cell proliferation and apoptosis. In particular, four TRIM family genes are frequently translocated to other genes, generating fusion proteins implicated in cancer initiation and progression. Among these the most famous is the promyelocytic leukaemia gene PML, which encodes the protein TRIM19. PML is involved in the t(15;17) translocation that specifically occurs in Acute Promyelocytic Leukaemia (APL), resulting in a PML-retinoic acid receptor-alpha (PML-RARalpha) fusion protein. Other members of the TRIM family are linked to cancer development without being involved in chromosomal re-arrangements, possibly through ubiquitination or loss of tumour suppression functions. This chapter discusses the biological functions of TRIM proteins in cancer.

  18. Bacterial ice crystal controlling proteins.

    PubMed

    Lorv, Janet S H; Rose, David R; Glick, Bernard R

    2014-01-01

    Across the world, many ice active bacteria utilize ice crystal controlling proteins for aid in freezing tolerance at subzero temperatures. Ice crystal controlling proteins include both antifreeze and ice nucleation proteins. Antifreeze proteins minimize freezing damage by inhibiting growth of large ice crystals, while ice nucleation proteins induce formation of embryonic ice crystals. Although both protein classes have differing functions, these proteins use the same ice binding mechanisms. Rather than direct binding, it is probable that these protein classes create an ice surface prior to ice crystal surface adsorption. Function is differentiated by molecular size of the protein. This paper reviews the similar and different aspects of bacterial antifreeze and ice nucleation proteins, the role of these proteins in freezing tolerance, prevalence of these proteins in psychrophiles, and current mechanisms of protein-ice interactions.

  19. Bacterial Ice Crystal Controlling Proteins

    PubMed Central

    Lorv, Janet S. H.; Rose, David R.; Glick, Bernard R.

    2014-01-01

    Across the world, many ice active bacteria utilize ice crystal controlling proteins for aid in freezing tolerance at subzero temperatures. Ice crystal controlling proteins include both antifreeze and ice nucleation proteins. Antifreeze proteins minimize freezing damage by inhibiting growth of large ice crystals, while ice nucleation proteins induce formation of embryonic ice crystals. Although both protein classes have differing functions, these proteins use the same ice binding mechanisms. Rather than direct binding, it is probable that these protein classes create an ice surface prior to ice crystal surface adsorption. Function is differentiated by molecular size of the protein. This paper reviews the similar and different aspects of bacterial antifreeze and ice nucleation proteins, the role of these proteins in freezing tolerance, prevalence of these proteins in psychrophiles, and current mechanisms of protein-ice interactions. PMID:24579057

  20. Protein based Block Copolymers

    PubMed Central

    Rabotyagova, Olena S.; Cebe, Peggy; Kaplan, David L.

    2011-01-01

    Advances in genetic engineering have led to the synthesis of protein-based block copolymers with control of chemistry and molecular weight, resulting in unique physical and biological properties. The benefits from incorporating peptide blocks into copolymer designs arise from the fundamental properties of proteins to adopt ordered conformations and to undergo self-assembly, providing control over structure formation at various length scales when compared to conventional block copolymers. This review covers the synthesis, structure, assembly, properties, and applications of protein-based block copolymers. PMID:21235251

  1. Piezoelectric allostery of protein

    NASA Astrophysics Data System (ADS)

    Ohnuki, Jun; Sato, Takato; Takano, Mitsunori

    2016-07-01

    Allostery is indispensable for a protein to work, where a locally applied stimulus is transmitted to a distant part of the molecule. While the allostery due to chemical stimuli such as ligand binding has long been studied, the growing interest in mechanobiology prompts the study of the mechanically stimulated allostery, the physical mechanism of which has not been established. By molecular dynamics simulation of a motor protein myosin, we found that a locally applied mechanical stimulus induces electrostatic potential change at distant regions, just like the piezoelectricity. This novel allosteric mechanism, "piezoelectric allostery", should be of particularly high value for mechanosensor/transducer proteins.

  2. Proteins : paradigms of complexity /

    SciTech Connect

    Frauenfelder, Hans,

    2001-01-01

    Proteins are the working machines of living systems. Directed by the DNA, of the order of a few hundred building blocks, selected from twenty different amino acids, are covalently linked into a linear polypeptide chain. In the proper environment, the chain folds into the working protein, often a globule of linear dimensions of a few nanometers. The biologist considers proteins units from which living systems are built. Many physical scientists look at them as systems in which the laws of complexity can be studied better than anywhere else. Some of the results of such studies will be sketched.

  3. Protein crystallography prescreen kit

    DOEpatents

    Segelke, Brent W.; Krupka, Heike I.; Rupp, Bernhard

    2005-07-12

    A kit for prescreening protein concentration for crystallization includes a multiplicity of vials, a multiplicity of pre-selected reagents, and a multiplicity of sample plates. The reagents and a corresponding multiplicity of samples of the protein in solutions of varying concentrations are placed on sample plates. The sample plates containing the reagents and samples are incubated. After incubation the sample plates are examined to determine which of the sample concentrations are too low and which the sample concentrations are too high. The sample concentrations that are optimal for protein crystallization are selected and used.

  4. Protein crystallography prescreen kit

    DOEpatents

    Segelke, Brent W.; Krupka, Heike I.; Rupp, Bernhard

    2007-10-02

    A kit for prescreening protein concentration for crystallization includes a multiplicity of vials, a multiplicity of pre-selected reagents, and a multiplicity of sample plates. The reagents and a corresponding multiplicity of samples of the protein in solutions of varying concentrations are placed on sample plates. The sample plates containing the reagents and samples are incubated. After incubation the sample plates are examined to determine which of the sample concentrations are too low and which the sample concentrations are too high. The sample concentrations that are optimal for protein crystallization are selected and used.

  5. Protein Crystal Malic Enzyme

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Malic Enzyme is a target protein for drug design because it is a key protein in the life cycle of intestinal parasites. After 2 years of effort on Earth, investigators were unable to produce any crystals that were of high enough quality and for this reason the structure of this important protein could not be determined. Crystals obtained from one STS-50 were of superior quality allowing the structure to be determined. This is just one example why access to space is so vital for these studies. Principal Investigator is Larry DeLucas.

  6. Protein Crystal Quality Studies

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Eddie Snell (standing), Post-Doctoral Fellow the National Research Council (NRC),and Marc Pusey of Marshall Space Flight Center (MSFC) use a reciprocal space mapping diffractometer for marcromolecular crystal quality studies. The diffractometer is used in mapping the structure of marcromolecules such as proteins to determine their structure and thus understand how they function with other proteins in the body. This is one of several analytical tools used on proteins crystalized on Earth and in space experiments. Photo credit: NASA/Marshall Space Flight Center (MSFC)

  7. Emerging fluorescent protein technologies.

    PubMed

    Enterina, Jhon Ralph; Wu, Lanshi; Campbell, Robert E

    2015-08-01

    Fluorescent proteins (FPs), such as the Aequorea jellyfish green FP (GFP), are firmly established as fundamental tools that enable a wide variety of biological studies. Specifically, FPs can serve as versatile genetically encoded markers for tracking proteins, organelles, or whole cells, and as the basis for construction of biosensors that can be used to visualize a growing array of biochemical events in cells and tissues. In this review we will focus on emerging applications of FPs that represent unprecedented new directions for the field. These emerging applications include new strategies for using FPs in biosensing applications, and innovative ways of using FPs to manipulate protein function or gene expression.

  8. Evolution of proteins.

    NASA Technical Reports Server (NTRS)

    Dayhoff, M. O.

    1971-01-01

    The amino acid sequences of proteins from living organisms are dealt with. The structure of proteins is first discussed; the variation in this structure from one biological group to another is illustrated by the first halves of the sequences of cytochrome c, and a phylogenetic tree is derived from the cytochrome c data. The relative geological times associated with the events of this tree are discussed. Errors which occur in the duplication of cells during the evolutionary process are examined. Particular attention is given to evolution of mutant proteins, globins, ferredoxin, and transfer ribonucleic acids (tRNA's). Finally, a general outline of biological evolution is presented.

  9. [Phosphorylation of tau protein].

    PubMed

    Uchida, T; Ishiguro, K

    1990-05-01

    In aged human brain and particularly in Alzheimer's disease brain, paired helical filaments (PHFs) accumulate in the neuronal cell. Recently, it has been found that the highly phosphorylated tau protein, one of the microtubule-associated proteins (MAPs), is a component of PHF. The authors attempted to clarify the mechanism underlying the accumulation of PHF from the following two aspects; 1) What is the mechanism of phosphorylation of tau protein? 2) Is the highly phosphorylated tau protein capable of forming PHFs? From rat or bovine microtubule proteins we partially purified and characterized a novel protein kinase that specifically phosphorylated tau and MAP2 among many proteins in the brain extract, and which formed a PHF epitope on the phosphorylated human tau. This enzyme was one of the protein serine/threonine kinases and was independent of known second messengers. The phosphorylation of tau by this enzyme was stimulated by tubulin under the condition of microtubule formation, suggesting that the phosphorylation of tau could occur concomitantly with microtubule formation in the brain. Since this kinase was usually bound to tau but not directly to tubulin, the enzyme was associated with microtubules through tau. From these properties related to tau, this kinase is designated as tau protein kinase. The tau that been phosphorylated with this kinase using [gamma-32P]ATP as a phosphate donor, was digested by endoprotinase Lys-C to produce three labeled fragments, K1, K2 and K3. These three fragments were sequenced and the phosphorylation sites on tau by this kinase were identified. The K2 fragment overlapped with the tau-1 site known to be one of the phosphorylation site in PHF. This result strengthens the possibility that tau protein phosphorylated by tau protein kinase is incorporated into PHF. Tubulin binding sites on tau were located between K1 and K3 fragments, while K2 fragment was located in the neighboring to N-terminus of K1. No phosphorylated sites were

  10. Teaching resources. Protein phosphatases.

    PubMed

    Salton, Stephen R

    2005-03-01

    This Teaching Resource provides lecture notes and slides for a class covering the structure and function of protein phosphatases and is part of the course "Cell Signaling Systems: A Course for Graduate Students." The lecture begins with a discussion of the importance of phosphatases in physiology, recognized by the award of a Nobel Prize in 1992, and then proceeds to describe the two types of protein phosphatases: serine/threonine and tyrosine phosphatases. The information covered includes the structure, regulation, and substrate specificity of protein phosphatases, with an emphasis on their importance in disease and clinical settings.

  11. Electrochromatographic separation of proteins

    NASA Technical Reports Server (NTRS)

    Basak, S. K.; Velayudhan, A.; Kohlmann, K.; Ladisch, M. R.; Mitchell, C. A. (Principal Investigator)

    1995-01-01

    We have developed a modified electrochromatography system which minimizes Joule heating at electric field strengths up to 125 V/cm. A non-linear equilibrium model is described which incorporates electrophoretic mobility, hydrodynamic flow velocity, and an electrically induced concentration polarization at the surface of the stationary phase. This model is able to provide useful estimates of protein retention time and velocity in a column packed with Sephadex gel and subjected to an electric field. A correlation of electrophoretic mobility of peptide and proteins with respect to their charge, molecular mass, and asymmetry enables the selection of solute target molecules for electrochromatographic separations. Good separation of protein mixtures have been obtained.

  12. (PCG) Protein Crystal Growth Canavalin

    NASA Technical Reports Server (NTRS)

    1989-01-01

    (PCG) Protein Crystal Growth Canavalin. The major storage protein of leguminous plants and a major source of dietary protein for humans and domestic animals. It is studied in efforts to enhance nutritional value of proteins through protein engineerings. It is isolated from Jack Bean because of it's potential as a nutritional substance. Principal Investigator on STS-26 was Alex McPherson.

  13. Plant protein glycosylation

    PubMed Central

    Strasser, Richard

    2016-01-01

    Protein glycosylation is an essential co- and post-translational modification of secretory and membrane proteins in all eukaryotes. The initial steps of N-glycosylation and N-glycan processing are highly conserved between plants, mammals and yeast. In contrast, late N-glycan maturation steps in the Golgi differ significantly in plants giving rise to complex N-glycans with β1,2-linked xylose, core α1,3-linked fucose and Lewis A-type structures. While the essential role of N-glycan modifications on distinct mammalian glycoproteins is already well documented, we have only begun to decipher the biological function of this ubiquitous protein modification in different plant species. In this review, I focus on the biosynthesis and function of different protein N-linked glycans in plants. Special emphasis is given on glycan-mediated quality control processes in the ER and on the biological role of characteristic complex N-glycan structures. PMID:26911286

  14. Protein Model Database

    SciTech Connect

    Fidelis, K; Adzhubej, A; Kryshtafovych, A; Daniluk, P

    2005-02-23

    The phenomenal success of the genome sequencing projects reveals the power of completeness in revolutionizing biological science. Currently it is possible to sequence entire organisms at a time, allowing for a systemic rather than fractional view of their organization and the various genome-encoded functions. There is an international plan to move towards a similar goal in the area of protein structure. This will not be achieved by experiment alone, but rather by a combination of efforts in crystallography, NMR spectroscopy, and computational modeling. Only a small fraction of structures are expected to be identified experimentally, the remainder to be modeled. Presently there is no organized infrastructure to critically evaluate and present these data to the biological community. The goal of the Protein Model Database project is to create such infrastructure, including (1) public database of theoretically derived protein structures; (2) reliable annotation of protein model quality, (3) novel structure analysis tools, and (4) access to the highest quality modeling techniques available.

  15. Protein Colloidal Aggregation Project

    NASA Technical Reports Server (NTRS)

    Oliva-Buisson, Yvette J. (Compiler)

    2014-01-01

    To investigate the pathways and kinetics of protein aggregation to allow accurate predictive modeling of the process and evaluation of potential inhibitors to prevalent diseases including cataract formation, chronic traumatic encephalopathy, Alzheimer's Disease, Parkinson's Disease and others.

  16. Fully automated protein purification

    PubMed Central

    Camper, DeMarco V.; Viola, Ronald E.

    2009-01-01

    Obtaining highly purified proteins is essential to begin investigating their functional and structural properties. The steps that are typically involved in purifying proteins can include an initial capture, intermediate purification, and a final polishing step. Completing these steps can take several days and require frequent attention to ensure success. Our goal was to design automated protocols that will allow the purification of proteins with minimal operator intervention. Separate methods have been produced and tested that automate the sample loading, column washing, sample elution and peak collection steps for ion-exchange, metal affinity, hydrophobic interaction and gel filtration chromatography. These individual methods are designed to be coupled and run sequentially in any order to achieve a flexible and fully automated protein purification protocol. PMID:19595984

  17. Protein fabrication automation

    PubMed Central

    Cox, J. Colin; Lape, Janel; Sayed, Mahmood A.; Hellinga, Homme W.

    2007-01-01

    Facile “writing” of DNA fragments that encode entire gene sequences potentially has widespread applications in biological analysis and engineering. Rapid writing of open reading frames (ORFs) for expressed proteins could transform protein engineering and production for protein design, synthetic biology, and structural analysis. Here we present a process, protein fabrication automation (PFA), which facilitates the rapid de novo construction of any desired ORF from oligonucleotides with low effort, high speed, and little human interaction. PFA comprises software for sequence design, data management, and the generation of instruction sets for liquid-handling robotics, a liquid-handling robot, a robust PCR scheme for gene assembly from synthetic oligonucleotides, and a genetic selection system to enrich correctly assembled full-length synthetic ORFs. The process is robust and scalable. PMID:17242375

  18. Interactive protein manipulation

    SciTech Connect

    SNCrivelli@lbl.gov

    2003-07-01

    We describe an interactive visualization and modeling program for the creation of protein structures ''from scratch''. The input to our program is an amino acid sequence -decoded from a gene- and a sequence of predicted secondary structure types for each amino acid-provided by external structure prediction programs. Our program can be used in the set-up phase of a protein structure prediction process; the structures created with it serve as input for a subsequent global internal energy minimization, or another method of protein structure prediction. Our program supports basic visualization methods for protein structures, interactive manipulation based on inverse kinematics, and visualization guides to aid a user in creating ''good'' initial structures.

  19. Recombinant Collagenlike Proteins

    NASA Technical Reports Server (NTRS)

    Fertala, Andzej

    2007-01-01

    A group of collagenlike recombinant proteins containing high densities of biologically active sites has been invented. The method used to express these proteins is similar to a method of expressing recombinant procollagens and collagens described in U. S. Patent 5,593,859, "Synthesis of human procollagens and collagens in recombinant DNA systems." Customized collagenous proteins are needed for biomedical applications. In particular, fibrillar collagens are attractive for production of matrices needed for tissue engineering and drug delivery. Prior to this invention, there was no way of producing customized collagenous proteins for these and other applications. Heretofore, collagenous proteins have been produced by use of such biological systems as yeasts, bacteria, and transgenic animals and plants. These products are normal collagens that can also be extracted from such sources as tendons, bones, and hides. These products cannot be made to consist only of biologically active, specific amino acid sequences that may be needed for specific applications. Prior to this invention, it had been established that fibrillar collagens consist of domains that are responsible for such processes as interaction with cells, binding of growth factors, and interaction with a number of structural proteins present in the extracellular matrix. A normal collagen consists of a sequence of domains that can be represented by a corresponding sequence of labels, e.g., D1D2D3D4. A collagenlike protein of the present invention contains regions of collagen II that contain multiples of a single domain (e.g., D1D1D1D1 or D4D4D4D4) chosen for its specific biological activity. By virtue of the multiplicity of the chosen domain, the density of sites having that specific biological activity is greater than it is in a normal collagen. A collagenlike protein according to this invention can thus be made to have properties that are necessary for tissue engineering.

  20. Occupational protein contact dermatitis.

    PubMed

    Barbaud, Annick; Poreaux, Claire; Penven, Emmanuelle; Waton, Julie

    2015-01-01

    Occupational contact dermatitis is generally caused by haptens but can also be induced by proteins causing mainly immunological contact urticaria (ICU); chronic hand eczema in the context of protein contact dermatitis (PCD). In a monocentric retrospective study, from our database, only 31 (0.41%) of patients with contact dermatitis had positive skin tests with proteins: 22 had occupational PCD, 3 had non-occupational PCD, 5 occupational ICU and 1 cook had a neutrophilic fixed food eruption (NFFE) due to fish. From these results and analysis of literature, the characteristics of PCD can be summarized as follows. It is a chronic eczematous dermatitis, possibly exacerbated by work, suggestive if associated with inflammatory perionyxix and immediate erythema with pruritis, to be investigated when the patient resumes work after a period of interruption. Prick tests with the suspected protein-containing material are essential, as patch tests have negative results. In case of multisensitisation revealed by prick tests, it is advisable to analyse IgE against recombinant allergens. A history of atopy, found in 56 to 68% of the patients, has to be checked for. Most of the cases are observed among food-handlers but PCD can also be due to non-edible plants, latex, hydrolysed proteins or animal proteins. Occupational exposure to proteins can thus lead to the development of ICU. Reflecting hypersensitivity to very low concentrations of allergens, investigating ICU therefore requires caution and prick tests should be performed with a diluted form of the causative protein-containing product. Causes are food, especially fruit peel, non-edible plants, cosmetic products, latex, animals.

  1. Chirality and protein biosynthesis.

    PubMed

    Banik, Sindrila Dutta; Nandi, Nilashis

    2013-01-01

    Chirality is present at all levels of structural hierarchy of protein and plays a significant role in protein biosynthesis. The macromolecules involved in protein biosynthesis such as aminoacyl tRNA synthetase and ribosome have chiral subunits. Despite the omnipresence of chirality in the biosynthetic pathway, its origin, role in current pathway, and importance is far from understood. In this review we first present an introduction to biochirality and its relevance to protein biosynthesis. Major propositions about the prebiotic origin of biomolecules are presented with particular reference to proteins and nucleic acids. The problem of the origin of homochirality is unresolved at present. The chiral discrimination by enzymes involved in protein synthesis is essential for keeping the life process going. However, questions remained pertaining to the mechanism of chiral discrimination and concomitant retention of biochirality. We discuss the experimental evidence which shows that it is virtually impossible to incorporate D-amino acids in protein structures in present biosynthetic pathways via any of the two major steps of protein synthesis, namely aminoacylation and peptide bond formation reactions. Molecular level explanations of the stringent chiral specificity in each step are extended based on computational analysis. A detailed account of the current state of understanding of the mechanism of chiral discrimination during aminoacylation in the active site of aminoacyl tRNA synthetase and peptide bond formation in ribosomal peptidyl transferase center is presented. Finally, it is pointed out that the understanding of the mechanism of retention of enantiopurity has implications in developing novel enzyme mimetic systems and biocatalysts and might be useful in chiral drug design.

  2. Protein Nitrogen Determination

    NASA Astrophysics Data System (ADS)

    Nielsen, S. Suzanne

    The protein content of foods can be determined by numerous methods. The Kjeldahl method and the nitrogen combustion (Dumas) method for protein analysis are based on nitrogen determination. Both methods are official for the purposes of nutrition labeling of foods. While the Kjeldahl method has been used widely for over a hundred years, the recent availability of automated instrumentation for the Dumas method in many cases is replacing use of the Kjeldahl method.

  3. Colorimetric protein assay techniques.

    PubMed

    Sapan, C V; Lundblad, R L; Price, N C

    1999-04-01

    There has been an increase in the number of colorimetric assay techniques for the determination of protein concentration over the past 20 years. This has resulted in a perceived increase in sensitivity and accuracy with the advent of new techniques. The present review considers these advances with emphasis on the potential use of such technologies in the assay of biopharmaceuticals. The techniques reviewed include Coomassie Blue G-250 dye binding (the Bradford assay), the Lowry assay, the bicinchoninic acid assay and the biuret assay. It is shown that each assay has advantages and disadvantages relative to sensitivity, ease of performance, acceptance in the literature, accuracy and reproducibility/coefficient of variation/laboratory-to-laboratory variation. A comparison of the use of several assays with the same sample population is presented. It is suggested that the most critical issue in the use of a chromogenic protein assay for the characterization of a biopharmaceutical is the selection of a standard for the calibration of the assay; it is crucial that the standard be representative of the sample. If it is not possible to match the standard with the sample from the perspective of protein composition, then it is preferable to use an assay that is not sensitive to the composition of the protein such as a micro-Kjeldahl technique, quantitative amino acid analysis or the biuret assay. In a complex mixture it might be inappropriate to focus on a general method of protein determination and much more informative to use specific methods relating to the protein(s) of particular interest, using either specific assays or antibody-based methods. The key point is that whatever method is adopted as the 'gold standard' for a given protein, this method needs to be used routinely for calibration.

  4. Protein conducting nanopores

    NASA Astrophysics Data System (ADS)

    Harsman, Anke; Krüger, Vivien; Bartsch, Philipp; Honigmann, Alf; Schmidt, Oliver; Rao, Sanjana; Meisinger, Christof; Wagner, Richard

    2010-11-01

    About 50% of the cellular proteins have to be transported into or across cellular membranes. This transport is an essential step in the protein biosynthesis. In eukaryotic cells secretory proteins are transported into the endoplasmic reticulum before they are transported in vesicles to the plasma membrane. Almost all proteins of the endosymbiotic organelles chloroplasts and mitochondria are synthesized on cytosolic ribosomes and posttranslationally imported. Genetic, biochemical and biophysical approaches led to rather detailed knowledge on the composition of the translocon-complexes which catalyze the membrane transport of the preproteins. Comprehensive concepts on the targeting and membrane transport of polypeptides emerged, however little detail on the molecular nature and mechanisms of the protein translocation channels comprising nanopores has been achieved. In this paper we will highlight recent developments of the diverse protein translocation systems and focus particularly on the common biophysical properties and functions of the protein conducting nanopores. We also provide a first analysis of the interaction between the genuine protein conducting nanopore Tom40SC as well as a mutant Tom40SC (\\mathrm {S}_{54} \\to E ) containing an additional negative charge at the channel vestibule and one of its native substrates, CoxIV, a mitochondrial targeting peptide. The polypeptide induced a voltage-dependent increase in the frequency of channel closure of Tom40SC corresponding to a voltage-dependent association rate, which was even more pronounced for the Tom40SC S54E mutant. The corresponding dwelltime reflecting association/transport of the peptide could be determined with \\bar {t}_{\\mathrm {off}} \\cong 1.1 ms for the wildtype, whereas the mutant Tom40SC S54E displayed a biphasic dwelltime distribution (\\bar {t}_{\\mathrm {off}}^1 \\cong 0.4 ms \\bar {t}_{\\mathrm {off}}^2 \\cong 4.6 ms).

  5. Fast protein folding kinetics

    PubMed Central

    Gelman, Hannah; Gruebele, Martin

    2014-01-01

    Fast folding proteins have been a major focus of computational and experimental study because they are accessible to both techniques: they are small and fast enough to be reasonably simulated with current computational power, but have dynamics slow enough to be observed with specially developed experimental techniques. This coupled study of fast folding proteins has provided insight into the mechanisms which allow some proteins to find their native conformation well less than 1 ms and has uncovered examples of theoretically predicted phenomena such as downhill folding. The study of fast folders also informs our understanding of even “slow” folding processes: fast folders are small, relatively simple protein domains and the principles that govern their folding also govern the folding of more complex systems. This review summarizes the major theoretical and experimental techniques used to study fast folding proteins and provides an overview of the major findings of fast folding research. Finally, we examine the themes that have emerged from studying fast folders and briefly summarize their application to protein folding in general as well as some work that is left to do. PMID:24641816

  6. Motor proteins 1: kinesins.

    PubMed

    Bloom, G S; Endow, S A

    1995-01-01

    Progress regarding the kinesins is now being made at a rapid and accelerating rate. The in vivo-functions, and biophysical and enzymatic properties of kinesin itself are being explored at ever increasing levels of detail. The kinesin-related proteins now number several dozen, and although more is known about primary structure than function for most of the proteins, this trend is already reversing. For example, knowledge about the kinesin-related protein, ncd, is expanding rapidly, and more is already known about its three-dimensional structure than is known for kinesin heavy chain. This volume presents a comprehensive review of the major published works on kinesin and kinesin-related proteins. Hopefully, this manuscript will complement other recent review articles [17, 20, 25, 37, 60-62, 67, 69, 75, 85-88, 231, 233, 238, 244, 269-271, 281, 282, 292] or books [49, 227, 293] that have focused on more selective aspects of the kinesin family, or have been aimed more generally at MT motor proteins. In line with the stated purpose of the Protein Profile series, annual updates of the review on the kinesins are planned for at least the next few years.

  7. Protein phosphorylation and photorespiration.

    PubMed

    Hodges, M; Jossier, M; Boex-Fontvieille, E; Tcherkez, G

    2013-07-01

    Photorespiration allows the recycling of carbon atoms of 2-phosphoglycolate produced by ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) oxygenase activity, as well as the removal of potentially toxic metabolites. The photorespiratory pathway takes place in the light, encompasses four cellular compartments and interacts with several other metabolic pathways and functions. Therefore, the regulation of this cycle is probably of paramount importance to plant metabolism, however, our current knowledge is poor. To rapidly respond to changing conditions, proteins undergo a number of different post-translational modifications that include acetylation, methylation and ubiquitylation, but protein phosphorylation is probably the most common. The reversible covalent addition of a phosphate group to a specific amino acid residue allows the modulation of protein function, such as activity, subcellular localisation, capacity to interact with other proteins and stability. Recent data indicate that many photorespiratory enzymes can be phosphorylated, and thus it seems that the photorespiratory cycle is, in part, regulated by protein phosphorylation. In this review, the known phosphorylation sites of each Arabidopsis thaliana photorespiratory enzyme and several photorespiratory-associated proteins are described and discussed. A brief account of phosphoproteomic protocols is also given since the published data compiled in this review are the fruit of this approach.

  8. Disease specific protein corona

    NASA Astrophysics Data System (ADS)

    Rahman, M.; Mahmoudi, M.

    2015-03-01

    It is now well accepted that upon their entrance into the biological environments, the surface of nanomaterials would be covered by various biomacromolecules (e.g., proteins and lipids). The absorption of these biomolecules, so called `protein corona', onto the surface of (nano)biomaterials confers them a new `biological identity'. Although the formation of protein coronas on the surface of nanoparticles has been widely investigated, there are few reports on the effect of various diseases on the biological identity of nanoparticles. As the type of diseases may tremendously changes the composition of the protein source (e.g., human plasma/serum), one can expect that amount and composition of associated proteins in the corona composition may be varied, in disease type manner. Here, we show that corona coated silica and polystyrene nanoparticles (after interaction with in the plasma of the healthy individuals) could induce unfolding of fibrinogen, which promotes release of the inflammatory cytokines. However, no considerable releases of inflammatory cytokines were observed for corona coated graphene sheets. In contrast, the obtained corona coated silica and polystyrene nanoparticles from the hypofibrinogenemia patients could not induce inflammatory cytokine release where graphene sheets do. Therefore, one can expect that disease-specific protein coronas can provide a novel approach for applying nanomedicine to personalized medicine, improving diagnosis and treatment of different diseases tailored to the specific conditions and circumstances.

  9. Cotton and Protein Interactions

    SciTech Connect

    Goheen, Steven C.; Edwards, J. V.; Rayburn, Alfred R.; Gaither, Kari A.; Castro, Nathan J.

    2006-06-30

    The adsorbent properties of important wound fluid proteins and cotton cellulose are reviewed. This review focuses on the adsorption of albumin to cotton-based wound dressings and some chemically modified derivatives targeted for chronic wounds. Adsorption of elastase in the presence of albumin was examined as a model to understand the interactive properties of these wound fluid components with cotton fibers. In the chronic non-healing wound, elastase appears to be over-expressed, and it digests tissue and growth factors, interfering with the normal healing process. Albumin is the most prevalent protein in wound fluid, and in highly to moderately exudative wounds, it may bind significantly to the fibers of wound dressings. Thus, the relative binding properties of both elastase and albumin to wound dressing fibers are of interest in the design of more effective wound dressings. The present work examines the binding of albumin to two different derivatives of cotton, and quantifies the elastase binding to the same derivatives following exposure of albumin to the fiber surface. An HPLC adsorption technique was employed coupled with a colorimetric enzyme assay to quantify the relative binding properties of albumin and elastase to cotton. The results of wound protein binding are discussed in relation to the porosity and surface chemistry interactions of cotton and wound proteins. Studies are directed to understanding the implications of protein adsorption phenomena in terms of fiber-protein models that have implications for rationally designing dressings for chronic wounds.

  10. Food protein sources.

    PubMed

    Pirie, N W

    1976-07-01

    Work on food, planned by the U.M. (Use and Management) Section of the U.K. committe, was limited to sources of protein because we agreed that more problems calling for research were likely to arise in getting adequate supplies of protein than of other types of food. Deer meat can be produced on land too rough and exposed for sheep; parts of the work on their metabolism and food requirements necessitated building a mobile laboratory. The manner in which the nutritive value of maize is affected by changes in the ratios in which the component proteins are present, stimulated similar studies on barley and groundnut. There is good quality protein in coconuts and leaves but its use in human food is restricted by the presence of fibre. Methods for separating protein from fibre and other deleterious components were improved. In cooperation with scientists in India and Nigeria, the potential yield of protein-deficient foods. e.g. cassava, were 'ennobled' by growing micro-organisms on them with the addition of a cheap source of nitrogen.

  11. Protein-Protein Interfaces in Viral Capsids Are Structurally Unique.

    PubMed

    Cheng, Shanshan; Brooks, Charles L

    2015-11-06

    Viral capsids exhibit elaborate and symmetrical architectures of defined sizes and remarkable mechanical properties not seen with cellular macromolecular complexes. Given the uniqueness of the higher-order organization of viral capsid proteins in the virosphere, we explored the question of whether the patterns of protein-protein interactions within viral capsids are distinct from those in generic protein complexes. Our comparative analysis involving a non-redundant set of 551 inter-subunit interfaces in viral capsids from VIPERdb and 20,014 protein-protein interfaces in non-capsid protein complexes from the Protein Data Bank found 418 generic protein-protein interfaces that share similar physicochemical patterns with some protein-protein interfaces in the capsid set, using the program PCalign we developed for comparing protein-protein interfaces. This overlap in the structural space of protein-protein interfaces is significantly small, with a p-value <0.0001, based on a permutation test on the total set of protein-protein interfaces. Furthermore, the generic protein-protein interfaces that bear similarity in their spatial and chemical arrangement with capsid ones are mostly small in size with fewer than 20 interfacial residues, which results from the relatively limited choices of natural design for small interfaces rather than having significant biological implications in terms of functional relationships. We conclude based on this study that protein-protein interfaces in viral capsids are non-representative of patterns in the smaller, more compact cellular protein complexes. Our finding highlights the design principle of building large biological containers from repeated, self-assembling units and provides insights into specific targets for antiviral drug design for improved efficacy.

  12. Protein crystal growth in space

    NASA Technical Reports Server (NTRS)

    Bugg, C. E.; Clifford, D. W.

    1987-01-01

    The advantages of protein crystallization in space, and the applications of protein crystallography to drug design, protein engineering, and the design of synthetic vaccines are examined. The steps involved in using protein crystallography to determine the three-dimensional structure of a protein are discussed. The growth chamber design and the hand-held apparatus developed for protein crystal growth by vapor diffusion techniques (hanging-drop method) are described; the experimental data from the four Shuttle missions are utilized to develop hardware for protein crystal growth in space and to evaluate the effects of gravity on protein crystal growth.

  13. Parallel Computational Protein Design

    PubMed Central

    Zhou, Yichao; Donald, Bruce R.; Zeng, Jianyang

    2016-01-01

    Computational structure-based protein design (CSPD) is an important problem in computational biology, which aims to design or improve a prescribed protein function based on a protein structure template. It provides a practical tool for real-world protein engineering applications. A popular CSPD method that guarantees to find the global minimum energy solution (GMEC) is to combine both dead-end elimination (DEE) and A* tree search algorithms. However, in this framework, the A* search algorithm can run in exponential time in the worst case, which may become the computation bottleneck of large-scale computational protein design process. To address this issue, we extend and add a new module to the OSPREY program that was previously developed in the Donald lab [1] to implement a GPU-based massively parallel A* algorithm for improving protein design pipeline. By exploiting the modern GPU computational framework and optimizing the computation of the heuristic function for A* search, our new program, called gOSPREY, can provide up to four orders of magnitude speedups in large protein design cases with a small memory overhead comparing to the traditional A* search algorithm implementation, while still guaranteeing the optimality. In addition, gOSPREY can be configured to run in a bounded-memory mode to tackle the problems in which the conformation space is too large and the global optimal solution cannot be computed previously. Furthermore, the GPU-based A* algorithm implemented in the gOSPREY program can be combined with the state-of-the-art rotamer pruning algorithms such as iMinDEE [2] and DEEPer [3] to also consider continuous backbone and side-chain flexibility. PMID:27914056

  14. Modeling Mercury in Proteins

    SciTech Connect

    Smith, Jeremy C; Parks, Jerry M

    2016-01-01

    Mercury (Hg) is a naturally occurring element that is released into the biosphere both by natural processes and anthropogenic activities. Although its reduced, elemental form Hg(0) is relatively non-toxic, other forms such as Hg2+ and, in particular, its methylated form, methylmercury, are toxic, with deleterious effects on both ecosystems and humans. Microorganisms play important roles in the transformation of mercury in the environment. Inorganic Hg2+ can be methylated by certain bacteria and archaea to form methylmercury. Conversely, bacteria also demethylate methylmercury and reduce Hg2+ to relatively inert Hg(0). Transformations and toxicity occur as a result of mercury interacting with various proteins. Clearly, then, understanding the toxic effects of mercury and its cycling in the environment requires characterization of these interactions. Computational approaches are ideally suited to studies of mercury in proteins because they can provide a detailed picture and circumvent issues associated with toxicity. Here we describe computational methods for investigating and characterizing how mercury binds to proteins, how inter- and intra-protein transfer of mercury is orchestrated in biological systems, and how chemical reactions in proteins transform the metal. We describe quantum chemical analyses of aqueous Hg(II), which reveal critical factors that determine ligand binding propensities. We then provide a perspective on how we used chemical reasoning to discover how microorganisms methylate mercury. We also highlight our combined computational and experimental studies of the proteins and enzymes of the mer operon, a suite of genes that confers mercury resistance in many bacteria. Lastly, we place work on mercury in proteins in the context of what is needed for a comprehensive multi-scale model of environmental mercury cycling.

  15. Benchtop Detection of Proteins

    NASA Technical Reports Server (NTRS)

    Scardelletti, Maximilian C.; Varaljay, Vanessa

    2007-01-01

    A process, and a benchtop-scale apparatus for implementing the process, have been developed to detect proteins associated with specific microbes in water. The process and apparatus may also be useful for detection of proteins in other, more complex liquids. There may be numerous potential applications, including monitoring lakes and streams for contamination, testing of blood and other bodily fluids in medical laboratories, and testing for microbial contamination of liquids in restaurants and industrial food-processing facilities. A sample can be prepared and analyzed by use of this process and apparatus within minutes, whereas an equivalent analysis performed by use of other processes and equipment can often take hours to days. The process begins with the conjugation of near-infrared-fluorescent dyes to antibodies that are specific to a particular protein. Initially, the research has focused on using near-infrared dyes to detect antigens or associated proteins in solution, which has proven successful vs. microbial cells, and streamlining the technique in use for surface protein detection on microbes would theoretically render similar results. However, it is noted that additional work is needed to transition protein-based techniques to microbial cell detection. Consequently, multiple such dye/antibody pairs could be prepared to enable detection of multiple selected microbial species, using a different dye for each species. When excited by near-infrared light of a suitable wavelength, each dye fluoresces at a unique longer wavelength that differs from those of the other dyes, enabling discrimination among the various species. In initial tests, the dye/antibody pairs are mixed into a solution suspected of containing the selected proteins, causing the binding of the dye/antibody pairs to such suspect proteins that may be present. The solution is then run through a microcentrifuge that includes a membrane that acts as a filter in that it retains the dye/antibody/protein

  16. Purine inhibitors of protein kinases, G proteins and polymerases

    DOEpatents

    Gray, Nathanael S.; Schultz, Peter; Kim, Sung-Hou; Meijer, Laurent

    2001-07-03

    The present invention relates to purine analogs that inhibit, inter alia, protein kinases, G-proteins and polymerases. In addition, the present invention relates to methods of using such purine analogs to inhibit protein kinases, G-proteins, polymerases and other cellular processes and to treat cellular proliferative diseases.

  17. Heat Capacity in Proteins

    NASA Astrophysics Data System (ADS)

    Prabhu, Ninad V.; Sharp, Kim A.

    2005-05-01

    Heat capacity (Cp) is one of several major thermodynamic quantities commonly measured in proteins. With more than half a dozen definitions, it is the hardest of these quantities to understand in physical terms, but the richest in insight. There are many ramifications of observed Cp changes: The sign distinguishes apolar from polar solvation. It imparts a temperature (T) dependence to entropy and enthalpy that may change their signs and which of them dominate. Protein unfolding usually has a positive ΔCp, producing a maximum in stability and sometimes cold denaturation. There are two heat capacity contributions, from hydration and protein-protein interactions; which dominates in folding and binding is an open question. Theoretical work to date has dealt mostly with the hydration term and can account, at least semiquantitatively, for the major Cp-related features: the positive and negative Cp of hydration for apolar and polar groups, respectively; the convergence of apolar group hydration entropy at T ≈ 112°C; the decrease in apolar hydration Cp with increasing T; and the T-maximum in protein stability and cold denaturation.

  18. The ras superfamily proteins.

    PubMed

    Chardin, P

    1988-07-01

    Several recent discoveries indicate that the ras genes, frequently activated to a transforming potential in some human tumours, belong to a large family that can be divided into three main branches: the first branch represented by the ras, ral and rap genes; the second branch, by the rho genes; and the third branch, by the rab genes. The C-terminal end of the encoded proteins always includes a cystein, which may become fatty-acylated, suggesting a sub-membrane localization. The ras superfamily proteins share four regions of high homology corresponding to the GTP binding site; however, even in these regions, significant differences are found, suggesting that the various proteins may possess slightly different biochemical properties. Recent reports show that some of these proteins play an essential role in the control of physical processes such as cell motility, membrane ruffling, endocytosis and exocytosis. Nevertheless, the characterization of the proteins directly interacting with the ras or ras-related gene-products will be required to precisely understand their function.

  19. [Protein metabolism in vegans].

    PubMed

    Okuda, T; Miyoshi-Nishimura, H; Makita, T; Sugawa-Katayama, Y; Hazama, T; Simizu, T; Yamaguchi, Y

    1994-11-01

    To elucidate the mechanisms of adaptation to a low-energy and low-protein vegan diet, we carried out dietary surveys and nitrogen balance studies five times during one year on two women and a man who ate raw brown rice, raw green vegetables, three kinds of raw roots, fruit and salt daily. Individual subjects modified this vegan diet slightly. The mean daily energy intake of the subjects was 18, 14, and 32 kcal/kg, of body weight. The loss of body weight was about 10% of the initial level. The daily nitrogen balance was -32, -33, and -11 mg N/kg of body weight. In spite of the negative nitrogen balance, the results of routine clinical tests, initially normal, did not change with the vegan diet. Ten months after the start of the vegan diet, the subjects were given 15N urea orally. The incorporation of 15N into serum proteins suggested that these subjects could utilize urea nitrogen for body protein synthesis. The level of 15N in serum proteins was close to the level in other normal adult men on a low-protein diet with adequate energy for 2 weeks.

  20. Protein Dynamics in Enzymology

    NASA Astrophysics Data System (ADS)

    Brooks, , III

    2001-03-01

    Enzymes carry-out the chemical activity essential for living processes by providing particular structural arrangements of chemically functional moieties through the structure of their constituent proteins. They are suggested to be optimized through evolution to specifically bind the transition state for the chemical processes they participate in, thereby enhancing the rate of these chemical events by 6-12 orders of magnitude. However, proteins are malleable and fluctuating many-body systems and may also utilize coupling between motional processes with catalysis to regulate or promote these processes. Our studies are aimed at exploring the hypothesis that motions of the protein couple distant regions of the molecule to assist catalytic processes. We demonstrate, through the use of molecular simulations, that strongly coupled motions occur in regions of protein molecules distant in sequence and space from each other, and the enzyme’s active site, when the protein is in a reactant state. Further, we find that the presence of this coupling disappears in complexes no longer reactive-competent, i.e., for product configurations and mutant sequences. The implications of these findings and aspects of evolutionary relationships and mutational studies which support the coupling hypothesis will be discussed in the context of our work on dihydrofolate reductase.

  1. Protein folding and de novo protein design for biotechnological applications

    PubMed Central

    Khoury, George A.; Smadbeck, James; Kieslich, Chris A.; Floudas, Christodoulos A.

    2014-01-01

    In the post-genomic era, the medical/biological fields are advancing faster than ever. However, before the power of full-genome sequencing can be fully realized, the connection between amino acid sequence and protein structure, known as the protein folding problem, needs to be elucidated. The protein folding problem remains elusive, with significant difficulties still arising when modeling amino acid sequences lacking an identifiable template. Understanding protein folding will allow for unforeseen advances in protein design, often referred as the inverse protein folding problem. Despite challenges in protein folding, de novo protein design has recently demonstrated significant success via computational techniques. We review advances and challenges in protein structure prediction and de novo protein design, and highlight their interplay in successful biotechnological applications. PMID:24268901

  2. Proteomic analysis of differentiating neuroblastoma cells treated with sub-lethal neurite inhibitory concentrations of diazinon: Identification of novel biomarkers of effect

    SciTech Connect

    Harris, W.; Sachana, M.; Flaskos, J.; Hargreaves, A.J.

    2009-10-15

    In previous work we showed that sub-lethal levels of diazinon inhibited neurite outgrowth in differentiating N2a neuroblastoma cells. Western blotting analysis targeted at proteins involved in axon growth and stress responses, revealed that such exposure led to a reduction in the levels of neurofilament heavy chain, microtubule associated protein 1 B (MAP 1B) and HSP-70. The aim of this study was to apply the approach of 2 dimensional polyacrylamide gel electrophoresis and mass spectrometry to identify novel biomarkers of effect. A number of proteins were found to be up-regulated compared to the control on silver-stained gels. These were classified in to 3 main groups of proteins: cytosolic factors, chaperones and the actin-binding protein cofilin, all of which are involved in cell differentiation, survival or metabolism. The changes observed for cofilin were further confirmed by quantitative Western blotting analysis with anti-actin and anti-cofilin antibodies. Indirect immunofluorescence staining with the same antibodies indicated that the microfilament network was disrupted in diazinon-treated cells. Our data suggest that microfilament organisation is disrupted by diazinon exposure, which may be related to increased cofilin expression.

  3. Matricellular proteins and biomaterials.

    PubMed

    Morris, Aaron H; Kyriakides, Themis R

    2014-07-01

    Biomaterials are essential to modern medicine as components of reconstructive implants, implantable sensors, and vehicles for localized drug delivery. Advances in biomaterials have led to progression from simply making implants that are nontoxic to making implants that are specifically designed to elicit particular functions within the host. The interaction of implants and the extracellular matrix during the foreign body response is a growing area of concern for the field of biomaterials, because it can lead to implant failure. Expression of matricellular proteins is modulated during the foreign body response and these proteins interact with biomaterials. The design of biomaterials to specifically alter the levels of matricellular proteins surrounding implants provides a new avenue for the design and fabrication of biomimetic biomaterials.

  4. Advanced protein formulations

    PubMed Central

    Wang, Wei

    2015-01-01

    It is well recognized that protein product development is far more challenging than that for small-molecule drugs. The major challenges include inherent sensitivity to different types of stresses during the drug product manufacturing process, high rate of physical and chemical degradation during long-term storage, and enhanced aggregation and/or viscosity at high protein concentrations. In the past decade, many novel formulation concepts and technologies have been or are being developed to address these product development challenges for proteins. These concepts and technologies include use of uncommon/combination of formulation stabilizers, conjugation or fusion with potential stabilizers, site-specific mutagenesis, and preparation of nontraditional types of dosage forms—semiaqueous solutions, nonfreeze-dried solid formulations, suspensions, and other emerging concepts. No one technology appears to be mature, ideal, and/or adequate to address all the challenges. These gaps will likely remain in the foreseeable future and need significant efforts for ultimate resolution. PMID:25858529

  5. Thermal hysteresis proteins.

    PubMed

    Barrett, J

    2001-02-01

    Extreme environments present a wealth of biochemical adaptations. Thermal hysteresis proteins (THPs) have been found in vertebrates, invertebrates, plants, bacteria and fungi and are able to depress the freezing point of water (in the presence of ice crystals) in a non-colligative manner by binding to the surface of nascent ice crystals. The THPs comprise a disparate group of proteins with a variety of tertiary structures and often no common sequence similarities or structural motifs. Different THPs bind to different faces of the ice crystal, and no single mechanism has been proposed to account for THP ice binding affinity and specificity. Experimentally THPs have been used in the cryopreservation of tissues and cells and to induce cold tolerance in freeze susceptible organisms. THPs represent a remarkable example of parallel and convergent evolution with different proteins being adapted for an anti-freeze role.

  6. Thermodynamics of Protein Aggregation

    NASA Astrophysics Data System (ADS)

    Osborne, Kenneth L.; Barz, Bogdan; Bachmann, Michael; Strodel, Birgit

    Amyloid protein aggregation characterizes many neurodegenerative disorders, including Alzheimer's, Parkinson's, and Creutz- feldt-Jakob disease. Evidence suggests that amyloid aggregates may share similar aggregation pathways, implying simulation of full-length amyloid proteins is not necessary for understanding amyloid formation. In this study we simulate GNNQQNY, the N-terminal prion-determining domain of the yeast protein Sup35 to investigate the thermodynamics of structural transitions during aggregation. We use a coarse-grained model with replica-exchange molecular dynamics to investigate the association of 3-, 6-, and 12-chain GNNQQNY systems and we determine the aggregation pathway by studying aggregation states of GN- NQQNY. We find that the aggregation of the hydrophilic GNNQQNY sequence is mainly driven by H-bond formation, leading to the formation of /3-sheets from the very beginning of the assembly process. Condensation (aggregation) and ordering take place simultaneously, which is underpinned by the occurrence of a single heat capacity peak only.

  7. Protein crystallization studies

    NASA Technical Reports Server (NTRS)

    Lyne, James Evans

    1996-01-01

    The Structural Biology laboratory at NASA Marshall Spaceflight Center uses x-ray crystallographic techniques to conduct research into the three-dimensional structure of a wide variety of proteins. A major effort in the laboratory involves an ongoing study of human serum albumin (the principal protein in human plasma) and its interaction with various endogenous substances and pharmaceutical agents. Another focus is on antigenic and functional proteins from several pathogenic organisms including the human immunodeficiency virus (HIV) and the widespread parasitic genus, Schistosoma. My efforts this summer have been twofold: first, to identify clinically significant drug interactions involving albumin binding displacement and to initiate studies of the three-dimensional structure of albumin complexed with these agents, and secondly, to establish collaborative efforts to extend the lab's work on human pathogens.

  8. Protein Crystal Serum Albumin

    NASA Technical Reports Server (NTRS)

    1998-01-01

    As the most abundant protein in the circulatory system albumin contributes 80% to colloid osmotic blood pressure. Albumin is also chiefly responsible for the maintenance of blood pH. It is located in every tissue and bodily secretion, with extracellular protein comprising 60% of total albumin. Perhaps the most outstanding property of albumin is its ability to bind reversibly to an incredible variety of ligands. It is widely accepted in the pharmaceutical industry that the overall distribution, metabolism, and efficiency of many drugs are rendered ineffective because of their unusually high affinity for this abundant protein. An understanding of the chemistry of the various classes of pharmaceutical interactions with albumin can suggest new approaches to drug therapy and design. Principal Investigator: Dan Carter/New Century Pharmaceuticals

  9. Tracking protein aggregate interactions

    PubMed Central

    Bartz, Jason C; Nilsson, K Peter R

    2011-01-01

    Amyloid fibrils share a structural motif consisting of highly ordered β-sheets aligned perpendicular to the fibril axis.1, 2 At each fibril end, β-sheets provide a template for recruiting and converting monomers.3 Different amyloid fibrils often co-occur in the same individual, yet whether a protein aggregate aids or inhibits the assembly of a heterologous protein is unclear. In prion disease, diverse prion aggregate structures, known as strains, are thought to be the basis of disparate disease phenotypes in the same species expressing identical prion protein sequences.4–7 Here we explore the interactions reported to occur when two distinct prion strains occur together in the central nervous system. PMID:21597336

  10. Bioinformatics and Moonlighting Proteins

    PubMed Central

    Hernández, Sergio; Franco, Luís; Calvo, Alejandra; Ferragut, Gabriela; Hermoso, Antoni; Amela, Isaac; Gómez, Antonio; Querol, Enrique; Cedano, Juan

    2015-01-01

    Multitasking or moonlighting is the capability of some proteins to execute two or more biochemical functions. Usually, moonlighting proteins are experimentally revealed by serendipity. For this reason, it would be helpful that Bioinformatics could predict this multifunctionality, especially because of the large amounts of sequences from genome projects. In the present work, we analyze and describe several approaches that use sequences, structures, interactomics, and current bioinformatics algorithms and programs to try to overcome this problem. Among these approaches are (a) remote homology searches using Psi-Blast, (b) detection of functional motifs and domains, (c) analysis of data from protein–protein interaction databases (PPIs), (d) match the query protein sequence to 3D databases (i.e., algorithms as PISITE), and (e) mutation correlation analysis between amino acids by algorithms as MISTIC. Programs designed to identify functional motif/domains detect mainly the canonical function but usually fail in the detection of the moonlighting one, Pfam and ProDom being the best methods. Remote homology search by Psi-Blast combined with data from interactomics databases (PPIs) has the best performance. Structural information and mutation correlation analysis can help us to map the functional sites. Mutation correlation analysis can only be used in very specific situations – it requires the existence of multialigned family protein sequences – but can suggest how the evolutionary process of second function acquisition took place. The multitasking protein database MultitaskProtDB (http://wallace.uab.es/multitask/), previously published by our group, has been used as a benchmark for the all of the analyses. PMID:26157797

  11. Antioxidants and protein oxidation.

    PubMed

    Griffiths, H R

    2000-11-01

    Proteins are susceptible to oxidation by reactive oxygen species, where the type of damage induced is characteristic of the denaturing species. The induction of protein carbonyls is a widely applied biomarker, arising from primary oxidative insult. However, when applied to complex biological and pathological conditions it can be subject to interference from lipid, carbohydrate and DNA oxidation products. More recently, interest has focused on the analysis of specific protein bound oxidised amino acids. Of the 22 amino acids, aromatic and sulphydryl containing residues have been regarded as being particularly susceptible to oxidative modification, with L-DOPA from tyrosine, ortho-tyrosine from phenylalanine; sulphoxides and disulphides from methionine and cysteine respectively; and kynurenines from tryptophan. Latterly, the identification of valine and leucine hydroxides, reduced from hydroperoxide intermediates, has been described and applied. In order to examine the nature of oxidative damage and protective efficacy of antioxidants the markers must be thoroughly evaluated for dosimetry in vitro following damage by specific radical species. Antioxidant protection against formation of the biomarker should be demonstrated in vitro. Quantification of biomarkers in proteins from normal subjects should be within the limits of detection of any analytical procedure. Further to this, the techniques for isolation and hydrolysis of specific proteins should demonstrate that in vitro oxidation is minimised. There is a need for the development of standards for quality assurance material to standardise procedures between laboratories. At present, antioxidant effects on protein oxidation in vivo are limited to animal studies, where dietary antioxidants have been reported to reduce dityrosine formation during rat exercise training. Two studies on humans have been reported last year. The further application of these methods to human studies is indicated, where the quality of the

  12. Discovery of binding proteins for a protein target using protein-protein docking-based virtual screening.

    PubMed

    Zhang, Changsheng; Tang, Bo; Wang, Qian; Lai, Luhua

    2014-10-01

    Target structure-based virtual screening, which employs protein-small molecule docking to identify potential ligands, has been widely used in small-molecule drug discovery. In the present study, we used a protein-protein docking program to identify proteins that bind to a specific target protein. In the testing phase, an all-to-all protein-protein docking run on a large dataset was performed. The three-dimensional rigid docking program SDOCK was used to examine protein-protein docking on all protein pairs in the dataset. Both the binding affinity and features of the binding energy landscape were considered in the scoring function in order to distinguish positive binding pairs from negative binding pairs. Thus, the lowest docking score, the average Z-score, and convergency of the low-score solutions were incorporated in the analysis. The hybrid scoring function was optimized in the all-to-all docking test. The docking method and the hybrid scoring function were then used to screen for proteins that bind to tumor necrosis factor-α (TNFα), which is a well-known therapeutic target for rheumatoid arthritis and other autoimmune diseases. A protein library containing 677 proteins was used for the screen. Proteins with scores among the top 20% were further examined. Sixteen proteins from the top-ranking 67 proteins were selected for experimental study. Two of these proteins showed significant binding to TNFα in an in vitro binding study. The results of the present study demonstrate the power and potential application of protein-protein docking for the discovery of novel binding proteins for specific protein targets.

  13. SAP family proteins.

    PubMed

    Fujita, A; Kurachi, Y

    2000-03-05

    Thus far, five members including Dlg, SAP97/hDlg, SAP90/PSD-95, SAP102, and PSD-93/chapsyn110 which belong to SAP family have been identified. Recent studies have revealed that these proteins play important roles in the localization and function of glutamate receptors and K(+) channels. Although most of them have been reported to be localized to the synapse, only one member, SAP97, is expressed also in the epithelial cells. In this review, we have summarized structural characters of SAP family proteins and discuss their functions in neurons and epithelial cells.

  14. Protein Biosynthesis in Mitochondria

    PubMed Central

    Kuzmenko, A. V.; Levitskii, S. A.; Vinogradova, E. N.; Atkinson, G. C.; Hauryliuk, V.; Zenkin, N.; Kamenski, P. A.

    2013-01-01

    Translation, that is biosynthesis of polypeptides in accordance with information encoded in the genome, is one of the most important processes in the living cell, and it has been in the spotlight of international research for many years. The mechanisms of protein biosynthesis in bacteria and in the eukaryotic cytoplasm are now understood in great detail. However, significantly less is known about translation in eukaryotic mitochondria, which is characterized by a number of unusual features. In this review, we summarize current knowledge about mitochondrial translation in different organisms while paying special attention to the aspects of this process that differ from cytoplasmic protein biosynthesis. PMID:24228873

  15. Congenital protein hypoglycosylation diseases

    PubMed Central

    Sparks, Susan E

    2012-01-01

    Glycosylation is an essential process by which sugars are attached to proteins and lipids. Complete lack of glycosylation is not compatible with life. Because of the widespread function of glycosylation, inherited disorders of glycosylation are multisystemic. Since the identification of the first defect on N-linked glycosylation in the 1980s, there are over 40 different congenital protein hypoglycosylation diseases. This review will include defects of N-linked glycosylation, O-linked glycosylation and disorders of combined N- and O-linked glycosylation. PMID:23776380

  16. [Protein-losing enteropathy].

    PubMed

    Parfenov, A I; Krums, L M

    2017-01-01

    Protein-losing enteropathy (PLE) is a rare complication of intestinal diseases. Its main manifestation is hypoproteinemic edema. The diagnosis of PLE is based on the verification of protein loss into the intestinal lumen, by determining fecal α1-antitrypsin concentration and clearance. The localization of the affected colonic segment is clarified using radiologic and endoscopic techniques. The mainstay of treatment for PLE is a fat-free diet enriched with medium-chain triglycerides. Surgical resection of the affected segment of the colon may be the treatment of choice for severe hypoproteinemia resistant to drug therapy.

  17. DELIVERY OF THERAPEUTIC PROTEINS

    PubMed Central

    Pisal, Dipak S.; Kosloski, Matthew P.; Balu-Iyer, Sathy V.

    2009-01-01

    The safety and efficacy of protein therapeutics are limited by three interrelated pharmaceutical issues, in vitro and in vivo instability, immunogenicity and shorter half-lives. Novel drug modifications for overcoming these issues are under investigation and include covalent attachment of poly(ethylene glycol) (PEG), polysialic acid, or glycolic acid, as well as developing new formulations containing nanoparticulate or colloidal systems (e.g. liposomes, polymeric microspheres, polymeric nanoparticles). Such strategies have the potential to develop as next generation protein therapeutics. This review includes a general discussion on these delivery approaches. PMID:20049941

  18. Protein biosynthesis in mitochondria.

    PubMed

    Kuzmenko, A V; Levitskii, S A; Vinogradova, E N; Atkinson, G C; Hauryliuk, V; Zenkin, N; Kamenski, P A

    2013-08-01

    Translation, that is biosynthesis of polypeptides in accordance with information encoded in the genome, is one of the most important processes in the living cell, and it has been in the spotlight of international research for many years. The mechanisms of protein biosynthesis in bacteria and in the eukaryotic cytoplasm are now understood in great detail. However, significantly less is known about translation in eukaryotic mitochondria, which is characterized by a number of unusual features. In this review, we summarize current knowledge about mitochondrial translation in different organisms while paying special attention to the aspects of this process that differ from cytoplasmic protein biosynthesis.

  19. Protein energy malnutrition.

    PubMed

    Grover, Zubin; Ee, Looi C

    2009-10-01

    Protein energy malnutrition (PEM) is a common problem worldwide and occurs in both developing and industrialized nations. In the developing world, it is frequently a result of socioeconomic, political, or environmental factors. In contrast, protein energy malnutrition in the developed world usually occurs in the context of chronic disease. There remains much variation in the criteria used to define malnutrition, with each method having its own limitations. Early recognition, prompt management, and robust follow up are critical for best outcomes in preventing and treating PEM.

  20. An introduction to protein moonlighting.

    PubMed

    Jeffery, Constance J

    2014-12-01

    Moonlighting proteins comprise a class of multifunctional proteins in which a single polypeptide chain performs multiple physiologically relevant biochemical or biophysical functions. Almost 300 proteins have been found to moonlight. The known examples of moonlighting proteins include diverse types of proteins, including receptors, enzymes, transcription factors, adhesins and scaffolds, and different combinations of functions are observed. Moonlighting proteins are expressed throughout the evolutionary tree and function in many different biochemical pathways. Some moonlighting proteins can perform both functions simultaneously, but for others, the protein's function changes in response to changes in the environment. The diverse examples of moonlighting proteins already identified, and the potential benefits moonlighting proteins might provide to the organism, such as through coordinating cellular activities, suggest that many more moonlighting proteins are likely to be found. Continuing studies of the structures and functions of moonlighting proteins will aid in predicting the functions of proteins identified through genome sequencing projects, in interpreting results from proteomics experiments, in understanding how different biochemical pathways interact in systems biology, in annotating protein sequence and structure databases, in studies of protein evolution and in the design of proteins with novel functions.

  1. Protein domain connectivity and essentiality

    NASA Astrophysics Data System (ADS)

    da F. Costa, L.; Rodrigues, F. A.; Travieso, G.

    2006-10-01

    Protein-protein interactions can be properly modeled as scale-free complex networks, while the lethality of proteins has been correlated with the node degrees, therefore defining a lethality-centrality rule. In this work the authors revisit this relevant problem by focusing attention not on proteins as a whole, but on their functional domains, which are ultimately responsible for their binding potential. Four networks are considered: the original protein-protein interaction network, its randomized version, and two domain networks assuming different lethality hypotheses. By using formal statistical analysis, they show that the correlation between connectivity and essentiality is higher for domains than for proteins.

  2. Conformation Distributions in Adsorbed Proteins.

    NASA Astrophysics Data System (ADS)

    Meuse, Curtis W.; Hubbard, Joseph B.; Vrettos, John S.; Smith, Jackson R.; Cicerone, Marcus T.

    2007-03-01

    While the structural basis of protein function is well understood in the biopharmaceutical and biotechnology industries, few methods for the characterization and comparison of protein conformation distributions are available. New methods capable of measuring the stability of protein conformations and the integrity of protein-protein, protein-ligand and protein-surface interactions both in solution and on surfaces are needed to help the development of protein-based products. We are developing infrared spectroscopy methods for the characterization and comparison of molecular conformation distributions in monolayers and in solutions. We have extracted an order parameter describing the orientational and conformational variations of protein functional groups around the average molecular values from a single polarized spectrum. We will discuss the development of these methods and compare them to amide hydrogen/deuterium exchange methods for albumin in solution and on different polymer surfaces to show that our order parameter is related to protein stability.

  3. NextGen protein design

    PubMed Central

    Regan, Lynne

    2014-01-01

    Protein engineering is at an exciting stage because designed protein–protein interactions are being used in many applications. For instance, three designed proteins are now in clinical trials. Although there have been many successes over the last decade, protein engineering still faces numerous challenges. Often, designs do not work as anticipated and they still require substantial redesign. The present review focuses on the successes, the challenges and the limitations of rational protein design today. PMID:24059497

  4. Conserved herpesvirus protein kinases

    PubMed Central

    Gershburg, Edward; Pagano, Joseph S.

    2008-01-01

    Conserved herpesviral protein kinases (CHPKs) are a group of enzymes conserved throughout all subfamilies of Herpesviridae. Members of this group are serine/threonine protein kinases that are likely to play a conserved role in viral infection by interacting with common host cellular and viral factors; however along with a conserved role, individual kinases may have unique functions in the context of viral infection in such a way that they are only partially replaceable even by close homologues. Recent studies demonstrated that CHPKs are crucial for viral infection and suggested their involvement in regulation of numerous processes at various infection steps (primary infection, nuclear egress, tegumentation), although the mechanisms of this regulation remain unknown. Notwithstanding, recent advances in discovery of new CHPK targets, and studies of CHPK knockout phenotypes have raised their attractiveness as targets for antiviral therapy. A number of compounds have been shown to inhibit the activity of human cytomegalovirus (HCMV)-encoded UL97 protein kinase and exhibit a pronounced antiviral effect, although the same compounds are inactive against Epstein-Barr Virus (EBV)-encoded protein kinase BGLF4, illustrating the fact that low homology between the members of this group complicates development of compounds targeting the whole group, and suggesting that individualized, structure-based inhibitor design will be more effective. Determination of CHPK structures will greatly facilitate this task. PMID:17881303

  5. Protein states and proteinquakes.

    PubMed Central

    Ansari, A; Berendzen, J; Bowne, S F; Frauenfelder, H; Iben, I E; Sauke, T B; Shyamsunder, E; Young, R D

    1985-01-01

    After photodissociation of carbon monoxide bound to myoglobin, the protein relaxes to the deoxy equilibrium structure in a quake-like motion. Investigation of the proteinquake and of related intramolecular equilibrium motions shows that states and motions have a hierarchical glass-like structure. PMID:3860839

  6. Dynamics of protein conformations

    NASA Astrophysics Data System (ADS)

    Stepanova, Maria

    2010-10-01

    A novel theoretical methodology is introduced to identify dynamic structural domains and analyze local flexibility in proteins. The methodology employs a multiscale approach combining identification of essential collective coordinates based on the covariance analysis of molecular dynamics trajectories, construction of the Mori projection operator with these essential coordinates, and analysis of the corresponding generalized Langevin equations [M.Stepanova, Phys.Rev.E 76(2007)051918]. Because the approach employs a rigorous theory, the outcomes are physically transparent: the dynamic domains are associated with regions of relative rigidity in the protein, whereas off-domain regions are relatively soft. This also allows scoring the flexibility in the macromolecule with atomic-level resolution [N.Blinov, M.Berjanskii, D.S.Wishart, and M.Stepanova, Biochemistry, 48(2009)1488]. The applications include the domain coarse-graining and characterization of conformational stability in protein G and prion proteins. The results are compared with published NMR experiments. Potential applications for structural biology, bioinformatics, and drug design are discussed.

  7. Proteins of Excitable Membranes

    PubMed Central

    Nachmansohn, David

    1969-01-01

    Excitable membranes have the special ability of changing rapidly and reversibly their permeability to ions, thereby controlling the ion movements that carry the electric currents propagating nerve impulses. Acetylcholine (ACh) is the specific signal which is released by excitation and is recognized by a specific protein, the ACh-receptor; it induces a conformational change, triggering off a sequence of reactions resulting in increased permeability. The hydrolysis of ACh by ACh-esterase restores the barrier to ions. The enzymes hydrolyzing and forming ACh and the receptor protein are present in the various types of excitable membranes. Properties of the two proteins directly associated with electrical activity, receptor and esterase, will be described in this and subsequent lectures. ACh-esterase has been shown to be located within the excitable membranes. Potent enzyme inhibitors block electrical activity demonstrating the essential role in this function. The enzyme has been recently crystallized and some protein properties will be described. The monocellular electroplax preparation offers a uniquely favorable material for analyzing the properties of the ACh-receptor and its relation to function. The essential role of the receptor in electrical activity has been demonstrated with specific receptor inhibitors. Recent data show the basically similar role of ACh in the axonal and junctional membranes; the differences of electrical events and pharmacological actions are due to variations of shape, structural organization, and environment. PMID:19873642

  8. Cellulose binding domain proteins

    SciTech Connect

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc; Doi, Roy

    1998-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  9. Chaos in protein dynamics.

    PubMed

    Braxenthaler, M; Unger, R; Auerbach, D; Given, J A; Moult, J

    1997-12-01

    MD simulations, currently the most detailed description of the dynamic evolution of proteins, are based on the repeated solution of a set of differential equations implementing Newton's second law. Many such systems are known to exhibit chaotic behavior, i.e., very small changes in initial conditions are amplified exponentially and lead to vastly different, inherently unpredictable behavior. We have investigated the response of a protein fragment in an explicit solvent environment to very small perturbations of the atomic positions (10(-3)-10(-9) A). Independent of the starting conformation (native-like, compact, extended), perturbed dynamics trajectories deviated rapidly, leading to conformations that differ by approximately 1 A RMSD within 1-2 ps. Furthermore, introducing the perturbation more than 1-2 ps before a significant conformational transition leads to a loss of the transition in the perturbed trajectories. We present evidence that the observed chaotic behavior reflects physical properties of the system rather than numerical instabilities of the calculation and discuss the implications for models of protein folding and the use of MD as a tool to analyze protein folding pathways.

  10. Tuber Storage Proteins

    PubMed Central

    SHEWRY, PETER R.

    2003-01-01

    A wide range of plants are grown for their edible tubers, but five species together account for almost 90 % of the total world production. These are potato (Solanum tuberosum), cassava (Manihot esculenta), sweet potato (Ipomoea batatus), yams (Dioscorea spp.) and taro (Colocasia, Cyrtosperma and Xanthosoma spp.). All of these, except cassava, contain groups of storage proteins, but these differ in the biological properties and evolutionary relationships. Thus, patatin from potato exhibits activity as an acylhydrolase and esterase, sporamin from sweet potato is an inhibitor of trypsin, and dioscorin from yam is a carbonic anhydrase. Both sporamin and dioscorin also exhibit antioxidant and radical scavenging activity. Taro differs from the other three crops in that it contains two major types of storage protein: a trypsin inhibitor related to sporamin and a mannose‐binding lectin. These characteristics indicate that tuber storage proteins have evolved independently in different species, which contrasts with the highly conserved families of storage proteins present in seeds. Furthermore, all exhibit biological activities which could contribute to resistance to pests, pathogens or abiotic stresses, indicating that they may have dual roles in the tubers. PMID:12730067

  11. Tuber storage proteins.

    PubMed

    Shewry, Peter R

    2003-06-01

    A wide range of plants are grown for their edible tubers, but five species together account for almost 90 % of the total world production. These are potato (Solanum tuberosum), cassava (Manihot esculenta), sweet potato (Ipomoea batatus), yams (Dioscorea spp.) and taro (Colocasia, Cyrtosperma and Xanthosoma spp.). All of these, except cassava, contain groups of storage proteins, but these differ in the biological properties and evolutionary relationships. Thus, patatin from potato exhibits activity as an acylhydrolase and esterase, sporamin from sweet potato is an inhibitor of trypsin, and dioscorin from yam is a carbonic anhydrase. Both sporamin and dioscorin also exhibit antioxidant and radical scavenging activity. Taro differs from the other three crops in that it contains two major types of storage protein: a trypsin inhibitor related to sporamin and a mannose-binding lectin. These characteristics indicate that tuber storage proteins have evolved independently in different species, which contrasts with the highly conserved families of storage proteins present in seeds. Furthermore, all exhibit biological activities which could contribute to resistance to pests, pathogens or abiotic stresses, indicating that they may have dual roles in the tubers.

  12. Protein thin film machines.

    PubMed

    Federici, Stefania; Oliviero, Giulio; Hamad-Schifferli, Kimberly; Bergese, Paolo

    2010-12-01

    We report the first example of microcantilever beams that are reversibly driven by protein thin film machines fueled by cycling the salt concentration of the surrounding solution. We also show that upon the same salinity stimulus the drive can be completely reversed in its direction by introducing a surface coating ligand. Experimental results are throughout discussed within a general yet simple thermodynamic model.

  13. Protein Crystal Bovine Insulin

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The comparison of protein crystal, Bovine Insulin space-grown (left) and earth-grown (right). Facilitates the incorporation of glucose into cells. In diabetics, there is either a decrease in or complete lack of insulin, thereby leading to several harmful complications. Principal Investigator is Larry DeLucas.

  14. 24-hour urine protein

    MedlinePlus

    ... your doctor may be able to order a test that is done on just one urine sample (protein-to-creatinine ratio). Normal Results The normal value is less than 100 milligrams per day or less than 10 milligrams per deciliter ... of these tests. Normal value ranges may vary slightly among different ...

  15. Protein Requirements during Aging

    PubMed Central

    Courtney-Martin, Glenda; Ball, Ronald O.; Pencharz, Paul B.; Elango, Rajavel

    2016-01-01

    Protein recommendations for elderly, both men and women, are based on nitrogen balance studies. They are set at 0.66 and 0.8 g/kg/day as the estimated average requirement (EAR) and recommended dietary allowance (RDA), respectively, similar to young adults. This recommendation is based on single linear regression of available nitrogen balance data obtained at test protein intakes close to or below zero balance. Using the indicator amino acid oxidation (IAAO) method, we estimated the protein requirement in young adults and in both elderly men and women to be 0.9 and 1.2 g/kg/day as the EAR and RDA, respectively. This suggests that there is no difference in requirement on a gender basis or on a per kg body weight basis between younger and older adults. The requirement estimates however are ~40% higher than the current protein recommendations on a body weight basis. They are also 40% higher than our estimates in young men when calculated on the basis of fat free mass. Thus, current recommendations may need to be re-assessed. Potential rationale for this difference includes a decreased sensitivity to dietary amino acids and increased insulin resistance in the elderly compared with younger individuals. PMID:27529275

  16. Cellulose binding domain proteins

    DOEpatents

    Shoseyov, O.; Shpiegl, I.; Goldstein, M.; Doi, R.

    1998-11-17

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques. 16 figs.

  17. Protein crystal growth

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Atomic force microscopy uses laser technology to reveal a defect, a double-screw dislocation, on the surface of this crystal of canavalin, a major source of dietary protein for humans and domestic animals. When a crystal grows, attachment kinetics and transport kinetics are competing for control of the molecules. As a molecule gets close to the crystal surface, it has to attach properly for the crystal to be usable. NASA has funded investigators to look at those attachment kinetics from a theoretical standpoint and an experimental standpoint. Dr. Alex McPherson of the University of California, Irvine, is one of those investigators. He uses X-ray diffraction and atomic force microscopy in his laboratory to answer some of the many questions about how protein crystals grow. Atomic force microscopy provides a means of looking at how individual molecules are added to the surface of growing protein crystals. This helps McPherson understand the kinetics of protein crystal growth. McPherson asks, How fast do crystals grow? What are the forces involved? Investigators funded by NASA have clearly shown that such factors as the level of supersaturation and the rate of growth all affect the habit [characteristic arrangement of facets] of the crystal and the defects that occur in the crystal.

  18. Protein specific polymeric immunomicrospheres

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor); Yen, Shiao-Ping S. (Inventor); Dreyer, William J. (Inventor)

    1980-01-01

    Small, round, bio-compatible microspheres capable of covalently bonding proteins and having a uniform diameter below about 3500 A are prepared by substantially instantaneously initiating polymerization of an aqueous emulsion containing no more than 35% total monomer including an acrylic monomer substituted with a covalently bondable group such as hydroxyl, amino or carboxyl and a minor amount of a cross-linking agent.

  19. Protein-protein interactions: methods for detection and analysis.

    PubMed Central

    Phizicky, E M; Fields, S

    1995-01-01

    The function and activity of a protein are often modulated by other proteins with which it interacts. This review is intended as a practical guide to the analysis of such protein-protein interactions. We discuss biochemical methods such as protein affinity chromatography, affinity blotting, coimmunoprecipitation, and cross-linking; molecular biological methods such as protein probing, the two-hybrid system, and phage display: and genetic methods such as the isolation of extragenic suppressors, synthetic mutants, and unlinked noncomplementing mutants. We next describe how binding affinities can be evaluated by techniques including protein affinity chromatography, sedimentation, gel filtration, fluorescence methods, solid-phase sampling of equilibrium solutions, and surface plasmon resonance. Finally, three examples of well-characterized domains involved in multiple protein-protein interactions are examined. The emphasis of the discussion is on variations in the approaches, concerns in evaluating the results, and advantages and disadvantages of the techniques. PMID:7708014

  20. Monobodies and other synthetic binding proteins for expanding protein science.

    PubMed

    Sha, Fern; Salzman, Gabriel; Gupta, Ankit; Koide, Shohei

    2017-03-01

    Synthetic binding proteins are constructed using nonantibody molecular scaffolds. Over the last two decades, in-depth structural and functional analyses of synthetic binding proteins have improved combinatorial library designs and selection strategies, which have resulted in potent platforms that consistently generate binding proteins to diverse targets with affinity and specificity that rival those of antibodies. Favorable attributes of synthetic binding proteins, such as small size, freedom from disulfide bond formation and ease of making fusion proteins, have enabled their unique applications in protein science, cell biology and beyond. Here, we review recent studies that illustrate how synthetic binding proteins are powerful probes that can directly link structure and function, often leading to new mechanistic insights. We propose that synthetic proteins will become powerful standard tools in diverse areas of protein science, biotechnology and medicine.

  1. Production of specific antibodies against protein A fusion proteins.

    PubMed Central

    Löwenadler, B; Nilsson, B; Abrahmsén, L; Moks, T; Ljungqvist, L; Holmgren, E; Paleus, S; Josephson, S; Philipson, L; Uhlén, M

    1986-01-01

    The gene for Staphylococcal protein A was fused to the coding sequence of bacterial beta-galactosidase, alkaline phosphatase and human insulin-like growth factor I (IGF-I). The fusion proteins, expressed in bacteria, were purified by affinity chromatography on IgG-Sepharose and antibodies were raised in rabbits. All three fusion proteins elicited specific antibodies against both the inserted protein sequences and the protein A moiety. In the case of IGF-I, the protein A moiety in the fusion protein may act as an adjuvant since native IGF-I alone is a poor immunogen. The results suggest that the protein A fusion system can be used for efficient antibody production against peptides or proteins expressed from cloned or synthetic genes. To facilitate such gene fusions a set of optimized vectors have been constructed. Images Fig. 2. Fig. 3. Fig. 4. Fig. 6. PMID:3096719

  2. Accessory proteins for heterotrimeric G-proteins in the kidney

    PubMed Central

    Park, Frank

    2015-01-01

    Heterotrimeric G-proteins play a fundamentally important role in regulating signal transduction pathways in the kidney. Accessory proteins are being identified as direct binding partners for heterotrimeric G-protein α or βγ subunits to promote more diverse mechanisms by which G-protein signaling is controlled. In some instances, accessory proteins can modulate the signaling magnitude, localization, and duration following the activation of cell membrane-associated receptors. Alternatively, accessory proteins complexed with their G-protein α or βγ subunits can promote non-canonical models of signaling activity within the cell. In this review, we will highlight the expression profile, localization and functional importance of these newly identified accessory proteins to control the function of select G-protein subunits under normal and various disease conditions observed in the kidney. PMID:26300785

  3. Exploring NMR ensembles of calcium binding proteins: Perspectives to design inhibitors of protein-protein interactions

    PubMed Central

    2011-01-01

    Background Disrupting protein-protein interactions by small organic molecules is nowadays a promising strategy employed to block protein targets involved in different pathologies. However, structural changes occurring at the binding interfaces make difficult drug discovery processes using structure-based drug design/virtual screening approaches. Here we focused on two homologous calcium binding proteins, calmodulin and human centrin 2, involved in different cellular functions via protein-protein interactions, and known to undergo important conformational changes upon ligand binding. Results In order to find suitable protein conformations of calmodulin and centrin for further structure-based drug design/virtual screening, we performed in silico structural/energetic analysis and molecular docking of terphenyl (a mimicking alpha-helical molecule known to inhibit protein-protein interactions of calmodulin) into X-ray and NMR ensembles of calmodulin and centrin. We employed several scoring methods in order to find the best protein conformations. Our results show that docking on NMR structures of calmodulin and centrin can be very helpful to take into account conformational changes occurring at protein-protein interfaces. Conclusions NMR structures of protein-protein complexes nowadays available could efficiently be exploited for further structure-based drug design/virtual screening processes employed to design small molecule inhibitors of protein-protein interactions. PMID:21569443

  4. Protein Molecular Structures, Protein SubFractions, and Protein Availability Affected by Heat Processing: A Review

    SciTech Connect

    Yu,P.

    2007-01-01

    The utilization and availability of protein depended on the types of protein and their specific susceptibility to enzymatic hydrolysis (inhibitory activities) in the gastrointestine and was highly associated with protein molecular structures. Studying internal protein structure and protein subfraction profiles leaded to an understanding of the components that make up a whole protein. An understanding of the molecular structure of the whole protein was often vital to understanding its digestive behavior and nutritive value in animals. In this review, recently obtained information on protein molecular structural effects of heat processing was reviewed, in relation to protein characteristics affecting digestive behavior and nutrient utilization and availability. The emphasis of this review was on (1) using the newly advanced synchrotron technology (S-FTIR) as a novel approach to reveal protein molecular chemistry affected by heat processing within intact plant tissues; (2) revealing the effects of heat processing on the profile changes of protein subfractions associated with digestive behaviors and kinetics manipulated by heat processing; (3) prediction of the changes of protein availability and supply after heat processing, using the advanced DVE/OEB and NRC-2001 models, and (4) obtaining information on optimal processing conditions of protein as intestinal protein source to achieve target values for potential high net absorbable protein in the small intestine. The information described in this article may give better insight in the mechanisms involved and the intrinsic protein molecular structural changes occurring upon processing.

  5. An evaluation of in vitro protein-protein interaction techniques: assessing contaminating background proteins.

    PubMed

    Howell, Jenika M; Winstone, Tara L; Coorssen, Jens R; Turner, Raymond J

    2006-04-01

    Determination of protein-protein interactions is an important component in assigning function and discerning the biological relevance of proteins within a broader cellular context. In vitro protein-protein interaction methodologies, including affinity chromatography, coimmunoprecipitation, and newer approaches such as protein chip arrays, hold much promise in the detection of protein interactions, particularly in well-characterized organisms with sequenced genomes. However, each of these approaches attracts certain background proteins that can thwart detection and identification of true interactors. In addition, recombinant proteins expressed in Escherichia coli are also extensively used to assess protein-protein interactions, and background proteins in these isolates can thus contaminate interaction studies. Rigorous validation of a true interaction thus requires not only that an interaction be found by alternate techniques, but more importantly that researchers be aware of and control for matrix/support dependence. Here, we evaluate these methods for proteins interacting with DmsD (an E. coli redox enzyme maturation protein chaperone), in vitro, using E. coli subcellular fractions as prey sources. We compare and contrast the various in vitro interaction methods to identify some of the background proteins and protein profiles that are inherent to each of the methods in an E. coli system.

  6. Direct Probing of Protein-Protein Interactions

    SciTech Connect

    Noy, A; Sulchek, T A; Friddle, R W

    2005-03-10

    This project aimed to establish feasibility of using experimental techniques based on direct measurements of interaction forces on the single molecule scale to characterize equilibrium interaction potentials between individual biological molecules. Such capability will impact several research areas, ranging from rapid interaction screening capabilities to providing verifiable inputs for computational models. It should be one of the enabling technologies for modern proteomics research. This study used a combination of Monte-Carlo simulations, theoretical considerations, and direct experimental measurements to investigate two model systems that represented typical experimental situations: force-induced melting of DNA rigidly attached to the tip, and force-induced unbinding of a protein-antibody pair connected to flexible tethers. Our results establish that for both systems researchers can use force spectroscopy measurements to extract reliable information about equilibrium interaction potentials. However, the approaches necessary to extract these potentials in each case--Jarzynski reconstruction and Dynamic Force Spectroscopy--are very different. We also show how the thermodynamics and kinetics of unbinding process dictates the choice between in each case.

  7. Septins: Regulators of Protein Stability

    PubMed Central

    Vagin, Olga; Beenhouwer, David O.

    2016-01-01

    Septins are small GTPases that play a role in several important cellular processes. In this review, we focus on the roles of septins in protein stabilization. Septins may regulate protein stability by: (1) interacting with proteins involved in degradation pathways, (2) regulating the interaction between transmembrane proteins and cytoskeletal proteins, (3) affecting the mobility of transmembrane proteins in lipid bilayers, and (4) modulating the interaction of proteins with their adaptor or signaling proteins. In this context, we discuss the role of septins in protecting four different proteins from degradation. First we consider botulinum neurotoxin serotype A (BoNT/A) and the contribution of septins to its extraordinarily long intracellular persistence. Next, we discuss the role of septins in stabilizing the receptor tyrosine kinases EGFR and ErbB2. Finally, we consider the contribution of septins in protecting hypoxia-inducible factor 1α (HIF-1α) from degradation. PMID:28066764

  8. The quality of microparticulated protein.

    PubMed

    Erdman, J W

    1990-08-01

    The purpose of this paper is to describe the effects of microparticulation upon the quality of microparticulated protein products and to confirm that microparticulation does not result in changes in protein structure or quality different from those that occur with cooking. Two products were tested: microparticulated egg white and skim milk proteins and microparticulated whey protein concentrate. Three approaches were used to monitor for changes in amino acid and protein value: amino acid analysis, protein efficiency ratio (PER) bioassay, and both one- and two-dimensional sodium dodecyl sulfate polyacrylamide gel electrophoresis. Evaluation of the results of these tests indicates that no significant differences were found when comparing the premix before and after microparticulation. Significant differences also did not occur when the premix was cooked using conventional methods. Collectively, the data provide strong evidence that the protein microparticulation process used to prepare microparticulated protein products (e.g., Simplesse) does not alter the quality or nutritional value of protein in the final products.

  9. Dissecting protein-protein interactions using directed evolution.

    PubMed

    Bonsor, Daniel A; Sundberg, Eric J

    2011-04-05

    Protein-protein interactions are essential for life. They are responsible for most cellular functions and when they go awry often lead to disease. Proteins are inherently complex. They are flexible macromolecules whose constituent amino acid components act in combinatorial and networked ways when they engage one another in binding interactions. It is just this complexity that allows them to conduct such a broad array of biological functions. Despite decades of intense study of the molecular basis of protein-protein interactions, key gaps in our understanding remain, hindering our ability to accurately predict the specificities and affinities of their interactions. Until recently, most protein-protein investigations have been probed experimentally at the single-amino acid level, making them, by definition, incapable of capturing the combinatorial nature of, and networked communications between, the numerous residues within and outside of the protein-protein interface. This aspect of protein-protein interactions, however, is emerging as a major driving force for protein affinity and specificity. Understanding a combinatorial process necessarily requires a combinatorial experimental tool. Much like the organisms in which they reside, proteins naturally evolve over time, through a combinatorial process of mutagenesis and selection, to functionally associate. Elucidating the process by which proteins have evolved may be one of the keys to deciphering the molecular rules that govern their interactions with one another. Directed evolution is a technique performed in the laboratory that mimics natural evolution on a tractable time scale that has been utilized widely to engineer proteins with novel capabilities, including altered binding properties. In this review, we discuss directed evolution as an emerging tool for dissecting protein-protein interactions.

  10. 14-3-3 proteins: regulators of numerous eukaryotic proteins.

    PubMed

    van Heusden, G Paul H

    2005-09-01

    14-3-3 proteins form a family of highly conserved proteins capable of binding to more than 200 different mostly phosphorylated proteins. They are present in all eukaryotic organisms investigated, often in multiple isoforms, up to 13 in some plants. 14-3-3 binding partners are involved in almost every cellular process and 14-3-3 proteins play a key role in these processes. 14-3-3 proteins interact with products encoded by oncogenes, with filament forming proteins involved in Alzheimer'ss disease and many other proteins related to human diseases. Disturbance of the interactions with 14-3-3 proteins may lead to diseases like cancer and the neurological Miller-Dieker disease. The molecular consequences of 14-3-3 binding are diverse and only partly understood. Binding of a protein to a 14-3-3 protein may result in stabilization of the active or inactive phosphorylated form of the protein, to a conformational alteration leading to activation or inhibition, to a different subcellular localization or to the interaction with other proteins. Currently genome- and proteome-wide studies are contributing to a wider knowledge of this important family of proteins.

  11. Quantification of the Influence of Protein-Protein Interactions on Adsorbed Protein Structure and Bioactivity

    PubMed Central

    Wei, Yang; Thyparambil, Aby A.; Latour, Robert A.

    2013-01-01

    While protein-surface interactions have been widely studied, relatively little is understood at this time regarding how protein-surface interaction effects are influenced by protein-protein interactions and how these effects combine with the internal stability of a protein to influence its adsorbed-state structure and bioactivity. The objectives of this study were to develop a method to study these combined effects under widely varying protein-protein interaction conditions using hen egg-white lysozyme (HEWL) adsorbed on silica glass, poly(methyl methacrylate), and polyethylene as our model systems. In order to vary protein-protein interaction effects over a wide range, HEWL was first adsorbed to each surface type under widely varying protein solution concentrations for 2 h to saturate the surface, followed by immersion in pure buffer solution for 15 h to equilibrate the adsorbed protein layers in the absence of additionally adsorbing protein. Periodic measurements were made at selected time points of the areal density of the adsorbed protein layer as an indicator of the level of protein-protein interaction effects within the layer, and these values were then correlated with measurements of the adsorbed protein’s secondary structure and bioactivity. The results from these studies indicate that protein-protein interaction effects help stabilize the structure of HEWL adsorbed on silica glass, have little influence on the structural behavior of HEWL on HDPE, and actually serve to destabilize HEWL’s structure on PMMA. The bioactivity of HEWL on silica glass and HDPE was found to decrease in direct proportion to the degree of adsorption-induce protein unfolding. A direct correlation between bioactivity and the conformational state of adsorbed HEWL was less apparent on PMMA, thus suggesting that other factors influenced HEWL’s bioactivity on this surface, such as the accessibility of HEWL’s bioactive site being blocked by neighboring proteins or the surface

  12. Hydrogels Constructed from Engineered Proteins.

    PubMed

    Li, Hongbin; Kong, Na; Laver, Bryce; Liu, Junqiu

    2016-02-24

    Due to their various potential biomedical applications, hydrogels based on engineered proteins have attracted considerable interest. Benefitting from significant progress in recombinant DNA technology and protein engineering/design techniques, the field of protein hydrogels has made amazing progress. The latest progress of hydrogels constructed from engineered recombinant proteins are presented, mainly focused on biorecognition-driven physical hydrogels as well as chemically crosslinked hydrogels. The various bio-recognition based physical crosslinking strategies are discussed, as well as chemical crosslinking chemistries used to engineer protein hydrogels, and protein hydrogels' various biomedical applications. The future perspectives of this fast evolving field of biomaterials are also discussed.

  13. Protein misfolding disorders and macroautophagy

    PubMed Central

    Menzies, Fiona M; Moreau, Kevin; Rubinsztein, David C

    2011-01-01

    A large group of diseases, termed protein misfolding disorders, share the common feature of the accumulation of misfolded proteins. The possibility of a common mechanism underlying either the pathogenesis or therapy for these diseases is appealing. Thus, there is great interest in the role of protein degradation via autophagy in such conditions where the protein is found in the cytoplasm. Here we review the growing evidence supporting a role for autophagic dysregulation as a contributing factor to protein accumulation and cellular toxicity in certain protein misfolding disorders and discuss the available evidence that upregulation of autophagy may be a valuable therapeutic strategy. PMID:21087849

  14. Redox control of protein degradation

    PubMed Central

    Pajares, Marta; Jiménez-Moreno, Natalia; Dias, Irundika H.K.; Debelec, Bilge; Vucetic, Milica; Fladmark, Kari E.; Basaga, Huveyda; Ribaric, Samo; Milisav, Irina; Cuadrado, Antonio

    2015-01-01

    Intracellular proteolysis is critical to maintain timely degradation of altered proteins including oxidized proteins. This review attempts to summarize the most relevant findings about oxidant protein modification, as well as the impact of reactive oxygen species on the proteolytic systems that regulate cell response to an oxidant environment: the ubiquitin-proteasome system (UPS), autophagy and the unfolded protein response (UPR). In the presence of an oxidant environment, these systems are critical to ensure proteostasis and cell survival. An example of altered degradation of oxidized proteins in pathology is provided for neurodegenerative diseases. Future work will determine if protein oxidation is a valid target to combat proteinopathies. PMID:26381917

  15. Biological Applications of Protein Splicing

    PubMed Central

    Vila-Perelló, Miquel; Muir, Tom W.

    2010-01-01

    Protein splicing is a naturally-occurring process in which a protein editor, called an intein, performs a molecular disappearing act by cutting itself out of a host protein in a traceless manner. In the two decades since its discovery, protein splicing has been harnessed for the development of several protein-engineering methods. Collectively, these technologies help bridge the fields of chemistry and biology, allowing hitherto impossible manipulations of protein covalent structure. These tools and their application are the subject of this Primer. PMID:20946979

  16. Misfolded Proteins and Retinal Dystrophies

    PubMed Central

    Lin, Jonathan H.; LaVail, Matthew M.

    2010-01-01

    Many mutations associated with retinal degeneration lead to the production of misfolded proteins by cells of the retina. Emerging evidence suggests that these abnormal proteins cause cell death by activating the Unfolded Protein Response, a set of conserved intracellular signaling pathways that detect protein misfolding within the endoplasmic reticulum and control protective and proapoptotic signal transduction pathways. Here, we review the misfolded proteins associated with select types of retinitis pigmentosa, Stargadt-like macular degeneration, and Doyne Honeycomb Retinal Dystrophy and discuss the role that endoplasmic reticulum stress and UPR signaling play in their pathogenesis. Last, we review new therapies for these diseases based on preventing protein misfolding in the retina. PMID:20238009

  17. Functionalizing Microporous Membranes for Protein Purification and Protein Digestion.

    PubMed

    Dong, Jinlan; Bruening, Merlin L

    2015-01-01

    This review examines advances in the functionalization of microporous membranes for protein purification and the development of protease-containing membranes for controlled protein digestion prior to mass spectrometry analysis. Recent studies confirm that membranes are superior to bead-based columns for rapid protein capture, presumably because convective mass transport in membrane pores rapidly brings proteins to binding sites. Modification of porous membranes with functional polymeric films or TiO₂ nanoparticles yields materials that selectively capture species ranging from phosphopeptides to His-tagged proteins, and protein-binding capacities often exceed those of commercial beads. Thin membranes also provide a convenient framework for creating enzyme-containing reactors that afford control over residence times. With millisecond residence times, reactors with immobilized proteases limit protein digestion to increase sequence coverage in mass spectrometry analysis and facilitate elucidation of protein structures. This review emphasizes the advantages of membrane-based techniques and concludes with some challenges for their practical application.

  18. Functionalizing Microporous Membranes for Protein Purification and Protein Digestion

    NASA Astrophysics Data System (ADS)

    Dong, Jinlan; Bruening, Merlin L.

    2015-07-01

    This review examines advances in the functionalization of microporous membranes for protein purification and the development of protease-containing membranes for controlled protein digestion prior to mass spectrometry analysis. Recent studies confirm that membranes are superior to bead-based columns for rapid protein capture, presumably because convective mass transport in membrane pores rapidly brings proteins to binding sites. Modification of porous membranes with functional polymeric films or TiO2 nanoparticles yields materials that selectively capture species ranging from phosphopeptides to His-tagged proteins, and protein-binding capacities often exceed those of commercial beads. Thin membranes also provide a convenient framework for creating enzyme-containing reactors that afford control over residence times. With millisecond residence times, reactors with immobilized proteases limit protein digestion to increase sequence coverage in mass spectrometry analysis and facilitate elucidation of protein structures. This review emphasizes the advantages of membrane-based techniques and concludes with some challenges for their practical application.

  19. Statistical analysis and prediction of protein-protein interfaces.

    PubMed

    Bordner, Andrew J; Abagyan, Ruben

    2005-08-15

    Predicting protein-protein interfaces from a three-dimensional structure is a key task of computational structural proteomics. In contrast to geometrically distinct small molecule binding sites, protein-protein interface are notoriously difficult to predict. We generated a large nonredundant data set of 1494 true protein-protein interfaces using biological symmetry annotation where necessary. The data set was carefully analyzed and a Support Vector Machine was trained on a combination of a new robust evolutionary conservation signal with the local surface properties to predict protein-protein interfaces. Fivefold cross validation verifies the high sensitivity and selectivity of the model. As much as 97% of the predicted patches had an overlap with the true interface patch while only 22% of the surface residues were included in an average predicted patch. The model allowed the identification of potential new interfaces and the correction of mislabeled oligomeric states.

  20. Mx proteins: antiviral proteins by chance or by necessity?

    PubMed

    Arnheiter, H; Meier, E

    1990-10-01

    The interferon-inducible Mx1 protein is responsible for inborn resistance of mice to influenza. It is now recognized that this protein is a member of a family of interferon-inducible, putative GTP-binding proteins found in many organisms. Thus, these proteins, called the Mx proteins, are found in species that are naturally infected with influenza virus, and also in species that are not. Some Mx proteins display a broader antiviral profile than the one observed for Mx1 in mice. Others, however, may not be antiviral. Two recently discovered GTP-binding proteins, Vps1p in yeast and dynamin in rat, are also related to Mx1. These proteins are synthesized constitutively and serve basic cellular functions.

  1. Collaborative protein filaments.

    PubMed

    Ghosal, Debnath; Löwe, Jan

    2015-09-14

    It is now well established that prokaryotic cells assemble diverse proteins into dynamic cytoskeletal filaments that perform essential cellular functions. Although most of the filaments assemble on their own to form higher order structures, growing evidence suggests that there are a number of prokaryotic proteins that polymerise only in the presence of a matrix such as DNA, lipid membrane or even another filament. Matrix-assisted filament systems are frequently nucleotide dependent and cytomotive but rarely considered as part of the bacterial cytoskeleton. Here, we categorise this family of filament-forming systems as collaborative filaments and introduce a simple nomenclature. Collaborative filaments are frequent in both eukaryotes and prokaryotes and are involved in vital cellular processes including chromosome segregation, DNA repair and maintenance, gene silencing and cytokinesis to mention a few. In this review, we highlight common principles underlying collaborative filaments and correlate these with known functions.

  2. Protein engineering of subtilisin.

    PubMed

    Bryan, P N

    2000-12-29

    The serine protease subtilisin is an important industrial enzyme as well as a model for understanding the enormous rate enhancements affected by enzymes. For these reasons along with the timely cloning of the gene, ease of expression and purification and availability of atomic resolution structures, subtilisin became a model system for protein engineering studies in the 1980s. Fifteen years later, mutations in well over 50% of the 275 amino acids of subtilisin have been reported in the scientific literature. Most subtilisin engineering has involved catalytic amino acids, substrate binding regions and stabilizing mutations. Stability has been the property of subtilisin which has been most amenable to enhancement, yet perhaps least understood. This review will give a brief overview of the subtilisin engineering field, critically review what has been learned about subtilisin stability from protein engineering experiments and conclude with some speculation about the prospects for future subtilisin engineering.

  3. A magnetic protein biocompass

    NASA Astrophysics Data System (ADS)

    Qin, Siying; Yin, Hang; Yang, Celi; Dou, Yunfeng; Liu, Zhongmin; Zhang, Peng; Yu, He; Huang, Yulong; Feng, Jing; Hao, Junfeng; Hao, Jia; Deng, Lizong; Yan, Xiyun; Dong, Xiaoli; Zhao, Zhongxian; Jiang, Taijiao; Wang, Hong-Wei; Luo, Shu-Jin; Xie, Can

    2016-02-01

    The notion that animals can detect the Earth’s magnetic field was once ridiculed, but is now well established. Yet the biological nature of such magnetosensing phenomenon remains unknown. Here, we report a putative magnetic receptor (Drosophila CG8198, here named MagR) and a multimeric magnetosensing rod-like protein complex, identified by theoretical postulation and genome-wide screening, and validated with cellular, biochemical, structural and biophysical methods. The magnetosensing complex consists of the identified putative magnetoreceptor and known magnetoreception-related photoreceptor cryptochromes (Cry), has the attributes of both Cry- and iron-based systems, and exhibits spontaneous alignment in magnetic fields, including that of the Earth. Such a protein complex may form the basis of magnetoreception in animals, and may lead to applications across multiple fields.

  4. A magnetic protein biocompass.

    PubMed

    Qin, Siying; Yin, Hang; Yang, Celi; Dou, Yunfeng; Liu, Zhongmin; Zhang, Peng; Yu, He; Huang, Yulong; Feng, Jing; Hao, Junfeng; Hao, Jia; Deng, Lizong; Yan, Xiyun; Dong, Xiaoli; Zhao, Zhongxian; Jiang, Taijiao; Wang, Hong-Wei; Luo, Shu-Jin; Xie, Can

    2016-02-01

    The notion that animals can detect the Earth's magnetic field was once ridiculed, but is now well established. Yet the biological nature of such magnetosensing phenomenon remains unknown. Here, we report a putative magnetic receptor (Drosophila CG8198, here named MagR) and a multimeric magnetosensing rod-like protein complex, identified by theoretical postulation and genome-wide screening, and validated with cellular, biochemical, structural and biophysical methods. The magnetosensing complex consists of the identified putative magnetoreceptor and known magnetoreception-related photoreceptor cryptochromes (Cry), has the attributes of both Cry- and iron-based systems, and exhibits spontaneous alignment in magnetic fields, including that of the Earth. Such a protein complex may form the basis of magnetoreception in animals, and may lead to applications across multiple fields.

  5. Microdosing of protein drugs.

    PubMed

    Rowland, M

    2016-02-01

    Poor pharmacokinetics (PK) can seriously limit clinical utility. Knowing early whether a new compound is likely to have the desired PK profile at therapeutic doses is therefore important. One approach, microdosing, has shown high success with small molecular weight compounds, despite early skepticism. Vlaming et al. report the first, and successful, clinical application of a microdose of a humanized recombinant protein. But what is the likely success for this class of drugs more generally?

  6. Prion protein and aging

    PubMed Central

    Gasperini, Lisa; Legname, Giuseppe

    2014-01-01

    The cellular prion protein (PrPC) has been widely investigated ever since its conformational isoform, the prion (or PrPSc), was identified as the etiological agent of prion disorders. The high homology shared by the PrPC-encoding gene among mammals, its high turnover rate and expression in every tissue strongly suggest that PrPC may possess key physiological functions. Therefore, defining PrPC roles, properties and fate in the physiology of mammalian cells would be fundamental to understand its pathological involvement in prion diseases. Since the incidence of these neurodegenerative disorders is enhanced in aging, understanding PrPC functions in this life phase may be of crucial importance. Indeed, a large body of evidence suggests that PrPC plays a neuroprotective and antioxidant role. Moreover, it has been suggested that PrPC is involved in Alzheimer disease, another neurodegenerative pathology that develops predominantly in the aging population. In prion diseases, PrPC function is likely lost upon protein aggregation occurring in the course of the disease. Additionally, the aging process may alter PrPC biochemical properties, thus influencing its propensity to convert into PrPSc. Both phenomena may contribute to the disease development and progression. In Alzheimer disease, PrPC has a controversial role because its presence seems to mediate β-amyloid toxicity, while its down-regulation correlates with neuronal death. The role of PrPC in aging has been investigated from different perspectives, often leading to contrasting results. The putative protein functions in aging have been studied in relation to memory, behavior and myelin maintenance. In aging mice, PrPC changes in subcellular localization and post-translational modifications have been explored in an attempt to relate them to different protein roles and propensity to convert into PrPSc. Here we provide an overview of the most relevant studies attempting to delineate PrPC functions and fate in aging

  7. Dissecting Amelogenin Protein Nanospheres

    PubMed Central

    Bromley, Keith M.; Kiss, Andrew S.; Lokappa, Sowmya Bekshe; Lakshminarayanan, Rajamani; Fan, Daming; Ndao, Moise; Evans, John Spencer; Moradian-Oldak, Janet

    2011-01-01

    Amelogenin self-assembles to form an extracellular protein matrix, which serves as a template for the continuously growing enamel apatite crystals. To gain further insight into the molecular mechanism of amelogenin nanosphere formation, we manipulated the interactions between amelogenin monomers by altering pH, temperature, and protein concentration to create isolated metastable amelogenin oligomers. Recombinant porcine amelogenins (rP172 and rP148) and three different mutants containing only a single tryptophan (Trp161, Trp45, and Trp25) were used. Dynamic light scattering and fluorescence studies demonstrated that oligomers were metastable and in constant equilibrium with monomers. Stable oligomers with an average hydrodynamic radius (RH) of 7.5 nm were observed at pH 5.5 between 4 and 10 mg·ml−1. We did not find any evidence of a significant increase in folding upon self-association of the monomers into oligomers, indicating that they are disordered. Fluorescence experiments with single tryptophan amelogenins revealed that upon oligomerization the C terminus of amelogenin (around residue Trp161) is exposed at the surface of the oligomers, whereas the N-terminal region around Trp25 and Trp45 is involved in protein-protein interaction. The truncated rP148 formed similar but smaller oligomers, suggesting that the C terminus is not critical for amelogenin oligomerization. We propose a model for nanosphere formation via oligomers, and we predict that nanospheres will break up to form oligomers in mildly acidic environments via histidine protonation. We further suggest that oligomeric structures might be functional components during maturation of enamel apatite. PMID:21840988

  8. Bone morphogenetic protein

    SciTech Connect

    Xiao Yongtao; Xiang Lixin; Shao Jianzhong

    2007-10-26

    Bone morphogenetic proteins (BMPs) are multi-functional growth factors belonging to the transforming growth factor-beta superfamily. It has been demonstrated that BMPs had been involved in the regulation of cell proliferation, survival, differentiation and apoptosis. However, their hallmark ability is that play a pivotal role in inducing bone, cartilage, ligament, and tendon formation at both heterotopic and orthotopic sites. In this review, we mainly concentrate on BMP structure, function, molecular signaling and potential medical application.

  9. Teaching resources. Protein kinases.

    PubMed

    Caplan, Avrom

    2005-02-22

    This Teaching Resource provides lecture notes and slides for a class covering the structure and function of protein kinases and is part of the course "Cell Signaling Systems: A Course for Graduate Students." The lecture begins with a discussion of the genomics and evolutionary relationships among kinases and then proceeds to describe the structure-function relationships of specific kinases, the molecular mechanisms underlying substrate specificity, and selected issues in regulation of kinase activity.

  10. Protein-Protein Fusion Catalyzed by Sortase A

    PubMed Central

    Levary, David A.; Parthasarathy, Ranganath; Boder, Eric T.; Ackerman, Margaret E.

    2011-01-01

    Chimeric proteins boast widespread use in areas ranging from cell biology to drug delivery. Post-translational protein fusion using the bacterial transpeptidase sortase A provides an attractive alternative when traditional gene fusion fails. We describe use of this enzyme for in vitro protein ligation and report the successful fusion of 10 pairs of protein domains with preserved functionality — demonstrating the robust and facile nature of this reaction. PMID:21494692

  11. Purine inhibitors of protein kinases, G proteins and polymerases

    DOEpatents

    Gray, Nathanael S.; Schultz, Peter; Kim, Sung-Hou; Meijer, Laurent

    2004-10-12

    The present invention relates to 2-N-substituted 6-(4-methoxybenzylamino)-9-isopropylpurines that inhibit, inter alia, protein kinases, G-proteins and polymerases. In addition, the present invention relates to methods of using such 2-N-substituted 6-(4-methoxybenzylamino)-9-isopropylpurines to inhibit protein kinases, G-proteins, polymerases and other cellular processes and to treat cellular proliferative diseases.

  12. Process for protein PEGylation.

    PubMed

    Pfister, David; Morbidelli, Massimo

    2014-04-28

    PEGylation is a versatile drug delivery technique that presents a particularly wide range of conjugation chemistry and polymer structure. The conjugated protein can be tuned to specifically meet the needs of the desired application. In the area of drug delivery this typically means to increase the persistency in the human body without affecting the activity profile of the original protein. On the other hand, because of the high costs associated with the production of therapeutic proteins, subsequent operations imposed by PEGylation must be optimized to minimize the costs inherent to the additional steps. The closest attention has to be given to the PEGylation reaction engineering and to the subsequent purification processes. This review article focuses on these two aspects and critically reviews the current state of the art with a clear focus on the development of industrial scale processes which can meet the market requirements in terms of quality and costs. The possibility of using continuous processes, with integration between the reaction and the separation steps is also illustrated.

  13. Papillomavirus E6 proteins

    SciTech Connect

    Howie, Heather L.; Katzenellenbogen, Rachel A.; Galloway, Denise A.

    2009-02-20

    The papillomaviruses are small DNA viruses that encode approximately eight genes, and require the host cell DNA replication machinery for their viral DNA replication. Thus papillomaviruses have evolved strategies to induce host cell DNA synthesis balanced with strategies to protect the cell from unscheduled replication. While the papillomavirus E1 and E2 genes are directly involved in viral replication by binding to and unwinding the origin of replication, the E6 and E7 proteins have auxillary functions that promote proliferation. As a consequence of disrupting the normal checkpoints that regulate cell cycle entry and progression, the E6 and E7 proteins play a key role in the oncogenic properties of human papillomaviruses with a high risk of causing anogenital cancers (HR HPVs). As a consequence, E6 and E7 of HR HPVs are invariably expressed in cervical cancers. This article will focus on the E6 protein and its numerous activities including inactivating p53, blocking apoptosis, activating telomerase, disrupting cell adhesion, polarity and epithelial differentiation, altering transcription and reducing immune recognition.

  14. Papillomavirus E6 proteins

    PubMed Central

    Howie, Heather L; Katzenellenbogen, Rachel A; Galloway, Denise A

    2009-01-01

    The papillomaviruses are small DNA viruses that encode approximately eight genes, and require the host cell DNA replication machinery for their viral DNA replication. Thus papillomaviruses have evolved strategies to induce host cell DNA synthesis balanced with strategies to protect the cell from unscheduled replication. While the papillomavirus E1 and E2 genes are directly involved in viral replication by binding to and unwinding the origin of replication, the E6 and E7 proteins have auxillary functions that promote proliferation. As a consequence of disrupting the normal checkpoints that regulate cell cycle entry and progression, the E6 and E7 proteins play a key role in the oncogenic properties of human papillomaviruses with a high risk of causing anogenital cancers (HR HPVs). As a consequence, E6 and E7 of HR HPVs are invariably expressed in cervical cancers. This article will focus on the E6 protein and its numerous activities including inactivating p53, blocking apoptosis, activating telomerase, disrupting cell adhesion, polarity and epithelial differentiation, altering transcription and reducing immune recognition. PMID:19081593

  15. Analysis of secreted proteins.

    PubMed

    Severino, Valeria; Farina, Annarita; Chambery, Angela

    2013-01-01

    Most biological processes including growth, proliferation, differentiation, and apoptosis are coordinated by tightly regulated signaling pathways, which also involve secreted proteins acting in an autocrine and/or paracrine manner. In addition, extracellular signaling molecules affect local niche biology and influence the cross-talking with the surrounding tissues. The understanding of this molecular language may provide an integrated and broader view of cellular regulatory networks under physiological and pathological conditions. In this context, the profiling at a global level of cell secretomes (i.e., the subpopulations of a proteome secreted from the cell) has become an active area of research. The current interest in secretome research also deals with its high potential for the biomarker discovery and the identification of new targets for therapeutic strategies. Several proteomic and mass spectrometry platforms and methodologies have been applied to secretome profiling of conditioned media of cultured cell lines and primary cells. Nevertheless, the analysis of secreted proteins is still a very challenging task, because of the technical difficulties that may hamper the subsequent mass spectrometry analysis. This chapter describes a typical workflow for the analysis of proteins secreted by cultured cells. Crucial issues related to cell culture conditions for the collection of conditioned media, secretome preparation, and mass spectrometry analysis are discussed. Furthermore, an overview of quantitative LC-MS-based approaches, computational tools for data analysis, and strategies for validation of potential secretome biomarkers is also presented.

  16. Infrared Protein Crystallography

    SciTech Connect

    J Sage; Y Zhang; J McGeehan; R Ravelli; M Weik; J van Thor

    2011-12-31

    We consider the application of infrared spectroscopy to protein crystals, with particular emphasis on exploiting molecular orientation through polarization measurements on oriented single crystals. Infrared microscopes enable transmission measurements on individual crystals using either thermal or nonthermal sources, and can accommodate flow cells, used to measure spectral changes induced by exposure to soluble ligands, and cryostreams, used for measurements of flash-cooled crystals. Comparison of unpolarized infrared measurements on crystals and solutions probes the effects of crystallization and can enhance the value of the structural models refined from X-ray diffraction data by establishing solution conditions under which they are most relevant. Results on several proteins are consistent with similar equilibrium conformational distributions in crystal and solutions. However, the rates of conformational change are often perturbed. Infrared measurements also detect products generated by X-ray exposure, including CO{sub 2}. Crystals with favorable symmetry exhibit infrared dichroism that enhances the synergy with X-ray crystallography. Polarized infrared measurements on crystals can distinguish spectral contributions from chemically similar sites, identify hydrogen bonding partners, and, in opportune situations, determine three-dimensional orientations of molecular groups. This article is part of a Special Issue entitled: Protein Structure and Function in the Crystalline State.

  17. A Bayesian Framework for Combining Protein and Network Topology Information for Predicting Protein-Protein Interactions.

    PubMed

    Birlutiu, Adriana; d'Alché-Buc, Florence; Heskes, Tom

    2015-01-01

    Computational methods for predicting protein-protein interactions are important tools that can complement high-throughput technologies and guide biologists in designing new laboratory experiments. The proteins and the interactions between them can be described by a network which is characterized by several topological properties. Information about proteins and interactions between them, in combination with knowledge about topological properties of the network, can be used for developing computational methods that can accurately predict unknown protein-protein interactions. This paper presents a supervised learning framework based on Bayesian inference for combining two types of information: i) network topology information, and ii) information related to proteins and the interactions between them. The motivation of our model is that by combining these two types of information one can achieve a better accuracy in predicting protein-protein interactions, than by using models constructed from these two types of information independently.

  18. Predicting disease-related proteins based on clique backbone in protein-protein interaction network.

    PubMed

    Yang, Lei; Zhao, Xudong; Tang, Xianglong

    2014-01-01

    Network biology integrates different kinds of data, including physical or functional networks and disease gene sets, to interpret human disease. A clique (maximal complete subgraph) in a protein-protein interaction network is a topological module and possesses inherently biological significance. A disease-related clique possibly associates with complex diseases. Fully identifying disease components in a clique is conductive to uncovering disease mechanisms. This paper proposes an approach of predicting disease proteins based on cliques in a protein-protein interaction network. To tolerate false positive and negative interactions in protein networks, extending cliques and scoring predicted disease proteins with gene ontology terms are introduced to the clique-based method. Precisions of predicted disease proteins are verified by disease phenotypes and steadily keep to more than 95%. The predicted disease proteins associated with cliques can partly complement mapping between genotype and phenotype, and provide clues for understanding the pathogenesis of serious diseases.

  19. S-linked protein homocysteinylation: identifying targets based on structural, physicochemical and protein-protein interactions of homocysteinylated proteins.

    PubMed

    Silla, Yumnam; Sundaramoorthy, Elayanambi; Talwar, Puneet; Sengupta, Shantanu

    2013-05-01

    An elevated level of homocysteine, a thiol-containing amino acid is associated with a wide spectrum of disease conditions. A majority (>80 %) of the circulating homocysteine exist in protein-bound form. Homocysteine can bind to free cysteine residues in the protein or could cleave accessible cysteine disulfide bonds via thiol disulfide exchange reaction. Binding of homocysteine to proteins could potentially alter the structure and/or function of the protein. To date only 21 proteins have been experimentally shown to bind homocysteine. In this study we attempted to identify other proteins that could potentially bind to homocysteine based on the criteria that such proteins will have significant 3D structural homology with the proteins that have been experimentally validated and have solvent accessible cysteine residues either with high dihedral strain energy (for cysteine-cysteine disulfide bonds) or low pKa (for free cysteine residues). This analysis led us to the identification of 78 such proteins of which 68 proteins had 154 solvent accessible disulfide cysteine pairs with high dihedral strain energy and 10 proteins had free cysteine residues with low pKa that could potentially bind to homocysteine. Further, protein-protein interaction network was built to identify the interacting partners of these putative homocysteine binding proteins. We found that the 21 experimentally validated proteins had 174 interacting partners while the 78 proteins identified in our analysis had 445 first interacting partners. These proteins are mainly involved in biological activities such as complement and coagulation pathway, focal adhesion, ECM-receptor, ErbB signalling and cancer pathways, etc. paralleling the disease-specific attributes associated with hyperhomocysteinemia.

  20. [Methods for analysis of protein-protein and protein-ligand interactions].

    PubMed

    Durech, M; Trčka, F; Vojtěšek, B; Müller, P

    2014-01-01

    In order to maintain cellular homeostasis, cellular proteins coexist in complex and variable molecular assemblies. Therefore, understanding of major physiological processes at molecular level is based on analysis of protein-protein interaction networks. Firstly, composition of the molecular assembly has to be qualitatively analyzed. In the next step, quantitative bio-chemical properties of the identified protein-protein interactions are determined. Detailed information about the protein-protein interaction interface can be obtained by crystallographic methods. Accordingly, the insight into the molecular architecture of these protein-protein complexes allows us to rationally design new synthetic compounds that specifically influence various physiological or pathological processes by targeted modulation of protein interactions. This review is focused on description of the most used methods applied in both qualitative and quantitative analysis of protein-protein interactions. Co- immunoprecipitation and affinity co- precipitation are basic methods designed for qualitative analysis of protein binding partners. Further bio-chemical analysis of the interaction requires definition of kinetic and thermodynamic parameters. Surface plasmon resonance (SPR) is used for description of affinity and kinetic profile of the interaction, fluorescence polarization (FP) method for fast determination of inhibition potential of inhibitors and isothermal titration calorimetry (ITC) for definition of thermodynamic parameters of the interaction (G, H and S). Besides the importance of uncovering the molecular basis of protein interactions for basic research, the same methodological approaches open new possibilities in rational design of novel therapeutic agents.

  1. Understanding Protein Non-Folding

    PubMed Central

    Uversky, Vladimir N.; Dunker, A. Keith

    2010-01-01

    This review describes the family of intrinsically disordered proteins, members of which fail to form rigid 3-D structures under physiological conditions, either along their entire lengths or only in localized regions. Instead, these intriguing proteins/regions exist as dynamic ensembles within which atom positions and backbone Ramachandran angles exhibit extreme temporal fluctuations without specific equilibrium values. Many of these intrinsically disordered proteins are known to carry out important biological functions which, in fact, depend on the absence of specific 3-D structure. The existence of such proteins does not fit the prevailing structure-function paradigm, which states that unique 3-D structure is a prerequisite to function. Thus, the protein structure-function paradigm has to be expanded to include intrinsically disordered proteins and alternative relationships among protein sequence, structure, and function. This shift in the paradigm represents a major breakthrough for biochemistry, biophysics and molecular biology, as it opens new levels of understanding with regard to the complex life of proteins. This review will try to answer the following questions: How were intrinsically disordered proteins discovered? Why don't these proteins fold? What is so special about intrinsic disorder? What are the functional advantages of disordered proteins/regions? What is the functional repertoire of these proteins? What are the relationships between intrinsically disordered proteins and human diseases? PMID:20117254

  2. Why fibrous proteins are romantic.

    PubMed

    Cohen, C

    1998-01-01

    Here I give a personal account of the great history of fibrous protein structure. I describe how Astbury first recognized the essential simplicity of fibrous proteins and their paradigmatic role in protein structure. The poor diffraction patterns yielded by these proteins were then deciphered by Pauling, Crick, Ramachandran and others (in part by model building) to reveal alpha-helical coiled coils, beta-sheets, and the collagen triple helical coiled coil-all characterized by different local sequence periodicities. Longer-range sequence periodicities (or "magic numbers") present in diverse fibrous proteins, such as collagen, tropomyosin, paramyosin, myosin, and were then shown to account for the characteristic axial repeats observed in filaments of these proteins. More recently, analysis of fibrous protein structure has been extended in many cases to atomic resolution, and some systems, such as "leucine zippers," are providing a deeper understanding of protein design than similar studies of globular proteins. In the last sections, I provide some dramatic examples of fibrous protein dynamics. One example is the so-called "spring-loaded" mechanism for viral fusion by the hemagglutinin protein of influenza. Another is the possible conformational changes in prion proteins, implicated in "mad cow disease," which may be related to similar transitions in a variety of globular and fibrous proteins.

  3. Protein-protein interactions in the synaptonemal complex.

    PubMed Central

    Tarsounas, M; Pearlman, R E; Gasser, P J; Park, M S; Moens, P B

    1997-01-01

    In mammalian systems, an approximately M(r) 30,000 Cor1 protein has been identified as a major component of the meiotic prophase chromosome cores, and a M(r) 125,000 Syn1 protein is present between homologue cores where they are synapsed and form the synaptonemal complex (SC). Immunolocalization of these proteins during meiosis suggests possible homo- and heterotypic interactions between the two as well as possible interactions with yet unrecognized proteins. We used the two-hybrid system in the yeast Saccharomyces cerevisiae to detect possible protein-protein associations. Segments of hamsters Cor1 and Syn1 proteins were tested in various combinations for homo- and heterotypic interactions. In the cause of Cor1, homotypic interactions involve regions capable of coiled-coil formation, observation confirmed by in vitro affinity coprecipitation experiments. The two-hybrid assay detects no interaction of Cor1 protein with central and C-terminal fragments of Syn1 protein and no homotypic interactions involving these fragments of Syn1. Hamster Cor1 and Syn1 proteins both associate with the human ubiquitin-conjugation enzyme Hsubc9 as well as with the hamster Ubc9 homologue. The interactions between SC proteins and the Ubc9 protein may be significant for SC disassembly, which coincides with the repulsion of homologs by late prophase I, and also for the termination of sister centromere cohesiveness at anaphase II. Images PMID:9285814

  4. Evolutionary reprograming of protein-protein interaction specificity.

    PubMed

    Akiva, Eyal; Babbitt, Patricia C

    2015-10-22

    Using mutation libraries and deep sequencing, Aakre et al. study the evolution of protein-protein interactions using a toxin-antitoxin model. The results indicate probable trajectories via "intermediate" proteins that are promiscuous, thus avoiding transitions via non-interactions. These results extend observations about other biological interactions and enzyme evolution, suggesting broadly general principles.

  5. Multiscale modeling of proteins.

    PubMed

    Tozzini, Valentina

    2010-02-16

    The activity within a living cell is based on a complex network of interactions among biomolecules, exchanging information and energy through biochemical processes. These events occur on different scales, from the nano- to the macroscale, spanning about 10 orders of magnitude in the space domain and 15 orders of magnitude in the time domain. Consequently, many different modeling techniques, each proper for a particular time or space scale, are commonly used. In addition, a single process often spans more than a single time or space scale. Thus, the necessity arises for combining the modeling techniques in multiscale approaches. In this Account, I first review the different modeling methods for bio-systems, from quantum mechanics to the coarse-grained and continuum-like descriptions, passing through the atomistic force field simulations. Special attention is devoted to their combination in different possible multiscale approaches and to the questions and problems related to their coherent matching in the space and time domains. These aspects are often considered secondary, but in fact, they have primary relevance when the aim is the coherent and complete description of bioprocesses. Subsequently, applications are illustrated by means of two paradigmatic examples: (i) the green fluorescent protein (GFP) family and (ii) the proteins involved in the human immunodeficiency virus (HIV) replication cycle. The GFPs are currently one of the most frequently used markers for monitoring protein trafficking within living cells; nanobiotechnology and cell biology strongly rely on their use in fluorescence microscopy techniques. A detailed knowledge of the actions of the virus-specific enzymes of HIV (specifically HIV protease and integrase) is necessary to study novel therapeutic strategies against this disease. Thus, the insight accumulated over years of intense study is an excellent framework for this Account. The foremost relevance of these two biomolecular systems was

  6. Chemical Protein Modification through Cysteine.

    PubMed

    Gunnoo, Smita B; Madder, Annemieke

    2016-04-01

    The modification of proteins with non-protein entities is important for a wealth of applications, and methods for chemically modifying proteins attract considerable attention. Generally, modification is desired at a single site to maintain homogeneity and to minimise loss of function. Though protein modification can be achieved by targeting some natural amino acid side chains, this often leads to ill-defined and randomly modified proteins. Amongst the natural amino acids, cysteine combines advantageous properties contributing to its suitability for site-selective modification, including a unique nucleophilicity, and a low natural abundance--both allowing chemo- and regioselectivity. Native cysteine residues can be targeted, or Cys can be introduced at a desired site in a protein by means of reliable genetic engineering techniques. This review on chemical protein modification through cysteine should appeal to those interested in modifying proteins for a range of applications.

  7. How do chaperonins fold protein?

    PubMed Central

    Motojima, Fumihiro

    2015-01-01

    Protein folding is a biological process that is essential for the proper functioning of proteins in all living organisms. In cells, many proteins require the assistance of molecular chaperones for their folding. Chaperonins belong to a class of molecular chaperones that have been extensively studied. However, the mechanism by which a chaperonin mediates the folding of proteins is still controversial. Denatured proteins are folded in the closed chaperonin cage, leading to the assumption that denatured proteins are completely encapsulated inside the chaperonin cage. In contrast to the assumption, we recently found that denatured protein interacts with hydrophobic residues at the subunit interfaces of the chaperonin, and partially protrude out of the cage. In this review, we will explain our recent results and introduce our model for the mechanism by which chaperonins accelerate protein folding, in view of recent findings. PMID:27493521

  8. Stabilized polyacrylic saccharide protein conjugates

    DOEpatents

    Callstrom, M.R.; Bednarski, M.D.; Gruber, P.R.

    1996-02-20

    This invention is directed to water soluble protein polymer conjugates which are stable in hostile environments. The conjugate comprises a protein which is linked to an acrylic polymer at multiple points through saccharide linker groups. 16 figs.

  9. Leptospira Protein Expression During Infection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We are characterizing protein expression in vivo during experimental leptospirosis using immunofluorescence microscopy. Coding regions for several proteins were identified through analysis of Leptospira interrogans serovar Copenhageni and L. borgpetersenii serovar Hardjo genomes. In addition, codi...

  10. Microtubules, Tubulins and Associated Proteins.

    ERIC Educational Resources Information Center

    Raxworthy, Michael J.

    1988-01-01

    Reviews much of what is known about microtubules, which are biopolymers consisting predominantly of subunits of the globular protein, tubulin. Describes the functions of microtubules, their structure and assembly, microtube associated proteins, and microtubule-disrupting agents. (TW)

  11. Stabilized polyacrylic saccharide protein conjugates

    DOEpatents

    Callstrom, Matthew R.; Bednarski, Mark D.; Gruber, Patrick R.

    1996-01-01

    This invention is directed to water soluble protein polymer conjugates which are stabile in hostile environments. The conjugate comprises a protein which is linked to an acrylic polymer at multiple points through saccharide linker groups.

  12. Controlling allosteric networks in proteins

    NASA Astrophysics Data System (ADS)

    Dokholyan, Nikolay

    2013-03-01

    We present a novel methodology based on graph theory and discrete molecular dynamics simulations for delineating allosteric pathways in proteins. We use this methodology to uncover the structural mechanisms responsible for coupling of distal sites on proteins and utilize it for allosteric modulation of proteins. We will present examples where inference of allosteric networks and its rewiring allows us to ``rescue'' cystic fibrosis transmembrane conductance regulator (CFTR), a protein associated with fatal genetic disease cystic fibrosis. We also use our methodology to control protein function allosterically. We design a novel protein domain that can be inserted into identified allosteric site of target protein. Using a drug that binds to our domain, we alter the function of the target protein. We successfully tested this methodology in vitro, in living cells and in zebrafish. We further demonstrate transferability of our allosteric modulation methodology to other systems and extend it to become ligh-activatable.

  13. Protein secretion in Bacillus species.

    PubMed Central

    Simonen, M; Palva, I

    1993-01-01

    Bacilli secrete numerous proteins into the environment. Many of the secretory proteins, their export signals, and their processing steps during secretion have been characterized in detail. In contrast, the molecular mechanisms of protein secretion have been relatively poorly characterized. However, several components of the protein secretion machinery have been identified and cloned recently, which is likely to lead to rapid expansion of the knowledge of the protein secretion mechanism in Bacillus species. Comparison of the presently known export components of Bacillus species with those of Escherichia coli suggests that the mechanism of protein translocation across the cytoplasmic membrane is conserved among gram-negative and gram-positive bacteria differences are found in steps preceding and following the translocation process. Many of the secretory proteins of bacilli are produced industrially, but several problems have been encountered in the production of Bacillus heterologous secretory proteins. In the final section we discuss these problems and point out some possibilities to overcome them. PMID:8464403

  14. The Evolutionary Design of Proteins

    NASA Astrophysics Data System (ADS)

    Poelwijk, Frank J.; Raman, Arjun S.; Leibler, Stanislas; Ranganathan, Rama

    2011-03-01

    Proteins fold spontaneously into precise, well-packed 3D structures, and execute complex functions such as specificity in molecular recognition, and efficient catalysis. Despite this, many studies show that proteins are robust to random mutagenesis. Additionally, proteins are evolvable. What principles underlying the design of natural proteins explain these properties? Recent work examining correlated evolution of amino acid positions shows that many positions in proteins are nearly statistically independent while 10-20% are organized into groups of co-evolving positions - termed ``protein sectors'' - that underlie conserved, independently varying biological activities. These findings suggest that the basic design of natural proteins is fundamentally tied to the nature of fluctuations in the selection pressures during evolution. We propose to test this hypothesis using a system for high-speed laboratory evolution and determine how variation in selection pressures influences the architecture of amino acid interactions within a protein.

  15. Purification of Tetrahymena cytoskeletal proteins.

    PubMed

    Honts, Jerry E

    2012-01-01

    Like all eukaryotic cells, Tetrahymena thermophila contains a rich array of cytoskeletal proteins, some familiar and some novel. A detailed analysis of the structure, function, and interactions of these proteins requires procedures for purifying the individual protein components. Procedures for the purification of actin and tubulin from Tetrahymena are reviewed, followed by a description of a procedure that yields proteins from the epiplasmic layer and associated structures, including the tetrins. Finally, the challenges and opportunities for future advances are assessed.

  16. Tyrosine phosphorylation of WW proteins

    PubMed Central

    Reuven, Nina; Shanzer, Matan

    2015-01-01

    A number of key regulatory proteins contain one or two copies of the WW domain known to mediate protein–protein interaction via proline-rich motifs, such as PPxY. The Hippo pathway components take advantage of this module to transduce tumor suppressor signaling. It is becoming evident that tyrosine phosphorylation is a critical regulator of the WW proteins. Here, we review the current knowledge on the involved tyrosine kinases and their roles in regulating the WW proteins. PMID:25627656

  17. BALANCED PRODUCTION OF RIBOSOMAL PROTEINS

    PubMed Central

    Perry, Robert P.

    2017-01-01

    Eukaryotic ribosomes contain one molecule each of 79 different proteins. The genes encoding these proteins are usually at widely scattered loci and have distinctive promoters with certain common features. This minireview discusses the means by which cells manage to balance the production of ribosomal proteins so as to end up with equimolar quantities in the ribosome. Regulation at all levels of gene expression, from transcription to protein turnover, is considered. PMID:17689889

  18. Protein loss during nuclear isolation

    PubMed Central

    1983-01-01

    Cryomicrodissection makes possible the measurement of the entire in vivo protein content of the amphibian oocyte nucleus and provides a heretofore missing baseline for estimating protein loss during nuclear isolation by other methods. When oocyte nuclei are isolated into an aqueous medium, they lose 95% of their protein with a half-time of 250 s. This result implies an even more rapid loss of protein from aqueously isolated nuclei of ordinary-size cells. PMID:6619193

  19. Protein function annotation using protein domain family resources.

    PubMed

    Das, Sayoni; Orengo, Christine A

    2016-01-15

    As a result of the genome sequencing and structural genomics initiatives, we have a wealth of protein sequence and structural data. However, only about 1% of these proteins have experimental functional annotations. As a result, computational approaches that can predict protein functions are essential in bridging this widening annotation gap. This article reviews the current approaches of protein function prediction using structure and sequence based classification of protein domain family resources with a special focus on functional families in the CATH-Gene3D resource.

  20. Protein Adsorption in Three Dimensions

    PubMed Central

    Vogler, Erwin A.

    2011-01-01

    Recent experimental and theoretical work clarifying the physical chemistry of blood-protein adsorption from aqueous-buffer solution to various kinds of surfaces is reviewed and interpreted within the context of biomaterial applications, especially toward development of cardiovascular biomaterials. The importance of this subject in biomaterials surface science is emphasized by reducing the “protein-adsorption problem” to three core questions that require quantitative answer. An overview of the protein-adsorption literature identifies some of the sources of inconsistency among many investigators participating in more than five decades of focused research. A tutorial on the fundamental biophysical chemistry of protein adsorption sets the stage for a detailed discussion of the kinetics and thermodynamics of protein adsorption, including adsorption competition between two proteins for the same adsorbent immersed in a binary-protein mixture. Both kinetics and steady-state adsorption can be rationalized using a single interpretive paradigm asserting that protein molecules partition from solution into a three-dimensional (3D) interphase separating bulk solution from the physical-adsorbent surface. Adsorbed protein collects in one-or-more adsorbed layers, depending on protein size, solution concentration, and adsorbent surface energy (water wettability). The adsorption process begins with the hydration of an adsorbent surface brought into contact with an aqueous-protein solution. Surface hydration reactions instantaneously form a thin, pseudo-2D interface between the adsorbent and protein solution. Protein molecules rapidly diffuse into this newly-formed interface, creating a truly 3D interphase that inflates with arriving proteins and fills to capacity within milliseconds at mg/mL bulk-solution concentrations CB. This inflated interphase subsequently undergoes time-dependent (minutes-to-hours) decrease in volume VI by expulsion of either-or-both interphase water and

  1. Implication of Terminal Residues at Protein-Protein and Protein-DNA Interfaces.

    PubMed

    Martin, Olivier M F; Etheve, Loïc; Launay, Guillaume; Martin, Juliette

    2016-01-01

    Terminal residues of protein chains are charged and more flexible than other residues since they are constrained only on one side. Do they play a particular role in protein-protein and protein-DNA interfaces? To answer this question, we considered large sets of non-redundant protein-protein and protein-DNA complexes and analyzed the status of terminal residues and their involvement in interfaces. In protein-protein complexes, we found that more than half of terminal residues (62%) are either modified by attachment of a tag peptide (10%) or have missing coordinates in the analyzed structures (52%). Terminal residues are almost exclusively located at the surface of proteins (94%). Contrary to charged residues, they are not over or under-represented in protein-protein interfaces, but strongly prefer the peripheral region of interfaces when present at the interface (83% of terminal residues). The almost exclusive location of terminal residues at the surface of the proteins or in the rim regions of interfaces explains that experimental methods relying on tail hybridization can be successfully applied without disrupting the complexes under study. Concerning conformational rearrangement in protein-protein complexes, despite their expected flexibility, terminal residues adopt similar locations between the free and bound forms of the docking benchmark. In protein-DNA complexes, N-terminal residues are twice more frequent than C-terminal residues at interfaces. Both N-terminal and C-terminal residues are under-represented in interfaces, in contrast to positively charged residues, which are strongly favored. When located in protein-DNA interfaces, terminal residues prefer the periphery. N-terminal and C-terminal residues thus have particular properties with regard to interfaces, which cannot be reduced to their charged nature.

  2. Identification of essential proteins based on ranking edge-weights in protein-protein interaction networks.

    PubMed

    Wang, Yan; Sun, Huiyan; Du, Wei; Blanzieri, Enrico; Viero, Gabriella; Xu, Ying; Liang, Yanchun

    2014-01-01

    Essential proteins are those that are indispensable to cellular survival and development. Existing methods for essential protein identification generally rely on knock-out experiments and/or the relative density of their interactions (edges) with other proteins in a Protein-Protein Interaction (PPI) network. Here, we present a computational method, called EW, to first rank protein-protein interactions in terms of their Edge Weights, and then identify sub-PPI-networks consisting of only the highly-ranked edges and predict their proteins as essential proteins. We have applied this method to publicly-available PPI data on Saccharomyces cerevisiae (Yeast) and Escherichia coli (E. coli) for essential protein identification, and demonstrated that EW achieves better performance than the state-of-the-art methods in terms of the precision-recall and Jackknife measures. The highly-ranked protein-protein interactions by our prediction tend to be biologically significant in both the Yeast and E. coli PPI networks. Further analyses on systematically perturbed Yeast and E. coli PPI networks through randomly deleting edges demonstrate that the proposed method is robust and the top-ranked edges tend to be more associated with known essential proteins than the lowly-ranked edges.

  3. Aeolotopic interactions of globular proteins

    PubMed Central

    Lomakin, Aleksey; Asherie, Neer; Benedek, George B.

    1999-01-01

    Protein crystallization, aggregation, liquid–liquid phase separation, and self-assembly are important in protein structure determination in the industrial processing of proteins and in the inhibition of protein condensation diseases. To fully describe such phase transformations in globular protein solutions, it is necessary to account for the strong spatial variation of the interactions on the protein surface. One difficulty is that each globular protein has its own unique surface, which is crucial for its biological function. However, the similarities amongst the macroscopic properties of different protein solutions suggest that there may exist a generic model that is capable of describing the nonuniform interactions between globular proteins. In this paper we present such a model, which includes the short-range interactions that vary from place to place on the surface of the protein. We show that this aeolotopic model [from the Greek aiolos (“variable”) and topos (“place”)] describes the phase diagram of globular proteins and provides insight into protein aggregation and crystallization. PMID:10449715

  4. Functional Foods Containing Whey Proteins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Whey proteins, modified whey proteins, and whey components are useful as nutrients or supplements for health maintenance. Extrusion modified whey proteins can easily fit into new products such as beverages, confectionery items (e.g., candies), convenience foods, desserts, baked goods, sauces, and in...

  5. Protein folding in the cell

    NASA Astrophysics Data System (ADS)

    Gething, Mary-Jane; Sambrook, Joseph

    1992-01-01

    In the cell, as in vitro, the final conformation of a protein is determined by its amino-acid sequence. But whereas some isolated proteins can be denatured and refolded in vitro in the absence of other macromolecular cellular components, folding and assembly of polypeptides in vivo involves other proteins, many of which belong to families that have been highly conserved during evolution.

  6. Biophysics of protein evolution and evolutionary protein biophysics

    PubMed Central

    Sikosek, Tobias; Chan, Hue Sun

    2014-01-01

    The study of molecular evolution at the level of protein-coding genes often entails comparing large datasets of sequences to infer their evolutionary relationships. Despite the importance of a protein's structure and conformational dynamics to its function and thus its fitness, common phylogenetic methods embody minimal biophysical knowledge of proteins. To underscore the biophysical constraints on natural selection, we survey effects of protein mutations, highlighting the physical basis for marginal stability of natural globular proteins and how requirement for kinetic stability and avoidance of misfolding and misinteractions might have affected protein evolution. The biophysical underpinnings of these effects have been addressed by models with an explicit coarse-grained spatial representation of the polypeptide chain. Sequence–structure mappings based on such models are powerful conceptual tools that rationalize mutational robustness, evolvability, epistasis, promiscuous function performed by ‘hidden’ conformational states, resolution of adaptive conflicts and conformational switches in the evolution from one protein fold to another. Recently, protein biophysics has been applied to derive more accurate evolutionary accounts of sequence data. Methods have also been developed to exploit sequence-based evolutionary information to predict biophysical behaviours of proteins. The success of these approaches demonstrates a deep synergy between the fields of protein biophysics and protein evolution. PMID:25165599

  7. Mechanisms of protein evolution and their application to protein engineering.

    PubMed

    Glasner, Margaret E; Gerlt, John A; Babbitt, Patricia C

    2007-01-01

    Protein engineering holds great promise for the development of new biosensors, diagnostics, therapeutics, and agents for bioremediation. Despite some remarkable successes in experimental and computational protein design, engineered proteins rarely achieve the efficiency or specificity of natural enzymes. Current protein design methods utilize evolutionary concepts, including mutation, recombination, and selection, but the inability to fully recapitulate the success of natural evolution suggests that some evolutionary principles have not been fully exploited. One aspect of protein engineering that has received little attention is how to select the most promising proteins to serve as templates, or scaffolds, for engineering. Two evolutionary concepts that could provide a rational basis for template selection are the conservation of catalytic mechanisms and functional promiscuity. Knowledge of the catalytic motifs responsible for conserved aspects of catalysis in mechanistically diverse superfamilies could be used to identify promising templates for protein engineering. Second, protein evolution often proceeds through promiscuous intermediates, suggesting that templates which are naturally promiscuous for a target reaction could enhance protein engineering strategies. This review explores these ideas and alternative hypotheses concerning protein evolution and engineering. Future research will determine if application of these principles will lead to a protein engineering methodology governed by predictable rules for designing efficient, novel catalysts.

  8. Protein engineering methods applied to membrane protein targets.

    PubMed

    Lluis, M W; Godfroy, J I; Yin, H

    2013-02-01

    Genes encoding membrane proteins have been estimated to comprise as much as 30% of the human genome. Among these membrane, proteins are a large number of signaling receptors, transporters, ion channels and enzymes that are vital to cellular regulation, metabolism and homeostasis. While many membrane proteins are considered high-priority targets for drug design, there is a dearth of structural and biochemical information on them. This lack of information stems from the inherent insolubility and instability of transmembrane domains, which prevents easy obtainment of high-resolution crystals to specifically study structure-function relationships. In part, this lack of structures has greatly impeded our understanding in the field of membrane proteins. One method that can be used to enhance our understanding is directed evolution, a molecular biology method that mimics natural selection to engineer proteins that have specific phenotypes. It is a powerful technique that has considerable success with globular proteins, notably the engineering of protein therapeutics. With respect to transmembrane protein targets, this tool may be underutilized. Another powerful tool to investigate membrane protein structure-function relationships is computational modeling. This review will discuss these protein engineering methods and their tremendous potential in the study of membrane proteins.

  9. The Proteins API: accessing key integrated protein and genome information.

    PubMed

    Nightingale, Andrew; Antunes, Ricardo; Alpi, Emanuele; Bursteinas, Borisas; Gonzales, Leonardo; Liu, Wudong; Luo, Jie; Qi, Guoying; Turner, Edd; Martin, Maria

    2017-04-05

    The Proteins API provides searching and programmatic access to protein and associated genomics data such as curated protein sequence positional annotations from UniProtKB, as well as mapped variation and proteomics data from large scale data sources (LSS). Using the coordinates service, researchers are able to retrieve the genomic sequence coordinates for proteins in UniProtKB. This, the LSS genomics and proteomics data for UniProt proteins is programmatically only available through this service. A Swagger UI has been implemented to provide documentation, an interface for users, with little or no programming experience, to 'talk' to the services to quickly and easily formulate queries with the services and obtain dynamically generated source code for popular programming languages, such as Java, Perl, Python and Ruby. Search results are returned as standard JSON, XML or GFF data objects. The Proteins API is a scalable, reliable, fast, easy to use RESTful services that provides a broad protein information resource for users to ask questions based upon their field of expertise and allowing them to gain an integrated overview of protein annotations available to aid their knowledge gain on proteins in biological processes. The Proteins API is available at (http://www.ebi.ac.uk/proteins/api/doc).

  10. Protein subcellular localization assays using split fluorescent proteins

    DOEpatents

    Waldo, Geoffrey S.; Cabantous, Stephanie

    2009-09-08

    The invention provides protein subcellular localization assays using split fluorescent protein systems. The assays are conducted in living cells, do not require fixation and washing steps inherent in existing immunostaining and related techniques, and permit rapid, non-invasive, direct visualization of protein localization in living cells. The split fluorescent protein systems used in the practice of the invention generally comprise two or more self-complementing fragments of a fluorescent protein, such as GFP, wherein one or more of the fragments correspond to one or more beta-strand microdomains and are used to "tag" proteins of interest, and a complementary "assay" fragment of the fluorescent protein. Either or both of the fragments may be functionalized with a subcellular targeting sequence enabling it to be expressed in or directed to a particular subcellular compartment (i.e., the nucleus).

  11. Commercial Protein Crystal Growth: Protein Crystallization Facility (CPCG-H)

    NASA Astrophysics Data System (ADS)

    DeLucas, Lawrence J.

    2002-12-01

    Within the human body, there are thousands of different proteins that serve a variety of different functions, such as making it possible for red blood cells to carry oxygen in our bodies. Yet proteins can also be involved in diseases. Each protein has a particular chemical structure, which means it has a unique shape. It is this three-dimensional shape that allows each protein to do its job by interacting with chemicals or binding with other proteins. If researchers can determine the shape, or shapes, of a protein, they can learn how it works. This information can then be used by the pharmaceutical industry to develop new drugs or improve the way medications work. The NASA Commercial Space Center sponsoring this experiment - the Center for Biophysical Sciences and Engineering at the University of Alabama at Birmingham - has more than 60 industry and academic partners who grow protein crystals and use the information in drug design projects.

  12. Protein – Which is Best?

    PubMed Central

    Hoffman, Jay R.; Falvo, Michael J.

    2004-01-01

    Protein intake that exceeds the recommended daily allowance is widely accepted for both endurance and power athletes. However, considering the variety of proteins that are available much less is known concerning the benefits of consuming one protein versus another. The purpose of this paper is to identify and analyze key factors in order to make responsible recommendations to both the general and athletic populations. Evaluation of a protein is fundamental in determining its appropriateness in the human diet. Proteins that are of inferior content and digestibility are important to recognize and restrict or limit in the diet. Similarly, such knowledge will provide an ability to identify proteins that provide the greatest benefit and should be consumed. The various techniques utilized to rate protein will be discussed. Traditionally, sources of dietary protein are seen as either being of animal or vegetable origin. Animal sources provide a complete source of protein (i.e. containing all essential amino acids), whereas vegetable sources generally lack one or more of the essential amino acids. Animal sources of dietary protein, despite providing a complete protein and numerous vitamins and minerals, have some health professionals concerned about the amount of saturated fat common in these foods compared to vegetable sources. The advent of processing techniques has shifted some of this attention and ignited the sports supplement marketplace with derivative products such as whey, casein and soy. Individually, these products vary in quality and applicability to certain populations. The benefits that these particular proteins possess are discussed. In addition, the impact that elevated protein consumption has on health and safety issues (i.e. bone health, renal function) are also reviewed. Key Points Higher protein needs are seen in athletic populations. Animal proteins is an important source of protein, however potential health concerns do exist from a diet of protein

  13. Experimental and bioinformatic approaches for interrogating protein-protein interactions to determine protein function.

    PubMed

    Droit, Arnaud; Poirier, Guy G; Hunter, Joanna M

    2005-04-01

    An ambitious goal of proteomics is to elucidate the structure, interactions and functions of all proteins within cells and organisms. One strategy to determine protein function is to identify the protein-protein interactions. The increasing use of high-throughput and large-scale bioinformatics-based studies has generated a massive amount of data stored in a number of different databases. A challenge for bioinformatics is to explore this disparate data and to uncover biologically relevant interactions and pathways. In parallel, there is clearly a need for the development of approaches that can predict novel protein-protein interaction networks in silico. Here, we present an overview of different experimental and bioinformatic methods to elucidate protein-protein interactions.

  14. Proteomic analysis of indium embryotoxicity in cultured postimplantation rat embryos.

    PubMed

    Usami, Makoto; Nakajima, Mikio; Mitsunaga, Katsuyoshi; Miyajima, Atsuko; Sunouchi, Momoko; Doi, Osamu

    2009-12-01

    Indium embryotoxicity was investigated by proteomic analysis with two-dimensional electrophoresis of rat embryos cultured from day 10.5 of gestation for 24h in the presence of 50 microM indium trichloride. In the embryo proper, indium increased quantity of several protein spots including those identified as serum albumin, phosphorylated cofilin 1, phosphorylated destrin and tyrosyl-tRNA synthetase. The increased serum albumin, derived from the culture medium composed of rat serum, may decrease the toxicity of indium. The increase of phosphorylated cofilin 1 might be involved in dysmorphogenicity of indium through perturbation of actin functions. In the yolk sac membrane, indium induced quantitative and qualitative changes in the protein spots. Proteins from appeared spots included stress proteins, and those from decreased or disappeared spots included serum proteins, glycolytic pathway enzymes and cytoskeletal proteins, indicating yolk sac dysfunction. Thus, several candidate proteins that might be involved in indium embryotoxicity were identified.

  15. Viruses and viral proteins.

    PubMed

    Verdaguer, Nuria; Ferrero, Diego; Murthy, Mathur R N

    2014-11-01

    For more than 30 years X-ray crystallography has been by far the most powerful approach for determining the structures of viruses and viral proteins at atomic resolution. The information provided by these structures, which covers many important aspects of the viral life cycle such as cell-receptor recognition, viral entry, nucleic acid transfer and genome replication, has extensively enriched our vision of the virus world. Many of the structures available correspond to potential targets for antiviral drugs against important human pathogens. This article provides an overview of the current knowledge of different structural aspects of the above-mentioned processes.

  16. Prion protein and cancers.

    PubMed

    Yang, Xiaowen; Zhang, Yan; Zhang, Lihua; He, Tianlin; Zhang, Jie; Li, Chaoyang

    2014-06-01

    The normal cellular prion protein, PrP(C) is a highly conserved and widely expressed cell surface glycoprotein in all mammals. The expression of PrP is pivotal in the pathogenesis of prion diseases; however, the normal physiological functions of PrP(C) remain incompletely understood. Based on the studies in cell models, a plethora of functions have been attributed to PrP(C). In this paper, we reviewed the potential roles that PrP(C) plays in cell physiology and focused on its contribution to tumorigenesis.

  17. Viruses and viral proteins

    PubMed Central

    Verdaguer, Nuria; Ferrero, Diego; Murthy, Mathur R. N.

    2014-01-01

    For more than 30 years X-ray crystallography has been by far the most powerful approach for determining the structures of viruses and viral proteins at atomic resolution. The information provided by these structures, which covers many important aspects of the viral life cycle such as cell-receptor recognition, viral entry, nucleic acid transfer and genome replication, has extensively enriched our vision of the virus world. Many of the structures available correspond to potential targets for antiviral drugs against important human pathogens. This article provides an overview of the current knowledge of different structural aspects of the above-mentioned processes. PMID:25485129

  18. Tetramer formation in Arabidopsis MADS domain proteins: analysis of a protein-protein interaction network

    PubMed Central

    2014-01-01

    Background MADS domain proteins are transcription factors that coordinate several important developmental processes in plants. These proteins interact with other MADS domain proteins to form dimers, and it has been proposed that they are able to associate as tetrameric complexes that regulate transcription of target genes. Whether the formation of functional tetramers is a widespread property of plant MADS domain proteins, or it is specific to few of these transcriptional regulators remains unclear. Results We analyzed the structure of the network of physical interactions among MADS domain proteins in Arabidopsis thaliana. We determined the abundance of subgraphs that represent the connection pattern expected for a MADS domain protein heterotetramer. These subgraphs were significantly more abundant in the MADS domain protein interaction network than in randomized analogous networks. Importantly, these subgraphs are not significantly frequent in a protein interaction network of TCP plant transcription factors, when compared to expectation by chance. In addition, we found that MADS domain proteins in tetramer-like subgraphs are more likely to be expressed jointly than proteins in other subgraphs. This effect is mainly due to proteins in the monophyletic MIKC clade, as there is no association between tetramer-like subgraphs and co-expression for proteins outside this clade. Conclusions Our results support that the tendency to form functional tetramers is widespread in the MADS domain protein-protein interaction network. Our observations also suggest that this trend is prevalent, or perhaps exclusive, for proteins in the MIKC clade. Because it is possible to retrodict several experimental results from our analyses, our work can be an important aid to make new predictions and facilitates experimental research on plant MADS domain proteins. PMID:24468197

  19. [Protein phosphatases: structure and function].

    PubMed

    Bulanova, E G; Budagian, V M

    1994-01-01

    The process of protein and enzyme systems phosphorylation is necessary for cell growth, differentiation and preparation for division and mitosis. The conformation changes of protein as a result of phosphorylation lead to increased enzyme activity and enhanced affinity to substrates. A large group of enzymes--protein kinases--is responsible for phosphorylation process in cell, which are divided into tyrosine- and serine-threonine-kinases depending on their ability to phosphorylate appropriate amino acid residues. In this review has been considered the functional importance and structure of protein phosphatases--enzymes, which are functional antagonists of protein kinases.

  20. Protein nanotechnology: what is it?

    PubMed

    Gerrard, Juliet A

    2013-01-01

    Protein nanotechnology is an emerging field that is still defining itself. It embraces the intersection of protein science, which exists naturally at the nanoscale, and the burgeoning field of nanotechnology. In this opening chapter, a select review is given of some of the exciting nanostructures that have already been created using proteins, and the sorts of applications that protein engineers are reaching towards in the nanotechnology space. This provides an introduction to the rest of the volume, which provides inspirational case studies, along with tips and tools to manipulate proteins into new forms and architectures, beyond Nature's original intentions.

  1. Green fluorescent protein: A perspective

    PubMed Central

    Remington, S James

    2011-01-01

    A brief personal perspective is provided for green fluorescent protein (GFP), covering the period 1994–2011. The topics discussed are primarily those in which my research group has made a contribution and include structure and function of the GFP polypeptide, the mechanism of fluorescence emission, excited state protein transfer, the design of ratiometric fluorescent protein biosensors and an overview of the fluorescent proteins derived from coral reef animals. Structure-function relationships in photoswitchable fluorescent proteins and nonfluorescent chromoproteins are also briefly covered. PMID:21714025

  2. Green fluorescent protein: a perspective.

    PubMed

    Remington, S James

    2011-09-01

    A brief personal perspective is provided for green fluorescent protein (GFP), covering the period 1994-2011. The topics discussed are primarily those in which my research group has made a contribution and include structure and function of the GFP polypeptide, the mechanism of fluorescence emission, excited state protein transfer, the design of ratiometric fluorescent protein biosensors and an overview of the fluorescent proteins derived from coral reef animals. Structure-function relationships in photoswitchable fluorescent proteins and nonfluorescent chromoproteins are also briefly covered.

  3. Imaging individual green fluorescent proteins

    NASA Astrophysics Data System (ADS)

    Pierce, Daniel W.; Hom-Booher, Nora; Vale, Ronald D.

    1997-07-01

    Recent advances in fluorescence microscopy techniques have allowed the video-time imaging of single molecules of fluorescent dyes covalently bound to proteins in aqueous environments. However, the techniques have not been exploited fully because proteins can be difficult to label, and dye modification may cause partial or complete loss of activity. These difficulties could be circumvented by fusing proteins to green fluorescent protein (GFP) of the jellyfish Aequorea victoria. Here we report that single S65T mutant GFP molecules can be imaged using total internal reflection microscopy, and that ATP-driven movement of an individual kinesin molecule (a microtubule motor protein) fused to GFP can be readily observed.

  4. [Protein nutrition and physical activity].

    PubMed

    Navarro, M P

    1992-09-01

    The relationship between physical exercise and diet in order to optimize performance is getting growing interest. This review examines protein needs and protein intakes as well as the role of protein in the body and the metabolic changes occurring at the synthesis and catabolic levels during exercise. Protein synthesis in muscle or liver, amino acids oxidation, glucose production via gluconeogenesis from amino acids, etc., are modified, and consequently plasma and urinary nitrogen metabolites are affected. A brief comment on the advantages, disadvantages and forms of different protein supplements for sportsmen is given.

  5. Protein-protein interaction network-based detection of functionally similar proteins within species.

    PubMed

    Song, Baoxing; Wang, Fen; Guo, Yang; Sang, Qing; Liu, Min; Li, Dengyun; Fang, Wei; Zhang, Deli

    2012-07-01

    Although functionally similar proteins across species have been widely studied, functionally similar proteins within species showing low sequence similarity have not been examined in detail. Identification of these proteins is of significant importance for understanding biological functions, evolution of protein families, progression of co-evolution, and convergent evolution and others which cannot be obtained by detection of functionally similar proteins across species. Here, we explored a method of detecting functionally similar proteins within species based on graph theory. After denoting protein-protein interaction networks using graphs, we split the graphs into subgraphs using the 1-hop method. Proteins with functional similarities in a species were detected using a method of modified shortest path to compare these subgraphs and to find the eligible optimal results. Using seven protein-protein interaction networks and this method, some functionally similar proteins with low sequence similarity that cannot detected by sequence alignment were identified. By analyzing the results, we found that, sometimes, it is difficult to separate homologous from convergent evolution. Evaluation of the performance of our method by gene ontology term overlap showed that the precision of our method was excellent.

  6. Toponomics: studying protein-protein interactions and protein networks in intact tissue.

    PubMed

    Pierre, Sandra; Scholich, Klaus

    2010-04-01

    The function of a protein is determined on several levels including the genome, transcriptome, proteome, and the recently introduced toponome. The toponome describes the topology of all proteins, protein complexes and protein networks which constitute and influence the microenvironment of a given protein. It has long been known that cellular function or dysfunction of proteins strongly depends on their microenvironment and even small changes in protein arrangements can dramatically alter their activity/function. Thus, deciphering the topology of the multi-dimensional networks which control normal and disease-related pathways will give a better understanding of the mechanisms underlying disease development. While various powerful proteomic tools allow simultaneous quantification of proteins, only a limited number of techniques are available to visualize protein networks in intact cells and tissues. This review discusses a novel approach to map and decipher functional molecular networks of proteins in intact cells or tissues. Multi-epitope-ligand-cartography (MELC) is an imaging technology that identifies and quantifies protein networks at the subcellular level of morphologically-intact specimens. This immunohistochemistry-based method allows serial visualization and biomathematical analysis of up to 100 cellular components using fluorescence-labelled tags. The resulting toponome maps, simultaneously ranging from the subcellular to the supracellular scale, have the potential to provide the basis for a mathematical description of the dynamic topology of protein networks, and will complement current proteomic data to enhance the understanding of physiological and pathophysiological cell functions.

  7. THE PROTEIN PROBLEM OF CHINA.

    PubMed

    Adolph, W H

    1944-07-07

    (1) The protein intake of China is approximately 80 grams per capita per day, 5 per cent. of which is animal protein. (2) The lower digestibility of the protein in vegetarian diets causes the effective protein intake to be much less than is indicated by this figure. (3) Attempts in the laboratory to devise an adequate diet using foods from vegetarian sources only have not met with marked success. (4) The use of mixed cereals in the diet has provided protein of higher biological value; this habit may reflect the attempt on the part of the rural peoples to work out a more effective protein intake. (5) It is suggested that in China some of the cereal protein in the dietary intake be replaced by more leaf vegetable protein. (6) The question is raised as to how far it is feasible in the war economy to replace animal protein by vegetable protein. (7) In long-term plans for food relief in the Far East it is urged that an emphasis be placed on the protein factor.

  8. Intrinsic Localized Modes in Proteins

    PubMed Central

    Nicolaï, Adrien; Delarue, Patrice; Senet, Patrick

    2015-01-01

    Protein dynamics is essential for proteins to function. Here we predicted the existence of rare, large nonlinear excitations, termed intrinsic localized modes (ILMs), of the main chain of proteins based on all-atom molecular dynamics simulations of two fast-folder proteins and of a rigid α/β protein at 300 K and at 380 K in solution. These nonlinear excitations arise from the anharmonicity of the protein dynamics. The ILMs were detected by computing the Shannon entropy of the protein main-chain fluctuations. In the non-native state (significantly explored at 380 K), the probability of their excitation was increased by a factor between 9 and 28 for the fast-folder proteins and by a factor 2 for the rigid protein. This enhancement in the non-native state was due to glycine, as demonstrated by simulations in which glycine was mutated to alanine. These ILMs might play a functional role in the flexible regions of proteins and in proteins in a non-native state (i.e. misfolded or unfolded states). PMID:26658321

  9. The Papillomavirus E2 proteins

    SciTech Connect

    McBride, Alison A.

    2013-10-15

    The papillomavirus E2 proteins are pivotal to the viral life cycle and have well characterized functions in transcriptional regulation, initiation of DNA replication and partitioning the viral genome. The E2 proteins also function in vegetative DNA replication, post-transcriptional processes and possibly packaging. This review describes structural and functional aspects of the E2 proteins and their binding sites on the viral genome. It is intended to be a reference guide to this viral protein. - Highlights: • Overview of E2 protein functions. • Structural domains of the papillomavirus E2 proteins. • Analysis of E2 binding sites in different genera of papillomaviruses. • Compilation of E2 associated proteins. • Comparison of key mutations in distinct E2 functions.

  10. Mathematical methods for protein science

    SciTech Connect

    Hart, W.; Istrail, S.; Atkins, J.

    1997-12-31

    Understanding the structure and function of proteins is a fundamental endeavor in molecular biology. Currently, over 100,000 protein sequences have been determined by experimental methods. The three dimensional structure of the protein determines its function, but there are currently less than 4,000 structures known to atomic resolution. Accordingly, techniques to predict protein structure from sequence have an important role in aiding the understanding of the Genome and the effects of mutations in genetic disease. The authors describe current efforts at Sandia to better understand the structure of proteins through rigorous mathematical analyses of simple lattice models. The efforts have focused on two aspects of protein science: mathematical structure prediction, and inverse protein folding.

  11. Protein Repeats from First Principles.

    PubMed

    Turjanski, Pablo; Parra, R Gonzalo; Espada, Rocío; Becher, Verónica; Ferreiro, Diego U

    2016-04-05

    Some natural proteins display recurrent structural patterns. Despite being highly similar at the tertiary structure level, repeating patterns within a single repeat protein can be extremely variable at the sequence level. We use a mathematical definition of a repetition and investigate the occurrences of these in sequences of different protein families. We found that long stretches of perfect repetitions are infrequent in individual natural proteins, even for those which are known to fold into structures of recurrent structural motifs. We found that natural repeat proteins are indeed repetitive in their families, exhibiting abundant stretches of 6 amino acids or longer that are perfect repetitions in the reference family. We provide a systematic quantification for this repetitiveness. We show that this form of repetitiveness is not exclusive of repeat proteins, but also occurs in globular domains. A by-product of this work is a fast quantification of the likelihood of a protein to belong to a family.

  12. Protein Repeats from First Principles

    PubMed Central

    Turjanski, Pablo; Parra, R. Gonzalo; Espada, Rocío; Becher, Verónica; Ferreiro, Diego U.

    2016-01-01

    Some natural proteins display recurrent structural patterns. Despite being highly similar at the tertiary structure level, repeating patterns within a single repeat protein can be extremely variable at the sequence level. We use a mathematical definition of a repetition and investigate the occurrences of these in sequences of different protein families. We found that long stretches of perfect repetitions are infrequent in individual natural proteins, even for those which are known to fold into structures of recurrent structural motifs. We found that natural repeat proteins are indeed repetitive in their families, exhibiting abundant stretches of 6 amino acids or longer that are perfect repetitions in the reference family. We provide a systematic quantification for this repetitiveness. We show that this form of repetitiveness is not exclusive of repeat proteins, but also occurs in globular domains. A by-product of this work is a fast quantification of the likelihood of a protein to belong to a family. PMID:27044676

  13. Protein crystal growth in microgravity

    NASA Technical Reports Server (NTRS)

    Rosenblum, William M.; Delucas, Lawrence J.; Wilson, William W.

    1989-01-01

    Major advances have been made in several of the experimental aspects of protein crystallography, leaving protein crystallization as one of the few remaining bottlenecks. As a result, it has become important that the science of protein crystal growth is better understood and that improved methods for protein crystallization are developed. Preliminary experiments with both small molecules and proteins indicate that microgravity may beneficially affect crystal growth. For this reason, a series of protein crystal growth experiments using the Space Shuttle was initiated. The preliminary space experiments were used to evolve prototype hardware that will form the basis for a more advanced system that can be used to evaluate effects of gravity on protein crystal growth. Various optical techniques are being utilized to monitor the crystal growth process from the incipient or nucleation stage and throughout the growth phase. The eventual goal of these studies is to develop a system which utilizes optical monitoring for dynamic control of the crystallization process.

  14. Water-transporting proteins.

    PubMed

    Zeuthen, Thomas

    2010-04-01

    Transport through lipids and aquaporins is osmotic and entirely driven by the difference in osmotic pressure. Water transport in cotransporters and uniporters is different: Water can be cotransported, energized by coupling to the substrate flux by a mechanism closely associated with protein. In the K(+)/Cl(-) and the Na(+)/K(+)/2Cl(-) cotransporters, water is entirely cotransported, while water transport in glucose uniporters and Na(+)-coupled transporters of nutrients and neurotransmitters takes place by both osmosis and cotransport. The molecular mechanism behind cotransport of water is not clear. It is associated with the substrate movements in aqueous pathways within the protein; a conventional unstirred layer mechanism can be ruled out, due to high rates of diffusion in the cytoplasm. The physiological roles of the various modes of water transport are reviewed in relation to epithelial transport. Epithelial water transport is energized by the movements of ions, but how the coupling takes place is uncertain. All epithelia can transport water uphill against an osmotic gradient, which is hard to explain by simple osmosis. Furthermore, genetic removal of aquaporins has not given support to osmosis as the exclusive mode of transport. Water cotransport can explain the coupling between ion and water transport, a major fraction of transepithelial water transport and uphill water transport. Aquaporins enhance water transport by utilizing osmotic gradients and cause the osmolarity of the transportate to approach isotonicity.

  15. Hyperquenching for protein cryocrystallography

    PubMed Central

    Warkentin, Matthew; Berejnov, Viatcheslav; Husseini, Naji S.; Thorne, Robert E.

    2010-01-01

    When samples having volumes characteristic of protein crystals are plunge cooled in liquid nitrogen or propane, most cooling occurs in the cold gas layer above the liquid. By removing this cold gas layer, cooling rates for small samples and modest plunge velocities are increased to 1.5 × 104 K s−1, with increases of a factor of 100 over current best practice possible with 10 μm samples. Glycerol concentrations required to eliminate water crystallization in protein-free aqueous mixtures drop from ∼28% w/v to as low as 6% w/v. These results will allow many crystals to go from crystallization tray to liquid cryogen to X-ray beam without cryoprotectants. By reducing or eliminating the need for cryoprotectants in growth solutions, they may also simplify the search for crystallization conditions and for optimal screens. The results presented here resolve many puzzles, such as why plunge cooling in liquid nitrogen or propane has, until now, not yielded significantly better diffraction quality than gas-stream cooling. PMID:20461232

  16. Peptides and proteins

    SciTech Connect

    Bachovchin, W.W.; Unkefer, C.J.

    1994-12-01

    Advances in magnetic resonance and vibrational spectroscopy make it possible to derive detailed structural information about biomolecular structures in solution. These techniques are critically dependent on the availability of labeled compounds. For example, NMR techniques used today to derive peptide and protein structures require uniformity {sup 13}C-and {sup 15}N-labeled samples that are derived biosynthetically from (U-6-{sup 13}C) glucose. These experiments are possible now because, during the 1970s, the National Stable Isotope Resource developed algal methods for producing (U-6-{sup 13}C) glucose. If NMR techniques are to be used to study larger proteins, we will need sophisticated labelling patterns in amino acids that employ a combination of {sup 2}H, {sup 13}C, and {sup 15}N labeling. The availability of these specifically labeled amino acids requires a renewed investment in new methods for chemical synthesis of labeled amino acids. The development of new magnetic resonance or vibrational techniques to elucidate biomolecular structure will be seriously impeded if we do not see rapid progress in labeling technology. Investment in labeling chemistry is as important as investment in the development of advanced spectroscopic tools.

  17. An intravascular protein osmometer.

    PubMed

    Henson, J W; Brace, R A

    1983-05-01

    Our purpose was to develop an intravascular osmometer for measuring the colloid (i.e., protein) osmotic pressure (COP) of circulating blood. A semipermeable hollow fiber from a Cordis Dow artificial kidney (C-DAK 4000) was attached to polyethylene tubing on one end, filled with saline, and sealed at the other end. This was small enough to be inserted into the vasculature of research animals. Protein osmotic pressure plus hydrostatic pressure was measured by a Statham pressure transducer attached to the hollow fiber. Simultaneously, a second catheter and transducer was used to measure hydrostatic pressure, which was subtracted from the pressure measured from the fiber with an on-line computer. The system was documented by a variety of tests. The colloid osmotic pressure vs. albumin concentration curve determined with the fiber is identical to the curve determined by standard membrane osmometry. The time constant for 2- and 8-cm fibers was 2.6 +/- 0.6 and 1.5 +/- 0.5 (+/- SD) min, respectively. The reflection coefficient (+/- SD) of the fiber for NaCl is 0.042 +/- 0.019 (n = 38); COP measured at varying temperatures (absolute scale) changed linearly as expected from COP = nCRT (i.e., van't Hoff's law). Finally, hollow-fiber osmometers were inserted into femoral veins of dogs and sheep, and blood COP was continuously recorded during osmotic manipulations. In conclusion, we attempted to develop and document a simple method for continuous measurement of intravascular colloid osmotic pressure.

  18. Introduction to protein crystallization

    PubMed Central

    McPherson, Alexander; Gavira, Jose A.

    2014-01-01

    Protein crystallization was discovered by chance about 150 years ago and was developed in the late 19th century as a powerful purification tool and as a demonstration of chemical purity. The crystallization of proteins, nucleic acids and large biological complexes, such as viruses, depends on the creation of a solution that is supersaturated in the macromolecule but exhibits conditions that do not significantly perturb its natural state. Supersaturation is produced through the addition of mild precipitating agents such as neutral salts or polymers, and by the manipulation of various parameters that include temperature, ionic strength and pH. Also important in the crystallization process are factors that can affect the structural state of the macromolecule, such as metal ions, inhibitors, cofactors or other conventional small molecules. A variety of approaches have been developed that combine the spectrum of factors that effect and promote crystallization, and among the most widely used are vapor diffusion, dialysis, batch and liquid–liquid diffusion. Successes in macromolecular crystallization have multiplied rapidly in recent years owing to the advent of practical, easy-to-use screening kits and the application of laboratory robotics. A brief review will be given here of the most popular methods, some guiding principles and an overview of current technologies. PMID:24419610

  19. General introduction: recombinant protein production and purification of insoluble proteins.

    PubMed

    Ferrer-Miralles, Neus; Saccardo, Paolo; Corchero, José Luis; Xu, Zhikun; García-Fruitós, Elena

    2015-01-01

    Proteins are synthesized in heterologous systems because of the impossibility to obtain satisfactory yields from natural sources. The production of soluble and functional recombinant proteins is among the main goals in the biotechnological field. In this context, it is important to point out that under stress conditions, protein folding machinery is saturated and this promotes protein misfolding and, consequently, protein aggregation. Thus, the selection of the optimal expression organism and the most appropriate growth conditions to minimize the formation of insoluble proteins should be done according to the protein characteristics and downstream requirements. Escherichia coli is the most popular recombinant protein expression system despite the great development achieved so far by eukaryotic expression systems. Besides, other prokaryotic expression systems, such as lactic acid bacteria and psychrophilic bacteria, are gaining interest in this field. However, it is worth mentioning that prokaryotic expression system poses, in many cases, severe restrictions for a successful heterologous protein production. Thus, eukaryotic systems such as mammalian cells, insect cells, yeast, filamentous fungus, and microalgae are an interesting alternative for the production of these difficult-to-express proteins.

  20. Regulators of G protein signalling proteins in the human myometrium.

    PubMed

    Ladds, Graham; Zervou, Sevasti; Vatish, Manu; Thornton, Steven; Davey, John

    2009-05-21

    The contractile state of the human myometrium is controlled by extracellular signals that promote relaxation or contraction. Many of these signals function through G protein-coupled receptors at the cell surface, stimulating heterotrimeric G proteins and leading to changes in the activity of effector proteins responsible for bringing about the response. G proteins can interact with multiple receptors and many different effectors and are key players in the response. Regulators of G protein signalling (RGS) proteins are GTPase activating proteins for heterotrimeric G proteins and help terminate the signal. Little is known about the function of RGS proteins in human myometrium and we have therefore analysed transcript levels for RGS proteins at various stages of pregnancy (non-pregnant, preterm, term non-labouring, term labouring). RGS2 and RGS5 were the most abundantly expressed isolates in each of the patient groups. The levels of RGS4 and RGS16 (and to a lesser extent RGS2 and RGS14) increased in term labouring samples relative to the other groups. Yeast two-hybrid analysis and co-immunoprecipitation in myometrial cells revealed that both RGS2 and RGS5 interact directly with the cytoplasmic tail of the oxytocin receptor, suggesting they might help regulate signalling through this receptor.

  1. Protein oxidation in aging and the removal of oxidized proteins.

    PubMed

    Höhn, Annika; König, Jeannette; Grune, Tilman

    2013-10-30

    Reactive oxygen species (ROS) are generated constantly within cells at low concentrations even under physiological conditions. During aging the levels of ROS can increase due to a limited capacity of antioxidant systems and repair mechanisms. Proteins are among the main targets for oxidants due to their high rate constants for several reactions with ROS and their abundance in biological systems. Protein damage has an important influence on cellular viability since most protein damage is non-repairable, and has deleterious consequences on protein structure and function. In addition, damaged and modified proteins can form cross-links and provide a basis for many senescence-associated alterations and may contribute to a range of human pathologies. Two proteolytic systems are responsible to ensure the maintenance of cellular functions: the proteasomal (UPS) and the lysosomal system. Those degrading systems provide a last line of antioxidative protection, removing irreversible damaged proteins and recycling amino acids for the continuous protein synthesis. But during aging, both systems are affected and their proteolytic activity declines significantly. Here we highlight the recent advantages in the understanding of protein oxidation and the fate of these damaged proteins during aging. This article is part of a Special Issue entitled: Posttranslational Protein modifications in biology and Medicine.

  2. Protein-protein interaction network analysis of cirrhosis liver disease

    PubMed Central

    Safaei, Akram; Rezaei Tavirani, Mostafa; Arefi Oskouei, Afsaneh; Zamanian Azodi, Mona; Mohebbi, Seyed Reza; Nikzamir, Abdol Rahim

    2016-01-01

    Aim: Evaluation of biological characteristics of 13 identified proteins of patients with cirrhotic liver disease is the main aim of this research. Background: In clinical usage, liver biopsy remains the gold standard for diagnosis of hepatic fibrosis. Evaluation and confirmation of liver fibrosis stages and severity of chronic diseases require a precise and noninvasive biomarkers. Since the early detection of cirrhosis is a clinical problem, achieving a sensitive, specific and predictive novel method based on biomarkers is an important task. Methods: Essential analysis, such as gene ontology (GO) enrichment and protein-protein interactions (PPI) was undergone EXPASy, STRING Database and DAVID Bioinformatics Resources query. Results: Based on GO analysis, most of proteins are located in the endoplasmic reticulum lumen, intracellular organelle lumen, membrane-enclosed lumen, and extracellular region. The relevant molecular functions are actin binding, metal ion binding, cation binding and ion binding. Cell adhesion, biological adhesion, cellular amino acid derivative, metabolic process and homeostatic process are the related processes. Protein-protein interaction network analysis introduced five proteins (fibroblast growth factor receptor 4, tropomyosin 4, tropomyosin 2 (beta), lectin, Lectin galactoside-binding soluble 3 binding protein and apolipoprotein A-I) as hub and bottleneck proteins. Conclusion: Our result indicates that regulation of lipid metabolism and cell survival are important biological processes involved in cirrhosis disease. More investigation of above mentioned proteins will provide a better understanding of cirrhosis disease. PMID:27099671

  3. A new protein structure representation for efficient protein function prediction.

    PubMed

    Maghawry, Huda A; Mostafa, Mostafa G M; Gharib, Tarek F

    2014-12-01

    One of the challenging problems in bioinformatics is the prediction of protein function. Protein function is the main key that can be used to classify different proteins. Protein function can be inferred experimentally with very small throughput or computationally with very high throughput. Computational methods are sequence based or structure based. Structure-based methods produce more accurate protein function prediction. In this article, we propose a new protein structure representation for efficient protein function prediction. The representation is based on three-dimensional patterns of protein residues. In the analysis, we used protein function based on enzyme activity through six mechanistically diverse enzyme superfamilies: amidohydrolase, crotonase, haloacid dehalogenase, isoprenoid synthase type I, and vicinal oxygen chelate. We applied three different classification methods, naïve Bayes, k-nearest neighbors, and random forest, to predict the enzyme superfamily of a given protein. The prediction accuracy using the proposed representation outperforms a recently introduced representation method that is based only on the distance patterns. The results show that the proposed representation achieved prediction accuracy up to 98%, with improvement of about 10% on average.

  4. Protein transduction assisted by polyethylenimine-cationized carrier proteins.

    PubMed

    Kitazoe, Midori; Murata, Hitoshi; Futami, Junichiro; Maeda, Takashi; Sakaguchi, Masakiyo; Miyazaki, Masahiro; Kosaka, Megumi; Tada, Hiroko; Seno, Masaharu; Huh, Nam-ho; Namba, Masayoshi; Nishikawa, Mitsuo; Maeda, Yoshitake; Yamada, Hidenori

    2005-06-01

    Previously, we have reported that cationized-proteins covalently modified with polyethylenimine (PEI) (direct PEI-cationization) efficiently enter cells and function in the cytosol [Futami et al. (2005) J. Biosci. Bioeng. 99, 95-103]. However, it may be more convenient if a protein could be delivered into cells just by mixing the protein with a PEI-cationized carrier protein having a specific affinity (indirect PEI-cationization). Thus, we prepared PEI-cationized avidin (PEI-avidin), streptavidin (PEI-streptavidin), and protein G (PEI-protein G), and examined whether they could deliver biotinylated proteins and antibodies into living cells. PEI-avidin (and/or PEI-streptavidin) carried biotinylated GFPs into various mammalian cells very efficiently. A GFP variant containing a nuclear localization signal was found to arrive even in the nucleus. The addition of a biotinylated RNase A derivative mixed with PEI-streptavidin to a culture medium of 3T3-SV-40 cells resulted in remarkable cell growth inhibition, suggesting that the biotinylated RNase A derivative entered cells and digested intracellular RNA molecules. Furthermore, the addition of a fluorescein-labeled anti-S100C (beta-actin binding protein) antibody mixed with PEI-protein G to human fibroblasts resulted in the appearance of a fluorescence image of actin-like filamentous structures in the cells. These results indicate that indirect PEI-cationization using non-covalent interaction is as effective as the direct PEI-cationization for the transduction of proteins into living cells and for expression of their functions in the cytosol. Thus, PEI-cationized proteins having a specific affinity for certain molecules such as PEI-streptavidin, PEI-avidin and PEI-protein G are concluded to be widely applicable protein transduction carrier molecules.

  5. Protein-protein interaction network of celiac disease

    PubMed Central

    Zamanian Azodi, Mona; Peyvandi, Hassan; Rostami-Nejad, Mohammad; Safaei, Akram; Rostami, Kamran; Vafaee, Reza; Heidari, Mohammadhossein; Hosseini, Mostafa; Zali, Mohammad Reza

    2016-01-01

    Aim: The aim of this study is to investigate the Protein-Protein Interaction Network of Celiac Disease. Background: Celiac disease (CD) is an autoimmune disease with susceptibility of individuals to gluten of wheat, rye and barley. Understanding the molecular mechanisms and involved pathway may lead to the development of drug target discovery. The protein interaction network is one of the supportive fields to discover the pathogenesis biomarkers for celiac disease. Material and methods: In the present study, we collected the articles that focused on the proteomic data in celiac disease. According to the gene expression investigations of these articles, 31 candidate proteins were selected for this study. The networks of related differentially expressed protein were explored using Cytoscape 3.3 and the PPI analysis methods such as MCODE and ClueGO. Results: According to the network analysis Ubiquitin C, Heat shock protein 90kDa alpha (cytosolic and Grp94); class A, B and 1 member, Heat shock 70kDa protein, and protein 5 (glucose-regulated protein, 78kDa), T-complex, Chaperon in containing TCP1; subunit 7 (beta) and subunit 4 (delta) and subunit 2 (beta), have been introduced as hub-bottlnecks proteins. HSP90AA1, MKKS, EZR, HSPA14, APOB and CAD have been determined as seed proteins. Conclusion: Chaperons have a bold presentation in curtail area in network therefore these key proteins beside the other hub-bottlneck proteins may be a suitable candidates biomarker panel for diagnosis, prognosis and treatment processes in celiac disease. PMID:27895852

  6. A novel inhibitory effect of oxazol-5-one compounds on ROCKII signaling in human coronary artery vascular smooth muscle cells

    PubMed Central

    Al-Ghabkari, Abdulhameed; Deng, Jing-Ti; McDonald, Paul C.; Dedhar, Shoukat; Alshehri, Mana; Walsh, Michael P.; MacDonald, Justin A.

    2016-01-01

    The selectivity of (4Z)-2-(4-chloro-3-nitrophenyl)-4-(pyridin-3-ylmethylidene)-1,3-oxazol-5-one (DI) for zipper-interacting protein kinase (ZIPK) was previously described by in silico computational modeling, screening a large panel of kinases, and determining the inhibition efficacy. Our assessment of DI revealed another target, the Rho-associated coiled-coil-containing protein kinase 2 (ROCKII). In vitro studies showed DI to be a competitive inhibitor of ROCKII (Ki, 132 nM with respect to ATP). This finding was supported by in silico molecular surface docking of DI with the ROCKII ATP-binding pocket. Time course analysis of myosin regulatory light chain (LC20) phosphorylation catalyzed by ROCKII in vitro revealed a significant decrease upon treatment with DI. ROCKII signaling was investigated in situ in human coronary artery vascular smooth muscle cells (CASMCs). ROCKII down-regulation using siRNA revealed several potential substrates involved in smooth muscle contraction (e.g., LC20, Par-4, MYPT1) and actin cytoskeletal dynamics (cofilin). The application of DI to CASMCs attenuated LC20, Par-4, LIMK, and cofilin phosphorylations. Notably, cofilin phosphorylation was not significantly decreased with a novel ZIPK selective inhibitor (HS-38). In addition, CASMCs treated with DI underwent cytoskeletal changes that were associated with diminution of cofilin phosphorylation. We conclude that DI is not selective for ZIPK and is a potent inhibitor of ROCKII. PMID:27573465

  7. Wdr1-mediated cell shape dynamics and cortical tension are essential for epidermal planar cell polarity

    PubMed Central

    Pasolli, H. Amalia; Chai, Sophia; Nikolova, Maria; Stokes, Nicole; Fuchs, Elaine

    2015-01-01

    During mouse development, core planar cell polarity (PCP) proteins become polarized in the epidermal plane to guide angling/morphogenesis of hair follicles. How PCP is established is poorly understood. Here, we identify a key role for Wdr1 (also known as Aip1), an F-actin-binding protein that enhances cofilin/destrin-mediated F-actin disassembly. We show that cofilin and destrin function redundantly in developing epidermis, but their combined depletion perturbs cell adhesion, cytokinesis, apicobasal polarity and PCP. Although Wdr1 depletion accentuates single-loss-of-cofilin/destrin phenotypes, alone it resembles core PCP mutations. Seeking a mechanism, we find that Wdr1 and cofilin/destrin-mediated actomyosin remodelling are essential for generating or maintaining cortical tension within the developing epidermal sheet and driving the cell shape and planar orientation changes that accompany establishment of PCP in mammalian epidermis. Our findings suggest intriguing evolutionary parallels but mechanistic modifications to the distal wing hinge-mediated mechanical forces that drive cell shape change and orient PCP in the Drosophila wing disc. PMID:25915128

  8. Mitochondrial nucleoid interacting proteins support mitochondrial protein synthesis.

    PubMed

    He, J; Cooper, H M; Reyes, A; Di Re, M; Sembongi, H; Litwin, T R; Gao, J; Neuman, K C; Fearnley, I M; Spinazzola, A; Walker, J E; Holt, I J

    2012-07-01

    Mitochondrial ribosomes and translation factors co-purify with mitochondrial nucleoids of human cells, based on affinity protein purification of tagged mitochondrial DNA binding proteins. Among the most frequently identified proteins were ATAD3 and prohibitin, which have been identified previously as nucleoid components, using a variety of methods. Both proteins are demonstrated to be required for mitochondrial protein synthesis in human cultured cells, and the major binding partner of ATAD3 is the mitochondrial ribosome. Altered ATAD3 expression also perturbs mtDNA maintenance and replication. These findings suggest an intimate association between nucleoids and the machinery of protein synthesis in mitochondria. ATAD3 and prohibitin are tightly associated with the mitochondrial membranes and so we propose that they support nucleic acid complexes at the inner membrane of the mitochondrion.

  9. Computational Prediction of Protein-Protein Interactions of Human Tyrosinase

    PubMed Central

    Wang, Su-Fang; Oh, Sangho; Si, Yue-Xiu; Wang, Zhi-Jiang; Han, Hong-Yan; Lee, Jinhyuk; Qian, Guo-Ying

    2012-01-01

    The various studies on tyrosinase have recently gained the attention of researchers due to their potential application values and the biological functions. In this study, we predicted the 3D structure of human tyrosinase and simulated the protein-protein interactions between tyrosinase and three binding partners, four and half LIM domains 2 (FHL2), cytochrome b-245 alpha polypeptide (CYBA), and RNA-binding motif protein 9 (RBM9). Our interaction simulations showed significant binding energy scores of −595.3 kcal/mol for FHL2, −859.1 kcal/mol for CYBA, and −821.3 kcal/mol for RBM9. We also investigated the residues of each protein facing toward the predicted site of interaction with tyrosinase. Our computational predictions will be useful for elucidating the protein-protein interactions of tyrosinase and studying its binding mechanisms. PMID:22577521

  10. Enhanced protein production by engineered zinc finger proteins.

    PubMed

    Reik, Andreas; Zhou, Yuanyue; Collingwood, Trevor N; Warfe, Lyndon; Bartsevich, Victor; Kong, Yanhong; Henning, Karla A; Fallentine, Barrett K; Zhang, Lei; Zhong, Xiaohong; Jouvenot, Yann; Jamieson, Andrew C; Rebar, Edward J; Case, Casey C; Korman, Alan; Li, Xiao-Yong; Black, Amelia; King, David J; Gregory, Philip D

    2007-08-01

    Increasing the yield of therapeutic proteins from mammalian production cell lines reduces costs and decreases the time to market. To this end, we engineered a zinc finger protein transcription factor (ZFP TF) that binds a DNA sequence within the promoter driving transgene expression. This ZFP TF enabled >100% increase in protein yield from CHO cells in transient, stable, and fermentor production run settings. Expression vectors engineered to carry up to 10 ZFP binding sites further enhanced ZFP-mediated increases in protein production up to approximately 500%. The multimerized ZFP binding sites function independently of the promoter, and therefore across vector platforms. CHO cell lines stably expressing ZFP TFs demonstrated growth characteristics similar to parental cell lines. ZFP TF expression and gains in protein production were stable over >30 generations in the absence of antibiotic selection. Our results demonstrate that ZFP TFs can rapidly and stably increase protein production in mammalian cells.

  11. Protein-water dynamics in antifreeze protein III activity

    NASA Astrophysics Data System (ADS)

    Xu, Yao; Bäumer, Alexander; Meister, Konrad; Bischak, Connor G.; DeVries, Arthur L.; Leitner, David M.; Havenith, Martina

    2016-03-01

    We combine Terahertz absorption spectroscopy (THz) and molecular dynamics (MD) simulations to investigate the underlying molecular mechanism for the antifreeze activity of one class of antifreeze protein, antifreeze protein type III (AFP-III) with a focus on the collective water hydrogen bond dynamics near the protein. After summarizing our previous work on AFPs, we present a new investigation of the effects of cosolutes on protein antifreeze activity by adding sodium citrate to the protein solution of AFP-III. Our results reveal that for AFP-III, unlike some other AFPs, the addition of the osmolyte sodium citrate does not affect the hydrogen bond dynamics at the protein surface significantly, as indicated by concentration dependent THz measurements. The present data, in combination with our previous THz measurements and molecular simulations, confirm that while long-range solvent perturbation is a necessary condition for the antifreeze activity of AFP-III, the local binding affinity determines the size of the hysteresis.

  12. Proteins interacting with cloning scars: a source of false positive protein-protein interactions.

    PubMed

    Banks, Charles A S; Boanca, Gina; Lee, Zachary T; Florens, Laurence; Washburn, Michael P

    2015-02-23

    A common approach for exploring the interactome, the network of protein-protein interactions in cells, uses a commercially available ORF library to express affinity tagged bait proteins; these can be expressed in cells and endogenous cellular proteins that copurify with the bait can be identified as putative interacting proteins using mass spectrometry. Control experiments can be used to limit false-positive results, but in many cases, there are still a surprising number of prey proteins that appear to copurify specifically with the bait. Here, we have identified one source of false-positive interactions in such studies. We have found that a combination of: 1) the variable sequence of the C-terminus of the bait with 2) a C-terminal valine "cloning scar" present in a commercially available ORF library, can in some cases create a peptide motif that results in the aberrant co-purification of endogenous cellular proteins. Control experiments may not identify false positives resulting from such artificial motifs, as aberrant binding depends on sequences that vary from one bait to another. It is possible that such cryptic protein binding might occur in other systems using affinity tagged proteins; this study highlights the importance of conducting careful follow-up studies where novel protein-protein interactions are suspected.

  13. Protein-protein interactions in complex cosolvent solutions.

    PubMed

    Javid, Nadeem; Vogtt, Karsten; Krywka, Chris; Tolan, Metin; Winter, Roland

    2007-04-02

    The effects of various kosmotropic and chaotropic cosolvents and salts on the intermolecular interaction potential of positively charged lysozyme is evaluated at varying protein concentrations by using synchrotron small-angle X-ray scattering in combination with liquid-state theoretical approaches. The experimentally derived static structure factors S(Q) obtained without and with added cosolvents and salts are analysed with a statistical mechanical model based on the Derjaguin-Landau-Verwey-Overbeek (DLVO) potential, which accounts for repulsive and attractive interactions between the protein molecules. Different cosolvents and salts influence the interactions between protein molecules differently as a result of changes in the hydration level or solvation, in charge screening, specific adsorption of the additives at the protein surface, or increased hydrophobic interactions. Intermolecular interaction effects are significant above protein concentrations of 1 wt %, and with increasing protein concentration, the repulsive nature of the intermolecular pair potential V(r) increases markedly. Kosmotropic cosolvents like glycerol and sucrose exhibit strong concentration-dependent effects on the interaction potential, leading to an increase of repulsive forces between the protein molecules at low to medium high osmolyte concentrations. Addition of trifluoroethanol exhibits a multiphasic effect on V(r) when changing its concentration. Salts like sodium chloride and potassium sulfate exhibit strong concentration-dependent changes of the interaction potential due to charge screening of the positively charged protein molecules. Guanidinium chloride (GdmCl) at low concentrations exhibits a similar charge-screening effect, resulting in increased attractive interactions between the protein molecules. At higher GdmCl concentrations, V(r) becomes more repulsive in nature due to the presence of high concentrations of Gdm(+) ions binding to the protein molecules. Our findings also

  14. Linkers in the structural biology of protein-protein interactions.

    PubMed

    Reddy Chichili, Vishnu Priyanka; Kumar, Veerendra; Sivaraman, J

    2013-02-01

    Linkers or spacers are short amino acid sequences created in nature to separate multiple domains in a single protein. Most of them are rigid and function to prohibit unwanted interactions between the discrete domains. However, Gly-rich linkers are flexible, connecting various domains in a single protein without interfering with the function of each domain. The advent of recombinant DNA technology made it possible to fuse two interacting partners with the introduction of artificial linkers. Often, independent proteins may not exist as stable or structured proteins until they interact with their binding partner, following which they gain stability and the essential structural elements. Gly-rich linkers have been proven useful for these types of unstable interactions, particularly where the interaction is weak and transient, by creating a covalent link between the proteins to form a stable protein-protein complex. Gly-rich linkers are also employed to form stable covalently linked dimers, and to connect two independent domains that create a ligand-binding site or recognition sequence. The lengths of linkers vary from 2 to 31 amino acids, optimized for each condition so that the linker does not impose any constraints on the conformation or interactions of the linked partners. Various structures of covalently linked protein complexes have been described using X-ray crystallography, nuclear magnetic resonance and cryo-electron microscopy techniques. In this review, we evaluate several structural studies where linkers have been used to improve protein quality, to produce stable protein-protein complexes, and to obtain protein dimers.

  15. Geminivirus C3 Protein: Replication Enhancement and Protein Interactions

    PubMed Central

    Settlage, Sharon B.; See, Renee G.; Hanley-Bowdoin, Linda

    2005-01-01

    Most dicot-infecting geminiviruses encode a replication enhancer protein (C3, AL3, or REn) that is required for optimal replication of their small, single-stranded DNA genomes. C3 interacts with C1, the essential viral replication protein that initiates rolling circle replication. C3 also homo-oligomerizes and interacts with at least two host-encoded proteins, proliferating cell nuclear antigen (PCNA) and the retinoblastoma-related protein (pRBR). It has been proposed that protein interactions contribute to C3 function. Using the C3 protein of Tomato yellow leaf curl virus, we examined the impact of mutations to amino acids that are conserved across the C3 protein family on replication enhancement and protein interactions. Surprisingly, many of the mutations did not affect replication enhancement activity of C3 in tobacco protoplasts. Other mutations either enhanced or were detrimental to C3 replication activity. Analysis of mutated proteins in yeast two-hybrid assays indicated that mutations that inactivate C3 replication enhancement activity also reduce or inactivate C3 oligomerization and interaction with C1 and PCNA. In contrast, mutated C3 proteins impaired for pRBR binding are fully functional in replication assays. Hydrophobic residues in the middle of the C3 protein were implicated in C3 interaction with itself, C1, and PCNA, while polar resides at both the N and C termini of the protein are important for C3-pRBR interaction. These experiments established the importance of C3-C3, C3-C1, and C3-PCNA interactions in geminivirus replication. While C3-pRBR interaction is not required for viral replication in cycling cells, it may play a role during infection of differentiated cells in intact plants. PMID:16014949

  16. Proteins, exons and molecular evolution.

    PubMed

    Holland, S K; Blake, C C

    1987-01-01

    The discovery of the eukaryotic gene structure has prompted research into the potential relationship between protein structure and function and the corresponding exon/intron patterns. The exon shuffling hypothesis put forward by Gilbert and Blake suggests the encodement of structural and functional protein elements by exons which can recombine to create novel proteins. This provides an explanation for the relatively rapid evolution of proteins from a few primordial molecules. As the number of gene and protein structures increases, evidence of exon shuffling is becoming more apparent and examples are presented both from modern multi-domain proteins and ancient proteins. Recent work into the chemical properties and catalytic functions of RNA have led to hypotheses based upon the early existence of RNA. These theories suggest that the split gene structure originated in the primordial soup as a result of random RNA synthesis. Stable regions of RNA, or exons, were utilised as primitive enzymes. In response to selective pressures for information storage, the activity was directly transferred from the RNA enzymes or ribozymes, to proteins. These short polypeptides fused together to create larger proteins with a wide range of functions. Recent research into RNA processing and exon size, discussed in this review, provides a clearer insight into the evolutionary development of the gene and protein structure.

  17. Laboratory-Directed Protein Evolution

    PubMed Central

    Yuan, Ling; Kurek, Itzhak; English, James; Keenan, Robert

    2005-01-01

    Systematic approaches to directed evolution of proteins have been documented since the 1970s. The ability to recruit new protein functions arises from the considerable substrate ambiguity of many proteins. The substrate ambiguity of a protein can be interpreted as the evolutionary potential that allows a protein to acquire new specificities through mutation or to regain function via mutations that differ from the original protein sequence. All organisms have evolutionarily exploited this substrate ambiguity. When exploited in a laboratory under controlled mutagenesis and selection, it enables a protein to “evolve” in desired directions. One of the most effective strategies in directed protein evolution is to gradually accumulate mutations, either sequentially or by recombination, while applying selective pressure. This is typically achieved by the generation of libraries of mutants followed by efficient screening of these libraries for targeted functions and subsequent repetition of the process using improved mutants from the previous screening. Here we review some of the successful strategies in creating protein diversity and the more recent progress in directed protein evolution in a wide range of scientific disciplines and its impacts in chemical, pharmaceutical, and agricultural sciences. PMID:16148303

  18. Spectrophotometric determination of protein concentration.

    PubMed

    Simonian, Michael H

    2004-09-01

    This unit describes spectrophotometric and colorimetric methods for measuring the concentration of a sample protein in solution. Absorbance measured at 280 nm (A(280)) is used to calculate protein concentration by comparison with a standard curve or published absorptivity values for that protein (a(280)). Alternatively, absorbance measured at 205 nm (A(205)) is used to calculate the protein concentration. The A(280) and A(205) methods can be used to quantify total protein in crude lysates and purified or partially purified protein. A spectrofluorometer or a filter fluorometer can be used to measure the intrinsic fluorescence emission of a sample solution; this value is compared with the emissions from standard solutions to determine the sample concentration. The fluorescence emission method is used to quantify purified protein. This simple method is useful for dilute protein samples and can be completed in a short amount of time. There are two colorimetric methods: the Bradford colorimetric method, based upon binding of the dye Coomassie brilliant blue to the protein of interest, and the Lowry method, which measures colorimetric reaction of tyrosyl residues in the protein sample.

  19. Strategies for protein synthetic biology

    PubMed Central

    Grünberg, Raik; Serrano, Luis

    2010-01-01

    Proteins are the most versatile among the various biological building blocks and a mature field of protein engineering has lead to many industrial and biomedical applications. But the strength of proteins—their versatility, dynamics and interactions—also complicates and hinders systems engineering. Therefore, the design of more sophisticated, multi-component protein systems appears to lag behind, in particular, when compared to the engineering of gene regulatory networks. Yet, synthetic biologists have started to tinker with the information flow through natural signaling networks or integrated protein switches. A successful strategy common to most of these experiments is their focus on modular interactions between protein domains or domains and peptide motifs. Such modular interaction swapping has rewired signaling in yeast, put mammalian cell morphology under the control of light, or increased the flux through a synthetic metabolic pathway. Based on this experience, we outline an engineering framework for the connection of reusable protein interaction devices into self-sufficient circuits. Such a framework should help to ‘refacture’ protein complexity into well-defined exchangeable devices for predictive engineering. We review the foundations and initial success stories of protein synthetic biology and discuss the challenges and promises on the way from protein- to protein systems design. PMID:20385577

  20. Proteins aggregation and human diseases

    NASA Astrophysics Data System (ADS)

    Hu, Chin-Kun

    2015-04-01

    Many human diseases and the death of most supercentenarians are related to protein aggregation. Neurodegenerative diseases include Alzheimer's disease (AD), Huntington's disease (HD), Parkinson's disease (PD), frontotemporallobar degeneration, etc. Such diseases are due to progressive loss of structure or function of neurons caused by protein aggregation. For example, AD is considered to be related to aggregation of Aβ40 (peptide with 40 amino acids) and Aβ42 (peptide with 42 amino acids) and HD is considered to be related to aggregation of polyQ (polyglutamine) peptides. In this paper, we briefly review our recent discovery of key factors for protein aggregation. We used a lattice model to study the aggregation rates of proteins and found that the probability for a protein sequence to appear in the conformation of the aggregated state can be used to determine the temperature at which proteins can aggregate most quickly. We used molecular dynamics and simple models of polymer chains to study relaxation and aggregation of proteins under various conditions and found that when the bending-angle dependent and torsion-angle dependent interactions are zero or very small, then protein chains tend to aggregate at lower temperatures. All atom models were used to identify a key peptide chain for the aggregation of insulin chains and to find that two polyQ chains prefer anti-parallel conformation. It is pointed out that in many cases, protein aggregation does not result from protein mis-folding. A potential drug from Chinese medicine was found for Alzheimer's disease.

  1. Targeted protein degradation by PROTACs.

    PubMed

    Neklesa, Taavi K; Winkler, James D; Crews, Craig M

    2017-02-14

    Targeted protein degradation using the PROTAC technology is emerging as a novel therapeutic method to address diseases driven by the aberrant expression of a disease-causing protein. PROTAC molecules are bifunctional small molecules that simultaneously bind a target protein and an E3-ubiquitin ligase, thus causing ubiquitination and degradation of the target protein by the proteasome. Like small molecules, PROTAC molecules possess good tissue distribution and the ability to target intracellular proteins. Herein, we highlight the advantages of protein degradation using PROTACs, and provide specific examples where degradation offers therapeutic benefit over classical enzyme inhibition. Foremost, PROTACs can degrade proteins regardless of their function. This includes the currently "undruggable" proteome, which comprises approximately 85% of all human proteins. Other beneficial aspects of protein degradation include the ability to target overexpressed and mutated proteins, as well as the potential to demonstrate prolonged pharmacodynamics effect beyond drug exposure. Lastly, due to their catalytic nature and the pre-requisite ubiquitination step, an exquisitely potent molecules with a high degree of degradation selectivity can be designed. Impressive preclinical in vitro and in vivo PROTAC data have been published, and these data have propelled the development of clinically viable PROTACs. With the molecular weight falling in the 700-1000Da range, the delivery and bioavailability of PROTACs remain the largest hurdles on the way to the clinic. Solving these issues and demonstrating proof of concept clinical data will be the focus of many labs over the next few years.

  2. Essential protein identification based on essential protein-protein interaction prediction by Integrated Edge Weights.

    PubMed

    Jiang, Yuexu; Wang, Yan; Pang, Wei; Chen, Liang; Sun, Huiyan; Liang, Yanchun; Blanzieri, Enrico

    2015-07-15

    Essential proteins play a crucial role in cellular survival and development process. Experimentally, essential proteins are identified by gene knockouts or RNA interference, which are expensive and often fatal to the target organisms. Regarding this, an alternative yet important approach to essential protein identification is through computational prediction. Existing computational methods predict essential proteins based on their relative densities in a protein-protein interaction (PPI) network. Degree, betweenness, and other appropriate criteria are often used to measure the relative density. However, no matter what criterion is used, a protein is actually ordered by the attributes of this protein per se. In this research, we presented a novel computational method, Integrated Edge Weights (IEW), to first rank protein-protein interactions by integrating their edge weights, and then identified sub PPI networks consisting of those highly-ranked edges, and finally regarded the nodes in these sub networks as essential proteins. We evaluated IEW on three model organisms: Saccharomyces cerevisiae (S. cerevisiae), Escherichia coli (E. coli), and Caenorhabditis elegans (C. elegans). The experimental results showed that IEW achieved better performance than the state-of-the-art methods in terms of precision-recall and Jackknife measures. We had also demonstrated that IEW is a robust and effective method, which can retrieve biologically significant modules by its highly-ranked protein-protein interactions for S. cerevisiae, E. coli, and C. elegans. We believe that, with sufficient data provided, IEW can be used to any other organisms' essential protein identification. A website about IEW can be accessed from http://digbio.missouri.edu/IEW/index.html.

  3. Protein detection system

    DOEpatents

    Fruetel, Julie A.; Fiechtner, Gregory J.; Kliner, Dahv A. V.; McIlroy, Andrew

    2009-05-05

    The present embodiment describes a miniature, microfluidic, absorption-based sensor to detect proteins at sensitivities comparable to LIF but without the need for tagging. This instrument utilizes fiber-based evanescent-field cavity-ringdown spectroscopy, in combination with faceted prism microchannels. The combination of these techniques will increase the effective absorption path length by a factor of 10.sup.3 to 10.sup.4 (to .about.1-m), thereby providing unprecedented sensitivity using direct absorption. The coupling of high-sensitivity absorption with high-performance microfluidic separation will enable real-time sensing of biological agents in aqueous samples (including aerosol collector fluids) and will provide a general method with spectral fingerprint capability for detecting specific bio-agents.

  4. Protein Crystal Growth

    NASA Technical Reports Server (NTRS)

    2003-01-01

    In order to rapidly and efficiently grow crystals, tools were needed to automatically identify and analyze the growing process of protein crystals. To meet this need, Diversified Scientific, Inc. (DSI), with the support of a Small Business Innovation Research (SBIR) contract from NASA s Marshall Space Flight Center, developed CrystalScore(trademark), the first automated image acquisition, analysis, and archiving system designed specifically for the macromolecular crystal growing community. It offers automated hardware control, image and data archiving, image processing, a searchable database, and surface plotting of experimental data. CrystalScore is currently being used by numerous pharmaceutical companies and academic and nonprofit research centers. DSI, located in Birmingham, Alabama, was awarded the patent Method for acquiring, storing, and analyzing crystal images on March 4, 2003. Another DSI product made possible by Marshall SBIR funding is VaporPro(trademark), a unique, comprehensive system that allows for the automated control of vapor diffusion for crystallization experiments.

  5. Protein- mediated enamel mineralization

    PubMed Central

    Moradian-Oldak, Janet

    2012-01-01

    Enamel is a hard nanocomposite bioceramic with significant resilience that protects the mammalian tooth from external physical and chemical damages. The remarkable mechanical properties of enamel are associated with its hierarchical structural organization and its thorough connection with underlying dentin. This dynamic mineralizing system offers scientists a wealth of information that allows the study of basic principals of organic matrix-mediated biomineralization and can potentially be utilized in the fields of material science and engineering for development and design of biomimetic materials. This chapter will provide a brief overview of enamel hierarchical structure and properties as well as the process and stages of amelogenesis. Particular emphasis is given to current knowledge of extracellular matrix protein and proteinases, and the structural chemistry of the matrix components and their putative functions. The chapter will conclude by discussing the potential of enamel for regrowth. PMID:22652761

  6. Photo Control of Protein Function Using Photoactive Yellow Protein.

    PubMed

    Reis, Jakeb M; Woolley, G Andrew

    2016-01-01

    Photoswitchable proteins are becoming increasingly common tools for manipulating cellular processes with high spatial and temporal precision. Photoactive yellow protein (PYP) is a small, water-soluble protein that undergoes a blue light induced change in conformation. It can serve as a scaffold for designing new tools to manipulate biological processes, but with respect to other protein scaffolds it presents some technical challenges. Here, we present practical information on how to overcome these, including how to synthesize the PYP chromophore, how to express and purify PYP, and how to screen for desired activity.

  7. Cry protein crystals: a novel platform for protein delivery.

    PubMed

    Nair, Manoj S; Lee, Marianne M; Bonnegarde-Bernard, Astrid; Wallace, Julie A; Dean, Donald H; Ostrowski, Michael C; Burry, Richard W; Boyaka, Prosper N; Chan, Michael K

    2015-01-01

    Protein delivery platforms are important tools in the development of novel protein therapeutics and biotechnologies. We have developed a new class of protein delivery agent based on sub-micrometer-sized Cry3Aa protein crystals that naturally form within the bacterium Bacillus thuringiensis. We demonstrate that fusion of the cry3Aa gene to that of various reporter proteins allows for the facile production of Cry3Aa fusion protein crystals for use in subsequent applications. These Cry3Aa fusion protein crystals are efficiently taken up and retained by macrophages and other cell lines in vitro, and can be delivered to mice in vivo via multiple modes of administration. Oral delivery of Cry3Aa fusion protein crystals to C57BL/6 mice leads to their uptake by MHC class II cells, including macrophages in the Peyer's patches, supporting the notion that the Cry3Aa framework can be used to stabilize cargo protein against degradation for delivery to gastrointestinal lymphoid tissues.

  8. Exploring the repeat protein universe through computational protein design.

    PubMed

    Brunette, T J; Parmeggiani, Fabio; Huang, Po-Ssu; Bhabha, Gira; Ekiert, Damian C; Tsutakawa, Susan E; Hura, Greg L; Tainer, John A; Baker, David

    2015-12-24

    A central question in protein evolution is the extent to which naturally occurring proteins sample the space of folded structures accessible to the polypeptide chain. Repeat proteins composed of multiple tandem copies of a modular structure unit are widespread in nature and have critical roles in molecular recognition, signalling, and other essential biological processes. Naturally occurring repeat proteins have been re-engineered for molecular recognition and modular scaffolding applications. Here we use computational protein design to investigate the space of folded structures that can be generated by tandem repeating a simple helix-loop-helix-loop structural motif. Eighty-three designs with sequences unrelated to known repeat proteins were experimentally characterized. Of these, 53 are monomeric and stable at 95 °C, and 43 have solution X-ray scattering spectra consistent with the design models. Crystal structures of 15 designs spanning a broad range of curvatures are in close agreement with the design models with root mean square deviations ranging from 0.7 to 2.5 Å. Our results show that existing repeat proteins occupy only a small fraction of the possible repeat protein sequence and structure space and that it is possible to design novel repeat proteins with precisely specified geometries, opening up a wide array of new possibilities for biomolecular engineering.

  9. Hydration of proteins: excess partial volumes of water and proteins.

    PubMed

    Sirotkin, Vladimir A; Komissarov, Igor A; Khadiullina, Aigul V

    2012-04-05

    High precision densitometry was applied to study the hydration of proteins. The hydration process was analyzed by the simultaneous monitoring of the excess partial volumes of water and the proteins in the entire range of water content. Five unrelated proteins (lysozyme, chymotrypsinogen A, ovalbumin, human serum albumin, and β-lactoglobulin) were used as models. The obtained data were compared with the excess partial enthalpies of water and the proteins. It was shown that the excess partial quantities are very sensitive to the changes in the state of water and proteins. At the lowest water weight fractions (w(1)), the changes of the excess functions can mainly be attributed to water addition. A transition from the glassy to the flexible state of the proteins is accompanied by significant changes in the excess partial quantities of water and the proteins. This transition appears at a water weight fraction of 0.06 when charged groups of proteins are covered. Excess partial quantities reach their fully hydrated values at w(1) > 0.5 when coverage of both polar and weakly interacting surface elements is complete. At the highest water contents, water addition has no significant effect on the excess quantities. At w(1) > 0.5, changes in the excess functions can solely be attributed to changes in the state of the proteins.

  10. Modular protein switches derived from antibody mimetic proteins

    PubMed Central

    Nicholes, N.; Date, A.; Beaujean, P.; Hauk, P.; Kanwar, M.; Ostermeier, M.

    2016-01-01

    Protein switches have potential applications as biosensors and selective protein therapeutics. Protein switches built by fusion of proteins with the prerequisite input and output functions are currently developed using an ad hoc process. A modular switch platform in which existing switches could be readily adapted to respond to any ligand would be advantageous. We investigated the feasibility of a modular protein switch platform based on fusions of the enzyme TEM-1 β-lactamase (BLA) with two different antibody mimetic proteins: designed ankyrin repeat proteins (DARPins) and monobodies. We created libraries of random insertions of the gene encoding BLA into genes encoding a DARPin or a monobody designed to bind maltose-binding protein (MBP). From these libraries, we used a genetic selection system for β-lactamase activity to identify genes that conferred MBP-dependent ampicillin resistance to Escherichia coli. Some of these selected genes encoded switch proteins whose enzymatic activity increased up to 14-fold in the presence of MBP. We next introduced mutations into the antibody mimetic domain of these switches that were known to cause binding to different ligands. To different degrees, introduction of the mutations resulted in switches with the desired specificity, illustrating the potential modularity of these platforms. PMID:26637825

  11. Modular protein switches derived from antibody mimetic proteins.

    PubMed

    Nicholes, N; Date, A; Beaujean, P; Hauk, P; Kanwar, M; Ostermeier, M

    2016-02-01

    Protein switches have potential applications as biosensors and selective protein therapeutics. Protein switches built by fusion of proteins with the prerequisite input and output functions are currently developed using an ad hoc process. A modular switch platform in which existing switches could be readily adapted to respond to any ligand would be advantageous. We investigated the feasibility of a modular protein switch platform based on fusions of the enzyme TEM-1 β-lactamase (BLA) with two different antibody mimetic proteins: designed ankyrin repeat proteins (DARPins) and monobodies. We created libraries of random insertions of the gene encoding BLA into genes encoding a DARPin or a monobody designed to bind maltose-binding protein (MBP). From these libraries, we used a genetic selection system for β-lactamase activity to identify genes that conferred MBP-dependent ampicillin resistance to Escherichia coli. Some of these selected genes encoded switch proteins whose enzymatic activity increased up to 14-fold in the presence of MBP. We next introduced mutations into the antibody mimetic domain of these switches that were known to cause binding to different ligands. To different degrees, introduction of the mutations resulted in switches with the desired specificity, illustrating the potential modularity of these platforms.

  12. Enhancing recombinant protein quality and yield by protein stability profiling.

    PubMed

    Mezzasalma, Tara M; Kranz, James K; Chan, Winnie; Struble, Geoffrey T; Schalk-Hihi, Céline; Deckman, Ingrid C; Springer, Barry A; Todd, Matthew J

    2007-04-01

    The reliable production of large amounts of stable, high-quality proteins is a major challenge facing pharmaceutical protein biochemists, necessary for fulfilling demands from structural biology, for high-throughput screening, and for assay purposes throughout early discovery. One strategy for bypassing purification challenges in problematic systems is to engineer multiple forms of a particular protein to optimize expression, purification, and stability, often resulting in a nonphysiological sub-domain. An alternative strategy is to alter process conditions to maximize wild-type construct stability, based on a specific protein stability profile (PSP). ThermoFluor, a miniaturized 384-well thermal stability assay, has been implemented as a means of monitoring solution-dependent changes in protein stability, complementing the protein engineering and purification processes. A systematic analysis of pH, buffer or salt identity and concentration, biological metals, surfactants, and common excipients in terms of an effect on protein stability rapidly identifies conditions that might be used (or avoided) during protein production. Two PSPs are presented for the kinase catalytic domains of Akt-3 and cFMS, in which information derived from a ThermoFluor PSP led to an altered purification strategy, improving the yield and quality of the protein using the primary sequences of the catalytic domains.

  13. Protein hijacking: key proteins held captive against their will.

    PubMed

    Traven, Ana; Huang, David C S; Lithgow, Trevor

    2004-02-01

    Proteins travel to their appropriate intracellular homes by means of the targeting signals they carry. It now seems that a short, but important, list of key regulatory proteins are victims of protein hijacking: Bid, Bim, NF-kappaB, SREBP, and perhaps the intracellular portion of MUC1. These provide critical functions within a particular subcellular compartment, but are initially prevented from finding their way to this intracellular home. Only in response to specific physiological signals are these proteins released to find the site at which they act.

  14. Nanosecond Relaxation Dynamics of Hydrated Proteins: Water versus protein contributions

    SciTech Connect

    Khodadadi, S; Curtis, J. E.; Sokolov, Alexei P

    2011-01-01

    We have studied picosecond to nanosecond dynamics of hydrated protein powders using dielectric spectroscopy and molecular dynamics (MD) simulations. Our analysis of hydrogen-atom single particle dynamics from MD simulations focused on main ( main tens of picoseconds) and slow ( slow nanosecond) relaxation processes that were observed in dielectric spectra of similar hydrated protein samples. Traditionally, the interpretation of these processes observed in dielectric spectra has been ascribed to the relaxation behavior of hydration water tightly bounded to a protein and not to protein atoms. Detailed analysis of the MD simulations and comparison to dielectric data indicate that the observed relaxation process in the nanosecond time range of hydrated protein spectra is mainly due to protein atoms. The relaxation processes involve the entire structure of protein including atoms in the protein backbone, side chains, and turns. Both surface and buried protein atoms contribute to the slow processes; however, surface atoms demonstrate slightly faster relaxation dynamics. Analysis of the water molecule residence and dipolar relaxation correlation behavior indicates that the hydration water relaxes at much shorter time scales.

  15. Young proteins experience more variable selection pressures than old proteins

    PubMed Central

    Vishnoi, Anchal; Kryazhimskiy, Sergey; Bazykin, Georgii A.; Hannenhalli, Sridhar; Plotkin, Joshua B.

    2010-01-01

    It is well known that young proteins tend to experience weaker purifying selection and evolve more quickly than old proteins. Here, we show that, in addition, young proteins tend to experience more variable selection pressures over time than old proteins. We demonstrate this pattern in three independent taxonomic groups: yeast, Drosophila, and mammals. The increased variability of selection pressures on young proteins is highly significant even after controlling for the fact that young proteins are typically shorter and experience weaker purifying selection than old proteins. The majority of our results are consistent with the hypothesis that the function of a young gene tends to change over time more readily than that of an old gene. At the same time, our results may be caused in part by young genes that serve constant functions over time, but nevertheless appear to evolve under changing selection pressures due to depletion of adaptive mutations. In either case, our results imply that the evolution of a protein-coding sequence is partly determined by its age and origin, and not only by the phenotypic properties of the encoded protein. We discuss, via specific examples, the consequences of these findings for understanding of the sources of evolutionary novelty. PMID:20921233

  16. Noninvasive imaging of protein-protein interactions in living animals

    NASA Astrophysics Data System (ADS)

    Luker, Gary D.; Sharma, Vijay; Pica, Christina M.; Dahlheimer, Julie L.; Li, Wei; Ochesky, Joseph; Ryan, Christine E.; Piwnica-Worms, Helen; Piwnica-Worms, David

    2002-05-01

    Protein-protein interactions control transcription, cell division, and cell proliferation as well as mediate signal transduction, oncogenic transformation, and regulation of cell death. Although a variety of methods have been used to investigate protein interactions in vitro and in cultured cells, none can analyze these interactions in intact, living animals. To enable noninvasive molecular imaging of protein-protein interactions in vivo by positron-emission tomography and fluorescence imaging, we engineered a fusion reporter gene comprising a mutant herpes simplex virus 1 thymidine kinase and green fluorescent protein for readout of a tetracycline-inducible, two-hybrid system in vivo. By using micro-positron-emission tomography, interactions between p53 tumor suppressor and the large T antigen of simian virus 40 were visualized in tumor xenografts of HeLa cells stably transfected with the imaging constructs. Imaging protein-binding partners in vivo will enable functional proteomics in whole animals and provide a tool for screening compounds targeted to specific protein-protein interactions in living animals.

  17. Protein Hormones and Immunity‡

    PubMed Central

    Kelley, Keith W.; Weigent, Douglas A.; Kooijman, Ron

    2007-01-01

    A number of observations and discoveries over the past 20 years support the concept of important physiological interactions between the endocrine and immune systems. The best known pathway for transmission of information from the immune system to the neuroendocrine system is humoral in the form of cytokines, although neural transmission via the afferent vagus is well documented also. In the other direction, efferent signals from the nervous system to the immune system are conveyed by both the neuroendocrine and autonomic nervous systems. Communication is possible because the nervous and immune systems share a common biochemical language involving shared ligands and receptors, including neurotransmitters, neuropeptides, growth factors, neuroendocrine hormones and cytokines. This means that the brain functions as an immune-regulating organ participating in immune responses. A great deal of evidence has accumulated and confirmed that hormones secreted by the neuroendocrine system play an important role in communication and regulation of the cells of the immune system. Among protein hormones, this has been most clearly documented for prolactin (PRL), growth hormone (GH), and insulin-like growth factor-1 (IGF-I), but significant influences on immunity by thyroid stimulating hormone (TSH) have also been demonstrated. Here we review evidence obtained during the past 20 years to clearly demonstrate that neuroendocrine protein hormones influence immunity and that immune processes affect the neuroendocrine system. New findings highlight a previously undiscovered route of communication between the immune and endocrine systems that is now known to occur at the cellular level. This communication system is activated when inflammatory processes induced by proinflammatory cytokines antagonize the function of a variety of hormones, which then causes endocrine resistance in both the periphery and brain. Homeostasis during inflammation is achieved by a balance between cytokines and

  18. Synthetic Peptides as Protein Mimics

    PubMed Central

    Groß, Andrea; Hashimoto, Chie; Sticht, Heinrich; Eichler, Jutta

    2016-01-01

    The design and generation of molecules capable of mimicking the binding and/or functional sites of proteins represents a promising strategy for the exploration and modulation of protein function through controlled interference with the underlying molecular interactions. Synthetic peptides have proven an excellent type of molecule for the mimicry of protein sites because such peptides can be generated as exact copies of protein fragments, as well as in diverse chemical modifications, which includes the incorporation of a large range of non-proteinogenic amino acids as well as the modification of the peptide backbone. Apart from extending the chemical and structural diversity presented by peptides, such modifications also increase the proteolytic stability of the molecules, enhancing their utility for biological applications. This article reviews recent advances by this and other laboratories in the use of synthetic protein mimics to modulate protein function, as well as to provide building blocks for synthetic biology. PMID:26835447

  19. Biofoams and natural protein surfactants

    PubMed Central

    Cooper, Alan; Kennedy, Malcolm W.

    2010-01-01

    Naturally occurring foam constituent and surfactant proteins with intriguing structures and functions are now being identified from a variety of biological sources. The ranaspumins from tropical frog foam nests comprise a range of proteins with a mixture of surfactant, carbohydrate binding and antimicrobial activities that together provide a stable, biocompatible, protective foam environment for developing eggs and embryos. Ranasmurfin, a blue protein from a different species of frog, displays a novel structure with a unique chromophoric crosslink. Latherin, primarily from horse sweat, but with similarities to salivary, oral and upper respiratory tract proteins, illustrates several potential roles for surfactant proteins in mammalian systems. These proteins, together with the previously discovered hydrophobins of fungi, throw new light on biomolecular processes at air–water and other interfaces. This review provides a perspective on these recent findings, focussing on structure and biophysical properties. PMID:20615601

  20. Phase retrieval in protein crystallography.

    PubMed

    Liu, Zhong Chuan; Xu, Rui; Dong, Yu Hui

    2012-03-01

    Solution of the phase problem is central to crystallographic structure determination. An oversampling method is proposed, based on the hybrid input-output algorithm (HIO) [Fienup (1982). Appl. Opt. 21, 2758-2769], to retrieve the phases of reflections in crystallography. This method can extend low-resolution structures to higher resolution for structure determination of proteins without additional sample preparation. The method requires an envelope of the protein which divides a unit cell into the density region where the proteins are located and the non-density region occupied by solvents. After a few hundred to a few thousand iterations, the correct phases and density maps are recovered. The method has been used successfully in several cases to retrieve the phases from the experimental X-ray diffraction data and the envelopes of proteins constructed from structure files downloaded from the Protein Data Bank. It is hoped that this method will greatly facilitate the ab initio structure determination of proteins.