Science.gov

Sample records for acting antiviral agents

  1. Management of direct-acting antiviral agent failures.

    PubMed

    Buti, Maria; Riveiro-Barciela, Mar; Esteban, Rafael

    2015-12-01

    Failure to respond to the approved combinations of multiple direct-acting antiviral agents is relatively low in hepatitis C virus treatment registration studies, with rates of 1% to 7%, depending on the patients' baseline characteristics. In real life, failure is slightly higher, likely because of lower compliance. Treatment failures are usually related to relapse and less often to on-treatment viral breakthrough. Hepatitis C drug-resistant variants are detected in most patients who do not achieve viral eradication. The risk of developing these variants depends on host- and virus-related factors, the properties of the drugs used, and the treatment strategies applied. Patients who carry resistance-associated variants may not obtain benefits from treatment and are at risk of disease progression and transmission of the variants. Whether hepatitis C resistance-associated variants persist depends on their type: NS3-4A variants often disappear gradually after therapy is stopped, whereas NS5A variants tend to persist for more than 2 years. The best way to prevent emergence of resistant variants is to eliminate the virus at the first treatment using highly potent antivirals with genetic barriers to resistance. In patients failing first-generation protease inhibitors, combination therapies with sofosbuvir and NS5 inhibitors have proven effective. Some salvage regimens can be shortened to 12 weeks by addition of ribavirin. The optimal treatment for patients who fail an NS5A inhibitor and those with multidrug-resistant variants remains to be defined, and research efforts should continue to focus on treatment for these patients.

  2. [Ribonucleases as antiviral agents].

    PubMed

    Il'inskaia, O N; Shakh Makhmud, R

    2014-01-01

    Many ribonucleases (RNases) are able to inhibit the reproduction of viruses in infected cell cultures and laboratory animals, but molecular mechanisms of their antiviral activity remain unclear. The review observes the most known RNases which possess established antiviral effects, actually intracellular RNases (RNase L, MCPIPI protein, eosinophylic RNases) as well as exogenously applied ones (RNase A, BS-RNase, onconase, binase, synthetic RNases). Attention is given on two important but not always obligatory aspects in molecule of RNases, which have antiviral properties: catalytic activity and ability to the dimerization. The hypothetic scheme of virus elimination by exogenous RNases, that reflects possible types of interaction of viruses and RNases with a cell, is proposed. The evidence for RNases as classical components of immune defense which are perspective agents for development of new antiviral therapeutics is produced.

  3. The science of direct-acting antiviral and host-targeted agent therapy.

    PubMed

    Pawlotsky, Jean-Michel

    2012-01-01

    Direct-acting antiviral drugs targeting two major steps of the HCV life cycle, polyprotein processing and replication, and cyclophilin inhibitors, that target a host cell protein required to interact with the replication complex, have reached clinical development. In order to achieve a sustained virological response, that is, a cure of the HCV infection, it is necessary to shut down virus production, to maintain viral inhibition throughout treatment and to induce a significant, slower second-phase decline in HCV RNA levels that leads to definitive clearance of infected cells. Recent findings suggest that the interferon era is coming to an end in hepatitis C therapy and HCV infection can be cured by all-oral interferon-free treatment regimens within 12 to 24 weeks. Further results are awaited that will allow the establishment of an ideal first-line all-oral, interferon-free treatment regimen for patients with chronic HCV infection.

  4. Broad-spectrum antiviral agents

    PubMed Central

    Zhu, Jun-Da; Meng, Wen; Wang, Xiao-Jia; Wang, Hwa-Chain R.

    2015-01-01

    Development of highly effective, broad-spectrum antiviral agents is the major objective shared by the fields of virology and pharmaceutics. Antiviral drug development has focused on targeting viral entry and replication, as well as modulating cellular defense system. High throughput screening of molecules, genetic engineering of peptides, and functional screening of agents have identified promising candidates for development of optimal broad-spectrum antiviral agents to intervene in viral infection and control viral epidemics. This review discusses current knowledge, prospective applications, opportunities, and challenges in the development of broad-spectrum antiviral agents. PMID:26052325

  5. Mathematical analysis of multiscale models for hepatitis C virus dynamics under therapy with direct-acting antiviral agents.

    PubMed

    Rong, Libin; Perelson, Alan S

    2013-09-01

    Chronic hepatitis C virus (HCV) infection remains a world-wide public health problem. Therapy with interferon and ribavirin leads to viral elimination in less than 50% of treated patients. New treatment options aiming at a higher cure rate are focused on direct-acting antiviral agents (DAAs), which directly interfere with different steps in the HCV life cycle. In this paper, we describe and analyze a recently developed multiscale model that predicts HCV dynamics under therapy with DAAs. The model includes both intracellular viral RNA replication and extracellular viral infection. We calculate the steady states of the model and perform a detailed stability analysis. With certain assumptions we obtain analytical approximations of the viral load decline after treatment initiation. One approximation agrees well with the prediction of the model, and can conveniently be used to fit patient data and estimate parameter values. We also discuss other possible ways to incorporate intracellular viral dynamics into the multiscale model.

  6. Hepatitis C Virus Infection in Patients Undergoing Hematopoietic Cell Transplantation in the Era of Direct-Acting Antiviral Agents.

    PubMed

    Kyvernitakis, Andreas; Mahale, Parag; Popat, Uday R; Jiang, Ying; Hosry, Jeff; Champlin, Richard E; Torres, Harrys A

    2016-04-01

    There is paucity of literature regarding hepatitis C virus (HCV) infection in hematopoietic cell transplant (HCT) recipients. In the study described herein we evaluated several aspects of HCV infection in HCT recipients, including the impact of this infection on cancer status, liver-related outcomes, mortality, and the role of antiviral treatment (AVT), including direct-acting antivirals (DAAs). The medical records of HCV-infected allogeneic and autologous HCT recipients, seen at The University of Texas MD Anderson Cancer Center from August 2009 to November 2015, were reviewed. Patients seen from August 1, 2009 to October 30, 2012 were reviewed retrospectively, whereas those seen from November 1, 2012 to November 30, 2015 were analyzed prospectively in an observational study. Of 434 HCV-infected cancer patients evaluated, 64 underwent 69 HCTs. Most (78%) underwent autologous transplantation. Thirteen percent of patients became HCV-seronegative post-HCT. Compared with patients who did not receive AVT, treated patients had fewer relapses of HCV-associated non-Hodgkin lymphomas (20% versus 86%; P = .015), higher 5-year survival rates (75% versus 39%; P = .02), and a trend toward lower rate of progression to cirrhosis (5% versus 21%; P = .06). AVT discontinuation rate post-HCT was 71% in those receiving IFN-containing regimens and 0% in those receiving DAAs (P < .01). AVT was effective in 12 of 37 patients (32%) and 11 of 13 patients (85%) receiving IFN-based and DAA regimens, respectively (P = .003). HCV is an important cause of morbidity and mortality in this population. HCV seropositivity can be lost post-HCT, posing a diagnostic challenge. Treatment of HCV infection in HCT recipients improves both oncologic and hepatic outcomes. These patients can be successfully treated with DAAs. PMID:26712592

  7. 2015 Philip S. Portoghese Medicinal Chemistry Lectureship. Curing Hepatitis C Virus Infection with Direct-Acting Antiviral Agents: The Arc of a Medicinal Chemistry Triumph.

    PubMed

    Meanwell, Nicholas A

    2016-08-25

    The development of direct-acting antiviral agents that can cure a chronic hepatitis C virus (HCV) infection after 8-12 weeks of daily, well-tolerated therapy has revolutionized the treatment of this insidious disease. In this article, three of Bristol-Myers Squibb's HCV programs are summarized, each of which produced a clinical candidate: the NS3 protease inhibitor asunaprevir (64), marketed as Sunvepra, the NS5A replication complex inhibitor daclatasvir (117), marketed as Daklinza, and the allosteric NS5B polymerase inhibitor beclabuvir (142), which is in late stage clinical studies. A clinical study with 64 and 117 established for the first time that a chronic HCV infection could be cured by treatment with direct-acting antiviral agents alone in the absence of interferon. The development of small molecule HCV therapeutics, designed by medicinal chemists, has been hailed as "the arc of a medical triumph" but may equally well be described as "the arc of a medicinal chemistry triumph". PMID:27501244

  8. Statin (3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitor)-based therapy for hepatitis C virus (HCV) infection-related diseases in the era of direct-acting antiviral agents.

    PubMed

    Kishta, Sara; Ei-Shenawy, Reem; Kishta, Sobhy

    2016-01-01

    Recent improvements have been made in the treatment of hepatitis C virus (HCV) infection with the introduction of direct-acting antiviral agents (DAAs). However, despite successful viral clearance, many patients continue to have HCV-related disease progression. Therefore, new treatments must be developed to achieve viral clearance and prevent the risk of HCV-related diseases. In particular, the use of pitavastatin together with DAAs may improve the antiviral efficacy as well as decrease the progression of liver fibrosis and the incidence of HCV-related hepatocellular carcinoma. To investigate the management methods for HCV-related diseases using pitavastatin and DAAs, clinical trials should be undertaken. However, concerns have been raised about potential drug interactions between statins and DAAs. Therefore, pre-clinical trials using a replicon system, human hepatocyte-like cells, human neurons and human cardiomyocytes from human-induced pluripotent stem cells should be conducted. Based on these pre-clinical trials, an optimal direct-acting antiviral agent could be selected for combination with pitavastatin and DAAs. Following the pre-clinical trial, the combination of pitavastatin and the optimal direct-acting antiviral agent should be compared to other combinations of DAAs ( e.g., sofosbuvir and velpatasvir) according to the antiviral effect on HCV infection, HCV-related diseases and cost-effectiveness. PMID:27583130

  9. Statin (3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitor)-based therapy for hepatitis C virus (HCV) infection-related diseases in the era of direct-acting antiviral agents

    PubMed Central

    Kishta, Sara; EI-Shenawy, Reem; Kishta, Sobhy

    2016-01-01

    Recent improvements have been made in the treatment of hepatitis C virus (HCV) infection with the introduction of direct-acting antiviral agents (DAAs). However, despite successful viral clearance, many patients continue to have HCV-related disease progression. Therefore, new treatments must be developed to achieve viral clearance and prevent the risk of HCV-related diseases. In particular, the use of pitavastatin together with DAAs may improve the antiviral efficacy as well as decrease the progression of liver fibrosis and the incidence of HCV-related hepatocellular carcinoma. To investigate the management methods for HCV-related diseases using pitavastatin and DAAs, clinical trials should be undertaken. However, concerns have been raised about potential drug interactions between statins and DAAs. Therefore, pre-clinical trials using a replicon system, human hepatocyte-like cells, human neurons and human cardiomyocytes from human-induced pluripotent stem cells should be conducted. Based on these pre-clinical trials, an optimal direct-acting antiviral agent could be selected for combination with pitavastatin and DAAs. Following the pre-clinical trial, the combination of pitavastatin and the optimal direct-acting antiviral agent should be compared to other combinations of DAAs ( e.g., sofosbuvir and velpatasvir) according to the antiviral effect on HCV infection, HCV-related diseases and cost-effectiveness. PMID:27583130

  10. Drug-Drug Interaction between the Direct-Acting Antiviral Regimen of Ombitasvir-Paritaprevir-Ritonavir plus Dasabuvir and the HIV Antiretroviral Agent Dolutegravir or Abacavir plus Lamivudine.

    PubMed

    Khatri, Amit; Trinh, Roger; Zhao, Weihan; Podsadecki, Thomas; Menon, Rajeev

    2016-10-01

    The direct-acting antiviral regimen of 25 mg ombitasvir-150 mg paritaprevir-100 mg ritonavir once daily (QD) plus 250 mg dasabuvir twice daily (BID) is approved for the treatment of hepatitis C virus genotype 1 infection, including patients coinfected with human immunodeficiency virus. This study was performed to evaluate the pharmacokinetic, safety, and tolerability effects of coadministering the regimen of 3 direct-acting antivirals with two antiretroviral therapies (dolutegravir or abacavir plus lamivudine). Healthy volunteers (n = 24) enrolled in this phase I, single-center, open-label, multiple-dose study received 50 mg dolutegravir QD for 7 days or 300 mg abacavir plus 300 mg lamivudine QD for 4 days, the 3-direct-acting-antiviral regimen for 14 days, followed by the 3-direct-acting-antiviral regimen with dolutegravir or abacavir plus lamivudine for 10 days. Pharmacokinetic parameters were calculated to compare combination therapy with 3-direct-acting-antiviral or antiretroviral therapy alone, and safety/tolerability were assessed throughout the study. Coadministration of the 3-direct-acting-antiviral regimen increased the geometric mean maximum plasma concentration (Cmax) and the area under the curve (AUC) of dolutegravir by 22% (central value ratio [90% confidence intervals], 1.219 [1.153, 1.288]) and 38% (1.380 [1.295, 1.469]), respectively. Abacavir geometric mean Cmax and AUC values decreased by 13% (0.873 [0.777, 0.979]) and 6% (0.943 [0.901, 0.986]), while those for lamivudine decreased by 22% (0.778 [0.719, 0.842]) and 12% (0.876 [0.821, 0.934]). For the 3-direct-acting-antiviral regimen, geometric mean Cmax and AUC during coadministration were within 18% of measurements made during administration of the 3-direct-acting-antiviral regimen alone, although trough concentrations for paritaprevir were 34% (0.664 [0.585, 0.754]) and 27% (0.729 [0.627, 0.847]) lower with dolutegravir and abacavir-lamivudine, respectively. All study treatments were generally

  11. HIV/HCV Antiviral Drug Interactions in the Era of Direct-acting Antivirals

    PubMed Central

    Rice, Donald P.; Faragon, John J.; Banks, Sarah; Chirch, Lisa M.

    2016-01-01

    Abstract Therapy for human immunodeficiency virus (HIV) and chronic hepatitis C has evolved over the past decade, resulting in better control of infection and clinical outcomes; however, drug-drug interactions remain a significant hazard. Joint recommendations from the American Association for the Study of Liver Diseases and the Infectious Diseases Society of America regarding drug-drug interactions between HIV antiretroviral agents and direct-acting antiviral agents for treatment of hepatitis C virus (HCV) infection are reviewed here. This review is oriented to facilitate appropriate selection of an antiviral therapy regimen for HCV infection based on the choice of antiretroviral therapy being administered and, if necessary, switching antiretroviral regimens. PMID:27777891

  12. Therapeutic Potential of Spirooxindoles as Antiviral Agents.

    PubMed

    Ye, Na; Chen, Haiying; Wold, Eric A; Shi, Pei-Yong; Zhou, Jia

    2016-06-10

    Antiviral therapeutics with profiles of high potency, low resistance, panserotype, and low toxicity remain challenging, and obtaining such agents continues to be an active area of therapeutic development. Due to their unique three-dimensional structural features, spirooxindoles have been identified as privileged chemotypes for antiviral drug development. Among them, spiro-pyrazolopyridone oxindoles have been recently reported as potent inhibitors of dengue virus NS4B, leading to the discovery of an orally bioavailable preclinical candidate (R)-44 with excellent in vivo efficacy in a dengue viremia mouse model. This review highlights recent advances in the development of biologically active spirooxindoles for their antiviral potential, primarily focusing on the structure-activity relationships (SARs) and modes of action, as well as future directions to achieve more potent analogues toward a viable antiviral therapy. PMID:27627626

  13. Probiotics as Antiviral Agents in Shrimp Aquaculture

    PubMed Central

    Lakshmi, Bestha; Sai Gopal, D. V. R.

    2013-01-01

    Shrimp farming is an aquaculture business for the cultivation of marine shrimps or prawns for human consumption and is now considered as a major economic and food production sector as it is an increasingly important source of protein available for human consumption. Intensification of shrimp farming had led to the development of a number of diseases, which resulted in the excessive use of antimicrobial agents, which is finally responsible for many adverse effects. Currently, probiotics are chosen as the best alternatives to these antimicrobial agents and they act as natural immune enhancers, which provoke the disease resistance in shrimp farm. Viral diseases stand as the major constraint causing an enormous loss in the production in shrimp farms. Probiotics besides being beneficial bacteria also possess antiviral activity. Exploitation of these probiotics in treatment and prevention of viral diseases in shrimp aquaculture is a novel and efficient method. This review discusses the benefits of probiotics and their criteria for selection in shrimp aquaculture and their role in immune power enhancement towards viral diseases. PMID:23738078

  14. Probiotics as antiviral agents in shrimp aquaculture.

    PubMed

    Lakshmi, Bestha; Viswanath, Buddolla; Sai Gopal, D V R

    2013-01-01

    Shrimp farming is an aquaculture business for the cultivation of marine shrimps or prawns for human consumption and is now considered as a major economic and food production sector as it is an increasingly important source of protein available for human consumption. Intensification of shrimp farming had led to the development of a number of diseases, which resulted in the excessive use of antimicrobial agents, which is finally responsible for many adverse effects. Currently, probiotics are chosen as the best alternatives to these antimicrobial agents and they act as natural immune enhancers, which provoke the disease resistance in shrimp farm. Viral diseases stand as the major constraint causing an enormous loss in the production in shrimp farms. Probiotics besides being beneficial bacteria also possess antiviral activity. Exploitation of these probiotics in treatment and prevention of viral diseases in shrimp aquaculture is a novel and efficient method. This review discusses the benefits of probiotics and their criteria for selection in shrimp aquaculture and their role in immune power enhancement towards viral diseases.

  15. Containing pandemic influenza with antiviral agents.

    PubMed

    Longini, Ira M; Halloran, M Elizabeth; Nizam, Azhar; Yang, Yang

    2004-04-01

    For the first wave of pandemic influenza or a bioterrorist influenza attack, antiviral agents would be one of the few options to contain the epidemic in the United States until adequate supplies of vaccine were available. The authors use stochastic epidemic simulations to investigate the effectiveness of targeted antiviral prophylaxis to contain influenza. In this strategy, close contacts of suspected index influenza cases take antiviral agents prophylactically. The authors compare targeted antiviral prophylaxis with vaccination strategies. They model an influenza pandemic or bioterrorist attack for an agent similar to influenza A virus (H2N2) that caused the Asian influenza pandemic of 1957-1958. In the absence of intervention, the model predicts an influenza illness attack rate of 33% of the population (95% confidence interval (CI): 30, 37) and an influenza death rate of 0.58 deaths/1,000 persons (95% Cl: 0.4, 0.8). With the use of targeted antiviral prophylaxis, if 80% of the exposed persons maintained prophylaxis for up to 8 weeks, the epidemic would be contained, and the model predicts a reduction to an illness attack rate of 2% (95% Cl: 0.2, 16) and a death rate of 0.04 deaths/1,000 persons (95% CI: 0.0003, 0.25). Such antiviral prophylaxis is nearly as effective as vaccinating 80% of the population. Vaccinating 80% of the children aged less than 19 years is almost as effective as vaccinating 80% of the population. Targeted antiviral prophylaxis has potential as an effective measure for containing influenza until adequate quantities of vaccine are available.

  16. Detection of Natural Resistance-Associated Substitutions by Ion Semiconductor Technology in HCV1b Positive, Direct-Acting Antiviral Agents-Naïve Patients

    PubMed Central

    Marascio, Nadia; Pavia, Grazia; Strazzulla, Alessio; Dierckx, Tim; Cuypers, Lize; Vrancken, Bram; Barreca, Giorgio Settimo; Mirante, Teresa; Malanga, Donatella; Oliveira, Duarte Mendes; Vandamme, Anne-Mieke; Torti, Carlo; Liberto, Maria Carla; Focà, Alfredo

    2016-01-01

    Naturally occurring resistance-associated substitutions (RASs) can negatively impact the response to direct-acting antivirals (DAAs) agents-based therapies for hepatitis C virus (HCV) infection. Herein, we set out to characterize the RASs in the HCV1b genome from serum samples of DAA-naïve patients in the context of the SINERGIE (South Italian Network for Rational Guidelines and International Epidemiology, 2014) project. We deep-sequenced the NS3/4A protease region of the viral population using the Ion Torrent Personal Genome Machine, and patient-specific majority rule consensus sequence summaries were constructed with a combination of freely available next generation sequencing data analysis software. We detected NS3/4A protease major and minor variants associated with resistance to boceprevir (V36L), telaprevir (V36L, I132V), simeprevir (V36L), and grazoprevir (V36L, V170I). Furthermore, we sequenced part of HCV NS5B polymerase using Sanger-sequencing and detected a natural RAS for dasabuvir (C316N). This mutation could be important for treatment strategies in cases of previous therapy failure. PMID:27618896

  17. Detection of Natural Resistance-Associated Substitutions by Ion Semiconductor Technology in HCV1b Positive, Direct-Acting Antiviral Agents-Naïve Patients.

    PubMed

    Marascio, Nadia; Pavia, Grazia; Strazzulla, Alessio; Dierckx, Tim; Cuypers, Lize; Vrancken, Bram; Barreca, Giorgio Settimo; Mirante, Teresa; Malanga, Donatella; Oliveira, Duarte Mendes; Vandamme, Anne-Mieke; Torti, Carlo; Liberto, Maria Carla; Focà, Alfredo; The Sinergie-Umg Study Group

    2016-01-01

    Naturally occurring resistance-associated substitutions (RASs) can negatively impact the response to direct-acting antivirals (DAAs) agents-based therapies for hepatitis C virus (HCV) infection. Herein, we set out to characterize the RASs in the HCV1b genome from serum samples of DAA-naïve patients in the context of the SINERGIE (South Italian Network for Rational Guidelines and International Epidemiology, 2014) project. We deep-sequenced the NS3/4A protease region of the viral population using the Ion Torrent Personal Genome Machine, and patient-specific majority rule consensus sequence summaries were constructed with a combination of freely available next generation sequencing data analysis software. We detected NS3/4A protease major and minor variants associated with resistance to boceprevir (V36L), telaprevir (V36L, I132V), simeprevir (V36L), and grazoprevir (V36L, V170I). Furthermore, we sequenced part of HCV NS5B polymerase using Sanger-sequencing and detected a natural RAS for dasabuvir (C316N). This mutation could be important for treatment strategies in cases of previous therapy failure. PMID:27618896

  18. [Coincidence of a chronic Hepatitis C and an autoimmune Hepatitis Type 3 - successful therapy with the new direct-acting antiviral agents].

    PubMed

    Dikopoulos, N; Zizer, E

    2016-08-01

    Chronic hepatitis C infection may be associated with several features of autoimmunity (i. e., detection of different kinds of autoantibodies in the serum). Hepatitis C is also associated with different autoimmune diseases, such as autoimmune thyroiditis, lichen ruber planus, and membranous glomerulonephritis being the most relevant. There are very few cases of a coincidence of chronic hepatitis C with an autoimmune hepatitis, that is usually diagnosed by detection of specific autoantibodies and typical histological features. During the time of interferon-based antiviral therapies, we often faced a therapeutic dilemma as interferon could lead to an exacerbation of the coincident autoimmune disease. So, in these cases, a prophylactic immunosuppression had to be started before initiation of interferon therapy. Meanwhile, in the new era of direct antiviral agents against hepatitis C, highly specific and effective therapeutic options are available. The case report presented here describes the very rare coincidence of a chronic hepatitis C, genotype 1 with an autoimmune hepatitis type 3 diagnosed by the presence of anti-SLA-antibodies. In the past, the patient had several unsuccessful interferon-based therapies without achieving a sustained virological response in parallel with an immunosuppressive treatment with azathioprine. During the further course of the disease, the patient generated a liver cirrhosis CHILD A after only a few years. After the approval of the direct antiviral agents sofosbuvir and daclatasvir in 2014, we conducted an antiviral therapy, including ribavirin, for 24 weeks and fortunately achieved a sustained virological response. Due to the persistent disease activity caused by the autoimmune hepatitis after the end of antiviral therapy, we treated the patient with prednisolone and azathioprine and could induce a stable and persistent remission of the autoimmune disease. PMID:27529527

  19. [Coincidence of a chronic Hepatitis C and an autoimmune Hepatitis Type 3 - successful therapy with the new direct-acting antiviral agents].

    PubMed

    Dikopoulos, N; Zizer, E

    2016-08-01

    Chronic hepatitis C infection may be associated with several features of autoimmunity (i. e., detection of different kinds of autoantibodies in the serum). Hepatitis C is also associated with different autoimmune diseases, such as autoimmune thyroiditis, lichen ruber planus, and membranous glomerulonephritis being the most relevant. There are very few cases of a coincidence of chronic hepatitis C with an autoimmune hepatitis, that is usually diagnosed by detection of specific autoantibodies and typical histological features. During the time of interferon-based antiviral therapies, we often faced a therapeutic dilemma as interferon could lead to an exacerbation of the coincident autoimmune disease. So, in these cases, a prophylactic immunosuppression had to be started before initiation of interferon therapy. Meanwhile, in the new era of direct antiviral agents against hepatitis C, highly specific and effective therapeutic options are available. The case report presented here describes the very rare coincidence of a chronic hepatitis C, genotype 1 with an autoimmune hepatitis type 3 diagnosed by the presence of anti-SLA-antibodies. In the past, the patient had several unsuccessful interferon-based therapies without achieving a sustained virological response in parallel with an immunosuppressive treatment with azathioprine. During the further course of the disease, the patient generated a liver cirrhosis CHILD A after only a few years. After the approval of the direct antiviral agents sofosbuvir and daclatasvir in 2014, we conducted an antiviral therapy, including ribavirin, for 24 weeks and fortunately achieved a sustained virological response. Due to the persistent disease activity caused by the autoimmune hepatitis after the end of antiviral therapy, we treated the patient with prednisolone and azathioprine and could induce a stable and persistent remission of the autoimmune disease.

  20. Direct-acting Antiviral Agents Resistance-associated Polymorphisms in Chinese Treatment-naïve Patients Infected with Genotype 1b Hepatitis C Virus

    PubMed Central

    Wang, Ye; Rao, Hui-Ying; Xie, Xing-Wang; Wei, Lai

    2015-01-01

    Background: It has been reported that several baseline polymorphisms of direct-acting antivirals (DAAs) agents resistance-associated variants (RAVs) would affect the treatment outcomes of patients chronically infected with hepatitis C virus (CHC). The aim of this study is to investigate the prevalence of DAAs RAVs in treatment-naïve GT1b CHC patients. Methods: Direct sequencing and ultra-deep sequencing of the HCV NS3, NS5A, and NS5B gene were performed in baseline serum samples of treatment-naïve patients infected with genotype 1b hepatitis C virus (HCVs). Results: One hundred and sixty CHC patients were studied. Complete sequence information was obtained for 145 patients (NS3), 148 patients (NS5A), and 137 patients (NS5B). Treatment-failure associated variants of DAAs were detected: 56.6% (82/145) of the patients presented S122G for simeprevir (NS3 protease inhibitor); 10.1% (14/148) of the patients presented Y93H for daclatasvir and ledipasvir (NS5A protein inhibitors); 94.2% (129/137) of the patients presented C316N for sofosbuvir (NS5B polymerase inhibitor). Nearly, all of the DAAs RAVs detected by ultra-deep sequencing could be detected by direct sequencing. Conclusions: The majority of genotype 1b CHC patients in China present a virus population carrying HCV DAAs RAVs. Pretreatment sequencing of HCV genome might need to be performed when patients infected with GT1b HCV receiving DAAs-containing regimens in China. Population sequencing would be quite quantified for the work. PMID:26415801

  1. Geno2pheno[HCV] - A Web-based Interpretation System to Support Hepatitis C Treatment Decisions in the Era of Direct-Acting Antiviral Agents.

    PubMed

    Kalaghatgi, Prabhav; Sikorski, Anna Maria; Knops, Elena; Rupp, Daniel; Sierra, Saleta; Heger, Eva; Neumann-Fraune, Maria; Beggel, Bastian; Walker, Andreas; Timm, Jörg; Walter, Hauke; Obermeier, Martin; Kaiser, Rolf; Bartenschlager, Ralf; Lengauer, Thomas

    2016-01-01

    The face of hepatitis C virus (HCV) therapy is changing dramatically. Direct-acting antiviral agents (DAAs) specifically targeting HCV proteins have been developed and entered clinical practice in 2011. However, despite high sustained viral response (SVR) rates of more than 90%, a fraction of patients do not eliminate the virus and in these cases treatment failure has been associated with the selection of drug resistance mutations (RAMs). RAMs may be prevalent prior to the start of treatment, or can be selected under therapy, and furthermore they can persist after cessation of treatment. Additionally, certain DAAs have been approved only for distinct HCV genotypes and may even have subtype specificity. Thus, sequence analysis before start of therapy is instrumental for managing DAA-based treatment strategies. We have created the interpretation system geno2pheno[HCV] (g2p[HCV]) to analyse HCV sequence data with respect to viral subtype and to predict drug resistance. Extensive reviewing and weighting of literature related to HCV drug resistance was performed to create a comprehensive list of drug resistance rules for inhibitors of the HCV protease in non-structural protein 3 (NS3-protease: Boceprevir, Paritaprevir, Simeprevir, Asunaprevir, Grazoprevir and Telaprevir), the NS5A replicase factor (Daclatasvir, Ledipasvir, Elbasvir and Ombitasvir), and the NS5B RNA-dependent RNA polymerase (Dasabuvir and Sofosbuvir). Upon submission of up to eight sequences, g2p[HCV] aligns the input sequences, identifies the genomic region(s), predicts the HCV geno- and subtypes, and generates for each DAA a drug resistance prediction report. g2p[HCV] offers easy-to-use and fast subtype and resistance analysis of HCV sequences, is continuously updated and freely accessible under http://hcv.geno2pheno.org/index.php. The system was partially validated with respect to the NS3-protease inhibitors Boceprevir, Telaprevir and Simeprevir by using data generated with recombinant, phenotypic

  2. Geno2pheno[HCV] – A Web-based Interpretation System to Support Hepatitis C Treatment Decisions in the Era of Direct-Acting Antiviral Agents

    PubMed Central

    Kalaghatgi, Prabhav; Sikorski, Anna Maria; Knops, Elena; Rupp, Daniel; Sierra, Saleta; Heger, Eva; Neumann-Fraune, Maria; Beggel, Bastian; Walker, Andreas; Timm, Jörg; Walter, Hauke; Obermeier, Martin; Kaiser, Rolf; Bartenschlager, Ralf; Lengauer, Thomas

    2016-01-01

    The face of hepatitis C virus (HCV) therapy is changing dramatically. Direct-acting antiviral agents (DAAs) specifically targeting HCV proteins have been developed and entered clinical practice in 2011. However, despite high sustained viral response (SVR) rates of more than 90%, a fraction of patients do not eliminate the virus and in these cases treatment failure has been associated with the selection of drug resistance mutations (RAMs). RAMs may be prevalent prior to the start of treatment, or can be selected under therapy, and furthermore they can persist after cessation of treatment. Additionally, certain DAAs have been approved only for distinct HCV genotypes and may even have subtype specificity. Thus, sequence analysis before start of therapy is instrumental for managing DAA-based treatment strategies. We have created the interpretation system geno2pheno[HCV] (g2p[HCV]) to analyse HCV sequence data with respect to viral subtype and to predict drug resistance. Extensive reviewing and weighting of literature related to HCV drug resistance was performed to create a comprehensive list of drug resistance rules for inhibitors of the HCV protease in non-structural protein 3 (NS3-protease: Boceprevir, Paritaprevir, Simeprevir, Asunaprevir, Grazoprevir and Telaprevir), the NS5A replicase factor (Daclatasvir, Ledipasvir, Elbasvir and Ombitasvir), and the NS5B RNA-dependent RNA polymerase (Dasabuvir and Sofosbuvir). Upon submission of up to eight sequences, g2p[HCV] aligns the input sequences, identifies the genomic region(s), predicts the HCV geno- and subtypes, and generates for each DAA a drug resistance prediction report. g2p[HCV] offers easy-to-use and fast subtype and resistance analysis of HCV sequences, is continuously updated and freely accessible under http://hcv.geno2pheno.org/index.php. The system was partially validated with respect to the NS3-protease inhibitors Boceprevir, Telaprevir and Simeprevir by using data generated with recombinant, phenotypic

  3. Efficacy of Second Generation Direct-Acting Antiviral Agents for Treatment Naïve Hepatitis C Genotype 1: A Systematic Review and Network Meta-Analysis

    PubMed Central

    Sobhonslidsuk, Abhasnee; Thakkinstian, Ammarin; Teerawattananon, Yot

    2015-01-01

    Background The treatment of hepatitis C (HCV) infections has significantly changed in the past few years due to the introduction of direct-acting antiviral agents (DAAs). DAAs could improve the sustained virological response compared to pegylated interferon with ribavirin (PR). However, there has been no evidence from randomized controlled trials (RCTs) that directly compare the efficacy among the different regimens of DAAs. Aim Therefore, we performed a systematic review and network meta-analysis aiming to compare the treatment efficacy between different DAA regimens for treatment naïve HCV genotype 1. Methods Medline and Scopus were searched up to 25th May 2015. RCTs investigating the efficacy of second generation DAA regimens for treatment naïve HCV genotype 1 were eligible for the review. Due to the lower efficacy and more side effects of first generation DAAs, this review included only second generation DAAs approved by the US or EU Food and Drug Administration, that comprised of simeprevir (SMV), sofosbuvir (SOF), daclatasvir (DCV), ledipasvir (LDV), and paritaprevir/ritonavir/ombitasvir plus dasabuvir (PrOD). Primary outcomes were sustained virological response at weeks 12 (SVR12) and 24 (SVR24) after the end of treatment and adverse drug events (i.e. serious adverse events, anemia, and fatigue). Efficacy of all treatment regimens were compared by applying a multivariate random effect meta-analysis. Incidence rates of SVR12 and SVR24, and adverse drug events of each treatment regimen were pooled using ‘pmeta’ command in STATA program. Results Overall, 869 studies were reviewed and 16 studies were eligible for this study. Compared with the PR regimen, SOF plus PR, SMV plus PR, and DVC plus PR regimens yielded significantly higher probability of having SVR24 with pooled risk ratios (RR) of 1.98 (95% CI 1.24, 3.14), 1.46 (95% CI: 1.22, 1.75), and 1.68 (95% CI: 1.14, 2.46), respectively. Pooled incidence rates of SVR12 and SVR24 in all treatment regimens

  4. Direct Acting Antivirals for the Treatment of Chronic Viral Hepatitis

    PubMed Central

    Karayiannis, Peter

    2012-01-01

    The development and evaluation of antiviral agents through carefully designed clinical trials over the last 25 years have heralded a new dawn in the treatment of patients chronically infected with the hepatitis B and C viruses, but not so for the D virus (HBV, HCV, and HDV). The introduction of direct acting antivirals (DDAs) for the treatment of HBV carriers has permitted the long-term use of these compounds for the continuous suppression of viral replication, whilst in the case of HCV in combination with the standard of care [SOC, pegylated interferon (PegIFN), and ribavirin] sustained virological responses (SVRs) have been achieved with increasing frequency. Progress in the case of HDV has been slow and lacking in significant breakthroughs.This paper aims to summarise the current state of play in treatment approaches for chonic viral hepatitis patients and future perspectives. PMID:24278700

  5. Human subtilase SKI-1/S1P is a master regulator of the HCV Lifecycle and a potential host cell target for developing indirect-acting antiviral agents.

    PubMed

    Olmstead, Andrea D; Knecht, Wolfgang; Lazarov, Ina; Dixit, Surjit B; Jean, François

    2012-01-01

    HCV infection is a major risk factor for liver cancer and liver transplantation worldwide. Overstimulation of host lipid metabolism in the liver by HCV-encoded proteins during viral infection creates a favorable environment for virus propagation and pathogenesis. In this study, we hypothesize that targeting cellular enzymes acting as master regulators of lipid homeostasis could represent a powerful approach to developing a novel class of broad-spectrum antivirals against infection associated with human Flaviviridae viruses such as hepatitis C virus (HCV), whose assembly and pathogenesis depend on interaction with lipid droplets (LDs). One such master regulator of cholesterol metabolic pathways is the host subtilisin/kexin-isozyme-1 (SKI-1)--or site-1 protease (S1P). SKI-1/S1P plays a critical role in the proteolytic activation of sterol regulatory element binding proteins (SREBPs), which control expression of the key enzymes of cholesterol and fatty-acid biosynthesis. Here we report the development of a SKI-1/S1P-specific protein-based inhibitor and its application to blocking the SREBP signaling cascade. We demonstrate that SKI-1/S1P inhibition effectively blocks HCV from establishing infection in hepatoma cells. The inhibitory mechanism is associated with a dramatic reduction in the abundance of neutral lipids, LDs, and the LD marker: adipose differentiation-related protein (ADRP)/perilipin 2. Reduction of LD formation inhibits virus assembly from infected cells. Importantly, we confirm that SKI-1/S1P is a key host factor for HCV infection by using a specific active, site-directed, small-molecule inhibitor of SKI-1/S1P: PF-429242. Our studies identify SKI-1/S1P as both a novel regulator of the HCV lifecycle and as a potential host-directed therapeutic target against HCV infection and liver steatosis. With identification of an increasing number of human viruses that use host LDs for infection, our results suggest that SKI-1/S1P inhibitors may allow development of

  6. Antiviral, antifungal and antiprotozoal agents in the cinema.

    PubMed

    García-Sánchez, Jose Elias; García-Sánchez, E; Merino Marcos, M L

    2007-03-01

    Among the antimicrobial agents, antibacterials are the most frequently mentioned in cinematographic plots. Nevertheless, it is not uncommon to come across other antiviral agents, especially antiretrovirals and antiprotozoals. We analyzed the presence of antiviral and antifungal agents in different commercial films, both when they were merely mentioned in passing and when they played a major role in the film. This review essentially aims to address the historical portrayal of these agents in film and to list their appearances. The fictional treatments that appear in some films are not addressed.

  7. Antiviral agents against equid alphaherpesviruses: Current status and perspectives.

    PubMed

    Vissani, María A; Thiry, Etienne; Dal Pozzo, Fabiana; Barrandeguy, María

    2016-01-01

    Equid herpesvirus infections cause respiratory, neurological and reproductive syndromes. Despite preventive and control measures and the availability of vaccines and immunostimulants, herpesvirus infections still constitute a major threat to equine health and for the equine industry worldwide. Antiviral drugs, particularly nucleoside analogues and foscarnet, are successfully used for the treatment of human alphaherpesvirus infections. In equine medicine, the use of antiviral medications in alphaherpesvirus infections would decrease the excretion of virus and diminish the risk of contagion and the convalescent time in affected horses, and would also improve the clinical outcome of equine herpesvirus myeloencephalopathy. The combined use of antiviral compounds, along with vaccines, immune modulators, and effective preventive and control measures, might be beneficial in diminishing the negative impact of alphaherpesvirus infections in horses. The purpose of this review is to analyse the available information regarding the use of antiviral agents against alphaherpesviruses, with particular emphasis on equine alphaherpesvirus infections.

  8. [Side-effects of pegylated interferon plus ribavirin therapy with or without protease inhibitor direct acting antiviral agents during treatment of chronic hepatitis C virus infection].

    PubMed

    Hunyady, Béla; Kovács, Balázs; Battyáni, Zita

    2011-12-11

    Hepatitis C virus (HCV) infection affects 2-3% of the population, approximately 170 million people worldwide, causing chronic HCV-related hepatitis with subsequent liver cirrhosis, hepatic failure, hepatocellular cancer, and liver-related mortality in a large number of patients. The gold standard therapy, pegylated interferon alpha in combination with ribavirin can eradicate hepatitis C virus infection in approx. 40% of treatment-naïve patients infected with HCV genotype G1, and only 15-20% of patients with previous treatment. Success rate is substantially improved with the development and registration of two direct acting anti-hepatitis C virus protease inhibitors (boceprevir and telaprevir) in the second decade of 21st century: combined with the standard therapy, almost three quarter of previously untreated, and more than half of previously unsuccessfully treated patients can achieve sustained viral response with protease inhibitor based triple therapies. A major barrier to successful treatment is the association of peginterferon/ribavirin therapy with frequent and sometimes serious adverse effects. In clinical trials, approximately 10-15% of treated patients discontinue peginterferon and ribavirin due to adverse events; however, in routine clinical practice, the rate of treatment discontinuation has been reported to be substantially higher. The side effects of peginterferon/ribavirin therapy affect virtually all organ systems, and addition of protease inhibitor can amplify these side effects (particularly anemia), and/or may lead to new ones (i.e., dysgeusia with boceprevir or skin rush with telaprevir). There is considerable regional and global variability in the nature and prevalence of these adverse effects as well as in the best strategies to ameliorate their impact on hepatitis C virus treatment. This article summarizes the side effects of dual and triple therapies and their management based on the labels of the drugs, on a comprehensive literature review

  9. Psychiatric treatment considerations with direct acting antivirals in hepatitis C

    PubMed Central

    2013-01-01

    Background Despite recent advances in hepatitis C (HCV) treatment, specifically the addition of direct acting antivirals (DAAs), pegylated interferon-alpha remains the backbone of HCV therapy. Therefore, the impact of DAAs on the management of co-morbid psychiatric illness and neuropsychiatric sequalae remains an ongoing concern during HCV therapy. This paper provides a review of the neuropsychiatric adverse effects of DAAs and drug-drug interactions (DDIs) between DAAs and psychiatric medications. Methods We conducted a Pubmed search using relevant search terms and hand searched reference lists of related review articles. In addition, we searched abstracts for major hepatology conferences and contacted respective pharmaceutical companies for additional studies. Results Limited data is available on the neuropsychiatric adverse effects of DAAs; however, data from major clinical trials suggest that DAAs have minimal neuropsychiatric risk. DAAs can potentially interact with a variety of psychotropic agents via cytochrome P450 and p-glycoprotein interactions. Triazolam, oral midazolam, St. John’s Wort, carbamazepine and pimozide, are contraindicated with DAAs. DDIs between DAAs and antidepressants, anxiolytics, hypnotics, mood stabilizers, antipsychotics and treatments for opioid dependence are summarized. Conclusions Although DAAs do not add significant neuropsychiatric risk, the potential for DDIs is high. Consideration of DDIs is paramount to improving medication adherence and mitigating adverse effects during HCV therapy. PMID:23672254

  10. Antiviral agents and HIV prevention: controversies, conflicts, and consensus

    PubMed Central

    Cohen, Myron S.; Muessig, Kathryn E.; Smith, M. Kumi; Powers, Kimberly A.; Kashuba, Angela D.M.

    2013-01-01

    Antiviral agents can be used to prevent HIV transmission before exposure as preexpo-sure prophylaxis (PrEP), after exposure as postexposure prophylaxis, and as treatment of infected people for secondary prevention. Considerable research has shed new light on antiviral agents for PrEP and for prevention of secondary HIV transmission. While promising results have emerged from several PrEP trials, the challenges of poor adherence among HIV-negative clients and possible increase in sexual risk behaviors remain a concern. In addition, a broader pipeline of antiviral agents for PrEP that focuses on genital tract pharmacology and safety and resistance issues must be developed. Antiretroviral drugs have also been used to prevent HIV transmission from HIV-infected patients to their HIV-discordant sexual partners. The HIV Prevention Trials Network 052 trial demonstrated nearly complete prevention of HIV transmission by early treatment of infection, but the generalizability of the results to other risk groups – including intravenous drug users and MSM – has not been determined. Most importantly, the best strategy for use of antiretroviral agents to reduce the spread of HIV at either the individual level or the population level has not been developed, and remains the ultimate goal of this area of investigation. PMID:22507927

  11. Systematic Review and Network Meta-Analysis of Randomized Controlled Trials: Comparative Effectiveness and Safety of Direct-Acting Antiviral Agents for Treatment-Naive Hepatitis C Genotype 1.

    PubMed

    Zhu, Gui-Qi; Zou, Zhuo-Lin; Zheng, Ji-Na; Chen, Da-Zhi; Zou, Tian-Tian; Shi, Ke-Qing; Zheng, Ming-Hua

    2016-03-01

    All possible direct-acting antiviral agent (DAA) regimens for treatment-naive hepatitis C genotype 1 were evaluated by many randomized controlled trials (RCTs). However, the optimum regimen remains inconclusive. We aim to compare interventions in terms of sustained virological response at 12 (SVR12) and 24 (SVR24) weeks after the end of treatment and adverse effects (AEs) (fatigue, headache, nausea, insomnia). PubMed, Embase, and the Cochrane Library were searched for RCTs until July 31, 2015. We estimated odds ratios (ORs) between treatments on clinical outcomes. Twenty-two eligible RCTs were included. Compared with peginterferon-ribavirin (PR), daclatasvir plus PR (OR 8.90, P < 0.001), faldaprevir plus PR (OR 3.72, P < 0.001), simeprevir plus PR (OR 3.59, P < 0.001), sofosbuvir plus PR (OR 4.69, P < 0.001) yield a significant effect in improving SVR12. Consistently, simeprevir plus PR (OR 3.49, P < 0.001), sofosbuvir plus PR (OR 4.51, P < 0.001), daclatasvir plus PR (OR 4.77, P < 0.001) also improved the rates of SVR24 significantly compared with PR. With respect to AEs, compared with PR, ledipasvir plus sofosbuvir plus PR (OR 2.13, P < 0.001) confer a significant AE in nausea, whereas daclatasvir plus PR (OR 0.20, P < 0.001 and OR 0.18, P < 0.001, respectively) lowered the incidence of fatigue and nausea significantly when compared with ledipasvir plus sofosbuvir plus PR. Daclatasvir plus PR was the most effective in SVR12 and SVR24, but caused an increased AEs profile (headache and insomnia). Combined ledipasvir with sofosbuvir or combination of PR was associated with higher incidence of fatigue and nausea. PMID:26945424

  12. Antioxidants: potential antiviral agents for Japanese encephalitis virus infection.

    PubMed

    Zhang, Yu; Wang, Zehua; Chen, Huan; Chen, Zongtao; Tian, Yanping

    2014-07-01

    Japanese encephalitis (JE) is prevalent throughout eastern and southern Asia and the Pacific Rim. It is caused by the JE virus (JEV), which belongs to the family Flaviviridae. Despite the importance of JE, little is known about its pathogenesis. The role of oxidative stress in the pathogenesis of viral infections has led to increased interest in its role in JEV infections. This review focuses mainly on the role of oxidative stress in the pathogenesis of JEV infection and the antiviral effect of antioxidant agents in inhibiting JEV production. First, this review summarizes the pathogenesis of JE. The pathological changes include neuronal death, astrocyte activation, and microglial proliferation. Second, the relationship between oxidative stress and JEV infection is explored. JEV infection induces the generation of oxidants and exhausts the supply of antioxidants, which activates specific signaling pathways. Finally, the therapeutic efficacy of a variety of antioxidants as antiviral agents, including minocycline, arctigenin, fenofibrate, and curcumin, was studied. In conclusion, antioxidants are likely to be developed into antiviral agents for the treatment of JE. PMID:24780919

  13. Novel drug delivery approaches on antiviral and antiretroviral agents

    PubMed Central

    Sharma, Pooja; Chawla, Anuj; Arora, Sandeep; Pawar, Pravin

    2012-01-01

    Viruses have the property to replicate very fast in host cell. It can attack any part of host cell. Therefore, the clinical efficacy of antiviral drugs and its bioavailability is more important concern taken into account to treat viral infections. The oral and parenteral routes of drug administration have several shortcomings, however, which could lead to the search for formulating better delivery systems. Now, a day's novel drug delivery systems (NDDS) proved to be a better approach to enhance the effectiveness of the antivirals and improve the patient compliance and decrease the adverse effect. The NDDS have reduced the dosing frequency and shorten the duration of treatment, thus, which could lead the treatment more cost-effective. The development of NDDS for antiviral and antiretroviral therapy aims to deliver the drug devoid of toxicity, with high compatibility and biodegradability, targeting the drug to specific sites for viral infection and in some instances it also avoid the first pass metabolism effect. This article aims to discuss the usefulness of novel delivery approaches of antiviral agents such as niosomes, microspheres, microemulsions, nanoparticles that are used in the treatment of various Herpes viruses and in human immunodeficiency virus (HIV) infections. PMID:23057001

  14. Immunomodulatory effects of antimicrobial agents. Part I: antibacterial and antiviral agents.

    PubMed

    Labro, Marie-Thérèse

    2012-03-01

    Despite impressive therapeutic progresses in the battle against infections, microorganisms are still a threat to mankind. With hundreds of antibacterial molecules, major concerns remain about the emergence of resistant and multidrug-resistant pathogens. On the other hand, the antiviral drug armamentarium is comprised of only a few dozens of compounds which are highly pathogen specific, and resistance is also a concern. According to Arturo Casadevall (Albert Einstein College of Medicine, NY, USA), we have now entered the third era of anti-infective strategy, which intends to favor the interplay between active molecules and the immune system. The first part of this review focuses on the potential immunomodulating properties of anti-infective agents, beginning with antibacterial and antiviral agents.

  15. Potential Antiviral Agents from Marine Fungi: An Overview.

    PubMed

    Moghadamtousi, Soheil Zorofchian; Nikzad, Sonia; Kadir, Habsah Abdul; Abubakar, Sazaly; Zandi, Keivan

    2015-07-22

    Biodiversity of the marine world is only partially subjected to detailed scientific scrutiny in comparison to terrestrial life. Life in the marine world depends heavily on marine fungi scavenging the oceans of lifeless plants and animals and entering them into the nutrient cycle by. Approximately 150 to 200 new compounds, including alkaloids, sesquiterpenes, polyketides, and aromatic compounds, are identified from marine fungi annually. In recent years, numerous investigations demonstrated the tremendous potential of marine fungi as a promising source to develop new antivirals against different important viruses, including herpes simplex viruses, the human immunodeficiency virus, and the influenza virus. Various genera of marine fungi such as Aspergillus, Penicillium, Cladosporium, and Fusarium were subjected to compound isolation and antiviral studies, which led to an illustration of the strong antiviral activity of a variety of marine fungi-derived compounds. The present review strives to summarize all available knowledge on active compounds isolated from marine fungi with antiviral activity.

  16. Potential Antiviral Agents from Marine Fungi: An Overview

    PubMed Central

    Zorofchian Moghadamtousi, Soheil; Nikzad, Sonia; Abdul Kadir, Habsah; Abubakar, Sazaly; Zandi, Keivan

    2015-01-01

    Biodiversity of the marine world is only partially subjected to detailed scientific scrutiny in comparison to terrestrial life. Life in the marine world depends heavily on marine fungi scavenging the oceans of lifeless plants and animals and entering them into the nutrient cycle by. Approximately 150 to 200 new compounds, including alkaloids, sesquiterpenes, polyketides, and aromatic compounds, are identified from marine fungi annually. In recent years, numerous investigations demonstrated the tremendous potential of marine fungi as a promising source to develop new antivirals against different important viruses, including herpes simplex viruses, the human immunodeficiency virus, and the influenza virus. Various genera of marine fungi such as Aspergillus, Penicillium, Cladosporium, and Fusarium were subjected to compound isolation and antiviral studies, which led to an illustration of the strong antiviral activity of a variety of marine fungi-derived compounds. The present review strives to summarize all available knowledge on active compounds isolated from marine fungi with antiviral activity. PMID:26204947

  17. Potential Antiviral Agents from Marine Fungi: An Overview.

    PubMed

    Moghadamtousi, Soheil Zorofchian; Nikzad, Sonia; Kadir, Habsah Abdul; Abubakar, Sazaly; Zandi, Keivan

    2015-07-01

    Biodiversity of the marine world is only partially subjected to detailed scientific scrutiny in comparison to terrestrial life. Life in the marine world depends heavily on marine fungi scavenging the oceans of lifeless plants and animals and entering them into the nutrient cycle by. Approximately 150 to 200 new compounds, including alkaloids, sesquiterpenes, polyketides, and aromatic compounds, are identified from marine fungi annually. In recent years, numerous investigations demonstrated the tremendous potential of marine fungi as a promising source to develop new antivirals against different important viruses, including herpes simplex viruses, the human immunodeficiency virus, and the influenza virus. Various genera of marine fungi such as Aspergillus, Penicillium, Cladosporium, and Fusarium were subjected to compound isolation and antiviral studies, which led to an illustration of the strong antiviral activity of a variety of marine fungi-derived compounds. The present review strives to summarize all available knowledge on active compounds isolated from marine fungi with antiviral activity. PMID:26204947

  18. New era for management of chronic hepatitis C virus using direct antiviral agents: A review

    PubMed Central

    Elbaz, Tamer; El-Kassas, Mohamed; Esmat, Gamal

    2014-01-01

    The pegylated interferon regimen has long been the lone effective management of chronic hepatitis C with modest response. The first appearance of protease inhibitors included boceprevir and telaprevir. However, their efficacy was limited to genotype 1. Recently, direct antiviral agents opened the gate for a real effective management of HCV, certainly after FDA approval of some compounds that further paved the way for the appearance of enormous potent direct antiviral agents that may achieve successful eradication of HCV. PMID:26257927

  19. Cysteine-modifying agents: a possible approach for effective anticancer and antiviral drugs.

    PubMed Central

    Casini, Angela; Scozzafava, Andrea; Supuran, Claudiu T

    2002-01-01

    Modification of cysteine residues in proteins, due to a) the participation of the thiol moiety of this amino acid in oxido-reduction reactions, b) its ability to strongly coordinate transition metal ions, or c) its nucleophilic nature and facile reaction with electrophiles, may be critically important for the design of novel types of pharmacological agents. Application of such procedures recently led to the design of novel antivirals, mainly based on the reaction of zinc finger proteins with disulfides and related derivatives. This approach was particularly successful for developing novel antiviral agents for human immunodeficiency virus and human papilloma virus. Several new anticancer therapeutic approaches, mainly targeting tubulin, have also been reported. Thus, this unique amino acid offers very interesting possibilities for developing particularly useful pharmacological agents, which generally possess a completely different mechanism of action compared with classic agents in clinical use, thus avoiding major problems such as multidrug resistance (for antiviral and anticancer agents) or high toxicity. PMID:12426135

  20. Management of hepatitis C genotype 4 in the directly acting antivirals era

    PubMed Central

    Hathorn, Emma; Elsharkawy, Ahmed M

    2016-01-01

    Genotype 4 chronic hepatitis C (G4 HCV) accounts for 13% of worldwide HCV infections; with 10 million people infected with the virus across the world. Up to the end of 2013, the only treatment option for G4 HCV was treatment with pegylated interferon and ribavirin for 24–48 weeks. Since late 2013, treatment of G4 HCV has been transformed by the licensing of many directly acting antiviral agents (DAA). It is an exciting time to be involved in the management of HCV generally and G4 particularly. Interferon-free DAA regimens are now a reality for G4 HCV. This review will highlight these developments and discuss the data behind the use of these drugs. It will also highlight future regimens that are likely to be available over the coming years. PMID:27752338

  1. Antiviral agents: characteristic activity spectrum depending on the molecular target with which they interact.

    PubMed

    De Clercq, E

    1993-01-01

    The target protein (enzyme) with which antiviral agents interact determines their antiviral activity spectrum. Based on their activity spectrum, antiviral compounds could be divided into the following classes: (1) sulfated polysaccharides (i.e., dextran sulfate), which interact with the viral envelope glycoproteins and are inhibitory to a broad variety of enveloped viruses (i.e., retro-, herpes-, rhabdo-, and arenaviruses): (2) SAH hydrolase inhibitors (i.e., neplanocin A derivatives), which are particularly effective against poxvirus, (-)RNA viruses (paramyxovirus, rhabdovirus), and (+/-)RNA virus (reovirus); (3) OMP decarboxylase inhibitors (i.e., pyrazofurin) and CTP synthetase inhibitors (i.e., cyclopentenylcytosine), which are active against a broad range of DNA, (+)RNA, (-)RNA, and (+/-)RNA viruses; (4) IMP dehydrogenase inhibitors (i.e., ribavirin), which are also active against various (+)RNA and (-)RNA viruses and, in particular, ortho- and paramyxoviruses; (5) acyclic guanosine analogs (i.e., ganciclovir) and carbocyclic guanosine analogs (i.e., cyclobut-G), which are particularly active against herpesviruses (i.e., HSV-1, HSV-2, VZV, CMV); (6) thymidine analogs (i.e., BVDU, BVaraU), which are specifically active against HSV-1 and VZV because of their preferential phosphorylation by the virus-encoded thymidine kinase; (7) acyclic nucleoside phosphonates (i.e., HPMPA, HPMPC, PMEA, FPMPA), which, depending on the structure of the acyclic side chain, span an activity spectrum from DNA viruses (papova-, adeno-, herpes-, hepadna-, and poxvirus) to retroviruses (HIV); (8) dideoxynucleoside analogs (i.e., AZT, DDC), which act as chain terminators in the reverse transcriptase reaction and thus block the replication of retroviruses as well as hepadnaviruses; and (9) the TIBO, HEPT, and other TIBO-like compounds, which interact specifically with the reverse transcriptase of HIV-1 and thus block the replication of HIV-1, but not of HIV-2 or any other retrovirus

  2. Susceptibility of human immunodeficiency virus to antiviral agents measured by infectious virus yield reduction.

    PubMed

    Dianzani, F; Capobianchi, M R; Antonelli, G; Amicucci, P; De Marco, F

    1989-01-01

    Under single growth cycle conditions in C8166 lymphoblastoid cells human immunodeficiency virus shows a replication curve which is completed at 24 h post-infection. At lower multiplicity of infection virus yield peaks at approximately 72 h post-infection but in both cases the titer of the virus released in the medium is negligible with respect to that which remains cell-associated. A method based on back-titration of virus in cryolysates of C8166 cells infected with HIV and treated with antiviral compounds has been used to evaluate HIV sensitivity to such agents. Under single growth cycle conditions dose response curves appear linear and permit rapid and accurate determination of the endpoint activity. Under multiple growth cycle conditions the inhibitory activity may be measured during the exponential growth phase, at 48 h post-infection. This method, which directly measures production of infectious virus rather than indirect probes of viral replication such as reverse transcriptase or antigen production, offers the advantage of a precise determination of the degree of activity of antivirals also acting on viral assembly or release.

  3. An innate antiviral pathway acting before interferons at epithelial surfaces.

    PubMed

    Iversen, Marie B; Reinert, Line S; Thomsen, Martin K; Bagdonaite, Ieva; Nandakumar, Ramya; Cheshenko, Natalia; Prabakaran, Thaneas; Vakhrushev, Sergey Y; Krzyzowska, Malgosha; Kratholm, Sine K; Ruiz-Perez, Fernando; Petersen, Steen V; Goriely, Stanislas; Bibby, Bo Martin; Eriksson, Kristina; Ruland, Jürgen; Thomsen, Allan R; Herold, Betsy C; Wandall, Hans H; Frische, Sebastian; Holm, Christian K; Paludan, Søren R

    2016-02-01

    Mucosal surfaces are exposed to environmental substances and represent a major portal of entry for microorganisms. The innate immune system is responsible for early defense against infections and it is believed that the interferons (IFNs) constitute the first line of defense against viruses. Here we identify an innate antiviral pathway that works at epithelial surfaces before the IFNs. The pathway is activated independently of known innate sensors of viral infections through a mechanism dependent on viral O-linked glycans, which induce CXCR3 chemokines and stimulate antiviral activity in a manner dependent on neutrophils. This study therefore identifies a previously unknown layer of antiviral defense that exerts its action on epithelial surfaces before the classical IFN response is operative.

  4. Evaluation of antiseptic antiviral activity of chemical agents.

    PubMed

    Geller, Chloé; Finance, Chantal; Duval, Raphaël Emmanuel

    2011-06-01

    Antiviral antisepsis and disinfection are crucial for preventing the environmental spread of viral infections. Emerging viruses and associated diseases, as well as nosocomial viral infections, have become a real issue in medical fields, and there are very few efficient and specific treatments available to fight most of these infections. Another issue is the potential environmental resistance and spread of viral particles. Therefore, it is essential to properly evaluate the efficacy of antiseptics-disinfectants (ATS-D) on viruses. ATS-D antiviral activity is evaluated by (1) combining viruses and test product for an appropriately defined and precise contact time, (2) neutralizing product activity, and (3) estimating the loss of viral infectivity. A germicide can be considered to have an efficient ATS-D antiviral activity if it induces a >3 or >4 log(10) reduction (American and European regulatory agency requirements, respectively) in viral titers in a defined contact time. This unit describes a global methodology for evaluating chemical ATS-D antiviral activity.

  5. Liposomal Systems as Nanocarriers for the Antiviral Agent Ivermectin.

    PubMed

    Croci, Romina; Bottaro, Elisabetta; Chan, Kitti Wing Ki; Watanabe, Satoru; Pezzullo, Margherita; Mastrangelo, Eloise; Nastruzzi, Claudio

    2016-01-01

    RNA virus infections can lead to the onset of severe diseases such as fever with haemorrhage, multiorgan failure, and mortality. The emergence and reemergence of RNA viruses continue to pose a significant public health threat worldwide with particular attention to the increasing incidence of flaviviruses, among others Dengue, West Nile Virus, and Yellow Fever viruses. Development of new and potent antivirals is thus urgently needed. Ivermectin, an already known antihelminthic drug, has shown potent effects in vitro on Flavivirus helicase, with EC50 values in the subnanomolar range for Yellow Fever and submicromolar EC50 for Dengue Fever, Japanese encephalitis, and tick-borne encephalitis viruses. However ivermectin is hampered in its application by pharmacokinetic problems (little solubility and high cytotoxicity). To overcome such problems we engineered different compositions of liposomes as ivermectin carriers characterizing and testing them on several cell lines for cytotoxicity. The engineered liposomes were less cytotoxic than ivermectin alone and they showed a significant increase of the antiviral activity in all the Dengue stains tested (1, 2, and S221). In the current study ivermectin is confirmed to be an effective potential antiviral and liposomes, as drug carriers, are shown to modulate the drug activity. All together the results represent a promising starting point for future improvement of ivermectin as antiviral and its delivery. PMID:27242902

  6. Chromatographic methods for the bioanalysis of antiviral agents.

    PubMed

    Riley, C M; Ault, J M; Klutman, N E

    1990-10-12

    The present review has concentrated on chromatographic techniques for the quantitative determination of antiviral drugs in biological samples. Special attention has been paid to the elements of chromatographic assays that are essential to ensure selectivity, sensitivity, accuracy and precision of the various methods. Wherever possible, attempts have been made to determine the suitability of the methods for application to investigations in pharmacokinetics in man and experimental animals, biopharmaceutics, therapeutic drug monitoring, metabolism and pharmacology. Because of the serious consequences of infection from material contaminated with viruses, special consideration has been given to the handling of contaminated samples. It was convenient to divide the antiviral drugs for the purpose of this review into two groups, the nucleoside and the non-nucleoside antiviral drugs. The nucleosides discussed are vidarabine, cytarabine, ribavirin, riboxamide, acyclovir, ganciclovir, desciclovir, carbovir, 2',3'-dideoxyadenosine, 2',3'-dideoxycytidine, zidovudine, 2',3'-dideoxyinosine, 2',3'-didehydro-3'-deoxythymidine, idoxuridine, 5-(2-bromovinyl)-2'-deoxyuridine, 2'-fluoro-5-iodoaracytidine and 5-iodo-2'-deoxycytidine. The non-nucleoside antiviral drugs discussed are arildone, amantidine, rimantidine, moroxydine, enviroxime, foscarnet and ampligen. PMID:2258420

  7. Liposomal Systems as Nanocarriers for the Antiviral Agent Ivermectin

    PubMed Central

    Croci, Romina; Bottaro, Elisabetta; Chan, Kitti Wing Ki; Watanabe, Satoru; Pezzullo, Margherita; Mastrangelo, Eloise; Nastruzzi, Claudio

    2016-01-01

    RNA virus infections can lead to the onset of severe diseases such as fever with haemorrhage, multiorgan failure, and mortality. The emergence and reemergence of RNA viruses continue to pose a significant public health threat worldwide with particular attention to the increasing incidence of flaviviruses, among others Dengue, West Nile Virus, and Yellow Fever viruses. Development of new and potent antivirals is thus urgently needed. Ivermectin, an already known antihelminthic drug, has shown potent effects in vitro on Flavivirus helicase, with EC50 values in the subnanomolar range for Yellow Fever and submicromolar EC50 for Dengue Fever, Japanese encephalitis, and tick-borne encephalitis viruses. However ivermectin is hampered in its application by pharmacokinetic problems (little solubility and high cytotoxicity). To overcome such problems we engineered different compositions of liposomes as ivermectin carriers characterizing and testing them on several cell lines for cytotoxicity. The engineered liposomes were less cytotoxic than ivermectin alone and they showed a significant increase of the antiviral activity in all the Dengue stains tested (1, 2, and S221). In the current study ivermectin is confirmed to be an effective potential antiviral and liposomes, as drug carriers, are shown to modulate the drug activity. All together the results represent a promising starting point for future improvement of ivermectin as antiviral and its delivery. PMID:27242902

  8. USP21 negatively regulates antiviral response by acting as a RIG-I deubiquitinase

    PubMed Central

    Fan, Yihui; Mao, Renfang; Yu, Yang; Liu, Shangfeng; Shi, Zhongcheng; Cheng, Jin; Zhang, Huiyuan; An, Lei; Zhao, Yanling; Xu, Xin; Chen, Zhenghu; Kogiso, Mari; Zhang, Dekai; Zhang, Hong; Zhang, Pumin; Jung, Jae U.; Li, Xiaonan

    2014-01-01

    Lys63-linked polyubiquitination of RIG-I is essential in antiviral immune defense, yet the molecular mechanism that negatively regulates this critical step is poorly understood. Here, we report that USP21 acts as a novel negative regulator in antiviral responses through its ability to bind to and deubiquitinate RIG-I. Overexpression of USP21 inhibited RNA virus–induced RIG-I polyubiquitination and RIG-I–mediated interferon (IFN) signaling, whereas deletion of USP21 resulted in elevated RIG-I polyubiquitination, IRF3 phosphorylation, IFN-α/β production, and antiviral responses in MEFs in response to RNA virus infection. USP21 also restricted antiviral responses in peritoneal macrophages (PMs) and bone marrow–derived dendritic cells (BMDCs). USP21-deficient mice spontaneously developed splenomegaly and were more resistant to VSV infection with elevated production of IFNs. Chimeric mice with USP21-deficient hematopoietic cells developed virus-induced splenomegaly and were more resistant to VSV infection. Functional comparison of three deubiquitinases (USP21, A20, and CYLD) demonstrated that USP21 acts as a bona fide RIG-I deubiquitinase to down-regulate antiviral response independent of the A20 ubiquitin-editing complex. Our studies identify a previously unrecognized role for USP21 in the negative regulation of antiviral response through deubiquitinating RIG-I. PMID:24493797

  9. Mucin biopolymers as broad-spectrum antiviral agents

    PubMed Central

    Lieleg, Oliver; Lieleg, Corinna; Bloom, Jesse; Buck, Christopher B.; Ribbeck, Katharina

    2012-01-01

    Mucus is a porous biopolymer matrix that coats all wet epithelia in the human body and serves as the first line of defense against many pathogenic bacteria and viruses. However, under certain conditions viruses are able to penetrate this infection barrier, which compromises the protective function of native mucus. Here, we find that isolated porcine gastric mucin polymers, key structural components of native mucus, can protect an underlying cell layer from infection by small viruses such as human papillomavirus (HPV), Merkel cell polyomavirus (MCV), or a strain of influenza A virus. Single particle analysis of virus mobility inside the mucin barrier reveals that this shielding effect is in part based on a retardation of virus diffusion inside the biopolymer matrix. Our findings suggest that purified mucins may be used as a broad-range antiviral supplement to personal hygiene products, baby formula or lubricants to support our immune system. PMID:22475261

  10. Squalamine as a broad-spectrum systemic antiviral agent with therapeutic potential

    PubMed Central

    Zasloff, Michael; Adams, A. Paige; Beckerman, Bernard; Campbell, Ann; Han, Ziying; Luijten, Erik; Meza, Isaura; Julander, Justin; Mishra, Abhijit; Qu, Wei; Taylor, John M.; Weaver, Scott C.; Wong, Gerard C. L.

    2011-01-01

    Antiviral compounds that increase the resistance of host tissues represent an attractive class of therapeutic. Here, we show that squalamine, a compound previously isolated from the tissues of the dogfish shark (Squalus acanthias) and the sea lamprey (Petromyzon marinus), exhibits broad-spectrum antiviral activity against human pathogens, which were studied in vitro as well as in vivo. Both RNA- and DNA-enveloped viruses are shown to be susceptible. The proposed mechanism involves the capacity of squalamine, a cationic amphipathic sterol, to neutralize the negative electrostatic surface charge of intracellular membranes in a way that renders the cell less effective in supporting viral replication. Because squalamine can be readily synthesized and has a known safety profile in man, we believe its potential as a broad-spectrum human antiviral agent should be explored. PMID:21930925

  11. Squalamine as a broad-spectrum systemic antiviral agent with therapeutic potential.

    PubMed

    Zasloff, Michael; Adams, A Paige; Beckerman, Bernard; Campbell, Ann; Han, Ziying; Luijten, Erik; Meza, Isaura; Julander, Justin; Mishra, Abhijit; Qu, Wei; Taylor, John M; Weaver, Scott C; Wong, Gerard C L

    2011-09-20

    Antiviral compounds that increase the resistance of host tissues represent an attractive class of therapeutic. Here, we show that squalamine, a compound previously isolated from the tissues of the dogfish shark (Squalus acanthias) and the sea lamprey (Petromyzon marinus), exhibits broad-spectrum antiviral activity against human pathogens, which were studied in vitro as well as in vivo. Both RNA- and DNA-enveloped viruses are shown to be susceptible. The proposed mechanism involves the capacity of squalamine, a cationic amphipathic sterol, to neutralize the negative electrostatic surface charge of intracellular membranes in a way that renders the cell less effective in supporting viral replication. Because squalamine can be readily synthesized and has a known safety profile in man, we believe its potential as a broad-spectrum human antiviral agent should be explored. PMID:21930925

  12. Second generation direct-acting antivirals - Do we expect major improvements?

    PubMed

    Feld, Jordan J; Foster, Graham R

    2016-10-01

    The rapid progress in the development of direct-acting antiviral agents for hepatitis C has allowed the vast majority of patients to receive all oral therapy that will eliminate their virus. The success of the new regimens has led many to question the need for further developments in this field. Major improvements in drugs for hepatitis C are unlikely but we predict incremental improvements in the next few years. We hope that the next generation of drugs will address the unresolved issues for patients with genotype 3 infection where current treatments are still not entirely satisfactory and we anticipate improvements in the management of patients with renal failure. Shorter duration treatments, perhaps with novel modes of action, may allow simplified 'one-dose' treatments that will greatly expand our ability to treat patients who have difficulty accessing current services and we anticipate that the clinical community will better define the patients with advanced disease who will benefit from therapy prior to liver transplantation. PMID:27641983

  13. Antiviral activity of carbohydrate-binding agents against Nidovirales in cell culture.

    PubMed

    van der Meer, F J U M; de Haan, C A M; Schuurman, N M P; Haijema, B J; Peumans, W J; Van Damme, E J M; Delputte, P L; Balzarini, J; Egberink, H F

    2007-10-01

    Coronaviruses are important human and animal pathogens, the relevance of which increased due to the emergence of new human coronaviruses like SARS-CoV, HKU1 and NL63. Together with toroviruses, arteriviruses, and roniviruses the coronaviruses belong to the order Nidovirales. So far antivirals are hardly available to combat infections with viruses of this order. Therefore, various antiviral strategies to counter nidoviral infections are under evaluation. Lectins, which bind to N-linked oligosaccharide elements of enveloped viruses, can be considered as a conceptionally new class of virus inhibitors. These agents were recently evaluated for their antiviral activity towards a variety of enveloped viruses and were shown in most cases to inhibit virus infection at low concentrations. However, limited knowledge is available for their efficacy towards nidoviruses. In this article the application of the plant lectins Hippeastrum hybrid agglutinin (HHA), Galanthus nivalis agglutinin (GNA), Cymbidium sp. agglutinin (CA) and Urtica dioica agglutinin (UDA) as well as non-plant derived pradimicin-A (PRM-A) and cyanovirin-N (CV-N) as potential antiviral agents was evaluated. Three antiviral tests were compared based on different evaluation principles: cell viability (MTT-based colorimetric assay), number of infected cells (immunoperoxidase assay) and amount of viral protein expression (luciferase-based assay). The presence of carbohydrate-binding agents strongly inhibited coronaviruses (transmissible gastroenteritis virus, infectious bronchitis virus, feline coronaviruses serotypes I and II, mouse hepatitis virus), arteriviruses (equine arteritis virus and porcine respiratory and reproductive syndrome virus) and torovirus (equine Berne virus). Remarkably, serotype II feline coronaviruses and arteriviruses were not inhibited by PRM-A, in contrast to the other viruses tested.

  14. Management of post transplant hepatitis C in the direct antiviral agents era.

    PubMed

    Coilly, Audrey; Roche, Bruno; Duclos-Vallée, Jean-Charles; Samuel, Didier

    2015-04-01

    Hepatitis C virus (HCV) infection is one of the main indications for liver transplantation. Viral recurrence occurs in all patients with detectable serum HCV RNA at the time of transplantation leading to cirrhosis in 20-30% of patients within 5 years. Viral eradication using antiviral therapy has been shown to improve patient and graft survival. Pegylated interferon (PEG-IFN) and ribavirin (RBV) antiviral therapy achieved SVR in around 30% of transplant recipients. In the non-transplant setting, first generation NS3/4 protease inhibitors, boceprevir or telaprevir associated with PEG-IFN and RBV, has improved the SVR rates to 75% in genotype 1 infected patients. However, tolerability and drug-drug interactions with calcineurin inhibitors are both limiting factors of their use in transplant recipients. In the non-transplant patients, using new direct-acting antiviral therapy has dramatically improved the efficacy of antiviral C therapy over recent years leading to SVR rates over 90% in phase II and III clinical trials, without PEG-IFN and/or RBV. Preliminary results in transplant patients showed better efficacy, better tolerability and less drug-drug interactions. PMID:25820797

  15. Direct acting antiviral therapy is curative for chronic hepatitis C/autoimmune hepatitis overlap syndrome

    PubMed Central

    Sahebjam, Farhad; Hajdu, Cristina H; Nortey, Esther; Sigal, Samuel H

    2016-01-01

    Autoimmune phenomena are common in patients with chronic hepatitis C. Management of chronic hepatitis C/autoimmune hepatitis syndrome has until recently been problematic due to the adverse effects of interferon on autoimmune processes and immunosuppression on viral replication. In this report we describe 3 patients with chronic hepatitis C/autoimmune hepatitis overlap syndrome who responded rapidly to direct acting anti-viral therapy. The resolution of the autoimmune process supports a direct viral role in its pathophysiology. PMID:27190580

  16. Adenine: an important drug scaffold for the design of antiviral agents

    PubMed Central

    Wang, Changyuan; Song, Zhendong; Yu, Haiqing; Liu, Kexin; Ma, Xiaodong

    2015-01-01

    Adenine derivatives, in particular the scaffold bearing the acyclic nucleoside phosphonates (ANPS), possess significant antiviral and cytostatic activity. Till now, several effective adenine derivatives have been marketed for the treatment of HIV, HBV, CMV and other virus-infected diseases. These compounds are represented by tenofovir (PMPA), a medicine for both HIV and HBV, and adefovir as an anti-HBV agent. More than this, other analogs, such as GS9148, GS9131, and GS7340, are also well-known anti-viral agents that have been progressed to the clinical studies for their excellent activity. In general, the structures of these compounds include an adenine nucleobase linked to a phosphonate side chain. Considerable structural modifications on the scaffold itself and the peripheral sections were made. The structure-activity relationships (SARs) of this skeleton will provide valuable clues to identify more effective adenine derivatives as antiviral drugs. Here, we systematically summarized the SARs of the adenine derivatives, and gave important information for further optimizing this template. PMID:26579473

  17. Role of human hypoxanthine guanine phosphoribosyltransferase in activation of the antiviral agent T-705 (favipiravir).

    PubMed

    Naesens, Lieve; Guddat, Luke W; Keough, Dianne T; van Kuilenburg, André B P; Meijer, Judith; Vande Voorde, Johan; Balzarini, Jan

    2013-10-01

    6-Fluoro-3-hydroxy-2-pyrazinecarboxamide (T-705) is a novel antiviral compound with broad activity against influenza virus and diverse RNA viruses. Its active metabolite, T-705-ribose-5'-triphosphate (T-705-RTP), is recognized by influenza virus RNA polymerase as a substrate competing with GTP, giving inhibition of viral RNA synthesis and lethal virus mutagenesis. Which enzymes perform the activation of T-705 is unknown. We here demonstrate that human hypoxanthine guanine phosphoribosyltransferase (HGPRT) converts T-705 into its ribose-5'-monophosphate (RMP) prior to formation of T-705-RTP. The anti-influenza virus activity of T-705 and T-1105 (3-hydroxy-2-pyrazinecarboxamide; the analog lacking the 6-fluoro atom) was lost in HGPRT-deficient Madin-Darby canine kidney cells. This HGPRT dependency was confirmed in human embryonic kidney 293T cells undergoing HGPRT-specific gene knockdown followed by influenza virus ribonucleoprotein reconstitution. Knockdown for adenine phosphoribosyltransferase (APRT) or nicotinamide phosphoribosyltransferase did not change the antiviral activity of T-705 and T-1105. Enzymatic assays showed that T-705 and T-1105 are poor substrates for human HGPRT having Km(app) values of 6.4 and 4.1 mM, respectively. Formation of the RMP metabolites by APRT was negligible, and so was the formation of the ribosylated metabolites by human purine nucleoside phosphorylase. Phosphoribosylation and antiviral activity of the 2-pyrazinecarboxamide derivatives was shown to require the presence of the 3-hydroxyl but not the 6-fluoro substituent. The crystal structure of T-705-RMP in complex with human HGPRT showed how this compound binds in the active site. Since conversion of T-705 by HGPRT appears to be inefficient, T-705-RMP prodrugs may be designed to increase the antiviral potency of this new antiviral agent.

  18. Molecular Sleds and More: Novel Antiviral Agents via Single-Molecule Biology (441st Brookhaven Lecture)

    SciTech Connect

    Mangel, Wally

    2008-10-15

    Vaccines are effective against viruses such as polio and measles, but vaccines against other important viruses, such as HIV and flu viruses, may be impossible to obtain. These viruses change their genetic makeup each time they replicate so that the immune system cannot recognize all their variations. Hence it is important to develop new antiviral agents that inhibit virus replication. During this lecture, Dr. Mangel will discuss his group's work with a model system, the human adenovirus, which causes, among other ailments, pink eye, blindness and obesity. Mangel's team has developed a promising drug candidate that works by inihibiting adenovirus proteinase, an enzyme necessary for viral replication.

  19. Centrally acting agents and visceral sensitivity.

    PubMed

    Fioramonti, J; Bueno, L

    2002-07-01

    The evidence relating to the site and mechanism of action of "centrally acting" agents which may affect visceral sensitivity is reviewed. Antidepressant drugs such as amitriptyline as well as the newer selective serotonin reuptake inhibitors are thought to act at the level of the CNS. Opiates, including morphine as well as compounds such as trimebutine or fedotozine designed for therapeutic use in irritable bowel syndrome, are effective in reducing visceral nociception. Cytokines in the CNS are known to be involved in the modulation of pain and there is also evidence to suggest that centrally acting cytokines may play a role in the production of visceral hypersensitivity. Consequently, they may provide an interesting target for future research. PMID:12077076

  20. Human DDX3 protein is a valuable target to develop broad spectrum antiviral agents

    PubMed Central

    Brai, Annalaura; Fazi, Roberta; Tintori, Cristina; Zamperini, Claudio; Bugli, Francesca; Sanguinetti, Maurizio; Stigliano, Egidio; Esté, José; Badia, Roger; Franco, Sandra; Martinez, Javier P.; Meyerhans, Andreas; Saladini, Francesco; Zazzi, Maurizio; Garbelli, Anna; Botta, Maurizio

    2016-01-01

    Targeting a host factor essential for the replication of different viruses but not for the cells offers a higher genetic barrier to the development of resistance, may simplify therapy regimens for coinfections, and facilitates management of emerging viral diseases. DEAD-box polypeptide 3 (DDX3) is a human host factor required for the replication of several DNA and RNA viruses, including some of the most challenging human pathogens currently circulating, such as HIV-1, Hepatitis C virus, Dengue virus, and West Nile virus. Herein, we showed for the first time, to our knowledge, that the inhibition of DDX3 by a small molecule could be successfully exploited for the development of a broad spectrum antiviral agent. In addition to the multiple antiviral activities, hit compound 16d retained full activity against drug-resistant HIV-1 strains in the absence of cellular toxicity. Pharmacokinetics and toxicity studies in rats confirmed a good safety profile and bioavailability of 16d. Thus, DDX3 is here validated as a valuable therapeutic target. PMID:27118832

  1. Action of mutagenic agents and antiviral inhibitors on foot-and-mouth disease virus.

    PubMed

    Pariente, Nonia; Sierra, Saleta; Airaksinen, Antero

    2005-02-01

    Our current knowledge on foot-and-mouth disease virus (FMDV) entry into error catastrophe is reviewed. FMDV can establish cytolytic and persistent infections in the field and in cell culture. Both types of FMDV infection in cell culture can be treated with mutagens, with or without classical (non-mutagenic) antiviral inhibitors, to drive the virus to extinction. 5-Fluorouracil (FU) and 5-azacytidine (AZC) have been employed as mutagenic agents to treat cytolytic FMDV infections, and ribavirin (Rib) to treat persistent infections. Extinction is dependent on the relative fitness of the viral isolate, as well as on the viral load. In cytolytic infections, extinctions could be efficiently obtained with combinations of mutagens and inhibitors. High-fitness FMDV extinction could only be achieved with treatments that contained a mutagen, and not with combinations of inhibitors that exerted the same antiviral effect. Persistent infections could be cured with Rib treatment alone. The results presented here show entry into error catastrophe as a valid strategy for treatment of viral infections, although much work remains to be done before it can be implemented.

  2. Spermicides, microbicides and antiviral agents: recent advances in the development of novel multi-functional compounds.

    PubMed

    Baptista, Marta; Ramalho-Santos, João

    2009-11-01

    Non-ionic surfactants have been proposed as dual action anti-viral and spermicidal agents to tackle viral infections, namely HIV. Given very promising in vitro results, nonoxynol-9 has been widely used. However, toxic effects were reported, paradoxically increasing the incidence of transmission of HIV/Sexually Transmitted Diseases in vivo. Thus, there has been a growing interest in identifying and evaluating a new generation of accessible and easy-to-use molecules with simultaneous spermicidal and microbicide action. Different biochemical compounds and mechanisms of action are currently being studied. This article reviews the diverse strategies and mechanisms of action of these novel compounds, as well the necessary systematic studies needed to evaluate their possible toxicity. PMID:20205637

  3. Chronic Hepatitis C Virus Infection: A Review of Current Direct-Acting Antiviral Treatment Strategies

    PubMed Central

    Zhang, Johnathan; Nguyen, Douglas; Hu, Ke-Qin

    2016-01-01

    Chronic Hepatitis C virus (HCV) infection carries a significant clinical burden in the United States, affecting more than 4.6 million Americans. Untreated chronic HCV infection can result in cirrhosis, portal hypertension, and hepatocellular carcinoma. Previous interferon based treatment carried low rates of success and significant adverse effects. The advent of new generation oral antiviral therapy has led to major improvements in efficacy and tolerability but has also resulted in an explosion of data with increased treatment choice complexity. Treatment guidelines are constantly evolving due to emerging regimens and real world treatment data. There also still remain subpopulations for whom current treatments are lacking or unclearly defined. Thus, the race for development of HCV treatment regimens still continues. This review of the current literature will discuss the current recommended treatment strategies and briefly overview next generation agents. PMID:27293521

  4. Direct Binding of Ledipasvir to HCV NS5A: Mechanism of Resistance to an HCV Antiviral Agent

    PubMed Central

    Kwon, Hyock Joo; Xing, Weimei; Chan, Katie; Niedziela-Majka, Anita; Brendza, Katherine M.; Kirschberg, Thorsten; Kato, Darryl; Link, John O.; Cheng, Guofeng; Liu, Xiaohong; Sakowicz, Roman

    2015-01-01

    Ledipasvir, a direct acting antiviral agent (DAA) targeting the Hepatitis C Virus NS5A protein, exhibits picomolar activity in replicon cells. While its mechanism of action is unclear, mutations that confer resistance to ledipasvir in HCV replicon cells are located in NS5A, suggesting that NS5A is the direct target of ledipasvir. To date co-precipitation and cross-linking experiments in replicon or NS5A transfected cells have not conclusively shown a direct, specific interaction between NS5A and ledipasvir. Using recombinant, full length NS5A, we show that ledipasvir binds directly, with high affinity and specificity, to NS5A. Ledipasvir binding to recombinant NS5A is saturable with a dissociation constant in the low nanomolar range. A mutant form of NS5A (Y93H) that confers resistance to ledipasvir shows diminished binding to ledipasvir. The current study shows that ledipasvir inhibits NS5A through direct binding and that resistance to ledipasvir is the result of a reduction in binding affinity to NS5A mutants. PMID:25856426

  5. Estimating the Impact of Expanding Treatment Coverage and Allocation Strategies for Chronic Hepatitis C in a Direct Antiviral Agent Era.

    PubMed

    Poovorawan, Kittiyod; Pan-Ngum, Wirichada; White, Lisa J; Soonthornworasiri, Ngamphol; Wilairatana, Polrat; Wasitthankasem, Rujipat; Tangkijvanich, Pisit; Poovorawan, Yong

    2016-01-01

    Hepatitis C virus (HCV) infection is an important worldwide public health problem, and most of the global HCV burden is in low- to middle-income countries. This study aimed to estimate the future burden of chronic hepatitis C (CHC) and the impact of public health policies using novel antiviral agents in Thailand. A mathematical model of CHC transmission dynamics was constructed to examine the disease burden over the next 20 years using different treatment strategies. We compared and evaluated the current treatment (PEGylated interferon and ribavirin) with new treatments using novel direct-acting antiviral agents among various treatment policies. Thailand's CHC prevalence was estimated to decrease 1.09%-0.19% in 2015-2035. Expanding treatment coverage (i.e., a five-fold increment in treatment accessibility) was estimated to decrease cumulative deaths (33,007 deaths avoided, 25.5% reduction) from CHC-related decompensated cirrhosis and hepatocellular carcinoma (HCC). The yearly incidence of HCC-associated HCV was estimated to decrease from 2,305 to 1,877 cases yearly with expanding treatment coverage. A generalized treatment scenario (i.e., an equal proportional distribution of available treatment to individuals at all disease stages according to the number of cases at each stage) was predicted to further reduce death from HCC (9,170 deaths avoided, 11.3% reduction) and the annual incidence of HCC (i.e., a further decrease from 1,877 to 1,168 cases yearly, 37.7% reduction), but cumulative deaths were predicted to increase (by 3,626 deaths, 3.7% increase). Based on the extensive coverage scenario and the generalized treatment scenario, we estimated near-zero death from decompensated cirrhosis in 2031. In conclusion, CHC-related morbidity and mortality in Thailand are estimated to decrease dramatically over the next 20 years. Treatment coverage and allocation strategies are important factors that affect the future burden of CHC in resource-limited countries like

  6. Estimating the Impact of Expanding Treatment Coverage and Allocation Strategies for Chronic Hepatitis C in a Direct Antiviral Agent Era

    PubMed Central

    Poovorawan, Kittiyod; Pan-ngum, Wirichada; White, Lisa J.; Soonthornworasiri, Ngamphol; Wilairatana, Polrat; Wasitthankasem, Rujipat; Tangkijvanich, Pisit; Poovorawan, Yong

    2016-01-01

    Hepatitis C virus (HCV) infection is an important worldwide public health problem, and most of the global HCV burden is in low- to middle-income countries. This study aimed to estimate the future burden of chronic hepatitis C (CHC) and the impact of public health policies using novel antiviral agents in Thailand. A mathematical model of CHC transmission dynamics was constructed to examine the disease burden over the next 20 years using different treatment strategies. We compared and evaluated the current treatment (PEGylated interferon and ribavirin) with new treatments using novel direct-acting antiviral agents among various treatment policies. Thailand’s CHC prevalence was estimated to decrease 1.09%–0.19% in 2015–2035. Expanding treatment coverage (i.e., a five-fold increment in treatment accessibility) was estimated to decrease cumulative deaths (33,007 deaths avoided, 25.5% reduction) from CHC-related decompensated cirrhosis and hepatocellular carcinoma (HCC). The yearly incidence of HCC-associated HCV was estimated to decrease from 2,305 to 1,877 cases yearly with expanding treatment coverage. A generalized treatment scenario (i.e., an equal proportional distribution of available treatment to individuals at all disease stages according to the number of cases at each stage) was predicted to further reduce death from HCC (9,170 deaths avoided, 11.3% reduction) and the annual incidence of HCC (i.e., a further decrease from 1,877 to 1,168 cases yearly, 37.7% reduction), but cumulative deaths were predicted to increase (by 3,626 deaths, 3.7% increase). Based on the extensive coverage scenario and the generalized treatment scenario, we estimated near-zero death from decompensated cirrhosis in 2031. In conclusion, CHC-related morbidity and mortality in Thailand are estimated to decrease dramatically over the next 20 years. Treatment coverage and allocation strategies are important factors that affect the future burden of CHC in resource-limited countries like

  7. Broad-spectrum in vivo antiviral activity of 7-thia-8-oxoguanosine, a novel immunopotentiating agent.

    PubMed Central

    Smee, D F; Alaghamandan, H A; Cottam, H B; Sharma, B S; Jolley, W B; Robins, R K

    1989-01-01

    A novel immunopotentiating agent, 5-amino-3-beta-D-ribofuranosylthiazolo [4,5-d]pyrimidine-2,7(3H,6H)-dione (7-thia-8-oxoguanosine), lacks virus-inhibitory properties in vitro but induces interferon and potentiates immune functions, such as natural killer cell activity. It was evaluated in rodent models to determine the spectrum of antiviral activity and effective treatment regimens. At 50 to 200 mg/kg given as single or divided intraperitoneal (i.p.) doses 1 day before virus inoculation, significant protection was afforded to mice infected i.p. with Semliki Forest, San Angelo, banzi, and encephalomyocarditis viruses. Similarly, suckling rats were protected from an intranasal challenge with rat coronavirus. Against San Angelo virus, treatments could be delayed to 1 day post-virus inoculation and still show a beneficial effect. The compound was moderately effective in mice infected i.p. with herpes simplex virus type 2 or intranasally with vesicular stomatitis virus. No activity was seen against influenza B virus in mice when the analog was administered one time pre-virus inoculation or in multiple doses given before and after the virus inoculation. Nor was there a prophylactic effect against herpetic skin lesions on mice. This immune modulator may have promise for the treatment of a variety of virus infections. PMID:2817849

  8. Anti-Viral Agents in Neurodegenerative Disorders: New Paradigm for Targeting Alzheimer's Disease.

    PubMed

    Faldu, Khushboo G; Shah, Jigna S; Patel, Snehal S

    2015-01-01

    Alzheimer's disease (AD) is a neurodegenerative disease affecting geriatric populations for which several causes have been proposed. These include a relationship with known pathogens although the exact nature of such a relationship remains uncertain. Herpes simplex virus-1 has been proposed as potential cause of AD because of its ability to form ß amyloid(Aß) and neurofibrillary tangles due to tau hyperphosphorylation and action of beta & gamma secretase on amyloid precursor protein(APP) together with genetic association with apolipoprotein-E4(ApoE-Ɛ4), which points out to latent Herpes Simplex virus-1 as an agent causing AD. There are numerous studies that linked HSV-1 with AD like anti-HSV-1 IgM antibodies, nectin-2, heme oxygenase-1, phosphorylated eukaryotic initiation factor-2A, caspase-8 and nucleus-specific alteration of raphe neurons. Various possible mechanisms by which HSV-1 might lead to development of AD such as ApoE, ß-amyloid, tau phosphorylation, inflammation and oxidative stress are also discussed. Thus, this review discusses patent information and a strong relationship between latent HSV-1 and AD and also proposes antiviral therapy for AD. PMID:25963683

  9. Managing HIV/hepatitis C co-infection in the era of direct acting antivirals

    PubMed Central

    2013-01-01

    Morbidity and mortality from co-morbid hepatitis C (HCV) infection in HIV co-infected patients are increasing; hence, the management of hepatitis co-infection in HIV is now one of the most important clinical challenges. Therefore, the development of direct acting antivirals (DAAs) for treatment of HCV has been eagerly awaited to hopefully improve HCV treatment outcome in co-infected individuals. Indeed, the availability of the first HCV protease inhibitors (PI) boceprevir and telaprevir for HCV genotype 1 patients has changed the gold standard of treating hepatitis C allowing for substantially improved HCV cure rates under triple HCV-PI/pegylated interferon/ribavirin therapy. Moreover, numerous other new DAAs are currently being studied in co-infected patient populations, also exploring shorter treatment durations and interferon-free treatment approaches promising much easier and better tolerated treatment regimens in the near future. Nevertheless, numerous challenges remain, including choice of patients to treat, potential for drug-drug interactions and overlapping toxicities between HIV and HCV therapy. The dramatically improved rates of HCV cure under new triple therapy, however, warrant evaluation of these new treatment options for all co-infected patients. PMID:24228933

  10. Treatment of chronic hepatitis C with direct-acting antivirals: The role of resistance

    PubMed Central

    Jiménez-Pérez, Miguel; González-Grande, Rocío; España Contreras, Pilar; Pinazo Martínez, Isabel; de la Cruz Lombardo, Jesús; Olmedo Martín, Raúl

    2016-01-01

    The use of direct-acting antivirals (DAAs) to treat chronic hepatitis C has resulted in a significant increase in rates of sustained viral response (around 90%-95%) as compared with the standard treatment of peginterferon/ribavirin. Despite this, however, the rates of therapeutic failure in daily clinical practice range from 10%-15%. Most of these cases are due to the presence of resistant viral variants, resulting from mutations produced by substitutions of amino acids in the viral target protein that reduce viral sensitivity to DAAs, thus limiting the efficacy of these drugs. The high genetic diversity of hepatitis C virus has resulted in the existence of resistance-associated variants (RAVs), sometimes even before starting treatment with DAAs, though generally at low levels. These pre-existing RAVs do not appear to impact on the sustained viral response, whereas those that appear after DAA therapy could well be determinant in virological failure with future treatments. As well as the presence of RAVs, virological failure to treatment with DAAs is generally associated with other factors related with a poor response, such as the degree of fibrosis, the response to previous therapy, the viral load or the viral genotype. Nonetheless, viral breakthrough and relapse can still occur in the absence of detectable RAVs and after the use of highly effective DAAs, so that the true clinical impact of the presence of RAVs in therapeutic failure remains to be determined. PMID:27547001

  11. Drug Interactions with the Direct-Acting Antiviral Combination of Ombitasvir and Paritaprevir-Ritonavir

    PubMed Central

    Dutta, Sandeep; Wang, Haoyu; Podsadecki, Thomas J.; Polepally, Akshanth R.; Khatri, Amit; Zha, Jiuhong; Chiu, Yi-Lin; Awni, Walid M.; Menon, Rajeev M.

    2015-01-01

    The two direct-acting antiviral (2D) regimen of ombitasvir and paritaprevir (administered with low-dose ritonavir) is being developed for treatment of genotype subtype 1b and genotypes 2 and 4 chronic hepatitis C virus (HCV) infection. Drug-drug interactions were evaluated in healthy volunteers to develop dosing recommendations for HCV-infected subjects. Mechanism-based interactions were evaluated for ketoconazole, pravastatin, rosuvastatin, digoxin, warfarin, and omeprazole. Interactions were also evaluated for duloxetine, escitalopram, methadone, and buprenorphine-naloxone. Ratios of geometric means with 90% confidence intervals for the maximum plasma concentration and the area under the plasma concentration-time curve were estimated to assess the magnitude of the interactions. For most medications, coadministration with the 2D regimen resulted in a <50% change in exposures. Ketoconazole, digoxin, pravastatin, and rosuvastatin exposures increased by up to 105%, 58%, 76%, and 161%, respectively, and omeprazole exposures decreased by approximately 50%. Clinically meaningful changes in ombitasvir, paritaprevir, or ritonavir exposures were not observed. In summary, all 11 medications evaluated can be coadministered with the 2D regimen, with most medications requiring no dose adjustment. Ketoconazole, digoxin, pravastatin, and rosuvastatin require lower doses, and omeprazole may require a higher dose. No dose adjustment is required for the 2D regimen. PMID:26459906

  12. Drug Interactions with the Direct-Acting Antiviral Combination of Ombitasvir and Paritaprevir-Ritonavir.

    PubMed

    Badri, Prajakta S; Dutta, Sandeep; Wang, Haoyu; Podsadecki, Thomas J; Polepally, Akshanth R; Khatri, Amit; Zha, Jiuhong; Chiu, Yi-Lin; Awni, Walid M; Menon, Rajeev M

    2016-01-01

    The two direct-acting antiviral (2D) regimen of ombitasvir and paritaprevir (administered with low-dose ritonavir) is being developed for treatment of genotype subtype 1b and genotypes 2 and 4 chronic hepatitis C virus (HCV) infection. Drug-drug interactions were evaluated in healthy volunteers to develop dosing recommendations for HCV-infected subjects. Mechanism-based interactions were evaluated for ketoconazole, pravastatin, rosuvastatin, digoxin, warfarin, and omeprazole. Interactions were also evaluated for duloxetine, escitalopram, methadone, and buprenorphine-naloxone. Ratios of geometric means with 90% confidence intervals for the maximum plasma concentration and the area under the plasma concentration-time curve were estimated to assess the magnitude of the interactions. For most medications, coadministration with the 2D regimen resulted in a <50% change in exposures. Ketoconazole, digoxin, pravastatin, and rosuvastatin exposures increased by up to 105%, 58%, 76%, and 161%, respectively, and omeprazole exposures decreased by approximately 50%. Clinically meaningful changes in ombitasvir, paritaprevir, or ritonavir exposures were not observed. In summary, all 11 medications evaluated can be coadministered with the 2D regimen, with most medications requiring no dose adjustment. Ketoconazole, digoxin, pravastatin, and rosuvastatin require lower doses, and omeprazole may require a higher dose. No dose adjustment is required for the 2D regimen. PMID:26459906

  13. Treatment of chronic hepatitis C with direct-acting antivirals: The role of resistance.

    PubMed

    Jiménez-Pérez, Miguel; González-Grande, Rocío; España Contreras, Pilar; Pinazo Martínez, Isabel; de la Cruz Lombardo, Jesús; Olmedo Martín, Raúl

    2016-08-01

    The use of direct-acting antivirals (DAAs) to treat chronic hepatitis C has resulted in a significant increase in rates of sustained viral response (around 90%-95%) as compared with the standard treatment of peginterferon/ribavirin. Despite this, however, the rates of therapeutic failure in daily clinical practice range from 10%-15%. Most of these cases are due to the presence of resistant viral variants, resulting from mutations produced by substitutions of amino acids in the viral target protein that reduce viral sensitivity to DAAs, thus limiting the efficacy of these drugs. The high genetic diversity of hepatitis C virus has resulted in the existence of resistance-associated variants (RAVs), sometimes even before starting treatment with DAAs, though generally at low levels. These pre-existing RAVs do not appear to impact on the sustained viral response, whereas those that appear after DAA therapy could well be determinant in virological failure with future treatments. As well as the presence of RAVs, virological failure to treatment with DAAs is generally associated with other factors related with a poor response, such as the degree of fibrosis, the response to previous therapy, the viral load or the viral genotype. Nonetheless, viral breakthrough and relapse can still occur in the absence of detectable RAVs and after the use of highly effective DAAs, so that the true clinical impact of the presence of RAVs in therapeutic failure remains to be determined. PMID:27547001

  14. Potent Antiviral Activities of the Direct-Acting Antivirals ABT-493 and ABT-530 with Three-Day Monotherapy for Hepatitis C Virus Genotype 1 Infection

    PubMed Central

    O'Riordan, William D.; Asatryan, Armen; Freilich, Bradley L.; Box, Terry D.; Overcash, J. Scott; Lovell, Sandra; Ng, Teresa I.; Liu, Wei; Campbell, Andrew; Lin, Chih-Wei; Yao, Betty; Kort, Jens

    2015-01-01

    ABT-493 is a hepatitis C virus (HCV) nonstructural (NS) protein 3/4A protease inhibitor, and ABT-530 is an HCV NS5A inhibitor. These direct-acting antivirals (DAAs) demonstrated potent antiviral activity against major HCV genotypes and high barriers to resistance in vitro. In this open-label dose-ranging trial, antiviral activity and safety were assessed during 3 days of monotherapy with ABT-493 or ABT-530 in treatment-naive adults with HCV genotype 1 infection, with or without compensated cirrhosis. The presence of baseline resistance-associated variants (RAVs) was also evaluated. The mean maximal decreases in HCV RNA levels from baseline were approximately 4 log10 IU/ml for all ABT-493 doses ranging from 100 mg to 700 mg and for ABT-530 doses of ≥40 mg. There were no meaningful differences in viral load declines for patients with versus without compensated cirrhosis. Twenty-four (50%) of the baseline samples from patients treated with ABT-493 had RAVs to NS3/4A protease inhibitors. Among 40 patients treated with ABT-530, 6 (15%) carried baseline RAVs to NS5A inhibitors. Viral load declines in patients with single baseline NS5A RAVs were similar to those in patients without RAVs. One patient harbored baseline RAVs at 3 NS5A positions and appeared to have a slightly less robust viral load decline on day 3 of monotherapy. No serious or grade 3 (severe) or higher adverse events and no clinically relevant laboratory abnormalities were observed with either compound. ABT-493 and ABT-530 demonstrated potent antiviral activity and acceptable safety during 3-day monotherapy in patients with HCV genotype 1 infection, with or without compensated cirrhosis. Based on these results, phase II studies assessing the combination of these DAAs for the treatment of chronic HCV infection in patients with or without compensated cirrhosis have been initiated. (This study has been registered at ClinicalTrials.gov under registration no. NCT01995071.) PMID:26711747

  15. Antiviral efficacy of favipiravir against two prominent etiological agents of hantavirus pulmonary syndrome.

    PubMed

    Safronetz, David; Falzarano, Darryl; Scott, Dana P; Furuta, Yousuke; Feldmann, Heinz; Gowen, Brian B

    2013-10-01

    Hantavirus pulmonary syndrome (HPS) is caused by infection with several Sigmodontinae- and Neotominae-borne hantaviruses and has a case fatality rate of 30 to 50%. Humans often become infected by inhalation of materials contaminated with virus-laden rodent urine or saliva, although human-to-human transmission has also been documented for Andes virus (ANDV). The ability to transmit via aerosolization, coupled with the high mortality rates and lack of therapeutic options, makes the development of medical countermeasures against HPS imperative. In the present study, we evaluated the efficacy of the broad-spectrum antiviral agent favipiravir (T-705) against Sin Nombre virus (SNV) and ANDV, the predominant causes of HPS in North and South America, respectively. In vitro, T-705 potently inhibited SNV and ANDV, as evidenced by decreased detection of viral RNA and reduced infectious titers. For both viruses, the 90% effective concentration was estimated at ≤5 μg/ml (≤31.8 μM). In the lethal ANDV hamster model, daily administration of oral T-705 at 50 or 100 mg/kg of body weight diminished the detection of viral RNA and antigen in tissue specimens and significantly improved survival rates. Oral T-705 therapy remained protective against HPS when treatment was initiated prior to the onset of viremia. No disease model for SNV exists; however, using a hamster-adapted SNV, we found that daily administration of oral T-705 significantly reduced the detection of SNV RNA and antigen in tissue specimens, suggesting that the compound would also be effective against HPS in North America. Combined, these results suggest that T-705 treatment is beneficial for postexposure prophylaxis against HPS-causing viruses and should be considered for probable exposures.

  16. Antiviral Efficacy of Favipiravir against Two Prominent Etiological Agents of Hantavirus Pulmonary Syndrome

    PubMed Central

    Falzarano, Darryl; Scott, Dana P.; Furuta, Yousuke; Feldmann, Heinz

    2013-01-01

    Hantavirus pulmonary syndrome (HPS) is caused by infection with several Sigmodontinae- and Neotominae-borne hantaviruses and has a case fatality rate of 30 to 50%. Humans often become infected by inhalation of materials contaminated with virus-laden rodent urine or saliva, although human-to-human transmission has also been documented for Andes virus (ANDV). The ability to transmit via aerosolization, coupled with the high mortality rates and lack of therapeutic options, makes the development of medical countermeasures against HPS imperative. In the present study, we evaluated the efficacy of the broad-spectrum antiviral agent favipiravir (T-705) against Sin Nombre virus (SNV) and ANDV, the predominant causes of HPS in North and South America, respectively. In vitro, T-705 potently inhibited SNV and ANDV, as evidenced by decreased detection of viral RNA and reduced infectious titers. For both viruses, the 90% effective concentration was estimated at ≤5 μg/ml (≤31.8 μM). In the lethal ANDV hamster model, daily administration of oral T-705 at 50 or 100 mg/kg of body weight diminished the detection of viral RNA and antigen in tissue specimens and significantly improved survival rates. Oral T-705 therapy remained protective against HPS when treatment was initiated prior to the onset of viremia. No disease model for SNV exists; however, using a hamster-adapted SNV, we found that daily administration of oral T-705 significantly reduced the detection of SNV RNA and antigen in tissue specimens, suggesting that the compound would also be effective against HPS in North America. Combined, these results suggest that T-705 treatment is beneficial for postexposure prophylaxis against HPS-causing viruses and should be considered for probable exposures. PMID:23856782

  17. Antiviral Activity of Synthetic Aminopyrrolic Carbohydrate Binding Agents: Targeting the Glycans of Viral gp120 to Inhibit HIV Entry.

    PubMed

    Francesconi, Oscar; Nativi, Cristina; Gabrielli, Gabriele; De Simone, Irene; Noppen, Sam; Balzarini, Jan; Liekens, Sandra; Roelens, Stefano

    2015-07-01

    The binding abilities of a set of structurally related aminopyrrolic synthetic receptors for mannosides, endowed with antimycotic activity against yeast and yeast-like pathogens bearing mannoproteins on their cell surface, have been investigated towards the highly mannosylated gp120 and gp41 glycoproteins of the HIV envelope. A pronounced binding interaction with both glycoproteins was observed by SPR for most of the investigated compounds. Comparison of their binding properties towards the glycoproteins with their binding affinities toward mannosides revealed a direct correlation, supporting their role as carbohydrate binding agents (CBAs). Cytostatic activity studies revealed antiproliferative activity dependent on the nature and the structure of compounds. Antiviral activity studies against a broad panel of DNA and RNA viruses showed inhibitory effect against HIV infection of the T-lymphocyte CEM cell line for two compounds, suggesting antiviral activity similar to other CBAs, such as the nonpeptidic pradimicin antibiotics.

  18. Next Steps Toward Eradication of Hepatitis C in the Era of Direct Acting Antivirals

    PubMed Central

    Hesamizadeh, Khashayar; Sharafi, Heidar; Rezaee-Zavareh, Mohammad Saeid; Behnava, Bita; Alavian, Seyed Moayed

    2016-01-01

    Context After the introduction of safe and highly effective hepatitis C virus (HCV) treatments, eradication of HCV in the next 20 years is the ultimate goal. Since 2011, the advent of first generation direct acting antivirals (DAAs) were started and followed by the introduction of a new wave of DAAs in 2013 which exhibit outstanding efficacy. It is obvious that the eradication of hepatitis C is not restricted to development of DAAs. Evidence Acquisition An electronic search of available literature published was conducted in all peer-reviewed journal indexed in PubMed, Scopus and Google scholar. The literature search was done among articles related treatment of hepatitis C with DAAs in different patient groups with mass screening of the patients and cost benefit of new treatments as main key words. Results There are major steps that should be taken to eradicate HCV, including (1) the development of screening strategies, particularly for groups such as intravenous drug users and recipients of blood or blood products before the introduction of HCV screening in donors; (2) the development of strategies to overcome issues with the high cost of recently introduced treatments; (3) special attention to special patient groups, such as HIV/HCV co-infection, hemophilia, thalassemia, hemodialysis, and liver-transplant patients; and (4) development of preventive strategies, such as the development of an efficient HCV vaccine, special attention to harm reduction in high-risk groups, and promotion of mass awareness of HCV. Conclusions The eradication of HCV will require significant governmental financial investment for screening, prevention, and treatment of infected patients. Although, we have a long way to eradication of HCV, the next steps could be including proper planning to patient finding, availability of new treatments to all patients and development of HCV prevention strategies such as vaccines. PMID:27275164

  19. Vertical transmission of hepatitis C: towards universal antenatal screening in the era of new direct acting antivirals (DAAs)? Short review and analysis of the situation in Switzerland.

    PubMed

    Aebi-Popp, Karoline; Duppenthaler, Andrea; Rauch, Andri; De Gottardi, Andrea; Kahlert, Christian

    2016-01-01

    At present, routine antenatal hepatitis C virus (HCV) screening is not recommended in pregnant women who do not have known risk factors for infection. The main reason for this attitude has been the lack of effective treatment options to avoid mother-to-child transmission (MTCT) during pregnancy or delivery. Hitherto available treatment regimens based on interferon (IFN) and ribavirin (RBV) were associated with sometimes long-lasting and severe side-effects and thus their indication had to be carefully evaluated. In addition, ribavirin has teratogenic and embryocidal effects and is absolutely contraindicated during pregnancy. The situation has substantially changed with the advent of the newly available treatment regimens based on very effective and well-tolerated direct-acting antiviral agents (DAAs). The aim of this viewpoint is to briefly analyse, using the example of Switzerland, how recent developments in HCV therapy might impact prevention of HCV vertical transmission. PMID:27482435

  20. Towards antivirals against chikungunya virus.

    PubMed

    Abdelnabi, Rana; Neyts, Johan; Delang, Leen

    2015-09-01

    Chikungunya virus (CHIKV) has re-emerged in recent decades, causing major outbreaks of chikungunya fever in many parts of Africa and Asia, and since the end of 2013 also in Central and South America. Infections are usually associated with a low mortality rate, but can proceed into a painful chronic stage, during which patients may suffer from polyarthralgia and joint stiffness for weeks and even several years. There are no vaccines or antiviral drugs available for the prevention or treatment of CHIKV infections. Current therapy therefore consists solely of the administration of analgesics, antipyretics and anti-inflammatory agents to relieve symptoms. We here review molecules that have been reported to inhibit CHIKV replication, either as direct-acting antivirals, host-targeting drugs or those that act via a yet unknown mechanism. This article forms part of a symposium in Antiviral Research on "Chikungunya discovers the New World."

  1. Hepatitis C Virus and Antiviral Drug Resistance

    PubMed Central

    Kim, Seungtaek; Han, Kwang-Hyub; Ahn, Sang Hoon

    2016-01-01

    Since its discovery in 1989, hepatitis C virus (HCV) has been intensively investigated to understand its biology and develop effective antiviral therapies. The efforts of the previous 25 years have resulted in a better understanding of the virus, and this was facilitated by the development of in vitro cell culture systems for HCV replication. Antiviral treatments and sustained virological responses have also improved from the early interferon monotherapy to the current all-oral regimens using direct-acting antivirals. However, antiviral resistance has become a critical issue in the treatment of chronic hepatitis C, similar to other chronic viral infections, and retreatment options following treatment failure have become important questions. Despite the clinical challenges in the management of chronic hepatitis C, substantial progress has been made in understanding HCV, which may facilitate the investigation of other closely related flaviviruses and lead to the development of antiviral agents against these human pathogens. PMID:27784846

  2. Bilateral simultaneous anterior ischemic optic neuropathy, an extrahepatic manifestation of hepatitis C cured with direct acting antivirals

    PubMed Central

    Prud’homme, Sylvie; Nevens, Frederik; Casteels, Ingele

    2016-01-01

    We report a patient with a bilateral optic anterior ischemic neuropathy as an extrahepatic complication of a chronic hepatitis C (HCV) infection. The patient presented with a bilateral visual acuity loss and bilateral optic disc oedema. The optic neuropathy was associated with a sudden increase in the viral HCV load after a recent liver transplantation. The stop of the calcineurin inhibitor had no effect on the course of the optic neuropathy. Visual improvement and normalization of HCV viraemia occurred after treatment with sofosbuvir and daclatasvir, which are direct acting antivirals. PMID:27625964

  3. Bilateral simultaneous anterior ischemic optic neuropathy, an extrahepatic manifestation of hepatitis C cured with direct acting antivirals.

    PubMed

    Prud'homme, Sylvie; Nevens, Frederik; Casteels, Ingele

    2016-01-01

    We report a patient with a bilateral optic anterior ischemic neuropathy as an extrahepatic complication of a chronic hepatitis C (HCV) infection. The patient presented with a bilateral visual acuity loss and bilateral optic disc oedema. The optic neuropathy was associated with a sudden increase in the viral HCV load after a recent liver transplantation. The stop of the calcineurin inhibitor had no effect on the course of the optic neuropathy. Visual improvement and normalization of HCV viraemia occurred after treatment with sofosbuvir and daclatasvir, which are direct acting antivirals. PMID:27625964

  4. Genetic Barrier to Direct Acting Antivirals in HCV Sequences Deposited in the European Databank

    PubMed Central

    Tovo, Cristiane Valle; Gorini da Veiga, Ana Beatriz; Machado, André Luiz; West, John

    2016-01-01

    556 G/N/R positions required only one transition for up to 98.8% of the sequences analyzed. A single variant in position 448 in genotype 1a is less likely to become the resistance variant 448H because it requires two transversions. Also, in the position 559D a transversion and a transition were necessary to generate the resistance mutant D559H. Conclusion Results revealed that in 14 out of 16 positions, conversion to a drug-resistant variant of HCV required only one single nucleotide substitutions threatening direct acting antivirals from all three classes. PMID:27504952

  5. 2-Aminothiazolones as Anti-HIV Agents That Act as gp120-CD4 Inhibitors

    PubMed Central

    Tiberi, Marika; Tintori, Cristina; Ceresola, Elisa Rita; Fazi, Roberta; Zamperini, Claudio; Calandro, Pierpaolo; Franchi, Luigi; Selvaraj, Manikandan; Botta, Lorenzo; Sampaolo, Michela; Saita, Diego; Ferrarese, Roberto; Clementi, Massimo

    2014-01-01

    We report here the synthesis of 2-aminothiazolones along with their biological properties as novel anti-HIV agents. Such compounds have proven to act through the inhibition of the gp120-CD4 protein-protein interaction that occurs at the very early stage of the HIV-1 entry process. No cytotoxicity was found for these compounds, and broad antiviral activities against laboratory strains and pseudotyped viruses were documented. Docking simulations have also been applied to predict the mechanism, at the molecular level, by which the inhibitors were able to interact within the Phe43 cavity of HIV-1 gp120. Furthermore, a preliminary absorption, distribution, metabolism, and excretion (ADME) evaluation was performed. Overall, this study led the basis for the development of more potent HIV entry inhibitors. PMID:24614386

  6. Combined Treatment with Antiviral Therapy and Rituximab in Patients with Mixed Cryoglobulinemia: Review of the Literature and Report of a Case Using Direct Antiviral Agents-Based Antihepatitis C Virus Therapy

    PubMed Central

    Urraro, Teresa; Gragnani, Laura; Piluso, Alessia; Fabbrizzi, Alessio; Monti, Monica; Boldrini, Barbara; Ranieri, Jessica; Zignego, Anna Linda

    2015-01-01

    Mixed cryoglobulinemia (MC) is an autoimmune/B-cell lymphoproliferative disorder associated with Hepatitis C Virus (HCV) infection, manifesting as a systemic vasculitis. In the last decade, antiviral treatment (AT) with pegylated interferon (Peg-IFN) plus ribavirin (RBV) was considered the first therapeutic option for HCV-MC. In MC patients ineligible or not responsive to antivirals, the anti-CD20 monoclonal antibody rituximab (RTX) is effective. A combined AT plus RTX was also suggested. Since the introduction of direct acting antivirals (DAAs), few data were published about MC and no data about a combined schedule. Here, we report a complete remission of MC after a sustained virological response following a combined RTX/Peg-IFN+RBV+DAA (boceprevir) treatment and review the literature about the combined RTX/AT. PMID:25815218

  7. Phosphorodiamidates as a promising new phosphate prodrug motif for antiviral drug discovery: application to anti-HCV agents.

    PubMed

    McGuigan, Christopher; Madela, Karolina; Aljarah, Mohamed; Bourdin, Claire; Arrica, Maria; Barrett, Emma; Jones, Sarah; Kolykhalov, Alexander; Bleiman, Blair; Bryant, K Dawn; Ganguly, Babita; Gorovits, Elena; Henson, Geoffrey; Hunley, Damound; Hutchins, Jeff; Muhammad, Jerry; Obikhod, Aleksandr; Patti, Joseph; Walters, C Robin; Wang, Jin; Vernachio, John; Ramamurty, Changalvala V S; Battina, Srinivas K; Chamberlain, Stanley

    2011-12-22

    We herein report phosphorodiamidates as a significant new phosphate prodrug motif. Sixty-seven phosphorodiamidates are reported of two 6-O-alkyl 2'-C-methyl guanosines, with significant variation in the diamidate structure. Both symmetrical and asymmetric phosphorodiamidates are reported, derived from various esterified amino acids, both d and l, and also from various simple amines. All of the compounds were evaluated versus hepatitis C virus in replicon assay, and nanomolar activity levels were observed. Many compounds were noncytotoxic at 100 μM, leading to high antiviral selectivities. The agents are stable in acidic, neutral, and moderately basic media and in selected biological media but show efficient processing by carboxypeptidases and efficiently yield the free nucleoside monophosphate in cells. On the basis of in vitro data, eight leads were selected for additional in vivo evaluation, with the intent of selecting one candidate for progression toward clinical studies. This phosphorodiamidate prodrug method may have broad application outside of HCV and antivirals as it offers many of the advantages of phosphoramidate ProTides but without the chirality issues present in most cases.

  8. Carbocyclic adenosine analogues as S-adenosylhomocysteine hydrolase inhibitors and antiviral agents: recent advances.

    PubMed

    De Clercq, E

    1998-01-01

    Various carbocyclic analogues of adenosine, including aristeromycin (carbocyclic adenosine), carbocyclic 3-deazaadenosine, neplanocin A, 3-deazaneplanocin A, the 5'-nor derivatives of aristeromycin, carbocylic 3-deazaadenosine, neplanocin A and 3-deazaneplanocin A, and the 2-halo (i.e., 2-fluoro) and 6'-R-alkyl (i.e., 6'-R-methyl) derivatives of neplanocin A have been recognized as potent inhibitors of S-adenosylhomocysteine (AdoHcy) hydrolase. This enzyme plays a key role in methylation reactions depending on S-adenosylmethionine (AdoMet) as methyl donor. AdoHcy hydrolase inhibitors have been shown to exert broad-spectrum antiviral activity against pox-, paramyxo-, rhabdo-, filo-, bunya-, arena-, and reoviruses. They also interfere with the replication of human immunodeficiency virus through inhibition of the Tat transactivation process. PMID:9708366

  9. Combination Therapy with Systemic Steroids, an Antiviral Agent, Anticoagulants, and Stellate Ganglion Block for Treatment of Sudden Sensorineural Hearing Loss

    PubMed Central

    Lee, Chi-Kyou; Lee, Jong Dae; Park, Moo Kyun; Lee, Byung Don

    2012-01-01

    Background and Objectives Sudden sensorineural hearing loss (SSNHL) is commonly defined as a loss of at least 30 dB in three contiguous frequencies occurring within 3 days. Systemic steroid administration has become the most widely accepted treatment option for SSNHL. Since viral infection and vascular compromise are considered specific causes of SSNHL, antiviral agents, anticoagulants, and stellate ganglion block have been used for its treatment, although the evidence of their effectiveness is weak. The present study evaluated the hearing recovery rate in the combination therapy group (systemic steroids, antiviral agent, anticoagulants, and stellate ganglion block) in comparison with patients treated with systemic steroids alone. Subjects and Methods A total of 85 patients diagnosed with SSNHL were treated with combination therapy (group A, 46 patients) or systemic steroids only (group B, 39 patients). Hearing improvement was defined as a hearing gain of more than slight improvement using Siegel's criteria. All patients were treated with a 10-day course of systemic steroids (10-mg dexamethasone for 5 days, followed by tapering for 5 days). Acyclovir, heparin, and stellate ganglion block were included in the group A treatment regimen. Results The overall rate of hearing improvement was 60.9% (28/46 patients) in group A, which was significantly higher than that (38.5%, 15/39 patients) in group B. The distribution of prognostic factors was not significantly different between the two groups with the exception of the degree of initial hearing loss, which was more severe in group A. Upon analysis according to prognostic factors, group A showed a better hearing improvement recovery rate than group B in patients with hearing loss >70 dB, age >41 years, dizziness, and early treatment (<1 week). Conclusions Thus SSNHL patients treated with combination therapy have a higher likelihood of hearing improvement than those treated with systemic steroids alone. PMID:24653874

  10. Antiviral Characteristics of GSK1265744, an HIV Integrase Inhibitor Dosed Orally or by Long-Acting Injection

    PubMed Central

    Kobayashi, Masanori; Seki, Takahiro; Miki, Shigeru; Wakasa-Morimoto, Chiaki; Suyama-Kagitani, Akemi; Kawauchi-Miki, Shinobu; Taishi, Teruhiko; Kawasuji, Takashi; Johns, Brian A.; Underwood, Mark R.; Garvey, Edward P.; Sato, Akihiko; Fujiwara, Tamio

    2014-01-01

    GSK1265744 is a new HIV integrase strand transfer inhibitor (INSTI) engineered to deliver efficient antiviral activity with a once-daily, low-milligram dose that does not require a pharmacokinetic booster. The in vitro antiviral profile and mechanism of action of GSK1265744 were established through integrase enzyme assays, resistance passage experiments, and cellular assays with site-directed molecular (SDM) HIV clones resistant to other classes of anti-HIV-1 agents and earlier INSTIs. GSK1265744 inhibited HIV replication with low or subnanomolar efficacy and with a selectivity index of at least 22,000 under the same culture conditions. The protein-adjusted half-maximal inhibitory concentration (PA-EC50) extrapolated to 100% human serum was 102 nM. When the virus was passaged in the presence of GSK1265744, highly resistant mutants with more than a 10-fold change (FC) in EC50 relative to that of the wild-type were not observed for up to 112 days of culture. GSK1265744 demonstrated activity against SDM clones containing the raltegravir (RAL)-resistant Y143R, Q148K, N155H, and G140S/Q148H signature variants (FC less than 6.1), while these mutants had a high FC in the EC50 for RAL (11 to >130). Either additive or synergistic effects were observed when GSK1265744 was tested in combination with representative anti-HIV agents, and no antagonistic effects were seen. These findings demonstrate that, similar to dolutegravir, GSK1265744 is differentiated as a new INSTI, having a markedly distinct resistance profile compared with earlier INSTIs, RAL, and elvitegravir (EVG). The collective data set supports further clinical development of GSK1265744. PMID:25367908

  11. Endocannabinoid CB1 antagonists inhibit hepatitis C virus production, providing a novel class of antiviral host-targeting agents.

    PubMed

    Shahidi, Mahsa; Tay, Enoch S E; Read, Scott A; Ramezani-Moghadam, Mehdi; Chayama, Kazuaki; George, Jacob; Douglas, Mark W

    2014-11-01

    Direct-acting antivirals have significantly improved treatment outcomes in chronic hepatitis C (CHC), but side effects, drug resistance and cost mean that better treatments are still needed. Lipid metabolism is closely linked with hepatitis C virus (HCV) replication, and endocannabinoids are major regulators of lipid homeostasis. The cannabinoid 1 (CB1) receptor mediates these effects in the liver. We have previously shown upregulation of CB1 receptors in the livers of patients with CHC, and in a HCV cell-culture model. Here, we investigated whether CB1 blockade inhibited HCV replication. The antiviral effect of a CB1 antagonist, N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (AM251), was examined in HCV strain JFH1 cell-culture and subgenomic replicon models. The effects on the expression of genes involved in lipid metabolism were also measured. CB1 short hairpin RNA (shRNA) was used to confirm that the effects were specific for the cannabinoid receptor. Treatment with AM251 strongly inhibited HCV RNA (~70 %), viral protein (~80 %), the production of new virus particles (~70 %) and virus infectivity (~90 %). As expected, AM251 reduced the expression of pro-lipogenic genes (SREBP-1c, FASN, SCD1 and ACC1) and stimulated genes promoting lipid oxidation (CPT1 and PPARα). This effect was mediated by AMP-activated protein kinase (AMPK). Stable CB1 knockdown of cells infected with HCV showed reduced levels of HCV RNA compared with controls. Thus, reduced CB1 signalling inhibits HCV replication using either pharmacological inhibitors or CB1 shRNA. This may be due, at least in part, to reduced lipogenesis, mediated by AMPK activation. We suggest that CB1 antagonists may represent an entirely new class of drug with activity against HCV.

  12. Assorted Processing of Synthetic Trans-Acting siRNAs and Its Activity in Antiviral Resistance.

    PubMed

    Zhao, Mingmin; San León, David; Mesel, Frida; García, Juan Antonio; Simón-Mateo, Carmen

    2015-01-01

    The use of syn-tasiRNAs has been proposed as an RNA interference technique alternative to those previously described: hairpin based, virus induced gene silencing or artificial miRNAs. In this study we engineered the TAS1c locus to impair Plum pox virus (PPV) infection by replacing the five native siRNAs with two 210-bp fragments from the CP and the 3´NCR regions of the PPV genome. Deep sequencing analysis of the small RNA species produced by both constructs in planta has shown that phased processing of the syn-tasiRNAs is construct-specific. While in syn-tasiR-CP construct the processing was as predicted 21-nt phased in register with miR173-guided cleavage, the processing of syn-tasiR-3NCR is far from what was expected. A 22-nt species from the miR173-guided cleavage was a guide of two series of phased small RNAs, one of them in an exact 21-nt register, and the other one in a mixed of 21-/22-nt frame. In addition, both constructs produced abundant PPV-derived small RNAs in the absence of miR173 as a consequence of a strong sense post-transcriptional gene silencing induction. The antiviral effect of both constructs was also evaluated in the presence or absence of miR173 and showed that the impairment of PPV infection was not significantly higher when miR173 was present. The results show that syn-tasiRNAs processing depends on construct-specific factors that should be further studied before the so-called MIGS (miRNA-induced gene silencing) technology can be used reliably.

  13. Efficient Suppression of Hepatitis C Virus Replication by Combination Treatment with miR-122 Antagonism and Direct-acting Antivirals in Cell Culture Systems

    PubMed Central

    Liu, Fanwei; Shimakami, Tetsuro; Murai, Kazuhisa; Shirasaki, Takayoshi; Funaki, Masaya; Honda, Masao; Murakami, Seishi; Yi, Minkyung; Tang, Hong; Kaneko, Shuichi

    2016-01-01

    Direct-acting antivirals (DAAs) against Hepatitis C virus (HCV) show effective antiviral activity with few side effects. However, the selection of DAA-resistance mutants is a growing problem that needs to be resolved. In contrast, miR-122 antagonism shows extensive antiviral effects among all HCV genotypes and a high barrier to drug resistance. In the present study, we evaluated three DAAs (simeprevir, daclatasvir, and sofosbuvir) in combination with anti-miR-122 treatment against HCV genotype 1a in cell cultures. We found that combination treatments with anti-miR-122 and a DAA had additive or synergistic antiviral effects. The EC50 values of simeprevir in simeprevir-resistant mutants were significantly decreased by combining simeprevir with anti-miR-122. A similar reduction in EC50 in daclatasvir-resistant mutants was achieved by combining daclatasvir with anti-miR-122. Combination treatment in HCV-replicating cells with DAA and anti-miR-122 sharply reduced HCV RNA amounts. Conversely, DAA single treatment with simeprevir or daclatasvir reduced HCV RNA levels initially, but the levels later rebounded. DAA-resistant mutants were less frequently observed in combination treatments than in DAA single treatments. In summary, the addition of miR-122 antagonism to DAA single treatments had additive or synergistic antiviral effects and helped to efficiently suppress HCV replication and the emergence of DAA-resistant mutants. PMID:27484655

  14. Update on the Development of Anti-Viral Agents Against Hepatitis C

    PubMed Central

    Macarthur, Kristin L.; Smolic, Robert; Smolic, Martina V.; Wu, Catherine H.

    2013-01-01

    Hepatitis C virus (HCV) infects nearly 170 million people worldwide and causes chronic hepatitis, cirrhosis, and hepatocellular carcinoma. The search for a drug regimen that maximizes efficacy and minimizes side effects is quickly evolving. This review will discuss a wide range of drug targets currently in all phases of development for the treatment of HCV. Direct data from agents in phase III/IV clinical trials will be presented, along with reported side-effect profiles. The mechanism of action of all treatments and resistance issues are highlighted. Special attention is given to available trial data supporting interferon-free treatment regimens. HCV has become an increasingly important public health concern, and it is important for physicians to stay up to date on the rapidly growing novel therapeutic options. PMID:26357602

  15. Consequences of inaccurate hepatitis C virus genotyping on the costs of prescription of direct antiviral agents in an Italian district

    PubMed Central

    Polilli, Ennio; Cento, Valeria; Restelli, Umberto; Ceccherini-Silberstein, Francesca; Aragri, Marianna; Di Maio, Velia Chiara; Sciacca, Antonina; Santoleri, Fiorenzo; Fazii, Paolo; Costantini, Alberto; Perno, Carlo Federico; Parruti, Giustino

    2016-01-01

    Available commercial assays may yield inaccurate hepatitis C virus (HCV) genotype assignment in up to 10% of cases. We investigated the cost-effectiveness of re-evaluating HCV genotype by population sequencing, prior to choosing a direct acting antiviral (DAA) regimen. Between March and September 2015, HCV sequence analysis was performed in order to confirm commercial LiPA-HCV genotype (Versant® HCV Genotype 2.0) in patients eligible for treatment with DAAs. Out of 134 consecutive patients enrolled, sequencing yielded 21 (15.7%) cases of discordant results. For three cases of wrong genotype assignment, the putative reduction in efficacy was gauged between 15% and 40%. Among the eight cases for whom G1b was assigned by commercial assays instead of G1a, potentially suboptimal treatments would have been prescribed. Finally, for five patients with G1 and indeterminate subtype, the choice of regimens would have targeted the worst option, with a remarkable increase in costs, as in the case of the four mixed HCV infections for whom pan-genotypic regimens would have been mandatory. Precise assignment of HCV genotype and subtype by sequencing may, therefore, be more beneficial than expected, until more potent pan-genotypic regimens are available for all patients. PMID:27695353

  16. Quercetin as an Antiviral Agent Inhibits Influenza A Virus (IAV) Entry.

    PubMed

    Wu, Wenjiao; Li, Richan; Li, Xianglian; He, Jian; Jiang, Shibo; Liu, Shuwen; Yang, Jie

    2015-12-25

    Influenza A viruses (IAVs) cause seasonal pandemics and epidemics with high morbidity and mortality, which calls for effective anti-IAV agents. The glycoprotein hemagglutinin of influenza virus plays a crucial role in the initial stage of virus infection, making it a potential target for anti-influenza therapeutics development. Here we found that quercetin inhibited influenza infection with a wide spectrum of strains, including A/Puerto Rico/8/34 (H1N1), A/FM-1/47/1 (H1N1), and A/Aichi/2/68 (H3N2) with half maximal inhibitory concentration (IC50) of 7.756 ± 1.097, 6.225 ± 0.467, and 2.738 ± 1.931 μg/mL, respectively. Mechanism studies identified that quercetin showed interaction with the HA2 subunit. Moreover, quercetin could inhibit the entry of the H5N1 virus using the pseudovirus-based drug screening system. This study indicates that quercetin showing inhibitory activity in the early stage of influenza infection provides a future therapeutic option to develop effective, safe and affordable natural products for the treatment and prophylaxis of IAV infections.

  17. Thiazolides as Novel Antiviral Agents: I. Inhibition of Hepatitis B Virus Replication

    PubMed Central

    Stachulski, Andrew V.; Pidathala, Chandrakala; Row, Eleanor C.; Sharma, Raman; Berry, Neil G.; Iqbal, Mazhar; Bentley, Joanne; Allman, Sarah A.; Edwards, Geoffrey; Helm, Alison; Hellier, Jennifer; Korba, Brent E.; Semple, J. Edward; Rossignol, Jean-Francois

    2011-01-01

    We report the syntheses and activities of a wide range of thiazolides [viz. 2-hydroxyaroyl-N-(thiazol-2-yl)amides] against hepatitis B virus replication, with QSAR analysis of our results. The prototypical thiazolide, nitazoxanide [2-hydroxybenzoyl-N-(5-nitrothiazol-2-yl)amide; NTZ] 1 is a broad spectrum antiinfective agent, effective against anaerobic bacteria, viruses and parasites. By contrast, 2-hydroxybenzoyl-N-(5-chlorothiazol-2-yl)amide 3 is a novel, potent and selective inhibitor of hepatitis B replication (EC50 = 0.33 μm) but is inactive against anaerobes. Several 4′- and 5′-substituted thiazolides show good activity against HBV; by contrast, some related salicyloylanilides show a narrower spectrum of activity. The ADME properties of 3 are similar to 1, viz. the O-acetate is an effective prodrug and the O-aryl glucuronide is a major metabolite. The QSAR study shows a good correlation of observed EC90 s for intracellular virions with thiazolide structural parameters. Finally we discuss the mechanism of action of thiazolides in relation to the present results. PMID:21553812

  18. Structural models for the design of novel antiviral agents against Greek Goat Encephalitis

    PubMed Central

    Papageorgiou, Louis; Loukatou, Styliani; Koumandou, Vassiliki Lila; Makałowski, Wojciech; Megalooikonomou, Vasileios

    2014-01-01

    The Greek Goat Encephalitis virus (GGE) belongs to the Flaviviridae family of the genus Flavivirus. The GGE virus constitutes an important pathogen of livestock that infects the goat’s central nervous system. The viral enzymes of GGE, helicase and RNA-dependent RNA polymerase (RdRP), are ideal targets for inhibitor design, since those enzymes are crucial for the virus’ survival, proliferation and transmission. In an effort to understand the molecular structure underlying the functions of those viral enzymes, the three dimensional structures of GGE NS3 helicase and NS5 RdRP have been modelled. The models were constructed in silico using conventional homology modelling techniques and the known 3D crystal structures of solved proteins from closely related species as templates. The established structural models of the GGE NS3 helicase and NS5 RdRP have been evaluated for their viability using a repertoire of in silico tools. The goal of this study is to present the 3D conformations of the GGE viral enzymes as reliable structural models that could provide the platform for the design of novel anti-GGE agents. PMID:25392762

  19. Quercetin as an Antiviral Agent Inhibits Influenza A Virus (IAV) Entry

    PubMed Central

    Wu, Wenjiao; Li, Richan; Li, Xianglian; He, Jian; Jiang, Shibo; Liu, Shuwen; Yang, Jie

    2015-01-01

    Influenza A viruses (IAVs) cause seasonal pandemics and epidemics with high morbidity and mortality, which calls for effective anti-IAV agents. The glycoprotein hemagglutinin of influenza virus plays a crucial role in the initial stage of virus infection, making it a potential target for anti-influenza therapeutics development. Here we found that quercetin inhibited influenza infection with a wide spectrum of strains, including A/Puerto Rico/8/34 (H1N1), A/FM-1/47/1 (H1N1), and A/Aichi/2/68 (H3N2) with half maximal inhibitory concentration (IC50) of 7.756 ± 1.097, 6.225 ± 0.467, and 2.738 ± 1.931 μg/mL, respectively. Mechanism studies identified that quercetin showed interaction with the HA2 subunit. Moreover, quercetin could inhibit the entry of the H5N1 virus using the pseudovirus-based drug screening system. This study indicates that quercetin showing inhibitory activity in the early stage of influenza infection provides a future therapeutic option to develop effective, safe and affordable natural products for the treatment and prophylaxis of IAV infections. PMID:26712783

  20. A Novel Class of HIV-1 Antiviral Agents Targeting HIV via a SUMOylation-Dependent Mechanism.

    PubMed

    Madu, Ikenna G; Li, Shirley; Li, Baozong; Li, Haitang; Chang, Tammy; Li, Yi-Jia; Vega, Ramir; Rossi, John; Yee, Jiing-Kuan; Zaia, John; Chen, Yuan

    2015-12-08

    We have recently identified a chemotype of small ubiquitin-like modifier (SUMO)-specific protease (SENP) inhibitors. Prior to the discovery of their SENP inhibitory activity, these compounds were found to inhibit HIV replication, but with an unknown mechanism. In this study, we investigated the mechanism of how these compounds inhibit HIV-1. We found that they do not affect HIV-1 viral production, but significantly inhibited the infectivity of the virus. Interestingly, virions produced from cells treated with these compounds could gain entry and carry out reverse transcription, but could not efficiently integrate into the host genome. This phenotype is different from the virus produced from cells treated with the class of anti-HIV-1 agents that inhibit HIV protease. Upon removal of the SUMO modification sites in the HIV-1 integrase, the compound no longer alters viral infectivity, indicating that the effect is related to SUMOylation of the HIV integrase. This study identifies a novel mechanism for inhibiting HIV-1 integration and a new class of small molecules that inhibits HIV-1 via such mechanism that may contribute a new strategy for cure of HIV-1 by inhibiting the production of infectious virions upon activation from latency.

  1. A Novel Class of HIV-1 Antiviral Agents Targeting HIV via a SUMOylation-Dependent Mechanism

    PubMed Central

    Madu, Ikenna G.; Li, Shirley; Li, Baozong; Li, Haitang; Chang, Tammy; Li, Yi-Jia; Vega, Ramir; Rossi, John; Yee, Jiing-Kuan; Zaia, John; Chen, Yuan

    2015-01-01

    We have recently identified a chemotype of small ubiquitin-like modifier (SUMO)-specific protease (SENP) inhibitors. Prior to the discovery of their SENP inhibitory activity, these compounds were found to inhibit HIV replication, but with an unknown mechanism. In this study, we investigated the mechanism of how these compounds inhibit HIV-1. We found that they do not affect HIV-1 viral production, but significantly inhibited the infectivity of the virus. Interestingly, virions produced from cells treated with these compounds could gain entry and carry out reverse transcription, but could not efficiently integrate into the host genome. This phenotype is different from the virus produced from cells treated with the class of anti-HIV-1 agents that inhibit HIV protease. Upon removal of the SUMO modification sites in the HIV-1 integrase, the compound no longer alters viral infectivity, indicating that the effect is related to SUMOylation of the HIV integrase. This study identifies a novel mechanism for inhibiting HIV-1 integration and a new class of small molecules that inhibits HIV-1 via such mechanism that may contribute a new strategy for cure of HIV-1 by inhibiting the production of infectious virions upon activation from latency. PMID:26643614

  2. Molecular structures of antiviral agents, 2,3-dihydroxybenzaldehyde 2,4-dinitrophenylhydrazone and 4-[(4-methylpiperazin-1-yl)imino]methyl-1,2-benzodiol

    SciTech Connect

    Gurskaya, G. V.; Zavodnik, V. E.; Zhukhlistova, N. E.; Kozlov, M. V.

    2008-07-15

    Two antiviral agents, namely, 2,3-dihydroxybenzaldehyde 2,4-dinitrophenylhydrazone and 4-[(4-methylpiperazin-1-yl)imino]methyl-1,2-benzodiol, are studied by X-ray diffraction. The stereochemical features of the molecular structures of the compounds under investigation are discussed, and the possible correlation between the structure and biological activity with respect to hepatitis C virus RNA-dependent RNA polymerase is analyzed.

  3. Hepatitis C virus cures after direct acting antiviral-related drug-induced liver injury: Case report

    PubMed Central

    Hasin, Yaakov; Shteingart, Shimon; Dahari, Harel; Gafanovich, Inna; Floru, Sharon; Braun, Marius; Shlomai, Amir; Verstandig, Anthony; Dery, Ilana; Uprichard, Susan L; Cotler, Scott J; Lurie, Yoav

    2016-01-01

    The United States Food and Drug Administration recently warned that the direct acting antiviral (DAA) combination hepatitis C virus (HCV) treatment of Paritaprevir, Ombitasvir, Dasabuvir, Ritonavir, and Ribavirin (PODr + R) can cause severe liver injury in patients with advanced liver disease. Drug induced liver injury was observed in a small number of patients with decompensated cirrhosis treated with other DAAs, but has not been reported in patients with compensated cirrhosis. We report a case of a 74-year-old woman with chronic HCV and Child-Pugh class A cirrhosis (compensated cirrhosis) treated with PODr + R. The patient presented on day 14 of PODr + R therapy with jaundice and new-onset ascites. Her total bilirubin level increased to 23 mg/dL and international normalized ratio rose to 1.65, while aminotransferase levels remained relatively stable. Hepatitis C treatment was discontinued on day 24 and she gradually recovered. Follow-up testing showed that she achieved a sustained virologic response. In conclusion, hepatic decompensation developed within two weeks of starting treatment with PODr + R in a patient with Child-Pugh class A cirrhosis and was characterized by jaundice and ascites with stable aminotransferase levels. Careful monitoring is warranted in patients with HCV-related cirrhosis treated with PODr + R. PMID:27458506

  4. Hepatitis C virus cures after direct acting antiviral-related drug-induced liver injury: Case report.

    PubMed

    Hasin, Yaakov; Shteingart, Shimon; Dahari, Harel; Gafanovich, Inna; Floru, Sharon; Braun, Marius; Shlomai, Amir; Verstandig, Anthony; Dery, Ilana; Uprichard, Susan L; Cotler, Scott J; Lurie, Yoav

    2016-07-18

    The United States Food and Drug Administration recently warned that the direct acting antiviral (DAA) combination hepatitis C virus (HCV) treatment of Paritaprevir, Ombitasvir, Dasabuvir, Ritonavir, and Ribavirin (PODr + R) can cause severe liver injury in patients with advanced liver disease. Drug induced liver injury was observed in a small number of patients with decompensated cirrhosis treated with other DAAs, but has not been reported in patients with compensated cirrhosis. We report a case of a 74-year-old woman with chronic HCV and Child-Pugh class A cirrhosis (compensated cirrhosis) treated with PODr + R. The patient presented on day 14 of PODr + R therapy with jaundice and new-onset ascites. Her total bilirubin level increased to 23 mg/dL and international normalized ratio rose to 1.65, while aminotransferase levels remained relatively stable. Hepatitis C treatment was discontinued on day 24 and she gradually recovered. Follow-up testing showed that she achieved a sustained virologic response. In conclusion, hepatic decompensation developed within two weeks of starting treatment with PODr + R in a patient with Child-Pugh class A cirrhosis and was characterized by jaundice and ascites with stable aminotransferase levels. Careful monitoring is warranted in patients with HCV-related cirrhosis treated with PODr + R. PMID:27458506

  5. Hepatitis C virus markers in infection by hepatitis C virus: In the era of directly acting antivirals

    PubMed Central

    Coppola, Nicola; Pisaturo, Mariantonietta; Zampino, Rosa; Macera, Margherita; Sagnelli, Caterina; Sagnelli, Evangelista

    2015-01-01

    About 130-170 million people are infected with the hepatitis C virus (HCV) worldwide and more than 350000 people die each year of HCV-related liver diseases. The combination of pegylated interferon (Peg-IFN) and ribavirin (RBV) was recommended as the treatment of choice for chronic hepatitis C for nearly a decade. In 2011 the directly acting antivirals (DAA) HCV NS3/4A protease inhibitors, telaprevir and boceprevir, were approved to treat HCV-genotype-1 infection, each in triple combination with Peg-IFN and RBV. These treatments allowed higher rates of SVR than the double Peg-IFN + RBV, but the low tolerability and high pill burden of these triple regimes were responsible for reduced adherence and early treatment discontinuation. The second and third wave DAAs introduced in 2013-2014 enhanced the efficacy and tolerability of anti-HCV treatment. Consequently, the traditional indicators for disease management and predictors of treatment response should be revised in light of these new therapeutic options. This review article will focus on the use of the markers of HCV infection and replication, of laboratory and instrumental data to define the stage of the disease and of predictors, if any, of response to therapy in the DAA era. The article is addressed particularly to physicians who have patients with hepatitis C in care in their everyday clinical practice. PMID:26478667

  6. Characterization and structural analysis of the potent antiparasitic and antiviral agent tizoxanide

    NASA Astrophysics Data System (ADS)

    Bruno, Flavia P.; Caira, Mino R.; Martin, Eliseo Ceballos; Monti, Gustavo A.; Sperandeo, Norma R.

    2013-03-01

    Tizoxanide [2-(hydroxy)-N-(5-nitro-2-thiazolyl)benzamide, TIZ] is a new potent anti-infective agent which may enhance current therapies for leishmaniasis, Chagas disease and viral hepatitis. The aim of this study was to identify the conformational preferences that may be related to the biological activity of TIZ by resolving its crystal structure and characterizing various physicochemical properties, including its experimental vibrational and 13C nuclear magnetic resonance properties, behavior on heating and solubility in several solvents at 25 °C. TIZ crystallizes from dimethylformamide as the carboxamide tautomer in the triclinic system, space group P(-1) (No. 2) with the following unit cell parameters at 173(2) K: a = 5.4110(3) Å, b = 7.3315(6) Å, c = 13.5293(9) Å, α = 97.528(3), β = 95.390(4), γ = 97.316(5), V = 524.41(6) Å3, Z = 2, Dc = 1.680 g/cm3, R1 = 0.0482 and wR2 = 0.0911 for 2374 reflections. This modification of TIZ has a 'graphitic' structure and is composed of tightly packed layers of extensively hydrogen-bonded molecules. The various spectroscopic data [Diffuse Fourier transform infrared (DRIFT) and FT-Raman, recorded in the range 3600-500 and 4000-200 cm-1 respectively, and solid-state 13C NMR] were consistent with the structure determined by X-ray crystallography. From DSC, TG and thermomicroscopy, it was concluded that TIZ is thermally stable as a solid and that melting is not an isolated event from the one-step thermal decomposition that it undergoes above 270 °C. This modification of TIZ is practically insoluble in water and slightly soluble in polar aprotic solvents such as dimethylsulfoxide, dimethylformamide and dioxane.

  7. Second-generation direct-acting-antiviral hepatitis C virus treatment: Efficacy, safety, and predictors of SVR12

    PubMed Central

    Werner, Christoph R; Schwarz, Julia M; Egetemeyr, Daniel P; Beck, Robert; Malek, Nisar P; Lauer, Ulrich M; Berg, Christoph P

    2016-01-01

    AIM To gather data on the antiviral efficacy and safety of second generation direct acting antiviral (DAA) treatment with respect to sustained virological response (SVR) 12 wk after conclusion of treatment, and to determine predictors of SVR12 in this setting. METHODS Two hundred and sixty patients treated with SOF combination partners PR (n = 51), R (n = 10), SMV (n = 30), DCV (n = 81), LDV (n = 73), or 3D (n = 15). 144/260 were pre-treated, 89/260 had liver cirrhosis, 56/260 had portal hypertension with platelets < 100/nL, 25/260 had a MELD score ≥ 10 and 17/260 were post-liver transplantation patients. 194/260 had HCV GT1, 44/260 HCV GT3. RESULTS Two hundred and forty/256 (93.7%) patients achieved SVR12 (mITT); 4/260 were lost to follow-up. SVR12 rates for subgroups were: 92% for SOF/DCV, 93% for each SOF/SMV, SOF/PR, 94% for SOF/LDV, 100% for 3D, 94% for pretreated, 87% for liver cirrhosis, 82% for patients with platelets < 100/nL, 88% post-liver transplantation, 95% for GT1a, 93% for GT1b, 90% for GT3, 100% for GT2, 4, and 6. 12 patients suffered from relapse, 6 prematurely discontinued treatment, of which 4 died. Negative predictors of SVR12 were a platelet count < 100/nL, MELD score ≥ 10 (P < 0.0001), liver cirrhosis (P = 0.005) at baseline. In Interferon-free treatment GT3 had significantly lower SVR rates than GT1 (P = 0.016). Side effects were mild. CONCLUSION Excellent SVR12 rates and the favorable side-effect profile of DAA-combination therapy can be well translated into “real-world”. Patients with advanced liver disease, signs of portal hypertension, especially with platelets < 100/nL and patients with GT3 are in special need for further research efforts to overcome comparatively higher rates of virological failure.

  8. Second-generation direct-acting-antiviral hepatitis C virus treatment: Efficacy, safety, and predictors of SVR12

    PubMed Central

    Werner, Christoph R; Schwarz, Julia M; Egetemeyr, Daniel P; Beck, Robert; Malek, Nisar P; Lauer, Ulrich M; Berg, Christoph P

    2016-01-01

    AIM To gather data on the antiviral efficacy and safety of second generation direct acting antiviral (DAA) treatment with respect to sustained virological response (SVR) 12 wk after conclusion of treatment, and to determine predictors of SVR12 in this setting. METHODS Two hundred and sixty patients treated with SOF combination partners PR (n = 51), R (n = 10), SMV (n = 30), DCV (n = 81), LDV (n = 73), or 3D (n = 15). 144/260 were pre-treated, 89/260 had liver cirrhosis, 56/260 had portal hypertension with platelets < 100/nL, 25/260 had a MELD score ≥ 10 and 17/260 were post-liver transplantation patients. 194/260 had HCV GT1, 44/260 HCV GT3. RESULTS Two hundred and forty/256 (93.7%) patients achieved SVR12 (mITT); 4/260 were lost to follow-up. SVR12 rates for subgroups were: 92% for SOF/DCV, 93% for each SOF/SMV, SOF/PR, 94% for SOF/LDV, 100% for 3D, 94% for pretreated, 87% for liver cirrhosis, 82% for patients with platelets < 100/nL, 88% post-liver transplantation, 95% for GT1a, 93% for GT1b, 90% for GT3, 100% for GT2, 4, and 6. 12 patients suffered from relapse, 6 prematurely discontinued treatment, of which 4 died. Negative predictors of SVR12 were a platelet count < 100/nL, MELD score ≥ 10 (P < 0.0001), liver cirrhosis (P = 0.005) at baseline. In Interferon-free treatment GT3 had significantly lower SVR rates than GT1 (P = 0.016). Side effects were mild. CONCLUSION Excellent SVR12 rates and the favorable side-effect profile of DAA-combination therapy can be well translated into “real-world”. Patients with advanced liver disease, signs of portal hypertension, especially with platelets < 100/nL and patients with GT3 are in special need for further research efforts to overcome comparatively higher rates of virological failure. PMID:27672299

  9. Application of "Hydrogen-Bonding Interaction" in Drug Design. Part 2: Design, Synthesis, and Structure-Activity Relationships of Thiophosphoramide Derivatives as Novel Antiviral and Antifungal Agents.

    PubMed

    Lu, Aidang; Ma, Yuanyuan; Wang, Ziwen; Zhou, Zhenghong; Wang, Qingmin

    2015-11-01

    On the basis of the structure of natural product harmine, lead compound 18, and the structure of compounds in part 1, a series of thiophosphoramide derivatives 1-17 were designed and synthesized from various amines in one step. Their antiviral and antifungal activities were evaluated. Most of the compounds showed significantly higher antiviral activity against tobacco mosaic virus (TMV) than commercial virucide ribavirin. Compound (R,R)-17 showed the best anti-TMV activity in vitro (70%/500 μg/mL and 33%/100 μg/mL) and in vivo (inactivation effect, 68%/500 μg/mL and 30%/100 μg/mL; curative effect, 64%/500 μg/mL and 31%/100 μg/mL; protection effect, 66%/500 μg/mL and 31%/100 μg/mL), which is higher than that of ningnanmycin and lead compound 18. The antiviral activity of (R,R)-17·HCl is about similar to that of (R,R)-17. However, the antifungal activity of (R,R)-17·HCl against Puccinia sorghi is slightly lower than that of (R,R)-17. The systematic study provides compelling evidence that these simple thiophosphoramide compounds could become efficient antiviral and antifungal agents.

  10. Application of "Hydrogen-Bonding Interaction" in Drug Design. Part 2: Design, Synthesis, and Structure-Activity Relationships of Thiophosphoramide Derivatives as Novel Antiviral and Antifungal Agents.

    PubMed

    Lu, Aidang; Ma, Yuanyuan; Wang, Ziwen; Zhou, Zhenghong; Wang, Qingmin

    2015-11-01

    On the basis of the structure of natural product harmine, lead compound 18, and the structure of compounds in part 1, a series of thiophosphoramide derivatives 1-17 were designed and synthesized from various amines in one step. Their antiviral and antifungal activities were evaluated. Most of the compounds showed significantly higher antiviral activity against tobacco mosaic virus (TMV) than commercial virucide ribavirin. Compound (R,R)-17 showed the best anti-TMV activity in vitro (70%/500 μg/mL and 33%/100 μg/mL) and in vivo (inactivation effect, 68%/500 μg/mL and 30%/100 μg/mL; curative effect, 64%/500 μg/mL and 31%/100 μg/mL; protection effect, 66%/500 μg/mL and 31%/100 μg/mL), which is higher than that of ningnanmycin and lead compound 18. The antiviral activity of (R,R)-17·HCl is about similar to that of (R,R)-17. However, the antifungal activity of (R,R)-17·HCl against Puccinia sorghi is slightly lower than that of (R,R)-17. The systematic study provides compelling evidence that these simple thiophosphoramide compounds could become efficient antiviral and antifungal agents. PMID:26485246

  11. Minimum target prices for production of direct-acting antivirals and associated diagnostics to combat hepatitis C virus

    PubMed Central

    van de Ven, Nikolien; Fortunak, Joe; Simmons, Bryony; Ford, Nathan; Cooke, Graham S; Khoo, Saye; Hill, Andrew

    2015-01-01

    Combinations of direct-acting antivirals (DAAs) can cure hepatitis C virus (HCV) in the majority of treatment-naïve patients. Mass treatment programs to cure HCV in developing countries are only feasible if the costs of treatment and laboratory diagnostics are very low. This analysis aimed to estimate minimum costs of DAA treatment and associated diagnostic monitoring. Clinical trials of HCV DAAs were reviewed to identify combinations with consistently high rates of sustained virological response across hepatitis C genotypes. For each DAA, molecular structures, doses, treatment duration, and components of retrosynthesis were used to estimate costs of large-scale, generic production. Manufacturing costs per gram of DAA were based upon treating at least 5 million patients per year and a 40% margin for formulation. Costs of diagnostic support were estimated based on published minimum prices of genotyping, HCV antigen tests plus full blood count/clinical chemistry tests. Predicted minimum costs for 12-week courses of combination DAAs with the most consistent efficacy results were: US$122 per person for sofosbuvir+daclatasvir; US$152 for sofosbuvir+ribavirin; US$192 for sofosbuvir+ledipasvir; and US$115 for MK-8742+MK-5172. Diagnostic testing costs were estimated at US$90 for genotyping US$34 for two HCV antigen tests and US$22 for two full blood count/clinical chemistry tests. Conclusions: Minimum costs of treatment and diagnostics to cure hepatitis C virus infection were estimated at US$171-360 per person without genotyping or US$261-450 per person with genotyping. These cost estimates assume that existing large-scale treatment programs can be established. (Hepatology 2015;61:1174–1182) PMID:25482139

  12. Current Landscape of Antiviral Drug Discovery

    PubMed Central

    Blair, Wade; Cox, Christopher

    2016-01-01

    Continued discovery and development of new antiviral medications are paramount for global human health, particularly as new pathogens emerge and old ones evolve to evade current therapeutic agents. Great success has been achieved in developing effective therapies to suppress human immunodeficiency virus (HIV) and hepatitis B virus (HBV); however, the therapies are not curative and therefore current efforts in HIV and HBV drug discovery are directed toward longer-acting therapies and/or developing new mechanisms of action that could potentially lead to cure, or eradication, of the virus. Recently, exciting early clinical data have been reported for novel antivirals targeting respiratory syncytial virus (RSV) and influenza (flu). Preclinical data suggest that these new approaches may be effective in treating high-risk patients afflicted with serious RSV or flu infections. In this review, we highlight new directions in antiviral approaches for HIV, HBV, and acute respiratory virus infections. PMID:26962437

  13. 77 FR 45815 - Indian Child Welfare Act; Designated Tribal Agents for Service of Notice

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-01

    ...; Designated Tribal Agents for Service of Notice; Notice #0;#0;Federal Register / Vol. 77, No. 148 / Wednesday... Act; Designated Tribal Agents for Service of Notice AGENCY: Bureau of Indian Affairs, Interior. ACTION... designate an agent other than the tribal chairman for service of notice of proceedings under the Act....

  14. Use of sofosbuvir-based direct-acting antiviral therapy for hepatitis C viral infection in patients with severe renal insufficiency.

    PubMed

    Hundemer, Gregory L; Sise, Meghan E; Wisocky, Jessica; Ufere, Nneka; Friedman, Lawrence S; Corey, Kathleen E; Chung, Raymond T

    2015-01-01

    Sofosbuvir-based direct-acting antiviral therapy revolutionized the treatment of hepatitis C virus (HCV) infection. However, sofosbuvir use is not approved for patients with severe renal insufficiency (estimated glomerular filtration (eGFR) rate below 30 ml/min) or end-stage renal disease (ESRD) based on concerns raised during premarket animal testing over hepatobiliary and cardiovascular toxicity in this population. We report the first published data on use of sofosbuvir-based regimens in patients with severe renal insufficiency and ESRD, focusing on clinical efficacy and safety. Six patients were treated with full dose sofosbuvir; three received sofosbuvir and simeprevir, two received sofosbuvir and ribavirin, and one received sofosbuvir, ribavirin, and interferon. Three of the patients had cirrhosis. On-treatment viral suppression was 100% and sustained virological response (SVR) rate at 12 weeks was 67%. One patient had to discontinue antiviral therapy early due to side effects. No hepatobiliary or cardiovascular toxicity was reported.

  15. Identification of Antiviral Agents Targeting Hepatitis B Virus Promoter from Extracts of Indonesian Marine Organisms by a Novel Cell-Based Screening Assay

    PubMed Central

    Yamashita, Atsuya; Fujimoto, Yuusuke; Tamaki, Mayumi; Setiawan, Andi; Tanaka, Tomohisa; Okuyama-Dobashi, Kaori; Kasai, Hirotake; Watashi, Koichi; Wakita, Takaji; Toyama, Masaaki; Baba, Masanori; de Voogd, Nicole J.; Maekawa, Shinya; Enomoto, Nobuyuki; Tanaka, Junichi; Moriishi, Kohji

    2015-01-01

    The current treatments of chronic hepatitis B (CHB) face a limited choice of vaccine, antibody and antiviral agents. The development of additional antiviral agents is still needed for improvement of CHB therapy. In this study, we established a screening system in order to identify compounds inhibiting the core promoter activity of hepatitis B virus (HBV). We prepared 80 extracts of marine organisms from the coral reefs of Indonesia and screened them by using this system. Eventually, two extracts showed high inhibitory activity (>95%) and low cytotoxicity (66% to 77%). Solvent fractionation, column chromatography and NMR analysis revealed that 3,5-dibromo-2-(2,4-dibromophenoxy)-phenol (compound 1) and 3,4,5-tribromo-2-(2,4-dibromophenoxy)-phenol (compound 2), which are classified as polybrominated diphenyl ethers (PBDEs), were identified as anti-HBV agents in the extracts. Compounds 1 and 2 inhibited HBV core promoter activity as well as HBV production from HepG2.2.15.7 cells in a dose-dependent manner. The EC50 values of compounds 1 and 2 were 0.23 and 0.80 µM, respectively, while selectivity indexes of compound 1 and 2 were 18.2 and 12.8, respectively. These results suggest that our cell-based HBV core promoter assay system is useful to determine anti-HBV compounds, and that two PBDE compounds are expected to be candidates of lead compounds for the development of anti-HBV drugs. PMID:26561821

  16. Identification of Antiviral Agents Targeting Hepatitis B Virus Promoter from Extracts of Indonesian Marine Organisms by a Novel Cell-Based Screening Assay.

    PubMed

    Yamashita, Atsuya; Fujimoto, Yuusuke; Tamaki, Mayumi; Setiawan, Andi; Tanaka, Tomohisa; Okuyama-Dobashi, Kaori; Kasai, Hirotake; Watashi, Koichi; Wakita, Takaji; Toyama, Masaaki; Baba, Masanori; de Voogd, Nicole J; Maekawa, Shinya; Enomoto, Nobuyuki; Tanaka, Junichi; Moriishi, Kohji

    2015-11-01

    The current treatments of chronic hepatitis B (CHB) face a limited choice of vaccine, antibody and antiviral agents. The development of additional antiviral agents is still needed for improvement of CHB therapy. In this study, we established a screening system in order to identify compounds inhibiting the core promoter activity of hepatitis B virus (HBV). We prepared 80 extracts of marine organisms from the coral reefs of Indonesia and screened them by using this system. Eventually, two extracts showed high inhibitory activity (>95%) and low cytotoxicity (66% to 77%). Solvent fractionation, column chromatography and NMR analysis revealed that 3,5-dibromo-2-(2,4-dibromophenoxy)-phenol (compound 1) and 3,4,5-tribromo-2-(2,4-dibromophenoxy)-phenol (compound 2), which are classified as polybrominated diphenyl ethers (PBDEs), were identified as anti-HBV agents in the extracts. Compounds 1 and 2 inhibited HBV core promoter activity as well as HBV production from HepG2.2.15.7 cells in a dose-dependent manner. The EC50 values of compounds 1 and 2 were 0.23 and 0.80 µM, respectively, while selectivity indexes of compound 1 and 2 were 18.2 and 12.8, respectively. These results suggest that our cell-based HBV core promoter assay system is useful to determine anti-HBV compounds, and that two PBDE compounds are expected to be candidates of lead compounds for the development of anti-HBV drugs. PMID:26561821

  17. Efficacy and Safety of Direct Acting Antivirals in Kidney Transplant Recipients with Chronic Hepatitis C Virus Infection

    PubMed Central

    Lin, Ming V.; Sise, Meghan E.; Pavlakis, Martha; Amundsen, Beth M.; Chute, Donald; Rutherford, Anna E.; Chung, Raymond T.; Curry, Michael P.; Hanifi, Jasmine M.; Gabardi, Steve; Chandraker, Anil; Heher, Eliot C.; Elias, Nahel; Riella, Leonardo V.

    2016-01-01

    The prevalence of Hepatitis C Virus (HCV) infection is significantly higher in patients with end-stage renal disease compared to the general population and poses important clinical challenges in patients who undergo kidney transplantation. Historically, interferon-based treatment options have been limited by low rates of efficacy and significant side effects, including risk of precipitating rejection. Limited data exist on the use of all-oral, interferon-free direct-acting antiviral (DAA) therapies in kidney transplant recipients. In this study, we performed a retrospective chart review with prospective clinical follow-up of post-kidney transplant patients treated with DAA therapies at three major hospitals in Boston, MA. A total of 24 kidney recipients with HCV infection received all-oral DAA therapy post-transplant. Patients were predominantly male (79%) with a median age of 60 years (range 34–70 years), median creatinine of 1.2 mg/dL (0.66–1.76), and 42% had advanced fibrosis or cirrhosis. The majority had HCV genotype 1a infection (58%). All patients received full-dose sofosbuvir; it was paired with simeprevir (9 patients without and 3 patients with ribavirin), ledipasvir (7 patients without and 1 patient with ribavirin) or ribavirin alone (4 patients). The overall sustained virologic response (SVR12) was 91% (21 out of 23 patients). One patient achieved SVR4 but demised prior to SVR12 check point due to treatment unrelated cause. Two treatment failures were successfully retreated with alternative DAA regimens and achieved SVR. Both initials failures occurred in patients with advanced fibrosis or cirrhosis, with genotype 1a infection, and prior HCV treatment failure. Adverse events were reported in 11 patients (46%) and were managed clinically without discontinuation of therapy. Calcineurin inhibitor trough levels did not significantly change during therapy. In this multi-center series of patients, all-oral DAA therapy appears to be safe and effective in

  18. Direct-acting antivirals for the treatment of chronic hepatitis C in patients with chronic kidney disease

    PubMed Central

    Kohli, Anita; Alshati, Ali; Georgie, Fawaz; Manch, Richard; Gish, Robert G.

    2016-01-01

    All-oral, direct-acting antivirals (DAAs) have significantly improved the efficacy and safety of chronic hepatitis C (CHC) treatment but their effectiveness and safety among patients with chronic kidney disease (CKD) remains poorly understood. Our aim was to assess the efficacy and safety of DAAs for treatment of CKD patients. The National Library of Medicine through PubMed was searched for studies evaluating the efficacy of DAAs for the treatment of patients with CKD stages 4 or 5, as defined by the Kidney Disease Outcomes Quality Initiative guidelines [i.e. glomerular filtration rate (GFR) 15–29 ml/min per 1.73 m2 and GFR <15 ml/min per 1.73 m2, respectively, or hemodialysis or peritoneal dialysis]. Randomized clinical trials (RCTs) and relevant cohort studies were included if they were published in English and included sustained viral response after 12 weeks (SVR12) as a primary or secondary endpoint. After applying inclusion and exclusion criteria, eight studies (one RCT and seven cohort studies) following 350 patients were selected. For patients with CKD stage 4 or 5, ± hemodialysis, the overwhelming majority of DAA regimens were well-tolerated and resulted in SVR12 rates of 90–100%. Most studies were small, with the exception of one RCT evaluating elbasvir and grazoprevir. Overall, treatment of CHC in patients with CKD is highly effective with SVR12 rates similar to those seen in patients without CKD and with acceptable adverse event profiles. In patients with hepatitis C virus (HCV) genotype (GT) 1a, 1b or 4 and Stage 4 or 5 CKD, the best evidence available is for the use of elbasvir and grazoprevir. This combination as well as the combination of paritaprevir/ritonavir/ombitasvir/dasabuvir for HCV GT-1b are recommended. More studies are needed to assess efficacy and adverse effects of DAAs and their impact on CKD patients and to fully elucidate the effect of curing CHC on the natural history and sequelae of renal disease in CHC patients with CKD. PMID

  19. Re-re-treatment of hepatitis C virus: Eight patients who relapsed twice after direct-acting-antiviral drugs

    PubMed Central

    Hartman, Joshua; Bichoupan, Kian; Patel, Neal; Chekuri, Sweta; Harty, Alyson; Dieterich, Douglas; Perumalswami, Ponni; Branch, Andrea D

    2015-01-01

    AIM: To determine risk factors associated with hepatitis C virus (HCV) treatment failure after direct acting antivirals in patients with complex treatment histories. METHODS: All HCV mono-infected patients who received treatment at our institution were queried. Analysis was restricted to patients who previously failed treatment with boceprevir (BOC) or telaprevir (TVR) and started simeprevir (SMV) and sofosbuvir (SOF) ± ribavirin (RBV) between December 2013 and June 2014. Patients with human immunodeficiency virus (HIV)/HCV co-infection or patients who received a liver transplant in the past were excluded. Viral loads were recorded while on treatment and after treatment. Data collection continued until December, 31st 2014 when data analysis was initiated. Patients missing virologic outcomes data were not included in the analysis. Analysis of 35 patients who had virologic outcome data available resulted in eight patients who were viral load negative at the end of treatment with SMF/SOF but later relapsed. Data related to patient demographics, HCV infection, and treatment history was collected in order to identify risk factors shared among patients who failed treatment with SMF/SOF. RESULTS: Eight patients who were treated with the first generation HCV protease inhibitors BOC or TVR in combination with pegylated-interferon (PEG) and RBV who failed this triple therapy were subsequently re-treated with an off-label all-oral regimen of SMV and SOF for 12 wk, with RBV in seven cases. Treatment was initiated before the Food and Drug Administration approved a 24-wk SMV/SOF regimen for patients with liver cirrhosis. All eight patients had an end of treatment response, but later relapsed. Eight (100%) patients were male. Mean age was 56 (range, 49-64). Eight (100%) patients had previously failed PEG/RBV dual therapy at least once in addition to prior failure with triple therapy. Total number of times treated ranged from 3-6 (mean 3.8). Eight (100%) patients were male had

  20. Determination of inhibitory concentrations of antiviral agents in cell culture by use of an enzyme immunoassay with virus-specific, peroxidase-labeled monoclonal antibodies.

    PubMed Central

    van Tiel, F H; Boere, W A; Harmsen, T; Kraaijeveld, C A; Snippe, H

    1985-01-01

    An enzyme immunoassay (EIA) to determine 50% inhibitory concentrations of drugs which suppress Semliki Forest virus replication is described. Inhibition of virus replication was measured in L-cells, seeded as monolayers in 96-well plates by use of horseradish peroxidase-labeled monoclonal antibodies directed against the E1 glycoprotein of Semliki Forest virus. The antiviral agents tested were cycloheximide, tunicamycin, NH4Cl, and disodium cromoglycate. The 50% inhibitory concentration of these antiviral agents was arbitrarily defined as the concentration of drug, in culture medium, associated with 50% reduction of the control absorbance value measured on Semliki Forest virus-infected cells without drug in the culture fluid. Twenty-two hours after infection the 50% inhibitory concentrations of the drugs were 0.2 microgram/ml for cycloheximide, 0.8 microgram/ml for tunicamycin, 0.3 mg/ml for NH4Cl, and 4.9 mg/ml for disodium cromoglycate. These values are similar to those determined by others with conventional methods of virus quantification. This test is sensitive and easy to perform and therefore is suited for large-scale experiments. PMID:3925876

  1. New neplanocin analogues. 1. Synthesis of 6'-modified neplanocin A derivatives as broad-spectrum antiviral agents.

    PubMed

    Shuto, S; Obara, T; Toriya, M; Hosoya, M; Snoeck, R; Andrei, G; Balzarini, J; De Clercq, E

    1992-01-24

    Novel neplanocin A analogues modified at the 6'-position, i.e., 6'-deoxy analogues (2, 3, 6, 9, 20), 6'-O-methylneplanocin A (15), and 6'-C-methylneplanocin A's (22a and 22b) have been synthesized and evaluated for their antiviral activity in a wide variety of DNA and RNA virus systems. These compounds showed an activity spectrum that conforms to that of S-adenosylhomocysteine hydrolase inhibitors. They were particularly active against pox- (vaccinia), paramyxo-(parainfluenza, measles, respiratory syncytial), arena- (Junin, Tacaribe), rhabdo- (vesicular stomatitis), reo-, and cytomegalovirus. In order of (increasing) antiviral activity, the compounds ranked as follows: 3 less than 15 approximately 20 less than 6 less than 9 approximately 2 less than 22a. Of the two diastereomeric forms of 22, only 22a was active; 22a surpassed neplanocin A both in antiviral potency and selectivity. Compound 22a appears to be a promising candidate drug for the treatment of pox-, paramyxo-, arena-, rhabdo-, reo-, and cytomegalovirus infections. PMID:1732550

  2. The Cost of Performance? Students' Learning about Acting as Change Agents in Their Schools

    ERIC Educational Resources Information Center

    Kehoe, Ian

    2015-01-01

    This paper explores how performance culture could affect students' learning about, and disposition towards, acting as organisational change agents in schools. This is based on findings from an initiative aimed to enable students to experience acting as change agents on an aspect of the school's culture that concerned them. The initiative…

  3. Discovery of novel antiviral agents directed against the influenza A virus nucleoprotein using photo-cross-linked chemical arrays

    SciTech Connect

    Hagiwara, Kyoji; Kondoh, Yasumitsu; Ueda, Atsushi; Yamada, Kazunori; Goto, Hideo; Watanabe, Toshiki; Nakata, Tadashi; Osada, Hiroyuki; Aida, Yoko

    2010-04-09

    The nucleoprotein (NP) of the influenza virus is expressed in the early stage of infection and plays important roles in numerous steps of viral replication. NP is relatively well conserved compared with viral surface spike proteins. This study experimentally demonstrates that NP is a novel target for the development of new antiviral drugs against the influenza virus. First, artificial analogs of mycalamide A in a chemical array bound specifically with high affinity to NP. Second, the compounds inhibited multiplication of the influenza virus. Furthermore, surface plasmon resonance imaging experiments demonstrated that the binding activity of each compound to NP correlated with its antiviral activity. Finally, it was shown that these compounds bound NP within the N-terminal 110-amino acid region but their binding abilities were dramatically reduced when the N-terminal 13-amino acid tail was deleted, suggesting that the compounds might bind to this region, which mediates the nuclear transport of NP and its binding to viral RNA. These data suggest that compound binding to the N-terminal 13-amino acid tail region may inhibit viral replication by inhibiting the functions of NP. Collectively, these results strongly suggest that chemical arrays are convenient tools for the screening of viral product inhibitors.

  4. Synthesis and antiviral activity of a series of novel N-phenylbenzamide and N-phenylacetophenone compounds as anti-HCV and anti-EV71 agents

    PubMed Central

    Jiang, Zhi; Wang, Huiqiang; Li, Yanping; Peng, Zonggen; Li, Yuhuan; Li, Zhuorong

    2015-01-01

    A series of novel N-phenylbenzamide and N-phenylacetophenone compounds were synthesized and evaluated for their antiviral activity against HCV and EV71 (strain SZ-98). The biological results showed that three compounds (23, 25 and 41) exhibited considerable anti-HCV activity (IC50=0.57–7.12 μmol/L) and several compounds (23, 28, 29, 30, 31 and 42) displayed potent activity against EV71 with the IC50 values lower than 5.00 μmol/L. The potency of compound 23 (IC50=0.57 μmol/L) was superior to that of reported compounds IMB-1f (IC50=1.90 μmol/L) and IMB-1g (IC50=1.00 μmol/L) as anti-HCV agents, and compound 29 possessed the highest anti-EV71 activity, comparable to the comparator drug pirodavir. The efficacy in vivo and antiviral mechanism of these compounds warrant further investigations. PMID:26579447

  5. Synthesis and antiviral activity of a series of novel N-phenylbenzamide and N-phenylacetophenone compounds as anti-HCV and anti-EV71 agents.

    PubMed

    Jiang, Zhi; Wang, Huiqiang; Li, Yanping; Peng, Zonggen; Li, Yuhuan; Li, Zhuorong

    2015-05-01

    A series of novel N-phenylbenzamide and N-phenylacetophenone compounds were synthesized and evaluated for their antiviral activity against HCV and EV71 (strain SZ-98). The biological results showed that three compounds (23, 25 and 41) exhibited considerable anti-HCV activity (IC50=0.57-7.12 μmol/L) and several compounds (23, 28, 29, 30, 31 and 42) displayed potent activity against EV71 with the IC50 values lower than 5.00 μmol/L. The potency of compound 23 (IC50=0.57 μmol/L) was superior to that of reported compounds IMB-1f (IC50=1.90 μmol/L) and IMB-1g (IC50=1.00 μmol/L) as anti-HCV agents, and compound 29 possessed the highest anti-EV71 activity, comparable to the comparator drug pirodavir. The efficacy in vivo and antiviral mechanism of these compounds warrant further investigations.

  6. [Effects of Intensity of Acting Agents on the Manifestation of Synergistic Interaction].

    PubMed

    Petin, V G; Zhurakovskaya, G P

    2015-01-01

    The universal dependence of the synergistic interaction on the intensity of the acting agents was demonstrated. This dependence is not associated with the biological object, as well as the nature of the physical or chemical agents used in the combined exposures. In all cases, with a decrease in the intensity of one of the agents the intensity of the other factor should be also decreased to ensure the greatest synergistic effect. Such relationship of synergy and the intensity of the acting agents is of interest for radiation safety. This regularity indicates the principal possibility of synergistic interaction of harmful environmental factors actually occurring in the biosphere at their low intensities. PMID:26964345

  7. The antiviral agent cidofovir [(S)-1-(3-hydroxy-2-phosphonyl-methoxypropyl)cytosine] has pronounced activity against nasopharyngeal carcinoma grown in nude mice.

    PubMed

    Neyts, J; Sadler, R; De Clercq, E; Raab-Traub, N; Pagano, J S

    1998-02-01

    The effect of the antiviral agent (S)-1-(3-hydroxy-2-phosphonylmethoxypropyl) cytosine (cidofovir) on the EBV-associated tumor nasopharyngeal carcinoma (NPC) was evaluated in NPC xenografts in athymic mice. Intratumoral injection arrested tumor growth within 1 week, and by 4 weeks, tumors regressed to 8-75% (39 +/- 33%) of the original size, whereas control tumors injected with PBS grew to 282 +/- 25% of the original size. Ganciclovir slowed but did not arrest or cause regression of tumor growth. A striking antitumor effect was also produced by systemic administration; at 4 weeks, tumors were 79 +/- 49% of the original size, compared with 635 +/- 91% for the controls. Widespread apoptosis was detected after treatment for 2-6 days in C15 as well as two other NPC xenografts, C17 and C18; the latter NPCs have mutations in the p53 gene. These data indicate that cidofovir induces rapid cell death through apoptosis in EBV-transformed epithelial cells.

  8. Strategies to improve efficacy and safety of a novel class of antiviral hyper-activation-limiting therapeutic agents: the VS411 model HIV/AIDS

    PubMed Central

    De Forni, D; Stevens, MR; Lori, F

    2010-01-01

    BACKGROUND AND PURPOSE Antiviral hyper-activation-limiting therapeutic agents (AV-HALTs) are a novel experimental drug class designed to both decrease viral replication and down-regulate excessive immune system activation for the treatment of chronic infections, including human immunodeficiency virus (HIV)/acquired immunodeficiency syndrome. VS411, a first-in-class AV-HALT, is a single-dosage form combining didanosine (ddI, 400 mg), an antiviral (AV), and hydroxyurea (HU, 600 mg), a cytostatic agent, designed to provide a slow release of ddI to reduce its maximal plasma concentration (Cmax) to potentially reduce toxicity while maintaining total daily exposure (AUC) and the AV activity. EXPERIMENTAL APPROACH This was a pilot phase I, open-label, randomized, single-dose, four-way crossover trial to investigate the fasted and non-fasted residual variance of AUC, Cmax and the oral bioavailability of ddI and HU, co-formulated as VS411, and administered as two different fixed-dose combination formulations compared to commercially available ddI (Videx EC) and HU (Hydrea) when given simultaneously. KEY RESULTS Formulation VS411-2 had a favourable safety profile, displayed a clear trend for lower ddI Cmax (P = 0.0603) compared to Videx EC, and the 90% confidence intervals around the least square means ratio of Cmax did not include 100%. ddI AUC∞ was not significantly decreased compared to Videx EC. HU pharmacokinetic parameters were essentially identical to Hydrea, although there was a decrease in HU exposure under fed versus fasted conditions. CONCLUSIONS AND IMPLICATIONS A phase IIa trial utilizing VS411-2 formulation has been fielded to identify the optimal doses of HU plus ddI as an AV-HALT for the treatment of HIV disease. PMID:20860662

  9. Potential therapeutic applications of multifunctional host-defense peptides from frog skin as anti-cancer, anti-viral, immunomodulatory, and anti-diabetic agents.

    PubMed

    Conlon, J Michael; Mechkarska, Milena; Lukic, Miodrag L; Flatt, Peter R

    2014-07-01

    Frog skin constitutes a rich source of peptides with a wide range of biological properties. These include host-defense peptides with cytotoxic activities against bacteria, fungi, protozoa, viruses, and mammalian cells. Several hundred such peptides from diverse species have been described. Although attention has been focused mainly on antimicrobial activity, the therapeutic potential of frog skin peptides as anti-infective agents remains to be realized and no compound based upon their structures has yet been adopted in clinical practice. Consequently, alternative applications are being explored. Certain naturally occurring frog skin peptides, and analogs with improved therapeutic properties, show selective cytotoxicity against tumor cells and viruses and so have potential for development into anti-cancer and anti-viral agents. Some peptides display complex cytokine-mediated immunomodulatory properties. Effects on the production of both pro-inflammatory and anti-inflammatory cytokines by peritoneal macrophages and peripheral blood mononuclear cells have been observed so that clinical applications as anti-inflammatory, immunosuppressive, and immunostimulatory agents are possible. Several frog skin peptides, first identified on the basis of antimicrobial activity, have been shown to stimulate insulin release both in vitro and in vivo and so show potential as incretin-based therapies for treatment of patients with Type 2 diabetes mellitus. This review assesses the therapeutic possibilities of peptides from frogs belonging to the Ascaphidae, Alytidae, Pipidae, Dicroglossidae, Leptodactylidae, Hylidae, and Ranidae families that complement their potential role as anti-infectives for use against multidrug-resistant microorganisms. PMID:24793775

  10. Potential therapeutic applications of multifunctional host-defense peptides from frog skin as anti-cancer, anti-viral, immunomodulatory, and anti-diabetic agents.

    PubMed

    Conlon, J Michael; Mechkarska, Milena; Lukic, Miodrag L; Flatt, Peter R

    2014-07-01

    Frog skin constitutes a rich source of peptides with a wide range of biological properties. These include host-defense peptides with cytotoxic activities against bacteria, fungi, protozoa, viruses, and mammalian cells. Several hundred such peptides from diverse species have been described. Although attention has been focused mainly on antimicrobial activity, the therapeutic potential of frog skin peptides as anti-infective agents remains to be realized and no compound based upon their structures has yet been adopted in clinical practice. Consequently, alternative applications are being explored. Certain naturally occurring frog skin peptides, and analogs with improved therapeutic properties, show selective cytotoxicity against tumor cells and viruses and so have potential for development into anti-cancer and anti-viral agents. Some peptides display complex cytokine-mediated immunomodulatory properties. Effects on the production of both pro-inflammatory and anti-inflammatory cytokines by peritoneal macrophages and peripheral blood mononuclear cells have been observed so that clinical applications as anti-inflammatory, immunosuppressive, and immunostimulatory agents are possible. Several frog skin peptides, first identified on the basis of antimicrobial activity, have been shown to stimulate insulin release both in vitro and in vivo and so show potential as incretin-based therapies for treatment of patients with Type 2 diabetes mellitus. This review assesses the therapeutic possibilities of peptides from frogs belonging to the Ascaphidae, Alytidae, Pipidae, Dicroglossidae, Leptodactylidae, Hylidae, and Ranidae families that complement their potential role as anti-infectives for use against multidrug-resistant microorganisms.

  11. Inhibition of Semliki Forest virus multiplication by ribavirin: a potential method for the monitoring of antiviral agents in serum.

    PubMed

    van Tiel, F H; Harmsen, M; Kraaijeveld, C A; Snippe, H

    1986-09-01

    An enzyme immunoassay (EIA) to determine 50% inhibitory concentrations of ribavirin which suppresses Semliki Forest virus (SFV) multiplication in L-cells is described. Inhibition of SFV replication by ribavirin was measured by detection of viral glycoprotein, on the surface of infected L-cell monolayers, with a horseradish peroxidase labeled monoclonal antibody with specificity for the E2 glycoprotein of SFV. The concentration of ribavirin in culture fluid associated with 50% reduction of control absorbance values was defined as the 50% inhibitory concentration (IC50). The IC50 of ribavirin measured with EIA was mainly influenced by the multiplicity of infection (MOI). At MOI values of 3, 6 and 12 reduction of absorbance values was already obvious at 4.5 h of infection. Furthermore reduction of absorbance values correlated with inhibition of virus production as determined by plaque titration of culture fluids. When the EIA was used for the determination of active ribavirin in serum from treated animals the drug was detectable 1 h after intravenous administration of 4 mg of ribavirin to a concentration of 8 micrograms per ml serum. The results indicate that this simple EIA is suitable for the monitoring of active antiviral drugs in body fluids.

  12. Enabling the Intestinal Absorption of Highly Polar Anti-Viral Agents: Ion-Pair Facilitated Membrane Permeation of Zanamivir Heptyl Ester and Guanidino Oseltamivir

    PubMed Central

    Miller, Jonathan M.; Dahan, Arik; Gupta, Deepak; Varghese, Sheeba; Amidon, Gordon L.

    2012-01-01

    Anti-viral drugs often suffer from poor intestinal permeability, preventing their delivery via the oral route. The goal of this work was to enhance the intestinal absorption of the low-permeability anti-viral agents zanamivr heptyl ester (ZHE) and guanidino oseltamivir (GO) utilizing an ion-pairing approach, as a critical step toward making them oral drugs. The counterion 1-hydroxy-2-napthoic acid (HNAP) was utilized to enhance the lipophilicity and permeability of the highly polar drugs. HNAP substantially increased the log P of the drugs by up to 3.7 log units. Binding constants (K11aq) of 388 M−1 for ZHE-HNAP and 2.91 M−1 for GO.-HNAP were obtained by applying a quasi-equilibrium transport model to double-reciprocal plots of apparent octanol-buffer distribution coefficients versus HNAP concentration. HNAP enhanced the apparent permeability (Papp) of both compounds across Caco-2 cell monolayers in a concentration-dependent manner, as substantial Papp (0.8 – 3.0 × 10−6 cm/s) was observed in the presence of 6–24 mM HNAP, whereas no detectable transport was observed without counterion. Consistent with a quasi-equilibrium transport model, a linear relationship with slope near 1 was obtained from a log-log plot of Caco-2 Papp versus HNAP concentration, supporting the ion-pair mechanism behind the permeability enhancement. In the rat jejunal perfusion assay, the addition of HNAP failed to increase the effective permeability (Peff) of GO. However, the rat jejunal permeability of ZHE was significantly enhanced by the addition of HNAP in a concentration-dependent manner, from essentially zero without HNAP to 4.0 × 10−5 cm/s with 10 mM HNAP, matching the Peff of the high-permeability standard metoprolol. The success of ZHE-HNAP was explained by its >100-fold stronger K11aq versus GO-HNAP, making ZHE-HNAP less prone to dissociation and ion-exchange with competing endogenous anions and able to remain intact during membrane permeation. Overall, this work

  13. The Role of Hepatitis C Virus Core Antigen Testing in the Era of Direct Acting Antiviral Therapies: What We Can Learn from the Protease Inhibitors

    PubMed Central

    Nguyen, Linh Thuy; Gray, Emma; O'Leary, Aisling; Carr, Michael; De Gascun, Cillian F.

    2016-01-01

    Direct-acting antiviral (DAA) therapies have revolutionised the treatment of hepatitis C virus (HCV). The financial cost of DAAs however is significant, and first generation protease inhibitors (PIs) also require frequent monitoring of viral RNA levels to guide treatment. In this context, we examined the relevance of HCV antigen testing to evaluate the potential role in monitoring virological response to HCV antiviral treatment with the PI-based triple therapies, telaprevir (TVR) and boceprevir (BOC). Chronic HCV-infected individuals (n = 152) enrolled in the Irish Hepatitis C Outcomes Research Network (ICORN) study were prospectively analysed for baseline markers and the early viral kinetics associated with SVR. The sustained virological response (SVR) rates in the cohort receiving TVR and BOC were 87.3% and 73.8%, respectively. Baseline factors associated with successful outcome in TVR therapy were age (P = 0.0098), IFNL3 genotype (P = 0.0330) and viral load (P = 0.0456). RNA level at week 4 (P = 0.0068) and viral antigen negativity at week 2 (P = 0.0359) were predictive of SVR for TVR-based therapy. In BOC therapy, prior interferon treatment (P = 0.0209) and IFNL3 genotype (P = 0.0410) were baseline predictors of SVR. Evidence of viraemia based either on viral RNA or antigen at week 4 predicted SVR in these patients. Our data showed that rapid decline of HCV antigen to negative level at week 2 in TVR treatment and <0.96 log fmol/l in BOC treatment after commencement of PI triple therapy were associated with SVR. HCV antigen measurement should be considered as a potential alternative for monitoring treatment response during DAA-based regimens. PMID:27711230

  14. Toward a semantics for an agent communications language based on speech-acts

    SciTech Connect

    Smith, I.A.; Cohen, P.R.

    1996-12-31

    Systems based on distributed agent architectures require an agent communications language having a clearly defined semantics. This paper demonstrates that a semantics for an agent communications language can be founded on the premise that agents are building, maintaining, and disbanding teams through their performance of communicative acts. This view requires that definitions of basic communicative acts, such as requesting, be recast in terms of the formation of a joint intention - a mental state that has been suggested underlies team behavior. To illustrate these points, a semantics is developed for a number of communication actions that can form and dissolve teams. It is then demonstrated how much of the structure of popular finite-state dialogue models, such as Winograd and Flores` basic conversation for action, follows as a consequence of the logical relationships that are created by the redefined communicative actions.

  15. First discovery of acetone extract from cottonseed oil sludge as a novel antiviral agent against plant viruses.

    PubMed

    Zhao, Lei; Feng, Chaohong; Hou, Caiting; Hu, Lingyun; Wang, Qiaochun; Wu, Yunfeng

    2015-01-01

    A novel acetone extract from cottonseed oil sludge was firstly discovered against plant viruses including Tobacco mosaic virus (TMV), Rice stripe virus (RSV) and Southern rice black streaked dwarf virus (SRBSDV). Gossypol and β-sitosterol separated from the acetone extract were tested for their effects on anti-TMV and analysed by nuclear magnetic resonance (NMR) assay. In vivo and field trials in different geographic distributions and different host varieties declared that this extract mixture was more efficient than the commercial agent Ningnanmycin with a broad spectrum of anti-plant-viruses activity. No phytotoxic activity was observed in the treated plants and environmental toxicology showed that this new acetone extract was environmentally friendly, indicating that this acetone extract has potential application in the control of plant virus in the future.

  16. First Discovery of Acetone Extract from Cottonseed Oil Sludge as a Novel Antiviral Agent against Plant Viruses

    PubMed Central

    Zhao, Lei; Feng, Chaohong; Hou, Caiting; Hu, Lingyun; Wang, Qiaochun; Wu, Yunfeng

    2015-01-01

    A novel acetone extract from cottonseed oil sludge was firstly discovered against plant viruses including Tobacco mosaic virus (TMV), Rice stripe virus (RSV) and Southern rice black streaked dwarf virus (SRBSDV). Gossypol and β-sitosterol separated from the acetone extract were tested for their effects on anti-TMV and analysed by nuclear magnetic resonance (NMR) assay. In vivo and field trials in different geographic distributions and different host varieties declared that this extract mixture was more efficient than the commercial agent Ningnanmycin with a broad spectrum of anti-plant-viruses activity. No phytotoxic activity was observed in the treated plants and environmental toxicology showed that this new acetone extract was environmentally friendly, indicating that this acetone extract has potential application in the control of plant virus in the future. PMID:25705894

  17. Antiviral options for biodefense.

    PubMed

    Byrd, Chelsea M; Grosenbach, Douglas W; Hruby, Dennis E

    2013-10-01

    A key to biodefense strategies is an assessment of current therapies available as well as the expedited development of new antiviral therapeutic options. Viruses make up the majority of the National Institute of Allergy and Infectious Diseases (NIAID) Category A Priority Pathogens, agents that are considered to pose the greatest risk to public health and national security, and yet there are currently no approved treatments for most of these viral biodefense threats. A review of the Category A viral biothreat agents and strategies for the development of new therapeutics are presented here. PMID:23773331

  18. HCV Drug Resistance Challenges in Japan: The Role of Pre-Existing Variants and Emerging Resistant Strains in Direct Acting Antiviral Therapy

    PubMed Central

    Chayama, Kazuaki; Hayes, C. Nelson

    2015-01-01

    Sustained virological response (SVR) rates have increased dramatically following the approval of direct acting antiviral (DAA) therapies. While individual DAAs have a low barrier to resistance, most patients can be successfully treated using DAA combination therapy. However, DAAs are vulnerable to drug resistance, and resistance-associated variants (RAVs) may occur naturally prior to DAA therapy or may emerge following drug exposure. While most RAVs are quickly lost in the absence of DAAs, compensatory mutations may reinforce fitness. However, the presence of RAVs does not necessarily preclude successful treatment. Although developments in hepatitis C virus (HCV) therapy in Asia have largely paralleled those in the United States, Japan’s July 2014 approval of asunaprevir plus daclatasvir combination therapy as the first all-oral interferon-free therapy was not repeated in the United States. Instead, two different combination therapies were approved: sofosbuvir/ledipasvir and paritaprevir/ritonavir/ombitasvir/dasabuvir. This divergence in treatment approaches may lead to differences in resistance challenges faced by Japan and the US. However, the recent approval of sofosbuvir plus ledipasvir in Japan and the recent submissions of petitions for approval of paritaprevir/ritonavir plus ombitasvir suggest a trend towards a new consensus on emerging DAA regimens. PMID:26473914

  19. HCV Drug Resistance Challenges in Japan: The Role of Pre-Existing Variants and Emerging Resistant Strains in Direct Acting Antiviral Therapy.

    PubMed

    Chayama, Kazuaki; Hayes, C Nelson

    2015-10-01

    Sustained virological response (SVR) rates have increased dramatically following the approval of direct acting antiviral (DAA) therapies. While individual DAAs have a low barrier to resistance, most patients can be successfully treated using DAA combination therapy. However, DAAs are vulnerable to drug resistance, and resistance-associated variants (RAVs) may occur naturally prior to DAA therapy or may emerge following drug exposure. While most RAVs are quickly lost in the absence of DAAs, compensatory mutations may reinforce fitness. However, the presence of RAVs does not necessarily preclude successful treatment. Although developments in hepatitis C virus (HCV) therapy in Asia have largely paralleled those in the United States, Japan's July 2014 approval of asunaprevir plus daclatasvir combination therapy as the first all-oral interferon-free therapy was not repeated in the United States. Instead, two different combination therapies were approved: sofosbuvir/ledipasvir and paritaprevir/ritonavir/ombitasvir/dasabuvir. This divergence in treatment approaches may lead to differences in resistance challenges faced by Japan and the US. However, the recent approval of sofosbuvir plus ledipasvir in Japan and the recent submissions of petitions for approval of paritaprevir/ritonavir plus ombitasvir suggest a trend towards a new consensus on emerging DAA regimens. PMID:26473914

  20. Effects of the USA PATRIOT Act and the 2002 Bioterrorism Preparedness Act on select agent research in the United States

    PubMed Central

    Dias, M. Beatrice; Reyes-Gonzalez, Leonardo; Veloso, Francisco M.; Casman, Elizabeth A.

    2010-01-01

    A bibliometric analysis of the Bacillus anthracis and Ebola virus archival literature was conducted to determine whether negative consequences of the Uniting and Strengthening America by Providing Appropriate Tools Required to Intercept and Obstruct Terrorism” (USA PATRIOT) Act and the 2002 Bioterrorism Preparedness Act on US select agent research could be discerned. Indicators of the health of the field, such as number of papers published per year, number of researchers authoring papers, and influx rate of new authors, indicated an overall stimulus to the field after 2002. As measured by interorganizational coauthorships, both B. anthracis and Ebola virus research networks expanded after 2002 in terms of the number of organizations and the degree of collaboration. Coauthorship between US and non US scientists also grew for Ebola virus but contracted for the subset of B. anthracis research that did not involve possession of viable, virulent bacteria. Some non-US institutions were dropped, and collaborations with others intensified. Contrary to expectations, research did not become centralized around a few gatekeeper institutions. Two negative effects were detected. There was an increased turnover rate of authors in the select agent community that was not observed in the control organism (Klebsiella pneumoniae) research community. However, the most striking effect observed was not associated with individual authors or institutions; it was a loss of efficiency, with an approximate 2- to 5-fold increase in the cost of doing select agent research as measured by the number of research papers published per millions of US research dollars awarded. PMID:20457912

  1. Effects of the USA PATRIOT Act and the 2002 Bioterrorism Preparedness Act on select agent research in the United States.

    PubMed

    Dias, M Beatrice; Reyes-Gonzalez, Leonardo; Veloso, Francisco M; Casman, Elizabeth A

    2010-05-25

    A bibliometric analysis of the Bacillus anthracis and Ebola virus archival literature was conducted to determine whether negative consequences of the Uniting and Strengthening America by Providing Appropriate Tools Required to Intercept and Obstruct Terrorism" (USA PATRIOT) Act and the 2002 Bioterrorism Preparedness Act on US select agent research could be discerned. Indicators of the health of the field, such as number of papers published per year, number of researchers authoring papers, and influx rate of new authors, indicated an overall stimulus to the field after 2002. As measured by interorganizational coauthorships, both B. anthracis and Ebola virus research networks expanded after 2002 in terms of the number of organizations and the degree of collaboration. Coauthorship between US and non US scientists also grew for Ebola virus but contracted for the subset of B. anthracis research that did not involve possession of viable, virulent bacteria. Some non-US institutions were dropped, and collaborations with others intensified. Contrary to expectations, research did not become centralized around a few gatekeeper institutions. Two negative effects were detected. There was an increased turnover rate of authors in the select agent community that was not observed in the control organism (Klebsiella pneumoniae) research community. However, the most striking effect observed was not associated with individual authors or institutions; it was a loss of efficiency, with an approximate 2- to 5-fold increase in the cost of doing select agent research as measured by the number of research papers published per millions of US research dollars awarded.

  2. [ANTIVIRAL ACTIVITY OF THE DIHYDROQUERCETIN DURING THE COXSACKIEVIRUS B4 REPLICATION IN VITRO].

    PubMed

    Galochkina, A V; Zarubaev, V V; Kiselev, O I; Babkin, V A; Ostroukhova, L A

    2016-01-01

    A study of the antiviral activity of antioxidants against viral infections is believed to be essential for creating complex antiviral agents. Dihydroquercetin is considered as the most active antioxidant extracted from Larix gmelinii. In this work, we present results of experiments of the antiviral properties of dihydroquercetin against a member of the family Picarnaviridae--Coxsackievirus B4 in vitro. We have estimated that dihydroquercetin reduces viral titers at 100 µg/ml concentration as compared with control of virus. We have shown using the plaque assay that CPE of virusis reduced in the presence of dihydroquercetin at 100 µg/ml. Study of the phase of viral lifecycle, in which dihydroquercetin acted, demonstrated that the highest efficacy of the antiviral therapy was reached at early stages of virus reproduction (1-3 hours post infection). These results show that dihydroquercetin has antiviralproperty against Coxsackievirus B4. This drug and other antioxidants can be tested as inhibitors of viral replication.

  3. 43 CFR 3862.2-1 - Citizenship of corporations and of associations acting through agents.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Citizenship of corporations and of...) MINERAL PATENT APPLICATIONS Lode Mining Claim Patent Applications § 3862.2-1 Citizenship of corporations and of associations acting through agents. The proof necessary to establish the citizenship...

  4. 43 CFR 3862.2-1 - Citizenship of corporations and of associations acting through agents.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Citizenship of corporations and of...) MINERAL PATENT APPLICATIONS Lode Mining Claim Patent Applications § 3862.2-1 Citizenship of corporations and of associations acting through agents. The proof necessary to establish the citizenship...

  5. 43 CFR 3862.2-1 - Citizenship of corporations and of associations acting through agents.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Citizenship of corporations and of...) MINERAL PATENT APPLICATIONS Lode Mining Claim Patent Applications § 3862.2-1 Citizenship of corporations and of associations acting through agents. The proof necessary to establish the citizenship...

  6. 43 CFR 3862.2-1 - Citizenship of corporations and of associations acting through agents.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Citizenship of corporations and of...) MINERAL PATENT APPLICATIONS Lode Mining Claim Patent Applications § 3862.2-1 Citizenship of corporations and of associations acting through agents. The proof necessary to establish the citizenship...

  7. Genetic Diversity and Selective Pressure in Hepatitis C Virus Genotypes 1-6: Significance for Direct-Acting Antiviral Treatment and Drug Resistance.

    PubMed

    Cuypers, Lize; Li, Guangdi; Libin, Pieter; Piampongsant, Supinya; Vandamme, Anne-Mieke; Theys, Kristof

    2015-09-01

    Treatment with pan-genotypic direct-acting antivirals, targeting different viral proteins, is the best option for clearing hepatitis C virus (HCV) infection in chronically infected patients. However, the diversity of the HCV genome is a major obstacle for the development of antiviral drugs, vaccines, and genotyping assays. In this large-scale analysis, genome-wide diversity and selective pressure was mapped, focusing on positions important for treatment, drug resistance, and resistance testing. A dataset of 1415 full-genome sequences, including genotypes 1-6 from the Los Alamos database, was analyzed. In 44% of all full-genome positions, the consensus amino acid was different for at least one genotype. Focusing on positions sharing the same consensus amino acid in all genotypes revealed that only 15% was defined as pan-genotypic highly conserved (≥99% amino acid identity) and an additional 24% as pan-genotypic conserved (≥95%). Despite its large genetic diversity, across all genotypes, codon positions were rarely identified to be positively selected (0.23%-0.46%) and predominantly found to be under negative selective pressure, suggesting mainly neutral evolution. For NS3, NS5A, and NS5B, respectively, 40% (6/15), 33% (3/9), and 14% (2/14) of the resistance-related positions harbored as consensus the amino acid variant related to resistance, potentially impeding treatment. For example, the NS3 variant 80K, conferring resistance to simeprevir used for treatment of HCV1 infected patients, was present in 39.3% of the HCV1a strains and 0.25% of HCV1b strains. Both NS5A variants 28M and 30S, known to be associated with resistance to the pan-genotypic drug daclatasvir, were found in a significant proportion of HCV4 strains (10.7%). NS5B variant 556G, known to confer resistance to non-nucleoside inhibitor dasabuvir, was observed in 8.4% of the HCV1b strains. Given the large HCV genetic diversity, sequencing efforts for resistance testing purposes may need to be

  8. Genetic Diversity and Selective Pressure in Hepatitis C Virus Genotypes 1–6: Significance for Direct-Acting Antiviral Treatment and Drug Resistance

    PubMed Central

    Cuypers, Lize; Li, Guangdi; Libin, Pieter; Piampongsant, Supinya; Vandamme, Anne-Mieke; Theys, Kristof

    2015-01-01

    Treatment with pan-genotypic direct-acting antivirals, targeting different viral proteins, is the best option for clearing hepatitis C virus (HCV) infection in chronically infected patients. However, the diversity of the HCV genome is a major obstacle for the development of antiviral drugs, vaccines, and genotyping assays. In this large-scale analysis, genome-wide diversity and selective pressure was mapped, focusing on positions important for treatment, drug resistance, and resistance testing. A dataset of 1415 full-genome sequences, including genotypes 1–6 from the Los Alamos database, was analyzed. In 44% of all full-genome positions, the consensus amino acid was different for at least one genotype. Focusing on positions sharing the same consensus amino acid in all genotypes revealed that only 15% was defined as pan-genotypic highly conserved (≥99% amino acid identity) and an additional 24% as pan-genotypic conserved (≥95%). Despite its large genetic diversity, across all genotypes, codon positions were rarely identified to be positively selected (0.23%–0.46%) and predominantly found to be under negative selective pressure, suggesting mainly neutral evolution. For NS3, NS5A, and NS5B, respectively, 40% (6/15), 33% (3/9), and 14% (2/14) of the resistance-related positions harbored as consensus the amino acid variant related to resistance, potentially impeding treatment. For example, the NS3 variant 80K, conferring resistance to simeprevir used for treatment of HCV1 infected patients, was present in 39.3% of the HCV1a strains and 0.25% of HCV1b strains. Both NS5A variants 28M and 30S, known to be associated with resistance to the pan-genotypic drug daclatasvir, were found in a significant proportion of HCV4 strains (10.7%). NS5B variant 556G, known to confer resistance to non-nucleoside inhibitor dasabuvir, was observed in 8.4% of the HCV1b strains. Given the large HCV genetic diversity, sequencing efforts for resistance testing purposes may need to be

  9. Evidence that the SKI antiviral system of Saccharomyces cerevisiae acts by blocking expression of viral mRNA.

    PubMed Central

    Widner, W R; Wickner, R B

    1993-01-01

    The SKI2 gene is part of a host system that represses the copy number of the L-A double-stranded RNA (dsRNA) virus and its satellites M and X dsRNA, of the L-BC dsRNA virus, and of the single-stranded replicon 20S RNA. We show that SKI2 encodes a 145-kDa protein with motifs characteristic of helicases and nucleolar proteins and is essential only in cells carrying M dsRNA. Unexpectedly, Ski2p does not repress M1 dsRNA copy number when M1 is supported by aN L-A cDNA clone; nonetheless, it did lower the levels of M1 dsRNA-encoded toxin produced. Since toxin secretion from cDNA clones of M1 is unaffected by Ski2p, these data suggest that Ski2p acts by specifically blocking translation of viral mRNAs, perhaps recognizing the absence of cap or poly(A). In support of this idea, we find that Ski2p represses production of beta-galactosidase from RNA polymerase I [no cap and no poly(A)] transcripts but not from RNA polymerase II (capped) transcripts. Images PMID:8321235

  10. 75 FR 11189 - Expanded Access to Direct-Acting Antiviral Agents for the Treatment of Chronic Hepatitis C...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-10

    ...) (74 FR 40900, August 13, 2009). Under these regulations, a treatment IND, which permits patients... with decompensated cirrhosis and in patients undergoing liver transplant. One option for these...

  11. Current and emerging antiviral treatments for hepatitis C infection

    PubMed Central

    Doyle, Joseph S; Aspinall, Esther; Liew, Danny; Thompson, Alexander J; Hellard, Margaret E

    2013-01-01

    Newly licensed direct acting antivirals for hepatitis C virus HCV are able to cure up to 75% of patients chronically infected with genotype-1 infection, which is the predominant HCV strain in Europe and North America. Emerging antiviral therapies promise further increases in virological response, as well as improved tolerability, reduced duration of therapy, and will potentially eliminate the need for interferon use. This review highlights the main therapeutic agents used in current standard of care, including telaprevir and boceprevir. It goes on to evaluate the mechanisms of emerging drugs, their stage of development and response rates seen in research to date. Finally, it projects into the not too distant future to consider treatment strategies involving combinations of agents and interferon-free therapies, and in which patients they might prove most successful. PMID:22882367

  12. How Generalizable Are the Results From Trials of Direct Antiviral Agents to People Coinfected With HIV/HCV in the Real World?

    PubMed Central

    Saeed, Sahar; Strumpf, Erin C.; Walmsley, Sharon L.; Rollet-Kurhajec, Kathleen; Pick, Neora; Martel-Laferrière, Valerie; Hull, Mark; Gill, M. John; Cox, Joseph; Cooper, Curtis; Klein, Marina B.

    2016-01-01

    Background. Direct-acting antivirals (DAAs) against hepatitis C virus (HCV) have been described as revolutionary. However, it remains uncertain how effective these drugs will be for individuals coinfected with human immunodeficiency virus (HIV)–HCV. Bridging this gap between efficacy and effectiveness requires a focus on the generalizability of clinical trials. Methods. Generalizability of DAA trials was assessed by applying the eligibility criteria from 5 efficacy trials: NCT01479868, PHOTON-1 (NCT01667731), TURQUOISE-I (NCT01939197), ION-4 (NCT02073656), and ALLY-2 (NCT02032888) that evaluated simeprevir; sofosbuvir; ombitasvir, paritaprevir/ritonavir/dasabuvir; sofosbuvir/ledipasvir; and daclatasvir/sofosbuvir, respectively, to the Canadian Coinfection Cohort, representing approximately 23% of the total coinfected population in care in Canada. Results. Of 874 active participants, 70% had chronic HCV, of whom 410, 26, 94, and 11 had genotypes 1, 2, 3, and 4, respectively. After applying trial eligibility criteria, only 5.9% (24/410) would have been eligible for enrollment in the simeprevir trial, 9.8% (52/530) in PHOTON-1, 6.3% (26/410) in TURQUOISE-I, and 8.1% (34/421) in ION-4. The ALLY-2 study was more inclusive; 43% (233/541) of the cohort would have been eligible. The most exclusive eligibility criteria across all trials with the exception of ALLY-2 were restriction to specific antiretroviral therapies (63%–79%) and active illicit drug use (53%–55%). Conclusions. DAA trial results may have limited generalizability, since the majority of coinfected individuals were not eligible to participate. Exclusions appeared to be related to improving treatment outcomes by not including those at higher risk of poor adherence and reinfection—individuals for whom real-world data are urgently needed. PMID:26743093

  13. Antiretroviral Use in the CEASE Cohort Study and Implications for Direct-Acting Antiviral Therapy in Human Immunodeficiency Virus/Hepatitis C Virus Coinfection

    PubMed Central

    Martinello, Marianne; Dore, Gregory J.; Skurowski, Jasmine; Bopage, Rohan I.; Finlayson, Robert; Baker, David; Bloch, Mark; Matthews, Gail V.

    2016-01-01

    Background. Interferon-free direct-acting antiviral (DAA) regimens for hepatitis C virus (HCV) provide a major advance in clinical management, including in human immunodeficiency virus (HIV)/HCV coinfection. Drug-drug interactions (DDIs) with combination antiretroviral therapy (cART) require consideration. This study aimed to characterize the cART regimens in HIV/HCV-coinfected individuals and assess the clinical significance of DDIs with DAAs in a real-world cohort. Methods. This analysis included participants enrolled in CEASE-D, a prospective cohort of HIV/HCV-coinfected individuals in Sydney, Australia, between July 2014 and December 2015. A simulation of potential DDIs between participants' cART and interferon-free DAA regimens was performed using www.hep-druginteractions.org and relevant prescribing information. Results. In individuals on cART with HCV genotype (GT) 1 and 4 (n = 128), category 3 DDIs (contraindicated or not recommended) were noted in 0% with sofosbuvir/ledipasvir, 0% with sofosbuvir plus daclatasvir, 17% with sofosbuvir/velpatasvir, 36% with ombitasvir/paritaprevir/ritonavir ± dasabuvir, 51% with grazoprevir/elbasvir, and 51% with sofosbuvir plus simeprevir; current cART regimens were suitable for coadministration in 100%, 100%, 73%, 64%, 49%, and 49%, respectively. In individuals with HCV GT 2 or 3 (n = 53), category 3 DDIs were evident in 0% with sofosbuvir plus daclatasvir, 0% with sofosbuvir and ribavirin, and 13% with sofosbuvir/velpatasvir; current cART regimens were suitable in 100%, 100%, and 81%, respectively. Conclusions. Potential DDIs are expected and will impact on DAA prescribing in HIV/HCV coinfection. Sofosbuvir in combination with an NS5A inhibitor or ribavirin appeared to be the most suitable regimens in this cohort. Evaluation of potential DDIs is required to prevent adverse events or treatment failure. PMID:27419177

  14. Minimum Costs for Producing Hepatitis C Direct-Acting Antivirals for Use in Large-Scale Treatment Access Programs in Developing Countries

    PubMed Central

    Hill, Andrew; Khoo, Saye; Fortunak, Joe; Simmons, Bryony; Ford, Nathan

    2014-01-01

    Background. Several combinations of 2 or 3 direct-acting antivirals (DAAs) can cure hepatitis C virus (HCV) in the majority of treatment-naive patients. DAAs for HCV infection have similar mechanisms of action and chemical structures to antiretrovirals for human immunodeficiency virus (HIV) infection. Generic antiretrovirals are currently manufactured at very low prices, to treat 10 million people with HIV/AIDS in developing countries. Methods. Four HCV DAAs, currently either in phase 3 development or recent approval (daclatasvir, sofosbuvir, simeprevir, faldaprevir), and ribavirin were classified by chemical structure, molecular weight, total daily dose, and complexity of synthesis. The likely range of manufacturing costs per gram of DAA were then projected as formulated product cost, based upon treating a minimum of 1 million patients annually (to arrive at volume demand) combined with an analysis of the complexity of synthesis and a 40% margin for formulation. Projections were then compared with actual costs of antiretrovirals with similar structures. Results. Minimum manufacturing costs of antiretrovirals were US$0.2–$2.1 per gram. The complexity of chemical synthesis for HCV DAAs was ranked from lowest to highest: ribavirin, daclatasvir, sofosbuvir, faldaprevir, and simeprevir. Predicted manufacturing costs (US dollars) for 12-week courses of HCV DAAs were $21–$63 for ribavirin, $10–$30 for daclatasvir, $68–$136 for sofosbuvir, $100–$210 for faldaprevir, and $130–$270 for simeprevir. Conclusions. Within the next 15 years, large-scale manufacture of 2 or 3 drug combinations of HCV DAAs is feasible, with minimum target prices of $100–$250 per 12-week treatment course. These low prices could make widespread access to HCV treatment in low- and middle-income countries a realistic goal. PMID:24399087

  15. Antiretroviral Use in the CEASE Cohort Study and Implications for Direct-Acting Antiviral Therapy in Human Immunodeficiency Virus/Hepatitis C Virus Coinfection.

    PubMed

    Martinello, Marianne; Dore, Gregory J; Skurowski, Jasmine; Bopage, Rohan I; Finlayson, Robert; Baker, David; Bloch, Mark; Matthews, Gail V

    2016-04-01

    Background.  Interferon-free direct-acting antiviral (DAA) regimens for hepatitis C virus (HCV) provide a major advance in clinical management, including in human immunodeficiency virus (HIV)/HCV coinfection. Drug-drug interactions (DDIs) with combination antiretroviral therapy (cART) require consideration. This study aimed to characterize the cART regimens in HIV/HCV-coinfected individuals and assess the clinical significance of DDIs with DAAs in a real-world cohort. Methods.  This analysis included participants enrolled in CEASE-D, a prospective cohort of HIV/HCV-coinfected individuals in Sydney, Australia, between July 2014 and December 2015. A simulation of potential DDIs between participants' cART and interferon-free DAA regimens was performed using www.hep-druginteractions.org and relevant prescribing information. Results.  In individuals on cART with HCV genotype (GT) 1 and 4 (n = 128), category 3 DDIs (contraindicated or not recommended) were noted in 0% with sofosbuvir/ledipasvir, 0% with sofosbuvir plus daclatasvir, 17% with sofosbuvir/velpatasvir, 36% with ombitasvir/paritaprevir/ritonavir ± dasabuvir, 51% with grazoprevir/elbasvir, and 51% with sofosbuvir plus simeprevir; current cART regimens were suitable for coadministration in 100%, 100%, 73%, 64%, 49%, and 49%, respectively. In individuals with HCV GT 2 or 3 (n = 53), category 3 DDIs were evident in 0% with sofosbuvir plus daclatasvir, 0% with sofosbuvir and ribavirin, and 13% with sofosbuvir/velpatasvir; current cART regimens were suitable in 100%, 100%, and 81%, respectively. Conclusions.  Potential DDIs are expected and will impact on DAA prescribing in HIV/HCV coinfection. Sofosbuvir in combination with an NS5A inhibitor or ribavirin appeared to be the most suitable regimens in this cohort. Evaluation of potential DDIs is required to prevent adverse events or treatment failure. PMID:27419177

  16. 3 CFR - Delegation Under Section 2(a) of the Special Agent Samuel Hicks Families of Fallen Heroes Act

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Samuel Hicks Families of Fallen Heroes Act Presidential Documents Other Presidential Documents Memorandum... Fallen Heroes Act Memorandum for the Administrator of General Services By the authority vested in me as... the Special Agent Samuel Hicks Families of Fallen Heroes Act (Public Law 111-178) to prescribe...

  17. Antiviral treatment of influenza in South Korea.

    PubMed

    Choe, Young June; Lee, Hyunju; Lee, Hoan Jong; Choi, Eun Hwa

    2015-06-01

    Antiviral therapy has an important role in the treatment and chemoprophylaxis of influenza. At present, two classes of antiviral agents, adamantanes and neuraminidase inhibitors, are available for the treatment and chemoprophylaxis of influenza in Korea. Because of the widespread resistance against adamantanes, neuraminidase inhibitors are mainly used. Because each country has a unique epidemiology of influenza, the proper use of antiviral agents should be determined based on local data. Decisions on the clinical practice in the treatment of influenza in South Korea are guided by the local surveillance data, practice guidelines, health insurance system and the resistance patterns of the circulating influenza viruses. This review highlights the role of antiviral agents in the treatment and outcome of influenza in Korea by providing comprehensive information of their clinical usage in Korea.

  18. Concordance of sustained virologic response at weeks 4, 12 and 24 post-treatment of hepatitis c in the era of new oral direct-acting antivirals: A concise review.

    PubMed

    Burgess, Sarah V; Hussaini, Trana; Yoshida, Eric M

    2016-01-01

    The goal of treatment for chronic hepatitis C viral (HCV) infection is to cure the infection rather than suppress the virus. Historically, a sustained virological response (SVR) defined as undetectable HCV RNA at 24 weeks following the completion of treatment was considered the gold standard to define successful eradication of the virus as a primary endpoint in clinical trials. SVR measured at 12 weeks post-treatment has been shown to be highly concordant with SVR24 in trials of pegylated interferon and ribavirin. The appropriateness and durability of SVR12 as the efficacy endpoint with new oral direct-acting antivirals is less established. A literatura search was performed using PubMed, EMBASE and CENTRAL databases to identify any studies that examined the concordance between SVR24 and earlier time points. Two studies and 4 abstracts were found that performed concordance analyses using positive and negative predictive values. Overall, SVR4 and SVR12 were highly concordant with SVR24 with high positive (> 97%) and negative (> 94%) predictive values; however there was a higher risk of HCV relapse occurring after post-treatment week 4. The majority of the data focused on SVR12 and demonstrated that SVR12 reliably predicted SVR24 in several populations infected with HCV (treatment-naïve, prior null responders, different genotypes) using various new oral direct-acting antiviral regimens. In conclusion, the available data suggests that SVR12 is a reliable assessment of HCV eradication and could be used instead of SVR24 for drug development clinical trials assessing efficacy of new direct-acting antivirals. Data on the long-term durability of SVR12 is still needed.

  19. Synthesis and antiviral properties of (+/-)-5'-noraristeromycin and related purine carbocyclic nucleosides. A new lead for anti-human cytomegalovirus agent design.

    PubMed

    Patil, S D; Schneller, S W; Hosoya, M; Snoeck, R; Andrei, G; Balzarini, J; De Clercq, E

    1992-09-01

    (+/-)-5'-Noraristeromycin (3) has been prepared in three steps beginning with the 2,3-O-isopropylidene derivative of (+/-)-(1 alpha, 2 beta, 3 beta, 4 alpha)-4-amino-1,2,3-cyclopentanetriol (7). Also prepared from the same starting material were the related hypoxanthine (4), guanine (5), and 2,6-diaminopurine (6) analogues. Compounds 3-6 were evaluated for antiviral activity against a large number of viruses with marked activity being observed for 3 towards vaccinia virus, human cytomegalovirus, vesicular stomatitis virus, parainfluenza (type 3) virus, measles virus, respiratory syncytial virus, reovirus (type 1), and the arenaviruses Junin and Tacaribe. None of the compounds showed cytotoxicity to the host cell monolayers used in the antiviral studies. Both 3 and 6 have been found to be inhibitors of S-adenosyl-L-homocysteine hydrolase (AdoHcy hydrolase), which likely accounts for their antiviral activity. Inhibition of AdoHcy hydrolase represents a new approach to human cytomegalovirus drug design that should be pursued. Also, the activity of 3 should be further scrutinized for the treatment of pox-, rhabdo-, paramyxo-, reo-, and arenavirus infections. PMID:1326633

  20. Clinical efficacy of the highly sensitive hepatitis C virus RNA quantitative assay in patients with relapse following interferon-based therapy with second-generation direct-acting antivirals

    PubMed Central

    ISHIKAWA, TORU; ABE, SATOSHI; WATANABE, TAKAYUKI; NOZAWA, YUJIRO; SANO, TOMOE; IWANAGA, AKITO; SEKI, KEIICHI; HONMA, TERASU; YOSHIDA, TOSHIAKI

    2016-01-01

    For refractory chronic hepatitis C, interferon (IFN)-based triple-agent combination therapy with second-generation direct-acting antivirals (DAAs) has been established as the standard treatment method. The rate of decrease in the viral load and the negative conversion of hepatitis C virus (HCV) RNA in the early phase following treatment initiation are considered important factors for predicting the therapeutic outcome. In the present study, the Roche Cobas AmpliPrep/COBAS TaqMan (CAP/CTM) HCV v2.0 assay and the AccuGENE m-HCV RNA quantitative assay [Abbott RealTime HCV (ART) assay] were analyzed for their clinical efficacy and ability to predict therapeutic outcomes in the early phase in patients with relapse following IFN-based second-generation DAA therapy. Of the 56 patients who received IFN-based second-generation DAA therapy since December 2013, 6 achieved an end-of-treatment response (ETR), but subsequently experienced relapse. In these 6 patients, fluctuations in viral loads in the early phase detected by the CAP/CTM and ART assays were compared. At 4 weeks after treatment initiation, 4 of the 6 patients were diagnosed as negative by the CAP/CTM assay, whereas 2 of these 4 patients were not identified as negative by the ART assay. Of the 2 patients, one was signal-positive with an HCV RNA load <1.08 Log IU/ml, and the other patient had a viral load of 1.12 Log IU/ml. At 8 weeks after treatment initiation, 1 patient was found to be negative by the CAP/CTM assay, but signal-positive with a viral load <1.08 Log IU/ml by the ART assay. From 4 to 8 weeks after treatment initiation, 3 of the 6 patients appeared to be discrepant cases. In conclusion, of the 6 patients who achieved an ETR, 4 were determined to have achieved a rapid virological response (RVR) by the CAP/CTM assay, but may not have actually become negative. The ART assay is highly sensitive, has a wide measurement range, may be suitable for monitoring HCV RNA loads, and is expected to have an

  1. 34 CFR 614.4 - Which member of the consortium must act as the lead applicant and fiscal agent?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... TEACHERS TO USE TECHNOLOGY § 614.4 Which member of the consortium must act as the lead applicant and fiscal agent? (a) For purposes of 34 CFR 75.127, the lead applicant for the consortium must be a nonprofit member of the consortium. (b) The lead applicant must serve as the fiscal agent. (Authority: 20...

  2. 76 FR 57619 - Delegation Under Section 2(A) of the Special Agent Samuel Hicks Families of Fallen Heroes Act

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-15

    ... the Special Agent Samuel Hicks Families of Fallen Heroes Act Presidential Determination No. 2011-15 of September 13, 2011-- Continuation of the Exercise of Certain Authorities Under the Trading With the Enemy... September 12, 2011 Delegation Under Section 2(A) of the Special Agent Samuel Hicks Families of Fallen...

  3. 34 CFR 614.4 - Which member of the consortium must act as the lead applicant and fiscal agent?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... agent? (a) For purposes of 34 CFR 75.127, the lead applicant for the consortium must be a nonprofit... 34 Education 3 2011-07-01 2011-07-01 false Which member of the consortium must act as the lead applicant and fiscal agent? 614.4 Section 614.4 Education Regulations of the Offices of the Department...

  4. The antiviral activity of arctigenin in traditional Chinese medicine on porcine circovirus type 2.

    PubMed

    Chen, Jie; Li, Wentao; Jin, Erguang; He, Qigai; Yan, Weidong; Yang, Hanchun; Gong, Shiyu; Guo, Yi; Fu, Shulin; Chen, Xiabing; Ye, Shengqiang; Qian, Yunguo

    2016-06-01

    Arctigenin (ACT) is a phenylpropanoid dibenzylbutyrolactone lignan extracted from the traditional herb Arctium lappa L. (Compositae) with anti-viral and anti-inflammatory effects. Here, we investigated the antiviral activity of ACT found in traditional Chinese medicine on porcine circovirus type 2 (PCV2) in vitro and in vivo. Results showed that dosing of 15.6-62.5μg/mL ACT could significantly inhibit the PCV2 proliferation in PK-15 cells (P<0.01). Dosing of 62.5μg/mL ACT 0, 4 or 8h after challenge inoculation significantly inhibited the proliferation of 1MOI and 10MOI in PK-15 cells (P<0.01), and the inhibitory effect of ACT dosing 4h or 8h post-inoculation was greater than 0h after dosing (P<0.01). In vivo test with mice challenge against PCV2 infection demonstrated that intraperitoneal injection of 200μg/kg ACT significantly inhibited PCV2 proliferation in the lungs, spleens and inguinal lymph nodes, with an effect similar to ribavirin, demonstrating the effectiveness of ACT as an antiviral agent against PCV2 in vitro and in vivo. This compound, therefore, may have the potential to serve as a drug for protection of pigs against the infection of PCV2.

  5. The antiviral activity of arctigenin in traditional Chinese medicine on porcine circovirus type 2.

    PubMed

    Chen, Jie; Li, Wentao; Jin, Erguang; He, Qigai; Yan, Weidong; Yang, Hanchun; Gong, Shiyu; Guo, Yi; Fu, Shulin; Chen, Xiabing; Ye, Shengqiang; Qian, Yunguo

    2016-06-01

    Arctigenin (ACT) is a phenylpropanoid dibenzylbutyrolactone lignan extracted from the traditional herb Arctium lappa L. (Compositae) with anti-viral and anti-inflammatory effects. Here, we investigated the antiviral activity of ACT found in traditional Chinese medicine on porcine circovirus type 2 (PCV2) in vitro and in vivo. Results showed that dosing of 15.6-62.5μg/mL ACT could significantly inhibit the PCV2 proliferation in PK-15 cells (P<0.01). Dosing of 62.5μg/mL ACT 0, 4 or 8h after challenge inoculation significantly inhibited the proliferation of 1MOI and 10MOI in PK-15 cells (P<0.01), and the inhibitory effect of ACT dosing 4h or 8h post-inoculation was greater than 0h after dosing (P<0.01). In vivo test with mice challenge against PCV2 infection demonstrated that intraperitoneal injection of 200μg/kg ACT significantly inhibited PCV2 proliferation in the lungs, spleens and inguinal lymph nodes, with an effect similar to ribavirin, demonstrating the effectiveness of ACT as an antiviral agent against PCV2 in vitro and in vivo. This compound, therefore, may have the potential to serve as a drug for protection of pigs against the infection of PCV2. PMID:27234554

  6. When Pinocchio acts like a human, a wooden hand becomes embodied. Action co-representation for non-biological agents.

    PubMed

    Müller, Barbara C N; Brass, Marcel; Kühn, Simone; Tsai, Chia-Chin; Nieuwboer, Wieteke; Dijksterhuis, Ap; van Baaren, Rick B

    2011-04-01

    Action observation automatically activates corresponding motor representations in the observer, which is essential in coordinating actions with others. It is assumed that this co-representation system is activated by biological agents only. However, we often identify with biological agents, whereas this is not the case for non-biological agents. The present study investigated whether action co-representation depends on the perceived animacy of the non-biological interaction partner. Before performing a joint Simon task with either an animated image of a human or a wooden hand, participants either watched a video fragment of a biological agent, or of a non-biological agent, Pinocchio, to increase perceived animacy of this agent. Whereas participants who watched the 'biological' agent showed a Simon effect only when co-acting with a biological agent, participants who watched 'non-biological' agent (i.e. Pinocchio) showed a Simon effect only when co-acting with a non-biological agent. The present findings provide evidence for the assumption that motor simulation strongly depends on higher order processes.

  7. Highlights in antiviral drug research: antivirals at the horizon.

    PubMed

    De Clercq, Erik

    2013-11-01

    This review highlights ten "hot topics" in current antiviral research: (i) new nucleoside derivatives (i.e., PSI-352938) showing high potential as a direct antiviral against hepatitis C virus (HCV); (ii) cyclopropavir, which should be further pursued for treatment of human cytomegalovirus (HCMV) infections; (iii) North-methanocarbathymidine (N-MCT), with a N-locked conformation, showing promising activity against both α- and γ-herpesviruses; (iv) CMX001, an orally bioavailable prodrug of cidofovir with broad-spectrum activity against DNA viruses, including polyoma, adeno, herpes, and pox; (v) favipiravir, which is primarily pursued for the treatment of influenza virus infections, but also inhibits the replication of other RNA viruses, particularly (-)RNA viruses such as arena, bunya, and hanta; (vi) newly emerging antiarenaviral compounds which should be more effective (and less toxic) than the ubiquitously used ribavirin; (vii) antipicornavirus agents in clinical development (pleconaril, BTA-798, and V-073); (viii) natural products receiving increased attention as potential antiviral drugs; (ix) antivirals such as U0126 targeted at specific cellular kinase pathways [i.e., mitogen extracellular kinase (MEK)], showing activity against influenza and other viruses; and (x) two structurally unrelated compounds (i.e., LJ-001 and dUY11) with broad-spectrum activity against virtually all enveloped RNA and DNA viruses.

  8. Huprines as a new family of dual acting trypanocidal–antiplasmodial agents

    PubMed Central

    Defaux, Julien; Sala, Marta; Formosa, Xavier; Galdeano, Carles; Taylor, Martin C.; Alobaid, Waleed A.A.; Kelly, John M.; Wright, Colin W.; Camps, Pelayo; Muñoz-Torrero, Diego

    2011-01-01

    A series of 19 huprines has been evaluated for their activity against cultured bloodstream forms of Trypanosoma brucei and Plasmodium falciparum. Moreover, cytotoxicity against rat myoblast L6 cells was assessed for selected huprines. All the tested huprines are moderately potent and selective trypanocidal agents, exhibiting IC50 values against T. brucei in the submicromolar to low micromolar range and selectivity indices for T. brucei over L6 cells of approximately 15, thus constituting interesting trypanocidal lead compounds. Two of these huprines were also found to be active against a chloroquine-resistant strain of P. falciparum, thus emerging as interesting trypanocidal–antiplasmodial dual acting compounds, but they exhibited little selectivity for P. falciparum over L6 cells. PMID:21315611

  9. Novel antiviral activity of chemokines

    SciTech Connect

    Nakayama, Takashi; Shirane, Jumi; Hieshima, Kunio; Shibano, Michiko; Watanabe, Masayasu; Jin, Zhe; Nagakubo, Daisuke; Saito, Takuya; Shimomura, Yoshikazu; Yoshie, Osamu . E-mail: o.yoshie@med.kindai.ac.jp

    2006-07-05

    Antimicrobial peptides are a diverse family of small, mostly cationic polypeptides that kill bacteria, fungi and even some enveloped viruses, while chemokines are a group of mostly cationic small proteins that induce directed migration of leukocytes through interactions with a group of seven transmembrane G protein-coupled receptors. Recent studies have shown that antimicrobial peptides and chemokines have substantially overlapping functions. Thus, while some antimicrobial peptides are chemotactic for leukocytes, some chemokines can kill a wide range of bacteria and fungi. Here, we examined a possible direct antiviral activity of chemokines against an enveloped virus HSV-1. Among 22 human chemokines examined, chemokines such as MIP-1{alpha}/CCL3, MIP-1{beta}/CCL4 and RANTES/CCL5 showed a significant direct antiviral activity against HSV-1. It is intriguing that these chemokines are mostly known to be highly expressed by effector CD8{sup +} T cells. The chemokines with a significant anti-HSV-1 activity commonly bound to HSV-1 virions via envelope glycoprotein gB. Electron microscopy revealed that the chemokines with a significant anti-HSV-1 activity were commonly capable of generating pores in the envelope of HSV-1. Thus, some chemokines have a significant direct antiviral activity against HSV-1 in vitro and may have a potential role in host defense against HSV-1 as a direct antiviral agent.

  10. Antiviral Strategies Against Chikungunya Virus.

    PubMed

    Abdelnabi, Rana; Neyts, Johan; Delang, Leen

    2016-01-01

    In the last few decades the Chikungunya virus (CHIKV) has evolved from a geographically isolated pathogen to a virus that is widespread in many parts of Africa, Asia and recently also in Central- and South-America. Although CHIKV infections are rarely fatal, the disease can evolve into a chronic stage, which is characterized by persisting polyarthralgia and joint stiffness. This chronic CHIKV infection can severely incapacitate patients for weeks up to several years after the initial infection. Despite the burden of CHIKV infections, no vaccine or antivirals are available yet. The current therapy is therefore only symptomatic and consists of the administration of analgesics, antipyretics, and anti-inflammatory agents. Recently several molecules with various viral or host targets have been identified as CHIKV inhibitors. In this chapter, we summarize the current status of the development of antiviral strategies against CHIKV infections.

  11. Antiviral Strategies Against Chikungunya Virus.

    PubMed

    Abdelnabi, Rana; Neyts, Johan; Delang, Leen

    2016-01-01

    In the last few decades the Chikungunya virus (CHIKV) has evolved from a geographically isolated pathogen to a virus that is widespread in many parts of Africa, Asia and recently also in Central- and South-America. Although CHIKV infections are rarely fatal, the disease can evolve into a chronic stage, which is characterized by persisting polyarthralgia and joint stiffness. This chronic CHIKV infection can severely incapacitate patients for weeks up to several years after the initial infection. Despite the burden of CHIKV infections, no vaccine or antivirals are available yet. The current therapy is therefore only symptomatic and consists of the administration of analgesics, antipyretics, and anti-inflammatory agents. Recently several molecules with various viral or host targets have been identified as CHIKV inhibitors. In this chapter, we summarize the current status of the development of antiviral strategies against CHIKV infections. PMID:27233277

  12. Discovery of Multitarget Antivirals Acting on Both the Dengue Virus NS5-NS3 Interaction and the Host Src/Fyn Kinases.

    PubMed

    Vincetti, Paolo; Caporuscio, Fabiana; Kaptein, Suzanne; Gioiello, Antimo; Mancino, Valentina; Suzuki, Youichi; Yamamoto, Naoki; Crespan, Emmanuele; Lossani, Andrea; Maga, Giovanni; Rastelli, Giulio; Castagnolo, Daniele; Neyts, Johan; Leyssen, Pieter; Costantino, Gabriele; Radi, Marco

    2015-06-25

    This study describes the discovery of novel dengue virus inhibitors targeting both a crucial viral protein-protein interaction and an essential host cell factor as a strategy to reduce the emergence of drug resistance. Starting from known c-Src inhibitors, a virtual screening was performed to identify molecules able to interact with a recently discovered allosteric pocket on the dengue virus NS5 polymerase. The selection of cheap-to-produce scaffolds and the exploration of the biologically relevant chemical space around them suggested promising candidates for chemical synthesis. A series of purines emerged as the most interesting candidates able to inhibit virus replication at low micromolar concentrations with no significant toxicity to the host cell. Among the identified antivirals, compound 16i proved to be 10 times more potent than ribavirin, showed a better selectivity index and represents the first-in-class DENV-NS5 allosteric inhibitor able to target both the virus NS5-NS3 interaction and the host kinases c-Src/Fyn.

  13. Type I Interferons in Newborns—Neurotoxicity versus Antiviral Defense

    PubMed Central

    2016-01-01

    ABSTRACT In most children and adults, primary infection with herpes simplex virus 1 (HSV-1) is asymptomatic. However, very rarely (incidence of 1 in 1,000,000), it can cause herpes simplex encephalitis (HSE). HSE also occurs in infants but with a much starker incidence of one in three. This age difference in susceptibility to HSV-1-caused HSE is not well understood. In a recent article in mBio, authors have identified the choroid plexus as the anatomical site of robust HSV-1 replication in the brain. They point to low levels of type I interferon (IFN) receptor as causal of the lack of HSV-1 replication control in neonates, in contrast to adults. Here, I discuss these findings in the context of human genetic evidence. I point to the balancing act of type I IFN acting as a neurotoxin and an antiviral agent, an evolutionary choice of a lesser evil. PMID:27190218

  14. Acting as a Change Agent in Supporting Sustainable Agriculture: How to Cope with New Professional Situations?

    ERIC Educational Resources Information Center

    Cerf, M.; Guillot, M. N.; Olry, P.

    2011-01-01

    How do change agents deal with the diversity of farmers' attitudes towards the future of agriculture? How do they themselves cope with change and understand their role as change agents? We chose a comprehensive, action-training approach to answer such questions and worked with agents belonging to two different extension networks. The agents…

  15. Emerging antiviral drugs.

    PubMed

    De Clercq, Erik

    2008-09-01

    Foremost among the newly described antiviral agents that may be developed into drugs are, for the treatment of human papilloma virus (HPV) infections, cPrPMEDAP; for the treatment of herpes simplex virus (HSV) infections, BAY 57-1293; for the treatment of varicella-zoster virus (VZV) infections, FV-100 (prodrug of Cf 1743); for the treatment of cytomegalovirus (CMV) infections, maribavir; for the treatment of poxvirus infections, ST-246; for the treatment of hepatitis B virus (HBV) infections, tenofovir disoproxil fumarate (TDF) (which in the meantime has already been approved in the EU); for the treatment of various DNA virus infections, the hexadecyloxypropyl (HDP) and octadecyloxyethyl (ODE) prodrugs of cidofovir; for the treatment of orthomyxovirus infections (i.e., influenza), peramivir; for the treatment of hepacivirus infections (i.e., hepatitis C), the protease inhibitors telaprevir and boceprevir, the nucleoside RNA replicase inhibitors (NRRIs) PSI-6130 and R1479, and various non-nucleoside RNA replicase inhibitors (NNRRIs); for the treatment of human immunodeficiency virus (HIV) infections, integrase inhibitors (INIs) such as elvitegravir, nucleoside reverse transcriptase inhibitors (NRTIs) such as apricitabine, non-nucleoside reverse transcriptase inhibitors (NNRTIs) such as rilpivirine and dapivirine; and for the treatment of both HCV and HIV infections, cyclosporin A derivatives such as the non-immunosuppressive Debio-025.

  16. Antiviral targets of human noroviruses.

    PubMed

    Prasad, Bv Venkataram; Shanker, Sreejesh; Muhaxhiri, Zana; Deng, Lisheng; Choi, Jae-Mun; Estes, Mary K; Song, Yongcheng; Palzkill, Timothy; Atmar, Robert L

    2016-06-01

    Human noroviruses are major causative agents of sporadic and epidemic gastroenteritis both in children and adults. Currently there are no licensed therapeutic intervention measures either in terms of vaccines or drugs available for these highly contagious human pathogens. Genetic and antigenic diversity of these viruses, rapid emergence of new strains, and their ability to infect a broad population by using polymorphic histo-blood group antigens for cell attachment, pose significant challenges for the development of effective antiviral agents. Despite these impediments, there is progress in the design and development of therapeutic agents. These include capsid-based candidate vaccines, and potential antivirals either in the form of glycomimetics or designer antibodies that block HBGA binding, as well as those that target essential non-structural proteins such as the viral protease and RNA-dependent RNA polymerase. In addition to these classical approaches, recent studies suggest the possibility of interferons and targeting host cell factors as viable approaches to counter norovirus infection. This review provides a brief overview of this progress. PMID:27318434

  17. 18th International Conference on Antiviral Research.

    PubMed

    Mitchell, William M

    2005-08-01

    The 18th International Conference on Antiviral Research (ICAR) was held at the Princess Sofia Hotel in Barcelona, Spain, from 11th-14th April, 2005. This is a yearly international meeting sponsored by the International Society for Antiviral Research (ISAR). The current president of ISAR is John A Secrest 3rd of the Southern Research Institute. The scientific programme committee was chaired by John C Drach from the University of Michigan. ISAR was founded in 1987 to exchange prepublication basic, applied and clinical information on the development of antiviral, chemical and biological agents as well as to promote collaborative research. The ISAR has had a major role in the significant advances of the past decade in the reduction of the societal burdens of viral diseases by the focus of ICAR on the discovery and clinical application of antiviral agents. The 18th ICAR was organised as a series of focus presentations on specific viral groups consisting of oral and poster presentations of original research findings. In addition, the conference included plenary speakers, award presentations, a minisymposium on bioterrorism, and a satellite symposium on clinical antiviral drug developments. The size of the conference (> 50 oral and 250 poster presentations) necessitates limitation to the most noteworthy in the judgment of this reviewer. The current membership of the ISAR is approximately 700 with approximately 50% the membership in attendance. PMID:16086663

  18. [Interferon : antiviral mechanisms and viral escape].

    PubMed

    Espert, Lucile; Gongora, Céline; Mechti, Nadir

    2003-02-01

    15 % of human cancers have virus origin, meaning that viruses are the second cause of cancers after tabagism. The knowledge of antiviral mechanisms is essential for treatment and prevention of infection evolution towards cancers. Interferons (IFNs) are a large family of multifunctional cytokines. They are involved in regulation of cell growth and modulation of immune response. But, all these functions seem to converge toward the most important of them : the antiviral activity. IFN secretion is the first event induced by viral infection, and will act on specific receptors on neighbour cells and prevent their infection by inducing numbers of antiviral genes. Although few of them are well known like the PKR, the 2-5OAS/RNase L pathway and the Mx proteins, many others need extensive studies to understand the wide range of IFN effect. Viruses have evolved to circumvent the IFN antiviral activity, and are able not only to divert the cellular machinery but also to lure the antiviral mechanisms of the host cell. The purpose of this review is to describe the many antiviral pathways and proteins induced by IFNs and to summarize the strategies of viral escape. PMID:12660132

  19. Rapid viral expansion and short drug half-life explain the incomplete effectiveness of current herpes simplex virus 2-directed antiviral agents.

    PubMed

    Schiffer, Joshua T; Swan, David A; Corey, Lawrence; Wald, Anna

    2013-12-01

    The nucleoside analogues acyclovir (ACV) and famciclovir (FCV) reduce the frequency and severity of herpes simplex virus 2 (HSV-2) genital shedding, yet despite their high potency in vitro and a lack of induced drug resistance, frequent episodes of breakthrough mucosal shedding occur. We tested a published stochastic, spatial mathematical model of HSV-2 replication and spread, in concert with pharmacokinetic and pharmacodynamic equations, against virologic data from clinical trials of twice-daily acyclovir and famciclovir suppression. The model reproduced the key features of clinical trial data, including genital shedding episode rate, expansion and decay dynamics, and heterogeneous peak viral production and duration. In simulations, these agents shortened episode duration by limiting the extent of viral production by 1 to 2 log units and limiting the formation of secondary ulcers by ∼50%. However, drug concentrations were noninhibitory during 42% of the dosing cycle. Even if drug concentrations were high at episode initiation, prolonged episodes often ensued due to drug decay over ensuing hours and subsequent rebound of rapidly replicating HSV-2. The local CD8(+) T-cell density was more predictive of episode viral production (R(2) = 0.42) and duration (R(2) = 0.21) than the drug concentration at episode onset (R(2) = 0.14 and 0.05, respectively), though the model projected that an agent with an equivalent potency but a two times longer half-life would decrease shedding by 80% compared to that of standard twice-daily regimens. Therefore, long half-life is a key characteristic of any agent that might fully suppress HSV-2 reactivations.

  20. Behavior believability in virtual worlds: agents acting when they need to.

    PubMed

    Avradinis, Nikos; Panayiotopoulos, Themis; Anastassakis, George

    2013-12-01

    Believability has been a perennial goal for the intelligent virtual agent community. One important aspect of believability largely consists in demonstrating autonomous behavior, consistent with the agent's personality and motivational state, as well as the world conditions. Autonomy, on behalf of the agent, implies the existence of an internal structure and mechanism that allows the agent to have its own needs and interests, based on which the agent will dynamically select and generate goals that will in turn lead to self-determined behavior. Intrinsic motivation allows the agent to function and demonstrate behavior, even when no external stimulus is present, due to the constant change of its internal emotional and physiological state. The concept of motivation has already been investigated by research works on intelligent agents, trying to achieve autonomy. The current work presents an architecture and model to represent and manage internal driving factors in intelligent virtual agents, using the concept of motivations. Based on Maslow and Alderfer's bio-psychological needs theories, we present a motivational approach to represent human needs and produce emergent behavior through motivation synthesis. Particular attention is given to basic, physiological level needs, which are the basis of behavior and can produce tendency to action even when there is no other interaction with the environment. PMID:23853745

  1. 41 CFR 102-37.305 - May a SASP act as GSA's agent in selling undistributed surplus property (either as usable...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... agent in selling undistributed surplus property (either as usable property or scrap)? 102-37.305 Section...'s agent in selling undistributed surplus property (either as usable property or scrap)? Yes, you may act as GSA's agent in selling undistributed surplus property (either as usable property or scrap)...

  2. Antiviral agent based on the non-structural protein targeting the maturation process of HIV-1: expression and susceptibility of chimeric Vpr as a substrate for cleavage by HIV-1 protease.

    PubMed

    Serio, D; Singh, S P; Cartas, M A; Weber, I T; Harrison, R W; Louis, J M; Srinivasan, A

    2000-06-01

    The processing of precursor proteins (Gag and Gag-pol) by the viral protease is absolutely required in order to generate infectious particles. This prompted us to consider novel strategies that target viral maturation. Towards this end, we have engineered an HIV-1 virion associated protein, Vpr, to contain protease cleavage signal sequences from Gag and Gag-pol precursor proteins. We previously reported that virus particles derived from HIV-1 proviral DNA, encoding chimeric Vpr, showed a lack of infectivity, depending on the fusion partner. As an extension of that work, the potential of chimeric Vpr as a substrate for HIV-1 protease was tested utilizing an epitope-based assay. Chimeric Vpr molecules were modified such that the Flag epitope is removed following cleavage, thus allowing us to determine the efficiency of protease cleavage. Following incubation with the protease, the resultant products were analyzed by radioimmunoprecipitation using antibodies directed against the Flag epitope. Densitometric analysis of the autoradiograms showed processing to be both rapid and specific. Further, the analysis of virus particles containing chimeric Vpr by immunoblot showed reactivities to antibodies against the Flag epitope similar to the data observed in vitro. These results suggest that the pseudosubstrate approach may provide another avenue for developing antiviral agents.

  3. Antiviral therapy for human rabies.

    PubMed

    Appolinario, Camila M; Jackson, Alan C

    2015-01-01

    Human rabies is virtually always fatal despite numerous attempts at aggressive therapy. Most survivors received one or more doses of rabies vaccine prior to the onset of the disease. The Milwaukee Protocol has proved to be ineffective for rabies and should no longer be used. New approaches are needed and an improved understanding of basic mechanisms responsible for the clinical disease in rabies may prove to be useful for the development of novel therapeutic approaches. Antiviral therapy is thought to be an important component of combination therapy for the management of human rabies, and immunotherapy and neuroprotective therapy should also be strongly considered. There are many important issues for consideration regarding drug delivery to the central nervous system in rabies, which are in part related to the presence of the blood-brain barrier and also the blood-spinal cord barrier. Ribavirin and interferon-α have proved to be disappointing agents for the therapy of rabies. There is insufficient evidence to support the continued use of ketamine or amantadine for the therapy of rabies. Minocycline or corticosteroids should not be used because of concerns about aggravating the disease. A variety of new antiviral agents are under development and evaluation, including favipiravir, RNA interference (for example, small interfering [si]RNAs) and novel targeted approaches, including interference with viral capsid assembly and viral egress.

  4. Aripiprazole Lauroxil Long-Acting Injectable: The Latest Addition to Second-Generation Long-Acting Agents.

    PubMed

    Aggarwal, Arpit; Gopalakrishna, Ganesh; Lauriello, John

    2016-01-01

    Antipsychotics have long been the mainstay for the treatment of schizophrenia and other psychotic disorders. Long-acting injectables (LAI) of antipsychotics-provided once every two weeks to once every three months-promise to reduce the incidence of nonadherence. ARISTADA(™) (aripiprazole lauroxil; ALLAI) extended-release injectable suspension was approved by the U.S. Food and Drug Administration in October 2015 for the treatment of schizophrenia, and is the newest entrant in the LAI market. ALLAI is available as a single-use, pre-filled syringe, can be started in three different dosages, and also has the option of every six-week dosing. Treatment with oral aripiprazole is recommended for the first twenty-one days after the first ALLAI injection, which is a potential disadvantage. Adverse effects include sensitivity to extrapyramidal symptoms, especially akathisia, which is well documented in other aripiprazole preparations. There is no available data comparing ALLAI to other antipsychotics, and more head-to-head trials comparing different LAI formulations are needed. Based on the available data, ALLAI is an effective and safe option for treatment of schizophrenia. Further studies and post-marketing data will provide better understanding of this formulation. PMID:27074333

  5. Antiviral therapy: current concepts and practices.

    PubMed Central

    Bean, B

    1992-01-01

    Drugs capable of inhibiting viruses in vitro were described in the 1950s, but real progress was not made until the 1970s, when agents capable of inhibiting virus-specific enzymes were first identified. The last decade has seen rapid progress in both our understanding of antiviral therapy and the number of antiviral agents on the market. Amantadine and ribavirin are available for treatment of viral respiratory infections. Vidarabine, acyclovir, ganciclovir, and foscarnet are used for systemic treatment of herpesvirus infections, while ophthalmic preparations of idoxuridine, trifluorothymidine, and vidarabine are available for herpes keratitis. For treatment of human immunodeficiency virus infections, zidovudine and didanosine are used. Immunomodulators, such as interferons and colony-stimulating factors, and immunoglobulins are being used increasingly for viral illnesses. While resistance to antiviral drugs has been seen, especially among AIDS patients, it has not become widespread and is being intensely studied. Increasingly, combinations of agents are being used: to achieve synergistic inhibition of viruses, to delay or prevent resistance, and to decrease dosages of toxic drugs. New approaches, such as liposomes carrying antiviral drugs and computer-aided drug design, are exciting and promising prospects for the future. PMID:1576586

  6. In Vitro Antiviral Activity and Resistance Profile Characterization of the Hepatitis C Virus NS5A Inhibitor Ledipasvir

    PubMed Central

    Tian, Yang; Doehle, Brian; Peng, Betty; Corsa, Amoreena; Lee, Yu-Jen; Gong, Ruoyu; Yu, Mei; Han, Bin; Xu, Simin; Dvory-Sobol, Hadas; Perron, Michel; Xu, Yili; Mo, Hongmei; Pagratis, Nikos; Link, John O.; Delaney, William

    2016-01-01

    Ledipasvir (LDV; GS-5885), a component of Harvoni (a fixed-dose combination of LDV with sofosbuvir [SOF]), is approved to treat chronic hepatitis C virus (HCV) infection. Here, we report key preclinical antiviral properties of LDV, including in vitro potency, in vitro resistance profile, and activity in combination with other anti-HCV agents. LDV has picomolar antiviral activity against genotype 1a and genotype 1b replicons with 50% effective concentration (EC50) values of 0.031 nM and 0.004 nM, respectively. LDV is also active against HCV genotypes 4a, 4d, 5a, and 6a with EC50 values of 0.11 to 1.1 nM. LDV has relatively less in vitro antiviral activity against genotypes 2a, 2b, 3a, and 6e, with EC50 values of 16 to 530 nM. In vitro resistance selection with LDV identified the single Y93H and Q30E resistance-associated variants (RAVs) in the NS5A gene; these RAVs were also observed in patients after a 3-day monotherapy treatment. In vitro antiviral combination studies indicate that LDV has additive to moderately synergistic antiviral activity when combined with other classes of HCV direct-acting antiviral (DAA) agents, including NS3/4A protease inhibitors and the nucleotide NS5B polymerase inhibitor SOF. Furthermore, LDV is active against known NS3 protease and NS5B polymerase inhibitor RAVs with EC50 values equivalent to those for the wild type. PMID:26824950

  7. In Vitro Antiviral Activity and Resistance Profile Characterization of the Hepatitis C Virus NS5A Inhibitor Ledipasvir.

    PubMed

    Cheng, Guofeng; Tian, Yang; Doehle, Brian; Peng, Betty; Corsa, Amoreena; Lee, Yu-Jen; Gong, Ruoyu; Yu, Mei; Han, Bin; Xu, Simin; Dvory-Sobol, Hadas; Perron, Michel; Xu, Yili; Mo, Hongmei; Pagratis, Nikos; Link, John O; Delaney, William

    2016-01-11

    Ledipasvir (LDV; GS-5885), a component of Harvoni (a fixed-dose combination of LDV with sofosbuvir [SOF]), is approved to treat chronic hepatitis C virus (HCV) infection. Here, we report key preclinical antiviral properties of LDV, including in vitro potency, in vitro resistance profile, and activity in combination with other anti-HCV agents. LDV has picomolar antiviral activity against genotype 1a and genotype 1b replicons with 50% effective concentration (EC50) values of 0.031 nM and 0.004 nM, respectively. LDV is also active against HCV genotypes 4a, 4d, 5a, and 6a with EC50 values of 0.11 to 1.1 nM. LDV has relatively less in vitro antiviral activity against genotypes 2a, 2b, 3a, and 6e, with EC50 values of 16 to 530 nM. In vitro resistance selection with LDV identified the single Y93H and Q30E resistance-associated variants (RAVs) in the NS5A gene; these RAVs were also observed in patients after a 3-day monotherapy treatment. In vitro antiviral combination studies indicate that LDV has additive to moderately synergistic antiviral activity when combined with other classes of HCV direct-acting antiviral (DAA) agents, including NS3/4A protease inhibitors and the nucleotide NS5B polymerase inhibitor SOF. Furthermore, LDV is active against known NS3 protease and NS5B polymerase inhibitor RAVs with EC50 values equivalent to those for the wild type.

  8. Role of the collecting agent sorption forms in the elementary act of flotation

    SciTech Connect

    Abramov, A.A.

    2005-02-01

    A new hypothesis of flotation is substantiated based on the well-known hypotheses, theoretical analysis of the elementary act, and experimental results. The hypothesis presented allows the processes of flotation activation, depression, and intensification to be explained and optimized.

  9. Targeting Innate Immunity for Antiviral Therapy through Small Molecule Agonists of the RLR Pathway

    PubMed Central

    Pattabhi, Sowmya; Wilkins, Courtney R.; Dong, Ran; Knoll, Megan L.; Posakony, Jeffrey; Kaiser, Shari; Mire, Chad E.; Wang, Myra L.; Ireton, Renee C.; Geisbert, Thomas W.; Bedard, Kristin M.; Iadonato, Shawn P.

    2015-01-01

    ABSTRACT The cellular response to virus infection is initiated when pathogen recognition receptors (PRR) engage viral pathogen-associated molecular patterns (PAMPs). This process results in induction of downstream signaling pathways that activate the transcription factor interferon regulatory factor 3 (IRF3). IRF3 plays a critical role in antiviral immunity to drive the expression of innate immune response genes, including those encoding antiviral factors, type 1 interferon, and immune modulatory cytokines, that act in concert to restrict virus replication. Thus, small molecule agonists that can promote IRF3 activation and induce innate immune gene expression could serve as antivirals to induce tissue-wide innate immunity for effective control of virus infection. We identified small molecule compounds that activate IRF3 to differentially induce discrete subsets of antiviral genes. We tested a lead compound and derivatives for the ability to suppress infections caused by a broad range of RNA viruses. Compound administration significantly decreased the viral RNA load in cultured cells that were infected with viruses of the family Flaviviridae, including West Nile virus, dengue virus, and hepatitis C virus, as well as viruses of the families Filoviridae (Ebola virus), Orthomyxoviridae (influenza A virus), Arenaviridae (Lassa virus), and Paramyxoviridae (respiratory syncytial virus, Nipah virus) to suppress infectious virus production. Knockdown studies mapped this response to the RIG-I-like receptor pathway. This work identifies a novel class of host-directed immune modulatory molecules that activate IRF3 to promote host antiviral responses to broadly suppress infections caused by RNA viruses of distinct genera. IMPORTANCE Incidences of emerging and reemerging RNA viruses highlight a desperate need for broad-spectrum antiviral agents that can effectively control infections caused by viruses of distinct genera. We identified small molecule compounds that can

  10. 27 CFR 31.63 - Agents, auctioneers, brokers, etc., acting on behalf of others.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Exemptions and Exceptions Persons Who Are Not Dealers in Liquors Or Beer § 31.63 Agents, auctioneers, brokers... account of those activities. Those persons, who have no property rights in the liquors sold, may make... beer who merely receive and transmit to a wholesale dealer orders for liquors or beer to be...

  11. Antiviral Therapy in Elderly Patients With Hepatitis C Virus Infection

    PubMed Central

    Rheem, Justin; Sundaram, Vinay

    2015-01-01

    The emergence of direct-acting antiviral (DAA) agents has revolutionized the treatment schema for hepatitis C virus (HCV) infection. From cure rates to tolerability, DAA agents have shown outstanding profiles compared with the prior therapy of pegylated interferon with ribavirin. However, the efficacy and safety profiles of DAA therapy in older patients, particularly the elderly, have been unclear, and patients in the 1945 to 1965 birth cohort constitute the largest proportion of the HCV population in the United States. Treating elderly patients with pegylated interferon and ribavirin has been challenging due to the frequent presence of multiple comorbidities in the elderly and high discontinuation rates caused by adverse events. Now, as more DAA agents have become widely studied and approved, subgroup analyses for the elderly population are being elucidated. Analysis of the current literature shows that these agents have been effective, well tolerated, and safe in the elderly population. This article highlights the efficacy and safety differences in interferon-based therapy and interferon-free regimens for elderly patients with HCV infection. PMID:27482173

  12. 78 FR 6056 - Designation of Payor as Agent To Perform Acts Required of an Employer

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-29

    ... Federal Unemployment Tax Act (FUTA) taxes under section 3301. Instead of FICA taxes, railroad employers... employer pays that are subject to FUTA tax are reported annually on Form 940, Employer's Annual Federal Unemployment Tax (FUTA) Return. Employers that pay compensation subject to the RRTA file Form CT-1,...

  13. Physical characteristics of lanthanide complexes that act as magnetization transfer (MT) contrast agents

    NASA Astrophysics Data System (ADS)

    Zhang, Shanrong; Sherry, A. Dean

    2003-02-01

    Rapid water exchange is normally considered a prerequisite for efficient Gd 3+-based MRI contrast agents. Yet recent measures of exchange rates in some Gd 3+ complexes have shown that water exchange can become limiting when such complexes are attached to larger macromolecular structures. A new class of lanthanide complexes that display unusually slow water exchange (bound water lifetimes ( τM298) > 10 μs) has recently been reported. This apparent disadvantage may be taken advantage of by switching the metal ion from gadolinium(III) to a lanthanide that shifts the bound water resonance substantially away from bulk water. Given appropriate water exchange kinetics, one can then alter the intensity of the bulk water signal by selective presaturation of this highly shifted, Ln3+-bound water resonance. This provides the basis of a new method to alter MR image contrast in tissue. We have synthesized a variety of DOTA-tetra(amide) ligands to evaluate as potential magnetization transfer (MT) contrast agents and found that the bound water lifetimes in these complexes are sensitive to both ligand structure (a series of Eu 3+ complexes have τM298 values that range from 1 to 1300 μs) and the identity of the paramagnetic Ln3+ cation (from 3 to 800 μs for a single ligand). This demonstrates that it may be possible either to fine-tune the ligand structure or to select proper lanthanide cation to create an optimal MT agent for any clinical imaging field.

  14. Can Hepatitis C Virus (HCV) Direct-Acting Antiviral Treatment as Prevention Reverse the HCV Epidemic Among Men Who Have Sex With Men in the United Kingdom? Epidemiological and Modeling Insights

    PubMed Central

    Martin, Natasha K.; Thornton, Alicia; Hickman, Matthew; Sabin, Caroline; Nelson, Mark; Cooke, Graham S.; Martin, Thomas C. S.; Delpech, Valerie; Ruf, Murad; Price, Huw; Azad, Yusef; Thomson, Emma C.; Vickerman, Peter

    2016-01-01

    Background. We report on the hepatitis C virus (HCV) epidemic among human immunodeficiency virus (HIV)-positive men who have sex with men (MSM) in the United Kingdom and model its trajectory with or without scaled-up HCV direct-acting antivirals (DAAs). Methods. A dynamic HCV transmission model among HIV–diagnosed MSM in the United Kingdom was calibrated to HCV prevalence (antibody [Ab] or RNA positive), incidence, and treatment from 2004 to 2011 among HIV-diagnosed MSM in the UK Collaborative HIV Cohort (UK CHIC). The epidemic was projected with current or scaled-up HCV treatment, with or without a 20% behavioral risk reduction. Results. HCV prevalence among HIV-positive MSM in UK CHIC increased from 7.3% in 2004 to 9.9% in 2011, whereas primary incidence was flat (1.02–1.38 per 100 person-years). Over the next decade, modeling suggests 94% of infections are attributable to high-risk individuals, comprising 7% of the population. Without treatment, HCV chronic prevalence could have been 38% higher in 2015 (11.9% vs 8.6%). With current treatment and sustained virological response rates (status quo), chronic prevalence is likely to increase to 11% by 2025, but stabilize with DAA introduction in 2015. With DAA scale-up to 80% within 1 year of diagnosis (regardless of disease stage), and 20% per year thereafter, chronic prevalence could decline by 71% (to 3.2%) compared to status quo in 2025. With additional behavioral interventions, chronic prevalence could decline further to <2.5% by 2025. Conclusions. Epidemiological data and modeling suggest a continuing HCV epidemic among HIV-diagnosed MSM in the United Kingdom driven by high-risk individuals, despite high treatment rates. Substantial reductions in HCV transmission could be achieved through scale-up of DAAs and moderately effective behavioral interventions. PMID:26908813

  15. Frequency of Natural Resistance within NS5a Replication Complex Domain in Hepatitis C Genotypes 1a, 1b: Possible Implication of Subtype-Specific Resistance Selection in Multiple Direct Acting Antivirals Drugs Combination Treatment.

    PubMed

    Bagaglio, Sabrina; Andolina, Andrea; Merli, Marco; Uberti-Foppa, Caterina; Morsica, Giulia

    2016-04-01

    Different HCV subtypes may naturally harbor different resistance selection to anti-NS5a inhibitors. 2761 sequences retrieved from the Los Alamos HCV database were analyzed in the NS5a domain 1, the target of NS5a inhibitors. The NS5a resistance-associated polymorphisms (RAPs) were more frequently detected in HCV G1b compared to G1a. The prevalence of polymorphisms associated with cross-resistance to compounds in clinical use (daclatasvir, DCV, ledipasvir, LDV, ombitasvir, and OMV) or scheduled to come into clinical use in the near future (IDX719, elbasvir, and ELV) was higher in G1b compared to G1a (37/1552 (2.4%) in 1b sequences and 15/1209 (1.2%) in 1a isolates, p = 0.040). Interestingly, on the basis of the genotype-specific resistance pattern, 95 (6.1%) G1b sequences had L31M RAP to DCV/IDX719, while 6 sequences of G1a (0.5%) harbored L31M RAP, conferring resistance to DCV/LDV/IDX719/ELV (p < 0.0001). Finally, 28 (2.3%) G1a and none of G1b isolates harbored M28V RAP to OMV (p < 0.0001). In conclusion, the pattern of subtype-specific resistance selection in the naturally occurring strains may guide the treatment option in association with direct acting antivirals (DAAs) targeting different regions, particularly in patients that are difficult to cure, such as those with advanced liver disease or individuals who have failed previous DAAs. PMID:27023593

  16. Antiviral perspectives for chikungunya virus.

    PubMed

    Parashar, Deepti; Cherian, Sarah

    2014-01-01

    Chikungunya virus (CHIKV) is a mosquito-borne pathogen that has a major health impact in humans and causes acute febrile illness in humans accompanied by joint pains and, in many cases, persistent arthralgia lasting for weeks to years. CHIKV reemerged in 2005-2006 in several parts of the Indian Ocean islands and India after a gap of 32 years, causing millions of cases. The re-emergence of CHIKV has also resulted in numerous outbreaks in several countries in the eastern hemisphere, with a threat to further expand in the near future. However, there is no vaccine against CHIKV infection licensed for human use, and therapy for CHIKV infection is still mainly limited to supportive care as antiviral agents are yet in different stages of testing or development. In this review we explore the different perspectives for chikungunya treatment and the effectiveness of these treatment regimens and discuss the scope for future directions.

  17. Antivirals for Respiratory Viral Infections: Problems and Prospects.

    PubMed

    Liu, Qiang; Zhou, Yuan-Hong; Ye, Feng; Yang, Zhan-Qiu

    2016-08-01

    In the past two decades, several newly emerging and reemerging viral respiratory pathogens including several influenza viruses (avian influenza and pandemic influenza), severe acute respiratory syndrome coronavirus (SARS-CoV), and Middle East respiratory syndrome coronavirus (MERS-CoV), have continued to challenge medical and public health systems. Thereafter, the development of cost-effective, broad-spectrum antiviral agents is the urgent mission of both virologists and pharmacologists. Current antiviral developments have focused targets on viral entry, replication, release, and intercellular pathways essential for viral life cycle. Here, we review the current literature on challenges and prospects in the development of these antivirals. PMID:27486742

  18. Synthesis and antiviral activity of a novel glycosyl sulfoxide against classical swine fever virus.

    PubMed

    Krol, Ewelina; Pastuch-Gawolek, Gabriela; Nidzworski, Dawid; Rychlowski, Michal; Szeja, Wieslaw; Grynkiewicz, Grzegorz; Szewczyk, Boguslaw

    2014-05-01

    A novel compound-2″,3″,4″,6″-tetra-O-acetyl-β-d-galactopyranosyl-(1→4)-2',3',6'-tri-O-acetyl-1-thio-β-d-glucopyranosyl-(5-nitro-2-pyridyl) sulfoxide-designated GP6 was synthesized and assayed for cytotoxicity and in vitro antiviral properties against classical swine fever virus (CSFV) in this study. We showed that the examined compound effectively arrested CSFV growth in swine kidney cells (SK6) at a 50% inhibitory concentration (IC50) of 5 ± 0.12 μg/ml without significant toxicity for mammalian cells. Moreover, GP6 reduced the viral E2 and E(rns) glycoproteins expression in a dose-dependent manner. We have excluded the possibility that the inhibitor acts at the replication step of virus life cycle as assessed by monitoring of RNA level in cells and culture medium of SK6 cells after single round of infection as a function of GP6 treatment. Using recombinant E(rns) and E2 proteins of classical swine fever virus produced in baculovirus expression system we have demonstrated that GP6 did not influence glycoprotein production and maturation in insect cells. In contrast to mammalian glycosylation pathway, insect cells support only the ER-dependent early steps of this process. Therefore, we concluded that the late steps of glycosylation process are probably the main targets of GP6. Due to the observed antiviral effect accompanied by low cytotoxicity, this inhibitor represents potential candidate for the development of antiviral agents for anti-flavivirus therapy. Further experiments are needed for investigating whether this compound can be used as a safe antiviral agent against other viruses from unrelated groups.

  19. Pharmacokinetics of LB80331 and LB80317 following Oral Administration of LB80380, a New Antiviral Agent for Chronic Hepatitis B (CHB), in Healthy Adult Subjects, CHB Patients, and Mice▿

    PubMed Central

    Yuen, Man-Fung; Lee, Sung-Hack; Kang, Hyang-Mi; Kim, Chung Ryeol; Kim, John; Ngai, Vincent; Lai, Ching-Lung

    2009-01-01

    LB80380, a dipivoxil ester prodrug of LB80331 (metabolite, LB80317), is a novel antiviral agent for chronic hepatitis B (CHB). The pharmacokinetics of LB80331/LB80317 were evaluated in two clinical studies and a study with mice. The clinical studies were dose-escalating pharmacokinetic studies with six healthy subjects per single-dose group and six CHB patients per repeated-dose group. The mouse study was designed to measure the amounts of the phosphorylated portions of LB80331 and LB80317 in the liver. In healthy subjects receiving a single dose of LB80380, the plasma level of LB80331 increased as the dose increased. Although a high-fat diet delayed the time to the maximum concentration in plasma (Tmax) of LB80331, the area under the concentration-time curve from time zero to infinity was similar between the subjects in the fasted group and those in the group who consumed a high-fat diet. In CHB patients, the mean Tmax of LB80331 was 1.0 to 2.0 h postdosing at steady state. The steady-state plasma concentration of LB80331 declined in a monoexponential manner, and the apparent elimination half-life was 2.5 to 3.3 h. The steady-state plasma concentration of LB80317 was maximum at 3 to 8 h postdoing and declined in a monoexponential manner; the apparent elimination half-life was 45 to 62 h at the 30- to 240-mg doses, while LB80317 was measurable in plasma only at higher doses of 120 and 240 mg after the administration of the first dose of LB80380. Forty percent of the amount of LB80331/LB80317 in the mouse liver was detected as the phosphorylated form. In conclusion, LB80380 is rapidly absorbed and converted to LB80331. LB80317 has a long half-life at steady-state, supporting the use of a once-daily dosing regimen. The ingestion of a high-fat diet delays the rate of absorption of LB80380 without affecting the extent of absorption. PMID:19223649

  20. Antiviral Roles of Plant ARGONAUTES

    PubMed Central

    Carbonell, Alberto; Carrington, James C.

    2015-01-01

    ARGONAUTES (AGOs) are the effector proteins functioning in eukaryotic RNA silencing pathways. AGOs associate with small RNAs and are programmed to target complementary RNA or DNA. Plant viruses induce a potent and specific antiviral RNA silencing host response in which AGOs play a central role. Antiviral AGOs associate with virus-derived small RNAs to repress complementary viral RNAs or DNAs, or with endogenous small RNAs to regulate host gene expression and promote antiviral defense. Here, we review recent progress towards understanding the roles of plant AGOs in antiviral defense. We also discuss the strategies that viruses have evolved to modulate, attenuate or suppress AGO antiviral functions. PMID:26190744

  1. Antiviral immunity in marine molluscs.

    PubMed

    Green, Timothy J; Raftos, David; Speck, Peter; Montagnani, Caroline

    2015-09-01

    Marine molluscs, like all living organisms, are constantly exposed to viruses and have evolved efficient antiviral defences. We review here recent developments in molluscan antiviral immunity against viruses belonging to the order Herpesvirales. Emerging results suggest an interferon-like response and autophagy are involved in the antiviral defence of bivalves to viral infection. Multi-functional plasma proteins from gastropods and bivalves have been identified to have broad-spectrum antiviral activity against mammalian viruses. The antiviral defences present in molluscs can be enhanced by genetic selection, as shown by the presence of oyster strains specifically resistant to ostreid herpesvirus type 1. Whether varying amounts or different isoforms of these antiviral plasma proteins contributes to genetic resistance is worthy of further research. Other evolutionarily conserved antiviral mechanisms, such as RNA interference and apoptosis, still need further characterization.

  2. Antiviral immunity in marine molluscs.

    PubMed

    Green, Timothy J; Raftos, David; Speck, Peter; Montagnani, Caroline

    2015-09-01

    Marine molluscs, like all living organisms, are constantly exposed to viruses and have evolved efficient antiviral defences. We review here recent developments in molluscan antiviral immunity against viruses belonging to the order Herpesvirales. Emerging results suggest an interferon-like response and autophagy are involved in the antiviral defence of bivalves to viral infection. Multi-functional plasma proteins from gastropods and bivalves have been identified to have broad-spectrum antiviral activity against mammalian viruses. The antiviral defences present in molluscs can be enhanced by genetic selection, as shown by the presence of oyster strains specifically resistant to ostreid herpesvirus type 1. Whether varying amounts or different isoforms of these antiviral plasma proteins contributes to genetic resistance is worthy of further research. Other evolutionarily conserved antiviral mechanisms, such as RNA interference and apoptosis, still need further characterization. PMID:26297577

  3. Bile salts act as effective protein-unfolding agents and instigators of disulfide stress in vivo

    PubMed Central

    Cremers, Claudia M.; Knoefler, Daniela; Vitvitsky, Victor; Banerjee, Ruma; Jakob, Ursula

    2014-01-01

    Commensal and pathogenic bacteria must deal with many different stress conditions to survive in and colonize the human gastrointestinal tract. One major challenge that bacteria encounter in the gut is the high concentration of bile salts, which not only aid in food absorption but also act as effective physiological antimicrobials. The mechanism by which bile salts limit bacterial growth is still largely unknown. Here, we show that bile salts cause widespread protein unfolding and aggregation, affecting many essential proteins. Simultaneously, the bacterial cytosol becomes highly oxidizing, indicative of disulfide stress. Strains defective in reducing oxidative thiol modifications, restoring redox homeostasis, or preventing irreversible protein aggregation under disulfide stress conditions are sensitive to bile salt treatment. Surprisingly, cholate and deoxycholate, two of the most abundant and very closely related physiological bile salts, vary substantially in their destabilizing effects on proteins in vitro and cause protein unfolding of different subsets of proteins in vivo. Our results provide a potential mechanistic explanation for the antimicrobial effects of bile salts, help explain the beneficial effects of bile salt mixtures, and suggest that we have identified a physiological source of protein-unfolding disulfide stress conditions in bacteria. PMID:24706920

  4. Citrus Flavanones Affect Hepatic Fatty Acid Oxidation in Rats by Acting as Prooxidant Agents

    PubMed Central

    Constantin, Rodrigo Polimeni; do Nascimento, Gilson Soares; Constantin, Renato Polimeni; Salgueiro, Clairce Luzia; Bracht, Adelar; Ishii-Iwamoto, Emy Luiza; Yamamoto, Nair Seiko

    2013-01-01

    Citrus flavonoids have a wide range of biological activities and positive health effects on mammalian cells because of their antioxidant properties. However, they also act as prooxidants and thus may interfere with metabolic pathways. The purpose of this work was to evaluate the effects of three citrus flavanones, hesperidin, hesperetin, and naringenin, on several parameters linked to fatty acid oxidation in mitochondria, peroxisomes, and perfused livers of rats. When exogenous octanoate was used as substrate, hesperetin and naringenin reduced the mitochondrial NADH/NAD+ ratio and stimulated the citric acid cycle without significant changes on oxygen uptake or ketogenesis. When fatty acid oxidation from endogenous sources was evaluated, hesperetin and naringenin strongly reduced the mitochondrial NADH/NAD+ ratio. They also inhibited both oxygen uptake and ketogenesis and stimulated the citric acid cycle. Hesperidin, on the other hand, had little to no effect on these parameters. These results confirm the hypothesis that citrus flavanones are able to induce a more oxidised state in liver cells, altering parameters related to hepatic fatty acid oxidation. The prooxidant effect is most likely a consequence of the ability of these substances to oxidise NADH upon production of phenoxyl radicals in the presence of peroxidases and hydrogen peroxide. PMID:24288675

  5. 2-Hydroxypropyl-β-Cyclodextrin Acts as a Novel Anticancer Agent

    PubMed Central

    Yokoo, Masako; Kubota, Yasushi; Motoyama, Keiichi; Higashi, Taishi; Taniyoshi, Masatoshi; Tokumaru, Hiroko; Nishiyama, Rena; Tabe, Yoko; Mochinaga, Sakiko; Sato, Akemi; Sueoka-Aragane, Naoko; Sueoka, Eisaburo; Arima, Hidetoshi; Irie, Tetsumi; Kimura, Shinya

    2015-01-01

    2-Hydroxypropyl-β-cyclodextrin (HP-β-CyD) is a cyclic oligosaccharide that is widely used as an enabling excipient in pharmaceutical formulations, but also as a cholesterol modifier. HP-β-CyD has recently been approved for the treatment of Niemann-Pick Type C disease, a lysosomal lipid storage disorder, and is used in clinical practice. Since cholesterol accumulation and/or dysregulated cholesterol metabolism has been described in various malignancies, including leukemia, we hypothesized that HP-β-CyD itself might have anticancer effects. This study provides evidence that HP-β-CyD inhibits leukemic cell proliferation at physiologically available doses. First, we identified the potency of HP-β-CyD in vitro against various leukemic cell lines derived from acute myeloid leukemia (AML), acute lymphoblastic leukemia and chronic myeloid leukemia (CML). HP-β-CyD treatment reduced intracellular cholesterol resulting in significant leukemic cell growth inhibition through G2/M cell-cycle arrest and apoptosis. Intraperitoneal injection of HP-β-CyD significantly improved survival in leukemia mouse models. Importantly, HP-β-CyD also showed anticancer effects against CML cells expressing a T315I BCR-ABL mutation (that confers resistance to most ABL tyrosine kinase inhibitors), and hypoxia-adapted CML cells that have characteristics of leukemic stem cells. In addition, colony forming ability of human primary AML and CML cells was inhibited by HP-β-CyD. Systemic administration of HP-β-CyD to mice had no significant adverse effects. These data suggest that HP-β-CyD is a promising anticancer agent regardless of disease or cellular characteristics. PMID:26535909

  6. Strigolactone analogs act as new anti-cancer agents in inhibition of breast cancer in xenograft model

    PubMed Central

    Mayzlish-Gati, Einav; Laufer, Dana; Grivas, Christopher F; Shaknof, Julia; Sananes, Amiram; Bier, Ariel; Ben-Harosh, Shani; Belausov, Eduard; Johnson, Michael D; Artuso, Emma; Levi, Oshrat; Genin, Ola; Prandi, Cristina; Khalaila, Isam; Pines, Mark; Yarden, Ronit I; Kapulnik, Yoram; Koltai, Hinanit

    2015-01-01

    Strigolactones (SLs) are a novel class of plant hormones. Previously, we found that analogs of SLs induce growth arrest and apoptosis in breast cancer cell lines. These compounds also inhibited the growth of breast cancer stem cell enriched-mammospheres with increased potency. Furthermore, strigolactone analogs inhibited growth and survival of colon, lung, prostate, melanoma, osteosarcoma and leukemia cancer cell lines. To further examine the anti-cancer activity of SLs in vivo, we have examined their effects on growth and viability of MDA-MB-231 tumor xenografts model either alone or in combination with paclitaxel. We show that strigolactone act as new anti-cancer agents in inhibition of breast cancer in xenograft model. In addition we show that SLs affect the integrity of the microtubule network and therefore may inhibit the migratory phenotype of the highly invasive breast cancer cell lines that were examined. PMID:26192476

  7. Surface display of Aggregatibacter actinomycetemcomitans autotransporter Aae and dispersin B hybrid act as antibiofilm agents.

    PubMed

    Ragunath, C; DiFranco, K; Shanmugam, M; Gopal, P; Vyas, V; Fine, D H; Cugini, C; Ramasubbu, N

    2016-08-01

    Among the various proteins expressed by the periodontopathogen Aggregatibacter actinomycetemcomitans, two proteins play important roles for survival in the oral cavity. The autotransporter Aae facilitates the attachment of the pathogen to oral epithelial cells, which act as a reservoir, while the biofilm-degrading glycoside hydrolase dispersin B facilitates the movement of daughter cells from the mature biofilm to a new site. The objective of this study was to use the potential of these two proteins to control biofilms. To this end, we generated a hybrid construct between the Aae C-terminal translocating domain and dispersin B, and mobilized it into Escherichia coli Rosetta (DE3) pLysS cells. Immunofluorescence analysis of the modified E. coli cells confirmed the presence of dispersin B on the surface. Further, the membrane localization of the displayed dispersin B was confirmed with Western blot analysis. The integrity of the E. coli cells displaying the dispersin B was confirmed through FACS analysis. The hydrolytic activity of the surface-displayed dispersin B was confirmed by using 4-methylumbelliferyl-β-d-glucopyranoside as the substrate. The detachment ability of the dispersin B surface-displaying E. coli cells was shown using Staphylococcus epidermidis and Actinobacillus pleuropneumoniae biofilms in a microtiter assay. We concluded that the Aae β-domain is sufficient to translocate foreign enzymes in the native folded form and that the method of Aae-mediated translocation of surface displayed enzymes might be useful for control of biofilms. PMID:26280561

  8. Hepatitis C virus molecular evolution: transmission, disease progression and antiviral therapy.

    PubMed

    Preciado, Maria Victoria; Valva, Pamela; Escobar-Gutierrez, Alejandro; Rahal, Paula; Ruiz-Tovar, Karina; Yamasaki, Lilian; Vazquez-Chacon, Carlos; Martinez-Guarneros, Armando; Carpio-Pedroza, Juan Carlos; Fonseca-Coronado, Salvador; Cruz-Rivera, Mayra

    2014-11-21

    Hepatitis C virus (HCV) infection represents an important public health problem worldwide. Reduction of HCV morbidity and mortality is a current challenge owned to several viral and host factors. Virus molecular evolution plays an important role in HCV transmission, disease progression and therapy outcome. The high degree of genetic heterogeneity characteristic of HCV is a key element for the rapid adaptation of the intrahost viral population to different selection pressures (e.g., host immune responses and antiviral therapy). HCV molecular evolution is shaped by different mechanisms including a high mutation rate, genetic bottlenecks, genetic drift, recombination, temporal variations and compartmentalization. These evolutionary processes constantly rearrange the composition of the HCV intrahost population in a staging manner. Remarkable advances in the understanding of the molecular mechanism controlling HCV replication have facilitated the development of a plethora of direct-acting antiviral agents against HCV. As a result, superior sustained viral responses have been attained. The rapidly evolving field of anti-HCV therapy is expected to broad its landscape even further with newer, more potent antivirals, bringing us one step closer to the interferon-free era.

  9. SOCS3 Drives Proteasomal Degradation of TBK1 and Negatively Regulates Antiviral Innate Immunity

    PubMed Central

    Liu, Dong; Sheng, Chunjie; Gao, Shijuan; Yao, Chen; Li, Jiandong; Jiang, Wei; Chen, Huiming; Wu, Jiaoxiang; Pan, Changchuan

    2015-01-01

    TANK-binding kinase 1 (TBK1)-mediated induction of type I interferon (IFN) plays a critical role in host antiviral responses and immune homeostasis. The negative regulation of TBK1 activity is largely unknown. We report that suppressor of cytokine signaling 3 (SOCS3) inhibits the IFN-β signaling pathway by promoting proteasomal degradation of TBK1. Overexpression and knockdown experiments indicated that SOCS3 is a negative regulator of IFN regulatory factor 3 (IRF3) phosphorylation and IFN-β transcription. Moreover, SOCS3 directly associates with TBK1, and they colocalize in the cytoplasm. SOCS3 catalyzes K48-linked polyubiquitination of TBK1 at Lys341 and Lys344 and promotes subsequent TBK1 degradation. On the contrary, SOCS3 knockdown markedly increases the abundance of TBK1. Interestingly, both the BOX domain of SOCS3 and Ser172 phosphorylation of TBK1 are indispensable for the processes of ubiquitination and degradation. Ectopic expression of SOCS3 significantly inhibits vesicular stomatitis virus (VSV) and influenza A virus strain A/WSN/33 (WSN)-induced IRF3 phosphorylation and facilitates the replication of WSN virus by detecting the transcription of its viral RNA (vRNA). Knockdown of SOCS3 represses WSN replication. Collectively, these results demonstrate that SOCS3 acts as a negative regulator of IFN-β signal by ubiquitinating and degrading TBK1, shed light on the understanding of antiviral innate immunity, and provide a potential target for developing antiviral agents. PMID:25939384

  10. Antiviral effects of liposome-encapsulated PolyICLC against Dengue virus in a mouse model.

    PubMed

    Hu, Yongxin; Hu, Yanxin; Sun, Lunquan; Wong, Jonathan; Wang, Ming

    2016-09-16

    This study presents the first investigation of the antiviral effects of the liposome-encapsulated PolyICLC (LE-PolyICLC) on Dengue virus (DENV) in a mouse model. In vivo efficacy studies showed that LE-PolyICLC acted to increase antiviral mechanisms mainly through promoting cytokine expression associated with innate immunity, such as IFN-γ. In addition, the pro-inflammatory cytokine TNF-α was also increased, while IL-6 level was decreased in serum. The titers of total antibodies against DENV2 in mice were also elevated. Administration of LE-PolyICLC not only alleviated the loss of body weight, degree of morbidity, and pathological damage in brains, but also reduced the viral titers and expression of viral E protein in the brain. Notably, the effectiveness of LE-PolyICLC was better than PolyICLC on the basis of the data presented in this study. These results, therefore, set a foundation for further development of LE-PolyICLC as an attractive candidate of antiviral agents to be used in both prophylactic and therapeutic settings in DENV diseases. PMID:27524246

  11. Hepatitis C virus molecular evolution: Transmission, disease progression and antiviral therapy

    PubMed Central

    Preciado, Maria Victoria; Valva, Pamela; Escobar-Gutierrez, Alejandro; Rahal, Paula; Ruiz-Tovar, Karina; Yamasaki, Lilian; Vazquez-Chacon, Carlos; Martinez-Guarneros, Armando; Carpio-Pedroza, Juan Carlos; Fonseca-Coronado, Salvador; Cruz-Rivera, Mayra

    2014-01-01

    Hepatitis C virus (HCV) infection represents an important public health problem worldwide. Reduction of HCV morbidity and mortality is a current challenge owned to several viral and host factors. Virus molecular evolution plays an important role in HCV transmission, disease progression and therapy outcome. The high degree of genetic heterogeneity characteristic of HCV is a key element for the rapid adaptation of the intrahost viral population to different selection pressures (e.g., host immune responses and antiviral therapy). HCV molecular evolution is shaped by different mechanisms including a high mutation rate, genetic bottlenecks, genetic drift, recombination, temporal variations and compartmentalization. These evolutionary processes constantly rearrange the composition of the HCV intrahost population in a staging manner. Remarkable advances in the understanding of the molecular mechanism controlling HCV replication have facilitated the development of a plethora of direct-acting antiviral agents against HCV. As a result, superior sustained viral responses have been attained. The rapidly evolving field of anti-HCV therapy is expected to broad its landscape even further with newer, more potent antivirals, bringing us one step closer to the interferon-free era. PMID:25473152

  12. Present, old and future strategies for anti-HCV treatment in patients infected by genotype-1: estimation of the drug costs in the Calabria Region in the era of the directly acting antivirals

    PubMed Central

    2014-01-01

    Background In Italy, anti-HCV drugs are provided free of charge by the National Health System. Since 2011, three drug regimens including a directly acting antiviral (DAA) are considered the gold standard for HCV treatment. However, these drugs add a significant cost (roughly €26,000) to the combination of pegylated-interferon-α/ribavirin (PEG-IFN/RBV), which before DAA represented the unique treatment. To provide the National Health System potential useful information, we estimated costs to provide anti-HCV drugs to treat a population experienced for PEG-INF/RBV. Methods Genotype 1 HCV mono-infected or HIV/HCV co-infected individuals who were treated with PEG-IFN/RBV between 2008 and 2013 were included. The cost to treat these patients with PEG-IFN/RBV was calculated (cost 1). We also estimated costs if we had to treat these patients with a lead-in period of PEG-INF/RBV followed by PEG-IFN/RBV and a DAA in naïves (cost 2), in addition to cost 1 plus the estimated cost to re-treat with PEG-IFN/RBV and a DAA patients who had a relapse or a non response (cost 3). Moreover, all costs were normalized by SVR. Rates of foreseen response with DAA were obtained from literature data. Results The overall study population consisted of 104 patients. The rate of sustained virological response (SVR) was 55%, while it was estimated that SVR would be obtained in 75% of patients with a lead-in period with PEG-IFN/RBV followed by a DAA combination, and in 78% if this treatment is used to re-treat experienced patients with a DAA. Drug costs associated with these treatments were: €1,214,283 for cost 1, €3,474,977 for cost 2 and €3,002,095 for cost 3. Costs per SVR achieved were: €22,284 for cost 1, €44,643 for cost 2 and €38,322 for cost 3. Conclusions Treatments including DAAs achieve a SVR in more patients than PEG-IFN/RBV but they cost around three times more than PEG-IFN/RBV alone regimens. Also, cost per SVR is almost twofold greater than PEG-IFN/RBV regimens

  13. Existing antiviral vaccines.

    PubMed

    Ravanfar, Parisa; Satyaprakash, Anita; Creed, Rosella; Mendoza, Natalia

    2009-01-01

    The innovation of vaccines has allowed for one of the greatest advancements in the history of public health. The first of the vaccines have been the antiviral vaccines, in particular the smallpox vaccine that was first developed by Edward Jenner in 1796. This article will review vaccination for the following viral diseases: measles, mumps, rubella, polio, hepatitis A, hepatitis B, influenza, rotavirus, rabies, monkeypox, smallpox, Japanese encephalitis, and yellow fever. PMID:19335723

  14. RSD931, a novel anti-tussive agent acting on airway sensory nerves

    PubMed Central

    Adcock, J J; Douglas, G J; Garabette, M; Gascoigne, M; Beatch, G; Walker, M; Page, C P

    2003-01-01

    .05) inhibited spontaneous and capsaicin-induced discharges in both pulmonary and bronchial C-fibres respectively. Lidocaine also significantly (P<0.05) reduced capsaicin-evoked bronchoconstriction. These studies suggest that the anti-tussive actions of RSD931 are mediated via inhibition of discharges in Aδ-fibres originating from airway RARs. The mechanism of action of RSD931 is distinct from that of the local anaesthetic lidocaine and RSD931 may represent a novel class of anti-tussive agent. PMID:12569065

  15. Polyribonucleotide-anthraquinone interactions: in vitro antiviral activity studies.

    PubMed

    Jamison, J M; Krabill, K; Flowers, D G; Tsai, C C

    1990-03-01

    Twelve anthraquinones (AQ) were evaluated for their ability to potentiate the antiviral activity of poly r(A-U) using a human foreskin fibroblast-vesicular stomatitis virus bioassay in which the AQ was combined with 0.2 mM poly r(A-U) to produce an AQ/ribonucleotide ratio of 1/4. Poly r(A-U) and the AQ alone were not effective antiviral agents. Five of the twelve AQs tested, mitoxantrone, adriamycin, ametantrone, carminic acid and daunomycin, enhanced the antiviral activity of poly r(A-U) 9- to 13-fold. The interferon-inducing activity of the five active AQ/poly r(A-U) combinations was equal to the sum of the interferon-inducing activities of their constituents. These five AQs appear to potentiate the antiviral activity of poly r(A-U) without superinduction of interferon. PMID:1693102

  16. HIV resistance to antiviral drugs: public health implications.

    PubMed

    Wainberg, M A; Cameron, D W

    1998-01-01

    The widespread occurrence of HIV strains resistant to antiviral drugs has given rise to a number of important concerns distinct from the obvious question of the relationship between drug resistance and treatment failure. A major issue is the extent to which drug-resistant viruses may be transmitted in primary infection via sexual or intravenous routes and how this relates to the relative fitness of such strains. It is also important to understand the potential role of effective antiviral therapy in the decrease of viral burden in both blood and sexual secretions, and the extent to which this may be compromised in individuals harboring resistant viruses. A related subject is the important role of patient adherence to antiviral therapy in achieving sustained reduction in viral load and preventing the emergence of drug resistance. These linked topics are tied to the central role of antiviral agents in the selection of mutant forms that can attain a replication advantage in the presence of drug.

  17. Glycodendritic structures: promising new antiviral drugs.

    PubMed

    Rojo, Javier; Delgado, Rafael

    2004-09-01

    DC-SIGN, a C-type lectin expressed by dendritic cells, is able to recognize high mannosylated glycoproteins at the surface of a broad range of pathogens including viruses, bacteria, fungi and parasites. For at least some of these agents this interaction appears to be an important part of the infection process. Therefore, this lectin might be considered in the design of new antiviral drugs. In this manner, multivalent carbohydrate systems based on dendrimers and dendritic polymers are promising candidates as antiviral drugs. Boltorn hyperbranched dendritic polymers functionalized with mannose have been used to inhibit DC-SIGN-mediated infection in an Ebola-pseudotyped viral model. Their physiological solubility, lack of toxicity and especially their low price suggest the application of these glycodendritic polymers for possible formulation as microbicides. PMID:15308605

  18. Glycodendritic structures: promising new antiviral drugs.

    PubMed

    Rojo, Javier; Delgado, Rafael

    2004-09-01

    DC-SIGN, a C-type lectin expressed by dendritic cells, is able to recognize high mannosylated glycoproteins at the surface of a broad range of pathogens including viruses, bacteria, fungi and parasites. For at least some of these agents this interaction appears to be an important part of the infection process. Therefore, this lectin might be considered in the design of new antiviral drugs. In this manner, multivalent carbohydrate systems based on dendrimers and dendritic polymers are promising candidates as antiviral drugs. Boltorn hyperbranched dendritic polymers functionalized with mannose have been used to inhibit DC-SIGN-mediated infection in an Ebola-pseudotyped viral model. Their physiological solubility, lack of toxicity and especially their low price suggest the application of these glycodendritic polymers for possible formulation as microbicides.

  19. Spectroscopic investigation of herpes simplex viruses infected cells and their response to antiviral therapy

    NASA Astrophysics Data System (ADS)

    Erukhimovitch, Vitaly; Talyshinsky, Marina; Souprun, Yelena; Huleihel, Mahmoud

    2006-07-01

    In the present study, we used microscopic Fourier transform infrared spectroscopy (FTIR) to evaluate the antiviral activity of known antiviral agents against herpes viruses. The antiviral activity of Caffeic acid phenethyl ester (CAPE) (which is an active compound of propolis) against herpes simplex type 1 and 2 was examined in cell culture. The advantage of microscopic FTIR spectroscopy over conventional FTIR spectroscopy is that it facilitates inspection of restricted regions of cell culture or tissue. Our results showed significant spectral differences at early stages of infection between infected and non-infected cells, and between infected cells treated with the used antiviral agent and those not treated. In infected cells, there was a considerable increase in phosphate levels. Our results show that treatment with used antiviral agent considerably abolish the spectral changes induced by the viral infection. In addition, it is possible to track by FTIR microscopy method the deferential effect of various doses of the drug.

  20. Antiviral activity of glycoprotein GP-1 isolated from Streptomyces kanasensis ZX01.

    PubMed

    Zhang, Guoqiang; Feng, Juntao; Han, Lirong; Zhang, Xing

    2016-07-01

    Plant virus diseases have seriously damaged global food security. However, current antiviral agents are not efficient enough for the requirement of agriculture production. So, developing new efficient and nontoxic antiviral agents is imperative. GP-1, from Streptomyces kanasensis ZX01, is a new antiviral glycoprotein, of which the antiviral activity and the mode of action against Tobacco mosaic virus (TMV) were investigated in this study. The results showed that GP-1 could fracture TMV particles, and the infection and accumulation of TMV in host plants were inhibited. Moreover, GP-1 could induce systematic resistance against TMV in the host, according to the results of activities of defensive enzymes increasing, MDA decreasing and overexpression of pathogenesis-related proteins. Furthermore, GP-1 could promote growth of the host plant. In conclusion, GP-1 showed the ability to be developed as an efficient antiviral agent and a fertilizer for agriculture. PMID:27091231

  1. Dufulin Activates HrBP1 to Produce Antiviral Responses in Tobacco

    PubMed Central

    Chen, Zhuo; Zeng, Mengjiao; Song, Baoan; Hou, Chengrui; Hu, Deyu; Li, Xiangyang; Wang, Zhenchao; Fan, Huitao; Bi, Liang; Liu, Jiaju; Yu, Dandan; Jin, Linhong; Yang, Song

    2012-01-01

    Background Dufulin is a new antiviral agent that is highly effective against plant viruses and acts by activating systemic acquired resistance (SAR) in plants. In recent years, it has been used widely to prevent and control tobacco and rice viral diseases in China. However, its targets and mechanism of action are still poorly understood. Methodology/Principal Findings Here, differential in-gel electrophoresis (DIGE) and classical two-dimensional electrophoresis (2-DE) techniques were combined with mass spectrometry (MS) to identify the target of Dufulin. More than 40 proteins were found to be differentially expressed (≥1.5 fold or ≤1.5 fold) upon Dufulin treatment in Nicotiana tabacum K326. Based on annotations in the Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) databases, these proteins were found to be related to disease resistance. Directed acyclic graph (DAG) analysis of the various pathways demonstrated harpin binding protein-1 (HrBP1) as the target of action of Dufulin. Additionally, western blotting, semi-quantitative reverse transcription polymerase chain reaction (RT-PCR), and real time PCR analyses were also conducted to identify the specific mechanism of action of Dufulin. Our results show that activation of HrBP1 triggers the salicylic acid (SA) signaling pathway and thereby produces antiviral responses in the plant host. A protective assay based on lesion counting further confirmed the antiviral activity of Dufulin. Conclusion This study identified HrBP1 as a target protein of Dufulin and that Dufulin can activate the SA signaling pathway to induce host plants to generate antiviral responses. PMID:22662252

  2. Novel antiviral strategies to combat human Arenavirus infections.

    PubMed

    Kunz, Stefan; de la Torre, Juan C

    2005-12-01

    Arenaviruses merit significant attention both as tractable model systems to study acute and persistent viral infections, and as clinically important human pathogens. Evidence indicates that LCMV remains present in the USA and Europe and capable of causing significant morbidity in infected individuals, likely being a neglected human pathogen. Moreover, new arenaviruses are being discovered in the Americas on the average of one every three years, with some of them causing severe hemorrhagic fever. In addition, weaponized forms of these viruses pose a real threat as agents of bioterrorism. Therefore, it is important to develop effective vaccines and better antiviral drugs to combat the dual threats of naturally occurring and intentionally introduced Arenavirus infections. The development of arenavirus reverse genetic systems is allowing investigators to conduct a detailed molecular characterization of the viral cis-acting signals and trans-acting factors that control each of the steps of the Arenavirus life cycle, including RNA synthesis, packaging and budding. We will discuss how this new knowledge is facilitating the establishment of novel assays to identify and characterize compounds capable of interfering with specific steps of the virus life cycle. Likewise, the ability to generate predetermined specific mutations within the arenavirus genome, and analyze their phenotypic expression, would significantly contribute to the elucidation of arenavirus-host interactions, including the bases of their ability to persist, as well as to cause severe HF (hemorrhagic fever) disease in humans. These approaches could also lead to the development of novel potent and safe Arenavirus vaccines. PMID:16375709

  3. Behavioral contagion during learning about another agent's risk-preferences acts on the neural representation of decision-risk.

    PubMed

    Suzuki, Shinsuke; Jensen, Emily L S; Bossaerts, Peter; O'Doherty, John P

    2016-04-01

    Our attitude toward risk plays a crucial role in influencing our everyday decision-making. Despite its importance, little is known about how human risk-preference can be modulated by observing risky behavior in other agents at either the behavioral or the neural level. Using fMRI combined with computational modeling of behavioral data, we show that human risk-preference can be systematically altered by the act of observing and learning from others' risk-related decisions. The contagion is driven specifically by brain regions involved in the assessment of risk: the behavioral shift is implemented via a neural representation of risk in the caudate nucleus, whereas the representations of other decision-related variables such as expected value are not affected. Furthermore, we uncover neural computations underlying learning about others' risk-preferences and describe how these signals interact with the neural representation of risk in the caudate. Updating of the belief about others' preferences is associated with neural activity in the dorsolateral prefrontal cortex (dlPFC). Functional coupling between the dlPFC and the caudate correlates with the degree of susceptibility to the contagion effect, suggesting that a frontal-subcortical loop, the so-called dorsolateral prefrontal-striatal circuit, underlies the modulation of risk-preference. Taken together, these findings provide a mechanistic account for how observation of others' risky behavior can modulate an individual's own risk-preference. PMID:27001826

  4. Antiviral activities of atractylon from Atractylodis Rhizoma.

    PubMed

    Cheng, Yang; Mai, Jing-Yin; Hou, Tian-Lu; Ping, Jian; Chen, Jian-Jie

    2016-10-01

    Atractylodis Rhizoma is a traditional medicinal herb, which has antibacterial, antiviral, anti‑inflammatory and anti‑allergic, anticancer, gastroprotective and neuroprotective activities. It is widely used for treating fever, cold, phlegm, edema and arthralgia syndrome in South‑East Asian nations. In this study, 6 chemical compositions of Atractylodis Rhizoma were characterized by spectral analysis and their antiviral activities were evaluated in vitro and in vivo. Among them, atractylon showed most significant antiviral activities. Atractylon treatment at doses of 10‑40 mg/kg for 5 days attenuated influenza A virus (IAV)‑induced pulmonary injury and decreased the serum levels of interleukin (IL)‑6, tumor necrosis factor‑α and IL‑1β, but increased interferon‑β (IFN‑β) levels. Atractylon treatment upregulated the expression of Τoll‑like receptor 7 (TLR7), MyD88, tumor necrosis factor receptor‑associated factor 6 and IFN‑β mRNA but downregulated nuclear factor‑κB p65 protein expression in the lung tissues of IAV‑infected mice. These results demonstrated that atractylon significantly alleviated IAV‑induced lung injury via regulating the TLR7 signaling pathway, and may warrant further evaluation as a possible agent for IAV treatment. PMID:27600871

  5. Antiviral activities of atractylon from Atractylodis Rhizoma

    PubMed Central

    Cheng, Yang; Mai, Jing-Yin; Hou, Tian-Lu; Ping, Jian; Chen, Jian-Jie

    2016-01-01

    Atractylodis Rhizoma is a traditional medicinal herb, which has antibacterial, antiviral, anti-inflammatory and anti-allergic, anticancer, gastroprotective and neuroprotective activities. It is widely used for treating fever, cold, phlegm, edema and arthralgia syndrome in South-East Asian nations. In this study, 6 chemical compositions of Atractylodis Rhizoma were characterized by spectral analysis and their antiviral activities were evaluated in vitro and in vivo. Among them, atractylon showed most significant antiviral activities. Atractylon treatment at doses of 10–40 mg/kg for 5 days attenuated influenza A virus (IAV)-induced pulmonary injury and decreased the serum levels of interleukin (IL)-6, tumor necrosis factor-α and IL-1β, but increased interferon-β (IFN-β) levels. Atractylon treatment upregulated the expression of Toll-like receptor 7 (TLR7), MyD88, tumor necrosis factor receptor-associated factor 6 and IFN-β mRNA but downregulated nuclear factor-κB p65 protein expression in the lung tissues of IAV-infected mice. These results demonstrated that atractylon significantly alleviated IAV-induced lung injury via regulating the TLR7 signaling pathway, and may warrant further evaluation as a possible agent for IAV treatment. PMID:27600871

  6. Pharmacological and biological antiviral therapeutics for cardiac coxsackievirus infections.

    PubMed

    Fechner, Henry; Pinkert, Sandra; Geisler, Anja; Poller, Wolfgang; Kurreck, Jens

    2011-10-11

    Subtype B coxsackieviruses (CVB) represent the most commonly identified infectious agents associated with acute and chronic myocarditis, with CVB3 being the most common variant. Damage to the heart is induced both directly by virally mediated cell destruction and indirectly due to the immune and autoimmune processes reacting to virus infection. This review addresses antiviral therapeutics for cardiac coxsackievirus infections discovered over the last 25 years. One group represents pharmacologically active low molecular weight substances that inhibit virus uptake by binding to the virus capsid (e.g., pleconaril) or inactivate viral proteins (e.g., NO-metoprolol and ribavirin) or inhibit cellular proteins which are essential for viral replication (e.g., ubiquitination inhibitors). A second important group of substances are interferons. They have antiviral but also immunomodulating activities. The third and most recently discovered group includes biological and cellular therapeutics. Soluble receptor analogues (e.g., sCAR-Fc) bind to the virus capsid and block virus uptake. Small interfering RNAs, short hairpin RNAs and antisense oligonucleotides bind to and led to degradation of the viral RNA genome or cellular RNAs, thereby preventing their translation and viral replication. Most recently mesenchymal stem cell transplantation has been shown to possess antiviral activity in CVB3 infections. Taken together, a number of antiviral therapeutics has been developed for the treatment of myocardial CVB infection in recent years. In addition to low molecular weight inhibitors, biological therapeutics have become promising anti-viral agents.

  7. Pharmacological and biological antiviral therapeutics for cardiac coxsackievirus infections.

    PubMed

    Fechner, Henry; Pinkert, Sandra; Geisler, Anja; Poller, Wolfgang; Kurreck, Jens

    2011-01-01

    Subtype B coxsackieviruses (CVB) represent the most commonly identified infectious agents associated with acute and chronic myocarditis, with CVB3 being the most common variant. Damage to the heart is induced both directly by virally mediated cell destruction and indirectly due to the immune and autoimmune processes reacting to virus infection. This review addresses antiviral therapeutics for cardiac coxsackievirus infections discovered over the last 25 years. One group represents pharmacologically active low molecular weight substances that inhibit virus uptake by binding to the virus capsid (e.g., pleconaril) or inactivate viral proteins (e.g., NO-metoprolol and ribavirin) or inhibit cellular proteins which are essential for viral replication (e.g., ubiquitination inhibitors). A second important group of substances are interferons. They have antiviral but also immunomodulating activities. The third and most recently discovered group includes biological and cellular therapeutics. Soluble receptor analogues (e.g., sCAR-Fc) bind to the virus capsid and block virus uptake. Small interfering RNAs, short hairpin RNAs and antisense oligonucleotides bind to and led to degradation of the viral RNA genome or cellular RNAs, thereby preventing their translation and viral replication. Most recently mesenchymal stem cell transplantation has been shown to possess antiviral activity in CVB3 infections. Taken together, a number of antiviral therapeutics has been developed for the treatment of myocardial CVB infection in recent years. In addition to low molecular weight inhibitors, biological therapeutics have become promising anti-viral agents. PMID:21989310

  8. Perspective of Use of Antiviral Peptides against Influenza Virus.

    PubMed

    Skalickova, Sylvie; Heger, Zbynek; Krejcova, Ludmila; Pekarik, Vladimir; Bastl, Karel; Janda, Jozef; Kostolansky, Frantisek; Vareckova, Eva; Zitka, Ondrej; Adam, Vojtech; Kizek, Rene

    2015-10-01

    The threat of a worldwide influenza pandemic has greatly increased over the past decade with the emergence of highly virulent avian influenza strains. The increased frequency of drug-resistant influenza strains against currently available antiviral drugs requires urgent development of new strategies for antiviral therapy, too. The research in the field of therapeutic peptides began to develop extensively in the second half of the 20(th) century. Since then, the mechanisms of action for several peptides and their antiviral prospect received large attention due to the global threat posed by viruses. Here, we discussed the therapeutic properties of peptides used in influenza treatment. Peptides with antiviral activity against influenza can be divided into three main groups. First, entry blocker peptides such as a Flupep that interact with influenza hemagglutinin, block its binding to host cells and prevent viral fusion. Second, several peptides display virucidal activity, disrupting viral envelopes, e.g., Melittin. Finally, a third set of peptides interacts with the viral polymerase complex and act as viral replication inhibitors such as PB1 derived peptides. Here, we present a review of the current literature describing the antiviral activity, mechanism and future therapeutic potential of these influenza antiviral peptides. PMID:26492266

  9. Perspective of Use of Antiviral Peptides against Influenza Virus

    PubMed Central

    Skalickova, Sylvie; Heger, Zbynek; Krejcova, Ludmila; Pekarik, Vladimir; Bastl, Karel; Janda, Jozef; Kostolansky, Frantisek; Vareckova, Eva; Zitka, Ondrej; Adam, Vojtech; Kizek, Rene

    2015-01-01

    The threat of a worldwide influenza pandemic has greatly increased over the past decade with the emergence of highly virulent avian influenza strains. The increased frequency of drug-resistant influenza strains against currently available antiviral drugs requires urgent development of new strategies for antiviral therapy, too. The research in the field of therapeutic peptides began to develop extensively in the second half of the 20th century. Since then, the mechanisms of action for several peptides and their antiviral prospect received large attention due to the global threat posed by viruses. Here, we discussed the therapeutic properties of peptides used in influenza treatment. Peptides with antiviral activity against influenza can be divided into three main groups. First, entry blocker peptides such as a Flupep that interact with influenza hemagglutinin, block its binding to host cells and prevent viral fusion. Second, several peptides display virucidal activity, disrupting viral envelopes, e.g., Melittin. Finally, a third set of peptides interacts with the viral polymerase complex and act as viral replication inhibitors such as PB1 derived peptides. Here, we present a review of the current literature describing the antiviral activity, mechanism and future therapeutic potential of these influenza antiviral peptides. PMID:26492266

  10. Ethyl Pyruvate Emerges as a Safe and Fast Acting Agent against Trypanosoma brucei by Targeting Pyruvate Kinase Activity

    PubMed Central

    Worku, Netsanet; Stich, August; Daugschies, Arwid; Wenzel, Iris; Kurz, Randy; Thieme, Rene; Kurz, Susanne; Birkenmeier, Gerd

    2015-01-01

    Background Human African Trypanosomiasis (HAT) also called sleeping sickness is an infectious disease in humans caused by an extracellular protozoan parasite. The disease, if left untreated, results in 100% mortality. Currently available drugs are full of severe drawbacks and fail to escape the fast development of trypanosoma resistance. Due to similarities in cell metabolism between cancerous tumors and trypanosoma cells, some of the current registered drugs against HAT have also been tested in cancer chemotherapy. Here we demonstrate for the first time that the simple ester, ethyl pyruvate, comprises such properties. Results The current study covers the efficacy and corresponding target evaluation of ethyl pyruvate on T. brucei cell lines using a combination of biochemical techniques including cell proliferation assays, enzyme kinetics, phasecontrast microscopic video imaging and ex vivo toxicity tests. We have shown that ethyl pyruvate effectively kills trypanosomes most probably by net ATP depletion through inhibition of pyruvate kinase (Ki = 3.0±0.29 mM). The potential of ethyl pyruvate as a trypanocidal compound is also strengthened by its fast acting property, killing cells within three hours post exposure. This has been demonstrated using video imaging of live cells as well as concentration and time dependency experiments. Most importantly, ethyl pyruvate produces minimal side effects in human red cells and is known to easily cross the blood-brain-barrier. This makes it a promising candidate for effective treatment of the two clinical stages of sleeping sickness. Trypanosome drug-resistance tests indicate irreversible cell death and a low incidence of resistance development under experimental conditions. Conclusion Our results present ethyl pyruvate as a safe and fast acting trypanocidal compound and show that it inhibits the enzyme pyruvate kinase. Competitive inhibition of this enzyme was found to cause ATP depletion and cell death. Due to its ability to

  11. Antiviral immunity in amphibians.

    PubMed

    Chen, Guangchun; Robert, Jacques

    2011-11-01

    Although a variety of virus species can infect amphibians, diseases caused by ranaviruses ([RVs]; Iridoviridae) have become prominent, and are a major concern for biodiversity, agriculture and international trade. The relatively recent and rapid increase in prevalence of RV infections, the wide range of host species infected by RVs, the variability in host resistance among population of the same species and among different developmental stages, all suggest an important involvement of the amphibian immune system. Nevertheless, the roles of the immune system in the etiology of viral diseases in amphibians are still poorly investigated. We review here the current knowledge of antiviral immunity in amphibians, focusing on model species such as the frog Xenopus and the salamander (Ambystoma tigrinum), and on recent progress in generating tools to better understand how host immune defenses control RV infections, pathogenicity, and transmission.

  12. Antiviral Immunity in Amphibians

    PubMed Central

    Chen, Guangchun; Robert, Jacques

    2011-01-01

    Although a variety of virus species can infect amphibians, diseases caused by ranaviruses ([RVs]; Iridoviridae) have become prominent, and are a major concern for biodiversity, agriculture and international trade. The relatively recent and rapid increase in prevalence of RV infections, the wide range of host species infected by RVs, the variability in host resistance among population of the same species and among different developmental stages, all suggest an important involvement of the amphibian immune system. Nevertheless, the roles of the immune system in the etiology of viral diseases in amphibians are still poorly investigated. We review here the current knowledge of antiviral immunity in amphibians, focusing on model species such as the frog Xenopus and the salamander (Ambystoma tigrinum), and on recent progress in generating tools to better understand how host immune defenses control RV infections, pathogenicity, and transmission. PMID:22163335

  13. Mycophenolic acid, an immunomodulator, has potent and broad-spectrum in vitro antiviral activity against pandemic, seasonal and avian influenza viruses affecting humans.

    PubMed

    To, Kelvin K W; Mok, Ka-Yi; Chan, Andy S F; Cheung, Nam N; Wang, Pui; Lui, Yin-Ming; Chan, Jasper F W; Chen, Honglin; Chan, Kwok-Hung; Kao, Richard Y T; Yuen, Kwok-Yung

    2016-08-01

    Immunomodulators have been shown to improve the outcome of severe pneumonia. We have previously shown that mycophenolic acid (MPA), an immunomodulator, has antiviral activity against influenza A/WSN/1933(H1N1) using a high-throughput chemical screening assay. This study further investigated the antiviral activity and mechanism of action of MPA against contemporary clinical isolates of influenza A and B viruses. The 50 % cellular cytotoxicity (CC50) of MPA in Madin Darby canine kidney cell line was over 50 µM. MPA prevented influenza virus-induced cell death in the cell-protection assay, with significantly lower IC50 for influenza B virus B/411 than that of influenza A(H1N1)pdm09 virus H1/415 (0.208 vs 1.510 µM, P=0.0001). For H1/415, MPA interfered with the early stage of viral replication before protein synthesis. For B/411, MPA may also act at a later stage since MPA was active against B/411 even when added 12 h post-infection. Virus-yield reduction assay showed that the replication of B/411 was completely inhibited by MPA at concentrations ≥0.78 µM, while there was a dose-dependent reduction of viral titer for H1/415. The antiviral effect of MPA was completely reverted by guanosine supplementation. Plaque reduction assay showed that MPA had antiviral activity against eight different clinical isolates of A(H1N1), A(H3N2), A(H7N9) and influenza B viruses (IC50 <1 µM). In summary, MPA has broad-spectrum antiviral activity against human and avian-origin influenza viruses, in addition to its immunomodulatory activity. Together with a high chemotherapeutic index, the use of MPA as an antiviral agent should be further investigated in vivo. PMID:27259985

  14. Mycophenolic acid, an immunomodulator, has potent and broad-spectrum in vitro antiviral activity against pandemic, seasonal and avian influenza viruses affecting humans.

    PubMed

    To, Kelvin K W; Mok, Ka-Yi; Chan, Andy S F; Cheung, Nam N; Wang, Pui; Lui, Yin-Ming; Chan, Jasper F W; Chen, Honglin; Chan, Kwok-Hung; Kao, Richard Y T; Yuen, Kwok-Yung

    2016-08-01

    Immunomodulators have been shown to improve the outcome of severe pneumonia. We have previously shown that mycophenolic acid (MPA), an immunomodulator, has antiviral activity against influenza A/WSN/1933(H1N1) using a high-throughput chemical screening assay. This study further investigated the antiviral activity and mechanism of action of MPA against contemporary clinical isolates of influenza A and B viruses. The 50 % cellular cytotoxicity (CC50) of MPA in Madin Darby canine kidney cell line was over 50 µM. MPA prevented influenza virus-induced cell death in the cell-protection assay, with significantly lower IC50 for influenza B virus B/411 than that of influenza A(H1N1)pdm09 virus H1/415 (0.208 vs 1.510 µM, P=0.0001). For H1/415, MPA interfered with the early stage of viral replication before protein synthesis. For B/411, MPA may also act at a later stage since MPA was active against B/411 even when added 12 h post-infection. Virus-yield reduction assay showed that the replication of B/411 was completely inhibited by MPA at concentrations ≥0.78 µM, while there was a dose-dependent reduction of viral titer for H1/415. The antiviral effect of MPA was completely reverted by guanosine supplementation. Plaque reduction assay showed that MPA had antiviral activity against eight different clinical isolates of A(H1N1), A(H3N2), A(H7N9) and influenza B viruses (IC50 <1 µM). In summary, MPA has broad-spectrum antiviral activity against human and avian-origin influenza viruses, in addition to its immunomodulatory activity. Together with a high chemotherapeutic index, the use of MPA as an antiviral agent should be further investigated in vivo.

  15. Evaluation of Ag nanoparticle coated air filter against aerosolized virus: Anti-viral efficiency with dust loading.

    PubMed

    Joe, Yun Haeng; Park, Dae Hoon; Hwang, Jungho

    2016-01-15

    In this study, the effect of dust loading on the anti-viral ability of an anti-viral air filter was investigated. Silver nanoparticles approximately 11 nm in diameter were synthesized via a spark discharge generation system and were used as anti-viral agents coated onto a medium air filter. The pressure drop, filtration efficiency, and anti-viral ability of the filter against aerosolized bacteriophage MS2 virus particles were tested with dust loading. The filtration efficiency and pressure drop increased with dust loading, while the anti-viral ability decreased. Theoretical analysis of anti-viral ability with dust loading was carried out using a mathematical model based on that presented by Joe et al. (J. Hazard. Mater.; 280: 356-363, 2014). Our model can be used to compare anti-viral abilities of various anti-viral agents, determine appropriate coating areal density of anti-viral agent on a filter, and predict the life cycle of an anti-viral filter. PMID:26434534

  16. Antiviral therapy for chronic hepatitis B in China.

    PubMed

    Zheng, Xin; Wang, Junzhong; Yang, Dongliang

    2015-02-01

    The vaccination program against hepatitis B virus (HBV) has greatly reduced the incidence of HBV infection. However, almost one-fourth of the HBV infected patients worldwide are still located in China. The healthcare burden from chronic HBV infection is a big challenge for the Chinese government and clinicians. Antiviral therapy plays a central role in controlling chronic HBV infection and preventing the disease progression. However, due to the specific economic and medical system issues, the first-line antiviral agents recommended by the AASLD and EASL have not been widely used for Chinese patients. In this review, we will discuss some key issues in the area of antiviral treatment for chronic hepatitis B in China. PMID:25540038

  17. Antiviral selection in the management of acute retinal necrosis

    PubMed Central

    Tam, Patrick MK; Hooper, Claire Y; Lightman, Susan

    2010-01-01

    There is no consensus on the optimal antiviral regimen in the management of acute retinal necrosis, a disease caused by herpetic viruses with devastating consequences for the eye. The current gold standard is based on retrospective case series. Because the incidence of disease is low, few well-designed, randomized trials have evaluated treatment dosage and duration. Newer oral antiviral agents are emerging as alternatives to high-dose intravenous acyclovir, avoiding the need for inpatient intravenous treatment. Drug resistance is uncommon but may also be difficult to identify. Antiviral drugs have few side effects, but special attention needs to be paid to patients who have underlying renal disease, are pregnant or are immunocompromised. PMID:20169044

  18. Antiviral effect of interferon covalently bound to sepharose.

    PubMed

    Ankel, H; Chany, C; Galliot, B; Chevalier, M J; Robert, M

    1973-08-01

    Interferon, covalently bound to Sepharose 4B activated by cyanogen bromide, induces the antiviral state in sensitive cells. The antiviral effect is neutralized by antiserum specific to interferon and is recovered thereafter when the antibody is detached from the interferon by treatment at low pH. Binding interferon to Sepharose increases the stability of the molecule. It is likely that the interferon molecule acts on the cell receptor without being detached from the beads. However, the data do not exclude the possibility of a small loss of interferon, or fragments of it, after contact with the cell.

  19. Antioxidative and antiviral properties of flowering cherry fruits (Prunus serrulata L. var. spontanea).

    PubMed

    Yook, Hong-Sun; Kim, Kyoung-Hee; Park, Jung-Eun; Shin, Hyun-Jin

    2010-01-01

    The phenolic compounds of many fruits have been known to be efficient cellular protective antioxidants. In this study, antioxidative and antiviral properties of flowering cherry cultivars (Prunus yedoensis, Prunus sargentii, Prunus lannesiana, and Prunus cerasus) in Korea were investigated. The antioxidant property was assayed for specific activities including 2,2-diphenyl-1-picrylhydrazyl (DPPH) hydroxy radical scavenging activity, reducing power capacity, and superoxide dismutase (SOD) like activity. In addition, antiviral activity was determined by inhibition studies on the infection cycle of porcine epidemic diarrhea virus (PEDV), measured as minimum concentration of cherry extracts that inhibited 50% of cytopathic effect (CPE) on PEDV. Our results show that the four varieties of cherries contain substantially high antioxidants and antiviral activities. In particular, P. cerasus contains higher antioxidants and antiviral activities as well as polyphenolic content than other varieties. Our data indicate that Korean native cherry cultivars could be beneficial supplements of dietary antioxidants and natural antiviral agents. PMID:20821824

  20. Antiviral activity of Paulownia tomentosa against enterovirus 71 of hand, foot, and mouth disease.

    PubMed

    Ji, Ping; Chen, Changmai; Hu, Yanan; Zhan, Zixuan; Pan, Wei; Li, Rongrong; Li, Erguang; Ge, Hui-Ming; Yang, Guang

    2015-01-01

    The bark, leaves, and flowers of Paulownia trees have been used in traditional Chinese medicine to treat infectious and inflammatory diseases. We investigated the antiviral effects of Paulownia tomentosa flowers, an herbal medicine used in some provinces of P. R. China for the treatment of skin rashes and blisters. Dried flowers of P. tomentosa were extracted with methanol and tested for antiviral activity against enterovirus 71 (EV71) and coxsackievirus A16 (CAV16), the predominant etiologic agents of hand, foot, and mouth disease in P. R. China. The extract inhibited EV71 infection, although no effect was detected against CAV16 infection. Bioactivity-guided fractionation was performed to identify apigenin as an active component of the flowers. The EC50 value for apigenin to block EV71 infection was 11.0 µM, with a selectivity index of approximately 9.3. Although it is a common dietary flavonoid, only apigenin, and not similar compounds like naringenin and quercetin, were active against EV71 infection. As an RNA virus, the genome of EV71 has an internal ribosome entry site that interacts with heterogeneous nuclear ribonucleoproteins (hnRNPs) and regulates viral translation. Cross-linking followed by immunoprecipitation and reverse transcription-polymerase chain reaction (RT-PCR) analysis showed that EV71 RNA was associated with hnRNPs A1 and A2. Apigenin treatment disrupted this association, indicating that apigenin suppressed EV71 replication through a novel mechanism by targeting the trans-acting factors. This study therefore validates the effects of Paulownia against EV71 infection. It also yielded mechanistic insights on apigenin as an active compound for the antiviral activity of P. tomentosa against EV71 infection. PMID:25744451

  1. Antiviral therapy of hepatitis C as curative treatment of indolent B-cell lymphoma

    PubMed Central

    Merli, Michele; Carli, Giuseppe; Arcaini, Luca; Visco, Carlo

    2016-01-01

    The association of hepatitis C virus (HCV) and B-cell non-Hodgkin lymphomas (NHL) has been highlighted by several epidemiological and biological insights; however the most convincing evidence is represented by interventional studies demonstrating the capability of antiviral treatment (AT) with interferon (IFN) with or without ribavirin to induce the regression of indolent lymphomas, especially of marginal-zone origin. In the largest published retrospective study (100 patients) the overall response rate (ORR) after first-line IFN-based AT was 77% (44% complete responses) and responses were sustainable (median duration of response 33 mo). These results were confirmed by a recent meta-analysis on 254 patients, demonstrating an ORR of 73%. Moreover this analysis confirmed the highly significant correlation between the achievement of viral eradication sustained virological response (SVR) and hematological responses. Two large prospective studies demonstrated that AT is associated with improved survival and argue in favor of current guidelines’ recommendation of AT as preferential first-line option in asymptomatic patients with HCV-associated indolent NHL. The recently approved direct-acting antiviral agents (DAAs) revolutionized the treatment of HCV infection, leading to SVR approaching 100% in all genotypes. Very preliminary data of IFN-free DAAs therapy in indolent HCV-positive NHL seem to confirm their activity in inducing lymphoma regression. PMID:27784957

  2. Antiviral therapy: a perspective

    PubMed Central

    Shahidi Bonjar, Amir Hashem

    2016-01-01

    sufficient research has yielded positive results in animal models, EVAC could be used as a supportive treatment in humans along with conventional antiviral therapies. EVAC would not be suitable for all viral infections, but could be expected to decrease the casualties resulting from blood-borne viral infections. The EVAC approach would be efficient in terms of time, effort, and expenditure in the research and treatment of blood-borne viral infections. PMID:26893542

  3. Viral ancestors of antiviral systems.

    PubMed

    Villarreal, Luis P

    2011-10-01

    All life must survive their corresponding viruses. Thus antiviral systems are essential in all living organisms. Remnants of virus derived information are also found in all life forms but have historically been considered mostly as junk DNA. However, such virus derived information can strongly affect host susceptibility to viruses. In this review, I evaluate the role viruses have had in the origin and evolution of host antiviral systems. From Archaea through bacteria and from simple to complex eukaryotes I trace the viral components that became essential elements of antiviral immunity. I conclude with a reexamination of the 'Big Bang' theory for the emergence of the adaptive immune system in vertebrates by horizontal transfer and note how viruses could have and did provide crucial and coordinated features.

  4. Viral ancestors of antiviral systems.

    PubMed

    Villarreal, Luis P

    2011-10-01

    All life must survive their corresponding viruses. Thus antiviral systems are essential in all living organisms. Remnants of virus derived information are also found in all life forms but have historically been considered mostly as junk DNA. However, such virus derived information can strongly affect host susceptibility to viruses. In this review, I evaluate the role viruses have had in the origin and evolution of host antiviral systems. From Archaea through bacteria and from simple to complex eukaryotes I trace the viral components that became essential elements of antiviral immunity. I conclude with a reexamination of the 'Big Bang' theory for the emergence of the adaptive immune system in vertebrates by horizontal transfer and note how viruses could have and did provide crucial and coordinated features. PMID:22069523

  5. Viral Ancestors of Antiviral Systems

    PubMed Central

    Villarreal, Luis P.

    2011-01-01

    All life must survive their corresponding viruses. Thus antiviral systems are essential in all living organisms. Remnants of virus derived information are also found in all life forms but have historically been considered mostly as junk DNA. However, such virus derived information can strongly affect host susceptibility to viruses. In this review, I evaluate the role viruses have had in the origin and evolution of host antiviral systems. From Archaea through bacteria and from simple to complex eukaryotes I trace the viral components that became essential elements of antiviral immunity. I conclude with a reexamination of the ‘Big Bang’ theory for the emergence of the adaptive immune system in vertebrates by horizontal transfer and note how viruses could have and did provide crucial and coordinated features. PMID:22069523

  6. Photo-distributed lichenoid eruption secondary to direct anti-viral therapy for hepatitis C.

    PubMed

    Simpson, Cory L; McCausland, Drew; Chu, Emily Y

    2015-10-01

    Novel direct anti-viral agents are emerging as effective treatments for hepatitis C virus (HCV) and provide an alternative to the year-long standard therapy with interferon and ribavirin. However, cutaneous side effects from these new medications, including rash, pruritus and photosensitivity, are among the most commonly reported adverse events and have resulted in therapy discontinuation in some cases. Here, we report two cases of a photo-distributed lichenoid eruption that occurred within 1  month of starting anti-viral therapy with simeprevir and sofosbuvir without interferon or ribavirin. This report provides the first histologic description of the cutaneous eruption associated with direct anti-viral therapy for HCV and highlights the importance of recognizing and treating the often intolerable dermatologic side effects of these novel medications, the incidence of which is likely to increase as direct anti-viral agents may become the standard of care for HCV. PMID:25974215

  7. Options for the management of antiviral resistance during hepatitis B therapy: reflections on battles over a decade.

    PubMed

    Yim, Hyung Joon; Hwang, Seong Gyu

    2013-09-01

    Although much advancement has been achieved in the treatment of chronic hepatitis B, antiviral resistance is still a challenging issue. Previous generation antiviral agents have already developed resistance in a number of patients, and it is still being used especially in resource limited countries. Once antiviral resistance occurs, it predisposes to subsequent resistance, resulting in multidrug resistance. Therefore, prevention of initial antiviral resistance is the most important strategy, and appropriate choice and modification of therapy would be the cornerstone in avoiding treatment failures. Until now, management of antiviral resistance has been evolving from sequential therapy to combination therapy. In the era of tenofovir, the paradigm shifts again, and we have to decide when to switch and when to combine on the basis of newly emerging clinical data. We expect future eradication of chronic hepatitis B virus infection by proper prevention and optimal management of antiviral resistance.

  8. Gold nanoparticles synthesized by Brassica oleracea (Broccoli) acting as antimicrobial agents against human pathogenic bacteria and fungi

    NASA Astrophysics Data System (ADS)

    Piruthiviraj, Prakash; Margret, Anita; Krishnamurthy, Poornima Priyadharsani

    2016-04-01

    Production of antimicrobial agents through the synthesis of gold nanoparticles using green technology has been extensively made consistent by various researchers; yet, this study uses the flower bud's aqueous extracts of Brassica oleracea (Broccoli) as a reducing agent for chloroauric acid (1 mM). After 30 min of incubation, synthesis of gold nanoparticles (AuNps) was observed by a change in extract color from pale yellow to purple color. Synthesis of AuNps was confirmed in UV-visible spectroscopy at the range of approximately 560 nm. The SEM analysis showed the average nanoparticles size of 12-22 nm. The antimicrobial activity of AuNps was analyzed by subjecting it to human pathogenic bacteria (Gram-positive Staphylococcus aureus and Gram-negative Klebsiella pneumonia) and fungi (Aspergillus flavus, Aspergillus niger and Candida albicans) using disc diffusion method. The broccoli-synthesized AuNps showed the efficient antibacterial and antifungal activity of above-mentioned microbes. It was confirmed that AuNps have the best antimicrobial agent compared to the standard antibiotics (Gentamicin and Fluconazole). When the concentrations of AuNps were increased (10, 25, and 50 µg/ml), the sensitivity zone also increased for all the tested microbes. The synthesized AuNps are capable of rendering high antimicrobial efficacy and, hence, have a great potential in the preparation of drugs used against major bacterial and fungal diseases in humans.

  9. Immunomodulating and antiviral therapy in herpes zoster.

    PubMed

    Topciu, V; Mihăilescu, R

    1996-01-01

    Two groups of patients with herpes zoster were followed up. The first group was subjected, beside a symptomatic therapy, to an immunological and antiviral treatment. The control group was treated only symptomatically. The immunological preparations used were: the immunostimulant SRE (Corynebacterium parvum), which stimulated the lymphocytes and macrophages, Moroxidin (Virustat-Paris) and Antiherpin (interferon inductor), which acted by blocking the virus replication. The preparations were indigenous and atoxic. A significant difference between the courses of disease in the two groups was observed, namely, the severity and duration of subjective and objective symptoms were more than double and followed by persistent neurological sequelae in the control group in comparison with the patients of the experimental group. PMID:9495784

  10. Prospective therapeutic agents for obesity: molecular modification approaches of centrally and peripherally acting selective cannabinoid 1 receptor antagonists.

    PubMed

    Sharma, Mayank Kumar; Murumkar, Prashant R; Kanhed, Ashish M; Giridhar, Rajani; Yadav, Mange Ram

    2014-05-22

    Presently, obesity is one of the major health problems in the developed as well as developing countries due to lack of physical work and increasing sedentary life style. Endocannabinoid system (ECS) and especially cannabinoid 1 (CB1) receptor play a key role in energy homeostasis. Food intake and energy storage is enhanced due to the stimulation of ECS hence, inhibition of ECS by blocking CB1 receptors could be a promising approach in the treatment of obesity. Rimonabant, a diaryl pyrazole was the first potent and selective CB1 receptor antagonist that was introduced into the market in 2006 but was withdrawn in 2008 due to its psychiatric side effects. Researchers all over the world are interested to develop peripherally acting potent and selective CB1 receptor antagonists having a better pharmacokinetic profile and therapeutic index. In this development process, pyrazole ring of rimonabant has been replaced by different bioisosteric scaffolds like pyrrole, imidazole, triazole, pyrazoline, pyridine etc. Variations in substituents around the pyrazole ring have also been done. New strategies were also employed for minimizing the psychiatric side effects by making more polar and less lipophilic antagonists/inverse agonists along with neutral antagonists acting peripherally. It has been observed that some of the peripherally acting compounds do not show adverse effects and could be used as potential leads for the further design of selective CB1 receptor antagonists. Chemical modification strategies used for the development of selective CB1 receptor antagonists are discussed here in this review.

  11. Synergistic antiviral activity of gemcitabine and ribavirin against enteroviruses.

    PubMed

    Kang, Hyunju; Kim, Chonsaeng; Kim, Dong-eun; Song, Jae-Hyoung; Choi, Miri; Choi, Kwangman; Kang, Mingu; Lee, Kyungjin; Kim, Hae Soo; Shin, Jin Soo; Kim, Janghwan; Han, Sang-Bae; Lee, Mi-Young; Lee, Su Ui; Lee, Chong-Kyo; Kim, Meehyein; Ko, Hyun-Jeong; van Kuppeveld, Frank J M; Cho, Sungchan

    2015-12-01

    Enteroviruses are major causative agents of various human diseases, and some of them are currently considered to be an enormous threat to public health. However, no effective therapy is currently available for the treatment of these infections. We identified gemcitabine, a nucleoside-analog drug used for cancer treatment, from a screen of bioactive chemicals as a novel inhibitor of coxsackievirus B3 (CVB3) and enterovirus 71 (EV71). Gemcitabine potently inhibited the proliferation of CVB3 and EV71, as well as the replication of CVB3 and EV71 replicons, in cells with a low micromolar IC50 (1-5 μM). Its strong inhibitory effect was also observed in cells infected with human rhinoviruses, demonstrating broad-spectrum antiviral effects on enteroviruses. Mechanistically, an extensive analysis excluded the involvement of 2C, 3A, IRES-dependent translation, and also that of polyprotein processing in the antiviral effects of gemcitabine. Importantly, gemcitabine in combination with ribavirin, an antiviral drug currently being used against a few RNA viruses, exhibited a synergistic antiviral effect on the replication of CVB3 and EV71 replicons. Consequently, our results clearly demonstrate a new indication for gemcitabine as an effective broad-spectrum inhibitor of enteroviruses and strongly suggest a new therapeutic strategy using gemcitabine alone or in combination with ribavirin for the treatment of various diseases associated with enterovirus infection.

  12. HIV resistance to antiviral drugs: public health implications.

    PubMed

    Wainberg, M A; Cameron, D W

    1998-01-01

    The widespread occurrence of HIV strains resistant to antiviral drugs has given rise to a number of important concerns distinct from the obvious question of the relationship between drug resistance and treatment failure. A major issue is the extent to which drug-resistant viruses may be transmitted in primary infection via sexual or intravenous routes and how this relates to the relative fitness of such strains. It is also important to understand the potential role of effective antiviral therapy in the decrease of viral burden in both blood and sexual secretions, and the extent to which this may be compromised in individuals harboring resistant viruses. A related subject is the important role of patient adherence to antiviral therapy in achieving sustained reduction in viral load and preventing the emergence of drug resistance. These linked topics are tied to the central role of antiviral agents in the selection of mutant forms that can attain a replication advantage in the presence of drug. PMID:16904396

  13. Antiviral medication in sexually transmitted diseases. Part I: HSV, HPV.

    PubMed

    Mlynarczyk-Bonikowska, Beata; Majewska, Anna; Malejczyk, Magdalena; Mlynarczyk, Grazyna; Majewski, Slawomir

    2013-11-01

    Sexually transmitted diseases (STD) are one of the most prevalent infectious diseases in the world and important cause of morbidity and mortality. Especially STDs of viral etiology are difficult to cure. In many cases the antiviral therapy can relieve the symptoms but not eliminate the virus. During the past decades, considerable progress has been made in the development of antiviral drugs. One of the oldest antiviral medications is acyclovir (ACV). It is approved to treat initial and recurrent genital herpes and as a suppressive therapy in severe recurrent genital infections as well. Drug resistance to ACV and related drugs is seen among immunocompromised hosts, including human immunodeficiency virus HIV-infected patients. Resistant infections can be managed by second-line drugs - foscarnet or cidofovir- but they are more toxic than ACV. In case of HPV there is not known specific target for the medication and that is why the substances used in human papilloma virus HPV infection therapy are either antimitotics or immunomodulators. The Part I review focuses on mechanisms of actions and mechanisms of resistance to antiviral agents used in a treatment of the genital herpes and genital HPV infection. In Part II we will show the therapeutic options in other sexually transmitted infections: hepatitis B, C and HIV. PMID:24032509

  14. [Significance of hepatitis C virus baseline polymorphism during the antiviral therapy].

    PubMed

    Tornai, István

    2015-05-24

    The treatment of chronic hepatitis C has developed significantly during the last 25 years. In patients with genotype 1 infection 40-50% sustained virologic response could be achieved using pegylated interferon and ribavirin dual combination, which could be increased significantly with the introduction of direct acting antivirals. Three major groups of direct acting antivirals are known, which directly inhibit different phases of viral life cycle, by inhibiting the function of several non-structural proteins (NS3/4A protease, NS5A protein and NS5B polymerase). Due to the rapid replication rate of hepatitis C virus and the error-prone NS5B polymerase activity, mutant virions are generated, which might have reduced susceptibility to direct acting antiviral therapy. Since these resistance associated variants might exist before the antiviral therapy, they are still able to replicate during the direct acting antiviral treatment. Due to this selection pressure, the resistant virus will replace the wild type. This was especially detected during monotherapy, therefore, the first generation of direct acting antivirals have been combined with pegylated interferon and ribavirin, while recently interferon-free combinations are being developed including 2 or 3 direct acting antivirals. Using the first generation protease inhibitors boceprevir and telaprevir, it could have been seen, that the rate of resistance associated variants is higher and the therapeutic outcome is worse in patients with hepatitis C virus genotype 1a, than in 1b. Similar phenomenon was seen with the second generation of NS3/4A protease inhibitors as well as with NS5A or NS5B polymerase. This is due to the lower genetic barrier to resistance, ie. usually fewer mutations are enough for the emergence of resistance in genotype 1a. The selection of resistance associated variants is one of the most important challenges during the interferon-free therapy. PMID:26038992

  15. Comparative safety and effectiveness of long-acting inhaled agents for treating chronic obstructive pulmonary disease: a systematic review and network meta-analysis

    PubMed Central

    Tricco, Andrea C; Strifler, Lisa; Veroniki, Areti-Angeliki; Yazdi, Fatemeh; Khan, Paul A; Scott, Alistair; Ng, Carmen; Antony, Jesmin; Mrklas, Kelly; D'Souza, Jennifer; Cardoso, Roberta; Straus, Sharon E

    2015-01-01

    Objective To compare the safety and effectiveness of long-acting β-antagonists (LABA), long-acting antimuscarinic agents (LAMA) and inhaled corticosteroids (ICS) for managing chronic obstructive pulmonary disease (COPD). Setting Systematic review and network meta-analysis (NMA). Participants 208 randomised clinical trials (RCTs) including 134 692 adults with COPD. Interventions LABA, LAMA and/or ICS, alone or in combination, versus each other or placebo. Primary and secondary outcomes The proportion of patients with moderate-to-severe exacerbations. The number of patients experiencing mortality, pneumonia, serious arrhythmia and cardiovascular-related mortality (CVM) were secondary outcomes. Results NMA was conducted including 20 RCTs for moderate-to-severe exacerbations for 26 141 patients with an exacerbation in the past year. 32 treatments were effective versus placebo including: tiotropium, budesonide/formoterol, salmeterol, indacaterol, fluticasone/salmeterol, indacaterol/glycopyrronium, tiotropium/fluticasone/salmeterol and tiotropium/budesonide/formoterol. Tiotropium/budesonide/formoterol was most effective (99.2% probability of being the most effective according to the Surface Under the Cumulative RAnking (SUCRA) curve). NMA was conducted on mortality (88 RCTs, 97 526 patients); fluticasone/salmeterol was more effective in reducing mortality than placebo, formoterol and fluticasone alone, and was the most effective (SUCRA=71%). NMA was conducted on CVM (37 RCTs, 55 156 patients) and the following were safest: salmeterol versus each OF placebo, tiotropium and tiotropium (Soft Mist Inhaler (SMR)); fluticasone versus tiotropium (SMR); and salmeterol/fluticasone versus tiotropium and tiotropium (SMR). Triamcinolone acetonide was the most harmful (SUCRA=81%). NMA was conducted on pneumonia occurrence (54 RCTs, 61 551 patients). 24 treatments were more harmful, including 2 that increased risk of pneumonia versus placebo; fluticasone and fluticasone

  16. Antiviral Activity of Glycyrrhizin against Hepatitis C Virus In Vitro

    PubMed Central

    Matsumoto, Yoshihiro; Matsuura, Tomokazu; Aoyagi, Haruyo; Matsuda, Mami; Hmwe, Su Su; Date, Tomoko; Watanabe, Noriyuki; Watashi, Koichi; Suzuki, Ryosuke; Ichinose, Shizuko; Wake, Kenjiro; Suzuki, Tetsuro; Miyamura, Tatsuo; Wakita, Takaji; Aizaki, Hideki

    2013-01-01

    Glycyrrhizin (GL) has been used in Japan to treat patients with chronic viral hepatitis, as an anti-inflammatory drug to reduce serum alanine aminotransferase levels. GL is also known to exhibit various biological activities, including anti-viral effects, but the anti-hepatitis C virus (HCV) effect of GL remains to be clarified. In this study, we demonstrated that GL treatment of HCV-infected Huh7 cells caused a reduction of infectious HCV production using cell culture-produced HCV (HCVcc). To determine the target step in the HCV lifecycle of GL, we used HCV pseudoparticles (HCVpp), replicon, and HCVcc systems. Significant suppressions of viral entry and replication steps were not observed. Interestingly, extracellular infectivity was decreased, and intracellular infectivity was increased. By immunofluorescence and electron microscopic analysis of GL treated cells, HCV core antigens and electron-dense particles had accumulated on endoplasmic reticulum attached to lipid droplet (LD), respectively, which is thought to act as platforms for HCV assembly. Furthermore, the amount of HCV core antigen in LD fraction increased. Taken together, these results suggest that GL inhibits release of infectious HCV particles. GL is known to have an inhibitory effect on phospholipase A2 (PLA2). We found that group 1B PLA2 (PLA2G1B) inhibitor also decreased HCV release, suggesting that suppression of virus release by GL treatment may be due to its inhibitory effect on PLA2G1B. Finally, we demonstrated that combination treatment with GL augmented IFN-induced reduction of virus in the HCVcc system. GL is identified as a novel anti-HCV agent that targets infectious virus particle release. PMID:23874843

  17. Antiviral drug discovery against SARS-CoV.

    PubMed

    Wu, Yu-Shan; Lin, Wen-Hsing; Hsu, John T-A; Hsieh, Hsing-Pang

    2006-01-01

    Severe Acute Respiratory Syndrome (SARS) is a life-threatening infectious disease caused by SARS-CoV. In the 2003 outbreak, it infected more than 8,000 people worldwide and claimed the lives of more than 900 victims. The high mortality rate resulted, at least in part, from the absence of definitive treatment protocols or therapeutic agents. Although the virus spreading has been contained, due preparedness and planning, including the successful development of antiviral drugs against SARS-CoV, is necessary for possible reappearance of SARS. In this review, we have discussed currently available strategies for antiviral drug discovery and how these technologies have been utilized to identify potential antiviral agents for the inhibition of SARS-CoV replication. Moreover, progress in the drug development based on different molecular targets is also summarized, including 1) Compounds that block the S protein-ACE2-mediated viral entry; 2) Compounds targeting SARS-CoV M(pro); 3) Compounds targeting papain-like protease 2 (PLP2); 4) Compounds targeting SARS-CoV RdRp; 5) Compounds targeting SARS-CoV helicase; 6) Active compounds with unspecified targets; and 7) Research on siRNA. This review aims to provide a comprehensive account of drug discovery on SARS. The experiences with the SARS outbreak and drug discovery would certainly be an important lesson for the drug development for any new viral outbreaks that may emerge in the future.

  18. Discovery of Potent Broad Spectrum Antivirals Derived from Marine Actinobacteria

    PubMed Central

    Raveh, Avi; Delekta, Phillip C.; Dobry, Craig J.; Peng, Weiping; Schultz, Pamela J.; Blakely, Pennelope K.; Tai, Andrew W.; Matainaho, Teatulohi; Irani, David N.; Sherman, David H.; Miller, David J.

    2013-01-01

    Natural products provide a vast array of chemical structures to explore in the discovery of new medicines. Although secondary metabolites produced by microbes have been developed to treat a variety of diseases, including bacterial and fungal infections, to date there has been limited investigation of natural products with antiviral activity. In this report, we used a phenotypic cell-based replicon assay coupled with an iterative biochemical fractionation process to identify, purify, and characterize antiviral compounds produced by marine microbes. We isolated a compound from Streptomyces kaviengensis, a novel actinomycetes isolated from marine sediments obtained off the coast of New Ireland, Papua New Guinea, which we identified as antimycin A1a. This compound displays potent activity against western equine encephalitis virus in cultured cells with half-maximal inhibitory concentrations of less than 4 nM and a selectivity index of greater than 550. Our efforts also revealed that several antimycin A analogues display antiviral activity, and mechanism of action studies confirmed that these Streptomyces-derived secondary metabolites function by inhibiting the cellular mitochondrial electron transport chain, thereby suppressing de novo pyrimidine synthesis. Furthermore, we found that antimycin A functions as a broad spectrum agent with activity against a wide range of RNA viruses in cultured cells, including members of the Togaviridae, Flaviviridae, Bunyaviridae, Picornaviridae, and Paramyxoviridae families. Finally, we demonstrate that antimycin A reduces central nervous system viral titers, improves clinical disease severity, and enhances survival in mice given a lethal challenge with western equine encephalitis virus. Our results provide conclusive validation for using natural product resources derived from marine microbes as source material for antiviral drug discovery, and they indicate that host mitochondrial electron transport is a viable target for the

  19. In vitro evaluation of marine-microorganism extracts for anti-viral activity

    PubMed Central

    2010-01-01

    Viral-induced infectious diseases represent a major health threat and their control remains an unachieved goal, due in part to the limited availability of effective anti-viral drugs and measures. The use of natural products in drug manufacturing is an ancient and well-established practice. Marine organisms are known producers of pharmacological and anti-viral agents. In this study, a total of 20 extracts from marine microorganisms were evaluated for their antiviral activity. These extracts were tested against two mammalian viruses, herpes simplex virus (HSV-1) and vesicular stomatitis virus (VSV), using Vero cells as the cell culture system, and two marine virus counterparts, channel catfish virus (CCV) and snakehead rhabdovirus (SHRV), in their respective cell cultures (CCO and EPC). Evaluation of these extracts demonstrated that some possess antiviral potential. In sum, extracts 162M(4), 258M(1), 298M(4), 313(2), 331M(2), 367M(1) and 397(1) appear to be effective broad-spectrum antivirals with potential uses as prophylactic agents to prevent infection, as evident by their highly inhibitive effects against both virus types. Extract 313(2) shows the most potential in that it showed significantly high inhibition across all tested viruses. The samples tested in this study were crude extracts; therefore the development of antiviral application of the few potential extracts is dependent on future studies focused on the isolation of the active elements contained in these extracts. PMID:20691099

  20. Reduction of facial pigmentation of melasma by topical lignin peroxidase: A novel fast-acting skin-lightening agent

    PubMed Central

    ZHONG, SHAO-MIN; SUN, NAN; LIU, HUI-XIAN; NIU, YUE-QING; WU, YAN

    2015-01-01

    The aim of the present study was to evaluate the efficacy and safety of lignin peroxidase (LIP) as a skin-lightening agent in patients with melasma. A self-controlled clinical study was performed in 31 women who had melasma on both sides of the face. This study involved 8 weeks of a full-face product treatment. The skin color was measured at days 0, 7, 28 and 56 using a chromameter on the forehead and cheeks. Standardized digital photographic images of each side of the face of all subjects were captured by a complexion analysis system. Clinical scores of the pigmentation were determined by two dermatologists. After using the LIP whitening lotion for 7 days, the luminance (L*) values of the melasma and the normal skin were significantly increased from baseline. The L* values continued to increase at days 28 and 56. The melasma area severity index (MASI) score was statistically decreased after 28 days of treatment. No treatment-related adverse events were observed. LIP whitening lotion was able to eliminate the skin pigmentation after 7 days of treatment, and provides a completely innovative approach to rapid skin lightening. The LIP whitening lotion exhibited good compatibility and was well tolerated. PMID:25574195

  1. Guanylate-Binding Protein 1, an Interferon-Induced GTPase, Exerts an Antiviral Activity against Classical Swine Fever Virus Depending on Its GTPase Activity

    PubMed Central

    Li, Lian-Feng; Yu, Jiahui; Li, Yongfeng; Wang, Jinghan; Li, Su; Zhang, Lingkai; Xia, Shui-Li; Yang, Qian; Wang, Xiao; Yu, Shaoxiong; Luo, Yuzi; Sun, Yuan; Zhu, Yan; Munir, Muhammad

    2016-01-01

    ABSTRACT Many viruses trigger the type I interferon (IFN) pathway upon infection, resulting in the transcription of hundreds of interferon-stimulated genes (ISGs), which define the antiviral state of the host. Classical swine fever virus (CSFV) is the causative agent of classical swine fever (CSF), a highly contagious viral disease endangering the pig industry in many countries. However, anti-CSFV ISGs are poorly documented. Here we screened 20 ISGs that are commonly induced by type I IFNs against CSFV in lentivirus-delivered cell lines, resulting in the identification of guanylate-binding protein 1 (GBP1) as a potent anti-CSFV ISG. We observed that overexpression of GBP1, an IFN-induced GTPase, remarkably suppressed CSFV replication, whereas knockdown of endogenous GBP1 expression by small interfering RNAs significantly promoted CSFV growth. Furthermore, we demonstrated that GBP1 acted mainly on the early phase of CSFV replication and inhibited the translation efficiency of the internal ribosome entry site of CSFV. In addition, we found that GBP1 was upregulated at the transcriptional level in CSFV-infected PK-15 cells and in various organs of CSFV-infected pigs. Coimmunoprecipitation and glutathione S-transferase (GST) pulldown assays revealed that GBP1 interacted with the NS5A protein of CSFV, and this interaction was mapped in the N-terminal globular GTPase domain of GBP1. Interestingly, the K51 of GBP1, which is crucial for its GTPase activity, was essential for the inhibition of CSFV replication. We showed further that the NS5A-GBP1 interaction inhibited GTPase activity, which was critical for its antiviral effect. Taking our findings together, GBP1 is an anti-CSFV ISG whose action depends on its GTPase activity. IMPORTANCE Classical swine fever virus (CSFV) is the causative agent of classical swine fever (CSF), an economically important viral disease affecting the pig industry in many countries. To date, only a few host restriction factors against CSFV

  2. A human genome-wide loss-of-function screen identifies effective chikungunya antiviral drugs

    PubMed Central

    Karlas, Alexander; Berre, Stefano; Couderc, Thérèse; Varjak, Margus; Braun, Peter; Meyer, Michael; Gangneux, Nicolas; Karo-Astover, Liis; Weege, Friderike; Raftery, Martin; Schönrich, Günther; Klemm, Uwe; Wurzlbauer, Anne; Bracher, Franz; Merits, Andres; Meyer, Thomas F.; Lecuit, Marc

    2016-01-01

    Chikungunya virus (CHIKV) is a globally spreading alphavirus against which there is no commercially available vaccine or therapy. Here we use a genome-wide siRNA screen to identify 156 proviral and 41 antiviral host factors affecting CHIKV replication. We analyse the cellular pathways in which human proviral genes are involved and identify druggable targets. Twenty-one small-molecule inhibitors, some of which are FDA approved, targeting six proviral factors or pathways, have high antiviral activity in vitro, with low toxicity. Three identified inhibitors have prophylactic antiviral effects in mouse models of chikungunya infection. Two of them, the calmodulin inhibitor pimozide and the fatty acid synthesis inhibitor TOFA, have a therapeutic effect in vivo when combined. These results demonstrate the value of loss-of-function screening and pathway analysis for the rational identification of small molecules with therapeutic potential and pave the way for the development of new, host-directed, antiviral agents. PMID:27177310

  3. Antiviral Potential of Algae Polysaccharides Isolated from Marine Sources: A Review

    PubMed Central

    Ahmadi, Azin; Zorofchian Moghadamtousi, Soheil; Abubakar, Sazaly; Zandi, Keivan

    2015-01-01

    From food to fertilizer, algal derived products are largely employed in assorted industries, including agricultural, biomedical, food, and pharmaceutical industries. Among different chemical compositions isolated from algae, polysaccharides are the most well-established compounds, which were subjected to a variety of studies due to extensive bioactivities. Over the past few decades, the promising results for antiviral potential of algae-derived polysaccharides have advocated them as inordinate candidates for pharmaceutical research. Numerous studies have isolated various algal polysaccharides possessing antiviral activities, including carrageenan, alginate, fucan, laminaran, and naviculan. In addition, different mechanisms of action have been reported for these polysaccharides, such as inhibiting the binding or internalization of virus into the host cells or suppressing DNA replication and protein synthesis. This review strives for compiling previous antiviral studies of algae-derived polysaccharides and their mechanism of action towards their development as natural antiviral agents for future investigations. PMID:26484353

  4. [Antiviral action and pathogenetic targets for seaweed sulfated polysaccharides in herpesvirus infections].

    PubMed

    Besednova, N N; Makarenkova, I D; Zvyagintseva, T N; Imbs, T I; Somova, L M; Zaporozhets, T S

    2016-03-01

    The review summarizes results of studies of effects of sulfated polysaccharides from seaweed on herpesviruses and the course of herpesvirus infections. Importance of this problem is determined by the prevalence of herpesviruses that can persist in the human body and demonstrate a high degree of immune mimicry and resistance to antiviral agents. A wide range of physiological action of sulfated polysaccharides, receptor agonists of innate and adaptive immune cells, which possess potent antiviral, antioxidant and anti-inflammatory activities, open the possibility of their use for creation of new generation pharmacological substances and agents with associated activity for the treatment of herpesvirus infections. PMID:27420612

  5. Novel alkylphospholipid-DTC hybrids as promising agents against endocrine related cancers acting via modulation of Akt-pathway.

    PubMed

    Jangir, Santosh; Bala, Veenu; Lal, Nand; Kumar, Lalit; Sarswat, Amit; Kumar, Amit; Hamidullah; Saini, Karan S; Sharma, Vikas; Verma, Vikas; Maikhuri, Jagdamba P; Konwar, Rituraj; Gupta, Gopal; Sharma, Vishnu L

    2014-10-01

    A new series of 2-(alkoxy(hydroxy)phosphoryloxy)ethyl dialkylcarbodithioate derivatives was synthesized and evaluated against endocrine related cancers, acting via modulation of Akt-pathway. Eighteen compounds were active at 7.24-100 μM against MDA-MB-231 or MCF-7 cell lines of breast cancer. Three compounds (14, 18 and 22) were active against MCF-7 cells at IC50 significantly better than miltefosine and most of the compounds were less toxic towards non-cancer cell lines, HEK-293. On the other hand, twelve compounds exhibited cell growth inhibiting activity against prostate cancer cell lines, either PC-3 or DU-145 at 14.69-95.20 μM. While nine of these were active against both cell lines. The most promising compounds 14 and 18 were about two and five fold more active than miltefosine against DU-145 and MCF-7 cell lines respectively and significantly down regulated phospho-Akt. Possibly anti-cancer and pro-apoptotic activity was mostly due to blockade of Akt-pathway.

  6. Alteration of Antiviral Signalling by Single Nucleotide Polymorphisms (SNPs) of Mitochondrial Antiviral Signalling Protein (MAVS)

    PubMed Central

    Xing, Fei; Matsumiya, Tomoh; Hayakari, Ryo; Yoshida, Hidemi; Kawaguchi, Shogo; Takahashi, Ippei; Nakaji, Shigeyuki; Imaizumi, Tadaatsu

    2016-01-01

    Genetic variation is associated with diseases. As a type of genetic variation occurring with certain regularity and frequency, the single nucleotide polymorphism (SNP) is attracting more and more attention because of its great value for research and real-life application. Mitochondrial antiviral signalling protein (MAVS) acts as a common adaptor molecule for retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs), which can recognize foreign RNA, including viral RNA, leading to the induction of type I interferons (IFNs). Therefore, MAVS is thought to be a crucial molecule in antiviral innate immunity. We speculated that genetic variation of MAVS may result in susceptibility to infectious diseases. To assess the risk of viral infection based on MAVS variation, we tested the effects of twelve non-synonymous MAVS coding-region SNPs from the National Center for Biotechnology Information (NCBI) database that result in amino acid substitutions. We found that five of these SNPs exhibited functional alterations. Additionally, four resulted in an inhibitory immune response, and one had the opposite effect. In total, 1,032 human genomic samples obtained from a mass examination were genotyped at these five SNPs. However, no homozygous or heterozygous variation was detected. We hypothesized that these five SNPs are not present in the Japanese population and that such MAVS variations may result in serious immune diseases. PMID:26954674

  7. Viral adaptation to an antiviral protein enhances the fitness level to above that of the uninhibited wild type.

    PubMed

    Cherwa, James E; Sanchez-Soria, Pablo; Wichman, Holly A; Fane, Bentley A

    2009-11-01

    Viruses often evolve resistance to antiviral agents. While resistant strains are able to replicate in the presence of the agent, they generally exhibit lower fitness than the wild-type strain in the absence of the inhibitor. In some cases, resistant strains become dependent on the antiviral agent. However, the agent rarely, if ever, elevates dependent strain fitness above the uninhibited wild-type level. This would require an adaptive mechanism to convert the antiviral agent into a beneficial growth factor. Using an inhibitory scaffolding protein that specifically blocks phiX174 capsid assembly, we demonstrate that such mechanisms are possible. To obtain the quintuple-mutant resistant strain, the wild-type virus was propagated for approximately 150 viral life cycles in the presence of increasing concentrations of the inhibitory protein. The expression of the inhibitory protein elevated the strain's fitness significantly above the uninhibited wild-type level. Thus, selecting for resistance coselected for dependency, which was characterized and found to operate on the level of capsid nucleation. To the best of our knowledge, this is the first report of a virus evolving a mechanism to productively utilize an antiviral agent to stimulate its fitness above the uninhibited wild-type level. The results of this study may be predictive of the types of resistant phenotypes that could be selected by antiviral agents that specifically target capsid assembly. PMID:19726521

  8. Differential antagonism of tetramethylenedisulfotetramine-induced seizures by agents acting at NMDA and GABA{sub A} receptors

    SciTech Connect

    Shakarjian, Michael P.; Velíšková, Jana; Stanton, Patric K.; Velíšek, Libor

    2012-11-15

    Tetramethylenedisulfotetramine (TMDT) is a highly lethal neuroactive rodenticide responsible for many accidental and intentional poisonings in mainland China. Ease of synthesis, water solubility, potency, and difficulty to treat make TMDT a potential weapon for terrorist activity. We characterized TMDT-induced convulsions and mortality in male C57BL/6 mice. TMDT (ip) produced a continuum of twitches, clonic, and tonic–clonic seizures decreasing in onset latency and increasing in severity with increasing dose; 0.4 mg/kg was 100% lethal. The NMDA antagonist, ketamine (35 mg/kg) injected ip immediately after the first TMDT-induced seizure, did not change number of tonic–clonic seizures or lethality, but increased the number of clonic seizures. Doubling the ketamine dose decreased tonic–clonic seizures and eliminated lethality through a 60 min observation period. Treating mice with another NMDA antagonist, MK-801, 0.5 or 1 mg/kg ip, showed similar effects as low and high doses of ketamine, respectively, and prevented lethality, converting status epilepticus EEG activity to isolated interictal discharges. Treatment with these agents 15 min prior to TMDT administration did not increase their effectiveness. Post-treatment with the GABA{sub A} receptor allosteric enhancer diazepam (5 mg/kg) greatly reduced seizure manifestations and prevented lethality 60 min post-TMDT, but ictal events were evident in EEG recordings and, hours post-treatment, mice experienced status epilepticus and died. Thus, TMDT is a highly potent and lethal convulsant for which single-dose benzodiazepine treatment is inadequate in managing electrographic seizures or lethality. Repeated benzodiazepine dosing or combined application of benzodiazepines and NMDA receptor antagonists is more likely to be effective in treating TMDT poisoning. -- Highlights: ► TMDT produces convulsions and lethality at low doses in mice. ► Diazepam pre- or post-treatments inhibit TMDT-induced convulsions and death

  9. Drug–drug interactions during antiviral therapy for chronic hepatitis C

    PubMed Central

    Kiser, Jennifer J.; Burton, James R.; Everson, Gregory T.

    2015-01-01

    The emergence of direct-acting antiviral agents (DAAs) for HCV infection represents a major advance in treatment. The NS3 protease inhibitors, boceprevir and telaprevir, were the first DAAs to receive regulatory approval. When combined with PEG-IFN and ribavirin, these agents increase rates of sustained virologic response in HCV genotype 1 to ~70%. However, this treatment regimen is associated with several toxicities. In addition, both boceprevir and telaprevir are substrates for and inhibitors of the drug transporter P-glycoprotein and the cytochrome P450 enzyme 3A4 and are, therefore, prone to clinically relevant drug interactions. Several new DAAs for HCV are in late stages of clinical development and are likely to be approved in the near future. These include the protease inhibitors, simeprevir and faldaprevir, the NS5A inhibitor, daclatasvir, and the nucleotide polymerase inhibitor, sofosbuvir. Herein, we review the clinical pharmacology and drug interactions of boceprevir, telaprevir and these investigational DAAs. Although boceprevir and telaprevir are involved in many interactions, these interactions are manageable if health-care providers proactively identify and adjust treatments. Emerging DAAs seem to have a reduced potential for drug interactions, which will facilitate their use in the treatment of HCV. PMID:23817323

  10. Surfactant-Modified Nanoclay Exhibits an Antiviral Activity with High Potency and Broad Spectrum

    PubMed Central

    Liang, Jian-Jong; Wei, Jiun-Chiou; Lee, Yi-Ling; Lin, Jiang-Jen

    2014-01-01

    ABSTRACT Nanomaterials have the characteristics associated with high surface-to-volume ratios and have been explored for their antiviral activity. Despite some success, cytotoxicity has been an issue in nanomaterial-based antiviral strategies. We previously developed a novel method to fully exfoliate montmorillonite clay to generate the most fundamental units of nanoscale silicate platelet (NSP). We further modified NSP by capping with various surfactants and found that the surfactant-modified NSP (NSQ) was less cytotoxic. In this study, we tested the antiviral potentials of a series of natural-clay-derived nanomaterials. Among the derivatives, NSP modified with anionic sodium dodecyl sulfate (NSQc), but not the pristine clay, unmodified NSP, a silver nanoparticle-NSP hybrid, NSP modified with cationic n-octadecanylamine hydrochloride salt, or NSP modified with nonionic Triton X-100, significantly suppressed the plaque-forming ability of Japanese encephalitis virus (JEV) at noncytotoxic concentrations. NSQc also blocked infection with dengue virus (DEN) and influenza A virus. Regarding the antiviral mechanism, NSQc interfered with viral binding through electrostatic interaction, since its antiviral activity can be neutralized by Polybrene, a cationic polymer. Furthermore, NSQc reduced the lethality of JEV and DEN infection in mouse challenge models. Thus, the surfactant-modified exfoliated nanoclay NSQc may be a novel nanomaterial with broad and potent antiviral activity. IMPORTANCE Nanomaterials have being investigated as antimicrobial agents, yet their antiviral potential is overshadowed by their cytotoxicity. By using a novel method, we fully exfoliated montmorillonite clay to generate the most fundamental units of nanoscale silicate platelet (NSP). Here, we show that the surfactant-modified NSP (NSQ) is less cytotoxic and that NSQc (NSP modified with sodium dodecyl sulfate) could potently block infection by dengue virus (DEN), Japanese encephalitis virus (JEV

  11. What You Should Know about Flu Antiviral Drugs

    MedlinePlus

    ... to prevent seasonal influenza . Antiviral drugs are a second line of defense to treat the flu (including seasonal flu and variant flu viruses ) if you get sick. What are the benefits of antiviral drugs? When used for treatment, antiviral ...

  12. Antiviral effects of Glycyrrhiza species.

    PubMed

    Fiore, Cristina; Eisenhut, Michael; Krausse, Rea; Ragazzi, Eugenio; Pellati, Donatella; Armanini, Decio; Bielenberg, Jens

    2008-02-01

    Historical sources for the use of Glycyrrhiza species include ancient manuscripts from China, India and Greece. They all mention its use for symptoms of viral respiratory tract infections and hepatitis. Randomized controlled trials confirmed that the Glycyrrhiza glabra derived compound glycyrrhizin and its derivatives reduced hepatocellular damage in chronic hepatitis B and C. In hepatitis C virus-induced cirrhosis the risk of hepatocellular carcinoma was reduced. Animal studies demonstrated a reduction of mortality and viral activity in herpes simplex virus encephalitis and influenza A virus pneumonia. In vitro studies revealed antiviral activity against HIV-1, SARS related coronavirus, respiratory syncytial virus, arboviruses, vaccinia virus and vesicular stomatitis virus. Mechanisms for antiviral activity of Glycyrrhiza spp. include reduced transport to the membrane and sialylation of hepatitis B virus surface antigen, reduction of membrane fluidity leading to inhibition of fusion of the viral membrane of HIV-1 with the cell, induction of interferon gamma in T-cells, inhibition of phosphorylating enzymes in vesicular stomatitis virus infection and reduction of viral latency. Future research needs to explore the potency of compounds derived from licorice in prevention and treatment of influenza A virus pneumonia and as an adjuvant treatment in patients infected with HIV resistant to antiretroviral drugs. PMID:17886224

  13. In vitro antiviral effect of germacrone on feline calicivirus.

    PubMed

    Wu, Hongxia; Liu, Yongxiang; Zu, Shaopo; Sun, Xue; Liu, Chunguo; Liu, Dafei; Zhang, Xiaozhan; Tian, Jin; Qu, Liandong

    2016-06-01

    Feline calicivirus (FCV) often causes respiratory tract and oral disease in cats and is a highly contagious virus. Widespread vaccination does not prevent the spread of FCV. Furthermore, the low fidelity of the RNA-dependent RNA polymerase of FCV leads to the emergence of new variants, some of which show increased virulence. Currently, few effective anti-FCV drugs are available. Here, we found that germacrone, one of the main constituents of volatile oil from rhizoma curcuma, was able to effectively reduce the growth of FCV strain F9 in vitro. This compound exhibited a strong anti-FCV effect mainly in the early phase of the viral life cycle. The antiviral effect depended on the concentration of the drug. In addition, germacrone treatment had a significant inhibitory effect against two other reference strains, 2280 and Bolin, and resulted in a significant reduction in the replication of strains WZ-1 and HRB-SS, which were recently isolated in China. This is the first report of antiviral effects of germacrone against a calicivirus, and extensive in vivo research is needed to evaluate this drug as an antiviral therapeutic agent for FCV. PMID:26997613

  14. A rapid and automated colorimetric assay for evaluating the sensitivity of herpes simplex strains to antiviral drugs.

    PubMed

    Langlois, M; Allard, J P; Nugier, F; Aymard, M

    1986-07-01

    A rapid and sensitive colorimetric assay has been developed to evaluate the sensitivity of herpes simplex viruses (HSV) to antiviral agents. The chessboard titration of viruses and antiviral drugs and the automatic reading and analysis of the data allows objective and accurate results to be rapidly obtained. Virus sensitivity was expressed as an ED50 value which was the concentration of drug (micrograms/ml) reducing viral cpe by 50%. The ED50 values of antiviral drugs [acetylguanosine (ACV), idoxuridine (IDU), deoxycytidine (IDC) and bromovinyl deoxyuridine] for several HSV reference strains were determined and the method was then applied to clinical specimens. The selection of ACV and IDU resistant mutants was performed on a cloned sensitive HSV 1 ocular strain. We observed cross-resistance between ACV and IDU for the mutants isolated. The resistance to thymidine-kinase-dependent antiviral agents varied in inverse ratio to the thymidine kinase activity induced by HSV strains.

  15. A novel peptide with potent and broad-spectrum antiviral activities against multiple respiratory viruses.

    PubMed

    Zhao, Hanjun; Zhou, Jie; Zhang, Ke; Chu, Hin; Liu, Dabin; Poon, Vincent Kwok-Man; Chan, Chris Chung-Sing; Leung, Ho-Chuen; Fai, Ng; Lin, Yong-Ping; Zhang, Anna Jin-Xia; Jin, Dong-Yan; Yuen, Kwok-Yung; Zheng, Bo-Jian

    2016-01-01

    A safe, potent and broad-spectrum antiviral is urgently needed to combat emerging respiratory viruses. In light of the broad antiviral activity of β-defensins, we tested the antiviral activity of 11 peptides derived from mouse β-defensin-4 and found that a short peptide, P9, exhibited potent and broad-spectrum antiviral effects against multiple respiratory viruses in vitro and in vivo, including influenza A virus H1N1, H3N2, H5N1, H7N7, H7N9, SARS-CoV and MERS-CoV. The antiviral activity of P9 was attributed to its high-affinity binding to viral glycoproteins, as well as the abundance of basic amino acids in its composition. After binding viral particles through viral surface glycoproteins, P9 entered into cells together with the viruses via endocytosis and prevented endosomal acidification, which blocked membrane fusion and subsequent viral RNA release. This study has paved the avenue for developing new prophylactic and therapeutic agents with broad-spectrum antiviral activities. PMID:26911565

  16. A novel peptide with potent and broad-spectrum antiviral activities against multiple respiratory viruses

    PubMed Central

    Zhao, Hanjun; Zhou, Jie; Zhang, Ke; Chu, Hin; Liu, Dabin; Poon, Vincent Kwok-Man; Chan, Chris Chung-Sing; Leung, Ho-Chuen; Fai, Ng; Lin, Yong-Ping; Zhang, Anna Jin-Xia; Jin, Dong-Yan; Yuen, Kwok-Yung; Zheng, Bo-Jian

    2016-01-01

    A safe, potent and broad-spectrum antiviral is urgently needed to combat emerging respiratory viruses. In light of the broad antiviral activity of β-defensins, we tested the antiviral activity of 11 peptides derived from mouse β-defensin-4 and found that a short peptide, P9, exhibited potent and broad-spectrum antiviral effects against multiple respiratory viruses in vitro and in vivo, including influenza A virus H1N1, H3N2, H5N1, H7N7, H7N9, SARS-CoV and MERS-CoV. The antiviral activity of P9 was attributed to its high-affinity binding to viral glycoproteins, as well as the abundance of basic amino acids in its composition. After binding viral particles through viral surface glycoproteins, P9 entered into cells together with the viruses via endocytosis and prevented endosomal acidification, which blocked membrane fusion and subsequent viral RNA release. This study has paved the avenue for developing new prophylactic and therapeutic agents with broad-spectrum antiviral activities. PMID:26911565

  17. Broad-spectrum antivirals against viral fusion

    PubMed Central

    Vigant, Frederic; Santos, Nuno C.; Lee, Benhur

    2015-01-01

    Effective antivirals have been developed against specific viruses, such as HIV, Hepatitis C virus and influenza virus. This ‘one bug–one drug’ approach to antiviral drug development can be successful, but it may be inadequate for responding to an increasing diversity of viruses that cause significant diseases in humans. The majority of viral pathogens that cause emerging and re-emerging infectious diseases are membrane-enveloped viruses, which require the fusion of viral and cell membranes for virus entry. Therefore, antivirals that target the membrane fusion process represent new paradigms for broad-spectrum antiviral discovery. In this Review, we discuss the mechanisms responsible for the fusion between virus and cell membranes and explore how broad-spectrum antivirals target this process to prevent virus entry. PMID:26075364

  18. Interferons lambda, new cytokines with antiviral activity.

    PubMed

    Lopušná, K; Režuchová, I; Betáková, T; Skovranová, L; Tomašková, J; Lukáčiková, L; Kabát, P

    2013-01-01

    Interferons (IFNs) are key cytokines in the establishment of a multifaceted antiviral response. Three distinct types of IFNs are now recognized (type I, type II, and type III) based on their receptor usage, structural features and biological activities. Although all IFNs are important mediators of antiviral protection, their roles in antiviral defence vary. Interferon lambda (IFN-λ) is a recently discovered group of small helical cytokines capable of inducing an antiviral response both in vitro as well as in vivo. They were discovered independently in 2003 by the groups of Sheppard and Kotenko. This family consists of three structurally related IFN-λ subtypes called IFN-λ1 (IL-29), IFN-λ2 (IL-28A), and IFN-λ3 (IL-28B). In this study we investigate the antiviral activities of IFN-λ1, λ2, and λ3 on some medically important viruses, influenza viruses, herpes viruses and lymphocytic choriomeningitis virus. PMID:23600875

  19. Antiviral strategies: the present and beyond.

    PubMed

    Burke, J D; Fish, E N

    2009-01-01

    Historically, vaccine strategies have proven to be most effective at eradicating the targeted virus infections. With the advent of new or re-emerging altered viruses, some of which jump species to infect humans, the threat of viral pandemics exists. The protracted time to develop a vaccine during a pandemic necessitates using antiviral drugs in the intervening months prior to vaccine availability. Antiviral drugs that are pathogen specific, for example Amantidine, Tamiflu and Relenza, targeted against influenza viruses, are associated with the emergence of virus strains that are drug resistant. The use of ribavirin, a more broad spectrum antiviral, in combination therapies directed against influenza and hepatitis C virus, has proven effective, albeit to a modest extent. Attention is focused on the potential use of interferons (IFN)-alpha/beta as broad spectrum antivirals in acute infections, to invoke both direct antiviral effects against viruses and activation of specific immune effector cells. PMID:20021443

  20. Alkylated Porphyrins Have Broad Antiviral Activity against Hepadnaviruses, Flaviviruses, Filoviruses, and Arenaviruses▿

    PubMed Central

    Guo, Haitao; Pan, Xiaoben; Mao, Richeng; Zhang, Xianchao; Wang, Lijuan; Lu, Xuanyong; Chang, Jinhong; Guo, Ju-Tao; Passic, Shendra; Krebs, Fred C.; Wigdahl, Brian; Warren, Travis K.; Retterer, Cary J.; Bavari, Sina; Xu, Xiaodong; Cuconati, Andrea; Block, Timothy M.

    2011-01-01

    We screened ∼2,200 compounds known to be safe in people for the ability to reduce the amount of virion-associated hepatitis B virus (HBV) DNA in the culture medium of producer cells. These efforts led to the discovery of an alkylated porphyrin, chlorophyllide, as the compound that achieved the greatest reduction in signal. Here we report that chlorophyllide directly and quantitatively disrupted HBV virions at micromolar concentrations, resulting in the loss of all detectable virion DNA, without detectably affecting cell viability or intracellular viral gene products. Chemophores of chlorophyllide were also tested. Chlorin e6, a metal-free chlorophyllide-like molecule, showed the strongest antiviral activity against HBV as well as profound antiviral effects on other enveloped viruses, such as hepatitis C virus (HCV), human immunodeficiency virus (HIV), dengue virus (DENV), Marburg virus (MARV), Tacaribe virus (TCRV), and Junin viruses (JUNV). Remarkably, chlorin e6 inactivated DENV at subnanomolar-level concentrations. However, the compound had no antiviral effect against encephalomyocarditis virus and adenovirus, suggesting that chlorin e6 may be less active or inactive against nonenveloped viruses. Although other porphyrin derivatives have been previously reported to possess antiviral activity, this is the first analysis of the biochemical impact of chlorophyllide and chlorin e6 against HBV and of the dramatic anti-infectivity impact upon DENV. The possible application of this family of compounds as antiviral agents, as microbicides and systemic virus neutralizing agents, is discussed. PMID:21135183

  1. Antiviral therapy in seasonal influenza and 2009 H1N1 pandemic influenza: Korean experiences and perspectives.

    PubMed

    Song, Joon Young; Noh, Ji Yun; Choi, Won Suk; Cheong, Hee Jin; Kim, Woo Joo

    2015-01-01

    Influenza is a major cause of substantial morbidity and mortality in humans every year. Vaccination is the main strategy to prevent influenza infection, but antiviral agents also play an important role in the control of both seasonal and pandemic influenza. During the influenza A/H1N1 pandemic in 2009, early prompt antiviral therapy may have reduced the severity of the influenza outcomes including pneumonia, hospitalization and mortality in the Republic of Korea. Since the 2009 H1N1 pandemic, there have been increasing usages of antiviral agents for the treatment of patients with seasonal influenza. Although currently rare, antiviral resistance among influenza viruses may emerge and increase with increased use of neuraminidase inhibitors. New agents with different modes of action are under investigation, including favipiravir, DAS181, nitazoxanide and broad-spectrum neutralizing monoclonal antibodies. Data are limited with respect to high-dose and combination antiviral therapies. So, clinical trials are warranted to evaluate diverse antiviral combinations that may be synergistic and less likely to induce breakthrough resistance.

  2. Virus assembly, allostery, and antivirals

    PubMed Central

    Zlotnick, Adam; Mukhopadhyay, Suchetana

    2010-01-01

    Assembly of virus capsids and surface proteins must be regulated to ensure that the resulting complex is an infectious virion. Here we examine assembly of virus capsids, focusing on hepatitis B virus and bacteriophage MS2, and formation of glycoproteins in the alphaviruses. These systems are structurally and biochemically well-characterized and are simplest-case paradigms of self-assembly. Published data suggest that capsid and glycoprotein assembly is subject to allosteric regulation, that is, regulation at the level of conformational change. The hypothesis that allostery is a common theme in viruses suggests that deregulation of capsid and glycoprotein assembly by small molecule effectors will be an attractive antiviral strategy, as has been demonstrated with hepatitis B virus. PMID:21163649

  3. Antiviral active peptide from oyster

    NASA Astrophysics Data System (ADS)

    Zeng, Mingyong; Cui, Wenxuan; Zhao, Yuanhui; Liu, Zunying; Dong, Shiyuan; Guo, Yao

    2008-08-01

    An active peptide against herpes virus was isolated from the enzymic hydrolysate of oyster ( Crassostrea gigas) and purified with the definite direction hydrolysis technique in the order of alcalase and bromelin. The hydrolysate was fractioned into four ranges of molecular weight (>10 kDa, 10 5 kDa, 5 1 kDa and <1 kDa) using ultrafiltration membranes and dialysis. The fraction of 10 5 kDa was purified using consecutive chromatographic methods including DEAE Sephadex A-25 column, Sephadex G-25 column, and high performance liquid chromatogram (HPLC) by activity-guided isolation. The antiviral effect of the obtained peptide on herpetic virus was investigated in Vero cells by observing cytopathic effect (CPE). The result shows that the peptide has high inhibitory activity on herpetic virus.

  4. Mechanisms of antiviral action of plant antimicrobials against murine norovirus.

    PubMed

    Gilling, Damian H; Kitajima, Masaaki; Torrey, Jason R; Bright, Kelly R

    2014-08-01

    Numerous plant compounds have antibacterial or antiviral properties; however, limited research has been conducted with nonenveloped viruses. The efficacies of allspice oil, lemongrass oil, and citral were evaluated against the nonenveloped murine norovirus (MNV), a human norovirus surrogate. The antiviral mechanisms of action were also examined using an RNase I protection assay, a host cell binding assay, and transmission electron microscopy. All three antimicrobials produced significant reductions (P ≤ 0.05) in viral infectivity within 6 h of exposure (0.90 log10 to 1.88 log10). After 24 h, the reductions were 2.74, 3.00, and 3.41 log10 for lemongrass oil, citral, and allspice oil, respectively. The antiviral effect of allspice oil was both time and concentration dependent; the effects of lemongrass oil and citral were time dependent. Based on the RNase I assay, allspice oil appeared to act directly upon the viral capsid and RNA. The capsids enlarged from ≤ 35 nm to up to 75 nm following treatment. MNV adsorption to host cells was not significantly affected. Alternatively, the capsid remained intact following exposure to lemongrass oil and citral, which appeared to coat the capsid, causing nonspecific and nonproductive binding to host cells that did not lead to successful infection. Such contrasting effects between allspice oil and both lemongrass oil and citral suggest that though different plant compounds may yield similar reductions in virus infectivity, the mechanisms of inactivation may be highly varied and specific to the antimicrobial. This study demonstrates the antiviral properties of allspice oil, lemongrass oil, and citral against MNV and thus indicates their potential as natural food and surface sanitizers to control noroviruses.

  5. Mechanisms of Antiviral Action of Plant Antimicrobials against Murine Norovirus

    PubMed Central

    Gilling, Damian H.; Kitajima, Masaaki; Torrey, Jason R.

    2014-01-01

    Numerous plant compounds have antibacterial or antiviral properties; however, limited research has been conducted with nonenveloped viruses. The efficacies of allspice oil, lemongrass oil, and citral were evaluated against the nonenveloped murine norovirus (MNV), a human norovirus surrogate. The antiviral mechanisms of action were also examined using an RNase I protection assay, a host cell binding assay, and transmission electron microscopy. All three antimicrobials produced significant reductions (P ≤ 0.05) in viral infectivity within 6 h of exposure (0.90 log10 to 1.88 log10). After 24 h, the reductions were 2.74, 3.00, and 3.41 log10 for lemongrass oil, citral, and allspice oil, respectively. The antiviral effect of allspice oil was both time and concentration dependent; the effects of lemongrass oil and citral were time dependent. Based on the RNase I assay, allspice oil appeared to act directly upon the viral capsid and RNA. The capsids enlarged from ≤35 nm to up to 75 nm following treatment. MNV adsorption to host cells was not significantly affected. Alternatively, the capsid remained intact following exposure to lemongrass oil and citral, which appeared to coat the capsid, causing nonspecific and nonproductive binding to host cells that did not lead to successful infection. Such contrasting effects between allspice oil and both lemongrass oil and citral suggest that though different plant compounds may yield similar reductions in virus infectivity, the mechanisms of inactivation may be highly varied and specific to the antimicrobial. This study demonstrates the antiviral properties of allspice oil, lemongrass oil, and citral against MNV and thus indicates their potential as natural food and surface sanitizers to control noroviruses. PMID:24907316

  6. Comparison between Long- and Short-Acting Erythropoiesis-Stimulating Agents in the Period Required for Haemoglobin Stabilisation in Treatment of Anaemia in Patients with Chronic Kidney Disease.

    PubMed

    Hayashi, Takahiro; Nagamatsu, Tadashi; Matsushita, Ayako; Mizuno, Tomohiro; Nishibe, Seira; Noguchi, Ayaka; Kato, Rina; Toda, Takahiro; Tanaka, Junko; Takahashi, Hiroshi; Hayashi, Hiroki; Yuzawa, Yukio; Yamada, Shigeki

    2015-01-01

    Comparative studies of the potency of long- and short-acting erythropoiesis-stimulating agents (L-ESAs and S-ESAs) on erythropoietic activity in patients with chronic kidney disease without dialysis have not been performed, although L-ESAs are used in many countries. We performed a retrospective analysis of non-dialysis (ND) patients who had received L-ESA or S-ESA. More days were needed for the S-ESA-treated group (368 d) to reach the haemoglobin (Hb) reference range than for the L-ESA-treated group (126 d). Therefore, we investigated risk factors that influence the period until the Hb level reaches the reference range. Patients were classified into two groups by the period until the Hb level was stabilised within the reference range: the short- and long-term group. Two risk factors for delayed Hb stabilisation were identified: age ≥60 years; and administration of an S-ESA for initial treatment. These findings suggest that the Hb level should be carefully monitored during ESA therapy in elderly ND patients, and that the ESA dose should be increased or L-ESA therapy should be utilised to treat renal anaemia.

  7. Amphipathic Alpha-Helical Peptide Compositions as Antiviral Agents

    NASA Technical Reports Server (NTRS)

    Glenn, Jeffrey (Inventor); Cho, Nam-Joon (Inventor); Frank, Curtis W. (Inventor); Cheong, Kwang Ho (Inventor)

    2014-01-01

    The invention features methods and compositions that exploit the ability of amphipathic alpha-helical (AH) peptides to cause disruption of lipid-containing vesicles, such as enveloped viruses, in a size-dependent manner.

  8. Antiviral Natural Products and Herbal Medicines

    PubMed Central

    Lin, Liang-Tzung; Hsu, Wen-Chan; Lin, Chun-Ching

    2014-01-01

    Viral infections play an important role in human diseases, and recent outbreaks in the advent of globalization and ease of travel have underscored their prevention as a critical issue in safeguarding public health. Despite the progress made in immunization and drug development, many viruses lack preventive vaccines and efficient antiviral therapies, which are often beset by the generation of viral escape mutants. Thus, identifying novel antiviral drugs is of critical importance and natural products are an excellent source for such discoveries. In this mini-review, we summarize the antiviral effects reported for several natural products and herbal medicines. PMID:24872930

  9. Antiviral Drug Research Proposal Activity †

    PubMed Central

    Injaian, Lisa; Smith, Ann C.; Shipley, Jennifer German; Marbach-Ad, Gili; Fredericksen, Brenda

    2011-01-01

    The development of antiviral drugs provides an excellent example of how basic and clinical research must be used together in order to achieve the final goal of treating disease. A Research Oriented Learning Activity was designed to help students to better understand how basic and clinical research can be combined toward a common goal. Through this project students gained a better understanding of the process of scientific research and increased their information literacy in the field of virology. The students worked as teams to research the many aspects involved in the antiviral drug design process, with each student becoming an “expert” in one aspect of the project. The Antiviral Drug Research Proposal (ADRP) culminated with students presenting their proposals to their peers and local virologists in a poster session. Assessment data showed increased student awareness and knowledge of the research process and the steps involved in the development of antiviral drugs as a result of this activity. PMID:23653735

  10. Viruses and Antiviral Immunity in Drosophila

    PubMed Central

    Xu, Jie; Cherry, Sara

    2013-01-01

    Viral pathogens present many challenges to organisms, driving the evolution of a myriad of antiviral strategies to combat infections. A wide variety of viruses infect invertebrates, including both natural pathogens that are insect-restricted, and viruses that are transmitted to vertebrates. Studies using the powerful tools available in the model organism Drosophila have expanded our understanding of antiviral defenses against diverse viruses. In this review, we will cover three major areas. First, we will describe the tools used to study viruses in Drosophila. Second, we will survey the major viruses that have been studied in Drosophila. And lastly, we will discuss the well-characterized mechanisms that are active against these diverse pathogens, focusing on non-RNAi mediated antiviral mechanisms. Antiviral RNAi is discussed in another paper in this issue. PMID:23680639

  11. Antiviral Effect of Agaricomycetes Mushrooms (Review).

    PubMed

    Teplyakova, Tamara V; Kosogova, Tatiana A

    2016-01-01

    This review presents data on the studied antiviral activities of Agaricomycetes mushrooms against the herpes, West Nile, influenza, human immunodeficiency, and hepatitis viruses, as well as orthopoxviruses, including the variola virus. Polysaccharides and other compounds (e.g., proteins, glycoproteins, terpenoids, melanins, nucleosides) exhibit antiviral activity against many viruses that are pathogenic in humans. Effective strains isolated from wild mushrooms in culture represent promising objects for the development of biotechnological drugs, including ones possessing antiviral activity. The data on antitumor and antiviral activities of compounds from the same mushroom species indicate the correlation of these properties. With regard to this connection, preparations of Basidiomycetes may have prophylactic value in preventing cancers with a viral etiology. PMID:27649599

  12. Curious discoveries in antiviral drug development: the role of serendipity.

    PubMed

    De Clercq, Erik

    2015-07-01

    Antiviral drug development has often followed a curious meandrous route, guided by serendipity rather than rationality. This will be illustrated by ten examples. The polyanionic compounds (i) polyethylene alanine (PEA) and (ii) suramin were designed as an antiviral agent (PEA) or known as an antitrypanosomal agent (suramin), before they emerged as, respectively, a depilatory agent, or reverse transcriptase inhibitor. The 2',3'-dideoxynucleosides (ddNs analogues) (iii) have been (and are still) used in the "Sanger" DNA sequencing technique, although they are now commercialized as nucleoside reverse transcriptase inhibitors (NRTIs) in the treatment of HIV infections. (E)-5-(2-Bromovinyl)-2'-deoxyuridine (iv) was discovered as a selective anti-herpes simplex virus compound and is now primarily used for the treatment of varicella-zoster virus infections. The prototype of the acyclic nucleoside phosphonates (ANPs), (S)-9-(3-hydroxy-2-phosphonylmethoxypropyl)adenine [(S)-HPMPA], (v) was never commercialized, although it gave rise to several marketed products (cidofovir, adefovir, and tenofovir). 1-[2-(Hydroxyethoxy)methyl]-6-(phenylthio)thymine (vi) and TIBO (tetrahydroimidazo[4,5,1-jk][1,4-benzodiazepin-2(1H)]-one and -thione) (vii) paved the way to a number of compounds (i.e., nevirapine, delavirdine, etravirine, and rilpivirine), which are now collectively called non-NRTIs. The bicyclam AMD3100 (viii) was originally described as an anti-HIV agent before it became later marketed as a stem cell mobilizer. The S-adenosylhomocysteine hydrolase inhibitors (ix), while active against a broad range of (-)RNA viruses and poxviruses may be particularly effective against Ebola virus, and for (x) the O-ANP derivatives, the potential application range encompasses virtually all DNA viruses. PMID:25726922

  13. In vitro antiviral activity of plant extracts from Asteraceae medicinal plants

    PubMed Central

    2013-01-01

    Background Due to the high prevalence of viral infections having no specific treatment and the constant appearance of resistant viral strains, the development of novel antiviral agents is essential. The aim of this study was to evaluate the antiviral activity against bovine viral diarrhea virus, herpes simplex virus type 1 (HSV-1), poliovirus type 2 (PV-2) and vesicular stomatitis virus of organic (OE) and aqueous extracts (AE) from: Baccharis gaudichaudiana, B. spicata, Bidens subalternans, Pluchea sagittalis, Tagetes minuta and Tessaria absinthioides. A characterization of the antiviral activity of B. gaudichaudiana OE and AE and the bioassay-guided fractionation of the former and isolation of one active compound is also reported. Methods The antiviral activity of the OE and AE of the selected plants was evaluated by reduction of the viral cytopathic effect. Active extracts were then assessed by plaque reduction assays. The antiviral activity of the most active extracts was characterized by evaluating their effect on the pretreatment, the virucidal activity and the effect on the adsorption or post-adsorption period of the viral cycle. The bioassay-guided fractionation of B. gaudichaudiana OE was carried out by column chromatography followed by semipreparative high performance liquid chromatography fractionation of the most active fraction and isolation of an active compound. The antiviral activity of this compound was also evaluated by plaque assay. Results B. gaudichaudiana and B. spicata OE were active against PV-2 and VSV. T. absinthioides OE was only active against PV-2. The corresponding three AE were active against HSV-1. B. gaudichaudiana extracts (OE and AE) were the most selective ones with selectivity index (SI) values of 10.9 (PV-2) and >117 (HSV-1). For this reason, both extracts of B. gaudichaudiana were selected to characterize their antiviral effects. Further bioassay-guided fractionation of B. gaudichaudiana OE led to an active fraction, FC (EC50

  14. Cytotoxicity and antiviral activities of Asplenium nidus, Phaleria macrocarpa and Eleusine indica

    NASA Astrophysics Data System (ADS)

    Tahir, Mariya Mohd; Ibrahim, Nazlina; Yaacob, Wan Ahmad

    2014-09-01

    Three local medicinal plants namely Asplenium nidus (langsuyar), Eleusine indica (sambau) and Phaleria macrocarpa (mahkota dewa) were screened for the cytotoxicity and antiviral activities. Six plant extracts were prepared including the aqueous and methanol extracts from A. nidus leaf and root, aqueous extract from dried whole plant of E. indica and methanol extract from P. macrocarpa fruits. Cytotoxicity screening in Vero cell line by MTT assay showed that the CC50 values ranged from 15 to 60 mg/mL thus indicating the safety of the extracts even at high concentrations. Antiviral properties of the plant extracts were determined by plaque reduction assay. The EC50 concentrations were between 3.2 to 47 mg/mL. The selectivity indices (SI = CC50/EC50) of each tested extracts ranged from 4.3 to 63.25 indicating the usefulness of the extracts as potential antiviral agents.

  15. Phytochemical screening, cytotoxicity and antiviral activity of hexane fraction of Phaleria macrocarpa fruits

    NASA Astrophysics Data System (ADS)

    Ismaeel, Mahmud Yusef Yusef; Yaacob, Wan Ahmad; Tahir, Mariya Mohd.; Ibrahim, Nazlina

    2015-09-01

    Phaleria macrocarpa fruits have been widely used in the traditional medicine for the treatment of several infections. The current study was done to determine the phytochemical content, cytotoxicity and antiviral activity of the hexane fraction (HF) of P. macrocarpa fruits. In the hexane fraction of P. macarocarpa fruits, phytochemical screening showed the presence of terpenoids whereas saponins, alkaloids, tannins and anthraquinones were not present. Evaluation on Vero cell lines by using MTT assay showed that the 50% cytotoxic concentration (CC50) value was 0.48 mg/mL indicating that the fraction is not cytotoxic. Antiviral properties of the plant extracts were determined by plaque reduction assay. The effective concentration (EC50) was 0.18 mg/mL. Whereas the selective index (SI = CC50/EC50) of hexane fraction is 2.6 indicating low to moderate potential as antiviral agent.

  16. Antiviral activity of silymarin against chikungunya virus.

    PubMed

    Lani, Rafidah; Hassandarvish, Pouya; Chiam, Chun Wei; Moghaddam, Ehsan; Chu, Justin Jang Hann; Rausalu, Kai; Merits, Andres; Higgs, Stephen; Vanlandingham, Dana; Abu Bakar, Sazaly; Zandi, Keivan

    2015-06-16

    The mosquito-borne chikungunya virus (CHIKV) causes chikungunya fever, with clinical presentations such as severe back and small joint pain, and debilitating arthritis associated with crippling pains that persist for weeks and even years. Although there are several studies to evaluate the efficacy of drugs against CHIKV, the treatment for chikungunya fever is mainly symptom-based and no effective licensed vaccine or antiviral are available. Here, we investigated the antiviral activity of three types of flavonoids against CHIKV in vitro replication. Three compounds: silymarin, quercetin and kaempferol were evaluated for their in vitro antiviral activities against CHIKV using a CHIKV replicon cell line and clinical isolate of CHIKV of Central/East African genotype. A cytopathic effect inhibition assay was used to determine their activities on CHIKV viral replication and quantitative reverse transcription PCR was used to calculate virus yield. Antiviral activity of effective compound was further investigated by evaluation of CHIKV protein expression using western blotting for CHIKV nsP1, nsP3, and E2E1 proteins. Briefly, silymarin exhibited significant antiviral activity against CHIKV, reducing both CHIKV replication efficiency and down-regulating production of viral proteins involved in replication. This study may have important consequence for broaden the chance of getting the effective antiviral for CHIKV infection.

  17. Divergent antiviral effects of bioflavonoids on the hepatitis C virus life cycle.

    PubMed

    Khachatoorian, Ronik; Arumugaswami, Vaithilingaraja; Raychaudhuri, Santanu; Yeh, George K; Maloney, Eden M; Wang, Julie; Dasgupta, Asim; French, Samuel W

    2012-11-25

    We have previously demonstrated that quercetin, a bioflavonoid, blocks hepatitis C virus (HCV) proliferation by inhibiting NS5A-driven internal ribosomal entry site (IRES)-mediated translation of the viral genome. Here, we investigate the mechanisms of antiviral activity of quercetin and six additional bioflavonoids. We demonstrate that catechin, naringenin, and quercetin possess significant antiviral activity, with no associated cytotoxicity. Infectious virion secretion was not significantly altered by these bioflavonoids. Catechin and naringenin demonstrated stronger inhibition of infectious virion assembly compared to quercetin. Quercetin markedly blocked viral translation whereas catechin and naringenin demonstrated mild activity. Similarly quercetin completely blocked NS5A-augmented IRES-mediated translation in an IRES reporter assay, whereas catechin and naringenin had only a mild effect. Moreover, quercetin differentially inhibited HSP70 induction compared to catechin and naringenin. Thus, the antiviral activity of these bioflavonoids is mediated through different mechanisms. Therefore combination of these bioflavonoids may act synergistically against HCV.

  18. Anti-viral CD8 T cells and the cytokines that they love.

    PubMed

    Cox, Maureen A; Kahan, Shannon M; Zajac, Allan J

    2013-01-01

    Viral infections cause an immunological disequilibrium that provokes CD8 T cell responses. These cells play critical roles in purging acute infections, limiting persistent infections, and conferring life-long protective immunity. At every stage of the response anti-viral CD8 T cells are sensitive to signals from cytokines. Initially cytokines operate as immunological warning signs that inform of the presence of an infection, and also influence the developmental choices of the responding cells. Later during the course of the response other sets of cytokines support the survival and maintenance of the differentiated anti-viral CD8 T cells. Although many cytokines promote virus-specific CD8 T cells, other cytokines can suppress their activities and thus favor viral persistence. In this review we discuss how select cytokines act to regulate anti-viral CD8 T cells throughout the response and influence the outcome of viral infections. PMID:23217625

  19. Divergent antiviral effects of bioflavonoids on the hepatitis C virus life cycle

    SciTech Connect

    Khachatoorian, Ronik; Arumugaswami, Vaithilingaraja; Raychaudhuri, Santanu; Yeh, George K.; Maloney, Eden M.; Wang, Julie; and others

    2012-11-25

    We have previously demonstrated that quercetin, a bioflavonoid, blocks hepatitis C virus (HCV) proliferation by inhibiting NS5A-driven internal ribosomal entry site (IRES)-mediated translation of the viral genome. Here, we investigate the mechanisms of antiviral activity of quercetin and six additional bioflavonoids. We demonstrate that catechin, naringenin, and quercetin possess significant antiviral activity, with no associated cytotoxicity. Infectious virion secretion was not significantly altered by these bioflavonoids. Catechin and naringenin demonstrated stronger inhibition of infectious virion assembly compared to quercetin. Quercetin markedly blocked viral translation whereas catechin and naringenin demonstrated mild activity. Similarly quercetin completely blocked NS5A-augmented IRES-mediated translation in an IRES reporter assay, whereas catechin and naringenin had only a mild effect. Moreover, quercetin differentially inhibited HSP70 induction compared to catechin and naringenin. Thus, the antiviral activity of these bioflavonoids is mediated through different mechanisms. Therefore combination of these bioflavonoids may act synergistically against HCV.

  20. Divergent antiviral effects of bioflavonoids on the hepatitis C virus life cycle

    PubMed Central

    Khachatoorian, Ronik; Arumugaswami, Vaithilingaraja; Raychaudhuri, Santanu; Yeh, George K.; Maloney, Eden M.; Wang, Julie; Dasgupta, Asim; French, Samuel W.

    2012-01-01

    We have previously demonstrated that quercetin, a bioflavonoid, blocks hepatitis C virus (HCV) proliferation by inhibiting NS5A-driven internal ribosomal entry site (IRES)-mediated translation of the viral genome. Here, we investigate the mechanisms of antiviral activity of quercetin and six additional bioflavonoids. We demonstrate that catechin, naringenin, and quercetin possess significant antiviral activity, with no associated cytotoxicity. Infectious virion secretion was not significantly altered by these bioflavonoids. Catechin and naringenin demonstrated stronger inhibition of infectious virion assembly compared to quercetin. Quercetin markedly blocked viral translation whereas catechin and naringenin demonstrated mild activity. Similarly quercetin completely blocked NS5A-augmented IRES-mediated translation in an IRES reporter assay, whereas catechin and naringenin had only a mild effect. Moreover, quercetin differentially inhibited HSP70 induction compared to catechin and naringenin. Thus, the antiviral activity of these bioflavonoids is mediated through different mechanisms. Therefore combination of these bioflavonoids may act synergistically against HCV. PMID:22975673

  1. Intracellular osteopontin stabilizes TRAF3 to positively regulate innate antiviral response

    PubMed Central

    Zhao, Kai; Zhang, Meng; Zhang, Lei; Wang, Peng; Song, Guanhua; Liu, Bingyu; Wu, Haifeng; Yin, Zhinan; Gao, Chengjiang

    2016-01-01

    Osteopontin (OPN) is a multifunctional protein involved in both innate immunity and adaptive immunity. However, the function of OPN, especially the intracellular form OPN (iOPN) on innate antiviral immune response remains elusive. Here, we demonstrated that iOPN is an essential positive regulator to protect the host from virus infection. OPN deficiency or knockdown significantly attenuated virus-induced IRF3 activation, IFN-β production and antiviral response. Consistently, OPN-deficient mice were more susceptible to VSV infection than WT mice. Mechanistically, iOPN was found to interact with tumor necrosis factor receptor (TNFR)-associated factor 3 (TRAF3) and inhibit Triad3A-mediated K48-linked polyubiquitination and degradation of TRAF3 through the C-terminal fragment of iOPN. Therefore, our findings delineated a new function for iOPN to act as a positive regulator in innate antiviral immunity through stabilization of TRAF3. PMID:27026194

  2. Advances in Antiviral vaccine development

    PubMed Central

    Graham, Barney S.

    2013-01-01

    Summary Antiviral vaccines have been the most successful biomedical intervention for preventing epidemic viral disease. Vaccination for smallpox in humans and rinderpest in cattle was the basis for disease eradication, and recent progress in polio eradication is promising. While early vaccines were developed empirically by passage in live animals or eggs, more recent vaccines have been developed because of the advent of new technologies, particularly cell culture and molecular biology. Recent technological advances in gene delivery and expression, nanoparticles, protein manufacturing, and adjuvants have created the potential for new vaccine platforms that may provide solutions for vaccines against viral pathogens for which no interventions currently exist. In addition, the technological convergence of human monoclonal antibody isolation, structural biology, and high throughput sequencing is providing new opportunities for atomic-level immunogen design. Selection of human monoclonal antibodies can identify immunodominant antigenic sites associated with neutralization and provide reagents for stabilizing and solving the structure of viral surface proteins. Understanding the structural basis for neutralization can guide selection of vaccine targets. Deep sequencing of the antibody repertoire and defining the ontogeny of the desired antibody responses can reveal the junctional recombination and somatic mutation requirements for B-cell recognition and affinity maturation. Collectively, this information will provide new strategic approaches for selecting vaccine antigens, formulations, and regimens. Moreover, it creates the potential for rational vaccine design and establishing a catalogue of vaccine technology platforms that would be effective against any given family or class of viral pathogens and improve our readiness to address new emerging viral threats. PMID:23947359

  3. A 2,5-Dihydroxybenzoic Acid-Gelatin Conjugate: The Synthesis, Antiviral Activity and Mechanism of Antiviral Action Against Two Alphaherpesviruses.

    PubMed

    Lisov, Alexander; Vrublevskaya, Veronika; Lisova, Zoy; Leontievsky, Alexey; Morenkov, Oleg

    2015-10-15

    Various natural and synthetic polyanionic polymers with different chemical structures are known to exhibit potent antiviral activity in vitro toward a variety of enveloped viruses and may be considered as promising therapeutic agents. A water-soluble conjugate of 2,5-dihydroxybezoic acid (2,5-DHBA) with gelatin was synthesized by laccase-catalyzed oxidation of 2,5-DHBA in the presence of gelatin, and its antiviral activity against pseudorabies virus (PRV) and bovine herpesvirus type 1 (BoHV-1), two members of the Alphaherpesvirinae subfamily, was studied. The conjugate produced no direct cytotoxic effect on cells, and did not inhibit cell growth at concentrations up to 1000 µg/mL. It exhibited potent antiviral activity against PRV (IC50, 1.5-15 µg/mL for different virus strains) and BoHV-1 (IC50, 0.5-0.7 µg/mL). When present during virus adsorption, the conjugate strongly inhibited the attachment of PRV and BoHV-1 to cells. The 2,5-DHBA-gelatin conjugate had no direct virucidal effect on the viruses and did not influence their penetration into cells, cell-to-cell spread, production of infectious virus particles in cells, and expression of PRV glycoproteins E and B. The results indicated that the 2,5-DHBA-gelatin conjugate strongly inhibits the adsorption of alphaherpesviruses to cells and can be a promising synthetic polymer for the development of antiviral formulations against alphaherpesvirus infections.

  4. John Montgomery's legacy: carbocyclic adenosine analogues as SAH hydrolase inhibitors with broad-spectrum antiviral activity.

    PubMed

    De Clercq, Erik

    2005-01-01

    Ever since the S-adenosylhomocysteine (AdoHcy, SAH) hydrolase was recognized as a pharmacological target for antiviral agents (J. A. Montgomery et al., J. Med. Chem. 25:626-629, 1982), an increasing number of adenosine, acyclic adenosine, and carbocyclic adenosine analogues have been described as potent SAH hydrolase inhibitors endowed with broad-spectrum antiviral activity. The antiviral activity spectrum of the SAH hydrolase inhibitors include pox-, rhabdo-, filo-, arena-, paramyxo-, reo-, and retroviruses. Among the most potent SAH hydrolase inhibitors and antiviral agents rank carbocyclic 3-deazaadenosine (C-c3 Ado), neplanocin A, 3-deazaneplanocin A, the 5'-nor derivatives of carbocyclic adenosine (C-Ado, aristeromycin), and the 2-halo (i.e., 2-fluoro) and 6'-R-alkyl (i.e., 6'-R-methyl) derivatives of neplanocin A. These compounds are particularly active against poxviruses (i.e., vaccinia virus), and rhabdoviruses (i.e., vesicular stomatitis virus). The in vivo efficacy of C-c3 Ado and 3-deazaneplanocin A has been established in mouse models for vaccinia virus, vesicular stomatitis virus, and Ebola virus. SAH hydrolase inhibitors such as C-c3Ado and 3-deazaneplanocin A should in thefirst place be considered for therapeutic (or prophylactic) use against poxvirus infections, including smallpox, and hemorrhagic fever virus infections such as Ebola. PMID:16438025

  5. Broad-spectrum antiviral and cytocidal activity of cyclopentenylcytosine, a carbocyclic nucleoside targeted at CTP synthetase.

    PubMed

    De Clercq, E; Murase, J; Marquez, V E

    1991-06-15

    Cyclopentenylcytosine (Ce-Cyd) is a broad-spectrum antiviral agent active against DNA viruses [herpes (cytomegalo), pox (vaccinia)], (+)RNA viruses [picorna (polio, Coxsackie, rhino), toga (Sindbis, Semliki forest), corona], (-)RNA viruses [orthomyxo (influenza), paramyxo (parainfluenza, measles), arena (Junin, Tacaribe), rhabdo (vesicular stomatitis)] and (+/-)RNA viruses (reo). Ce-Cyd is a more potent antiviral agent than its saturated counterpart, cyclopentylcytosine (carbodine, C-Cyd). Ce-Cyd also has potent cytocidal activity against a number of tumor cell lines. The putative target enzyme for both the antiviral and antitumor action of Ce-Cyd is assumed to be the CTP synthetase that converts UTP to CTP. In keeping with this hypothesis was the finding that the antiviral and cytocidal effects of Ce-Cyd are readily reversed by Cyd and, to a lesser extent, Urd, but not by other nucleosides such as dThd or dCyd. In contrast, pyrazofurin and 6-azauridine, two nucleoside analogues that are assumed to interfere with OMP decarboxylase, another enzyme involved in the biosynthesis of pyrimidine ribonucleotides, potentiate the cytocidal activity of Ce-Cyd. Ce-Cyd should be further pursued, as such and in combination with OMP decarboxylase inhibitors, for its therapeutic potential in the treatment of both viral and neoplastic diseases. PMID:1710119

  6. Antiviral activities of heated dolomite powder.

    PubMed

    Motoike, Koichi; Hirano, Shozo; Yamana, Hideaki; Onda, Tetsuhiko; Maeda, Takayoshi; Ito, Toshihiro; Hayakawa, Motozo

    2008-12-01

    The effect of the heating conditions of dolomite powder on its antiviral activity was studied against the H5N3 avian influenza virus. Calcium oxide (CaO) and magnesium oxide (MgO), obtained by the thermal decomposition of dolomite above 800 degrees C, were shown to have strong antiviral activity, but the effect was lessened when the heating temperature exceeded 1400 degrees C. Simultaneous measurement of the crystallite size suggested that the weakening of the activity was due to the considerable grain growth of the oxides. It was found that the presence of Mg in dolomite contributed to the deterrence of grain growth of the oxides during the heating process. Although both CaO and MgO exhibited strong antiviral activity, CaO had the stronger activity but quickly hydrated in the presence of water. On the other hand, the hydration of MgO took place gradually under the same conditions. Separate measurements using MgO and Mg(OH)2 revealed that MgO had a higher antiviral effect than Mg(OH)2. From the overall experiments, it was suggested that the strong antiviral activity of dolomite was related to the hydration reaction of CaO. PMID:19127652

  7. Simultaneous Antibiofilm and Antiviral Activities of an Engineered Antimicrobial Peptide during Virus-Bacterium Coinfection.

    PubMed

    Melvin, Jeffrey A; Lashua, Lauren P; Kiedrowski, Megan R; Yang, Guanyi; Deslouches, Berthony; Montelaro, Ronald C; Bomberger, Jennifer M

    2016-01-01

    Antimicrobial-resistant infections are an urgent public health threat, and development of novel antimicrobial therapies has been painstakingly slow. Polymicrobial infections are increasingly recognized as a significant source of severe disease and also contribute to reduced susceptibility to antimicrobials. Chronic infections also are characterized by their ability to resist clearance, which is commonly linked to the development of biofilms that are notorious for antimicrobial resistance. The use of engineered cationic antimicrobial peptides (eCAPs) is attractive due to the slow development of resistance to these fast-acting antimicrobials and their ability to kill multidrug-resistant clinical isolates, key elements for the success of novel antimicrobial agents. Here, we tested the ability of an eCAP, WLBU2, to disrupt recalcitrant Pseudomonas aeruginosa biofilms. WLBU2 was capable of significantly reducing biomass and viability of P. aeruginosa biofilms formed on airway epithelium and maintained activity during viral coinfection, a condition that confers extraordinary levels of antibiotic resistance. Biofilm disruption was achieved in short treatment times by permeabilization of bacterial membranes. Additionally, we observed simultaneous reduction of infectivity of the viral pathogen respiratory syncytial virus (RSV). WLBU2 is notable for its ability to maintain activity across a broad range of physiological conditions and showed negligible toxicity toward the airway epithelium, expanding its potential applications as an antimicrobial therapeutic. IMPORTANCE Antimicrobial-resistant infections are an urgent public health threat, making development of novel antimicrobials able to effectively treat these infections extremely important. Chronic and polymicrobial infections further complicate antimicrobial therapy, often through the development of microbial biofilms. Here, we describe the ability of an engineered antimicrobial peptide to disrupt biofilms formed by the

  8. Simultaneous Antibiofilm and Antiviral Activities of an Engineered Antimicrobial Peptide during Virus-Bacterium Coinfection

    PubMed Central

    Melvin, Jeffrey A.; Lashua, Lauren P.; Kiedrowski, Megan R.; Yang, Guanyi; Deslouches, Berthony; Montelaro, Ronald C.

    2016-01-01

    ABSTRACT Antimicrobial-resistant infections are an urgent public health threat, and development of novel antimicrobial therapies has been painstakingly slow. Polymicrobial infections are increasingly recognized as a significant source of severe disease and also contribute to reduced susceptibility to antimicrobials. Chronic infections also are characterized by their ability to resist clearance, which is commonly linked to the development of biofilms that are notorious for antimicrobial resistance. The use of engineered cationic antimicrobial peptides (eCAPs) is attractive due to the slow development of resistance to these fast-acting antimicrobials and their ability to kill multidrug-resistant clinical isolates, key elements for the success of novel antimicrobial agents. Here, we tested the ability of an eCAP, WLBU2, to disrupt recalcitrant Pseudomonas aeruginosa biofilms. WLBU2 was capable of significantly reducing biomass and viability of P. aeruginosa biofilms formed on airway epithelium and maintained activity during viral coinfection, a condition that confers extraordinary levels of antibiotic resistance. Biofilm disruption was achieved in short treatment times by permeabilization of bacterial membranes. Additionally, we observed simultaneous reduction of infectivity of the viral pathogen respiratory syncytial virus (RSV). WLBU2 is notable for its ability to maintain activity across a broad range of physiological conditions and showed negligible toxicity toward the airway epithelium, expanding its potential applications as an antimicrobial therapeutic. IMPORTANCE Antimicrobial-resistant infections are an urgent public health threat, making development of novel antimicrobials able to effectively treat these infections extremely important. Chronic and polymicrobial infections further complicate antimicrobial therapy, often through the development of microbial biofilms. Here, we describe the ability of an engineered antimicrobial peptide to disrupt biofilms

  9. Emerging antiviral strategies to interfere with influenza virus entry.

    PubMed

    Vanderlinden, Evelien; Naesens, Lieve

    2014-03-01

    Influenza A and B viruses are highly contagious respiratory pathogens with a considerable medical and socioeconomical burden and known pandemic potential. Current influenza vaccines require annual updating and provide only partial protection in some risk groups. Due to the global spread of viruses with resistance to the M2 proton channel inhibitor amantadine or the neuraminidase inhibitor oseltamivir, novel antiviral agents with an original mode of action are urgently needed. We here focus on emerging options to interfere with the influenza virus entry process, which consists of the following steps: attachment of the viral hemagglutinin to the sialylated host cell receptors, endocytosis, M2-mediated uncoating, low pH-induced membrane fusion, and, finally, import of the viral ribonucleoprotein into the nucleus. We review the current functional and structural insights in the viral and cellular components of this entry process, and the diverse antiviral strategies that are being explored. This encompasses small molecule inhibitors as well as macromolecules such as therapeutic antibodies. There is optimism that at least some of these innovative concepts to block influenza virus entry will proceed from the proof of concept to a more advanced stage. Special attention is therefore given to the challenging issues of influenza virus (sub)type-dependent activity or potential drug resistance. PMID:23801557

  10. RNAi and Antiviral Defense in the Honey Bee.

    PubMed

    Brutscher, Laura M; Flenniken, Michelle L

    2015-01-01

    Honey bees play an important agricultural and ecological role as pollinators of numerous agricultural crops and other plant species. Therefore, investigating the factors associated with high annual losses of honey bee colonies in the US is an important and active area of research. Pathogen incidence and abundance correlate with Colony Collapse Disorder- (CCD-) affected colonies in the US and colony losses in the US and in some European countries. Honey bees are readily infected by single-stranded positive sense RNA viruses. Largely dependent on the host immune response, virus infections can either remain asymptomatic or result in deformities, paralysis, or death of adults or larvae. RNA interference (RNAi) is an important antiviral defense mechanism in insects, including honey bees. Herein, we review the role of RNAi in honey bee antiviral defense and highlight some parallels between insect and mammalian immune systems. A more thorough understanding of the role of pathogens on honey bee health and the immune mechanisms bees utilize to combat infectious agents may lead to the development of strategies that enhance honey bee health and result in the discovery of additional mechanisms of immunity in metazoans. PMID:26798663

  11. Genistein as antiviral drug against HIV ion channel.

    PubMed

    Sauter, Daniel; Schwarz, Silvia; Wang, Kai; Zhang, Ronghua; Sun, Bing; Schwarz, Wolfgang

    2014-06-01

    Various drugs found in Chinese herbs are well known for their antiviral potency. We have tested several flavonoids with respect to their potency to block the viral protein U of the human immunodeficiency type 1 virus, which is believed to form a cation-permeable ion channel in the infected cell. We used Xenopus oocytes with heterologously expressed viral protein U as model system to test the efficacy of the drugs in voltage-clamp experiments. This method had been demonstrated in the past as a useful tool to screen drugs for their potency in inhibition of ion channel activity. The viral protein U-mediated current could be inhibited by Ba(2+) with a K1/2 value of 1.6 mM. Therefore, we determined viral protein U-mediated current as current component blocked by 10 mM Ba(2+). We screened several flavonoids with respect to their effects on this current. The flavonols quercetin and kaempferol, and the flavanols (-)epigallochatechin and (-)epichatechin were ineffective. The flavanone naringenin showed at 20 µM slight (about 10%) inhibition. The most potent drug was the isoflavon genistein which exhibited at 20 µM significant inhibition of about 40% with a K1/2 value of 81 ± 4 µM. We suggest that viral ion channels, in general, may be a good target for development of antiviral agents, and that, in particular, isoflavons may be candidates for development of drugs targeting viral protein U.

  12. RNAi and Antiviral Defense in the Honey Bee.

    PubMed

    Brutscher, Laura M; Flenniken, Michelle L

    2015-01-01

    Honey bees play an important agricultural and ecological role as pollinators of numerous agricultural crops and other plant species. Therefore, investigating the factors associated with high annual losses of honey bee colonies in the US is an important and active area of research. Pathogen incidence and abundance correlate with Colony Collapse Disorder- (CCD-) affected colonies in the US and colony losses in the US and in some European countries. Honey bees are readily infected by single-stranded positive sense RNA viruses. Largely dependent on the host immune response, virus infections can either remain asymptomatic or result in deformities, paralysis, or death of adults or larvae. RNA interference (RNAi) is an important antiviral defense mechanism in insects, including honey bees. Herein, we review the role of RNAi in honey bee antiviral defense and highlight some parallels between insect and mammalian immune systems. A more thorough understanding of the role of pathogens on honey bee health and the immune mechanisms bees utilize to combat infectious agents may lead to the development of strategies that enhance honey bee health and result in the discovery of additional mechanisms of immunity in metazoans.

  13. RNAi and Antiviral Defense in the Honey Bee

    PubMed Central

    Brutscher, Laura M.; Flenniken, Michelle L.

    2015-01-01

    Honey bees play an important agricultural and ecological role as pollinators of numerous agricultural crops and other plant species. Therefore, investigating the factors associated with high annual losses of honey bee colonies in the US is an important and active area of research. Pathogen incidence and abundance correlate with Colony Collapse Disorder- (CCD-) affected colonies in the US and colony losses in the US and in some European countries. Honey bees are readily infected by single-stranded positive sense RNA viruses. Largely dependent on the host immune response, virus infections can either remain asymptomatic or result in deformities, paralysis, or death of adults or larvae. RNA interference (RNAi) is an important antiviral defense mechanism in insects, including honey bees. Herein, we review the role of RNAi in honey bee antiviral defense and highlight some parallels between insect and mammalian immune systems. A more thorough understanding of the role of pathogens on honey bee health and the immune mechanisms bees utilize to combat infectious agents may lead to the development of strategies that enhance honey bee health and result in the discovery of additional mechanisms of immunity in metazoans. PMID:26798663

  14. Antiviral Defense Mechanisms in Honey Bees

    PubMed Central

    Brutscher, Laura M.; Daughenbaugh, Katie F.; Flenniken, Michelle L.

    2015-01-01

    Honey bees are significant pollinators of agricultural crops and other important plant species. High annual losses of honey bee colonies in North America and in some parts of Europe have profound ecological and economic implications. Colony losses have been attributed to multiple factors including RNA viruses, thus understanding bee antiviral defense mechanisms may result in the development of strategies that mitigate colony losses. Honey bee antiviral defense mechanisms include RNA-interference, pathogen-associated molecular pattern (PAMP) triggered signal transduction cascades, and reactive oxygen species generation. However, the relative importance of these and other pathways is largely uncharacterized. Herein we review the current understanding of honey bee antiviral defense mechanisms and suggest important avenues for future investigation. PMID:26273564

  15. Role of Bacterial Exopolysaccharides as Agents in Counteracting Immune Disorders Induced by Herpes Virus

    PubMed Central

    Gugliandolo, Concetta; Spanò, Antonio; Maugeri, Teresa L.; Poli, Annarita; Arena, Adriana; Nicolaus, Barbara

    2015-01-01

    Extreme marine environments, such as the submarine shallow vents of the Eolian Islands (Italy), offer an almost unexplored source of microorganisms producing unexploited and promising biomolecules for pharmaceutical applications. Thermophilic and thermotolerant bacilli isolated from Eolian vents are able to produce exopolysaccharides (EPSs) with antiviral and immunomodulatory effects against Herpes simplex virus type 2 (HSV-2). HSV-2 is responsible for the most common and continuously increasing viral infections in humans. Due to the appearance of resistance to the available treatments, new biomolecules exhibiting different mechanisms of action could provide novel agents for treating viral infections. The EPSs hinder the HSV-2 replication in human peripheral blood mononuclear cells (PBMC) but not in WISH (Wistar Institute Susan Hayflic) cells line, indicating that cell-mediated immunity was involved in the antiviral activity. High levels of Th1-type cytokines were detected in PBMC treated with all EPSs, while Th2-type cytokines were not induced. These EPSs are water soluble exopolymers able to stimulate the immune response and thus contribute to the antiviral immune defense, acting as immunomodulators. As stimulants of Th1 cell-mediated immunity, they could lead to the development of novel drugs as alternative in the treatment of herpes virus infections, as well as in immunocompromised host.

  16. Role of Bacterial Exopolysaccharides as Agents in Counteracting Immune Disorders Induced by Herpes Virus

    PubMed Central

    Gugliandolo, Concetta; Spanò, Antonio; Maugeri, Teresa L.; Poli, Annarita; Arena, Adriana; Nicolaus, Barbara

    2015-01-01

    Extreme marine environments, such as the submarine shallow vents of the Eolian Islands (Italy), offer an almost unexplored source of microorganisms producing unexploited and promising biomolecules for pharmaceutical applications. Thermophilic and thermotolerant bacilli isolated from Eolian vents are able to produce exopolysaccharides (EPSs) with antiviral and immunomodulatory effects against Herpes simplex virus type 2 (HSV-2). HSV-2 is responsible for the most common and continuously increasing viral infections in humans. Due to the appearance of resistance to the available treatments, new biomolecules exhibiting different mechanisms of action could provide novel agents for treating viral infections. The EPSs hinder the HSV-2 replication in human peripheral blood mononuclear cells (PBMC) but not in WISH (Wistar Institute Susan Hayflic) cells line, indicating that cell-mediated immunity was involved in the antiviral activity. High levels of Th1-type cytokines were detected in PBMC treated with all EPSs, while Th2-type cytokines were not induced. These EPSs are water soluble exopolymers able to stimulate the immune response and thus contribute to the antiviral immune defense, acting as immunomodulators. As stimulants of Th1 cell-mediated immunity, they could lead to the development of novel drugs as alternative in the treatment of herpes virus infections, as well as in immunocompromised host. PMID:27682100

  17. Antiviral Drug Resistance: Mechanisms and Clinical Implications

    PubMed Central

    Chou, Sunwen

    2010-01-01

    Summary Antiviral drug resistance is an increasing concern in immunocompromised patient populations, where ongoing viral replication and prolonged drug exposure lead to the selection of resistant strains. Rapid diagnosis of resistance can be made by associating characteristic viral mutations with resistance to various drugs as determined by phenotypic assays. Management of drug resistance includes optimization of host factors and drug delivery, selection of alternative therapies based on knowledge of mechanisms of resistance, and the development of new antivirals. This article discusses drug resistance in herpesviruses and hepatitis B. PMID:20466277

  18. Griffithsin: An Antiviral Lectin with Outstanding Therapeutic Potential

    PubMed Central

    Lusvarghi, Sabrina; Bewley, Carole A.

    2016-01-01

    Griffithsin (GRFT), an algae-derived lectin, is one of the most potent viral entry inhibitors discovered to date. It is currently being developed as a microbicide with broad-spectrum activity against several enveloped viruses. GRFT can inhibit human immunodeficiency virus (HIV) infection at picomolar concentrations, surpassing the ability of most anti-HIV agents. The potential to inhibit other viruses as well as parasites has also been demonstrated. Griffithsin’s antiviral activity stems from its ability to bind terminal mannoses present in high-mannose oligosaccharides and crosslink these glycans on the surface of the viral envelope glycoproteins. Here, we review structural and biochemical studies that established mode of action and facilitated construction of GRFT analogs, mechanisms that may lead to resistance, and in vitro and pre-clinical results that support the therapeutic potential of this lectin. PMID:27783038

  19. Bell's Palsy: Treatment with Steroids and Antiviral Drugs

    MedlinePlus

    ... PATIENTS and their FAMILIES BELL’S PALSY: TREATMENT WITH STEROIDS AND ANTIVIRAL DRUGS This information sheet is provided to help you understand the role of steroids and antiviral drugs for treating Bell’s palsy. Neurologists ...

  20. Management of Multiple Myeloma Complicated by Hepatitis C Virus Reactivation: The Role of New Antiviral Therapy.

    PubMed

    Mahale, Parag; Thomas, Sheeba K; Kyvernitakis, Andreas; Torres, Harrys A

    2016-01-01

    Reactivation of chronic hepatitis C virus (HCV) infection has been reported in cancer patients receiving chemotherapy. In this study, we report the first case, to our knowledge, of thalidomide-induced acute exacerbation and reactivation of chronic HCV infection complicating management of multiple myeloma. Sofosbuvir-based antiviral therapy helped achieve viral clearance and normalization of liver enzymes, thus allowing access to future potentially life-saving chemotherapy agents. PMID:26885541

  1. Management of Multiple Myeloma Complicated by Hepatitis C Virus Reactivation: The Role of New Antiviral Therapy

    PubMed Central

    Mahale, Parag; Thomas, Sheeba K.; Kyvernitakis, Andreas; Torres, Harrys A.

    2016-01-01

    Reactivation of chronic hepatitis C virus (HCV) infection has been reported in cancer patients receiving chemotherapy. In this study, we report the first case, to our knowledge, of thalidomide-induced acute exacerbation and reactivation of chronic HCV infection complicating management of multiple myeloma. Sofosbuvir-based antiviral therapy helped achieve viral clearance and normalization of liver enzymes, thus allowing access to future potentially life-saving chemotherapy agents. PMID:26885541

  2. Viral genome imaging of hepatitis C virus to probe heterogeneous viral infection and responses to antiviral therapies.

    PubMed

    Ramanan, Vyas; Trehan, Kartik; Ong, Mei-Lyn; Luna, Joseph M; Hoffmann, Hans-Heinrich; Espiritu, Christine; Sheahan, Timothy P; Chandrasekar, Hamsika; Schwartz, Robert E; Christine, Kathleen S; Rice, Charles M; van Oudenaarden, Alexander; Bhatia, Sangeeta N

    2016-07-01

    Hepatitis C virus (HCV) is a positive single-stranded RNA virus of enormous global health importance, with direct-acting antiviral therapies replacing an immunostimulatory interferon-based regimen. The dynamics of HCV positive and negative-strand viral RNAs (vRNAs) under antiviral perturbations have not been studied at the single-cell level, leaving a gap in our understanding of antiviral kinetics and host-virus interactions. Here, we demonstrate quantitative imaging of HCV genomes in multiple infection models, and multiplexing of positive and negative strand vRNAs and host antiviral RNAs. We capture the varying kinetics with which antiviral drugs with different mechanisms of action clear HCV infection, finding the NS5A inhibitor daclatasvir to induce a rapid decline in negative-strand viral RNAs. We also find that the induction of host antiviral genes upon interferon treatment is positively correlated with viral load in single cells. This study adds smFISH to the toolbox available for analyzing the treatment of RNA virus infections.

  3. Synthesis and antiviral activity of substituted quercetins.

    PubMed

    Thapa, Mahendra; Kim, Yunjeong; Desper, John; Chang, Kyeong-Ok; Hua, Duy H

    2012-01-01

    Influenza viruses are important pathogens that cause respiratory infections in humans and animals. In addition to vaccination, antiviral drugs against influenza virus play a significant role in controlling viral infections by reducing disease progression and virus transmission. Plant derived polyphenols are associated with antioxidant activity, anti-carcinogenic, and cardio- and neuro-protective actions. Some polyphenols, such as resveratrol and epigallocatechin gallate (EGCG), showed significant anti-influenza activity in vitro and/or in vivo. Recently we showed that quercetin and isoquercetin (quercetin-3-β-d-glucoside), a glucoside form of quercetin, significantly reduced the replication of influenza viruses in vitro and in vivo (isoquercetin). The antiviral effects of isoquercetin were greater than that of quercetin with lower IC(50) values and higher in vitro therapeutic index. Thus, we investigated the synthesis and antiviral activities of various quercetin derivatives with substitution of C3, C3', and C5 hydroxyl functions with various phenolic ester, alkoxy, and aminoalkoxy moieties. Among newly synthesized compounds, quercetin-3-gallate which is structurally related to EGCG showed comparable antiviral activity against influenza virus (porcine H1N1 strain) to that of EGCG with improved in vitro therapeutic index.

  4. New hypoxanthine nucleosides with RNA antiviral activity.

    PubMed

    Nair, V; Ussery, M A

    1992-08-01

    A series of novel C-2 functionalized hypoxanthine and purine ribonucleosides have been synthesized and evaluated against exotic RNA viruses of the family or genus alpha, arena, flavi, and rhabdo. Both specific and broad-spectrum antiviral activities were discovered but only with hypoxanthine nucleosides. PMID:1444325

  5. The antiviral spectrum of Listerine antiseptic.

    PubMed

    Dennison, D K; Meredith, G M; Shillitoe, E J; Caffesse, R G

    1995-04-01

    The mechanism of activity and the antiviral spectrum of Listerine antiseptic have not been examined thoroughly. We therefore tested its effect on laboratory strains of herpes simplex type 1 and type 2 (enveloped DNA viruses), influenza A virus (enveloped RNA virus), rotavirus (nonenveloped RNA virus), and adenovirus type 5 (nonenveloped DNA virus). Each virus was mixed with an equal volume of Listerine for 30 seconds to 5 minutes, and the residual infectivity of the virus was assessed. An antiviral effect was defined as greater than 95% reduction of infectivity. Exposure to Listerine for 30 seconds had an antiviral effect against herpes simplex type-1 and type-2 (96.3% and 100% reduction in infectious virus, respectively) and influenza A (100% reduction). In contrast, rotavirus-induced plaque formation was reduced by 12.2% after 30 seconds of exposure to Listerine, whereas 5 minutes of exposure to Listerine resulted in a 21.5% increase in plaque formation. Exposure of adenovirus to Listerine had a minimal effect on the cytopathocity of the virus, with a 33.4% reduction in virus levels after 5 minutes. The antiviral activity of Listerine is thus not related to the viral genome but is probably directed to the viral envelope. PMID:7614202

  6. Recent Advances in Antiviral Therapy for Chronic Hepatitis C

    PubMed Central

    Tamori, Akihiro; Enomoto, Masaru; Kawada, Norifumi

    2016-01-01

    Hepatitis C virus (HCV) infection is a major worldwide health problem. Chronic infection induces continuous inflammation in the liver, progression of hepatic fibrosis, eventual cirrhosis, and possible hepatocellular carcinoma. Eradication of the virus is one of the most important treatment aims. A number of promising new direct-acting antivirals (DAAs) have been developed over the past 10 years. Due to their increased efficacy, safety, and tolerability, interferon-free oral therapies with DAAs have been approved for patients with HCV, including those with cirrhosis. This review introduces the characteristics and results of recent clinical trials of several DAAs: NS3/4A protease inhibitors, NS5A inhibitors, and NS5B inhibitors. DAA treatment failure and prognosis after DAA therapy are also discussed. PMID:27022210

  7. Antiviral effect of cationic compounds on bacteriophages

    PubMed Central

    Ly-Chatain, Mai H.; Moussaoui, Saliha; Vera, Annabelle; Rigobello, Véronique; Demarigny, Yann

    2013-01-01

    The antiviral activity of several cationic compounds – cetyltrimethylammonium bromide (CTAB), chitosan, nisin, and lysozyme – was investigated on the bacteriophage c2 (DNA head and non-contractile tail) infecting Lactococcus strains and the bacteriophage MS2 (F-specific RNA) infecting E. coli. Firstly, these activities were evaluated in a phosphate buffer pH 7 – 10 mM. The CTAB had a virucidal effect on the Lactococcus bacteriophages, but not on the MS2. After 1 min of contact with 0.125 mM CTAB, the c2 population was reduced from 6 to 1.5 log(pfu)/mL and completely deactivated at 1 mM. On the contrary, chitosan inhibited the MS2 more than it did the bacteriophages c2. No antiviral effect was observed for the nisin or the lysozyme on bacteriophages after 1 min of treatment. A 1 and 2.5 log reduction was respectively observed for nisin and lysozyme when the treatment time increased (5 or 10 min). These results showed that the antiviral effect depended both on the virus and structure of the antimicrobial compounds. The antiviral activity of these compounds was also evaluated in different physico-chemical conditions and in complex matrices. The antiviral activity of CTAB was impaired in acid pH and with an increase of the ionic strength. These results might be explained by the electrostatic interactions between cationic compounds and negatively charged particles such as bacteriophages or other compounds in a matrix. Milk proved to be protective suggesting the components of food could interfere with antimicrobial compounds. PMID:23487495

  8. Structural Evidence for Effectiveness of Darunavir and Two Related Antiviral Inhibitors against HIV-2 Protease

    SciTech Connect

    Kovalevsky, Andrey Y.; Louis, John M.; Aniana, Annie; Ghosh, Arun K.; Weber, Irene T.

    2008-12-08

    No drug has been targeted specifically for HIV-2 (human immunodeficiency virus type 2) infection despite its increasing prevalence worldwide. The antiviral HIV-1 (human immunodeficiency virus type 1) protease (PR) inhibitor darunavir and the chemically related GRL98065 and GRL06579A were designed with the same chemical scaffold and different substituents at P2 and P2' to optimize polar interactions for HIV-1 PR (PR1). These inhibitors are also effective antiviral agents for HIV-2-infected cells. Therefore, crystal structures of HIV-2 PR (PR2) complexes with the three inhibitors have been solved at 1.2-{angstrom} resolution to analyze the molecular basis for their antiviral potency. Unusually, the crystals were grown in imidazole and zinc acetate buffer, which formed interactions with the PR2 and the inhibitors. Overall, the structures were very similar to the corresponding inhibitor complexes of PR1 with an RMSD of 1.1 {angstrom} on main-chain atoms. Most hydrogen-bond and weaker C-H...O interactions with inhibitors were conserved in the PR2 and PR1 complexes, except for small changes in interactions with water or disordered side chains. Small differences were observed in the hydrophobic contacts for the darunavir complexes, in agreement with relative inhibition of the two PRs. These near-atomic-resolution crystal structures verify the inhibitor potency for PR1 and PR2 and will provide the basis for the development of antiviral inhibitors targeting PR2.

  9. Inhibition of HIV replication by pokeweed antiviral protein targeted to CD4+ cells by monoclonal antibodies

    NASA Astrophysics Data System (ADS)

    Zarling, Joyce M.; Moran, Patricia A.; Haffar, Omar; Sias, Joan; Richman, Douglas D.; Spina, Celsa A.; Myers, Dorothea E.; Kuebelbeck, Virginia; Ledbetter, Jeffrey A.; Uckun, Fatih M.

    1990-09-01

    FUNCTIONAL impairment and selective depletion of CD4+ T cells, the hallmark of AIDS, are at least partly caused by human immunodeficiency virus (HIV-1) type 1 binding to the CD4 molecule and infecting CD4+ cells1,2. It may, therefore, be of therapeutic value to target an antiviral agent to CD4+ cells to prevent infection and to inhibit HIV-1 production in patients' CD4+ cells which contain proviral DNA3,4. We report here that HIV-1 replication in normal primary CD4+ T cells can be inhibited by pokeweed antiviral protein, a plant protein of relative molecular mass 30,000 (ref. 5), which inhibits replication of certain plant RNA viruses6-8, and of herpes simplex virus, poliovirus and influenza virus9-11. Targeting pokeweed antiviral protein to CD4+ T cells by conjugating it to monoclonal antibodies reactive with CDS, CD7 or CD4 expressed on CD4+ cells, increased its anti-HIV potency up to 1,000-fold. HIV-1 replication is inhibited at picomolar concentrations of conjugates of pokeweed antiviral protein and monoclonal antibodies, which do not inhibit proliferation of normal CD4+ T cells or CD4-dependent responses. These conjugates inhibit HIV-1 protein synthesis and also strongly inhibit HIV-1 production in activated CD4+ T cells from infected patients.

  10. Synthesis and antiviral activity of PB1 component of the influenza A RNA polymerase peptide fragments.

    PubMed

    Matusevich, O V; Egorov, V V; Gluzdikov, I A; Titov, M I; Zarubaev, V V; Shtro, A A; Slita, A V; Dukov, M I; Shurygina, A-P S; Smirnova, T D; Kudryavtsev, I V; Vasin, A V; Kiselev, O I

    2015-01-01

    This study is devoted to the antiviral activity of peptide fragments from the PB1 protein - a component of the influenza A RNA polymerase. The antiviral activity of the peptides synthesized was studied in MDCK cell cultures against the pandemic influenza strain A/California/07/2009 (H1N1) pdm09. We found that peptide fragments 6-13, 6-14, 26-30, 395-400, and 531-540 of the PB1 protein were capable of suppressing viral replication in cell culture. Terminal modifications i.e. N-acetylation and C-amidation increased the antiviral properties of the peptides significantly. Peptide PB1 (6-14) with both termini modified showed maximum antiviral activity, its inhibitory activity manifesting itself during the early stages of viral replication. It was also shown that the fluorescent-labeled analog of this peptide was able to penetrate into the cell. The broad range of virus-inhibiting activity of PB1 (6-14) peptide was confirmed using a panel of influenza A viruses of H1, H3 and H5 subtypes including those resistant to oseltamivir, the leading drug in anti-influenza therapy. Thus, short peptide fragments of the PB1 protein could serve as leads for future development of influenza prevention and/or treatment agents.

  11. Discovery and development of antiviral drugs for biodefense: experience of a small biotechnology company.

    PubMed

    Bolken, Tove C; Hruby, Dennis E

    2008-01-01

    The unmet need for effective antivirals against potential agents of bioterrorism and emerging infections is obvious; however, the challenges to develop such drugs are daunting. Even with the passage of Project BioShield and more recently the BARDA legislation, there is still not a clear market for these types of drugs and limited federal funding available to support expensive drug development studies. SIGA Technologies, Inc. is a small biotech company committed to developing novel products for the prevention and treatment of severe infectious diseases, with an emphasis on products for diseases that could result from bioterrorism. Through trials and error SIGA has developed an approach to this problem in order to establish the infrastructure necessary to successfully advance new antiviral drugs from the discovery stage on through to licensure. The approach that we have taken to drug development is biology driven and dependent on a dispersive development model utilizing essential collaborations with academic, federal, and private sector partners. This consortium approach requires success in acquiring grants and contracts as well as iterative communication with the government and regulatory agencies. However, it can work as evidenced by the rapid progress of our lead antiviral against smallpox, ST-246, and should serve as the template for development of new antivirals against important biological pathogens.

  12. Antiviral Effects of Novel Herbal Medicine KIOM-C, on Diverse Viruses

    PubMed Central

    Park, Min-Eun; Weeratunga, Prasanna; Kim, Tae-Hwan; Cho, Won-Kyung; Kim, Chul-Joong; Ma, Jin Yeul; Lee, Jong-Soo

    2015-01-01

    In order to identify new potential antiviral agents, recent studies have advocated thorough testing of herbal medicines or natural substances that are traditionally used to prevent viral infections. Antiviral activities and the mechanism of action of the total aqueous extract preparation of KIOM-C, a novel herbal medicine, against diverse types of viruses were investigated. In vitro antiviral activity against A/Puerto Rico/8/34 (H1N1) (PR8), vesicular stomatitis virus (VSV), and Newcastle disease virus (NDV) through the induction of type-I interferon related protein phosphorylation and up-regulation of pro-inflammatory cytokines in murine macrophage cells (RAW264.7) were determined. In vivo, KIOM-C-treated BALB/c mice showed higher survivability and lower lung viral titers when challenged with A/Aquatic bird/Korea/W81/2005 (H5N2), A/PR/8/34(H1N1), A/Aquatic bird/Korea/W44/2005(H7N3) or A/Chicken/Korea/116 /2004(H9N2) influenza subtypes in contrast with the non-treated group. The present study revealed that total aqueous extract preparation of KIOM-C stimulates an antiviral state in murine macrophage cells and in mice leading to inhibition of viral infection and protection against lethal challenges. PMID:25942440

  13. Antiviral Effects of Novel Herbal Medicine KIOM-C, on Diverse Viruses.

    PubMed

    Talactac, Melbourne R; Chowdhury, Mohammed Y E; Park, Min-Eun; Weeratunga, Prasanna; Kim, Tae-Hwan; Cho, Won-Kyung; Kim, Chul-Joong; Ma, Jin Yeul; Lee, Jong-Soo

    2015-01-01

    In order to identify new potential antiviral agents, recent studies have advocated thorough testing of herbal medicines or natural substances that are traditionally used to prevent viral infections. Antiviral activities and the mechanism of action of the total aqueous extract preparation of KIOM-C, a novel herbal medicine, against diverse types of viruses were investigated. In vitro antiviral activity against A/Puerto Rico/8/34 (H1N1) (PR8), vesicular stomatitis virus (VSV), and Newcastle disease virus (NDV) through the induction of type-I interferon related protein phosphorylation and up-regulation of pro-inflammatory cytokines in murine macrophage cells (RAW264.7) were determined. In vivo, KIOM-C-treated BALB/c mice showed higher survivability and lower lung viral titers when challenged with A/Aquatic bird/Korea/W81/2005 (H5N2), A/PR/8/34(H1N1), A/Aquatic bird/Korea/W44/2005(H7N3) or A/Chicken/Korea/116 /2004(H9N2) influenza subtypes in contrast with the non-treated group. The present study revealed that total aqueous extract preparation of KIOM-C stimulates an antiviral state in murine macrophage cells and in mice leading to inhibition of viral infection and protection against lethal challenges.

  14. The Barrier to Autointegration Factor: Interlocking Antiviral Defense with Genome Maintenance

    PubMed Central

    Jamin, Augusta

    2016-01-01

    Intrinsic defenses targeting foreign DNA are one facet of the cellular armament tasked with protecting host genomic integrity. The DNA binding protein BAF (barrier to autointegration factor) contributes to multiple aspects of genome maintenance and intercepts retrovirus, poxvirus, and herpesvirus genomes during infection. In this gem, we discuss the unique position BAF occupies at the virus-host interface and how both viral and cellular mechanisms may regulate its capacity to act as a pro- or antiviral effector targeting viral DNA. PMID:26842478

  15. Fast-forward generation of effective artificial small RNAs for enhanced antiviral defense in plants

    PubMed Central

    Carbonell, Alberto; Carrington, James C.; Daròs, José-Antonio

    2016-01-01

    Artificial small RNAs (sRNAs) are short ≈21-nt non-coding RNAs engineered to inactivate sequence complementary RNAs. In plants, they have been extensively used to silence cellular transcripts in gene function analyses and to target invading RNA viruses to induce resistance. Current artificial sRNA-based antiviral resistance in plants is mainly limited to a single virus, and is jeopardized by the emergence of mutations in the artificial sRNA target site or by the presence of co-infecting viruses. Hence, there is a need to further develop the artificial sRNA approach to generate more broad and durable antiviral resistance in plants. A recently developed toolbox allows for the time and cost-effective large-scale production of artificial sRNA constructs in plants. The toolbox includes the P-SAMS web tool for the automated design of artificial sRNAs, and a new generation of artificial microRNA and synthetic trans-acting small interfering RNA (syn-tasiRNA) vectors for direct cloning and high expression of artificial sRNAs. Here we describe how the simplicity and high-throughput capability of these new technologies should accelerate the study of artificial sRNA-based antiviral resistance in plants. In particular, we discuss the potential of the syn-tasiRNA approach as a promising strategy for developing more effective, durable and broad antiviral resistance in plants. PMID:26925463

  16. Negative regulation of RIG-I-mediated antiviral signaling by TRK-fused gene (TFG) protein

    SciTech Connect

    Lee, Na-Rae; Shin, Han-Bo; Kim, Hye-In; Choi, Myung-Soo; Inn, Kyung-Soo

    2013-07-19

    Highlights: •TRK-fused gene product (TFG) interacts with TRIM25 upon viral infection. •TFG negatively regulates RIG-I mediated antiviral signaling. •TFG depletion leads to enhanced viral replication. •TFG act downstream of MAVS. -- Abstract: RIG-I (retinoic acid inducible gene I)-mediated antiviral signaling serves as the first line of defense against viral infection. Upon detection of viral RNA, RIG-I undergoes TRIM25 (tripartite motif protein 25)-mediated K63-linked ubiquitination, leading to type I interferon (IFN) production. In this study, we demonstrate that TRK-fused gene (TFG) protein, previously identified as a TRIM25-interacting protein, binds TRIM25 upon virus infection and negatively regulates RIG-I-mediated type-I IFN signaling. RIG-I-mediated IFN production and nuclear factor (NF)-κB signaling pathways were upregulated by the suppression of TFG expression. Furthermore, vesicular stomatitis virus (VSV) replication was significantly inhibited by small inhibitory hairpin RNA (shRNA)-mediated knockdown of TFG, supporting the suppressive role of TFG in RIG-I-mediated antiviral signaling. Interestingly, suppression of TFG expression increased not only RIG-I-mediated signaling but also MAVS (mitochondrial antiviral signaling protein)-induced signaling, suggesting that TFG plays a pivotal role in negative regulation of RNA-sensing, RIG-I-like receptor (RLR) family signaling pathways.

  17. Accessibility to Oral Antiviral Therapy for Patients with Chronic Hepatitis C in the United States

    PubMed Central

    Saab, Sammy; Jimenez, Melissa; Fong, Tiffany; Wu, Crystal; Bau, Sherona; Jamal, Zoha; Grotts, Jonathan; Elashoff, David

    2016-01-01

    Abstract Background: Hepatitis C (HCV) direct acting antiviral agents (DAAs) are safe, effective, and tolerable. Most contraindications to interferon-based treatment are no long applicable. The aims of this study were to understand the predictors of approval to drug accessibility. Methods: We studied all consecutive patients with HCV prescribed DAAs between October 2014 and July 2015. Data on demographic, socio-economic status, comorbidities, baseline laboratory values, and assessment of liver disease severity, insurance, and specialty pharmacy type were collected. Multivariate analyses were performed to identify predictors of prescription approval. Results: In total, 410 patients were prescribed DAAs between October 2014 and July 2015. Of those, 332 (81%) patients were insurance approved for therapy. Of the 332 patients accepted, 251 were accepted after the first prescription attempt, and 38 were accepted after the second and third attempts. The number of attempts for the other 43 approved patients was unknown. Older age (p = 0.001), employment (p = 0.001), lack of comorbidities (p = 0.02), liver transplantation (p = 0.018), and advanced liver disease (p = 0.001) were more likely associated with obtaining approval. Household income was not associated with insurance approval. In the multivariate analysis, Medicare insurance (odds ratio [OR]) 2.67, 95% confidence interval [CI] 0.96–7.20), lack of nonliver comorbidities (OR 2.72, 95% CI 1.35–5.43), and the presence of advanced liver disease (OR 1.82, 95% CI 1.04–3.24) independently predicted drug approval. Conclusion: Despite the availability of DAAs for HCV, barriers from insurance carriers continue to impair widespread use. Patients with advanced liver disease, Medicare, and without comorbidities are most likely to be insurance approved for DAAs. PMID:27350937

  18. Clinical Implications of Antiviral Resistance in Influenza

    PubMed Central

    Li, Timothy C. M.; Chan, Martin C. W.; Lee, Nelson

    2015-01-01

    Influenza is a major cause of severe respiratory infections leading to excessive hospitalizations and deaths globally; annual epidemics, pandemics, and sporadic/endemic avian virus infections occur as a result of rapid, continuous evolution of influenza viruses. Emergence of antiviral resistance is of great clinical and public health concern. Currently available antiviral treatments include four neuraminidase inhibitors (oseltamivir, zanamivir, peramivir, laninamivir), M2-inibitors (amantadine, rimantadine), and a polymerase inhibitor (favipiravir). In this review, we focus on resistance issues related to the use of neuraminidase inhibitors (NAIs). Data on primary resistance, as well as secondary resistance related to NAI exposure will be presented. Their clinical implications, detection, and novel therapeutic options undergoing clinical trials are discussed. PMID:26389935

  19. Clinical Implications of Antiviral Resistance in Influenza.

    PubMed

    Li, Timothy C M; Chan, Martin C W; Lee, Nelson

    2015-09-01

    Influenza is a major cause of severe respiratory infections leading to excessive hospitalizations and deaths globally; annual epidemics, pandemics, and sporadic/endemic avian virus infections occur as a result of rapid, continuous evolution of influenza viruses. Emergence of antiviral resistance is of great clinical and public health concern. Currently available antiviral treatments include four neuraminidase inhibitors (oseltamivir, zanamivir, peramivir, laninamivir), M2-inibitors (amantadine, rimantadine), and a polymerase inhibitor (favipiravir). In this review, we focus on resistance issues related to the use of neuraminidase inhibitors (NAIs). Data on primary resistance, as well as secondary resistance related to NAI exposure will be presented. Their clinical implications, detection, and novel therapeutic options undergoing clinical trials are discussed.

  20. Synthesis and antiviral activity of 5'-deoxypyrazofurin.

    PubMed

    Chen, X; Schneller, S W; Ikeda, S; Snoeck, R; Andrei, G; Balzarini, J; De Clercq, E

    1993-11-12

    In searching for derivatives of pyrazofurin that could display antiviral properties by means that do not require C-5' phosphorylation, 5'-deoxypyrazofurin (3) has been synthesized in six steps from methyl5-deoxy-2,3-O-isopropylidene-beta-D-ribofuranoside (4). Compound 3 was evaluated for antiviral activity against a large number of viruses including herpes-, pox-, myxo-, toga-, arena-, rhabdo-, picorna-,reo-, and retroviruses. Compound 3 proved active against respiratory syncytial virus (in HeLa cells), vaccinia virus (in embryonic skin-muscle fibroblast cells), vesicular stomatitis virus (in HeLa cells), and influenza A virus (in Madin-Darby canine kidney cells) at concentrations (ranging from 4 to 20 micrograms/mL) that were nontoxic to the confluent host cell cultures. PMID:8246242

  1. Exploiting Genetic Interference for Antiviral Therapy.

    PubMed

    Tanner, Elizabeth J; Kirkegaard, Karla A; Weinberger, Leor S

    2016-05-01

    Rapidly evolving viruses are a major threat to human health. Such viruses are often highly pathogenic (e.g., influenza virus, HIV, Ebola virus) and routinely circumvent therapeutic intervention through mutational escape. Error-prone genome replication generates heterogeneous viral populations that rapidly adapt to new selection pressures, leading to resistance that emerges with treatment. However, population heterogeneity bears a cost: when multiple viral variants replicate within a cell, they can potentially interfere with each other, lowering viral fitness. This genetic interference can be exploited for antiviral strategies, either by taking advantage of a virus's inherent genetic diversity or through generating de novo interference by engineering a competing genome. Here, we discuss two such antiviral strategies, dominant drug targeting and therapeutic interfering particles. Both strategies harness the power of genetic interference to surmount two particularly vexing obstacles-the evolution of drug resistance and targeting therapy to high-risk populations-both of which impede treatment in resource-poor settings.

  2. Indian National Association for Study of the Liver (INASL) Guidance for Antiviral Therapy Against HCV Infection in 2015

    PubMed Central

    Puri, Pankaj; Anand, Anil C.; Saraswat, Vivek A.; Acharya, Subrat K.; Dhiman, Radha K.; Sarin, Shiv K.; Singh, Shivaram P.; Chawla, Yogesh K.; Aggarwal, Rakesh; Amarapurkar, Deepak; Arora, Anil; Dixit, Vinod K.; Sood, Ajit; Shah, Samir; Duseja, Ajay; Kapoor, Dharmesh; Shalimar; Madan, Kaushal; Pande, Gaurav; Nagral, Aabha; Kar, Premashis; Koshy, Abraham; Puri, Amarender S.; Eapen, C.E.; Thareja, Sandeep

    2015-01-01

    Overall prevalence of HCV infection in India has been estimated to be approximately 1.3% in the general population. Recent introduction of sofosbuvir in India at a relatively affordable price has led to great optimism about prospects of cure for these patients. This drug is likely to form the backbone of current and future treatment regimes for HCV infection, displacing pegylated interferon. Availability of directly acting antiviral drugs (DAAs) has necessitated revision of INASL guidelines for the treatment of HCV published in 2014, as has happened across the world. Current considerations for the treatment of HCV in India include the poorer response of genotype 3, nonavailability of many of the DAAs recommended by other guidelines and the cost of therapy. Since only one DAA, sofosbuvir, is available in India, only two sofosbuvir-based regimes are possible: either dual drug therapy in combination with ribavirin alone for 6 months or triple drug therapy in combination with ribavirin and pegylated interferon for 3 months. The utility of these regimes in various situations has been discussed. Availability of a few other newer DAAs, expected in 2016, is expected to lead to more widespread use of these agents. Current guidance will be updated once newer DAAs, newer evidence with DAAs and ‘real-life experience’ with use of DAAs accumulate in India. PMID:26628840

  3. Cyclopiazonic acid, an inhibitor of calcium-dependent ATPases with antiviral activity against human respiratory syncytial virus.

    PubMed

    Cui, Rui; Wang, Yizhuo; Wang, Liu; Li, Guiming; Lan, Ke; Altmeyer, Ralf; Zou, Gang

    2016-08-01

    Human respiratory syncytial virus (RSV) is a common cause of lower respiratory tract infections in infants and young children worldwide, yet no vaccine or effective antiviral treatment is available. To search for new anti-RSV agents, we developed a cell-based assay that measures inhibition of RSV-induced cytopathic effect (CPE) and identified cyclopiazonic acid (CPA), an intracellular calcium ATPase inhibitor as a RSV inhibitor (EC50 values 4.13 μM) by screening of natural product library. CPA inhibited the replication of RSV strains belonging to both A and B subgroups and human parainfluenza virus type 3, but not Enterovirus 71. Mechanism of action study by time-of-addition assay and minigenome assay revealed that CPA acts at the step of virus genome replication and/or transcription. Moreover, two other calcium ATPase inhibitors (Thapsigargin and BHQ) and calcium ionophores (A23187 and ionomycin), but not calcium channel blockers (nifedipine, nimodipine, and tetrandrine), also had similar effect. These results indicate that an increase in intracellular calcium concentration is detrimental to RSV replication. Thus, our findings provide a new strategy for anti-RSV therapy via increasing intracellular calcium concentration. PMID:27210812

  4. The impact of the new antiviral regimens on patient reported outcomes and health economics of patients with chronic hepatitis C.

    PubMed

    Younossi, Zobair; Henry, Linda

    2014-12-15

    Hepatitis C is an important cause of chronic liver disease worldwide with an estimated 170 million people infected. Hepatitis C virus (HCV)-infected patients are physically and mentally impacted by fatigue, depression and anxiety causing an impairment of health related quality of life (HRQOL), lower worker productivity and other patient reported outcomes (PROs). Although anti-HCV regimens containing first generation direct acting antiviral agents (DAAs) were associated with significant side effects, the second generation DAAs, sofosbuvir (SOF) and simeprevir (SMV), are associated with fewer side effects, better tolerability and high cure rates. Despite these advantages, key stakeholders are currently trying to find ways to best integrate these new therapeutic regimens into the management of patients with chronic hepatitis C for the benefit of all. The purpose of this article is to offer insight into the other key and equally important outcomes (PRO's, HRQOL and cost) which should be considered when assessing the applicability of these new regimens for the care of patients infected with HCV. Our review provides evidence that the new treatment regimens for HCV not only have high efficacy rates but are also associated with better patient reported outcomes and cost per case of HCV cured. Additionally, compared to other medical interventions, these new regimens are cost-effective from a societal perspective.

  5. Antiviral Strategies for Pandemic and Seasonal Influenza

    PubMed Central

    Hedlund, Maria; Larson, Jeffrey L.; Fang, Fang

    2010-01-01

    While vaccines are the primary public health response to seasonal and pandemic flu, short of a universal vaccine there are inherent limitations to this approach. Antiviral drugs provide valuable alternative options for treatment and prophylaxis of influenza. Here, we will review drugs and drug candidates against influenza with an emphasis on the recent progress of a host-targeting entry-blocker drug candidate, DAS181, a sialidase fusion protein. PMID:21994706

  6. Aronia melanocarpa and its components demonstrate antiviral activity against influenza viruses.

    PubMed

    Park, Sehee; Kim, Jin Il; Lee, Ilseob; Lee, Sangmoo; Hwang, Min-Woong; Bae, Joon-Yong; Heo, Jun; Kim, Donghwan; Han, Sang-Zin; Park, Man-Seong

    2013-10-11

    The influenza virus is highly contagious in human populations around the world and results in approximately 250,000-500,000 deaths annually. Vaccines and antiviral drugs are commonly used to protect susceptible individuals. However, the antigenic mismatch of vaccines and the emergence of resistant strains against the currently available antiviral drugs have generated an urgent necessity to develop a novel broad-spectrum anti-influenza agent. Here we report that Aronia melanocarpa (black chokeberry, Aronia), the fruit of a perennial shrub species that contains several polyphenolic constituents, possesses in vitro and in vivo efficacy against different subtypes of influenza viruses including an oseltamivir-resistant strain. These anti-influenza properties of Aronia were attributed to two constituents, ellagic acid and myricetin. In an in vivo therapeutic mouse model, Aronia, ellagic acid, and myricetin protected mice against lethal challenge. Based on these results, we suggest that Aronia is a valuable source for antiviral agents and that ellagic acid and myricetin have potential as influenza therapeutics.

  7. In-vitro antiviral activity of Solanum nigrum against Hepatitis C Virus

    PubMed Central

    2011-01-01

    Background Hepatitis C is a major health problem causes liver cirrhosis, hepatocellular carcinoma and death. The current treatment of standard interferon in combination with ribavirin, has limited benefits due to emergence of resistant mutations during long-term treatment, adverse side effects and high cost. Hence, there is a need for the development of more effective, less toxic antiviral agents. Results The present study was designed to search anti-HCV plants from different areas of Pakistan. Ten medicinal plants were collected and tested for anti-HCV activity by infecting the liver cells with HCV 3a innoculum. Methanol and chloroform extracts of Solanum nigrum (SN) seeds exhibited 37% and more than 50% inhibition of HCV respectively at non toxic concentration. Moreover, antiviral effect of SN seeds extract was also analyzed against HCV NS3 protease by transfecting HCV NS3 protease plasmid into liver cells. The results demonstrated that chloroform extract of SN decreased the expression or function of HCV NS3 protease in a dose- dependent manner and GAPDH remained constant. Conclusion These results suggest that SN extract contains potential antiviral agents against HCV and combination of SN extract with interferon will be better option to treat chronic HCV. PMID:21247464

  8. Assessment of Antiviral Properties of Peramivir against H7N9 Avian Influenza Virus in an Experimental Mouse Model

    PubMed Central

    Farooqui, Amber; Huang, Linxi; Wu, Suwu; Cai, Yingmu; Su, Min; Lin, Pengzhou; Chen, Weihong; Fang, Xibin; Zhang, Li; Liu, Yisu; Zeng, Tiansheng; Paquette, Stephane G.; Khan, Adnan; Kelvin, Alyson A.

    2015-01-01

    The H7N9 influenza virus causes a severe form of disease in humans. Neuraminidase inhibitors, including oral oseltamivir and injectable peramivir, are the first choices of antiviral treatment for such cases; however, the clinical efficacy of these drugs is questionable. Animal experimental models are essential for understanding the viral replication kinetics under the selective pressure of antiviral agents. This study demonstrates the antiviral activity of peramivir in a mouse model of H7N9 avian influenza virus infection. The data show that repeated administration of peramivir at 30 mg/kg of body weight successfully eradicated the virus from the respiratory tract and extrapulmonary tissues during the acute response, prevented clinical signs of the disease, including neuropathy, and eventually protected mice against lethal H7N9 influenza virus infection. Early treatment with peramivir was found to be associated with better disease outcomes. PMID:26369969

  9. Antiviral activity of baicalein and quercetin against the Japanese encephalitis virus.

    PubMed

    Johari, Jefree; Kianmehr, Aynaz; Mustafa, Mohd Rais; Abubakar, Sazaly; Zandi, Keivan

    2012-12-07

    Japanese encephalitis (JE), a mosquito-borne viral disease, is endemic to the entire east and southeast Asia, and some other parts of the world. Currently, there is no effective therapeutic available for JE; therefore, finding the effective antiviral agent against JEV replication is crucial. In the present study, the in vitro antiviral activity of baicalein and quercetin, two purportedly antiviral bioflavonoids, was evaluated against Japanese encephalitis virus (JEV) replication in Vero cells. Anti-JEV activities of these compounds were examined on different stages of JEV replication cycle. The effects of the compounds on virus replication were determined by foci forming unit reduction assay (FFURA) and quantitative RT-PCR. Baicalein showed potent antiviral activity with IC(50) = 14.28 µg/mL when it was introduced to the Vero cells after adsorption of JEV. Quercetin exhibited weak anti-JEV effects with IC(50) = 212.1 µg/mL when the JEV infected cells were treated with the compound after virus adsorption. However, baicalein exhibited significant effect against JEV adsorption with IC(50) = 7.27 µg/mL while quercetin did not show any anti-adsorption activity. Baicalein also exhibited direct extracellular virucidal activity on JEV with IC(50) = 3.44 µg/mL. However, results of quantitative RT-PCR experiments confirmed the findings from FFURA. This study demonstrated that baicalein should be considered as an appropriate candidate for further investigations, such as the study of molecular and cellular mechanism(s) of action and in vivo evaluation for the development of an effective antiviral compound against Japanese encephalitis virus.

  10. SP-303, an antiviral oligomeric proanthocyanidin from the latex of Croton lechleri (Sangre de Drago).

    PubMed

    Ubillas, R; Jolad, S D; Bruening, R C; Kernan, M R; King, S R; Sesin, D F; Barrett, M; Stoddart, C A; Flaster, T; Kuo, J; Ayala, F; Meza, E; Castañel, M; McMeekin, D; Rozhon, E; Tempesta, M S; Barnard, D; Huffman, J; Smee, D; Sidwell, R; Soike, K; Brazier, A; Safrin, S; Orlando, R; Kenny, P T; Berova, N; Nakanishi, K

    1994-09-01

    SP-303, a large proanthocyanidin oligomer isolated from the latex of the plant species Croton lechleri (Eupborbiaceae) has demonstrated broad activity against a variety of DNA and RNA viruses. In cell culture, SP-303 exhibits potent activity against isolates and laboratory strains of respiratory syncytial virus (RSV), influenza A virus (FLU-A) and parainfluenza virus (PIV). Parallel assays of SP-303 and ribavirin showed comparable activity against these viruses. SP-303 also exhibits significant inhibitory activity against herpesvirus (HSV) types 1 and 2, including herpesviruses resistant to acyclovir and foscarnet. Inhibition was also observed against hepatitis A and B viruses. The antiviral mechanism of SP-303 seems to derive from its direct binding to components of the viral envelope, resulting in inhibition of viral attachment and penetration of the plasma membrane. Antiviral effects of SP-303 were measured by three distinct methods: CPE, MTT and precursor uptake/incorporation. Cytotoxicity endpoints were markedly greater than the respective antiviral endpoints. SP-303 exhibited activity in RSV-infected cotton rats and African green monkeys, PIV-3-infected cotton rats, HSV-2 infected mice and guinea pigs and FLU-A-infected mice. The most successful routes of SP-303 administration for producing efficacy were: topical application to HSV-2- genital lesions in mice and guinea pigs, aerosol inhalation to FLU-A-infected mice and PIV-3-infected cotton rats, and oral dosage to RSV-infected cotton rats. A variety of toxicological evaluations demonstrated the safety of SP-303, particularly orally, which was predictable, since condensed tannins are a common dietary component. It is notable that the larger proanthocyanidins as a class have high antiviral activity, whereas most of the monomers are inactive. Clinical trials are ongoing to evaluate SP-303 as a therapeutic antiviral agent.

  11. RIG-I Mediates an Antiviral Response to Crimean-Congo Hemorrhagic Fever Virus

    PubMed Central

    Spengler, Jessica R.; Patel, Jenish R.; Chakrabarti, Ayan K.; Zivcec, Marko; García-Sastre, Adolfo; Spiropoulou, Christina F.

    2015-01-01

    ABSTRACT In the cytoplasm, the retinoic acid-inducible gene I (RIG-I) senses the RNA genomes of several RNA viruses. RIG-I binds to viral RNA, eliciting an antiviral response via the cellular adaptor MAVS. Crimean-Congo hemorrhagic fever virus (CCHFV), a negative-sense RNA virus with a 5′-monophosphorylated genome, is a highly pathogenic zoonotic agent with significant public health implications. We found that, during CCHFV infection, RIG-I mediated a type I interferon (IFN) response via MAVS. Interfering with RIG-I signaling reduced IFN production and IFN-stimulated gene expression and increased viral replication. Immunostimulatory RNA was isolated from CCHFV-infected cells and from virion preparations, and RIG-I coimmunoprecipitation of infected cell lysates isolated immunostimulatory CCHFV RNA. This report serves as the first description of a pattern recognition receptor for CCHFV and highlights a critical signaling pathway in the antiviral response to CCHFV. IMPORTANCE CCHFV is a tick-borne virus with a significant public health impact. In order for cells to respond to virus infection, they must recognize the virus as foreign and initiate antiviral signaling. To date, the receptors involved in immune recognition of CCHFV are not known. Here, we investigate and identify RIG-I as a receptor involved in initiating an antiviral response to CCHFV. This receptor initially was not expected to play a role in CCHFV recognition because of characteristics of the viral genome. These findings are important in understanding the antiviral response to CCHFV and support continued investigation into the spectrum of potential viruses recognized by RIG-I. PMID:26223644

  12. Type I Interferon Counteracts Antiviral Effects of Statins in the Context of Gammaherpesvirus Infection

    PubMed Central

    Lange, Philip T.; Darrah, Eric J.; Vonderhaar, Emily P.; Mboko, Wadzanai P.; Rekow, Michaela M.; Patel, Shailendra B.; Sidjanin, Duska J.

    2016-01-01

    ABSTRACT The cholesterol synthesis pathway is a ubiquitous cellular biosynthetic pathway that is attenuated therapeutically by statins. Importantly, type I interferon (IFN), a major antiviral mediator, also depresses the cholesterol synthesis pathway. Here we demonstrate that attenuation of cholesterol synthesis decreases gammaherpesvirus replication in primary macrophages in vitro and reactivation from peritoneal exudate cells in vivo. Specifically, the reduced availability of the intermediates required for protein prenylation was responsible for decreased gammaherpesvirus replication in statin-treated primary macrophages. We also demonstrate that statin treatment of a chronically infected host attenuates gammaherpesvirus latency in a route-of-infection-specific manner. Unexpectedly, we found that the antiviral effects of statins are counteracted by type I IFN. Our studies suggest that type I IFN signaling counteracts the antiviral nature of the subdued cholesterol synthesis pathway and offer a novel insight into the utility of statins as antiviral agents. IMPORTANCE Statins are cholesterol synthesis inhibitors that are therapeutically administered to 12.5% of the U.S. population. Statins attenuate the replication of diverse viruses in culture; however, this attenuation is not always obvious in an intact animal model. Further, it is not clear whether statins alter parameters of highly prevalent chronic herpesvirus infections. We show that statin treatment attenuated gammaherpesvirus replication in primary immune cells and during chronic infection of an intact host. Further, we demonstrate that type I interferon signaling counteracts the antiviral effects of statins. Considering the fact that type I interferon decreases the activity of the cholesterol synthesis pathway, it is intriguing to speculate that gammaherpesviruses have evolved to usurp the type I interferon pathway to compensate for the decreased cholesterol synthesis activity. PMID:26739055

  13. Interferon-mediated antiviral activities of Angelica tenuissima Nakai and its active components.

    PubMed

    Weeratunga, Prasanna; Uddin, Md Bashir; Kim, Myun Soo; Lee, Byeong-Hoon; Kim, Tae-Hwan; Yoon, Ji-Eun; Ma, Jin Yeul; Kim, Hongik; Lee, Jong-Soo

    2016-01-01

    Angelica tenuissima Nakai is a widely used commodity in traditional medicine. Nevertheless, no study has been conducted on the antiviral and immune-modulatory properties of an aqueous extract of Angelica tenuissima Nakai. In the present study, we evaluated the antiviral activities and the mechanism of action of an aqueous extract of Angelica tenuissima Nakai both in vitro and in vivo. In vitro, an effective dose of Angelica tenuissima Nakai markedly inhibited the replication of Influenza A virus (PR8), Vesicular stomatitis virus (VSV), Herpes simplex virus (HSV), Coxsackie virus, and Enterovirus (EV-71) on epithelial (HEK293T/HeLa) and immune (RAW264.7) cells. Such inhibition can be described by the induction of the antiviral state in cells by antiviral, IFNrelated gene induction and secretion of IFNs and pro-inflammatory cytokines. In vivo, Angelica tenuissima Nakai treated BALB/c mice displayed higher survivability and lower lung viral titers when challenged with lethal doses of highly pathogenic influenza A subtypes (H1N1, H5N2, H7N3, and H9N2). We also found that Angelica tenuissima Nakai can induce the secretion of IL-6, IFN-λ, and local IgA in bronchoalveolar lavage fluid (BALF) of Angelica tenuissima Nakai treated mice, which correlating with the observed prophylactic effects. In HPLC analysis, we found the presence of several compounds in the aqueous fraction and among them; we evaluated antiviral properties of ferulic acid. Therefore, an extract of Angelica tenuissima Nakai and its components, including ferulic acid, play roles as immunomodulators and may be potential candidates for novel anti-viral/anti-influenza agents.

  14. Antiviral Activity of Baicalein and Quercetin against the Japanese Encephalitis Virus

    PubMed Central

    Johari, Jefree; Kianmehr, Aynaz; Mustafa, Mohd Rais; Abubakar, Sazaly; Zandi, Keivan

    2012-01-01

    Japanese encephalitis (JE), a mosquito-borne viral disease, is endemic to the entire east and southeast Asia, and some other parts of the world. Currently, there is no effective therapeutic available for JE; therefore, finding the effective antiviral agent against JEV replication is crucial. In the present study, the in vitro antiviral activity of baicalein and quercetin, two purportedly antiviral bioflavonoids, was evaluated against Japanese encephalitis virus (JEV) replication in Vero cells. Anti-JEV activities of these compounds were examined on different stages of JEV replication cycle. The effects of the compounds on virus replication were determined by foci forming unit reduction assay (FFURA) and quantitative RT-PCR. Baicalein showed potent antiviral activity with IC50 = 14.28 μg/mL when it was introduced to the Vero cells after adsorption of JEV. Quercetin exhibited weak anti-JEV effects with IC50 = 212.1 μg/mL when the JEV infected cells were treated with the compound after virus adsorption. However, baicalein exhibited significant effect against JEV adsorption with IC50 = 7.27 μg/mL while quercetin did not show any anti-adsorption activity. Baicalein also exhibited direct extracellular virucidal activity on JEV with IC50 = 3.44 μg/mL. However, results of quantitative RT-PCR experiments confirmed the findings from FFURA. This study demonstrated that baicalein should be considered as an appropriate candidate for further investigations, such as the study of molecular and cellular mechanism(s) of action and in vivo evaluation for the development of an effective antiviral compound against Japanese encephalitis virus. PMID:23222683

  15. Biochemical and proteomic analysis of a potential anticancer agent: Palladium(II) Saccharinate complex of terpyridine acting through double strand break formation.

    PubMed

    Adiguzel, Zelal; Baykal, Ahmet Tarik; Kacar, Omer; Yilmaz, Veysel T; Ulukaya, Engin; Acilan, Ceyda

    2014-11-01

    Metal based chemotherapeutic drugs are widely used as an effective method to defeat various cancers. In this study, the mechanism of action of a novel therapeutic agent, [Pd(sac)(terpy)](sac)·4H2O (sac = saccharinate, and terpy = 2,2':6',2″-terpyridine) was studied. To better understand the proteomic changes in response to this agent, we performed nano LC-MS/MS analyses in human breast cancer cells (MDA-MB-231). Thirty proteins were identified to be differentially expressed more than 40% after drug treatment. Many cellular pathways were affected, including proteins involved in DNA repair, apoptosis, energy metabolism, protein folding, cytoskeleton, pre-mRNA maturation, or protein translation. The changes in protein expression were further verified for XRCC5, which plays a role in double strand break (DSB) repair, and ubiquitin, which is involved in protein degradation and apoptosis. The elevated XRCC5 levels were suggestive of increased DSBs. The presence of DSBs was confirmed by smearing of plasmid DNA in vitro and induction of γH2AX foci in vivo. There was also increased intracellular reactive oxygen species (ROS) formation, as detected by 2',7'-dichlorofluorescein diacetate (DCFDA) staining. Scavenging ROS by N-acetylcysteine rescued cell death in response to Pd(II) treatment, potentially explaining how the Pd(II) complex damaged the DNA. The details of this analysis and the significance will be discussed during the scope of this work.

  16. A 2,5-Dihydroxybenzoic Acid–Gelatin Conjugate: The Synthesis, Antiviral Activity and Mechanism of Antiviral Action Against Two Alphaherpesviruses

    PubMed Central

    Lisov, Alexander; Vrublevskaya, Veronika; Lisova, Zoy; Leontievsky, Alexey; Morenkov, Oleg

    2015-01-01

    Various natural and synthetic polyanionic polymers with different chemical structures are known to exhibit potent antiviral activity in vitro toward a variety of enveloped viruses and may be considered as promising therapeutic agents. A water-soluble conjugate of 2,5-dihydroxybezoic acid (2,5-DHBA) with gelatin was synthesized by laccase-catalyzed oxidation of 2,5-DHBA in the presence of gelatin, and its antiviral activity against pseudorabies virus (PRV) and bovine herpesvirus type 1 (BoHV-1), two members of the Alphaherpesvirinae subfamily, was studied. The conjugate produced no direct cytotoxic effect on cells, and did not inhibit cell growth at concentrations up to 1000 µg/mL. It exhibited potent antiviral activity against PRV (IC50, 1.5–15 µg/mL for different virus strains) and BoHV-1 (IC50, 0.5–0.7 µg/mL). When present during virus adsorption, the conjugate strongly inhibited the attachment of PRV and BoHV-1 to cells. The 2,5-DHBA–gelatin conjugate had no direct virucidal effect on the viruses and did not influence their penetration into cells, cell-to-cell spread, production of infectious virus particles in cells, and expression of PRV glycoproteins E and B. The results indicated that the 2,5-DHBA–gelatin conjugate strongly inhibits the adsorption of alphaherpesviruses to cells and can be a promising synthetic polymer for the development of antiviral formulations against alphaherpesvirus infections. PMID:26501311

  17. Synergistic antiviral activity of ribavirin and interferon-α against parrot bornaviruses in avian cells.

    PubMed

    Reuter, Antje; Horie, Masayuki; Höper, Dirk; Ohnemus, Annette; Narr, Andreas; Rinder, Monika; Beer, Martin; Staeheli, Peter; Rubbenstroth, Dennis

    2016-09-01

    Avian bornaviruses are the causative agents of proventricular dilatation disease (PDD), a widely distributed and often fatal disease in captive psittacines. Because neither specific prevention measures nor therapies against PDD and bornavirus infections are currently available, new antiviral strategies are required to improve animal health. We show here that the nucleoside analogue ribavirin inhibited bornavirus activity in a polymerase reconstitution assay and reduced viral load in avian cell lines infected with two different parrot bornaviruses. Furthermore, we observed that ribavirin enhanced type I IFN signalling in avian cells. Combined treatment of avian bornavirus-infected cells with ribavirin and recombinant IFN-α strongly enhanced the antiviral efficiency compared to either drug alone. The combined use of ribavirin and type I IFN might represent a promising new strategy for therapeutic treatment of captive parrots persistently infected with avian bornaviruses.

  18. Evaluation of the antiviral effect of new compounds by using cellular cultures.

    PubMed

    Dianzani, F; Antonelli, G

    1991-02-01

    Replication Kinetics of HIV was studied under single-growth cycle conditions in C8166 lymphoblastoid cells by back-titrating released and cell-associated infectious virus et each time point. Under these conditions HIV seemed to replicate faster than previously estimated. The amount cell-associated virus always exceeded that detectable in the medium. In these conditions the replication curve of HIV is completed at 24 h post infection. At lower multiplicity of infection, virus yield peaks at approximately 72 h post-infection, and the virus released in the medium is negligible with respect to that which remains cell-associated. The method based on back-titration of virus in cryolysates of C8166 cells infected with HIV and treated with antiviral compounds has been used to evaluate HIV sensitivity to some agents. This method allows a precise and quick determination of the degree of activity of antiviral drugs.

  19. Synergistic antiviral activity of ribavirin and interferon-α against parrot bornaviruses in avian cells.

    PubMed

    Reuter, Antje; Horie, Masayuki; Höper, Dirk; Ohnemus, Annette; Narr, Andreas; Rinder, Monika; Beer, Martin; Staeheli, Peter; Rubbenstroth, Dennis

    2016-09-01

    Avian bornaviruses are the causative agents of proventricular dilatation disease (PDD), a widely distributed and often fatal disease in captive psittacines. Because neither specific prevention measures nor therapies against PDD and bornavirus infections are currently available, new antiviral strategies are required to improve animal health. We show here that the nucleoside analogue ribavirin inhibited bornavirus activity in a polymerase reconstitution assay and reduced viral load in avian cell lines infected with two different parrot bornaviruses. Furthermore, we observed that ribavirin enhanced type I IFN signalling in avian cells. Combined treatment of avian bornavirus-infected cells with ribavirin and recombinant IFN-α strongly enhanced the antiviral efficiency compared to either drug alone. The combined use of ribavirin and type I IFN might represent a promising new strategy for therapeutic treatment of captive parrots persistently infected with avian bornaviruses. PMID:27439314

  20. Nuclear trafficking of proteins from RNA viruses: potential target for antivirals?

    PubMed

    Caly, Leon; Wagstaff, Kylie M; Jans, David A

    2012-09-01

    A key aspect of the infectious cycle of many viruses is the transport of specific viral proteins into the host cell nucleus to perturb the antiviral response. Examples include a number of RNA viruses that are significant human pathogens, such as human immunodeficiency virus (HIV)-1, influenza A, dengue, respiratory syncytial virus and rabies, as well agents that predominantly infect livestock, such as Rift valley fever virus and Venezuelan equine encephalitis virus. Inhibiting the nuclear trafficking of viral proteins as a therapeutic strategy offers an attractive possibility, with important recent progress having been made with respect to HIV-1 and dengue. The results validate nuclear protein import as an antiviral target, and suggest the identification and development of nuclear transport inhibitors as a viable therapeutic approach for a range of human and zoonotic pathogenic viruses.

  1. Chemical warfare agents.

    PubMed

    Chauhan, S; Chauhan, S; D'Cruz, R; Faruqi, S; Singh, K K; Varma, S; Singh, M; Karthik, V

    2008-09-01

    Chemical warfare agents (CWA's) are defined as any chemical substance whose toxic properties are utilised to kill, injure or incapacitate an enemy in warfare and associated military operations. Chemical agents have been used in war since times immemorial, but their use reached a peak during World War I. During World War II only the Germans used them in the infamous gas chambers. Since then these have been intermittently used both in war and acts of terrorisms. Many countries have stockpiles of these agents. There has been a legislative effort worldwide to ban the use of CWA's under the chemical weapons convention which came into force in 1997. However the manufacture of these agents cannot be completely prohibited as some of them have potential industrial uses. Moreover despite the remedial measures taken so far and worldwide condemnation, the ease of manufacturing these agents and effectiveness during combat or small scale terrorist operations still make them a powerful weapon to reckon with. These agents are classified according to mechanism of toxicity in humans into blister agents, nerve agents, asphyxiants, choking agents and incapacitating/behavior altering agents. Some of these agents can be as devastating as a nuclear bomb. In addition to immediate injuries caused by chemical agents, some of them are associated with long term morbidities and psychological problems. In this review we will discuss briefly about the historical background, properties, manufacture techniques and industrial uses, mechanism of toxicity, clinical features of exposure and pharmacological management of casualties caused by chemical agents. PMID:21783898

  2. Potent in vitro antiviral activity of Cistus incanus extract against HIV and Filoviruses targets viral envelope proteins

    PubMed Central

    Rebensburg, Stephanie; Helfer, Markus; Schneider, Martha; Koppensteiner, Herwig; Eberle, Josef; Schindler, Michael; Gürtler, Lutz; Brack-Werner, Ruth

    2016-01-01

    Novel therapeutic options are urgently needed to improve global treatment of virus infections. Herbal products with confirmed clinical safety features are attractive starting material for the identification of new antiviral activities. Here we demonstrate that Cistus incanus (Ci) herbal products inhibit human immunodeficiency virus (HIV) infections in vitro. Ci extract inhibited clinical HIV-1 and HIV-2 isolates, and, importantly, a virus isolate with multiple drug resistances, confirming broad anti-HIV activity. Antiviral activity was highly selective for virus particles, preventing primary attachment of the virus to the cell surface and viral envelope proteins from binding to heparin. Bioassay-guided fractionation indicated that Ci extract contains numerous antiviral compounds and therefore has favorably low propensity to induce virus resistance. Indeed, no resistant viruses emerged during 24 weeks of continuous propagation of the virus in the presence of Ci extracts. Finally, Ci extracts also inhibited infection by virus particles pseudotyped with Ebola and Marburg virus envelope proteins, indicating that antiviral activity of Ci extract extends to emerging viral pathogens. These results demonstrate that Ci extracts show potent and broad in vitro antiviral activity against viruses that cause life-threatening diseases in humans and are promising sources of agents that target virus particles. PMID:26833261

  3. Antiviral and Antioxidant Activities of Sulfated Galactomannans from Plants of Caatinga Biome

    PubMed Central

    Marques, Márcia Maria Mendes; de Morais, Selene Maia; da Silva, Ana Raquel Araújo; Barroso, Naiara Dutra; Pontes Filho, Tadeu Rocha; Araújo, Fernanda Montenegro de Carvalho; Vieira, Ícaro Gusmão Pinto; Lima, Danielle Malta; Guedes, Maria Izabel Florindo

    2015-01-01

    Dengue represents a serious social and economic public health problem; then trying to contribute to improve its control, the objective of this research was to develop phytoterapics for dengue treatment using natural resources from Caatinga biome. Galactomannans isolated from Adenanthera pavonina L., Caesalpinia ferrea Mart., and Dimorphandra gardneriana Tull were chemically sulfated in order to evaluate the antioxidant, and antiviral activities and the role in the inhibition of virus DENV-2 in Vero cells. A positive correlation between the degree of sulfation, antioxidant and antiviral activities was observed. The sulfated galactomannans showed binding to the virus surface, indicating that they interact with DENV-2. The sulfated galactomannans from C. ferrea showed 96% inhibition of replication of DENV-2 followed by D. gardneriana (94%) and A. pavonina (77%) at 25 µg/mL and all sulfated galactomannans also showed antioxidant activity. This work is the first report of the antioxidant and antiviral effects of sulfated galactomannans against DENV-2. The results are very promising and suggest that these sulfated galactomannans from plants of Caatinga biome act in the early step of viral infection. Thus, sulfated galactomannans may act as an entry inhibitor of DENV-2. PMID:26257815

  4. Animal virus replication and RNAi-mediated antiviral silencing in Caenorhabditis elegans.

    PubMed

    Lu, R; Maduro, M; Li, F; Li, H W; Broitman-Maduro, G; Li, W X; Ding, S W

    2005-08-18

    The worm Caenorhabditis elegans is a model system for studying many aspects of biology, including host responses to bacterial pathogens, but it is not known to support replication of any virus. Plants and insects encode multiple Dicer enzymes that recognize distinct precursors of small RNAs and may act cooperatively. However, it is not known whether the single Dicer of worms and mammals is able to initiate the small RNA-guided RNA interference (RNAi) antiviral immunity as occurs in plants and insects. Here we show complete replication of the Flock house virus (FHV) bipartite, plus-strand RNA genome in C. elegans. We show that FHV replication in C. elegans triggers potent antiviral silencing that requires RDE-1, an Argonaute protein essential for RNAi mediated by small interfering RNAs (siRNAs) but not by microRNAs. This immunity system is capable of rapid virus clearance in the absence of FHV B2 protein, which acts as a broad-spectrum RNAi inhibitor upstream of rde-1 by targeting the siRNA precursor. This work establishes a C. elegans model for genetic studies of animal virus-host interactions and indicates that mammals might use a siRNA pathway as an antiviral response.

  5. Determining Mechanism of Action of Antivirals for Respiratory Illness

    NASA Astrophysics Data System (ADS)

    Rodriguez, Irma; Dobrovolny, Hana

    2015-03-01

    Viral infections in the respiratory tract are common in humans and can cause serious illness and death. Drug treatment is the principal line of protection against many of these illnesses and many compounds are tested as antivirals. Often the efficacy of these antivirals are determined before a mechanism of action is understood. We use mathematical models to represent the evolution of these diseases and establish which experiments can help determine the mechanism of action of antivirals.

  6. Antiviral therapy for hepatitis C: Has anything changed for pregnant/lactating women?

    PubMed

    Spera, Anna Maria; Eldin, Tarek Kamal; Tosone, Grazia; Orlando, Raffaele

    2016-04-28

    Hepatitis C virus (HCV) affects about 3% of the world's population, with the highest prevalence in individuals under 40. The prevalence in pregnant women varies with geographical distribution (highest in developing countries). Prevalence also increases in sub-populations of women at high risk for blood-transmitted infections. HCV infection in pregnancy represents a non-negligible problem. However, most of the past antiviral regimens cannot be routinely offered to pregnant or breastfeeding women because of their side effects. We briefly reviewed the issue of treatment of HCV infection in pregnant/breastfeeding women focusing on the effects of the new direct-acting antivirals on fertility, pregnancy and lactation in animal studies and on the potential risk for humans based on the pharmacokinetic properties of each drug. Currently, all new therapy regimens are contraindicated in this setting because of lack of sufficient safety information and adequate measures of contraception are still routinely recommended for female patients of childbearing potential. PMID:27134703

  7. siRNA targeting vaccinia virus double-stranded RNA binding protein [E3L] exerts potent antiviral effects.

    PubMed

    Dave, Rajnish S; McGettigan, James P; Qureshi, Tazeen; Schnell, Matthias J; Nunnari, Giuseppe; Pomerantz, Roger J

    2006-05-10

    The Vaccinia virus gene, E3L, encodes a double-stranded RNA [dsRNA]-binding protein. We hypothesized that, owing to the critical nature of dsRNA in triggering host innate antiviral responses, E3L-specific small-interfering RNAs [siRNAs] should be effective antiviral agents against pox viruses, for which Vaccinia virus is an appropriate surrogate. In this study, we have utilized two human cell types, namely, HeLa and 293T, one which responds to interferon [IFN]-beta and the other produces and responds to IFN-beta, respectively. The antiviral effects were equally robust in HeLa and 293T cells. However, in the case of 293T cells, several distinct features were observed, when IFN-beta is activated in these cells. Vaccinia virus replication was inhibited by 97% and 98% as compared to control infection in HeLa and 293T cells transfected with E3L-specific siRNAs, respectively. These studies demonstrate the utility of E3L-specific siRNAs as potent antiviral agents for small pox and related pox viruses.

  8. Systems biology: A tool for charting the antiviral landscape.

    PubMed

    Bowen, James R; Ferris, Martin T; Suthar, Mehul S

    2016-06-15

    The host antiviral programs that are initiated following viral infection form a dynamic and complex web of responses that we have collectively termed as "the antiviral landscape". Conventional approaches to studying antiviral responses have primarily used reductionist systems to assess the function of a single or a limited subset of molecules. Systems biology is a holistic approach that considers the entire system as a whole, rather than individual components or molecules. Systems biology based approaches facilitate an unbiased and comprehensive analysis of the antiviral landscape, while allowing for the discovery of emergent properties that are missed by conventional approaches. The antiviral landscape can be viewed as a hierarchy of complexity, beginning at the whole organism level and progressing downward to isolated tissues, populations of cells, and single cells. In this review, we will discuss how systems biology has been applied to better understand the antiviral landscape at each of these layers. At the organismal level, the Collaborative Cross is an invaluable genetic resource for assessing how genetic diversity influences the antiviral response. Whole tissue and isolated bulk cell transcriptomics serves as a critical tool for the comprehensive analysis of antiviral responses at both the tissue and cellular levels of complexity. Finally, new techniques in single cell analysis are emerging tools that will revolutionize our understanding of how individual cells within a bulk infected cell population contribute to the overall antiviral landscape.

  9. Hydrogen bonds and antiviral activity of benzaldehyde derivatives

    NASA Astrophysics Data System (ADS)

    Tolstorozhev, G. B.; Skornyakov, I. V.; Belkov, M. V.; Shadyro, O. I.; Brinkevich, S. D.; Samovich, S. N.

    2012-09-01

    We have obtained the Fourier transform IR spectra of solutions of benzaldehyde derivatives having different antiviral activities against a herpes virus. We observe a correlation between the presence of hydrogen bonds in the benzaldehyde molecules and the appearance of antiviral properties in the compounds. For compounds having antiviral activity, we have obtained spectral data suggesting the existence of hydrogen bonds of the type C=OṡṡṡH-O and O-HṡṡṡO in the molecules. When the hydrogen atom in the hydroxyl groups are replaced by a methyl group, no intramolecular hydrogen bonds are formed and the compounds lose their antiviral activity.

  10. Ethanol Extracts from Mistletoe (Viscum album L.) Act as Natural Antioxidants and Antimicrobial Agents in Uncooked Pork Patties during Refrigerated Storage

    PubMed Central

    Kang, Suk-Nam

    2016-01-01

    The antioxidant potential of mistletoe (Viscum album L. var. coloratum Ohwi; VAL) extract in uncooked pork patties was evaluated. Three concentrations of VAL extract (0.1 [T1], 0.5% [T2] and 1.0% [T3]) along with 0.02% ascorbic acid as a positive control (V) were added to ground pork and pork patties were prepared. Incorporation of VAL extract decreased (p<0.05) the pH of the pork patties throughout the storage time and reduced (p<0.01) the thiobarbituric acid reactive substance values after day 14 of storage. Total plate counts of the VAL extract-treated samples and V-treated samples were also significantly lower (p<0.01) than that of the control (C) throughout the storage period. In addition, odor scores of the VAL extract-treated patties were lower than those of the C- or V-treated samples on 3rd day of the storage period. These results demonstrated that the VAL extract acts as a natural antioxidant in uncooked pork products. PMID:26732334

  11. Rapid NOS-1-derived nitric oxide and peroxynitrite formation act as signaling agents for inducible NOS-2 expression in vascular smooth muscle cells.

    PubMed

    Scheschowitsch, Karin; de Moraes, João Alfredo; Sordi, Regina; Barja-Fidalgo, Christina; Assreuy, Jamil

    2015-10-01

    Septic vascular dysfunction is characterized by hypotension and hyporeactivity to vasoconstrictors and nitric oxide (NO), reactive oxygen species and peroxynitrite have a prominent role in this condition. However, the mechanism whereby the vascular dysfunction is initiated is poorly understood. Based on previous studies of our group and the literature,we hypothesize that constitutive nitric oxide synthases (c-NOS) and peroxynitrite may play a role in the development of septic vascular dysfunction. Bacterial lipopolysaccharide (LPS) and interferon-γ (IFN) were used to stimulate rat aorta smooth muscle cells (A7r5) and rat aorta slices. This stimulation led to a rapid (within minutes) production of NO and superoxide anion, which led to peroxynitrite formation. When this rapid initial burst was reduced, through the inhibition of c-NOS and NADPH oxidases (NOX) or the scavenging of NO and superoxide the NF-κB activation, NOS-2 expression and nitrite production were significantly attenuated. Although vascular smooth muscle cells express both c-NOS isoforms, gene knockdown revealed that only NOS-1-dependent NO and peroxynitrite formation are important for the later NOS-2 expression. Similar findings were obtained by knockdown NOX-1 gene, one source of superoxide for peroxynitrite formation. Taking together, we show that smooth muscle cell activation by LPS/IFN leads to a rapid formation of NOS-1-derived NO and NOX-1-derived superoxide, forming peroxynitrite; and that this species act as a trigger for NOS-2 expression through NF-κB activation. Therefore, our findings suggest a critical role for NOS-1 and NOX-1 in the initiation of the vascular dysfunction associated with sepsis and septic shock.

  12. Neuropsychiatric Effects of HIV Antiviral Medications.

    PubMed

    Treisman, Glenn J; Soudry, Olivia

    2016-10-01

    The development of antiretroviral therapy (ART) has dramatically increased the lifespan of HIV patients but treatment is complicated by numerous adverse effects and toxicities. ART complications include neuropsychiatric, metabolic, gastrointestinal, cardiac, and numerous other toxicities, and clinicians often have to choose one toxicity over another to offer the best medication regimen for a patient. Some antiviral drugs cause significant neuropsychiatric complications, including depression, cognitive impairment, and sleep disturbance. Even in careful studies, it may be difficult to determine which effects are related to the virus, the immune system, or the treatment. Of the six currently marketed classes of antiviral drugs, the nucleoside reverse transcriptase inhibitors and the non-nucleoside reverse transcriptase inhibitors have been most commonly associated with neuropsychiatric complications. Within these classes, certain drugs are more likely to cause difficulty than others. We review the contention regarding the central nervous system (CNS) complications of efavirenz, as well as debate about the role of CNS penetration in drug effectiveness and toxicity. A thorough working knowledge of the neuropsychiatric consequences of ART allows clinicians to tailor treatment more successfully to individual patients as well as to identify ART more quickly as the source of a problem or symptom. PMID:27534750

  13. Exploiting Genetic Interference for Antiviral Therapy.

    PubMed

    Tanner, Elizabeth J; Kirkegaard, Karla A; Weinberger, Leor S

    2016-05-01

    Rapidly evolving viruses are a major threat to human health. Such viruses are often highly pathogenic (e.g., influenza virus, HIV, Ebola virus) and routinely circumvent therapeutic intervention through mutational escape. Error-prone genome replication generates heterogeneous viral populations that rapidly adapt to new selection pressures, leading to resistance that emerges with treatment. However, population heterogeneity bears a cost: when multiple viral variants replicate within a cell, they can potentially interfere with each other, lowering viral fitness. This genetic interference can be exploited for antiviral strategies, either by taking advantage of a virus's inherent genetic diversity or through generating de novo interference by engineering a competing genome. Here, we discuss two such antiviral strategies, dominant drug targeting and therapeutic interfering particles. Both strategies harness the power of genetic interference to surmount two particularly vexing obstacles-the evolution of drug resistance and targeting therapy to high-risk populations-both of which impede treatment in resource-poor settings. PMID:27149616

  14. Exploiting Genetic Interference for Antiviral Therapy

    PubMed Central

    Kirkegaard, Karla A.; Weinberger, Leor S.

    2016-01-01

    Rapidly evolving viruses are a major threat to human health. Such viruses are often highly pathogenic (e.g., influenza virus, HIV, Ebola virus) and routinely circumvent therapeutic intervention through mutational escape. Error-prone genome replication generates heterogeneous viral populations that rapidly adapt to new selection pressures, leading to resistance that emerges with treatment. However, population heterogeneity bears a cost: when multiple viral variants replicate within a cell, they can potentially interfere with each other, lowering viral fitness. This genetic interference can be exploited for antiviral strategies, either by taking advantage of a virus’s inherent genetic diversity or through generating de novo interference by engineering a competing genome. Here, we discuss two such antiviral strategies, dominant drug targeting and therapeutic interfering particles. Both strategies harness the power of genetic interference to surmount two particularly vexing obstacles—the evolution of drug resistance and targeting therapy to high-risk populations—both of which impede treatment in resource-poor settings. PMID:27149616

  15. Swimming microorganisms acting as nanorobots versus artificial nanorobotic agents: A perspective view from an historical retrospective on the future of medical nanorobotics in the largest known three-dimensional biomicrofluidic networks.

    PubMed

    Martel, Sylvain

    2016-03-01

    The vascular system in each human can be described as a 3D biomicrofluidic network providing a pathway close to approximately 100 000 km in length. Such network can be exploited to target any parts inside the human body with further accessibility through physiological spaces such as the interstitial microenvironments. This fact has triggered research initiatives towards the development of new medical tools in the form of microscopic robotic agents designed for surgical, therapeutic, imaging, or diagnostic applications. To push the technology further towards medical applications, nanotechnology including nanomedicine has been integrated with principles of robotics. This new field of research is known as medical nanorobotics. It has been particularly creative in recent years to make what was and often still considered science-fiction to offer concrete implementations with the potential to enhance significantly many actual medical practices. In such a global effort, two main strategic trends have emerged where artificial and synthetic implementations presently compete with swimming microorganisms being harnessed to act as medical nanorobotic agents. Recognizing the potentials of each approach, efforts to combine both towards the implementation of hybrid nanorobotic agents where functionalities are implemented using both artificial/synthetic and microorganism-based entities have also been initiated. Here, through the main eras of progressive developments in this field, the evolutionary path being described from some of the main historical achievements to recent technological innovations is extrapolated in an attempt to provide a perspective view on the future of medical nanorobotics capable of targeting any parts of the human body accessible through the vascular network. PMID:27158285

  16. Swimming microorganisms acting as nanorobots versus artificial nanorobotic agents: A perspective view from an historical retrospective on the future of medical nanorobotics in the largest known three-dimensional biomicrofluidic networks

    PubMed Central

    Martel, Sylvain

    2016-01-01

    The vascular system in each human can be described as a 3D biomicrofluidic network providing a pathway close to approximately 100 000 km in length. Such network can be exploited to target any parts inside the human body with further accessibility through physiological spaces such as the interstitial microenvironments. This fact has triggered research initiatives towards the development of new medical tools in the form of microscopic robotic agents designed for surgical, therapeutic, imaging, or diagnostic applications. To push the technology further towards medical applications, nanotechnology including nanomedicine has been integrated with principles of robotics. This new field of research is known as medical nanorobotics. It has been particularly creative in recent years to make what was and often still considered science-fiction to offer concrete implementations with the potential to enhance significantly many actual medical practices. In such a global effort, two main strategic trends have emerged where artificial and synthetic implementations presently compete with swimming microorganisms being harnessed to act as medical nanorobotic agents. Recognizing the potentials of each approach, efforts to combine both towards the implementation of hybrid nanorobotic agents where functionalities are implemented using both artificial/synthetic and microorganism-based entities have also been initiated. Here, through the main eras of progressive developments in this field, the evolutionary path being described from some of the main historical achievements to recent technological innovations is extrapolated in an attempt to provide a perspective view on the future of medical nanorobotics capable of targeting any parts of the human body accessible through the vascular network. PMID:27158285

  17. Swimming microorganisms acting as nanorobots versus artificial nanorobotic agents: A perspective view from an historical retrospective on the future of medical nanorobotics in the largest known three-dimensional biomicrofluidic networks.

    PubMed

    Martel, Sylvain

    2016-03-01

    The vascular system in each human can be described as a 3D biomicrofluidic network providing a pathway close to approximately 100 000 km in length. Such network can be exploited to target any parts inside the human body with further accessibility through physiological spaces such as the interstitial microenvironments. This fact has triggered research initiatives towards the development of new medical tools in the form of microscopic robotic agents designed for surgical, therapeutic, imaging, or diagnostic applications. To push the technology further towards medical applications, nanotechnology including nanomedicine has been integrated with principles of robotics. This new field of research is known as medical nanorobotics. It has been particularly creative in recent years to make what was and often still considered science-fiction to offer concrete implementations with the potential to enhance significantly many actual medical practices. In such a global effort, two main strategic trends have emerged where artificial and synthetic implementations presently compete with swimming microorganisms being harnessed to act as medical nanorobotic agents. Recognizing the potentials of each approach, efforts to combine both towards the implementation of hybrid nanorobotic agents where functionalities are implemented using both artificial/synthetic and microorganism-based entities have also been initiated. Here, through the main eras of progressive developments in this field, the evolutionary path being described from some of the main historical achievements to recent technological innovations is extrapolated in an attempt to provide a perspective view on the future of medical nanorobotics capable of targeting any parts of the human body accessible through the vascular network.

  18. Antiviral activity of quercetin 7-rhamnoside against porcine epidemic diarrhea virus.

    PubMed

    Choi, Hwa-Jung; Kim, Jin-Hee; Lee, Choong-Hwan; Ahn, Young-Joon; Song, Jae-Hyoung; Baek, Seung-Hwa; Kwon, Dur-Han

    2009-01-01

    Porcine epidemic diarrhea virus (PEDV) is the predominant cause of severe entero-pathogenic diarrhea in swine. The lack of effective therapeutical treatment underlines the importance of research for new antivirals. In this study, we identified Q7R, which actively inhibited PEDV replication with a 50% inhibitory concentration (IC(50)) of 0.014 microg/mL. The 50% cytotoxicity concentration (CC(50)) of Q7R was over 100 microg/mL and the derived therapeutic index was 7142. Several structural analogues of Q7R, quercetin, apigenin, luteolin and catechin, also showed moderate anti-PEDV activity. Antiviral drugs and natural compounds revealed ribavirin, interferon-alpha, coumarin and tannic acid have relative weaker efficacy compared to Q7R. Q7R did not directly interact with or inactivate PEDV particles and affect the initial stage of PEDV infection by interfering of PEDV replication. Also, the effectiveness of Q7R against the other two viruses (TGEV, PRCV) was lower compared to PEDV. Q7R could be considered as a lead compound for development of anti-PEDV drugs to may be used to during the early stage of PEDV replication and the structure-activity data of Q7R may usefully guideline to design other related antiviral agents.

  19. Evaluation of continuous cell lines in antiviral studies with murine cytomegalovirus.

    PubMed

    Smee, D F; Colletti, A; Alaghamandan, H A; Allen, L B

    1989-01-01

    Cell culture systems were developed for rapid antiviral drug screening, using murine cytomegalovirus (MCMV) as an alternative to the slower growing human CMV. Since previous assay methods with MCMV employed mouse embryo fibroblasts (MEF cells), which are labor intensive to prepare and die off after 3-4 passages from primary culture, identification of virus-susceptible continuous cell lines was desirable. Three cell lines were found useful for assaying MCMV: C127I, SC-1, and 3T3. The antiviral agents acyclovir, ganciclovir, 5-fluoroarabinofuranosylcytosine, and 2'-fluoro-2'-deoxy-5-iodoarabinofuranosylcytosine were evaluated in the 3 continuous cell lines and in MEF cells. The 50% virus- or cell-inhibitory concentration values determined for each compound did not vary much from cell to cell. MEF cells were 10-fold more sensitive than the other cell lines to quantify virus from mouse organs, however. Virus propagated in 3T3 and SC-1 cells were as virulent to mice as salivary gland virus, whereas virus from MEF and C127I cells was more attenuated. Overall, C127I cells were judged to be the best for large scale antiviral screening in vitro, but MEF was the cell type of choice for titration of viruses from mouse organs and tissues.

  20. Dancing with chemical formulae of antivirals: A panoramic view (Part 2).

    PubMed

    De Clercq, Erik

    2013-11-15

    In this second part of "Dancing with antivirals as chemical formulae" I will focus on a number of chemical compounds that in the last few years have elicited more than common attraction from a commercial viewpoint: (i) favipiravir (T-705), as it is active against influenza, but also several other RNA viruses; (ii) neuraminidase inhibitors such as zanamivir and oseltamivir; (iii) peramivir and laninamivir octanoate, which might be effective against influenza virus following a single (intravenous or inhalation) administration; (iv) sofosbuvir, the (anticipated) cornerstone for the interferon-free therapy of HCV infections; (v) combinations of DAAs (direct antiviral agents) to achieve, in no time, a sustained virus response (SVR) against HCV infection; (vi) HIV protease inhibitors, the latest and most promising being darunavir; (vii) the integrase inhibitors (INIs) (raltegravir, elvitegravir, dolutegravir), representing a new dimension in the anti-HIV armamentarium; (viii), a new class of helicase primase inhibitors (HPIs) that may exceed acyclovir and the other anti-herpes compounds in both potency and safety; (ix) CMX-001, as the latest of Dr. Antonín Holý's legacy for its activity against poxviruses and CMV infections, and (x) noroviruses for which the ideal antiviral compounds are still awaited for.

  1. Antiviral Ability of Kalanchoe gracilis Leaf Extract against Enterovirus 71 and Coxsackievirus A16

    PubMed Central

    Wang, Ching-Ying; Huang, Shun-Chueh; Zhang, Yongjun; Lai, Zhen-Rung; Kung, Szu-Hao; Chang, Yuan-Shiun; Lin, Cheng-Wen

    2012-01-01

    Pandemic infection or reemergence of Enterovirus 71 (EV71) and coxsackievirus A16 (CVA16) occurs in tropical and subtropical regions, being associated with hand-foot-and-mouth disease, herpangina, aseptic meningitis, brain stem encephalitis, pulmonary edema, and paralysis. However, effective therapeutic drugs against EV71 and CVA16 are rare. Kalanchoe gracilis (L.) DC is used for the treatment of injuries, pain, and inflammation. This study investigated antiviral effects of K. gracilis leaf extract on EV71 and CVA16 replications. HPLC analysis with a C-18 reverse phase column showed fingerprint profiles of K. gracilis leaf extract had 15 chromatographic peaks. UV/vis absorption spectra revealed peaks 5, 12, and 15 as ferulic acid, quercetin, and kaempferol, respectively. K. gracilis leaf extract showed little cytotoxicity, but exhibited concentration-dependent antiviral activities including cytopathic effect, plaque, and virus yield reductions. K. gracilis leaf extract was shown to be more potent in antiviral activity than ferulic acid, quercetin, and kaempferol, significantly inhibiting in vitro replication of EV71 (IC50 = 35.88 μg/mL) and CVA16 (IC50 = 42.91 μg/mL). Moreover, K. gracilis leaf extract is a safe antienteroviral agent with the inactivation of viral 2A protease and reduction of IL-6 and RANTES expressions. PMID:22666293

  2. Neuraminidase inhibition of Dietary chlorogenic acids and derivatives - potential antivirals from dietary sources.

    PubMed

    Gamaleldin Elsadig Karar, Mohamed; Matei, Marius-Febi; Jaiswal, Rakesh; Illenberger, Susanne; Kuhnert, Nikolai

    2016-04-01

    Plants rich in chlorogenic acids (CGAs), caffeic acids and their derivatives have been found to exert antiviral effects against influenza virus neuroaminidase. In this study several dietary naturally occurring chlorogenic acids, phenolic acids and derivatives were screened for their inhibitory activity against neuroaminidases (NAs) from C. perfringens, H5N1 and recombinant H5N1 (N-His)-Tag using a fluorometric assay. There was no significant difference in inhibition between the different NA enzymes. The enzyme inhibition results indicated that chlorogenic acids and selected derivatives, exhibited high activities against NAs. It seems that the catechol group from caffeic acid was important for the activity. Dietary CGA therefore show promise as potential antiviral agents. However, caffeoyl quinic acids show low bioavailibility and are intensly metabolized by the gut micro flora, only low nM concentrations are observed in plasma and urine, therefore a systemic antiviral effect of these compounds is unlikely. Nevertheless, gut floral metabolites with a catechol moiety or structurally related dietary phenolics with a catechol moiety might serve as interesting compounds for future investigations. PMID:27010419

  3. Antiviral therapies: focus on Hepatitis B reverse transcriptase

    PubMed Central

    Michailidis, Eleftherios; Kirby, Karen A.; Hachiya, Atsuko; Yoo, Wangdon; Hong, Sun Pyo; Kim, Soo-Ok; Folk, William R.; Sarafianos, Stefan G.

    2012-01-01

    Hepatitis B virus (HBV) is the etiologic agent of mankind’s most serious liver disease. While the availability of a vaccine has reduced the number of new HBV infections, the vaccine does not benefit the approximately 350 million people already chronically infected by the virus. Most of the drugs approved by the FDA for the treatment of hepatitis B target the reverse transcriptase (RT or P gene product) and are nucleoside RT inhibitors (NRTIs) that suppress viral replication. However, prolonged monotherapies directed against a single target result in the emergence of viral resistance. HBV genotypic differences affect NRTI resistance, and because the reading frames of the S (surface antigen) and P genes partially overlap, genomic differences that affect the surface of the virus may also alter the viral polymerase sequence, function and drug susceptibility. The scope of this review is to assess the effects of HBV genotypic variation on the development of drug resistance to NRTIs. Some RT residues that vary among different genotypes are in the vicinity of residues that mutate and give rise to NRTI resistance. Interactions between these amino acids can help explain the effect of HBV genotype on the development of NRTI resistance during antiviral therapies, and might help in the design of improved therapeutic strategies. PMID:22531713

  4. Antiviral therapies: focus on hepatitis B reverse transcriptase.

    PubMed

    Michailidis, Eleftherios; Kirby, Karen A; Hachiya, Atsuko; Yoo, Wangdon; Hong, Sun Pyo; Kim, Soo-Ok; Folk, William R; Sarafianos, Stefan G

    2012-07-01

    Hepatitis B virus (HBV) is the etiologic agent of mankind's most serious liver disease. While the availability of a vaccine has reduced the number of new HBV infections, the vaccine does not benefit the approximately 350 million people already chronically infected by the virus. Most of the drugs approved by the FDA for the treatment of hepatitis B target the reverse transcriptase (RT or P gene product) and are nucleoside RT inhibitors (NRTIs) that suppress viral replication. However, prolonged monotherapies directed against a single target result in the emergence of viral resistance. HBV genotypic differences affect NRTI resistance, and because the reading frames of the S (surface antigen) and P genes partially overlap, genomic differences that affect the surface of the virus may also alter the viral polymerase sequence, function and drug susceptibility. The scope of this review is to assess the effects of HBV genotypic variation on the development of drug resistance to NRTIs. Some RT residues that vary among different genotypes are in the vicinity of residues that mutate and give rise to NRTI resistance. Interactions between these amino acids can help explain the effect of HBV genotype on the development of NRTI resistance during antiviral therapies, and might help in the design of improved therapeutic strategies. PMID:22531713

  5. Expression of pokeweed antiviral proteins in creeping bentgrass.

    PubMed

    Dai, W D; Bonos, S; Guo, Z; Meyer, W A; Day, P R; Belanger, F C

    2003-01-01

    Fungal diseases of creeping bentgrass, an important amenity grass used extensively on golf courses, are a serious problem in golf course management. Transgenic approaches to improving disease resistance to fungal diseases are being explored in many species, and in some cases ribosome-inactivating proteins have been found to be effective. We have generated transgenic creeping bentgrass plants expressing three forms of ribosome-inactivating proteins from pokeweed, which are termed pokeweed antiviral proteins (PAP). PAP-Y and PAP-C are nontoxic mutants of PAP; PAPII is the native form of another ribosome-inactivating protein from pokeweed. In creeping bentgrass, PAP-C transformants did not accumulate the protein, suggesting that it is unstable, and in a field test these plants were not protected from infection by the fungal pathogen Sclerotinia homoeocarpa, the causal agent of dollar spot disease. PAPII transformants could accumulate stable levels of the protein but had symptoms of toxicity; one low-expressing line exhibited good disease resistance. PAP-Y transformants accumulated stable levels of protein, and under greenhouse conditions they appeared to be phenotypically normal.

  6. Antiviral mechanism of polyanionic carbosilane dendrimers against HIV-1

    PubMed Central

    Vacas-Córdoba, Enrique; Maly, Marek; De la Mata, Francisco J; Gómez, Rafael; Pion, Marjorie; Muñoz-Fernández, Mª Ángeles

    2016-01-01

    Nanotechnology-derived platforms, such as dendrimers, are very attractive in several biological applications. In the case of human immunodeficiency virus (HIV) infection, polyanionic carbosilane dendrimers have shown great potential as antiviral agents in the development of novel microbicides to prevent the sexual transmission of HIV-1. In this work, we studied the mechanism of two sulfated and naphthylsulfonated functionalized carbosilane dendrimers, G3-S16 and G2-NF16. They are able to inhibit viral infection at fusion and thus at the entry step. Both compounds impede the binding of viral particles to target cell surface and membrane fusion through the blockage of gp120–CD4 interaction. In addition, and for the first time, we demonstrate that dendrimers can inhibit cell-to-cell HIV transmission and difficult infectious synapse formation. Thus, carbosilane dendrimers’ mode of action is a multifactorial process targeting several proteins from viral envelope and from host cells that could block HIV infection at different stages during the first step of infection. PMID:27103798

  7. Potential applications for antiviral therapy and prophylaxis in bovine medicine.

    PubMed

    Newcomer, Benjamin W; Walz, Paul H; Givens, M Daniel

    2014-06-01

    Viral disease is one of the major causes of financial loss and animal suffering in today's cattle industry. Increases in global commerce and average herd size, urbanization, vertical integration within the industry and alterations in global climate patterns have allowed the spread of pathogenic viruses, or the introduction of new viral species, into regions previously free of such pathogens, creating the potential for widespread morbidity and mortality in naïve cattle populations. Despite this, no antiviral products are currently commercially licensed for use in bovine medicine, although significant progress has been made in the development of antivirals for use against bovine viral diarrhea virus (BVDV), foot and mouth disease virus (FMDV) and bovine herpesvirus (BHV). BVDV is extensively studied as a model virus for human antiviral studies. Consequently, many compounds with efficacy have been identified and a few have been successfully used to prevent infection in vivo although commercial development is still lacking. FMDV is also the subject of extensive antiviral testing due to the importance of outbreak containment for maintenance of export markets. Thirdly, BHV presents an attractive target for antiviral development due to its worldwide presence. Antiviral studies for other bovine viral pathogens are largely limited to preliminary studies. This review summarizes the current state of knowledge of antiviral compounds against several key bovine pathogens and the potential for commercial antiviral applications in the prevention and control of several selected bovine diseases. PMID:24810855

  8. Antiviral Treatment among Pregnant Women with Chronic Hepatitis B

    PubMed Central

    Fan, Lin; Owusu-Edusei, Kwame; Schillie, Sarah F.; Murphy, Trudy V.

    2014-01-01

    Objective. To describe the antiviral treatment patterns for chronic hepatitis B (CHB) among pregnant and nonpregnant women. Methods. Using 2011 MarketScan claims, we calculated the rates of antiviral treatment among women (aged 10–50 years) with CHB. We described the pattern of antiviral treatment during pregnancy and ≥1 month after delivery. Results. We identified 6274 women with CHB during 2011. Among these, 64 of 507 (12.6%) pregnant women and 1151 of 5767 (20.0%) nonpregnant women received antiviral treatment (P < 0.01). Pregnant women were most commonly prescribed tenofovir (73.4%) and lamivudine (21.9%); nonpregnant women were most commonly prescribed tenofovir (50.2%) and entecavir (41.3%) (P < 0.01). Among 48 treated pregnant women with an identifiable delivery date, 16 (33.3%) were prescribed an antiviral before pregnancy and continued treatment for at least one month after delivery; 14 (29.2%) started treatment during the third trimester and continued at least one month after delivery. Conclusion. Among this insured population, pregnant women with CHB received an antiviral significantly less often than nonpregnant women. The most common antiviral prescribed for pregnant women was tenofovir. These data provide a baseline for assessing changes in treatment patterns with anticipated increased use of antivirals to prevent breakthrough perinatal hepatitis B virus infection. PMID:25548510

  9. Potential applications for antiviral therapy and prophylaxis in bovine medicine.

    PubMed

    Newcomer, Benjamin W; Walz, Paul H; Givens, M Daniel

    2014-06-01

    Viral disease is one of the major causes of financial loss and animal suffering in today's cattle industry. Increases in global commerce and average herd size, urbanization, vertical integration within the industry and alterations in global climate patterns have allowed the spread of pathogenic viruses, or the introduction of new viral species, into regions previously free of such pathogens, creating the potential for widespread morbidity and mortality in naïve cattle populations. Despite this, no antiviral products are currently commercially licensed for use in bovine medicine, although significant progress has been made in the development of antivirals for use against bovine viral diarrhea virus (BVDV), foot and mouth disease virus (FMDV) and bovine herpesvirus (BHV). BVDV is extensively studied as a model virus for human antiviral studies. Consequently, many compounds with efficacy have been identified and a few have been successfully used to prevent infection in vivo although commercial development is still lacking. FMDV is also the subject of extensive antiviral testing due to the importance of outbreak containment for maintenance of export markets. Thirdly, BHV presents an attractive target for antiviral development due to its worldwide presence. Antiviral studies for other bovine viral pathogens are largely limited to preliminary studies. This review summarizes the current state of knowledge of antiviral compounds against several key bovine pathogens and the potential for commercial antiviral applications in the prevention and control of several selected bovine diseases.

  10. Agent Orange

    MedlinePlus

    ... Index Agent Orange Agent Orange Home Facts about Herbicides Veterans' Diseases Birth Defects Benefits Exposure Locations Provider ... millions of gallons of Agent Orange and other herbicides on trees and vegetation during the Vietnam War. ...

  11. Synthesis, antiviral activity, and bioavailability studies of gamma-lactam derived HIV protease inhibitors.

    PubMed

    Hungate, R W; Chen, J L; Starbuck, K E; Vacca, J P; McDaniel, S L; Levin, R B; Dorsey, B D; Guare, J P; Holloway, M K; Whitter, W

    1994-09-01

    Incorporation of a gamma-lactam in hydroxyethylene isosteres results in modest inhibitors of HIV-1 protease. Additional structural activity studies have produced significantly more potent inhibitors with the introduction of the trisubstituted cyclopentane (see compound 20) as the optimum substituent for the C-terminus. This new amino acid amide surrogate can be readily prepared in large scale from (R)-pulegone. Optimized compounds (36) and (60) are potent antiviral agents and are well absorbed (15-20%) in a dog model after oral administration. PMID:7712123

  12. Influenza virus and rhinovirus-related otitis media: potential for antiviral intervention.

    PubMed

    Hayden, F G

    2000-12-01

    Adults frequently develop eustachian tube dysfunction and middle ear pressure (MEP) abnormalities during natural and experimental influenza and human rhinovirus (HRV) infections. Oral rimantadine treatment did not reduce the otologic manifestations of experimental influenza in adults or natural influenza in children. However, intranasal zanamivir and oral oseltamivir significantly reduced MEP abnormalities during experimental influenza in adults, and oseltamivir treatment appears to reduce the likelihood of otitis media in children with acute influenza. Investigational anti-HRV agents, including intranasal tremacamra, intranasal AG7088, and oral pleconaril, warrant study in this regard. Depending on the virus, early antiviral therapy has the potential to impact the risk of otitis media following respiratory tract infections.

  13. Innate Antiviral Defenses Independent of Inducible IFNα/β Production.

    PubMed

    Paludan, Søren R

    2016-09-01

    The type I interferons (IFNs) (IFNα and IFNβ) not only have potent antiviral activities, but also have pathological functions if produced at high levels or over a long time. Recent articles have described antiviral immune mechanisms that are activated in response to virus infection at epithelial surfaces independently of IFNα and IFNβ. This may allow the host to exert rapid local antiviral activity and only induce a full-blown, and potentially pathological, type I IFN response in situations where stronger protective immunity is needed. Here, I describe the emerging understanding of early antiviral defenses, which are independent of type I IFN responses, and also discuss how this enables tissues to exert rapid antiviral activities and to limit type I IFN production. PMID:27345728

  14. The Antiviral Activities and Mechanisms of Marine Polysaccharides: An Overview

    PubMed Central

    Wang, Wei; Wang, Shi-Xin; Guan, Hua-Shi

    2012-01-01

    Recently, the studies on the antiviral activities of marine natural products, especially marine polysaccharides, are attracting more and more attention all over the world. Marine-derived polysaccharides and their lower molecular weight oligosaccharide derivatives have been shown to possess a variety of antiviral activities. This paper will review the recent progress in research on the antiviral activities and the mechanisms of these polysaccharides obtained from marine organisms. In particular, it will provide an update on the antiviral actions of the sulfated polysaccharides derived from marine algae including carrageenans, alginates, and fucans, relating to their structure features and the structure–activity relationships. In addition, the recent findings on the different mechanisms of antiviral actions of marine polysaccharides and their potential for therapeutic application will also be summarized in detail. PMID:23235364

  15. A simple, rapid, and sensitive system for the evaluation of anti-viral drugs in rats

    SciTech Connect

    Li, Xiaoguang; Qian, Hua; Miyamoto, Fusako; Kawaji, Kumi; Hattori, Toshio; Watanabe, Kentaro; Oishi, Shinya; Fujii, Nobutaka; and others

    2012-07-27

    Highlights: Black-Right-Pointing-Pointer We established a novel, simple and rapid in vivo system for evaluation of anti-HIV-1 drugs with rats. Black-Right-Pointing-Pointer The system may be applicable for other antiviral drugs, and/or useful for initial screening in vivo. Black-Right-Pointing-Pointer In this system, TRI-1144 displayed the most potent anti-HIV-1 activity in vivo. -- Abstract: The lack of small animal models for the evaluation of anti-human immunodeficiency virus type 1 (HIV-1) agents hampers drug development. Here, we describe the establishment of a simple and rapid evaluation system in a rat model without animal infection facilities. After intraperitoneal administration of test drugs to rats, antiviral activity in the sera was examined by the MAGI assay. Recently developed inhibitors for HIV-1 entry, two CXCR4 antagonists, TF14016 and FC131, and four fusion inhibitors, T-20, T-20EK, SC29EK, and TRI-1144, were evaluated using HIV-1{sub IIIB} and HIV-1{sub BaL} as representative CXCR4- and CCR5-tropic HIV-1 strains, respectively. CXCR4 antagonists were shown to only possess anti-HIV-1{sub IIIB} activity, whereas fusion inhibitors showed both anti-HIV-1{sub IIIB} and anti-HIV-1{sub BaL} activities in rat sera. These results indicate that test drugs were successfully processed into the rat sera and could be detected by the MAGI assay. In this system, TRI-1144 showed the most potent and sustained antiviral activity. Sera from animals not administered drugs showed substantial anti-HIV-1 activity, indicating that relatively high dose or activity of the test drugs might be needed. In conclusion, the novel rat system established here, 'phenotypic drug evaluation', may be applicable for the evaluation of various antiviral drugs in vivo.

  16. In vitro antiviral activity of mycophenolic acid and its reversal by guanine-type compounds.

    PubMed

    Cline, J C; Nelson, J D; Gerzon, K; Williams, R H; Delong, D C

    1969-07-01

    With the agar diffusion test and BS-C-1 cells, mycophenolic acid was found to give a straight-line dose-response activity in inhibiting the cytopathic effects of vaccinia, herpes simplex, and measles viruses. Plaque tests have shown 100% reduction of virus plaques by mycophenolic acid over drug ranges of 10 to 50 mug/ml and virus input as high as 6,000 plaque-forming units (PFU) per flask. Back titration studies with measles virus inhibited by mycophenolic acid have indicated that extracellular virus titers were reduced by approximately 3 logs(10) and total virus was reduced by 1 log(10). The agar diffusion test system lends itself readily to drug reversal studies. Mycophenolic acid incorporated into agar at 10 mug/ml gave 100% protection to virus-infected cells. Filter paper discs impregnated with selected chemical agents at concentrations of 1,000 mug/ml (20 mug per filter paper disc) were placed on the agar surface. Reversal of the antiviral activity of mycophenolic acid was indicated by virus breakthrough in those cells in close proximity to the filter paper disc. Chemicals showing the best reversal of the antiviral activity of mycophenolic acid were guanine, guanosine, guanylic acid, deoxyguanylic acid, and 2,6-diaminopurine. The reversal of antiviral activity was confirmed by titrations of virus produced with various amounts of both mycophenolic acid and guanine present and by isotope tracer methods with uptakes of labeled uridine, guanine, leucine, and thymidine in treated and nontreated, infected and noninfected cells as parameters. All antiviral effects of mycophenolic acid at 10 mug/ml could be reversed to the range shown by untreated controls by the addition of 10 mug/ml of those chemicals exhibiting reversal activity.

  17. Baculovirus Stimulates Antiviral Effects in Mammalian Cells

    PubMed Central

    Gronowski, Ann M.; Hilbert, David M.; Sheehan, Kathleen C. F.; Garotta, Gianni; Schreiber, Robert D.

    1999-01-01

    Herein, we report that Autographa californica nucleopolyhedrovirus, a member of the Baculoviridae family, is capable of stimulating antiviral activity in mammalian cells. Baculoviruses are not pathogenic to mammalian cells. Nevertheless, live baculovirus is shown here to induce interferons (IFN) from murine and human cell lines and induces in vivo protection of mice from encephalomyocarditis virus infection. Monoclonal antibodies specific for the baculovirus envelope gp67 neutralize baculovirus-dependent IFN production. Moreover, UV treatment of baculovirus eliminates both infectivity and IFN-inducing activity. In contrast, the IFN-inducing activity of the baculovirus was unaffected by DNase or RNase treatment. These data demonstrate that IFN production can be induced in mammalian cells by baculovirus even though the cells fail to serve as a natural host for an active viral infection. Baculoviruses, therefore, provide a novel model in which to study at least one alternative mechanism for IFN induction in mammalian cells. PMID:10559307

  18. Novel concept on antiviral strategies to dengue.

    PubMed

    Lo, Yu-Chih; Perng, Guey Chuen

    2016-06-01

    Recent evidence has revealed that asymptomatic and/or persistent dengue virus (DENV) infections play a role in the cycling pattern of dengue outbreaks. These findings add a new dimension to the continually evolving search for effective prevention strategies in dengue. Disappointing outcomes of clinical trials in anti-dengue modalities have become commonplace. These failures may result from confounding variables and/or unresolved scientific issues that surround dengue, including the replication cycle of DENV in a natural setting, the target cells and reservoir for viral replication in vivo, and the effect of asymptomatic/persistent carriers in the dissemination of dengue. This article sets forth to address these issues using the most updated information available in the literature and to propose a novel antiviral strategy for the prevention and control of dengue. PMID:27284691

  19. Contribution of autophagy to antiviral immunity.

    PubMed

    Rey-Jurado, Emma; Riedel, Claudia A; González, Pablo A; Bueno, Susan M; Kalergis, Alexis M

    2015-11-14

    Although identified in the 1960's, interest in autophagy has significantly increased in the past decade with notable research efforts oriented at understanding as to how this multi-protein complex operates and is regulated. Autophagy is commonly defined as a "self-eating" process evolved by eukaryotic cells to recycle senescent organelles and expired proteins, which is significantly increased during cellular stress responses. In addition, autophagy can also play important roles during human diseases, such as cancer, neurodegenerative and autoimmune disorders. Furthermore, novel findings suggest that autophagy contributes to the host defense against microbial infections. In this article, we review the role of macroautophagy in antiviral immune responses and discuss molecular mechanisms evolved by viral pathogens to evade this process. A role for autophagy as an effector mechanism used both, by innate and adaptive immunity is also discussed.

  20. Antiviral Terpenoid Constituents of Ganoderma pfeifferi.

    PubMed

    Niedermeyer, Timo H J; Lindequist, Ulrike; Mentel, Renate; Gördes, Dirk; Schmidt, Enrico; Thurow, Kerstin; Lalk, Michael

    2005-12-01

    Four sterols and 10 triterpenes were isolated from the fruiting bodies of Ganoderma pfeifferi, including the three new triterpenes 3,7,11-trioxo-5alpha-lanosta-8,24-diene-26-al (lucialdehyde D, 1), 5alpha-lanosta-8,24-diene-26-hydroxy-3,7-dione (ganoderone A, 2), and 5alpha-lanosta-8-ene-24,25-epoxy-26-hydroxy-3,7-dione (ganoderone C, 3). The structures of 1-3 were determined on the basis of spectroscopic evidence. Antibacterial, antifungal, and antiviral activity were studied for some of the isolated compounds. Ganoderone A (2), lucialdehyde B (4), and ergosta-7,22-dien-3beta-ol (7) were found to exhibit potent inhibitory activity against herpes simplex virus.

  1. Ubiquitination in the Antiviral Immune Response

    PubMed Central

    Davis, Meredith E.; Gack, Michaela U.

    2016-01-01

    Ubiquitination has long been known to regulate fundamental cellular processes through the induction of proteasomal degradation of target proteins. More recently, ‘atypical’ nondegradative types of polyubiquitin chains have been appreciated as important regulatory moieties by modulating the activity or subcellular localization of key signaling proteins. Intriguingly, many of these non-degradative types of ubiquitination regulate the innate sensing pathways initiated by pattern recognition receptors (PRRs), ultimately coordinating an effective antiviral immune response. Here we discuss recent advances in understanding the functional roles of degradative and atypical types of ubiquitination in innate immunity to viral infections, with a specific focus on the signaling pathways triggered by RIG-I-like receptors, Toll-like receptors, and the intracellular viral DNA sensor cGAS. PMID:25753787

  2. Antiviral activity of alcohol for surface disinfection.

    PubMed

    Moorer, W R

    2003-08-01

    Bacteria and viruses from the patient's mouth travel with dental splatter and spills. A surface disinfectant should possess antiviral activity as well as antibacterial action. Because of frequent and 'open' application in the dental office, such a disinfectant should be non-toxic, non-allergenic and safe for the hygienist. It now appears that high-concentration alcohol mixtures (i.e. 80% ethanol + 5% isopropanol) are not only excellent antibacterials, but quickly inactivate HIV as well as hepatitis B and hepatitis C viruses. Compared to alternative surface disinfectants, use of high-concentration alcohol for the spray-wipe-spray method of surface disinfection in dentistry appears safe and efficient. However, dried matter should be wiped and hydrated first.

  3. Development of novel antivirals against flaviviruses.

    PubMed

    Patkar, Chinmay G; Kuhn, Richard J

    2006-01-01

    Dengue virus is responsible for a significant amount of human disease in predominantly tropical areas of the world. Much effort has focused on the development of vaccines against the four serotypes of dengue, and within the next few years a vaccine is anticipated. Less progress has been made at developing antivirals that might reduce disease severity. Recent advances in the structural biology of dengue virus and other flaviviruses have opened new possibilities for the rational design of small molecule inhibitors of virus replication. This chapter describes the structural attributes of the dengue virion and how knowledge of its structure, assembly, and entry mechanisms are guiding new strategies toward the development of compounds that will interfere with the viral replication process. PMID:17319153

  4. Enhancement of Antiviral Immunity by Small Molecule Antagonist of Suppressor of Cytokine Signaling

    PubMed Central

    Ahmed, Chulbul M. I.; Dabelic, Rea; Martin, James P.; Jager, Lindsey D.; Haider, S. Mohammad; Johnson, Howard M.

    2011-01-01

    Suppressors of cytokine signaling (SOCSs) are negative regulators of both innate and adaptive immunity via inhibition of signaling by cytokines such as type I and type II IFNs. We have developed a small peptide antagonist of SOCS-1 that corresponds to the activation loop of JAK2. SOCS-1 inhibits both type I and type II IFN activities by binding to the kinase activation loop via the kinase inhibitory region of the SOCS. The antagonist, pJAK2(1001–1013), inhibited the replication of vaccinia virus and encephalomyocarditis virus in cell culture, suggesting that it possesses broad antiviral activity. In addition, pJAK2(1001–1013) protected mice against lethal vaccinia and encephalomyocarditis virus infection. pJAK2(1001–1013) increased the intracellular level of the constitutive IFN-β, which may play a role in the antagonist antiviral effect at the cellular level. Ab neutralization suggests that constitutive IFN-β may act intracellularly, consistent with recent findings on IFN-γ intracellular signaling. pJAK2(1001–1013) also synergizes with IFNs as per IFN-γ mimetic to exert a multiplicative antiviral effect at the level of transcription, the cell, and protection of mice against lethal viral infection. pJAK2(1001–1013) binds to the kinase inhibitory region of both SOCS-1 and SOCS-3 and blocks their inhibitory effects on the IFN-γ activation site promoter. In addition to a direct antiviral effect and synergism with IFN, the SOCS antagonist also exhibits adjuvant effects on humoral and cellular immunity as well as an enhancement of polyinosinic-polycytidylic acid activation of TLR3. The SOCS antagonist thus presents a novel and effective approach to enhancement of host defense against viruses. PMID:20543109

  5. Litsea Species as Potential Antiviral Plant Sources.

    PubMed

    Guan, Yifu; Wang, Dongying; Tan, Ghee T; Van Hung, Nguyen; Cuong, Nguyen Manh; Pezzuto, John M; Fong, Harry H S; Soejarto, Djaja Doel; Zhang, Hongjie

    2016-01-01

    Litsea verticillata Hance (Lauraceae), a Chinese medicine used to treat swelling caused by injury or by snake bites, was the first plant identified by our National Institutes of Health (NIH)-funded International Cooperative Biodiversity Group (ICBG) project to exhibit anti-HIV activities. From this plant, we discovered a class of 8 novel litseane compounds, prototypic sesquiterpenes, all of which demonstrated anti-HIV activities. In subsequent studies, 26 additional compounds of different structural types were identified. During our continuing investigation of this plant species, we identified two new litseanes, litseaverticillols L and M, and a new sesquiterpene butenolide, litseasesquibutenolide. Litseaverticillols L and M were found to inhibit HIV-1 replication, with an IC[Formula: see text] value of 49.6[Formula: see text][Formula: see text]M. To further determine the antiviral properties of this plant, several relatively abundant isolates, including a litseane compound, two eudesmane sesquiterpenes and three lignans, were evaluated against an additional 21 viral targets. Lignans 8 and 9 were shown to be active against the Epstein-Barr Virus (EBV), with EC[Formula: see text] values of 22.0[Formula: see text][Formula: see text]M ([Formula: see text]) and 16.2[Formula: see text][Formula: see text]M ([Formula: see text]), respectively. Since many antiviral compounds have been discovered in L. verticillata, we further prepared 38 plant extracts made from the different plant parts of 9 additional Litsea species. These extracts were evaluated for their anti-HIV and cytotoxic activities, and four of the extracts, which ranged across three different species, displayed 97-100% inhibitory effects against HIV replication without showing cytotoxicity to a panel of human cell lines at a concentration of 20 μg/mL. PMID:27080941

  6. Cherry Valley Ducks Mitochondrial Antiviral-Signaling Protein-Mediated Signaling Pathway and Antiviral Activity Research

    PubMed Central

    Li, Ning; Hong, Tianqi; Li, Rong; Wang, Yao; Guo, Mengjiao; Cao, Zongxi; Cai, Yumei; Liu, Sidang; Chai, Tongjie; Wei, Liangmeng

    2016-01-01

    Mitochondrial antiviral-signaling protein (MAVS), an adaptor protein of retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs)-mediated signal pathway, is involved in innate immunity. In this study, Cherry Valley duck MAVS (duMAVS) was cloned from the spleen and analyzed. duMAVS was determined to have a caspase activation and recruitment domain at N-terminal, followed by a proline-rich domain and a transmembrane domain at C-terminal. Quantitative real-time PCR indicated that duMAVS was expressed in all tissues tested across a broad expression spectrum. The expression of duMAVS was significantly upregulated after infection with duck Tembusu virus (DTMUV). Overexpression of duMAVS could drive the activation of interferon (IFN)-β, nuclear factor-κB, interferon regulatory factor 7, and many downstream factors (such as Mx, PKR, OAS, and IL-8) in duck embryo fibroblast cells. What is more, RNA interference further confirmed that duMAVS was an important adaptor for IFN-β activation. The antiviral assay showed that duMAVS could suppress the various viral replications (DTMUV, novel reovirus, and duck plague virus) at early stages of infection. Overall, these results showed that the main signal pathway mediated by duMAVS and it had a broad-spectrum antiviral ability. This research will be helpful to better understanding the innate immune system of ducks. PMID:27708647

  7. Influenza neuraminidase inhibitors: antiviral action and mechanisms of resistance

    PubMed Central

    McKimm‐Breschkin, Jennifer L.

    2012-01-01

    Please cite this paper as: McKimm‐Breschkin (2012) Influenza neuraminidase inhibitors: Antiviral action and mechanisms of resistance. Influenza and Other Respiratory Viruses 7(Suppl. 1), 25–36. There are two major classes of antivirals available for the treatment and prevention of influenza, the M2 inhibitors and the neuraminidase inhibitors (NAIs). The M2 inhibitors are cheap, but they are only effective against influenza A viruses, and resistance arises rapidly. The current influenza A H3N2 and pandemic A(H1N1)pdm09 viruses are already resistant to the M2 inhibitors as are many H5N1 viruses. There are four NAIs licensed in some parts of the world, zanamivir, oseltamivir, peramivir, and a long‐acting NAI, laninamivir. This review focuses on resistance to the NAIs. Because of differences in their chemistry and subtle differences in NA structures, resistance can be both NAI‐ and subtype specific. This results in different drug resistance profiles, for example, the H274Y mutation confers resistance to oseltamivir and peramivir, but not to zanamivir, and only in N1 NAs. Mutations at E119, D198, I222, R292, and N294 can also reduce NAI sensitivity. In the winter of 2007–2008, an oseltamivir‐resistant seasonal influenza A(H1N1) strain with an H274Y mutation emerged in the northern hemisphere and spread rapidly around the world. In contrast to earlier evidence of such resistant viruses being unfit, this mutant virus remained fully transmissible and pathogenic and became the major seasonal A(H1N1) virus globally within a year. This resistant A(H1N1) virus was displaced by the sensitive A(H1N1)pdm09 virus. Approximately 0·5–1·0% of community A(H1N1)pdm09 isolates are currently resistant to oseltamivir. It is now apparent that variation in non‐active site amino acids can affect the fitness of the enzyme and compensate for mutations that confer high‐level oseltamivir resistance resulting in minimal impact on enzyme function. PMID:23279894

  8. microRNA control of interferons and interferon induced anti-viral activity.

    PubMed

    Sedger, Lisa M

    2013-12-01

    Interferons (IFNs) are cytokines that are spontaneously produced in response to virus infection. They act by binding to IFN-receptors (IFN-R), which trigger JAK/STAT cell signalling and the subsequent induction of hundreds of IFN-inducible genes, including both protein-coding and microRNA genes. IFN-induced genes then act synergistically to prevent virus replication and create an anti-viral state. miRNA are therefore integral to the innate response to virus infection and are important components of IFN-mediated biology. On the other hand viruses also encode miRNAs that in some cases interfere directly with the IFN response to infection. This review summarizes the important roles of miRNAs in virus infection acting both as IFN-stimulated anti-viral molecules and as critical regulators of IFNs and IFN-stimulated genes. It also highlights how recent knowledge in RNA editing influence miRNA control of virus infection.

  9. Enhancement of the antiviral and interferon-inducing activities of poly r(A-U) by carminic acid.

    PubMed

    Jamison, J M; Flowers, D G; Jamison, E; Kitareewan, S; Krabill, K; Rosenthal, K S; Tsai, C

    1988-01-01

    Experiments have been designed to systematically examine the effects of carminic acid (CAR) on the antiviral/interferon-inducing activity of poly r(A-U), using the human foreskin fibroblast-vesicular stomatitis virus bioassay system. Modulation of the antiviral/interferon-inducing activity of poly r(A-U) by carminic acid was examined at fixed poly r(A-U) concentrations of 0.05 mM or 0.2 mM while varying the carminic acid concentrations to produce variable CAR/ribonucleotide ratios ranging from 1:16 to 2:1. Carminic acid and poly r(A-U) were tested individually at the concentrations employed in the CAR/poly r(A-U) combinations. Neither the carminic acid alone nor poly r(A-U) alone were effective antiviral agents/interferon inducers. The antiviral/interferon-inducing activity of poly r(A-U) was potentiated twelve-fold at CAR/ribonucleotide ratios in the region of 1/6 to 1/4. These results suggest a synergism between the poly r(A-U) and the carminic acid at the concentrations employed in this study. PMID:2451107

  10. Separation methods for acyclovir and related antiviral compounds.

    PubMed

    Loregian, A; Gatti, R; Palù, G; De Palo, E F

    2001-11-25

    Acyclovir (ACV) is an antiviral drug, which selectively inhibits replication of members of the herpes group of DNA viruses with low cell toxicity. Valaciclovir (VACV), a prodrug of ACV is usually preferred in the oral treatment of viral infections, mainly herpes simplex virus (HSV). Also other analogues such as ganciclovir and penciclovir are discussed here. The former acts against cytomegalovirus (CMV) in general and the latter against CMV retinitis. The action mechanism of these antiviral drugs is presented briefly here, mainly via phosphorylation and inhibition of the viral DNA polymerase. The therapeutic use and the pharmacokinetics are also outlined. The measurement of the concentration of acyclovir and related compounds in biological samples poses a particularly significant challenge because these drugs tend to be structurally similar to endogenous substances. The analysis requires the use of highly selective analytical techniques and chromatography methods are a first choice to determine drug content in pharmaceuticals and to measure them in body fluids. Chromatography can be considered the procedure of choice for the bio-analysis of this class of antiviral compounds, as this methodology is characterised by good specificity and accuracy and it is particularly useful when metabolites need to be monitored. Among chromatographic techniques, the reversed-phase (RP) HPLC is widely used for the analysis. C18 Silica columns from 7.5 to 30 cm in length are used, the separation is carried out mainly at room temperature and less than 10 min is sufficient for the analysis at 1.0-1.5 ml/min of flow-rate. The separation methods require an isocratic system, and various authors have proposed a variety of mobile phases. The detection requires absorbance or fluorescence measurements carried out at 250-254 nm and at lambdaex=260-285 nm, lambdaem=375-380 nm, respectively. The detection limit is about 0.3-10 ng/ml but the most important aspect is related to the sample treatment

  11. Antiviral effects of two Ganoderma lucidum triterpenoids against enterovirus 71 infection.

    PubMed

    Zhang, Wenjing; Tao, Junyan; Yang, Xiaoping; Yang, Zhuliang; Zhang, Li; Liu, Hongsheng; Wu, Kailang; Wu, Jianguo

    2014-07-01

    Enterovirus 71 (EV71) is a major causative agent for hand, foot and mouth disease (HFMD), and fatal neurological and systemic complications in children. However, there is currently no clinical approved antiviral drug available for the prevention and treatment of the viral infection. Here, we evaluated the antiviral activities of two Ganoderma lucidum triterpenoids (GLTs), Lanosta-7,9(11),24-trien-3-one,15;26-dihydroxy (GLTA) and Ganoderic acid Y (GLTB), against EV71 infection. The results showed that the two natural compounds display significant anti-EV71 activities without cytotoxicity in human rhabdomyosarcoma (RD) cells as evaluated by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cell proliferation assay. The mechanisms by which the two compounds affect EV71 infection were further elucidated by three action modes using Ribavirin, a common antiviral drug, as a positive control. The results suggested that GLTA and GLTB prevent EV71 infection through interacting with the viral particle to block the adsorption of virus to the cells. In addition, the interactions between EV71 virion and the compounds were predicated by computer molecular docking, which illustrated that GLTA and GLTB may bind to the viral capsid protein at a hydrophobic pocket (F site), and thus may block uncoating of EV71. Moreover, we demonstrated that GLTA and GLTB significantly inhibit the replication of the viral RNA (vRNA) of EV71 replication through blocking EV71 uncoating. Thus, GLTA and GLTB may represent two potential therapeutic agents to control and treat EV71 infection.

  12. Suppression of human T-cell leukemia virus I gene expression by pokeweed antiviral protein.

    PubMed

    Mansouri, Sheila; Choudhary, Gunjan; Sarzala, Paulina M; Ratner, Lee; Hudak, Katalin A

    2009-11-01

    Human T-cell leukemia virus I (HTLV-I) is a deltaretrovirus that is the causative agent of adult T-cell leukemia and the neurological disorder HTLV-I-associated myelopathy/tropical spastic paraparesis. Currently, no effective antiretroviral treatment options are available to restrict the development of diseases associated with the virus. In this work, we investigated the activity of pokeweed antiviral protein (PAP) on HTLV-I, when expressed from a proviral clone in 293T cells or in an HTLV-I immortalized cell line. PAP is a plant-derived N-glycosidase that exhibits antiviral activity against a number of viruses; however, its mode of action has not been clearly defined. Here, we describe the mechanism by which PAP inhibited production of HTLV-I. We show that PAP depurinated nucleotides within the gag open reading frame and suppressed the synthesis of viral proteins in part by decreasing the translational efficiency of HTLV-I gag/pol mRNA. Observed reduction in levels of viral mRNAs were not due to enhanced degradation; rather, decreased amounts of viral transactivator protein, Tax, led to feed-back inhibition of transcription from the viral promoter. Therefore, PAP efficiently suppressed HTLV-I gene expression at both translational and transcriptional levels, resulting in substantially diminished virus production. Significantly, no changes in viability or rates of cellular transcription or translation were observed in cells expressing PAP, indicating that this protein was not toxic. Antiviral activity, together with the absence of cytotoxicity, supports further investigation of this enzyme as a novel therapeutic agent against the progression of HTLV-I infection.

  13. Use of cotton rats to evaluate the efficacy of antivirals in treatment of measles virus infections.

    PubMed

    Wyde, P R; Moore-Poveda, D K; De Clercq, E; Neyts, J; Matsuda, A; Minakawa, N; Guzman, E; Gilbert, B E

    2000-05-01

    No practical animal models for the testing of chemotherapeutic or biologic agents identified in cell culture assays as being active against measles virus (MV) are currently available. Cotton rats may serve this purpose. To evaluate this possibility, 5-ethynyl-1-beta-D-ribofuranosylimidazole-4-carboxamide (EICAR) and poly(acrylamidomethyl propanesulfonate) (PAMPS), two compounds that have been reported to inhibit MV in vitro, and ribavirin, an established antiviral drug with MV-inhibitory activity, were evaluated for their antiviral activities against MV and respiratory syncytial virus (RSV) in tissue culture and in hispid cotton rats. A single administration of PAMPS markedly inhibited pulmonary RSV or MV replication (>3 log(10) reduction in pulmonary titer compared to that for controls), but only if this compound was administered intranasally at about the time of virus inoculation. Both EICAR and ribavirin exhibited therapeutic activity against RSV and MV in cotton rats when they were administered parenterally. However, both of these compounds were less effective against MV. On the basis of the pulmonary virus titers on day 4 after virus inoculation, the minimal efficacious dose of EICAR against MV (120 mg/kg of body weight/day when delivered intraperitoneally twice daily) appeared to be three times lower against this virus than that of ribavirin delivered at a similar dose (i.e., 360 mg/kg/day). These findings correlated with those obtained in vitro. The data obtained suggest that cotton rats may indeed be useful for the initial evaluation of the activities of antiviral agents against MV.

  14. Safety and effectiveness of dipeptidyl peptidase-4 inhibitors versus intermediate-acting insulin or placebo for patients with type 2 diabetes failing two oral antihyperglycaemic agents: a systematic review and network meta-analysis

    PubMed Central

    Tricco, Andrea C; Antony, Jesmin; Khan, Paul A; Ghassemi, Marco; Hamid, Jemila S; Ashoor, Huda; Blondal, Erik; Soobiah, Charlene; Yu, Catherine H; Hutton, Brian; Hemmelgarn, Brenda R; Moher, David; Majumdar, Sumit R; Straus, Sharon E

    2014-01-01

    Objective To evaluate the effectiveness and safety of dipeptidyl peptidase-4 (DPP-4) inhibitors versus intermediate-acting insulin for adults with type 2 diabetes mellitus (T2DM) and poor glycaemic control despite treatment with two oral agents. Setting Studies were multicentre and multinational. Participants Ten studies including 2967 patients with T2DM. Interventions Studies that examined DPP-4 inhibitors compared with each other, intermediate-acting insulin, no treatment or placebo in patients with T2DM. Primary and secondary outcome measures Primary outcome was glycosylated haemoglobin (HbA1c). Secondary outcomes were healthcare utilisation, body weight, fractures, quality of life, microvascular complications, macrovascular complications, all-cause mortality, harms, cost and cost-effectiveness. Results 10 randomised clinical trials with 2967 patients were included after screening 5831 titles and abstracts, and 180 full-text articles. DPP-4 inhibitors significantly reduced HbA1c versus placebo in network meta-analysis (NMA; mean difference (MD) −0.62%, 95% CI −0.93% to −0.33%) and meta-analysis (MD −0.61%, 95% CI −0.81% to −0.41%), respectively. Significant differences in HbA1c were not observed for neutral protamine Hagedorn (NPH) insulin versus placebo and DPP-4 inhibitors versus NPH insulin in NMA. In meta-analysis, no significant differences were observed between DPP-4 inhibitors and placebo for severe hypoglycaemia, weight gain, cardiovascular disease, overall harms, treatment-related harms and mortality, although patients receiving DPP-4 inhibitors experienced less infections (relative risk 0.72, 95% CI 0.57 to 0.91). Conclusions DPP-4 inhibitors were superior to placebo in reducing HbA1c levels in adults with T2DM taking at least two oral agents. Compared with placebo, no safety signals were detected with DPP-4 inhibitors and there was a reduced risk of infection. There was no significant difference in HbA1c observed between NPH and placebo or

  15. Hepatitis C Virus Experimental Model Systems and Antiviral drug Research*

    PubMed Central

    Uprichard, Susan L.

    2010-01-01

    An estimated 130 million people worldwide are chronically infected with hepatitis C virus (HCV) making it a leading cause of liver disease worldwide. Because the currently available therapy of pegylated interferon-alpha and ribavirin is only effective in a subset of patients, the development of new HCV antivirals is a healthcare imperative. This review discusses the experimental models available for HCV antiviral drug research, recent advances in HCV antiviral drug development, as well as active research being pursued to facilitate development of new HCV-specific therapeutics. PMID:20960298

  16. Mathematical Modeling of Hepatitis C Prevalence Reduction with Antiviral Treatment Scale-Up in Persons Who Inject Drugs in Metropolitan Chicago

    SciTech Connect

    Echevarria, Desarae; Gutfraind, Alexander; Boodram, Basmattee; Major, Marian; Del Valle, Sara; Cotler, Scott J.; Dahari, Harel

    2015-08-21

    New direct-acting antivirals (DAAs) provide an opportunity to combat hepatitis C virus (HCV) infection in persons who inject drugs (PWID). Here we use a mathematical model to predict the impact of a DAA-treatment scale-up on HCV prevalence among PWID and the estimated cost in metropolitan Chicago.

  17. Synergistic antiviral effect of Galanthus nivalis agglutinin and nelfinavir against feline coronavirus.

    PubMed

    Hsieh, Li-En; Lin, Chao-Nan; Su, Bi-Ling; Jan, Tong-Rong; Chen, Chi-Min; Wang, Ching-Ho; Lin, Dah-Sheng; Lin, Chung-Tien; Chueh, Ling-Ling

    2010-10-01

    Feline infectious peritonitis (FIP) is a fatal disease in domestic and nondomestic felids caused by feline coronavirus (FCoV). Currently, no effective vaccine is available for the prevention of this disease. In searching for agents that may prove clinically effective against FCoV infection, 16 compounds were screened for their antiviral activity against a local FCoV strain in Felis catus whole fetus-4 cells. The results showed that Galanthus nivalis agglutinin (GNA) and nelfinavir effectively inhibited FCoV replication. When the amount of virus preinoculated into the test cells was increased to mimic the high viral load present in the target cells of FIP cats, GNA and nelfinavir by themselves lost their inhibitory effect. However, when the two agents were added together to FCoV-infected cells, a synergistic antiviral effect defined by complete blockage of viral replication was observed. These results suggest that the combined use of GNA and nelfinavir has therapeutic potential in the prophylaxis and treatment of cats with early-diagnosed FIP.

  18. Alphavirus antiviral drug development: scientific gap analysis and prospective research areas.

    PubMed

    Reichert, Erin; Clase, Amanda; Bacetty, Ada; Larsen, Joseph

    2009-12-01

    The New World alphaviruses Venezuelan equine encephalitis virus (VEEV), eastern equine encephalitis virus (EEEV), and western equine encephalitis virus (WEEV) pose a significant threat to human health as the etiological agents of serious viral encephalitis through natural infection as well as through their potential use as a biological weapon. At present, there is no FDA-approved medical treatment for infection with these viruses. The Defense Threat Reduction Agency, Joint Science and Technology Office for Chemical and Biological Defense (DTRA/JSTO), is currently funding research aimed at developing antiviral drugs and vaccines against VEEV, EEEV, and WEEV. A review of antiviral drug discovery efforts for these viruses revealed significant gaps in the data, assays, and models required for successful drug development. This review provides a description of these gaps and highlights specific critical research areas for the development of a target-based drug discovery program for the VEEV, EEEV, and WEEV nonstructural proteins. These efforts will increase the probability of the successful development of a pharmaceutical intervention against these viral threat agents. PMID:20028250

  19. Antiviral activities of purified compounds from Youngia japonica (L.) DC (Asteraceae, Compositae).

    PubMed

    Ooi, Linda S M; Wang, Hua; He, Zhendan; Ooi, Vincent E C

    2006-06-30

    The ethanol extract of a biannual medicinal herb, Youngia japonica (commonly known as Oriental hawk's beard) was reported previously to have potent antiviral activity against respiratory syncytial virus (RSV) cultured in HEp-2 cells. Three anti-microbial agents, namely 3,4-dicaffeoylquinic acid, 3,5-dicaffeoylquinic acid, and luteolin-7-O-glucoside were subsequently purified and chemically characterized from the ethanol extract of Youngia japonica. The two dicaffeoylquinic acids exhibited prominent anti-RSV with 50% inhibitory concentration (IC50) of 0.5 microg/ml in vitro. Luteolin-7-O-glucoside together with the two dicaffeoylquinic acids were also manifested to have some antibacterial activity towards the causal agents of food-borne disease, namely Vibrio cholerae and Vibrio parahaemolyticus at the concentration of 2mg/ml. Bacillus cereus was sensitive to 3,4-dicaffeoylquinic acid and 3,5-dicaffeoylquinic acid only, but not to luteolin-7-O-glucoside. PMID:16469463

  20. The antiviral response to gamma interferon.

    PubMed

    Costa-Pereira, Ana P; Williams, Timothy M; Strobl, Birgit; Watling, Diane; Briscoe, James; Kerr, Ian M

    2002-09-01

    A role for alpha/beta interferon (IFN-alpha/beta) in the IFN-gamma antiviral response has long been suggested. Accordingly, possible roles for autocrine or double-stranded-RNA (dsRNA)-induced IFN-alpha/beta in the IFN-gamma response were investigated. Use was made of wild-type and a variety of mutant human fibrosarcoma cell lines, including mutant U5A cells, which lack a functional IFN-alpha/beta receptor and hence an IFN-alpha/beta response. IFN-gamma did not induce detectable levels of IFN-alpha/beta in any of the cell lines, nor was the IFN-gamma response per se dependent on autocrine IFN-alpha/beta. On the other hand, a number of responses to dsRNA [poly(I). poly(C)] and encephalomyocarditis virus were greatly enhanced by IFN-gamma pretreatment (priming) of wild-type cells or of mutant cells lacking an IFN-alpha/beta response; these include the primary induction of dsRNA-inducible mRNAs, including IFN-beta mRNA, and, to a lesser extent, the dsRNA-mediated activation of the p38 mitogen-activated protein (MAP) kinase(s). IFN-gamma priming of mRNA induction by dsRNA is dependent on JAK1 and shows biphasic kinetics, with an initial rapid (<30-min) response being followed by a more substantial effect on overnight incubation. The IFN-gamma-primed dsRNA responses appear to be subject to modulation through the p38, phosphatidylinositol 3-kinase, and ERK1/ERK2 MAP kinase pathways. It can be concluded that despite efficient priming of IFN-beta production, the IFN-alpha/beta pathways play no significant role in the primary IFN-gamma antiviral response in these cell-virus systems. The observed IFN-gamma priming of dsRNA responses, on the other hand, will likely play a significant role in combating virus infection in vivo.

  1. The punishment of gene doping - The relation between WADA prohibited lists, German Medicinal Products Act, German Doping Agents Amounts Ordinance, and Basic Law of the Federal Republic of Germany.

    PubMed

    Parzeller, Markus

    2011-10-01

    The genetic constitution of athletes influences efficiency. Knowledge of genetic influences provides an opportunity for medical diagnostic and therapeutic attempts. Beside risks and therapeutic aspects, however, the possibilities of abuse for gene doping purposes in sports also exist. Genetic screening or gene therapy may have an advantage for athletes who use these methods. In juridical comments, it is pointed out that gene doping so far plays no role in sports, but that the legislator must consider a development in this area. Preventing abuse requires legal regulations. These regulations can include sanctions. This paper deals with the gene doping prohibition of the World Anti-Doping Agency (WADA) as confirmed and accepted by the monitoring group according to Articles 10 and 11 of the European Anti-Doping Convention by the Council of Europe, the prohibition of (gene) doping in sports of the German Medicinal Products Act (Arzneimittelgesetz - AMG) and the German Doping Agents Amounts Ordinance (Dopingmittel-Mengen-Verordnung-DmMV) of the German Federal Ministry of Health (BMG). The comprehensibility of the doping ban on the norm addressee was tested with a questionnaire. In connection with legal regulations of the German constitution, gene doping is discussed and problems which may arise by a state doping prohibition are pointed out. PMID:22031505

  2. Dengue Virus Entry as Target for Antiviral Therapy

    PubMed Central

    Alen, Marijke M. F.; Schols, Dominique

    2012-01-01

    Dengue virus (DENV) infections are expanding worldwide and, because of the lack of a vaccine, the search for antiviral products is imperative. Four serotypes of DENV are described and they all cause a similar disease outcome. It would be interesting to develop an antiviral product that can interact with all four serotypes, prevent host cell infection and subsequent immune activation. DENV entry is thus an interesting target for antiviral therapy. DENV enters the host cell through receptor-mediated endocytosis. Several cellular receptors have been proposed, and DC-SIGN, present on dendritic cells, is considered as the most important DENV receptor until now. Because DENV entry is a target for antiviral therapy, various classes of compounds have been investigated to inhibit this process. In this paper, an overview is given of all the putative DENV receptors, and the most promising DENV entry inhibitors are discussed. PMID:22529868

  3. An Agent that can Prohibit Microbial Development and Infection

    SciTech Connect

    Christian, A

    2005-01-26

    We have developed a process that makes use of double-stranded DNA:RNA hybrids to inhibit specific, targeted genetic activity completely within a cell. This process can be used in both human and bacterial cells. The agent that produces this effect can be inserted into a cell and remain quiescent for a considerable period of time without affecting cellular processes, until the gene against which it is targeted is induced. At this time the agent becomes effective, silencing the genetic response without affecting the host cell in any other way. When given as an anti-infective, this process may have significant use as an anti-bacterial, anti-viral agent. Our objective with this proposal is to develop the siHybrid concept sufficiently that it can be used as both an antibiotic and an antiviral agent.

  4. Puromycin-Sensitive Aminopeptidase: An Antiviral Prodrug Activating Enzyme

    PubMed Central

    Tehler, Ulrika; Nelson, Cara H.; Peterson, Larryn W.; Provoda, Chester J.; Hilfinger, John M.; Lee, Kyung-Dall; McKenna, Charles E.; Amidon, Gordon L.

    2010-01-01

    Cidofovir (HPMPC) is a broad-spectrum antiviral agent, currently used to treat AIDS-related human cytomegalovirus retinitis. Cidofovir has recognized therapeutic potential for orthopox virus infections, although its use is hampered by its inherent low oral bioavailability. Val-Ser-cyclic HPMPC (Val-Ser-cHPMPC) is a promising peptide prodrug which has previously been shown by us to improve the permeability and bioavailability of the parent compound in rodent models (Eriksson et al. Molecular Pharmaceutics, 2008 vol 5 598-609). Puromycin-sensitive aminopeptidase was partially purified from Caco-2 cell homogenates and identified as a prodrug activating enzyme for Val-Ser-cHPMPC. The prodrug activation process initially involves an enzymatic step where the l-Valine residue is removed by puromycin-sensitive aminopeptidase, a step that is bestatin-sensitive. Subsequent chemical hydrolysis results in the generation of cHPMPC. A recombinant puromycin-sensitive aminopeptidase was generated and its substrate specificity investigated. The kcat for Val-pNA was significantly lower than that for Ala-pNA, suggesting that some amino acids are preferred over others. Furthermore, the three-fold higher kcat for Val-Ser-cHPMPC as compared to Val-pNA suggests that the leaving group may play an important role in determining hydrolytic activity. In addition to its ability to hydrolyze a variety of substrates, these observations strongly suggest that puromycin-sensitive aminopeptidase is an important enzyme for activating Val-Ser-cHPMPC in vivo. Taken together, our data suggest that puromycin-sensitive aminopeptidase makes an attractive target for future prodrug design. PMID:19969024

  5. Biological Agents

    MedlinePlus

    ... to Z Index Contact Us FAQs What's New Biological Agents This page requires that javascript be enabled ... and Health Topics A-Z Index What's New Biological agents include bacteria, viruses, fungi, other microorganisms and ...

  6. Review of antiviral and immunomodulating properties of plants of the Peruvian rainforest with a particular emphasis on Una de Gato and Sangre de Grado.

    PubMed

    Williams, J E

    2001-12-01

    Viral diseases, including emerging and chronic viruses, are an increasing worldwide health concern. As a consequence, the discovery of new antiviral agents from plants has assumed more urgency than in the past. A number of native Amazonian medicines of plant origin are known to have antimicrobial and anti-inflammatory activity, although only a few have been studied for their antiviral properties and immunomodulating effects. Those most studied include: Sangre de Grado (drago) (Croton lechleri) in the Euphorbiaceae family and Una de Gato (Uncaria tomentosa) in the Rubiaceae family. This article reviews the chemical composition, pharmacological properties, state of current research, clinical use, and potential antiviral and immunomodulating activity of these and other plants from the Peruvian Amazon.

  7. In vitro Evaluation of the Antiviral Activity of an Extract of Date Palm (Phoenix dactylifera L.) Pits on a Pseudomonas Phage

    PubMed Central

    Naji, Mazen A.

    2010-01-01

    A crude acetone extract of the pit of date palm (Phoenix dactylifera L.) was prepared and its antiviral activity evaluated against lytic Pseudomonas phage ATCC 14209-B1, using Pseudomonas aeruginosa ATCC 25668 as the host cell. The antiviral activity of date pits was found to be mediated by binding to the phage, with minimum inhibitory concentration (MIC) of <10 μg ml−1. The decimal reduction time (D-values), the concentration exponent (η) and the phage inactivation kinetics were determined. The date pit extracts show a strong ability to inhibit the infectivity of Pseudomonas phage ATCC 14209-B1 and completely prevented bacterial lysis, which it is hoped will promote research into its potential as a novel antiviral agent against pathogenic human viruses. PMID:18955267

  8. Broad-Spectrum Drugs Against Viral Agents

    PubMed Central

    Christopher, Mary E.; Wong, Jonathan P.

    2008-01-01

    Development of antivirals has focused primarily on vaccines and on treatments for specific viral agents. Although effective, these approaches may be limited in situations where the etiologic agent is unknown or when the target virus has undergone mutation, recombination or reassortment. Augmentation of the innate immune response may be an effective alternative for disease amelioration. Nonspecific, broad-spectrum immune responses can be induced by double-stranded (ds)RNAs such as poly (ICLC), or oligonucleotides (ODNs) containing unmethylated deocycytidyl-deoxyguanosinyl (CpG) motifs. These may offer protection against various bacterial and viral pathogens regardless of their genetic makeup, zoonotic origin or drug resistance. PMID:19325820

  9. Interferons: Success in anti-viral immunotherapy.

    PubMed

    Lin, Fan-ching; Young, Howard A

    2014-08-01

    The interferons (IFNs) are glycoproteins with strong antiviral activities that represent one of the first lines of host defense against invading pathogens. These proteins are classified into three groups, Type I, II and III IFNs, based on the structure of their receptors on the cell surface. Due to their ability to modulate immune responses, they have become attractive therapeutic options to control chronic virus infections. In combination with other drugs, Type I IFNs are considered as "standard of care" in suppressing Hepatitis C (HCV) and Hepatitis B (HBV) infections, while Type III IFN has generated encouraging results as a treatment for HCV infection in phase III clinical trials. However, though effective, using IFNs as a treatment is not without the need for caution. IFNs are such powerful cytokines that affect a wide array of cell types; as a result, patients usually experience unpleasant symptoms, with a percentage of patients suffering system wide effects. Thus, constant monitoring is required for patients treated with IFN in order to reach the treatment goals of suppressing virus infection and maintaining quality of life.

  10. The antiviral activities of ISG15

    PubMed Central

    Morales, David J.; Lenschow, Deborah J.

    2014-01-01

    Post-translational protein modification is an important strategy for the regulation of the cell proteome independent of the need for new gene expression. Ubiquitin and ubiquitin-like modifiers mediate the regulation of protein levels, signaling pathways, vesicular trafficking, and many other cellular processes through their covalent conjugation to proteins. Interferon stimulated gene 15 (ISG15) is a type I interferon induced ubiquitin-like modifier. In addition to conjugating to potentially hundreds of target proteins, ISG15 can be found in an unconjugated form both inside of the cell and released from interferon stimulated cells into the extracellular environment. Due to its robust expression after type I interferon stimulation and the broad panel of proteins that it targets, ISG15 has drawn much attention as a potential regulator of the immune response and has been shown to mediate protection in a number of different viral infection models. Here we will review the current state of the field of ISG15, the viruses against which ISG15 mediates protection, and the mechanisms by which ISG15 exerts antiviral activity. PMID:24095857

  11. Optimizing distribution of pandemic influenza antiviral drugs.

    PubMed

    Singh, Bismark; Huang, Hsin-Chan; Morton, David P; Johnson, Gregory P; Gutfraind, Alexander; Galvani, Alison P; Clements, Bruce; Meyers, Lauren A

    2015-02-01

    We provide a data-driven method for optimizing pharmacy-based distribution of antiviral drugs during an influenza pandemic in terms of overall access for a target population and apply it to the state of Texas, USA. We found that during the 2009 influenza pandemic, the Texas Department of State Health Services achieved an estimated statewide access of 88% (proportion of population willing to travel to the nearest dispensing point). However, access reached only 34.5% of US postal code (ZIP code) areas containing <1,000 underinsured persons. Optimized distribution networks increased expected access to 91% overall and 60% in hard-to-reach regions, and 2 or 3 major pharmacy chains achieved near maximal coverage in well-populated areas. Independent pharmacies were essential for reaching ZIP code areas containing <1,000 underinsured persons. This model was developed during a collaboration between academic researchers and public health officials and is available as a decision support tool for Texas Department of State Health Services at a Web-based interface. PMID:25625858

  12. Current and new cytomegalovirus antivirals and novel animal model strategies.

    PubMed

    McGregor, Alistair

    2010-09-01

    Cytomegalovirus (CMV) is a significant health problem among immunosuppressed individuals. In particular, transplant and AIDS patients and the developing fetus in utero are highly susceptible to CMV. In these vulnerable populations, infection leads to life threatening end organ viral disease or in surviving newborn babies to deafness or to mental retardation. Currently, the most effective way to control CMV infection, given the lack of an effective vaccine, is by antiviral therapy. However, available antivirals suffer from complications associated with prolonged use, such as drug toxicity as well as the emergence of resistant strains of virus. Additionally, since CMV has multiple complex immune evasion strategies, to avoid innate and adaptive immune responses, there is a need for new antiviral development. Any antiviral should be tested in a controlled animal model but species specificity of HCMV precludes the direct study of the virus in an animal model. Consequently, animal CMV in their respective animal host are used to study intervention strategies. In this review, both current and new antiviral strategies are discussed as are the various animal models and strategies to improve existing antiviral animal models by humanizing animal CMV.

  13. The Broad-Spectrum Antiviral Protein ZAP Restricts Human Retrotransposition

    PubMed Central

    Goodier, John L.; Pereira, Gavin C.; Cheung, Ling E.; Rose, Rebecca J.; Kazazian, Haig H.

    2015-01-01

    Intrinsic immunity describes the set of recently discovered but poorly understood cellular mechanisms that specifically target viral pathogens. Their discovery derives in large part from intensive studies of HIV and SIV that revealed restriction factors acting at various stages of the retroviral life cycle. Recent studies indicate that some factors restrict both retroviruses and retrotransposons but surprisingly in ways that may differ. We screened known interferon-stimulated antiviral proteins previously untested for their effects on cell culture retrotransposition. Several factors, including BST2, ISG20, MAVS, MX2, and ZAP, showed strong L1 inhibition. We focused on ZAP (PARP13/ZC3HAV1), a zinc-finger protein that targets viruses of several families, including Retroviridae, Tiloviridae, and Togaviridae, and show that ZAP expression also strongly restricts retrotransposition in cell culture through loss of L1 RNA and ribonucleoprotein particle integrity. Association of ZAP with the L1 ribonucleoprotein particle is supported by co-immunoprecipitation and co-localization with ORF1p in cytoplasmic stress granules. We also used mass spectrometry to determine the protein components of the ZAP interactome, and identified many proteins that directly interact and colocalize with ZAP, including MOV10, an RNA helicase previously shown to suppress retrotransposons. The detection of a chaperonin complex, RNA degradation proteins, helicases, post-translational modifiers, and components of chromatin modifying complexes suggest mechanisms of ZAP anti-retroelement activity that function in the cytoplasm and perhaps also in the nucleus. The association of the ZAP ribonucleoprotein particle with many interferon-stimulated gene products indicates it may be a key player in the interferon response. PMID:26001115

  14. Antiviral Activity of Oroxylin A against Coxsackievirus B3 Alleviates Virus-Induced Acute Pancreatic Damage in Mice

    PubMed Central

    Kang, Ju Won; Hwang, Sam Noh; Rhee, Ki-Jong; Shim, Aeri; Hong, Eun-Hye; Kim, Yeon-Jeong; Jeon, Sang-Min; Chang, Sun-Young; Kim, Dong-Eun; Cho, Sungchan; Ko, Hyun-Jeong

    2016-01-01

    The flavonoids mosloflavone, oroxylin A, and norwogonin, which were purified from Scutellaria baicalensis Georgi, significantly protected Vero cells against Coxsackievirus B3 (CVB3)-induced cell death. To investigate the in vivo antiviral activity of oroxylin A, we intraperitoneally inoculated CVB3 into 4-week-old BALB/c mice. Body weights and blood glucose levels of the mice were decreased after CVB3 infection, and these changes were attenuated by the administration of oroxylin A. Importantly, treatment of mice with oroxylin A reduced viral titers in the pancreas and decreased the serum levels of the inflammatory cytokines including interleukin-6 (IL-6) and tumor necrosis factor (TNF)-α. Additionally, the administration of oroxylin A mitigated the histological pancreatic lesions and apoptotic cell death induced by CVB3 infection and increased the levels of phospho-eIF2α in infected pancreata. The results suggest that oroxylin A may represent a potent antiviral agent against CVB3 infection. PMID:27195463

  15. Influenza antiviral susceptibility monitoring activities in relation to national antiviral stockpiles in Europe during the winter 2006/2007 season.

    PubMed

    Meijer, A; Lackenby, A; Hay, A; Zambon, M

    2007-04-01

    Due to the influenza pandemic threat, many countries are stockpiling antivirals in the hope of limiting the impact of a future pandemic virus. Since resistance to antiviral drugs would probably significantly alter the effectiveness of antivirals, surveillance programmes to monitor the emergence of resistance are of considerable importance. During the 2006/2007 influenza season, an inventory was conducted by the European Surveillance Network for Vigilance against Viral Resistance (VIRGIL) in collaboration with the European Influenza Surveillance Scheme (EISS) to evaluate antiviral susceptibility testing by the National Influenza Reference Laboratories (NIRL) in relation to the national antiviral stockpile in 30 European countries that are members of EISS. All countries except Ukraine had a stockpile of the neuraminidase inhibitor (NAI) oseltamivir. Additionally, four countries had a stockpile of the NAI zanamivir and three of the M2 ion channel inhibitor rimantadine. Of 29 countries with a NAI stockpile, six countries' NIRLs could determine virus susceptibility by 50% inhibitory concentration (IC50) and in 13 countries it could be done by sequencing. Only in one of the three countries with a rimantadine stockpile could the NIRL determine virus susceptibility, by sequencing only. However, including the 18 countries that had plans to introduce or extend antiviral susceptibility testing, the NIRLs of 21 of the 29 countries with a stockpile would be capable of susceptibility testing appropriate to the stockpiled drug by the end of the 2007/2008 influenza season. Although most European countries in this study have stockpiles of influenza antivirals, susceptibility surveillance capability by the NIRLs appropriate to the stockpiled antivirals is limited. PMID:17991386

  16. Systems Biology-Based Investigation of Cellular Antiviral Drug Targets Identified by Gene-Trap Insertional Mutagenesis.

    PubMed

    Cheng, Feixiong; Murray, James L; Zhao, Junfei; Sheng, Jinsong; Zhao, Zhongming; Rubin, Donald H

    2016-09-01

    Viruses require host cellular factors for successful replication. A comprehensive systems-level investigation of the virus-host interactome is critical for understanding the roles of host factors with the end goal of discovering new druggable antiviral targets. Gene-trap insertional mutagenesis is a high-throughput forward genetics approach to randomly disrupt (trap) host genes and discover host genes that are essential for viral replication, but not for host cell survival. In this study, we used libraries of randomly mutagenized cells to discover cellular genes that are essential for the replication of 10 distinct cytotoxic mammalian viruses, 1 gram-negative bacterium, and 5 toxins. We herein reported 712 candidate cellular genes, characterizing distinct topological network and evolutionary signatures, and occupying central hubs in the human interactome. Cell cycle phase-specific network analysis showed that host cell cycle programs played critical roles during viral replication (e.g. MYC and TAF4 regulating G0/1 phase). Moreover, the viral perturbation of host cellular networks reflected disease etiology in that host genes (e.g. CTCF, RHOA, and CDKN1B) identified were frequently essential and significantly associated with Mendelian and orphan diseases, or somatic mutations in cancer. Computational drug repositioning framework via incorporating drug-gene signatures from the Connectivity Map into the virus-host interactome identified 110 putative druggable antiviral targets and prioritized several existing drugs (e.g. ajmaline) that may be potential for antiviral indication (e.g. anti-Ebola). In summary, this work provides a powerful methodology with a tight integration of gene-trap insertional mutagenesis testing and systems biology to identify new antiviral targets and drugs for the development of broadly acting and targeted clinical antiviral therapeutics.

  17. Systems Biology-Based Investigation of Cellular Antiviral Drug Targets Identified by Gene-Trap Insertional Mutagenesis.

    PubMed

    Cheng, Feixiong; Murray, James L; Zhao, Junfei; Sheng, Jinsong; Zhao, Zhongming; Rubin, Donald H

    2016-09-01

    Viruses require host cellular factors for successful replication. A comprehensive systems-level investigation of the virus-host interactome is critical for understanding the roles of host factors with the end goal of discovering new druggable antiviral targets. Gene-trap insertional mutagenesis is a high-throughput forward genetics approach to randomly disrupt (trap) host genes and discover host genes that are essential for viral replication, but not for host cell survival. In this study, we used libraries of randomly mutagenized cells to discover cellular genes that are essential for the replication of 10 distinct cytotoxic mammalian viruses, 1 gram-negative bacterium, and 5 toxins. We herein reported 712 candidate cellular genes, characterizing distinct topological network and evolutionary signatures, and occupying central hubs in the human interactome. Cell cycle phase-specific network analysis showed that host cell cycle programs played critical roles during viral replication (e.g. MYC and TAF4 regulating G0/1 phase). Moreover, the viral perturbation of host cellular networks reflected disease etiology in that host genes (e.g. CTCF, RHOA, and CDKN1B) identified were frequently essential and significantly associated with Mendelian and orphan diseases, or somatic mutations in cancer. Computational drug repositioning framework via incorporating drug-gene signatures from the Connectivity Map into the virus-host interactome identified 110 putative druggable antiviral targets and prioritized several existing drugs (e.g. ajmaline) that may be potential for antiviral indication (e.g. anti-Ebola). In summary, this work provides a powerful methodology with a tight integration of gene-trap insertional mutagenesis testing and systems biology to identify new antiviral targets and drugs for the development of broadly acting and targeted clinical antiviral therapeutics. PMID:27632082

  18. Systems Biology-Based Investigation of Cellular Antiviral Drug Targets Identified by Gene-Trap Insertional Mutagenesis

    PubMed Central

    Zhao, Junfei; Sheng, Jinsong; Rubin, Donald H.

    2016-01-01

    Viruses require host cellular factors for successful replication. A comprehensive systems-level investigation of the virus-host interactome is critical for understanding the roles of host factors with the end goal of discovering new druggable antiviral targets. Gene-trap insertional mutagenesis is a high-throughput forward genetics approach to randomly disrupt (trap) host genes and discover host genes that are essential for viral replication, but not for host cell survival. In this study, we used libraries of randomly mutagenized cells to discover cellular genes that are essential for the replication of 10 distinct cytotoxic mammalian viruses, 1 gram-negative bacterium, and 5 toxins. We herein reported 712 candidate cellular genes, characterizing distinct topological network and evolutionary signatures, and occupying central hubs in the human interactome. Cell cycle phase-specific network analysis showed that host cell cycle programs played critical roles during viral replication (e.g. MYC and TAF4 regulating G0/1 phase). Moreover, the viral perturbation of host cellular networks reflected disease etiology in that host genes (e.g. CTCF, RHOA, and CDKN1B) identified were frequently essential and significantly associated with Mendelian and orphan diseases, or somatic mutations in cancer. Computational drug repositioning framework via incorporating drug-gene signatures from the Connectivity Map into the virus-host interactome identified 110 putative druggable antiviral targets and prioritized several existing drugs (e.g. ajmaline) that may be potential for antiviral indication (e.g. anti-Ebola). In summary, this work provides a powerful methodology with a tight integration of gene-trap insertional mutagenesis testing and systems biology to identify new antiviral targets and drugs for the development of broadly acting and targeted clinical antiviral therapeutics. PMID:27632082

  19. Antiviral macrophage responses in flavivirus encephalitis.

    PubMed

    Ashhurst, Thomas Myles; Vreden, Caryn van; Munoz-Erazo, Luis; Niewold, Paula; Watabe, Kanami; Terry, Rachael L; Deffrasnes, Celine; Getts, Daniel R; Cole King, Nicholas Jonathan

    2013-11-01

    Mosquito-borne flaviviruses are a major current and emerging threat, affecting millions of people worldwide. Global climate change, combined with increasing proximity of humans to animals and mosquito vectors by expansion into natural habitats, coupled with the increase in international travel, have resulted in significant spread and concomitant increase in the incidence of infection and severe disease. Although neuroinvasive disease has been well described for some viral infections such as Japanese Encephalitis virus (JEV) and West Nile virus (WNV), others such as dengue virus (DENV) have recently displayed an emerging pattern of neuroinvasive disease, distinct from the previously observed, systemically-induced encephalomyelopathy. In this setting, the immune response is a crucial component of host defence, in preventing viral dissemination and invasion of the central nervous system (CNS). However, subversion of the anti-viral activities of macrophages by flaviviruses can facilitate viral replication and spread, enhancing the intensity of immune responses, leading to severe immune-mediated disease which may be further exacerbated during the subsequent infection with some flaviviruses. Furthermore, in the CNS myeloid cells may be responsible for inducing specific inflammatory changes, which can lead to significant pathological damage during encephalitis. The interaction of virus and cells of the myeloid lineage is complex, and this interaction is likely responsible at least in part, for crucial differences between viral clearance and pathology. Recent studies on the role of myeloid cells in innate immunity and viral control, and the mechanisms of evasion and subversion used by flaviviruses are rapidly advancing our understanding of the immunopathological mechanisms involved in flavivirus encephalitis and will lead to the development of therapeutic strategies previously not considered. PMID:24434318

  20. Antiviral effect of ranpirnase against Ebola virus.

    PubMed

    Hodge, Thomas; Draper, Ken; Brasel, Trevor; Freiberg, Alexander; Squiquera, Luis; Sidransky, David; Sulley, Jamie; Taxman, Debra J

    2016-08-01

    The recent epidemic of Ebola has intensified the need for the development of novel antiviral therapeutics that prolong and improve survival against deadly viral diseases. We sought to determine whether ranpirnase, an endoribonuclease from Rana pipiens with a demonstrated human safety profile in phase III oncology trials, can reduce titers of Ebola virus (EBOV) in infected cells, protect mice against mouse-adapted EBOV challenge, and reduce virus levels in infected mice. Our results demonstrate that 0.50 μg/ml ranpirnase is potently effective at reducing EBOV Zaire Kikwit infection in cultured Vero E6 cells (Selectivity Index 47.8-70.2). In a prophylactic study, a single intravenous dose of 0.1 mg/kg ranpirnase protected 70% of mice from progressive infection. Additionally, in a post-exposure prophylactic study, 100% of female mice survived infection after intraperitoneal administration of 0.1 mg/kg ranpirnase for ten days beginning 1 h post challenge. Most of the male counterparts were sacrificed due to weight loss by Study Day 8 or 9; however, the Clinical Activity/Behavior scores of these mice remained low and no significant microscopic pathologies could be detected in the kidneys, livers or spleens. Furthermore, live virus could not be detected in the sera of ranpirnase-treated mice by Study Day 8 or in the kidneys, livers or spleens by Study Day 12, and viral RNA levels declined exponentially by Study Day 12. Because ranpirnase is exceptionally stable and has a long track record of safe intravenous administration to humans, this drug provides a promising new candidate for clinical consideration in the treatment of Ebola virus disease alone or in combination with other therapeutics. PMID:27350309

  1. Antiviral Protection via RdRP-Mediated Stable Activation of Innate Immunity.

    PubMed

    Painter, Meghan M; Morrison, James H; Zoecklein, Laurie J; Rinkoski, Tommy A; Watzlawik, Jens O; Papke, Louisa M; Warrington, Arthur E; Bieber, Allan J; Matchett, William E; Turkowski, Kari L; Poeschla, Eric M; Rodriguez, Moses

    2015-12-01

    For many emerging and re-emerging infectious diseases, definitive solutions via sterilizing adaptive immunity may require years or decades to develop, if they are even possible. The innate immune system offers alternative mechanisms that do not require antigen-specific recognition or a priori knowledge of the causative agent. However, it is unclear whether effective stable innate immune system activation can be achieved without triggering harmful autoimmunity or other chronic inflammatory sequelae. Here, we show that transgenic expression of a picornavirus RNA-dependent RNA polymerase (RdRP), in the absence of other viral proteins, can profoundly reconfigure mammalian innate antiviral immunity by exposing the normally membrane-sequestered RdRP activity to sustained innate immune detection. RdRP-transgenic mice have life-long, quantitatively dramatic upregulation of 80 interferon-stimulated genes (ISGs) and show profound resistance to normally lethal viral challenge. Multiple crosses with defined knockout mice (Rag1, Mda5, Mavs, Ifnar1, Ifngr1, and Tlr3) established that the mechanism operates via MDA5 and MAVS and is fully independent of the adaptive immune system. Human cell models recapitulated the key features with striking fidelity, with the RdRP inducing an analogous ISG network and a strict block to HIV-1 infection. This RdRP-mediated antiviral mechanism does not depend on secondary structure within the RdRP mRNA but operates at the protein level and requires RdRP catalysis. Importantly, despite lifelong massive ISG elevations, RdRP mice are entirely healthy, with normal longevity. Our data reveal that a powerfully augmented MDA5-mediated activation state can be a well-tolerated mammalian innate immune system configuration. These results provide a foundation for augmenting innate immunity to achieve broad-spectrum antiviral protection. PMID:26633895

  2. Antiviral Protection via RdRP-Mediated Stable Activation of Innate Immunity.

    PubMed

    Painter, Meghan M; Morrison, James H; Zoecklein, Laurie J; Rinkoski, Tommy A; Watzlawik, Jens O; Papke, Louisa M; Warrington, Arthur E; Bieber, Allan J; Matchett, William E; Turkowski, Kari L; Poeschla, Eric M; Rodriguez, Moses

    2015-12-01

    For many emerging and re-emerging infectious diseases, definitive solutions via sterilizing adaptive immunity may require years or decades to develop, if they are even possible. The innate immune system offers alternative mechanisms that do not require antigen-specific recognition or a priori knowledge of the causative agent. However, it is unclear whether effective stable innate immune system activation can be achieved without triggering harmful autoimmunity or other chronic inflammatory sequelae. Here, we show that transgenic expression of a picornavirus RNA-dependent RNA polymerase (RdRP), in the absence of other viral proteins, can profoundly reconfigure mammalian innate antiviral immunity by exposing the normally membrane-sequestered RdRP activity to sustained innate immune detection. RdRP-transgenic mice have life-long, quantitatively dramatic upregulation of 80 interferon-stimulated genes (ISGs) and show profound resistance to normally lethal viral challenge. Multiple crosses with defined knockout mice (Rag1, Mda5, Mavs, Ifnar1, Ifngr1, and Tlr3) established that the mechanism operates via MDA5 and MAVS and is fully independent of the adaptive immune system. Human cell models recapitulated the key features with striking fidelity, with the RdRP inducing an analogous ISG network and a strict block to HIV-1 infection. This RdRP-mediated antiviral mechanism does not depend on secondary structure within the RdRP mRNA but operates at the protein level and requires RdRP catalysis. Importantly, despite lifelong massive ISG elevations, RdRP mice are entirely healthy, with normal longevity. Our data reveal that a powerfully augmented MDA5-mediated activation state can be a well-tolerated mammalian innate immune system configuration. These results provide a foundation for augmenting innate immunity to achieve broad-spectrum antiviral protection.

  3. Antiviral Protection via RdRP-Mediated Stable Activation of Innate Immunity

    PubMed Central

    Painter, Meghan M.; Morrison, James H.; Zoecklein, Laurie J.; Rinkoski, Tommy A.; Watzlawik, Jens O.; Papke, Louisa M.; Warrington, Arthur E.; Bieber, Allan J.; Matchett, William E.; Turkowski, Kari L.; Poeschla, Eric M.; Rodriguez, Moses

    2015-01-01

    For many emerging and re-emerging infectious diseases, definitive solutions via sterilizing adaptive immunity may require years or decades to develop, if they are even possible. The innate immune system offers alternative mechanisms that do not require antigen-specific recognition or a priori knowledge of the causative agent. However, it is unclear whether effective stable innate immune system activation can be achieved without triggering harmful autoimmunity or other chronic inflammatory sequelae. Here, we show that transgenic expression of a picornavirus RNA-dependent RNA polymerase (RdRP), in the absence of other viral proteins, can profoundly reconfigure mammalian innate antiviral immunity by exposing the normally membrane-sequestered RdRP activity to sustained innate immune detection. RdRP-transgenic mice have life-long, quantitatively dramatic upregulation of 80 interferon-stimulated genes (ISGs) and show profound resistance to normally lethal viral challenge. Multiple crosses with defined knockout mice (Rag1, Mda5, Mavs, Ifnar1, Ifngr1, and Tlr3) established that the mechanism operates via MDA5 and MAVS and is fully independent of the adaptive immune system. Human cell models recapitulated the key features with striking fidelity, with the RdRP inducing an analogous ISG network and a strict block to HIV-1 infection. This RdRP-mediated antiviral mechanism does not depend on secondary structure within the RdRP mRNA but operates at the protein level and requires RdRP catalysis. Importantly, despite lifelong massive ISG elevations, RdRP mice are entirely healthy, with normal longevity. Our data reveal that a powerfully augmented MDA5-mediated activation state can be a well-tolerated mammalian innate immune system configuration. These results provide a foundation for augmenting innate immunity to achieve broad-spectrum antiviral protection. PMID:26633895

  4. Susceptibilities of enterovirus D68, enterovirus 71, and rhinovirus 87 strains to various antiviral compounds.

    PubMed

    Smee, Donald F; Evans, W Joseph; Nicolaou, K C; Tarbet, E Bart; Day, Craig W

    2016-07-01

    Compounds were evaluated for antiviral activity in rhabdomyosarcoma (RD) cells against a recent 2014 clinical isolate of enterovirus D68 (EV-D68), a 1962 strain of EV-68D, rhinovirus 87 (RV-87, serologically the same as EV-D68), and enterovirus 71 (EV-71). Test substances included known-active antipicornavirus agents (enviroxime, guanidine HCl, pirodavir, pleconaril, and rupintrivir), nucleobase/nucleoside analogs (3-deazaguanine and ribavirin), and three novel epidithiodiketopiperazines (KCN-2,2'-epi-19, KCN-19, and KCN-21). Of these, rupintrivir was the most potent, with 50% inhibition of viral cytopathic effect (EC50) and 90% inhibition (EC90) of virus yield at 0.0022-0.0053 μM against EV-D68. Enviroxime, pleconaril and the KCN compounds showed efficacy at 0.01-0.3 μM; 3-deazaguanine and pirodavir inhibited EV-D68 at 7-13 μM, and guanidine HCl and ribavirin were inhibitory at 80-135 μM. Pirodavir was active against EV-71 (EC50 of 0.78 μM) but not against RV-87 or EV-D68, and all other compounds were less effective against EV-71 than against RV-87 and EV-D68. The most promising compound inhibiting both virus infections at low concentrations was rupintrivir. Antiviral activity was confirmed for the ten compounds in virus yield reduction (VYR) assays in RD cells, and for enviroxime, guanidine HCl, and pirodavir by cytopathic effect (CPE) assays in A549, HeLa-Ohio-1, and RD cells. These studies may serve as a basis for further pre-clinical discovery of anti-enterovirus inhibitors. Furthermore, the antiviral profiles and growth characteristics observed herein support the assertion that EV-D68 should be classified together with RV-87. PMID:27063860

  5. Replicative Homeostasis III: implications for antiviral therapy and mechanisms of response and non-response

    PubMed Central

    Sallie, Richard

    2007-01-01

    While improved drug regimens have greatly enhanced outcomes for patients with chronic viral infection, antiviral therapy is still not ideal due to drug toxicities, treatment costs, primary drug failure and emergent resistance. New antiviral agents, alternative treatment strategies and a better understanding of viral pathobiology, host responses and drug action are desperately needed. Interferon (IFN) and ribavirin, are effective drugs used to treat hepatitis C (HCV), but the mechanism(s) of their action are uncertain. Error catastrophe (EC), or precipitous loss of replicative fitness caused by genomic mutation, is postulated to mediate ribavirin action, but is a deeply flawed hypothesis lacking empirical confirmation. Paradoxically ribavirin, a proven RNA mutagen, has no impact on HCV viraemia long term, suggesting real viruses, replicating in-vitro, as opposed to mathematical models, replicating in-silico, are likely to resist EC by highly selective replication of fit (~consensus sequence) genomes mediated, in part, by replicative homeostasis (RH), an epicyclic mechanism that dynamically links RNApol fidelity and processivity and other viral protein functions. Replicative homeostasis provides a rational explanation for the various responses seen during treatment of HCV, including genotype-specific and viral load-dependent differential response rates, as well as otherwise unexplained phenomena like the transient inhibition and rebound of HCV viraemia seen during ribavirin monotherapy. Replicative homeostasis also suggests a primarily non-immunological mechanism that mediates increased immune responsiveness during treatment with ribavirin (and other nucleos(t)ide analogues), explicating the enhanced second-phase clearance of HCV ribavirin promotes and, thus, the apparent immunomodulatory action of ribavirin. More importantly, RH suggests specific new antiviral therapeutic strategies. PMID:17355620

  6. Antiviral compounds discovered by virtual screening of small-molecule libraries against dengue virus E protein.

    PubMed

    Zhou, Zhigang; Khaliq, Mansoora; Suk, Jae-Eun; Patkar, Chinmay; Li, Long; Kuhn, Richard J; Post, Carol Beth

    2008-12-19

    Infection by the mosquito-borne dengue virus causes dengue fever and the sometimes fatal dengue hemorrhagic fever. The increasing number of dengue infections per year suggests that the virus is becoming more virulent and its transmission is expanding. Nevertheless, no effective treatment for dengue infection currently exists. In a search for antiviral agents effective against dengue virus, we investigated the potential of targeting a structural protein site rather than an enzymatic one. Using this approach, we now report the discovery of a small molecule ligand that inhibits viral growth. Our results also provide the first evidence that the binding site, a pocket located at the hinge between domains 1 and 2 of the envelope protein (E protein) on the virus surface, is a valid target for antiviral therapy. Ligand candidates were identified from libraries of approximately 142,000 compounds using a computational high-throughput screening protocol targeting this pocket of the E protein. Cell-based assays were conducted on 23 top-ranked compounds. Among four with good antiviral activity profiles, the compound P02 was found to inhibit viral reproduction at micromolar concentrations. Using saturation transfer difference NMR spectroscopy, we also show that the compound binds virus and competes for binding E protein with the known ligand N-octyl-beta-D-glucoside. Together, the results are consistent with an inhibition mechanism against maturation or host-cell entry mediated by ligand binding to the E-protein pocket. P02 is a promising lead compound for future development of an effective treatment against dengue virus and related flaviviruses.

  7. Antiviral effects of β-defensin derived from orange-spotted grouper (Epinephelus coioides).

    PubMed

    Guo, Minglan; Wei, Jingguang; Huang, Xiaohong; Huang, Youhua; Qin, Qiwei

    2012-05-01

    Defensins are a group of small antimicrobial peptides playing an important role in innate host defense. In this study, a β-defensin cloned from liver of orange-spotted grouper, Epinephelus coioides, EcDefensin, showed a key role in inhibiting the infection and replication of two kinds of newly emerging marine fish viruses, an enveloped DNA virus of Singapore grouper iridovirus (SGIV), and a non-enveloped RNA virus of viral nervous necrosis virus (VNNV). The expression profiles of EcDefensin were significantly (P < 0.001) up-regulated after challenging with Lipopolysaccharide (LPS), SGIV and Polyriboinosinic Polyribocytidylic Acid (polyI:C) in vivo. Immunofluorescence staining observed its intracellular innate immune response to viral infection of SGIV and VNNV. EcDefensin was found to possess dual antiviral activity, inhibiting the infection and replication of SGIV and VNNV and inducting a type I interferon-related response in vitro. Synthetic peptide of EcDefensin (Ec-defensin) incubated with virus or cells before infection reduced the viral infectivity. Ec-defensin drastically decreased SGIV and VNNV titers, viral gene expression and structural protein accumulation. Grouper spleen cells over-expressing EcDefensin (GS/pcDNA-EcDefensin) support the inhibition of viral infection and the upregulation of the expression of host immune-related genes, such as antiviral protein Mx and pro-inflammatory cytokine IL-1β. EcDefensin activated type I IFN and Interferon-sensitive response element (ISRE) in vitro. Reporter genes of IFN-Luc and ISRE-Luc were significantly up-regulated in cells transfected with pcDNA-EcDefenisn after infection with SGIV and VNNV. These results suggest that EcDefensin is importantly involved in host immune responses to invasion of viral pathogens, and open the new avenues for design of antiviral agents in fisheries industry.

  8. Antiviral Combination Approach as a Perspective to Combat Enterovirus Infections.

    PubMed

    Galabov, Angel S; Nikolova, Ivanka; Vassileva-Pencheva, Ralitsa; Stoyanova, Adelina

    2015-01-01

    Human enteroviruses distributed worldwide are causative agents of a broad spectrum of diseases with extremely high morbidity, including a series of severe illnesses of the central nervous system, heart, endocrine pancreas, skeleton muscles, etc., as well as the common cold contributing to the development of chronic respiratory diseases, including the chronic obstructive pulmonary disease. The above mentioned diseases along with the significantly high morbidity and mortality in children, as well as in the high-risk populations (immunodeficiencies, neonates) definitely formulate the chemotherapy as the main tool for the control of enterovirus infections. At present, clinically effective antivirals for use in the treatment of enteroviral infection do not exist, in spite of the large amount of work carried out in this field. The main reason for this is the development of drug resistance. We studied the process of development of resistance to the strongest inhibitors of enteroviruses, WIN compounds (VP1 protein hydrophobic pocket blockers), especially in the models in vivo, Coxsackievirus B (CV-B) infections in mice. We introduced the tracing of a panel of phenotypic markers (MIC50 value, plaque shape and size, stability at 50℃, pathogenicity in mice) for characterization of the drug-mutants (resistant and dependent) as a very important stage in the study of enterovirus inhibitors. Moreover, as a result of VP1 RNA sequence analysis performed on the model of disoxaril mutants of CVB1, we determined the molecular basis of the drug-resistance. The monotherapy courses were the only approach used till now. For the first time in the research for anti-enterovirus antivirals our team introduced the testing of combination effect of the selective inhibitors of enterovirus replication with different mode of action. This study resulted in the selection of a number of very effective in vitro double combinations with synergistic effect and a broad spectrum of sensitive

  9. Antiviral Combination Approach as a Perspective to Combat Enterovirus Infections.

    PubMed

    Galabov, Angel S; Nikolova, Ivanka; Vassileva-Pencheva, Ralitsa; Stoyanova, Adelina

    2015-01-01

    Human enteroviruses distributed worldwide are causative agents of a broad spectrum of diseases with extremely high morbidity, including a series of severe illnesses of the central nervous system, heart, endocrine pancreas, skeleton muscles, etc., as well as the common cold contributing to the development of chronic respiratory diseases, including the chronic obstructive pulmonary disease. The above mentioned diseases along with the significantly high morbidity and mortality in children, as well as in the high-risk populations (immunodeficiencies, neonates) definitely formulate the chemotherapy as the main tool for the control of enterovirus infections. At present, clinically effective antivirals for use in the treatment of enteroviral infection do not exist, in spite of the large amount of work carried out in this field. The main reason for this is the development of drug resistance. We studied the process of development of resistance to the strongest inhibitors of enteroviruses, WIN compounds (VP1 protein hydrophobic pocket blockers), especially in the models in vivo, Coxsackievirus B (CV-B) infections in mice. We introduced the tracing of a panel of phenotypic markers (MIC50 value, plaque shape and size, stability at 50℃, pathogenicity in mice) for characterization of the drug-mutants (resistant and dependent) as a very important stage in the study of enterovirus inhibitors. Moreover, as a result of VP1 RNA sequence analysis performed on the model of disoxaril mutants of CVB1, we determined the molecular basis of the drug-resistance. The monotherapy courses were the only approach used till now. For the first time in the research for anti-enterovirus antivirals our team introduced the testing of combination effect of the selective inhibitors of enterovirus replication with different mode of action. This study resulted in the selection of a number of very effective in vitro double combinations with synergistic effect and a broad spectrum of sensitive

  10. Antiviral treatment and other therapeutic interventions for herpes simplex virus epithelial keratitis

    PubMed Central

    Wilhelmus, Kirk R

    2015-01-01

    Background Eye disease due to herpes simplex virus (HSV) commonly presents as epithelial keratitis which, though usually self-limiting, may persist or progress without treatment. Objectives To compare the relative effectiveness of antiviral agents, interferon, and corneal debridement in the treatment of HSV epithelial keratitis. Search methods We searched CENTRAL (which contains the Cochrane Eyes and Vision Group Trials Register) (2014, Issue 12), PubMed (January 1946 to 31 December 2014), EMBASE (January 1980 to 31 December 2014), Latin American and Caribbean Health Sciences Literature Database (LILACS) (January 1982 to 31 December 2014), System for Information on Grey Literature in Europe (OpenGrey) (January 1995 to 31 December 2014), BIOSIS (January 1926 to 5 May 2014), Scopus (January 1966 to 31 December 2014), Japan Science and Technology Institute (J-Global) (January 1975 to 31 December 2014), China National Knowledge Infrastructure (CNKI) (January 1979 to 31 December 2014), British Library’s Electronic Table of Contents (Zetoc) (January 1993 to 7 May 2014). We looked for trials listed on the the metaRegister of Controlled Trials (www.controlled-trials.com), ClinicalTrials.gov (www.clinicaltrials.gov), the World Health Organization (WHO) International Clinical Trials Registry Platform (ICTRP) (www.who.int/ictrp/search/en), Chinese Clinical Trial Registry, the U.S. Food and Drug Administration (FDA) (www.fda.gov/), National Institute for Health and Clinical Excellence (NICE) (www.evidence.nhs.uk) and the European Medicines Agency (EMA) (www.ema.europa.eu/ema/) as of 31 December 2014. There were no language or date restrictions in the search for trials. We also culled literature digests and conference proceedings as of 15 April 2014. There were no language or date restrictions in the search for trials. Selection criteria Randomised and quasi-randomised trials of HSV dendritic or geographic epithelial keratitis were included that reported the proportion of

  11. Methyl-hydroxylamine as an efficacious antibacterial agent that targets the ribonucleotide reductase enzyme.

    PubMed

    Julián, Esther; Baelo, Aida; Gavaldà, Joan; Torrents, Eduard

    2015-01-01

    The emergence of multidrug-resistant bacteria has encouraged vigorous efforts to develop antimicrobial agents with new mechanisms of action. Ribonucleotide reductase (RNR) is a key enzyme in DNA replication that acts by converting ribonucleotides into the corresponding deoxyribonucleotides, which are the building blocks of DNA replication and repair. RNR has been extensively studied as an ideal target for DNA inhibition, and several drugs that are already available on the market are used for anticancer and antiviral activity. However, the high toxicity of these current drugs to eukaryotic cells does not permit their use as antibacterial agents. Here, we present a radical scavenger compound that inhibited bacterial RNR, and the compound's activity as an antibacterial agent together with its toxicity in eukaryotic cells were evaluated. First, the efficacy of N-methyl-hydroxylamine (M-HA) in inhibiting the growth of different Gram-positive and Gram-negative bacteria was demonstrated, and no effect on eukaryotic cells was observed. M-HA showed remarkable efficacy against Mycobacterium bovis BCG and Pseudomonas aeruginosa. Thus, given the M-HA activity against these two bacteria, our results showed that M-HA has intracellular antimycobacterial activity against BCG-infected macrophages, and it is efficacious in partially disassembling and inhibiting the further formation of P. aeruginosa biofilms. Furthermore, M-HA and ciprofloxacin showed a synergistic effect that caused a massive reduction in a P. aeruginosa biofilm. Overall, our results suggest the vast potential of M-HA as an antibacterial agent, which acts by specifically targeting a bacterial RNR enzyme. PMID:25782003

  12. Methyl-Hydroxylamine as an Efficacious Antibacterial Agent That Targets the Ribonucleotide Reductase Enzyme

    PubMed Central

    Julián, Esther; Baelo, Aida; Gavaldà, Joan; Torrents, Eduard

    2015-01-01

    The emergence of multidrug-resistant bacteria has encouraged vigorous efforts to develop antimicrobial agents with new mechanisms of action. Ribonucleotide reductase (RNR) is a key enzyme in DNA replication that acts by converting ribonucleotides into the corresponding deoxyribonucleotides, which are the building blocks of DNA replication and repair. RNR has been extensively studied as an ideal target for DNA inhibition, and several drugs that are already available on the market are used for anticancer and antiviral activity. However, the high toxicity of these current drugs to eukaryotic cells does not permit their use as antibacterial agents. Here, we present a radical scavenger compound that inhibited bacterial RNR, and the compound's activity as an antibacterial agent together with its toxicity in eukaryotic cells were evaluated. First, the efficacy of N-methyl-hydroxylamine (M-HA) in inhibiting the growth of different Gram-positive and Gram-negative bacteria was demonstrated, and no effect on eukaryotic cells was observed. M-HA showed remarkable efficacy against Mycobacterium bovis BCG and Pseudomonas aeruginosa. Thus, given the M-HA activity against these two bacteria, our results showed that M-HA has intracellular antimycobacterial activity against BCG-infected macrophages, and it is efficacious in partially disassembling and inhibiting the further formation of P. aeruginosa biofilms. Furthermore, M-HA and ciprofloxacin showed a synergistic effect that caused a massive reduction in a P. aeruginosa biofilm. Overall, our results suggest the vast potential of M-HA as an antibacterial agent, which acts by specifically targeting a bacterial RNR enzyme. PMID:25782003

  13. The anti‑dengue virus properties of statins may be associated with alterations in the cellular antiviral profile expression.

    PubMed

    Bryan-Marrugo, Owen Lloyd; Arellanos-Soto, Daniel; Rojas-Martinez, Augusto; Barrera-Saldaña, Hugo; Ramos-Jimenez, Javier; Vidaltamayo, Roman; Rivas-Estilla, Ana María

    2016-09-01

    Dengue virus (DENV) susceptibility to cholesterol depleting treatments has been previously reported. There are numerous questions regarding how DENV seizes cellular machinery and cholesterol to improve viral production and the effect of cholesterol sequestering agents on the cellular antiviral response. The aim of the present study was to evaluate the mechanisms involved in the negative regulation of DENV replication induced by agents that diminish intracellular cholesterol levels. Cholesterol synthesis was pharmacologically (fluvastatin, atorvastatin, lovastatin, pravastatin and simvastatin treatment) and genetically (HMGCR‑RNAi) inhibited, in uninfected and DENV2‑infected hepatoma Huh‑7 cells. The cholesterol levels, DENV titer and cellular antiviral expression profile were evaluated. A reduction in the DENV titer, measured as plaque forming units, was observed in DENV‑infected cells following 48 h treatment with 10 µM fluvastatin, 10 µM atorvastatin, 20 µM lovastatin and 20 µM simvastatin, which achieved 70, 70, 65 and 55% DENV2 inhibition, respectively, compared with the untreated cells. In addition, the cytopathic effect was reduced in the statin‑treated DENV‑infected cells. Statins simultaneously reduced cholesterol levels at 48 h, with the exception of DENV2 infected cells. Genetic inhibition of cholesterol synthesis was performed using RNA interference for 3‑hydroxy‑3‑methylglutaryl‑CoA reductase (HMGCR‑siRNA), which indicated a slight reduction in DENV2 titer at 48 h post‑infection, however, with no significant reduction in cholesterol levels. In addition, DENV2 infection was observed to augment the intracellular cholesterol levels in all experimental conditions. Comparison between the cellular antiviral response triggered by DENV2 infection, statin treatment and HMGCR‑siRNA in infected, uninfected, treated and untreated Huh7 cells, showed different expression profiles for the antiviral genes evaluated. All

  14. Host-Targeting Agents to Prevent and Cure Hepatitis C Virus Infection

    PubMed Central

    Zeisel, Mirjam B.; Crouchet, Emilie; Baumert, Thomas F.; Schuster, Catherine

    2015-01-01

    Chronic hepatitis C virus (HCV) infection is a major cause of liver cirrhosis and hepatocellular carcinoma (HCC) which are leading indications of liver transplantation (LT). To date, there is no vaccine to prevent HCV infection and LT is invariably followed by infection of the liver graft. Within the past years, direct-acting antivirals (DAAs) have had a major impact on the management of chronic hepatitis C, which has become a curable disease in the majority of DAA-treated patients. In contrast to DAAs that target viral proteins, host-targeting agents (HTAs) interfere with cellular factors involved in the viral life cycle. By acting through a complementary mechanism of action and by exhibiting a generally higher barrier to resistance, HTAs offer a prospective option to prevent and treat viral resistance. Indeed, given their complementary mechanism of action, HTAs and DAAs can act in a synergistic manner to reduce viral loads. This review summarizes the different classes of HTAs against HCV infection that are in preclinical or clinical development and highlights their potential to prevent HCV infection, e.g., following LT, and to tailor combination treatments to cure chronic HCV infection. PMID:26540069

  15. Identification of a novel multiple kinase inhibitor with potent antiviral activity against influenza virus by reducing viral polymerase activity

    SciTech Connect

    Sasaki, Yutaka; Kakisaka, Michinori; Chutiwitoonchai, Nopporn; Tajima, Shigeru; Hikono, Hirokazu; Saito, Takehiko; Aida, Yoko

    2014-07-18

    Highlights: • Screening of 50,000 compounds and subsequent lead optimization identified WV970. • WV970 has antiviral effects against influenza A, B and highly pathogenic viral strains. • WV970 inhibits viral genome replication and transcription. • A target database search suggests that WV970 may bind to a number of kinases. • KINOMEscan screening revealed that WV970 has inhibitory effects on 15 kinases. - Abstract: Neuraminidase inhibitors are the only currently available influenza treatment, although resistant viruses to these drugs have already been reported. Thus, new antiviral drugs with novel mechanisms of action are urgently required. In this study, we identified a novel antiviral compound, WV970, through cell-based screening of a 50,000 compound library and subsequent lead optimization. This compound exhibited potent antiviral activity with nanomolar IC{sub 50} values against both influenza A and B viruses but not non-influenza RNA viruses. Time-of-addition and indirect immunofluorescence assays indicated that WV970 acted at an early stage of the influenza life cycle, but likely after nuclear entry of viral ribonucleoprotein (vRNP). Further analyses of viral RNA expression and viral polymerase activity indicated that WV970 inhibited vRNP-mediated viral genome replication and transcription. Finally, structure-based virtual screening and comprehensive human kinome screening were used to demonstrate that WV970 acts as a multiple kinase inhibitor, many of which are associated with influenza virus replication. Collectively, these results strongly suggest that WV970 is a promising anti-influenza drug candidate and that several kinases associated with viral replication are promising drug targets.

  16. Antiviral effects of two Ganoderma lucidum triterpenoids against enterovirus 71 infection

    SciTech Connect

    Zhang, Wenjing; Tao, Junyan; Yang, Xiaoping; Yang, Zhuliang; Zhang, Li; Liu, Hongsheng; Wu, Kailang; Wu, Jianguo

    2014-07-04

    Highlights: • Triterpenoids GLTA and GLTB display anti-EV71 activities without cytotoxicity. • The compounds prevent EV71 infection by blocking adsorption of the virus to the cells. • GLTA and GLTB bind to EV71 capsid at the hydrophobic pocket to block EV71 uncoating. • The two compounds significantly inhibit the replication of EV71 viral RNA. • GLTA and GLTB may be used as potential therapeutic agents to treat EV71 infection. - Abstract: Enterovirus 71 (EV71) is a major causative agent for hand, foot and mouth disease (HFMD), and fatal neurological and systemic complications in children. However, there is currently no clinical approved antiviral drug available for the prevention and treatment of the viral infection. Here, we evaluated the antiviral activities of two Ganoderma lucidum triterpenoids (GLTs), Lanosta-7,9(11),24-trien-3-one,15;26-dihydroxy (GLTA) and Ganoderic acid Y (GLTB), against EV71 infection. The results showed that the two natural compounds display significant anti-EV71 activities without cytotoxicity in human rhabdomyosarcoma (RD) cells as evaluated by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cell proliferation assay. The mechanisms by which the two compounds affect EV71 infection were further elucidated by three action modes using Ribavirin, a common antiviral drug, as a positive control. The results suggested that GLTA and GLTB prevent EV71 infection through interacting with the viral particle to block the adsorption of virus to the cells. In addition, the interactions between EV71 virion and the compounds were predicated by computer molecular docking, which illustrated that GLTA and GLTB may bind to the viral capsid protein at a hydrophobic pocket (F site), and thus may block uncoating of EV71. Moreover, we demonstrated that GLTA and GLTB significantly inhibit the replication of the viral RNA (vRNA) of EV71 replication through blocking EV71 uncoating. Thus, GLTA and GLTB may represent two potential

  17. Cytomegalovirus Antivirals and Development of Improved Animal Models

    PubMed Central

    McGregor, Alistair; Choi, K. Yeon

    2015-01-01

    Introduction Cytomegalovirus (CMV) is a ubiquitous pathogen that establishes a life long asymptomatic infection in healthy individuals. Infection of immunesuppressed individuals causes serious illness. Transplant and AIDS patients are highly susceptible to CMV leading to life threatening end organ disease. Another vulnerable population is the developing fetus in utero, where congenital infection can result in surviving newborns with long term developmental problems. There is no vaccine licensed for CMV and current antivirals suffer from complications associated with prolonged treatment. These include drug toxicity and emergence of resistant strains. There is an obvious need for new antivirals. Candidate intervention strategies are tested in controlled pre-clinical animal models but species specificity of HCMV precludes the direct study of the virus in an animal model. Areas covered This review explores the current status of CMV antivirals and development of new drugs. This includes the use of animal models and the development of new improved models such as humanized animal CMV and bioluminescent imaging of virus in animals in real time. Expert Opinion Various new CMV antivirals are in development, some with greater spectrum of activity against other viruses. Although the greatest need is in the setting of transplant patients there remains an unmet need for a safe antiviral strategy against congenital CMV. This is especially important since an effective CMV vaccine remains an elusive goal. In this capacity greater emphasis should be placed on suitable pre-clinical animal models and greater collaboration between industry and academia. PMID:21883024

  18. Antiviral responses of arthropod vectors: an update on recent advances.

    PubMed

    Rückert, Claudia; Bell-Sakyi, Lesley; Fazakerley, John K; Fragkoudis, Rennos

    2014-01-01

    Arthropod vectors, such as mosquitoes, ticks, biting midges and sand flies, transmit many viruses that can cause outbreaks of disease in humans and animals around the world. Arthropod vector species are invading new areas due to globalisation and environmental changes, and contact between exotic animal species, humans and arthropod vectors is increasing, bringing with it the regular emergence of new arboviruses. For future strategies to control arbovirus transmission, it is important to improve our understanding of virus-vector interactions. In the last decade knowledge of arthropod antiviral immunity has increased rapidly. RNAi has been proposed as the most important antiviral response in mosquitoes and it is likely to be the most important antiviral response in all arthropods. However, other newly-discovered antiviral strategies such as melanisation and the link between RNAi and the JAK/STAT pathway via the cytokine Vago have been characterised in the last few years. This review aims to summarise the most important and most recent advances made in arthropod antiviral immunity. PMID:25674592

  19. Antiviral responses of arthropod vectors: an update on recent advances.

    PubMed

    Rückert, Claudia; Bell-Sakyi, Lesley; Fazakerley, John K; Fragkoudis, Rennos

    2014-01-01

    Arthropod vectors, such as mosquitoes, ticks, biting midges and sand flies, transmit many viruses that can cause outbreaks of disease in humans and animals around the world. Arthropod vector species are invading new areas due to globalisation and environmental changes, and contact between exotic animal species, humans and arthropod vectors is increasing, bringing with it the regular emergence of new arboviruses. For future strategies to control arbovirus transmission, it is important to improve our understanding of virus-vector interactions. In the last decade knowledge of arthropod antiviral immunity has increased rapidly. RNAi has been proposed as the most important antiviral response in mosquitoes and it is likely to be the most important antiviral response in all arthropods. However, other newly-discovered antiviral strategies such as melanisation and the link between RNAi and the JAK/STAT pathway via the cytokine Vago have been characterised in the last few years. This review aims to summarise the most important and most recent advances made in arthropod antiviral immunity.

  20. Use of Organosilicon Compounds towards the Rational Design of Antiparasitic and Antiviral Drugs

    PubMed Central

    Déléris, Gérard

    1995-01-01

    One of the major problems met for the conception of antiviral or antiparasitic drugs is to reach a high level of selectivity towards the pathogenic agent versus the host. We shall describe two synthetic approaches where main group organometallics have been used towards this goal. A series of nucleoside sila-analogues was synthesized as potential therapeutic agents designed to inhibit HIV Reverse Transcriptase. In a second approach novel organosilicon derivatives have been synthesized as mimics of antisense oligonucleotides. Infectious agents, namely viruses or parasites, more or less use cellular machinery. Therefore therapeutic agents must interfere with biochemical mechanisms or possess high affinity towards specific molecular cellular components, to reach selectivity. We thought that main group organometallics could show many advantages for designing biologically active molecules in this field. They allow a high synthetic flexibility for the modulations of physico-chemical properties and they show a mechanistic behaviour which may be close to the one of several heteroelements present in living organisms such as sulfur or phosphorus. We tried to use this approach towards two directions involving the synthesis of organosilicon derivatives i.e: -the synthesis of organosilicon derivatives as inhibitors of HIV Reverse Transcriptase, -the synthesis of organosilicon precursors of modified antisense oligonucleotides. PMID:18472760

  1. Rapid progression of antiviral treatments of chronic hepatitis C virus infection.

    PubMed

    Pol, S; Corouge, M; Mallet, V; Sogni, P

    2013-06-01

    The treatment of hepatitis C virus (HCV) infection with pegylated interferon alfa and ribavirin leads to a sustained virologic response in around 50% of patients with HCV genotype 1, 65% with HCV genotype 4, 75% with HCV genotype 3 and around 80% with HCV genotype 2. A better understanding of the HCV life-cycle recently resulted in the development of several potential direct-acting antiviral drugs (DAAs) targeting viral proteins (NS3/4A protease inhibitors, NS5B nucleos(t)idic and non nucleos(t)idic polymerase inhibitors, NS5A replication complex inhibitors). A lot of data have been reported with the combinations of pegylated interferon-alfa/ribavirin and the first generation oral DAAs, Telaprevir and Boceprevir. These regimens have demonstrated a high level of antiviral efficacy and an acceptable safety profile in treatment-naïve patients and in prior non-responders to pegylated interferon-alfa/ribavirin. After this first major step, the combination of the second generation DAAs with pegylated interferon-alfa/ribavirin will impact antiviral potency and tolerance and will reduce the duration of therapies and the pill burden. The next step will be the oral combination of new DAAs which is likely to become the standard of care for chronic HCV after 2015. Most studies are conducted in small numbers of "easy-to-treat" patients with short post-treatment period for concluding to a sustained virologic response: extension of both the numbers of treated patients and post-treatment follow-up, inclusion of more difficult-to-treat patients (experienced genotype 3-infected or genotype 1-infected patients who failed to first generation protease inhibitors, cirrhotic, HIV co-infected patients, allograft recipients or candidates to transplantation) will probably reduce the overall rate of cure. PMID:23831907

  2. Glycosylation of dengue virus glycoproteins and their interactions with carbohydrate receptors: possible targets for antiviral therapy.

    PubMed

    Idris, Fakhriedzwan; Muharram, Siti Hanna; Diah, Suwarni

    2016-07-01

    Dengue virus, an RNA virus belonging to the genus Flavivirus, affects 50 million individuals annually, and approximately 500,000-1,000,000 of these infections lead to dengue hemorrhagic fever or dengue shock syndrome. With no licensed vaccine or specific antiviral treatments available to prevent dengue infection, dengue is considered a major public health problem in subtropical and tropical regions. The virus, like other enveloped viruses, uses the host's cellular enzymes to synthesize its structural (C, E, and prM/M) and nonstructural proteins (NS1-5) and, subsequently, to glycosylate these proteins to produce complete and functional glycoproteins. The structural glycoproteins, specifically the E protein, are known to interact with the host's carbohydrate receptors through the viral proteins' N-glycosylation sites and thus mediate the viral invasion of cells. This review focuses on the involvement of dengue glycoproteins in the course of infection and the virus' exploitation of the host's glycans, especially the interactions between host receptors and carbohydrate moieties. We also discuss the recent developments in antiviral therapies that target these processes and interactions, focusing specifically on the use of carbohydrate-binding agents derived from plants, commonly known as lectins, to inhibit the progression of infection. PMID:27068162

  3. Efficient Virus Extinction by Combinations of a Mutagen and Antiviral Inhibitors

    PubMed Central

    Pariente, Nonia; Sierra, Saleta; Lowenstein, Pedro R.; Domingo, Esteban

    2001-01-01

    The effect of combinations of the mutagenic base analog 5-fluorouracil (FU) and the antiviral inhibitors guanidine hydrochloride (G) and heparin (H) on the infectivity of foot-and-mouth disease virus (FMDV) in cell culture has been investigated. Related FMDV clones differing up to 106-fold in relative fitness in BHK-21 cells have been compared. Systematic extinction of intermediate fitness virus was attained with a combination of FU and G but not with the mutagen or the inhibitor alone. Systematic extinction of high-fitness FMDV required the combination of FU, G, and H. FMDV showing high relative fitness in BHK-21 cells but decreased replicative ability in CHO cells behaved as a low-fitness virus with regard to extinction mutagenesis in CHO cells. This confirms that relative fitness, rather than a specific genomic sequence, determines the FMDV response to enhanced mutagenesis. Mutant spectrum analysis of several genomic regions from a preextinction population showed a statistically significant increase in the number of mutations compared with virus passaged in parallel in the absence of FU and inhibitors. Also, in a preextinction population the types of mutations that can be attributed to the mutagenic action of FU were significantly more frequent than other mutation types. The results suggest that combinations of mutagenic agents and antiviral inhibitors can effectively drive high-fitness virus into extinction. PMID:11559805

  4. Antiviral Effects of Blackberry Extract Against Herpes Simplex Virus Type 1

    PubMed Central

    Danaher, Robert J.; Wang, Chunmei; Dai, Jin; Mumper, Russell J.; Miller, Craig S.

    2011-01-01

    Objective To evaluate antiviral properties of blackberry extract against herpes simplex virus type 1 (HSV-1) in vitro. Methods HSV-infected oral epithelial (OKF6) cells and cell-free virus suspensions were treated with blackberry extract (2.24 to 1400 μg/mL) and virus yield and infectivity were quantified by direct plaque assay. Results Blackberry extract ≥ 56 μg/ml inhibited HSV-1 replication in oral epithelial cells by > 99% (p < 0.005). Concentrations ≥ 280 μg/ml were antiviral when the extract was added after virus adsorption and entry. Exposure of cell-free virus to ≥ 280 μg/ml blackberry extract for 15 minutes at room temperature was virucidal (p = 0.0002). The virucidal effects were not due to pH changes at concentrations up to 1500 μg/ml. Conclusions Blackberry extract inhibited the early stages of HSV-1 replication and had potent virucidal activity. These properties suggest that this natural fruit extract could provide advantage as a topical prophylactic/therapeutic agent for HSV infections. PMID:21827957

  5. Antiviral Effects of Black Raspberry (Rubus coreanus) Seed and Its Gallic Acid against Influenza Virus Infection.

    PubMed

    Lee, Ji-Hye; Oh, Mi; Seok, Jong Hyeon; Kim, Sella; Lee, Dan Bi; Bae, Garam; Bae, Hae-In; Bae, Seon Young; Hong, Young-Min; Kwon, Sang-Oh; Lee, Dong-Hun; Song, Chang-Seon; Mun, Ji Young; Chung, Mi Sook; Kim, Kyung Hyun

    2016-06-06

    Influenza is a serious public health concern worldwide, as it causes significant morbidity and mortality. The emergence of drug-resistant viral strains requires new approaches for the treatment of influenza. In this study, Rubus coreanus seed (RCS) that is left over from the production of wine or juice was found to show antiviral activities against influenza type A and B viruses. Using the time-of-addition plaque assay, viral replication was almost completely abolished by simultaneous treatment with the RCS fraction of less than a 1-kDa molecular weight (RCSF1). One of the polyphenols derived from RCSF1, gallic acid (GA), identified by liquid chromatography-tandem mass spectrometry, showed inhibitory effects against both influenza type A and B viruses, albeit at relatively high concentrations. RCSF1 was bound to hemagglutinin protein, inhibited hemagglutination significantly and disrupted viral particles, whereas GA was found to only disrupt the viral particles by using transmission electron microscopy. In BALB/c mice infected with influenza virus, oral administration of RCSF1 significantly improved the survival rate and reduced the viral titers in the lungs. Our results demonstrate that RCSF1 and GA show potent and broad antiviral activity against influenza A and B type viruses and are promising sources of agents that target virus particles.

  6. Antiviral Effects of Black Raspberry (Rubus coreanus) Seed and Its Gallic Acid against Influenza Virus Infection

    PubMed Central

    Lee, Ji-Hye; Oh, Mi; Seok, Jong Hyeon; Kim, Sella; Lee, Dan Bi; Bae, Garam; Bae, Hae-In; Bae, Seon Young; Hong, Young-Min; Kwon, Sang-Oh; Lee, Dong-Hun; Song, Chang-Seon; Mun, Ji Young; Chung, Mi Sook; Kim, Kyung Hyun

    2016-01-01

    Influenza is a serious public health concern worldwide, as it causes significant morbidity and mortality. The emergence of drug-resistant viral strains requires new approaches for the treatment of influenza. In this study, Rubus coreanus seed (RCS) that is left over from the production of wine or juice was found to show antiviral activities against influenza type A and B viruses. Using the time-of-addition plaque assay, viral replication was almost completely abolished by simultaneous treatment with the RCS fraction of less than a 1-kDa molecular weight (RCSF1). One of the polyphenols derived from RCSF1, gallic acid (GA), identified by liquid chromatography-tandem mass spectrometry, showed inhibitory effects against both influenza type A and B viruses, albeit at relatively high concentrations. RCSF1 was bound to hemagglutinin protein, inhibited hemagglutination significantly and disrupted viral particles, whereas GA was found to only disrupt the viral particles by using transmission electron microscopy. In BALB/c mice infected with influenza virus, oral administration of RCSF1 significantly improved the survival rate and reduced the viral titers in the lungs. Our results demonstrate that RCSF1 and GA show potent and broad antiviral activity against influenza A and B type viruses and are promising sources of agents that target virus particles. PMID:27275830

  7. Inhibition of pokeweed antiviral protein (PAP) by turnip mosaic virus genome-linked protein (VPg).

    PubMed

    Domashevskiy, Artem V; Miyoshi, Hiroshi; Goss, Dixie J

    2012-08-24

    Pokeweed antiviral protein (PAP) from Phytolacca americana is a ribosome-inactivating protein (RIP) and an RNA N-glycosidase that removes specific purine residues from the sarcin/ricin loop of large rRNA, arresting protein synthesis at the translocation step. PAP is also a cap-binding protein and is a potent antiviral agent against many plant, animal, and human viruses. To elucidate the mechanism of RNA depurination, and to understand how PAP recognizes and targets various RNAs, the interactions between PAP and turnip mosaic virus genome-linked protein (VPg) were investigated. VPg can function as a cap analog in cap-independent translation and potentially target PAP to uncapped IRES-containing RNA. In this work, fluorescence spectroscopy and HPLC techniques were used to quantitatively describe PAP depurination activity and PAP-VPg interactions. PAP binds to VPg with high affinity (29.5 nm); the reaction is enthalpically driven and entropically favored. Further, VPg is a potent inhibitor of PAP depurination of RNA in wheat germ lysate and competes with structured RNA derived from tobacco etch virus for PAP binding. VPg may confer an evolutionary advantage by suppressing one of the plant defense mechanisms and also suggests the possible use of this protein against the cytotoxic activity of ribosome-inactivating proteins.

  8. Antiviral Effects of Black Raspberry (Rubus coreanus) Seed and Its Gallic Acid against Influenza Virus Infection.

    PubMed

    Lee, Ji-Hye; Oh, Mi; Seok, Jong Hyeon; Kim, Sella; Lee, Dan Bi; Bae, Garam; Bae, Hae-In; Bae, Seon Young; Hong, Young-Min; Kwon, Sang-Oh; Lee, Dong-Hun; Song, Chang-Seon; Mun, Ji Young; Chung, Mi Sook; Kim, Kyung Hyun

    2016-01-01

    Influenza is a serious public health concern worldwide, as it causes significant morbidity and mortality. The emergence of drug-resistant viral strains requires new approaches for the treatment of influenza. In this study, Rubus coreanus seed (RCS) that is left over from the production of wine or juice was found to show antiviral activities against influenza type A and B viruses. Using the time-of-addition plaque assay, viral replication was almost completely abolished by simultaneous treatment with the RCS fraction of less than a 1-kDa molecular weight (RCSF1). One of the polyphenols derived from RCSF1, gallic acid (GA), identified by liquid chromatography-tandem mass spectrometry, showed inhibitory effects against both influenza type A and B viruses, albeit at relatively high concentrations. RCSF1 was bound to hemagglutinin protein, inhibited hemagglutination significantly and disrupted viral particles, whereas GA was found to only disrupt the viral particles by using transmission electron microscopy. In BALB/c mice infected with influenza virus, oral administration of RCSF1 significantly improved the survival rate and reduced the viral titers in the lungs. Our results demonstrate that RCSF1 and GA show potent and broad antiviral activity against influenza A and B type viruses and are promising sources of agents that target virus particles. PMID:27275830

  9. Antiviral Protein of Momordica charantia L. Inhibits Different Subtypes of Influenza A

    PubMed Central

    Pongthanapisith, Viroj; Ikuta, Kazuyoshi; Puthavathana, Pilaipan; Leelamanit, Wichet

    2013-01-01

    The new antiviral activity of the protein extracted from Momordica charantia was determined with different subtypes of influenza A. The protein was purified from the seed of M. charantia using an anion exchanger and a Fast Protein Liquid Chromatography (FPLC) system. At the concentration of 1.401 mg/mL, the protein did not exhibit cytotoxicity in Madin-Darby canine kidney cells (MDCK) but inhibited 1 × 105 FFU influenza A/PR/8/34 H1N1 virus at 56.50%, 65.72%, and 100% inhibition by the protein treated before the virus (pretreated), the protein treated alongside with the virus (simultaneously treated), and the protein treated after the virus (posttreated) during incubation, respectively. Using 5, 25, and 100 TCID50 of influenza A/New Caledonia/20/99 H1N1, A/Fujian/411/01 H3N2 and A/Thailand/1(KAN-1)/2004 H5N1, the IC50 was calculated to be 100, 150, and 200; 75, 175, and 300; and 40, 75, and 200 μg/mL, respectively. Our present finding indicated that the plant protein inhibited not only H1N1 and H3N2 but also H5N1 subtype. As a result of the broad spectrum of its antiviral activity, this edible plant can be developed as an effective therapeutic agent against various and even new emerging subtypes of influenza A. PMID:23935676

  10. Broad-spectrum antiviral activity of carbodine, the carbocyclic analogue of cytidine.

    PubMed

    De Clercq, E; Bernaerts, R; Shealy, Y F; Montgomery, J A

    1990-01-15

    Carbocyclic cytidine (C-Cyd) is a broad-spectrum antiviral agent active against DNA viruses [pox (vaccinia)], (+)RNA viruses [toga (Sindbis, Semliki forest), corona], (-)RNA viruses [orthomyxo (influenza), paramyxo (parainfluenza, measles), rhabdo (vesicular stomatitis)] and (+/-)RNA viruses (reo). The target enzyme of C-Cyd is supposed to be CTP synthetase that converts UTP to CTP. In keeping with this assumption are the observations that (i) C-Cyd effects a dose-dependent inhibition of RNA synthesis in both virus-infected and uninfected cells, and (ii) exogenous addition of either Urd or Cyd reverses both the antiviral and cytocidal activity of C-Cyd, whereas addition of dThd or dCyd fails to do so. The selectivity of C-Cyd against Sindbis, vesicular stomatitis and reo virus is markedly increased when C-Cyd is combined with Cyd (10 micrograms/mL). This combination may therefore be worth pursuing as a chemotherapeutic modality for the treatment of virus infections. PMID:1689159

  11. Current and novel antiviral strategies for influenza infection.

    PubMed

    Yen, Hui-Ling

    2016-06-01

    Influenza A and B viruses are major causes for respiratory infections in children and adults. Viral and host factors determine clinical manifestations which range from self-resolving uncomplicated infections, severe viral or bacterial secondary pneumonia, to death. Emergence of transmissible resistant variants and time-dependent effectiveness are the major challenges for the currently approved antivirals, M2 ion channel blockers and neuraminidase (NA) inhibitors. Favipiravir that inhibits the RNA-dependent RNA polymerase of multiple RNA viruses is approved in Japan against influenza strains resistant to available antivirals. With expanded knowledge on viral nucleoprotein (NP) and polymerase structures, novel small molecule inhibitors targeting NP oligomer formation, PA endonuclease domain, and the PB2 cap-binding domain are being developed. Combination therapy with different antiviral compounds or with host immune response modulators may further benefit clinical outcomes.

  12. Favipiravir elicits antiviral mutagenesis during virus replication in vivo.

    PubMed

    Arias, Armando; Thorne, Lucy; Goodfellow, Ian

    2014-01-01

    Lethal mutagenesis has emerged as a novel potential therapeutic approach to treat viral infections. Several studies have demonstrated that increases in the high mutation rates inherent to RNA viruses lead to viral extinction in cell culture, but evidence during infections in vivo is limited. In this study, we show that the broad-range antiviral nucleoside favipiravir reduces viral load in vivo by exerting antiviral mutagenesis in a mouse model for norovirus infection. Increased mutation frequencies were observed in samples from treated mice and were accompanied with lower or in some cases undetectable levels of infectious virus in faeces and tissues. Viral RNA isolated from treated animals showed reduced infectivity, a feature of populations approaching extinction during antiviral mutagenesis. These results suggest that favipiravir can induce norovirus mutagenesis in vivo, which in some cases leads to virus extinction, providing a proof-of-principle for the use of favipiravir derivatives or mutagenic nucleosides in the clinical treatment of noroviruses.

  13. Antiviral defense in shrimp: from innate immunity to viral infection.

    PubMed

    Wang, Pei-Hui; Huang, Tianzhi; Zhang, Xiaobo; He, Jian-Guo

    2014-08-01

    The culture of penaeid shrimp is rapidly developing as a major business endeavor worldwide. However, viral diseases have caused huge economic loss in penaeid shrimp culture industries. Knowledge of shrimp innate immunity and antiviral responses has made important progress in recent years, allowing the design of better strategies for the prevention and control of shrimp diseases. In this study, we have updated information on shrimp antiviral immunity and interactions between shrimp hosts and viral pathogens. Current knowledge and recent progress in immune signaling pathways (e.g., Toll/IMD-NF-κB and JAK-STAT signaling pathways), RNAi, phagocytosis, and apoptosis in shrimp antiviral immunity are discussed. The mechanism of viral infection in shrimp hosts and the interactions between viruses and shrimp innate immune systems are also analyzed.

  14. Commensal bacteria calibrate the activation threshold of innate antiviral immunity.

    PubMed

    Abt, Michael C; Osborne, Lisa C; Monticelli, Laurel A; Doering, Travis A; Alenghat, Theresa; Sonnenberg, Gregory F; Paley, Michael A; Antenus, Marcelo; Williams, Katie L; Erikson, Jan; Wherry, E John; Artis, David

    2012-07-27

    Signals from commensal bacteria can influence immune cell development and susceptibility to infectious or inflammatory diseases. However, the mechanisms by which commensal bacteria regulate protective immunity after exposure to systemic pathogens remain poorly understood. Here, we demonstrate that antibiotic-treated (ABX) mice exhibit impaired innate and adaptive antiviral immune responses and substantially delayed viral clearance after exposure to systemic LCMV or mucosal influenza virus. Furthermore, ABX mice exhibited severe bronchiole epithelial degeneration and increased host mortality after influenza virus infection. Genome-wide transcriptional profiling of macrophages isolated from ABX mice revealed decreased expression of genes associated with antiviral immunity. Moreover, macrophages from ABX mice exhibited defective responses to type I and type II IFNs and impaired capacity to limit viral replication. Collectively, these data indicate that commensal-derived signals provide tonic immune stimulation that establishes the activation threshold of the innate immune system required for optimal antiviral immunity.

  15. Ubiquitin in the activation and attenuation of innate antiviral immunity

    PubMed Central

    Heaton, Steven M.

    2016-01-01

    Viral infection activates danger signals that are transmitted via the retinoic acid–inducible gene 1–like receptor (RLR), nucleotide-binding oligomerization domain-like receptor (NLR), and Toll-like receptor (TLR) protein signaling cascades. This places host cells in an antiviral posture by up-regulating antiviral cytokines including type-I interferon (IFN-I). Ubiquitin modifications and cross-talk between proteins within these signaling cascades potentiate IFN-I expression, and inversely, a growing number of viruses are found to weaponize the ubiquitin modification system to suppress IFN-I. Here we review how host- and virus-directed ubiquitin modification of proteins in the RLR, NLR, and TLR antiviral signaling cascades modulate IFN-I expression. PMID:26712804

  16. The Antiviral Effect of Baicalin on Enterovirus 71 In Vitro

    PubMed Central

    Li, Xiang; Liu, Yuanyuan; Wu, Tingting; Jin, Yue; Cheng, Jianpin; Wan, Changbiao; Qian, Weihe; Xing, Fei; Shi, Weifeng

    2015-01-01

    Baicalin is a flavonoid compound extracted from Scutellaria roots that has been reported to possess antibacterial, anti-inflammatory, and antiviral activities. However, the antiviral effect of baicalin on enterovirus 71 (EV71) is still unknown. In this study, we found that baicalin showed inhibitory activity on EV71 infection and was independent of direct virucidal or prophylactic effect and inhibitory viral absorption. The expressions of EV71/3D mRNA and polymerase were significantly blocked by baicalin treatment at early stages of EV71 infection. In addition, baicalin could decrease the expressions of FasL and caspase-3, as well as inhibit the apoptosis of EV71-infected human embryonal rhabdomyosarcoma (RD) cells. Altogether, these results indicate that baicalin exhibits potent antiviral effect on EV71 infection, probably through inhibiting EV71/3D polymerase expression and Fas/FasL signaling pathways. PMID:26295407

  17. Host Cell Factors as Antiviral Targets in Arenavirus Infection

    PubMed Central

    Linero, Florencia N.; Sepúlveda, Claudia S.; Giovannoni, Federico; Castilla, Viviana; García, Cybele C.; Scolaro, Luis A.; Damonte, Elsa B.

    2012-01-01

    Among the members of the Arenaviridae family, Lassa virus and Junin virus generate periodic annual outbreaks of severe human hemorrhagic fever (HF) in endemic areas of West Africa and Argentina, respectively. Given the human health threat that arenaviruses represent and the lack of a specific and safe chemotherapy, the search for effective antiviral compounds is a continuous demanding effort. Since diverse host cell pathways and enzymes are used by RNA viruses to fulfill their replicative cycle, the targeting of a host process has turned an attractive antiviral approach in the last years for many unrelated virus types. This strategy has the additional benefit to reduce the serious challenge for therapy of RNA viruses to escape from drug effects through selection of resistant variants triggered by their high mutation rate. This article focuses on novel strategies to identify inhibitors for arenavirus therapy, analyzing the potential for antiviral developments of diverse host factors essential for virus infection. PMID:23170173

  18. [Chitosan antiviral activity: dependence on structure and depolymerization method].

    PubMed

    Davydova, V N; Nagorskaia, V P; Gorbach, V I; Kalitnik, A A; Reunov, A V; Solov'eva, T F; Ermak, I M

    2011-01-01

    Enzymatic (the action of lysozyme) and chemical (hydrogen peroxide) hydrolysis of chitosans with various degree ofacetylation (DA)--25, 17, and 1.5%--was performed. Purification and fractioning of the hydrolysis products were performed using dialysis, ultrafiltration, and gel-penetrating chromatography Low-molecular (LM) derivatives of the polysaccharide with molecular masses from 17 to 2 kDa were obtained. The study of their antiviral activity against the tobacco mosaic virus (TMV) showed that these samples inhibited the formation of local necroses induced by the virus for 50-90%. The antiviral activity of the LM chitosans significantly increased with the lowering of their polymerization degree. Furthermore, the products of the enzymatic hydrolysis possessed higher activity than the chitosan samples obtained as a result of chemical hydrolysis. It was revealed that the exhibition of the antiviral activity weakly depended on the degree of acetylation of the samples.

  19. Origins and Evolution of tetherin, an Orphan Antiviral Gene.

    PubMed

    Blanco-Melo, Daniel; Venkatesh, Siddarth; Bieniasz, Paul D

    2016-08-10

    Tetherin encodes an interferon-inducible antiviral protein that traps a broad spectrum of enveloped viruses at infected cell surfaces. Despite the absence of any clearly related gene or activity, we describe possible scenarios by which tetherin arose that exemplify how protein modularity, evolvability, and robustness can create and preserve new functions. We find that tetherin genes in various organisms exhibit no sequence similarity and share only a common architecture and location in modern genomes. Moreover, tetherin is part of a cluster of three potential sister genes encoding proteins of similar architecture, some variants of which exhibit antiviral activity while others can be endowed with antiviral activity by a simple modification. Only in slowly evolving species (e.g., coelacanths) does tetherin exhibit sequence similarity to one potential sister gene. Neofunctionalization, drift, and genetic conflict appear to have driven a near complete loss of sequence similarity among modern tetherin genes and their sister genes. PMID:27427209

  20. Phytochemistry, cytotoxicity and antiviral activity of Eleusine indica (sambau)

    NASA Astrophysics Data System (ADS)

    Iberahim, Rashidah; Yaacob, Wan Ahmad; Ibrahim, Nazlina

    2015-09-01

    Goose grass also known as Eleusine indica (EI) is a local medicinal plant that displays antioxidant, antimicrobial and anticancer activities. The present study is to determine the phytochemical constituents, cytotoxicity and antiviral activities for both crude extract and fraction obtained from the plant. The crude extract contained more secondary metabolites compared to the hexane fraction as gauged using standard phytochemical tests. Cytotoxicity screening against Vero cells using MTT assay showed that the CC50 values for crude extract and hexane fraction were 2.07 and 5.62 mg/ml respectively. The antiviral activity towards Herpes Simplex Virus type 1 (HSV-1) was determined using plaque reduction assay. The selective indices (SI = CC50 / EC50) for both methanol extract and hexane fraction were 12.2 and 6.2 respectively. These results demonstrate that the extract prepared from E. indica possesses phytochemical compound that was non cytotoxic to the cell with potential antiviral activity.

  1. Antiviral Drugs for Viruses Other Than Human Immunodeficiency Virus

    PubMed Central

    Razonable, Raymund R.

    2011-01-01

    Most viral diseases, with the exception of those caused by human immunodeficiency virus, are self-limited illnesses that do not require specific antiviral therapy. The currently available antiviral drugs target 3 main groups of viruses: herpes, hepatitis, and influenza viruses. With the exception of the antisense molecule fomivirsen, all antiherpes drugs inhibit viral replication by serving as competitive substrates for viral DNA polymerase. Drugs for the treatment of influenza inhibit the ion channel M2 protein or the enzyme neuraminidase. Combination therapy with Interferon-α and ribavirin remains the backbone treatment for chronic hepatitis C; the addition of serine protease inhibitors improves the treatment outcome of patients infected with hepatitis C virus genotype 1. Chronic hepatitis B can be treated with interferon or a combination of nucleos(t)ide analogues. Notably, almost all the nucleos(t) ide analogues for the treatment of chronic hepatitis B possess anti–human immunodeficiency virus properties, and they inhibit replication of hepatitis B virus by serving as competitive substrates for its DNA polymerase. Some antiviral drugs possess multiple potential clinical applications, such as ribavirin for the treatment of chronic hepatitis C and respiratory syncytial virus and cidofovir for the treatment of cytomegalovirus and other DNA viruses. Drug resistance is an emerging threat to the clinical utility of antiviral drugs. The major mechanisms for drug resistance are mutations in the viral DNA polymerase gene or in genes that encode for the viral kinases required for the activation of certain drugs such as acyclovir and ganciclovir. Widespread antiviral resistance has limited the clinical utility of M2 inhibitors for the prevention and treatment of influenza infections. This article provides an overview of clinically available antiviral drugs for the primary care physician, with a special focus on pharmacology, clinical uses, and adverse effects. PMID

  2. Antiviral therapy for hepatitis C: Has anything changed for pregnant/lactating women?

    PubMed Central

    Spera, Anna Maria; Eldin, Tarek Kamal; Tosone, Grazia; Orlando, Raffaele

    2016-01-01

    Hepatitis C virus (HCV) affects about 3% of the world’s population, with the highest prevalence in individuals under 40. The prevalence in pregnant women varies with geographical distribution (highest in developing countries). Prevalence also increases in sub-populations of women at high risk for blood-transmitted infections. HCV infection in pregnancy represents a non-negligible problem. However, most of the past antiviral regimens cannot be routinely offered to pregnant or breastfeeding women because of their side effects. We briefly reviewed the issue of treatment of HCV infection in pregnant/breastfeeding women focusing on the effects of the new direct-acting antivirals on fertility, pregnancy and lactation in animal studies and on the potential risk for humans based on the pharmacokinetic properties of each drug. Currently, all new therapy regimens are contraindicated in this setting because of lack of sufficient safety information and adequate measures of contraception are still routinely recommended for female patients of childbearing potential. PMID:27134703

  3. Isoflavone Agonists of IRF-3 Dependent Signaling Have Antiviral Activity against RNA Viruses

    PubMed Central

    Wang, Myra L.; Proll, Sean C.; Loo, Yueh-Ming; Katze, Michael G.; Gale, Michael; Iadonato, Shawn P.

    2012-01-01

    There is a growing need for novel antiviral therapies that are broad spectrum, effective, and not subject to resistance due to viral mutations. Using high-throughput screening methods, including computational docking studies and an interferon-stimulated gene 54 (ISG54)-luciferase reporter assay, we identified a class of isoflavone compounds that act as specific agonists of innate immune signaling pathways and cause activation of the interferon regulatory factor (IRF-3) transcription factor. The isoflavone compounds activated the ISG54 promoter, mediated nuclear translocation of IRF-3, and displayed highly potent activity against hepatitis C virus (HCV) and influenza virus. Additionally, these agonists efficiently activated IRF-3 in the presence of the HCV protease NS3-4A, which is known to blunt the host immune response. Furthermore, genomic studies showed that discrete innate immune pathways centered on IRF signaling were regulated following agonist treatment without causing global changes in host gene expression. Following treatment, the expression of only 64 cellular genes was significantly induced. This report provides the first evidence that innate immune pathways dependent on IRF-3 can be successfully targeted by small-molecule drugs for the development of novel broad-spectrum antiviral compounds. PMID:22532686

  4. A cutting-edge view on the current state of antiviral drug development.

    PubMed

    De Clercq, Erik

    2013-11-01

    Prominent in the current stage of antiviral drug development are: (i) for human immunodeficiency virus (HIV), the use of fixed-dose combinations (FDCs), the most recent example being Stribild(TM); (ii) for hepatitis C virus (HCV), the pleiade of direct-acting antivirals (DAAs) that should be formulated in the most appropriate combinations so as to obtain a cure of the infection; (iii)-(v) new strategies (i.e., AIC316, AIC246, and FV-100) for the treatment of herpesvirus infections: herpes simplex virus (HSV), cytomegalovirus (CMV), and varicella-zoster virus (VZV), respectively; (vi) the role of a new tenofovir prodrug, tenofovir alafenamide (TAF) (GS-7340) for the treatment of HIV infections; (vii) the potential use of poxvirus inhibitors (CMX001 and ST-246); (viii) the usefulness of new influenza virus inhibitors (peramivir and laninamivir octanoate); (ix) the position of the hepatitis B virus (HBV) inhibitors [lamivudine, adefovir dipivoxil, entecavir, telbivudine, and tenofovir disoproxil fumarate (TDF)]; and (x) the potential of new compounds such as FGI-103, FGI-104, FGI-106, dUY11, and LJ-001 for the treatment of filoviruses (i.e., Ebola). Whereas for HIV and HCV therapy is aimed at multiple-drug combinations, for all other viruses, HSV, CMV, VZV, pox, influenza, HBV, and filoviruses, current strategies are based on the use of single compounds.

  5. Antiviral Role of IFITM Proteins in African Swine Fever Virus Infection

    PubMed Central

    Martínez-Romero, Carles; Barrado-Gil, Lucía; Galindo, Inmaculada; García-Sastre, Adolfo; Alonso, Covadonga

    2016-01-01

    The interferon-induced transmembrane (IFITM) protein family is a group of antiviral restriction factors that impair flexibility and inhibit membrane fusion at the plasma or the endosomal membrane, restricting viral progression at entry. While IFITMs are widely known to inhibit several single-stranded RNA viruses, there are limited reports available regarding their effect in double-stranded DNA viruses. In this work, we have analyzed a possible antiviral function of IFITMs against a double stranded DNA virus, the African swine fever virus (ASFV). Infection with cell-adapted ASFV isolate Ba71V is IFN sensitive and it induces IFITMs expression. Interestingly, high levels of IFITMs caused a collapse of the endosomal pathway to the perinuclear area. Given that ASFV entry is strongly dependent on endocytosis, we investigated whether IFITM expression could impair viral infection. Expression of IFITM1, 2 and 3 reduced virus infectivity in Vero cells, with IFITM2 and IFITM3 having an impact on viral entry/uncoating. The role of IFITM2 in the inhibition of ASFV in Vero cells could be related to impaired endocytosis-mediated viral entry and alterations in the cholesterol efflux, suggesting that IFITM2 is acting at the late endosome, preventing the decapsidation stage of ASFV. PMID:27116236

  6. Inhibiting avian influenza virus shedding using a novel RNAi antiviral vector technology: proof of concept in an avian cell model.

    PubMed

    Linke, Lyndsey M; Wilusz, Jeffrey; Pabilonia, Kristy L; Fruehauf, Johannes; Magnuson, Roberta; Olea-Popelka, Francisco; Triantis, Joni; Landolt, Gabriele; Salman, Mo

    2016-03-01

    Influenza A viruses pose significant health and economic threats to humans and animals. Outbreaks of avian influenza virus (AIV) are a liability to the poultry industry and increase the risk for transmission to humans. There are limitations to using the AIV vaccine in poultry, creating barriers to controlling outbreaks and a need for alternative effective control measures. Application of RNA interference (RNAi) techniques hold potential; however, the delivery of RNAi-mediating agents is a well-known obstacle to harnessing its clinical application. We introduce a novel antiviral approach using bacterial vectors that target avian mucosal epithelial cells and deliver (small interfering RNA) siRNAs against two AIV genes, nucleoprotein (NP) and polymerase acidic protein (PA). Using a red fluorescent reporter, we first demonstrated vector delivery and intracellular expression in avian epithelial cells. Subsequently, we demonstrated significant reductions in AIV shedding when applying these anti-AIV vectors prophylactically. These antiviral vectors provided up to a 10,000-fold reduction in viral titers shed, demonstrating in vitro proof-of-concept for using these novel anti-AIV vectors to inhibit AIV shedding. Our results indicate this siRNA vector technology could represent a scalable and clinically applicable antiviral technology for avian and human influenza and a prototype for RNAi-based vectors against other viruses.

  7. High antiviral effects of hibiscus tea extract on the H5 subtypes of low and highly pathogenic avian influenza viruses

    PubMed Central

    BAATARTSOGT, Tugsbaatar; BUI, Vuong N.; TRINH, Dai Q.; YAMAGUCHI, Emi; GRONSANG, Dulyatad; THAMPAISARN, Rapeewan; OGAWA, Haruko; IMAI, Kunitoshi

    2016-01-01

    Viral neuraminidase inhibitors are widely used as synthetic anti-influenza drugs for the prevention and treatment of influenza. However, drug-resistant influenza A virus variants, including H5N1 highly pathogenic avian influenza viruses (HPAIVs), have been reported. Therefore, the discovery of novel and effective antiviral agents is warranted. We screened the antiviral effects of 11 herbal tea extracts (hibiscus, black tea, tencha, rosehip tea, burdock tea, green tea, jasmine tea, ginger tea, lavender tea, rose tea and oak tea) against the H5N1 HPAIV in vitro. Among the tested extracts, only the hibiscus extract and its fractionated extract (frHibis) highly and rapidly reduced the titers of all H5 HPAIVs and low pathogenic AIVs (LPAIVs) used in the pre-treatment tests of Madin–Darby canine kidney (MDCK) cells that were inoculated with a mixture of the virus and the extract. Immunogold electron microscopy showed that anti-H5 monoclonal antibodies could not bind to the deformed H5 virus particles pretreated with frHibis. In post-treatment tests of MDCK cells cultured in the presence of frHibis after infection with H5N1 HPAIV, the frHibis inhibited viral replication and the expression of viral antigens and genes. Among the plants tested, hibiscus showed the most prominent antiviral effects against both H5 HPAIV and LPAIV. PMID:27193820

  8. Expression of pokeweed antiviral protein in mammalian cells activates c-Jun NH2-terminal kinase without causing apoptosis.

    PubMed

    Chan Tung, Kelvin W; Mansouri, Sheila; Hudak, Katalin A

    2008-01-01

    Pokeweed antiviral protein (PAP) is a ribosome inactivating protein isolated from the pokeweed plant (Phytolacca americana L.) that exhibits broad range antiviral activity against several human viruses including HIV and influenza. This characteristic suggests that PAP may have therapeutic applications; however, it is not known whether the protein elicits a ribotoxic stress response that would result in cell death. Therefore, we expressed PAP in 293T cells and showed that the enzyme did not inhibit protein translation even though approximately 15% of the ribosomal RNA (rRNA) was depurinated. PAP expression induced the activation of c-Jun NH2-terminal kinase (JNK), which was specific to rRNA depurination, as the enzymatically inactive mutant PAPx did not affect kinase activity. Moreover, incubation of PAP-expressing cells with translation inhibitors diminished JNK activation, indicating that the signal for induction of the kinase pathway originated from ribosomes. JNK activation did not result in apoptosis as demonstrated by the absence of caspase-3 and poly(ADP-ribose) polymerase cleavage and by the lack of cell staining for morphological changes in membrane permeability. Unlike all ribosome inactivating proteins tested thus far, the stress response triggered by PAP expression did not result in cell death, which supports further investigation of the enzyme in the design of novel antiviral agents.

  9. Evasion and subversion of interferon-mediated antiviral immunity by Kaposi's sarcoma-associated herpesvirus: an overview.

    PubMed

    Sathish, Narayanan; Yuan, Yan

    2011-11-01

    Viral invasion of a host cell triggers immune responses with both innate and adaptive components. The innate immune response involving the induction of type I interferons (alpha and beta interferons [IFN-α and -β]) constitutes the first line of antiviral defenses. The type I IFNs signal the transcription of a group of antiviral effector proteins, the IFN-stimulated genes (ISGs), which target distinct viral components and distinct stages of the viral life cycle, aiming to eliminate invading viruses. In the case of Kaposi's sarcoma-associated herpesvirus (KSHV), the etiological agent of Kaposi's sarcoma (KS), a sudden upsurge of type I IFN-mediated innate antiviral signals is seen immediately following both primary de novo infection and viral lytic reactivation from latency. Potent subversion of these responses thus becomes mandatory for the successful establishment of a primary infection following viral entry as well as for efficient viral assembly and egress. This review gives a concise overview of the induction of the type I IFN signaling pathways in response to viral infection and provides a comprehensive understanding of the antagonizing effects exerted by KSHV on type I IFN pathways wielded at various stages of the viral life cycle. Information garnered from this review should result in a better understanding of KSHV biology essential for the development of immunotherapeutic strategies targeted toward KSHV-associated malignancies. PMID:21775463

  10. Antiviral Phosphorodiamidate Morpholino Oligomers are Protective against Chikungunya Virus Infection on Cell-based and Murine Models.

    PubMed

    Lam, Shirley; Chen, Huixin; Chen, Caiyun Karen; Min, Nyo; Chu, Justin Jang Hann

    2015-07-30

    Chikungunya virus (CHIKV) infection in human is associated with debilitating and persistent arthralgia and arthritis. Currently, there is no specific vaccine or effective antiviral available. Anti-CHIKV Phosphorodiamidate Morpholino Oligomer (CPMO) was evaluated for its antiviral efficacy and cytotoxcity in human cells and neonate murine model. Two CPMOs were designed to block translation initiation of a highly conserved sequence in CHIKV non-structural and structural polyprotein, respectively. Pre-treatment of HeLa cells with CPMO1 significantly suppressed CHIKV titre, CHIKV E2 protein expression and prevented CHIKV-induced CPE. CPMO1 activity was also CHIKV-specific as shown by the lack of cross-reactivity against SINV or DENV replication. When administered prophylactically in neonate mice, 15 μg/g CPMO1v conferred 100% survival against CHIKV disease. In parallel, these mice demonstrated significant reduction in viremia and viral load in various tissues. Immunohistological examination of skeletal muscles and liver of CPMO1v-treated mice also showed healthy tissue morphology, in contrast to evident manifestation of CHIKV pathogenesis in PBS- or scrambled sCPMO1v-treated groups. Taken together, our findings highlight for the first time that CPMO1v has strong protective effect against CHIKV infection. This warrants future development of morpholino as an alternative antiviral agent to address CHIKV infection in clinical applications.

  11. Inhibiting avian influenza virus shedding using a novel RNAi antiviral vector technology: proof of concept in an avian cell model.

    PubMed

    Linke, Lyndsey M; Wilusz, Jeffrey; Pabilonia, Kristy L; Fruehauf, Johannes; Magnuson, Roberta; Olea-Popelka, Francisco; Triantis, Joni; Landolt, Gabriele; Salman, Mo

    2016-03-01

    Influenza A viruses pose significant health and economic threats to humans and animals. Outbreaks of avian influenza virus (AIV) are a liability to the poultry industry and increase the risk for transmission to humans. There are limitations to using the AIV vaccine in poultry, creating barriers to controlling outbreaks and a need for alternative effective control measures. Application of RNA interference (RNAi) techniques hold potential; however, the delivery of RNAi-mediating agents is a well-known obstacle to harnessing its clinical application. We introduce a novel antiviral approach using bacterial vectors that target avian mucosal epithelial cells and deliver (small interfering RNA) siRNAs against two AIV genes, nucleoprotein (NP) and polymerase acidic protein (PA). Using a red fluorescent reporter, we first demonstrated vector delivery and intracellular expression in avian epithelial cells. Subsequently, we demonstrated significant reductions in AIV shedding when applying these anti-AIV vectors prophylactically. These antiviral vectors provided up to a 10,000-fold reduction in viral titers shed, demonstrating in vitro proof-of-concept for using these novel anti-AIV vectors to inhibit AIV shedding. Our results indicate this siRNA vector technology could represent a scalable and clinically applicable antiviral technology for avian and human influenza and a prototype for RNAi-based vectors against other viruses. PMID:26910902

  12. Current antiviral practice and course of Hepatitis B virus infection in inflammatory arthritis: a multicentric observational study (A + HBV study)

    PubMed Central

    Kalyoncu, Umut; Emmungil, Hakan; Onat, Ahmet Mesut; Yılmaz, Sedat; Kaşifoglu, Timuçin; Akar, Servet; İnanç, Nevsun; Yıldız, Fatih; Küçükşahin, Orhan; Karadağ, Ömer; Mercan, Rıdvan; Bes, Cemal; Yazısız, Veli; Yılmazer, Barış; Özmen, Mustafa; Erten, Şükran; Şenel, Soner; Yazıcı, Ayten; Taşçılar, Koray; Kalfa, Melike; Kiraz, Sedat; Kısacık, Bünyamin; Pehlivan, Yavuz; Kılıç, Levent; Şimşek, İsmail; Çefle, Ayşe; Akkoç, Nurullah; Direskeneli, Haner; Erken, Eren; Turgay, Murat; Öztürk, Mehmet Akif; Soy, Mehmet; Aksu, Kenan; Dinç, Ayhan; Ertenli, İhsan

    2015-01-01

    Objective The reactivation of hepatitis B virus (HBV) infection is a well-known event in hepatitis B surface antigen (HbsAg)-positive patients receiving immunosuppressive therapy. The objective of this study was to assess the antiviral practice and course of HBV infection in inflammatory arthritis. Material and Methods Nineteen rheumatology centers participated in this retrospective study. HbsAg-positive patients who were taking disease-modifying antirheumatic drugs and who were being tested for HBV viral load at a minimum of two different time points were included. The case report form (CRF) consisted of demographic data, rheumatic diseases, treatment profiles, transaminase levels, viral hepatitis serological markers, and HBV viral load. The reactivation of HBV was defined as the abrupt rise in HBV replication by an increase in serum HBV DNA levels in a patient with a previously inactive HBV infection. Results In total, the data of 101 (female 50.5%) patients were included (76 patients with inactive HBV carriers and 25 patients with chronic HBV infection). The mean age of patients was 44±12 years, and the mean follow-up duration was 31±22 months. Of the 101 patients, 70 (69.3%) received antiviral treatment. HBV reactivation was detected in 13 of 76 (17.1%) patients with inactive HBV carriers. HBV reactivation was observed less frequently, not although significantly, in those patients receiving antiviral prophylaxis compared with those not receiving prophylaxis [5/41 (12.2%) vs. 8/33 (24.2%), p=0.17]. Forty-two patients (31 patients had inactive HBV carriers) were using anti-tumor necrosis factor agents. HBV reactivation was detected in 6 of the 31 (19.3%) patients. Twenty-five patients had chronic hepatitis, and five (20%) of them had not received antiviral prophylaxis. HBV viral loads were persistently elevated in 7 (28%) of 25 patients (three patients under and four patients not under antiviral treatment). Conclusion HBV reactivation was observed in

  13. RNA interference-mediated intrinsic antiviral immunity in invertebrates.

    PubMed

    Nayak, Arabinda; Tassetto, Michel; Kunitomi, Mark; Andino, Raul

    2013-01-01

    In invertebrates such as insects and nematodes, RNA interference (RNAi) provides RNA-based protection against viruses. This form of immunity restricts viral replication and dissemination from infected cells and viruses, in turn, have evolved evasion mechanisms or RNAi suppressors to counteract host defenses. Recent advances indicate that, in addition to RNAi, other related small RNA pathways contribute to antiviral functions in invertebrates. This has led to a deeper understanding of fundamental aspects of small RNA-based antiviral immunity in invertebrates and its contribution to viral spread and pathogenesis.

  14. New quaternary ammonium camphor derivatives and their antiviral activity, genotoxic effects and cytotoxicity.

    PubMed

    Sokolova, Anastasiya S; Yarovaya, Capital O Cyrilliclga I; Shernyukov, Capital A Cyrillicndrey V; Pokrovsky, Capital Em Cyrillicichail A; Pokrovsky, Capital A Cyrillicndrey G; Lavrinenko, Valentina A; Zarubaev, Vladimir V; Tretiak, Tatiana S; Anfimov, Pavel M; Kiselev, Oleg I; Beklemishev, Anatoly B; Salakhutdinov, Nariman F

    2013-11-01

    The synthesis and biological evaluation of a novel series of dimeric camphor derivatives are described. The resulting compounds were studied for their antiviral activity, cyto- and genotoxicity. Compounds 3a and 3d in which the quaternary nitrogen atoms are separated by the C5H10 and С9H18 aliphatic chain, exhibited the highest efficiency as an agent inhibiting the reproduction of the influenza virus A(H1N1)pdm09. The cytotoxicity data of compounds 3 and 4 revealed their moderate activity against malignant cell lines; compound 3f had the highest activity for the CEM-13 cells. These results show close agreement with the data of independent studies on toxicity of these compounds, in particular that the toxicity of compounds strongly depends on spacer length. PMID:23993669

  15. Total synthesis and antiviral activity of indolosesquiterpenoids from the xiamycin and oridamycin families

    PubMed Central

    Meng, Zhanchao; Yu, Haixin; Li, Li; Tao, Wanyin; Chen, Hao; Wan, Ming; Yang, Peng; Edmonds, David J.; Zhong, Jin; Li, Ang

    2015-01-01

    Indolosesquiterpenoids are a growing class of natural products that exhibit a wide range of biological activities. Here, we report the total syntheses of xiamycin A and oridamycins A and B, indolosesquiterpenoids isolated from Streptomyces. Two parallel strategies were exploited to forge the carbazole core: 6π-electrocyclization/aromatization and indole C2–H bond activation/Heck annulation. The construction of their trans-decalin motifs relied on two diastereochemically complementary radical cyclization reactions mediated by Ti(III) and Mn(III), respectively. The C23 hydroxyl of oridamycin B was introduced by an sp3 C–H bond oxidation at a late stage. On the basis of the chemistry developed, the dimeric congener dixiamycin C has been synthesized for the first time. Evaluation of the antiviral activity of these compounds revealed that xiamycin A is a potent agent against herpes simplex virus–1 (HSV-1) in vitro. PMID:25648883

  16. The antiviral activity of leaves of Eucalyptus camaldulensis (Dehn) and Eucalyptus torelliana (R. Muell).

    PubMed

    Adeniyi, Bolanle Alake; Ayepola, Olayemi Oluseun; Adu, Festus Doyin

    2015-09-01

    Human enteroviruses are the major cause of aseptic meningitis and are resistant to all known antibiotics and chemotherapeutic agents. Methanolic extracts of Eucalyptus camaldulensis and Eucalyptus torelliana were tested on human enteroviruses: Poliovirus type I, Coxsackievirus B and Echovirus 6. The virucidal tests showed that the crude extracts were active on the test viruses: poliovirus type 1, coxsackievirus B and echovirus 6 giving a neutralization index of one log and above. The cytotoxicity assay of the crude extracts to L20B (a genetically engineered mouse cell line) and human rhabdomyo sarcoma (RD) cells showed that the extract of E. torelliana was more toxic than the extract of E. camaldulensis. The antiviral study showed that the extract of E. torelliana was more active than that of E. camaldulensis. PMID:26408896