Science.gov

Sample records for acting antiviral agents

  1. PEGylated recombinant human interferon-ω as a long-acting antiviral agent: structure, antiviral activity and pharmacokinetics.

    PubMed

    Yu, Weili; Yu, Changming; Wu, Ling; Fang, Ting; Qiu, Rui; Zhang, Jinlong; Yu, Ting; Fu, Ling; Chen, Wei; Hu, Tao

    2014-08-01

    Recombinant human interferon-ω (rhIFN-ω) exhibits a potent antiviral activity. Because of poor pharmacokinetics (PK) of rhIFN-ω, frequent dosing of rhIFN-ω is necessitated to achieve the sustained antiviral efficacy. PEGylation can efficiently improve the PK of rhIFN-ω while substantially decrease its bioactivity. The structure, antiviral activity and PK of the PEGylated rhIFN-ω were measured to establish their relationship with PEGylation sites, polyethylene glycol (PEG) mass and PEG structure. Accordingly, N-terminus and the lysine residues were selected as the PEGylation sites. PEGs with Mw of 20kDa and 40kDa were used to investigate the effect of PEG mass. Linear and branched PEGs were used to investigate the effect of PEG structure. PEGylation decreased the antiviral activity of rhIFN-ω and improved its PK. The PEGylation sites determine the bioactivity of the PEGylated rhIFN-ω and the conjugated PEG mass determines the PK. N-terminally PEGylated rhIFN-ω with 40kDa linear PEG maintains 21.7% of the rhIFN-ω antiviral activity with a half-life of 139.6h. Thus, N-terminally PEGylated rhIFN-ω with linear 40kDa PEG is a potential antiviral agent for long-acting treatment of the viral diseases.

  2. Direct-acting Antivirals and Host-targeting Agents against the Hepatitis A Virus

    PubMed Central

    Kanda, Tatsuo; Nakamoto, Shingo; Wu, Shuang; Nakamura, Masato; Jiang, Xia; Haga, Yuki; Sasaki, Reina; Yokosuka, Osamu

    2015-01-01

    Hepatitis A virus (HAV) infection is a major cause of acute hepatitis and occasionally leads to acute liver failure in both developing and developed countries. Although effective vaccines for HAV are available, the development of new antivirals against HAV may be important for the control of HAV infection in developed countries where no universal vaccination program against HAV exists, such as Japan. There are two forms of antiviral agents against HAV: direct-acting antivirals (DAAs) and host-targeting agents (HTAs). Studies using small interfering ribonucleic acid (siRNA) have suggested that the HAV internal ribosomal entry site (IRES) is an attractive target for the control of HAV replication and infection. Among the HTAs, amantadine and interferon-lambda 1 (IL-29) inhibit HAV IRES-mediated translation and HAV replication. Janus kinase (JAK) inhibitors inhibit La protein expression, HAV IRES activity, and HAV replication. Based on this review, both DAAs and HTAs may be needed to control effectively HAV infection, and their use should continue to be explored. PMID:26623267

  3. Herpes Zoster reactivation in patients with chronic hepatitis C under treatment with directly acting antiviral agents: A case series.

    PubMed

    El Kassas, Mohamed; Wifi, Mohamed Naguib; Mahdy, Reem; Afify, Shimaa; Hafez, Enas; El Latif, Yasmeen Abd; Ezzat, Marwa; El Tahan, Adel; Youssef, Naglaa; Esmat, Gamal

    2017-03-17

    We report a series of cutaneous Herpes Zoster (HZ) reactivation cases in patients with hepatitis C virus (HCV) infection treated with directly acting antiviral (DAA) agents. Five cases were detected among 2133 treated patients with DAAs at one of the specialized viral hepatitis treatment centers in Egypt. A control group including 2300 age and sex matched HCV patients who were previously treated with pegylated interferon and ribavirin did not show any HZ reactivation reports while on treatment. None of cases had an evidence of immunosuppression or a risk factor for HZ reactivation. The DAAs used regimens were sofosbuvir/daclatasvir in 4 cases and sofosbuvir/simeprevir in one case. HCV clearance with antiviral therapy may bring immune changes causing reactivation of other latent viral infections like HZ. A high index of clinical suspicion may be needed to guarantee early and prompt management of such cases.

  4. The science of direct-acting antiviral and host-targeted agent therapy.

    PubMed

    Pawlotsky, Jean-Michel

    2012-01-01

    Direct-acting antiviral drugs targeting two major steps of the HCV life cycle, polyprotein processing and replication, and cyclophilin inhibitors, that target a host cell protein required to interact with the replication complex, have reached clinical development. In order to achieve a sustained virological response, that is, a cure of the HCV infection, it is necessary to shut down virus production, to maintain viral inhibition throughout treatment and to induce a significant, slower second-phase decline in HCV RNA levels that leads to definitive clearance of infected cells. Recent findings suggest that the interferon era is coming to an end in hepatitis C therapy and HCV infection can be cured by all-oral interferon-free treatment regimens within 12 to 24 weeks. Further results are awaited that will allow the establishment of an ideal first-line all-oral, interferon-free treatment regimen for patients with chronic HCV infection.

  5. Broad-spectrum antiviral agents

    PubMed Central

    Zhu, Jun-Da; Meng, Wen; Wang, Xiao-Jia; Wang, Hwa-Chain R.

    2015-01-01

    Development of highly effective, broad-spectrum antiviral agents is the major objective shared by the fields of virology and pharmaceutics. Antiviral drug development has focused on targeting viral entry and replication, as well as modulating cellular defense system. High throughput screening of molecules, genetic engineering of peptides, and functional screening of agents have identified promising candidates for development of optimal broad-spectrum antiviral agents to intervene in viral infection and control viral epidemics. This review discusses current knowledge, prospective applications, opportunities, and challenges in the development of broad-spectrum antiviral agents. PMID:26052325

  6. Treatment of hepatitis C virus genotype 3 infection with direct-acting antiviral agents

    PubMed Central

    Zanaga, L.P.; Miotto, N.; Mendes, L.C.; Stucchi, R.S.B.; Vigani, A.G.

    2016-01-01

    Hepatitis C virus (HCV) genotype 3 is responsible for 30.1% of chronic hepatitis C infection cases worldwide. In the era of direct-acting antivirals, these patients have become one of the most challenging to treat, due to fewer effective drug options, higher risk of developing cirrhosis and hepatocellular carcinoma and lower sustained virological response (SVR) rates. Currently there are 4 recommended drugs for the treatment of HCV genotype 3: pegylated interferon (PegIFN), sofosbuvir (SOF), daclatasvir (DCV) and ribavirin (RBV). Treatment with PegIFN, SOF and RBV for 12 weeks has an overall SVR rate of 83–100%, without significant differences among cirrhotic and non-cirrhotic patients. However, this therapeutic regimen has several contraindications and can cause significant adverse events, which can reduce adherence and impair SVR rates. SOF plus RBV for 24 weeks is another treatment option, with SVR rates of 82–96% among patients without cirrhosis and 62–92% among those with cirrhosis. Finally, SOF plus DCV provides 94–97% SVR rates in non-cirrhotic patients, but 59–69% in those with cirrhosis. The addition of RBV to the regimen of SOF plus DCV increases the SVR rates in cirrhotic patients above 80%, and extending treatment to 24 weeks raises SVR to 90%. The ideal duration of therapy is still under investigation. For cirrhotic patients, the optimal duration, or even the best regimen, is still uncertain. Further studies are necessary to clarify the best regimen to treat HCV genotype 3 infection. PMID:27783808

  7. Hepatitis C Viral Kinetics in the Era of Direct Acting Antiviral Agents and IL28B

    PubMed Central

    Dahari, Harel; Guedj, Jeremie; Perelson, Alan S.; Layden, Thomas J.

    2011-01-01

    In the last decade hepatitis C virus (HCV) kinetics has become an important clinical tool for the optimization of therapy with (pegylated)-interferon-α (IFN) and ribavirin (RBV). Mathematical models have generated important insights into HCV pathogenesis, HCV- host dynamics, and IFN and RBV’s modes of action. Clinical trials with direct acting agents (DAAs) against various steps of the HCV life cycle have revealed new viral kinetic patterns that have not been observed with IFN±RBV. Very recently, studies have showed that single nucleotide polymorphisms (SNPs) in the IL28B gene region were associated with race/ethnicity and with response to IFN±RBV. Here we review our current knowledge of HCV kinetics and related mathematical models during IFN±RBV and/or DAA based therapies, HCV pathogenesis, and the role of IL28B polymorphism on early HCV kinetics. Better understanding of the mode of actions of drug(s) and viral kinetics may help to develop, in the near future, new individualized therapeutic regimens that include DAAs in combination with IFN+RBV. PMID:22180724

  8. Real-World Experiences With a Direct-Acting Antiviral Agent for Patients With Hepatitis C Virus Infection

    PubMed Central

    Louie, Vincent; Latt, Nyan L; Gharibian, Derenik; Sahota, Amandeep; Yanny, Beshoy T; Mittal, Rasham; Bider-Canfield, Zoe; Cheetham, T Craig

    2017-01-01

    Context Traditional hepatitis C virus treatment was limited by low cure rates, side effects, and stringent monitoring requirements. Sofosbuvir, a direct-acting antiviral agent with a cure rate of 96%, was introduced in 2013. However, trials frequently excluded patients with advanced liver disease and prior treatment experience. This study aims to elucidate the real-world cure rates and sofosbuvir safety profile. Methods A retrospective cohort study was conducted at Kaiser Permanente Southern California involving patients with hepatitis C virus who received sofosbuvir treatment. Patients age 18 years and older were included, and pregnant patients were excluded. The primary end point was sustained virologic response at 12 weeks posttreatment. Secondary end points were safety and medication adherence. Multiple logistic regression analysis was used to compare patients with genotypes 1 and 2 infections. Results Of the 213 study patients, 42.3% had cirrhosis, and 38% were treatment-experienced. Most patients (69.5%) received dual therapy (sofosbuvir + ribavirin), whereas the remainder (30.5%) received triple therapy (sofosbuvir + ribavirin + interferon). The overall rate of sustained virologic response at 12 weeks posttreatment rate was 72.9% for genotype 1 infection, 64.7% in the treatment-experienced subgroup, and 66.7% in the cirrhosis subgroup. Rates of sustained virologic response at 12 weeks posttreatment for genotypes 2 and 3 were 90.8% and 55%, respectively. Most patients experienced anemia and fatigue. Women and patients with a lower baseline viral load were statistically more likely to be cured. Conclusion Real-world cure rates were similar to rates seen in clinical trials for genotype 2 infection and lower for genotype 1 infection. Patients with genotype 1 and 3 infection did better with triple therapy compared with dual therapy. Patients tolerated therapy well with side effects, serious adverse events, and discontinuation rates similar to clinical trials

  9. Experience with direct acting anti-viral agents for treating hepatitis C virus infection in renal transplant recipients.

    PubMed

    Goel, Amit; Bhadauria, Dharmendra Singh; Kaul, Anupma; Prasad, Narayan; Gupta, Amit; Sharma, Raj Kumar; Rai, Praveer; Aggarwal, Rakesh

    2017-03-27

    In recent past, direct-acting anti-viral drugs (DAAs) have become the standard of care for the treatment of hepatitis C virus (HCV) infection. However, the experience with the use of these drugs in Indian renal transplant recipients is limited. We retrospectively reviewed our experience with DAA-based treatment for HCV infection in such patients. Between April 2015 and December 2016, six adults (median age 41 [range 34-52] years, male 5; GT1 2, GT3 3, and GT4 1; including three with prior failed interferon-based treatment) had received genotype-guided, DAA-based anti-HCV treatment 1 to 158 (median 15) months after renal transplantation. Of them, four completed the planned 24-week treatment without any significant adverse event. One of them had increase in serum creatinine after 16 weeks of treatment with sofosbuvir and daclatasvir, with acute interstitial nephritis on kidney biopsy; his renal function improved on stopping the drugs. The other patient had preexisting mild renal dysfunction, which worsened after 8 weeks of sofosbuvir-ledipasvir treatment; this did not reverse on stopping treatment. All the six patients achieved undetectable HCV RNA after 4 weeks of treatment and also achieved sustained virologic response, i.e. lack of detectable HCV RNA in serum 12 weeks after stopping treatment. Overall, DAA-based treatment was effective in treating HCV infection in our renal transplant recipients; however, caution and monitoring of renal function during such treatment is advisable in patients who have additional factors that predispose to renal injury.

  10. Fluorinated nucleosides as antiviral and antitumor agents.

    PubMed

    Meng, Wei-Dong; Qing, Feng-Ling

    2006-01-01

    The synthesis of nucleosides and analogues with fluoride modifications on the surgar moiety are reviewed, and their biological activities as potential antiviral and anti-tumor agents are also discussed.

  11. Drug-Drug Interaction between the Direct-Acting Antiviral Regimen of Ombitasvir-Paritaprevir-Ritonavir plus Dasabuvir and the HIV Antiretroviral Agent Dolutegravir or Abacavir plus Lamivudine.

    PubMed

    Khatri, Amit; Trinh, Roger; Zhao, Weihan; Podsadecki, Thomas; Menon, Rajeev

    2016-10-01

    The direct-acting antiviral regimen of 25 mg ombitasvir-150 mg paritaprevir-100 mg ritonavir once daily (QD) plus 250 mg dasabuvir twice daily (BID) is approved for the treatment of hepatitis C virus genotype 1 infection, including patients coinfected with human immunodeficiency virus. This study was performed to evaluate the pharmacokinetic, safety, and tolerability effects of coadministering the regimen of 3 direct-acting antivirals with two antiretroviral therapies (dolutegravir or abacavir plus lamivudine). Healthy volunteers (n = 24) enrolled in this phase I, single-center, open-label, multiple-dose study received 50 mg dolutegravir QD for 7 days or 300 mg abacavir plus 300 mg lamivudine QD for 4 days, the 3-direct-acting-antiviral regimen for 14 days, followed by the 3-direct-acting-antiviral regimen with dolutegravir or abacavir plus lamivudine for 10 days. Pharmacokinetic parameters were calculated to compare combination therapy with 3-direct-acting-antiviral or antiretroviral therapy alone, and safety/tolerability were assessed throughout the study. Coadministration of the 3-direct-acting-antiviral regimen increased the geometric mean maximum plasma concentration (Cmax) and the area under the curve (AUC) of dolutegravir by 22% (central value ratio [90% confidence intervals], 1.219 [1.153, 1.288]) and 38% (1.380 [1.295, 1.469]), respectively. Abacavir geometric mean Cmax and AUC values decreased by 13% (0.873 [0.777, 0.979]) and 6% (0.943 [0.901, 0.986]), while those for lamivudine decreased by 22% (0.778 [0.719, 0.842]) and 12% (0.876 [0.821, 0.934]). For the 3-direct-acting-antiviral regimen, geometric mean Cmax and AUC during coadministration were within 18% of measurements made during administration of the 3-direct-acting-antiviral regimen alone, although trough concentrations for paritaprevir were 34% (0.664 [0.585, 0.754]) and 27% (0.729 [0.627, 0.847]) lower with dolutegravir and abacavir-lamivudine, respectively. All study treatments were generally

  12. Statin (3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitor)-based therapy for hepatitis C virus (HCV) infection-related diseases in the era of direct-acting antiviral agents

    PubMed Central

    Kishta, Sara Sobhy; Kishta, Sobhy Ahmed; El-Shenawy, Reem

    2017-01-01

    Recent improvements have been made in the treatment of hepatitis C virus (HCV) infection with the introduction of direct-acting antiviral agents (DAAs). However, despite successful viral clearance, many patients continue to have HCV-related disease progression. Therefore, new treatments must be developed to achieve viral clearance and prevent the risk of HCV-related diseases. In particular, the use of pitavastatin together with DAAs may improve the antiviral efficacy as well as decrease the progression of liver fibrosis and the incidence of HCV-related hepatocellular carcinoma. To investigate the management methods for HCV-related diseases using pitavastatin and DAAs, clinical trials should be undertaken. However, concerns have been raised about potential drug interactions between statins and DAAs. Therefore, pre-clinical trials using a replicon system, human hepatocyte-like cells, human neurons and human cardiomyocytes from human-induced pluripotent stem cells should be conducted. Based on these pre-clinical trials, an optimal direct-acting antiviral agent could be selected for combination with pitavastatin and DAAs. Following the pre-clinical trial, the combination of pitavastatin and the optimal direct-acting antiviral agent should be compared to other combinations of DAAs ( e.g., sofosbuvir and velpatasvir) according to the antiviral effect on HCV infection, HCV-related diseases and cost-effectiveness. PMID:27583130

  13. HIV/HCV Antiviral Drug Interactions in the Era of Direct-acting Antivirals

    PubMed Central

    Rice, Donald P.; Faragon, John J.; Banks, Sarah; Chirch, Lisa M.

    2016-01-01

    Abstract Therapy for human immunodeficiency virus (HIV) and chronic hepatitis C has evolved over the past decade, resulting in better control of infection and clinical outcomes; however, drug-drug interactions remain a significant hazard. Joint recommendations from the American Association for the Study of Liver Diseases and the Infectious Diseases Society of America regarding drug-drug interactions between HIV antiretroviral agents and direct-acting antiviral agents for treatment of hepatitis C virus (HCV) infection are reviewed here. This review is oriented to facilitate appropriate selection of an antiviral therapy regimen for HCV infection based on the choice of antiretroviral therapy being administered and, if necessary, switching antiretroviral regimens. PMID:27777891

  14. Detection of Natural Resistance-Associated Substitutions by Ion Semiconductor Technology in HCV1b Positive, Direct-Acting Antiviral Agents-Naïve Patients

    PubMed Central

    Marascio, Nadia; Pavia, Grazia; Strazzulla, Alessio; Dierckx, Tim; Cuypers, Lize; Vrancken, Bram; Barreca, Giorgio Settimo; Mirante, Teresa; Malanga, Donatella; Oliveira, Duarte Mendes; Vandamme, Anne-Mieke; Torti, Carlo; Liberto, Maria Carla; Focà, Alfredo

    2016-01-01

    Naturally occurring resistance-associated substitutions (RASs) can negatively impact the response to direct-acting antivirals (DAAs) agents-based therapies for hepatitis C virus (HCV) infection. Herein, we set out to characterize the RASs in the HCV1b genome from serum samples of DAA-naïve patients in the context of the SINERGIE (South Italian Network for Rational Guidelines and International Epidemiology, 2014) project. We deep-sequenced the NS3/4A protease region of the viral population using the Ion Torrent Personal Genome Machine, and patient-specific majority rule consensus sequence summaries were constructed with a combination of freely available next generation sequencing data analysis software. We detected NS3/4A protease major and minor variants associated with resistance to boceprevir (V36L), telaprevir (V36L, I132V), simeprevir (V36L), and grazoprevir (V36L, V170I). Furthermore, we sequenced part of HCV NS5B polymerase using Sanger-sequencing and detected a natural RAS for dasabuvir (C316N). This mutation could be important for treatment strategies in cases of previous therapy failure. PMID:27618896

  15. Detection of Natural Resistance-Associated Substitutions by Ion Semiconductor Technology in HCV1b Positive, Direct-Acting Antiviral Agents-Naïve Patients.

    PubMed

    Marascio, Nadia; Pavia, Grazia; Strazzulla, Alessio; Dierckx, Tim; Cuypers, Lize; Vrancken, Bram; Barreca, Giorgio Settimo; Mirante, Teresa; Malanga, Donatella; Oliveira, Duarte Mendes; Vandamme, Anne-Mieke; Torti, Carlo; Liberto, Maria Carla; Focà, Alfredo; The Sinergie-Umg Study Group

    2016-08-27

    Naturally occurring resistance-associated substitutions (RASs) can negatively impact the response to direct-acting antivirals (DAAs) agents-based therapies for hepatitis C virus (HCV) infection. Herein, we set out to characterize the RASs in the HCV1b genome from serum samples of DAA-naïve patients in the context of the SINERGIE (South Italian Network for Rational Guidelines and International Epidemiology, 2014) project. We deep-sequenced the NS3/4A protease region of the viral population using the Ion Torrent Personal Genome Machine, and patient-specific majority rule consensus sequence summaries were constructed with a combination of freely available next generation sequencing data analysis software. We detected NS3/4A protease major and minor variants associated with resistance to boceprevir (V36L), telaprevir (V36L, I132V), simeprevir (V36L), and grazoprevir (V36L, V170I). Furthermore, we sequenced part of HCV NS5B polymerase using Sanger-sequencing and detected a natural RAS for dasabuvir (C316N). This mutation could be important for treatment strategies in cases of previous therapy failure.

  16. Colitis during new direct-acting antiviral agents (DAAs) therapy with sofosbuvir, simeprevir and ribavirin for genotype 1b hepatitis C.

    PubMed

    Izzo, Ilaria; Zanotti, Paola; Chirico, Claudia; Casari, Salvatore; Villanacci, Vincenzo; Salemme, Marianna; Biasi, Luciano; Festa, Elena; Castelli, Francesco

    2016-12-01

    Since 2014 several direct-acting antivirals (DAAs) have been made available, allowing interferon-free antiviral treatments with high sustained virological response rates. Side effects are, however, a real challenge during treatment. Sarkar et al. recently published a case of colitis following initiation of sofosbuvir and simeprevir for genotype 1 hepatitis C. We report the case of a patient with no prior history of inflammatory bowel disease, who developed significant bloody diarrhea within 3 weeks of sofosbuvir/simeprevir/ribavirin initiation. Colonoscopy and biopsy suggested a drug-induced colitis.

  17. Probiotics as antiviral agents in shrimp aquaculture.

    PubMed

    Lakshmi, Bestha; Viswanath, Buddolla; Sai Gopal, D V R

    2013-01-01

    Shrimp farming is an aquaculture business for the cultivation of marine shrimps or prawns for human consumption and is now considered as a major economic and food production sector as it is an increasingly important source of protein available for human consumption. Intensification of shrimp farming had led to the development of a number of diseases, which resulted in the excessive use of antimicrobial agents, which is finally responsible for many adverse effects. Currently, probiotics are chosen as the best alternatives to these antimicrobial agents and they act as natural immune enhancers, which provoke the disease resistance in shrimp farm. Viral diseases stand as the major constraint causing an enormous loss in the production in shrimp farms. Probiotics besides being beneficial bacteria also possess antiviral activity. Exploitation of these probiotics in treatment and prevention of viral diseases in shrimp aquaculture is a novel and efficient method. This review discusses the benefits of probiotics and their criteria for selection in shrimp aquaculture and their role in immune power enhancement towards viral diseases.

  18. Probiotics as Antiviral Agents in Shrimp Aquaculture

    PubMed Central

    Lakshmi, Bestha; Sai Gopal, D. V. R.

    2013-01-01

    Shrimp farming is an aquaculture business for the cultivation of marine shrimps or prawns for human consumption and is now considered as a major economic and food production sector as it is an increasingly important source of protein available for human consumption. Intensification of shrimp farming had led to the development of a number of diseases, which resulted in the excessive use of antimicrobial agents, which is finally responsible for many adverse effects. Currently, probiotics are chosen as the best alternatives to these antimicrobial agents and they act as natural immune enhancers, which provoke the disease resistance in shrimp farm. Viral diseases stand as the major constraint causing an enormous loss in the production in shrimp farms. Probiotics besides being beneficial bacteria also possess antiviral activity. Exploitation of these probiotics in treatment and prevention of viral diseases in shrimp aquaculture is a novel and efficient method. This review discusses the benefits of probiotics and their criteria for selection in shrimp aquaculture and their role in immune power enhancement towards viral diseases. PMID:23738078

  19. Geno2pheno[HCV] – A Web-based Interpretation System to Support Hepatitis C Treatment Decisions in the Era of Direct-Acting Antiviral Agents

    PubMed Central

    Kalaghatgi, Prabhav; Sikorski, Anna Maria; Knops, Elena; Rupp, Daniel; Sierra, Saleta; Heger, Eva; Neumann-Fraune, Maria; Beggel, Bastian; Walker, Andreas; Timm, Jörg; Walter, Hauke; Obermeier, Martin; Kaiser, Rolf; Bartenschlager, Ralf; Lengauer, Thomas

    2016-01-01

    The face of hepatitis C virus (HCV) therapy is changing dramatically. Direct-acting antiviral agents (DAAs) specifically targeting HCV proteins have been developed and entered clinical practice in 2011. However, despite high sustained viral response (SVR) rates of more than 90%, a fraction of patients do not eliminate the virus and in these cases treatment failure has been associated with the selection of drug resistance mutations (RAMs). RAMs may be prevalent prior to the start of treatment, or can be selected under therapy, and furthermore they can persist after cessation of treatment. Additionally, certain DAAs have been approved only for distinct HCV genotypes and may even have subtype specificity. Thus, sequence analysis before start of therapy is instrumental for managing DAA-based treatment strategies. We have created the interpretation system geno2pheno[HCV] (g2p[HCV]) to analyse HCV sequence data with respect to viral subtype and to predict drug resistance. Extensive reviewing and weighting of literature related to HCV drug resistance was performed to create a comprehensive list of drug resistance rules for inhibitors of the HCV protease in non-structural protein 3 (NS3-protease: Boceprevir, Paritaprevir, Simeprevir, Asunaprevir, Grazoprevir and Telaprevir), the NS5A replicase factor (Daclatasvir, Ledipasvir, Elbasvir and Ombitasvir), and the NS5B RNA-dependent RNA polymerase (Dasabuvir and Sofosbuvir). Upon submission of up to eight sequences, g2p[HCV] aligns the input sequences, identifies the genomic region(s), predicts the HCV geno- and subtypes, and generates for each DAA a drug resistance prediction report. g2p[HCV] offers easy-to-use and fast subtype and resistance analysis of HCV sequences, is continuously updated and freely accessible under http://hcv.geno2pheno.org/index.php. The system was partially validated with respect to the NS3-protease inhibitors Boceprevir, Telaprevir and Simeprevir by using data generated with recombinant, phenotypic

  20. Geno2pheno[HCV] - A Web-based Interpretation System to Support Hepatitis C Treatment Decisions in the Era of Direct-Acting Antiviral Agents.

    PubMed

    Kalaghatgi, Prabhav; Sikorski, Anna Maria; Knops, Elena; Rupp, Daniel; Sierra, Saleta; Heger, Eva; Neumann-Fraune, Maria; Beggel, Bastian; Walker, Andreas; Timm, Jörg; Walter, Hauke; Obermeier, Martin; Kaiser, Rolf; Bartenschlager, Ralf; Lengauer, Thomas

    2016-01-01

    The face of hepatitis C virus (HCV) therapy is changing dramatically. Direct-acting antiviral agents (DAAs) specifically targeting HCV proteins have been developed and entered clinical practice in 2011. However, despite high sustained viral response (SVR) rates of more than 90%, a fraction of patients do not eliminate the virus and in these cases treatment failure has been associated with the selection of drug resistance mutations (RAMs). RAMs may be prevalent prior to the start of treatment, or can be selected under therapy, and furthermore they can persist after cessation of treatment. Additionally, certain DAAs have been approved only for distinct HCV genotypes and may even have subtype specificity. Thus, sequence analysis before start of therapy is instrumental for managing DAA-based treatment strategies. We have created the interpretation system geno2pheno[HCV] (g2p[HCV]) to analyse HCV sequence data with respect to viral subtype and to predict drug resistance. Extensive reviewing and weighting of literature related to HCV drug resistance was performed to create a comprehensive list of drug resistance rules for inhibitors of the HCV protease in non-structural protein 3 (NS3-protease: Boceprevir, Paritaprevir, Simeprevir, Asunaprevir, Grazoprevir and Telaprevir), the NS5A replicase factor (Daclatasvir, Ledipasvir, Elbasvir and Ombitasvir), and the NS5B RNA-dependent RNA polymerase (Dasabuvir and Sofosbuvir). Upon submission of up to eight sequences, g2p[HCV] aligns the input sequences, identifies the genomic region(s), predicts the HCV geno- and subtypes, and generates for each DAA a drug resistance prediction report. g2p[HCV] offers easy-to-use and fast subtype and resistance analysis of HCV sequences, is continuously updated and freely accessible under http://hcv.geno2pheno.org/index.php. The system was partially validated with respect to the NS3-protease inhibitors Boceprevir, Telaprevir and Simeprevir by using data generated with recombinant, phenotypic

  1. Management of direct antiviral agent failures

    PubMed Central

    Buti, María; Esteban, Rafael

    2016-01-01

    The current standard of care for patients with chronic hepatitis C virus (HCV) infection is a combination of direct-acting antiviral agents (DAAs). Most HCV patients treated with these drugs achieve viral elimination, but 1% to 15% fail to attain this objective. Treatment failures are usually related to relapse, and less often to on-treatment viral breakthrough. HCV drug resistant associated substitutions are detected in most patients who do not eliminate the virus. The risk of developing these variants depends on host- and virus-related factors, the properties of the drugs used, and the treatment strategies applied. Patients who carry Resistant Associated Substitutions (RASs) may not obtain benefits from treatment, and are at a risk of disease progression. Whether HCV RASs persist depends on their type: NS3-4A variants often disappear gradually after DAA therapy is stopped, whereas NS5A variants tend to persist for more than 2 years. The best way to prevent emergence of resistant variants is to eliminate the virus at the first treatment using highly potent DAAs with genetic barriers to resistance. For those who fail an NS5A inhibitor, deferral of treatment is recommended pending the availability of additional data if they do not have cirrhosis or reasons for urgent re-treatment. If re-treatment is needed, the most commonly used strategy is sofosbuvir as backbone therapy plus a drug from a class other than that previously used, for 24 weeks. Unless it is contraindicated, weight-based ribavirin should also be added. If available, nucleotide-based (eg, sofosbuvir) triple or quadruple DAA regimens may be considered. The optimal treatment for patients who fail an NS5A inhibitor and those with multidrug-resistant variants remains to be defined, and research efforts should continue to focus on treatment for these patients. PMID:28081594

  2. Human subtilase SKI-1/S1P is a master regulator of the HCV Lifecycle and a potential host cell target for developing indirect-acting antiviral agents.

    PubMed

    Olmstead, Andrea D; Knecht, Wolfgang; Lazarov, Ina; Dixit, Surjit B; Jean, François

    2012-01-01

    HCV infection is a major risk factor for liver cancer and liver transplantation worldwide. Overstimulation of host lipid metabolism in the liver by HCV-encoded proteins during viral infection creates a favorable environment for virus propagation and pathogenesis. In this study, we hypothesize that targeting cellular enzymes acting as master regulators of lipid homeostasis could represent a powerful approach to developing a novel class of broad-spectrum antivirals against infection associated with human Flaviviridae viruses such as hepatitis C virus (HCV), whose assembly and pathogenesis depend on interaction with lipid droplets (LDs). One such master regulator of cholesterol metabolic pathways is the host subtilisin/kexin-isozyme-1 (SKI-1)--or site-1 protease (S1P). SKI-1/S1P plays a critical role in the proteolytic activation of sterol regulatory element binding proteins (SREBPs), which control expression of the key enzymes of cholesterol and fatty-acid biosynthesis. Here we report the development of a SKI-1/S1P-specific protein-based inhibitor and its application to blocking the SREBP signaling cascade. We demonstrate that SKI-1/S1P inhibition effectively blocks HCV from establishing infection in hepatoma cells. The inhibitory mechanism is associated with a dramatic reduction in the abundance of neutral lipids, LDs, and the LD marker: adipose differentiation-related protein (ADRP)/perilipin 2. Reduction of LD formation inhibits virus assembly from infected cells. Importantly, we confirm that SKI-1/S1P is a key host factor for HCV infection by using a specific active, site-directed, small-molecule inhibitor of SKI-1/S1P: PF-429242. Our studies identify SKI-1/S1P as both a novel regulator of the HCV lifecycle and as a potential host-directed therapeutic target against HCV infection and liver steatosis. With identification of an increasing number of human viruses that use host LDs for infection, our results suggest that SKI-1/S1P inhibitors may allow development of

  3. Antiviral agents against equid alphaherpesviruses: Current status and perspectives.

    PubMed

    Vissani, María A; Thiry, Etienne; Dal Pozzo, Fabiana; Barrandeguy, María

    2016-01-01

    Equid herpesvirus infections cause respiratory, neurological and reproductive syndromes. Despite preventive and control measures and the availability of vaccines and immunostimulants, herpesvirus infections still constitute a major threat to equine health and for the equine industry worldwide. Antiviral drugs, particularly nucleoside analogues and foscarnet, are successfully used for the treatment of human alphaherpesvirus infections. In equine medicine, the use of antiviral medications in alphaherpesvirus infections would decrease the excretion of virus and diminish the risk of contagion and the convalescent time in affected horses, and would also improve the clinical outcome of equine herpesvirus myeloencephalopathy. The combined use of antiviral compounds, along with vaccines, immune modulators, and effective preventive and control measures, might be beneficial in diminishing the negative impact of alphaherpesvirus infections in horses. The purpose of this review is to analyse the available information regarding the use of antiviral agents against alphaherpesviruses, with particular emphasis on equine alphaherpesvirus infections.

  4. Detection of Occult Hepatitis C Virus Infection in Patients Who Achieved a Sustained Virologic Response to Direct-Acting Antiviral Agents for Recurrent Infection After Liver Transplantation.

    PubMed

    Elmasry, Sandra; Wadhwa, Sanya; Bang, Bo-Ram; Cook, Linda; Chopra, Shefali; Kanel, Gary; Kim, Brian; Harper, Tammy; Feng, Zongdi; Jerome, Keith R; Kahn, Jeffrey A; Saito, Takeshi

    2017-02-01

    Occult infection with hepatitis C virus (HCV) is defined as the presence of the HCV genome in either liver tissue or peripheral blood monocytes, despite constant negative results from tests for HCV RNA in serum. We investigated whether patients who maintained a sustained virologic response 12 weeks after therapy (SVR12) with direct-acting antiviral (DAA) agents for recurrent HCV infection after liver transplantation had occult HCV infections. We performed a prospective study of 134 patients with recurrent HCV infection after liver transplantation who were treated with DAAs, with or without ribavirin, from 2014 through 2016 (129 patients achieved an SVR12). In >10% of the patients who achieved SVR12 (n = 14), serum levels of aminotransferases did not normalize during or after DAA therapy, or they normalized transiently but then increased sharply after DAA therapy. Of these 14 patients, 9 were assessed for occult HCV infection by reverse transcription quantitative polymerase chain reaction. This analysis revealed that 55% of these patients (n = 5) had an occult infection, with the detection of negative strand viral genome, indicating viral replication. These findings indicate the presence of occult HCV infection in some patients with abnormal levels of serum aminotransferases, despite SVR12 to DAAs for HCV infection after liver transplantation.

  5. Recent developments in antiviral agents against enterovirus 71 infection

    PubMed Central

    2014-01-01

    Enterovirus 71 (EV-71) is the main etiological agent of hand, foot and mouth disease (HFMD). Recent EV-71 outbreaks in Asia-Pacific were not limited to mild HFMD, but were associated with severe neurological complications such as aseptic meningitis and brainstem encephalitis, which may lead to cardiopulmonary failure and death. The absence of licensed therapeutics for clinical use has intensified research into anti-EV-71 development. This review highlights the potential antiviral agents targeting EV-71 attachment, entry, uncoating, translation, polyprotein processing, virus-induced formation of membranous RNA replication complexes, and RNA-dependent RNA polymerase. The strategies for antiviral development include target-based synthetic compounds, anti-rhinovirus and poliovirus libraries screening, and natural compound libraries screening. Growing knowledge of the EV-71 life cycle will lead to successful development of antivirals. The continued effort to develop antiviral agents for treatment is crucial in the absence of a vaccine. The coupling of antivirals with an effective vaccine will accelerate eradication of the disease. PMID:24521134

  6. Optimizing antiviral agents for hepatitis B management in malignant lymphomas

    PubMed Central

    Ozoya, Oluwatobi O.; Chavez, Julio; Sokol, Lubomir

    2017-01-01

    The global scale of hepatitis B infection is well known but its impact is still being understood. Missed hepatitis B infection impacts lymphoma therapy especially increased risk of hepatitis B virus (HBV) reactivation and poor treatment outcomes. The presence of undiagnosed chronic hepatitis also undermines chronic HBV screening methods that are based on a positive HBsAg alone. The goal of this review is to evaluate the literature for optimizing antiviral therapy for lymphoma patients with HBV infection or at risk of HBV reactivation. Relevant articles for this review were identified by searching PubMed, Embase, Ovid Medline, and Scopus using the following terms, alone and in combination: “chronic hepatitis B”, “occult hepatitis B”, ”special groups”, “malignant lymphoma”, “non-Hodgkin’s lymphoma”, “Hodgkin’s lymphoma”, “immunocompromised host”, “immunosuppressive agents”, “antiviral”, “HBV reactivation”. The period of the search was restricted to a 15-year period to limit the search to optimizing antiviral agents for HBV infection in malignant lymphomas [2001–2016]. Several clinical practice guidelines recommend nucleos(t)ide analogues-entecavir, tenofovir and lamivudine among others. These agents are best initiated along with or prior to immunosuppressive therapy. Additional methods recommended for optimizing antiviral therapy include laboratory modalities such as HBV genotyping, timed measurements of HBsAg and HBV DNA levels to measure and predict antiviral treatment response. In conclusion, optimizing antiviral agents for these patients require consideration of geographic prevalence of HBV, cost of antiviral therapy or testing, screening modality, hepatitis experts, type of immunosuppressive therapy and planned duration of therapy. PMID:28251118

  7. Antiviral agents and HIV prevention: controversies, conflicts, and consensus

    PubMed Central

    Cohen, Myron S.; Muessig, Kathryn E.; Smith, M. Kumi; Powers, Kimberly A.; Kashuba, Angela D.M.

    2013-01-01

    Antiviral agents can be used to prevent HIV transmission before exposure as preexpo-sure prophylaxis (PrEP), after exposure as postexposure prophylaxis, and as treatment of infected people for secondary prevention. Considerable research has shed new light on antiviral agents for PrEP and for prevention of secondary HIV transmission. While promising results have emerged from several PrEP trials, the challenges of poor adherence among HIV-negative clients and possible increase in sexual risk behaviors remain a concern. In addition, a broader pipeline of antiviral agents for PrEP that focuses on genital tract pharmacology and safety and resistance issues must be developed. Antiretroviral drugs have also been used to prevent HIV transmission from HIV-infected patients to their HIV-discordant sexual partners. The HIV Prevention Trials Network 052 trial demonstrated nearly complete prevention of HIV transmission by early treatment of infection, but the generalizability of the results to other risk groups – including intravenous drug users and MSM – has not been determined. Most importantly, the best strategy for use of antiretroviral agents to reduce the spread of HIV at either the individual level or the population level has not been developed, and remains the ultimate goal of this area of investigation. PMID:22507927

  8. Novel drug delivery approaches on antiviral and antiretroviral agents

    PubMed Central

    Sharma, Pooja; Chawla, Anuj; Arora, Sandeep; Pawar, Pravin

    2012-01-01

    Viruses have the property to replicate very fast in host cell. It can attack any part of host cell. Therefore, the clinical efficacy of antiviral drugs and its bioavailability is more important concern taken into account to treat viral infections. The oral and parenteral routes of drug administration have several shortcomings, however, which could lead to the search for formulating better delivery systems. Now, a day's novel drug delivery systems (NDDS) proved to be a better approach to enhance the effectiveness of the antivirals and improve the patient compliance and decrease the adverse effect. The NDDS have reduced the dosing frequency and shorten the duration of treatment, thus, which could lead the treatment more cost-effective. The development of NDDS for antiviral and antiretroviral therapy aims to deliver the drug devoid of toxicity, with high compatibility and biodegradability, targeting the drug to specific sites for viral infection and in some instances it also avoid the first pass metabolism effect. This article aims to discuss the usefulness of novel delivery approaches of antiviral agents such as niosomes, microspheres, microemulsions, nanoparticles that are used in the treatment of various Herpes viruses and in human immunodeficiency virus (HIV) infections. PMID:23057001

  9. Preventing and treating secondary bacterial infections with antiviral agents

    PubMed Central

    McCullers, Jonathan A.

    2016-01-01

    Summary Bacterial super-infections contribute to the significant morbidity and mortality associated with influenza and other respiratory virus infections. There are robust animal model data but only limited clinical information on the effectiveness of licensed antiviral agents for the treatment of bacterial complications of influenza. The association of secondary bacterial pathogens with fatal pneumonia during the recent H1N1 influenza pandemic highlights the need for new development in this area. Basic and clinical research into viral-bacterial interactions over the last decade has revealed several mechanisms that underlie this synergism. By applying these insights to antiviral drug development, the potential exists to improve outcomes by means other than direct inhibition of the virus. PMID:21447860

  10. 1,3,4-oxadiazole: a privileged structure in antiviral agents.

    PubMed

    Li, Z; Zhan, P; Liu, X

    2011-11-01

    1,3,4-oxadiazole, a privileged structure, endows its derivatives with broad and potent biological functions, especially in antiviral activities, including anti-HIV, anti-HCV, anti-HBV, anti-HSV activities, etc. Molecular modeling and pharmacokinetic studies have demonstrated that the introduction of 1,3,4-oxadiazole ring to the inhibitors can change their polarity, flexibility as well as metabolic stability, and 1,3,4-oxadiazole scaffold can also act as acceptors of hydrogen bonds formation, which make it possible to be used as a isosteric substituent for amide or ester groups. This review focuses on the recent advances in the synthesis of 1,3,4-oxadiazole ring and mainly the discovery, biological activities investigations and structural modifications of several distinct classes of 1,3,4-oxadiazoles as potent antiviral agents. In addition, the binding models of some representative 1,3,4-oxadiazoles were also discussed, which provide rational explanation for their interesting antiviral activities, and also pave the way for further optimization of 1,3,4- oxadiazole based antiviral agents.

  11. Developing new antiviral agents for influenza treatment: what does the future hold?

    PubMed

    Hayden, Frederick

    2009-01-01

    Antiviral agents for the treatment of influenza are urgently needed to circumvent the limitations of current drugs in several critical areas: high frequencies of resistance to M2 inhibitors among currently circulating strains and variable frequencies of resistance to oseltamivir among A(H1N1) strains, limited efficacy of treatment and treatment-emergent antiviral resistance in cases of avian influenza A(H5N1) illness in humans, and lack of parenteral agents for seriously ill patients. Two neuraminidase inhibitors (NAIs), zanamivir and peramivir, have undergone or are undergoing clinical trials for use by intravenous or intramuscular administration, and one long-acting NAI, designated CS-8958, is under study for use by inhalation. Advances in understanding the mechanisms involved in influenza virus replication have revealed a number of potential targets that might be exploited in the development of new agents. Among these agents are T-705, a polymerase inhibitor, and DAS181, an attachment inhibitor. Combination therapy with currently available agents is supported by data from animal models but has received limited clinical study to date.

  12. General pharmacology of the new antiviral agent SK 1899.

    PubMed

    Ryu, K H; Rhee, H I; Jung, I; Kim, T S; Lee, S J; Im, G J; Lee, N; Ryu, D H; Kim, Y W; Kim, J J; Chang, K; Lee, B H; Shin, H S; Kim, E J; Kim, K H; Kim, D K

    2000-04-01

    The general pharmacological properties of 2-amino-9-(3-acetoxymethyl-4-isopropoxycarbonyloxybut-1-yl)purine (CAS 247081-81-8, SK 1899), a new potential antiviral agent, were investigated in mice, rats, guinea pigs, rabbits, and dogs. The oral administration of 50, 150, and 500 mg/kg of SK 1899 had no effects on the central nervous system except that it slightly increased the spontaneous locomotor activity in mice at a dose of 500 mg/kg. SK 1899 did not disturb either the spontaneous motility or contractor-induced contraction of the isolated organs such as guinea pig ileum, rat uterus, guinea pig vas deferens, and guinea pig trachea at concentrations up to 10(-4) mol/l. It slightly increased the contractile force in the isolated guinea pig atrium at a concentration of 10(-4) mol/l. Following intravenous infusion of 5, 15, and 50 mg/kg of SK 1899 to anesthetized dogs, it did not change the mean arterial pressure, heart rate, left ventricular systolic pressure (LVSP), and respiratory rate, while it slightly increased the left ventricular positive dP/dtmax (LV + dP/dtmax) at a dose of 50 mg/kg. SK 1899 did not induce any significant changes in the intestinal charcoal meal transit in mice, basal gastric juice secretion in rats, and renal function in rats. It did not affect the blood coagulation system and phenolsulfonphthalein secretion in rats. These findings suggest that SK 1899 has a very low potential to induce any adverse pharmacological effects at the doses showing antiviral activity.

  13. Antiviral Therapy

    PubMed Central

    Stalder, Hans

    1977-01-01

    The current status of antiviral therapy is reviewed, including discussion of older approaches together with more recently developed chemotherapy. Following the introduction dealing with pathophysiological aspects of virus disease, the different approaches to antiviral therapy are presented. The reasons for the slow progress in antiviral therapy are discussed. These include: 1. the necessity of intracellular penetration of drugs acting on viral replication; 2. the severe toxicity of most antiviral drugs; 3. the narrow antiviral spectrum of most of these agents; 4. the difficulty of making a rapid etiological diagnosis in view of the necessity of starting (specific?) treatment early in the course of the disease; 5. the difficult evaluation of beneficial as compared with deleterious effects of antiviral therapy. After a detailed review of clinically tested substances, including immunoglobulins, synthetic antiviral drugs (amantadine, nucleoside analogs, thiosemicarbazones and photodynamic dyes) and interferon, a guide concerning indications and application of specific antiviral therapy is presented. Although at present there are few indications, clinicians should be aware of the (present and future) possibilities of antiviral therapy. PMID:341538

  14. Synergy of entry inhibitors with direct-acting antivirals uncovers novel combinations for prevention and treatment of hepatitis C

    PubMed Central

    Xiao, Fei; Fofana, Isabel; Thumann, Christine; Mailly, Laurent; Alles, Roxane; Robinet, Eric; Meyer, Nicolas; Schaeffer, Mickaël; Habersetzer, François; Doffoël, Michel; Leyssen, Pieter; Neyts, Johan; Zeisel, Mirjam B; Baumert, Thomas F

    2015-01-01

    Objective Although direct-acting antiviral agents (DAAs) have markedly improved the outcome of treatment in chronic HCV infection, there continues to be an unmet medical need for improved therapies in difficult-to-treat patients as well as liver graft infection. Viral entry is a promising target for antiviral therapy. Design Aiming to explore the role of entry inhibitors for future clinical development, we investigated the antiviral efficacy and toxicity of entry inhibitors in combination with DAAs or other host-targeting agents (HTAs). Screening a large series of combinations of entry inhibitors with DAAs or other HTAs, we uncovered novel combinations of antivirals for prevention and treatment of HCV infection. Results Combinations of DAAs or HTAs and entry inhibitors including CD81-, scavenger receptor class B type I (SR-BI)- or claudin-1 (CLDN1)-specific antibodies or small-molecule inhibitors erlotinib and dasatinib were characterised by a marked and synergistic inhibition of HCV infection over a broad range of concentrations with undetectable toxicity in experimental designs for prevention and treatment both in cell culture models and in human liver-chimeric uPA/SCID mice. Conclusions Our results provide a rationale for the development of antiviral strategies combining entry inhibitors with DAAs or HTAs by taking advantage of synergy. The uncovered combinations provide perspectives for efficient strategies to prevent liver graft infection and novel interferon-free regimens. PMID:24848265

  15. Potential Antiviral Agents from Marine Fungi: An Overview.

    PubMed

    Moghadamtousi, Soheil Zorofchian; Nikzad, Sonia; Kadir, Habsah Abdul; Abubakar, Sazaly; Zandi, Keivan

    2015-07-22

    Biodiversity of the marine world is only partially subjected to detailed scientific scrutiny in comparison to terrestrial life. Life in the marine world depends heavily on marine fungi scavenging the oceans of lifeless plants and animals and entering them into the nutrient cycle by. Approximately 150 to 200 new compounds, including alkaloids, sesquiterpenes, polyketides, and aromatic compounds, are identified from marine fungi annually. In recent years, numerous investigations demonstrated the tremendous potential of marine fungi as a promising source to develop new antivirals against different important viruses, including herpes simplex viruses, the human immunodeficiency virus, and the influenza virus. Various genera of marine fungi such as Aspergillus, Penicillium, Cladosporium, and Fusarium were subjected to compound isolation and antiviral studies, which led to an illustration of the strong antiviral activity of a variety of marine fungi-derived compounds. The present review strives to summarize all available knowledge on active compounds isolated from marine fungi with antiviral activity.

  16. Potential Antiviral Agents from Marine Fungi: An Overview

    PubMed Central

    Zorofchian Moghadamtousi, Soheil; Nikzad, Sonia; Abdul Kadir, Habsah; Abubakar, Sazaly; Zandi, Keivan

    2015-01-01

    Biodiversity of the marine world is only partially subjected to detailed scientific scrutiny in comparison to terrestrial life. Life in the marine world depends heavily on marine fungi scavenging the oceans of lifeless plants and animals and entering them into the nutrient cycle by. Approximately 150 to 200 new compounds, including alkaloids, sesquiterpenes, polyketides, and aromatic compounds, are identified from marine fungi annually. In recent years, numerous investigations demonstrated the tremendous potential of marine fungi as a promising source to develop new antivirals against different important viruses, including herpes simplex viruses, the human immunodeficiency virus, and the influenza virus. Various genera of marine fungi such as Aspergillus, Penicillium, Cladosporium, and Fusarium were subjected to compound isolation and antiviral studies, which led to an illustration of the strong antiviral activity of a variety of marine fungi-derived compounds. The present review strives to summarize all available knowledge on active compounds isolated from marine fungi with antiviral activity. PMID:26204947

  17. Management of hepatitis C genotype 4 in the directly acting antivirals era

    PubMed Central

    Hathorn, Emma; Elsharkawy, Ahmed M

    2016-01-01

    Genotype 4 chronic hepatitis C (G4 HCV) accounts for 13% of worldwide HCV infections; with 10 million people infected with the virus across the world. Up to the end of 2013, the only treatment option for G4 HCV was treatment with pegylated interferon and ribavirin for 24–48 weeks. Since late 2013, treatment of G4 HCV has been transformed by the licensing of many directly acting antiviral agents (DAA). It is an exciting time to be involved in the management of HCV generally and G4 particularly. Interferon-free DAA regimens are now a reality for G4 HCV. This review will highlight these developments and discuss the data behind the use of these drugs. It will also highlight future regimens that are likely to be available over the coming years. PMID:27752338

  18. Activation of cGAS-dependent antiviral responses by DNA intercalating agents

    PubMed Central

    Pépin, Geneviève; Nejad, Charlotte; Thomas, Belinda J.; Ferrand, Jonathan; McArthur, Kate; Bardin, Philip G.; Williams, Bryan R.G.; Gantier, Michael P.

    2017-01-01

    Acridine dyes, including proflavine and acriflavine, were commonly used as antiseptics before the advent of penicillins in the mid-1940s. While their mode of action on pathogens was originally attributed to their DNA intercalating activity, work in the early 1970s suggested involvement of the host immune responses, characterized by induction of interferon (IFN)-like activities through an unknown mechanism. We demonstrate here that sub-toxic concentrations of a mixture of acriflavine and proflavine instigate a cyclic-GMP-AMP (cGAMP) synthase (cGAS)-dependent type-I IFN antiviral response. This pertains to the capacity of these compounds to induce low level DNA damage and cytoplasmic DNA leakage, resulting in cGAS-dependent cGAMP-like activity. Critically, acriflavine:proflavine pre-treatment of human primary bronchial epithelial cells significantly reduced rhinovirus infection. Collectively, our findings constitute the first evidence that non-toxic DNA binding agents have the capacity to act as indirect agonists of cGAS, to exert potent antiviral effects in mammalian cells. PMID:27694309

  19. De novo computer-aided design of novel antiviral agents.

    PubMed

    Massarotti, Alberto; Coluccia, Antonio; Sorba, Giovanni; Silvestri, Romano; Brancale, Andrea

    2012-01-01

    Computer-aided drug design techniques have become an integral part of the drug discovery process. In particular, de novo methodologies can be useful to identify putative ligands for a specific target relying only on the structural information of the target itself. Here we discuss the basic de novo approaches available and their application in antiviral drug design.:

  20. Liposomal Systems as Nanocarriers for the Antiviral Agent Ivermectin

    PubMed Central

    Croci, Romina; Bottaro, Elisabetta; Chan, Kitti Wing Ki; Watanabe, Satoru; Pezzullo, Margherita; Mastrangelo, Eloise; Nastruzzi, Claudio

    2016-01-01

    RNA virus infections can lead to the onset of severe diseases such as fever with haemorrhage, multiorgan failure, and mortality. The emergence and reemergence of RNA viruses continue to pose a significant public health threat worldwide with particular attention to the increasing incidence of flaviviruses, among others Dengue, West Nile Virus, and Yellow Fever viruses. Development of new and potent antivirals is thus urgently needed. Ivermectin, an already known antihelminthic drug, has shown potent effects in vitro on Flavivirus helicase, with EC50 values in the subnanomolar range for Yellow Fever and submicromolar EC50 for Dengue Fever, Japanese encephalitis, and tick-borne encephalitis viruses. However ivermectin is hampered in its application by pharmacokinetic problems (little solubility and high cytotoxicity). To overcome such problems we engineered different compositions of liposomes as ivermectin carriers characterizing and testing them on several cell lines for cytotoxicity. The engineered liposomes were less cytotoxic than ivermectin alone and they showed a significant increase of the antiviral activity in all the Dengue stains tested (1, 2, and S221). In the current study ivermectin is confirmed to be an effective potential antiviral and liposomes, as drug carriers, are shown to modulate the drug activity. All together the results represent a promising starting point for future improvement of ivermectin as antiviral and its delivery. PMID:27242902

  1. The potential of antiviral agents to control classical swine fever: a modelling study.

    PubMed

    Backer, Jantien A; Vrancken, Robert; Neyts, Johan; Goris, Nesya

    2013-09-01

    Classical swine fever (CSF) represents a continuous threat to pig populations that are free of disease without vaccination. When CSF virus is introduced, the minimal control strategy imposed by the EU is often insufficient to mitigate the epidemic. Additional measures such as preemptive culling encounter ethical objections, whereas emergency vaccination leads to prolonged export restrictions. Antiviral agents, however, provide instantaneous protection without inducing an antibody response. The use of antiviral agents to contain CSF epidemics is studied with a model describing within- and between-herd virus transmission. Epidemics are simulated in a densely populated livestock area in The Netherlands, with farms of varying sizes and pig types (finishers, piglets and sows). Our results show that vaccination and/or antiviral treatment in a 2 km radius around an infected herd is more effective than preemptive culling in a 1 km radius. However, the instantaneous but temporary protection provided by antiviral treatment is slightly less effective than the delayed but long-lasting protection offered by vaccination. Therefore, the most effective control strategy is to vaccinate animals when allowed (finishers and piglets) and to treat with antiviral agents when vaccination is prohibited (sows). As independent control measure, antiviral treatment in a 1 km radius presents an elevated risk of epidemics running out of control. A 2 km control radius largely eliminates this risk.

  2. New direct-acting antivirals in hepatitis C therapy: a review of sofosbuvir, ledipasvir, daclatasvir, simeprevir, paritaprevir, ombitasvir and dasabuvir.

    PubMed

    McConachie, Sean M; Wilhelm, Sheila M; Kale-Pradhan, Pramodini B

    2016-01-01

    Hepatitis C is a chronic infection associated with considerable morbidity and mortality. In recent years, there has been a shift in treatment paradigm with the discovery and approval of agents that target specific proteins vital for hepatitis C replication. The NS3/4A inhibitors simeprevir and paritaprevir, the NS5A inhibitors ombitasvir, ledipasvir, and daclatasvir, and the NS5B inhibitors sofosbuvir and dasabuvir have been newly FDA approved and incorporated as first-line agents into the latest IDSA-AASLD guidelines for Hepatitis C treatment. Used in combination, these agents produce higher rates of sustained virologic response and less adverse effects than historical options, along with limited rates of resistance. Pertinent clinical data, pharmacology, and pharmacokinetics are reviewed for these new direct acting antiviral agents.

  3. Effect of New Antiviral Agent Camphecin on Behavior of Mice.

    PubMed

    Babina, A V; Lavrinenko, V A; Yarovaya, O I; Salakhutdinov, N F

    2017-01-01

    We studied the effect of camphecin (1,7,7-trimethylbicyclo[2.2.1]heptan-2-ylidene-aminoethanol) on mouse behavior in the open-field test. Camphecin possesses antiviral activity and inhibits viral replication, but its influence on the nervous system is poorly studied. Single camphecin injection produced no significant changes in behavioral patterns. Chronic camphecin administration (5 times over 2 weeks) to mice of different strains had no significant influence on open field behavior (motor, exploratory activity, anxiety, emotional state and vegetative functions). The findings are discussed in the context of neutral influence of camphecin on animal behavior.

  4. Mucin biopolymers as broad-spectrum antiviral agents

    PubMed Central

    Lieleg, Oliver; Lieleg, Corinna; Bloom, Jesse; Buck, Christopher B.; Ribbeck, Katharina

    2012-01-01

    Mucus is a porous biopolymer matrix that coats all wet epithelia in the human body and serves as the first line of defense against many pathogenic bacteria and viruses. However, under certain conditions viruses are able to penetrate this infection barrier, which compromises the protective function of native mucus. Here, we find that isolated porcine gastric mucin polymers, key structural components of native mucus, can protect an underlying cell layer from infection by small viruses such as human papillomavirus (HPV), Merkel cell polyomavirus (MCV), or a strain of influenza A virus. Single particle analysis of virus mobility inside the mucin barrier reveals that this shielding effect is in part based on a retardation of virus diffusion inside the biopolymer matrix. Our findings suggest that purified mucins may be used as a broad-range antiviral supplement to personal hygiene products, baby formula or lubricants to support our immune system. PMID:22475261

  5. Progress in the development of poliovirus antiviral agents and their essential role in reducing risks that threaten eradication.

    PubMed

    McKinlay, Mark A; Collett, Marc S; Hincks, Jeffrey R; Oberste, M Steven; Pallansch, Mark A; Okayasu, Hiromasa; Sutter, Roland W; Modlin, John F; Dowdle, Walter R

    2014-11-01

    Chronic prolonged excretion of vaccine-derived polioviruses by immunodeficient persons (iVDPV) presents a personal risk of poliomyelitis to the patient as well as a programmatic risk of delayed global eradication. Poliovirus antiviral drugs offer the only mitigation of these risks. Antiviral agents may also have a potential role in the management of accidental exposures and in certain outbreak scenarios. Efforts to discover and develop poliovirus antiviral agents have been ongoing in earnest since the formation in 2007 of the Poliovirus Antivirals Initiative. The most advanced antiviral, pocapavir (V-073), is a capsid inhibitor that has recently demonstrated activity in an oral poliovirus vaccine human challenge model. Additional antiviral candidates with differing mechanisms of action continue to be profiled and evaluated preclinically with the goal of having 2 antivirals available for use in combination to treat iVDPV excreters.

  6. Sensitive radioimmunoassay for the broad-spectrum antiviral agent ribavirin.

    PubMed

    Austin, R K; Trefts, P E; Hintz, M; Connor, J D; Kagnoff, M F

    1983-11-01

    Ribavirin, 1-beta-D-ribofuranosyl-1,2,4-triazole-3-carboxyamide (Virazole; Viratek, Inc., Covina, Calif.), has a broad spectrum of antiviral activity. However, the study of the absorption, metabolism, and excretion of this compound has been limited by the lack of an appropriate assay for ribavirin and its metabolites. Since ribavirin has definite potential for therapeutic use, we developed a radioimmunoassay to measure ribavirin levels in clinical specimens. To prepare an effective immunogen, ribavirin was monosuccinylated and coupled to ovalbumin. The competitive binding radioimmunoassay, in which tritium-labeled ribavirin and rabbit antiribavirin serum were used, was quantitative for ribavirin at concentrations of 1 pmol/100 microliter in urine or plasma samples. The rabbit antibody cross-reacted with the major metabolite of ribavirin, 1,2,4-triazole-3-carboxamide, at a low level (2 to 5%) which did not interfere with ribavirin binding until concentrations of 1,2,4-triazole-3-carboxamide 10- to 100-fold higher than ribavirin were present in mock samples, a condition not present in biological specimens. We used the ribavirin radioimmunoassay to determine the ribavirin concentration in mouse plasma after intraperitoneal administration, in the sera of adults from Sierra Leone after oral or intravenous administration for treatment of suspected Lassa fever, and in the sera of children in the United States after small-particle aerosol administration. Our experience with the radioimmunoassay indicates that it is sensitive, accurate, and reproducible. The assay will permit studies leading to a better understanding of the pharmacology and pharmacokinetics of this potentially useful antiviral drug.

  7. Antiviral Monoclonal Antibodies: Can They Be More Than Simple Neutralizing Agents?

    PubMed

    Pelegrin, Mireia; Naranjo-Gomez, Mar; Piechaczyk, Marc

    2015-10-01

    Monoclonal antibodies (mAbs) are increasingly being considered as agents to fight severe viral diseases. So far, they have essentially been selected and used on the basis of their virus-neutralizing activity and/or cell-killing activity to blunt viral propagation via direct mechanisms. There is, however, accumulating evidence that they can also induce long-lasting protective antiviral immunity by recruiting the endogenous immune system of infected individuals during the period of immunotherapy. Exploiting this property may revolutionize antiviral mAb-based immunotherapies, with benefits for both patients and healthcare systems.

  8. Enhancement of Antiviral Agents Through the Use of Controlled-Release Technology.

    DTIC Science & Technology

    DL-lactide-co-glycolide) to be used as the polymeric excipients in the microencapsulation work. In addition, we have actively pursued development and testing of poly(I.C) and Je vaccine microcapsule formulations....of this research program are a) To develop a programmed-release delivery system ( microcapsule system) designed to enhance the immunogenic potential of...release microcapsule delivery systems that will enhance the effects of the following immune modulators and antiviral agents: muramyl tripeptide (MTP

  9. Direct Acting Antivirals in Patients with Chronic Hepatitis C and Down Syndrome

    PubMed Central

    Perumpail, Ryan B.; Cholankeril, George

    2016-01-01

    Patients with Down syndrome who received blood transfusions, likely in conjunction with cardiothoracic surgery for congenital heart disease and prior to the implementation of blood-donor screening for hepatitis C virus infection, face a substantial risk of acquiring the infection. In the past, interferon-based therapy for chronic hepatitis C infection in patients with Down syndrome was noted to have lower efficacy and potentially higher risk of adverse effects. Recently, the treatment for chronic hepatitis C has been revolutionized with the introduction of interferon-free direct acting antivirals with favorable safety, tolerability, and efficacy profile. Based on our experiences, the newly approved sofosbuvir-based direct acting antiviral therapy is well tolerated and highly efficacious in this subpopulation of hepatitis C virus infected patients with Down syndrome. PMID:27847658

  10. Effectiveness of direct-acting antivirals in Hepatitis C virus infection in haemodialysis patients.

    PubMed

    Abad, Soraya; Vega, Almudena; Rincón, Diego; Hernández, Eduardo; Mérida, Evangelina; Macías, Nicolás; Muñoz, Raquel; Milla, Mónica; Luño, Jose; López-Gómez, Juan Manuel

    2016-11-30

    Hepatitis C virus (HCV) infection is highly prevalent among patients on haemodialysis and leads to a poorer prognosis compared to patients who do not have said infection. Treatment with interferon and ribavirin is poorly tolerated and there are limited data on the experience with new direct-acting antivirals (DAAs). The aim of this study is to retrospectively analyse the current prevalence of HCV infection and efficacy and safety results with different DAA regimens in the haemodialysis population of 2hospital areas. This is a multicentre, retrospective and observational study in which HCV antibodies were analysed in 465 patients, with positive antibody findings in 54 of them (11.6%). Among these, 29 cases (53.7%) with genotypes 1 and 4 were treated with different DAA regimens, including combinations of paritaprevir/ritonavir, ombitasvir, dasabuvir, sofosbuvir, simeprevir, daclatasvir and ledipasvir, with/without ribavirin. Mean age was 53.3±7.9 years, 72.4% of patients were male and the most important aetiology of chronic kidney disease involved glomerular abnormalities. In 100% of cases, a sustained viral response was achieved after 24 weeks, regardless of DAA regimen received. Adverse effects were not relevant and no case required stopping treatment. In 15 cases, ribavirin was combined with the DAA. In these cases, the most significant adverse effect was anaemic tendency, which was reflected in the increase of the dose of erythropoietin stimulating agents, although none required transfusions. In summary, we conclude that new DAAs for the treatment of HCV in haemodialysis patients are highly effective with minimal adverse effects; it is a very important advance in HCV management. These patients are therefore expected to have a much better prognosis than they have had until very recently.

  11. Multi-scale model for hepatitis C viral load kinetics under treatment with direct acting antivirals.

    PubMed

    Clausznitzer, Diana; Harnisch, Julia; Kaderali, Lars

    2016-06-15

    Hepatitis C virus (HCV) infections are a global health problem, and extensive research over the last decades has been targeted at understanding its molecular biology and developing effective antiviral treatments. Recently, a number of potent direct acting antiviral drugs have been developed targeting specific processes in the viral life cycle. Here, we developed a mathematical multi-scale model of the within-host dynamics of HCV infection by integrating a standard model for viral infection with a detailed model of the viral replication cycle inside infected cells. We use this model to study patient time courses of viral load under treatment with daclatasvir, an inhibitor of the viral non-structural protein NS5A. Model analysis predicts that treatment efficacy can be increased by combining daclatasvir with dedicated viral polymerase inhibitors, corresponding to promising current strategies in drug development. Hence, our model presents a predictive tool for in silico simulations, which can be used to study and optimize direct acting antiviral drug treatment.

  12. Cutaneous manifestations of hepatitis C in the era of new antiviral agents

    PubMed Central

    Garcovich, Simone; Garcovich, Matteo; Capizzi, Rodolfo; Gasbarrini, Antonio; Zocco, Maria Assunta

    2015-01-01

    The association of chronic hepatitis C virus (HCV) infection with a wide spectrum of cutaneous manifestations has been widely reported in the literature, with varying strength of epidemiological association. Skin diseases which are certainly related with chronic HCV infection due to a strong epidemiological and pathogenetic association are mixed cryoglobulinemia, lichen planus and porphyria cutanea tarda. Chronic pruritus and necrolytic acral erythema are conditions that may share a possible association with HCV infection, while several immune-mediated inflammatory skin conditions, such as psoriasis, chronic urticaria and vitiligo, have been only anecdotally reported in the setting of chronic HCV infection. Traditional interferon-based treatment regimens for HCV infection are associated with substantial toxicity and a high-risk of immune-related adverse events, while the advent of new direct-acting antivirals with sustained virological response and improved tolerability will open the door for all-oral, interferon-free regimens. In the new era of these direct acting antivirals there will be hopefully a renewed interest in extra-hepatic manifestations of HCV infection. The aim of the present paper is to review the main cutaneous HCV-related disorders - mixed cryoglobulinemia, lichen planus, porphyria cutanea tarda and chronic pruritus - and to discuss the potential impact of new antiviral treatments on the course of these extra-hepatic manifestations of chronic HCV infection. PMID:26644817

  13. Molecular Sleds and More: Novel Antiviral Agents via Single-Molecule Biology (441st Brookhaven Lecture)

    SciTech Connect

    Mangel, Wally

    2008-10-15

    Vaccines are effective against viruses such as polio and measles, but vaccines against other important viruses, such as HIV and flu viruses, may be impossible to obtain. These viruses change their genetic makeup each time they replicate so that the immune system cannot recognize all their variations. Hence it is important to develop new antiviral agents that inhibit virus replication. During this lecture, Dr. Mangel will discuss his group's work with a model system, the human adenovirus, which causes, among other ailments, pink eye, blindness and obesity. Mangel's team has developed a promising drug candidate that works by inihibiting adenovirus proteinase, an enzyme necessary for viral replication.

  14. Computer simulation study of the binding of an antiviral agent to a sensitive and a resistant human rhinovirus

    NASA Astrophysics Data System (ADS)

    Lybrand, Terry P.; McCammon, J. Andrew

    1989-01-01

    Molecular dynamics simulations have been used to study the free energy of binding of an antiviral agent to the human rhinovirus HRV-14 and to a mutant in which a valine residue in the antiviral binding pocket is replaced by leucine. The simulations predict that the antiviral should bind to the two viruses with similar affinity, in apparent disagreement with experimental results. Possible origins of this discrepancy are outlined. Of particular importance is the apparent need for methods to systematically sample all significant conformations of the leucine side chain.

  15. Light-activated nanotube-porphyrin conjugates as effective antiviral agents

    NASA Astrophysics Data System (ADS)

    Banerjee, Indrani; Douaisi, Marc P.; Mondal, Dhananjoy; Kane, Ravi S.

    2012-03-01

    Porphyrins have been used for photodynamic therapy (PDT) against a wide range of targets like bacteria, viruses and tumor cells. In this work, we report porphyrin-conjugated multi-walled carbon nanotubes (NT-P) as potent antiviral agents. Specifically, we used Protoporphyrin IX (PPIX), which we attached to acid-functionalized multi-walled carbon nanotubes (MWNTs). We decided to use carbon nanotubes as scaffolds because of their ease of recovery from a solution through filtration. In the presence of visible light, NT-P was found to significantly reduce the ability of Influenza A virus to infect mammalian cells. NT-P may be used effectively against influenza viruses with little or no chance of them developing resistance to the treatment. Furthermore, NT-P can be easily recovered through filtration which offers a facile strategy to reuse the active porphyrin moiety to its fullest extent. Thus NT-P conjugates represent a new approach for preparing ex vivo reusable antiviral agents.

  16. Centrally acting antihypertensive agents: an update.

    PubMed

    Sica, Domenic A

    2007-05-01

    Centrally acting agents stimulate alpha(2) receptors and/or imadozoline receptors on adrenergic neurons situated within the rostral ventrolateral medulla and, in so doing, sympathetic outflow is reduced. Centrally acting agents also stimulate peripheral alpha(2) receptors, which, for the most part, is of marginal clinical significance. Central a agonists have had a lengthy history of use, starting with alpha-methyldopa, which has had a dramatic decline in use, in part, because of bothersome side effects. Patients who require multidrug therapy with otherwise resistant hypertension, such as diabetic and/or renal failure patients, are typically responsive to these drugs, as are patients with sympathetically driven forms of hypertension. Perioperative forms of hypertension respond well to clonidine, a circumstance where the additional anesthesia- and analgesia-sparing effects of this drug may offer additional clinical benefits. Clonidine can be used adjunctively with other more traditional therapies in heart failure, particularly when hypertension is present. Sustained-release moxonidine, however, is associated with early mortality and morbidity when used in patients with heart failure. Escalating doses of drugs in this class often give rise to salt and water retention, in which case diuretic therapy becomes a valuable adjunctive therapy.

  17. Risk Factors for Renal Functional Decline in Chronic Hepatitis B Patients Receiving Oral Antiviral Agents.

    PubMed

    Shin, Jung-Ho; Kwon, Hee Jin; Jang, Hye Ryoun; Lee, Jung Eun; Gwak, Geum-Youn; Huh, Wooseong; Jung, Sin-Ho; Lee, Joon Hyeok; Kim, Yoon-Goo; Kim, Dae Joong; Oh, Ha Young

    2016-01-01

    Renal functional decline that is frequently seen during chronic hepatitis B (CHB) treatment can exert adverse effects on overall prognosis. It, however, is difficult to distinguish vulnerable patients who may experience renal dysfunction because most previous CHB studies were conducted in relatively healthy individuals. In this retrospective observational study, renal functional decline in CHB patients receiving oral antiviral agents for more than 6 months was analyzed and risk factors of chronic kidney disease (CKD) progression were determined. Renal functional decline was defined when the estimated glomerular filtration rate (eGFR) decreased by more than 25% from baseline and rapid CKD progression was defined as eGFR decreased by more than 5 mL/min/1.73 m2/y among patients who experienced renal functional decline. A total of 4178 patients were followed up for a median 23 months. Antiviral agents included lamivudine (17.0%), adefovir (3.7%), entecavir (70.4%), telbivudine (0.6%), tenofovir (4.0%), or clevudine (4.3%). Renal functional decline occurred in 706 (16.9%) patients. Based on multivariate Cox regression analysis, age, hypertension, diabetes, history of liver or kidney transplantation, underlying underlying CKD, and simultaneous administration of diuretics increased the hazard ratio for renal functional decline; however, clevudine reduced risk. The eGFR significantly increased over time in patients receiving telbivudine or clevudine compared with lamivudine. Among the 3175 patients followed up for more than 1 year, 407 (12.8%) patients experienced rapid CKD progression. Patients with rapid CKD progression showed lower serum albumin, higher total bilirubin, and prolonged prothrombin time compared with patients with stable renal function, but hepatitis B envelope antigen positivity and hepatitis B virus deoxyribonucleic acid level did not differ between the control and rapid CKD progression groups. Age, diabetes, kidney transplantation, underlying CKD, and

  18. Human DDX3 protein is a valuable target to develop broad spectrum antiviral agents

    PubMed Central

    Brai, Annalaura; Fazi, Roberta; Tintori, Cristina; Zamperini, Claudio; Bugli, Francesca; Sanguinetti, Maurizio; Stigliano, Egidio; Esté, José; Badia, Roger; Franco, Sandra; Martinez, Javier P.; Meyerhans, Andreas; Saladini, Francesco; Zazzi, Maurizio; Garbelli, Anna; Botta, Maurizio

    2016-01-01

    Targeting a host factor essential for the replication of different viruses but not for the cells offers a higher genetic barrier to the development of resistance, may simplify therapy regimens for coinfections, and facilitates management of emerging viral diseases. DEAD-box polypeptide 3 (DDX3) is a human host factor required for the replication of several DNA and RNA viruses, including some of the most challenging human pathogens currently circulating, such as HIV-1, Hepatitis C virus, Dengue virus, and West Nile virus. Herein, we showed for the first time, to our knowledge, that the inhibition of DDX3 by a small molecule could be successfully exploited for the development of a broad spectrum antiviral agent. In addition to the multiple antiviral activities, hit compound 16d retained full activity against drug-resistant HIV-1 strains in the absence of cellular toxicity. Pharmacokinetics and toxicity studies in rats confirmed a good safety profile and bioavailability of 16d. Thus, DDX3 is here validated as a valuable therapeutic target. PMID:27118832

  19. Chronic Hepatitis C Virus Infection: A Review of Current Direct-Acting Antiviral Treatment Strategies

    PubMed Central

    Zhang, Johnathan; Nguyen, Douglas; Hu, Ke-Qin

    2016-01-01

    Chronic Hepatitis C virus (HCV) infection carries a significant clinical burden in the United States, affecting more than 4.6 million Americans. Untreated chronic HCV infection can result in cirrhosis, portal hypertension, and hepatocellular carcinoma. Previous interferon based treatment carried low rates of success and significant adverse effects. The advent of new generation oral antiviral therapy has led to major improvements in efficacy and tolerability but has also resulted in an explosion of data with increased treatment choice complexity. Treatment guidelines are constantly evolving due to emerging regimens and real world treatment data. There also still remain subpopulations for whom current treatments are lacking or unclearly defined. Thus, the race for development of HCV treatment regimens still continues. This review of the current literature will discuss the current recommended treatment strategies and briefly overview next generation agents. PMID:27293521

  20. Future of liver disease in the era of direct acting antivirals for the treatment of hepatitis C

    PubMed Central

    Ponziani, Francesca Romana; Mangiola, Francesca; Binda, Cecilia; Zocco, Maria Assunta; Siciliano, Massimo; Grieco, Antonio; Rapaccini, Gian Lodovico; Pompili, Maurizio; Gasbarrini, Antonio

    2017-01-01

    Hepatitis C virus (HCV) infection has been a global health problem for decades, due to the high number of infected people and to the lack of effective and well-tolerated therapies. In the last 3 years, the approval of new direct acting antivirals characterized by high rates of virological clearance and excellent tolerability has dramatically improved HCV infection curability, especially for patients with advanced liver disease and for liver transplant recipients. Long-term data about the impact of the new direct acting antivirals on liver fibrosis and liver disease-related outcomes are not yet available, due to their recent introduction. However, previously published data deriving from the use of pegylated-interferon and ribavirin lead to hypothesizing that we are going to observe, in the future, a reduction in mortality and in the incidence of hepatocellular carcinoma, as well as a regression of fibrosis for people previously affected by hepatitis C. In the liver transplant setting, clinical improvement has already been described after treatment with the new direct acting antivirals, which has often led to patients delisting. In the future, this may hopefully reduce the gap between liver organ request and availability, probably expanding liver transplant indications to other clinical conditions. Therefore, these new drugs are going to change the natural history of HCV-related liver disease and the epidemiology of HCV infection worldwide. However, the global consequences will depend on treatment accessibility and on the number of countries that could afford the use of the new direct acting antivirals. PMID:28321272

  1. Mouse lung slices: An ex vivo model for the evaluation of antiviral and anti-inflammatory agents against influenza viruses.

    PubMed

    Liu, Rui; An, Liwei; Liu, Ge; Li, Xiaoyu; Tang, Wei; Chen, Xulin

    2015-08-01

    The influenza A virus is notoriously known for its ability to cause recurrent epidemics and global pandemics. Antiviral therapy is effective when treatment is initiated within 48h of symptom onset, and delaying treatment beyond this time frame is associated with decreased efficacy. Research on anti-inflammatory therapy to ameliorate influenza-induced inflammation is currently underway and seems important to the impact on the clinical outcome. Both antiviral and anti-inflammatory drugs with novel mechanisms of action are urgently needed. Current methods for evaluating the efficacy of anti-influenza drugs rely mostly on transformed cells and animals. Transformed cell models are distantly related to physiological and pathological conditions. Although animals are the best choices for preclinical drug testing, they are not time- or cost-efficient. In this study, we established an ex vivo model using mouse lung slices to evaluate both antiviral and anti-inflammatory agents against influenza virus infection. Both influenza virus PR8 (H1N1) and A/Human/Hubei/3/2005 (H3N2) can replicate efficiently in mouse lung slices and trigger significant cytokine and chemokine responses. The induction of selected cytokines and chemokines were found to have a positive correlation between ex vivo and in vivo experiments, suggesting that the ex vivo cultured lung slices may closely resemble the lung functionally in an in vivo configuration when challenged by influenza virus. Furthermore, a set of agents with known antiviral and/or anti-inflammatory activities were tested to validate the ex vivo model. Our results suggested that mouse lung slices provide a robust, convenient and cost-efficient model for the assessment of both antiviral and anti-inflammatory agents against influenza virus infection in one assay. This ex vivo model may predict the efficacy of drug candidates' antiviral and anti-inflammatory activities in vivo.

  2. Multiscale Modeling of Influenza A Virus Infection Supports the Development of Direct-Acting Antivirals

    PubMed Central

    Heldt, Frank S.; Frensing, Timo; Pflugmacher, Antje; Gröpler, Robin; Peschel, Britta; Reichl, Udo

    2013-01-01

    Influenza A viruses are respiratory pathogens that cause seasonal epidemics with up to 500,000 deaths each year. Yet there are currently only two classes of antivirals licensed for treatment and drug-resistant strains are on the rise. A major challenge for the discovery of new anti-influenza agents is the identification of drug targets that efficiently interfere with viral replication. To support this step, we developed a multiscale model of influenza A virus infection which comprises both the intracellular level where the virus synthesizes its proteins, replicates its genome, and assembles new virions and the extracellular level where it spreads to new host cells. This integrated modeling approach recapitulates a wide range of experimental data across both scales including the time course of all three viral RNA species inside an infected cell and the infection dynamics in a cell population. It also allowed us to systematically study how interfering with specific steps of the viral life cycle affects virus production. We find that inhibitors of viral transcription, replication, protein synthesis, nuclear export, and assembly/release are most effective in decreasing virus titers whereas targeting virus entry primarily delays infection. In addition, our results suggest that for some antivirals therapy success strongly depends on the lifespan of infected cells and, thus, on the dynamics of virus-induced apoptosis or the host's immune response. Hence, the proposed model provides a systems-level understanding of influenza A virus infection and therapy as well as an ideal platform to include further levels of complexity toward a comprehensive description of infectious diseases. PMID:24278009

  3. Hepatitis C virus pharmacogenomics in Latin American populations: implications in the era of direct-acting antivirals

    PubMed Central

    Trinks, Julieta; Caputo, Mariela; Hulaniuk, María L; Corach, Daniel; Flichman, Diego

    2017-01-01

    In recent years, great progress has been made in the field of new therapeutic options for hepatitis C virus (HCV) infection. The new direct-acting antiviral agents (DAAs) represent a great hope for millions of chronically infected individuals because their use may lead to excellent cure rates with fewer side effects. In Latin America, the high prevalence of HCV genotype 1 infection and the significant association of Native American ancestry with risk predictive single-nucleotide polymorphisms (SNPs) in IFNL4 and ITPA genes highlight the need to implement new treatment regimens in these populations. However, the universal accessibility to DAAs is still not a reality in the region as their high cost is one of the major, although not the only, limiting factors for their broad implementation. Therefore, under these circumstances, could the assessment of host genetic markers be a useful tool to prioritize DAA treatment until global access to these new drugs can be achieved? This review will summarize the scientific evidences and the potential implications of HCV pharmacogenomics in this rapidly evolving era of anti-HCV drug development.

  4. Effects of Antiviral Agent, Acyclovir, on the Biological Fitness of Galleria mellonella (Lepidoptera: Pyralidae) Adults.

    PubMed

    Büyükgüzel, Ender; Büyükgüzel, Kemal

    2016-08-11

    The effects of a synthetic purine nucleoside analog, antiviral agent, acyclovir (ACV), on adult longevity, fecundity, and hatchability of a serious honeycomb pest, greater wax moth Galleria mellonella L. were investigated by adding 0.01, 0.1, 1.0, and 3.0% ACV into artificial and natural diets. Control larvae were reared on diet without ACV. The artificial diet containing the lowest level of ACV, 0.01%, raised egg production from a number of 12.9 ± 0.6 to 163.2 ± 1.3. The hatching rate of these eggs was increased from 49.2 ± 2.4% to 68.2 ± 3.2%. Higher concentrations of ACV in natural food significantly increased both egg production and egg hatching rate. Female reared on old dark combs as natural diet exposed to 1.0% of ACV produced 167.5 ± 5.8 eggs with 93.2 ± 6.8% hatched. This study emphasizes the importance of determining the dietary impact of an antimicrobial agent as a food additive to a particular species of insect before its using for dietary antimicrobial purpose.

  5. Molecular docking and multivariate analysis of xanthones as antimicrobial and antiviral agents.

    PubMed

    Bernal, Freddy A; Coy-Barrera, Ericsson

    2015-07-21

    Xanthones are secondary metabolites which have drawn considerable interest over the last decades due to their antimicrobial properties, among others. A great number of this kind of compounds has been therefore reported, but there is a limited amount of studies on screening for biological activity. Thus, as part of our research on antimicrobial agents of natural origin, a set of 272 xanthones were submitted to molecular docking (MD) calculations with a group of seven fungal and two viral enzymes. The results indicated that prenylated xanthones are important hits for inhibition of the analyzed enzymes. The MD scores were also analyzed by multivariate statistics. Important structural details were found to be crucial for the inhibition of the tested enzymes by the xanthones. In addition, the classification of active xanthones can be achieved by statistical analysis on molecular docking scores by an affinity-antifungal activity relationship approach. The obtained results therefore are a suitable starting point for the development of antifungal and antiviral agents based on xanthones.

  6. Estimating the Impact of Expanding Treatment Coverage and Allocation Strategies for Chronic Hepatitis C in a Direct Antiviral Agent Era

    PubMed Central

    Poovorawan, Kittiyod; Pan-ngum, Wirichada; White, Lisa J.; Soonthornworasiri, Ngamphol; Wilairatana, Polrat; Wasitthankasem, Rujipat; Tangkijvanich, Pisit; Poovorawan, Yong

    2016-01-01

    Hepatitis C virus (HCV) infection is an important worldwide public health problem, and most of the global HCV burden is in low- to middle-income countries. This study aimed to estimate the future burden of chronic hepatitis C (CHC) and the impact of public health policies using novel antiviral agents in Thailand. A mathematical model of CHC transmission dynamics was constructed to examine the disease burden over the next 20 years using different treatment strategies. We compared and evaluated the current treatment (PEGylated interferon and ribavirin) with new treatments using novel direct-acting antiviral agents among various treatment policies. Thailand’s CHC prevalence was estimated to decrease 1.09%–0.19% in 2015–2035. Expanding treatment coverage (i.e., a five-fold increment in treatment accessibility) was estimated to decrease cumulative deaths (33,007 deaths avoided, 25.5% reduction) from CHC-related decompensated cirrhosis and hepatocellular carcinoma (HCC). The yearly incidence of HCC-associated HCV was estimated to decrease from 2,305 to 1,877 cases yearly with expanding treatment coverage. A generalized treatment scenario (i.e., an equal proportional distribution of available treatment to individuals at all disease stages according to the number of cases at each stage) was predicted to further reduce death from HCC (9,170 deaths avoided, 11.3% reduction) and the annual incidence of HCC (i.e., a further decrease from 1,877 to 1,168 cases yearly, 37.7% reduction), but cumulative deaths were predicted to increase (by 3,626 deaths, 3.7% increase). Based on the extensive coverage scenario and the generalized treatment scenario, we estimated near-zero death from decompensated cirrhosis in 2031. In conclusion, CHC-related morbidity and mortality in Thailand are estimated to decrease dramatically over the next 20 years. Treatment coverage and allocation strategies are important factors that affect the future burden of CHC in resource-limited countries like

  7. Broad-spectrum in vivo antiviral activity of 7-thia-8-oxoguanosine, a novel immunopotentiating agent.

    PubMed Central

    Smee, D F; Alaghamandan, H A; Cottam, H B; Sharma, B S; Jolley, W B; Robins, R K

    1989-01-01

    A novel immunopotentiating agent, 5-amino-3-beta-D-ribofuranosylthiazolo [4,5-d]pyrimidine-2,7(3H,6H)-dione (7-thia-8-oxoguanosine), lacks virus-inhibitory properties in vitro but induces interferon and potentiates immune functions, such as natural killer cell activity. It was evaluated in rodent models to determine the spectrum of antiviral activity and effective treatment regimens. At 50 to 200 mg/kg given as single or divided intraperitoneal (i.p.) doses 1 day before virus inoculation, significant protection was afforded to mice infected i.p. with Semliki Forest, San Angelo, banzi, and encephalomyocarditis viruses. Similarly, suckling rats were protected from an intranasal challenge with rat coronavirus. Against San Angelo virus, treatments could be delayed to 1 day post-virus inoculation and still show a beneficial effect. The compound was moderately effective in mice infected i.p. with herpes simplex virus type 2 or intranasally with vesicular stomatitis virus. No activity was seen against influenza B virus in mice when the analog was administered one time pre-virus inoculation or in multiple doses given before and after the virus inoculation. Nor was there a prophylactic effect against herpetic skin lesions on mice. This immune modulator may have promise for the treatment of a variety of virus infections. PMID:2817849

  8. Treatment of chronic hepatitis C with direct-acting antivirals: The role of resistance

    PubMed Central

    Jiménez-Pérez, Miguel; González-Grande, Rocío; España Contreras, Pilar; Pinazo Martínez, Isabel; de la Cruz Lombardo, Jesús; Olmedo Martín, Raúl

    2016-01-01

    The use of direct-acting antivirals (DAAs) to treat chronic hepatitis C has resulted in a significant increase in rates of sustained viral response (around 90%-95%) as compared with the standard treatment of peginterferon/ribavirin. Despite this, however, the rates of therapeutic failure in daily clinical practice range from 10%-15%. Most of these cases are due to the presence of resistant viral variants, resulting from mutations produced by substitutions of amino acids in the viral target protein that reduce viral sensitivity to DAAs, thus limiting the efficacy of these drugs. The high genetic diversity of hepatitis C virus has resulted in the existence of resistance-associated variants (RAVs), sometimes even before starting treatment with DAAs, though generally at low levels. These pre-existing RAVs do not appear to impact on the sustained viral response, whereas those that appear after DAA therapy could well be determinant in virological failure with future treatments. As well as the presence of RAVs, virological failure to treatment with DAAs is generally associated with other factors related with a poor response, such as the degree of fibrosis, the response to previous therapy, the viral load or the viral genotype. Nonetheless, viral breakthrough and relapse can still occur in the absence of detectable RAVs and after the use of highly effective DAAs, so that the true clinical impact of the presence of RAVs in therapeutic failure remains to be determined. PMID:27547001

  9. Antiviral agents targeted to interact with viral capsid proteins and a possible application to human immunodeficiency virus.

    PubMed Central

    Rossmann, M G

    1988-01-01

    The tertiary structure of most icosahedral viral capsid proteins consists of an eight-stranded antiparallel beta-barrel with a hydrophobic interior. In a group of picornaviruses, this hydrophobic pocket can be filled by suitable organic molecules, which thereby stop viral uncoating after attachment and penetration into the host cell. The antiviral activity of these agents is probably due to increased rigidity of the capsid protein, which inhibits disassembly. The hydrophobic pocket may be an essential functional component of the protein and, therefore, may have been conserved in the evolution of many viruses from a common precursor. Since eight-stranded anti-parallel beta-barrels, with a topology as in viral capsid proteins, are not generally found for other proteins involved in cell metabolism, this class of antiviral agents is likely to be more virus-specific and less cytotoxic. Furthermore, the greatest conservation of viral capsid proteins occurs within this pocket, whereas the least conserved part is the antigenic exterior. Thus, compounds that bind to such a pocket are likely to be effective against a broader group of serologically distinct viruses. Discovery of antiviral agents of this type will, therefore, depend on designing compounds that can enter and fit snugly into the hydrophobic pocket of a particular viral capsid protein. The major capsid protein, p24, of human immunodeficiency virus would be a likely suitable target. PMID:3133655

  10. Restrictions for reimbursement of direct-acting antiviral treatment for hepatitis C virus infection in Canada: a descriptive study

    PubMed Central

    Marshall, Alison D.; Saeed, Sahar; Barrett, Lisa; Cooper, Curtis L.; Treloar, Carla; Bruneau, Julie; Feld, Jordan J.; Gallagher, Lesley; Klein, Marina B.; Krajden, Mel; Shoukry, Naglaa H.; Taylor, Lynn E.; Grebely, Jason

    2016-01-01

    Background: In Canada, interferon-free, direct-acting antiviral hepatitis C virus (HCV) regimens are costly. This presents challenges for universal drug coverage of the estimated 220 000 people with chronic HCV infection nationwide. The study objective was to appraise criteria for reimbursement of 4 HCV direct-acting antivirals in Canada. Methods: We reviewed the reimbursement criteria for simeprevir, sofosbuvir, ledipasvir-sofosbuvir and paritaprevir-ritonavir-ombitasvir plus dasabuvir in the 10 provinces and 3 territories. Data were extracted from April 2015 to June 2016. The primary outcomes extracted from health ministerial websites were: 1) minimum fibrosis stage required, 2) drug and alcohol use restrictions, 3) HIV coinfection restrictions and 4) prescriber type restrictions. Results: Overall, 85%-92% of provinces/territories limited access to patients with moderate fibrosis (Meta-Analysis of Histologic Data in Viral Hepatitis stage F2 or greater, or equivalent). There were no drug and alcohol use restrictions; however, several criteria (e.g., active injection drug use) were left to the discretion of the physician. Quebec did not reimburse simeprevir and sofosbuvir for people coinfected with HIV; no restrictions were found in the remaining jurisdictions. Prescriber type was restricted to specialists in up to 42% of provinces/territories. Interpretation: This review of criteria of reimbursement of HCV direct-acting antivirals in Canada showed substantial interjurisdictional heterogeneity. The findings could inform health policy and support the development and adoption of a national HCV strategy. PMID:28018873

  11. Design, Synthesis and Biological Evaluation of Novel Phosphorylated Abacavir Derivatives as Antiviral Agents Against Newcastle Disease Virus Infection in Chicken.

    PubMed

    K A, Suresh; Venkata Subbaiah, Kadiam C; Lavanya, Rayapu; Chandrasekhar, Kuruva; Chamarti, Naga Raju; Kumar, M Suresh; Wudayagiri, Rajendra; Valluru, Lokanatha

    2016-09-01

    Newcastle disease virus is the most devastating virus in poultry industry. It can eradicate the entire poultry flocks once infected. This study is aimed to investigate the antiviral efficacy of novel phosphorylated analogues of the drug abacavir (ABC) against Newcastle disease virus (NDV). About 16 analogues of ABC were designed and docking was performed against fusion protein of NDV. Three compounds were identified and selected for synthesis and biological evaluation based on binding affinity and docking scores. The compounds were synthesized and characterized by IR, (1)H, (13)C, (31)P and CHN analysis and mass spectra. These compounds were tested for antiviral efficacy against NDV-infected DF-1 cells. Compound ABC-1 had shown potent antiviral activity as evidenced by significant reduction in plaque units and cytopathic effect. Therefore, ABC-1 was selected to test for NDV-infected chicken survival rate. Effective dose50 concentrations were determined for ABC-1. Antioxidant enzyme levels in brain, liver and lung tissues were estimated. Superoxide dismutase and catalase were significantly raised and lipid peroxidation and HA titer levels were decreased upon treatment with 2 mg/kg body weight ABC-1. Histopathological modifications were also restored in the ABC-1-treated group. These findings demonstrated ABC-1 as a potential antiviral agent against NDV in chicken.

  12. Antiviral Efficacy of Favipiravir against Two Prominent Etiological Agents of Hantavirus Pulmonary Syndrome

    PubMed Central

    Falzarano, Darryl; Scott, Dana P.; Furuta, Yousuke; Feldmann, Heinz

    2013-01-01

    Hantavirus pulmonary syndrome (HPS) is caused by infection with several Sigmodontinae- and Neotominae-borne hantaviruses and has a case fatality rate of 30 to 50%. Humans often become infected by inhalation of materials contaminated with virus-laden rodent urine or saliva, although human-to-human transmission has also been documented for Andes virus (ANDV). The ability to transmit via aerosolization, coupled with the high mortality rates and lack of therapeutic options, makes the development of medical countermeasures against HPS imperative. In the present study, we evaluated the efficacy of the broad-spectrum antiviral agent favipiravir (T-705) against Sin Nombre virus (SNV) and ANDV, the predominant causes of HPS in North and South America, respectively. In vitro, T-705 potently inhibited SNV and ANDV, as evidenced by decreased detection of viral RNA and reduced infectious titers. For both viruses, the 90% effective concentration was estimated at ≤5 μg/ml (≤31.8 μM). In the lethal ANDV hamster model, daily administration of oral T-705 at 50 or 100 mg/kg of body weight diminished the detection of viral RNA and antigen in tissue specimens and significantly improved survival rates. Oral T-705 therapy remained protective against HPS when treatment was initiated prior to the onset of viremia. No disease model for SNV exists; however, using a hamster-adapted SNV, we found that daily administration of oral T-705 significantly reduced the detection of SNV RNA and antigen in tissue specimens, suggesting that the compound would also be effective against HPS in North America. Combined, these results suggest that T-705 treatment is beneficial for postexposure prophylaxis against HPS-causing viruses and should be considered for probable exposures. PMID:23856782

  13. Next Steps Toward Eradication of Hepatitis C in the Era of Direct Acting Antivirals

    PubMed Central

    Hesamizadeh, Khashayar; Sharafi, Heidar; Rezaee-Zavareh, Mohammad Saeid; Behnava, Bita; Alavian, Seyed Moayed

    2016-01-01

    Context After the introduction of safe and highly effective hepatitis C virus (HCV) treatments, eradication of HCV in the next 20 years is the ultimate goal. Since 2011, the advent of first generation direct acting antivirals (DAAs) were started and followed by the introduction of a new wave of DAAs in 2013 which exhibit outstanding efficacy. It is obvious that the eradication of hepatitis C is not restricted to development of DAAs. Evidence Acquisition An electronic search of available literature published was conducted in all peer-reviewed journal indexed in PubMed, Scopus and Google scholar. The literature search was done among articles related treatment of hepatitis C with DAAs in different patient groups with mass screening of the patients and cost benefit of new treatments as main key words. Results There are major steps that should be taken to eradicate HCV, including (1) the development of screening strategies, particularly for groups such as intravenous drug users and recipients of blood or blood products before the introduction of HCV screening in donors; (2) the development of strategies to overcome issues with the high cost of recently introduced treatments; (3) special attention to special patient groups, such as HIV/HCV co-infection, hemophilia, thalassemia, hemodialysis, and liver-transplant patients; and (4) development of preventive strategies, such as the development of an efficient HCV vaccine, special attention to harm reduction in high-risk groups, and promotion of mass awareness of HCV. Conclusions The eradication of HCV will require significant governmental financial investment for screening, prevention, and treatment of infected patients. Although, we have a long way to eradication of HCV, the next steps could be including proper planning to patient finding, availability of new treatments to all patients and development of HCV prevention strategies such as vaccines. PMID:27275164

  14. Long-acting contraceptive agents: levonorgestrel esters of unsaturated acids.

    PubMed

    Wan, A S; Ngiam, T L; Leung, S L; Go, M L; Francisco, C G; Freire, R; Hernandez, R; Salazar, J A; Suarez, E; García, G A

    1983-03-01

    Esters of levonorgestrel (13 beta-ethyl-17 beta-ethynyl-17 beta-hydroxygon-4-en-3-one) with a variety of unsaturated carboxylic acids have been synthesized for evaluation as potential long-acting, injectable contraceptive agents.

  15. Metabolic syndrome in chronic hepatitis C infection: does it still matter in the era of directly acting antiviral therapy?

    PubMed Central

    Lim, TR

    2014-01-01

    Metabolic syndrome is prevalent in patients with hepatitis C virus (HCV) infection. Given the pandemic spread of HCV infection and metabolic syndrome, the burden of their interaction is a major public health issue. The presence of metabolic syndrome accelerates the progression of liver disease in patients with HCV infection. New drug development in HCV has seen an unprecedented rise in the last year, which resulted in better efficacy, better tolerance, and a shorter treatment duration. This review describes the underlying mechanisms and clinical effects of metabolic syndrome in HCV infection, as well as their importance in the era of new directly acting antiviral therapy. PMID:25506251

  16. Hepatitis C Virus and Antiviral Drug Resistance

    PubMed Central

    Kim, Seungtaek; Han, Kwang-Hyub; Ahn, Sang Hoon

    2016-01-01

    Since its discovery in 1989, hepatitis C virus (HCV) has been intensively investigated to understand its biology and develop effective antiviral therapies. The efforts of the previous 25 years have resulted in a better understanding of the virus, and this was facilitated by the development of in vitro cell culture systems for HCV replication. Antiviral treatments and sustained virological responses have also improved from the early interferon monotherapy to the current all-oral regimens using direct-acting antivirals. However, antiviral resistance has become a critical issue in the treatment of chronic hepatitis C, similar to other chronic viral infections, and retreatment options following treatment failure have become important questions. Despite the clinical challenges in the management of chronic hepatitis C, substantial progress has been made in understanding HCV, which may facilitate the investigation of other closely related flaviviruses and lead to the development of antiviral agents against these human pathogens. PMID:27784846

  17. Selective Targeting of Antiviral and Immunomodulating Agents in the Treatment of Arenavirus Infections

    DTIC Science & Technology

    1987-10-01

    the treatment of leishmaniasis (17), ii) iododeoxyuridine in the treatment of herpes keratitis (18), and iii) amphotericin B in the treatment of... B in infected sites are most likely involved. Our rationale for the use of liposomes as carriers in the delivery of antivirals to virus infected...antigen deposition 4 days following infection. Lung involvement is not as extensive as in the guinea pig. B . Liposome Preparation and Characterization 14

  18. Synthesis and characteristics of (Hydrogenated) ferulic acid derivatives as potential antiviral agents with insecticidal activity

    PubMed Central

    2013-01-01

    Background Plant viruses cause many serious plant diseases and are currently suppressed with the simultaneous use of virucides and insecticides. The use of such materials, however, increases the amounts of pollutants in the environment. To reduce environmental contaminants, virucides with insecticidal activity is an attractive option. Results A series of substituted ferulic acid amide derivatives 7 and the corresponding hydrogenated ferulic acid amide derivatives 13 were synthesized and evaluated for their antiviral and insecticidal activities. The majority of the synthesized compounds exhibited good levels of antiviral activity against the tobacco mosaic virus (TMW), with compounds 7a, 7b and 7d in particular providing higher levels of protective and curative activities against TMV at 500 μg/mL than the control compound ribavirin. Furthermore, these compounds displayed good insecticidal activities against insects with piercing-sucking mouthparts, which can spread plant viruses between and within crops. Conclusions Two series of ferulic acid derivatives have been synthesized efficiently. The bioassay showed title compounds not only inhibit the plant viral infection, but also prevented the spread of plant virus by insect vectors. These findings therefore demonstrate that the ferulic acid amides represent a new template for future antiviral studies. PMID:23409923

  19. 2-Aminothiazolones as Anti-HIV Agents That Act as gp120-CD4 Inhibitors

    PubMed Central

    Tiberi, Marika; Tintori, Cristina; Ceresola, Elisa Rita; Fazi, Roberta; Zamperini, Claudio; Calandro, Pierpaolo; Franchi, Luigi; Selvaraj, Manikandan; Botta, Lorenzo; Sampaolo, Michela; Saita, Diego; Ferrarese, Roberto; Clementi, Massimo

    2014-01-01

    We report here the synthesis of 2-aminothiazolones along with their biological properties as novel anti-HIV agents. Such compounds have proven to act through the inhibition of the gp120-CD4 protein-protein interaction that occurs at the very early stage of the HIV-1 entry process. No cytotoxicity was found for these compounds, and broad antiviral activities against laboratory strains and pseudotyped viruses were documented. Docking simulations have also been applied to predict the mechanism, at the molecular level, by which the inhibitors were able to interact within the Phe43 cavity of HIV-1 gp120. Furthermore, a preliminary absorption, distribution, metabolism, and excretion (ADME) evaluation was performed. Overall, this study led the basis for the development of more potent HIV entry inhibitors. PMID:24614386

  20. Long-acting contraceptive agents: norethisterone esters of polyunsaturated acids.

    PubMed

    Francisco, C G; Freire, R; Hernandez, R; Salazar, J A; Suarez, E; Vlahov, R; Tarpanov, V; Boshkova-Ljapova, M; Milenkov, B; Stoilova, V

    1983-03-01

    Some new derivatives of norethisterone (17 alpha-ethynyl-17 beta-hydroxyestr-4-en-3-one) are described in which the 17 beta-hydroxyl group of the steroid is esterified with polyunsaturated aliphatic acids. The potential of these compounds as long-acting contraceptive agents has been evaluated.

  1. Combined Treatment with Antiviral Therapy and Rituximab in Patients with Mixed Cryoglobulinemia: Review of the Literature and Report of a Case Using Direct Antiviral Agents-Based Antihepatitis C Virus Therapy

    PubMed Central

    Urraro, Teresa; Gragnani, Laura; Piluso, Alessia; Fabbrizzi, Alessio; Monti, Monica; Boldrini, Barbara; Ranieri, Jessica; Zignego, Anna Linda

    2015-01-01

    Mixed cryoglobulinemia (MC) is an autoimmune/B-cell lymphoproliferative disorder associated with Hepatitis C Virus (HCV) infection, manifesting as a systemic vasculitis. In the last decade, antiviral treatment (AT) with pegylated interferon (Peg-IFN) plus ribavirin (RBV) was considered the first therapeutic option for HCV-MC. In MC patients ineligible or not responsive to antivirals, the anti-CD20 monoclonal antibody rituximab (RTX) is effective. A combined AT plus RTX was also suggested. Since the introduction of direct acting antivirals (DAAs), few data were published about MC and no data about a combined schedule. Here, we report a complete remission of MC after a sustained virological response following a combined RTX/Peg-IFN+RBV+DAA (boceprevir) treatment and review the literature about the combined RTX/AT. PMID:25815218

  2. Characteristics of human infection with avian influenza viruses and development of new antiviral agents

    PubMed Central

    Liu, Qiang; Liu, Dong-ying; Yang, Zhan-qiu

    2013-01-01

    Since 1997, several epizootic avian influenza viruses (AIVs) have been transmitted to humans, causing diseases and even deaths. The recent emergence of severe human infections with AIV (H7N9) in China has raised concerns about efficient interpersonal viral transmission, polygenic traits in viral pathogenicity and the management of newly emerging strains. The symptoms associated with viral infection are different in various AI strains: H5N1 and newly emerged H7N9 induce severe pneumonia and related complications in patients, while some H7 and H9 subtypes cause only conjunctivitis or mild respiratory symptoms. The virulence and tissue tropism of viruses as well as the host responses contribute to the pathogenesis of human AIV infection. Several preventive and therapeutic approaches have been proposed to combat AIV infection, including antiviral drugs such as M2 inhibitors, neuraminidase inhibitors, RNA polymerase inhibitors, attachment inhibitors and signal-transduction inhibitors etc. In this article, we summarize the recent progress in researches on the epidemiology, clinical features, pathogenicity determinants, and available or potential antivirals of AIV. PMID:24096642

  3. Antiviral Characteristics of GSK1265744, an HIV Integrase Inhibitor Dosed Orally or by Long-Acting Injection

    PubMed Central

    Kobayashi, Masanori; Seki, Takahiro; Miki, Shigeru; Wakasa-Morimoto, Chiaki; Suyama-Kagitani, Akemi; Kawauchi-Miki, Shinobu; Taishi, Teruhiko; Kawasuji, Takashi; Johns, Brian A.; Underwood, Mark R.; Garvey, Edward P.; Sato, Akihiko; Fujiwara, Tamio

    2014-01-01

    GSK1265744 is a new HIV integrase strand transfer inhibitor (INSTI) engineered to deliver efficient antiviral activity with a once-daily, low-milligram dose that does not require a pharmacokinetic booster. The in vitro antiviral profile and mechanism of action of GSK1265744 were established through integrase enzyme assays, resistance passage experiments, and cellular assays with site-directed molecular (SDM) HIV clones resistant to other classes of anti-HIV-1 agents and earlier INSTIs. GSK1265744 inhibited HIV replication with low or subnanomolar efficacy and with a selectivity index of at least 22,000 under the same culture conditions. The protein-adjusted half-maximal inhibitory concentration (PA-EC50) extrapolated to 100% human serum was 102 nM. When the virus was passaged in the presence of GSK1265744, highly resistant mutants with more than a 10-fold change (FC) in EC50 relative to that of the wild-type were not observed for up to 112 days of culture. GSK1265744 demonstrated activity against SDM clones containing the raltegravir (RAL)-resistant Y143R, Q148K, N155H, and G140S/Q148H signature variants (FC less than 6.1), while these mutants had a high FC in the EC50 for RAL (11 to >130). Either additive or synergistic effects were observed when GSK1265744 was tested in combination with representative anti-HIV agents, and no antagonistic effects were seen. These findings demonstrate that, similar to dolutegravir, GSK1265744 is differentiated as a new INSTI, having a markedly distinct resistance profile compared with earlier INSTIs, RAL, and elvitegravir (EVG). The collective data set supports further clinical development of GSK1265744. PMID:25367908

  4. Polyhydroxylated sulfated steroids derived from 5α-cholestanes as antiviral agents against herpes simplex virus.

    PubMed

    Pujol, Carlos A; Sepúlveda, Claudia S; Richmond, Victoria; Maier, Marta S; Damonte, Elsa B

    2016-07-01

    Twelve polyhydroxylated sulfated steroids synthesized from a 5α-cholestane skeleton with different substitutions in C-2, C-3 and C-6 were evaluated for cytotoxicity and antiviral activity against herpes simplex virus (HSV) by a virus plaque reduction assay. Four compounds elicited a selective inhibitory effect against HSV. The disodium salt of 2β,3α-dihydroxy-6E-hydroximine-5α-cholestane-2,3-disulfate, named compound 7, was the most effective inhibitor of HSV-1, HSV-2 and pseudorabies virus (PrV) strains, including acyclovir-resistant variants, in human and monkey cell lines. Preliminary mechanistic studies demonstrated that compound 7 did not affect the initial steps of virus entry but inhibited a subsequent event in the infection process of HSV.

  5. Synthesis and anti-BVDV activity of acridones as new potential antiviral agents.

    PubMed

    Tabarrini, Oriana; Manfroni, Giuseppe; Fravolini, Arnaldo; Cecchetti, Violetta; Sabatini, Stefano; De Clercq, Erik; Rozenski, Jef; Canard, Bruno; Dutartre, Hélène; Paeshuyse, Jan; Neyts, Johan

    2006-04-20

    In this study we report the design, synthesis, and activity against bovine viral diarrhea virus (BVDV) of a novel series of acridone derivatives. BVDV is responsible for major losses in cattle. The virus is also considered to be a valuable surrogate for the hepatitis C virus (HCV) in antiviral drug studies. Some of the synthesized acridones elicited selective anti-BVDV activity with EC(50) values ranging from 0.4 to 4 microg/mL and were not cytotoxic at concentrations that were 25- to 200-fold higher (CC(50) >100 microg/mL). It was proven that the most potent acridone derivative 10 was able to not only protect cells from virus-induced cytopathic effect but also reduce the production of infectious virus and extracellular viral RNA. Furthermore, compound 10, as well as a number of other analogues, inhibited HCV replication to some extent. However, there was no direct correlation between anti-BVDV and anti-HCV activity. Thus, the acridone scaffold, when appropriately functionalized, can yield compounds with selective activity against pestiviruses and related viruses such as the HCV.

  6. Encapsulation of Acyclovir in new carboxylated cyclodextrin-based nanosponges improves the agent's antiviral efficacy.

    PubMed

    Lembo, David; Swaminathan, Shankar; Donalisio, Manuela; Civra, Andrea; Pastero, Linda; Aquilano, Dino; Vavia, Pradeep; Trotta, Francesco; Cavalli, Roberta

    2013-02-25

    Cyclodextrin-based nanosponges (NS) are solid nanoparticles, obtained from the cross-linking of cyclodextrins that have been proposed as delivery systems for many types of drugs. Various NS derivatives are currently under investigation in order that their properties might be tuned for different applications. In this work, new carboxylated cyclodextrin-based nanosponges (Carb-NS) carrying carboxylic groups within their structure were purposely designed as novel Acyclovir carriers. TEM measurements revealed their spherical shape and size of about 400 nm. The behaviour of Carb-NS, with respect to the incorporation and delivery of Acyclovir, was compared to that of NS, previously investigated as a drug carrier. DSC, XRPD and FTIR analyses were used to investigate the two NS formulations. The results confirm the incorporation of the drug into the NS structure and NS-Acyclovir interactions. The Acyclovir loading into Carb-NS was higher than that obtained using NS, reaching about 70% (w/w). In vitro release studies showed the release kinetics of Acyclovir from Carb-NS to be prolonged in comparison with those observed with NS, with no initial burst effect. The NS uptake into cells was evaluated using fluorescent Carb-NS and revealed the nanoparticle internalisation. Enhanced antiviral activity against a clinical isolate of HSV-1 was obtained using Acyclovir loaded in Carb-NS.

  7. Assorted Processing of Synthetic Trans-Acting siRNAs and Its Activity in Antiviral Resistance.

    PubMed

    Zhao, Mingmin; San León, David; Mesel, Frida; García, Juan Antonio; Simón-Mateo, Carmen

    2015-01-01

    The use of syn-tasiRNAs has been proposed as an RNA interference technique alternative to those previously described: hairpin based, virus induced gene silencing or artificial miRNAs. In this study we engineered the TAS1c locus to impair Plum pox virus (PPV) infection by replacing the five native siRNAs with two 210-bp fragments from the CP and the 3´NCR regions of the PPV genome. Deep sequencing analysis of the small RNA species produced by both constructs in planta has shown that phased processing of the syn-tasiRNAs is construct-specific. While in syn-tasiR-CP construct the processing was as predicted 21-nt phased in register with miR173-guided cleavage, the processing of syn-tasiR-3NCR is far from what was expected. A 22-nt species from the miR173-guided cleavage was a guide of two series of phased small RNAs, one of them in an exact 21-nt register, and the other one in a mixed of 21-/22-nt frame. In addition, both constructs produced abundant PPV-derived small RNAs in the absence of miR173 as a consequence of a strong sense post-transcriptional gene silencing induction. The antiviral effect of both constructs was also evaluated in the presence or absence of miR173 and showed that the impairment of PPV infection was not significantly higher when miR173 was present. The results show that syn-tasiRNAs processing depends on construct-specific factors that should be further studied before the so-called MIGS (miRNA-induced gene silencing) technology can be used reliably.

  8. Treatment of Oseltamivir-Resistant Influenza A (H1N1) Virus Infections in Mice With Antiviral Agents

    PubMed Central

    Smee, Donald F.; Julander, Justin G.; Tarbet, E. Bart; Gross, Matthew; Nguyen, Jack

    2012-01-01

    Influenza A/Mississippi/03/2001 (H1N1) and A/Hong Kong/2369/2009 (H1N1) viruses containing the neuraminidase gene mutation H275Y (conferring resistance to oseltamivir) were adapted to mice and evaluated for suitability as models for lethal infection and antiviral treatment. The viral neuraminidases were resistant to peramivir and oseltamivir carboxylate but sensitive to zanamivir. Similar pattern of antiviral activity were seen in MDCK cell assays. Lethal infections were achieved in mice with the two viruses. Oral oseltamivir at 100 and 300 mg/kg/day bid for 5 d starting at −2 h gave 30 and 60% protection from death, respectively, due to the A/Mississippi/03/2001 infection. Intraperitoneal treatments with zanamivir at 30 and 100 mg/kg/day starting at −2 h gave 60 and 90% protection, respectively. Neither compound at ≤300 mg/kg/day protected mice when treatments began at +24 h. Amantadine was effective at 10, 30, and 100 mg/kg/day, rimantadine was protective at 10 and 30 mg/kg/day (highest dose tested), and ribavirin was active at 30 and 75 mg/kg/day, with survival ranging from 60–100% for oral treatments initiated at −2 h. For treatments begun at +24 h, amantadine was protective at 30 and 100 mg/kg/day, rimantadine showed efficacy at 10 and 30 mg/kg/day, and ribavirin was active at 75 mg/kg/day, with 60–100% survival per group. In the A/Hong Kong/2369/2009 infection, oral oseltamivir at 100 and 300 mg/kg/day starting at −2 h gave 50 and 70% protection from death, respectively. These infection models will be useful to study newly discovered anti-influenza virus agents and to evaluate compounds in combination. PMID:22809862

  9. Antiviral activity of benzimidazole derivatives. III. Novel anti-CVB-5, anti-RSV and anti-Sb-1 agents.

    PubMed

    Tonelli, Michele; Novelli, Federica; Tasso, Bruno; Vazzana, Iana; Sparatore, Anna; Boido, Vito; Sparatore, Fabio; La Colla, Paolo; Sanna, Giuseppina; Giliberti, Gabriele; Busonera, Bernardetta; Farci, Pamela; Ibba, Cristina; Loddo, Roberta

    2014-09-01

    A library of eighty-six assorted benzimidazole derivatives was screened for antiviral activity against a panel of ten RNA and DNA viruses. Fifty-two of them displayed different levels of activity against one or more viruses, among which CVB-5, RSV, BVDV and Sb-1 were the most frequently affected. In particular, fourteen compounds exhibited an EC50 in the range 9-17μM (SI from 6 to >11) versus CVB-5, and seven compounds showed an EC50 in the range 5-15μM (SI from 6.7 to ⩾20) against RSV, thus resulting comparable to or more potent than the respective reference drugs (NM108 and ribavirin). Most of these compounds derive from 2-benzylbenzimidazole, but also other molecular scaffolds [as 1-phenylbenzimidazole (2), 2-trifluoromethylbenzimidazole (69), dihydropyrido[3',2':4,5]imidazo[1,2-a][1,4]benzodiazepin-5-one (3), dibenzo[c,e]benzimidazo[1,2-a]azepine (22), and 2-(tetrahydropyran-2-yl)benzimidazole (81, 82 and 86)] are related to interesting levels of activity against these or other viruses (BVDV, Sb-1). Thus, these scaffolds (some of which, so far unexplored), represent valid starting points to develop more efficient agents against pathologies caused by CVB-5, RSV, BVDV and Sb-1 viruses.

  10. Hepatitis C infected patients need vitamin D3 supplementation in the era of direct acting antivirals treatment

    PubMed Central

    Kondo, Yasuteru

    2017-01-01

    It has been reported that the serum level of vitamin D3 (VitD3) could affect the natural course of chronic hepatitis C (CH-C) and the response to treatment with pegylated interferon (Peg-IFN) and ribavirin. Although several mechanisms for the favorable effects of VitD3 supplementation were reported, the total effect of VitD3 supplementation remains unclear. Previously, we reported that supplementation with 1(OH)VitD3 could enhance the Th1 response inducing not only a favorable immune response for viral eradication but also HCC control. Recently, the main treatment of CH-C should be direct acting antivirals (DAAs) without Peg-IFN. Peg-IFN is a strong immune-modulator. Therefore, an immunological analysis should be carried out to understand the effect of VitD3 after treatment of DAAs without Peg-IFN. The induction of a favorable immune response by adding VitD3 might be able to suppress the hepatocarcinogenesis after achieving SVR, especially in children and elderly patients with severe fibrosis lacking sufficient amounts of VitD3. PMID:28293078

  11. Update on the Development of Anti-Viral Agents Against Hepatitis C

    PubMed Central

    Macarthur, Kristin L.; Smolic, Robert; Smolic, Martina V.; Wu, Catherine H.

    2013-01-01

    Hepatitis C virus (HCV) infects nearly 170 million people worldwide and causes chronic hepatitis, cirrhosis, and hepatocellular carcinoma. The search for a drug regimen that maximizes efficacy and minimizes side effects is quickly evolving. This review will discuss a wide range of drug targets currently in all phases of development for the treatment of HCV. Direct data from agents in phase III/IV clinical trials will be presented, along with reported side-effect profiles. The mechanism of action of all treatments and resistance issues are highlighted. Special attention is given to available trial data supporting interferon-free treatment regimens. HCV has become an increasingly important public health concern, and it is important for physicians to stay up to date on the rapidly growing novel therapeutic options. PMID:26357602

  12. Approaches to improve the stability of the antiviral agent UC781 in aqueous solutions.

    PubMed

    Damian, Festo; Fabian, Judit; Friend, David R; Kiser, Patrick F

    2010-08-30

    In this work, we evaluated the chemical stability profiles of UC781 based solutions to identify excipients that stabilize the microbicidal agent UC781. When different antioxidants were added to UC781 in sulfobutylether-beta-cyclodextrin (SBE-beta-CD) solutions and subjected to a 50 degrees C stability study, it was observed that EDTA was a better stabilizing agent than sodium metabisulfite, glutathione or ascorbic acid. Some antioxidants accelerated the degradation of UC781, suggesting metal-catalyzed degradation of UC781. Furthermore, we observed substantial degradation of UC781 when stored in 1% Tween 80 and 1% DMSO solutions alone or in those with 10mM EDTA. On the other hand, improved stability of UC781 in the presence of 100 and 200mM of EDTA was observed in these solutions. The addition of both EDTA and citric acid in the stock solutions resulted in recovery of more than 60% of UC781 after 12 weeks. Generally, 10% SBE-beta-CD in the presence of EDTA and citric acid stabilized UC781 solutions: the amount of UC781 recovered approaching 95% after 12 weeks of storage at 40 degrees C. We also showed that the desulfuration reaction of the UC781 thioamide involves oxygen by running solution stability studies in deoxygenated media. Improved stability of UC781 in the present study indicates that the incorporation of EDTA, citric acid and SBE-beta-CD and the removal of oxygen in formulations of this drug will aid in increasing the stability of UC781 where solutions of the drug are required.

  13. Consequences of inaccurate hepatitis C virus genotyping on the costs of prescription of direct antiviral agents in an Italian district

    PubMed Central

    Polilli, Ennio; Cento, Valeria; Restelli, Umberto; Ceccherini-Silberstein, Francesca; Aragri, Marianna; Di Maio, Velia Chiara; Sciacca, Antonina; Santoleri, Fiorenzo; Fazii, Paolo; Costantini, Alberto; Perno, Carlo Federico; Parruti, Giustino

    2016-01-01

    Available commercial assays may yield inaccurate hepatitis C virus (HCV) genotype assignment in up to 10% of cases. We investigated the cost-effectiveness of re-evaluating HCV genotype by population sequencing, prior to choosing a direct acting antiviral (DAA) regimen. Between March and September 2015, HCV sequence analysis was performed in order to confirm commercial LiPA-HCV genotype (Versant® HCV Genotype 2.0) in patients eligible for treatment with DAAs. Out of 134 consecutive patients enrolled, sequencing yielded 21 (15.7%) cases of discordant results. For three cases of wrong genotype assignment, the putative reduction in efficacy was gauged between 15% and 40%. Among the eight cases for whom G1b was assigned by commercial assays instead of G1a, potentially suboptimal treatments would have been prescribed. Finally, for five patients with G1 and indeterminate subtype, the choice of regimens would have targeted the worst option, with a remarkable increase in costs, as in the case of the four mixed HCV infections for whom pan-genotypic regimens would have been mandatory. Precise assignment of HCV genotype and subtype by sequencing may, therefore, be more beneficial than expected, until more potent pan-genotypic regimens are available for all patients. PMID:27695353

  14. Second-generation direct-acting-antiviral hepatitis C virus treatment: Efficacy, safety, and predictors of SVR12

    PubMed Central

    Werner, Christoph R; Schwarz, Julia M; Egetemeyr, Daniel P; Beck, Robert; Malek, Nisar P; Lauer, Ulrich M; Berg, Christoph P

    2016-01-01

    AIM To gather data on the antiviral efficacy and safety of second generation direct acting antiviral (DAA) treatment with respect to sustained virological response (SVR) 12 wk after conclusion of treatment, and to determine predictors of SVR12 in this setting. METHODS Two hundred and sixty patients treated with SOF combination partners PR (n = 51), R (n = 10), SMV (n = 30), DCV (n = 81), LDV (n = 73), or 3D (n = 15). 144/260 were pre-treated, 89/260 had liver cirrhosis, 56/260 had portal hypertension with platelets < 100/nL, 25/260 had a MELD score ≥ 10 and 17/260 were post-liver transplantation patients. 194/260 had HCV GT1, 44/260 HCV GT3. RESULTS Two hundred and forty/256 (93.7%) patients achieved SVR12 (mITT); 4/260 were lost to follow-up. SVR12 rates for subgroups were: 92% for SOF/DCV, 93% for each SOF/SMV, SOF/PR, 94% for SOF/LDV, 100% for 3D, 94% for pretreated, 87% for liver cirrhosis, 82% for patients with platelets < 100/nL, 88% post-liver transplantation, 95% for GT1a, 93% for GT1b, 90% for GT3, 100% for GT2, 4, and 6. 12 patients suffered from relapse, 6 prematurely discontinued treatment, of which 4 died. Negative predictors of SVR12 were a platelet count < 100/nL, MELD score ≥ 10 (P < 0.0001), liver cirrhosis (P = 0.005) at baseline. In Interferon-free treatment GT3 had significantly lower SVR rates than GT1 (P = 0.016). Side effects were mild. CONCLUSION Excellent SVR12 rates and the favorable side-effect profile of DAA-combination therapy can be well translated into “real-world”. Patients with advanced liver disease, signs of portal hypertension, especially with platelets < 100/nL and patients with GT3 are in special need for further research efforts to overcome comparatively higher rates of virological failure. PMID:27672299

  15. Adenosine Deaminases Acting on RNA (ADARs) are both Antiviral and Proviral Dependent upon the Virus

    PubMed Central

    Samuel, Charles E.

    2010-01-01

    A-to-I RNA editing, the deamination of adenosine (A) to inosine (I) that occurs in regions of RNA with double-stranded character, is catalyzed by a family of Adenosine Deaminases Acting on RNA (ADARs). In mammals there are three ADAR genes. Two encode proteins that possess demonstrated deaminase activity: ADAR1, which is interferon-inducible, and ADAR2 which is constitutively expressed. ADAR3, by contrast, has not yet been shown to bean active enzyme. The specificity of the ADAR1 and ADAR2 deaminases ranges from highly site-selective to non-selective, dependent on the duplex structure of the substrate RNA. A-to-I editing is a form of nucleotide substitution editing, because I is decoded as guanosine (G) instead of A by ribosomes during translation and by polymerases during RNA-dependent RNA replication. Additionally, A-to-I editing can alter RNA structure stability as I:U mismatches are less stable than A:U base pairs. Both viral and cellular RNAs are edited by ADARs. A-to-I editing is of broad physiologic significance. Among the outcomes of A-to-I editing are biochemical changes that affect how viruses interact with their hosts, changes that can lead to either enhanced or reduced virus growth and persistence dependent upon the specific virus. PMID:21211811

  16. Cyclooxygenase‐2 facilitates dengue virus replication and serves as a potential target for developing antiviral agents

    PubMed Central

    Lin, Chun-Kuang; Tseng, Chin-Kai; Wu, Yu-Hsuan; Liaw, Chih-Chuang; Lin, Chun-Yu; Huang, Chung-Hao; Chen, Yen-Hsu; Lee, Jin-Ching

    2017-01-01

    Cyclooxygenase-2 (COX-2) is one of the important mediators of inflammation in response to viral infection, and it contributes to viral replication, for example, cytomegalovirus or hepatitis C virus replication. The role of COX-2 in dengue virus (DENV) replication remains unclear. In the present study, we observed an increased level of COX-2 in patients with dengue fever compared with healthy donors. Consistent with the clinical data, an elevated level of COX-2 expression was also observed in DENV-infected ICR suckling mice. Using cell-based experiments, we revealed that DENV-2 infection significantly induced COX-2 expression and prostaglandin E2 (PGE2) production in human hepatoma Huh-7 cells. The exogenous expression of COX-2 or PGE2 treatment dose-dependently enhanced DENV-2 replication. In contrast, COX-2 gene silencing and catalytic inhibition sufficiently suppressed DENV-2 replication. In an ICR suckling mouse model, we identified that the COX-2 inhibitor NS398 protected mice from succumbing to life-threatening DENV-2 infection. By using COX-2 promoter-based analysis and specific inhibitors against signaling molecules, we identified that NF-κB and MAPK/JNK are critical factors for DENV-2-induced COX-2 expression and viral replication. Altogether, our results reveal that COX-2 is an important factor for DENV replication and can serve as a potential target for developing therapeutic agents against DENV infection. PMID:28317866

  17. Use of Aptamers as Diagnostics Tools and Antiviral Agents for Human Viruses

    PubMed Central

    González, Víctor M.; Martín, M. Elena; Fernández, Gerónimo; García-Sacristán, Ana

    2016-01-01

    Appropriate diagnosis is the key factor for treatment of viral diseases. Time is the most important factor in rapidly developing and epidemiologically dangerous diseases, such as influenza, Ebola and SARS. Chronic viral diseases such as HIV-1 or HCV are asymptomatic or oligosymptomatic and the therapeutic success mainly depends on early detection of the infective agent. Over the last years, aptamer technology has been used in a wide range of diagnostic and therapeutic applications and, concretely, several strategies are currently being explored using aptamers against virus proteins. From a diagnostics point of view, aptamers are being designed as a bio-recognition element in diagnostic systems to detect viral proteins either in the blood (serum or plasma) or into infected cells. Another potential use of aptamers is for therapeutics of viral infections, interfering in the interaction between the virus and the host using aptamers targeting host-cell matrix receptors, or attacking the virus intracellularly, targeting proteins implicated in the viral replication cycle. In this paper, we review how aptamers working against viral proteins are discovered, with a focus on recent advances that improve the aptamers’ properties as a real tool for viral infection detection and treatment. PMID:27999271

  18. A Novel Class of HIV-1 Antiviral Agents Targeting HIV via a SUMOylation-Dependent Mechanism

    PubMed Central

    Madu, Ikenna G.; Li, Shirley; Li, Baozong; Li, Haitang; Chang, Tammy; Li, Yi-Jia; Vega, Ramir; Rossi, John; Yee, Jiing-Kuan; Zaia, John; Chen, Yuan

    2015-01-01

    We have recently identified a chemotype of small ubiquitin-like modifier (SUMO)-specific protease (SENP) inhibitors. Prior to the discovery of their SENP inhibitory activity, these compounds were found to inhibit HIV replication, but with an unknown mechanism. In this study, we investigated the mechanism of how these compounds inhibit HIV-1. We found that they do not affect HIV-1 viral production, but significantly inhibited the infectivity of the virus. Interestingly, virions produced from cells treated with these compounds could gain entry and carry out reverse transcription, but could not efficiently integrate into the host genome. This phenotype is different from the virus produced from cells treated with the class of anti-HIV-1 agents that inhibit HIV protease. Upon removal of the SUMO modification sites in the HIV-1 integrase, the compound no longer alters viral infectivity, indicating that the effect is related to SUMOylation of the HIV integrase. This study identifies a novel mechanism for inhibiting HIV-1 integration and a new class of small molecules that inhibits HIV-1 via such mechanism that may contribute a new strategy for cure of HIV-1 by inhibiting the production of infectious virions upon activation from latency. PMID:26643614

  19. Quercetin as an Antiviral Agent Inhibits Influenza A Virus (IAV) Entry

    PubMed Central

    Wu, Wenjiao; Li, Richan; Li, Xianglian; He, Jian; Jiang, Shibo; Liu, Shuwen; Yang, Jie

    2015-01-01

    Influenza A viruses (IAVs) cause seasonal pandemics and epidemics with high morbidity and mortality, which calls for effective anti-IAV agents. The glycoprotein hemagglutinin of influenza virus plays a crucial role in the initial stage of virus infection, making it a potential target for anti-influenza therapeutics development. Here we found that quercetin inhibited influenza infection with a wide spectrum of strains, including A/Puerto Rico/8/34 (H1N1), A/FM-1/47/1 (H1N1), and A/Aichi/2/68 (H3N2) with half maximal inhibitory concentration (IC50) of 7.756 ± 1.097, 6.225 ± 0.467, and 2.738 ± 1.931 μg/mL, respectively. Mechanism studies identified that quercetin showed interaction with the HA2 subunit. Moreover, quercetin could inhibit the entry of the H5N1 virus using the pseudovirus-based drug screening system. This study indicates that quercetin showing inhibitory activity in the early stage of influenza infection provides a future therapeutic option to develop effective, safe and affordable natural products for the treatment and prophylaxis of IAV infections. PMID:26712783

  20. Thiazolides as Novel Antiviral Agents: I. Inhibition of Hepatitis B Virus Replication

    PubMed Central

    Stachulski, Andrew V.; Pidathala, Chandrakala; Row, Eleanor C.; Sharma, Raman; Berry, Neil G.; Iqbal, Mazhar; Bentley, Joanne; Allman, Sarah A.; Edwards, Geoffrey; Helm, Alison; Hellier, Jennifer; Korba, Brent E.; Semple, J. Edward; Rossignol, Jean-Francois

    2011-01-01

    We report the syntheses and activities of a wide range of thiazolides [viz. 2-hydroxyaroyl-N-(thiazol-2-yl)amides] against hepatitis B virus replication, with QSAR analysis of our results. The prototypical thiazolide, nitazoxanide [2-hydroxybenzoyl-N-(5-nitrothiazol-2-yl)amide; NTZ] 1 is a broad spectrum antiinfective agent, effective against anaerobic bacteria, viruses and parasites. By contrast, 2-hydroxybenzoyl-N-(5-chlorothiazol-2-yl)amide 3 is a novel, potent and selective inhibitor of hepatitis B replication (EC50 = 0.33 μm) but is inactive against anaerobes. Several 4′- and 5′-substituted thiazolides show good activity against HBV; by contrast, some related salicyloylanilides show a narrower spectrum of activity. The ADME properties of 3 are similar to 1, viz. the O-acetate is an effective prodrug and the O-aryl glucuronide is a major metabolite. The QSAR study shows a good correlation of observed EC90 s for intracellular virions with thiazolide structural parameters. Finally we discuss the mechanism of action of thiazolides in relation to the present results. PMID:21553812

  1. Molecular structures of antiviral agents, 2,3-dihydroxybenzaldehyde 2,4-dinitrophenylhydrazone and 4-[(4-methylpiperazin-1-yl)imino]methyl-1,2-benzodiol

    SciTech Connect

    Gurskaya, G. V.; Zavodnik, V. E.; Zhukhlistova, N. E.; Kozlov, M. V.

    2008-07-15

    Two antiviral agents, namely, 2,3-dihydroxybenzaldehyde 2,4-dinitrophenylhydrazone and 4-[(4-methylpiperazin-1-yl)imino]methyl-1,2-benzodiol, are studied by X-ray diffraction. The stereochemical features of the molecular structures of the compounds under investigation are discussed, and the possible correlation between the structure and biological activity with respect to hepatitis C virus RNA-dependent RNA polymerase is analyzed.

  2. Characterization and structural analysis of the potent antiparasitic and antiviral agent tizoxanide

    NASA Astrophysics Data System (ADS)

    Bruno, Flavia P.; Caira, Mino R.; Martin, Eliseo Ceballos; Monti, Gustavo A.; Sperandeo, Norma R.

    2013-03-01

    Tizoxanide [2-(hydroxy)-N-(5-nitro-2-thiazolyl)benzamide, TIZ] is a new potent anti-infective agent which may enhance current therapies for leishmaniasis, Chagas disease and viral hepatitis. The aim of this study was to identify the conformational preferences that may be related to the biological activity of TIZ by resolving its crystal structure and characterizing various physicochemical properties, including its experimental vibrational and 13C nuclear magnetic resonance properties, behavior on heating and solubility in several solvents at 25 °C. TIZ crystallizes from dimethylformamide as the carboxamide tautomer in the triclinic system, space group P(-1) (No. 2) with the following unit cell parameters at 173(2) K: a = 5.4110(3) Å, b = 7.3315(6) Å, c = 13.5293(9) Å, α = 97.528(3), β = 95.390(4), γ = 97.316(5), V = 524.41(6) Å3, Z = 2, Dc = 1.680 g/cm3, R1 = 0.0482 and wR2 = 0.0911 for 2374 reflections. This modification of TIZ has a 'graphitic' structure and is composed of tightly packed layers of extensively hydrogen-bonded molecules. The various spectroscopic data [Diffuse Fourier transform infrared (DRIFT) and FT-Raman, recorded in the range 3600-500 and 4000-200 cm-1 respectively, and solid-state 13C NMR] were consistent with the structure determined by X-ray crystallography. From DSC, TG and thermomicroscopy, it was concluded that TIZ is thermally stable as a solid and that melting is not an isolated event from the one-step thermal decomposition that it undergoes above 270 °C. This modification of TIZ is practically insoluble in water and slightly soluble in polar aprotic solvents such as dimethylsulfoxide, dimethylformamide and dioxane.

  3. New direct-acting antivirals for patients with chronic HCV infection: can we monitor treatment using an HCV core antigen assay?

    PubMed

    Alonso, R; Pérez-García, F; Ampuero, D; Reigadas, E; Bouza, E

    2017-03-01

    We evaluated the diagnostic usefulness of an HCV core antigen (HCV-Ag) assay in HCV-infected patients undergoing treatment with direct-acting antivirals. We analyzed 103 samples from 28 patients. Compared with RT-PCR, sensitivity was 96.2% and specificity was 100%. The correlation between techniques was excellent (Pearson coefficient: 0.871). HCV-Ag proved to be useful in patients with sustained viral response and in patients who experienced treatment failures.

  4. [Self-reported experience in patients treated with Hepatitis C direct acting antivirals].

    PubMed

    Cañamares Orbis, Irene; Saez de la Fuente, Javier; Escobar Rodriguez, Ismael; Esteban Alba, Concepción; Such Díaz, Ana; Escobar Rodríguez, Ismael

    2016-11-01

    Introducción y objetivo: Conocer y analizar la experiencia autorreferida del tratamiento de los pacientes VHC que iniciaron tratamiento con agentes antivirales directos (AAD), a tiempo real, de forma proactiva e integrada en el proceso asistencial de atención farmacéutica. Material y métodos: Estudio observacional y transversal desarrollado entre abril (inicio del Plan Estratégico Nacional) y diciembre de 2015 en la Consulta Externa del Servicio de Farmacia. Se utilizó como herramienta un cuestionario prospectivo cumplimentado por los pacientes donde se recogieron variables relacionadas con la calidad de vida vinculadas con la salud (CVRS), adherencia, efectos adversos (EA), satisfacción con el tratamiento, y valoración y utilidad del programa formativo implementado por el Servicio de Farmacia. Se realizó un análisis descriptivo de todas las variables incluidas en el estudio y se analizó la influencia de las diferentes variables en el grado de adherencia y CVRS. El análisis de las diferencias entre los dos grupos se realizó mediante el test de chi cuadrado y el cálculo de las OR con un modelo de regresión logística simple. Se utilizó el programa SPSS® versión 20, y se estableció una significación estadística para valores de p < 0,05. Resultados: Se recogieron155 encuestas de las 226 enviadas, tasa de respuesta del 68,6%.En referencia a la CVRS (valoración del estado físico y emocional), un 38,7% de los pacientes refieren que su estado físico y emocional es mucho mejor desde el inicio del tratamiento. La presencia de EA y una peor información global de su enfermedad se asoció con un peor estado físico y emocional (p < 0,05). La adherencia reportada fue del 84,5% y el tratamiento fue valorado como muy bueno o bueno por el 87% de los pacientes. Un 52,9% de los pacientes no tuvieron efectos adversos relacionados con la medicación y el proceso formativo realizado por el farmacéutico especialista en la primera consulta fue valorado por el 96

  5. Memory re-differentiation and reduced lymphocyte activation in chronic HCV-infected patients receiving direct-acting antivirals.

    PubMed

    Burchill, M A; Golden-Mason, L; Wind-Rotolo, M; Rosen, H R

    2015-12-01

    Recently, the treatment of HCV has advanced significantly due to the introduction of direct-acting antivirals (DAAs). Studies using interferon (IFN)-containing regimens failed to consistently show restoration of immunologic responses. Therefore, IFN-free DAA formulations provide a unique opportunity to dissect the immunologic effect of HCV cure. This study investigates the restoration of the immune compartment as a consequence of rapid viral clearance in patients successfully treated with DAAs and in the absence of IFN and ribavirin. Here, we evaluate the immunologic changes that occurred following DAA-mediated HCV cure. Peripheral blood from nineteen previously treatment-naïve patients with chronic HCV genotype 1a/1b who received an IFN and ribavirin-free regimen of daclatasvir, asunaprevir and BMS-791325 was evaluated. Immune reconstitution occurs in patients in whom HCV was successfully eradicated via DAA therapy. Restoration of the CD4(+) T-cell compartment in the peripheral blood and a re-differentiation of the T lymphocyte memory compartment resulted in a more effector memory cell population and a reduction in expression in the co-inhibitory molecule TIGIT in bulk T lymphocytes. Furthermore, we observed a partial reversal of the exhausted phenotype in HCV-specific CD8(+) T cells and a dampening of the activation state in peripheral NK cells. Collectively, our data provide the groundwork for dissecting the effect of DAA therapy on the immune system and identifying novel mechanisms by which chronic HCV infection exerts immunosuppressive effects on T cells through the recently described co-inhibitory molecule TIGIT.

  6. What are the promising new therapies in the field of chronic hepatitis C after the first-generation direct-acting antivirals?

    PubMed

    Hunt, Douglas; Pockros, Paul

    2013-01-01

    A number of promising new hepatitis C virus (HCV) antiviral regimens have emerged during the last few years, with a trend toward increased efficacy, safety, and tolerability, when compared with currently available therapies. The focus of recent HCV antiviral drug development has been on inhibition of HCV replication, largely by targeting specific components of the HCV replication complex itself. A significant effort has been put into generating drugs that inhibit the NS5B polymerase. A number of such drugs have been developed, and NS5B polymerase inhibitors can be divided into nucleoside polymerase inhibitors and nonnucleoside polymerase inhibitors, with each group carrying specific pharmacologic and clinical characteristics. Additional research has explored the efficacy of drugs that inhibit the HCV replication complex via other mechanisms. Second-generation NS3-4A protease inhibitors have been developed, which have generally improved on the efficacy of the currently available FDA-approved first-generation agents. NS5A inhibitors have also been studied. These medications impede HCV replication and viral particle assembly and enhance host immune activation via novel mechanisms. Alternatively, medications that target a host protein, cyclophillin B, are under evaluation. These medications block HCV replication via modification of the effects of NS5B and via other poorly understood mechanisms. Detailed below are the most important HCV antiviral agents under development, many of which show promise for use within the next few years.

  7. 26 CFR 31.3504-1 - Acts to be performed by agents.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... person, or if such fiduciary, agent, or other person has the control, receipt, custody, or disposal of... 26 Internal Revenue 15 2010-04-01 2010-04-01 false Acts to be performed by agents. 31.3504-1....3504-1 Acts to be performed by agents. (a) In general. In the event wages as defined in chapter 21...

  8. Current Landscape of Antiviral Drug Discovery

    PubMed Central

    Blair, Wade; Cox, Christopher

    2016-01-01

    Continued discovery and development of new antiviral medications are paramount for global human health, particularly as new pathogens emerge and old ones evolve to evade current therapeutic agents. Great success has been achieved in developing effective therapies to suppress human immunodeficiency virus (HIV) and hepatitis B virus (HBV); however, the therapies are not curative and therefore current efforts in HIV and HBV drug discovery are directed toward longer-acting therapies and/or developing new mechanisms of action that could potentially lead to cure, or eradication, of the virus. Recently, exciting early clinical data have been reported for novel antivirals targeting respiratory syncytial virus (RSV) and influenza (flu). Preclinical data suggest that these new approaches may be effective in treating high-risk patients afflicted with serious RSV or flu infections. In this review, we highlight new directions in antiviral approaches for HIV, HBV, and acute respiratory virus infections. PMID:26962437

  9. Selective enhancement of radiation response of herpes simplex virus thymidine kinase transduced 9L gliosarcoma cells in vitro and in vivo by antiviral agents

    SciTech Connect

    Kim, Jae Ho; Kim, Sang Hie; Kolozsvary, A.

    1995-11-01

    The purpose of this investigation was to demonstrate in a well-characterized tumor model that the radiosensitivity of tumor cells transduced with a herpes simplex virus thymidine kinase gene (HS-tk) would be selectively enhanced by antiviral agents. Rat 9L gliosarcoma cells transduced with a retroviral vector containing an HS-tk gene, 9L-tk cells were exposed to various doses or irradiation under either in vitro or in vivo conditions. The radiation sensitizing potential of two antiviral drugs, bromovinyl deoxyuridine (BVdU) and dihydroxymethyl ethyl methyl guanine (acyclovir), was evaluated in vitro. The radiosensitizing ability of BVdU was also evaluated with a 9L-tk tumor growing in the rat brain. Tumors growing in the right hemisphere of rat brains were irradiated stereotactically with single-dose irradiation. The radiation response of 9L-tk cells was selectively enhanced by antiviral agents relative to nontransduced cells. In the cell culture, when a 24-h drug exposure (20 {mu}g/ml) preceded radiation, the sensitizer enhancement ratio (SER) for BVdU and acyclovir was 1.4 {plus_minus} 0.1 and 1.3 {plus_minus} 0.1, respectively. Exposure of cells to 10 {mu}g/ml acyclovir for two 24-h periods both pre- and postirradiation resulted in a SER of 1.6 {plus_minus} 0.1. In vivo, a significant increase in median survival time of rats with 9L-tk tumors was found when BVdU was administered prior to single-dose irradiation relative to the survival time of similar rats receiving radiation alone. An antiviral agent can enhance cell killing by radiation with selective action in cells transduced with the herpes simplex virus thymidine kinase gene. The results suggest that the three-pronged therapy of HS-tk gene transduction, systemically administered antiviral drug, and stereotactically targeted radiation therapy will improve the effectiveness of radiation therapy for the treatment of radioresistant tumors. 25 refs., 6 figs.

  10. Liver stiffness predicts the response to direct-acting antiviral-based therapy against chronic hepatitis C in cirrhotic patients.

    PubMed

    Neukam, K; Morano-Amado, L E; Rivero-Juárez, A; Macías, J; Granados, R; Romero-Palacios, A; Márquez, M; Merino, D; Ortega, E; Alados-Arboledas, J C; Cucurull, J; Omar, M; Ryan-Murua, P; Pineda, J A

    2016-12-21

    The purpose of this investigation was to evaluate the impact of liver stiffness (LS) on the response to direct-acting antiviral (DAA)-based therapy against hepatitis C virus (HCV) infection in cirrhotic patients. Those patients included in two Spanish prospective cohorts of patients receiving therapy based on at least one DAA, who showed a baseline LS ≥ 12.5 kPa and who had reached the scheduled time point for sustained virological response evaluation 12 weeks after completing therapy (SVR12) were analysed. Pegylated interferon/ribavirin-based therapy plus an HCV NS3/4A protease inhibitor (PR-PI group) was administered to 198 subjects, while 146 received interferon-free regimens (IFN-free group). The numbers of patients with SVR12 according to an LS < 21 kPa versus ≥21 kPa were 59/99 (59.6%) versus 46/99 (46.5%) in the PR-PI group (p = 0.064) and 41/43 (95.3%) versus 90/103 (87.4%) in the IFN-free group (p = 0.232). Corresponding figures for the relapse rates in those who presented end-of-treatment response (ETR) were 3/62 (4.8%) versus 10/56 (17.9%, p = 0.024) and 1/42 (2.4%) versus 8/98 (8.2%, p = 0.278), respectively. In a multivariate analysis adjusted for age, sex and use of interferon, a baseline LS ≥ 21 kPa was identified as an independent predictor of relapse [adjusted odds ratio, AOR (95% confidence interval, CI): 4.228 (1.344-13.306); p = 0.014] in those patients with ETR. LS above 21 kPa is associated with higher rates of relapse to DAA-based therapy in HCV-infected patients with cirrhosis in clinical practice. LS could help us to tailor the duration and composition of DAA-based combinations in cirrhotic subjects, in order to minimise the likelihood of relapse.

  11. Hepatitis C Treatment With Direct-Acting Antivirals in Kidney Transplant: Preliminary Results From a Multicenter Study.

    PubMed

    Gentil, M A; González-Corvillo, C; Perelló, M; Zarraga, S; Jiménez-Martín, C; Lauzurica, L R; Alonso, A; Franco, A; Hernández-Marrero, D; Sánchez-Fructuoso, A

    2016-11-01

    Hepatitis C (HC) is a very relevant negative prognosis factor for graft and transplant recipient survival. New direct-acting antivirals (DAAs) allow us to solve this problem in an effective way. It is crucial to understand their real impact in our daily practice. We analyzed treatment results with DAA, free of interferon, in kidney transplant recipients (KTRs) from 15 Spanish hospitals (Grupo Español de Actualización en Trasplante), regarding effectiveness, tolerance, and impact on immunosuppression, renal function-proteinuria, and diabetes. One hundred nineteen KTRs were included (9 combined liver-kidney transplants). The main DAA used was sofobusvir (91%) combined with ledipasvir (55%), simeprevir (14%), or daclatasvir (13%); in 9 cases (7%), a paritaprevir-ritonavir-ombitasvir-dasabuvir combination (3D) was used; Ribavirin was used as a coadjuvant in 18%. Side effects were limited (23.5%) and without relevance in general, except in 7 patients for whom we needed to interrupt the treatment due to neurotoxicity (1) caused by drug interaction (3D and tacrolimus) or anemia (3) by Ribavirin or others. Ninety-four patients had completed the treatment when data were analyzed: virological response was seen in 97.8% % of cases. Liver function analysis improved: 84% normal versus 21% before starting the treatment (P < .001). Renal function and proteinuria did not change. Tacrolimus level at the end of DAA-treatment was significantly lower with respect to the beginning (5.8 ± 2.1 ng/mL vs. 7.4 ± 1.8 ng/mL, P = .03), despite a slight increase in the dose (2.6 mg/d vs. 2.3 mg/d, P = .17). DAA are highly effective in the treatment of hepatitis C in KTRs with good tolerance in general, making it possible to solve the problem and have a good chance to improve the prognosis in our transplantation patients. The use of these therapies in KTRs requires special control and coordination with digestive professionals, especially if 3D or Ribavirin is used.

  12. Identification of Antiviral Agents Targeting Hepatitis B Virus Promoter from Extracts of Indonesian Marine Organisms by a Novel Cell-Based Screening Assay

    PubMed Central

    Yamashita, Atsuya; Fujimoto, Yuusuke; Tamaki, Mayumi; Setiawan, Andi; Tanaka, Tomohisa; Okuyama-Dobashi, Kaori; Kasai, Hirotake; Watashi, Koichi; Wakita, Takaji; Toyama, Masaaki; Baba, Masanori; de Voogd, Nicole J.; Maekawa, Shinya; Enomoto, Nobuyuki; Tanaka, Junichi; Moriishi, Kohji

    2015-01-01

    The current treatments of chronic hepatitis B (CHB) face a limited choice of vaccine, antibody and antiviral agents. The development of additional antiviral agents is still needed for improvement of CHB therapy. In this study, we established a screening system in order to identify compounds inhibiting the core promoter activity of hepatitis B virus (HBV). We prepared 80 extracts of marine organisms from the coral reefs of Indonesia and screened them by using this system. Eventually, two extracts showed high inhibitory activity (>95%) and low cytotoxicity (66% to 77%). Solvent fractionation, column chromatography and NMR analysis revealed that 3,5-dibromo-2-(2,4-dibromophenoxy)-phenol (compound 1) and 3,4,5-tribromo-2-(2,4-dibromophenoxy)-phenol (compound 2), which are classified as polybrominated diphenyl ethers (PBDEs), were identified as anti-HBV agents in the extracts. Compounds 1 and 2 inhibited HBV core promoter activity as well as HBV production from HepG2.2.15.7 cells in a dose-dependent manner. The EC50 values of compounds 1 and 2 were 0.23 and 0.80 µM, respectively, while selectivity indexes of compound 1 and 2 were 18.2 and 12.8, respectively. These results suggest that our cell-based HBV core promoter assay system is useful to determine anti-HBV compounds, and that two PBDE compounds are expected to be candidates of lead compounds for the development of anti-HBV drugs. PMID:26561821

  13. 77 FR 45815 - Indian Child Welfare Act; Designated Tribal Agents for Service of Notice

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-01

    ...The regulations implementing the Indian Child Welfare Act provide that Indian tribes may designate an agent other than the tribal chairman for service of notice of proceedings under the Act. This notice includes the current list of designated tribal agents for service of...

  14. 76 FR 30437 - Indian Child Welfare Act; Designated Tribal Agents for Service of Notice

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-25

    ...The regulations implementing the Indian Child Welfare Act provide that Indian tribes may designate an agent other than the tribal chairman for service of notice of proceedings under the Act. This notice includes the current list of designated tribal agents for service of...

  15. 75 FR 28103 - Indian Child Welfare Act; Designated Tribal Agents for Service of Notice

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-19

    ...The regulations implementing the Indian Child Welfare Act provide that Indian Tribes may designate an agent other than the Tribal chairman for service of notice of proceedings under the Act. This notice includes the current list of designated Tribal agents for service of notice. The names are those received by the Secretary of the Interior before the date of this...

  16. The Cost of Performance? Students' Learning about Acting as Change Agents in Their Schools

    ERIC Educational Resources Information Center

    Kehoe, Ian

    2015-01-01

    This paper explores how performance culture could affect students' learning about, and disposition towards, acting as organisational change agents in schools. This is based on findings from an initiative aimed to enable students to experience acting as change agents on an aspect of the school's culture that concerned them. The initiative was…

  17. Prevention strategies for blood‐borne viruses—in the Era of vaccines, direct acting antivirals and antiretroviral therapy

    PubMed Central

    Pfaender, Stephanie; von Hahn, Thomas; Steinmann, Joerg; Ciesek, Sandra

    2016-01-01

    Summary Blood‐borne viruses, such as hepatitis B virus, hepatitis C virus, human immunodeficiency virus, and the facultative blood‐borne hepatitis E virus, are considered a major public health problem given that they are accountable for millions of deaths each year. Treatment options, including effective vaccine design, development of antiviral strategies and the implementation of antiretroviral therapy have improved substantially over the last couple of years and contribute to successful treatment and prevention of these infectious diseases. In this review, we summarise the current knowledge and concepts in prevention of transmission of these blood‐borne viruses. PMID:27185010

  18. Herpes simplex virus keratitis: an update of the pathogenesis and current treatment with oral and topical antiviral agents.

    PubMed

    Tsatsos, Michael; MacGregor, Cheryl; Athanasiadis, Ioannis; Moschos, Marilita M; Hossain, Parwez; Anderson, David

    2016-12-01

    Ophthalmic herpes simplex viral keratitis is responsible for a range of ocular manifestations from superficial epithelial disease to stromal keratitis and endotheliitis. The Herpetic Eye Disease Study has guided the management of herpetic eye disease for almost twenty years, but newer medications such as valacyclovir are now available and are considered to have better bioavailability than acyclovir. In this review, we examine the existing evidence on the pathogenesis of different ophthalmic herpes simplex viral keratitis disease modalities and the role of oral and topically administered antiviral drugs in the treatment of herpes simplex viral keratitis.

  19. Long-acting contraceptive agents: testosterone esters of unsaturated acids.

    PubMed

    Francisco, C G; Freire, R; Gawronski, J; Hernández, R; Kielczewski, M; Salazar, J A; Savabi, F; Shafiee, A; Strekowski, L; Suárez, E

    1990-01-01

    The synthesis of 13 new esters of testosterone is described, with the esterifying acids bearing acetylenic, olefinic, or polyunsaturated functions in the chain, for evaluation as long-acting androgens.

  20. Discovery of novel antiviral agents directed against the influenza A virus nucleoprotein using photo-cross-linked chemical arrays

    SciTech Connect

    Hagiwara, Kyoji; Kondoh, Yasumitsu; Ueda, Atsushi; Yamada, Kazunori; Goto, Hideo; Watanabe, Toshiki; Nakata, Tadashi; Osada, Hiroyuki; Aida, Yoko

    2010-04-09

    The nucleoprotein (NP) of the influenza virus is expressed in the early stage of infection and plays important roles in numerous steps of viral replication. NP is relatively well conserved compared with viral surface spike proteins. This study experimentally demonstrates that NP is a novel target for the development of new antiviral drugs against the influenza virus. First, artificial analogs of mycalamide A in a chemical array bound specifically with high affinity to NP. Second, the compounds inhibited multiplication of the influenza virus. Furthermore, surface plasmon resonance imaging experiments demonstrated that the binding activity of each compound to NP correlated with its antiviral activity. Finally, it was shown that these compounds bound NP within the N-terminal 110-amino acid region but their binding abilities were dramatically reduced when the N-terminal 13-amino acid tail was deleted, suggesting that the compounds might bind to this region, which mediates the nuclear transport of NP and its binding to viral RNA. These data suggest that compound binding to the N-terminal 13-amino acid tail region may inhibit viral replication by inhibiting the functions of NP. Collectively, these results strongly suggest that chemical arrays are convenient tools for the screening of viral product inhibitors.

  1. Synthesis and antiviral activity of a series of novel N-phenylbenzamide and N-phenylacetophenone compounds as anti-HCV and anti-EV71 agents.

    PubMed

    Jiang, Zhi; Wang, Huiqiang; Li, Yanping; Peng, Zonggen; Li, Yuhuan; Li, Zhuorong

    2015-05-01

    A series of novel N-phenylbenzamide and N-phenylacetophenone compounds were synthesized and evaluated for their antiviral activity against HCV and EV71 (strain SZ-98). The biological results showed that three compounds (23, 25 and 41) exhibited considerable anti-HCV activity (IC50=0.57-7.12 μmol/L) and several compounds (23, 28, 29, 30, 31 and 42) displayed potent activity against EV71 with the IC50 values lower than 5.00 μmol/L. The potency of compound 23 (IC50=0.57 μmol/L) was superior to that of reported compounds IMB-1f (IC50=1.90 μmol/L) and IMB-1g (IC50=1.00 μmol/L) as anti-HCV agents, and compound 29 possessed the highest anti-EV71 activity, comparable to the comparator drug pirodavir. The efficacy in vivo and antiviral mechanism of these compounds warrant further investigations.

  2. Use of Direct-Acting Antivirals for the Treatment of Hepatitis C Virus-Associated Oral Lichen Planus: A Case Report.

    PubMed

    Misaka, Kenji; Kishimoto, Takashi; Kawahigashi, Yuji; Sata, Michio; Nagao, Yumiko

    2016-01-01

    Hepatitis C virus (HCV) is frequently associated with various extrahepatic manifestations such as autoimmune features and immune complex deposit diseases. Oral lichen planus (OLP) is one of the representative extrahepatic manifestations of HCV infection. Direct-acting antivirals (DAA) are highly effective and safe for the eradication of HCV. However, there is a lack of information regarding the association between HCV-associated OLP and interferon (IFN)-free DAA therapy. Herein, we present the case of a 60-year-old female who was diagnosed with OLP during routine periodontal treatment by a dentist. The patient was referred for hepatitis C treatment using IFN-free DAA, which resulted in the improvement of the symptoms of OLP. This case represents the safety and efficacy of IFN-free DAAs in patients with HCV-associated OLP. However, long-term follow-up studies are required to elucidate the therapeutic effects of this therapy in these patients.

  3. Use of Direct-Acting Antivirals for the Treatment of Hepatitis C Virus-Associated Oral Lichen Planus: A Case Report

    PubMed Central

    Misaka, Kenji; Kishimoto, Takashi; Kawahigashi, Yuji; Sata, Michio; Nagao, Yumiko

    2016-01-01

    Hepatitis C virus (HCV) is frequently associated with various extrahepatic manifestations such as autoimmune features and immune complex deposit diseases. Oral lichen planus (OLP) is one of the representative extrahepatic manifestations of HCV infection. Direct-acting antivirals (DAA) are highly effective and safe for the eradication of HCV. However, there is a lack of information regarding the association between HCV-associated OLP and interferon (IFN)-free DAA therapy. Herein, we present the case of a 60-year-old female who was diagnosed with OLP during routine periodontal treatment by a dentist. The patient was referred for hepatitis C treatment using IFN-free DAA, which resulted in the improvement of the symptoms of OLP. This case represents the safety and efficacy of IFN-free DAAs in patients with HCV-associated OLP. However, long-term follow-up studies are required to elucidate the therapeutic effects of this therapy in these patients. PMID:27920651

  4. Potential therapeutic applications of multifunctional host-defense peptides from frog skin as anti-cancer, anti-viral, immunomodulatory, and anti-diabetic agents.

    PubMed

    Conlon, J Michael; Mechkarska, Milena; Lukic, Miodrag L; Flatt, Peter R

    2014-07-01

    Frog skin constitutes a rich source of peptides with a wide range of biological properties. These include host-defense peptides with cytotoxic activities against bacteria, fungi, protozoa, viruses, and mammalian cells. Several hundred such peptides from diverse species have been described. Although attention has been focused mainly on antimicrobial activity, the therapeutic potential of frog skin peptides as anti-infective agents remains to be realized and no compound based upon their structures has yet been adopted in clinical practice. Consequently, alternative applications are being explored. Certain naturally occurring frog skin peptides, and analogs with improved therapeutic properties, show selective cytotoxicity against tumor cells and viruses and so have potential for development into anti-cancer and anti-viral agents. Some peptides display complex cytokine-mediated immunomodulatory properties. Effects on the production of both pro-inflammatory and anti-inflammatory cytokines by peritoneal macrophages and peripheral blood mononuclear cells have been observed so that clinical applications as anti-inflammatory, immunosuppressive, and immunostimulatory agents are possible. Several frog skin peptides, first identified on the basis of antimicrobial activity, have been shown to stimulate insulin release both in vitro and in vivo and so show potential as incretin-based therapies for treatment of patients with Type 2 diabetes mellitus. This review assesses the therapeutic possibilities of peptides from frogs belonging to the Ascaphidae, Alytidae, Pipidae, Dicroglossidae, Leptodactylidae, Hylidae, and Ranidae families that complement their potential role as anti-infectives for use against multidrug-resistant microorganisms.

  5. Development and application of an in-cell cleanup pressurized liquid extraction with ultra-high-performance liquid chromatography-tandem mass spectrometry to detect prohibited antiviral agents sensitively in livestock and poultry feces.

    PubMed

    Wu, Huizhen; Wang, Jianmei; Yang, Hua; Li, Guoqin; Zeng, Yinhuan; Xia, Wei; Li, Zuguang; Qian, Mingrong

    2017-03-10

    An in-cell cleanup pressurized liquid extraction was developed to analyze prohibited antiviral agents in livestock and poultry feces. Extraction and cleanup were integrated into one step. The extraction was performed using methanol-acetonitrile (1:1, v/v) with 0.5% glacial acetic acid at 90°C, and 0.75g of PSA was used as the adsorbent during the extraction procedure. Under optimal conditions, the average recoveries for 11 antiviral drugs were 71.5-112.5% at three spiked levels (20, 40, and 100μgkg(-1)). The detection limits and detection quantitations of the analysis method for the eleven antiviral drugs were 0.6-1.4 and 1.4-4.7μgkg(-1), respectively. Finally, the method was applied to analyze amantadine, oseltamivir and its metabolites oseltamivir acid in duck feces based on an experiment of an oral dose of two antiviral drugs in duck. The amantadine, oseltamivir and oseltamivir acid can be detected in feces within approximately four weeks after amantadine and oseltamivir were orally administered. The results indicate that the residue analysis in feces is a noninvasive method to monitor inhibited antiviral agents efficiently in livestock and poultry breeding.

  6. Validated stability-indicating HPLC-DAD method for determination of the recently approved hepatitis C antiviral agent daclatasvir.

    PubMed

    Baker, M M; El-Kafrawy, D S; Mahrous, M S; Belal, T S

    2017-02-07

    A comprehensive stability indicating HPLC with diode array detection method was developed for the determination of the recently approved antiviral drug daclatasvir dihydrochloride (DCV) which is used for the treatment of chronic Hepatitis C Virus (HCV) genotype 3 infection. Effective chromatographic separation was achieved using Waters C8 column (4.6×250mm, 5μm particle size) with isocratic elution of the mobile phase composed of mixed phosphate buffer pH 2.5 and acetonitrile in the ratio of 75:25 (by volume). The mobile phase was pumped at a flow rate of 1.2mL/min, and quantification of DCV was based on measuring its peak areas at 306nm. DCV eluted at retention time 5.4min. Analytical performance of the proposed HPLC procedure was thoroughly validated with respect to system suitability, linearity, range, precision, accuracy, specificity, robustness, detection and quantification limits. The linearity range was 0.6-60μg/mL with correlation coefficient>0.99999. The drug was subjected to forced degradation conditions of neutral, acidic and alkaline hydrolysis, oxidation and thermal degradation. The proposed method proved to be stability-indicating by resolution of the drug from its forced-degradation products. The validated HPLC method was successfully applied to analysis of the cited drug in its tablets.

  7. Aloe-emodin is an interferon-inducing agent with antiviral activity against Japanese encephalitis virus and enterovirus 71.

    PubMed

    Lin, Cheng-Wen; Wu, Chia-Fang; Hsiao, Nai-Wan; Chang, Ching-Yao; Li, Shih-Wein; Wan, Lei; Lin, Ying-Ju; Lin, Wei-Yong

    2008-10-01

    In this study, aloe-emodin was identified as a potential interferon (IFN)-inducer by screening compounds from Chinese herbal medicine. Aloe-emodin showed low cytotoxicity to human HL-CZ promonocyte cells and TE-671 medulloblastoma cells and significantly activated interferon-stimulated response element (ISRE) and gamma-activated sequence (GAS)-driven cis-reporting systems. Moreover, aloe-emodin upregulated expression of IFN-stimulated genes such as dsRNA-activated protein kinase and 2',5'-oligoisoadenylate synthase. Aloe-emodin resulted in significant activation of nitric oxide production. The antiviral activity of aloe-emodin against Japanese encephalitis virus (JEV) and enterovirus 71 (EV71) was evaluated using dose- and time-dependent plaque reduction assays in HL-CZ cells and TE-671 cells. The 50% inhibitory concentration (IC(50)) of aloe-emodin ranged from 0.50microg/mL to 1.51microg/mL for JEV and from 0.14microg/mL to 0.52microg/mL for EV71. Aloe-emodin showed clearly potent virus inhibitory abilities and achieved high therapeutic indices, in particular for HL-CZ cells. Therefore, the study demonstrated dose- and time-dependent actions of aloe-emodin on the inhibition of JEV and EV71 replication via IFN signalling responses.

  8. Enabling the Intestinal Absorption of Highly Polar Anti-Viral Agents: Ion-Pair Facilitated Membrane Permeation of Zanamivir Heptyl Ester and Guanidino Oseltamivir

    PubMed Central

    Miller, Jonathan M.; Dahan, Arik; Gupta, Deepak; Varghese, Sheeba; Amidon, Gordon L.

    2012-01-01

    Anti-viral drugs often suffer from poor intestinal permeability, preventing their delivery via the oral route. The goal of this work was to enhance the intestinal absorption of the low-permeability anti-viral agents zanamivr heptyl ester (ZHE) and guanidino oseltamivir (GO) utilizing an ion-pairing approach, as a critical step toward making them oral drugs. The counterion 1-hydroxy-2-napthoic acid (HNAP) was utilized to enhance the lipophilicity and permeability of the highly polar drugs. HNAP substantially increased the log P of the drugs by up to 3.7 log units. Binding constants (K11aq) of 388 M−1 for ZHE-HNAP and 2.91 M−1 for GO.-HNAP were obtained by applying a quasi-equilibrium transport model to double-reciprocal plots of apparent octanol-buffer distribution coefficients versus HNAP concentration. HNAP enhanced the apparent permeability (Papp) of both compounds across Caco-2 cell monolayers in a concentration-dependent manner, as substantial Papp (0.8 – 3.0 × 10−6 cm/s) was observed in the presence of 6–24 mM HNAP, whereas no detectable transport was observed without counterion. Consistent with a quasi-equilibrium transport model, a linear relationship with slope near 1 was obtained from a log-log plot of Caco-2 Papp versus HNAP concentration, supporting the ion-pair mechanism behind the permeability enhancement. In the rat jejunal perfusion assay, the addition of HNAP failed to increase the effective permeability (Peff) of GO. However, the rat jejunal permeability of ZHE was significantly enhanced by the addition of HNAP in a concentration-dependent manner, from essentially zero without HNAP to 4.0 × 10−5 cm/s with 10 mM HNAP, matching the Peff of the high-permeability standard metoprolol. The success of ZHE-HNAP was explained by its >100-fold stronger K11aq versus GO-HNAP, making ZHE-HNAP less prone to dissociation and ion-exchange with competing endogenous anions and able to remain intact during membrane permeation. Overall, this work

  9. Phytochemicals from Cunninghamia konishii Hayata act as antifungal agents.

    PubMed

    Cheng, Sen-Sung; Chung, Min-Jay; Lin, Chun-Ya; Wang, Ya-Nan; Chang, Shang-Tzen

    2012-01-11

    The aims of the present study were to isolate and identify the antifungal compounds from the ethanolic extract of Cunninghamia konishii wood and to evaluate their antifungal activities against wood decay fungi. The results showed that the n-Hex soluble fraction of the ethanolic extract from C. konishii wood had an excellent inhibitory effect against Lenzites betulina, Trametes versicolor, Laetiporus sulphureus, and Gloeophyllum trabeum, with IC(50) values of 33, 46, 62, and 49 μg/mL, respectively. By following the bioactivity-guided fractionation procedure, four sesquiterpenes, T-cadinol, cedrol, T-muurolol, and (-)-epi-cedrol, and three diterpenes, 13-epi-manool, cis-abienol, and isoabienol, were identified from the active subfractions. Among the main constituents of the ethanolic extract from C. konishii, T-cadinol, cedrol, and T-muurolol efficiently inhibited the growth of four wood-rot fungi at the concentration of 100 μg/mL, with antifungal indices of 51.4-100.0%, 68.3-100.0%, and 39.5-100.0%, respectively. Results of this study show that the ethanolic extract of C. konishii wood may be considered as a potent source of T-cadinol, cedrol, and T-muurolol as new natural antifungal agents.

  10. 76 FR 57619 - Delegation Under Section 2(A) of the Special Agent Samuel Hicks Families of Fallen Heroes Act

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-15

    ... the Special Agent Samuel Hicks Families of Fallen Heroes Act Presidential Determination No. 2011-15 of... September 12, 2011 Delegation Under Section 2(A) of the Special Agent Samuel Hicks Families of Fallen Heroes... the Special Agent Samuel Hicks Families of Fallen Heroes Act (Public Law 111-178) to prescribe...

  11. Efficacy of CMX001 as a Prophylactic and Presymptomatic Antiviral Agent in New Zealand White Rabbits Infected with Rabbitpox Virus, a Model for Orthopoxvirus Infections of Humans

    PubMed Central

    Rice, Amanda D.; Adams, Mathew M.; Lampert, Bernhard; Foster, Scott; Lanier, Randall; Robertson, Alice; Painter, George; Moyer, Richard W.

    2011-01-01

    CMX001, a lipophilic nucleotide analog formed by covalently linking 3-(hexdecyloxy)propan-1-ol to cidofovir (CDV), is being developed as a treatment for smallpox. CMX001 has dramatically increased potency versus CDV against all dsDNA viruses and, in contrast to CDV, is orally available and has shown no evidence of nephrotoxicity in healthy volunteers or severely ill transplant patients to date. Although smallpox has been eliminated from the environment, treatments are urgently being sought due to the risk of smallpox being used as a bioterrorism agent and for monkeypox virus, a zoonotic disease of Africa, and adverse reactions to smallpox virus vaccinations. In the absence of human cases of smallpox, new treatments must be tested for efficacy in animal models. Here we first review and discuss the rabbitpox virus (RPV) infection of New Zealand White rabbits as a model for smallpox to test the efficacy of CMX001 as a prophylactic and early disease antiviral. Our results should also be applicable to monkeypox virus infections and for treatment of adverse reactions to smallpox vaccination. PMID:21369346

  12. The Risk of Hepatocellular Carcinoma After Directly Acting Antivirals for Hepatitis C Virus Treatment in Liver Transplanted Patients: Is It Real?

    PubMed Central

    Strazzulla, Alessio; Maria Rita Iemmolo, Rosa; Carbone, Ennio; Concetta Postorino, Maria; Mazzitelli, Maria; De Santis, Mario; Di Benedetto, Fabrizio; Maria Cristiani, Costanza; Costa, Chiara; Pisani, Vincenzo; Torti, Carlo

    2016-01-01

    Introduction Since directly acting antivirals (DAAs) for treatment of hepatitis C virus (HCV) were introduced, conflicting data emerged about the risk of hepatocellular carcinoma (HCC) after interferon (IFN)-free treatments. We present a case of recurrent, extra-hepatic HCC in a liver-transplanted patient soon after successful treatment with DAAs, along with a short review of literature. Case Presentation In 2010, a 53-year old man, affected by chronic HCV (genotype 1) infection and decompensated cirrhosis, underwent liver resection for HCC and subsequently received orthotopic liver transplantation. Then, HCV relapsed and, in 2013, he was treated with pegylated-IFN plus ribavirin; but response was null. In 2014, he was treated with daclatasvir plus simeprevir to reach sustained virological response. At baseline and at the end of HCV treatment, computed tomography (CT) scan of abdomen excluded any lesions suspected for HCC. However, alpha-fetoprotein was 2.9 ng/mL before DAAs, increasing up to 183.1 ng/mL at week-24 of follow-up after the completion of therapy. Therefore, CT scan of abdomen was performed again, showing two splenic HCC lesions. Conclusions Overall, nine studies have been published about the risk of HCC after DAAs. Patients with previous HCC should be carefully investigated to confirm complete HCC remission before starting, and proactive follow-up should be performed after DAA treatment. PMID:28070200

  13. HCV Drug Resistance Challenges in Japan: The Role of Pre-Existing Variants and Emerging Resistant Strains in Direct Acting Antiviral Therapy

    PubMed Central

    Chayama, Kazuaki; Hayes, C. Nelson

    2015-01-01

    Sustained virological response (SVR) rates have increased dramatically following the approval of direct acting antiviral (DAA) therapies. While individual DAAs have a low barrier to resistance, most patients can be successfully treated using DAA combination therapy. However, DAAs are vulnerable to drug resistance, and resistance-associated variants (RAVs) may occur naturally prior to DAA therapy or may emerge following drug exposure. While most RAVs are quickly lost in the absence of DAAs, compensatory mutations may reinforce fitness. However, the presence of RAVs does not necessarily preclude successful treatment. Although developments in hepatitis C virus (HCV) therapy in Asia have largely paralleled those in the United States, Japan’s July 2014 approval of asunaprevir plus daclatasvir combination therapy as the first all-oral interferon-free therapy was not repeated in the United States. Instead, two different combination therapies were approved: sofosbuvir/ledipasvir and paritaprevir/ritonavir/ombitasvir/dasabuvir. This divergence in treatment approaches may lead to differences in resistance challenges faced by Japan and the US. However, the recent approval of sofosbuvir plus ledipasvir in Japan and the recent submissions of petitions for approval of paritaprevir/ritonavir plus ombitasvir suggest a trend towards a new consensus on emerging DAA regimens. PMID:26473914

  14. First Discovery of Acetone Extract from Cottonseed Oil Sludge as a Novel Antiviral Agent against Plant Viruses

    PubMed Central

    Zhao, Lei; Feng, Chaohong; Hou, Caiting; Hu, Lingyun; Wang, Qiaochun; Wu, Yunfeng

    2015-01-01

    A novel acetone extract from cottonseed oil sludge was firstly discovered against plant viruses including Tobacco mosaic virus (TMV), Rice stripe virus (RSV) and Southern rice black streaked dwarf virus (SRBSDV). Gossypol and β-sitosterol separated from the acetone extract were tested for their effects on anti-TMV and analysed by nuclear magnetic resonance (NMR) assay. In vivo and field trials in different geographic distributions and different host varieties declared that this extract mixture was more efficient than the commercial agent Ningnanmycin with a broad spectrum of anti-plant-viruses activity. No phytotoxic activity was observed in the treated plants and environmental toxicology showed that this new acetone extract was environmentally friendly, indicating that this acetone extract has potential application in the control of plant virus in the future. PMID:25705894

  15. Long-acting contraceptive agents: norethisterone esters of monoalkenyl and monoalkynyl acids.

    PubMed

    Francisco, C G; Freire, R; Hernandez, R; Salazar, J A; Suarez, E; García de la Mora, G A; Noguez, J A; Acosta, A; Jimeno, O

    1983-03-01

    The synthesis of nine new esters of norethisterone (17 alpha-ethynyl-17 beta-hydroxyestr-4-en-3-one) is described, with the esterifying acids bearing an acetylenic or olefinic function in a chain of eight or nine carbon atoms, for evaluation as long-acting contraceptive agents.

  16. RNA interference acts as a natural antiviral response to O'nyong-nyong virus (Alphavirus; Togaviridae) infection of Anopheles gambiae.

    PubMed

    Keene, Kimberly M; Foy, Brian D; Sanchez-Vargas, Irma; Beaty, Barry J; Blair, Carol D; Olson, Ken E

    2004-12-07

    RNA interference (RNAi) is triggered in eukaryotic organisms by double-stranded RNA (dsRNA), and it destroys any mRNA that has sequence identity with the dsRNA trigger. The RNAi pathway in Anopheles gambiae can be silenced by transfecting cells with dsRNA derived from exon sequence of the A. gambiae Argonaute2 (AgAgo2) gene. We hypothesized that RNAi may also act as an antagonist to alphavirus replication in A. gambiae because RNA viruses form dsRNA during replication. Silencing AgAgo2 expression would make A. gambiae mosquitoes more permissive to virus infection. To determine whether RNAi conditions the vector competence of A. gambiae for O'nyong-nyong virus (ONNV), we engineered a genetically modified ONNV that expresses enhanced GFP (eGFP) as a marker. After intrathoracic injection, ONNV-eGFP slowly spread to other A. gambiae tissues over a 9-day incubation period. Mosquitoes were then coinjected with virus and either control beta-galactosidase dsRNA (dsbetagal; note that "ds" is used as a prefix to indicate the dsRNA derived from a given gene throughout) or ONNV dsnsP3. Treatment with dsnsP3 inhibited virus spread significantly, as determined by eGFP expression patterns. ONNV-eGFP titers from mosquitoes coinjected with dsnsP3 were significantly lower at 3 and 6 days after injection than in mosquitoes coinjected with dsbetagal. Mosquitoes were then coinjected with ONNV-eGFP and dsAgAgo2. Mosquitoes coinjected with virus and AgAgo2 dsRNA displayed widespread eGFP expression and virus titers 16-fold higher than dsbetagal controls after 3 or 6 days after injection. These observations provide direct evidence that RNAi is an antagonist of ONNV replication in A. gambiae, and they suggest that the innate immune response conditions vector competence.

  17. 75 FR 11189 - Expanded Access to Direct-Acting Antiviral Agents for the Treatment of Chronic Hepatitis C...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-10

    ... with the greatest risk of progression of liver disease and/or the lowest predicted virologic response... is the leading cause in the United States for liver transplantation, and modeling suggests that without effective treatment interventions, significant increases in CHC-associated liver morbidity...

  18. Second-generation long-acting injectable antipsychotic agents: an overview.

    PubMed

    2012-09-01

    For over 40 years, antipsychotic drugs have been used as long-term maintenance treatment to control symptoms and reduce relapse rates in patients with schizophrenia. 'First-generation' oral agents such as haloperidol and chlorpromazine are associated with high levels of unwanted neurological effects and poor rates of patient adherence.1,2 Long-acting ('depot') injections of antipsychotics were developed to try to improve adherence. 'Second-generation' antipsychotic agents (also known as atypical antipsychotics) were introduced into clinical practice over 16 years ago. Although these agents have a lower propensity to cause extrapyramidal side effects, they are associated with a range of other unwanted effects (e.g. weight gain and its sequelae).1,3,4 Initially, second-generation agents were only available as orally administered medicines. Three long-acting injectable formulations of second-generation antipsychotics are now available in the UK: olanzapine embonate injection (ZypAdhera), paliperidone injection (Xeplion) and risperidone injection (Risperdal Consta). In this article we review the evidence for these agents and discuss the practical implications of their use.

  19. Hepatitis C virus treatment for prevention among people who inject drugs: Modeling treatment scale-up in the age of direct-acting antivirals

    PubMed Central

    Martin, Natasha K; Vickerman, Peter; Grebely, Jason; Hellard, Margaret; Hutchinson, Sharon J; Lima, Viviane D; Foster, Graham R; Dillon, John F; Goldberg, David J; Dore, Gregory J; Hickman, Matthew

    2013-01-01

    Substantial reductions in hepatitis C virus (HCV) prevalence among people who inject drugs (PWID) cannot be achieved by harm reduction interventions such as needle exchange and opiate substitution therapy (OST) alone. Current HCV treatment is arduous and uptake is low, but new highly effective and tolerable interferon-free direct-acting antiviral (DAA) treatments could facilitate increased uptake. We projected the potential impact of DAA treatments on PWID HCV prevalence in three settings. A dynamic HCV transmission model was parameterized to three chronic HCV prevalence settings: Edinburgh, UK (25%); Melbourne, Australia (50%); and Vancouver, Canada (65%). Using realistic scenarios of future DAAs (90% sustained viral response, 12 weeks duration, available 2015), we projected the treatment rates required to reduce chronic HCV prevalence by half or three-quarters within 15 years. Current HCV treatment rates may have a minimal impact on prevalence in Melbourne and Vancouver (<2% relative reductions) but could reduce prevalence by 26% in 15 years in Edinburgh. Prevalence could halve within 15 years with treatment scale-up to 15, 40, or 76 per 1,000 PWID annually in Edinburgh, Melbourne, or Vancouver, respectively (2-, 13-, and 15-fold increases, respectively). Scale-up to 22, 54, or 98 per 1,000 PWID annually could reduce prevalence by three-quarters within 15 years. Less impact occurs with delayed scale-up, higher baseline prevalence, or shorter average injecting duration. Results are insensitive to risk heterogeneity or restricting treatment to PWID on OST. At existing HCV drug costs, halving chronic prevalence would require annual treatment budgets of US $3.2 million in Edinburgh and approximately $50 million in Melbourne and Vancouver. Conclusion: Interferon-free DAAs could enable increased HCV treatment uptake among PWID, which could have a major preventative impact. However, treatment costs may limit scale-up, and should be addressed. (Hepatology 2013;58:1598

  20. Antiretroviral Use in the CEASE Cohort Study and Implications for Direct-Acting Antiviral Therapy in Human Immunodeficiency Virus/Hepatitis C Virus Coinfection

    PubMed Central

    Martinello, Marianne; Dore, Gregory J.; Skurowski, Jasmine; Bopage, Rohan I.; Finlayson, Robert; Baker, David; Bloch, Mark; Matthews, Gail V.

    2016-01-01

    Background. Interferon-free direct-acting antiviral (DAA) regimens for hepatitis C virus (HCV) provide a major advance in clinical management, including in human immunodeficiency virus (HIV)/HCV coinfection. Drug-drug interactions (DDIs) with combination antiretroviral therapy (cART) require consideration. This study aimed to characterize the cART regimens in HIV/HCV-coinfected individuals and assess the clinical significance of DDIs with DAAs in a real-world cohort. Methods. This analysis included participants enrolled in CEASE-D, a prospective cohort of HIV/HCV-coinfected individuals in Sydney, Australia, between July 2014 and December 2015. A simulation of potential DDIs between participants' cART and interferon-free DAA regimens was performed using www.hep-druginteractions.org and relevant prescribing information. Results. In individuals on cART with HCV genotype (GT) 1 and 4 (n = 128), category 3 DDIs (contraindicated or not recommended) were noted in 0% with sofosbuvir/ledipasvir, 0% with sofosbuvir plus daclatasvir, 17% with sofosbuvir/velpatasvir, 36% with ombitasvir/paritaprevir/ritonavir ± dasabuvir, 51% with grazoprevir/elbasvir, and 51% with sofosbuvir plus simeprevir; current cART regimens were suitable for coadministration in 100%, 100%, 73%, 64%, 49%, and 49%, respectively. In individuals with HCV GT 2 or 3 (n = 53), category 3 DDIs were evident in 0% with sofosbuvir plus daclatasvir, 0% with sofosbuvir and ribavirin, and 13% with sofosbuvir/velpatasvir; current cART regimens were suitable in 100%, 100%, and 81%, respectively. Conclusions. Potential DDIs are expected and will impact on DAA prescribing in HIV/HCV coinfection. Sofosbuvir in combination with an NS5A inhibitor or ribavirin appeared to be the most suitable regimens in this cohort. Evaluation of potential DDIs is required to prevent adverse events or treatment failure. PMID:27419177

  1. Direct-acting antiviral treatment in adults infected with hepatitis C virus: Reactivation of hepatitis B virus coinfection as a further challenge.

    PubMed

    De Monte, Anne; Courjon, Johan; Anty, Rodolphe; Cua, Eric; Naqvi, Alissa; Mondain, Véronique; Cottalorda, Jacqueline; Ollier, Laurence; Giordanengo, Valérie

    2016-05-01

    Use of direct-acting antiviral drugs (DAAs) greatly improves management of adults infected with hepatitis C virus (HCV) whether patients are treatment-naive or unsuccessfully pre-treated. Several inhibitors of viral nonstructural proteins (NS3/4A protease, NS5A and NS5B polymerase) allow a rapid HCV clearance and increase rates of sustained virological response. Both the EASL and AASLD guidelines have recently published up-to-date recommendations for their use, addressing each HCV genotype and particular situations. However, management of patients coinfected with hepatitis B virus (HBV) has been developed by these guidelines with reference to cases of HBV reactivation reported during previous anti-HCV regimens containing interferon known active against both HBV and HCV. In the setting of the interferon-free HCV therapies with DAAs only, the possibility of HBV reactivation during treatment of hepatitis C is raised due to viral interferences in HCV/HBV coinfected persons. Herein, we report a case of early HBV reactivation during DAAs-based anti-HCV treatment (ledipasvir/sofosbuvir) in a patient having a resolved HBV infection and chronically infected with HCV genotype 4 and HIV. Moreover, we review similar recent cases of HBV reactivation in patients infected with HBV and HCV genotype 1 during treatment of hepatitis C by regimen incorporating other combination of DAAs (sofosbuvir/simeprevir or daclatasvir/asunaprevir). Due to the potential risk of early HBV reactivation in HCV/HBV-coinfected patients during interferon-free DAAs-based HCV therapies, altogether these cases highlight the necessity to closely monitor HBV coinfection, regardless its stage (chronic, occult, resolved), whatever HCV genotype or class of DAAs used.

  2. Evolution of multi-drug resistant HCV clones from pre-existing resistant-associated variants during direct-acting antiviral therapy determined by third-generation sequencing

    PubMed Central

    Takeda, Haruhiko; Ueda, Yoshihide; Inuzuka, Tadashi; Yamashita, Yukitaka; Osaki, Yukio; Nasu, Akihiro; Umeda, Makoto; Takemura, Ryo; Seno, Hiroshi; Sekine, Akihiro; Marusawa, Hiroyuki

    2017-01-01

    Resistance-associated variant (RAV) is one of the most significant clinical challenges in treating HCV-infected patients with direct-acting antivirals (DAAs). We investigated the viral dynamics in patients receiving DAAs using third-generation sequencing technology. Among 283 patients with genotype-1b HCV receiving daclatasvir + asunaprevir (DCV/ASV), 32 (11.3%) failed to achieve sustained virological response (SVR). Conventional ultra-deep sequencing of HCV genome was performed in 104 patients (32 non-SVR, 72 SVR), and detected representative RAVs in all non-SVR patients at baseline, including Y93H in 28 (87.5%). Long contiguous sequences spanning NS3 to NS5A regions of each viral clone in 12 sera from 6 representative non-SVR patients were determined by third-generation sequencing, and showed the concurrent presence of several synonymous mutations linked to resistance-associated substitutions in a subpopulation of pre-existing RAVs and dominant isolates at treatment failure. Phylogenetic analyses revealed close genetic distances between pre-existing RAVs and dominant RAVs at treatment failure. In addition, multiple drug-resistant mutations developed on pre-existing RAVs after DCV/ASV in all non-SVR cases. In conclusion, multi-drug resistant viral clones at treatment failure certainly originated from a subpopulation of pre-existing RAVs in HCV-infected patients. Those RAVs were selected for and became dominant with the acquisition of multiple resistance-associated substitutions under DAA treatment pressure. PMID:28361915

  3. Real-world experience with interferon-free, direct acting antiviral therapies in Asian Americans with chronic hepatitis C and advanced liver disease

    PubMed Central

    Chang, Christine Y.; Nguyen, Pauline; Le, An; Zhao, Changqing; Ahmed, Aijaz; Daugherty, Tami; Garcia, Gabriel; Lutchman, Glen; Kumari, Radhika; Nguyen, Mindie H.

    2017-01-01

    Abstract Real-life data on interferon (IFN)-free direct acting antiviral (DAA) therapies for chronic hepatitis C (CHC) is limited for Asian Americans. To evaluate sustained virologic response (SVR) and adverse events (AE) in Asian Americans treated with sofosbuvir (SOF)-based, IFN-free DAA therapies. This is a retrospective study of 110 consecutive Asian Americans with HCV genotypes 1 to 3 or 6 treated with IFN-free SOF-based regimens for 8 to 24 weeks between February 2014 and March 2016 at a university center in Northern California. Mean age was 63 ± 12 years, mean BMI was 25 ± 6 (kg/m2), and about half (52%) were male. Most patients were infected with HCV genotype 1 (HCV-1, 64%), followed by HCV-2 (14%), HCV-6 (13%), and HCV-3 (8%). Half had cirrhosis, and the majority of these (67%) had decompensation. Overall SVR12 was 93% (102/110), and highest among patients without cirrhosis, liver transplant, or HCC (100%, 37/37). SVR12 was lower among patients with HCC (82%, 14/17), decompensated cirrhosis (84%, 31/37), or liver transplant (89%, 17/19), regardless of treatment and genotype. Most common AEs were anemia (25%), fatigue (20%), and headache (12%). Anemia was highest in patients receiving SOF/RBV (67%). There was 1 treatment-unrelated serious adverse effect (SAE). There were 7 dose reductions due to anemia or fatigue from RBV and 2 treatment discontinuations due to fatigue or loss of insurance authorization. This real-life cohort of Asian American CHC patients treated with IFN-free SOF-based therapies showed high overall treatment response and good tolerability, despite very high rates of advanced disease and prior treatment failure. PMID:28178174

  4. Baseline quasispecies selection and novel mutations contribute to emerging resistance-associated substitutions in hepatitis C virus after direct-acting antiviral treatment

    PubMed Central

    Kai, Yugo; Hikita, Hayato; Morishita, Naoki; Murai, Kazuhiro; Nakabori, Tasuku; Iio, Sadaharu; Hagiwara, Hideki; Imai, Yasuharu; Tamura, Shinji; Tsutsui, Syusaku; Naito, Masafumi; Nishiuchi, Meiko; Kondo, Yasuteru; Kato, Takanobu; Suemizu, Hiroshi; Yamada, Ryoko; Oze, Tsugiko; Yakushijin, Takayuki; Hiramatsu, Naoki; Sakamori, Ryotaro; Tatsumi, Tomohide; Takehara, Tetsuo

    2017-01-01

    Resistance-associated substitutions (RASs) in hepatitis C virus (HCV) appear upon failure of treatment with direct-acting antivirals (DAAs). However, their origin has not been clarified in detail. Among 11 HCV genotype 1b patients who experienced virologic failure with asunaprevir (ASV)/daclatasvir (DCV), 10 had major NS5A L31M/V-Y93H variants after treatment. L31M/V-Y93H variants were detected as a minor clone before therapy in 6 patients and were the most closely related to the post-treatment variants by phylogenetic tree analysis in 4 patients. Next, to consider the involvement of a trace amount of pre-existing variants below the detection limit, we analysed human hepatocyte chimeric mice infected with DAA-naïve patient serum. L31V-Y93H variants emerged after treatment with ledipasvir (LDV)/GS-558093 (nucleotide NS5B inhibitor) and decreased under the detection limit, but these variants were dissimilar to the L31V-Y93H variants reappearing after ASV/DCV re-treatment. Finally, to develop an infection derived from a single HCV clone, we intrahepatically injected full-genome HCV RNA (engineered based on the wild-type genotype 1b sequence) into chimeric mice. A new Y93H mutation actually occurred in this model after LDV monotherapy failure. In conclusion, post-treatment RASs appear by 2 mechanisms: the selection of pre-existing substitutions among quasispecies and the generation of novel mutations during therapy. PMID:28134353

  5. The Australasian Hepatology Association consensus guidelines for the provision of adherence support to patients with hepatitis C on direct acting antivirals

    PubMed Central

    Richmond, Jacqueline A; Sheppard-Law, Suzanne; Mason, Susan; Warner, Sherryne L

    2016-01-01

    Background Hepatitis C is a blood-borne virus primarily spread through sharing of drug-injecting equipment. Approximately 150 million people worldwide and 230,000 Australians are living with chronic hepatitis C infection. In March 2016, the Australian government began subsidizing direct acting antivirals (DAAs) for the treatment of hepatitis C, which are highly effective (95% cure rate) and have few side effects. However, there is limited evidence to inform the provision of adherence support to people with hepatitis C on DAAs including the level of medication adherence required to achieve a cure. Methodology In February 2016, a steering committee comprising four authors convened an expert panel consisting of six hepatology nurses, a hepatologist, a pharmacist, a consumer with hepatitis C and treatment experience, and a consumer advocate. The expert panel focused on the following criteria: barriers and enablers to DAA adherence; assessment and monitoring of DAA adherence; components of a patient-centered approach to DAA adherence; patients that may require additional adherence support; and interventions to support DAA adherence. The resultant guidelines underwent three rounds of consultation with the expert panel, Australasian Hepatology Association (AHA) members (n=12), and key stakeholders (n=7) in June 2016. Feedback was considered by the steering committee and incorporated if consensus was achieved. Results Twenty-four guidelines emerged from the evidence synthesis and expert panel discussion. The guidelines focus on the pretreatment assessment and education, assessment of treatment readiness, and monitoring of medication adherence. The guidelines are embedded in a patient-centered approach which highlights that all patients are at risk of nonadherence. The guidelines recommend implementing interventions focused on identifying patients’ memory triggers and hooks; use of nonconfrontational and nonjudgmental language by health professionals; and objectively

  6. How Generalizable Are the Results From Trials of Direct Antiviral Agents to People Coinfected With HIV/HCV in the Real World?

    PubMed Central

    Saeed, Sahar; Strumpf, Erin C.; Walmsley, Sharon L.; Rollet-Kurhajec, Kathleen; Pick, Neora; Martel-Laferrière, Valerie; Hull, Mark; Gill, M. John; Cox, Joseph; Cooper, Curtis; Klein, Marina B.

    2016-01-01

    Background. Direct-acting antivirals (DAAs) against hepatitis C virus (HCV) have been described as revolutionary. However, it remains uncertain how effective these drugs will be for individuals coinfected with human immunodeficiency virus (HIV)–HCV. Bridging this gap between efficacy and effectiveness requires a focus on the generalizability of clinical trials. Methods. Generalizability of DAA trials was assessed by applying the eligibility criteria from 5 efficacy trials: NCT01479868, PHOTON-1 (NCT01667731), TURQUOISE-I (NCT01939197), ION-4 (NCT02073656), and ALLY-2 (NCT02032888) that evaluated simeprevir; sofosbuvir; ombitasvir, paritaprevir/ritonavir/dasabuvir; sofosbuvir/ledipasvir; and daclatasvir/sofosbuvir, respectively, to the Canadian Coinfection Cohort, representing approximately 23% of the total coinfected population in care in Canada. Results. Of 874 active participants, 70% had chronic HCV, of whom 410, 26, 94, and 11 had genotypes 1, 2, 3, and 4, respectively. After applying trial eligibility criteria, only 5.9% (24/410) would have been eligible for enrollment in the simeprevir trial, 9.8% (52/530) in PHOTON-1, 6.3% (26/410) in TURQUOISE-I, and 8.1% (34/421) in ION-4. The ALLY-2 study was more inclusive; 43% (233/541) of the cohort would have been eligible. The most exclusive eligibility criteria across all trials with the exception of ALLY-2 were restriction to specific antiretroviral therapies (63%–79%) and active illicit drug use (53%–55%). Conclusions. DAA trial results may have limited generalizability, since the majority of coinfected individuals were not eligible to participate. Exclusions appeared to be related to improving treatment outcomes by not including those at higher risk of poor adherence and reinfection—individuals for whom real-world data are urgently needed. PMID:26743093

  7. The Promise and Pitfalls of Long Acting Injectable Agents for HIV Prevention

    PubMed Central

    Kofron, Ryan; McCauley, Marybeth

    2016-01-01

    Purpose of review Pre-exposure prophyalxis (PrEP) for HIV prevention is highly effective when taken as prescribed. Adherence to required dosing regimens for protection may pose challenges. Long Acting agents for HIV prevention may have the potential to improve adherence via favorable pharmacokinetics supportive of infrequent dosing. This review focuses on the potential benefits and considerations for the study and use of two long acting injectable agents, cabotegravir (GSK1265744 LA, CAB LA) and rilpivirine (TMC278 LA, RPV LA), for use as chemoprophylaxis for HIV prevention. Recent findings Oral RPV is FDA approved for HIV treatment (in combination with other antiretrovirals). Both CAB LA and RPV LA are currently in Phase 2a safety/tolerability/pharmacokinetic studies in anticipation and support of future efficacy evaluation. Both agents have favorable pharmacokinetics, and use is complicated by injection site reactions. Summary Long acting injectable formulations, if safe and well tolerated, may improve pharmacokinetic coverage of exposures to HIV infection. Complexities around safety, tolerability, and starting/stopping protocols require careful consideration. PMID:26633643

  8. Antiviral potential of lactic acid bacteria and their bacteriocins.

    PubMed

    Al Kassaa, I; Hober, D; Hamze, M; Chihib, N E; Drider, D

    2014-12-01

    Emerging resistance to antiviral agents is a growing public health concern worldwide as it was reported for respiratory, sexually transmitted and enteric viruses. Therefore, there is a growing demand for new, unconventional antiviral agents which may serve as an alternative to the currently used drugs. Meanwhile, published literature continues shedding the light on the potency of lactic acid bacteria (LAB) and their bacteriocins as antiviral agents. Health-promoting LAB probiotics may exert their antiviral activity by (1) direct probiotic-virus interaction; (2) production of antiviral inhibitory metabolites; and/or (3) via stimulation of the immune system. The aim of this review was to highlight the antiviral activity of LAB and substances they produce with antiviral activity.

  9. The liver partition coefficient-corrected inhibitory quotient and the pharmacokinetic-pharmacodynamic relationship of directly acting anti-hepatitis C virus agents in humans.

    PubMed

    Duan, Jianmin; Bolger, Gordon; Garneau, Michel; Amad, Ma'an; Batonga, Joëlle; Montpetit, Hélène; Otis, François; Jutras, Martin; Lapeyre, Nicole; Rhéaume, Manon; Kukolj, George; White, Peter W; Bethell, Richard C; Cordingley, Michael G

    2012-10-01

    Pharmacokinetic-pharmacodynamic (PK-PD) data analyses from early hepatitis C virus (HCV) clinical trials failed to show a good correlation between the plasma inhibitory quotient (IQ) and antiviral activity of different classes of directly acting antiviral agents (DAAs). The present study explored whether use of the liver partition coefficient-corrected IQ (LCIQ) could improve the PK-PD relationship. Animal liver partition coefficients (Kp(liver)) were calculated from liver to plasma exposure ratios. In vitro hepatocyte partition coefficients (Kp(hep)) were determined by the ratio of cellular to medium drug concentrations. Human Kp(liver) was predicted using an in vitro-in vivo proportionality method: the species-averaged animal Kp(liver) multiplied by the ratio of human Kp(hep) over those in animals. LCIQ was calculated using the IQ multiplied by the predicted human Kp(liver). Our results demonstrated that the in vitro-in vivo proportionality approach provided the best human Kp(liver) prediction, with prediction errors of <45% for all 5 benchmark drugs evaluated (doxorubicin, verapamil, digoxin, quinidine, and imipramine). Plasma IQ values correlated poorly (r(2) of 0.48) with maximum viral load reduction and led to a corresponding 50% effective dose (ED(50)) IQ of 42, with a 95% confidence interval (CI) of 0.1 to 148534. In contrast, the LCIQ-maximum VLR relationship fit into a typical sigmoidal curve with an r(2) value of 0.95 and an ED(50) LCIQ of 121, with a 95% CI of 83 to 177. The present study provides a novel human Kp(liver) prediction model, and the LCIQ correlated well with the viral load reductions observed in short-term HCV monotherapy of different DAAs and provides a valuable tool to guide HCV drug discovery.

  10. Antiviral treatment of influenza in South Korea.

    PubMed

    Choe, Young June; Lee, Hyunju; Lee, Hoan Jong; Choi, Eun Hwa

    2015-06-01

    Antiviral therapy has an important role in the treatment and chemoprophylaxis of influenza. At present, two classes of antiviral agents, adamantanes and neuraminidase inhibitors, are available for the treatment and chemoprophylaxis of influenza in Korea. Because of the widespread resistance against adamantanes, neuraminidase inhibitors are mainly used. Because each country has a unique epidemiology of influenza, the proper use of antiviral agents should be determined based on local data. Decisions on the clinical practice in the treatment of influenza in South Korea are guided by the local surveillance data, practice guidelines, health insurance system and the resistance patterns of the circulating influenza viruses. This review highlights the role of antiviral agents in the treatment and outcome of influenza in Korea by providing comprehensive information of their clinical usage in Korea.

  11. Agents.

    PubMed

    Chambers, David W

    2002-01-01

    Although health care is inherently an economic activity, it is inadequately described as a market process. An alternative, grounded in organizational economic theory, is to view professionals and many others as agents, contracted to advance the best interests of their principals (patients). This view untangles some of the ethical conflicts in dentistry. It also helps identify major controllable costs in dentistry and suggests that dentists can act as a group to increase or decrease agency costs, primarily by controlling the bad actors who damage the value of all dentists.

  12. 34 CFR 614.4 - Which member of the consortium must act as the lead applicant and fiscal agent?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 34 Education 3 2010-07-01 2010-07-01 false Which member of the consortium must act as the lead applicant and fiscal agent? 614.4 Section 614.4 Education Regulations of the Offices of the Department of... TEACHERS TO USE TECHNOLOGY § 614.4 Which member of the consortium must act as the lead applicant and...

  13. 34 CFR 614.4 - Which member of the consortium must act as the lead applicant and fiscal agent?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 34 Education 3 2014-07-01 2014-07-01 false Which member of the consortium must act as the lead... TEACHERS TO USE TECHNOLOGY § 614.4 Which member of the consortium must act as the lead applicant and fiscal agent? (a) For purposes of 34 CFR 75.127, the lead applicant for the consortium must be a...

  14. 34 CFR 614.4 - Which member of the consortium must act as the lead applicant and fiscal agent?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 34 Education 3 2013-07-01 2013-07-01 false Which member of the consortium must act as the lead... TEACHERS TO USE TECHNOLOGY § 614.4 Which member of the consortium must act as the lead applicant and fiscal agent? (a) For purposes of 34 CFR 75.127, the lead applicant for the consortium must be a...

  15. 34 CFR 614.4 - Which member of the consortium must act as the lead applicant and fiscal agent?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 34 Education 3 2011-07-01 2011-07-01 false Which member of the consortium must act as the lead... TEACHERS TO USE TECHNOLOGY § 614.4 Which member of the consortium must act as the lead applicant and fiscal agent? (a) For purposes of 34 CFR 75.127, the lead applicant for the consortium must be a...

  16. 34 CFR 614.4 - Which member of the consortium must act as the lead applicant and fiscal agent?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 34 Education 3 2012-07-01 2012-07-01 false Which member of the consortium must act as the lead... TEACHERS TO USE TECHNOLOGY § 614.4 Which member of the consortium must act as the lead applicant and fiscal agent? (a) For purposes of 34 CFR 75.127, the lead applicant for the consortium must be a...

  17. Identification and Characterization of a Dual-Acting Antinematodal Agent against the Pinewood Nematode, Bursaphelenchus xylophilus

    PubMed Central

    Oh, Wan-Suk; Jeong, Pan-Young; Joo, Hyoe-Jin; Lee, Jeong-Eui; Moon, Yil-Seong; Cheon, Hyang-Mi; Kim, Jung-Ho; Lee, Yong-Uk; Shim, Yhong-Hee; Paik, Young-Ki

    2009-01-01

    The pinewood nematode (PWN), Bursaphelenchus xylophilus, is a mycophagous and phytophagous pathogen responsible for the current widespread epidemic of the pine wilt disease, which has become a major threat to pine forests throughout the world. Despite the availability of several preventive trunk-injection agents, no therapeutic trunk-injection agent for eradication of PWN currently exists. In the characterization of basic physiological properties of B. xylophilus YB-1 isolates, we established a high-throughput screening (HTS) method that identifies potential hits within approximately 7 h. Using this HTS method, we screened 206 compounds with known activities, mostly antifungal, for antinematodal activities and identified HWY-4213 (1-n-undecyl-2-[2-fluorphenyl] methyl-3,4-dihydro-6,7-dimethoxy-isoquinolinium chloride), a highly water-soluble protoberberine derivative, as a potent nematicidal and antifungal agent. When tested on 4 year-old pinewood seedlings that were infected with YB-1 isolates, HWY-4213 exhibited a potent therapeutic nematicidal activity. Further tests of screening 39 Caenorhabditis elegans mutants deficient in channel proteins and B. xylophilus sensitivity to Ca2+ channel blockers suggested that HWY-4213 targets the calcium channel proteins. Our study marks a technical breakthrough by developing a novel HTS method that leads to the discovery HWY-4213 as a dual-acting antinematodal and antifungal compound. PMID:19907651

  18. The antiviral activity of arctigenin in traditional Chinese medicine on porcine circovirus type 2.

    PubMed

    Chen, Jie; Li, Wentao; Jin, Erguang; He, Qigai; Yan, Weidong; Yang, Hanchun; Gong, Shiyu; Guo, Yi; Fu, Shulin; Chen, Xiabing; Ye, Shengqiang; Qian, Yunguo

    2016-06-01

    Arctigenin (ACT) is a phenylpropanoid dibenzylbutyrolactone lignan extracted from the traditional herb Arctium lappa L. (Compositae) with anti-viral and anti-inflammatory effects. Here, we investigated the antiviral activity of ACT found in traditional Chinese medicine on porcine circovirus type 2 (PCV2) in vitro and in vivo. Results showed that dosing of 15.6-62.5μg/mL ACT could significantly inhibit the PCV2 proliferation in PK-15 cells (P<0.01). Dosing of 62.5μg/mL ACT 0, 4 or 8h after challenge inoculation significantly inhibited the proliferation of 1MOI and 10MOI in PK-15 cells (P<0.01), and the inhibitory effect of ACT dosing 4h or 8h post-inoculation was greater than 0h after dosing (P<0.01). In vivo test with mice challenge against PCV2 infection demonstrated that intraperitoneal injection of 200μg/kg ACT significantly inhibited PCV2 proliferation in the lungs, spleens and inguinal lymph nodes, with an effect similar to ribavirin, demonstrating the effectiveness of ACT as an antiviral agent against PCV2 in vitro and in vivo. This compound, therefore, may have the potential to serve as a drug for protection of pigs against the infection of PCV2.

  19. Prevention of allograft HCV recurrence with peri-transplant human monoclonal antibody MBL-HCV1 combined with a single oral direct-acting antiviral: A proof-of-concept study.

    PubMed

    Smith, H L; Chung, R T; Mantry, P; Chapman, W; Curry, M P; Schiano, T D; Boucher, E; Cheslock, P; Wang, Y; Molrine, D C

    2017-03-01

    Patients with active hepatitis C virus (HCV) infection at transplantation experience rapid allograft infection, increased risk of graft failure and accelerated fibrosis. MBL-HCV1, a neutralizing human monoclonal antibody (mAb) targeting the HCV envelope, was combined with a licensed oral direct-acting antiviral (DAA) to prevent HCV recurrence post-transplant in an open-label exploratory efficacy trial. Eight subjects received MBL-HCV1 beginning on the day of transplant with telaprevir initiated between days 3 and 7 post-transplantation. Following FDA approval of sofosbuvir, two subjects received MBL-HCV1 starting on the day of transplant with sofosbuvir initiated on day 3. Combination treatment was administered for 8-12 weeks or until the stopping rule for viral rebound was met. The primary endpoint was undetectable HCV RNA at day 56 with exploratory endpoints of sustained virologic response (SVR) at 12 and 24 weeks post-treatment. Both subjects receiving mAb and sofosbuvir achieved SVR24. Four of eight subjects in the mAb and telaprevir group met the primary endpoint; one subject achieved SVR24 and three subjects relapsed 2-12 weeks post-treatment. The other four subjects experienced viral breakthrough. There were no serious adverse events related to study treatment. This proof-of-concept study demonstrates that peri-transplant immunoprophylaxis combined with a single oral direct-acting antiviral in the immediate post-transplant period can prevent HCV recurrence.

  20. Novel antiviral activity of chemokines

    SciTech Connect

    Nakayama, Takashi; Shirane, Jumi; Hieshima, Kunio; Shibano, Michiko; Watanabe, Masayasu; Jin, Zhe; Nagakubo, Daisuke; Saito, Takuya; Shimomura, Yoshikazu; Yoshie, Osamu . E-mail: o.yoshie@med.kindai.ac.jp

    2006-07-05

    Antimicrobial peptides are a diverse family of small, mostly cationic polypeptides that kill bacteria, fungi and even some enveloped viruses, while chemokines are a group of mostly cationic small proteins that induce directed migration of leukocytes through interactions with a group of seven transmembrane G protein-coupled receptors. Recent studies have shown that antimicrobial peptides and chemokines have substantially overlapping functions. Thus, while some antimicrobial peptides are chemotactic for leukocytes, some chemokines can kill a wide range of bacteria and fungi. Here, we examined a possible direct antiviral activity of chemokines against an enveloped virus HSV-1. Among 22 human chemokines examined, chemokines such as MIP-1{alpha}/CCL3, MIP-1{beta}/CCL4 and RANTES/CCL5 showed a significant direct antiviral activity against HSV-1. It is intriguing that these chemokines are mostly known to be highly expressed by effector CD8{sup +} T cells. The chemokines with a significant anti-HSV-1 activity commonly bound to HSV-1 virions via envelope glycoprotein gB. Electron microscopy revealed that the chemokines with a significant anti-HSV-1 activity were commonly capable of generating pores in the envelope of HSV-1. Thus, some chemokines have a significant direct antiviral activity against HSV-1 in vitro and may have a potential role in host defense against HSV-1 as a direct antiviral agent.

  1. Arbidol as a broad-spectrum antiviral: an update.

    PubMed

    Blaising, Julie; Polyak, Stephen J; Pécheur, Eve-Isabelle

    2014-07-01

    Arbidol (ARB) is a Russian-made small indole-derivative molecule, licensed in Russia and China for prophylaxis and treatment of influenza and other respiratory viral infections. It also demonstrates inhibitory activity against other viruses, enveloped or not, responsible for emerging or globally prevalent infectious diseases such as hepatitis B and C, gastroenteritis, hemorrhagic fevers or encephalitis. In this review, we will explore the possibility and pertinence of ARB as a broad-spectrum antiviral, after a careful examination of its physico-chemical properties, pharmacokinetics, toxicity, and molecular mechanisms of action. Recent studies suggest that ARB's dual interactions with membranes and aromatic amino acids in proteins may be central to its broad-spectrum antiviral activity. This could impact on the virus itself, and/or on cellular functions or critical steps in virus-cell interactions, thereby positioning ARB as both a direct-acting antiviral (DAA) and a host-targeting agent (HTA). In the context of recent studies in animals and humans, we will discuss the prospective clinical use of ARB in various viral infections.

  2. Early Results of Pilot Study Using Hepatitis C Virus (HCV) Positive Kidneys to Transplant HCV Infected Patients with End-Stage Renal Disease Allowing for Successful Interferon-Free Direct Acting Antiviral Therapy after Transplantation

    PubMed Central

    Gallegos-Orozco, Juan F; Kim, Robin; Thiesset, Heather F; Hatch, Jenny; Lynch, Keisa; Chaly, Jr, Thomas; Shihab, Fuad; Ahmed, Faris; Hall, Isaac

    2016-01-01

    Introduction: Hepatitis C virus (HCV) infection in kidney transplant (KTX) patients reduces long-term patient and graft survival. Direct-acting antivirals (DAA) are > 90% effective in achieving sustained viral response (SVR); however, DAAs are not routinely available to patients with end-stage renal disease (ESRD). The University of Utah Transplant Program developed a protocol to allow HCV-positive potential KTX recipients to accept HCV-positive donors' kidneys. Three months after successful KTX, they were eligible for DAA therapy. Methods: HCV-positive patients approved for KTX by the University of Utah Transplant Selection Committee were eligible to be enrolled in this study. Patients consented for the use of HCV-positive donor organs. Three to six months after successful KTX, these patients were treated for HCV with interferon-free direct-acting antiviral regimens according to viral genotype and prior treatment experience. Results: Between 2014-2015, 12 HCV-positive patients were listed for KTX. Eight patients were kidney only eligible, seven patients received HCV-positive deceased donor kidneys, and one received an HCV-negative organ. Currently, six patients have completed treatment, all have achieved sustained viral response (SVR), and one patient is currently awaiting treatment. All seven patients have functioning kidney grafts. Wait time for KTX was reduced amongst all blood groups from an average of 1,350 days to only 65 days. Conclusions: HCV-positive patients with ESRD can successfully receive an HCV-positive donor's kidney. Once transplanted, these patients can receive DAA therapy and achieve SVR. Use of HCV-positive organs reduced time on the waitlist by greater than three years and expanded the donor organ pool. PMID:28018760

  3. 75 FR 21368 - South Carolina Electric and Gas Acting for Itself and as an Agent for South Carolina Public...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-23

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION South Carolina Electric and Gas Acting for Itself and as an Agent for South Carolina Public Service Authority (Also Referred to as Santee Cooper) Notice of Availability of the Draft...

  4. A new mouse-adapted strain of SARS-CoV as a lethal model for evaluating antiviral agents in vitro and in vivo

    PubMed Central

    Day, Craig W.; Baric, Ralph; Cai, Sui Xiong; Frieman, Matt; Kumaki, Yohichi; Morrey, John D.; Smee, Donald F.

    2009-01-01

    Severe acute respiratory syndrome (SARS) is a highly lethal emerging disease caused by coronavirus SARS-CoV. New lethal animal models for SARS were needed to facilitate antiviral research. We adapted and characterized a new strain of SARS-CoV (strain v2163) that was highly lethal in 5–6 week old BALB/c mice. It had nine mutations affecting 10 amino acid residues. Strain v2163 increased IL-1α, IL-6, MIP-1α, MCP-1, and RANTES in mice, and high IL-6 expression correlated with mortality. The infection largely mimicked human disease, but lung pathology lacked hyaline membrane formation. In vitro efficacy against v2163 was shown with known inhihibitors of SARS-CoV replication. In v2163-infected mice, Ampligen™ was fully protective, stinging nettle lectin (UDA) was partially protective, ribavirin was disputable and possibly exacerbated disease, and EP128533 was inactive. Ribavirin, UDA and Ampligen™ decreased IL-6 expression. Strain v2163 provided a valuable model for anti-SARS research. PMID:19853271

  5. Acting as a Change Agent in Supporting Sustainable Agriculture: How to Cope with New Professional Situations?

    ERIC Educational Resources Information Center

    Cerf, M.; Guillot, M. N.; Olry, P.

    2011-01-01

    How do change agents deal with the diversity of farmers' attitudes towards the future of agriculture? How do they themselves cope with change and understand their role as change agents? We chose a comprehensive, action-training approach to answer such questions and worked with agents belonging to two different extension networks. The agents…

  6. Identification of 23-(S)-2-Amino-3-Phenylpropanoyl-Silybin as an Antiviral Agent for Influenza A Virus Infection In Vitro and In Vivo

    PubMed Central

    Dai, Jian-Ping; Wu, Li-Qi; Li, Rui; Zhao, Xiang-Feng; Wan, Qian-Ying; Chen, Xiao-Xuan; Li, Wei-Zhong

    2013-01-01

    It has been reported that autophagy is involved in the replication of many viruses. In this study, we screened 89 medicinal plants, using an assay based on the inhibition of the formation of the Atg12-Atg5/Atg16 heterotrimer, an important regulator of autophagy, and selected Silybum marianum L. for further study. An antiviral assay indicated that silybin (S0), the major active compound of S. marianum L., can inhibit influenza A virus (IAV) infection. We later synthesized 5 silybin derivatives (S1 through S5) and found that 23-(S)-2-amino-3-phenylpropanoyl-silybin (S3) had the best activity. When we compared the polarities of the substituent groups, we found that the hydrophobicity of the substituent groups was positively correlated with their activities. We further studied the mechanisms of action of these compounds and determined that S0 and S3 also inhibited both the formation of the Atg12-Atg5/Atg16 heterotrimer and the elevated autophagy induced by IAV infection. In addition, we found that S0 and S3 could inhibit several components induced by IAV infection, including oxidative stress, the activation of extracellular signal-regulated kinase (ERK)/p38 mitogen-activated protein kinase (MAPK) and IκB kinase (IKK) pathways, and the expression of autophagic genes, especially Atg7 and Atg3. All of these components have been reported to be related to the formation of the Atg12-Atg5/Atg16 heterotrimer, which might validate our screening strategy. Finally, we demonstrated that S3 can significantly reduce influenza virus replication and the associated mortality in infected mice. In conclusion, we identified 23-(S)-2-amino-3-phenylpropanoyl-silybin as a promising inhibitor of IAV infection. PMID:23836164

  7. New approaches to antiretroviral drug delivery: challenges and opportunities associated with the use of long-acting injectable agents.

    PubMed

    Boffito, Marta; Jackson, Akil; Owen, Andrew; Becker, Stephen

    2014-01-01

    Research on improved treatment of HIV infection and pre-exposure prophylaxis continues. Poor adherence to treatment is the critical risk factor for virological failure and resistance development, and long-acting formulations of anti-HIV medications that need only infrequent dosing may facilitate long-term therapeutic responses. Importantly, long-acting formulations of therapeutic agents have been used to avoid missing doses or treatment fatigue to prescribed lifelong medications in a number of different medical fields, with demonstrable success. However, such formulations are associated with challenges, such as the prolongation of adverse events with the persistence of drug concentrations and concerns over the development of resistance as a result of selective pressure as drug concentrations decline. Furthermore, long-acting injectable formulations of antiretroviral (ARV) agents with infrequent dosing may be advantageous over daily oral drug intake to prevent transmission of HIV. However, the knowledge on protective drug concentrations and frequency of dosing is poor to date and implementation globally is challenging. Importantly, if nanoformulations of ARVs requiring lower drug doses become available globally, the potential for treatment cost reductions is high, as, especially in resource-limited settings, the active pharmaceutical ingredient accounts for the greater proportion of the total cost of the medicine. In conclusion, different long-acting ARVs are being studied in phase I/II for both the treatment and prevention of HIV infection, and research on administering these agents in combination has started.

  8. Intermediate acting non-depolarizing neuromuscular blocking agents and risk of postoperative respiratory complications: prospective propensity score matched cohort study

    PubMed Central

    Grosse-Sundrup, Martina; Henneman, Justin P; Sandberg, Warren S; Bateman, Brian T; Uribe, Jose Villa; Nguyen, Nicole Thuy; Ehrenfeld, Jesse M; Martinez, Elizabeth A; Kurth, Tobias

    2012-01-01

    Objective To determine whether use of intermediate acting neuromuscular blocking agents during general anesthesia increases the incidence of postoperative respiratory complications. Design Prospective, propensity score matched cohort study. Setting General teaching hospital in Boston, Massachusetts, United States, 2006-10. Participants 18 579 surgical patients who received intermediate acting neuromuscular blocking agents during surgery were matched by propensity score to 18 579 reference patients who did not receive such agents. Main outcome measures The main outcome measures were oxygen desaturation after extubation (hemoglobin oxygen saturation <90% with a decrease in oxygen saturation after extubation of >3%) and reintubations requiring unplanned admission to an intensive care unit within seven days of surgery. We also evaluated effects on these outcome variables of qualitative monitoring of neuromuscular transmission (train-of-four ratio) and reversal of neuromuscular blockade with neostigmine to prevent residual postoperative neuromuscular blockade. Results The use of intermediate acting neuromuscular blocking agents was associated with an increased risk of postoperative desaturation less than 90% after extubation (odds ratio 1.36, 95% confidence interval 1.23 to 1.51) and reintubation requiring unplanned admission to an intensive care unit (1.40, 1.09 to 1.80). Qualitative monitoring of neuromuscular transmission did not decrease this risk and neostigmine reversal increased the risk of postoperative desaturation to values less than 90% (1.32, 1.20 to 1.46) and reintubation (1.76, 1.38 to 2.26). Conclusion The use of intermediate acting neuromuscular blocking agents during anesthesia was associated with an increased risk of clinically meaningful respiratory complications. Our data suggest that the strategies used in our trial to prevent residual postoperative neuromuscular blockade should be revisited. PMID:23077290

  9. Antivirals against animal viruses.

    PubMed

    Villa, T G; Feijoo-Siota, L; Rama, J L R; Ageitos, J M

    2016-09-30

    Antivirals are compounds used since the 1960s that can interfere with viral development. Some of these antivirals can be isolated from a variety of sources, such as animals, plants, bacteria or fungi, while others must be obtained by chemical synthesis, either designed or random. Antivirals display a variety of mechanisms of action, and while some of them enhance the animal immune system, others block a specific enzyme or a particular step in the viral replication cycle. As viruses are mandatory intracellular parasites that use the host's cellular machinery to survive and multiply, it is essential that antivirals do not harm the host. In addition, viruses are continually developing new antiviral resistant strains, due to their high mutation rate, which makes it mandatory to continually search for, or develop, new antiviral compounds. This review describes natural and synthetic antivirals in chronological order, with an emphasis on natural compounds, even when their mechanisms of action are not completely understood, that could serve as the basis for future development of novel and/or complementary antiviral treatments.

  10. 18th International Conference on Antiviral Research.

    PubMed

    Mitchell, William M

    2005-08-01

    The 18th International Conference on Antiviral Research (ICAR) was held at the Princess Sofia Hotel in Barcelona, Spain, from 11th-14th April, 2005. This is a yearly international meeting sponsored by the International Society for Antiviral Research (ISAR). The current president of ISAR is John A Secrest 3rd of the Southern Research Institute. The scientific programme committee was chaired by John C Drach from the University of Michigan. ISAR was founded in 1987 to exchange prepublication basic, applied and clinical information on the development of antiviral, chemical and biological agents as well as to promote collaborative research. The ISAR has had a major role in the significant advances of the past decade in the reduction of the societal burdens of viral diseases by the focus of ICAR on the discovery and clinical application of antiviral agents. The 18th ICAR was organised as a series of focus presentations on specific viral groups consisting of oral and poster presentations of original research findings. In addition, the conference included plenary speakers, award presentations, a minisymposium on bioterrorism, and a satellite symposium on clinical antiviral drug developments. The size of the conference (> 50 oral and 250 poster presentations) necessitates limitation to the most noteworthy in the judgment of this reviewer. The current membership of the ISAR is approximately 700 with approximately 50% the membership in attendance.

  11. Gene Expression Signature-Based Screening Identifies New Broadly Effective Influenza A Antivirals

    PubMed Central

    Josset, Laurence; Textoris, Julien; Loriod, Béatrice; Ferraris, Olivier; Moules, Vincent; Lina, Bruno; N'Guyen, Catherine; Diaz, Jean-Jacques; Rosa-Calatrava, Manuel

    2010-01-01

    Classical antiviral therapies target viral proteins and are consequently subject to resistance. To counteract this limitation, alternative strategies have been developed that target cellular factors. We hypothesized that such an approach could also be useful to identify broad-spectrum antivirals. The influenza A virus was used as a model for its viral diversity and because of the need to develop therapies against unpredictable viruses as recently underlined by the H1N1 pandemic. We proposed to identify a gene-expression signature associated with infection by different influenza A virus subtypes which would allow the identification of potential antiviral drugs with a broad anti-influenza spectrum of activity. We analyzed the cellular gene expression response to infection with five different human and avian influenza A virus strains and identified 300 genes as differentially expressed between infected and non-infected samples. The most 20 dysregulated genes were used to screen the connectivity map, a database of drug-associated gene expression profiles. Candidate antivirals were then identified by their inverse correlation to the query signature. We hypothesized that such molecules would induce an unfavorable cellular environment for influenza virus replication. Eight potential antivirals including ribavirin were identified and their effects were tested in vitro on five influenza A strains. Six of the molecules inhibited influenza viral growth. The new pandemic H1N1 virus, which was not used to define the gene expression signature of infection, was inhibited by five out of the eight identified molecules, demonstrating that this strategy could contribute to identifying new broad anti-influenza agents acting on cellular gene expression. The identified infection signature genes, the expression of which are modified upon infection, could encode cellular proteins involved in the viral life cycle. This is the first study showing that gene expression-based screening can be

  12. Rapid viral expansion and short drug half-life explain the incomplete effectiveness of current herpes simplex virus 2-directed antiviral agents.

    PubMed

    Schiffer, Joshua T; Swan, David A; Corey, Lawrence; Wald, Anna

    2013-12-01

    The nucleoside analogues acyclovir (ACV) and famciclovir (FCV) reduce the frequency and severity of herpes simplex virus 2 (HSV-2) genital shedding, yet despite their high potency in vitro and a lack of induced drug resistance, frequent episodes of breakthrough mucosal shedding occur. We tested a published stochastic, spatial mathematical model of HSV-2 replication and spread, in concert with pharmacokinetic and pharmacodynamic equations, against virologic data from clinical trials of twice-daily acyclovir and famciclovir suppression. The model reproduced the key features of clinical trial data, including genital shedding episode rate, expansion and decay dynamics, and heterogeneous peak viral production and duration. In simulations, these agents shortened episode duration by limiting the extent of viral production by 1 to 2 log units and limiting the formation of secondary ulcers by ∼50%. However, drug concentrations were noninhibitory during 42% of the dosing cycle. Even if drug concentrations were high at episode initiation, prolonged episodes often ensued due to drug decay over ensuing hours and subsequent rebound of rapidly replicating HSV-2. The local CD8(+) T-cell density was more predictive of episode viral production (R(2) = 0.42) and duration (R(2) = 0.21) than the drug concentration at episode onset (R(2) = 0.14 and 0.05, respectively), though the model projected that an agent with an equivalent potency but a two times longer half-life would decrease shedding by 80% compared to that of standard twice-daily regimens. Therefore, long half-life is a key characteristic of any agent that might fully suppress HSV-2 reactivations.

  13. Aripiprazole Lauroxil Long-Acting Injectable: The Latest Addition to Second-Generation Long-Acting Agents.

    PubMed

    Aggarwal, Arpit; Gopalakrishna, Ganesh; Lauriello, John

    2016-01-01

    Antipsychotics have long been the mainstay for the treatment of schizophrenia and other psychotic disorders. Long-acting injectables (LAI) of antipsychotics-provided once every two weeks to once every three months-promise to reduce the incidence of nonadherence. ARISTADA(™) (aripiprazole lauroxil; ALLAI) extended-release injectable suspension was approved by the U.S. Food and Drug Administration in October 2015 for the treatment of schizophrenia, and is the newest entrant in the LAI market. ALLAI is available as a single-use, pre-filled syringe, can be started in three different dosages, and also has the option of every six-week dosing. Treatment with oral aripiprazole is recommended for the first twenty-one days after the first ALLAI injection, which is a potential disadvantage. Adverse effects include sensitivity to extrapyramidal symptoms, especially akathisia, which is well documented in other aripiprazole preparations. There is no available data comparing ALLAI to other antipsychotics, and more head-to-head trials comparing different LAI formulations are needed. Based on the available data, ALLAI is an effective and safe option for treatment of schizophrenia. Further studies and post-marketing data will provide better understanding of this formulation.

  14. 43 CFR 3862.2-1 - Citizenship of corporations and of associations acting through agents.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000... persons unincorporated, the statement of their duly authorized agent, made upon his own knowledge or...

  15. Antiviral therapy: current concepts and practices.

    PubMed Central

    Bean, B

    1992-01-01

    Drugs capable of inhibiting viruses in vitro were described in the 1950s, but real progress was not made until the 1970s, when agents capable of inhibiting virus-specific enzymes were first identified. The last decade has seen rapid progress in both our understanding of antiviral therapy and the number of antiviral agents on the market. Amantadine and ribavirin are available for treatment of viral respiratory infections. Vidarabine, acyclovir, ganciclovir, and foscarnet are used for systemic treatment of herpesvirus infections, while ophthalmic preparations of idoxuridine, trifluorothymidine, and vidarabine are available for herpes keratitis. For treatment of human immunodeficiency virus infections, zidovudine and didanosine are used. Immunomodulators, such as interferons and colony-stimulating factors, and immunoglobulins are being used increasingly for viral illnesses. While resistance to antiviral drugs has been seen, especially among AIDS patients, it has not become widespread and is being intensely studied. Increasingly, combinations of agents are being used: to achieve synergistic inhibition of viruses, to delay or prevent resistance, and to decrease dosages of toxic drugs. New approaches, such as liposomes carrying antiviral drugs and computer-aided drug design, are exciting and promising prospects for the future. PMID:1576586

  16. Role of the collecting agent sorption forms in the elementary act of flotation

    SciTech Connect

    Abramov, A.A.

    2005-02-01

    A new hypothesis of flotation is substantiated based on the well-known hypotheses, theoretical analysis of the elementary act, and experimental results. The hypothesis presented allows the processes of flotation activation, depression, and intensification to be explained and optimized.

  17. Targeting Innate Immunity for Antiviral Therapy through Small Molecule Agonists of the RLR Pathway

    PubMed Central

    Pattabhi, Sowmya; Wilkins, Courtney R.; Dong, Ran; Knoll, Megan L.; Posakony, Jeffrey; Kaiser, Shari; Mire, Chad E.; Wang, Myra L.; Ireton, Renee C.; Geisbert, Thomas W.; Bedard, Kristin M.; Iadonato, Shawn P.

    2015-01-01

    ABSTRACT The cellular response to virus infection is initiated when pathogen recognition receptors (PRR) engage viral pathogen-associated molecular patterns (PAMPs). This process results in induction of downstream signaling pathways that activate the transcription factor interferon regulatory factor 3 (IRF3). IRF3 plays a critical role in antiviral immunity to drive the expression of innate immune response genes, including those encoding antiviral factors, type 1 interferon, and immune modulatory cytokines, that act in concert to restrict virus replication. Thus, small molecule agonists that can promote IRF3 activation and induce innate immune gene expression could serve as antivirals to induce tissue-wide innate immunity for effective control of virus infection. We identified small molecule compounds that activate IRF3 to differentially induce discrete subsets of antiviral genes. We tested a lead compound and derivatives for the ability to suppress infections caused by a broad range of RNA viruses. Compound administration significantly decreased the viral RNA load in cultured cells that were infected with viruses of the family Flaviviridae, including West Nile virus, dengue virus, and hepatitis C virus, as well as viruses of the families Filoviridae (Ebola virus), Orthomyxoviridae (influenza A virus), Arenaviridae (Lassa virus), and Paramyxoviridae (respiratory syncytial virus, Nipah virus) to suppress infectious virus production. Knockdown studies mapped this response to the RIG-I-like receptor pathway. This work identifies a novel class of host-directed immune modulatory molecules that activate IRF3 to promote host antiviral responses to broadly suppress infections caused by RNA viruses of distinct genera. IMPORTANCE Incidences of emerging and reemerging RNA viruses highlight a desperate need for broad-spectrum antiviral agents that can effectively control infections caused by viruses of distinct genera. We identified small molecule compounds that can

  18. The antiviral lectin cyanovirin-N: probing multivalency and glycan recognition through experimental and computational approaches.

    PubMed

    Woodrum, Brian W; Maxwell, Jason D; Bolia, Ashini; Ozkan, S Banu; Ghirlanda, Giovanna

    2013-10-01

    CVN (cyanovirin-N), a small lectin isolated from cyanobacteria, exemplifies a novel class of anti-HIV agents that act by binding to the highly glycosylated envelope protein gp120 (glycoprotein 120), resulting in inhibition of the crucial viral entry step. In the present review, we summarize recent work in our laboratory and others towards determining the crucial role of multivalency in the antiviral activity, and we discuss features that contribute to the high specificity and affinity for the glycan ligand observed in CVN. An integrated approach that encompasses structural determination, mutagenesis analysis and computational work holds particular promise to clarify aspects of the interactions between CVN and glycans.

  19. Human Subtilisin Kexin Isozyme-1 (SKI-1)/Site-1 Protease (S1P) regulates cytoplasmic lipid droplet abundance: A potential target for indirect-acting anti-dengue virus agents

    PubMed Central

    Hyrina, Anastasia; Meng, Fanrui; McArthur, Steven J.; Eivemark, Sharlene; Nabi, Ivan R.; Jean, François

    2017-01-01

    Viral hijacking and manipulation of host-cell biosynthetic pathways by human enveloped viruses are shared molecular events essential for the viral lifecycle. For Flaviviridae members such as hepatitis C virus and dengue virus (DENV), one of the key subsets of cellular pathways that undergo manipulation is the lipid metabolic pathways, underlining the importance of cellular lipids and, in particular, lipid droplets (LDs) in viral infection. Here, we hypothesize that targeting cellular enzymes that act as key regulators of lipid homeostasis and LD formation could represent a powerful approach to developing a novel class of broad-spectrum antivirals against infection associated with all DENV serotypes (1–4) circulating around the world. Using PF-429242, an active-site-directed inhibitor of SKI-1/S1P, we demonstrate that inhibition of SKI-1/S1P enzymatic activity in human hepatoma Huh-7.5.1 cells results in a robust reduction of the LD numbers and LD-positive areas and provides a means of effectively inhibiting infection by DENV (1–4). Pre-treatment of Huh-7.5.1 cells with PF-429242 results in a dose-dependent inhibition of DENV infection [median inhibitory dose (EC50) = 1.2 microM; median cytotoxic dose (CC50) = 81 microM; selectivity index (SI) = 68)] and a ~3-log decrease in DENV-2 titer with 20 microM of PF-429242. Post-treatment of DENV-2 infected Huh-7.5.1 cells with PF-429242 does not affect viral RNA abundance, but it does compromise the assembly and/or release of infectious virus particles. PF-429242 antiviral activity is reversed by exogenous oleic acid, which acts as an inducer of LD formation in PF-429242-treated and non-treated control cells. Collectively, our results demonstrate that human SKI-1/S1P is a potential target for indirect-acting pan-serotypic anti-DENV agents and reveal new therapeutic opportunities associated with the use of lipid-modulating drugs for controlling DENV infection. PMID:28339489

  20. Can Hepatitis C Virus (HCV) Direct-Acting Antiviral Treatment as Prevention Reverse the HCV Epidemic Among Men Who Have Sex With Men in the United Kingdom? Epidemiological and Modeling Insights

    PubMed Central

    Martin, Natasha K.; Thornton, Alicia; Hickman, Matthew; Sabin, Caroline; Nelson, Mark; Cooke, Graham S.; Martin, Thomas C. S.; Delpech, Valerie; Ruf, Murad; Price, Huw; Azad, Yusef; Thomson, Emma C.; Vickerman, Peter

    2016-01-01

    Background. We report on the hepatitis C virus (HCV) epidemic among human immunodeficiency virus (HIV)-positive men who have sex with men (MSM) in the United Kingdom and model its trajectory with or without scaled-up HCV direct-acting antivirals (DAAs). Methods. A dynamic HCV transmission model among HIV–diagnosed MSM in the United Kingdom was calibrated to HCV prevalence (antibody [Ab] or RNA positive), incidence, and treatment from 2004 to 2011 among HIV-diagnosed MSM in the UK Collaborative HIV Cohort (UK CHIC). The epidemic was projected with current or scaled-up HCV treatment, with or without a 20% behavioral risk reduction. Results. HCV prevalence among HIV-positive MSM in UK CHIC increased from 7.3% in 2004 to 9.9% in 2011, whereas primary incidence was flat (1.02–1.38 per 100 person-years). Over the next decade, modeling suggests 94% of infections are attributable to high-risk individuals, comprising 7% of the population. Without treatment, HCV chronic prevalence could have been 38% higher in 2015 (11.9% vs 8.6%). With current treatment and sustained virological response rates (status quo), chronic prevalence is likely to increase to 11% by 2025, but stabilize with DAA introduction in 2015. With DAA scale-up to 80% within 1 year of diagnosis (regardless of disease stage), and 20% per year thereafter, chronic prevalence could decline by 71% (to 3.2%) compared to status quo in 2025. With additional behavioral interventions, chronic prevalence could decline further to <2.5% by 2025. Conclusions. Epidemiological data and modeling suggest a continuing HCV epidemic among HIV-diagnosed MSM in the United Kingdom driven by high-risk individuals, despite high treatment rates. Substantial reductions in HCV transmission could be achieved through scale-up of DAAs and moderately effective behavioral interventions. PMID:26908813

  1. Frequency of Natural Resistance within NS5a Replication Complex Domain in Hepatitis C Genotypes 1a, 1b: Possible Implication of Subtype-Specific Resistance Selection in Multiple Direct Acting Antivirals Drugs Combination Treatment

    PubMed Central

    Bagaglio, Sabrina; Andolina, Andrea; Merli, Marco; Uberti-Foppa, Caterina; Morsica, Giulia

    2016-01-01

    Different HCV subtypes may naturally harbor different resistance selection to anti-NS5a inhibitors. 2761 sequences retrieved from the Los Alamos HCV database were analyzed in the NS5a domain 1, the target of NS5a inhibitors. The NS5a resistance-associated polymorphisms (RAPs) were more frequently detected in HCV G1b compared to G1a. The prevalence of polymorphisms associated with cross-resistance to compounds in clinical use (daclatasvir, DCV, ledipasvir, LDV, ombitasvir, and OMV) or scheduled to come into clinical use in the near future (IDX719, elbasvir, and ELV) was higher in G1b compared to G1a (37/1552 (2.4%) in 1b sequences and 15/1209 (1.2%) in 1a isolates, p = 0.040). Interestingly, on the basis of the genotype-specific resistance pattern, 95 (6.1%) G1b sequences had L31M RAP to DCV/IDX719, while 6 sequences of G1a (0.5%) harbored L31M RAP, conferring resistance to DCV/LDV/IDX719/ELV (p < 0.0001). Finally, 28 (2.3%) G1a and none of G1b isolates harbored M28V RAP to OMV (p < 0.0001). In conclusion, the pattern of subtype-specific resistance selection in the naturally occurring strains may guide the treatment option in association with direct acting antivirals (DAAs) targeting different regions, particularly in patients that are difficult to cure, such as those with advanced liver disease or individuals who have failed previous DAAs. PMID:27023593

  2. Antiviral immunity in crustaceans.

    PubMed

    Liu, Haipeng; Söderhäll, Kenneth; Jiravanichpaisal, Pikul

    2009-08-01

    Viral diseases of shrimp have caused negative effects on the economy in several countries in Asia, South America and America, where they have numerous shrimp culture industries. The studies on the immunity of shrimp and other crustaceans have mainly focused on general aspects of immunity and as a consequence little is known about the antiviral responses in crustaceans. The aim of this review is to update recent knowledge of innate immunity against viral infections in crustaceans. Several antiviral molecules have been isolated and characterized recently from decapods. Characterization and identification of these molecules might provide a promising strategy for protection and treatment of these viral diseases. In addition dsRNA-induced antiviral immunity is also included.

  3. A UHPLC-MS/MS method for the quantification of direct antiviral agents simeprevir, daclatasvir, ledipasvir, sofosbuvir/GS-331007, dasabuvir, ombitasvir and paritaprevir, together with ritonavir, in human plasma.

    PubMed

    Ariaudo, Alessandra; Favata, Fabio; De Nicolò, Amedeo; Simiele, Marco; Paglietti, Luca; Boglione, Lucio; Cardellino, Chiara Simona; Carcieri, Chiara; Di Perri, Giovanni; D'Avolio, Antonio

    2016-06-05

    To date, the new standard for treatment of chronic hepatitis C is based on the administration of novel direct acting antivirals. Among these, sofosbuvir, simeprevir, daclatasvir, ledipasvir, dasabuvir, ombitasvir and paritaprevir already entered the clinical use. Anyway, since few pharmacokinetic studies have been conducted on these drugs in a "real life" context poor knowledge is available about their optimal therapeutic range. Without this background, therapeutic drug monitoring is not applicable for treatment optimization. Up to now, a few methods are reported to quantify these drugs in human plasma, and none of them in a simultaneous way. The aim of this work was to develop and validate a simple, fast and cheap, but still reliable UHPLC-MS/MS method for the quantification of these drugs, feasible for a clinical routine use. Solid phase extraction was performed using HLB C18 96-well plates. Chromatographic separation was performed on a BEH C18 1.7μm, 2.1mm×50mm column, settled at 50°C, with a gradient run of two mobile phases: ammonium acetate 5mM (pH 9.5) and acetonitrile, with a flow rate of 0.4mL/min for 5min. Tandem-mass detection was carried out in positive electrospray ionization mode. Both inter and intraday imprecision and inaccuracy were below 15%, as required by FDA guidelines, while both recoveries and matrix effects resulted within the acceptance criteria. The method was tested on 80 patients samples with good performance. Being robust, simple and fast and requiring a low plasma volume, this method resulted eligible for a clinical routine use.

  4. Antiviral Perspectives for Chikungunya Virus

    PubMed Central

    Cherian, Sarah

    2014-01-01

    Chikungunya virus (CHIKV) is a mosquito-borne pathogen that has a major health impact in humans and causes acute febrile illness in humans accompanied by joint pains and, in many cases, persistent arthralgia lasting for weeks to years. CHIKV reemerged in 2005-2006 in several parts of the Indian Ocean islands and India after a gap of 32 years, causing millions of cases. The re-emergence of CHIKV has also resulted in numerous outbreaks in several countries in the eastern hemisphere, with a threat to further expand in the near future. However, there is no vaccine against CHIKV infection licensed for human use, and therapy for CHIKV infection is still mainly limited to supportive care as antiviral agents are yet in different stages of testing or development. In this review we explore the different perspectives for chikungunya treatment and the effectiveness of these treatment regimens and discuss the scope for future directions. PMID:24955364

  5. Cobalt Complexes as Antiviral and Antibacterial Agents

    DTIC Science & Technology

    2010-01-01

    keratitis, one of the major causes of blindness in industrial nations [9]. Studies using the CTC class of drugs were performed using a rabbit eye model...CTC-96 inhibits membrane fusion events preventing virus entry, CTC-96 inhibited plaque formation by VSV (vesicular stomatitis virus) and VZV...antibacterial properties of cobalt complexes have appeared in the literature, with Co(II) complexes being the most studied , presumably due to their

  6. [Role of slow-acting anti-arthritic agents in osteoarthritis (chondroitin sulfate, glucosamine, hyaluronic acid)].

    PubMed

    Aubry-Rozier, B

    2012-03-14

    Osteoarthritis (OA) is one of the major causes of pain and of outpatient's clinics. 15 years ago, physiopathology of OA and its potential therapeutic targets were announced to be better understood, but the results of therapeutic trials were finally not as convincing as expected. Slow Acting Drugs (SADs) are part of the treatments evaluated in OA. Even if evidence based medicine is low, positive effects of SADs have been observed. We can reasonably propose these treatments for a short test period. It can sometimes enable us to decrease the dosage of others treatment such as NSAIDs. In any case, the physician must properly inform the patient about products available in Switzerland and must be aware of degrees of purity and costs of the products available on the intemet.

  7. Citrus Flavanones Affect Hepatic Fatty Acid Oxidation in Rats by Acting as Prooxidant Agents

    PubMed Central

    Constantin, Rodrigo Polimeni; do Nascimento, Gilson Soares; Constantin, Renato Polimeni; Salgueiro, Clairce Luzia; Bracht, Adelar; Ishii-Iwamoto, Emy Luiza; Yamamoto, Nair Seiko

    2013-01-01

    Citrus flavonoids have a wide range of biological activities and positive health effects on mammalian cells because of their antioxidant properties. However, they also act as prooxidants and thus may interfere with metabolic pathways. The purpose of this work was to evaluate the effects of three citrus flavanones, hesperidin, hesperetin, and naringenin, on several parameters linked to fatty acid oxidation in mitochondria, peroxisomes, and perfused livers of rats. When exogenous octanoate was used as substrate, hesperetin and naringenin reduced the mitochondrial NADH/NAD+ ratio and stimulated the citric acid cycle without significant changes on oxygen uptake or ketogenesis. When fatty acid oxidation from endogenous sources was evaluated, hesperetin and naringenin strongly reduced the mitochondrial NADH/NAD+ ratio. They also inhibited both oxygen uptake and ketogenesis and stimulated the citric acid cycle. Hesperidin, on the other hand, had little to no effect on these parameters. These results confirm the hypothesis that citrus flavanones are able to induce a more oxidised state in liver cells, altering parameters related to hepatic fatty acid oxidation. The prooxidant effect is most likely a consequence of the ability of these substances to oxidise NADH upon production of phenoxyl radicals in the presence of peroxidases and hydrogen peroxide. PMID:24288675

  8. D and E rings may not be indispensable for antofine: discovery of phenanthrene and alkylamine chain containing antofine derivatives as novel antiviral agents against tobacco mosaic virus (TMV) based on interaction of antofine and TMV RNA.

    PubMed

    Wang, Ziwen; Wei, Peng; Liu, Yuxiu; Wang, Qingmin

    2014-10-29

    On the basis of the interaction of antofine and tobacco mosaic virus (TMV) RNA, a series of phenanthrene and alkylamine chain containing antofine derivatives 1-41 were designed, synthesized, and systematically evaluated for their antiviral activity against TMV. The results showed that most of these compounds exhibited good to excellent anti-TMV activity, which indicated that the D and E rings of antofine may not be indispensable. Phenanthrene is important for these compounds, but not the more the better. Phenanthrene, benzene rings, and alkylamine chain containing compounds exhibited good antiviral activity. The optimum compounds, 10, 18, and 19, displayed higher activity than precursor antofine and commercial ribavirin, thus emerging as new lead compounds. The novel concise structure provides another new template for antiviral studies.

  9. Hepatitis C virus molecular evolution: transmission, disease progression and antiviral therapy.

    PubMed

    Preciado, Maria Victoria; Valva, Pamela; Escobar-Gutierrez, Alejandro; Rahal, Paula; Ruiz-Tovar, Karina; Yamasaki, Lilian; Vazquez-Chacon, Carlos; Martinez-Guarneros, Armando; Carpio-Pedroza, Juan Carlos; Fonseca-Coronado, Salvador; Cruz-Rivera, Mayra

    2014-11-21

    Hepatitis C virus (HCV) infection represents an important public health problem worldwide. Reduction of HCV morbidity and mortality is a current challenge owned to several viral and host factors. Virus molecular evolution plays an important role in HCV transmission, disease progression and therapy outcome. The high degree of genetic heterogeneity characteristic of HCV is a key element for the rapid adaptation of the intrahost viral population to different selection pressures (e.g., host immune responses and antiviral therapy). HCV molecular evolution is shaped by different mechanisms including a high mutation rate, genetic bottlenecks, genetic drift, recombination, temporal variations and compartmentalization. These evolutionary processes constantly rearrange the composition of the HCV intrahost population in a staging manner. Remarkable advances in the understanding of the molecular mechanism controlling HCV replication have facilitated the development of a plethora of direct-acting antiviral agents against HCV. As a result, superior sustained viral responses have been attained. The rapidly evolving field of anti-HCV therapy is expected to broad its landscape even further with newer, more potent antivirals, bringing us one step closer to the interferon-free era.

  10. RSD931, a novel anti-tussive agent acting on airway sensory nerves

    PubMed Central

    Adcock, J J; Douglas, G J; Garabette, M; Gascoigne, M; Beatch, G; Walker, M; Page, C P

    2003-01-01

    .05) inhibited spontaneous and capsaicin-induced discharges in both pulmonary and bronchial C-fibres respectively. Lidocaine also significantly (P<0.05) reduced capsaicin-evoked bronchoconstriction. These studies suggest that the anti-tussive actions of RSD931 are mediated via inhibition of discharges in Aδ-fibres originating from airway RARs. The mechanism of action of RSD931 is distinct from that of the local anaesthetic lidocaine and RSD931 may represent a novel class of anti-tussive agent. PMID:12569065

  11. Smallpox Antiviral Drug

    DTIC Science & Technology

    2007-01-01

    Nevirapine 1996 HIV Delavirdine 1997 HIV Abacavir 1998 HIV Efavirenz 1998 HIV Tenofovir 2001 HIV Adefovirn dipivoxil 2002 HBV Emtricitabine 2003 HIV Acyclovir...toxicity, hair loss, and skin changes [De Benedittis et al., 2004]. The other approach to orthopoxvirus antiviral drug discovery is to screen new...Rouzioux C. 2004. Penetration of enfuvirtide, tenofovir, efavirenz , and protease inhibitors in the genital tract of HIV-1-infected men. Aids 18:1958

  12. Control of nematode parasites with agents acting on neuro-musculature systems: lessons for neuropeptide ligand discovery.

    PubMed

    Martin, Richard J; Robertson, Alan P

    2010-01-01

    rates are now often less than 100% and resistance of parasites to agents acting on the neuromuscular systems is present in a wide range of parasites of animals and humans hosts. In the face of this resistance the development of novel and effective agents is an urgent and imperative need. New drugs which act on the neuromuscular system have an advantage for medication for animals and humans because they have a rapid therapeutic effect within 3 hours of administration. The effects on the neuromuscular system include: spastic paralysis with drugs like levamisole and pyrantel; flaccid paralysis as with piperazine; or disruption of other vital muscular activity as with ivermectin. Figure 1 B and C, illustrates an example ofa spastic effect oflevamisole on infectious L3 larvae of Ostertagia ostertagiae, a parasite of pigs. The effect was produced within minutes of the in vitro application oflevamisole. In this chapter we comment on the properties of existing agents that have been used to control nematode parasites and that have an action on neuromuscular systems. We then draw attention to resistance that has developed to these compounds and comment on their toxicity and spectra of actions. We hope that some of the lessons that the use of these compounds has taught us may to be applied to any novel neuropeptide ligand that may be introduced. Our aim is then is to provide some warning signs for recognized but dangerous obstacles.

  13. Antiviral herbs--present and future.

    PubMed

    Huang, Jun; Su, Dan; Feng, Yulin; Liu, Kuangyi; Song, Yonggui

    2014-01-01

    Viral disease is a calamity which absolutely can not be ignored for human health. The emergence of drug resistance and spread of new virus will be the new challenge against viral disease. To find and develop new antivirus agents with properties of safety, significant effect and low toxicity is the pressing question facing humans today. Because of its advantages, including rich resources, low price, less adverse effect, Traditional Chinese medicine (TCM) have become the research focus in antiviral treatment. In recent years, there are numerous articles about the studies from separation of active ingredients to the antiviral mechanism. In this paper, the progress in experimental study was illustrated on the basis of active ingredients, species of virus, mechanism, clinical application. Obviously, TCM have obvious advantages in the treatment of virus infectious disease and has a broad prospect of application.

  14. Glycodendritic structures: promising new antiviral drugs.

    PubMed

    Rojo, Javier; Delgado, Rafael

    2004-09-01

    DC-SIGN, a C-type lectin expressed by dendritic cells, is able to recognize high mannosylated glycoproteins at the surface of a broad range of pathogens including viruses, bacteria, fungi and parasites. For at least some of these agents this interaction appears to be an important part of the infection process. Therefore, this lectin might be considered in the design of new antiviral drugs. In this manner, multivalent carbohydrate systems based on dendrimers and dendritic polymers are promising candidates as antiviral drugs. Boltorn hyperbranched dendritic polymers functionalized with mannose have been used to inhibit DC-SIGN-mediated infection in an Ebola-pseudotyped viral model. Their physiological solubility, lack of toxicity and especially their low price suggest the application of these glycodendritic polymers for possible formulation as microbicides.

  15. Antiviral and antiretroviral use in pregnancy.

    PubMed

    Money, Deborah M

    2003-12-01

    The history of antiviral and antiretroviral therapy is recent compared with many other medical therapies, including traditional antibiotics in pregnancy. There are few long-term data on which to base decisions of management in pregnancy. Accessing up-to-date information is critical to optimizing the safety of care for mothers and their infants. Exposure to medications in pregnancy can be toxic to a fetus in a gestational age-dependent manner. Determination of safe medications for pregnancy must take into consideration the need for certain medications and the possibility of inadvertent exposure in early pregnancy because of unplanned pregnancies. This article reviews the most commonly used antiviral and antiretroviral agents and places emphasis on the issues regarding use in pregnancy.

  16. Antiviral Lead Compounds from Marine Sponges

    PubMed Central

    Sagar, Sunil; Kaur, Mandeep; Minneman, Kenneth P.

    2010-01-01

    Marine sponges are currently one of the richest sources of pharmacologically active compounds found in the marine environment. These bioactive molecules are often secondary metabolites, whose main function is to enable and/or modulate cellular communication and defense. They are usually produced by functional enzyme clusters in sponges and/or their associated symbiotic microorganisms. Natural product lead compounds from sponges have often been found to be promising pharmaceutical agents. Several of them have successfully been approved as antiviral agents for clinical use or have been advanced to the late stages of clinical trials. Most of these drugs are used for the treatment of human immunodeficiency virus (HIV) and herpes simplex virus (HSV). The most important antiviral lead of marine origin reported thus far is nucleoside Ara-A (vidarabine) isolated from sponge Tethya crypta. It inhibits viral DNA polymerase and DNA synthesis of herpes, vaccinica and varicella zoster viruses. However due to the discovery of new types of viruses and emergence of drug resistant strains, it is necessary to develop new antiviral lead compounds continuously. Several sponge derived antiviral lead compounds which are hopedto be developed as future drugs are discussed in this review. Supply problems are usually the major bottleneck to the development of these compounds as drugs during clinical trials. However advances in the field of metagenomics and high throughput microbial cultivation has raised the possibility that these techniques could lead to the cost-effective large scale production of such compounds. Perspectives on biotechnological methods with respect to marine drug development are also discussed. PMID:21116410

  17. Spectroscopic investigation of herpes simplex viruses infected cells and their response to antiviral therapy

    NASA Astrophysics Data System (ADS)

    Erukhimovitch, Vitaly; Talyshinsky, Marina; Souprun, Yelena; Huleihel, Mahmoud

    2006-07-01

    In the present study, we used microscopic Fourier transform infrared spectroscopy (FTIR) to evaluate the antiviral activity of known antiviral agents against herpes viruses. The antiviral activity of Caffeic acid phenethyl ester (CAPE) (which is an active compound of propolis) against herpes simplex type 1 and 2 was examined in cell culture. The advantage of microscopic FTIR spectroscopy over conventional FTIR spectroscopy is that it facilitates inspection of restricted regions of cell culture or tissue. Our results showed significant spectral differences at early stages of infection between infected and non-infected cells, and between infected cells treated with the used antiviral agent and those not treated. In infected cells, there was a considerable increase in phosphate levels. Our results show that treatment with used antiviral agent considerably abolish the spectral changes induced by the viral infection. In addition, it is possible to track by FTIR microscopy method the deferential effect of various doses of the drug.

  18. Dufulin Activates HrBP1 to Produce Antiviral Responses in Tobacco

    PubMed Central

    Chen, Zhuo; Zeng, Mengjiao; Song, Baoan; Hou, Chengrui; Hu, Deyu; Li, Xiangyang; Wang, Zhenchao; Fan, Huitao; Bi, Liang; Liu, Jiaju; Yu, Dandan; Jin, Linhong; Yang, Song

    2012-01-01

    Background Dufulin is a new antiviral agent that is highly effective against plant viruses and acts by activating systemic acquired resistance (SAR) in plants. In recent years, it has been used widely to prevent and control tobacco and rice viral diseases in China. However, its targets and mechanism of action are still poorly understood. Methodology/Principal Findings Here, differential in-gel electrophoresis (DIGE) and classical two-dimensional electrophoresis (2-DE) techniques were combined with mass spectrometry (MS) to identify the target of Dufulin. More than 40 proteins were found to be differentially expressed (≥1.5 fold or ≤1.5 fold) upon Dufulin treatment in Nicotiana tabacum K326. Based on annotations in the Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) databases, these proteins were found to be related to disease resistance. Directed acyclic graph (DAG) analysis of the various pathways demonstrated harpin binding protein-1 (HrBP1) as the target of action of Dufulin. Additionally, western blotting, semi-quantitative reverse transcription polymerase chain reaction (RT-PCR), and real time PCR analyses were also conducted to identify the specific mechanism of action of Dufulin. Our results show that activation of HrBP1 triggers the salicylic acid (SA) signaling pathway and thereby produces antiviral responses in the plant host. A protective assay based on lesion counting further confirmed the antiviral activity of Dufulin. Conclusion This study identified HrBP1 as a target protein of Dufulin and that Dufulin can activate the SA signaling pathway to induce host plants to generate antiviral responses. PMID:22662252

  19. Central-Acting Agents

    MedlinePlus

    ... symptoms in conditions, such as: High blood pressure Attention-deficit/hyperactivity disorder (ADHD) Hot flashes Drug withdrawal Tourette syndrome These medications can have strong side effects, so they aren't commonly used. Side effects ...

  20. Escherichia coli fusion carrier proteins act as solubilizing agents for recombinant uncoupling protein 1 through interactions with GroEL

    SciTech Connect

    Douette, Pierre; Navet, Rachel; Gerkens, Pascal; Galleni, Moreno; Levy, Daniel; Sluse, Francis E. . E-mail: F.Sluse@ulg.ac.be

    2005-08-05

    Fusing recombinant proteins to highly soluble partners is frequently used to prevent aggregation of recombinant proteins in Escherichia coli. Moreover, co-overexpression of prokaryotic chaperones can increase the amount of properly folded recombinant proteins. To understand the solubility enhancement of fusion proteins, we designed two recombinant proteins composed of uncoupling protein 1 (UCP1), a mitochondrial membrane protein, in fusion with MBP or NusA. We were able to express soluble forms of MBP-UCP1 and NusA-UCP1 despite the high hydrophobicity of UCP1. Furthermore, the yield of soluble fusion proteins depended on co-overexpression of GroEL that catalyzes folding of polypeptides. MBP-UCP1 was expressed in the form of a non-covalent complex with GroEL. MBP-UCP1/GroEL was purified and characterized by dynamic light scattering, gel filtration, and electron microscopy. Our findings suggest that MBP and NusA act as solubilizing agents by forcing the recombinant protein to pass through the bacterial chaperone pathway in the context of fusion protein.

  1. β-Glucuronidase activity and mitochondrial dysfunction: the sites where flavonoid glucuronides act as anti-inflammatory agents.

    PubMed

    Kawai, Yoshichika

    2014-05-01

    Epidemiological and experimental studies suggest that the consumption of flavonoid-rich diets decreases the risk of various chronic diseases such as cardiovascular diseases. Although studies on the bioavailability of flavonoids have been well-characterized, the tissue and cellular localizations underlying their biological mechanisms are largely unknown. The development and application of novel monoclonal antibodies revealed that macrophages could be the major target of dietary flavonoids in vivo. Using macrophage-like cell lines in vitro, we examined the molecular basis of the interaction between the macrophages and flavonoids, especially the glucuronide metabolites. We have found that extracellular β-glucuronidase secreted from macrophages is essential for the bioactivation of the glucuronide conjugates into the aglycone, and that the enzymatic activity, which requires an acidic pH, is promoted by the increased secretion of lactate in response to the mitochondrial dysfunction. This review describes our recent findings indicating the molecular mechanisms responsible for the anti-inflammatory activity of dietary flavonoids within the inflammation sites. We propose that the extracellular activity of β-glucuronidase associated with the status of the mitochondrial function in the target cells might be important biomarkers for the specific sites where the glucuronides of dietary flavonoids can act as anti-atherosclerotic and anti-inflammatory agents in vivo.

  2. Novel cycloalkylthiophene-imine derivatives bearing benzothiazole scaffold: synthesis, characterization and antiviral activity evaluation.

    PubMed

    Ke, Shaoyong; Wei, Yanhong; Yang, Ziwen; Wang, Kaimei; Liang, Ying; Shi, Liqiao

    2013-09-15

    A series of novel cycloalkylthiophene-imine derivatives containing benzothiazole unit were designed, synthesized and evaluated for their anti-viral activities. The bio-evaluation results indicated that some of the target compounds (such as 5g, 5i, 5u) exhibited good to moderate antiviral effect on CVB5, ADV7 and EV71 viruses, however, these compounds did not have inhibition activity against H1N1 virus. Especially, the compounds 4c and 4d also exhibited high antiviral activities, which provide a new and efficient approach to evolve novel multi-functional antiviral agents by rational integration of active pharmacophores.

  3. Antiviral activities of atractylon from Atractylodis Rhizoma

    PubMed Central

    Cheng, Yang; Mai, Jing-Yin; Hou, Tian-Lu; Ping, Jian; Chen, Jian-Jie

    2016-01-01

    Atractylodis Rhizoma is a traditional medicinal herb, which has antibacterial, antiviral, anti-inflammatory and anti-allergic, anticancer, gastroprotective and neuroprotective activities. It is widely used for treating fever, cold, phlegm, edema and arthralgia syndrome in South-East Asian nations. In this study, 6 chemical compositions of Atractylodis Rhizoma were characterized by spectral analysis and their antiviral activities were evaluated in vitro and in vivo. Among them, atractylon showed most significant antiviral activities. Atractylon treatment at doses of 10–40 mg/kg for 5 days attenuated influenza A virus (IAV)-induced pulmonary injury and decreased the serum levels of interleukin (IL)-6, tumor necrosis factor-α and IL-1β, but increased interferon-β (IFN-β) levels. Atractylon treatment upregulated the expression of Toll-like receptor 7 (TLR7), MyD88, tumor necrosis factor receptor-associated factor 6 and IFN-β mRNA but downregulated nuclear factor-κB p65 protein expression in the lung tissues of IAV-infected mice. These results demonstrated that atractylon significantly alleviated IAV-induced lung injury via regulating the TLR7 signaling pathway, and may warrant further evaluation as a possible agent for IAV treatment. PMID:27600871

  4. [Antiviral therapy in herpetic keratitis].

    PubMed

    Popa, D P; Ivaşcu, M; Ristea, L

    1994-01-01

    The frequency of ocular herpes has increased in the last time. The pathogenic mechanisms of herpetic ocular inflammation consist in cells degeneration produced by intracell virus accumulation, and immunopathological processes. It is presented the antiviral treatment in ocular herpes and antiviral efficacity of acyclovir, in comparison with other chemotherapeutics.

  5. Antiviral treatment of Argentine hemorrhagic fever.

    PubMed

    Enria, D A; Maiztegui, J I

    1994-01-01

    Argentine hemorrhagic fever is a systemic viral disease caused by Junin virus, with a mortality of 15-30% in untreated individuals. Current specific therapy is highly effective in reducing mortality, and consists of the early administration of immune plasma in defined doses of specific neutralizing antibodies per kg of body weight. However, several reasons suggest the need to investigate alternative therapies. Ribavirin, a broad spectrum antiviral agent, is effective in the treatment of other viral hemorrhagic fevers, and the studies done with Junin virus infections to date indicate that this drug may also have a beneficial effect in Argentine hemorrhagic fever.

  6. Antiviral activities of photoactive perylenequinones.

    PubMed

    Hudson, J B; Imperial, V; Haugland, R P; Diwu, Z

    1997-02-01

    Nine perylenequinones (PQ), including some familiar naturally occurring pigments, were compared for their light-mediated antiviral efficacies. Calphostin C was the most active compound against the two target viruses, herpes simplex virus type 1 and Sindbis virus. Hypocrellins A and B were also very active. However, three cercosporin-like PQ were substantially less active in spite of their high quantum yields of singlet oxygen, whereas phleichrome, another efficient singlet oxygen producer, showed no detectable antiviral activity. One other PQ, which was a very weak singlet oxygen producer, also showed no antiviral activity. None of the active compounds showed significant antiviral activity in the dark. Thus, for some groups of PQ there was correlation between quantum yield of singlet oxygen (1O2) and antiviral efficacy, but there are evidently other structural features of PQ that influence activity.

  7. Antiviral Actions of Interferons

    PubMed Central

    Samuel, Charles E.

    2001-01-01

    Tremendous progress has been made in understanding the molecular basis of the antiviral actions of interferons (IFNs), as well as strategies evolved by viruses to antagonize the actions of IFNs. Furthermore, advances made while elucidating the IFN system have contributed significantly to our understanding in multiple areas of virology and molecular cell biology, ranging from pathways of signal transduction to the biochemical mechanisms of transcriptional and translational control to the molecular basis of viral pathogenesis. IFNs are approved therapeutics and have moved from the basic research laboratory to the clinic. Among the IFN-induced proteins important in the antiviral actions of IFNs are the RNA-dependent protein kinase (PKR), the 2′,5′-oligoadenylate synthetase (OAS) and RNase L, and the Mx protein GTPases. Double-stranded RNA plays a central role in modulating protein phosphorylation and RNA degradation catalyzed by the IFN-inducible PKR kinase and the 2′-5′-oligoadenylate-dependent RNase L, respectively, and also in RNA editing by the IFN-inducible RNA-specific adenosine deaminase (ADAR1). IFN also induces a form of inducible nitric oxide synthase (iNOS2) and the major histocompatibility complex class I and II proteins, all of which play important roles in immune response to infections. Several additional genes whose expression profiles are altered in response to IFN treatment and virus infection have been identified by microarray analyses. The availability of cDNA and genomic clones for many of the components of the IFN system, including IFN-α, IFN-β, and IFN-γ, their receptors, Jak and Stat and IRF signal transduction components, and proteins such as PKR, 2′,5′-OAS, Mx, and ADAR, whose expression is regulated by IFNs, has permitted the generation of mutant proteins, cells that overexpress different forms of the proteins, and animals in which their expression has been disrupted by targeted gene disruption. The use of these IFN system

  8. Perspective of Use of Antiviral Peptides against Influenza Virus

    PubMed Central

    Skalickova, Sylvie; Heger, Zbynek; Krejcova, Ludmila; Pekarik, Vladimir; Bastl, Karel; Janda, Jozef; Kostolansky, Frantisek; Vareckova, Eva; Zitka, Ondrej; Adam, Vojtech; Kizek, Rene

    2015-01-01

    The threat of a worldwide influenza pandemic has greatly increased over the past decade with the emergence of highly virulent avian influenza strains. The increased frequency of drug-resistant influenza strains against currently available antiviral drugs requires urgent development of new strategies for antiviral therapy, too. The research in the field of therapeutic peptides began to develop extensively in the second half of the 20th century. Since then, the mechanisms of action for several peptides and their antiviral prospect received large attention due to the global threat posed by viruses. Here, we discussed the therapeutic properties of peptides used in influenza treatment. Peptides with antiviral activity against influenza can be divided into three main groups. First, entry blocker peptides such as a Flupep that interact with influenza hemagglutinin, block its binding to host cells and prevent viral fusion. Second, several peptides display virucidal activity, disrupting viral envelopes, e.g., Melittin. Finally, a third set of peptides interacts with the viral polymerase complex and act as viral replication inhibitors such as PB1 derived peptides. Here, we present a review of the current literature describing the antiviral activity, mechanism and future therapeutic potential of these influenza antiviral peptides. PMID:26492266

  9. Antiviral therapy for hepatitis B virus-related decompensated cirrhosis.

    PubMed

    Wang, Ji Yao

    2012-11-01

    Antiviral therapy is important in patients with hepatitis B virus (HBV)-related decompensated cirrhosis. This therapy is beneficial in most patients for the stabilization or improvement of liver disease; however, advanced cirrhosis with a high Child-Pugh or model for end-stage liver disease (MELD) score may have progressed and does not benefit from antiviral therapy. It is important to identify patients with severe decompensated cirrhosis who will not improve under antiviral therapy and who require liver transplantation as early as possible. Entecavir (ETV) or tenofovir disoproxil fumarate (TDF) is the first-line therapy for nucleos(t)ide analogue (NA)-naive patients with decompensated cirrhosis due to their potent and prompt HBV suppressive effect and low rate of drug-resistant mutations. Patients on antiviral therapy should be monitored for virological and clinical response, compliance, drug resistance and adverse effects as well as surveillance for hepatocellular carcinoma (HCC). Additional studies of TDF and ETV are necessary to determine the optimal agent(s) for treating naive patients and those with drug-resistant decompensated cirrhosis. In order to evaluate the effectiveness of NA for the treatment of decompensated cirrhotic patients in the real world, high quality observational studies such as registration studies of antiviral therapy for HBV-related cirrhosis and a long-term follow-up in China, where a large number of such patients are found, are recommended.

  10. Antiviral immunity in amphibians.

    PubMed

    Chen, Guangchun; Robert, Jacques

    2011-11-01

    Although a variety of virus species can infect amphibians, diseases caused by ranaviruses ([RVs]; Iridoviridae) have become prominent, and are a major concern for biodiversity, agriculture and international trade. The relatively recent and rapid increase in prevalence of RV infections, the wide range of host species infected by RVs, the variability in host resistance among population of the same species and among different developmental stages, all suggest an important involvement of the amphibian immune system. Nevertheless, the roles of the immune system in the etiology of viral diseases in amphibians are still poorly investigated. We review here the current knowledge of antiviral immunity in amphibians, focusing on model species such as the frog Xenopus and the salamander (Ambystoma tigrinum), and on recent progress in generating tools to better understand how host immune defenses control RV infections, pathogenicity, and transmission.

  11. Evaluation of Ag nanoparticle coated air filter against aerosolized virus: Anti-viral efficiency with dust loading.

    PubMed

    Joe, Yun Haeng; Park, Dae Hoon; Hwang, Jungho

    2016-01-15

    In this study, the effect of dust loading on the anti-viral ability of an anti-viral air filter was investigated. Silver nanoparticles approximately 11 nm in diameter were synthesized via a spark discharge generation system and were used as anti-viral agents coated onto a medium air filter. The pressure drop, filtration efficiency, and anti-viral ability of the filter against aerosolized bacteriophage MS2 virus particles were tested with dust loading. The filtration efficiency and pressure drop increased with dust loading, while the anti-viral ability decreased. Theoretical analysis of anti-viral ability with dust loading was carried out using a mathematical model based on that presented by Joe et al. (J. Hazard. Mater.; 280: 356-363, 2014). Our model can be used to compare anti-viral abilities of various anti-viral agents, determine appropriate coating areal density of anti-viral agent on a filter, and predict the life cycle of an anti-viral filter.

  12. A multi-phasic approach reveals that apple replant disease is caused by multiple biological agents, with some agents acting synergistically

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Apple replant disease (ARD) has been reported from all major fruit-growing regions of the world, and is often caused by a consortium of biological agents. The aim of this study was to investigate the etiology of ARD in South Africa in six orchard soils, using a multiphasic approach under glasshouse ...

  13. Antiviral selection in the management of acute retinal necrosis

    PubMed Central

    Tam, Patrick MK; Hooper, Claire Y; Lightman, Susan

    2010-01-01

    There is no consensus on the optimal antiviral regimen in the management of acute retinal necrosis, a disease caused by herpetic viruses with devastating consequences for the eye. The current gold standard is based on retrospective case series. Because the incidence of disease is low, few well-designed, randomized trials have evaluated treatment dosage and duration. Newer oral antiviral agents are emerging as alternatives to high-dose intravenous acyclovir, avoiding the need for inpatient intravenous treatment. Drug resistance is uncommon but may also be difficult to identify. Antiviral drugs have few side effects, but special attention needs to be paid to patients who have underlying renal disease, are pregnant or are immunocompromised. PMID:20169044

  14. Vitamin D and the anti-viral state

    PubMed Central

    Beard, Jeremy A.; Bearden, Allison; Striker, Rob

    2012-01-01

    Vitamin D has long been recognized as essential to the skeletal system. Newer evidence suggests that it also plays a major role regulating the immune system, perhaps including immune responses to viral infection. Interventional and observational epidemiological studies provide evidence that vitamin D deficiency may confer increased risk of influenza and respiratory tract infection. Vitamin D deficiency is also prevalent among patients with HIV infection. Cell culture experiments support the thesis that vitamin D has direct anti-viral effects particularly against enveloped viruses. Though vitamin D’s anti-viral mechanism has not been fully established, it may be linked to vitamin D’s ability to up-regulate the anti-microbial peptides LL-37 and human beta defensin 2. Additional studies are necessary to fully elucidate the efficacy and mechanism of vitamin D as an anti-viral agent. PMID:21242105

  15. Synthesis and Biological Evaluation of Some Novel 5-[(3-Aralkyl Amido/Imidoalkyl) Phenyl]-1,2,4-Triazolo[3,4-b]-1,3,4-Thiadiazines as Antiviral Agents

    PubMed Central

    Pandey, Vinod Kumar; Tusi, Zehra; Tusi, Sumerah; Joshi, Madhawanand

    2012-01-01

    A series of novel 4-amino-5-mercapto-3-[(3-aralkyl amido/imidoalkyl) phenyl]-1,2,4-triazoles (5a-d) were obtained by treating m-(aralkyl amido/imidoalkyl) benzoic acid hydrazides (3a-d) with carbon disulphide in alcoholic KOH and hydrazine hydrate, respectively. These triazole derivatives were employed in the synthesis of 5-[(3′-aralkyl amido/imidoalkyl) phenyl]-1,2,4-triazolo[3,4-b]-1,3,4-thiadiazines (6a-d). The newly synthesized compounds were evaluated for their antiviral activity against two animal viruses, namely, Japanese encephalitis virus (JEV) strain P20778 and herpes simplex virus-1 (HSV-1) strain 753166. PMID:24052850

  16. Autoimmune disease: A role for new anti-viral therapies?

    PubMed

    Dreyfus, David H

    2011-12-01

    Many chronic human diseases may have an underlying autoimmune mechanism. In this review, the author presents a case of autoimmune CIU (chronic idiopathic urticaria) in stable remission after therapy with a retroviral integrase inhibitor, raltegravir (Isentress). Previous reports located using the search terms "autoimmunity" and "anti-viral" and related topics in the pubmed data-base are reviewed suggesting that novel anti-viral agents such as retroviral integrase inhibitors, gene silencing therapies and eventually vaccines may provide new options for anti-viral therapy of autoimmune diseases. Cited epidemiologic and experimental evidence suggests that increased replication of epigenomic viral pathogens such as Epstein-Barr Virus (EBV) in chronic human autoimmune diseases such as rheumatoid arthritis (RA), systemic lupus Erythematosus (SLE), and multiple sclerosis (MS) may activate endogenous human retroviruses (HERV) as a pathologic mechanism. Memory B cells are the reservoir of infection of EBV and also express endogenous retroviruses, thus depletion of memory b-lymphocytes by monoclonal antibodies (Rituximab) may have therapeutic anti-viral effects in addition to effects on B-lymphocyte presentation of both EBV and HERV superantigens. Other novel anti-viral therapies of chronic autoimmune diseases, such as retroviral integrase inhibitors, could be effective, although not without risk.

  17. Antiviral therapy of hepatitis C as curative treatment of indolent B-cell lymphoma

    PubMed Central

    Merli, Michele; Carli, Giuseppe; Arcaini, Luca; Visco, Carlo

    2016-01-01

    The association of hepatitis C virus (HCV) and B-cell non-Hodgkin lymphomas (NHL) has been highlighted by several epidemiological and biological insights; however the most convincing evidence is represented by interventional studies demonstrating the capability of antiviral treatment (AT) with interferon (IFN) with or without ribavirin to induce the regression of indolent lymphomas, especially of marginal-zone origin. In the largest published retrospective study (100 patients) the overall response rate (ORR) after first-line IFN-based AT was 77% (44% complete responses) and responses were sustainable (median duration of response 33 mo). These results were confirmed by a recent meta-analysis on 254 patients, demonstrating an ORR of 73%. Moreover this analysis confirmed the highly significant correlation between the achievement of viral eradication sustained virological response (SVR) and hematological responses. Two large prospective studies demonstrated that AT is associated with improved survival and argue in favor of current guidelines’ recommendation of AT as preferential first-line option in asymptomatic patients with HCV-associated indolent NHL. The recently approved direct-acting antiviral agents (DAAs) revolutionized the treatment of HCV infection, leading to SVR approaching 100% in all genotypes. Very preliminary data of IFN-free DAAs therapy in indolent HCV-positive NHL seem to confirm their activity in inducing lymphoma regression. PMID:27784957

  18. Antiviral activity of Paulownia tomentosa against enterovirus 71 of hand, foot, and mouth disease.

    PubMed

    Ji, Ping; Chen, Changmai; Hu, Yanan; Zhan, Zixuan; Pan, Wei; Li, Rongrong; Li, Erguang; Ge, Hui-Ming; Yang, Guang

    2015-01-01

    The bark, leaves, and flowers of Paulownia trees have been used in traditional Chinese medicine to treat infectious and inflammatory diseases. We investigated the antiviral effects of Paulownia tomentosa flowers, an herbal medicine used in some provinces of P. R. China for the treatment of skin rashes and blisters. Dried flowers of P. tomentosa were extracted with methanol and tested for antiviral activity against enterovirus 71 (EV71) and coxsackievirus A16 (CAV16), the predominant etiologic agents of hand, foot, and mouth disease in P. R. China. The extract inhibited EV71 infection, although no effect was detected against CAV16 infection. Bioactivity-guided fractionation was performed to identify apigenin as an active component of the flowers. The EC50 value for apigenin to block EV71 infection was 11.0 µM, with a selectivity index of approximately 9.3. Although it is a common dietary flavonoid, only apigenin, and not similar compounds like naringenin and quercetin, were active against EV71 infection. As an RNA virus, the genome of EV71 has an internal ribosome entry site that interacts with heterogeneous nuclear ribonucleoproteins (hnRNPs) and regulates viral translation. Cross-linking followed by immunoprecipitation and reverse transcription-polymerase chain reaction (RT-PCR) analysis showed that EV71 RNA was associated with hnRNPs A1 and A2. Apigenin treatment disrupted this association, indicating that apigenin suppressed EV71 replication through a novel mechanism by targeting the trans-acting factors. This study therefore validates the effects of Paulownia against EV71 infection. It also yielded mechanistic insights on apigenin as an active compound for the antiviral activity of P. tomentosa against EV71 infection.

  19. Evaluation of Antiviral Activities of Four Local Malaysian Phyllanthus Species against Herpes Simplex Viruses and Possible Antiviral Target

    PubMed Central

    Tan, Wee Chee; Jaganath, Indu Bala; Manikam, Rishya; Sekaran, Shamala Devi

    2013-01-01

    Nucleoside analogues such as acyclovir are effective antiviral drugs against herpes simplex virus infections since its introduction. However, with the emergence of acyclovir-resistant HSV strains particularly in immunocompromised patients, there is a need to develop an alternative antiherpetic drug and plants could be the potential lead. In this study, the antiviral activity of the aqueous extract of four Phyllanthus species were evaluated against herpes simplex virus type-1 (HSV-1) and HSV-2 in Vero cells by quantitative PCR. The protein expressions of untreated and treated infected Vero cells were studied by 2D-gel electrophoresis and Western blot. This is the first study that reported the antiviral activity of P. watsonii. P. urinaria was shown to demonstrate the strongest antiviral activity against HSV-1 and HSV-2, with SI >33.6. Time-of-addition studies suggested that the extract may act against the early infection stage and the replication stage. Protein expression studies indicated that cellular proteins that are involved in maintaining cytoskeletal structure could be potential target for development of antiviral drugs. Preliminary findings indicated that P. urinaria demonstrated potent inhibitory activity against HSV. Hence, further studies such as in vivo evaluation are required for the development of effective antiherpetic drug. PMID:24324358

  20. Additive and non-additive effects of mixtures of short-acting intravenous anaesthetic agents and their significance for theories of anaesthesia

    PubMed Central

    Richards, C.D.; White, Ann E.

    1981-01-01

    1 The potency of a series of short-acting anaesthetics was established by measuring the duration of the loss of righting reflex following a single bolus injection into the tail vein of male Wistar rats. The agents were, in order of potency, etomidate, alphaxalone, methohexitone, alphadalone acetate and propanidid. 2 The potency of binary mixtures of these agents was also assessed to see whether the anaesthetic effects of different agents were additive as classical theories of anaesthesia suggest. Mixtures of alphaxalone and alphadalone acetate, alphaxalone and propanidid and methohexitone and propanidid all showed simple additive effects. Mixtures of alphaxalone and etomidate and of alphaxalone and methohexitone showed a greater potency than would be expected if their effects were simply additive. Mixtures of etomidate and methohexitone were not examined. 3 Mixtures of alphaxalone and either methohexitone or pentobarbitone produced a greater depression of synaptic transmission in in vitro preparations of guinea-pig olfactory cortex than would have been expected from the sum of the activities of the individual anaesthetics. Other combinations of anaesthetics did not show similar effects although the interaction between alphaxalone and etomidate was not examined. 4 Neither alphaxalone nor pentobarbitone affected the membrane: buffer partition coefficient of the other for a model membrane system. 5 These results are interpreted as evidence against the classical unitary hypotheses of anaesthetic action based on correlations of anaesthetic potency with lipid solubility and as supporting the view that different anaesthetics act on different structures in the neuronal membranes to produce anaesthesia. PMID:6268237

  1. Antiviral therapy: a perspective

    PubMed Central

    Shahidi Bonjar, Amir Hashem

    2016-01-01

    sufficient research has yielded positive results in animal models, EVAC could be used as a supportive treatment in humans along with conventional antiviral therapies. EVAC would not be suitable for all viral infections, but could be expected to decrease the casualties resulting from blood-borne viral infections. The EVAC approach would be efficient in terms of time, effort, and expenditure in the research and treatment of blood-borne viral infections. PMID:26893542

  2. Cell senescence is an antiviral defense mechanism

    PubMed Central

    Baz-Martínez, Maite; Da Silva-Álvarez, Sabela; Rodríguez, Estefanía; Guerra, Jorge; El Motiam, Ahmed; Vidal, Anxo; García-Caballero, Tomás; González-Barcia, Miguel; Sánchez, Laura; Muñoz-Fontela, César; Collado, Manuel; Rivas, Carmen

    2016-01-01

    Cellular senescence is often considered a protection mechanism triggered by conditions that impose cellular stress. Continuous proliferation, DNA damaging agents or activated oncogenes are well-known activators of cell senescence. Apart from a characteristic stable cell cycle arrest, this response also involves a proinflammatory phenotype known as senescence-associated secretory phenotype (SASP). This, together with the widely known interference with senescence pathways by some oncoviruses, had led to the hypothesis that senescence may also be part of the host cell response to fight virus. Here, we evaluate this hypothesis using vesicular stomatitis virus (VSV) as a model. Our results show that VSV replication is significantly impaired in both primary and tumor senescent cells in comparison with non-senescent cells, and independently of the stimulus used to trigger senescence. Importantly, we also demonstrate a protective effect of senescence against VSV in vivo. Finally, our results identify the SASP as the major contributor to the antiviral defense exerted by cell senescence in vitro, and points to a role activating and recruiting the immune system to clear out the infection. Thus, our study indicates that cell senescence has also a role as a natural antiviral defense mechanism. PMID:27849057

  3. Sulfated polysaccharides extracted from sea algae as potential antiviral drugs.

    PubMed

    Witvrouw, M; De Clercq, E

    1997-10-01

    The inhibitory effects of polyanionic substances on the replication of herpes simplex virus (HSV) and other viruses were reported almost four decades ago. However, these observations did not generate much interest, because the antiviral action of the compounds was considered to be largely nonspecific. Shortly after the identification of human immunodeficiency virus (HIV) as the causative agent of the acquired immune deficiency syndrome (AIDS) in 1984, heparin and other sulfated polysaccharides were found to be potent and selective inhibitors of HIV-1 replication in cell culture. Since 1988, the activity spectrum of the sulfated polysaccharides has been shown to extend to various enveloped viruses, including viruses that emerge as opportunistic pathogens (e.g., herpes simplex virus [HSV] and cytomegalovirus [CMV]) in immunosuppressed (e.g., AIDS) patients. As potential anti-HIV drug candidates, sulfated polysaccharides offer a number of promising features. They are able to block HIV replication in cell culture at concentrations as low as 0.1 to 0.01 microgram ml-1 without toxicity to the host cells at concentrations up to 2.5 mg ml-1. We noted that some polysulfates show a differential inhibitory activity against different HIV strains, suggesting that marked differences exist in the target molecules with which polysulfates interact. They not only inhibit the cytopathic effect of HIV, but also prevent HIV-induced syncytium (giant cell) formation. Furthermore, experiments carried out with dextran sulfate samples of increasing molecular weight and with sulfated cyclodextrins of different degrees of sulfation have shown that antiviral activity increases with increasing molecular weight and degree of sulfation. A sugar backbone is not strictly needed for the anti-HIV activity of polysulfates because sulfated polymers composed of a carbon-carbon backbone have also proved to be highly efficient anti-HIV agents in vitro. Other, yet to be defined, structural features may

  4. Viral Ancestors of Antiviral Systems

    PubMed Central

    Villarreal, Luis P.

    2011-01-01

    All life must survive their corresponding viruses. Thus antiviral systems are essential in all living organisms. Remnants of virus derived information are also found in all life forms but have historically been considered mostly as junk DNA. However, such virus derived information can strongly affect host susceptibility to viruses. In this review, I evaluate the role viruses have had in the origin and evolution of host antiviral systems. From Archaea through bacteria and from simple to complex eukaryotes I trace the viral components that became essential elements of antiviral immunity. I conclude with a reexamination of the ‘Big Bang’ theory for the emergence of the adaptive immune system in vertebrates by horizontal transfer and note how viruses could have and did provide crucial and coordinated features. PMID:22069523

  5. Antivirals in the transplant setting.

    PubMed

    Griffiths, Paul D

    2006-09-01

    Over the past quarter of a century, antiviral drugs have moved from an experimental adventure in transplant patients to a situation where they are used routinely to prevent diseases caused by several viruses. Furthermore, they have significantly reduced several medical complications of transplantation, such as graft rejection, thereby implicating viruses as components of their pathogenesis. By controlling these major complication, the development of these antiviral drugs and their prodrugs, has therefore greatly facilitated the clinical expansion of transplantation, allowing life saving procedures to be offered to more patients who could potentially benefit. This article will briefly summaries which viruses are important following transplantation and outline the evidence-base from randomized controlled clinical trails for the deployment of antiviral drugs to prevent viral diseases.

  6. Viral ancestors of antiviral systems.

    PubMed

    Villarreal, Luis P

    2011-10-01

    All life must survive their corresponding viruses. Thus antiviral systems are essential in all living organisms. Remnants of virus derived information are also found in all life forms but have historically been considered mostly as junk DNA. However, such virus derived information can strongly affect host susceptibility to viruses. In this review, I evaluate the role viruses have had in the origin and evolution of host antiviral systems. From Archaea through bacteria and from simple to complex eukaryotes I trace the viral components that became essential elements of antiviral immunity. I conclude with a reexamination of the 'Big Bang' theory for the emergence of the adaptive immune system in vertebrates by horizontal transfer and note how viruses could have and did provide crucial and coordinated features.

  7. Carrier-Mediated Antiviral Therapy

    DTIC Science & Technology

    1988-01-01

    encapsulat- ed nbavirin (3 mg per mouse) on days 0 and 2. " %.. - V % % CARRIER- MEDIATED ANTIVIRAL THERAPY 245 Table 2. Effect or MTP-PE Treatment on the...illustrates the effect of IV MTP-PE on the survival of mice injected int’a- .. - ,.,.,.. nasally with HSV- 1 . A small but significant enhancement of...dosage of interferon was marginally effective when given in %%’. CARRIER- MEDIATED ANTIVIRAL THERAPY 251 only two or three injections (on days I and 6 or

  8. Benzothiazoles as probes for the 5HT1A receptor and the serotonin transporter (SERT): a search for new dual-acting agents as potential antidepressants.

    PubMed

    Zhu, Xue Y; Etukala, Jagan R; Eyunni, Suresh V K; Setola, Vincent; Roth, Bryan L; Ablordeppey, Seth Y

    2012-07-01

    The synthesis and evaluation of several benzothiazole-based compounds are described in an attempt to identify novel dual-acting 5HT(1A) receptor and SERT inhibitors as new antidepressants. Binding affinities at the 5HT(1A) receptor and the serotonin transporter do not appear to be congruent and other areas of the binding sites would need to be explored in order to improve binding simultaneously at both sites. Compounds 20 and 23 show moderate binding affinity at the 5HT(1A) receptor and the SERT site and thus, have the potential to be further explored as dual-acting agents. In addition, compound 20 binds with low affinity to the dopamine transporter (DAT), the norepinephrine transporter (NET) and 5HT(2C) receptor, which are desirable properties as selectivity for SERT (and not DAT or NET) is associated with an absence of cardiovascular side effects.

  9. Photo-distributed lichenoid eruption secondary to direct anti-viral therapy for hepatitis C.

    PubMed

    Simpson, Cory L; McCausland, Drew; Chu, Emily Y

    2015-10-01

    Novel direct anti-viral agents are emerging as effective treatments for hepatitis C virus (HCV) and provide an alternative to the year-long standard therapy with interferon and ribavirin. However, cutaneous side effects from these new medications, including rash, pruritus and photosensitivity, are among the most commonly reported adverse events and have resulted in therapy discontinuation in some cases. Here, we report two cases of a photo-distributed lichenoid eruption that occurred within 1  month of starting anti-viral therapy with simeprevir and sofosbuvir without interferon or ribavirin. This report provides the first histologic description of the cutaneous eruption associated with direct anti-viral therapy for HCV and highlights the importance of recognizing and treating the often intolerable dermatologic side effects of these novel medications, the incidence of which is likely to increase as direct anti-viral agents may become the standard of care for HCV.

  10. Progress in RNAi-based antiviral therapeutics.

    PubMed

    Zhou, Jiehua; Rossi, John J

    2011-01-01

    RNA interference (RNAi) refers to the conserved sequence-specific degradation of message RNA mediated by small interfering (si)RNA duplexes 21-25 nucleotides in length. Given the ability to specifically silence any gene of interest, siRNAs offers several advantages over conventional drugs as potential therapeutic agents for the treatment of human maladies including cancers, genetic disorders, and infectious diseases. Antiviral RNAi strategies have received much attention and several compounds are currently being tested in clinical trials. In particular, the development of siRNA-based HIV (human immunodeficiency virus) therapeutics has progressed rapidly and many recent studies have shown that the use of RNAi could inhibit HIV-1 replication by targeting a number of viral or cellular genes. Therefore, the present chapter mainly focuses on the recent progress of RNAi-based anti-HIV gene therapeutics, with particular attention to molecular targets and delivery strategies of the siRNAs.

  11. The antiviral and antimicrobial activities of licorice, a widely-used Chinese herb

    PubMed Central

    Wang, Liqiang; Yang, Rui; Yuan, Bochuan; Liu, Ying; Liu, Chunsheng

    2015-01-01

    Licorice is a common herb which has been used in traditional Chinese medicine for centuries. More than 20 triterpenoids and nearly 300 flavonoids have been isolated from licorice. Recent studies have shown that these metabolites possess many pharmacological activities, such as antiviral, antimicrobial, anti-inflammatory, antitumor and other activities. This paper provides a summary of the antiviral and antimicrobial activities of licorice. The active components and the possible mechanisms for these activities are summarized in detail. This review will be helpful for the further studies of licorice for its potential therapeutic effects as an antiviral or an antimicrobial agent. PMID:26579460

  12. Gold nanoparticles synthesized by Brassica oleracea (Broccoli) acting as antimicrobial agents against human pathogenic bacteria and fungi

    NASA Astrophysics Data System (ADS)

    Piruthiviraj, Prakash; Margret, Anita; Krishnamurthy, Poornima Priyadharsani

    2016-04-01

    Production of antimicrobial agents through the synthesis of gold nanoparticles using green technology has been extensively made consistent by various researchers; yet, this study uses the flower bud's aqueous extracts of Brassica oleracea (Broccoli) as a reducing agent for chloroauric acid (1 mM). After 30 min of incubation, synthesis of gold nanoparticles (AuNps) was observed by a change in extract color from pale yellow to purple color. Synthesis of AuNps was confirmed in UV-visible spectroscopy at the range of approximately 560 nm. The SEM analysis showed the average nanoparticles size of 12-22 nm. The antimicrobial activity of AuNps was analyzed by subjecting it to human pathogenic bacteria (Gram-positive Staphylococcus aureus and Gram-negative Klebsiella pneumonia) and fungi (Aspergillus flavus, Aspergillus niger and Candida albicans) using disc diffusion method. The broccoli-synthesized AuNps showed the efficient antibacterial and antifungal activity of above-mentioned microbes. It was confirmed that AuNps have the best antimicrobial agent compared to the standard antibiotics (Gentamicin and Fluconazole). When the concentrations of AuNps were increased (10, 25, and 50 µg/ml), the sensitivity zone also increased for all the tested microbes. The synthesized AuNps are capable of rendering high antimicrobial efficacy and, hence, have a great potential in the preparation of drugs used against major bacterial and fungal diseases in humans.

  13. Optimization of Influenza Antiviral Response in Texas

    DTIC Science & Technology

    2015-03-01

    antiviral, vaccine , and social interventions. Mathematical models can guide policies to saves lives. In this thesis, we create an optimization model...and Prevention down to state and local regions, are prepared to respond to potential influenza pandemics with antiviral, vaccine , and social...model with vaccination and antivirals (V and T respectively) (from Coburn et al., 2009). .........................................................20

  14. AN ANTIVIRAL SUBSTANCE FROM PENICILLIUM FUNICULOSUM

    PubMed Central

    Shope, Richard E.

    1966-01-01

    1. Helenine injected intraperitoneally 24 hr prior to a regularly fatal dose of Semliki Forest virus saves most of the mice to which it is administered. 2. Mice saved by helenine develop no viral immunity and regularly succumb when rechallenged 2 wk later with the same dose of virus from which they were originally saved. 3. The time during which helenine is optimally effective in protecting mice from death by Semliki Forest virus covers a period of approximately 36 hr beginning after about 12 hr and extending to 48 hr before virus infection. When periods of less than 12 hr, or more than 48 hr, elapse between the time of helenine administration and virus inoculation, its protective effectiveness diminishes progressively. 4. Repeated injections of helenine at 2- or 3-day intervals, if continued long enough, exhaust the capacity of a host to respond favorably to helenine administered 24 hr before virus inoculation. 5. Helenine injections at intervals of 4, 3, and 2 wk before its administration 24 hr prior to infection do not decrease the effectiveness of this final dose in protecting mice from fatal infection by the virus. The experimental results here reported indicate that, as suggested by the findings of earlier work, helenine does not act directly as an antiviral substance, but instead exerts its effect through some substance that it induces the host to elaborate. The nature of this induced antiviral substance is as yet unknown though, to judge from the failure of spared mice to acquire viral immunity, it appears to act at a stage in viral replication prior to that at which antigenic viral protein is produced. The findings with helenine and those thus far reported for interferon afford no factual basis for judging the relationship of the two, if any. PMID:5905239

  15. Antiviral silencing in animals.

    PubMed

    Li, Hong-Wei; Ding, Shou-Wei

    2005-10-31

    RNA silencing or RNA interference (RNAi) refers to the small RNA-guided gene silencing mechanism conserved in a wide range of eukaryotic organisms from plants to mammals. As part of this special issue on the biology, mechanisms and applications of RNAi, here we review the recent advances on defining a role of RNAi in the responses of invertebrate and vertebrate animals to virus infection. Approximately 40 miRNAs and 10 RNAi suppressors encoded by diverse mammalian viruses have been identified. Assays used for the identification of viral suppressors and possible biological functions of both viral miRNAs and suppressors are discussed. We propose that herpes viral miRNAs may act as specificity factors to initiate heterochromatin assembly of the latent viral DNA genome in the nucleus.

  16. Platinum(II)-Acyclovir Complexes: Synthesis, Antiviral and Antitumour Activity

    PubMed Central

    Coluccia, M.; Boccarelli, A.; Cermelli, C.; Portolani, M.; Natile, G.

    1995-01-01

    A platinum(II) complex with the antiviral drug acyclovir was synthesized and its antiviral and anticancer properties were investigated in comparison to those of acyclovir and cisplatin. The platinum-acyclovir complex maintained the antiviral activity of the parent drug acyclovir, though showing a minor efficacy on a molar basis (ID50  =   7.85 and 1.02 μΜ for platinum-acyclovir and cisplatin, respectively). As anticancer agent, the platinum-acyclovir complex was markedly less potent than cisplatin on a mole-equivalent basis, but it was as effective as cisplatin when equitoxic dosages were administered in vivo to P388 leukaemia-bearing mice (%T/C = 209 and 211 for platinum-acyclovir and cisplatin, respectively). The platinum-acyclovir complex was also active against a cisplatin-resistant subline of the P388 leukaemia (%T/C = 140), thus suggesting a different mechanism of action. The DNA interaction properties (sequence specificity and interstrand cross-linking ability) of platinum-acyclovir were also investigated in comparison to those of cisplatin and [Pt(dien)Cl]+, an antitumour-inactive platinum-triamine compound. The results of this study point to a potential new drug endowed, at the same time, with antiviral and anticancer activity and characterized by DNA interaction properties different from those of cisplatin. PMID:18472776

  17. Synergistic antiviral activity of gemcitabine and ribavirin against enteroviruses.

    PubMed

    Kang, Hyunju; Kim, Chonsaeng; Kim, Dong-eun; Song, Jae-Hyoung; Choi, Miri; Choi, Kwangman; Kang, Mingu; Lee, Kyungjin; Kim, Hae Soo; Shin, Jin Soo; Kim, Janghwan; Han, Sang-Bae; Lee, Mi-Young; Lee, Su Ui; Lee, Chong-Kyo; Kim, Meehyein; Ko, Hyun-Jeong; van Kuppeveld, Frank J M; Cho, Sungchan

    2015-12-01

    Enteroviruses are major causative agents of various human diseases, and some of them are currently considered to be an enormous threat to public health. However, no effective therapy is currently available for the treatment of these infections. We identified gemcitabine, a nucleoside-analog drug used for cancer treatment, from a screen of bioactive chemicals as a novel inhibitor of coxsackievirus B3 (CVB3) and enterovirus 71 (EV71). Gemcitabine potently inhibited the proliferation of CVB3 and EV71, as well as the replication of CVB3 and EV71 replicons, in cells with a low micromolar IC50 (1-5 μM). Its strong inhibitory effect was also observed in cells infected with human rhinoviruses, demonstrating broad-spectrum antiviral effects on enteroviruses. Mechanistically, an extensive analysis excluded the involvement of 2C, 3A, IRES-dependent translation, and also that of polyprotein processing in the antiviral effects of gemcitabine. Importantly, gemcitabine in combination with ribavirin, an antiviral drug currently being used against a few RNA viruses, exhibited a synergistic antiviral effect on the replication of CVB3 and EV71 replicons. Consequently, our results clearly demonstrate a new indication for gemcitabine as an effective broad-spectrum inhibitor of enteroviruses and strongly suggest a new therapeutic strategy using gemcitabine alone or in combination with ribavirin for the treatment of various diseases associated with enterovirus infection.

  18. Synthesis and hepatitis C antiviral activity of 1-aminobenzyl-1H-indazole-3-carboxamide analogues.

    PubMed

    Shi, Jing-Jing; Ji, Fei-Hong; He, Pei-Lan; Yang, Ya-xi; Tang, Wei; Zuo, Jian-Ping; Li, Yuan-Chao

    2013-05-01

    FIGHTING HCV: Two potent antiviral analogues were developed from a previously identified lead as novel agents against hepatitis C virus. Their potency and selectivity (5 n: IC50 =0.013 μM and EC50 =0.018 μM; 5 t: IC50 =0.007 μM and EC50 =0.024 μM) make them good candidates for further development as antiviral agents.

  19. Comparative safety and effectiveness of long-acting inhaled agents for treating chronic obstructive pulmonary disease: a systematic review and network meta-analysis

    PubMed Central

    Tricco, Andrea C; Strifler, Lisa; Veroniki, Areti-Angeliki; Yazdi, Fatemeh; Khan, Paul A; Scott, Alistair; Ng, Carmen; Antony, Jesmin; Mrklas, Kelly; D'Souza, Jennifer; Cardoso, Roberta; Straus, Sharon E

    2015-01-01

    Objective To compare the safety and effectiveness of long-acting β-antagonists (LABA), long-acting antimuscarinic agents (LAMA) and inhaled corticosteroids (ICS) for managing chronic obstructive pulmonary disease (COPD). Setting Systematic review and network meta-analysis (NMA). Participants 208 randomised clinical trials (RCTs) including 134 692 adults with COPD. Interventions LABA, LAMA and/or ICS, alone or in combination, versus each other or placebo. Primary and secondary outcomes The proportion of patients with moderate-to-severe exacerbations. The number of patients experiencing mortality, pneumonia, serious arrhythmia and cardiovascular-related mortality (CVM) were secondary outcomes. Results NMA was conducted including 20 RCTs for moderate-to-severe exacerbations for 26 141 patients with an exacerbation in the past year. 32 treatments were effective versus placebo including: tiotropium, budesonide/formoterol, salmeterol, indacaterol, fluticasone/salmeterol, indacaterol/glycopyrronium, tiotropium/fluticasone/salmeterol and tiotropium/budesonide/formoterol. Tiotropium/budesonide/formoterol was most effective (99.2% probability of being the most effective according to the Surface Under the Cumulative RAnking (SUCRA) curve). NMA was conducted on mortality (88 RCTs, 97 526 patients); fluticasone/salmeterol was more effective in reducing mortality than placebo, formoterol and fluticasone alone, and was the most effective (SUCRA=71%). NMA was conducted on CVM (37 RCTs, 55 156 patients) and the following were safest: salmeterol versus each OF placebo, tiotropium and tiotropium (Soft Mist Inhaler (SMR)); fluticasone versus tiotropium (SMR); and salmeterol/fluticasone versus tiotropium and tiotropium (SMR). Triamcinolone acetonide was the most harmful (SUCRA=81%). NMA was conducted on pneumonia occurrence (54 RCTs, 61 551 patients). 24 treatments were more harmful, including 2 that increased risk of pneumonia versus placebo; fluticasone and fluticasone

  20. Ergotism associated with HIV antiviral protease inhibitor therapy.

    PubMed

    Baldwin, Zachary K; Ceraldi, Chris C

    2003-03-01

    Ergotism is a rare condition of acute vasospasm found classically in young and middle-aged women taking ergot alkaloid agents to treat migraine headache. We report the case of a young man with human immunodeficiency virus (HIV) positivity and describe the drug interaction between protease inhibitors and ergot alkaloid agents, which most likely predisposed to development of ergot toxicity. The HIV-positive population receiving antiviral therapy may be an under-recognized group at risk for ergotism through decreased hepatic metabolism of ergot preparations.

  1. Antiviral effect of mefloquine on feline calicivirus in vitro.

    PubMed

    McDonagh, Phillip; Sheehy, Paul A; Fawcett, Anne; Norris, Jacqueline M

    2015-04-17

    Feline calicivirus (FCV) is an important viral pathogen of domestic cats causing clinical signs ranging from mild to severe oral ulceration or upper respiratory tract disease through to a severe fatal systemic disease. Current therapeutic options are limited, with no direct acting antivirals available for treatment. This study screened a panel of 19 compounds for potential antiviral activity against FCV strain F9 and recent field isolates in vitro. Using a resazurin-based cytopathic effect (CPE) inhibition assay, mefloquine demonstrated a marked inhibitory effect on FCV induced CPE, albeit with a relatively low selectivity index. Orthogonal assays confirmed inhibition of CPE was associated with a significant reduction in viral replication. Mefloquine exhibited a strong inhibitory effect against a panel of seven recent FCV isolates from Australia, with calculated IC50 values for the field isolates approximately 50% lower than against the reference strain FCV F9. In vitro combination therapy with recombinant feline interferon-ω, a biological response modifier currently registered for the treatment of FCV, demonstrated additive effects with a concurrent reduction in the IC50 of mefloquine. These results are the first report of antiviral effects of mefloquine against a calicivirus and support further in vitro and in vivo evaluation of this compound as an antiviral therapeutic for FCV.

  2. Carbohydrate-binding agents act as potent trypanocidals that elicit modifications in VSG glycosylation and reduced virulence in Trypanosoma brucei.

    PubMed

    Castillo-Acosta, Víctor M; Vidal, Antonio E; Ruiz-Pérez, Luis M; Van Damme, Els J M; Igarashi, Yasuhiro; Balzarini, Jan; González-Pacanowska, Dolores

    2013-11-01

    The surface of Trypanosoma brucei is covered by a dense coat of glycosylphosphatidylinositol-anchored glycoproteins. The major component is the variant surface glycoprotein (VSG) which is glycosylated by both paucimannose and oligomannose N-glycans. Surface glycans are poorly accessible and killing mediated by peptide lectin-VSG complexes is hindered by active endocytosis. However, contrary to previous observations, here we show that high-affinity carbohydrate binding agents bind to surface glycoproteins and abrogate growth of T. brucei bloodstream forms. Specifically, binding of the mannose-specific Hippeastrum hybrid agglutinin (HHA) resulted in profound perturbations in endocytosis and parasite lysis. Prolonged exposure to HHA led to the loss of triantennary oligomannose structures in surface glycoproteins as a result of genetic rearrangements that abolished expression of the oligosaccharyltransferase TbSTT3B gene and yielded novel chimeric enzymes. Mutant parasites exhibited markedly reduced infectivity thus demonstrating the importance of specific glycosylation patterns in parasite virulence.

  3. Antiviral effect of lithium chloride.

    PubMed

    Cernescu, C; Popescu, L; Constantinescu, S; Cernescu, S

    1988-01-01

    Studies in human embryo fibroblasts infected with measles or herpes simplex virus showed a reduction in virus yield when cultures were pretreated with 1-10 mM lithium chloride doses. Maximum effect was obtained by a 1 h treatment with 10 mM lithium chloride, preceding viral infection by 19-24 hours. A specific antiviral effect against measles virus was manifest immediately after culture pretreatment. Intermittent treatment with 10 mM lithium chloride of cultures persistently infected with measles or herpes virus obtained from human myeloid K-562 cell line shows a reduction in the extracellular virus yield. In the K-562/herpes virus system, the culture treatment with lithium chloride and acyclovir (10 microM) has an additive inhibitory effect on virus production. The paper is focused on the mechanism of lithium chloride antiviral action and the expediency of lithium therapy in SSPE (subacute sclerosing panencephalitis).

  4. Henipavirus pathogenesis and antiviral approaches.

    PubMed

    Mathieu, Cyrille; Horvat, Branka

    2015-03-01

    Hendra virus and Nipah virus are closely related, recently emerged zoonotic paramyxoviruses, belonging to the Henipavirus genus. Both viruses induce generalized vasculitis affecting particularly the respiratory tract and CNS. The exceptionally broad species tropism of Henipavirus, the high case fatality rate and person-to-person transmission associated with Nipah virus outbreaks emphasize the necessity of effective antiviral strategies for these intriguing threatening pathogens. Current therapeutic approaches, validated in animal models, target early steps in viral infection; they include the use of neutralizing virus-specific antibodies and blocking membrane fusion with peptides that bind the viral fusion protein. A better understanding of Henipavirus pathogenesis is critical for the further advancement of antiviral treatment, and we summarize here the recent progress in the field.

  5. Reduction of facial pigmentation of melasma by topical lignin peroxidase: A novel fast-acting skin-lightening agent

    PubMed Central

    ZHONG, SHAO-MIN; SUN, NAN; LIU, HUI-XIAN; NIU, YUE-QING; WU, YAN

    2015-01-01

    The aim of the present study was to evaluate the efficacy and safety of lignin peroxidase (LIP) as a skin-lightening agent in patients with melasma. A self-controlled clinical study was performed in 31 women who had melasma on both sides of the face. This study involved 8 weeks of a full-face product treatment. The skin color was measured at days 0, 7, 28 and 56 using a chromameter on the forehead and cheeks. Standardized digital photographic images of each side of the face of all subjects were captured by a complexion analysis system. Clinical scores of the pigmentation were determined by two dermatologists. After using the LIP whitening lotion for 7 days, the luminance (L*) values of the melasma and the normal skin were significantly increased from baseline. The L* values continued to increase at days 28 and 56. The melasma area severity index (MASI) score was statistically decreased after 28 days of treatment. No treatment-related adverse events were observed. LIP whitening lotion was able to eliminate the skin pigmentation after 7 days of treatment, and provides a completely innovative approach to rapid skin lightening. The LIP whitening lotion exhibited good compatibility and was well tolerated. PMID:25574195

  6. Design, synthesis and antiviral activity of novel quinazolinones.

    PubMed

    Wang, Ziwen; Wang, Mingxiao; Yao, Xue; Li, Yue; Tan, Juan; Wang, Lizhong; Qiao, Wentao; Geng, Yunqi; Liu, Yuxiu; Wang, Qingmin

    2012-07-01

    HIV-1 integrase (IN) is a validated therapeutic target for antiviral drug design. However, the emergence of viral strains resistant to clinically studied IN inhibitors demands the discovery of novel inhibitors that are structurally as well as mechanistically different. Herein, a series of quinazolinones were designed and synthesized as novel HIV-1 inhibitors. The new synthetic route provides a practical method for the preparation of 5-hydroxy quinazolinones. Primary bioassay results indicated that most of the quinazolinones possess anti-HIV activity, especially for compound 11b with 77.5% inhibition rate at 10 μM emerged as a new active lead. Most of the synthesized compounds were also found to exhibit good anti-TMV activity, of which compo und 9a showed similar in vivo anti-TMV activity to commercial plant virucide Ribavirin. This work provides a new and efficient approach to evolve novel multi-functional antiviral agents by rational integration and optimization of previously reported antiviral agents.

  7. Antiviral and antiproliferative effects of canine interferon-λ1.

    PubMed

    Ichihashi, Tomonori; Asano, Atsushi; Usui, Tatsufumi; Takeuchi, Takashi; Watanabe, Yasuko; Yamano, Yoshiaki

    2013-11-15

    Interferon (IFN)-λs, members of the type III IFN group, were recently identified in several vertebrates. Although IFN-λs have the potential to be utilized as antiviral and antitumor agents in veterinary medicine, the biological properties of IFN-λs have not yet been studied in companion animals. In this study, we analyzed the expression of canine IFN-λs and their receptors, produced a recombinant canine IFN-λ1 protein, and investigated its antiviral and antiproliferative activities using a canine kidney epithelial cell line, MDCK cells. MDCK cells were found to express type III IFN molecules, IFN-λ1 and IFN-λ3, and the receptors, IFNλR1 and IL10R2. IFN-λ1 was induced faster than IFN-λ3 by stimulation with poly (I:C). His-tagged IFN-λ1 protein expressed in Escherichia coli inhibited cytolytic plaque formation by influenza A virus infection, and induced the expression of interferon-stimulated genes, Mx1 and OAS1, in MDCK cells. In addition, recombinant IFN-λ1 inhibited the proliferation of MDCK cells slightly. These effects were observed in a dose-dependent manner. These results indicate that canine IFN-λ1 has antiviral effect, and suggest the potential applicability of canine IFN-λ1 as a therapeutic agent.

  8. Discovery of potent broad spectrum antivirals derived from marine actinobacteria.

    PubMed

    Raveh, Avi; Delekta, Phillip C; Dobry, Craig J; Peng, Weiping; Schultz, Pamela J; Blakely, Pennelope K; Tai, Andrew W; Matainaho, Teatulohi; Irani, David N; Sherman, David H; Miller, David J

    2013-01-01

    Natural products provide a vast array of chemical structures to explore in the discovery of new medicines. Although secondary metabolites produced by microbes have been developed to treat a variety of diseases, including bacterial and fungal infections, to date there has been limited investigation of natural products with antiviral activity. In this report, we used a phenotypic cell-based replicon assay coupled with an iterative biochemical fractionation process to identify, purify, and characterize antiviral compounds produced by marine microbes. We isolated a compound from Streptomyces kaviengensis, a novel actinomycetes isolated from marine sediments obtained off the coast of New Ireland, Papua New Guinea, which we identified as antimycin A1a. This compound displays potent activity against western equine encephalitis virus in cultured cells with half-maximal inhibitory concentrations of less than 4 nM and a selectivity index of greater than 550. Our efforts also revealed that several antimycin A analogues display antiviral activity, and mechanism of action studies confirmed that these Streptomyces-derived secondary metabolites function by inhibiting the cellular mitochondrial electron transport chain, thereby suppressing de novo pyrimidine synthesis. Furthermore, we found that antimycin A functions as a broad spectrum agent with activity against a wide range of RNA viruses in cultured cells, including members of the Togaviridae, Flaviviridae, Bunyaviridae, Picornaviridae, and Paramyxoviridae families. Finally, we demonstrate that antimycin A reduces central nervous system viral titers, improves clinical disease severity, and enhances survival in mice given a lethal challenge with western equine encephalitis virus. Our results provide conclusive validation for using natural product resources derived from marine microbes as source material for antiviral drug discovery, and they indicate that host mitochondrial electron transport is a viable target for the

  9. Antiviral therapy for chronic hepatitis B: a review.

    PubMed

    Hanazaki, Kazuhiro

    2004-03-01

    Chronic hepatitis B virus (HBV) infection is a well-recognized risk factor for the development of hepatocellular carcinoma (HCC), which is becoming a more prevalent clinical problem, especially in HBV-endemic areas. It is estimated that 1.25 million people in the United States and more than 300 million people worldwide are chronically infected with HBV. Despite the introduction of universal vaccination against hepatitis B in over 100 countries, persistent HBV infection is still a serious problem worldwide, causing an estimated annual death rate of one million. It may take several decades until the effect of vaccination will be translated into reduced transmission and morbidity. Meanwhile, patients with persistent HBV infection require better antiviral therapeutic modalities than are currently available. It is well accepted that antiviral therapy for chronic hepatitis B is effective to improve prognosis of patients with HBV by preventing development of hepatitis state and HCC. The therapeutic endpoints for hepatitis B treatment are: 1) sustained suppression of HBV replication, as indicated by HBsAg and HBeAg loss, 2) decrease of serum HBV DNA of an undetectable level by a non-PCR method, 3) remission of disease, as shown by normalization of ALT, 4) improvement in liver histology, and 5) reduction of the acute exacerbation, cirrhosis, and HCC. In the present, the antiviral treatment of hepatitis B consists of either interferon alpha or oral lamivudine alone or in combination with existing therapy. Each major antiviral drug of interferon alpha and lamivudine has pros and cons, and effect of combination therapy of both drugs is also still limited. More powerful and safe new antiviral therapies are required to achieve final goal of these therapeutic endpoints. Management of chronic hepatitis B requires significant knowledge of approved pharmacotherapeutic agents and their limitations. Therapeutic options for managing hepatitis infection after liver transplantation (LT

  10. Discovery of Potent Broad Spectrum Antivirals Derived from Marine Actinobacteria

    PubMed Central

    Raveh, Avi; Delekta, Phillip C.; Dobry, Craig J.; Peng, Weiping; Schultz, Pamela J.; Blakely, Pennelope K.; Tai, Andrew W.; Matainaho, Teatulohi; Irani, David N.; Sherman, David H.; Miller, David J.

    2013-01-01

    Natural products provide a vast array of chemical structures to explore in the discovery of new medicines. Although secondary metabolites produced by microbes have been developed to treat a variety of diseases, including bacterial and fungal infections, to date there has been limited investigation of natural products with antiviral activity. In this report, we used a phenotypic cell-based replicon assay coupled with an iterative biochemical fractionation process to identify, purify, and characterize antiviral compounds produced by marine microbes. We isolated a compound from Streptomyces kaviengensis, a novel actinomycetes isolated from marine sediments obtained off the coast of New Ireland, Papua New Guinea, which we identified as antimycin A1a. This compound displays potent activity against western equine encephalitis virus in cultured cells with half-maximal inhibitory concentrations of less than 4 nM and a selectivity index of greater than 550. Our efforts also revealed that several antimycin A analogues display antiviral activity, and mechanism of action studies confirmed that these Streptomyces-derived secondary metabolites function by inhibiting the cellular mitochondrial electron transport chain, thereby suppressing de novo pyrimidine synthesis. Furthermore, we found that antimycin A functions as a broad spectrum agent with activity against a wide range of RNA viruses in cultured cells, including members of the Togaviridae, Flaviviridae, Bunyaviridae, Picornaviridae, and Paramyxoviridae families. Finally, we demonstrate that antimycin A reduces central nervous system viral titers, improves clinical disease severity, and enhances survival in mice given a lethal challenge with western equine encephalitis virus. Our results provide conclusive validation for using natural product resources derived from marine microbes as source material for antiviral drug discovery, and they indicate that host mitochondrial electron transport is a viable target for the

  11. Aloe emodin, an anthroquinone from Aloe vera acts as an anti aggregatory agent to the thermally aggregated hemoglobin.

    PubMed

    Furkan, Mohammad; Alam, Md Tauqir; Rizvi, Asim; Khan, Kashan; Ali, Abad; Shamsuzzaman; Naeem, Aabgeena

    2017-05-15

    Aggregation of proteins is a physiological process which contributes to the pathophysiology of several maladies including diabetes mellitus, Huntington's and Alzheimer's disease. In this study we have reported that aloe emodin (AE), an anthroquinone, which is one of the active components of the Aloe vera plant, acts as an inhibitor of hemoglobin (Hb) aggregation. Hb was thermally aggregated at 60°C for four days as evident by increased thioflavin T and ANS fluorescence, shifted congo red absorbance, appearance of β sheet structure, increase in turbidity and presence of oligomeric aggregates. Increasing concentration of AE partially reverses the aggregation of the model heme protein (hemoglobin). The maximum effect of AE was observed at 100μM followed by saturation at 125μM. The results were confirmed by UV-visible spectrometry, intrinsic fluorescence, ThT, ANS, congo red assay as well as transmission electron microscopy (TEM). These results were also supported by fourier transform infrared spectroscopy (FTIR) and circular dichroism (CD) which shows the disappearance of β sheet structure and appearance of α helices. This study will serve as baseline for translatory research and the development of AE based therapeutics for diseases attributed to protein aggregation.

  12. Novel alkylphospholipid-DTC hybrids as promising agents against endocrine related cancers acting via modulation of Akt-pathway.

    PubMed

    Jangir, Santosh; Bala, Veenu; Lal, Nand; Kumar, Lalit; Sarswat, Amit; Kumar, Amit; Hamidullah; Saini, Karan S; Sharma, Vikas; Verma, Vikas; Maikhuri, Jagdamba P; Konwar, Rituraj; Gupta, Gopal; Sharma, Vishnu L

    2014-10-06

    A new series of 2-(alkoxy(hydroxy)phosphoryloxy)ethyl dialkylcarbodithioate derivatives was synthesized and evaluated against endocrine related cancers, acting via modulation of Akt-pathway. Eighteen compounds were active at 7.24-100 μM against MDA-MB-231 or MCF-7 cell lines of breast cancer. Three compounds (14, 18 and 22) were active against MCF-7 cells at IC50 significantly better than miltefosine and most of the compounds were less toxic towards non-cancer cell lines, HEK-293. On the other hand, twelve compounds exhibited cell growth inhibiting activity against prostate cancer cell lines, either PC-3 or DU-145 at 14.69-95.20 μM. While nine of these were active against both cell lines. The most promising compounds 14 and 18 were about two and five fold more active than miltefosine against DU-145 and MCF-7 cell lines respectively and significantly down regulated phospho-Akt. Possibly anti-cancer and pro-apoptotic activity was mostly due to blockade of Akt-pathway.

  13. In vitro evaluation of marine-microorganism extracts for anti-viral activity.

    PubMed

    Yasuhara-Bell, Jarred; Yang, Yongbo; Barlow, Russell; Trapido-Rosenthal, Hank; Lu, Yuanan

    2010-08-07

    Viral-induced infectious diseases represent a major health threat and their control remains an unachieved goal, due in part to the limited availability of effective anti-viral drugs and measures. The use of natural products in drug manufacturing is an ancient and well-established practice. Marine organisms are known producers of pharmacological and anti-viral agents. In this study, a total of 20 extracts from marine microorganisms were evaluated for their antiviral activity. These extracts were tested against two mammalian viruses, herpes simplex virus (HSV-1) and vesicular stomatitis virus (VSV), using Vero cells as the cell culture system, and two marine virus counterparts, channel catfish virus (CCV) and snakehead rhabdovirus (SHRV), in their respective cell cultures (CCO and EPC). Evaluation of these extracts demonstrated that some possess antiviral potential. In sum, extracts 162M(4), 258M(1), 298M(4), 313(2), 331M(2), 367M(1) and 397(1) appear to be effective broad-spectrum antivirals with potential uses as prophylactic agents to prevent infection, as evident by their highly inhibitive effects against both virus types. Extract 313(2) shows the most potential in that it showed significantly high inhibition across all tested viruses. The samples tested in this study were crude extracts; therefore the development of antiviral application of the few potential extracts is dependent on future studies focused on the isolation of the active elements contained in these extracts.

  14. Guanylate-Binding Protein 1, an Interferon-Induced GTPase, Exerts an Antiviral Activity against Classical Swine Fever Virus Depending on Its GTPase Activity

    PubMed Central

    Li, Lian-Feng; Yu, Jiahui; Li, Yongfeng; Wang, Jinghan; Li, Su; Zhang, Lingkai; Xia, Shui-Li; Yang, Qian; Wang, Xiao; Yu, Shaoxiong; Luo, Yuzi; Sun, Yuan; Zhu, Yan; Munir, Muhammad

    2016-01-01

    ABSTRACT Many viruses trigger the type I interferon (IFN) pathway upon infection, resulting in the transcription of hundreds of interferon-stimulated genes (ISGs), which define the antiviral state of the host. Classical swine fever virus (CSFV) is the causative agent of classical swine fever (CSF), a highly contagious viral disease endangering the pig industry in many countries. However, anti-CSFV ISGs are poorly documented. Here we screened 20 ISGs that are commonly induced by type I IFNs against CSFV in lentivirus-delivered cell lines, resulting in the identification of guanylate-binding protein 1 (GBP1) as a potent anti-CSFV ISG. We observed that overexpression of GBP1, an IFN-induced GTPase, remarkably suppressed CSFV replication, whereas knockdown of endogenous GBP1 expression by small interfering RNAs significantly promoted CSFV growth. Furthermore, we demonstrated that GBP1 acted mainly on the early phase of CSFV replication and inhibited the translation efficiency of the internal ribosome entry site of CSFV. In addition, we found that GBP1 was upregulated at the transcriptional level in CSFV-infected PK-15 cells and in various organs of CSFV-infected pigs. Coimmunoprecipitation and glutathione S-transferase (GST) pulldown assays revealed that GBP1 interacted with the NS5A protein of CSFV, and this interaction was mapped in the N-terminal globular GTPase domain of GBP1. Interestingly, the K51 of GBP1, which is crucial for its GTPase activity, was essential for the inhibition of CSFV replication. We showed further that the NS5A-GBP1 interaction inhibited GTPase activity, which was critical for its antiviral effect. Taking our findings together, GBP1 is an anti-CSFV ISG whose action depends on its GTPase activity. IMPORTANCE Classical swine fever virus (CSFV) is the causative agent of classical swine fever (CSF), an economically important viral disease affecting the pig industry in many countries. To date, only a few host restriction factors against CSFV

  15. Antitumour activity of novel taxanes that act at the same time as cytotoxic agents and P-glycoprotein inhibitors

    PubMed Central

    Ferlini, C; Distefano, M; Pignatelli, F; Lin, S; Riva, A; Bombardelli, E; Mancuso, S; Ojima, I; Scambia, G

    2000-01-01

    Taxanes antitumour agents such as paclitaxel and docetaxel represent a successful family of chemotherapeutic drugs. Unfortunately, acquired and innate resistance represents a clinical problem for these drugs. We investigated, on a panel of 7 human cancer cell lines, the growth inhibition effect of 3 newly developed taxanes (SB-T-1213, SB-T-1250 and SB-T-101187) with modification at the C10 and C3′ positions of the taxane framework. These positions have been previously characterized as critical to make taxanes highly active against cells overexpressing the efflux pump P-glycoprotein (P-gp). Paclitaxel and docetaxel were used as reference compounds. Results unambiguously indicate the exceptional activity of the novel taxanes toward P-gp positive cells (up to >400 fold higher potency than that of paclitaxel). SB-T-1213 and SB-T-1250 are also substantially more active than the reference compounds against P-gp negative cells. To better understand the mechanisms underlying the enhanced activity of the newly developed taxanes, we performed cell cycle and apoptosis analysis. This study demonstrates that the striking growth inhibition effect exhibited by the novel taxanes is ascribed to their increased ability in inducing apoptosis and G 2/M cell cycle block. SB-T-1213 and SB-T-1250 are also more active than reference compounds in inducing intracellular accumulation of the beta-tubulin subunits. Finally, it is revealed that these novel taxanes have ability to inhibit the function of the P-gp efflux pump on the basis of the Rhodamine 123 assay. These findings strongly suggest that SB-T-1213, SB-T-1250 and SB-T-101187 represent a new tool to overcome innate or acquired P-gp mediated taxane-resistance. © 2000 Cancer Research Campaign http://www.bjcancer.com PMID:11104578

  16. A human genome-wide loss-of-function screen identifies effective chikungunya antiviral drugs

    PubMed Central

    Karlas, Alexander; Berre, Stefano; Couderc, Thérèse; Varjak, Margus; Braun, Peter; Meyer, Michael; Gangneux, Nicolas; Karo-Astover, Liis; Weege, Friderike; Raftery, Martin; Schönrich, Günther; Klemm, Uwe; Wurzlbauer, Anne; Bracher, Franz; Merits, Andres; Meyer, Thomas F.; Lecuit, Marc

    2016-01-01

    Chikungunya virus (CHIKV) is a globally spreading alphavirus against which there is no commercially available vaccine or therapy. Here we use a genome-wide siRNA screen to identify 156 proviral and 41 antiviral host factors affecting CHIKV replication. We analyse the cellular pathways in which human proviral genes are involved and identify druggable targets. Twenty-one small-molecule inhibitors, some of which are FDA approved, targeting six proviral factors or pathways, have high antiviral activity in vitro, with low toxicity. Three identified inhibitors have prophylactic antiviral effects in mouse models of chikungunya infection. Two of them, the calmodulin inhibitor pimozide and the fatty acid synthesis inhibitor TOFA, have a therapeutic effect in vivo when combined. These results demonstrate the value of loss-of-function screening and pathway analysis for the rational identification of small molecules with therapeutic potential and pave the way for the development of new, host-directed, antiviral agents. PMID:27177310

  17. Antiviral Potential of Algae Polysaccharides Isolated from Marine Sources: A Review

    PubMed Central

    Ahmadi, Azin; Zorofchian Moghadamtousi, Soheil; Abubakar, Sazaly; Zandi, Keivan

    2015-01-01

    From food to fertilizer, algal derived products are largely employed in assorted industries, including agricultural, biomedical, food, and pharmaceutical industries. Among different chemical compositions isolated from algae, polysaccharides are the most well-established compounds, which were subjected to a variety of studies due to extensive bioactivities. Over the past few decades, the promising results for antiviral potential of algae-derived polysaccharides have advocated them as inordinate candidates for pharmaceutical research. Numerous studies have isolated various algal polysaccharides possessing antiviral activities, including carrageenan, alginate, fucan, laminaran, and naviculan. In addition, different mechanisms of action have been reported for these polysaccharides, such as inhibiting the binding or internalization of virus into the host cells or suppressing DNA replication and protein synthesis. This review strives for compiling previous antiviral studies of algae-derived polysaccharides and their mechanism of action towards their development as natural antiviral agents for future investigations. PMID:26484353

  18. Alteration of Antiviral Signalling by Single Nucleotide Polymorphisms (SNPs) of Mitochondrial Antiviral Signalling Protein (MAVS)

    PubMed Central

    Xing, Fei; Matsumiya, Tomoh; Hayakari, Ryo; Yoshida, Hidemi; Kawaguchi, Shogo; Takahashi, Ippei; Nakaji, Shigeyuki; Imaizumi, Tadaatsu

    2016-01-01

    Genetic variation is associated with diseases. As a type of genetic variation occurring with certain regularity and frequency, the single nucleotide polymorphism (SNP) is attracting more and more attention because of its great value for research and real-life application. Mitochondrial antiviral signalling protein (MAVS) acts as a common adaptor molecule for retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs), which can recognize foreign RNA, including viral RNA, leading to the induction of type I interferons (IFNs). Therefore, MAVS is thought to be a crucial molecule in antiviral innate immunity. We speculated that genetic variation of MAVS may result in susceptibility to infectious diseases. To assess the risk of viral infection based on MAVS variation, we tested the effects of twelve non-synonymous MAVS coding-region SNPs from the National Center for Biotechnology Information (NCBI) database that result in amino acid substitutions. We found that five of these SNPs exhibited functional alterations. Additionally, four resulted in an inhibitory immune response, and one had the opposite effect. In total, 1,032 human genomic samples obtained from a mass examination were genotyped at these five SNPs. However, no homozygous or heterozygous variation was detected. We hypothesized that these five SNPs are not present in the Japanese population and that such MAVS variations may result in serious immune diseases. PMID:26954674

  19. Differential antagonism of tetramethylenedisulfotetramine-induced seizures by agents acting at NMDA and GABA{sub A} receptors

    SciTech Connect

    Shakarjian, Michael P.; Velíšková, Jana; Stanton, Patric K.; Velíšek, Libor

    2012-11-15

    Tetramethylenedisulfotetramine (TMDT) is a highly lethal neuroactive rodenticide responsible for many accidental and intentional poisonings in mainland China. Ease of synthesis, water solubility, potency, and difficulty to treat make TMDT a potential weapon for terrorist activity. We characterized TMDT-induced convulsions and mortality in male C57BL/6 mice. TMDT (ip) produced a continuum of twitches, clonic, and tonic–clonic seizures decreasing in onset latency and increasing in severity with increasing dose; 0.4 mg/kg was 100% lethal. The NMDA antagonist, ketamine (35 mg/kg) injected ip immediately after the first TMDT-induced seizure, did not change number of tonic–clonic seizures or lethality, but increased the number of clonic seizures. Doubling the ketamine dose decreased tonic–clonic seizures and eliminated lethality through a 60 min observation period. Treating mice with another NMDA antagonist, MK-801, 0.5 or 1 mg/kg ip, showed similar effects as low and high doses of ketamine, respectively, and prevented lethality, converting status epilepticus EEG activity to isolated interictal discharges. Treatment with these agents 15 min prior to TMDT administration did not increase their effectiveness. Post-treatment with the GABA{sub A} receptor allosteric enhancer diazepam (5 mg/kg) greatly reduced seizure manifestations and prevented lethality 60 min post-TMDT, but ictal events were evident in EEG recordings and, hours post-treatment, mice experienced status epilepticus and died. Thus, TMDT is a highly potent and lethal convulsant for which single-dose benzodiazepine treatment is inadequate in managing electrographic seizures or lethality. Repeated benzodiazepine dosing or combined application of benzodiazepines and NMDA receptor antagonists is more likely to be effective in treating TMDT poisoning. -- Highlights: ► TMDT produces convulsions and lethality at low doses in mice. ► Diazepam pre- or post-treatments inhibit TMDT-induced convulsions and death

  20. Protective effects of garlic sulfur compounds against DNA damage induced by direct- and indirect-acting genotoxic agents in HepG2 cells.

    PubMed

    Belloir, C; Singh, V; Daurat, C; Siess, M H; Le Bon, A M

    2006-06-01

    The aim of this study was to assess the antigenotoxic activity of several garlic organosulfur compounds (OSC) in the human hepatoma cell line HepG2, using comet assay. The OSC selected were allicin (DADSO), diallyl sulfide (DAS), diallyl disulfide (DADS), S-allyl cysteine (SAC) and allyl mercaptan (AM). To explore their potential mechanisms of action, two approaches were performed: (i) a pre-treatment protocol which allowed study of the possible modulation of drug metabolism enzymes by OSC before treatment of the cells with the genotoxic agent; (ii) a co-treatment protocol by which the ability of OSC to scavenge direct-acting compounds was assessed. Preliminary studies showed that, over the concentration range tested (5-100 microM), the studied OSC neither affected cell viability nor induced DNA damage by themselves. In the pre-treatment protocol, aflatoxin B1 genotoxicity was significantly reduced by all the OSC tested except AM. DADS was the most efficient OSC in reducing benzo(a)pyrene genotoxicity. SAC and AM significantly decreased DNA breaks in HepG2 cells treated with dimethylnitrosamine. Additionally, all the OSC studied were shown to decrease the genotoxicity of the direct-acting compounds, hydrogen peroxide and methyl methanesulfonate. This study demonstrated that garlic OSC displayed antigenotoxic activity in human metabolically competent cells.

  1. Drug–drug interactions during antiviral therapy for chronic hepatitis C

    PubMed Central

    Kiser, Jennifer J.; Burton, James R.; Everson, Gregory T.

    2015-01-01

    The emergence of direct-acting antiviral agents (DAAs) for HCV infection represents a major advance in treatment. The NS3 protease inhibitors, boceprevir and telaprevir, were the first DAAs to receive regulatory approval. When combined with PEG-IFN and ribavirin, these agents increase rates of sustained virologic response in HCV genotype 1 to ~70%. However, this treatment regimen is associated with several toxicities. In addition, both boceprevir and telaprevir are substrates for and inhibitors of the drug transporter P-glycoprotein and the cytochrome P450 enzyme 3A4 and are, therefore, prone to clinically relevant drug interactions. Several new DAAs for HCV are in late stages of clinical development and are likely to be approved in the near future. These include the protease inhibitors, simeprevir and faldaprevir, the NS5A inhibitor, daclatasvir, and the nucleotide polymerase inhibitor, sofosbuvir. Herein, we review the clinical pharmacology and drug interactions of boceprevir, telaprevir and these investigational DAAs. Although boceprevir and telaprevir are involved in many interactions, these interactions are manageable if health-care providers proactively identify and adjust treatments. Emerging DAAs seem to have a reduced potential for drug interactions, which will facilitate their use in the treatment of HCV. PMID:23817323

  2. Antiviral treatment of hepatitis C virus infection and factors affecting efficacy

    PubMed Central

    Zhu, Yan; Chen, Song

    2013-01-01

    Hepatitis C virus (HCV) infection is the leading cause of chronic liver-related diseases, including cirrhosis, liver failure, and hepatocellular carcinoma. Currently, no effective vaccine is available for HCV infection. Polyethylene glycol interferon-α (PegIFN-α) in combination with ribavirin (RBV) is the standard of care (SOC) for chronic hepatitis C. However, the efficacy of PegIFN-α and RBV combination therapy is less than 50% for genotype 1 HCV, which is the dominant virus in humans. In addition, IFN and RBV have several severe side effects. Therefore, strategies to improve sustained virological response (SVR) rates have been an important focus for clinical physicians. The serine protease inhibitors telaprevir and boceprevir were approved by the United States Food and Drug Administration in 2011. The addition of HCV protease inhibitors to the SOC has significantly improved the efficacy of treatments for HCV infection. Several direct-acting antiviral drugs currently in late-stage clinical trials, both with and without peg-IFN and RBV, have several advantages over the previous SOC, including higher specificity and efficacy, fewer side effects, and the ability to be administered orally, and might be optimal regimens in the future. Factors affecting the efficacy of anti-HCV treatments based on IFN-α include the HCV genotype, baseline viral load, virological response during treatment, host IL28B gene polymorphisms and hepatic steatosis. However, determining the effect of the above factors on DAA therapy is necessary. In this review, we summarize the development of anti-HCV agents and assess the main factors affecting the efficacy of antiviral treatments. PMID:24379621

  3. Surfactant-Modified Nanoclay Exhibits an Antiviral Activity with High Potency and Broad Spectrum

    PubMed Central

    Liang, Jian-Jong; Wei, Jiun-Chiou; Lee, Yi-Ling; Lin, Jiang-Jen

    2014-01-01

    ABSTRACT Nanomaterials have the characteristics associated with high surface-to-volume ratios and have been explored for their antiviral activity. Despite some success, cytotoxicity has been an issue in nanomaterial-based antiviral strategies. We previously developed a novel method to fully exfoliate montmorillonite clay to generate the most fundamental units of nanoscale silicate platelet (NSP). We further modified NSP by capping with various surfactants and found that the surfactant-modified NSP (NSQ) was less cytotoxic. In this study, we tested the antiviral potentials of a series of natural-clay-derived nanomaterials. Among the derivatives, NSP modified with anionic sodium dodecyl sulfate (NSQc), but not the pristine clay, unmodified NSP, a silver nanoparticle-NSP hybrid, NSP modified with cationic n-octadecanylamine hydrochloride salt, or NSP modified with nonionic Triton X-100, significantly suppressed the plaque-forming ability of Japanese encephalitis virus (JEV) at noncytotoxic concentrations. NSQc also blocked infection with dengue virus (DEN) and influenza A virus. Regarding the antiviral mechanism, NSQc interfered with viral binding through electrostatic interaction, since its antiviral activity can be neutralized by Polybrene, a cationic polymer. Furthermore, NSQc reduced the lethality of JEV and DEN infection in mouse challenge models. Thus, the surfactant-modified exfoliated nanoclay NSQc may be a novel nanomaterial with broad and potent antiviral activity. IMPORTANCE Nanomaterials have being investigated as antimicrobial agents, yet their antiviral potential is overshadowed by their cytotoxicity. By using a novel method, we fully exfoliated montmorillonite clay to generate the most fundamental units of nanoscale silicate platelet (NSP). Here, we show that the surfactant-modified NSP (NSQ) is less cytotoxic and that NSQc (NSP modified with sodium dodecyl sulfate) could potently block infection by dengue virus (DEN), Japanese encephalitis virus (JEV

  4. Antiviral effects of Glycyrrhiza species.

    PubMed

    Fiore, Cristina; Eisenhut, Michael; Krausse, Rea; Ragazzi, Eugenio; Pellati, Donatella; Armanini, Decio; Bielenberg, Jens

    2008-02-01

    Historical sources for the use of Glycyrrhiza species include ancient manuscripts from China, India and Greece. They all mention its use for symptoms of viral respiratory tract infections and hepatitis. Randomized controlled trials confirmed that the Glycyrrhiza glabra derived compound glycyrrhizin and its derivatives reduced hepatocellular damage in chronic hepatitis B and C. In hepatitis C virus-induced cirrhosis the risk of hepatocellular carcinoma was reduced. Animal studies demonstrated a reduction of mortality and viral activity in herpes simplex virus encephalitis and influenza A virus pneumonia. In vitro studies revealed antiviral activity against HIV-1, SARS related coronavirus, respiratory syncytial virus, arboviruses, vaccinia virus and vesicular stomatitis virus. Mechanisms for antiviral activity of Glycyrrhiza spp. include reduced transport to the membrane and sialylation of hepatitis B virus surface antigen, reduction of membrane fluidity leading to inhibition of fusion of the viral membrane of HIV-1 with the cell, induction of interferon gamma in T-cells, inhibition of phosphorylating enzymes in vesicular stomatitis virus infection and reduction of viral latency. Future research needs to explore the potency of compounds derived from licorice in prevention and treatment of influenza A virus pneumonia and as an adjuvant treatment in patients infected with HIV resistant to antiretroviral drugs.

  5. Oligonucleotide-based antiviral strategies.

    PubMed

    Schubert, S; Kurreck, J

    2006-01-01

    In the age of extensive global traffic systems, the close neighborhood of man and livestock in some regions of the world, as well as inadequate prevention measures and medical care in poorer countries, greatly facilitates the emergence and dissemination of new virus strains. The appearance of avian influenza viruses that can infect humans, the spread of the severe acute respiratory syndrome (SARS) virus, and the unprecedented raging of human immunodeficiency virus (HIV) illustrate the threat of a global virus pandemic. In addition, viruses like hepatitis B and C claim more than one million lives every year for want of efficient therapy. Thus, new approaches to prevent virus propagation are urgently needed. Antisense strategies are considered a very attractive means of inhibiting viral replication, as oligonucleotides can be designed to interact with any viral RNA, provided its sequence is known. The ensuing targeted destruction of viral RNA should interfere with viral replication without entailing negative effects on ongoing cellular processes. In this review, we will give some examples of the employment of antisense oligonucleotides, ribozymes, and RNA interference strategies for antiviral purposes. Currently, in spite of encouraging results in preclinical studies, only a few antisense oligonucleotides and ribozymes have turned out to be efficient antiviral compounds in clinical trials. The advent of RNA interference now seems to be refueling hopes for decisive progress in the field of therapeutic employment of antisense strategies.

  6. What You Should Know about Flu Antiviral Drugs

    MedlinePlus

    ... Newsletters What You Should Know About Flu Antiviral Drugs Language: English Español Recommend on Facebook Tweet ... used to treat flu illness. What are antiviral drugs? Antiviral drugs are prescription medicines (pills, liquid, an ...

  7. Broad specificity of human phosphoglycerate kinase for antiviral nucleoside analogs.

    PubMed

    Gallois-Montbrun, Sarah; Faraj, Abdesslem; Seclaman, Edward; Sommadossi, Jean-Pierre; Deville-Bonne, Dominique; Véron, Michel

    2004-11-01

    Nucleoside analogs used in antiviral therapies need to be phosphorylated to their tri-phospho counterparts in order to be active on their cellular target. Human phosphoglycerate kinase (hPGK) was recently reported to participate in the last step of phosphorylation of cytidine L-nucleotide derivatives [Krishnan PGE, Lam W, Dutschman GE, Grill SP, Cheng YC. Novel role of 3-phosphoglycerate kinase, a glycolytic enzyme, in the activation of L-nucleoside analogs, a new class of anticancer and antiviral agents. J Biol Chem 2003;278:36726-32]. In the present work, we extended the enzymatic study of human PGK specificity to purine and pyrimidine nucleotide derivatives in both D- and L-configuration. Human PGK demonstrated catalytic efficiencies in the 10(4)-10(5)M(-1)s(-1) range for purine ribo-, deoxyribo- and dideoxyribonucleotide derivatives, either in D- or L-configuration. In contrast, it was poorly active with natural pyrimidine D-nucleotides (less than 10(3)M(-1)s(-1)). Pyrimidine L-enantiomers, which are promising therapeutic analogs against B hepatitis, were 2-25 times better substrates than their D-counterparts. The broad specificity of substrate of human PGK suggests that this enzyme may be involved in the cellular activation of several antiviral nucleoside analogs including dideoxyinosine, acyclovir, L-2'-deoxycytosine and L-2'-deoxythymidine.

  8. A novel peptide with potent and broad-spectrum antiviral activities against multiple respiratory viruses

    PubMed Central

    Zhao, Hanjun; Zhou, Jie; Zhang, Ke; Chu, Hin; Liu, Dabin; Poon, Vincent Kwok-Man; Chan, Chris Chung-Sing; Leung, Ho-Chuen; Fai, Ng; Lin, Yong-Ping; Zhang, Anna Jin-Xia; Jin, Dong-Yan; Yuen, Kwok-Yung; Zheng, Bo-Jian

    2016-01-01

    A safe, potent and broad-spectrum antiviral is urgently needed to combat emerging respiratory viruses. In light of the broad antiviral activity of β-defensins, we tested the antiviral activity of 11 peptides derived from mouse β-defensin-4 and found that a short peptide, P9, exhibited potent and broad-spectrum antiviral effects against multiple respiratory viruses in vitro and in vivo, including influenza A virus H1N1, H3N2, H5N1, H7N7, H7N9, SARS-CoV and MERS-CoV. The antiviral activity of P9 was attributed to its high-affinity binding to viral glycoproteins, as well as the abundance of basic amino acids in its composition. After binding viral particles through viral surface glycoproteins, P9 entered into cells together with the viruses via endocytosis and prevented endosomal acidification, which blocked membrane fusion and subsequent viral RNA release. This study has paved the avenue for developing new prophylactic and therapeutic agents with broad-spectrum antiviral activities. PMID:26911565

  9. Synthesis and antiviral activity of azoles obtained from carbohydrates.

    PubMed

    Barradas, José Sebastián; Errea, María Inés; D'Accorso, Norma B; Sepúlveda, Claudia S; Talarico, Laura B; Damonte, Elsa B

    2008-09-22

    Herein we describe the synthesis of 1,2,4-triazolyl-3-thione;1,3,4-oxadiazole, and imidazo[2,1-b]thiazole derivatives from carbohydrates. The antiviral activity of these compounds was tested against Dengue and Junin virus (the etiological agent of Argentine hemorrhagic fever). The 3-(p-bromobenzoyl)-5-(1,2-O-isopropylidene-3-O-methyl-alpha-d-xylofuranos-5-ulos-5-yl)imidazo[2,1-b]thiazole was able to inhibit the replication of both viruses in Vero cells at concentration significantly lower than the CC(50).

  10. Broad-spectrum antivirals against viral fusion

    PubMed Central

    Vigant, Frederic; Santos, Nuno C.; Lee, Benhur

    2015-01-01

    Effective antivirals have been developed against specific viruses, such as HIV, Hepatitis C virus and influenza virus. This ‘one bug–one drug’ approach to antiviral drug development can be successful, but it may be inadequate for responding to an increasing diversity of viruses that cause significant diseases in humans. The majority of viral pathogens that cause emerging and re-emerging infectious diseases are membrane-enveloped viruses, which require the fusion of viral and cell membranes for virus entry. Therefore, antivirals that target the membrane fusion process represent new paradigms for broad-spectrum antiviral discovery. In this Review, we discuss the mechanisms responsible for the fusion between virus and cell membranes and explore how broad-spectrum antivirals target this process to prevent virus entry. PMID:26075364

  11. Hepatitis C Virus and Natural Compounds: a New Antiviral Approach?

    PubMed Central

    Calland, Noémie; Dubuisson, Jean; Rouillé, Yves; Séron, Karin

    2012-01-01

    Hepatitis C is a major global health burden with an estimated 160 million infected individuals worldwide. This long-term disease evolves slowly, often leading to chronicity and potentially to liver failure. There is no anti-HCV vaccine, and, until recently, the only treatment available, based on pegylated interferon and ribavirin, was partially effective, and had considerable side effects. With recent advances in the understanding of the HCV life cycle, the development of promising direct acting antivirals (DAAs) has been achieved. Their use in combination with the current treatment has led to encouraging results for HCV genotype 1 patients. However, this therapy is quite expensive and will probably not be accessible for all patients worldwide. For this reason, constant efforts are being made to identify new antiviral molecules. Recent reports about natural compounds highlight their antiviral activity against HCV. Here, we aim to review the natural molecules that interfere with the HCV life cycle and discuss their potential use in HCV therapy. PMID:23202460

  12. IFN-λ determines the intestinal epithelial antiviral host defense

    PubMed Central

    Pott, Johanna; Mahlakõiv, Tanel; Mordstein, Markus; Duerr, Claudia U.; Michiels, Thomas; Stockinger, Silvia; Staeheli, Peter; Hornef, Mathias W.

    2011-01-01

    Type I and type III IFNs bind to different cell-surface receptors but induce identical signal transduction pathways, leading to the expression of antiviral host effector molecules. Despite the fact that type III IFN (IFN-λ) has been shown to predominantly act on mucosal organs, in vivo infection studies have failed to attribute a specific, nonredundant function. Instead, a predominant role of type I IFN was observed, which was explained by the ubiquitous expression of the type I IFN receptor. Here we comparatively analyzed the role of functional IFN-λ and type I IFN receptor signaling in the innate immune response to intestinal rotavirus infection in vivo, and determined viral replication and antiviral gene expression on the cellular level. We observed that both suckling and adult mice lacking functional receptors for IFN-λ were impaired in the control of oral rotavirus infection, whereas animals lacking functional receptors for type I IFN were similar to wild-type mice. Using Mx1 protein accumulation as marker for IFN responsiveness of individual cells, we demonstrate that intestinal epithelial cells, which are the prime target cells of rotavirus, strongly responded to IFN-λ but only marginally to type I IFN in vivo. Systemic treatment of suckling mice with IFN-λ repressed rotavirus replication in the gut, whereas treatment with type I IFN was not effective. These results are unique in identifying a critical role of IFN-λ in the epithelial antiviral host defense. PMID:21518880

  13. Antiviral Strategies for Emerging Influenza Viruses in Remote Communities

    PubMed Central

    Laskowski, Marek; Greer, Amy L.; Moghadas, Seyed M.

    2014-01-01

    Background Due to the lack of timely access to resources for critical care, strategic use of antiviral drugs is crucial for mitigating the impact of novel influenza viruses with pandemic potential in remote and isolated communities. We sought to evaluate the effect of antiviral treatment and prophylaxis of close contacts in a Canadian remote northern community. Methods We used an agent-based, discrete-time simulation model for disease spread in a remote community, which was developed as an in-silico population using population census data. Relative and cumulative age-specific attack rates, and the total number of infections in simulated model scenarios were obtained. Results We found that early initiation of antiviral treatment is more critical for lowering attack rates in a remote setting with a low population-average age compared to an urban population. Our results show that a significant reduction in the relative, age-specific attack rates due to increasing treatment coverage does not necessarily translate to a significant reduction in the overall arrack rate. When treatment coverage varies from low to moderate, targeted prophylaxis has a very limited impact in reducing attack rates and should be offered at a low level (below 10%) to avoid excessive waste of drugs. Conclusions In contrast to previous work, for conservative treatment coverages, our results do not provide any convincing evidence for the implementation of targeted prophylaxis. The findings suggest that public health strategies in remote communities should focus on the wider availability (higher coverage) and timely distribution of antiviral drugs for treatment of clinically ill individuals. PMID:24586937

  14. Centrally acting hypotensive agents with affinity for 5-HT1A binding sites inhibit forskolin-stimulated adenylate cyclase activity in calf hippocampus.

    PubMed Central

    Schoeffter, P.; Hoyer, D.

    1988-01-01

    1. A number of centrally acting hypotensive agents and other ligands with high affinity for 5-hydroxytryptamine1A (5-HT1A) recognition sites have been tested on forskolin-stimulated adenylate cyclase activity in calf hippocampus, a functional model for 5-HT1A-receptors. 2. Concentration-dependent inhibition of forskolin-stimulated adenylate cyclase activity was elicited by the reference 5-HT1-receptor agonists (mean EC50 value, nM): 5-HT (22), 5-carboxamidotryptamine (5-CT, 3.2), 8-hydroxy-2-(di-n-propylamino)-tetralin (8-OH-DPAT, 8.6), N,N-dipropyl-5-carboxamidotryptamine (DP-5-CT, 2.3), 1-[2-(4-aminophenyl)ethyl]-4-(3-trifluoromethylphenyl)-piperazine (PAPP or LY 165163, 20), 5-methoxy-3-(1,2,3,6-tetrahydro-4-pyridinyl)-1H indole (RU 24969, 20), buspirone (65) and ipsapirone (56). Emax amounted to 18-20% inhibition for all but the latter two agonists (14%). 3. The following hypotensive agents with high affinity for 5-HT1A sites were potent agonists in this system (mean EC50 value, nM): flesinoxan (24), indorenate (99), erythro-1-(1-[2-(1,4-benzodioxan-2-yl)-2-hydroxyethyl]-4-piperidyl )- 2-benzimidazolinone (R 28935, 2.5), urapidil (390) and 5-methyl-urapidil (3.5). The first two agents were full agonists, whereas the latter three acted as partial agonists with 60-80% efficacy. 4. Metergoline and methysergide behaved as full agonists and cyanopindolol as a partial agonist with low efficacy. Spiroxatrine and 2-(2,6-dimethoxyphenoxyethyl)aminomethyl- 1,4-benzodioxane (WB 4101) which bind to 5-HT1A sites with nanomolar affinity, were agonists and inhibited potently forskolin-stimulated adenylate cyclase in calf hippocampus, showing mean EC50 values of 23 and 15 nM, respectively. Spiroxatrine and WB 4101 yielded 90% and 50% efficacy, respectively. 5. Spiperone and methiothepin (each 1 microM) caused rightward shifts of the concentration-effect curve to 8-OH-DPAT, without loss of the maximal effect, as did the partial agonist cyanopindolol (0.1 microM) and the

  15. Mechanisms of antiviral action of plant antimicrobials against murine norovirus.

    PubMed

    Gilling, Damian H; Kitajima, Masaaki; Torrey, Jason R; Bright, Kelly R

    2014-08-01

    Numerous plant compounds have antibacterial or antiviral properties; however, limited research has been conducted with nonenveloped viruses. The efficacies of allspice oil, lemongrass oil, and citral were evaluated against the nonenveloped murine norovirus (MNV), a human norovirus surrogate. The antiviral mechanisms of action were also examined using an RNase I protection assay, a host cell binding assay, and transmission electron microscopy. All three antimicrobials produced significant reductions (P ≤ 0.05) in viral infectivity within 6 h of exposure (0.90 log10 to 1.88 log10). After 24 h, the reductions were 2.74, 3.00, and 3.41 log10 for lemongrass oil, citral, and allspice oil, respectively. The antiviral effect of allspice oil was both time and concentration dependent; the effects of lemongrass oil and citral were time dependent. Based on the RNase I assay, allspice oil appeared to act directly upon the viral capsid and RNA. The capsids enlarged from ≤ 35 nm to up to 75 nm following treatment. MNV adsorption to host cells was not significantly affected. Alternatively, the capsid remained intact following exposure to lemongrass oil and citral, which appeared to coat the capsid, causing nonspecific and nonproductive binding to host cells that did not lead to successful infection. Such contrasting effects between allspice oil and both lemongrass oil and citral suggest that though different plant compounds may yield similar reductions in virus infectivity, the mechanisms of inactivation may be highly varied and specific to the antimicrobial. This study demonstrates the antiviral properties of allspice oil, lemongrass oil, and citral against MNV and thus indicates their potential as natural food and surface sanitizers to control noroviruses.

  16. Mechanisms of Antiviral Action of Plant Antimicrobials against Murine Norovirus

    PubMed Central

    Gilling, Damian H.; Kitajima, Masaaki; Torrey, Jason R.

    2014-01-01

    Numerous plant compounds have antibacterial or antiviral properties; however, limited research has been conducted with nonenveloped viruses. The efficacies of allspice oil, lemongrass oil, and citral were evaluated against the nonenveloped murine norovirus (MNV), a human norovirus surrogate. The antiviral mechanisms of action were also examined using an RNase I protection assay, a host cell binding assay, and transmission electron microscopy. All three antimicrobials produced significant reductions (P ≤ 0.05) in viral infectivity within 6 h of exposure (0.90 log10 to 1.88 log10). After 24 h, the reductions were 2.74, 3.00, and 3.41 log10 for lemongrass oil, citral, and allspice oil, respectively. The antiviral effect of allspice oil was both time and concentration dependent; the effects of lemongrass oil and citral were time dependent. Based on the RNase I assay, allspice oil appeared to act directly upon the viral capsid and RNA. The capsids enlarged from ≤35 nm to up to 75 nm following treatment. MNV adsorption to host cells was not significantly affected. Alternatively, the capsid remained intact following exposure to lemongrass oil and citral, which appeared to coat the capsid, causing nonspecific and nonproductive binding to host cells that did not lead to successful infection. Such contrasting effects between allspice oil and both lemongrass oil and citral suggest that though different plant compounds may yield similar reductions in virus infectivity, the mechanisms of inactivation may be highly varied and specific to the antimicrobial. This study demonstrates the antiviral properties of allspice oil, lemongrass oil, and citral against MNV and thus indicates their potential as natural food and surface sanitizers to control noroviruses. PMID:24907316

  17. Antiviral active peptide from oyster

    NASA Astrophysics Data System (ADS)

    Zeng, Mingyong; Cui, Wenxuan; Zhao, Yuanhui; Liu, Zunying; Dong, Shiyuan; Guo, Yao

    2008-08-01

    An active peptide against herpes virus was isolated from the enzymic hydrolysate of oyster ( Crassostrea gigas) and purified with the definite direction hydrolysis technique in the order of alcalase and bromelin. The hydrolysate was fractioned into four ranges of molecular weight (>10 kDa, 10 5 kDa, 5 1 kDa and <1 kDa) using ultrafiltration membranes and dialysis. The fraction of 10 5 kDa was purified using consecutive chromatographic methods including DEAE Sephadex A-25 column, Sephadex G-25 column, and high performance liquid chromatogram (HPLC) by activity-guided isolation. The antiviral effect of the obtained peptide on herpetic virus was investigated in Vero cells by observing cytopathic effect (CPE). The result shows that the peptide has high inhibitory activity on herpetic virus.

  18. Update on antiviral agents for HIV and AIDS.

    PubMed

    Covington, Linda W

    2005-03-01

    Drug therapy is a vital component of the care required to promote quality of life for individuals who are afflicted with HIV or AIDS. Issues including weight loss and gain, heart disease, insulin resistance, and even increased bone metabolism must be considered when determining appropriate pharmacologic therapy. New complications often arise with new treatments; living longer may not always mean living better. However, it is the responsibility of nurses to promote the best care possible. Management of appropriate drug therapy and the related implications are critical nursing responsibilities in the care of individuals who have HIV or AIDS.

  19. Amphipathic Alpha-Helical Peptide Compositions as Antiviral Agents

    NASA Technical Reports Server (NTRS)

    Glenn, Jeffrey (Inventor); Cho, Nam-Joon (Inventor); Frank, Curtis W. (Inventor); Cheong, Kwang Ho (Inventor)

    2014-01-01

    The invention features methods and compositions that exploit the ability of amphipathic alpha-helical (AH) peptides to cause disruption of lipid-containing vesicles, such as enveloped viruses, in a size-dependent manner.

  20. Synthesis of Nucleoside Mono- and Dialdehydes as Antiviral Agents

    DTIC Science & Technology

    1987-12-15

    Crimean-Congo Hemorrhagic Fever VSV Vesicular Stomatitis Virus AD2 Adenovirus Type 2 VV Vaccinia FeLV Feline Leukemia Virus HIV Human Immunodeficiency...8217-unsaturaited adenosin*-2’,3’-diLsdehyde ahowed excellent activity against vesicular stomatitis virus. 20. DISTRIBUTION /AVAILABILITY OF ABSTRACT 21... stomatitis virus. F’; Accession oro NTIS GFL&lDTIC TAM .t ,i bt On. - i t--tributton/ Av~tlmbility CoJ03 P, ... ,Avmil nrl/or . . i u1st ý ps~lal "’" PL

  1. The Sythesis of Certain Carbocyclic Nucleoside Analogs as Antiviral Agents.

    DTIC Science & Technology

    1985-12-01

    COMMAND Fort Detrick, Frederick, Maryland 21701-5012 Contract No. DAMD17-84-C-4135 DTIC Southern Research Institute t E L ECT E Birmingham, Alabama 35255...T.A~~~1ThL~~ ANrn~A NIIA GNS915/84-12/14/85"I S---- . PERFORMING ORG. REPORT NUMBER:..NUCLEOSIDE ANALOGS AS A TIVIR L A ENTS S E RIGOG E SoRI-KM- 85...CH, RR = NH2 0/NHH HOC HOCH HOCH X HO HO OH HO OH 4 6 a) R =CH3 a) X =0 b) R= l b) X =CH2 NH 2 ICH H H 7 %5 a specific inhibitor of S-adenosyl- L

  2. 75 FR 16810 - Determination and Declarations Regarding Emergency Use of Certain In vitro Diagnostic, Antiviral...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-02

    ... determined that a public health emergency exists nationwide involving Swine Influenza A (now known as 2009 H1N1 Influenza A, or 2009 H1N1 Influenza) that affects or has significant potential to affect national... under the Public Readiness and Emergency Preparedness (PREP) Act for Influenza Antivirals...

  3. Antiviral therapies for chronic hepatitis C virus infection with cirrhosis.

    PubMed

    Nakamoto, Shingo; Kanda, Tatsuo; Shirasawa, Hiroshi; Yokosuka, Osamu

    2015-05-18

    Patients who are infected with hepatitis C virus (HCV) and also have advanced fibrosis or cirrhosis have been recognized as "difficult-to-treat" patients during an era when peginterferon and ribavirin combination therapy is the standard of care. Recent guidelines have clearly stated that treatment should be prioritized in this population to prevent complications such as decompensation and hepatocellular carcinoma. Recent advances in the treatment of chronic hepatitis C have been achieved through the development of direct-acting antiviral agents (DAAs). Boceprevir and telaprevir are first-generation DAAs that inhibit the HCV NS3/4A protease. Boceprevir or telaprevir, in combination with peginterferon and ribavirin, improved the sustained virological response rates compared with peginterferon and ribavirin alone and were tolerated in patients with HCV genotype 1 infection without cirrhosis or compensated cirrhosis. However, the efficacy is lower especially in prior non-responders with or without cirrhosis. Furthermore, a high incidence of adverse events was observed in patients with advanced liver disease, including cirrhosis, in real-life settings. Current guidelines in the United States and in some European countries no longer recommend these regimens for the treatment of HCV. Next-generation DAAs include second-generation HCV NS3/4A protease inhibitors, HCV NS5A inhibitors and HCV NS5B inhibitors, which have a high efficacy and a lower toxicity. These drugs are used in interferon-free or in interferon-based regimens with or without ribavirin in combination with different classes of DAAs. Interferon-based regimens, such as simeprevir in combination with peginterferon and ribavirin, are well tolerated and are highly effective especially in treatment-naïve patients and in patients who received treatment but who relapsed. The efficacy is less pronounced in null-responders and in patients with cirrhosis. Interferon-free regimens in combination with ribavirin and

  4. Antiviral Natural Products and Herbal Medicines

    PubMed Central

    Lin, Liang-Tzung; Hsu, Wen-Chan; Lin, Chun-Ching

    2014-01-01

    Viral infections play an important role in human diseases, and recent outbreaks in the advent of globalization and ease of travel have underscored their prevention as a critical issue in safeguarding public health. Despite the progress made in immunization and drug development, many viruses lack preventive vaccines and efficient antiviral therapies, which are often beset by the generation of viral escape mutants. Thus, identifying novel antiviral drugs is of critical importance and natural products are an excellent source for such discoveries. In this mini-review, we summarize the antiviral effects reported for several natural products and herbal medicines. PMID:24872930

  5. Experimental rhinovirus infection in COPD: implications for antiviral therapies.

    PubMed

    Gunawardana, Natasha; Finney, Lydia; Johnston, Sebastian L; Mallia, Patrick

    2014-02-01

    Chronic obstructive pulmonary disease (COPD) is a major public health problem and will be one of the leading global causes of mortality over the coming decades. Much of the morbidity, mortality and health care costs of COPD are attributable to acute exacerbations, the commonest causes of which are respiratory infections. Respiratory viruses are frequently detected in COPD exacerbations but direct proof of a causative relationship has been lacking. We have developed a model of COPD exacerbation using experimental rhinovirus infection in COPD patients and this has established a causative relationship between virus infection and exacerbations. In addition it has determined some of the molecular mechanisms linking virus infections to COPD exacerbations and identified potential new therapeutic targets. This new data should stimulate research into the role of antiviral agents as potential treatments for COPD exacerbations. Testing of antiviral agents has been hampered by the lack of a small animal model for rhinovirus infection and experimental rhinovirus infection in healthy volunteers has been used to test treatments for the common cold. Experimental rhinovirus infection in COPD subjects offers the prospect of a model that can be used to evaluate the effects of new treatments for virus-induced COPD exacerbations, and provide essential data that can be used in making decisions regarding large scale clinical trials.

  6. Antiviral medication in sexually transmitted diseases. Part II: HIV.

    PubMed

    Majewska, Anna; Mlynarczyk-Bonikowska, Beata; Malejczyk, Magdalena; Mlynarczyk, Grazyna; Majewski, Slawomir

    2015-01-01

    This is a second part of a review under a main title Antiviral medication in sexually transmitted diseases. In the part we published in Mini Rev Med Chem. 2013,13(13):1837-45, we have described mechanisms of action and mechanism of resistance to antiviral agents used in genital herpes and genital HPV infection. The Part II review focuses on therapeutic options in HIV infection. In 1987, 6 years after the recognition of AIDS, the FDA approved the first drug against HIV--zidovudine. Since then a lot of antiretroviral drugs are available. The most effective treatment for HIV is highly active antiretroviral therapy--a combination of several antiretroviral medicines that cause a reduction of HIV blood concentration and often results in substantial recovery of impaired immunologic function. At present, there are over 20 drugs licensed and used for the treatment of HIV/AIDS, and these drugs are divided into one of six classes. Investigational agents include GS-7340, the prodrug of tenofovir and BMS-663068--the first in a novel class of drugs that blocks the binding of the HIV gp120 to the CD4 receptor.

  7. Preparation, characterization and in vitro antiviral activity evaluation of foscarnet-chitosan nanoparticles.

    PubMed

    Russo, E; Gaglianone, N; Baldassari, S; Parodi, B; Cafaggi, S; Zibana, C; Donalisio, M; Cagno, V; Lembo, D; Caviglioli, G

    2014-06-01

    A new nanoparticulate system for foscarnet delivery was prepared and evaluated. Nanoparticles were obtained by ionotropic gelation of chitosan induced by foscarnet itself, acting as an ionotropic agent in a manner similar to tripolyphosphate anion. A Doehlert design allowed finding the suitable experimental conditions. Nanoparticles were between 200 and 300nm in diameter (around 450nm after redispersion). Nanoparticle size increased after 5h, but no size increase was observed after 48h when nanoparticles were crosslinked with glutaraldehyde. Zeta potential values of noncrosslinked and crosslinked nanoparticles were between 20 and 25mV, while drug loading of noncrosslinked nanoparticles was about 40% w/w (55% w/w for crosslinked nanoparticles). Nanoparticle yield was around 25% w/w. Crosslinked nanoparticles showed a controlled drug release. Foscarnet released from nanoparticles maintained the antiviral activity of the free drug when tested in vitro against lung fibroblasts (HELF) cells infected with HCMV strain AD-169. Moreover, nanoparticles showed no toxicity on non-infected HELF cells. These nanoparticles may represent a delivery system that could improve the therapeutic effect of foscarnet.

  8. Developing Novel Antimicrobial and Antiviral Textile Products.

    PubMed

    Iyigundogdu, Zeynep Ustaoglu; Demir, Okan; Asutay, Ayla Burcin; Sahin, Fikrettin

    2017-03-01

    In conjunction with an increasing public awareness of infectious diseases, the textile industry and scientists are developing hygienic fabrics by the addition of various antimicrobial and antiviral compounds. In the current study, sodium pentaborate pentahydrate and triclosan are applied to cotton fabrics in order to gain antimicrobial and antiviral properties for the first time. The antimicrobial activity of textiles treated with 3 % sodium pentaborate pentahydrate, 0.03 % triclosan, and 7 % Glucapon has been investigated against a broad range of microorganisms including bacteria, yeast, and fungi. Moreover, modified cotton fabrics were tested against adenovirus type 5 and poliovirus type 1. According to the test results, the modified textile goods attained very good antimicrobial and antiviral properties. Thus, the results of the present study clearly suggest that sodium pentaborate pentahydrate and triclosan solution-treated textiles can be considered in the development of antimicrobial and antiviral textile finishes.

  9. Curious discoveries in antiviral drug development: the role of serendipity.

    PubMed

    De Clercq, Erik

    2015-07-01

    Antiviral drug development has often followed a curious meandrous route, guided by serendipity rather than rationality. This will be illustrated by ten examples. The polyanionic compounds (i) polyethylene alanine (PEA) and (ii) suramin were designed as an antiviral agent (PEA) or known as an antitrypanosomal agent (suramin), before they emerged as, respectively, a depilatory agent, or reverse transcriptase inhibitor. The 2',3'-dideoxynucleosides (ddNs analogues) (iii) have been (and are still) used in the "Sanger" DNA sequencing technique, although they are now commercialized as nucleoside reverse transcriptase inhibitors (NRTIs) in the treatment of HIV infections. (E)-5-(2-Bromovinyl)-2'-deoxyuridine (iv) was discovered as a selective anti-herpes simplex virus compound and is now primarily used for the treatment of varicella-zoster virus infections. The prototype of the acyclic nucleoside phosphonates (ANPs), (S)-9-(3-hydroxy-2-phosphonylmethoxypropyl)adenine [(S)-HPMPA], (v) was never commercialized, although it gave rise to several marketed products (cidofovir, adefovir, and tenofovir). 1-[2-(Hydroxyethoxy)methyl]-6-(phenylthio)thymine (vi) and TIBO (tetrahydroimidazo[4,5,1-jk][1,4-benzodiazepin-2(1H)]-one and -thione) (vii) paved the way to a number of compounds (i.e., nevirapine, delavirdine, etravirine, and rilpivirine), which are now collectively called non-NRTIs. The bicyclam AMD3100 (viii) was originally described as an anti-HIV agent before it became later marketed as a stem cell mobilizer. The S-adenosylhomocysteine hydrolase inhibitors (ix), while active against a broad range of (-)RNA viruses and poxviruses may be particularly effective against Ebola virus, and for (x) the O-ANP derivatives, the potential application range encompasses virtually all DNA viruses.

  10. Antiviral Drugs: Molecular Modeling and QSAR.

    DTIC Science & Technology

    1990-12-10

    questions related to drug design and our areas of expertise; (3) provide general education to USAMRII)D personnel in our methods and capabilities. In...terms of drug design effort, the antiviral drug development effortat US AMRIrID is in its infancy. Little is known of the structure or biology of the...because of the dearth of information about the viruses, for the antiviral work this approach to drug design is currently unavailable to USAMRIID and to

  11. In vitro antiviral activity of plant extracts from Asteraceae medicinal plants

    PubMed Central

    2013-01-01

    Background Due to the high prevalence of viral infections having no specific treatment and the constant appearance of resistant viral strains, the development of novel antiviral agents is essential. The aim of this study was to evaluate the antiviral activity against bovine viral diarrhea virus, herpes simplex virus type 1 (HSV-1), poliovirus type 2 (PV-2) and vesicular stomatitis virus of organic (OE) and aqueous extracts (AE) from: Baccharis gaudichaudiana, B. spicata, Bidens subalternans, Pluchea sagittalis, Tagetes minuta and Tessaria absinthioides. A characterization of the antiviral activity of B. gaudichaudiana OE and AE and the bioassay-guided fractionation of the former and isolation of one active compound is also reported. Methods The antiviral activity of the OE and AE of the selected plants was evaluated by reduction of the viral cytopathic effect. Active extracts were then assessed by plaque reduction assays. The antiviral activity of the most active extracts was characterized by evaluating their effect on the pretreatment, the virucidal activity and the effect on the adsorption or post-adsorption period of the viral cycle. The bioassay-guided fractionation of B. gaudichaudiana OE was carried out by column chromatography followed by semipreparative high performance liquid chromatography fractionation of the most active fraction and isolation of an active compound. The antiviral activity of this compound was also evaluated by plaque assay. Results B. gaudichaudiana and B. spicata OE were active against PV-2 and VSV. T. absinthioides OE was only active against PV-2. The corresponding three AE were active against HSV-1. B. gaudichaudiana extracts (OE and AE) were the most selective ones with selectivity index (SI) values of 10.9 (PV-2) and >117 (HSV-1). For this reason, both extracts of B. gaudichaudiana were selected to characterize their antiviral effects. Further bioassay-guided fractionation of B. gaudichaudiana OE led to an active fraction, FC (EC50

  12. Phytochemical screening, cytotoxicity and antiviral activity of hexane fraction of Phaleria macrocarpa fruits

    NASA Astrophysics Data System (ADS)

    Ismaeel, Mahmud Yusef Yusef; Yaacob, Wan Ahmad; Tahir, Mariya Mohd.; Ibrahim, Nazlina

    2015-09-01

    Phaleria macrocarpa fruits have been widely used in the traditional medicine for the treatment of several infections. The current study was done to determine the phytochemical content, cytotoxicity and antiviral activity of the hexane fraction (HF) of P. macrocarpa fruits. In the hexane fraction of P. macarocarpa fruits, phytochemical screening showed the presence of terpenoids whereas saponins, alkaloids, tannins and anthraquinones were not present. Evaluation on Vero cell lines by using MTT assay showed that the 50% cytotoxic concentration (CC50) value was 0.48 mg/mL indicating that the fraction is not cytotoxic. Antiviral properties of the plant extracts were determined by plaque reduction assay. The effective concentration (EC50) was 0.18 mg/mL. Whereas the selective index (SI = CC50/EC50) of hexane fraction is 2.6 indicating low to moderate potential as antiviral agent.

  13. Cytotoxicity and antiviral activities of Asplenium nidus, Phaleria macrocarpa and Eleusine indica

    NASA Astrophysics Data System (ADS)

    Tahir, Mariya Mohd; Ibrahim, Nazlina; Yaacob, Wan Ahmad

    2014-09-01

    Three local medicinal plants namely Asplenium nidus (langsuyar), Eleusine indica (sambau) and Phaleria macrocarpa (mahkota dewa) were screened for the cytotoxicity and antiviral activities. Six plant extracts were prepared including the aqueous and methanol extracts from A. nidus leaf and root, aqueous extract from dried whole plant of E. indica and methanol extract from P. macrocarpa fruits. Cytotoxicity screening in Vero cell line by MTT assay showed that the CC50 values ranged from 15 to 60 mg/mL thus indicating the safety of the extracts even at high concentrations. Antiviral properties of the plant extracts were determined by plaque reduction assay. The EC50 concentrations were between 3.2 to 47 mg/mL. The selectivity indices (SI = CC50/EC50) of each tested extracts ranged from 4.3 to 63.25 indicating the usefulness of the extracts as potential antiviral agents.

  14. Antiviral symposium and workshop--eighth international meeting.

    PubMed

    Schang, L

    2001-02-01

    The invited speakers for this exciting meeting could be loosely classified into three categories: (i) pre-eminent academic researchers on antivirals; (ii) academic researchers working on basic aspects of virology but whose work may lead to the development of novel antivirals; and, (iii) academic clinicians working with experimental antivirals or with diseases that require new antivirals. As expected from this selection, this meeting explored the future of antivirals, while still paying attention to the development of improved derivatives of currently available drugs.

  15. Guidance for clinical and public health laboratories testing for influenza virus antiviral drug susceptibility in Europe.

    PubMed

    Pozo, Francisco; Lina, Bruno; Andrade, Helena Rebelo de; Enouf, Vincent; Kossyvakis, Athanasios; Broberg, Eeva; Daniels, Rod; Lackenby, Angie; Meijer, Adam

    2013-05-01

    Two classes of antiviral drugs are licensed in Europe for treatment and prophylaxis of influenza; the M2 ion-channel blockers amantadine and rimantadine acting against type A influenza viruses only and the neuraminidase enzyme inhibitors zanamivir and oseltamivir acting against type A and type B influenza viruses. This guidance document was developed for but not limited to the European Union (EU) and other European Economic Area (EEA) countries on how and when to test for influenza virus antiviral drug susceptibility. It is aimed at clinical and influenza surveillance laboratories carrying out antiviral drug susceptibility testing on influenza viruses from patients suspected of harbouring viruses with reduced susceptibility or for the monitoring of the emergence of such among circulating viruses, respectively. Therefore, the guidance should not be read as a directive or an algorithm for treatment. Monitoring for emergence of influenza viruses with reduced drug susceptibility in hospitalized cases is crucial for decision making on possible changes to antiviral treatment. Therefore, it is important to test for antiviral susceptibility in certain patient groups, such as patients treated with influenza antiviral drugs. It is also important to determine the frequency of viruses with natural (not related to drug use) reduced susceptibility among community and hospitalized cases, as this knowledge is essential for making empirical antiviral treatment decisions. Furthermore, testing of specimens from community influenza patients is needed to determine the frequency of viruses with reduced susceptibility and good viral fitness that are readily transmissible, as they may become dominant among circulating viruses. Phenotypic neuraminidase enzyme inhibition assays are recommended to determine the level of inhibition of the neuraminidase enzyme by antiviral drugs as a measure of drug susceptibility of the virus. Genotypic assays are recommended to identify amino acid

  16. Peptide Antimicrobial Agents

    PubMed Central

    Jenssen, Håvard; Hamill, Pamela; Hancock, Robert E. W.

    2006-01-01

    Antimicrobial host defense peptides are produced by all complex organisms as well as some microbes and have diverse and complex antimicrobial activities. Collectively these peptides demonstrate a broad range of antiviral and antibacterial activities and modes of action, and it is important to distinguish between direct microbicidal and indirect activities against such pathogens. The structural requirements of peptides for antiviral and antibacterial activities are evaluated in light of the diverse set of primary and secondary structures described for host defense peptides. Peptides with antifungal and antiparasitic activities are discussed in less detail, although the broad-spectrum activities of such peptides indicate that they are important host defense molecules. Knowledge regarding the relationship between peptide structure and function as well as their mechanism of action is being applied in the design of antimicrobial peptide variants as potential novel therapeutic agents. PMID:16847082

  17. Oxidative stress correlates with Wolbachia-mediated antiviral protection in Wolbachia-Drosophila associations.

    PubMed

    Wong, Zhee Sheen; Brownlie, Jeremy C; Johnson, Karyn N

    2015-05-01

    Wolbachia mediates antiviral protection in insect hosts and is being developed as a potential biocontrol agent to reduce the spread of insect-vectored viruses. Definition of the molecular mechanism that generates protection is important for understanding the tripartite interaction between host insect, Wolbachia, and virus. Elevated oxidative stress was previously reported for a mosquito line experimentally infected with Wolbachia, suggesting that oxidative stress is important for Wolbachia-mediated antiviral protection. However, Wolbachia experimentally introduced into mosquitoes impacts a range of host fitness traits, some of which are unrelated to antiviral protection. To explore whether elevated oxidative stress is associated with antiviral protection in Wolbachia-infected insects, we analyzed oxidative stress of five Wolbachia-infected Drosophila lines. In flies infected with protective Wolbachia strains, hydrogen peroxide concentrations were 1.25- to 2-fold higher than those in paired fly lines cured of Wolbachia infection. In contrast, there was no difference in the hydrogen peroxide concentrations in flies infected with nonprotective Wolbachia strains compared to flies cured of Wolbachia infection. Using a Drosophila mutant that produces increased levels of hydrogen peroxide, we investigated whether flies with high levels of endogenous reactive oxygen species had altered responses to virus infection and found that flies with high levels of endogenous hydrogen peroxide were less susceptible to virus-induced mortality. Taken together, these results suggest that elevated oxidative stress correlates with Wolbachia-mediated antiviral protection in natural Drosophila hosts.

  18. Divergent antiviral effects of bioflavonoids on the hepatitis C virus life cycle

    SciTech Connect

    Khachatoorian, Ronik; Arumugaswami, Vaithilingaraja; Raychaudhuri, Santanu; Yeh, George K.; Maloney, Eden M.; Wang, Julie; and others

    2012-11-25

    We have previously demonstrated that quercetin, a bioflavonoid, blocks hepatitis C virus (HCV) proliferation by inhibiting NS5A-driven internal ribosomal entry site (IRES)-mediated translation of the viral genome. Here, we investigate the mechanisms of antiviral activity of quercetin and six additional bioflavonoids. We demonstrate that catechin, naringenin, and quercetin possess significant antiviral activity, with no associated cytotoxicity. Infectious virion secretion was not significantly altered by these bioflavonoids. Catechin and naringenin demonstrated stronger inhibition of infectious virion assembly compared to quercetin. Quercetin markedly blocked viral translation whereas catechin and naringenin demonstrated mild activity. Similarly quercetin completely blocked NS5A-augmented IRES-mediated translation in an IRES reporter assay, whereas catechin and naringenin had only a mild effect. Moreover, quercetin differentially inhibited HSP70 induction compared to catechin and naringenin. Thus, the antiviral activity of these bioflavonoids is mediated through different mechanisms. Therefore combination of these bioflavonoids may act synergistically against HCV.

  19. 3-Bromopyruvate (3BP) a fast acting, promising, powerful, specific, and effective "small molecule" anti-cancer agent taken from labside to bedside: introduction to a special issue.

    PubMed

    Pedersen, Peter L

    2012-02-01

    Although the "Warburg effect", i.e., elevated glucose metabolism to lactic acid (glycolysis) even in the presence of oxygen, has been recognized as the most common biochemical phenotype of cancer for over 80 years, its biochemical and genetic basis remained unknown for over 50 years. Work focused on elucidating the underlying mechanism(s) of the "Warburg effect" commenced in the author's laboratory in 1969. By 1985 among the novel findings made two related most directly to the basis of the "Warburg effect", the first that the mitochondrial content of tumors exhibiting this phenotype is markedly decreased relative to the tissue of origin, and the second that such mitochondria have markedly elevated amounts of the enzyme hexokinase-2 (HK2) bound to their outer membrane. HK2 is the first of a number of enzymes in cancer cells involved in metabolizing the sugar glucose to lactic acid. At its mitochondrial location HK2 binds at/near the protein VDAC (voltage dependent anion channel), escapes inhibition by its product glucose-6-phosphate, and gains access to mitochondrial produced ATP. As shown by others, it also helps immortalize cancer cells, i.e., prevents cell death. Based on these studies, the author's laboratory commenced experiments to elucidate the gene basis for the overexpression of HK2 in cancer. These studies led to both the discovery of a unique HK2 promoter region markedly activated by both hypoxic conditions and moderately activated by several metabolites (e.g., glucose), Also discovered was the promoter's regulation by epigenetic events (i.e., methylation, demethylation). Finally, the author's laboratory turned to the most important objective. Could they selectively and completely destroy cancerous tumors in animals? This led to the discovery in an experiment conceived, designed, and conducted by Young Ko that the small molecule 3-bromopyruvate (3BP), the subject of this mini-review series, is an incredibly powerful and swift acting anticancer agent

  20. Advances in Antiviral vaccine development

    PubMed Central

    Graham, Barney S.

    2013-01-01

    Summary Antiviral vaccines have been the most successful biomedical intervention for preventing epidemic viral disease. Vaccination for smallpox in humans and rinderpest in cattle was the basis for disease eradication, and recent progress in polio eradication is promising. While early vaccines were developed empirically by passage in live animals or eggs, more recent vaccines have been developed because of the advent of new technologies, particularly cell culture and molecular biology. Recent technological advances in gene delivery and expression, nanoparticles, protein manufacturing, and adjuvants have created the potential for new vaccine platforms that may provide solutions for vaccines against viral pathogens for which no interventions currently exist. In addition, the technological convergence of human monoclonal antibody isolation, structural biology, and high throughput sequencing is providing new opportunities for atomic-level immunogen design. Selection of human monoclonal antibodies can identify immunodominant antigenic sites associated with neutralization and provide reagents for stabilizing and solving the structure of viral surface proteins. Understanding the structural basis for neutralization can guide selection of vaccine targets. Deep sequencing of the antibody repertoire and defining the ontogeny of the desired antibody responses can reveal the junctional recombination and somatic mutation requirements for B-cell recognition and affinity maturation. Collectively, this information will provide new strategic approaches for selecting vaccine antigens, formulations, and regimens. Moreover, it creates the potential for rational vaccine design and establishing a catalogue of vaccine technology platforms that would be effective against any given family or class of viral pathogens and improve our readiness to address new emerging viral threats. PMID:23947359

  1. A 2,5-Dihydroxybenzoic Acid-Gelatin Conjugate: The Synthesis, Antiviral Activity and Mechanism of Antiviral Action Against Two Alphaherpesviruses.

    PubMed

    Lisov, Alexander; Vrublevskaya, Veronika; Lisova, Zoy; Leontievsky, Alexey; Morenkov, Oleg

    2015-10-15

    Various natural and synthetic polyanionic polymers with different chemical structures are known to exhibit potent antiviral activity in vitro toward a variety of enveloped viruses and may be considered as promising therapeutic agents. A water-soluble conjugate of 2,5-dihydroxybezoic acid (2,5-DHBA) with gelatin was synthesized by laccase-catalyzed oxidation of 2,5-DHBA in the presence of gelatin, and its antiviral activity against pseudorabies virus (PRV) and bovine herpesvirus type 1 (BoHV-1), two members of the Alphaherpesvirinae subfamily, was studied. The conjugate produced no direct cytotoxic effect on cells, and did not inhibit cell growth at concentrations up to 1000 µg/mL. It exhibited potent antiviral activity against PRV (IC50, 1.5-15 µg/mL for different virus strains) and BoHV-1 (IC50, 0.5-0.7 µg/mL). When present during virus adsorption, the conjugate strongly inhibited the attachment of PRV and BoHV-1 to cells. The 2,5-DHBA-gelatin conjugate had no direct virucidal effect on the viruses and did not influence their penetration into cells, cell-to-cell spread, production of infectious virus particles in cells, and expression of PRV glycoproteins E and B. The results indicated that the 2,5-DHBA-gelatin conjugate strongly inhibits the adsorption of alphaherpesviruses to cells and can be a promising synthetic polymer for the development of antiviral formulations against alphaherpesvirus infections.

  2. Schisandrin A inhibits dengue viral replication via upregulating antiviral interferon responses through STAT signaling pathway

    PubMed Central

    Yu, Jung-Sheng; Wu, Yu-Hsuan; Tseng, Chin-Kai; Lin, Chun-Kuang; Hsu, Yao-Chin; Chen, Yen-Hsu; Lee, Jin-Ching

    2017-01-01

    Dengue virus (DENV) infects 400 million people worldwide annually. Infection of more than one serotype of DENV highly corresponds to dengue hemorrhagic fever and dengue shock syndrome, which are the leading causes of high mortality. Due to lack of effective vaccines and unavailable therapies against DENV, discovery of anti-DENV agents is urgently needed. We first characterize that Schisandrin A can inhibit the replication of four serotypes of DENV in a concentration- and time-dependent manner, with an effective half-maximal effective concentration 50% (EC50) value of 28.1 ± 0.42 μM against DENV serotype type 2 without significant cytotoxicity. Furthermore, schisandrin A can effectively protect mice from DENV infection by reducing disease symptoms and mortality of DENV-infected mice. We demonstrate that STAT1/2-mediated antiviral interferon responses contribute to the action of schisandrin A against DENV replication. Schisandrin A represents a potential antiviral agent to block DENV replication in vitro and in vivo. In conclusion, stimulation of STAT1/2-mediated antiviral interferon responses is a promising strategy to develop antiviral drug. PMID:28338050

  3. Simultaneous Antibiofilm and Antiviral Activities of an Engineered Antimicrobial Peptide during Virus-Bacterium Coinfection

    PubMed Central

    Melvin, Jeffrey A.; Lashua, Lauren P.; Kiedrowski, Megan R.; Yang, Guanyi; Deslouches, Berthony; Montelaro, Ronald C.

    2016-01-01

    ABSTRACT Antimicrobial-resistant infections are an urgent public health threat, and development of novel antimicrobial therapies has been painstakingly slow. Polymicrobial infections are increasingly recognized as a significant source of severe disease and also contribute to reduced susceptibility to antimicrobials. Chronic infections also are characterized by their ability to resist clearance, which is commonly linked to the development of biofilms that are notorious for antimicrobial resistance. The use of engineered cationic antimicrobial peptides (eCAPs) is attractive due to the slow development of resistance to these fast-acting antimicrobials and their ability to kill multidrug-resistant clinical isolates, key elements for the success of novel antimicrobial agents. Here, we tested the ability of an eCAP, WLBU2, to disrupt recalcitrant Pseudomonas aeruginosa biofilms. WLBU2 was capable of significantly reducing biomass and viability of P. aeruginosa biofilms formed on airway epithelium and maintained activity during viral coinfection, a condition that confers extraordinary levels of antibiotic resistance. Biofilm disruption was achieved in short treatment times by permeabilization of bacterial membranes. Additionally, we observed simultaneous reduction of infectivity of the viral pathogen respiratory syncytial virus (RSV). WLBU2 is notable for its ability to maintain activity across a broad range of physiological conditions and showed negligible toxicity toward the airway epithelium, expanding its potential applications as an antimicrobial therapeutic. IMPORTANCE Antimicrobial-resistant infections are an urgent public health threat, making development of novel antimicrobials able to effectively treat these infections extremely important. Chronic and polymicrobial infections further complicate antimicrobial therapy, often through the development of microbial biofilms. Here, we describe the ability of an engineered antimicrobial peptide to disrupt biofilms

  4. Antiviral activities of heated dolomite powder.

    PubMed

    Motoike, Koichi; Hirano, Shozo; Yamana, Hideaki; Onda, Tetsuhiko; Maeda, Takayoshi; Ito, Toshihiro; Hayakawa, Motozo

    2008-12-01

    The effect of the heating conditions of dolomite powder on its antiviral activity was studied against the H5N3 avian influenza virus. Calcium oxide (CaO) and magnesium oxide (MgO), obtained by the thermal decomposition of dolomite above 800 degrees C, were shown to have strong antiviral activity, but the effect was lessened when the heating temperature exceeded 1400 degrees C. Simultaneous measurement of the crystallite size suggested that the weakening of the activity was due to the considerable grain growth of the oxides. It was found that the presence of Mg in dolomite contributed to the deterrence of grain growth of the oxides during the heating process. Although both CaO and MgO exhibited strong antiviral activity, CaO had the stronger activity but quickly hydrated in the presence of water. On the other hand, the hydration of MgO took place gradually under the same conditions. Separate measurements using MgO and Mg(OH)2 revealed that MgO had a higher antiviral effect than Mg(OH)2. From the overall experiments, it was suggested that the strong antiviral activity of dolomite was related to the hydration reaction of CaO.

  5. RNAi and Antiviral Defense in the Honey Bee.

    PubMed

    Brutscher, Laura M; Flenniken, Michelle L

    2015-01-01

    Honey bees play an important agricultural and ecological role as pollinators of numerous agricultural crops and other plant species. Therefore, investigating the factors associated with high annual losses of honey bee colonies in the US is an important and active area of research. Pathogen incidence and abundance correlate with Colony Collapse Disorder- (CCD-) affected colonies in the US and colony losses in the US and in some European countries. Honey bees are readily infected by single-stranded positive sense RNA viruses. Largely dependent on the host immune response, virus infections can either remain asymptomatic or result in deformities, paralysis, or death of adults or larvae. RNA interference (RNAi) is an important antiviral defense mechanism in insects, including honey bees. Herein, we review the role of RNAi in honey bee antiviral defense and highlight some parallels between insect and mammalian immune systems. A more thorough understanding of the role of pathogens on honey bee health and the immune mechanisms bees utilize to combat infectious agents may lead to the development of strategies that enhance honey bee health and result in the discovery of additional mechanisms of immunity in metazoans.

  6. RNAi and Antiviral Defense in the Honey Bee

    PubMed Central

    Brutscher, Laura M.; Flenniken, Michelle L.

    2015-01-01

    Honey bees play an important agricultural and ecological role as pollinators of numerous agricultural crops and other plant species. Therefore, investigating the factors associated with high annual losses of honey bee colonies in the US is an important and active area of research. Pathogen incidence and abundance correlate with Colony Collapse Disorder- (CCD-) affected colonies in the US and colony losses in the US and in some European countries. Honey bees are readily infected by single-stranded positive sense RNA viruses. Largely dependent on the host immune response, virus infections can either remain asymptomatic or result in deformities, paralysis, or death of adults or larvae. RNA interference (RNAi) is an important antiviral defense mechanism in insects, including honey bees. Herein, we review the role of RNAi in honey bee antiviral defense and highlight some parallels between insect and mammalian immune systems. A more thorough understanding of the role of pathogens on honey bee health and the immune mechanisms bees utilize to combat infectious agents may lead to the development of strategies that enhance honey bee health and result in the discovery of additional mechanisms of immunity in metazoans. PMID:26798663

  7. Pandemic influenza: overview of vaccines and antiviral drugs.

    PubMed Central

    Cox, Manon M. J.

    2005-01-01

    Pandemic influenza has become a high priority item for all public health authorities. An influenza pandemic is believed to be imminent, and scientists agree that it will be a matter of when, where, and what will be the causative agent. Recently, most attention has been directed to human cases of avian influenza caused by a H5N1 avian influenza virus. An effective vaccine will be needed to substantially reduce the impact of an influenza pandemic. Current influenza vaccine manufacturing technology is not adequate to support vaccine production in the event of an avian influenza outbreak, and it has now become clear that new innovative production technology is required. Antiviral drugs, on the other hand, can play a very important role in slowing the disease spread but are in short supply and resistance has been a major issue. Here, we provide an update on the status of pandemic vaccine development and antiviral drugs. Finally, we conclude with some proposed areas of focus in pandemic vaccine preparedness. PMID:17132338

  8. Antiviral activity of natural products extracted from marine organisms.

    PubMed

    Uzair, Bushra; Mahmood, Zahra; Tabassum, Sobia

    2011-01-01

    Many epidemics have broken out over the centuries. Hundreds and thousands of humans have died over a disease. Available treatments for infectious diseases have always been limited. Some infections are more deadly than the others, especially viral pathogens. These pathogens have continuously resisted all kinds of medical treatment, due to a need for new treatments to be developed. Drugs are present in nature and are also synthesized in vitro and they help in combating diseases and restoring health. Synthesizing drugs is a hard and time consuming task, which requires a lot of man power and financial aid. However, the natural compounds are just lying around on the earth, may it be land or water. Over a thousand novel compounds isolated from marine organisms are used as antiviral agents. Others are being pharmacologically tested. Today, over forty antiviral compounds are present in the pharmacological market. Some of these compounds are undergoing clinical and preclinical stages. Marine compounds are paving the way for a new trend in modern medicine.

  9. Antiviral Activity of Myticin C Peptide from Mussel: an Ancient Defense against Herpesviruses

    PubMed Central

    Romero, Alejandro; Pereiro, Patricia; Costa, María M.; Dios, Sonia; Estepa, Amparo; Parra, Francisco; Figueras, Antonio

    2016-01-01

    ABSTRACT Little is known about the antiviral response in mollusks. As in other invertebrates, the interferon signaling pathways have not been identified, and in fact, there is a debate about whether invertebrates possess antiviral immunity similar to that of vertebrates. In marine bivalves, due to their filtering activity, interaction with putative pathogens, including viruses, is very high, suggesting that they should have mechanisms to address these infections. In this study, we confirmed that constitutively expressed molecules in naive mussels confer resistance in oysters to ostreid herpesvirus 1 (OsHV-1) when oyster hemocytes are incubated with mussel hemolymph. Using a proteomic approach, myticin C peptides were identified in both mussel hemolymph and hemocytes. Myticins, antimicrobial peptides that have been previously characterized, were constitutively expressed in a fraction of mussel hemocytes and showed antiviral activity against OsHV-1, suggesting that these molecules could be responsible for the antiviral activity of mussel hemolymph. For the first time, a molecule from a bivalve has shown antiviral activity against a virus affecting mollusks. Moreover, myticin C peptides showed antiviral activity against human herpes simplex viruses 1 (HSV-1) and 2 (HSV-2). In summary, our work sheds light on the invertebrate antiviral immune response with the identification of a molecule with potential biotechnological applications. IMPORTANCE Several bioactive molecules that have potential pharmaceutical or industrial applications have been identified and isolated from marine invertebrates. Myticin C, an antimicrobial peptide from the Mediterranean mussel (Mytilus galloprovincialis) that was identified by proteomic techniques in both mussel hemolymph and hemocytes, showed potential as an antiviral agent against ostreid herpesvirus 1 (OsHV-1), which represents a major threat to the oyster-farming sector. Both hemolymph from mussels and a myticin C peptide inhibited Os

  10. Antiviral Defense Mechanisms in Honey Bees

    PubMed Central

    Brutscher, Laura M.; Daughenbaugh, Katie F.; Flenniken, Michelle L.

    2015-01-01

    Honey bees are significant pollinators of agricultural crops and other important plant species. High annual losses of honey bee colonies in North America and in some parts of Europe have profound ecological and economic implications. Colony losses have been attributed to multiple factors including RNA viruses, thus understanding bee antiviral defense mechanisms may result in the development of strategies that mitigate colony losses. Honey bee antiviral defense mechanisms include RNA-interference, pathogen-associated molecular pattern (PAMP) triggered signal transduction cascades, and reactive oxygen species generation. However, the relative importance of these and other pathways is largely uncharacterized. Herein we review the current understanding of honey bee antiviral defense mechanisms and suggest important avenues for future investigation. PMID:26273564

  11. Extraribosomal L13a Is a Specific Innate Immune Factor for Antiviral Defense

    PubMed Central

    Poddar, Darshana; Basu, Abhijit; Kour, Ravinder; Verbovetskaya, Valentina

    2014-01-01

    ABSTRACT We report a novel extraribosomal innate immune function of mammalian ribosomal protein L13a, whereby it acts as an antiviral agent. We found that L13a is released from the 60S ribosomal subunit in response to infection by respiratory syncytial virus (RSV), an RNA virus of the Pneumovirus genus and a serious lung pathogen. Unexpectedly, the growth of RSV was highly enhanced in L13a-knocked-down cells of various lineages as well as in L13a knockout macrophages from mice. In all L13a-deficient cells tested, translation of RSV matrix (M) protein was specifically stimulated, as judged by a greater abundance of M protein and greater association of the M mRNA with polyribosomes, while general translation was unaffected. In silico RNA folding analysis and translational reporter assays revealed a putative hairpin in the 3′untranslated region (UTR) of M mRNA with significant structural similarity to the cellular GAIT (gamma-activated inhibitor of translation) RNA hairpin, previously shown to be responsible for assembling a large, L13a-containing ribonucleoprotein complex that promoted translational silencing in gamma interferon (IFN-γ)-activated myeloid cells. However, RNA-protein interaction studies revealed that this complex, which we named VAIT (respiratory syncytial virus-activated inhibitor of translation) is functionally different from the GAIT complex. VAIT is the first report of an extraribosomal L13a-mediated, IFN-γ-independent innate antiviral complex triggered in response to virus infection. We provide a model in which the VAIT complex strongly hinders RSV replication by inhibiting the translation of the rate-limiting viral M protein, which is a new paradigm in antiviral defense. IMPORTANCE The innate immune mechanisms of host cells are diverse in nature and act as a broad-spectrum cellular defense against viruses. Here, we report a novel innate immune mechanism functioning against respiratory syncytial virus (RSV), in which the cellular ribosomal

  12. Role of Bacterial Exopolysaccharides as Agents in Counteracting Immune Disorders Induced by Herpes Virus

    PubMed Central

    Gugliandolo, Concetta; Spanò, Antonio; Maugeri, Teresa L.; Poli, Annarita; Arena, Adriana; Nicolaus, Barbara

    2015-01-01

    Extreme marine environments, such as the submarine shallow vents of the Eolian Islands (Italy), offer an almost unexplored source of microorganisms producing unexploited and promising biomolecules for pharmaceutical applications. Thermophilic and thermotolerant bacilli isolated from Eolian vents are able to produce exopolysaccharides (EPSs) with antiviral and immunomodulatory effects against Herpes simplex virus type 2 (HSV-2). HSV-2 is responsible for the most common and continuously increasing viral infections in humans. Due to the appearance of resistance to the available treatments, new biomolecules exhibiting different mechanisms of action could provide novel agents for treating viral infections. The EPSs hinder the HSV-2 replication in human peripheral blood mononuclear cells (PBMC) but not in WISH (Wistar Institute Susan Hayflic) cells line, indicating that cell-mediated immunity was involved in the antiviral activity. High levels of Th1-type cytokines were detected in PBMC treated with all EPSs, while Th2-type cytokines were not induced. These EPSs are water soluble exopolymers able to stimulate the immune response and thus contribute to the antiviral immune defense, acting as immunomodulators. As stimulants of Th1 cell-mediated immunity, they could lead to the development of novel drugs as alternative in the treatment of herpes virus infections, as well as in immunocompromised host. PMID:27682100

  13. Polyphenols as antimicrobial agents.

    PubMed

    Daglia, Maria

    2012-04-01

    Polyphenols are secondary metabolites produced by higher plants, which play multiple essential roles in plant physiology and have potential healthy properties on human organism, mainly as antioxidants, anti-allergic, anti-inflammatory, anticancer, antihypertensive, and antimicrobial agents. In the present review the antibacterial, antiviral, and antifungal activities of the most active polyphenol classes are reported, highlighting, where investigated, the mechanisms of action and the structure-activity relationship. Moreover, considering that the microbial resistance has become an increasing global problem, and there is a compulsory need to find out new potent antimicrobial agents as accessories to antibiotic therapy, the synergistic effect of polyphenols in combination with conventional antimicrobial agents against clinical multidrug-resistant microorganisms is discussed.

  14. Progress of small molecular inhibitors in the development of anti-influenza virus agents

    PubMed Central

    Wu, Xiaoai; Wu, Xiuli; Sun, Qizheng; Zhang, Chunhui; Yang, Shengyong; Li, Lin; Jia, Zhiyun

    2017-01-01

    The influenza pandemic is a major threat to human health, and highly aggressive strains such as H1N1, H5N1 and H7N9 have emphasized the need for therapeutic strategies to combat these pathogens. Influenza anti-viral agents, especially active small molecular inhibitors play important roles in controlling pandemics while vaccines are developed. Currently, only a few drugs, which function as influenza neuraminidase (NA) inhibitors and M2 ion channel protein inhibitors, are approved in clinical. However, the acquired resistance against current anti-influenza drugs and the emerging mutations of influenza virus itself remain the major challenging unmet medical needs for influenza treatment. It is highly desirable to identify novel anti-influenza agents. This paper reviews the progress of small molecular inhibitors act as antiviral agents, which include hemagglutinin (HA) inhibitors, RNA-dependent RNA polymerase (RdRp) inhibitors, NA inhibitors and M2 ion channel protein inhibitors etc. Moreover, we also summarize new, recently reported potential targets and discuss strategies for the development of new anti-influenza virus drugs. PMID:28382157

  15. Antiviral therapy delays esophageal variceal bleeding in hepatitis B virus-related cirrhosis

    PubMed Central

    Li, Chang-Zheng; Cheng, Liu-Fang; Li, Qing-Shan; Wang, Zhi-Qiang; Yan, Jun-Hong

    2013-01-01

    AIM: To investigate the effect of antiviral therapy with nucleoside analogs in hepatitis B virus (HBV)-related cirrhosis and esophageal varices. METHODS: Eligible patients with HBV-related cirrhosis and esophageal varices who consulted two tertiary hospitals in Beijing, China, the Chinese Second Artillery General Hospital and Chinese PLA General Hospital, were enrolled in the study from January 2005 to December 2009. Of 117 patients, 79 received treatment with different nucleoside analogs and 38 served as controls. Bleeding rate, change in variceal grade and non-bleeding duration were analyzed. Multivariate Cox proportional hazard regression was used to identify factors related to esophageal variceal bleeding. RESULTS: The bleeding rate was decreased in the antiviral group compared to the control group (29.1% vs 65.8%, P < 0.001). Antiviral therapy was an independent factor related to esophageal bleeding in multivariate analysis (HR = 11.3, P < 0.001). The mean increase in variceal grade per year was lower in the antiviral group (1.0 ± 1.3 vs 1.7 ± 1.2, P = 0.003). Non-bleeding duration in the antiviral group was prolonged in the Kaplan-Meier model. Viral load rebound was observed in 3 cases in the lamivudine group and in 1 case in the adefovir group, all of whom experienced bleeding. Entecavir and adefovir resulted in lower bleeding rates (17.2% and 28.6%, respectively) than the control (P < 0.001 and P = 0.006, respectively), whereas lamivudine (53.3%) did not (P = 0.531). CONCLUSION: Antiviral therapy delays the progression of esophageal varices and reduces bleeding risk in HBV-related cirrhosis, however, high-resistance agents tend to be ineffective for long-term treatment. PMID:24187460

  16. Griffithsin: An Antiviral Lectin with Outstanding Therapeutic Potential

    PubMed Central

    Lusvarghi, Sabrina; Bewley, Carole A.

    2016-01-01

    Griffithsin (GRFT), an algae-derived lectin, is one of the most potent viral entry inhibitors discovered to date. It is currently being developed as a microbicide with broad-spectrum activity against several enveloped viruses. GRFT can inhibit human immunodeficiency virus (HIV) infection at picomolar concentrations, surpassing the ability of most anti-HIV agents. The potential to inhibit other viruses as well as parasites has also been demonstrated. Griffithsin’s antiviral activity stems from its ability to bind terminal mannoses present in high-mannose oligosaccharides and crosslink these glycans on the surface of the viral envelope glycoproteins. Here, we review structural and biochemical studies that established mode of action and facilitated construction of GRFT analogs, mechanisms that may lead to resistance, and in vitro and pre-clinical results that support the therapeutic potential of this lectin. PMID:27783038

  17. The clinically approved antiviral drug sofosbuvir inhibits Zika virus replication

    PubMed Central

    Sacramento, Carolina Q.; de Melo, Gabrielle R.; de Freitas, Caroline S.; Rocha, Natasha; Hoelz, Lucas Villas Bôas; Miranda, Milene; Fintelman-Rodrigues, Natalia; Marttorelli, Andressa; Ferreira, André C.; Barbosa-Lima, Giselle; Abrantes, Juliana L.; Vieira, Yasmine Rangel; Bastos, Mônica M.; de Mello Volotão, Eduardo; Nunes, Estevão Portela; Tschoeke, Diogo A.; Leomil, Luciana; Loiola, Erick Correia; Trindade, Pablo; Rehen, Stevens K.; Bozza, Fernando A.; Bozza, Patrícia T.; Boechat, Nubia; Thompson, Fabiano L.; de Filippis, Ana M. B.; Brüning, Karin; Souza, Thiago Moreno L.

    2017-01-01

    Zika virus (ZIKV) is a member of the Flaviviridae family, along with other agents of clinical significance such as dengue (DENV) and hepatitis C (HCV) viruses. Since ZIKV causes neurological disorders during fetal development and in adulthood, antiviral drugs are necessary. Sofosbuvir is clinically approved for use against HCV and targets the protein that is most conserved among the members of the Flaviviridae family, the viral RNA polymerase. Indeed, we found that sofosbuvir inhibits ZIKV RNA polymerase, targeting conserved amino acid residues. Sofosbuvir inhibited ZIKV replication in different cellular systems, such as hepatoma (Huh-7) cells, neuroblastoma (SH-Sy5y) cells, neural stem cells (NSC) and brain organoids. In addition to the direct inhibition of the viral RNA polymerase, we observed that sofosbuvir also induced an increase in A-to-G mutations in the viral genome. Together, our data highlight a potential secondary use of sofosbuvir, an anti-HCV drug, against ZIKV. PMID:28098253

  18. The clinically approved antiviral drug sofosbuvir inhibits Zika virus replication.

    PubMed

    Sacramento, Carolina Q; de Melo, Gabrielle R; de Freitas, Caroline S; Rocha, Natasha; Hoelz, Lucas Villas Bôas; Miranda, Milene; Fintelman-Rodrigues, Natalia; Marttorelli, Andressa; Ferreira, André C; Barbosa-Lima, Giselle; Abrantes, Juliana L; Vieira, Yasmine Rangel; Bastos, Mônica M; de Mello Volotão, Eduardo; Nunes, Estevão Portela; Tschoeke, Diogo A; Leomil, Luciana; Loiola, Erick Correia; Trindade, Pablo; Rehen, Stevens K; Bozza, Fernando A; Bozza, Patrícia T; Boechat, Nubia; Thompson, Fabiano L; de Filippis, Ana M B; Brüning, Karin; Souza, Thiago Moreno L

    2017-01-18

    Zika virus (ZIKV) is a member of the Flaviviridae family, along with other agents of clinical significance such as dengue (DENV) and hepatitis C (HCV) viruses. Since ZIKV causes neurological disorders during fetal development and in adulthood, antiviral drugs are necessary. Sofosbuvir is clinically approved for use against HCV and targets the protein that is most conserved among the members of the Flaviviridae family, the viral RNA polymerase. Indeed, we found that sofosbuvir inhibits ZIKV RNA polymerase, targeting conserved amino acid residues. Sofosbuvir inhibited ZIKV replication in different cellular systems, such as hepatoma (Huh-7) cells, neuroblastoma (SH-Sy5y) cells, neural stem cells (NSC) and brain organoids. In addition to the direct inhibition of the viral RNA polymerase, we observed that sofosbuvir also induced an increase in A-to-G mutations in the viral genome. Together, our data highlight a potential secondary use of sofosbuvir, an anti-HCV drug, against ZIKV.

  19. Monitoring the antiviral effect of alpha interferon on individual cells.

    PubMed

    Kim, Chon Saeng; Jung, Jong Ha; Wakita, Takaji; Yoon, Seung Kew; Jang, Sung Key

    2007-08-01

    An infectious hepatitis C virus (HCV) cDNA clone (JFH1) was generated recently. However, quantitative analysis of HCV infection and observation of infected cells have proved to be difficult because the yield of HCV in cell cultures is fairly low. We generated infectious HCV clones containing the convenient reporters green fluorescent protein (GFP) and Renilla luciferase in the NS5a-coding sequence. The new viruses responded to antiviral agents in a dose-dependent manner. Responses of individual cells containing HCV to alpha interferon (IFN-alpha) were monitored using GFP-tagged HCV and time-lapse confocal microscopy. Marked variations in the response to IFN-alpha were observed among HCV-containing cells.

  20. Combination Chemotherapy Using Immune Modulators and Antiviral Drug against Togaviruses and Bunyaviruses

    DTIC Science & Technology

    1989-04-15

    lc numbarýWe hanve studied model ar~oviruses and arenaviruses to develop effective comhination therapies using antiviral drug~ and imniuno...militarily important viral Infections. Specifically, we are concerned with alphaviruses, flaviviruses, bunyaviruses, and arenaviruses . it was the primary...not an effective anti-PIC agent in these animals. These findings are consistent with previous reports of high resistance of arenaviruses to the

  1. In vitro antiviral activity of dermaseptin S(4) and derivatives from amphibian skin against herpes simplex virus type 2.

    PubMed

    Bergaoui, Ines; Zairi, Amira; Tangy, Frédéric; Aouni, Mahjoub; Selmi, Boulbaba; Hani, Khaled

    2013-02-01

    Herpes simplex virus (HSV) infections have become a public health problem worldwide. The emergence of acyclovir-resistant viral strains and the failure of vaccination to prevent herpetic infections have prompted the search for new antiviral drugs. Accordingly, the present study was undertaken to synthesize chemically and evaluate Dermaseptin S(4) (S(4)), an anti-microbial peptide derived from amphibian skin, and its derivatives in terms of anti-herpetic activity. The effects of biochemical modifications on their antimicrobial potential were also investigated. The peptides were incubated together with HSV-2 on target cells under various conditions, and the antiviral effects were examined via a cell metabolic labeling method. The findings revealed that DS(4) derivatives elicited concentration-dependent antiviral activity at micromole concentrations. The biochemical modifications of S(4) allowed for the reduction of peptide cytotoxicity without altering antiviral activity. Dermaseptins were added at different times during the viral cycle to investigate the mode of antiviral action. At the highest non-cytotoxic concentrations, most of the tested derivatives were noted to exhibit high antiviral activity particularly when pre-incubated with free herpes viruses prior to infection. Among these peptides, K(4)K(20)S(4) exhibited the highest antiviral activity against HSV-2 sensitive and resistant strains. Interestingly, the antiviral activity of K(4)K(20)S(4) was effective on both acyclovir-resistant and -sensitive viruses. The findings indicate that K(4)K(20)S(4) can be considered a promising candidate for future application as a therapeutic virucidal agent for the treatment of herpes viruses.

  2. Recent Advances in Antiviral Therapy for Chronic Hepatitis C

    PubMed Central

    Tamori, Akihiro; Enomoto, Masaru; Kawada, Norifumi

    2016-01-01

    Hepatitis C virus (HCV) infection is a major worldwide health problem. Chronic infection induces continuous inflammation in the liver, progression of hepatic fibrosis, eventual cirrhosis, and possible hepatocellular carcinoma. Eradication of the virus is one of the most important treatment aims. A number of promising new direct-acting antivirals (DAAs) have been developed over the past 10 years. Due to their increased efficacy, safety, and tolerability, interferon-free oral therapies with DAAs have been approved for patients with HCV, including those with cirrhosis. This review introduces the characteristics and results of recent clinical trials of several DAAs: NS3/4A protease inhibitors, NS5A inhibitors, and NS5B inhibitors. DAA treatment failure and prognosis after DAA therapy are also discussed. PMID:27022210

  3. Interferon induced IFIT family genes in host antiviral defense

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Secretion of interferons (IFNs) from virus-infected cells is a hallmark of host antiviral immunity and in fact, IFNs exert their antiviral activities through the induction of antiviral proteins. The IFN-induced protein with tetratricopeptide repeats (IFITs) family is among hundreds of IF stimulated ...

  4. Homologous RIG-I–like helicase proteins direct RNAi-mediated antiviral immunity in C. elegans by distinct mechanisms

    PubMed Central

    Guo, Xunyang; Zhang, Rui; Wang, Jeffrey; Ding, Shou-Wei; Lu, Rui

    2013-01-01

    RNAi-mediated antiviral immunity in Caenorhabditis elegans requires Dicer-related helicase 1 (DRH-1), which encodes the helicase and C-terminal domains homologous to the mammalian retinoic acid inducible gene I (RIG-I)-like helicase (RLH) family of cytosolic immune receptors. Here we show that the antiviral function of DRH-1 requires the RIG-I homologous domains as well as its worm-specific N-terminal domain. We also demonstrate that the helicase and C-terminal domains encoded by either worm DRH-2 or human RIG-I can functionally replace the corresponding domains of DRH-1 to mediate antiviral RNAi in C. elegans. Notably, substitutions in a three-residue motif of the C-terminal regulatory domain of RIG-I that physically interacts with viral double-stranded RNA abolish the antiviral activity of C-terminal regulatory domains of both RIG-I and DRH-1 in C. elegans. Genetic analysis revealed an essential role for both DRH-1 and DRH-3 in C. elegans antiviral RNAi targeting a natural viral pathogen. However, Northern blot and small RNA deep sequencing analyses indicate that DRH-1 acts to enhance production of viral primary siRNAs, whereas DRH-3 regulates antiviral RNAi by participating in the biogenesis of secondary siRNAs after Dicer-dependent production of primary siRNAs. We propose that DRH-1 facilitates the acquisition of viral double-stranded RNA by the worm dicing complex for the subsequent processing into primary siRNAs. The strong parallel for the antiviral function of RLHs in worms and mammals suggests that detection of viral double-stranded RNA may activate completely unrelated effector mechanisms or, alternatively, that the mammalian RLHs have a conserved activity to stimulate production of viral siRNAs for antiviral immunity by an RNAi effector mechanism. PMID:24043766

  5. Antiviral properties of quinolone-based drugs.

    PubMed

    Richter, Sara; Parolin, Cristina; Palumbo, Manlio; Palù, Giorgio

    2004-06-01

    Quinolones represent an important class of broad-spectrum antibacterials, the main structural features of which are a 1,4 dihydro-4-oxo-quinolinyl moiety bearing an essential carboxyl group at position 3. Quinolones inhibit prokaryotic type II topoisomerases, namely DNA gyrase and, in a few cases, topoisomerase IV, through direct binding to the bacterial chromosome. Based on the hypothesis that these drugs could also bind to the viral nucleic acids or nucleoprotein-complexes, several quinolone derivatives were tested for their antiviral activity. Indeed, antibacterial fluoroquinolones were shown to be effective against vaccinia virus and papovaviruses; these preliminary results prompted the synthesis of modified quinolones to optimize antiviral action and improve selectivity index. The introduction of an aryl group at the piperazine moiety of the fluoroquinolone shifted the activity from antibacterial to antiviral, with a specific action against HIV. The antiviral activity seemed to be related to an inhibitory effect at the transcriptional level, and further evidence suggested a mechanism of action mediated by inhibition of Tat functions. Substitution of the fluorine at position 6 with an amine group to give aryl-piperazinyl-6-amino-quinolones improved the activity and selectivity against HIV-1: the most potent compound of this series was shown to inhibit virus replication through interference with Tat-TAR interaction. A comprehensive SAR investigation was performed based on additional chemical intervention to the quinolone template moiety, such as the introduction of nucleoside derivative functions. The information gained so far will be useful for future rational drug design aimed at developing new compounds with optimized antiviral activity.

  6. TRIM25 Enhances the Antiviral Action of Zinc-Finger Antiviral Protein (ZAP)

    PubMed Central

    Lau, Zerlina; Cheung, Pamela; Schneider, William M.; Bozzacco, Leonia; Buehler, Eugen; Takaoka, Akinori; Rice, Charles M.; Felsenfeld, Dan P.; MacDonald, Margaret R.

    2017-01-01

    The host factor and interferon (IFN)-stimulated gene (ISG) product, zinc-finger antiviral protein (ZAP), inhibits a number of diverse viruses by usurping and intersecting with multiple cellular pathways. To elucidate its antiviral mechanism, we perform a loss-of-function genome-wide RNAi screen to identify cellular cofactors required for ZAP antiviral activity against the prototype alphavirus, Sindbis virus (SINV). In order to exclude off-target effects, we carry out stringent confirmatory assays to verify the top hits. Important ZAP-liaising partners identified include proteins involved in membrane ion permeability, type I IFN signaling, and post-translational protein modification. The factor contributing most to the antiviral function of ZAP is TRIM25, an E3 ubiquitin and ISG15 ligase. We demonstrate here that TRIM25 interacts with ZAP through the SPRY domain, and TRIM25 mutants lacking the RING or coiled coil domain fail to stimulate ZAP’s antiviral activity, suggesting that both TRIM25 ligase activity and its ability to form oligomers are critical for its cofactor function. TRIM25 increases the modification of both the short and long ZAP isoforms by K48- and K63-linked polyubiquitin, although ubiquitination of ZAP does not directly affect its antiviral activity. However, TRIM25 is critical for ZAP’s ability to inhibit translation of the incoming SINV genome. Taken together, these data uncover TRIM25 as a bona fide ZAP cofactor that leads to increased ZAP modification enhancing its translational inhibition activity. PMID:28060952

  7. The Barrier to Autointegration Factor: Interlocking Antiviral Defense with Genome Maintenance

    PubMed Central

    Jamin, Augusta

    2016-01-01

    Intrinsic defenses targeting foreign DNA are one facet of the cellular armament tasked with protecting host genomic integrity. The DNA binding protein BAF (barrier to autointegration factor) contributes to multiple aspects of genome maintenance and intercepts retrovirus, poxvirus, and herpesvirus genomes during infection. In this gem, we discuss the unique position BAF occupies at the virus-host interface and how both viral and cellular mechanisms may regulate its capacity to act as a pro- or antiviral effector targeting viral DNA. PMID:26842478

  8. The Barrier to Autointegration Factor: Interlocking Antiviral Defense with Genome Maintenance.

    PubMed

    Wiebe, Matthew S; Jamin, Augusta

    2016-04-01

    Intrinsic defenses targeting foreign DNA are one facet of the cellular armament tasked with protecting host genomic integrity. The DNA binding protein BAF (barrier to autointegration factor) contributes to multiple aspects of genome maintenance and intercepts retrovirus, poxvirus, and herpesvirus genomes during infection. In this gem, we discuss the unique position BAF occupies at the virus-host interface and how both viral and cellular mechanisms may regulate its capacity to act as a pro- or antiviral effector targeting viral DNA.

  9. Broad spectrum antiviral activity for paramyxoviruses is modulated by biophysical properties of fusion inhibitory peptides

    PubMed Central

    Mathieu, Cyrille; Augusto, Marcelo T.; Niewiesk, Stefan; Horvat, Branka; Palermo, Laura M.; Sanna, Giuseppina; Madeddu, Silvia; Huey, Devra; Castanho, Miguel A. R. B.; Porotto, Matteo; Santos, Nuno C.; Moscona, Anne

    2017-01-01

    Human paramyxoviruses include global causes of lower respiratory disease like the parainfluenza viruses, as well as agents of lethal encephalitis like Nipah virus. Infection is initiated by viral glycoprotein-mediated fusion between viral and host cell membranes. Paramyxovirus viral fusion proteins (F) insert into the target cell membrane, and form a transient intermediate that pulls the viral and cell membranes together as two heptad-repeat regions refold to form a six-helix bundle structure that can be specifically targeted by fusion-inhibitory peptides. Antiviral potency can be improved by sequence modification and lipid conjugation, and by adding linkers between the protein and lipid components. We exploit the uniquely broad spectrum antiviral activity of a parainfluenza F-derived peptide sequence that inhibits both parainfluenza and Nipah viruses, to investigate the influence of peptide orientation and intervening linker length on the peptides’ interaction with transitional states of F, solubility, membrane insertion kinetics, and protease sensitivity. We assessed the impact of these features on biodistribution and antiviral efficacy in vitro and in vivo. The engineering approach based on biophysical parameters resulted in a peptide that is a highly effective inhibitor of both paramyxoviruses and a set of criteria to be used for engineering broad spectrum antivirals for emerging paramyxoviruses. PMID:28344321

  10. Inhibition of HIV replication by pokeweed antiviral protein targeted to CD4+ cells by monoclonal antibodies

    NASA Astrophysics Data System (ADS)

    Zarling, Joyce M.; Moran, Patricia A.; Haffar, Omar; Sias, Joan; Richman, Douglas D.; Spina, Celsa A.; Myers, Dorothea E.; Kuebelbeck, Virginia; Ledbetter, Jeffrey A.; Uckun, Fatih M.

    1990-09-01

    FUNCTIONAL impairment and selective depletion of CD4+ T cells, the hallmark of AIDS, are at least partly caused by human immunodeficiency virus (HIV-1) type 1 binding to the CD4 molecule and infecting CD4+ cells1,2. It may, therefore, be of therapeutic value to target an antiviral agent to CD4+ cells to prevent infection and to inhibit HIV-1 production in patients' CD4+ cells which contain proviral DNA3,4. We report here that HIV-1 replication in normal primary CD4+ T cells can be inhibited by pokeweed antiviral protein, a plant protein of relative molecular mass 30,000 (ref. 5), which inhibits replication of certain plant RNA viruses6-8, and of herpes simplex virus, poliovirus and influenza virus9-11. Targeting pokeweed antiviral protein to CD4+ T cells by conjugating it to monoclonal antibodies reactive with CDS, CD7 or CD4 expressed on CD4+ cells, increased its anti-HIV potency up to 1,000-fold. HIV-1 replication is inhibited at picomolar concentrations of conjugates of pokeweed antiviral protein and monoclonal antibodies, which do not inhibit proliferation of normal CD4+ T cells or CD4-dependent responses. These conjugates inhibit HIV-1 protein synthesis and also strongly inhibit HIV-1 production in activated CD4+ T cells from infected patients.

  11. An evolutionary screen highlights canonical and noncanonical candidate antiviral genes within the primate TRIM gene family.

    PubMed

    Malfavon-Borja, Ray; Sawyer, Sara L; Wu, Lily I; Emerman, Michael; Malik, Harmit S

    2013-01-01

    Recurrent viral pressure has acted on host-encoded antiviral genes during primate and mammalian evolution. This selective pressure has resulted in dramatic episodes of adaptation in host antiviral genes, often detected via positive selection. These evolutionary signatures of adaptation have the potential to highlight previously unrecognized antiviral genes (also called restriction factors). Although the TRIM multigene family is recognized for encoding several bona fide restriction factors (e.g., TRIM5alpha), most members of this expansive gene family remain uncharacterized. Here, we investigated the TRIM multigene family for signatures of positive selection to identify novel candidate antiviral genes. Our analysis reveals previously undocumented signatures of positive selection in 17 TRIM genes, 10 of which represent novel candidate restriction factors. These include the unusual TRIM52 gene, which has evolved under strong positive selection despite its encoded protein lacking a putative viral recognition (B30.2) domain. We show that TRIM52 arose via gene duplication from the TRIM41 gene. Both TRIM52 and TRIM41 have dramatically expanded RING domains compared with the rest of the TRIM multigene family, yet this domain has evolved under positive selection only in primate TRIM52, suggesting that it represents a novel host-virus interaction interface. Our evolutionary-based screen not only documents positive selection in known TRIM restriction factors but also highlights candidate novel restriction factors, providing insight into the interfaces of host-pathogen interactions mediated by the TRIM multigene family.

  12. Fast-forward generation of effective artificial small RNAs for enhanced antiviral defense in plants.

    PubMed

    Carbonell, Alberto; Carrington, James C; Daròs, José-Antonio

    Artificial small RNAs (sRNAs) are short ≈21-nt non-coding RNAs engineered to inactivate sequence complementary RNAs. In plants, they have been extensively used to silence cellular transcripts in gene function analyses and to target invading RNA viruses to induce resistance. Current artificial sRNA-based antiviral resistance in plants is mainly limited to a single virus, and is jeopardized by the emergence of mutations in the artificial sRNA target site or by the presence of co-infecting viruses. Hence, there is a need to further develop the artificial sRNA approach to generate more broad and durable antiviral resistance in plants. A recently developed toolbox allows for the time and cost-effective large-scale production of artificial sRNA constructs in plants. The toolbox includes the P-SAMS web tool for the automated design of artificial sRNAs, and a new generation of artificial microRNA and synthetic trans-acting small interfering RNA (syn-tasiRNA) vectors for direct cloning and high expression of artificial sRNAs. Here we describe how the simplicity and high-throughput capability of these new technologies should accelerate the study of artificial sRNA-based antiviral resistance in plants. In particular, we discuss the potential of the syn-tasiRNA approach as a promising strategy for developing more effective, durable and broad antiviral resistance in plants.

  13. Epidemiological consequences of household-based antiviral prophylaxis for pandemic influenza

    PubMed Central

    Black, Andrew J.; House, Thomas; Keeling, M. J.; Ross, J. V.

    2013-01-01

    Antiviral treatment offers a fast acting alternative to vaccination; as such it is viewed as a first-line of defence against pandemic influenza in protecting families and households once infection has been detected. In clinical trials, antiviral treatments have been shown to be efficacious in preventing infection, limiting disease and reducing transmission, yet their impact at containing the 2009 influenza A(H1N1)pdm outbreak was limited. To understand this seeming discrepancy, we develop a general and computationally efficient model for studying household-based interventions. This allows us to account for uncertainty in quantities relevant to the 2009 pandemic in a principled way, accounting for the heterogeneity and variability in each epidemiological process modelled. We find that the population-level effects of delayed antiviral treatment and prophylaxis mean that their limited overall impact is quantitatively consistent (at current levels of precision) with their reported clinical efficacy under ideal conditions. Hence, effective control of pandemic influenza with antivirals is critically dependent on early detection and delivery ideally within 24 h. PMID:23389899

  14. [The antiretroviral agent Fullevir].

    PubMed

    Nosik, D N; Lialina, I K; Kalnina, L B; Lobach, O A; Chataeva, M S; Rasnetsov, L D

    2009-01-01

    The antiretroviral properties of Fullevir (sodium salt of fullerenepolyhydropolyaminocaproic acid) manufactured by IntelFarm Co.) were studied in the human cell culture infected with human immunodeficiency virus (HIV). The agent was ascertained to be able to protect the cell from the cytopathic action of HIV. The 90% effective concentration (EF90) was 5 microg/ml. The 50% average toxic concentration was 400 microg/ml. Testing of different (preventive and therapeutic) Fullevir dosage regimens has shown that the drug is effective when used both an hour before and an hour after infection and when administered simultaneously with cell infection. The longer contact time for the agent with the cells increased the degree of antiviral defense. Co-administration of Fullevir and the HIV reverse transcriptase inhibitor Retrovir (azidothymidine) showed a synergistic antiretroviral effect. Thus, Fullevir may be regarded as a new promising antiretroviral drug for the treatment of HIV infection.

  15. The impact of the new antiviral regimens on patient reported outcomes and health economics of patients with chronic hepatitis C.

    PubMed

    Younossi, Zobair; Henry, Linda

    2014-12-15

    Hepatitis C is an important cause of chronic liver disease worldwide with an estimated 170 million people infected. Hepatitis C virus (HCV)-infected patients are physically and mentally impacted by fatigue, depression and anxiety causing an impairment of health related quality of life (HRQOL), lower worker productivity and other patient reported outcomes (PROs). Although anti-HCV regimens containing first generation direct acting antiviral agents (DAAs) were associated with significant side effects, the second generation DAAs, sofosbuvir (SOF) and simeprevir (SMV), are associated with fewer side effects, better tolerability and high cure rates. Despite these advantages, key stakeholders are currently trying to find ways to best integrate these new therapeutic regimens into the management of patients with chronic hepatitis C for the benefit of all. The purpose of this article is to offer insight into the other key and equally important outcomes (PRO's, HRQOL and cost) which should be considered when assessing the applicability of these new regimens for the care of patients infected with HCV. Our review provides evidence that the new treatment regimens for HCV not only have high efficacy rates but are also associated with better patient reported outcomes and cost per case of HCV cured. Additionally, compared to other medical interventions, these new regimens are cost-effective from a societal perspective.

  16. Clinical Implications of Antiviral Resistance in Influenza

    PubMed Central

    Li, Timothy C. M.; Chan, Martin C. W.; Lee, Nelson

    2015-01-01

    Influenza is a major cause of severe respiratory infections leading to excessive hospitalizations and deaths globally; annual epidemics, pandemics, and sporadic/endemic avian virus infections occur as a result of rapid, continuous evolution of influenza viruses. Emergence of antiviral resistance is of great clinical and public health concern. Currently available antiviral treatments include four neuraminidase inhibitors (oseltamivir, zanamivir, peramivir, laninamivir), M2-inibitors (amantadine, rimantadine), and a polymerase inhibitor (favipiravir). In this review, we focus on resistance issues related to the use of neuraminidase inhibitors (NAIs). Data on primary resistance, as well as secondary resistance related to NAI exposure will be presented. Their clinical implications, detection, and novel therapeutic options undergoing clinical trials are discussed. PMID:26389935

  17. Clinical Implications of Antiviral Resistance in Influenza.

    PubMed

    Li, Timothy C M; Chan, Martin C W; Lee, Nelson

    2015-09-14

    Influenza is a major cause of severe respiratory infections leading to excessive hospitalizations and deaths globally; annual epidemics, pandemics, and sporadic/endemic avian virus infections occur as a result of rapid, continuous evolution of influenza viruses. Emergence of antiviral resistance is of great clinical and public health concern. Currently available antiviral treatments include four neuraminidase inhibitors (oseltamivir, zanamivir, peramivir, laninamivir), M2-inibitors (amantadine, rimantadine), and a polymerase inhibitor (favipiravir). In this review, we focus on resistance issues related to the use of neuraminidase inhibitors (NAIs). Data on primary resistance, as well as secondary resistance related to NAI exposure will be presented. Their clinical implications, detection, and novel therapeutic options undergoing clinical trials are discussed.

  18. Polyomavirus T Antigens Activate an Antiviral State

    PubMed Central

    Giacobbi, Nicholas S.; Gupta, Tushar; Coxon, Andrew; Pipas, James M.

    2014-01-01

    Ectopic expression of Simian Virus 40 (SV40) large T antigen (LT) in mouse embryonic fibroblasts (MEFs) increased levels of mRNAs encoding interferon stimulated genes (ISGs). The mechanism by which T antigen increases levels of ISGs in MEFs remains unclear. We present evidence that expression of T antigen from SV40, Human Polyomaviruses BK (BKV) or JC (JCV) upregulate production of ISGs in MEFs, and subsequently result in an antiviral state, as determined by inhibition of VSV or EMCV growth. The first 136 amino acids of LT are sufficient for these activities. Furthermore, increased ISG expression and induction of the antiviral state requires STAT1. Finally, the RB binding motif of LT is necessary for activation of STAT1. We conclude that the induction of the STAT1 mediated innate immune response in MEFs is a common feature shared by SV40, BKV and JCV. PMID:25589241

  19. An antiviral furanoquinone from Paulownia tomentosa Steud.

    PubMed

    Kang, K H; Huh, H; Kim, B K; Lee, C K

    1999-11-01

    A methanol extract of the stem bark of Paulownia tomentosa showed antiviral activity against poliovirus types 1 and 3. Sequential liquid-liquid extraction with n-hexane, chloroform and water, and a silicagel column chromatography resulted in the purification of a compound. The compound was identified as methyl-5-hydroxy-dinaphthol[1,2-2',3']furan-7,12-dione-6-carbox yla te on the basis of spectroscopic data. The component caused a significant reduction of viral cytopathic effect when it was subjected to a standard antiviral assay by using HeLa cells. The EC(50) of the compound against poliovirus type 1 strain Brunhilde, and type 3 strain Leon were 0.3 microg/mL and 0.6 microg/mL, respectively.

  20. Evasion of the interferon-mediated antiviral response by filoviruses.

    PubMed

    Cárdenas, Washington B

    2010-01-01

    The members of the filoviruses are recognized as some of the most lethal viruses affecting human and non-human primates. The only two genera of the Filoviridae family, Marburg virus (MARV) and Ebola virus (EBOV), comprise the main etiologic agents of severe hemorrhagic fever outbreaks in central Africa, with case fatality rates ranging from 25 to 90%. Fatal outcomes have been associated with a late and dysregulated immune response to infection, very likely due to the virus targeting key host immune cells, such as macrophages and dendritic cells (DCs) that are necessary to mediate effective innate and adaptive immune responses. Despite major progress in the development of vaccine candidates for filovirus infections, a licensed vaccine or therapy for human use is still not available. During the last ten years, important progress has been made in understanding the molecular mechanisms of filovirus pathogenesis. Several lines of evidence implicate the impairment of the host interferon (IFN) antiviral innate immune response by MARV or EBOV as an important determinant of virulence. In vitro and in vivo experimental infections with recombinant Zaire Ebola virus (ZEBOV), the best characterized filovirus, demonstrated that the viral protein VP35 plays a key role in inhibiting the production of IFN-α/β. Further, the action of VP35 is synergized by the inhibition of cellular responses to IFN-α/β by the minor matrix viral protein VP24. The dual action of these viral proteins may contribute to an efficient initial virus replication and dissemination in the host. Noticeably, the analogous function of these viral proteins in MARV has not been reported. Because the IFN response is a major component of the innate immune response to virus infection, this chapter reviews recent findings on the molecular mechanisms of IFN-mediated antiviral evasion by filovirus infection.

  1. Contribution of Type III Interferons to Antiviral Immunity; Location, Location, Location.

    PubMed

    Kotenko, Sergei V; Durbin, Joan E

    2017-03-13

    Type I interferons (IFN-α/β) and the more recently identified type III IFNs (IFN-λ) function as the first line of defense against virus infection, and regulate the development of both innate and adaptive immune responses. Type III IFNs were originally identified as a novel ligand-receptor system acting in parallel with type I IFNs, but subsequent studies have provided increasing evidence for distinct roles for each IFN family. In addition to their compartmentalized antiviral actions, these two systems appear to have multiple levels of cross-regulation, and act coordinately to achieve effective anti-microbial protection with minimal collateral damage to the host.

  2. In-vitro antiviral activity of Solanum nigrum against Hepatitis C Virus

    PubMed Central

    2011-01-01

    Background Hepatitis C is a major health problem causes liver cirrhosis, hepatocellular carcinoma and death. The current treatment of standard interferon in combination with ribavirin, has limited benefits due to emergence of resistant mutations during long-term treatment, adverse side effects and high cost. Hence, there is a need for the development of more effective, less toxic antiviral agents. Results The present study was designed to search anti-HCV plants from different areas of Pakistan. Ten medicinal plants were collected and tested for anti-HCV activity by infecting the liver cells with HCV 3a innoculum. Methanol and chloroform extracts of Solanum nigrum (SN) seeds exhibited 37% and more than 50% inhibition of HCV respectively at non toxic concentration. Moreover, antiviral effect of SN seeds extract was also analyzed against HCV NS3 protease by transfecting HCV NS3 protease plasmid into liver cells. The results demonstrated that chloroform extract of SN decreased the expression or function of HCV NS3 protease in a dose- dependent manner and GAPDH remained constant. Conclusion These results suggest that SN extract contains potential antiviral agents against HCV and combination of SN extract with interferon will be better option to treat chronic HCV. PMID:21247464

  3. A Bayesian model for evaluating influenza antiviral efficacy in household studies with asymptomatic infections.

    PubMed

    Yang, Yang; Halloran, M Elizabeth; Longini, Ira M

    2009-04-01

    Antiviral agents are an important component in mitigation/containment strategies for pandemic influenza. However, most research for mitigation/containment strategies relies on the antiviral efficacies evaluated from limited data of clinical trials. Which efficacy measures can be reliably estimated from these studies depends on the trial design, the size of the epidemics, and the statistical methods. We propose a Bayesian framework for modeling the influenza transmission dynamics within households. This Bayesian framework takes into account asymptomatic infections and is able to estimate efficacies with respect to protecting against viral infection, infection with clinical disease, and pathogenicity (the probability of disease given infection). We use the method to reanalyze 2 clinical studies of oseltamivir, an influenza antiviral agent, and compare the results with previous analyses. We found significant prophylactic efficacies in reducing the risk of viral infection and infection with disease but no prophylactic efficacy in reducing pathogenicity. We also found significant therapeutic efficacies in reducing pathogenicity and the risk of infection with disease but no therapeutic efficacy in reducing the risk of viral infection in the contacts.

  4. Aronia melanocarpa and its components demonstrate antiviral activity against influenza viruses.

    PubMed

    Park, Sehee; Kim, Jin Il; Lee, Ilseob; Lee, Sangmoo; Hwang, Min-Woong; Bae, Joon-Yong; Heo, Jun; Kim, Donghwan; Han, Sang-Zin; Park, Man-Seong

    2013-10-11

    The influenza virus is highly contagious in human populations around the world and results in approximately 250,000-500,000 deaths annually. Vaccines and antiviral drugs are commonly used to protect susceptible individuals. However, the antigenic mismatch of vaccines and the emergence of resistant strains against the currently available antiviral drugs have generated an urgent necessity to develop a novel broad-spectrum anti-influenza agent. Here we report that Aronia melanocarpa (black chokeberry, Aronia), the fruit of a perennial shrub species that contains several polyphenolic constituents, possesses in vitro and in vivo efficacy against different subtypes of influenza viruses including an oseltamivir-resistant strain. These anti-influenza properties of Aronia were attributed to two constituents, ellagic acid and myricetin. In an in vivo therapeutic mouse model, Aronia, ellagic acid, and myricetin protected mice against lethal challenge. Based on these results, we suggest that Aronia is a valuable source for antiviral agents and that ellagic acid and myricetin have potential as influenza therapeutics.

  5. Assessment of Antiviral Properties of Peramivir against H7N9 Avian Influenza Virus in an Experimental Mouse Model

    PubMed Central

    Farooqui, Amber; Huang, Linxi; Wu, Suwu; Cai, Yingmu; Su, Min; Lin, Pengzhou; Chen, Weihong; Fang, Xibin; Zhang, Li; Liu, Yisu; Zeng, Tiansheng; Paquette, Stephane G.; Khan, Adnan; Kelvin, Alyson A.

    2015-01-01

    The H7N9 influenza virus causes a severe form of disease in humans. Neuraminidase inhibitors, including oral oseltamivir and injectable peramivir, are the first choices of antiviral treatment for such cases; however, the clinical efficacy of these drugs is questionable. Animal experimental models are essential for understanding the viral replication kinetics under the selective pressure of antiviral agents. This study demonstrates the antiviral activity of peramivir in a mouse model of H7N9 avian influenza virus infection. The data show that repeated administration of peramivir at 30 mg/kg of body weight successfully eradicated the virus from the respiratory tract and extrapulmonary tissues during the acute response, prevented clinical signs of the disease, including neuropathy, and eventually protected mice against lethal H7N9 influenza virus infection. Early treatment with peramivir was found to be associated with better disease outcomes. PMID:26369969

  6. Interferon-mediated antiviral activities of Angelica tenuissima Nakai and its active components.

    PubMed

    Weeratunga, Prasanna; Uddin, Md Bashir; Kim, Myun Soo; Lee, Byeong-Hoon; Kim, Tae-Hwan; Yoon, Ji-Eun; Ma, Jin Yeul; Kim, Hongik; Lee, Jong-Soo

    2016-01-01

    Angelica tenuissima Nakai is a widely used commodity in traditional medicine. Nevertheless, no study has been conducted on the antiviral and immune-modulatory properties of an aqueous extract of Angelica tenuissima Nakai. In the present study, we evaluated the antiviral activities and the mechanism of action of an aqueous extract of Angelica tenuissima Nakai both in vitro and in vivo. In vitro, an effective dose of Angelica tenuissima Nakai markedly inhibited the replication of Influenza A virus (PR8), Vesicular stomatitis virus (VSV), Herpes simplex virus (HSV), Coxsackie virus, and Enterovirus (EV-71) on epithelial (HEK293T/HeLa) and immune (RAW264.7) cells. Such inhibition can be described by the induction of the antiviral state in cells by antiviral, IFNrelated gene induction and secretion of IFNs and pro-inflammatory cytokines. In vivo, Angelica tenuissima Nakai treated BALB/c mice displayed higher survivability and lower lung viral titers when challenged with lethal doses of highly pathogenic influenza A subtypes (H1N1, H5N2, H7N3, and H9N2). We also found that Angelica tenuissima Nakai can induce the secretion of IL-6, IFN-λ, and local IgA in bronchoalveolar lavage fluid (BALF) of Angelica tenuissima Nakai treated mice, which correlating with the observed prophylactic effects. In HPLC analysis, we found the presence of several compounds in the aqueous fraction and among them; we evaluated antiviral properties of ferulic acid. Therefore, an extract of Angelica tenuissima Nakai and its components, including ferulic acid, play roles as immunomodulators and may be potential candidates for novel anti-viral/anti-influenza agents.

  7. RIG-I Mediates an Antiviral Response to Crimean-Congo Hemorrhagic Fever Virus

    PubMed Central

    Spengler, Jessica R.; Patel, Jenish R.; Chakrabarti, Ayan K.; Zivcec, Marko; García-Sastre, Adolfo; Spiropoulou, Christina F.

    2015-01-01

    ABSTRACT In the cytoplasm, the retinoic acid-inducible gene I (RIG-I) senses the RNA genomes of several RNA viruses. RIG-I binds to viral RNA, eliciting an antiviral response via the cellular adaptor MAVS. Crimean-Congo hemorrhagic fever virus (CCHFV), a negative-sense RNA virus with a 5′-monophosphorylated genome, is a highly pathogenic zoonotic agent with significant public health implications. We found that, during CCHFV infection, RIG-I mediated a type I interferon (IFN) response via MAVS. Interfering with RIG-I signaling reduced IFN production and IFN-stimulated gene expression and increased viral replication. Immunostimulatory RNA was isolated from CCHFV-infected cells and from virion preparations, and RIG-I coimmunoprecipitation of infected cell lysates isolated immunostimulatory CCHFV RNA. This report serves as the first description of a pattern recognition receptor for CCHFV and highlights a critical signaling pathway in the antiviral response to CCHFV. IMPORTANCE CCHFV is a tick-borne virus with a significant public health impact. In order for cells to respond to virus infection, they must recognize the virus as foreign and initiate antiviral signaling. To date, the receptors involved in immune recognition of CCHFV are not known. Here, we investigate and identify RIG-I as a receptor involved in initiating an antiviral response to CCHFV. This receptor initially was not expected to play a role in CCHFV recognition because of characteristics of the viral genome. These findings are important in understanding the antiviral response to CCHFV and support continued investigation into the spectrum of potential viruses recognized by RIG-I. PMID:26223644

  8. SP-303, an antiviral oligomeric proanthocyanidin from the latex of Croton lechleri (Sangre de Drago).

    PubMed

    Ubillas, R; Jolad, S D; Bruening, R C; Kernan, M R; King, S R; Sesin, D F; Barrett, M; Stoddart, C A; Flaster, T; Kuo, J; Ayala, F; Meza, E; Castañel, M; McMeekin, D; Rozhon, E; Tempesta, M S; Barnard, D; Huffman, J; Smee, D; Sidwell, R; Soike, K; Brazier, A; Safrin, S; Orlando, R; Kenny, P T; Berova, N; Nakanishi, K

    1994-09-01

    SP-303, a large proanthocyanidin oligomer isolated from the latex of the plant species Croton lechleri (Eupborbiaceae) has demonstrated broad activity against a variety of DNA and RNA viruses. In cell culture, SP-303 exhibits potent activity against isolates and laboratory strains of respiratory syncytial virus (RSV), influenza A virus (FLU-A) and parainfluenza virus (PIV). Parallel assays of SP-303 and ribavirin showed comparable activity against these viruses. SP-303 also exhibits significant inhibitory activity against herpesvirus (HSV) types 1 and 2, including herpesviruses resistant to acyclovir and foscarnet. Inhibition was also observed against hepatitis A and B viruses. The antiviral mechanism of SP-303 seems to derive from its direct binding to components of the viral envelope, resulting in inhibition of viral attachment and penetration of the plasma membrane. Antiviral effects of SP-303 were measured by three distinct methods: CPE, MTT and precursor uptake/incorporation. Cytotoxicity endpoints were markedly greater than the respective antiviral endpoints. SP-303 exhibited activity in RSV-infected cotton rats and African green monkeys, PIV-3-infected cotton rats, HSV-2 infected mice and guinea pigs and FLU-A-infected mice. The most successful routes of SP-303 administration for producing efficacy were: topical application to HSV-2- genital lesions in mice and guinea pigs, aerosol inhalation to FLU-A-infected mice and PIV-3-infected cotton rats, and oral dosage to RSV-infected cotton rats. A variety of toxicological evaluations demonstrated the safety of SP-303, particularly orally, which was predictable, since condensed tannins are a common dietary component. It is notable that the larger proanthocyanidins as a class have high antiviral activity, whereas most of the monomers are inactive. Clinical trials are ongoing to evaluate SP-303 as a therapeutic antiviral agent.

  9. Antiviral activity of salivary microRNAs for ophthalmic herpes zoster.

    PubMed

    Irmak, M Kemal; Erdem, Uzeyir; Kubar, Ayhan

    2012-06-07

    Ophthalmic herpes zoster is a common ocular infection caused by the varicella-zoster virus (VZV). Viral mRNA transcripts play a major role in the replicative cycle of the virus and current antiviral agents have little effect in preventing and treating the complications. Therapeutic use of saliva for certain painful ocular diseases such as ophthalmic herpes zoster is a well-known public practice in our region. We thought that antiviral activity of saliva may stem from salivary microvesicles and we aimed to look for molecules with antiviral activity in these vesicles. As a possible candidate for antiviral activity, salivary microvesicles contain at least 20 microRNAs (miRNAs), small noncoding RNAs, which suppress the translation of target mRNAs. miRNAs not only participate in maintenance of normal cell functions, but are also involved in host-virus interactions and limit the replication of certain virus types. Thus, miRNA gene therapy by targeting mRNAs required for VZV survival may find a niche in the treatment of ophthalmic herpes zoster. But, how could salivary microvesicles reach into the corneal cells to demonstrate their antiviral activity. We suggest that human salivary microvesicles can be effective carriers of miRNA for corneal cells, because they contain a molecular machinery for vesicle trafficking and fusion allowing them to be endocytosed by target cells. After binding to the plasma membrane, microvesicles seem to enter into the corneal cells through the clathrin-mediated endocytosis. In the cytosol, human salivary miRNAs base-pair with specific viral mRNAs and inhibit their translation, thus limiting the replication of the virus.

  10. Treatment of hepatitis C virus infection with interferon and small molecule direct antivirals: viral kinetics and modeling

    PubMed Central

    Rong, Libin; Perelson, Alan S.

    2010-01-01

    Hepatitis C virus (HCV) infection remains a threat to global public health. Treatment with pegylated interferon (IFN) plus ribavirin leads to a sustained virologic response in about 50% of patients. New therapies using direct antiviral agents have the potential to cure patients unresponsive to IFN-based therapies. Mathematical modeling has played an important role in studying HCV kinetics. Using models one can evaluate the effectiveness of new treatment agents, estimate important parameters that govern virus-host interactions, explore possible mechanisms of drug action against HCV, investigate the development of drug resistance and study quasispecies dynamics during therapy. Here we review our current knowledge of HCV kinetics under IFN-based therapy and newly developed antiviral agents specifically targeted to attack HCV, and show how mathematical models have helped improve our understanding of HCV infection and treatment. PMID:20370626

  11. A case for developing antiviral drugs against polio.

    PubMed

    Collett, Marc S; Neyts, Johan; Modlin, John F

    2008-09-01

    Polio eradication is within sight. In bringing the world close to this ultimate goal, the Global Polio Eradication Initiative (GPEI) has relied exclusively on the live, attenuated oral poliovirus vaccine (OPV). However, as eradication nears, continued OPV use becomes less tenable due to the incidence of vaccine associated paralytic poliomyelitis (VAPP) in vaccine recipients and disease caused by circulating vaccine-derived polioviruses (cVDPVs) in contacts. Once wild poliovirus transmission has been interrupted globally, OPV use will stop. This will leave the inactivated poliovirus vaccine (IPV) as the only weapon to defend a polio-free world. Outbreaks caused by cVDPVs are expected post-OPV cessation, and accidental or deliberate releases of virus could also occur. There are serious doubts regarding the ability of IPV alone to control outbreaks. Here, we argue that antiviral drugs against poliovirus be added to the arsenal. Anti-poliovirus drugs could be used to treat the infected and protect the exposed, acting rapidly on their own to contain an outbreak and used as a complement to IPV. While there are no polio antiviral drugs today, the technological feasibility of developing such drugs and their probability of clinical success have been established by over three decades of drug development targeting the related rhinoviruses and non-polio enteroviruses (NPEVs). Because of this history, there are known compounds with anti-poliovirus activity in vitro that represent excellent starting points for polio drug development. Stakeholders must come to understand the potential public health benefits of polio drugs, the feasibility of their development, and the relatively modest costs involved. Given the timelines for eradication and those for drug development, the time for action is now.

  12. Enterovirus infection in Korean children and anti-enteroviral potential candidate agents

    PubMed Central

    Park, Kwi Sung; Choi, Young Jin

    2012-01-01

    Although most enterovirus infections are not serious enough to be life threatening, several enteroviruses such as enterovirus 71 are responsible for severe, potentially life-threatening disease. The epidemic patterns of enteroviruses occur regularly during the year, but they may change due to environmental shifts induced by climate change due to global warming. Therefore, enterovirus epidemiological studies should be performed continuously as a basis for anti-viral studies. A great number of synthesized antiviral compounds that work against enteroviruses have been developed but only a few have demonstrated effectiveness in vivo. No proven effective antiviral agents are available for enterovirus disease therapy. The development of a new antiviral drug is a difficult task due to poor selective toxicity and cost. To overcome these limitations, one approach is to accelerate the availability of other existing antiviral drugs approved for antiviral effect against enteroviruses, and the other way is to screen traditional medicinal plants. PMID:23133481

  13. A 2,5-Dihydroxybenzoic Acid–Gelatin Conjugate: The Synthesis, Antiviral Activity and Mechanism of Antiviral Action Against Two Alphaherpesviruses

    PubMed Central

    Lisov, Alexander; Vrublevskaya, Veronika; Lisova, Zoy; Leontievsky, Alexey; Morenkov, Oleg

    2015-01-01

    Various natural and synthetic polyanionic polymers with different chemical structures are known to exhibit potent antiviral activity in vitro toward a variety of enveloped viruses and may be considered as promising therapeutic agents. A water-soluble conjugate of 2,5-dihydroxybezoic acid (2,5-DHBA) with gelatin was synthesized by laccase-catalyzed oxidation of 2,5-DHBA in the presence of gelatin, and its antiviral activity against pseudorabies virus (PRV) and bovine herpesvirus type 1 (BoHV-1), two members of the Alphaherpesvirinae subfamily, was studied. The conjugate produced no direct cytotoxic effect on cells, and did not inhibit cell growth at concentrations up to 1000 µg/mL. It exhibited potent antiviral activity against PRV (IC50, 1.5–15 µg/mL for different virus strains) and BoHV-1 (IC50, 0.5–0.7 µg/mL). When present during virus adsorption, the conjugate strongly inhibited the attachment of PRV and BoHV-1 to cells. The 2,5-DHBA–gelatin conjugate had no direct virucidal effect on the viruses and did not influence their penetration into cells, cell-to-cell spread, production of infectious virus particles in cells, and expression of PRV glycoproteins E and B. The results indicated that the 2,5-DHBA–gelatin conjugate strongly inhibits the adsorption of alphaherpesviruses to cells and can be a promising synthetic polymer for the development of antiviral formulations against alphaherpesvirus infections. PMID:26501311

  14. Interaction of SARS and MERS Coronaviruses with the Antiviral Interferon Response.

    PubMed

    Kindler, E; Thiel, V; Weber, F

    2016-01-01

    Severe Acute Respiratory Syndrome (SARS) and Middle East Respiratory Syndrome (MERS) are the most severe coronavirus (CoV)-associated diseases in humans. The causative agents, SARS-CoV and MERS-CoV, are of zoonotic origin but may be transmitted to humans, causing severe and often fatal respiratory disease in their new host. The two coronaviruses are thought to encode an unusually large number of factors that allow them to thrive and replicate in the presence of efficient host defense mechanisms, especially the antiviral interferon system. Here, we review the recent progress in our understanding of the strategies that highly pathogenic coronaviruses employ to escape, dampen, or block the antiviral interferon response in human cells.

  15. Naturally occurring compounds acting as potent anti-metastatic agents and their suppressing effects on Hedgehog and WNT/β-catenin signalling pathways.

    PubMed

    Farahmand, L; Darvishi, B; Majidzadeh-A, K; Madjid Ansari, A

    2017-02-01

    Despite numerous remarkable achievements in the field of anti-cancer therapy, tumour relapse and metastasis still remain major obstacles in improvement of overall cancer survival, which may be at least partially owing to epithelial-mesenchymal transition (EMT). Multiple signalling pathways have been identified in EMT; however, it appears that the role of the Hedgehog and WNT/β-catenin pathways are more prominent than others. These are well-known preserved intracellular regulatory pathways of different cellular functions including proliferation, survival, adhesion and differentiation. Over the last few decades, several naturally occurring compounds have been identified to significantly obstruct several intermediates in Hedgehog and WNT/β-catenin signalling, eventually resulting in suppression of signal transduction. This article highlights the current state of knowledge associated with Hedgehog and WNT/β-catenin, their involvement in metastasis through EMT processes and introduction of the most potent naturally occurring agents with capability of suppressing them, eventually overcoming tumour relapse, invasion and metastasis.

  16. Potent in vitro antiviral activity of Cistus incanus extract against HIV and Filoviruses targets viral envelope proteins

    PubMed Central

    Rebensburg, Stephanie; Helfer, Markus; Schneider, Martha; Koppensteiner, Herwig; Eberle, Josef; Schindler, Michael; Gürtler, Lutz; Brack-Werner, Ruth

    2016-01-01

    Novel therapeutic options are urgently needed to improve global treatment of virus infections. Herbal products with confirmed clinical safety features are attractive starting material for the identification of new antiviral activities. Here we demonstrate that Cistus incanus (Ci) herbal products inhibit human immunodeficiency virus (HIV) infections in vitro. Ci extract inhibited clinical HIV-1 and HIV-2 isolates, and, importantly, a virus isolate with multiple drug resistances, confirming broad anti-HIV activity. Antiviral activity was highly selective for virus particles, preventing primary attachment of the virus to the cell surface and viral envelope proteins from binding to heparin. Bioassay-guided fractionation indicated that Ci extract contains numerous antiviral compounds and therefore has favorably low propensity to induce virus resistance. Indeed, no resistant viruses emerged during 24 weeks of continuous propagation of the virus in the presence of Ci extracts. Finally, Ci extracts also inhibited infection by virus particles pseudotyped with Ebola and Marburg virus envelope proteins, indicating that antiviral activity of Ci extract extends to emerging viral pathogens. These results demonstrate that Ci extracts show potent and broad in vitro antiviral activity against viruses that cause life-threatening diseases in humans and are promising sources of agents that target virus particles. PMID:26833261

  17. The combined use of alphavirus replicons and pseudoinfectious particles for the discovery of antivirals derived from natural products.

    PubMed

    Delekta, Phillip C; Raveh, Avi; Larsen, Martha J; Schultz, Pamela J; Tamayo-Castillo, Giselle; Sherman, David H; Miller, David J

    2015-06-01

    Alphaviruses are a prominent class of reemergent pathogens due to their globally expanding ranges, potential for lethality, and possible use as bioweapons. The absence of effective treatments for alphaviruses highlights the need for innovative strategies to identify antiviral agents. Primary screens that use noninfectious self-replicating RNAs, termed replicons, have been used to identify potential antiviral compounds for alphaviruses. Only inhibitors of viral genome replication, however, will be identified using replicons, which excludes many other druggable steps in the viral life cycle. To address this limitation, we developed a western equine encephalitis virus pseudoinfectious particle system that reproduces several crucial viral life cycle steps in addition to genome replication. We used this system to screen a library containing ~26,000 extracts derived from marine microbes, and we identified multiple bacterial strains that produce compounds with potential antiviral activity. We subsequently used pseudoinfectious particle and replicon assays in parallel to counterscreen candidate extracts, and followed antiviral activity during biochemical fractionation and purification to differentiate between inhibitors of viral entry and genome replication. This novel process led to the isolation of a known alphavirus entry inhibitor, bafilomycin, thereby validating the approach for the screening and identification of potential antiviral compounds.

  18. Antiviral and Antioxidant Activities of Sulfated Galactomannans from Plants of Caatinga Biome

    PubMed Central

    Marques, Márcia Maria Mendes; de Morais, Selene Maia; da Silva, Ana Raquel Araújo; Barroso, Naiara Dutra; Pontes Filho, Tadeu Rocha; Araújo, Fernanda Montenegro de Carvalho; Vieira, Ícaro Gusmão Pinto; Lima, Danielle Malta; Guedes, Maria Izabel Florindo

    2015-01-01

    Dengue represents a serious social and economic public health problem; then trying to contribute to improve its control, the objective of this research was to develop phytoterapics for dengue treatment using natural resources from Caatinga biome. Galactomannans isolated from Adenanthera pavonina L., Caesalpinia ferrea Mart., and Dimorphandra gardneriana Tull were chemically sulfated in order to evaluate the antioxidant, and antiviral activities and the role in the inhibition of virus DENV-2 in Vero cells. A positive correlation between the degree of sulfation, antioxidant and antiviral activities was observed. The sulfated galactomannans showed binding to the virus surface, indicating that they interact with DENV-2. The sulfated galactomannans from C. ferrea showed 96% inhibition of replication of DENV-2 followed by D. gardneriana (94%) and A. pavonina (77%) at 25 µg/mL and all sulfated galactomannans also showed antioxidant activity. This work is the first report of the antioxidant and antiviral effects of sulfated galactomannans against DENV-2. The results are very promising and suggest that these sulfated galactomannans from plants of Caatinga biome act in the early step of viral infection. Thus, sulfated galactomannans may act as an entry inhibitor of DENV-2. PMID:26257815

  19. Antiviral and Antioxidant Activities of Sulfated Galactomannans from Plants of Caatinga Biome.

    PubMed

    Marques, Márcia Maria Mendes; de Morais, Selene Maia; da Silva, Ana Raquel Araújo; Barroso, Naiara Dutra; Pontes Filho, Tadeu Rocha; Araújo, Fernanda Montenegro de Carvalho; Vieira, Ícaro Gusmão Pinto; Lima, Danielle Malta; Guedes, Maria Izabel Florindo

    2015-01-01

    Dengue represents a serious social and economic public health problem; then trying to contribute to improve its control, the objective of this research was to develop phytoterapics for dengue treatment using natural resources from Caatinga biome. Galactomannans isolated from Adenanthera pavonina L., Caesalpinia ferrea Mart., and Dimorphandra gardneriana Tull were chemically sulfated in order to evaluate the antioxidant, and antiviral activities and the role in the inhibition of virus DENV-2 in Vero cells. A positive correlation between the degree of sulfation, antioxidant and antiviral activities was observed. The sulfated galactomannans showed binding to the virus surface, indicating that they interact with DENV-2. The sulfated galactomannans from C. ferrea showed 96% inhibition of replication of DENV-2 followed by D. gardneriana (94%) and A. pavonina (77%) at 25 µg/mL and all sulfated galactomannans also showed antioxidant activity. This work is the first report of the antioxidant and antiviral effects of sulfated galactomannans against DENV-2. The results are very promising and suggest that these sulfated galactomannans from plants of Caatinga biome act in the early step of viral infection. Thus, sulfated galactomannans may act as an entry inhibitor of DENV-2.

  20. Amphipathic DNA polymers exhibit antiviral activity against systemic Murine Cytomegalovirus infection

    PubMed Central

    2009-01-01

    Background Phosphorothioated oligonucleotides (PS-ONs) have a sequence-independent, broad spectrum antiviral activity as amphipathic polymers (APs) and exhibit potent in vitro antiviral activity against a broad spectrum of herpesviruses: HSV-1, HSV-2, HCMV, VZV, EBV, and HHV-6A/B, and in vivo activity in a murine microbiocide model of genital HSV-2 infection. The activity of these agents against animal cytomegalovirus (CMV) infections in vitro and in vivo was therefore investigated. Results In vitro, a 40 mer degenerate AP (REP 9) inhibited both murine CMV (MCMV) and guinea pig CMV (GPCMV) with an IC50 of 0.045 μM and 0.16 μM, respectively, and a 40 mer poly C AP (REP 9C) inhibited MCMV with an IC50 of 0.05 μM. Addition of REP 9 to plaque assays during the first two hours of infection inhibited 78% of plaque formation whereas addition of REP 9 after 10 hours of infection did not significantly reduce the number of plaques, indicating that REP 9 antiviral activity against MCMV occurs at early times after infection. In a murine model of CMV infection, systemic treatment for 5 days significantly reduced virus replication in the spleens and livers of infected mice compared to saline-treated control mice. REP 9 and REP 9C were administered intraperitoneally for 5 consecutive days at 10 mg/kg, starting 2 days prior to MCMV infection. Splenomegaly was observed in infected mice treated with REP 9 but not in control mice or in REP 9 treated, uninfected mice, consistent with mild CpG-like activity. When REP 9C (which lacks CpG motifs) was compared to REP 9, it exhibited comparable antiviral activity as REP 9 but was not associated with splenomegaly. This suggests that the direct antiviral activity of APs is the predominant therapeutic mechanism in vivo. Moreover, REP 9C, which is acid stable, was effective when administered orally in combination with known permeation enhancers. Conclusion These studies indicate that APs exhibit potent, well tolerated antiviral activity

  1. Preliminary investigations of the clinical pharmacology of three short-acting non-depolarizing neuromuscular blocking agents, Org 9453, Org 9489 and Org 9487.

    PubMed

    Wierda, J M; Beaufort, A M; Kleef, U W; Smeulers, N J; Agoston, S

    1994-03-01

    Three muscle relaxants, Org 9453, Org 9489 and Org 9487, short-acting in animals, were investigated to establish their profiles in humans. Potency, time course of action, and pharmacokinetic behaviour were studied in 90 healthy patients during fentanyl/halothane/N2O anaesthesia. Neuromuscular function was monitored mechanomyographically. Plasma and urine concentrations (three patients per compound) were measured by HPLC, and these data were analyzed by iterative linear least square regression analysis. The ED90 values for Org 9453, Org 9489 and Org 9487 were 1.4, 0.45 and 1.15 mg.kg-1 respectively. The onset times of Org 9453 (1.5 mg.kg-1, 1.1 X ED90), Org 9489 (0.9 mg.kg-1, 2 X ED90) and Org 9487 (1.5 mg.kg-1, 1.3 X ED90) were 1.2, 1.6 and 1.5 min, and the durations until 25% twitch recovery were 8.6, 22.0 and 8.9 min, respectively. Clearances of these doses were 6.9, 5.8, and 11.1 ml.kg-1.min-1, and mean residence times 26, 79, and 41 min, respectively. Mean renal excretion (parent compound and metabolites) within 24 hr amounted to 5, 11.3 and 12.2% respectively. No side effects other than a moderate short-lasting decrease of blood pressure and a concomittant increase in heart rate were noted. It is concluded that Org 9453 and Org 9487 are short-acting muscle relaxants in humans.

  2. Alveolar macrophage–derived type I interferons orchestrate innate immunity to RSV through recruitment of antiviral monocytes

    PubMed Central

    Goritzka, Michelle; Makris, Spyridon; Kausar, Fahima; Durant, Lydia R.; Pereira, Catherine; Kumagai, Yutaro; Culley, Fiona J.; Mack, Matthias; Akira, Shizuo

    2015-01-01

    Type I interferons (IFNs) are important for host defense from viral infections, acting to restrict viral production in infected cells and to promote antiviral immune responses. However, the type I IFN system has also been associated with severe lung inflammatory disease in response to respiratory syncytial virus (RSV). Which cells produce type I IFNs upon RSV infection and how this directs immune responses to the virus, and potentially results in pathological inflammation, is unclear. Here, we show that alveolar macrophages (AMs) are the major source of type I IFNs upon RSV infection in mice. AMs detect RSV via mitochondrial antiviral signaling protein (MAVS)–coupled retinoic acid–inducible gene 1 (RIG-I)–like receptors (RLRs), and loss of MAVS greatly compromises innate immune restriction of RSV. This is largely attributable to loss of type I IFN–dependent induction of monocyte chemoattractants and subsequent reduced recruitment of inflammatory monocytes (infMo) to the lungs. Notably, the latter have potent antiviral activity and are essential to control infection and lessen disease severity. Thus, infMo recruitment constitutes an important and hitherto underappreciated, cell-extrinsic mechanism of type I IFN–mediated antiviral activity. Dysregulation of this system of host antiviral defense may underlie the development of RSV-induced severe lung inflammation. PMID:25897172

  3. Letermovir and inhibitors of the terminase complex: a promising new class of investigational antiviral drugs against human cytomegalovirus

    PubMed Central

    Melendez, Dante P; Razonable, Raymund R

    2015-01-01

    Infection with cytomegalovirus is prevalent in immunosuppressed patients. In solid organ transplant and hematopoietic stem cell transplant recipients, cytomegalovirus infection is associated with high morbidity and preventable mortality. Prevention and treatment of cytomegalovirus with currently approved antiviral drugs is often associated with side effects that sometimes preclude their use. Moreover, cytomegalovirus has developed mutations that confer resistance to standard antiviral drugs. During the last decade, there have been calls to develop novel antiviral drugs that could provide better options for prevention and treatment of cytomegalovirus. Letermovir (AIC246) is a highly specific antiviral drug that is currently undergoing clinical development for the management of cytomegalovirus infection. It acts by inhibiting the viral terminase complex. Letermovir is highly potent in vitro and in vivo against cytomegalovirus. Because of a distinct mechanism of action, it does not exhibit cross-resistance with other antiviral drugs. It is predicted to be active against strains that are resistant to ganciclovir, foscarnet, and cidofovir. To date, early-phase clinical trials suggest a very low incidence of adverse effects. Herein, we present a comprehensive review on letermovir, from its postulated novel mechanism of action to the results of most recent clinical studies. PMID:26345608

  4. Antiviral therapy for hepatitis C: Has anything changed for pregnant/lactating women?

    PubMed

    Spera, Anna Maria; Eldin, Tarek Kamal; Tosone, Grazia; Orlando, Raffaele

    2016-04-28

    Hepatitis C virus (HCV) affects about 3% of the world's population, with the highest prevalence in individuals under 40. The prevalence in pregnant women varies with geographical distribution (highest in developing countries). Prevalence also increases in sub-populations of women at high risk for blood-transmitted infections. HCV infection in pregnancy represents a non-negligible problem. However, most of the past antiviral regimens cannot be routinely offered to pregnant or breastfeeding women because of their side effects. We briefly reviewed the issue of treatment of HCV infection in pregnant/breastfeeding women focusing on the effects of the new direct-acting antivirals on fertility, pregnancy and lactation in animal studies and on the potential risk for humans based on the pharmacokinetic properties of each drug. Currently, all new therapy regimens are contraindicated in this setting because of lack of sufficient safety information and adequate measures of contraception are still routinely recommended for female patients of childbearing potential.

  5. Bugs Are Not to Be Silenced: Small RNA Pathways and Antiviral Responses in Insects.

    PubMed

    Mongelli, Vanesa; Saleh, Maria-Carla

    2016-09-29

    Like every other organism on Earth, insects are infected with viruses, and they rely on RNA interference (RNAi) mechanisms to circumvent viral infections. A remarkable characteristic of RNAi is that it is both broadly acting, because it is triggered by double-stranded RNA molecules derived from virtually any virus, and extremely specific, because it targets only the particular viral sequence that initiated the process. Reviews covering the different facets of the RNAi antiviral immune response in insects have been published elsewhere. In this review, we build a framework to guide future investigation. We focus on the remaining questions and avenues of research that need to be addressed to move the field forward, including issues such as the activity of viral suppressors of RNAi, comparative genomics, the development of detailed maps of the subcellular localization of viral replication complexes with the RNAi machinery, and the regulation of the antiviral RNAi response.

  6. Determining Mechanism of Action of Antivirals for Respiratory Illness

    NASA Astrophysics Data System (ADS)

    Rodriguez, Irma; Dobrovolny, Hana

    2015-03-01

    Viral infections in the respiratory tract are common in humans and can cause serious illness and death. Drug treatment is the principal line of protection against many of these illnesses and many compounds are tested as antivirals. Often the efficacy of these antivirals are determined before a mechanism of action is understood. We use mathematical models to represent the evolution of these diseases and establish which experiments can help determine the mechanism of action of antivirals.

  7. Rice WRKY4 acts as a transcriptional activator mediating defense responses toward Rhizoctonia solani, the causing agent of rice sheath blight.

    PubMed

    Wang, Haihua; Meng, Jiao; Peng, Xixu; Tang, Xinke; Zhou, Pinglan; Xiang, Jianhua; Deng, Xiaobo

    2015-09-01

    WRKY transcription factors have been implicated in the regulation of transcriptional reprogramming associated with various plant processes but most notably with plant defense responses to pathogens. Here we demonstrate that expression of rice WRKY4 gene (OsWRKY4) was rapidly and strongly induced upon infection of Rhizoctonia solani, the causing agent of rice sheath blight, and exogenous jasmonic acid (JA) and ethylene (ET). OsWRKY4 is localized to the nucleus of plant cells and possesses transcriptional activation ability. Modulation of OsWRKY4 transcript levels by constitutive overexpression increases resistance to the necrotrophic sheath blight fungus, concomitant with elevated expression of JA- and ET-responsive pathogenesis-related (PR) genes such as PR1a, PR1b, PR5 and PR10/PBZ1. Suppression by RNA interference (RNAi), on the other hand, compromises resistance to the fungal pathogen. Yeast one-hybrid assay and transient expression in tobacco cells reveal that OsWRKY4 specifically binds to the promoter regions of PR1b and PR5 which contain W-box (TTGAC[C/T]), or W-box like (TGAC[C/T]) cis-elements. In conclusion, we propose that OsWRKY4 functions as an important positive regulator that is implicated in the defense responses to rice sheath blight via JA/ET-dependent signal pathway.

  8. Hydrogen bonds and antiviral activity of benzaldehyde derivatives

    NASA Astrophysics Data System (ADS)

    Tolstorozhev, G. B.; Skornyakov, I. V.; Belkov, M. V.; Shadyro, O. I.; Brinkevich, S. D.; Samovich, S. N.

    2012-09-01

    We have obtained the Fourier transform IR spectra of solutions of benzaldehyde derivatives having different antiviral activities against a herpes virus. We observe a correlation between the presence of hydrogen bonds in the benzaldehyde molecules and the appearance of antiviral properties in the compounds. For compounds having antiviral activity, we have obtained spectral data suggesting the existence of hydrogen bonds of the type C=OṡṡṡH-O and O-HṡṡṡO in the molecules. When the hydrogen atom in the hydroxyl groups are replaced by a methyl group, no intramolecular hydrogen bonds are formed and the compounds lose their antiviral activity.

  9. Antiviral potential of a diterpenoid compound sugiol from Metasequoia glyptostroboides.

    PubMed

    Bajpai, Vivek K; Kim, Na-Hyung; Kim, Kangmin; Kang, Sun Chul

    2016-05-01

    This research reports first time antiviral activity of sugiol, a diterpenoid isolated from Metasequoia glyptostroboides in terms of its ability to inhibit in vitro growth of H1N1 influenza virus. Antiviral potential of sugiol was evaluated through hcytopathogenic reduction assay using Madin-Darby canine kidney (MDCK) cell line. Sugiol (500 μg/ml) was found to exhibit considerable anti-cytopathic effect on MDCK cell line confirming its antiviral efficacy against H1N1 influenza virus. These findings strongly reinforce the suggestion that sugiol could be a candidate of choice in combinational regimen with potential antiviral efficacy.

  10. siRNA targeting vaccinia virus double-stranded RNA binding protein [E3L] exerts potent antiviral effects.

    PubMed

    Dave, Rajnish S; McGettigan, James P; Qureshi, Tazeen; Schnell, Matthias J; Nunnari, Giuseppe; Pomerantz, Roger J

    2006-05-10

    The Vaccinia virus gene, E3L, encodes a double-stranded RNA [dsRNA]-binding protein. We hypothesized that, owing to the critical nature of dsRNA in triggering host innate antiviral responses, E3L-specific small-interfering RNAs [siRNAs] should be effective antiviral agents against pox viruses, for which Vaccinia virus is an appropriate surrogate. In this study, we have utilized two human cell types, namely, HeLa and 293T, one which responds to interferon [IFN]-beta and the other produces and responds to IFN-beta, respectively. The antiviral effects were equally robust in HeLa and 293T cells. However, in the case of 293T cells, several distinct features were observed, when IFN-beta is activated in these cells. Vaccinia virus replication was inhibited by 97% and 98% as compared to control infection in HeLa and 293T cells transfected with E3L-specific siRNAs, respectively. These studies demonstrate the utility of E3L-specific siRNAs as potent antiviral agents for small pox and related pox viruses.

  11. Ethanol Extracts from Mistletoe (Viscum album L.) Act as Natural Antioxidants and Antimicrobial Agents in Uncooked Pork Patties during Refrigerated Storage

    PubMed Central

    Kang, Suk-Nam

    2016-01-01

    The antioxidant potential of mistletoe (Viscum album L. var. coloratum Ohwi; VAL) extract in uncooked pork patties was evaluated. Three concentrations of VAL extract (0.1 [T1], 0.5% [T2] and 1.0% [T3]) along with 0.02% ascorbic acid as a positive control (V) were added to ground pork and pork patties were prepared. Incorporation of VAL extract decreased (p<0.05) the pH of the pork patties throughout the storage time and reduced (p<0.01) the thiobarbituric acid reactive substance values after day 14 of storage. Total plate counts of the VAL extract-treated samples and V-treated samples were also significantly lower (p<0.01) than that of the control (C) throughout the storage period. In addition, odor scores of the VAL extract-treated patties were lower than those of the C- or V-treated samples on 3rd day of the storage period. These results demonstrated that the VAL extract acts as a natural antioxidant in uncooked pork products. PMID:26732334

  12. By improving regional cortical blood flow, attenuating mitochondrial dysfunction and sequential apoptosis galangin acts as a potential neuroprotective agent after acute ischemic stroke.

    PubMed

    Li, Shaojing; Wu, Chuanhong; Zhu, Li; Gao, Jian; Fang, Jing; Li, Defeng; Fu, Meihong; Liang, Rixin; Wang, Lan; Cheng, Ming; Yang, Hongjun

    2012-11-09

    Ischemic stroke is a devastating disease with a complex pathophysiology. Galangin is a natural flavonoid isolated from the rhizome of Alpina officinarum Hance, which has been widely used as an antioxidant agent. However, its effects against ischemic stroke have not been reported and its related neuroprotective mechanism has not really been explored. In this study, neurological behavior, cerebral infarct volumes and the improvement of the regional cortical blood flow (rCBF) were used to evaluate the therapeutic effect of galangin in rats impaired by middle cerebral artery occlusion (MCAO)-induced focal cerebral ischemia. Furthermore, the determination of mitochondrial function and Western blot of apoptosis-related proteins were performed to interpret the neuroprotective mechanism of galangin. The results showed that galangin alleviated the neurologic impairments, reduced cerebral infarct at 24 h after MCAO and exerted a protective effect on the mitochondria with decreased production of mitochondrial reactive oxygen species (ROS). These effects were consistent with improvements in the membrane potential level (Dym), membrane fluidity, and degree of mitochondrial swelling in a dose-dependent manner. Moreover, galangin significantly improved the reduced rCBF after MCAO. Western blot analysis revealed that galangin also inhibited apoptosis in a dose-dependent manner concomitant with the up-regulation of Bcl-2 expression, down-regulation of Bax expression and the Bax/Bcl-2 ratio, a reduction in cytochrome c release from the mitochondria to the cytosol, the reduced expression of activated caspase-3 and the cleavage of poly(ADP-ribose) polymerase (PARP). All these data in this study demonstrated that galangin might have therapeutic potential for ischemic stroke and play its protective role through the improvement in rCBF, mitochondrial protection and inhibiting caspase-dependent mitochondrial cell death pathway for the first time.

  13. The water-soluble Roussin's red ester acting as a potential photochemical NO-delivery agent: photolysis reactions, DNA cleavage and anticancer activity.

    PubMed

    Chang, Han-Hun; Huang, Hung-Jen; Ho, Yun-Lung; Wen, Yu-Der; Huang, Wei-Ning; Chiou, Show-Jen

    2009-08-28

    The water-soluble Roussin's red ester [(NO)(2)Fe(mu-SCH(2)CH(2)P(O)(CH(2)OH)(2))(2)Fe(NO)(2)] (1), a potential photochemical prodrug of an NO precursor, was synthesized from the reaction of HSCH(2)CH(2)P(O)(CH(2)OH)(2) (F) and [Fe(CO)(2)(NO)(2)]. The IR v(NO) stretching frequencies of complex 1 appear at 1759 (s), 1784 (s) and 1816 (w) cm(-1) in buffer (pH = 7.4). NO was released with a stoichiometry ratio Delta[NO]/Delta[1] = 3.6 +/- 0.2 when complex 1 was exposed to UV in deaerated aqueous phosphate buffer solution. Here light acts as an On/Off switch for NO release. Incubation of pBR322 supercoiled DNA with complex 1, followed by irradiation, produced DNA strand breakage. In contrast to the addition of carboxy-PTIO (NO radical scavenger), DNA strand breakage was not inhibited when the scavengers of hydroxyl radical and singlet oxygen were added. Complex 1 irradiated under a N(2) atmosphere exhibited the same cleavage efficiency as complex 1 irradiated under air. The results show that DNA strand cleavage efficiency depends on the concentration of complex 1, the pH value of the buffer, and the duration of the photolysis of complex 1. The conversion rate from supercoiled (SC form) to nicked circular (NC form) of complex 1 was 2.96 x 10(-2) s(-1). The results of a T4 ligase enzymatic assay reveals the nonhydrolytic DNA breakage mechanism. The NO-release ability of complexes 1, 2, and 3 follows the order 1 > 2 > 3. Upon UV-irradiation, complex 1 exhibits cytotoxicity against B16-F10 mouse melanoma cells.

  14. Swimming microorganisms acting as nanorobots versus artificial nanorobotic agents: A perspective view from an historical retrospective on the future of medical nanorobotics in the largest known three-dimensional biomicrofluidic networks

    PubMed Central

    Martel, Sylvain

    2016-01-01

    The vascular system in each human can be described as a 3D biomicrofluidic network providing a pathway close to approximately 100 000 km in length. Such network can be exploited to target any parts inside the human body with further accessibility through physiological spaces such as the interstitial microenvironments. This fact has triggered research initiatives towards the development of new medical tools in the form of microscopic robotic agents designed for surgical, therapeutic, imaging, or diagnostic applications. To push the technology further towards medical applications, nanotechnology including nanomedicine has been integrated with principles of robotics. This new field of research is known as medical nanorobotics. It has been particularly creative in recent years to make what was and often still considered science-fiction to offer concrete implementations with the potential to enhance significantly many actual medical practices. In such a global effort, two main strategic trends have emerged where artificial and synthetic implementations presently compete with swimming microorganisms being harnessed to act as medical nanorobotic agents. Recognizing the potentials of each approach, efforts to combine both towards the implementation of hybrid nanorobotic agents where functionalities are implemented using both artificial/synthetic and microorganism-based entities have also been initiated. Here, through the main eras of progressive developments in this field, the evolutionary path being described from some of the main historical achievements to recent technological innovations is extrapolated in an attempt to provide a perspective view on the future of medical nanorobotics capable of targeting any parts of the human body accessible through the vascular network. PMID:27158285

  15. Swimming microorganisms acting as nanorobots versus artificial nanorobotic agents: A perspective view from an historical retrospective on the future of medical nanorobotics in the largest known three-dimensional biomicrofluidic networks.

    PubMed

    Martel, Sylvain

    2016-03-01

    The vascular system in each human can be described as a 3D biomicrofluidic network providing a pathway close to approximately 100 000 km in length. Such network can be exploited to target any parts inside the human body with further accessibility through physiological spaces such as the interstitial microenvironments. This fact has triggered research initiatives towards the development of new medical tools in the form of microscopic robotic agents designed for surgical, therapeutic, imaging, or diagnostic applications. To push the technology further towards medical applications, nanotechnology including nanomedicine has been integrated with principles of robotics. This new field of research is known as medical nanorobotics. It has been particularly creative in recent years to make what was and often still considered science-fiction to offer concrete implementations with the potential to enhance significantly many actual medical practices. In such a global effort, two main strategic trends have emerged where artificial and synthetic implementations presently compete with swimming microorganisms being harnessed to act as medical nanorobotic agents. Recognizing the potentials of each approach, efforts to combine both towards the implementation of hybrid nanorobotic agents where functionalities are implemented using both artificial/synthetic and microorganism-based entities have also been initiated. Here, through the main eras of progressive developments in this field, the evolutionary path being described from some of the main historical achievements to recent technological innovations is extrapolated in an attempt to provide a perspective view on the future of medical nanorobotics capable of targeting any parts of the human body accessible through the vascular network.

  16. Inflammatory monocytes hinder antiviral B cell responses

    PubMed Central

    Sammicheli, Stefano; Kuka, Mirela; Di Lucia, Pietro; de Oya, Nereida Jimenez; De Giovanni, Marco; Fioravanti, Jessica; Cristofani, Claudia; Maganuco, Carmela G.; Fallet, Benedict; Ganzer, Lucia; Sironi, Laura; Mainetti, Marta; Ostuni, Renato; Larimore, Kevin; Greenberg, Philip D.; de la Torre, Juan Carlos; Guidotti, Luca G.; Iannacone, Matteo

    2016-01-01

    Antibodies are critical for protection against viral infections. However, several viruses, such as lymphocytic choriomeningitis virus (LCMV), avoid the induction of early protective antibody responses by poorly understood mechanisms. Here we analyzed the spatiotemporal dynamics of B cell activation to show that, upon subcutaneous infection, LCMV-specific B cells readily relocate to the interfollicular and T cell areas of the draining lymph node where they extensively interact with CD11b+Ly6Chi inflammatory monocytes. These myeloid cells were recruited to lymph nodes draining LCMV infection sites in a type I interferon-, CCR2-dependent fashion and they suppressed antiviral B cell responses by virtue of their ability to produce nitric oxide. Depletion of inflammatory monocytes, inhibition of their lymph node recruitment or impairment of their nitric oxide-producing ability enhanced LCMV-specific B cell survival and led to robust neutralizing antibody production. In conclusion, our results identify inflammatory monocytes as critical gatekeepers that prevent antiviral B cell responses and suggest that certain viruses take advantage of these cells to prolong their persistence within the host. PMID:27868108

  17. Antiviral Defenses in Plants through Genome Editing

    PubMed Central

    Romay, Gustavo; Bragard, Claude

    2017-01-01

    Plant–virus interactions based-studies have contributed to increase our understanding on plant resistance mechanisms, providing new tools for crop improvement. In the last two decades, RNA interference, a post-transcriptional gene silencing approach, has been used to induce antiviral defenses in plants with the help of genetic engineering technologies. More recently, the new genome editing systems (GES) are revolutionizing the scope of tools available to confer virus resistance in plants. The most explored GES are zinc finger nucleases, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeats/Cas9 endonuclease. GES are engineered to target and introduce mutations, which can be deleterious, via double-strand breaks at specific DNA sequences by the error-prone non-homologous recombination end-joining pathway. Although GES have been engineered to target DNA, recent discoveries of GES targeting ssRNA molecules, including virus genomes, pave the way for further studies programming plant defense against RNA viruses. Most of plant virus species have an RNA genome and at least 784 species have positive ssRNA. Here, we provide a summary of the latest progress in plant antiviral defenses mediated by GES. In addition, we also discuss briefly the GES perspectives in light of the rebooted debate on genetic modified organisms (GMOs) and the current regulatory frame for agricultural products involving the use of such engineering technologies. PMID:28167937

  18. Avian Interferons and Their Antiviral Effectors.

    PubMed

    Santhakumar, Diwakar; Rubbenstroth, Dennis; Martinez-Sobrido, Luis; Munir, Muhammad

    2017-01-01

    Interferon (IFN) responses, mediated by a myriad of IFN-stimulated genes (ISGs), are the most profound innate immune responses against viruses. Cumulatively, these IFN effectors establish a multilayered antiviral state to safeguard the host against invading viral pathogens. Considerable genetic and functional characterizations of mammalian IFNs and their effectors have been made, and our understanding on the avian IFNs has started to expand. Similar to mammalian counterparts, three types of IFNs have been genetically characterized in most avian species with available annotated genomes. Intriguingly, chickens are capable of mounting potent innate immune responses upon various stimuli in the absence of essential components of IFN pathways including retinoic acid-inducible gene I, IFN regulatory factor 3 (IRF3), and possibility IRF9. Understanding these unique properties of the chicken IFN system would propose valuable targets for the development of potential therapeutics for a broader range of viruses of both veterinary and zoonotic importance. This review outlines recent developments in the roles of avian IFNs and ISGs against viruses and highlights important areas of research toward our understanding of the antiviral functions of IFN effectors against viral infections in birds.

  19. Avian Interferons and Their Antiviral Effectors

    PubMed Central

    Santhakumar, Diwakar; Rubbenstroth, Dennis; Martinez-Sobrido, Luis; Munir, Muhammad

    2017-01-01

    Interferon (IFN) responses, mediated by a myriad of IFN-stimulated genes (ISGs), are the most profound innate immune responses against viruses. Cumulatively, these IFN effectors establish a multilayered antiviral state to safeguard the host against invading viral pathogens. Considerable genetic and functional characterizations of mammalian IFNs and their effectors have been made, and our understanding on the avian IFNs has started to expand. Similar to mammalian counterparts, three types of IFNs have been genetically characterized in most avian species with available annotated genomes. Intriguingly, chickens are capable of mounting potent innate immune responses upon various stimuli in the absence of essential components of IFN pathways including retinoic acid-inducible gene I, IFN regulatory factor 3 (IRF3), and possibility IRF9. Understanding these unique properties of the chicken IFN system would propose valuable targets for the development of potential therapeutics for a broader range of viruses of both veterinary and zoonotic importance. This review outlines recent developments in the roles of avian IFNs and ISGs against viruses and highlights important areas of research toward our understanding of the antiviral functions of IFN effectors against viral infections in birds. PMID:28197148

  20. Antiviral mechanism of polyanionic carbosilane dendrimers against HIV-1

    PubMed Central

    Vacas-Córdoba, Enrique; Maly, Marek; De la Mata, Francisco J; Gómez, Rafael; Pion, Marjorie; Muñoz-Fernández, Mª Ángeles

    2016-01-01

    Nanotechnology-derived platforms, such as dendrimers, are very attractive in several biological applications. In the case of human immunodeficiency virus (HIV) infection, polyanionic carbosilane dendrimers have shown great potential as antiviral agents in the development of novel microbicides to prevent the sexual transmission of HIV-1. In this work, we studied the mechanism of two sulfated and naphthylsulfonated functionalized carbosilane dendrimers, G3-S16 and G2-NF16. They are able to inhibit viral infection at fusion and thus at the entry step. Both compounds impede the binding of viral particles to target cell surface and membrane fusion through the blockage of gp120–CD4 interaction. In addition, and for the first time, we demonstrate that dendrimers can inhibit cell-to-cell HIV transmission and difficult infectious synapse formation. Thus, carbosilane dendrimers’ mode of action is a multifactorial process targeting several proteins from viral envelope and from host cells that could block HIV infection at different stages during the first step of infection. PMID:27103798

  1. Chemokine receptors as new molecular targets for antiviral therapy.

    PubMed

    Santoro, F; Vassena, L; Lusso, P

    2004-04-01

    Extraordinary advancements have been made over the past decade in our understanding of the molecular mechanism of human immunodeficiency virus (HIV) entry into cells. The external HIV envelope glycoprotein, gp120, sequentially interacts with two cellular receptor molecules, the CD4 glycoprotein and a chemokine receptor, such as CCR5 or CXCR4, leading to the activation of the fusogenic domain of the transmembrane viral glycoprotein, gp41, which changes its conformation to create a hairpin structure that eventually triggers fusion between the viral and cellular membranes. Each of these discrete steps in the viral entry process represents a potential target for new antiviral agents. Current efforts to develop safe and effective HlV entry inhibitors are focused on naturally occurring proteins (e.g., chemokines, antibodies), engineered or modified derivatives of natural proteins (e.g., multimerized soluble CD4, gp41--or chemokine--derived synthetic peptides), as well as small synthetic compounds obtained either by high-throughput screening of large compound libraries or by structure-guided rational design. The recent introduction in therapy of the first fusion inhibitor, the gp41-derived synthetic peptide T20, heralds a new era in the treatment of AIDS, which will hopefully lead to more effective multi-drug regimens with reduced adverse effects for the patients.

  2. HCV-targeted antivirals: current status and future challenges.

    PubMed

    Gemma, Sandra; Brogi, Simone; Novellino, Ettore; Campiani, Giuseppe; Maga, Giovanni; Brindisi, Margherita; Butini, Stefania

    2014-01-01

    Hepatitis C virus (HCV) is the major etiological agent of human non-A and non-B hepatitis, affecting more than 170 million people worldwide. While the current standard of care for the treatment of HCV infection is ribavirin in combination with interferon-α (IFN-α), this therapeutic regimen presents several drawbacks, mainly related to important and serious side effects, to resistance issues, and to the lack of efficacy for the treatment of specific viral genotypes. In 2011, the FDA approved two HCV-targeted antivirals, namely boceprevir and telaprevir. These two drugs inhibit the protease activity of the viral enzyme NS3/4A, and in Phase III clinical trials proved to be effective in achieving sustained virological response rate up to 75%. However, problems associated with these therapeutic regimens still exist and need to be addressed. Intense research efforts in the field are aimed at discovering small-molecule inhibitors of HCV enzymes and proteins such as NS5B and NS5A and at developing NS3 protease inhibitors active against resistant viruses expressing mutated NS3 protease. The most recent advances for the rational drug design of such inhibitors are here reviewed.

  3. Antiviral Ability of Kalanchoe gracilis Leaf Extract against Enterovirus 71 and Coxsackievirus A16

    PubMed Central

    Wang, Ching-Ying; Huang, Shun-Chueh; Zhang, Yongjun; Lai, Zhen-Rung; Kung, Szu-Hao; Chang, Yuan-Shiun; Lin, Cheng-Wen

    2012-01-01

    Pandemic infection or reemergence of Enterovirus 71 (EV71) and coxsackievirus A16 (CVA16) occurs in tropical and subtropical regions, being associated with hand-foot-and-mouth disease, herpangina, aseptic meningitis, brain stem encephalitis, pulmonary edema, and paralysis. However, effective therapeutic drugs against EV71 and CVA16 are rare. Kalanchoe gracilis (L.) DC is used for the treatment of injuries, pain, and inflammation. This study investigated antiviral effects of K. gracilis leaf extract on EV71 and CVA16 replications. HPLC analysis with a C-18 reverse phase column showed fingerprint profiles of K. gracilis leaf extract had 15 chromatographic peaks. UV/vis absorption spectra revealed peaks 5, 12, and 15 as ferulic acid, quercetin, and kaempferol, respectively. K. gracilis leaf extract showed little cytotoxicity, but exhibited concentration-dependent antiviral activities including cytopathic effect, plaque, and virus yield reductions. K. gracilis leaf extract was shown to be more potent in antiviral activity than ferulic acid, quercetin, and kaempferol, significantly inhibiting in vitro replication of EV71 (IC50 = 35.88 μg/mL) and CVA16 (IC50 = 42.91 μg/mL). Moreover, K. gracilis leaf extract is a safe antienteroviral agent with the inactivation of viral 2A protease and reduction of IL-6 and RANTES expressions. PMID:22666293

  4. Human herpesvirus 8-associated neoplasms: the roles of viral replication and antiviral treatment

    PubMed Central

    Gantt, Soren; Casper, Corey

    2014-01-01

    Purpose of review In this review, we highlight the importance of human herpesvirus 8 (HHV-8) lytic replication and the potential for antiviral therapies to prevent or treat HHV-8-related neoplasms. Recent findings Dieases caused by HHV-8 infection include Kaposi sarcoma (KS), multicentric Castleman disease (MCD), and primary effusion lymphoma (PEL), which occur primarily in patients with HIV infection. KS is the most common AIDS-associated malignancy worldwide. MCD and PEL occur less commonly but, like KS, are associated with poor treatment outcomes. Like all herpesviruses, HHV-8 is capable of either latent or lytic infection of cells. Although HHV-8 infection of tumor cells is predominately latent, accumulating data point to the importance of both lytic phase viral gene products and production of infectious virus. Antiviral agents that target herpesvirus DNA synthesis, such as ganciclovir, inhibit HHV-8 lytic replication and can prevent KS. Several HIV protease inhibitors may interfere with tumor growth and angiogenesis, and one PI, nelfinavir, directly inhibits HHV-8 replication in vitro. Summary Controlled trials are indicated to determine the clinical utility of antiviral suppression of HHV-8 replication, and identify the optimal antiretroviral regimens, for the prevention and treatment of KS. PMID:21666458

  5. Neuraminidase inhibition of Dietary chlorogenic acids and derivatives - potential antivirals from dietary sources.

    PubMed

    Gamaleldin Elsadig Karar, Mohamed; Matei, Marius-Febi; Jaiswal, Rakesh; Illenberger, Susanne; Kuhnert, Nikolai

    2016-04-01

    Plants rich in chlorogenic acids (CGAs), caffeic acids and their derivatives have been found to exert antiviral effects against influenza virus neuroaminidase. In this study several dietary naturally occurring chlorogenic acids, phenolic acids and derivatives were screened for their inhibitory activity against neuroaminidases (NAs) from C. perfringens, H5N1 and recombinant H5N1 (N-His)-Tag using a fluorometric assay. There was no significant difference in inhibition between the different NA enzymes. The enzyme inhibition results indicated that chlorogenic acids and selected derivatives, exhibited high activities against NAs. It seems that the catechol group from caffeic acid was important for the activity. Dietary CGA therefore show promise as potential antiviral agents. However, caffeoyl quinic acids show low bioavailibility and are intensly metabolized by the gut micro flora, only low nM concentrations are observed in plasma and urine, therefore a systemic antiviral effect of these compounds is unlikely. Nevertheless, gut floral metabolites with a catechol moiety or structurally related dietary phenolics with a catechol moiety might serve as interesting compounds for future investigations.

  6. Zinc finger antiviral protein inhibits coxsackievirus B3 virus replication and protects against viral myocarditis.

    PubMed

    Li, Min; Yan, Kepeng; Wei, Lin; Yang, Jie; Lu, Chenyu; Xiong, Fei; Zheng, Chunfu; Xu, Wei

    2015-11-01

    The host Zinc finger antiviral protein (ZAP) has been reported exhibiting antiviral activity against positive-stranded RNA viruses (Togaviridae), negative-stranded RNA viruses (Filoviridae) and retroviruses (Retroviridae). However, whether ZAP restricts the infection of enterovirus and the development of enterovirus mediated disease remains unknown. Here, we reported the antiviral properties of ZAP against coxsackievirus B3 (CVB3), a single-stranded RNA virus of the Enterovirus genus within the Picornaviridae as a major causative agent of viral myocarditis (VMC). We found that the expression of ZAP was significantly induced after CVB3 infection in heart tissues of VMC mice. ZAP potently inhibited CVB3 replication in cells after infection, while overexpression of ZAP in mice significantly increased the resistance to CVB3 replication and viral myocarditis by significantly reducing cardiac inflammatory cytokine production. The ZAP-responsive elements (ZREs) were mapped to the 3'UTR and 5'UTR of viral RNA. Taken together, ZAP confers resistance to CVB3 infection via directly targeting viral RNA and protects mice from acute myocarditis by suppressing viral replication and cardiac inflammatory cytokine production. Our finding further expands ZAP's range of viral targets, and suggests ZAP as a potential therapeutic target for viral myocarditis caused by CVB3.

  7. Antiviral activity of Thiosemicarbazones derived from α-amino acids against Dengue virus.

    PubMed

    Padmanabhan, Padmapriya; Khaleefathullah, Sheriff; Kaveri, Krishansamy; Palani, Gunasekaran; Ramanathan, Giriprasath; Thennarasu, Sathiah; Tirichurapalli Sivagnanam, Uma

    2017-03-01

    The endemicity and seasonal outbreaks of Dengue disease in most tropical and subtropical countries underscores an urgent need to develop effective prevention and control measures. Development of a Dengue vaccine, which is complicated by the Antibody Dependent Enhancement effect (ADE), a viral inhibitor, seems prudent as it would inhibit the spread of the virus. In vitro methods such as MTT assay and plaque formation unit reduction assays were employed for screening the viral inhibitory property of α-amino acid based Thiosemicarbazides. The results elicits that at concentrations not exceeding the maximum non cytotoxic concentration (MNCC), these compounds completely prevented Dengue virus infection in vero cells as indicated by the absence of cytopathic effects in a dose-dependent manner. The high potency of Bz-Trp-TSC against all four types of Dengue virus infection elevates Thiosemicarbazide as a lead antiviral agent for Dengue disease. Screening small molecules for antiviral activity against the most rapidly spreading mosquito-borne viral disease is being explored by several research groups. Our findings would help to augment the efforts to identify the lead compounds for antiviral therapy to combat the Dengue disease. J. Med. Virol. 89:546-552, 2017. © 2016 Wiley Periodicals, Inc.

  8. AVCpred: an integrated web server for prediction and design of antiviral compounds.

    PubMed

    Qureshi, Abid; Kaur, Gazaldeep; Kumar, Manoj

    2017-01-01

    Viral infections constantly jeopardize the global public health due to lack of effective antiviral therapeutics. Therefore, there is an imperative need to speed up the drug discovery process to identify novel and efficient drug candidates. In this study, we have developed quantitative structure-activity relationship (QSAR)-based models for predicting antiviral compounds (AVCs) against deadly viruses like human immunodeficiency virus (HIV), hepatitis C virus (HCV), hepatitis B virus (HBV), human herpesvirus (HHV) and 26 others using publicly available experimental data from the ChEMBL bioactivity database. Support vector machine (SVM) models achieved a maximum Pearson correlation coefficient of 0.72, 0.74, 0.66, 0.68, and 0.71 in regression mode and a maximum Matthew's correlation coefficient 0.91, 0.93, 0.70, 0.89, and 0.71, respectively, in classification mode during 10-fold cross-validation. Furthermore, similar performance was observed on the independent validation sets. We have integrated these models in the AVCpred web server, freely available at http://crdd.osdd.net/servers/avcpred. In addition, the datasets are provided in a searchable format. We hope this web server will assist researchers in the identification of potential antiviral agents. It would also save time and cost by prioritizing new drugs against viruses before their synthesis and experimental testing.

  9. Expression of the zinc-finger antiviral protein inhibits alphavirus replication.

    PubMed

    Bick, Matthew J; Carroll, John-William N; Gao, Guangxia; Goff, Stephen P; Rice, Charles M; MacDonald, Margaret R

    2003-11-01

    The rat zinc-finger antiviral protein (ZAP) was recently identified as a host protein conferring resistance to retroviral infection. We analyzed ZAP's ability to inhibit viruses from other families and found that ZAP potently inhibits the replication of multiple members of the Alphavirus genus within the Togaviridae, including Sindbis virus, Semliki Forest virus, Ross River virus, and Venezuelan equine encephalitis virus. However, expression of ZAP did not induce a broad-spectrum antiviral state as some viruses, including vesicular stomatitis virus, poliovirus, yellow fever virus, and herpes simplex virus type 1, replicated to normal levels in ZAP-expressing cells. We determined that ZAP expression inhibits Sindbis virus replication after virus penetration and entry, but before the amplification of newly synthesized plus strand genomic RNA. Using a temperature-sensitive Sindbis virus mutant expressing luciferase, we further showed that translation of incoming viral RNA is blocked by ZAP expression. Elucidation of the antiviral mechanism by which ZAP inhibits Sindbis virus translation may lead to the development of agents with broad activity against alphaviruses.

  10. Bell's Palsy: Treatment with Steroids and Antiviral Drugs

    MedlinePlus

    ... Evidence-based Guideline for PATIENTS and their FAMILIES BELL’S PALSY: TREATMENT WITH STEROIDS AND ANTIVIRAL DRUGS This information ... role of steroids and antiviral drugs for treating Bell’s palsy. Neurologists from the AAN are doctors who identify ...

  11. Potential applications for antiviral therapy and prophylaxis in bovine medicine.

    PubMed

    Newcomer, Benjamin W; Walz, Paul H; Givens, M Daniel

    2014-06-01

    Viral disease is one of the major causes of financial loss and animal suffering in today's cattle industry. Increases in global commerce and average herd size, urbanization, vertical integration within the industry and alterations in global climate patterns have allowed the spread of pathogenic viruses, or the introduction of new viral species, into regions previously free of such pathogens, creating the potential for widespread morbidity and mortality in naïve cattle populations. Despite this, no antiviral products are currently commercially licensed for use in bovine medicine, although significant progress has been made in the development of antivirals for use against bovine viral diarrhea virus (BVDV), foot and mouth disease virus (FMDV) and bovine herpesvirus (BHV). BVDV is extensively studied as a model virus for human antiviral studies. Consequently, many compounds with efficacy have been identified and a few have been successfully used to prevent infection in vivo although commercial development is still lacking. FMDV is also the subject of extensive antiviral testing due to the importance of outbreak containment for maintenance of export markets. Thirdly, BHV presents an attractive target for antiviral development due to its worldwide presence. Antiviral studies for other bovine viral pathogens are largely limited to preliminary studies. This review summarizes the current state of knowledge of antiviral compounds against several key bovine pathogens and the potential for commercial antiviral applications in the prevention and control of several selected bovine diseases.

  12. Evaluation of antiviral activity of compounds isolated from Ranunculus sieboldii and Ranunculus sceleratus.

    PubMed

    Li, Haibo; Zhou, Changxin; Pan, Yunxue; Gao, Xiaozhong; Wu, Xiumei; Bai, Hua; Zhou, Linfu; Chen, Zhi; Zhang, Shuili; Shi, Shuyun; Luo, Jiali; Xu, Juanhua; Chen, Liurong; Zheng, Xiaoxiang; Zhao, Yu

    2005-12-01

    Nineteen compounds isolated from Ranunculus sieboldii and Ranunculus sceleratus were tested for inhibitory effects on hepatitis B virus (HBV) and Herpes simplex virus type-1 (HSV-1). The results showed that apigenin 4'- O- alpha-rhamnopyranoside, apigenin 7- O- beta-glucopyranosyl-4'- O- alpha-rhamnopyranoside, tricin 7- O- beta-glucopyranoside, tricin, and isoscopoletin possessed inhibitory activity against HBV replication. Protocatechuyl aldehyde exhibited an inhibiting activity on HSV-1 replication. It is therefore suggested that further investigations on these bioactive compounds might be needed to discover and develop new antiviral agents.

  13. Synthesis, antibacterial, and antiviral evaluation of new heterocycles containing the pyridine moiety.

    PubMed

    Salem, Marwa S; Sakr, Sameh I; El-Senousy, Waled M; Madkour, Hassan M F

    2013-10-01

    A facile one-pot four-component reaction was utilized to construct 2-oxo-1,2-dihydropyridine-3-carbonitrile as a scaffold for the synthesis of many fused heterocyclic systems, namely, furopyridine, pyridothiadiazepinthione, and pyridotriazine, as well as non-fused heterocyclic systems such as phthalazin-2(1H)-ylnicotinonitrile, pyridin-2-yl-1H-pyrazole, and pyrazol-1-ylnicotino-nitrile,1-(3-cyanopyridin-2-yl)-1H-pyrazole. The new compounds were evaluated as antimicrobial and antiviral agents.

  14. Protein kinase C and the antiviral effect of human interferon.

    PubMed

    Cernescu, C; Constantinescu, S N; Baltă, F; Popescu, L M; Cajal, N

    1989-01-01

    Protein kinase C (PKC) inhibitors: Hidaka's compounds H-7 (10 microM) and H-8 (20 microM), palmitoyl-carnitine (10 microM) and phloretin (50 microM), did not modify the antiviral effect of human natural or recombinant interferon alpha and of natural interferon beta. The tumor promoter 12-o-tetradecanoyl-phorbol-13-acetate (TPA) (200 nM), known as activator of PKC induced an antiviral state when tested on human embryo fibroblasts challenged with the vesicular stomatitis virus. The battery of PKC inhibitors used inhibited the antiviral effect induced by TPA. Palmitoyl-carnitine (10 microM) exerted a toxic effect that was reversed by interferon treatment (2,000 IU/ml interferon alpha). These results suggest that PKC, possibly activated by interferon-receptor interaction, is not essential for inducing the antiviral effect of interferon, but, probably, mediates the antiviral effect of TPA.

  15. Antiviral and cellular metabolism interactions between Dexelvucitabine and lamivudine.

    PubMed

    Hernandez-Santiago, Brenda I; Mathew, Judy S; Rapp, Kim L; Grier, Jason P; Schinazi, Raymond F

    2007-06-01

    Studies on cellular drug interactions with antiretroviral agents prior to clinical trials are critical to detect possible drug interactions. Herein, we demonstrated that two 2'-deoxycytidine antiretroviral agents, dexelvucitabine (known as beta-d-2',3'-didehydro-2',3'-dideoxy-5-fluorocytidine, DFC, d-d4FC, or RVT) and lamivudine (3TC), combined in primary human peripheral blood mononuclear (PBM) cells infected with human immunodeficiency virus 1 strain LAI (HIV-1(LAI)), resulted in additive-to-synergistic effects. The cellular metabolism of DFC and 3TC was studied in human T-cell lymphoma (CEM) and in primary human PBM cells to determine whether this combination caused any reduction in active nucleoside triphosphate (NTP) levels, which could decrease with their antiviral potency. Competition studies were conducted by coincubation of either radiolabeled DFC with different concentrations of 3TC or radiolabeled 3TC with different concentrations of DFC. Coincubation of radiolabeled 3TC with DFC at concentrations up to 33.3 microM did not cause any marked reduction in 3TC-triphosphate (TP) or any 3TC metabolites. However, a reduction in the level of DFC metabolites was noted at high concentrations of 3TC with radiolabeled DFC. DFC-TP levels in CEM and primary human PBM cells decreased by 88% and 94%, respectively, when high concentrations of 3TC (33.3 and 100 microM) were added, which may influence the effectiveness of DFC-5'-TP on the HIV-1 polymerase. The NTP levels remained well above the median (50%) inhibitory concentration for HIV-1 reverse transcriptase. These results suggest that both beta-d- and beta-l-2'-deoxycytidine analogs, DFC and 3TC, respectively, substrates of 2'-deoxycytidine kinase, could be used in a combined therapeutic modality. However, it may be necessary to decrease the dose of 3TC for this combination to prove effective.

  16. Antiviral activity and increased host defense against influenza infection elicited by the human cathelicidin LL-37.

    PubMed

    Barlow, Peter G; Svoboda, Pavel; Mackellar, Annie; Nash, Anthony A; York, Ian A; Pohl, Jan; Davidson, Donald J; Donis, Ruben O

    2011-01-01

    The extensive world-wide morbidity and mortality caused by influenza A viruses highlights the need for new insights into the host immune response and novel treatment approaches. Cationic Host Defense Peptides (CHDP, also known as antimicrobial peptides), which include cathelicidins and defensins, are key components of the innate immune system that are upregulated during infection and inflammation. Cathelicidins have immunomodulatory and anti-viral effects, but their impact on influenza virus infection has not been previously assessed. We therefore evaluated the effect of cathelicidin peptides on disease caused by influenza A virus in mice. The human cathelicidin, LL-37, and the murine cathelicidin, mCRAMP, demonstrated significant anti-viral activity in vivo, reducing disease severity and viral replication in infected mice to a similar extent as the well-characterized influenza virus-specific antiviral drug zanamivir. In vitro and in vivo experiments suggested that the peptides may act directly on the influenza virion rather than via receptor-based mechanisms. Influenza virus-infected mice treated with LL-37 had lower concentrations of pro-inflammatory cytokines in the lung than did infected animals that had not been treated with cathelicidin peptides. These data suggest that treatment of influenza-infected individuals with cathelicidin-derived therapeutics, or modulation of endogenous cathelicidin production may provide significant protection against disease.

  17. Evaluation of Lassa antiviral compound ST-193 in a guinea pig model.

    PubMed

    Cashman, Kathleen A; Smith, Mark A; Twenhafel, Nancy A; Larson, Ryan A; Jones, Kevin F; Allen, Robert D; Dai, Dongcheng; Chinsangaram, Jarasvech; Bolken, Tove' C; Hruby, Dennis E; Amberg, Sean M; Hensley, Lisa E; Guttieri, Mary C

    2011-04-01

    Lassa virus (LASV), a member of the Arenaviridae family, causes a viral hemorrhagic fever endemic to West Africa, where as many as 300,000 infections occur per year. Presently, there are no FDA-approved LASV-specific vaccines or antiviral agents, although the antiviral drug ribavirin has shown some efficacy. A recently identified small-molecule inhibitor of arenavirus entry, ST-193, exhibits submicromolar antiviral activity in vitro. To determine the antiviral utility of ST-193 in vivo, we tested the efficacy of this compound in the LASV guinea pig model. Four groups of strain 13 guinea pigs were administered 25 or 80 mg/kg ST-193, 25 mg/kg of ribavirin, or the vehicle by the intraperitoneal (i.p.) route before infection with a lethal dose of LASV, strain Josiah, and continuing once daily for 14 days. Control animals exhibited severe disease, becoming moribund between days 10 and 15 postinfection. ST-193-treated animals exhibited fewer signs of disease and enhanced survival when compared to the ribavirin or vehicle groups. Body temperatures in all groups were elevated by day 9, but returned to normal by day 19 postinfection in the majority of ST-193-treated animals. ST-193 treatment mediated a 2-3-log reduction in viremia relative to vehicle-treated controls. The overall survival rate for the ST-193-treated guinea pigs was 62.5% (10/16) compared with 0% in the ribavirin (0/8) and vehicle (0/7) groups. These data suggest that ST-193 may serve as an improved candidate for the treatment of Lassa fever.

  18. A simple, rapid, and sensitive system for the evaluation of anti-viral drugs in rats

    SciTech Connect

    Li, Xiaoguang; Qian, Hua; Miyamoto, Fusako; Kawaji, Kumi; Hattori, Toshio; Watanabe, Kentaro; Oishi, Shinya; Fujii, Nobutaka; and others

    2012-07-27

    Highlights: Black-Right-Pointing-Pointer We established a novel, simple and rapid in vivo system for evaluation of anti-HIV-1 drugs with rats. Black-Right-Pointing-Pointer The system may be applicable for other antiviral drugs, and/or useful for initial screening in vivo. Black-Right-Pointing-Pointer In this system, TRI-1144 displayed the most potent anti-HIV-1 activity in vivo. -- Abstract: The lack of small animal models for the evaluation of anti-human immunodeficiency virus type 1 (HIV-1) agents hampers drug development. Here, we describe the establishment of a simple and rapid evaluation system in a rat model without animal infection facilities. After intraperitoneal administration of test drugs to rats, antiviral activity in the sera was examined by the MAGI assay. Recently developed inhibitors for HIV-1 entry, two CXCR4 antagonists, TF14016 and FC131, and four fusion inhibitors, T-20, T-20EK, SC29EK, and TRI-1144, were evaluated using HIV-1{sub IIIB} and HIV-1{sub BaL} as representative CXCR4- and CCR5-tropic HIV-1 strains, respectively. CXCR4 antagonists were shown to only possess anti-HIV-1{sub IIIB} activity, whereas fusion inhibitors showed both anti-HIV-1{sub IIIB} and anti-HIV-1{sub BaL} activities in rat sera. These results indicate that test drugs were successfully processed into the rat sera and could be detected by the MAGI assay. In this system, TRI-1144 showed the most potent and sustained antiviral activity. Sera from animals not administered drugs showed substantial anti-HIV-1 activity, indicating that relatively high dose or activity of the test drugs might be needed. In conclusion, the novel rat system established here, 'phenotypic drug evaluation', may be applicable for the evaluation of various antiviral drugs in vivo.

  19. Contribution of Toll-like receptors to the control of hepatitis B virus infection by initiating antiviral innate responses and promoting specific adaptive immune responses

    PubMed Central

    Ma, Zhiyong; Zhang, Ejuan; Yang, Dongliang; Lu, Mengji

    2015-01-01

    It is well accepted that adaptive immunity plays a key role in the control of hepatitis B virus (HBV) infection. In contrast, the contribution of innate immunity has only received attention in recent years. Toll-like receptors (TLRs) sense pathogen-associated molecule patterns and activate antiviral mechanisms, including intracellular antiviral pathways and the production of antiviral effector interferons (IFNs) and pro-inflammatory cytokines. Experimental results from in vitro and in vivo models have demonstrated that TLRs mediate the activation of cellular signaling pathways and the production of antiviral cytokines, resulting in a suppression of HBV replication. However, HBV infection is associated with downregulation of TLR expression on host cells and blockade of the activation of downstream signaling pathways. In primary HBV infection, TLRs may slow down HBV infection, but contribute only indirectly to viral clearance. Importantly, TLRs may modulate HBV-specific T- and B-cell responses in vivo, which are essential for the termination of HBV infection. Thus, TLR agonists are promising candidates to act as immunomodulators for the treatment of chronic HBV infection. Antiviral treatment may recover TLR expression and function in chronic HBV infection and may increase the efficacy of therapeutic approaches based on TLR activation. A combined therapeutic strategy with antiviral treatment and TLR activation could facilitate the restoration of HBV-specific immune responses and thereby, achieve viral clearance in chronically infected HBV patients. PMID:25418467

  20. Structural Basis for the Antiviral Activity of BST-2/Tetherin and Its Viral Antagonism

    PubMed Central

    Arias, Juan F.; Iwabu, Yukie; Tokunaga, Kenzo

    2011-01-01

    The interferon-inducible host restriction factor bone marrow stromal antigen 2 (BST-2/tetherin) blocks the release of HIV-1 and other enveloped viruses. In turn, these viruses have evolved specific antagonists to counteract this host antiviral molecule, such as the HIV-1 protein Vpu. BST-2 is a type II transmembrane protein with an unusual topology consisting of an N-terminal cytoplasmic tail (CT) followed by a single transmembrane (TM) domain, a coiled-coil extracellular (EC) domain, and a glycosylphosphatidylinositol (GPI) anchor at the C terminus. We and others showed that BST-2 restricts enveloped virus release by bridging the host and virion membranes with its two opposing membrane anchors and that deletion of either one completely abrogates antiviral activity. The EC domain also shows conserved structural properties that are required for antiviral function. It contains several destabilizing amino acids that confer the molecule with conformational flexibility to sustain the protein’s function as a virion tether, and three conserved cysteine residues that mediate homodimerization of BST-2, as well as acting as a molecular ruler that separates the membrane anchors. Conversely, the efficient release of virions is promoted by the HIV-1 Vpu protein and other viral antagonists. Our group and others provided evidence from mutational analyses indicating that Vpu antagonism of BST-2-mediated viral restriction requires a highly specific interaction of their mutual TM domains. This interpretation is further supported and expanded by the findings of the latest structural modeling studies showing that critical amino acids in a conserved helical face of these TM domains are required for Vpu–BST-2 interaction and antagonism. In this review, we summarize the current advances in our understanding of the structural basis for BST-2 antiviral function as well as BST-2-specific viral antagonism. PMID:22180752

  1. Immune Receptors and Co-receptors in Antiviral Innate Immunity in Plants

    PubMed Central

    Gouveia, Bianca C.; Calil, Iara P.; Machado, João Paulo B.; Santos, Anésia A.; Fontes, Elizabeth P. B.

    2017-01-01

    Plants respond to pathogens using an innate immune system that is broadly divided into PTI (pathogen-associated molecular pattern- or PAMP-triggered immunity) and ETI (effector-triggered immunity). PTI is activated upon perception of PAMPs, conserved motifs derived from pathogens, by surface membrane-anchored pattern recognition receptors (PRRs). To overcome this first line of defense, pathogens release into plant cells effectors that inhibit PTI and activate effector-triggered susceptibility (ETS). Counteracting this virulence strategy, plant cells synthesize intracellular resistance (R) proteins, which specifically recognize pathogen effectors or avirulence (Avr) factors and activate ETI. These coevolving pathogen virulence strategies and plant resistance mechanisms illustrate evolutionary arms race between pathogen and host, which is integrated into the zigzag model of plant innate immunity. Although antiviral immune concepts have been initially excluded from the zigzag model, recent studies have provided several lines of evidence substantiating the notion that plants deploy the innate immune system to fight viruses in a manner similar to that used for non-viral pathogens. First, most R proteins against viruses so far characterized share structural similarity with antibacterial and antifungal R gene products and elicit typical ETI-based immune responses. Second, virus-derived PAMPs may activate PTI-like responses through immune co-receptors of plant PTI. Finally, and even more compelling, a viral Avr factor that triggers ETI in resistant genotypes has recently been shown to act as a suppressor of PTI, integrating plant viruses into the co-evolutionary model of host-pathogen interactions, the zigzag model. In this review, we summarize these important progresses, focusing on the potential significance of antiviral immune receptors and co-receptors in plant antiviral innate immunity. In light of the innate immune system, we also discuss a newly uncovered layer of

  2. Cytoplasmic nucleic acid sensors in antiviral immunity.

    PubMed

    Ranjan, Priya; Bowzard, J Bradford; Schwerzmann, Joy W; Jeisy-Scott, Victoria; Fujita, Takashi; Sambhara, Suryaprakash

    2009-08-01

    The innate immune system uses pattern recognition receptors (PRRs) to sense invading microbes and initiate a rapid protective response. PRRs bind and are activated by structural motifs, such as nucleic acids or bacterial and fungal cell wall components, collectively known as pathogen-associated molecular patterns. PRRs that recognize pathogen-derived nucleic acids are present in vesicular compartments and in the cytosol of most cell types. Here, we review recent studies of these cytosolic sensors, focusing on the nature of the ligands for DNA-dependent activator of interferon (DAI)-regulatory factors, absent in melanoma 2 (AIM2), and the retinoic acid-inducible gene I-like helicase (RLH) family of receptors, the basis of ligand recognition and the signaling pathways triggered by the activation of these receptors. An increased understanding of these molecular aspects of innate immunity will guide the development of novel antiviral therapeutics.

  3. Contribution of autophagy to antiviral immunity.

    PubMed

    Rey-Jurado, Emma; Riedel, Claudia A; González, Pablo A; Bueno, Susan M; Kalergis, Alexis M

    2015-11-14

    Although identified in the 1960's, interest in autophagy has significantly increased in the past decade with notable research efforts oriented at understanding as to how this multi-protein complex operates and is regulated. Autophagy is commonly defined as a "self-eating" process evolved by eukaryotic cells to recycle senescent organelles and expired proteins, which is significantly increased during cellular stress responses. In addition, autophagy can also play important roles during human diseases, such as cancer, neurodegenerative and autoimmune disorders. Furthermore, novel findings suggest that autophagy contributes to the host defense against microbial infections. In this article, we review the role of macroautophagy in antiviral immune responses and discuss molecular mechanisms evolved by viral pathogens to evade this process. A role for autophagy as an effector mechanism used both, by innate and adaptive immunity is also discussed.

  4. RNA degradation in antiviral immunity and autoimmunity

    PubMed Central

    Rigby, Rachel E.; Rehwinkel, Jan

    2015-01-01

    Post-transcriptional control determines the fate of cellular RNA molecules. Nonsense-mediated decay (NMD) provides quality control of mRNA, targeting faulty cellular transcripts for degradation by multiple nucleases including the RNA exosome. Recent findings have revealed a role for NMD in targeting viral RNA molecules, thereby restricting virus infection. Interestingly, NMD is also linked to immune responses at another level: mutations affecting the NMD or RNA exosome machineries cause chronic activation of defence programmes, resulting in autoimmune phenotypes. Here we place these observations in the context of other links between innate antiviral immunity and type I interferon mediated disease and examine two models: one in which expression or function of pathogen sensors is perturbed and one wherein host-derived RNA molecules with a propensity to activate such sensors accumulate. PMID:25709093

  5. Antifungal and antiviral products of marine organisms

    PubMed Central

    Cheung, Randy Chi Fai; Pan, Wen Liang; Chan, Yau Sang; Yin, Cui Ming; Dan, Xiu Li; Wang, He Xiang; Fang, Evandro Fei; Lam, Sze Kwan; Ngai, Patrick Hung Kui; Xia, Li Xin; Liu, Fang; Ye, Xiu Yun; Zhang, Guo Qing; Liu, Qing Hong; Sha, Ou; Lin, Peng; Ki, Chan; Bekhit, Adnan A; Bekhit, Alaa El-Din; Wan, David Chi Cheong

    2017-01-01

    Marine organisms including bacteria, fungi, algae, sponges, echinoderms, mollusks, and cephalochordates produce a variety of products with antifungal activity including bacterial chitinases, lipopeptides, and lactones; fungal (−)-sclerotiorin and peptaibols, purpurides B and C, berkedrimane B and purpuride; algal gambieric acids A and B, phlorotannins; 3,5-dibromo-2-(3,5-dibromo-2-methoxyphenoxy)phenol, spongistatin 1, eurysterols A and B, nortetillapyrone, bromotyrosine alkaloids, bis-indole alkaloid, ageloxime B and (−)-ageloxime D, haliscosamine, hamigeran G, hippolachnin A from sponges; echinoderm triterpene glycosides and alkene sulfates; molluscan kahalalide F and a 1485-Da peptide with a sequence SRSELIVHQR; and cepalochordate chitotriosidase and a 5026.9-Da antifungal peptide. The antiviral compounds from marine organisms include bacterial polysaccharide and furan-2-yl acetate; fungal macrolide, purpurester A, purpurquinone B, isoindolone derivatives, alterporriol Q, tetrahydroaltersolanol C and asperterrestide A, algal diterpenes, xylogalactofucan, alginic acid, glycolipid sulfoquinovosyldiacylglycerol, sulfated polysaccharide p-KG03, meroditerpenoids, methyl ester derivative of vatomaric acid, lectins, polysaccharides, tannins, cnidarian zoanthoxanthin alkaloids, norditerpenoid and capilloquinol; crustacean antilipopolysaccharide factors, molluscan hemocyanin; echinoderm triterpenoid glycosides; tunicate didemnin B, tamandarins A and B and; tilapia hepcidin 1–5 (TH 1–5), seabream SauMx1, SauMx2, and SauMx3, and orange-spotted grouper β-defensin. Although the mechanisms of antifungal and antiviral activities of only some of the afore-mentioned compounds have been elucidated, the possibility to use those known to have distinctly different mechanisms, good bioavailability, and minimal toxicity in combination therapy remains to be investigated. It is also worthwhile to test the marine antimicrobials for possible synergism with existing drugs. The

  6. Cherry Valley Ducks Mitochondrial Antiviral-Signaling Protein-Mediated Signaling Pathway and Antiviral Activity Research

    PubMed Central

    Li, Ning; Hong, Tianqi; Li, Rong; Wang, Yao; Guo, Mengjiao; Cao, Zongxi; Cai, Yumei; Liu, Sidang; Chai, Tongjie; Wei, Liangmeng

    2016-01-01

    Mitochondrial antiviral-signaling protein (MAVS), an adaptor protein of retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs)-mediated signal pathway, is involved in innate immunity. In this study, Cherry Valley duck MAVS (duMAVS) was cloned from the spleen and analyzed. duMAVS was determined to have a caspase activation and recruitment domain at N-terminal, followed by a proline-rich domain and a transmembrane domain at C-terminal. Quantitative real-time PCR indicated that duMAVS was expressed in all tissues tested across a broad expression spectrum. The expression of duMAVS was significantly upregulated after infection with duck Tembusu virus (DTMUV). Overexpression of duMAVS could drive the activation of interferon (IFN)-β, nuclear factor-κB, interferon regulatory factor 7, and many downstream factors (such as Mx, PKR, OAS, and IL-8) in duck embryo fibroblast cells. What is more, RNA interference further confirmed that duMAVS was an important adaptor for IFN-β activation. The antiviral assay showed that duMAVS could suppress the various viral replications (DTMUV, novel reovirus, and duck plague virus) at early stages of infection. Overall, these results showed that the main signal pathway mediated by duMAVS and it had a broad-spectrum antiviral ability. This research will be helpful to better understanding the innate immune system of ducks. PMID:27708647

  7. Safety and effectiveness of dipeptidyl peptidase-4 inhibitors versus intermediate-acting insulin or placebo for patients with type 2 diabetes failing two oral antihyperglycaemic agents: a systematic review and network meta-analysis

    PubMed Central

    Tricco, Andrea C; Antony, Jesmin; Khan, Paul A; Ghassemi, Marco; Hamid, Jemila S; Ashoor, Huda; Blondal, Erik; Soobiah, Charlene; Yu, Catherine H; Hutton, Brian; Hemmelgarn, Brenda R; Moher, David; Majumdar, Sumit R; Straus, Sharon E

    2014-01-01

    Objective To evaluate the effectiveness and safety of dipeptidyl peptidase-4 (DPP-4) inhibitors versus intermediate-acting insulin for adults with type 2 diabetes mellitus (T2DM) and poor glycaemic control despite treatment with two oral agents. Setting Studies were multicentre and multinational. Participants Ten studies including 2967 patients with T2DM. Interventions Studies that examined DPP-4 inhibitors compared with each other, intermediate-acting insulin, no treatment or placebo in patients with T2DM. Primary and secondary outcome measures Primary outcome was glycosylated haemoglobin (HbA1c). Secondary outcomes were healthcare utilisation, body weight, fractures, quality of life, microvascular complications, macrovascular complications, all-cause mortality, harms, cost and cost-effectiveness. Results 10 randomised clinical trials with 2967 patients were included after screening 5831 titles and abstracts, and 180 full-text articles. DPP-4 inhibitors significantly reduced HbA1c versus placebo in network meta-analysis (NMA; mean difference (MD) −0.62%, 95% CI −0.93% to −0.33%) and meta-analysis (MD −0.61%, 95% CI −0.81% to −0.41%), respectively. Significant differences in HbA1c were not observed for neutral protamine Hagedorn (NPH) insulin versus placebo and DPP-4 inhibitors versus NPH insulin in NMA. In meta-analysis, no significant differences were observed between DPP-4 inhibitors and placebo for severe hypoglycaemia, weight gain, cardiovascular disease, overall harms, treatment-related harms and mortality, although patients receiving DPP-4 inhibitors experienced less infections (relative risk 0.72, 95% CI 0.57 to 0.91). Conclusions DPP-4 inhibitors were superior to placebo in reducing HbA1c levels in adults with T2DM taking at least two oral agents. Compared with placebo, no safety signals were detected with DPP-4 inhibitors and there was a reduced risk of infection. There was no significant difference in HbA1c observed between NPH and placebo or

  8. Privacy Act

    EPA Pesticide Factsheets

    Learn about the Privacy Act of 1974, the Electronic Government Act of 2002, the Federal Information Security Management Act, and other information about the Environmental Protection Agency maintains its records.

  9. Mathematical Modeling of Hepatitis C Prevalence Reduction with Antiviral Treatment Scale-Up in Persons Who Inject Drugs in Metropolitan Chicago

    DOE PAGES

    Echevarria, Desarae; Gutfraind, Alexander; Boodram, Basmattee; ...

    2015-08-21

    New direct-acting antivirals (DAAs) provide an opportunity to combat hepatitis C virus (HCV) infection in persons who inject drugs (PWID). Here we use a mathematical model to predict the impact of a DAA-treatment scale-up on HCV prevalence among PWID and the estimated cost in metropolitan Chicago.

  10. Exploring DNA topoisomerases as targets of novel therapeutic agents in the treatment of infectious diseases.

    PubMed

    Tse-Dinh, Y-C

    2007-03-01

    DNA topoisomerases are ubiquitous enzymes needed to overcome topological problems encountered during DNA replication, transcription, recombination and maintenance of genomic stability. They have proved to be valuable targets for therapy, in part because some anti-topoisomerase agents act as poisons. Bacterial DNA gyrase and topoisomerase IV (type IIA topoisomerases) are targets of fluoroquinolones while human topoisomerase I (a type IB topoisomerase) and topoisomerase II are targets of various anticancer drugs. Bacterial type IA topoisomerase share little sequence homology to type IB or type IIA topoisomerases, but all topoisomerases have the potential of having the covalent phosphotyrosine DNA cleavage intermediate trapped by drug action. Recent studies have demonstrated that stabilization of the covalent complex formed by bacterial topoisomerase I and cleaved DNA can lead to bacterial cell death, supporting bacterial topoisomerase I as a promising target for the development of novel antibiotics. For current antibacterial therapy, the prevalence of fluoroquinolone-resistant bacterial pathogens has become a major public health concern, and efforts are directed towards identifying novel inhibitors of bacterial type IIA topoisomerases that are not affected by fluoroquinolone resistant mutations on the gyrase or topoisomerase IV genes. For anti-viral therapy, poxviruses encode their own type IB topoisomerases; these enzymes differ in drug sensitivity from human topoisomerase I. To confront potential threat of small pox as a weapon in terrorist attacks, vaccinia virus topoisomerase I has been targeted for discovery of anti-viral agents. These new developments of DNA topoisomerases as targets of novel therapeutic agents being reviewed here represent excellent opportunities for drug discovery in the treatment of infectious diseases.

  11. Learning in multi-agent systems

    SciTech Connect

    Goldman, C.V.

    1996-12-31

    Learning agents acting in a multi agent environment can improve their performance. These agents might decide upon their course of action by learning about other agents with whom they interact. The learning agents can learn about the others information and rules of behavior. The agents will not need to plan their actions beforehand, each time they are asked to solve the same problem they have already solved or when dealing with similar problems.

  12. Hepatitis C Virus Experimental Model Systems and Antiviral drug Research*

    PubMed Central

    Uprichard, Susan L.

    2010-01-01

    An estimated 130 million people worldwide are chronically infected with hepatitis C virus (HCV) making it a leading cause of liver disease worldwide. Because the currently available therapy of pegylated interferon-alpha and ribavirin is only effective in a subset of patients, the development of new HCV antivirals is a healthcare imperative. This review discusses the experimental models available for HCV antiviral drug research, recent advances in HCV antiviral drug development, as well as active research being pursued to facilitate development of new HCV-specific therapeutics. PMID:20960298

  13. Antiviral activities of purified compounds from Youngia japonica (L.) DC (Asteraceae, Compositae).

    PubMed

    Ooi, Linda S M; Wang, Hua; He, Zhendan; Ooi, Vincent E C

    2006-06-30

    The ethanol extract of a biannual medicinal herb, Youngia japonica (commonly known as Oriental hawk's beard) was reported previously to have potent antiviral activity against respiratory syncytial virus (RSV) cultured in HEp-2 cells. Three anti-microbial agents, namely 3,4-dicaffeoylquinic acid, 3,5-dicaffeoylquinic acid, and luteolin-7-O-glucoside were subsequently purified and chemically characterized from the ethanol extract of Youngia japonica. The two dicaffeoylquinic acids exhibited prominent anti-RSV with 50% inhibitory concentration (IC50) of 0.5 microg/ml in vitro. Luteolin-7-O-glucoside together with the two dicaffeoylquinic acids were also manifested to have some antibacterial activity towards the causal agents of food-borne disease, namely Vibrio cholerae and Vibrio parahaemolyticus at the concentration of 2mg/ml. Bacillus cereus was sensitive to 3,4-dicaffeoylquinic acid and 3,5-dicaffeoylquinic acid only, but not to luteolin-7-O-glucoside.

  14. Antiviral chemotherapy in veterinary medicine: current applications and perspectives.

    PubMed

    Dal Pozzo, F; Thiry, E

    2014-12-01

    The current situation in the use of antiviral drugs in veterinary medicine is characterised by a novel and optimistic approach.Viruses of veterinary importance are still used as animal models in the developmentof human therapeutics, but there is growing interest in many of these viruses in the identification of antiviral molecules for use in both livestock and companion animals. The use of antiviral drugs in livestock animals is envisaged for the treatment or control of disease on a large scale (mass treatment), whereas in companion animals an individual approach is favoured. An overview of the most recent examples of research in the use of antivirals in veterinary medicine is presented, with particular emphasis on their in vivo applications.

  15. International society for antiviral research - 23rd international conference.

    PubMed

    Mason, Vicki L

    2010-06-01

    The 23rd International Conference on Antiviral Research (ICAR), organized by the International Society for Antiviral Research (ISAR) and held in San Francisco, included topics covering new therapeutic developments in the field of antivirals. This conference report highlights selected presentations on CD4-BFFI (Roche Holding AG), a CD4 mAb-based bifunctional HIV entry inhibitor; a CLDC-HBsAg vaccine (Juvaris BioTherapeutics Inc/China National Biotec Group) against HBV; ODE-(S)-MPMPA (University of California San Diego), a potent anti-HCV compound; the anti-human CMV activity exhibited by tricin; the protective activity of Ingavirin against influenza A; and Prosetta Bioconformatics's approach to identifying small-molecule antivirals.

  16. Dengue Virus Entry as Target for Antiviral Therapy

    PubMed Central

    Alen, Marijke M. F.; Schols, Dominique

    2012-01-01

    Dengue virus (DENV) infections are expanding worldwide and, because of the lack of a vaccine, the search for antiviral products is imperative. Four serotypes of DENV are described and they all cause a similar disease outcome. It would be interesting to develop an antiviral product that can interact with all four serotypes, prevent host cell infection and subsequent immune activation. DENV entry is thus an interesting target for antiviral therapy. DENV enters the host cell through receptor-mediated endocytosis. Several cellular receptors have been proposed, and DC-SIGN, present on dendritic cells, is considered as the most important DENV receptor until now. Because DENV entry is a target for antiviral therapy, various classes of compounds have been investigated to inhibit this process. In this paper, an overview is given of all the putative DENV receptors, and the most promising DENV entry inhibitors are discussed. PMID:22529868

  17. Zika virus: a race in search for antivirals.

    PubMed

    Saiz, Juan-Carlos; Martín-Acebes, Miguel A

    2017-03-27

    Zika virus (ZIKV), a flavivirus transmitted by mosquitoes, was an almost neglected pathogen until its introduction in the Americas in 2015, and its subsequent explosive spread throughout the continent, where it has infected millions of people. The virus has caused social and sanitary alarm, mainly due to its association with severe neurological disorders (Guillain-Barré syndrome, and microcephaly in fetus and newborns). Nowadays, no specific antiviral therapy is available against ZIKV. However, during the past months, a great effort has been made in search for antiviral candidates by using different approaches and methodologies, from testing specific compounds with known antiviral activity to screenings of libraries with hundreds of bioactive molecules. The identified antiviral candidates include drugs targeting viral components, as well as cellular ones. Here, an updated review of what has been done in this line is presented.

  18. Antiviral Efficacy of Pyrazofurin against Selected RNA Viruses

    DTIC Science & Technology

    1982-03-24

    DTIC Antiviral Research, 2 (1982) 33-337 ELECTE31 Elsevier Biomedical Press JUN t4 s ANTIVIRAL EFFICACY OF PYRAZOFURIN AGAINST SELECTED RNA VIRUSES ...hydroxypyrazole-5-carboxamide, markedly inhibited the in vitro replication of a number of RNA viruses including Rift Valley fever (RVF), S Venezuelan equine...encephalomyelitis (VEE), Sandfly, Pichinde, Lassa and LCM virus . Plaque forma- tion was reduced by 80% or more with 2-10 pg/ml of pyrazofurin while 2 ug

  19. Hepatitis C viral protein translation: mechanisms and implications in developing antivirals.

    PubMed

    Hoffman, Brett; Liu, Qiang

    2011-11-01

    Hepatitis C viral protein translation occurs in a cap-independent manner through the use of an internal ribosomal entry site (IRES) present within the viral 5'-untranslated region. The IRES is composed of highly conserved structural domains that directly recruit the 40S ribosomal subunit to the viral genomic RNA. This frees the virus from relying on a large number of translation initiation factors that are required for cap-dependent translation, conferring a selective advantage to the virus especially in times when the availability of such factors is low. Although the mechanism of translation initiation on the Hepatitis C virus (HCV) IRES is well established, modulation of the HCV IRES activity by both cellular and viral factors is not well understood. As the IRES is essential in the HCV life cycle and as such remains well conserved in an otherwise highly heterogenic virus, the process of HCV protein translation represents an attractive target in the development of novel antivirals. This review will focus on the mechanisms of HCV protein translation and how this process is postulated to be modulated by cis-acting viral factors, as well as trans-acting viral and cellular factors. Numerous therapeutic approaches investigated in targeting HCV protein translation for the development of novel antivirals will also be discussed.

  20. Antiviral activities of coffee extracts in vitro.

    PubMed

    Utsunomiya, Hirotoshi; Ichinose, Masao; Uozaki, Misao; Tsujimoto, Kazuko; Yamasaki, Hisashi; Koyama, A Hajime

    2008-06-01

    Both hot water extracts of coffee grinds and instant coffee solutions inhibited the multiplication of herpes simplex virus type 1, a representative enveloped DNA virus, when they were added to the culture medium of the virus-infected cells at a dose of one fifth the concentration suitable for drinking. The antiherpetic activity was independent of the suppliers (companies) of the coffee grinds and of the locations where the coffee beans were produced. Further characterization revealed that there are two different mechanisms, by which the coffee extracts exert inhibitory activities on the virus infection; (1) a direct inactivation of the infectivity of virus particle (i.e., a virucidal activity) and (2) the inhibition of progeny infectious virus formation at the late stage of viral multiplication in the infected cells. Caffeine, but not quinic acid and chlorogenic acid, inhibited the virus multiplication to some extent, but none of them showed the virucidal activity, suggesting that other component(s) in the coffee extracts must play a role in the observed antiviral activity. In addition, the coffee extracts inhibited the multiplication of poliovirus, a non-enveloped RNA virus, but showed no virucidal effect on this virus.

  1. Protein modification during antiviral heat bioprocessing.

    PubMed

    Smales, C M; Pepper, D S; James, D C

    2000-01-20

    Heat treatment is routinely used in the preparation of therapeutic protein biopharmaceuticals as a means of viral inactivation. However, in undertaking virucidal heat treatments, a balance must be found between the bioprocessing conditions, virus kill, and the maintenance of protein integrity. In this study, we utilize a simple model protein, hen egg-white lysozyme, to investigate the relationship between antiviral bioprocess conditions (protein formulation and temperature) and the extent and type of protein modification. A variety of industrially relevant wet- and dry-heat treatments were undertaken, using formulations that included sucrose as a thermostabilizing excipient. Although there was no evidence of lysozyme aggregation or crosslinking during any of the heat treatments, using liquid chromatography-electrospray ionization-mass spectroscopy (LC-ESI-MS) and peptide mapping we show that protein modifications do occur with increasingly harsh heat treatment. Modifications were predominantly found after wet-heat treatment, the major covalent modification of lysozyme under these conditions being glycation of Lys(97), by either glucose or fructose derived from hydrolyzed sucrose. The extent of sucrose hydrolysis was itself dependent on both the duration of heat treatment and formulation composition. Advanced glycation end products (AGEs) and additional unidentified products were also present in protein samples subjected to extended heat treatment. AGEs were derived primarily from initial glycation by fructose and not glucose. These findings have implications for the improvement of bioprocesses to ensure protein product quality.

  2. Review of antiviral and immunomodulating properties of plants of the Peruvian rainforest with a particular emphasis on Una de Gato and Sangre de Grado.

    PubMed

    Williams, J E

    2001-12-01

    Viral diseases, including emerging and chronic viruses, are an increasing worldwide health concern. As a consequence, the discovery of new antiviral agents from plants has assumed more urgency than in the past. A number of native Amazonian medicines of plant origin are known to have antimicrobial and anti-inflammatory activity, although only a few have been studied for their antiviral properties and immunomodulating effects. Those most studied include: Sangre de Grado (drago) (Croton lechleri) in the Euphorbiaceae family and Una de Gato (Uncaria tomentosa) in the Rubiaceae family. This article reviews the chemical composition, pharmacological properties, state of current research, clinical use, and potential antiviral and immunomodulating activity of these and other plants from the Peruvian Amazon.

  3. Antiviral activity of lambda-carrageenan prepared from red seaweed (Gigartina skottsbergii) against BoHV-1 and SuHV-1.

    PubMed

    Diogo, Jésica V; Novo, Sabrina Galdo; González, Marcelo J; Ciancia, Marina; Bratanich, Ana C

    2015-02-01

    The antiviral effect of polysaccharides has been known for many years. Carrageenans are considered a good alternative for the prevention of a wide range of diseases, mainly caused by enveloped viruses. The advantages lie on their high availability, low cost and low induction of resistance. The aim of this study was to evaluate the sensitivity of two viral pathogens of veterinary interest to the presence of lambda-carrageenan. This is the first report of a lambda-carrageenan having antiviral activity against animal viruses belonging to the Alphaherpesvirinae subfamily, BoHV-1 (bovine herpesvirus type 1) strain Cooper and SuHV-1 (suid herpesvirus type 1) strain Bartha. Lambda-carrageenan was able to reduce infectivity of both viruses with a more pronounced effect against BoHV-1. These results proved, as previously shown for human herpes virus type 1, that these compounds could be used as potential antiviral agents in the veterinary field.

  4. Agent Orange

    MedlinePlus

    ... Index Agent Orange Agent Orange Home Facts about Herbicides Veterans' Diseases Birth Defects Benefits Exposure Locations Provider ... Orange Parkinson’s Awareness Month Were you exposed to herbicides during service and have Parkinson’s disease? You may ...

  5. An Image-Based Genetic Assay Identifies Genes in T1D Susceptibility Loci Controlling Cellular Antiviral Immunity in Mouse

    PubMed Central

    Liao, Juan; Jijon, Humberto B.; Kim, Ira R.; Goel, Gautam; Doan, Aivi; Sokol, Harry; Bauer, Hermann; Herrmann, Bernhard G.; Lassen, Kara G.; Xavier, Ramnik J.

    2014-01-01

    The pathogenesis of complex diseases, such as type 1 diabetes (T1D), derives from interactions between host genetics and environmental factors. Previous studies have suggested that viral infection plays a significant role in initiation of T1D in genetically predisposed individuals. T1D susceptibility loci may therefore be enriched in previously uncharacterized genes functioning in antiviral defense pathways. To identify genes involved in antiviral immunity, we performed an image-based high-throughput genetic screen using short hairpin RNAs (shRNAs) against 161 genes within T1D susceptibility loci. RAW 264.7 cells transduced with shRNAs were infected with GFP-expressing herpes simplex virus type 1 (HSV-1) and fluorescent microscopy was performed to assess the viral infectivity by fluorescence reporter activity. Of the 14 candidates identified with high confidence, two candidates were selected for further investigation, Il27 and Tagap. Administration of recombinant IL-27 during viral infection was found to act synergistically with interferon gamma (IFN-γ) to activate expression of type I IFNs and proinflammatory cytokines, and to enhance the activities of interferon regulatory factor 3 (IRF3). Consistent with a role in antiviral immunity, Tagap-deficient macrophages demonstrated increased viral replication, reduced expression of proinflammatory chemokines and cytokines, and decreased production of IFN-β. Taken together, our unbiased loss-of-function genetic screen identifies genes that play a role in host antiviral immunity and delineates roles for IL-27 and Tagap in the production of antiviral cytokines. PMID:25268627

  6. Systems Biology-Based Investigation of Cellular Antiviral Drug Targets Identified by Gene-Trap Insertional Mutagenesis

    PubMed Central

    Zhao, Junfei; Sheng, Jinsong; Rubin, Donald H.

    2016-01-01

    Viruses require host cellular factors for successful replication. A comprehensive systems-level investigation of the virus-host interactome is critical for understanding the roles of host factors with the end goal of discovering new druggable antiviral targets. Gene-trap insertional mutagenesis is a high-throughput forward genetics approach to randomly disrupt (trap) host genes and discover host genes that are essential for viral replication, but not for host cell survival. In this study, we used libraries of randomly mutagenized cells to discover cellular genes that are essential for the replication of 10 distinct cytotoxic mammalian viruses, 1 gram-negative bacterium, and 5 toxins. We herein reported 712 candidate cellular genes, characterizing distinct topological network and evolutionary signatures, and occupying central hubs in the human interactome. Cell cycle phase-specific network analysis showed that host cell cycle programs played critical roles during viral replication (e.g. MYC and TAF4 regulating G0/1 phase). Moreover, the viral perturbation of host cellular networks reflected disease etiology in that host genes (e.g. CTCF, RHOA, and CDKN1B) identified were frequently essential and significantly associated with Mendelian and orphan diseases, or somatic mutations in cancer. Computational drug repositioning framework via incorporating drug-gene signatures from the Connectivity Map into the virus-host interactome identified 110 putative druggable antiviral targets and prioritized several existing drugs (e.g. ajmaline) that may be potential for antiviral indication (e.g. anti-Ebola). In summary, this work provides a powerful methodology with a tight integration of gene-trap insertional mutagenesis testing and systems biology to identify new antiviral targets and drugs for the development of broadly acting and targeted clinical antiviral therapeutics. PMID:27632082

  7. Identification of a novel multiple kinase inhibitor with potent antiviral activity against influenza virus by reducing viral polymerase activity.

    PubMed

    Sasaki, Yutaka; Kakisaka, Michinori; Chutiwitoonchai, Nopporn; Tajima, Shigeru; Hikono, Hirokazu; Saito, Takehiko; Aida, Yoko

    2014-07-18

    Neuraminidase inhibitors are the only currently available influenza treatment, although resistant viruses to these drugs have already been reported. Thus, new antiviral drugs with novel mechanisms of action are urgently required. In this study, we identified a novel antiviral compound, WV970, through cell-based screening of a 50,000 compound library and subsequent lead optimization. This compound exhibited potent antiviral activity with nanomolar IC50 values against both influenza A and B viruses but not non-influenza RNA viruses. Time-of-addition and indirect immunofluorescence assays indicated that WV970 acted at an early stage of the influenza life cycle, but likely after nuclear entry of viral ribonucleoprotein (vRNP). Further analyses of viral RNA expression and viral polymerase activity indicated that WV970 inhibited vRNP-mediated viral genome replication and transcription. Finally, structure-based virtual screening and comprehensive human kinome screening were used to demonstrate that WV970 acts as a multiple kinase inhibitor, many of which are associated with influenza virus replication. Collectively, these results strongly suggest that WV970 is a promising anti-influenza drug candidate and that several kinases associated with viral replication are promising drug targets.

  8. Antiviral effect of ranpirnase against Ebola virus.

    PubMed

    Hodge, Thomas; Draper, Ken; Brasel, Trevor; Freiberg, Alexander; Squiquera, Luis; Sidransky, David; Sulley, Jamie; Taxman, Debra J

    2016-08-01

    The recent epidemic of Ebola has intensified the need for the development of novel antiviral therapeutics that prolong and improve survival against deadly viral diseases. We sought to determine whether ranpirnase, an endoribonuclease from Rana pipiens with a demonstrated human safety profile in phase III oncology trials, can reduce titers of Ebola virus (EBOV) in infected cells, protect mice against mouse-adapted EBOV challenge, and reduce virus levels in infected mice. Our results demonstrate that 0.50 μg/ml ranpirnase is potently effective at reducing EBOV Zaire Kikwit infection in cultured Vero E6 cells (Selectivity Index 47.8-70.2). In a prophylactic study, a single intravenous dose of 0.1 mg/kg ranpirnase protected 70% of mice from progressive infection. Additionally, in a post-exposure prophylactic study, 100% of female mice survived infection after intraperitoneal administration of 0.1 mg/kg ranpirnase for ten days beginning 1 h post challenge. Most of the male counterparts were sacrificed due to weight loss by Study Day 8 or 9; however, the Clinical Activity/Behavior scores of these mice remained low and no significant microscopic pathologies could be detected in the kidneys, livers or spleens. Furthermore, live virus could not be detected in the sera of ranpirnase-treated mice by Study Day 8 or in the kidneys, livers or spleens by Study Day 12, and viral RNA levels declined exponentially by Study Day 12. Because ranpirnase is exceptionally stable and has a long track record of safe intravenous administration to humans, this drug provides a promising new candidate for clinical consideration in the treatment of Ebola virus disease alone or in combination with other therapeutics.

  9. Targeting viral dsRNA for antiviral prophylaxis

    PubMed Central

    Fei, Zhou; Liu, Yang; Yan, Zhen; Fan, Daiming; Alexander, Alice; Yang, Jing-Hua

    2011-01-01

    Double-stranded (ds)RNA in the infected cells is a trait shared by most if not all viruses. While humans have developed variable immune responses, viruses have also developed countermeasures to defeat dsRNA-induced antiviral strategies. Thus, we proposed a broad antiviral strategy to antagonize the countermeasures of viruses and bypass the dsRNA-induced signals that are readily defeated by viruses. By rewiring the dsRNA-binding proteins in the dsRNA complex and reconnecting them to apoptosis signaling, we created several dsRNA-dependent caspase recruiters, termed dsCAREs, to bypass dsRNA-induced antiviral signals that would otherwise be targeted by viruses. Adenovirus and vesicular stomatitis virus, representing viruses of the dsDNA and negative-stranded RNA viral groups, were used to infect HEK293 cells. The dsCARE chimera was added in medium to evaluate its antiviral activity. The truncated dsCAREs were used as controls. We demonstrate that dsCARE suppresses viral infection starting at 0.1 μg/ml and reaches the peak at 2 μg/ml. The EC50 was ∼0.2 μg/ml. However, it had an undetectable effect on uninfected cells. Further data show that both dsRNA binding and apoptosis activation of dsCARE are essential for its antiviral activity. We conclude that dsRNA is a practical virus-associated molecular pattern that can be targeted for broad and rapid antiviral prophylaxis.—Fei, Z., Liu, Y., Yan, Z., Fan, D., Alexander, A., Yang, J.-H. Targeting viral dsRNA for antiviral prophylaxis. PMID:19880628

  10. Replicative Homeostasis III: implications for antiviral therapy and mechanisms of response and non-response

    PubMed Central

    Sallie, Richard

    2007-01-01

    While improved drug regimens have greatly enhanced outcomes for patients with chronic viral infection, antiviral therapy is still not ideal due to drug toxicities, treatment costs, primary drug failure and emergent resistance. New antiviral agents, alternative treatment strategies and a better understanding of viral pathobiology, host responses and drug action are desperately needed. Interferon (IFN) and ribavirin, are effective drugs used to treat hepatitis C (HCV), but the mechanism(s) of their action are uncertain. Error catastrophe (EC), or precipitous loss of replicative fitness caused by genomic mutation, is postulated to mediate ribavirin action, but is a deeply flawed hypothesis lacking empirical confirmation. Paradoxically ribavirin, a proven RNA mutagen, has no impact on HCV viraemia long term, suggesting real viruses, replicating in-vitro, as opposed to mathematical models, replicating in-silico, are likely to resist EC by highly selective replication of fit (~consensus sequence) genomes mediated, in part, by replicative homeostasis (RH), an epicyclic mechanism that dynamically links RNApol fidelity and processivity and other viral protein functions. Replicative homeostasis provides a rational explanation for the various responses seen during treatment of HCV, including genotype-specific and viral load-dependent differential response rates, as well as otherwise unexplained phenomena like the transient inhibition and rebound of HCV viraemia seen during ribavirin monotherapy. Replicative homeostasis also suggests a primarily non-immunological mechanism that mediates increased immune responsiveness during treatment with ribavirin (and other nucleos(t)ide analogues), explicating the enhanced second-phase clearance of HCV ribavirin promotes and, thus, the apparent immunomodulatory action of ribavirin. More importantly, RH suggests specific new antiviral therapeutic strategies. PMID:17355620

  11. Evaluation of microporous polycaprolactone matrices for controlled delivery of antiviral microbicides to the female genital tract.

    PubMed

    Asvadi, Naghme Hajarol; Dang, Nhung T T; Davis-Poynter, Nicholas; Coombes, Allan G A

    2013-12-01

    Acyclovir (ACV) as a model antiviral microbicide, was incorporated in controlled-release polycaprolactone (PCL) matrices designed for application as intra-vaginal ring inserts (IVRs). Microporous materials incorporating acyclovir up to a level of ~10 % w/w were produced by rapidly cooling suspensions of drug powder in PCL solution followed by solvent extraction from the hardened matrices. Around 21, 50 and 78 % of the drug content was gradually released from matrices over 30 days in simulated vaginal fluid at 37 °C, corresponding to drug loadings of 5.9, 7.0 and 9.6 % w/w. The release behaviour of matrices having the lowest drug loading followed a zero order model, whereas, the release kinetics of 7.0 and 9.6 % ACV-loaded PCL matrices could be described effectively by the Higuchi model, suggesting that Fickian diffusion is controlling drug release. Corresponding values of the diffusion co-efficient for ACV in the PCL matrices of 3.16 × 10(-9) and 1.07 × 10(-8) cm(2)/s were calculated. Plaque reduction assays provided an IC50 value of 1.09 μg/mL for acyclovir against HSV-2 and confirmed the antiviral activity of released acyclovir against HSV-2 replication in primate kidney cells (Vero) at levels ~70 % that of non-formulated acyclovir at day 30. Estimated minimum in vivo acyclovir concentrations produced by a PCL IVR (19 μg/mL) exceeded by a factor of 20 the IC50 value against HSV-2 and the reported ACV vaginal concentrations in women (0.5-1.0 μg/mL) following oral administration. These findings recommend further investigations of PCL matrices for vaginal delivery of antiviral agents in the treatment and prevention of sexually transmitted infections such as AIDS.

  12. Antiviral Protection via RdRP-Mediated Stable Activation of Innate Immunity

    PubMed Central

    Painter, Meghan M.; Morrison, James H.; Zoecklein, Laurie J.; Rinkoski, Tommy A.; Watzlawik, Jens O.; Papke, Louisa M.; Warrington, Arthur E.; Bieber, Allan J.; Matchett, William E.; Turkowski, Kari L.; Poeschla, Eric M.; Rodriguez, Moses

    2015-01-01

    For many emerging and re-emerging infectious diseases, definitive solutions via sterilizing adaptive immunity may require years or decades to develop, if they are even possible. The innate immune system offers alternative mechanisms that do not require antigen-specific recognition or a priori knowledge of the causative agent. However, it is unclear whether effective stable innate immune system activation can be achieved without triggering harmful autoimmunity or other chronic inflammatory sequelae. Here, we show that transgenic expression of a picornavirus RNA-dependent RNA polymerase (RdRP), in the absence of other viral proteins, can profoundly reconfigure mammalian innate antiviral immunity by exposing the normally membrane-sequestered RdRP activity to sustained innate immune detection. RdRP-transgenic mice have life-long, quantitatively dramatic upregulation of 80 interferon-stimulated genes (ISGs) and show profound resistance to normally lethal viral challenge. Multiple crosses with defined knockout mice (Rag1, Mda5, Mavs, Ifnar1, Ifngr1, and Tlr3) established that the mechanism operates via MDA5 and MAVS and is fully independent of the adaptive immune system. Human cell models recapitulated the key features with striking fidelity, with the RdRP inducing an analogous ISG network and a strict block to HIV-1 infection. This RdRP-mediated antiviral mechanism does not depend on secondary structure within the RdRP mRNA but operates at the protein level and requires RdRP catalysis. Importantly, despite lifelong massive ISG elevations, RdRP mice are entirely healthy, with normal longevity. Our data reveal that a powerfully augmented MDA5-mediated activation state can be a well-tolerated mammalian innate immune system configuration. These results provide a foundation for augmenting innate immunity to achieve broad-spectrum antiviral protection. PMID:26633895

  13. Antiviral Combination Approach as a Perspective to Combat Enterovirus Infections.

    PubMed

    Galabov, Angel S; Nikolova, Ivanka; Vassileva-Pencheva, Ralitsa; Stoyanova, Adelina

    2015-01-01

    Human enteroviruses distributed worldwide are causative agents of a broad spectrum of diseases with extremely high morbidity, including a series of severe illnesses of the central nervous system, heart, endocrine pancreas, skeleton muscles, etc., as well as the common cold contributing to the development of chronic respiratory diseases, including the chronic obstructive pulmonary disease. The above mentioned diseases along with the significantly high morbidity and mortality in children, as well as in the high-risk populations (immunodeficiencies, neonates) definitely formulate the chemotherapy as the main tool for the control of enterovirus infections. At present, clinically effective antivirals for use in the treatment of enteroviral infection do not exist, in spite of the large amount of work carried out in this field. The main reason for this is the development of drug resistance. We studied the process of development of resistance to the strongest inhibitors of enteroviruses, WIN compounds (VP1 protein hydrophobic pocket blockers), especially in the models in vivo, Coxsackievirus B (CV-B) infections in mice. We introduced the tracing of a panel of phenotypic markers (MIC50 value, plaque shape and size, stability at 50℃, pathogenicity in mice) for characterization of the drug-mutants (resistant and dependent) as a very important stage in the study of enterovirus inhibitors. Moreover, as a result of VP1 RNA sequence analysis performed on the model of disoxaril mutants of CVB1, we determined the molecular basis of the drug-resistance. The monotherapy courses were the only approach used till now. For the first time in the research for anti-enterovirus antivirals our team introduced the testing of combination effect of the selective inhibitors of enterovirus replication with different mode of action. This study resulted in the selection of a number of very effective in vitro double combinations with synergistic effect and a broad spectrum of sensitive

  14. Identification of a novel multiple kinase inhibitor with potent antiviral activity against influenza virus by reducing viral polymerase activity

    SciTech Connect

    Sasaki, Yutaka; Kakisaka, Michinori; Chutiwitoonchai, Nopporn; Tajima, Shigeru; Hikono, Hirokazu; Saito, Takehiko; Aida, Yoko

    2014-07-18

    Highlights: • Screening of 50,000 compounds and subsequent lead optimization identified WV970. • WV970 has antiviral effects against influenza A, B and highly pathogenic viral strains. • WV970 inhibits viral genome replication and transcription. • A target database search suggests that WV970 may bind to a number of kinases. • KINOMEscan screening revealed that WV970 has inhibitory effects on 15 kinases. - Abstract: Neuraminidase inhibitors are the only currently available influenza treatment, although resistant viruses to these drugs have already been reported. Thus, new antiviral drugs with novel mechanisms of action are urgently required. In this study, we identified a novel antiviral compound, WV970, through cell-based screening of a 50,000 compound library and subsequent lead optimization. This compound exhibited potent antiviral activity with nanomolar IC{sub 50} values against both influenza A and B viruses but not non-influenza RNA viruses. Time-of-addition and indirect immunofluorescence assays indicated that WV970 acted at an early stage of the influenza life cycle, but likely after nuclear entry of viral ribonucleoprotein (vRNP). Further analyses of viral RNA expression and viral polymerase activity indicated that WV970 inhibited vRNP-mediated viral genome replication and transcription. Finally, structure-based virtual screening and comprehensive human kinome screening were used to demonstrate that WV970 acts as a multiple kinase inhibitor, many of which are associated with influenza virus replication. Collectively, these results strongly suggest that WV970 is a promising anti-influenza drug candidate and that several kinases associated with viral replication are promising drug targets.

  15. Host-Targeting Agents to Prevent and Cure Hepatitis C Virus Infection

    PubMed Central

    Zeisel, Mirjam B.; Crouchet, Emilie; Baumert, Thomas F.; Schuster, Catherine

    2015-01-01

    Chronic hepatitis C virus (HCV) infection is a major cause of liver cirrhosis and hepatocellular carcinoma (HCC) which are leading indications of liver transplantation (LT). To date, there is no vaccine to prevent HCV infection and LT is invariably followed by infection of the liver graft. Within the past years, direct-acting antivirals (DAAs) have had a major impact on the management of chronic hepatitis C, which has become a curable disease in the majority of DAA-treated patients. In contrast to DAAs that target viral proteins, host-targeting agents (HTAs) interfere with cellular factors involved in the viral life cycle. By acting through a complementary mechanism of action and by exhibiting a generally higher barrier to resistance, HTAs offer a prospective option to prevent and treat viral resistance. Indeed, given their complementary mechanism of action, HTAs and DAAs can act in a synergistic manner to reduce viral loads. This review summarizes the different classes of HTAs against HCV infection that are in preclinical or clinical development and highlights their potential to prevent HCV infection, e.g., following LT, and to tailor combination treatments to cure chronic HCV infection. PMID:26540069

  16. Antiviral treatment and other therapeutic interventions for herpes simplex virus epithelial keratitis

    PubMed Central

    Wilhelmus, Kirk R

    2015-01-01

    Background Eye disease due to herpes simplex virus (HSV) commonly presents as epithelial keratitis which, though usually self-limiting, may persist or progress without treatment. Objectives To compare the relative effectiveness of antiviral agents, interferon, and corneal debridement in the treatment of HSV epithelial keratitis. Search methods We searched CENTRAL (which contains the Cochrane Eyes and Vision Group Trials Register) (2014, Issue 12), PubMed (January 1946 to 31 December 2014), EMBASE (January 1980 to 31 December 2014), Latin American and Caribbean Health Sciences Literature Database (LILACS) (January 1982 to 31 December 2014), System for Information on Grey Literature in Europe (OpenGrey) (January 1995 to 31 December 2014), BIOSIS (January 1926 to 5 May 2014), Scopus (January 1966 to 31 December 2014), Japan Science and Technology Institute (J-Global) (January 1975 to 31 December 2014), China National Knowledge Infrastructure (CNKI) (January 1979 to 31 December 2014), British Library’s Electronic Table of Contents (Zetoc) (January 1993 to 7 May 2014). We looked for trials listed on the the metaRegister of Controlled Trials (www.controlled-trials.com), ClinicalTrials.gov (www.clinicaltrials.gov), the World Health Organization (WHO) International Clinical Trials Registry Platform (ICTRP) (www.who.int/ictrp/search/en), Chinese Clinical Trial Registry, the U.S. Food and Drug Administration (FDA) (www.fda.gov/), National Institute for Health and Clinical Excellence (NICE) (www.evidence.nhs.uk) and the European Medicines Agency (EMA) (www.ema.europa.eu/ema/) as of 31 December 2014. There were no language or date restrictions in the search for trials. We also culled literature digests and conference proceedings as of 15 April 2014. There were no language or date restrictions in the search for trials. Selection criteria Randomised and quasi-randomised trials of HSV dendritic or geographic epithelial keratitis were included that reported the proportion of

  17. Synthesis, cytotoxicity and antiviral evaluation of new series of imidazo[4,5-g]quinoline and pyrido[2,3-g]quinoxalinone derivatives.

    PubMed

    Briguglio, Irene; Loddo, Roberta; Laurini, Erik; Fermeglia, Maurizio; Piras, Sandra; Corona, Paola; Giunchedi, Paolo; Gavini, Elisabetta; Sanna, Giuseppina; Giliberti, Gabriele; Ibba, Cristina; Farci, Pamela; La Colla, Paolo; Pricl, Sabrina; Carta, Antonio

    2015-11-13

    Linear aromatic N-tricyclic compounds with promising antiviral activity and minimal cytotoxicity were prepared and analyzed in the last years. Specifically, the pyrido[2,3-g]quinoxalinone nucleus was found endowed with high potency against several pathogenic RNA viruses as etiological agents of important veterinary and human pathologies. Following our research program on new antiviral agents we have designed, synthesized and assayed new series of imidazo[4,5-g]quinoline and pyrido[2,3-g]quinoxalinone derivatives. Lead compounds 1-4 were further modified to enhance their antiviral activity and reduce their cytotoxicity. Thus, different substituents were introduced on N atom at position 1 or the O atom at position 2 of the leads; contextually, several groups were inserted on the nitrogen atom at position 7 of diaminoquinoline intermediates. Title compounds were tested in cell-based assays for cytotoxicity and antiviral activity against RNA virus families containing single-stranded (either positive-sense (ssRNA+) or negative-sense (ssRNA-)), and double-stranded genomes (dsRNA), and against two representatives of DNA virus families. Some derivatives emerged as potential leads for further development as antiviral agents against some viruses of public health significance, such as RSV, Reo, BVDV and HCV. Particularly, compounds 4, 11b, 11c, 13c, 15a, 18 and 21 resulted active against BVDV at concentrations ranging from 1.3 to 5 μM. Compound 21 was also evaluated for its activity on the BVDV RdRp. Compound 4 was also tested as potential anti-HCV compound in a subgenomic replication assay. Molecular simulation results provided a molecular rationale for the anti-BVDV activity of these compounds.

  18. Mixture toxicity of the antiviral drug Tamiflu((R)) (oseltamivir ethylester) and its active metabolite oseltamivir acid.

    PubMed

    Escher, Beate I; Bramaz, Nadine; Lienert, Judit; Neuwoehner, Judith; Straub, Jürg Oliver

    2010-02-18

    Tamiflu (oseltamivir ethylester) is an antiviral agent for the treatment of influenza A and B. The pro-drug Tamiflu is converted in the human body to the pharmacologically active metabolite, oseltamivir acid, with a yield of 75%. Oseltamivir acid is indirectly photodegradable and slowly biodegradable in sewage works and sediment/water systems. A previous environmental risk assessment has concluded that there is no bioaccumulation potential of either of the compounds. However, little was known about the ecotoxicity of the metabolite. Ester hydrolysis typically reduces the hydrophobicity and thus the toxicity of a compound. In this case, a zwitterionic, but overall neutral species is formed from the charged parent compound. If the speciation and predicted partitioning into biological membranes is considered, the metabolite may have a relevant contribution to the overall toxicity. These theoretical considerations triggered a study to investigate the toxicity of oseltamivir acid (OA), alone and in binary mixtures with its parent compound oseltamivir ethylester (OE). OE and OA were found to be baseline toxicants in the bioluminescence inhibition test with Vibrio fischeri. Their mixture effect lay between predictions for concentration addition and independent action for the mixture ratio excreted in urine and nine additional mixture ratios of OE and OA. In contrast, OE was an order of magnitude more toxic than OA towards algae, with a more pronounced effect when the direct inhibition of photosystem II was used as toxicity endpoint opposed to the 24h growth rate endpoint. The binary mixtures in this assay yielded experimental mixture effects that agreed with predictions for independent action. This is consistent with the finding that OE exhibits slightly enhanced toxicity, while OA acts as baseline toxicant. Therefore, with respect to mixture classification, the two compounds can be considered as acting according to different modes of toxic action, although there are

  19. Screening for antiviral activities of isolated compounds from essential oils.

    PubMed

    Astani, Akram; Reichling, Jürgen; Schnitzler, Paul

    2011-01-01

    Essential oil of star anise as well as phenylpropanoids and sesquiterpenes, for example, trans-anethole, eugenol, β-eudesmol, farnesol, β-caryophyllene and β-caryophyllene oxide, which are present in many essential oils, were examined for their antiviral activity against herpes simplex virus type 1 (HSV-1) in vitro. Antiviral activity was analyzed by plaque reduction assays and mode of antiviral action was determined by addition of the drugs to uninfected cells, to the virus prior to infection or to herpesvirus-infected cells. Star anise oil reduced viral infectivity by >99%, phenylpropanoids inhibited HSV infectivity by about 60-80% and sesquiterpenes suppressed herpes virus infection by 40-98%. Both, star anise essential oil and all isolated compounds exhibited anti-HSV-1 activity by direct inactivation of free virus particles in viral suspension assays. All tested drugs interacted in a dose-dependent manner with herpesvirus particles, thereby inactivating viral infectivity. Star anise oil, rich in trans-anethole, revealed a high selectivity index of 160 against HSV, whereas among the isolated compounds only β-caryophyllene displayed a high selectivity index of 140. The presence of β-caryophyllene in many essential oils might contribute strongly to their antiviral ability. These results indicate that phenylpropanoids and sesquiterpenes present in essential oils contribute to their antiviral activity against HSV.

  20. Antiviral Screening of Multiple Compounds against Ebola Virus

    PubMed Central

    Dowall, Stuart D.; Bewley, Kevin; Watson, Robert J.; Vasan, Seshadri S.; Ghosh, Chandradhish; Konai, Mohini M.; Gausdal, Gro; Lorens, James B.; Long, Jason; Barclay, Wendy; Garcia-Dorival, Isabel; Hiscox, Julian; Bosworth, Andrew; Taylor, Irene; Easterbrook, Linda; Pitman, James; Summers, Sian; Chan-Pensley, Jenny; Funnell, Simon; Vipond, Julia; Charlton, Sue; Haldar, Jayanta; Hewson, Roger; Carroll, Miles W.

    2016-01-01

    In light of the recent outbreak of Ebola virus (EBOV) disease in West Africa, there have been renewed efforts to search for effective antiviral countermeasures. A range of compounds currently available with broad antimicrobial activity have been tested for activity against EBOV. Using live EBOV, eighteen candidate compounds were screened for antiviral activity in vitro. The compounds were selected on a rational basis because their mechanisms of action suggested that they had the potential to disrupt EBOV entry, replication or exit from cells or because they had displayed some antiviral activity against EBOV in previous tests. Nine compounds caused no reduction in viral replication despite cells remaining healthy, so they were excluded from further analysis (zidovudine; didanosine; stavudine; abacavir sulphate; entecavir; JB1a; Aimspro; celgosivir; and castanospermine). A second screen of the remaining compounds and the feasibility of appropriateness for in vivo testing removed six further compounds (ouabain; omeprazole; esomeprazole; Gleevec; D-LANA-14; and Tasigna). The three most promising compounds (17-DMAG; BGB324; and NCK-8) were further screened for in vivo activity in the guinea pig model of EBOV disease. Two of the compounds, BGB324 and NCK-8, showed some effect against lethal infection in vivo at the concentrations tested, which warrants further investigation. Further, these data add to the body of knowledge on the antiviral activities of multiple compounds against EBOV and indicate that the scientific community should invest more effort into the development of novel and specific antiviral compounds to treat Ebola virus disease. PMID:27801778

  1. Antiviral effects of two Ganoderma lucidum triterpenoids against enterovirus 71 infection

    SciTech Connect

    Zhang, Wenjing; Tao, Junyan; Yang, Xiaoping; Yang, Zhuliang; Zhang, Li; Liu, Hongsheng; Wu, Kailang; Wu, Jianguo

    2014-07-04

    Highlights: • Triterpenoids GLTA and GLTB display anti-EV71 activities without cytotoxicity. • The compounds prevent EV71 infection by blocking adsorption of the virus to the cells. • GLTA and GLTB bind to EV71 capsid at the hydrophobic pocket to block EV71 uncoating. • The two compounds significantly inhibit the replication of EV71 viral RNA. • GLTA and GLTB may be used as potential therapeutic agents to treat EV71 infection. - Abstract: Enterovirus 71 (EV71) is a major causative agent for hand, foot and mouth disease (HFMD), and fatal neurological and systemic complications in children. However, there is currently no clinical approved antiviral drug available for the prevention and treatment of the viral infection. Here, we evaluated the antiviral activities of two Ganoderma lucidum triterpenoids (GLTs), Lanosta-7,9(11),24-trien-3-one,15;26-dihydroxy (GLTA) and Ganoderic acid Y (GLTB), against EV71 infection. The results showed that the two natural compounds display significant anti-EV71 activities without cytotoxicity in human rhabdomyosarcoma (RD) cells as evaluated by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cell proliferation assay. The mechanisms by which the two compounds affect EV71 infection were further elucidated by three action modes using Ribavirin, a common antiviral drug, as a positive control. The results suggested that GLTA and GLTB prevent EV71 infection through interacting with the viral particle to block the adsorption of virus to the cells. In addition, the interactions between EV71 virion and the compounds were predicated by computer molecular docking, which illustrated that GLTA and GLTB may bind to the viral capsid protein at a hydrophobic pocket (F site), and thus may block uncoating of EV71. Moreover, we demonstrated that GLTA and GLTB significantly inhibit the replication of the viral RNA (vRNA) of EV71 replication through blocking EV71 uncoating. Thus, GLTA and GLTB may represent two potential

  2. AN ANTIVIRAL SUBSTANCE FROM PENICILLIUM FUNICULOSUM

    PubMed Central

    Shope, Richard E.

    1953-01-01

    A culture of P. funiculosum isolated on Guam proved capable of elaborating a substance which exerted a favorable therapeutic effect against swine influenza virus infections in white mice. The culture was extremely variable and irregular in its production of the antiviral substance, and during maintenance in the laboratory for several years gradually lost this property. Efforts to restore it were unsuccessful. Subsequently it was found that the mold elaborated a substance, now designated helenine, which is therapeutically effective against Columbia SK encephalomyelitis virus infections in mice. Helenine appears to differ from the substance earlier procured from the mold, which was active against swine influenza virus infections in mice. It is frequently present in greater or lesser amount in the fluid portions of stationary cultures of P. funiculosum but is more regularly obtained and in larger amount, from the cellular components of the pellicles. When liberated from these latter by mechanical bruising and fracturing, it goes into solution in the culture fluids. It is precipitable from aqueous solution by 50 per cent acetone. Infected mice injected with helenine in amounts less than the amount which produces a maximal therapeutic effect exhibit a dosage response. Increasing the dose above the optimum fails to increase the therapeutic effect. Helenine exerts its maximum effect when given within the first 10 hours after viral infection but its influence is apparent even when treatment is delayed for up to 24 hours. It is not effective against massive amounts of virus and gives the best therapeutic results when used in the treatment of animals infected with from 10 to 1000 fatal doses of virus. Treatment of infected mice with helenine delays the entrance of virus into their brains for from 24 to 48 hours. The mechanism by which helenine exerts its therapeutic effect against SK virus is not known but the findings presented suggest either that it causes an inhibition or

  3. 7 CFR 58.629 - Flavoring agents.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AGRICULTURAL MARKETING ACT OF 1946 AND THE EGG PRODUCTS INSPECTION ACT (CONTINUED) GRADING AND INSPECTION, GENERAL SPECIFICATIONS FOR APPROVED PLANTS AND STANDARDS FOR GRADES OF DAIRY PRODUCTS 1 General... Material § 58.629 Flavoring agents. Flavoring agents either natural or artificial shall be wholesome...

  4. Glycosylation of dengue virus glycoproteins and their interactions with carbohydrate receptors: possible targets for antiviral therapy.

    PubMed

    Idris, Fakhriedzwan; Muharram, Siti Hanna; Diah, Suwarni

    2016-07-01

    Dengue virus, an RNA virus belonging to the genus Flavivirus, affects 50 million individuals annually, and approximately 500,000-1,000,000 of these infections lead to dengue hemorrhagic fever or dengue shock syndrome. With no licensed vaccine or specific antiviral treatments available to prevent dengue infection, dengue is considered a major public health problem in subtropical and tropical regions. The virus, like other enveloped viruses, uses the host's cellular enzymes to synthesize its structural (C, E, and prM/M) and nonstructural proteins (NS1-5) and, subsequently, to glycosylate these proteins to produce complete and functional glycoproteins. The structural glycoproteins, specifically the E protein, are known to interact with the host's carbohydrate receptors through the viral proteins' N-glycosylation sites and thus mediate the viral invasion of cells. This review focuses on the involvement of dengue glycoproteins in the course of infection and the virus' exploitation of the host's glycans, especially the interactions between host receptors and carbohydrate moieties. We also discuss the recent developments in antiviral therapies that target these processes and interactions, focusing specifically on the use of carbohydrate-binding agents derived from plants, commonly known as lectins, to inhibit the progression of infection.

  5. Inhibition of Pokeweed Antiviral Protein (PAP) by Turnip Mosaic Virus Genome-linked Protein (VPg)*

    PubMed Central

    Domashevskiy, Artem V.; Miyoshi, Hiroshi; Goss, Dixie J.

    2012-01-01

    Pokeweed antiviral protein (PAP) from Phytolacca americana is a ribosome-inactivating protein (RIP) and an RNA N-glycosidase that removes specific purine residues from the sarcin/ricin loop of large rRNA, arresting protein synthesis at the translocation step. PAP is also a cap-binding protein and is a potent antiviral agent against many plant, animal, and human viruses. To elucidate the mechanism of RNA depurination, and to understand how PAP recognizes and targets various RNAs, the interactions between PAP and turnip mosaic virus genome-linked protein (VPg) were investigated. VPg can function as a cap analog in cap-independent translation and potentially target PAP to uncapped IRES-containing RNA. In this work, fluorescence spectroscopy and HPLC techniques were used to quantitatively describe PAP depurination activity and PAP-VPg interactions. PAP binds to VPg with high affinity (29.5 nm); the reaction is enthalpically driven and entropically favored. Further, VPg is a potent inhibitor of PAP depurination of RNA in wheat germ lysate and competes with structured RNA derived from tobacco etch virus for PAP binding. VPg may confer an evolutionary advantage by suppressing one of the plant defense mechanisms and also suggests the possible use of this protein against the cytotoxic activity of ribosome-inactivating proteins. PMID:22773840

  6. In vitro Anti-viral Activity of Psoraleae Semen Water Extract against Influenza A Viruses.

    PubMed

    Choi, Jang-Gi; Jin, Young-Hee; Kim, Ji-Hye; Oh, Tae Woo; Yim, Nam-Hui; Cho, Won-Kyung; Ma, Jin Yeul

    2016-01-01

    Influenza causes respiratory infections and poses health risks to humans and animals; its effects are complicated by increasing resistance to existing anti-influenza viral agents. Therefore, novel therapeutic approaches against influenza virus infection are required. Psoraleae semen has been widely used in traditional medicine in Korea, Taiwan, China, and Japan for treating and preventing various diseases. In this study, we examined the anti-viral activities and mechanism of action of the water extract of Psoraleae semen (WPS) using RAW 264.7 and MDCK cells. We found that pre- and post-treatment with 100 μg/mL WPS markedly inhibited influenza A virus replication as assessed using a green fluorescent protein reporter virus, reduced viral protein expression (NS-1, PA, HA, PB-1, M1, and M2), and inhibited NA and HA activities. Mechanism studies revealed that WPS induced type I interferon cytokine secretion and subsequent stimulation of an anti-viral state in RAW 264.7 cells. Further, WPS exerted inhibitory effects on neuraminidase in influenza virus strains H1N1 and H3N2. Meanwhile, WPS exhibited inhibitory effects on hemagglutination in H3N2 but not in H1N1. Based on these results, WPS serves as an immunomodulator and inhibitor of influenza hemagglutinin and neuraminidase. Our results suggest that WPS is a promising source of novel anti-influenza drug candidates.

  7. Antiviral Effects of Black Raspberry (Rubus coreanus) Seed and Its Gallic Acid against Influenza Virus Infection

    PubMed Central

    Lee, Ji-Hye; Oh, Mi; Seok, Jong Hyeon; Kim, Sella; Lee, Dan Bi; Bae, Garam; Bae, Hae-In; Bae, Seon Young; Hong, Young-Min; Kwon, Sang-Oh; Lee, Dong-Hun; Song, Chang-Seon; Mun, Ji Young; Chung, Mi Sook; Kim, Kyung Hyun

    2016-01-01

    Influenza is a serious public health concern worldwide, as it causes significant morbidity and mortality. The emergence of drug-resistant viral strains requires new approaches for the treatment of influenza. In this study, Rubus coreanus seed (RCS) that is left over from the production of wine or juice was found to show antiviral activities against influenza type A and B viruses. Using the time-of-addition plaque assay, viral replication was almost completely abolished by simultaneous treatment with the RCS fraction of less than a 1-kDa molecular weight (RCSF1). One of the polyphenols derived from RCSF1, gallic acid (GA), identified by liquid chromatography-tandem mass spectrometry, showed inhibitory effects against both influenza type A and B viruses, albeit at relatively high concentrations. RCSF1 was bound to hemagglutinin protein, inhibited hemagglutination significantly and disrupted viral particles, whereas GA was found to only disrupt the viral particles by using transmission electron microscopy. In BALB/c mice infected with influenza virus, oral administration of RCSF1 significantly improved the survival rate and reduced the viral titers in the lungs. Our results demonstrate that RCSF1 and GA show potent and broad antiviral activity against influenza A and B type viruses and are promising sources of agents that target virus particles. PMID:27275830

  8. In vitro Anti-viral Activity of Psoraleae Semen Water Extract against Influenza A Viruses

    PubMed Central

    Choi, Jang-gi; Jin, Young-Hee; Kim, Ji-Hye; Oh, Tae Woo; Yim, Nam-Hui; Cho, Won-Kyung; Ma, Jin Yeul

    2016-01-01

    Influenza causes respiratory infections and poses health risks to humans and animals; its effects are complicated by increasing resistance to existing anti-influenza viral agents. Therefore, novel therapeutic approaches against influenza virus infection are required. Psoraleae semen has been widely used in traditional medicine in Korea, Taiwan, China, and Japan for treating and preventing various diseases. In this study, we examined the anti-viral activities and mechanism of action of the water extract of Psoraleae semen (WPS) using RAW 264.7 and MDCK cells. We found that pre- and post-treatment with 100 μg/mL WPS markedly inhibited influenza A virus replication as assessed using a green fluorescent protein reporter virus, reduced viral protein expression (NS-1, PA, HA, PB-1, M1, and M2), and inhibited NA and HA activities. Mechanism studies revealed that WPS induced type I interferon cytokine secretion and subsequent stimulation of an anti-viral state in RAW 264.7 cells. Further, WPS exerted inhibitory effects on neuraminidase in influenza virus strains H1N1 and H3N2. Meanwhile, WPS exhibited inhibitory effects on hemagglutination in H3N2 but not in H1N1. Based on these results, WPS serves as an immunomodulator and inhibitor of influenza hemagglutinin and neuraminidase. Our results suggest that WPS is a promising source of novel anti-influenza drug candidates. PMID:27965579

  9. Antiviral Effects of Black Raspberry (Rubus coreanus) Seed and Its Gallic Acid against Influenza Virus Infection.

    PubMed

    Lee, Ji-Hye; Oh, Mi; Seok, Jong Hyeon; Kim, Sella; Lee, Dan Bi; Bae, Garam; Bae, Hae-In; Bae, Seon Young; Hong, Young-Min; Kwon, Sang-Oh; Lee, Dong-Hun; Song, Chang-Seon; Mun, Ji Young; Chung, Mi Sook; Kim, Kyung Hyun

    2016-06-06

    Influenza is a serious public health concern worldwide, as it causes significant morbidity and mortality. The emergence of drug-resistant viral strains requires new approaches for the treatment of influenza. In this study, Rubus coreanus seed (RCS) that is left over from the production of wine or juice was found to show antiviral activities against influenza type A and B viruses. Using the time-of-addition plaque assay, viral replication was almost completely abolished by simultaneous treatment with the RCS fraction of less than a 1-kDa molecular weight (RCSF1). One of the polyphenols derived from RCSF1, gallic acid (GA), identified by liquid chromatography-tandem mass spectrometry, showed inhibitory effects against both influenza type A and B viruses, albeit at relatively high concentrations. RCSF1 was bound to hemagglutinin protein, inhibited hemagglutination significantly and disrupted viral particles, whereas GA was found to only disrupt the viral particles by using transmission electron microscopy. In BALB/c mice infected with influenza virus, oral administration of RCSF1 significantly improved the survival rate and reduced the viral titers in the lungs. Our results demonstrate that RCSF1 and GA show potent and broad antiviral activity against influenza A and B type viruses and are promising sources of agents that target virus particles.

  10. Host cell factors as antiviral targets in arenavirus infection.

    PubMed

    Linero, Florencia N; Sepúlveda, Claudia S; Giovannoni, Federico; Castilla, Viviana; García, Cybele C; Scolaro, Luis A; Damonte, Elsa B

    2012-09-01

    Among the members of the Arenaviridae family, Lassa virus and Junin virus generate periodic annual outbreaks of severe human hemorrhagic fever (HF) in endemic areas of West Africa and Argentina, respectively. Given the human health threat that arenaviruses represent and the lack of a specific and safe chemotherapy, the search for effective antiviral compounds is a continuous demanding effort. Since diverse host cell pathways and enzymes are used by RNA viruses to fulfill their replicative cycle, the targeting of a host process has turned an attractive antiviral approach in the last years for many unrelated virus types. This strategy has the additional benefit to reduce the serious challenge for therapy of RNA viruses to escape from drug effects through selection of resistant variants triggered by their high mutation rate. This article focuses on novel strategies to identify inhibitors for arenavirus therapy, analyzing the potential for antiviral developments of diverse host factors essential for virus infection.

  11. The Antiviral Effect of Baicalin on Enterovirus 71 In Vitro

    PubMed Central

    Li, Xiang; Liu, Yuanyuan; Wu, Tingting; Jin, Yue; Cheng, Jianpin; Wan, Changbiao; Qian, Weihe; Xing, Fei; Shi, Weifeng

    2015-01-01

    Baicalin is a flavonoid compound extracted from Scutellaria roots that has been reported to possess antibacterial, anti-inflammatory, and antiviral activities. However, the antiviral effect of baicalin on enterovirus 71 (EV71) is still unknown. In this study, we found that baicalin showed inhibitory activity on EV71 infection and was independent of direct virucidal or prophylactic effect and inhibitory viral absorption. The expressions of EV71/3D mRNA and polymerase were significantly blocked by baicalin treatment at early stages of EV71 infection. In addition, baicalin could decrease the expressions of FasL and caspase-3, as well as inhibit the apoptosis of EV71-infected human embryonal rhabdomyosarcoma (RD) cells. Altogether, these results indicate that baicalin exhibits potent antiviral effect on EV71 infection, probably through inhibiting EV71/3D polymerase expression and Fas/FasL signaling pathways. PMID:26295407

  12. Cationic phenylene ethynylene polymers and oligomers exhibit efficient antiviral activity.

    PubMed

    Wang, Ying; Canady, Taylor D; Zhou, Zhijun; Tang, Yanli; Price, Dominique N; Bear, David G; Chi, Eva Y; Schanze, Kirk S; Whitten, David G

    2011-07-01

    The antiviral activities of poly(phenylene ethynylene) (PPE)-based cationic conjugated polyelectrolytes (CPE) and oligo-phenylene ethynylenes (OPE) were investigated using two model viruses, the T4 and MS2 bacteriophages. Under UV/visible light irradiation, significant antiviral activity was observed for all of the CPEs and OPEs; without irradiation, most of these compounds exhibited high inactivation activity against the MS2 phage and moderate inactivation ability against the T4 phage. Transmission electron microscopy (TEM) and SDS polyacrylamide gel electrophoresis (SDS-PAGE) reveal that the CPEs and OPEs exert their antiviral activity by partial disassembly of the phage particle structure in the dark and photochemical damage of the phage capsid protein under UV/visible light irradiation.

  13. Favipiravir elicits antiviral mutagenesis during virus replication in vivo.

    PubMed

    Arias, Armando; Thorne, Lucy; Goodfellow, Ian

    2014-10-21

    Lethal mutagenesis has emerged as a novel potential therapeutic approach to treat viral infections. Several studies have demonstrated that increases in the high mutation rates inherent to RNA viruses lead to viral extinction in cell culture, but evidence during infections in vivo is limited. In this study, we show that the broad-range antiviral nucleoside favipiravir reduces viral load in vivo by exerting antiviral mutagenesis in a mouse model for norovirus infection. Increased mutation frequencies were observed in samples from treated mice and were accompanied with lower or in some cases undetectable levels of infectious virus in faeces and tissues. Viral RNA isolated from treated animals showed reduced infectivity, a feature of populations approaching extinction during antiviral mutagenesis. These results suggest that favipiravir can induce norovirus mutagenesis in vivo, which in some cases leads to virus extinction, providing a proof-of-principle for the use of favipiravir derivatives or mutagenic nucleosides in the clinical treatment of noroviruses.

  14. Antiviral defense in shrimp: from innate immunity to viral infection.

    PubMed

    Wang, Pei-Hui; Huang, Tianzhi; Zhang, Xiaobo; He, Jian-Guo

    2014-08-01

    The culture of penaeid shrimp is rapidly developing as a major business endeavor worldwide. However, viral diseases have caused huge economic loss in penaeid shrimp culture industries. Knowledge of shrimp innate immunity and antiviral responses has made important progress in recent years, allowing the design of better strategies for the prevention and control of shrimp diseases. In this study, we have updated information on shrimp antiviral immunity and interactions between shrimp hosts and viral pathogens. Current knowledge and recent progress in immune signaling pathways (e.g., Toll/IMD-NF-κB and JAK-STAT signaling pathways), RNAi, phagocytosis, and apoptosis in shrimp antiviral immunity are discussed. The mechanism of viral infection in shrimp hosts and the interactions between viruses and shrimp innate immune systems are also analyzed.

  15. [Favipiravir, a new concept of antiviral drug against influenza viruses].

    PubMed

    Reina, J; Reina, N

    2017-04-01

    Favipiravir (T-705) is a new antiviral drug with strong inhibitory activity on RNA-dependent RNA polymerase of most RNA virus genome. All the influenza viruses have been shown fully sensitive to this new antiviral, including genetic strains to neuraminidase inhibitors (oseltamivir) resistance. Its mechanism of action lies in blocking viral replication and induction of lethal mutagenesis which determines the loss of infective activity of influenza viruses. Its activity is particularly intense in the respiratory tract, decreasing the viral load to non-infectious levels. Clinical trials in humans have not yet completed but have very favourable results. It seems that the best therapy would be the combination of favipiravir with oseltamivir; both antivirals are synergistic and avoid the emergence of resistance.

  16. Commensal bacteria calibrate the activation threshold of innate antiviral immunity.

    PubMed

    Abt, Michael C; Osborne, Lisa C; Monticelli, Laurel A; Doering, Travis A; Alenghat, Theresa; Sonnenberg, Gregory F; Paley, Michael A; Antenus, Marcelo; Williams, Katie L; Erikson, Jan; Wherry, E John; Artis, David

    2012-07-27

    Signals from commensal bacteria can influence immune cell development and susceptibility to infectious or inflammatory diseases. However, the mechanisms by which commensal bacteria regulate protective immunity after exposure to systemic pathogens remain poorly understood. Here, we demonstrate that antibiotic-treated (ABX) mice exhibit impaired innate and adaptive antiviral immune responses and substantially delayed viral clearance after exposure to systemic LCMV or mucosal influenza virus. Furthermore, ABX mice exhibited severe bronchiole epithelial degeneration and increased host mortality after influenza virus infection. Genome-wide transcriptional profiling of macrophages isolated from ABX mice revealed decreased expression of genes associated with antiviral immunity. Moreover, macrophages from ABX mice exhibited defective responses to type I and type II IFNs and impaired capacity to limit viral replication. Collectively, these data indicate that commensal-derived signals provide tonic immune stimulation that establishes the activation threshold of the innate immune system required for optimal antiviral immunity.

  17. Phytochemistry, cytotoxicity and antiviral activity of Eleusine indica (sambau)

    NASA Astrophysics Data System (ADS)

    Iberahim, Rashidah; Yaacob, Wan Ahmad; Ibrahim, Nazlina

    2015-09-01

    Goose grass also known as Eleusine indica (EI) is a local medicinal plant that displays antioxidant, antimicrobial and anticancer activities. The present study is to determine the phytochemical constituents, cytotoxicity and antiviral activities for both crude extract and fraction obtained from the plant. The crude extract contained more secondary metabolites compared to the hexane fraction as gauged using standard phytochemical tests. Cytotoxicity screening against Vero cells using MTT assay showed that the CC50 values for crude extract and hexane fraction were 2.07 and 5.62 mg/ml respectively. The antiviral activity towards Herpes Simplex Virus type 1 (HSV-1) was determined using plaque reduction assay. The selective indices (SI = CC50 / EC50) for both methanol extract and hexane fraction were 12.2 and 6.2 respectively. These results demonstrate that the extract prepared from E. indica possesses phytochemical compound that was non cytotoxic to the cell with potential antiviral activity.

  18. Commensal Bacteria Calibrate the Activation Threshold of Innate Antiviral Immunity

    PubMed Central

    Abt, Michael C.; Osborne, Lisa C.; Monticelli, Laurel A.; Doering, Travis A.; Alenghat, Theresa; Sonnenberg, Gregory F.; Paley, Michael A.; Antenus, Marcelo; Williams, Katie L.; Erikson, Jan; Wherry, E. John; Artis, David

    2013-01-01

    SUMMARY Signals from commensal bacteria can influence immune cell development and susceptibility to infectious or inflammatory diseases. However, the mechanisms by which commensal bacteria regulate protective immunity after exposure to systemic pathogens remain poorly understood. Here, we demonstrate that antibiotic-treated (ABX) mice exhibit impaired innate and adaptive antiviral immune responses and substantially delayed viral clearance after exposure to systemic LCMV or mucosal influenza virus. Furthermore, ABX mice exhibited severe bronchiole epithelial degeneration and increased host mortality after influenza virus infection. Genome-wide transcriptional profiling of macrophages isolated from ABX mice revealed decreased expression of genes associated with antiviral immunity. Moreover, macrophages from ABX mice exhibited defective responses to type I and type II IFNs and impaired capacity to limit viral replication. Collectively, these data indicate that commensal-derived signals provide tonic immune stimulation that establishes the activation threshold of the innate immune system required for optimal antiviral immunity. PMID:22705104

  19. Antiviral therapy for hepatitis C: Has anything changed for pregnant/lactating women?

    PubMed Central

    Spera, Anna Maria; Eldin, Tarek Kamal; Tosone, Grazia; Orlando, Raffaele

    2016-01-01

    Hepatitis C virus (HCV) affects about 3% of the world’s population, with the highest prevalence in individuals under 40. The prevalence in pregnant women varies with geographical distribution (highest in developing countries). Prevalence also increases in sub-populations of women at high risk for blood-transmitted infections. HCV infection in pregnancy represents a non-negligible problem. However, most of the past antiviral regimens cannot be routinely offered to pregnant or breastfeeding women because of their side effects. We briefly reviewed the issue of treatment of HCV infection in pregnant/breastfeeding women focusing on the effects of the new direct-acting antivirals on fertility, pregnancy and lactation in animal studies and on the potential risk for humans based on the pharmacokinetic properties of each drug. Currently, all new therapy regimens are contraindicated in this setting because of lack of sufficient safety information and adequate measures of contraception are still routinely recommended for female patients of childbearing potential. PMID:27134703

  20. Antiviral Role of IFITM Proteins in African Swine Fever Virus Infection

    PubMed Central

    Martínez-Romero, Carles; Barrado-Gil, Lucía; Galindo, Inmaculada; García-Sastre, Adolfo; Alonso, Covadonga

    2016-01-01

    The interferon-induced transmembrane (IFITM) protein family is a group of antiviral restriction factors that impair flexibility and inhibit membrane fusion at the plasma or the endosomal membrane, restricting viral progression at entry. While IFITMs are widely known to inhibit several single-stranded RNA viruses, there are limited reports available regarding their effect in double-stranded DNA viruses. In this work, we have analyzed a possible antiviral function of IFITMs against a double stranded DNA virus, the African swine fever virus (ASFV). Infection with cell-adapted ASFV isolate Ba71V is IFN sensitive and it induces IFITMs expression. Interestingly, high levels of IFITMs caused a collapse of the endosomal pathway to the perinuclear area. Given that ASFV entry is strongly dependent on endocytosis, we investigated whether IFITM expression could impair viral infection. Expression of IFITM1, 2 and 3 reduced virus infectivity in Vero cells, with IFITM2 and IFITM3 having an impact on viral entry/uncoating. The role of IFITM2 in the inhibition of ASFV in Vero cells could be related to impaired endocytosis-mediated viral entry and alterations in the cholesterol efflux, suggesting that IFITM2 is acting at the late endosome, preventing the decapsidation stage of ASFV. PMID:27116236

  1. Polysaccharide and extracts from Lentinula edodes: structural features and antiviral activity

    PubMed Central

    2012-01-01

    Background Lentinula edodes, known as shiitake, has been utilized as food, as well as, in popular medicine, moreover, compounds isolated from its mycelium and fruiting body have shown several therapeutic properties. The aim of this study was to determine the antiviral activity of aqueous (AqE) and ethanol (EtOHE) extracts and polysaccharide (LeP) from Lentinula edodes in the replication of poliovirus type 1 (PV-1) and bovine herpes virus type 1 (BoHV-1). Methods The time-of-addition assay was performed at the times -2, -1, 0, 1 and 2 h of the infection. The virucidal activity and the inhibition of viral adsorption were also evaluated. Plaque assay was used to monitor antiviral activity throughout. Results The AqE and LeP were more effective when added at 0 h of infection, however, EtOHE was more effective at the times 1 h and 2 h of the infection. AqE, EtOHE and LeP showed low virucidal activity, and the inhibition of viral adsorption was not significant. Conclusions The results allowed us to conclude that AqE, EtOHE and LeP act on the initial processes of the replication of both strains of virus. PMID:22336004

  2. Antiviral drugs for viruses other than human immunodeficiency virus.

    PubMed

    Razonable, Raymund R

    2011-10-01

    Most viral diseases, with the exception of those caused by human immunodeficiency virus, are self-limited illnesses that do not require specific antiviral therapy. The currently available antiviral drugs target 3 main groups of viruses: herpes, hepatitis, and influenza viruses. With the exception of the antisense molecule fomivirsen, all antiherpes drugs inhibit viral replication by serving as competitive substrates for viral DNA polymerase. Drugs for the treatment of influenza inhibit the ion channel M(2) protein or the enzyme neuraminidase. Combination therapy with Interferon-α and ribavirin remains the backbone treatment for chronic hepatitis C; the addition of serine protease inhibitors improves the treatment outcome of patients infected with hepatitis C virus genotype 1. Chronic hepatitis B can be treated with interferon or a combination of nucleos(t)ide analogues. Notably, almost all the nucleos(t) ide analogues for the treatment of chronic hepatitis B possess anti-human immunodeficiency virus properties, and they inhibit replication of hepatitis B virus by serving as competitive substrates for its DNA polymerase. Some antiviral drugs possess multiple potential clinical applications, such as ribavirin for the treatment of chronic hepatitis C and respiratory syncytial virus and cidofovir for the treatment of cytomegalovirus and other DNA viruses. Drug resistance is an emerging threat to the clinical utility of antiviral drugs. The major mechanisms for drug resistance are mutations in the viral DNA polymerase gene or in genes that encode for the viral kinases required for the activation of certain drugs such as acyclovir and ganciclovir. Widespread antiviral resistance has limited the clinical utility of M(2) inhibitors for the prevention and treatment of influenza infections. This article provides an overview of clinically available antiviral drugs for the primary care physician, with a special focus on pharmacology, clinical uses, and adverse effects.

  3. Antiviral Drugs for Viruses Other Than Human Immunodeficiency Virus

    PubMed Central

    Razonable, Raymund R.

    2011-01-01

    Most viral diseases, with the exception of those caused by human immunodeficiency virus, are self-limited illnesses that do not require specific antiviral therapy. The currently available antiviral drugs target 3 main groups of viruses: herpes, hepatitis, and influenza viruses. With the exception of the antisense molecule fomivirsen, all antiherpes drugs inhibit viral replication by serving as competitive substrates for viral DNA polymerase. Drugs for the treatment of influenza inhibit the ion channel M2 protein or the enzyme neuraminidase. Combination therapy with Interferon-α and ribavirin remains the backbone treatment for chronic hepatitis C; the addition of serine protease inhibitors improves the treatment outcome of patients infected with hepatitis C virus genotype 1. Chronic hepatitis B can be treated with interferon or a combination of nucleos(t)ide analogues. Notably, almost all the nucleos(t) ide analogues for the treatment of chronic hepatitis B possess anti–human immunodeficiency virus properties, and they inhibit replication of hepatitis B virus by serving as competitive substrates for its DNA polymerase. Some antiviral drugs possess multiple potential clinical applications, such as ribavirin for the treatment of chronic hepatitis C and respiratory syncytial virus and cidofovir for the treatment of cytomegalovirus and other DNA viruses. Drug resistance is an emerging threat to the clinical utility of antiviral drugs. The major mechanisms for drug resistance are mutations in the viral DNA polymerase gene or in genes that encode for the viral kinases required for the activation of certain drugs such as acyclovir and ganciclovir. Widespread antiviral resistance has limited the clinical utility of M2 inhibitors for the prevention and treatment of influenza infections. This article provides an overview of clinically available antiviral drugs for the primary care physician, with a special focus on pharmacology, clinical uses, and adverse effects. PMID

  4. An Environment for Distributed Collaboration Among Humans and Software Agents

    DTIC Science & Technology

    2005-01-14

    an integrated part of a multi - agent system . Human interaction with agents who act autonomously most of the time, such as a process control agent in a...but must be supervised by, or coordinated with, humans. The DCI system provides a step toward future seamless integration of humans and software agents into a cohesive multi - agent system .

  5. Interferon: signal molecules involved in its antiviral effect.

    PubMed

    Constantinescu, S N; Cernescu, C; Baltă, F; Popescu, L M

    1989-01-01

    A major problem concerning interferon (IFN)-cell interaction is the second messenger system that transduces the IFN signal. We discuss the evidences existing in literature and our arguments which suggest that the antiviral effect of IFNs alpha and beta are mediated by a membrane mechanism including a phospholipase C dependent hydrolysis of phosphoinositides. The resulting two second messengers: diacylglycerol and inositol triphosphate and subsequent, separate but interacting, signal pathways: activation of protein kinase C and ionic events are tested in respect with the antiviral effect of IFN.

  6. Antiviral evaluation of plants from Brazilian Atlantic Tropical Forest.

    PubMed

    Andrighetti-Fröhner, C R; Sincero, T C M; da Silva, A C; Savi, L A; Gaido, C M; Bettega, J M R; Mancini, M; de Almeida, M T R; Barbosa, R A; Farias, M R; Barardi, C R M; Simões, C M O

    2005-06-01

    The antiviral activity of six medicinal plants from Brazilian Atlantic Tropical Forest was investigated against two viruses: herpes simplex virus type 1 (HSV-1) and poliovirus type 2 (PV-2). Cuphea carthagenensis and Tillandsia usneoides extracts showed the best antiherpes activity. T. usneoides dichloromethane, ethyl acetate and n-butanol extracts, and Lippia alba n-butanol extract showed inhibition of HSV-1, strain 29R/acyclovir resistant. In addition, only L. alba ethyl acetate extract showed antipoliovirus activity. These results corroborate that medicinal plants can be a rich source of potential antiviral compounds.

  7. RNA interference-mediated intrinsic antiviral immunity in invertebrates.

    PubMed

    Nayak, Arabinda; Tassetto, Michel; Kunitomi, Mark; Andino, Raul

    2013-01-01

    In invertebrates such as insects and nematodes, RNA interference (RNAi) provides RNA-based protection against viruses. This form of immunity restricts viral replication and dissemination from infected cells and viruses, in turn, have evolved evasion mechanisms or RNAi suppressors to counteract host defenses. Recent advances indicate that, in addition to RNAi, other related small RNA pathways contribute to antiviral functions in invertebrates. This has led to a deeper understanding of fundamental aspects of small RNA-based antiviral immunity in invertebrates and its contribution to viral spread and pathogenesis.

  8. Enhanced antiviral activity of acyclovir loaded into nanoparticles.

    PubMed

    Cavalli, Roberta; Donalisio, Manuela; Bisazza, Agnese; Civra, Andrea; Ranucci, Elisabetta; Ferruti, Paolo; Lembo, David

    2012-01-01

    The activity of antivirals can be enhanced by their incorporation in nanoparticulate delivery systems. Peculiar polymeric nanoparticles, based on a β-cyclodextrin-poly(4-acryloylmorpholine) monoconjugate (β-CD-PACM), are proposed as acyclovir carriers. The experimental procedure necessary to obtain the acyclovir-loaded nanoparticles using the solvent displacement preparation method will be described in this chapter. Fluorescent labeled nanoparticles are prepared using the same method for cellular trafficking studies. The biocompatibility assays necessary to obtain safe nanoparticles are reported. Section 4 of this chapter describes the assessment of the antiviral activity of the acyclovir-loaded nanoparticles.

  9. Novel antiviral fucoidan from sporophyll of Undaria pinnatifida (Mekabu).

    PubMed

    Lee, Jung-Bum; Hayashi, Kyoko; Hashimoto, Minoru; Nakano, Takahisa; Hayashi, Toshimitsu

    2004-09-01

    Structural characterization and antiviral activities of fucoidan from sporophyll of Undaria pinnatifida (Mekabu) was examined. The fucoidan was composed of fucose and galactose with an approximately ratio of 1.0:1.1. Degree of substitution of sulfate was 0.72 and its apparent molecular weight was 9,000. Methylation analyses showed that fucoidan had various sugar linkages, and revealed that the fucoidan might have complicated structure. This fucoidan showed potent antiviral activities against herpes simplex virus type 1 (HSV-1), HSV-2, and human cytomegalovirus.

  10. Quasispecies, error catastrophe, and the antiviral activity of ribavirin.

    PubMed

    Graci, Jason D; Cameron, Craig E

    2002-07-05

    Ribavirin is the first synthetic, broad-spectrum antiviral nucleoside. Despite its more than 30 year history, the mechanism of action of this compound remains unclear and somewhat controversial. Recent data suggest the possibility that the activity of ribavirin against RNA viruses is a reflection of incorporation of ribavirin into the viral genome. Because ribavirin incorporation is not specific, this event leads to lethal mutagenesis of the virus population. The data supporting this new proposal for the mechanism of action of ribavirin are reviewed herein. In addition, we discuss briefly the challenges that remain for development of lethal mutagenesis as an effective antiviral strategy.

  11. Apigenin inhibits enterovirus-71 infection by disrupting viral RNA association with trans-acting factors.

    PubMed

    Zhang, Wei; Qiao, Haishi; Lv, Yuanzi; Wang, Jingjing; Chen, Xiaoqing; Hou, Yayi; Tan, Renxiang; Li, Erguang

    2014-01-01

    Flavonoids are widely distributed natural products with broad biological activities. Apigenin is a dietary flavonoid that has recently been demonstrated to interact with heterogeneous nuclear ribonucleoproteins (hnRNPs) and interferes with their RNA editing activity. We investigated whether apigenin possessed antiviral activity against enterovirus-71 (EV71) infection since EV71 infection requires of hnRNP proteins. We found that apigenin selectively blocks EV71 infection by disrupting viral RNA association with hnRNP A1 and A2 proteins. The estimated EC50 value for apigenin to block EV71 infection was determined at 10.3 µM, while the CC50 was estimated at 79.0 µM. The anti-EV71 activity was selective since no activity was detected against several DNA and RNA viruses. Although flavonoids in general share similar structural features, apigenin and kaempferol were among tested compounds with significant activity against EV71 infection. hnRNP proteins function as trans-acting factors regulating EV71 translation. We found that apigenin treatment did not affect EV71-induced nucleocytoplasmic redistribution of hnRNP A1 and A2 proteins. Instead, it prevented EV71 RNA association with hnRNP A1 and A2 proteins. Accordingly, suppression of hnRNP A1 and A2 expression markedly reduced EV71 infection. As a positive sense, single strand RNA virus, EV71 has a type I internal ribosome entry site (IRES) that cooperates with host factors and regulates EV71 translation. The effect of apigenin on EV71 infection was further demonstrated using a bicistronic vector that has the expression of a GFP protein under the control of EV71 5'-UTR. We found that apigenin treatment selectively suppressed the expression of GFP, but not a control gene. In addition to identification of apigenin as an antiviral agent against EV71 infection, this study also exemplifies the significance in antiviral agent discovery by targeting host factors essential for viral replication.

  12. Inhibiting avian influenza virus shedding using a novel RNAi antiviral vector technology: proof of concept in an avian cell model.

    PubMed

    Linke, Lyndsey M; Wilusz, Jeffrey; Pabilonia, Kristy L; Fruehauf, Johannes; Magnuson, Roberta; Olea-Popelka, Francisco; Triantis, Joni; Landolt, Gabriele; Salman, Mo

    2016-03-01

    Influenza A viruses pose significant health and economic threats to humans and animals. Outbreaks of avian influenza virus (AIV) are a liability to the poultry industry and increase the risk for transmission to humans. There are limitations to using the AIV vaccine in poultry, creating barriers to controlling outbreaks and a need for alternative effective control measures. Application of RNA interference (RNAi) techniques hold potential; however, the delivery of RNAi-mediating agents is a well-known obstacle to harnessing its clinical application. We introduce a novel antiviral approach using bacterial vectors that target avian mucosal epithelial cells and deliver (small interfering RNA) siRNAs against two AIV genes, nucleoprotein (NP) and polymerase acidic protein (PA). Using a red fluorescent reporter, we first demonstrated vector delivery and intracellular expression in avian epithelial cells. Subsequently, we demonstrated significant reductions in AIV shedding when applying these anti-AIV vectors prophylactically. These antiviral vectors provided up to a 10,000-fold reduction in viral titers shed, demonstrating in vitro proof-of-concept for using these novel anti-AIV vectors to inhibit AIV shedding. Our results indicate this siRNA vector technology could represent a scalable and clinically applicable antiviral technology for avian and human influenza and a prototype for RNAi-based vectors against other viruses.

  13. High antiviral effects of hibiscus tea extract on the H5 subtypes of low and highly pathogenic avian influenza viruses

    PubMed Central

    BAATARTSOGT, Tugsbaatar; BUI, Vuong N.; TRINH, Dai Q.; YAMAGUCHI, Emi; GRONSANG, Dulyatad; THAMPAISARN, Rapeewan; OGAWA, Haruko; IMAI, Kunitoshi

    2016-01-01

    Viral neuraminidase inhibitors are widely used as synthetic anti-influenza drugs for the prevention and treatment of influenza. However, drug-resistant influenza A virus variants, including H5N1 highly pathogenic avian influenza viruses (HPAIVs), have been reported. Therefore, the discovery of novel and effective antiviral agents is warranted. We screened the antiviral effects of 11 herbal tea extracts (hibiscus, black tea, tencha, rosehip tea, burdock tea, green tea, jasmine tea, ginger tea, lavender tea, rose tea and oak tea) against the H5N1 HPAIV in vitro. Among the tested extracts, only the hibiscus extract and its fractionated extract (frHibis) highly and rapidly reduced the titers of all H5 HPAIVs and low pathogenic AIVs (LPAIVs) used in the pre-treatment tests of Madin–Darby canine kidney (MDCK) cells that were inoculated with a mixture of the virus and the extract. Immunogold electron microscopy showed that anti-H5 monoclonal antibodies could not bind to the deformed H5 virus particles pretreated with frHibis. In post-treatment tests of MDCK cells cultured in the presence of frHibis after infection with H5N1 HPAIV, the frHibis inhibited viral replication and the expression of viral antigens and genes. Among the plants tested, hibiscus showed the most prominent antiviral effects against both H5 HPAIV and LPAIV. PMID:27193820

  14. High antiviral effects of hibiscus tea extract on the H5 subtypes of low and highly pathogenic avian influenza viruses.

    PubMed

    Baatartsogt, Tugsbaatar; Bui, Vuong N; Trinh, Dai Q; Yamaguchi, Emi; Gronsang, Dulyatad; Thampaisarn, Rapeewan; Ogawa, Haruko; Imai, Kunitoshi

    2016-10-01

    Viral neuraminidase inhibitors are widely used as synthetic anti-influenza drugs for the prevention and treatment of influenza. However, drug-resistant influenza A virus variants, including H5N1 highly pathogenic avian influenza viruses (HPAIVs), have been reported. Therefore, the discovery of novel and effective antiviral agents is warranted. We screened the antiviral effects of 11 herbal tea extracts (hibiscus, black tea, tencha, rosehip tea, burdock tea, green tea, jasmine tea, ginger tea, lavender tea, rose tea and oak tea) against the H5N1 HPAIV in vitro. Among the tested extracts, only the hibiscus extract and its fractionated extract (frHibis) highly and rapidly reduced the titers of all H5 HPAIVs and low pathogenic AIVs (LPAIVs) used in the pre-treatment tests of Madin-Darby canine kidney (MDCK) cells that were inoculated with a mixture of the virus and the extract. Immunogold electron microscopy showed that anti-H5 monoclonal antibodies could not bind to the deformed H5 virus particles pretreated with frHibis. In post-treatment tests of MDCK cells cultured in the presence of frHibis after infection with H5N1 HPAIV, the frHibis inhibited viral replication and the expression of viral antigens and genes. Among the plants tested, hibiscus showed the most prominent antiviral effects against both H5 HPAIV and LPAIV.

  15. Antiviral activity of Australian tea tree oil and eucalyptus oil against herpes simplex virus in cell culture.

    PubMed

    Schnitzler, P; Schön, K; Reichling, J

    2001-04-01

    The antiviral effect of Australian tea tree oil (TTO) and eucalyptus oil (EUO) against herpes simplex virus was examined. Cytotoxicity of TTO and EUO was evaluated in a standard neutral red dye uptake assay. Toxicity of TTO and EUO was moderate for RC-37 cells and approached 50% (TC50) at concentrations of 0.006% and 0.03%, respectively. Antiviral activity of TTO and EUO against herpes simplex virus type 1 (HSV-1) and herpes simplex virus type 2 (HSV-2) was tested in vitro on RC-37 cells using a plaque reduction assay. The 50% inhibitory concentration (IC50) of TTO for herpes simplex virus plaque formation was 0.0009% and 0.0008% and the IC50 of EUO was determined at 0.009% and 0.008% for HSV-1 and HSV-2, respectively. Australian tea tree oil exhibited high levels of virucidal activity against HSV-1 and HSV-2 in viral suspension tests. At noncytotoxic concentrations of TTO plaque formation was reduced by 98.2% and 93.0% for HSV-1 and HSV-2, respectively. Noncytotoxic concentrations of EUO reduced virus titers by 57.9% for HSV-1 and 75.4% for HSV-2. Virus titers were reduced significantly with TTO, whereas EUO exhibited distinct but less antiviral activity. In order to determine the mode of antiviral action of both essential oils, either cells were pretreated before viral infection or viruses were incubated with TTO or EUO before infection, during adsorption or after penetration into the host cells. Plaque formation was clearly reduced, when herpes simplex virus was pretreated with the essential oils prior to adsorption. These results indicate that TTO and EUO affect the virus before or during adsorption, but not after penetration into the host cell. Thus TTO and EUO are capable to exert a direct antiviral effect on HSV. Although the active antiherpes components of Australian tea tree and eucalyptus oil are not yet known, their possible application as antiviral agents in recurrent herpes infection is promising.

  16. Research in the field of antiviral chemotherapy performed in the "Stefan S. Nicolau" Institute of Virology.

    PubMed

    Eşanu, V

    1984-01-01

    A brief review is made of the research in the field of antiviral chemotherapy performed in the "Stefan S. Nicolau" Institute of Virology during the 35 years since its foundation. The investigations have mainly focused on influenza and herpes virus, but the chemotherapy of other viral infections (mumps, vaccinia, Coxsackie, etc.) has also been approached. Most of the chemotherapy agents assayed have been represented by natural preparations: immunoglobulins, interferon, hormones, vitamins, plant extracts (garlic, horse radish), bee products (propolis, royal jelly); attempts have also been made with numerous synthetic compounds. Stress is laid on the preparations already tested with a view to application in human clinic, and the prospects of chemotherapy research in the Institute of Virology are discussed.

  17. Hepatitis C and double-hit B cell lymphoma successfully treated by antiviral therapy

    PubMed Central

    Galati, Giovanni; Rampa, Lorenzo; Vespasiani-Gentilucci, Umberto; Marino, Mirella; Pisani, Francesco; Cota, Carlo; Guidi, Alessandro; Picardi, Antonio

    2016-01-01

    B cells lymphoma is one of the most challenging extra-hepatic manifestations of hepatitis C virus (HCV). Recently, a new kind of B-cell lymphoma, named double-hit B (DHL), was characterized with an aggressive clinical course whereas a potential association with HCV was not investigated. The new antiviral direct agents (DAAs) against HCV are effective and curative in the majority of HCV infections. We report the first case, to our knowledge, of DHL and HCV-infection successfully treated by new DAAs. According to our experience, a DHL must be suspected in case of HCV-related lymphoma, and an early diagnosis could direct towards a different hematological management because a worse prognosis might be expected. A possible effect of DAAs on DHL regression should be investigated, but eradicating HCV would avoid life-threatening reactivation of viral hepatitis during pharmacological immunosuppression in onco-haematological diseases. PMID:27803769

  18. Hepatitis C and double-hit B cell lymphoma successfully treated by antiviral therapy.

    PubMed

    Galati, Giovanni; Rampa, Lorenzo; Vespasiani-Gentilucci, Umberto; Marino, Mirella; Pisani, Francesco; Cota, Carlo; Guidi, Alessandro; Picardi, Antonio

    2016-10-18

    B cells lymphoma is one of the most challenging extra-hepatic manifestations of hepatitis C virus (HCV). Recently, a new kind of B-cell lymphoma, named double-hit B (DHL), was characterized with an aggressive clinical course whereas a potential association with HCV was not investigated. The new antiviral direct agents (DAAs) against HCV are effective and curative in the majority of HCV infections. We report the first case, to our knowledge, of DHL and HCV-infection successfully treated by new DAAs. According to our experience, a DHL must be suspected in case of HCV-related lymphoma, and an early diagnosis could direct towards a different hematological management because a worse prognosis might be expected. A possible effect of DAAs on DHL regression should be investigated, but eradicating HCV would avoid life-threatening reactivation of viral hepatitis during pharmacological immunosuppression in onco-haematological diseases.

  19. Total synthesis and antiviral activity of indolosesquiterpenoids from the xiamycin and oridamycin families

    PubMed Central

    Meng, Zhanchao; Yu, Haixin; Li, Li; Tao, Wanyin; Chen, Hao; Wan, Ming; Yang, Peng; Edmonds, David J.; Zhong, Jin; Li, Ang

    2015-01-01

    Indolosesquiterpenoids are a growing class of natural products that exhibit a wide range of biological activities. Here, we report the total syntheses of xiamycin A and oridamycins A and B, indolosesquiterpenoids isolated from Streptomyces. Two parallel strategies were exploited to forge the carbazole core: 6π-electrocyclization/aromatization and indole C2–H bond activation/Heck annulation. The construction of their trans-decalin motifs relied on two diastereochemically complementary radical cyclization reactions mediated by Ti(III) and Mn(III), respectively. The C23 hydroxyl of oridamycin B was introduced by an sp3 C–H bond oxidation at a late stage. On the basis of the chemistry developed, the dimeric congener dixiamycin C has been synthesized for the first time. Evaluation of the antiviral activity of these compounds revealed that xiamycin A is a potent agent against herpes simplex virus–1 (HSV-1) in vitro. PMID:25648883

  20. Antiviral effects of a thiol protease inhibitor on foot-and-mouth disease virus.

    PubMed Central

    Kleina, L G; Grubman, M J

    1992-01-01

    The thiol protease inhibitor E-64 specifically blocks autocatalytic activity of the leader protease of foot-and-mouth disease virus (FMDV) and interferes with cleavage of the structural protein precursor in an in vitro translation assay programmed with virion RNA. Experiments with FMDV-infected cells and E-64 or a membrane-permeable analog, E-64d, have confirmed these results and demonstrated interference in virus assembly, causing a reduction in virus yield. In addition, there is a lag in the appearance of virus-induced cellular morphologic alterations, a delay in cleavage of host cell protein p220 and in shutoff of host protein synthesis, and a decrease in viral protein and RNA synthesis. The implications of using E-64-based compounds as potential antiviral agents for FMDV are discussed. Images PMID:1331517

  1. Multifunctional roles of leader protein of foot-and-mouth disease viruses in suppressing host antiviral responses.

    PubMed

    Liu, Yingqi; Zhu, Zixiang; Zhang, Miaotao; Zheng, Haixue

    2015-10-28

    Foot-and-mouth disease virus (FMDV) leader protein (L(pro)) is a papain-like proteinase, which plays an important role in FMDV pathogenesis. L(pro) exists as two forms, Lab and Lb, due to translation being initiated from two different start codons separated by 84 nucleotides. L(pro) self-cleaves from the nascent viral polyprotein precursor as the first mature viral protein. In addition to its role as a viral proteinase, L(pro) also has the ability to antagonize host antiviral effects. To promote FMDV replication, L(pro) can suppress host antiviral responses by three different mechanisms: (1) cleavage of eukaryotic translation initiation factor 4 γ (eIF4G) to shut off host protein synthesis; (2) inhibition of host innate immune responses through restriction of interferon-α/β production; and (3) L(pro) can also act as a deubiquitinase and catalyze deubiquitination of innate immune signaling molecules. In the light of recent functional and biochemical findings regarding L(pro), this review introduces the basic properties of L(pro) and the mechanisms by which it antagonizes host antiviral responses.

  2. Activity of and Effect of Subcutaneous Treatment with the Broad-Spectrum Antiviral Lectin Griffithsin in Two Laboratory Rodent Models

    PubMed Central

    Barton, Christopher; Kouokam, J. Calvin; Lasnik, Amanda B.; Foreman, Oded; Cambon, Alexander; Brock, Guy; Montefiori, David C.; Vojdani, Fakhrieh; McCormick, Alison A.; O'Keefe, Barry R.

    2014-01-01

    Griffithsin (GRFT) is a red-alga-derived lectin that binds the terminal mannose residues of N-linked glycans found on the surface of human immunodeficiency virus type 1 (HIV-1), HIV-2, and other enveloped viruses, including hepatitis C virus (HCV), severe acute respiratory syndrome coronavirus (SARS-CoV), and Ebola virus. GRFT displays no human T-cell mitogenic activity and does not induce production of proinflammatory cytokines in treated human cell lines. However, despite the growing evidence showing the broad-spectrum nanomolar or better antiviral activity of GRFT, no study has reported a comprehensive assessment of GRFT safety as a potential systemic antiviral treatment. The results presented in this work show that minimal toxicity was induced by a range of single and repeated daily subcutaneous doses of GRFT in two rodent species, although we noted treatment-associated increases in spleen and liver mass suggestive of an antidrug immune response. The drug is systemically distributed, accumulating to high levels in the serum and plasma after subcutaneous delivery. Further, we showed that serum from GRFT-treated animals retained antiviral activity against HIV-1-enveloped pseudoviruses in a cell-based neutralization assay. Overall, our data presented here show that GRFT accumulates to relevant therapeutic concentrations which are tolerated with minimal toxicity. These studies support further development of GRFT as a systemic antiviral therapeutic agent against enveloped viruses, although deimmunizing the molecule may be necessary if it is to be used in long-term treatment of chronic viral infections. PMID:24145548

  3. IL-27 improves migrational and antiviral potential of CB dendritic cells.

    PubMed

    Birkholz, Julia; Doganci, Aysefa; Darstein, Claudia; Gehring, Stephan; Zepp, Fred; Meyer, Claudius U

    2014-06-01

    Interleukin (IL)-27 is known to be increased considerably in cord blood (CB) dendritic cells (DCs) after TLR ligation. Previously, we demonstrated that also basal IL-27 levels are higher in CB DCs. Here, we examined effects of IL-27 on monocyte derived dendritic cells (moDCs) to approach its particular role in the specialized immune system of the human neonate. Exogenous IL-27 promotes IL-27 transcription in CB and adult blood (AB) moDCs. IL-27 acts on CB moDCs primarily by significantly augmenting IL-27 protein, secondarily by increasing transcription of CXCL10 among other chemokines, chemokine receptor CCR1, interferon stimulated genes, transcription factor IRF8 and genes involved in antigen presentation. Furthermore, CB moDCs respond to IL-27 with augmented IL-8 and Tumor necrosis factor (TNF)-α. The results suggest that IL-27 enhances migrational and antiviral properties of CB dendritic cells.

  4. Antiviral nucleoside analogs phosphorylation by nucleoside diphosphate kinase.

    PubMed

    Gallois-Montbrun, S; Veron, M; Deville-Bonne, D

    2004-05-01

    The reaction of NDP kinase was studied in vitro with several antiviral derivatives, using kinetic steady state and presteady state analysis. The enzyme is highly efficient with natural nucleotides but most of the analogs are slow substrates. The catalytic efficiency, also related to the affinity of the analog, is mainly dependent on the presence of a 3'-OH group on the ribose moiety.

  5. Mitochondrial DNA Stress Primes the Antiviral Innate Immune Response

    PubMed Central

    West, A. Phillip; Khoury-Hanold, William; Staron, Matthew; Tal, Michal C.; Pineda, Cristiana M.; Lang, Sabine M.; Bestwick, Megan; Duguay, Brett A.; Raimundo, Nuno; MacDuff, Donna A.; Kaech, Susan M.; Smiley, James R.; Means, Robert E.; Iwasaki, Akiko; Shadel, Gerald S.

    2014-01-01

    Mitochondrial DNA (mtDNA) is normally present at thousands of copies per cell and is packaged into several hundred higher-order structures termed nucleoids1. The abundant mtDNA-binding protein, transcription factor A mitochondrial (TFAM), regulates nucleoid architecture, abundance, and segregation2. Complete mtDNA depletion profoundly impairs oxidative phosphorylation (OXPHOS), triggering calcium-dependent stress signaling and adaptive metabolic responses3. However, the cellular responses to mtDNA instability, a physiologically relevant stress observed in many human diseases and aging, remain ill-defined4. Here we show that moderate mtDNA stress elicited by TFAM deficiency engages cytosolic antiviral signaling to enhance the expression of a subset of interferon-stimulated genes (ISG). Mechanistically, we have found that aberrant mtDNA packaging promotes escape of mtDNA into the cytosol, where it engages the DNA sensor cGAS and promotes STING-IRF3-dependent signaling to elevate ISG expression, potentiate type I interferon responses, and confer broad viral resistance. Furthermore, we demonstrate that herpesviruses induce mtDNA stress, which potentiates antiviral signaling and type I interferon responses during infection. Our results further demonstrate that mitochondria are central participants in innate immunity, identify mtDNA stress as a cell-intrinsic trigger of antiviral signaling, and suggest that cellular monitoring of mtDNA homeostasis cooperates with canonical virus sensing mechanisms to fully license antiviral innate immunity. PMID:25642965

  6. 75 FR 16151 - Antiviral Drugs Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-31

    ... HUMAN SERVICES Food and Drug Administration Antiviral Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug Administration, HHS. ACTION: Notice. This notice announces a forthcoming meeting of a public advisory committee of the Food and Drug Administration (FDA). The meeting will be open to...

  7. 76 FR 62418 - Antiviral Drugs Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-07

    ... HUMAN SERVICES Food and Drug Administration Antiviral Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug Administration, HHS. ACTION: Notice. This notice announces a forthcoming meeting of a public advisory committee of the Food and Drug Administration (FDA). The meeting will be open to...

  8. 78 FR 57166 - Antiviral Drugs Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-17

    ... HUMAN SERVICES Food and Drug Administration Antiviral Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug Administration, HHS. ACTION: Notice. This notice announces a forthcoming meeting of a public advisory committee of the Food and Drug Administration (FDA). The meeting will be open to...

  9. Adenovirus infection reverses the antiviral state induced by human interferon.

    PubMed

    Feduchi, E; Carrasco, L

    1987-04-06

    HeLa cells treated with human lymphoblastoid interferon do not synthesize poliovirus proteins. The antiviral state against poliovirus is reversed if cells are previously infected with adenovirus type 5. A late gene product seems to be involved in this reversion, since no effect is observed at early stages of infection or in the presence of aphidicolin.

  10. Synthesis and antiviral evaluation of bisnoradamantane sulfites and related compounds.

    PubMed

    Valverde, Elena; Torres, Eva; Guardiola, Salvador; Naesens, Lieve; Vázquez, Santiago

    2011-03-01

    The reaction of a series of 1,2-diols with thionyl chloride led to bisnoradamantane sulfites in very good yields. The reaction has also been applied to related polycyclic scaffolds. The compounds have been tested for antiviral activity but none of them showed to be active. Several attempts to generate and trap SO from these polycyclic sulfites have been unsuccessful.

  11. Modeling rotavirus infection and antiviral therapy using primary intestinal organoids.

    PubMed

    Yin, Yuebang; Bijvelds, Marcel; Dang, Wen; Xu, Lei; van der Eijk, Annemiek A; Knipping, Karen; Tuysuz, Nesrin; Dekkers, Johanna F; Wang, Yijin; de Jonge, Jeroen; Sprengers, Dave; van der Laan, Luc J W; Beekman, Jeffrey M; Ten Berge, Derk; Metselaar, Herold J; de Jonge, Hugo; Koopmans, Marion P G; Peppelenbosch, Maikel P; Pan, Qiuwei

    2015-11-01

    Despite the introduction of oral vaccines, rotavirus still kills over 450,000 children under five years of age annually. The absence of specific treatment prompts research aiming at further understanding of pathogenesis and the development of effective antiviral therapy, which in turn requires advanced experimental models. Given the intrinsic limitations of the classical rotavirus models using immortalized cell lines infected with laboratory-adapted strains in two dimensional cultures, our study aimed to model infection and antiviral therapy of both experimental and patient-derived rotavirus strains using three dimensional cultures of primary intestinal organoids. Intestinal epithelial organoids were successfully cultured from mouse or human gut tissues. These organoids recapitulate essential features of the in vivo tissue architecture, and are susceptible to rotavirus. Human organoids are more permissive to rotavirus infection, displaying an over 10,000-fold increase in genomic RNA following 24h of viral replication. Furthermore, infected organoids are capable of producing infectious rotavirus particles. Treatment of interferon-alpha or ribavirin inhibited viral replication in organoids of both species. Importantly, human organoids efficiently support the infection of patient-derived rotavirus strains and can be potentially harnessed for personalized evaluation of the efficacy of antiviral medications. Therefore, organoids provide a robust model system for studying rotavirus-host interactions and assessing antiviral medications.

  12. Cytotoxicity and antiviral activity of methanol extract from Polygonum minus

    NASA Astrophysics Data System (ADS)

    Wahab, Noor Zarina Abd; Bunawan, Hamidun; Ibrahim, Nazlina

    2015-09-01

    A study was carried out to test the cytotoxicity and antiviral effects of methanolic extracts from the leaves and stem of Polygonum minus or kesum. Cytotoxicity tests were performed on Vero cells indicates the LC50 value for leaf extract towards the Vero cells was 875 mg/L and the LC50 value for stem extract was 95 mg/L. The LC50 values indidcate the non-cytotoxic effect of the extracts and worth for further testing. Antiviral test were carried out towards herpes simplex virus infected Vero cells using three concentration of extract which were equivalent to 1.0 LC50, 0.1 LC50 and 0.01 LC50. Three different treatments to detect antiviral activity were used. Mild antiviral activity of the stem extract was detected when cells were treated for 24 hours with plant extract before viral infection. This demonstrates the capability of the test compound to protect the cells from viral attachment and of the possible prophylactic effect of the P. minus stem methanol extract.

  13. Lipid flippases promote antiviral silencing and the biogenesis of viral and host siRNAs in Arabidopsis.

    PubMed

    Guo, Zhongxin; Lu, Jinfeng; Wang, Xianbing; Zhan, Binhui; Li, Wanxiang; Ding, Shou-Wei

    2017-02-07

    Dicer-mediated processing of virus-specific dsRNA into short interfering RNAs (siRNAs) in plants and animals initiates a specific antiviral defense by RNA interference (RNAi). In this study, we developed a forward genetic screen for the identification of host factors required for antiviral RNAi in Arabidopsis thaliana Using whole-genome sequencing and a computational pipeline, we identified aminophospholipid transporting ATPase 2 (ALA2) and the related ALA1 in the type IV subfamily of P-type ATPases as key components of antiviral RNAi. ALA1 and ALA2 are flippases, which are transmembrane lipid transporter proteins that transport phospholipids across cellular membranes. We found that the ala1/ala2 single- and double-mutant plants exhibited enhanced disease susceptibility to cucumber mosaic virus when the virus-encoded function to suppress RNAi was disrupted. Notably, the antiviral activity of both ALA1 and ALA2 was abolished by a single amino acid substitution known to inactivate the flippase activity. Genetic analysis revealed that ALA1 and ALA2 acted to enhance the amplification of the viral siRNAs by RNA-dependent RNA polymerase (RdRP) 1 (RDR1) and RDR6 and of the endogenous virus-activated siRNAs by RDR1. RNA virus replication by plant viral RdRPs occurs inside vesicle-like membrane invaginations induced by the recruitment of the viral RdRP and host factors to subcellular membrane microdomains enriched with specific phospholipids. Our results suggest that the phospholipid transporter activity of ALA1/ALA2 may be necessary for the formation of similar invaginations for the synthesis of dsRNA precursors of highly abundant viral and host siRNAs by the cellular RdRPs.

  14. Antibiotic Agents

    MedlinePlus

    ... producing ). Examples of this type are the alcohols, chlorine, peroxides, and aldehydes. The second group consists mostly ... viruses have some kind of antibacterial agent. Alcohols, chlorine and peroxides have been used for many decades ...

  15. Agent Orange

    MedlinePlus

    ... Z) Hepatitis HIV Mental Health Mental Health Home Suicide Prevention Substance Abuse Military Sexual Trauma PTSD Research ( ... eligible Veterans a free Agent Orange Registry health exam for possible long-term health problems related to ...

  16. Antiviral Effect of Methylated Flavonol Isorhamnetin against Influenza

    PubMed Central

    Dayem, Ahmed Abdal; Choi, Hye Yeon; Kim, Young Bong; Cho, Ssang-Goo

    2015-01-01

    Influenza is an infectious respiratory disease with frequent seasonal epidemics that causes a high rate of mortality and morbidity in humans, poultry, and animals. Influenza is a serious economic concern due to the costly countermeasures it necessitates. In this study, we compared the antiviral activities of several flavonols and other flavonoids with similar, but distinct, hydroxyl or methyl substitution patterns at the 3, 3′, and 4′ positions of the 15-carbon flavonoid skeleton, and found that the strongest antiviral effect was induced by isorhamnetin. Similar to quercetin and kaempferol, isorhamnetin possesses a hydroxyl group on the C ring, but it has a 3′-methyl group on the B ring that is absent in quercetin and kaempferol. Co-treatment and pre-treatment with isorhamnetin produced a strong antiviral effect against the influenza virus A/PR/08/34(H1N1). However, isorhamnetin showed the most potent antiviral potency when administered after viral exposure (post-treatment method) in vitro. Isorhamnetin treatment reduced virus-induced ROS generation and blocked cytoplasmic lysosome acidification and the lipidation of microtubule associated protein1 light chain 3-B (LC3B). Oral administration of isorhamnetin in mice infected with the influenza A virus significantly decreased lung virus titer by 2 folds, increased the survival rate which ranged from 70–80%, and decreased body weight loss by 25%. In addition, isorhamnetin decreased the virus titer in ovo using embryonated chicken eggs. The structure-activity relationship (SAR) of isorhamnetin could explain its strong anti-influenza virus potency; the