Science.gov

Sample records for acting beta agonists

  1. Long-Acting Beta Agonists Enhance Allergic Airway Disease

    PubMed Central

    Knight, John M.; Mak, Garbo; Shaw, Joanne; Porter, Paul; McDermott, Catherine; Roberts, Luz; You, Ran; Yuan, Xiaoyi; Millien, Valentine O.; Qian, Yuping; Song, Li-Zhen; Frazier, Vincent; Kim, Choel; Kim, Jeong Joo; Bond, Richard A.; Milner, Joshua D.; Zhang, Yuan; Mandal, Pijus K.; Luong, Amber; Kheradmand, Farrah

    2015-01-01

    Asthma is one of the most common of medical illnesses and is treated in part by drugs that activate the beta-2-adrenoceptor (β2-AR) to dilate obstructed airways. Such drugs include long acting beta agonists (LABAs) that are paradoxically linked to excess asthma-related mortality. Here we show that LABAs such as salmeterol and structurally related β2-AR drugs such as formoterol and carvedilol, but not short-acting agonists (SABAs) such as albuterol, promote exaggerated asthma-like allergic airway disease and enhanced airway constriction in mice. We demonstrate that salmeterol aberrantly promotes activation of the allergic disease-related transcription factor signal transducer and activator of transcription 6 (STAT6) in multiple mouse and human cells. A novel inhibitor of STAT6, PM-242H, inhibited initiation of allergic disease induced by airway fungal challenge, reversed established allergic airway disease in mice, and blocked salmeterol-dependent enhanced allergic airway disease. Thus, structurally related β2-AR ligands aberrantly activate STAT6 and promote allergic airway disease. This untoward pharmacological property likely explains adverse outcomes observed with LABAs, which may be overcome by agents that antagonize STAT6. PMID:26605551

  2. Long-acting beta2-agonist in addition to tiotropium versus either tiotropium or long-acting beta2-agonist alone for chronic obstructive pulmonary disease

    PubMed Central

    Karner, Charlotta; Cates, Christopher J

    2014-01-01

    Background Long-acting bronchodilators comprising long-acting beta2-agonists and the anticholinergic agent tiotropium are commonly used for managing persistent symptoms of chronic obstructive pulmonary disease. Combining these treatments, which have different mechanisms of action, may be more effective than the individual components. However, the benefits and risks of combining tiotropium and long-acting beta2-agonists for the treatment of chronic obstructive pulmonary (COPD) disease are unclear. Objectives To assess the relative effects of treatment with tiotropium in addition to long-acting beta2-agonist compared to tiotropium or long-acting beta2-agonist alone in patients with chronic obstructive pulmonary disease. Search methods We searched the Cochrane Airways Group Specialised Register of trials and clinicaltrials.gov up to January 2012. Selection criteria We included parallel group, randomised controlled trials of three months or longer comparing treatment with tiotropium in addition to long-acting beta2-agonist against tiotropium or long-acting beta2-agonist alone for patients with chronic obstructive pulmonary disease. Data collection and analysis Two review authors independently assessed trials for inclusion and then extracted data on trial quality and the outcome results. We contacted study authors for additional information. We collected information on adverse effects from the trials. Main results Five trials were included in this review, mostly recruiting participants with moderate or severe chronic obstructive pulmonary disease. All of them compared tiotropium in addition to long-acting beta2-agonist to tiotropium alone, but only one trial additionally compared a combination of the two types of bronchodilator with long-acting beta2-agonist (formoterol) alone. Two studies used the long-acting beta2-agonist indacaterol, two used formoterol and one used salmeterol. Compared to tiotropium alone (3263 patients), treatment with tiotropium plus long-acting

  3. The role of inhaled long-acting beta-2 agonists in the management of asthma.

    PubMed Central

    Kelly, H. William; Harkins, Michelle S.; Boushey, Homer

    2006-01-01

    The role of inhaled beta-2 agonists in the management of asthma has changed significantly over the last several years. This review outlines the most recent understanding of the pathophysiology of asthma and the studies that define the roles that both short- and long-acting beta-2 agonists play in therapy for this disease. A concentration on the clinical pharmacology and genetic implications for clinical use of this class of drugs in accordance with the national and international guidelines are described. PMID:16532973

  4. Effects of long-acting beta 2-adrenoceptor agonists on mast cells of rat, guinea pig, and human.

    PubMed

    Lau, H Y; Wong, P L; Lai, C K; Ho, J K

    1994-10-01

    The effects of two recently developed long-acting beta 2-adrenoceptor agonists, formoterol and salmeterol, on mast cells from different sources were compared with those of the prototype short-acting analogue, salbutamol. With the exception of high concentrations of salmeterol (> 10(-5) M), none of the tested beta 2-adrenoceptor agonists inhibited the anti-IgE-induced histamine release from rat peritoneal mast cells. In contrast, all three compounds dose dependently inhibited the immunologically induced histamine release from isolated lung mast cells of guinea pig and human at concentrations < or = 10(-5) M.

  5. Safety of long-acting beta agonists and inhaled corticosteroids in children and adolescents with asthma.

    PubMed

    Xia, Ying; Kelton, Christina M L; Xue, Liang; Guo, Jeff J; Bian, Boyang; Wigle, Patricia R

    2013-12-01

    The introduction of long-acting beta agonists (LABAs) was considered a major advance in bronchodilator therapy for adult, as well as pediatric, patients with asthma. However, the use of LABAs has raised safety concerns, especially the potential for severe asthma exacerbations (SAEs) resulting in hospitalizations or even death. Meanwhile, the use of inhaled corticosteroids (ICSs), a cornerstone in the treatment of mild-to-severe persistent asthma, has been associated with growth suppression in children. The purpose of this review was to identify and discuss the major published safety studies surrounding LABA, ICS, and combined LABA/ICS usage in children. By way of a critical search for influential published clinical trials, meta-analyses, and observational studies, six studies relevant to the safety of LABA monotherapy, seven studies relevant to ICS monotherapy, and four studies on the subject of LABA/ICS combination usage were identified and reviewed. Based on the reviewed literature, the controversy surrounding these anti-asthma medications was clearly exposed. On the one hand, there is some evidence that LABA monotherapy may be associated with SAEs and asthma-related death, while ICS monotherapy may be associated with a higher risk of growth suppression. On the other hand, the concurrent use of a LABA with an ICS has been associated with positive outcomes including symptom reduction and reduced rate and severity of exacerbations. Further clinical research is warranted and has been called for by the US Food and Drug Administration. PMID:25114786

  6. Safety of long-acting beta agonists and inhaled corticosteroids in children and adolescents with asthma

    PubMed Central

    Xia, Ying; Kelton, Christina M. L.; Xue, Liang; Bian, Boyang; Wigle, Patricia R.

    2013-01-01

    The introduction of long-acting beta agonists (LABAs) was considered a major advance in bronchodilator therapy for adult, as well as pediatric, patients with asthma. However, the use of LABAs has raised safety concerns, especially the potential for severe asthma exacerbations (SAEs) resulting in hospitalizations or even death. Meanwhile, the use of inhaled corticosteroids (ICSs), a cornerstone in the treatment of mild-to-severe persistent asthma, has been associated with growth suppression in children. The purpose of this review was to identify and discuss the major published safety studies surrounding LABA, ICS, and combined LABA/ICS usage in children. By way of a critical search for influential published clinical trials, meta-analyses, and observational studies, six studies relevant to the safety of LABA monotherapy, seven studies relevant to ICS monotherapy, and four studies on the subject of LABA/ICS combination usage were identified and reviewed. Based on the reviewed literature, the controversy surrounding these anti-asthma medications was clearly exposed. On the one hand, there is some evidence that LABA monotherapy may be associated with SAEs and asthma-related death, while ICS monotherapy may be associated with a higher risk of growth suppression. On the other hand, the concurrent use of a LABA with an ICS has been associated with positive outcomes including symptom reduction and reduced rate and severity of exacerbations. Further clinical research is warranted and has been called for by the US Food and Drug Administration. PMID:25114786

  7. The evolution of beta2-agonists.

    PubMed

    Sears, M R

    2001-08-01

    Beta-agonists have been widely used in the treatment of asthma for many years Although concerns have been expressed over their safety based largely upon epidemics of increased mortality in asthmatics associated with high doses of isoprenaline in the 1960s and fenoterol in the 1970s and 1980s, the specific beta2-agonists are vital drugs in asthma management. The short-acting beta2-agonists have an important prophylactic role in the prevention of exercise-induced bronchoconstriction, and are essential in the emergency treatment of severe asthma. However, little if any benefit seems to be derived from regular use of short-acting beta2-agonists and regular or frequent use can increase the severity of the condition. The development of beta2-agonists with long-acting properties, such as salmeterol and formoterol, has provided advantages over short-acting beta-agonists, such as prolonged bronchodilation, reduced day- and night-time symptoms and improved quality of sleep, and has reduced the requirement for short-acting beta2-agonists as relief medication. Both drugs are well tolerated and, when added to inhaled corticosteroids, produce greater mprovement in lung function than increased steroid dose alone. Because of its rapid onset of action, formoterol also has the potential to be used for as-needed bronchodilator therapy in asthma.

  8. Changes in methacholine induced bronchoconstriction with the long acting beta 2 agonist salmeterol in mild to moderate asthmatic patients.

    PubMed Central

    Booth, H.; Fishwick, K.; Harkawat, R.; Devereux, G.; Hendrick, D. J.; Walters, E. H.

    1993-01-01

    BACKGROUND--Beta-2 agonists protect against non-specific bronchoconstricting agents such as methacholine, but it has been suggested that the protection afforded by long acting beta 2 agonists wanes rapidly with regular treatment. METHODS--The changes in airway responsiveness were investigated during and after eight weeks of regular treatment with salmeterol 50 micrograms twice daily in 26 adult asthmatic patients, 19 of whom were receiving maintenance inhaled corticosteroids. The study was of a randomised, placebo controlled, double blind design. Airway responsiveness to methacholine was measured as PD20 by a standardised dosimeter technique 12 hours after the first dose, at four weeks and eight weeks during treatment (12 hours after the last dose of test medication), and at 60 hours, one week and two weeks after stopping treatment. RESULTS--There were no significant differences between the baseline characteristics of the two groups. A significant improvement in PD20 was seen at all points during treatment with salmeterol compared with the placebo group, with no significant fall off with time. PD20 measurements returned to baseline values after cessation of treatment with no significant difference from the placebo group. CONCLUSIONS--Salmeterol gave significant protection against methacholine induced bronchoconstriction 12 hours after administration. This protection was of small magnitude, but there was no significant attenuation with eight weeks of regular use and no rebound increase in airway responsiveness on stopping treatment in a group of moderate asthmatic patients, the majority of whom were receiving inhaled corticosteroids. PMID:8296255

  9. [Safety of beta-agonists in asthma].

    PubMed

    Oscanoa, Teodoro J

    2014-01-01

    Beta 2 agonist bronchodilators (β2A) are very important part in the pharmacotherapy of bronchial asthma, a disease that progresses in the world in an epidemic way. The β2A are prescribed to millions of people around the world, therefore the safety aspects is of public interest. Short-Acting β2 Agonists (SABAs), such as albuterol inhaler, according to current evidence, confirming its safety when used as a quick-relief or rescue medication. The long-acting β2 agonists (LABAs) The long-acting bronchodilators β2A (Long acting β2 Agonists or LABAs) are used associated with inhaled corticosteroids as controller drugs for asthma exacerbationsaccess, for safety reasons LABAs are not recommended for use as monotherapy.

  10. Utilization, Spending, and Price Trends for Short- and Long-Acting Beta-Agonists and Inhaled Corticosteroids in the Medicaid Program, 1991–2010

    PubMed Central

    Chiu, Shih-Feng; Kelton, Christina M.L.; Guo, Jeff Jianfei; Wigle, Patricia R.; Lin, Alex C.; Szeinbach, Sheryl L.

    2011-01-01

    Background Asthma is a chronic respiratory disease that afflicts millions of people and accounts for substantial utilization of healthcare resources in most industrialized countries, including in the United States. However, the exact cost and utilization of anti-asthma medications in Medicaid in the past 2 decades have not been well studied. Considering the safety issues surrounding the long-acting beta-agonists, guideline updates, and the increase in asthma prevalence, understanding anti-asthma medication prescribing trends is important to payers and patients. Goal The purpose of this study was to analyze the utilization and spending trends for anti-asthmatic agents in the US Medicaid program over the past 2 decades. Methods This study was based on a retrospective, descriptive analysis of trends in utilization of and spending on anti-asthma medications, including short-acting beta-agonists, inhaled corticosteroids, long-acting beta-agonists, and inhaled corticosteroid/long-acting beta-agonist combinations. Quarterly utilization and expenditure data were obtained from the national Medicaid pharmacy files provided by the Centers for Medicare & Medicaid Services from quarter 1 of 1991 through quarter 2 of 2010. Average reimbursement per prescription was calculated each quarter as a proxy for drug price. Results The total number of prescriptions for the studied anti-asthma medications rose from 8.9 million in 1991 to 15.6 million in 2009, peaking at 20.8 million in 2005, the year before Medicare and Medicaid dual-eligible beneficiaries were moved to Medicare Part D. From 1991 to 2009, Medicaid spending on anti-asthma medications overall rose from $180.7 million to $1.3 billion, and spending on inhaled corticosteroid/long-acting beta-agonist combinations rose from $52.8 million in 2001—their first year on the market—to $411.7 million in 2009. The average price per prescription has risen in all the anti-asthma drug classes: overall, spending per prescription has

  11. Long-acting muscarinic antagonist + long-acting beta agonist versus long-acting beta agonist + inhaled corticosteroid for COPD: A systematic review and meta-analysis.

    PubMed

    Horita, Nobuyuki; Miyazawa, Naoki; Tomaru, Koji; Inoue, Miyo; Kaneko, Takeshi

    2015-11-01

    Some trials have been conducted to compare long-acting muscarinic antagonist (LAMA) + long-acting beta agonist (LABA) versus LABA + inhaled corticosteroids (ICS) for chronic obstructive pulmonary disease (COPD), but no meta-analysis were reported. Two investigators independently searched for eligible articles using the PubMed, Web of Science and Cochrane databases. Articles in authors' reference files were also regarded as candidates. The eligibility criteria for the current meta-analysis were original trials written in English comparing the impact of LAMA + LABA and LABA + ICS for COPD patients. A pooled value for the continuous value was calculated using the genetic inverse variance method for mean difference. Incidence of events was evaluated using the odds ratio (OR). Minimal clinically important difference were 50 mL for forced expiratory volume in 1 s (FEV1 ), four points for St George Respiratory Questionnaire (SGRQ) and one point for transition dyspnoea index (TDI). We included seven randomized controlled trials and one cross-over trial with follow-up period of 6-26 weeks. Compared with LABA + ICS, LAMA + LABA led to significantly greater improvements of trough FEV1 by 71 (95% CI: 48-95) mL, TDI by 0.38 points (95% CI: 0.17-0.58), less exacerbations with an OR of 0.77 (95% CI: 0.62-0.96) and less pneumonia with an OR of 0.28 (95% CI: 0.12-0.68). Frequencies of any adverse event, serious adverse event, adverse event leading to discontinuation, all-cause death and change of total score of SGRQ were not different in both arms. LAMA + LABA might be a better option for treating COPD than LABA + ICS. PMID:26235837

  12. Beta-agonists and animal welfare

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of beta-agonists in animal feed is a high profile topic within the U.S. as consumers and activist groups continue to question its safety. The only beta-agonist currently available for use in swine is ractopamine hydrochloride (RAC). This is available as Paylean™ (Elanco Animal Health – FDA a...

  13. Effects of the long acting beta agonist formoterol on asthma control in asthmatic patients using inhaled corticosteroids. The Netherlands and Canadian Formoterol Study Investigators

    PubMed Central

    van der Molen, T.; Postma, D. S.; Turner, M. O.; Jong, B. M.; Malo, J. L.; Chapman, K.; Grossman, R.; de Graaff, C. S.; Riemersma, R. A.; Sears, M. R.

    1997-01-01

    BACKGROUND: The long acting beta 2 agonist formoterol has proved to be an effective bronchodilator with a prolonged action of 12-14 hours. However, the precise role of formoterol in the maintenance treatment of asthma is still under debate. A study was performed to investigate the efficacy and safety of treatment with formoterol for six months in subjects with asthma. METHODS: In a multicentre double blind, placebo controlled, parallel group study 239 subjects with mild to moderate asthma were randomly assigned to treatment with either inhaled formoterol 24 micrograms twice daily (n = 125) or placebo (n = 114) during eight months. The study consisted of a four week run in period, a 24 week treatment period, and a four week washout period. All subjects were using regular inhaled corticosteroids (100-3200 micrograms daily) but were still needing at least five inhalations of short acting beta 2 agonist per week for symptom relief. The study was performed in 10 outpatient clinics in Canada, and five outpatient clinics and one coordinating centre for 44 Dutch general practitioners in The Netherlands. Twice daily self-reported peak expiratory flow (PEF) measurements, symptom scores, and rescue beta 2 agonist use during the last 28 treatment days compared with baseline values were used as main outcome measures. Spirometric values were measured at entry, at the start of treatment, after four, 12 and 24 weeks of treatment, and after four weeks washout. RESULTS: One hundred and twenty five subjects received formoterol 24 micrograms twice daily via Turbohaler and 114 received placebo. Baseline FEV1 was 67.1% predicted and mean bronchodilator reversibility was 26%. The mean total asthma symptom score was 3.6 (maximum possible 21). A significant decrease in symptoms in favour of formoterol (difference from placebo -0.64, 95% CI -0.04 to -1.23, p = 0.04) was observed. Compared with placebo, morning PEF increased (difference from placebo 28 l/min, 95% CI 18.3 to 37.7, p = 0

  14. Tolerance with beta 2-adrenoceptor agonists: time for reappraisal.

    PubMed Central

    Grove, A; Lipworth, B J

    1995-01-01

    1. In spite of the widespread use of beta 2-adrenoceptor agonists in the treatment of asthma controversy continues regarding their possible role in increasing asthma mortality and morbidity. There is however no evidence available to suggest that tolerance to the bronchodilator or anti-bronchoconstrictor effects of these drugs is responsible for the deleterious effects reported with the regular use of bronchodilators. 2. There is no conclusive evidence to suggest that tolerance develops to the bronchodilator effects of short-acting beta 2-adrenoceptor agonists. Tolerance does however appear to develop to the anti-bronchoconstrictor effects of these drugs. 3. With regard to the long-acting beta 2-adrenoceptor agonists, there is evidence to suggest that tolerance develops both to their anti-bronchoconstrictor, and bronchodilator effects. Tolerance was however demonstrated in the presence of improved symptom control, therefore the clinical relevance of this phenomenon is uncertain. 4. Systemic corticosteroids can modulate lymphocyte beta 2-adrenoceptor function both preventing, and reversing tolerance. The situation regarding the effects of systemic or inhaled corticosteroids on modulating bronchodilator responses in asthmatics is less clear. There is some evidence to suggest that inhaled corticosteroids are unable to prevent bronchodilator or systemic tolerance to long-acting beta 2-adrenoceptor agonists. 5. On the basis of the current evidence, the British Thoracic Society guidelines for the management of asthma appear appropriate with regard to their recommendations for the use of long-acting beta 2-adrenoceptor agonists. PMID:7742147

  15. Pharmacogenetics of beta2 adrenergic receptor agonists in asthma management.

    PubMed

    Ortega, V E

    2014-07-01

    Beta2 (β2) adrenergic receptor agonists (beta agonists) are a commonly prescribed treatment for asthma despite the small increase in risk for life-threatening adverse responses associated with long-acting beta agonist (LABA). The concern for life-threatening adverse effects associated with LABA and the inter-individual variability of therapeutic responsiveness to LABA-containing combination therapies provide the rationale for pharmacogenetic studies of beta agonists. These studies primarily evaluated genes within the β2-adrenergic receptor and related pathways; however, recent genome-wide studies have identified novel loci for beta agonist response. Recent studies have identified a role for rare genetic variants in determining beta agonist response and, potentially, the risk for rare, adverse responses to LABA. Before genomics research can be applied to the development of genetic profiles for personalized medicine, it will be necessary to continue adapting to the analysis of an increasing volume of genetic data in larger cohorts with a combination of analytical methods and in vitro studies.

  16. Current issues with beta2-adrenoceptor agonists: historical background.

    PubMed

    Tattersfield, Anne E

    2006-01-01

    The discovery that dessicated adrenal glands had beneficial effects in asthma arose in 1900 following a vogue for studying organotherapy at the end of the 19th century. The adrenal hormone adrenaline was found to have sympathomimetic properties and was isolated and synthesized in 1901. The first nonselective beta-agonist, isoproterenol, was isolated in 1940, followed by the development of selective beta2-agonists in the 1960s and the introduction of the long-acting beta2-agonists in the 1990s. The introduction of beta2-selectivity reduced adverse effects, as did developments in inhaler technology that allowed subjects to inhale much smaller doses of drug selectively to the airways. The beta2-agonists are some of the more important drugs to have been developed in the 20th century. Excessive doses can cause problems, and attempts to maximize the benefit from beta2-agonists and to reduce adverse effects has led to considerable epidemiological, clinical, and mechanistic research over the last 50 yr.

  17. Hospital readmissions following initiation of nebulized arformoterol tartrate or nebulized short-acting beta-agonists among inpatients treated for COPD

    PubMed Central

    Bollu, Vamsi; Ernst, Frank R; Karafilidis, John; Rajagopalan, Krithika; Robinson, Scott B; Braman, Sidney S

    2013-01-01

    Background Inpatient admissions for chronic obstructive pulmonary disease (COPD) represent a significant economic burden, accounting for over half of direct medical costs. Reducing 30-day readmissions could save health care resources while improving patient care. Recently, the Patient Protection and Affordable Care Act authorized reduced Medicare payments to hospitals with excess readmissions for acute myocardial infarction, heart failure, and pneumonia. Starting in October 2014, hospitals will also be penalized for excess COPD readmissions. This retrospective database study investigated whether use of arformoterol, a nebulized long-acting beta agonist, during an inpatient admission, had different 30-day all-cause readmission rates compared with treatment using nebulized short-acting beta agonists (SABAs, albuterol, or levalbuterol). Methods A US nationally representative hospital database was used to study adults aged ≥40 years, discharged between January, 2006 and March, 2010, and with a diagnosis of COPD. Patients receiving arformoterol on ≥80% of days following treatment initiation were compared with patients receiving a nebulized SABA during hospitalization. Arformoterol and nebulized SABA patients were matched (1:2) for age, sex, severity of inpatient admission, and primary/secondary COPD diagnosis. Logistic regression compared the odds of readmission while adjusting for age, sex, race, admission type, severity, primary/secondary diagnosis, other respiratory medication use, respiratory therapy use, oxygen use, hospital size, and teaching status. Results This retrospective study compared 812 arformoterol patients and 1,651 nebulized SABA patients who were discharged from their initial COPD hospital admission. An intensive care unit stay was more common among arformoterol patients (32.1% versus 18.4%, P<0.001), suggesting more severe symptoms during the initial admission. The observed readmission rate was significantly lower for arformoterol patients than

  18. beta2-Agonists at the Olympic Games.

    PubMed

    Fitch, Kenneth D

    2006-01-01

    The different approaches that the International Olympic Committee (IOC) had adopted to beta2-agonists and the implications for athletes are reviewed by a former Olympic team physician who later became a member of the Medical Commission of the IOC (IOC-MC). Steadily increasing knowledge of the effects of inhaled beta2-agonists on health, is concerned with the fact that oral beta2-agonists may be anabolic, and rapid increased use of inhaled beta2-agonists by elite athletes has contributed to the changes to the IOC rules. Since 2001, the necessity for athletes to meet IOC criteria (i.e., that they have asthma and/or exercise-induced asthma [EIA]) has resulted in improved management of athletes. The prevalence of beta2-agonist use by athletes mirrors the known prevalence of asthma symptoms in each country, although athletes in endurance events have the highest prevalence. The age-of-onset of asthma/EIA in elite winter athletes may be atypical. Of the 193 athletes at the 2006 Winter Olympics who met th IOC's criteria, only 32.1% had childhood asthma and 48.7% of athletes reported onset at age 20 yr or older. These findings lead to speculation that years of intense endurance training may be a causative factor in bronchial hyperreactivity. The distinction between oral (prohibited in sports) and inhaled salbutamol is possible, but athletes must be warned that excessive use of inhaled salbutamol can lead to urinary concentrations similar to those observed after oral administration. This article provides justification that athletes should provide evidence of asthma or EIA before being permitted to use inhaled beta2-agonists. PMID:17085798

  19. Gene-based association identifies SPATA13-AS1 as a pharmacogenomic predictor of inhaled short-acting beta-agonist response in multiple population groups.

    PubMed

    Padhukasahasram, B; Yang, J J; Levin, A M; Yang, M; Burchard, E G; Kumar, R; Kwok, P-Y; Seibold, M A; Lanfear, D E; Williams, L K

    2014-08-01

    Inhaled short-acting beta-agonist (SABA) medication is commonly used in asthma patients to rapidly reverse airway obstruction and improve acute symptoms. We performed a genome-wide association study of SABA medication response using gene-based association tests. A linear mixed model approach was first used for single-nucleotide polymorphism associations, and the results were later combined using GATES to generate gene-based associations. Our results identified SPATA13-AS1 as being significantly associated with SABA bronchodilator response in 328 healthy African Americans. In replication, this gene was associated with SABA response among the two separate groups of African Americans with asthma (n=1073, P=0.011 and n=1968, P=0.014), 149 healthy African Americans (P=0.003) and 556 European Americans with asthma (P=0.041). SPATA13-AS1 was also associated with longitudinal SABA medication usage in the two separate groups of African Americans with asthma (n=658, P=0.047 and n=1968, P=0.025). Future studies are needed to delineate the precise mechanism by which SPATA13-AS1 may influence SABA response.

  20. Gene-based association identifies SPATA13-AS1 as a pharmacogenomic predictor of inhaled short-acting beta-agonist response in multiple population groups

    PubMed Central

    Padhukasahasram, Badri K.; Yang, James J.; Levin, Albert M.; Yang, Mao; Burchard, Esteban G.; Kumar, Rajesh; Kwok, Pui-Yan; Seibold, Max A.; Lanfear, David E.; Williams, L. Keoki

    2014-01-01

    Inhaled short-acting beta-agonist (SABA) medication is commonly used in asthma patients to rapidly reverse airway obstruction and improve acute symptoms. We performed a genome wide association study of SABA medication response using gene-based association tests. A linear mixed model approach was first used for SNP associations, and results were later combined using GATES to generate gene-based associations. Our results identified SPATA13-AS1 as being significantly associated with SABA bronchodilator response in 328 healthy African Americans. In replication, this gene was associated with SABA response among 2 separate groups of African Americans with asthma (n=1,073, p=0.011 and n=1,968, p=0.014), 149 healthy African Americans (p=0.003), and 556 European Americans with asthma (p=0.041). SPATA13-AS1 was also associated with longitudinal SABA medication usage in 2 separate groups of African Americans with asthma (n=658, p=0.047 and n=1,968, p=0.025). Future studies are needed to delineate the precise mechanism by which SPATA13-AS1 may influence SABA response. PMID:24418963

  1. Beta-agonist- and prostaglandin E1-induced translocation of the beta-adrenergic receptor kinase: evidence that the kinase may act on multiple adenylate cyclase-coupled receptors.

    PubMed Central

    Strasser, R H; Benovic, J L; Caron, M G; Lefkowitz, R J

    1986-01-01

    beta-Adrenergic receptor kinase (beta-AR kinase) is a cytosolic enzyme that phosphorylates the beta-adrenergic receptor only when it is occupied by an agonist [Benovic, J. Strasser, R. H., Caron, M. G. & Lefkowitz, R. J. (1986) Proc. Natl. Acad. Sci. USA 83, 2797-2801.] It may be crucially involved in the processes that lead to homologous or agonist-specific desensitization of the receptor. Stimulation of DDT1MF-2 hamster smooth muscle cells or S49 mouse lymphoma cells with a beta-agonist leads to translocation of 80-90% of the beta-AR kinase activity from the cytosol to the plasma membrane. The translocation process is quite rapid, is concurrent with receptor phosphorylation, and precedes receptor desensitization and sequestration. It is also transient, since much of the activity returns to the cytosol as the receptors become sequestered. Stimulation of beta-AR kinase translocation is a receptor-mediated event, since the beta-antagonist propranolol blocks the effect of agonist. In the kin- mutant of the S49 cells (lacks cAMP-dependent protein kinase), prostaglandin E1, which provokes homologous desensitization of its own receptor, is at least as effective as isoproterenol in promoting beta-AR kinase translocation to the plasma membrane. However, in the DDT1MF-2 cells, which contain alpha 1-adrenergic receptors coupled to phosphatidylinositol turnover, the alpha 1-agonist phenylephrine is ineffective. These results suggest that the first step in homologous desensitization of the beta-adrenergic receptor may be an agonist-promoted translocation of beta-AR kinase from cytosol to plasma membrane and that beta-AR kinase may represent a more general adenylate cyclase-coupled receptor kinase that participates in regulating the function of many such receptors. Images PMID:3018728

  2. [Adrenergic beta-agonist intoxication].

    PubMed

    Carrola, Paulo; Devesa, Nuno; Silva, José Manuel; Ramos, Fernando; Alexandrino, Mário B; Moura, José J

    2003-01-01

    The authors describe two clinical cases (father and daughter), observed in the Hospital Urgency with distal tremors, anxiety, palpitations, nausea, headaches and dizziness, two hours after ingestión of cow liver. They also had leucocytosis (with neutrophylia), hypokalemia and hyperglycaemia. After treatment with potassium i.v. and propranolol, the symptoms disappeared. The symptoms recurred at home because the patients didn't take the prescribed medication and persisted for five days, with spontaneous disappearance. The serum of both patients revealed the presence of clenbuterol (65 hg/ml - father and 58 hg/ml - daughter). The animal's liver had a concentration of 1,42 mg/kg. Clenbuterol is a ß-adrenergic agonist with low specificity, with some veterinary indications. However, this substance has been illegally used as a growth's promotor. We intend to alert doctors for this problem, particularly those that work in the Urgency.

  3. Comparative efficacy of inhaled corticosteroid and long-acting beta agonist combinations in preventing COPD exacerbations: a Bayesian network meta-analysis

    PubMed Central

    Oba, Yuji; Lone, Nazir A

    2014-01-01

    Background A combination therapy with inhaled corticosteroid (ICS) and a long-acting beta agonist (LABA) is recommended in severe chronic obstructive pulmonary disease (COPD) patients experiencing frequent exacerbations. Currently, there are five ICS/LABA combination products available on the market. The purpose of this study was to systematically review the efficacy of various ICS/LABA combinations with a network meta-analysis. Methods Several databases and manufacturer’s websites were searched for relevant clinical trials. Randomized control trials, at least 12 weeks duration, comparing an ICS/LABA combination with active control or placebo were included. Moderate and severe exacerbations were chosen as the outcome assessment criteria. The primary analyses were conducted with a Bayesian Markov chain Monte Carlo method. Results Most of the ICS/LABA combinations reduced moderate-to-severe exacerbations as compared with placebo and LABA, but none of them reduced severe exacerbations. However, many studies excluded patients receiving long-term oxygen therapy. Moderate-dose ICS was as effective as high-dose ICS in reducing exacerbations when combined with LABA. Conclusion ICS/LABA combinations had a class effect with regard to the prevention of COPD exacerbations. Moderate-dose ICS/LABA combination therapy would be sufficient for COPD patients when indicated. The efficacy of ICS/LABA combination therapy appeared modest and had no impact in reducing severe exacerbations. Further studies are needed to evaluate the efficacy of ICS/LABA combination therapy in severely affected COPD patients requiring long-term oxygen therapy. PMID:24872685

  4. Impact of extrafine formulations of inhaled corticosteroids/long-acting beta-2 agonist combinations on patient-related outcomes in asthma and COPD

    PubMed Central

    Scichilone, Nicola; Benfante, Alida; Morandi, Luca; Bellini, Federico; Papi, Alberto

    2014-01-01

    Asthma and chronic obstructive pulmonary disease (COPD) are among the most common chronic diseases worldwide, characterized by a condition of variable degree of airway obstruction and chronic airway inflammation. A large body of evidence has demonstrated the importance of small airways as a pharmacological target in these clinical conditions. Despite a deeper understanding of the pathophysiological mechanisms, the epidemiological observations show that a significant proportion of asthmatic and COPD patients have a suboptimal (or lack of) control of their diseases. Different factors could influence the effectiveness of inhaled treatment in chronic respiratory diseases: patient-related (eg, aging); disease-related (eg, comorbid conditions); and drug-related/formulation-related factors. The presence of multiple illnesses is common in the elderly patient as a result of two processes: the association between age and incidence of degenerative diseases; and the development over time of complications of the existing diseases. In addition, specific comorbidities may contribute to impair the ability to use inhalers, such as devices for efficient drug delivery in the respiratory system. The inability to reach and treat the peripheral airways may contribute to the lack of efficacy of inhaled treatments. The recent development of inhaled extrafine formulations allows a more uniform distribution of the inhaled treatment throughout the respiratory tree to include the peripheral airways. The beclomethasone/formoterol extrafine formulation is available for the treatment of asthma and COPD. Different biomarkers of peripheral airways are improved by beclomethasone/formoterol extrafine treatment in comparison with equivalent nonextrafine inhaled corticosteroids/long-acting beta-2 agonist (ICS/LABA) combinations. These improvements are associated with improved lung function and clinical outcomes, along with reduced systemic exposure to inhaled corticosteroids. The increased knowledge

  5. Wastewater-based epidemiological evaluation of the effect of air pollution on short-acting beta-agonist consumption for acute asthma treatment.

    PubMed

    Fattore, Elena; Davoli, Enrico; Castiglioni, Sara; Bosetti, Cristina; Re Depaolini, Andrea; Marzona, Irene; Zuccato, Ettore; Fanelli, Roberto

    2016-10-01

    Asthma, one of the most common chronic diseases in the world and a leading cause of hospitalization among children, has been associated with outdoor air pollution. We applied the wastewater-based epidemiology (WBE) approach to study the association between the use of salbutamol, a short-acting beta-agonist used to treat acute bronchospasm, and air pollution in the population of Milan, Italy. Composite 24-h samples of untreated wastewater were collected daily and analyzed for human metabolic residues of salbutamol by liquid chromatography tandem mass spectrometry. Corresponding daily outdoor concentrations of particular matter up to 10µm (PM10) and 2.5µm (PM2.5) in aerodynamic diameter, nitrogen dioxide, ozone, sulfur dioxide, and benzene were collected from the public air monitoring network. Associations at different lag times (0-10 days) were assessed by a log-linear Poisson regression model. We found significant direct associations between defined daily doses (DDD) of salbutamol and mean daily concentrations of PM10 and PM2.5 up to nine days of lag time. The highest rate ratio, and 95% confidence interval (CI), of DDD of salbutamol was 1.06 (95% CI: 1.02-1.10) and 1.07 (95% CI: 1.02-1.12) at seven days of lag time and for an increase of 10 μg/m(3) of PM10 and PM2.5, respectively. Reducing the mean daily PM10 concentration in Milan from 50 to 30μg/m(3) means that 852 (95% CI: 483-1504) daily doses of salbutamol per day would not be used. These results confirm the association between asthma and outdoor PM10 and PM2.5 and prove the potential of the WBE approach to quantitatively estimate the relation between environmental exposures and diseases. PMID:27281687

  6. Beta 1- and beta 2-adrenoceptor antagonist activities of ICI-215001, a putative beta 3-adrenoceptor agonist.

    PubMed Central

    Tesfamariam, B.; Allen, G. T.

    1994-01-01

    1. The present study was undertaken to characterize the beta 3-adrenoceptor agonist activity of ICI-215001 and to determine whether it exhibits additional activities on beta 1- and beta 2-adrenoceptors in isolated spontaneously beating atrium, trachea and ileum of guinea-pig. 2. In guinea-pig atrium, isoprenaline, a non-selective beta-adrenoceptor agonist, caused concentration-dependent, positive chronotropic effects that were inhibited by atenolol, a selective beta 1-antagonist. ICI-215001 also competitively antagonized the increase in heart rate caused by isoprenaline. 3. ICI-215001 exhibited low intrinsic activity at increasing the beating rate of atrium and no activity on resting or induced tone of tracheal strips. 4. In strips of guinea-pig trachea, contracted submaximally with carbachol, isoprenaline, caused concentration-dependent relaxations. Both ICI-118551, a selective beta 2-adrenoceptor antagonist, and ICI-215001 competitively inhibited the relaxations caused by isoprenaline. 5. In isolated strips of guinea-pig ileum longitudinal smooth muscle contracted with histamine, isoprenaline and ICI-215001 caused relaxations which were inhibited by alprenolol, a beta-adrenoceptor antagonist with modest affinity for beta 3-adrenoceptors, but were resistant to ICI-118551 and atenolol. 6. These results indicate that ICI-215001 exhibits beta 3-adrenoceptor agonist activity as demonstrated by relaxations mediated via atypical beta-adrenoceptors in the longitudinal smooth muscle of guinea-pig ileum. Further, the studies demonstrate that ICI-215001 can act as an antagonist at beta 1- and beta 2-adrenoceptors in situations where its intrinsic agonist activity is low. PMID:7913381

  7. Can asthma treatment in sports be doping? The effect of the rapid onset, long-acting inhaled beta2-agonist formoterol upon endurance performance in healthy well-trained athletes.

    PubMed

    Carlsen, K H; Hem, E; Stensrud, T; Held, T; Herland, K; Mowinckel, P

    2001-07-01

    Inhaled beta2-agonists have been subject to restrictions in relationship to sports due to fear of possible improvement in endurance performance. According to the international doping regulations only inhaled salbutamol, terbutaline and salmeterol are allowed for use in sports. Formoterol is a recently introduced rapid onset-long-acting inhaled beta2-agonist. The main aim of the present randomized, double-blind placebo-controlled study was to investigate possible improvement in endurance performance of inhaled formoterol in 24 healthy well-trained competitive male athletes, 21-29 years old. Lung function (flow-volume loops) was measured before, 15 min after each inhaled study drug and before and repeatedly after exercise. On day 1, maximum oxygen uptake (VO2max), peak ventilation (VEpeak) and running time till exhaustion were measured and used to determine the exercise load on days 2 and 3. On days 2 and 3 the subjects inhaled the study drugs, rested for 1 h, then exercised, and VO2max, VEpeak and running time until exhaustion were determined. Inhaled formoterol did not improve any parameter of endurance performance. On the other hand a statistically significant, although not clinically significant (0.05 ml(-1) min kg(-1)), change was found in estimated difference of VO2max between formoterol and placebo in favour of placebo. Lung function increased significantly after inhaled formoterol, and after exercise also for placebo, but without differences between the beta2-agonist and placebo after exercise. In conclusion, inhaled formoterol did not improve endurance performance compared to placebo.

  8. Nonshivering thermogenesis in marsupials: absence of thermogenic response to beta 3-adrenergic agonists.

    PubMed

    Nicol, S C; Pavlides, D; Andersen, N A

    1997-07-01

    The status of nonshivering thermogenesis (NST) in marsupials remains controversial. Although morphological studies have failed to find evidence for the presence of brown adipose tissue (BAT) in adults or juveniles of species from all extant families of marsupial, a number of studies have investigated the metabolic response of marsupials to noradrenaline (NA) and yielded conflicting results. In eutherian mammals, NA stimulates NST in BAT by acting on beta 3-receptors, and in the experiments reported here we investigated the response of adult and juvenile brush tail possums (Trichosurus vulpecula), a Brazilian opossum (Monodelphis domestica), adult and juvenile red-necked (Bennett's) wallabies (Macropus rufogriseus) and the laboratory rat to selective beta 3-agonists (ICI D7114 and BRL 35135) and to NA. Wallabies were tested with the beta 3-agonists only. Although NA and both beta 3-agonists caused an 85% increase in oxygen consumption in rats, there was no significant effect on any of the marsupials. These results clearly indicate no beta 3-stimulated NST in these marsupials. All reports of metabolic responses to NA are from macropods, and a recent study demonstrates that NA and other alpha-adrenergic agonists stimulate thermogenesis in a small macropod, the bettong (Bettongia gaimardi), by acting on alpha 1-receptors. Thermogenic responses to NA seems to be restricted to macropods, showing the danger of characterising the response of any one marsupial species as being representative of marsupials as a group. PMID:9172391

  9. Beta2-agonist extraction procedures for chromatographic analysis.

    PubMed

    dos Ramos, F J

    2000-06-01

    Normally, different procedures were necessary to prepare sample matrices for chromatographic determination of beta2-agonists. The present review includes sampling, pre-treatment and extraction/purification for urine, plasma, liver, meat, feeds, hair and milk powder, as previous steps for chromatographic analysis of beta2-agonists. Six methodologies were especially revised for extraction/purification namely, liquid-liquid extraction, solid-phase extraction (SPE), matrix solid-phase dispersion, immunoaffinity chromatography, dialysis and supercritical fluid extraction. SPE was discussed in detail and five mechanisms were described: adsorption, apolar, polar, ion-exchange and mixed phase. A brief conclusion in this field was also outlined.

  10. Illegal use of beta-adrenergic agonists: European Community.

    PubMed

    Kuiper, H A; Noordam, M Y; van Dooren-Flipsen, M M; Schilt, R; Roos, A H

    1998-01-01

    The use of veterinary medicinal products within the European Community is governed by a series of directives and regulations that describe the requirements for safety, quality, and efficacy of these products. Veterinary therapeutic use of beta-agonists has only been approved in the case of clenbuterol for bronchodilatation in horses and calves and for tocolysis in cows. No beta-agonists have been permitted in the European Community for growth-promoting purposes in farm animals. Surveillance for the presence of residues of veterinary agents in food-producing animals and meat is regulated by the Directive 86/469/EEC containing specific guidelines for sampling procedures on farms and in slaughterhouses. The level and frequency of sampling is dependent on the category of compounds and animal species. When positive samples have been identified (above certain action levels), sampling intensity is increased. Results of monitoring programs in EU member states during 1992 and 1993 for the occurrence of residues of beta-agonists in food-producing animals vary substantially with respect to the percentages of positive samples, ranging from 0 to 7%. The variability is partly explained by differences in sampling strategies, detection methods, and action levels applied. Identification of the proper matrices for sampling and detection of beta-agonists is important. In the case of clenbuterol, hair and choroid retinal tissue are appropriate tissues because clenbuterol accumulates in these matrices. A clear decrease in the use of clenbuterol in cattle has been observed in The Netherlands, Germany, Northern Ireland, and Spanish Basque Country over the last 3 yr. This is partly due to intensified surveillance activities at farms and slaughterhouses by governmental agencies and production sector organizations. There are data on human intoxication following consumption of liver or meat from cattle treated with beta-agonists. At the concentrations of clenbuterol measured in contaminated

  11. Clenbuterol, a beta(2)-agonist, retards atrophy in denervated muscles

    NASA Technical Reports Server (NTRS)

    Zeman, Richard J.; Ludemann, Robert; Etlinger, Joseph D.

    1987-01-01

    The effects of a beta(2) agonist, clenbuterol, on the protein content as well as on the contractile strength and the muscle fiber cross-sectional area of various denervated muscles from rats were investigated. It was found that denervated soleus, anterior tibialis, and gastrocnemius muscles, but not the extensor digitorum longus, of rats treated for 2-3 weeks with clenbuterol contained 95-110 percent more protein than denervated controls. The twofold difference in the protein content of denervated solei was paralleled by similar changes in contractile strength and muscle fiber cross-sectional area.

  12. Effect of conventional (mixed beta 1/beta 2) and novel (beta 3) adrenergic agonists on thermoregulatory behavior.

    PubMed

    Carlisle, H J; Stock, M J

    1991-10-01

    The effects of submaximal and maximal thermogenic doses of isoproterenol (ISO) on operant thermoregulatory responses in a cold (-8 degrees C) environment were tested in lean (+/?) Zucker rats trained to barpress for radiant heat. Contrary to expectations, ISO rats pressed for twice as much exogenous heat as controls, but showed a smaller rise in colonic temperature. Conversely, a beta 3-selective adrenergic agonist (RO40-2148) decreased the requirement for exogenous heat and produced larger rises in colonic temperature. RO40-2148 and another beta 3-agonist (ICI D7114) produced similar responses in obese (fa/fa) Zucker rats, but tests with ISO were terminated because it caused profound, and lethal hypothermia. The hypothermic effects of ISO on colonic temperature were also observed in Sprague-Dawley rats at room temperature (22 degrees C), whereas RO40-2148 produced hyperthermia. These results provide behavioral evidence for the high thermogenic selectivity of these novel adrenergic agonists and support the existence of an atypical beta 3-adrenoceptor. The hypothermic effects of ISO are presumed to be due to actions on beta 1- and/or beta 2-adrenoceptors. PMID:1687163

  13. Benzodiazepine receptor inverse agonists. beta. -CCM and RO 15-3505 both reverse the anxiolytic effects of ethanol in mice

    SciTech Connect

    Belzung, C.; Misslin, R.; Vogel, E.

    1988-01-01

    The antagonistic effects of the benzodiazepine receptor inverse agonist ..beta..-CCM and of the partial inverse agonist RO 15-3505 on the anxiolytic properties of ethanol in mice confronted with a light/dark choice procedure and with the staircase test were investigated. Both drugs reversed the effects of ethanol on some of the behavioral parameters, but ..beta..-CCM alone elicited anxiogenic intrinsic effects. RO-3505 induced seizures in mice treated with a subconvulsant dose of pentylenetetrazole, the most efficient doses being 3 and 6 mg/kg. These data indicate that ..beta..-CCM and RO 15-3505 can reverse some of the anxiolytic effects of ethanol, acting probably to oppose GABA function via the benzodiazepine receptor.

  14. Effect of different beta-adrenergic agonists on the intestinal absorption of galactose and phenylalanine.

    PubMed

    Díez-Sampedro, A; Pérez, M; Cobo, M T; Martínez, J A; Barber, A

    1998-08-01

    Nutrient transport across the mammalian small intestine is regulated by several factors, including intrinsic and extrinsic neural pathways, paracrine modulators, circulating hormones and luminal agents. Because beta-adrenoceptors seem to regulate gastrointestinal functions such as bicarbonate and acid secretion, intestinal motility and gastrointestinal mucosal blood flow, we have investigated the effects of different beta-adrenergic agonists on nutrient absorption by the rat jejunum in-vitro. When intestinal everted sacs were used the beta2-agonist salbutamol had no effect either on galactose uptake by the tissue or mucosal-to-serosal flux whereas mixed beta1- and beta2-agonists (isoproterenol and orciprenaline) and beta3-agonists (BRL 35135, Trecadrine, ICI 198157 and ZD 7114) inhibited galactose uptake and transfer of D-galactose from the mucosal-to-serosal media across the intestinal wall (although the inhibiting effects of isoproterenol and Trecadrine were not statistically significant). In intestinal everted rings both Trecadrine and BRL 35135 clearly reduced galactose uptake, the effect being a result of inhibition of the phlorizin-sensitive component. Total uptake of phenylalanine by the intestinal rings was also reduced by those beta3-adrenergic agonists. These results suggest that beta1- and beta3-adrenergic receptors could be involved in the regulation of intestinal active transport of sugars and amino acids. PMID:9751456

  15. Patient compliance with inhaled medication: does combining beta-agonists with corticosteroids improve compliance?

    PubMed

    Bosley, C M; Parry, D T; Cochrane, G M

    1994-03-01

    Patient compliance with an inhaled corticosteroid may be greater if it is combined with a beta-agonist. This study compared compliance with an inhaled corticosteroid (budesonide), and a short-acting inhaled beta-agonist (terbutaline sulphate), and a Turbuhaler inhaler containing a combination of the two drugs. In an open, multicentre, parallel group study 102 asthmatic patients were randomly divided into two groups, either receiving the two drugs in separate Turbuhalers or combined into one Turbuhaler. A twice daily regimen was prescribed and a preweighed metered-dose inhaler (MDI) of salbutamol was provided for rescue use. Compliance was measured using the Turbuhaler Inhalation Computer (TIC), which recorded the time and date of each inhalation over a 12 week period. Forced expiratory volume in one second (FEV1) and forced vital capacity (FVC) measurements were carried out at week 0, 6 and 12. Results from 72 patients were analysed. The average compliance was 60-70%. Treatment was taken as prescribed on 30-40% of the study days, and over-usage occurred on less than 10% of days. Only 15% of patients took the drugs as prescribed for more than 80% of the days. Compliance was no greater in patients using the combined inhalers. Other ways of improving patient self-management need further investigation. PMID:8013609

  16. Do inhaled beta(2)-agonists have an ergogenic potential in non-asthmatic competitive athletes?

    PubMed

    Kindermann, Wilfried

    2007-01-01

    The prevalence of asthma is higher in elite athletes than in the general population. The risk of developing asthmatic symptoms is the highest in endurance athletes and swimmers. Asthma seems particularly widespread in winter-sport athletes such as cross-country skiers. Asthmatic athletes commonly use inhaled beta(2)-agonists to prevent and treat asthmatic symptoms. However, beta(2)-agonists are prohibited according to the Prohibited List of the World Anti-Doping Agency. An exception can be made only for the substances formoterol, salbutamol, salmeterol and terbutaline by inhalation, as long as a therapeutic use exemption has been applied for and granted. In this context, the question arises of whether beta(2)-agonists have ergogenic benefits justifying the prohibition of these substances. In 17 of 19 randomised placebo-controlled trials in non-asthmatic competitive athletes, performance-enhancing effects of the inhaled beta(2)-agonists formoterol, salbutamol, salmeterol and terbutaline could not be proved. This is particularly true for endurance performance, anaerobic power and strength performance. In three of four studies, even supratherapeutic doses of salbutamol (800-1200 microg) had no ergogenic effect. In contrast to inhaled beta(2)-agonists, oral administration of salbutamol seems to be able to improve the muscle strength and the endurance performance. There appears to be no justification to prohibit inhaled beta(2)-agonists from the point of view of the ergogenic effects. PMID:17241101

  17. Synthesis and pharmacological characterization of beta2-adrenergic agonist enantiomers: zilpaterol.

    PubMed

    Kern, Christopher; Meyer, Thorsten; Droux, Serge; Schollmeyer, Dieter; Miculka, Christian

    2009-03-26

    The beta-adrenergic agonist 1 (zilpaterol) is used as production enhancer in cattle. Binding experiments of separated enantiomers on recombinant human beta(2)-adrenergic and mu-opioid receptors and functional studies showed that the (-)-1 enantiomer accounts for essentially all the beta(2)-adrenergic agonist activity and that it exhibits less affinity toward the mu-opioid receptor than (+)-1, which is a mu-opioid receptor antagonist. X-ray crystallography revealed the absolute configuration of (-)-1 to be 6R,7R.

  18. Beta 2-adrenergic agonist as adjunct therapy to levodopa in Parkinson's disease.

    PubMed

    Alexander, G M; Schwartzman, R J; Nukes, T A; Grothusen, J R; Hooker, M D

    1994-08-01

    We studied the effect of the beta 2-adrenergic agonist albuterol on Parkinson's disease (PD) patients receiving chronic levodopa treatment. The albuterol-treated patients demonstrated reduced parkinsonian symptoms and an increased ability to tap their index finger between two points 20 cm apart, and were able to perform a "walk test" in 70% of their control time. Three patients currently on chronic albuterol therapy still show amelioration of their parkinsonian symptoms, and two have reduced their daily levodopa dose. This study suggests that beta 2-adrenergic agonists as adjunct therapy to levodopa may be beneficial in PD.

  19. Relationship between food intake and metabolic rate in rats treated with beta-adrenoceptor agonists.

    PubMed

    Yamashita, J; Onai, T; York, D A; Bray, G A

    1994-06-01

    The purpose of the present experiment was to clarify the interaction between food intake and activity of the thermogenic component of the sympathetic nervous system by studying the dose response relationships of typical beta 1-, beta 2-, and beta 3-adrenoceptor agonists on oxygen consumption and food intake. The data showed that the ED50 for the effects of Dobutamine (beta 1), Clenbuterol (beta 2) and ICI D7114 (beta 3) agonists on food intake were 8.9, 0.041 and > 1.1 mumol/kg respectively whereas the ED50 values for stimulation of metabolic rate were 7.1, 1.3 and 0.11 mumole/kg respectively. The marked differences in ED50 values for suppression of food intake and stimulation of metabolic rate for both clenbuterol and ICI D7114 suggest that the regulation of feeding and of metabolic rate in response to these agonists are independent of each other. The experiments also identified that Clenbuterol activated a very sensitive beta 2-adrenergic system for the regulation of feeding behavior. PMID:7915938

  20. Beta-adrenergic receptor agonists and antagonists counteract LPS-induced neuronal death in retinal cultures by different mechanisms.

    PubMed

    Arai, Kunizo; Wood, John P M; Osborne, Neville N

    2003-09-26

    Treatment with lipopolysaccharide (LPS) for 72 h was shown to dose-dependently increase nitric oxide production from 6-day-old retinal cultures. Cell death, as determined by lactate dehydrogenase (LDH) release and an increase in neuronal labelling for TUNEL, was elevated concurrently. During treatment there was an increase of both inducible nitric oxide synthase and glial fibrillary acidic protein labelling in glial cells and a reduction in the number of gamma-aminobutyric acid-positive neurones. The NOS inhibitors, N-nitro-L-arginine methyl ester, dexamethasone and indomethacin potently inhibited both nitric oxide stimulation and cell death caused by LPS. In this study, the beta(2)- (ICI-18551), beta(1)- (betaxolol) and mixed beta(1)/beta(2)- (timolol, metipranolol) adrenergic receptor antagonists were all shown to attenuate LPS-induced LDH release from these cultures, but to have no effect on LPS-stimulated nitric oxide production. This effect was mimicked by the calcium channel blocker, nifedipine. Interestingly, the beta-adrenergic receptor agonists, salbutamol, arterenol and isoproterenol were also able to attenuate cell death caused by LPS. Moreover, these compounds also inhibited LPS-stimulated nitric oxide release. These studies suggest that LPS stimulates nitric oxide release from cultured retinal glial cells and that this process leads to neurone death. beta-adrenergic receptor agonists prevent the effects of LPS by inhibiting the stimulation of nitric oxide production. The data also suggest that beta-adrenergic receptor antagonists can attenuate LPS-induced death of neurones, but that these compounds act in a manner that is neurone-dependent, is mimicked by blockade of calcium channels and is independent of the stimulation of nitric oxide release.

  1. The Beta-2-Adrenoreceptor Agonists, Formoterol and Indacaterol, but Not Salbutamol, Effectively Suppress the Reactivity of Human Neutrophils In Vitro

    PubMed Central

    Anderson, Ronald; Theron, Annette J.; Steel, Helen C.; Durandt, Chrisna; Tintinger, Gregory R.; Feldman, Charles

    2014-01-01

    The clinical relevance of the anti-inflammatory properties of beta-2 agonists remains contentious possibly due to differences in their molecular structures and agonist activities. The current study has compared the effects of 3 different categories of β2-agonists, namely, salbutamol (short-acting), formoterol (long-acting) and indacaterol (ultra-long-acting), at concentrations of 1–1000 nM, with human blood neutrophils in vitro. Neutrophils were activated with either N-formyl-L-methionyl-L-leucyl-L-phenylalanine (fMLP, 1 µM) or platelet-activating factor (PAF, 200 nM) in the absence and presence of the β2-agonists followed by measurement of the generation of reactive oxygen species and leukotriene B4, release of elastase, and expression of the β2-integrin, CR3, using a combination of chemiluminescence, ELISA, colorimetric, and flow cytometric procedures respectively. These were correlated with alterations in the concentrations of intracellular cyclic-AMP and cytosolic Ca2+. At the concentrations tested, formoterol and indacaterol caused equivalent, significant (P < 0.05 at 1–10 nM) dose-related inhibition of all of the pro-inflammatory activities tested, while salbutamol was much less effective (P < 0.05 at 100 nM and higher). Suppression of neutrophil reactivity was accompanied by elevations in intracellular cAMP and accelerated clearance of Ca2+ from the cytosol of activated neutrophils. These findings demonstrate that β2-agonists vary with respect to their suppressive effects on activated neutrophils. PMID:24733958

  2. Effects of beta 2-adrenoceptor agonists on anti-IgE-induced contraction and smooth muscle reactivity in human airways.

    PubMed Central

    Gorenne, I; Labat, C; Norel, X; De Montpreville, V; Guillet, M C; Cavero, I; Brink, C

    1995-01-01

    1. The beta 2-adrenoceptor agonists, salbutamol, salmeterol and RP 58802 relaxed basal tone of human isolated bronchial smooth muscle. Salmeterol- and RP 58802-induced relaxations persisted for more than 4 h when the medium was constantly renewed after treatment. 2. Salbutamol, salmeterol and RP 58802 reversed histamine-induced contractions in human airways (pD2 values: 6.15 +/- 0.21, 6.00 +/- 0.19 and 6.56 +/- 0.12, respectively). 3. Anti-IgE-induced contractions were significantly inhibited immediately after pretreatment of preparations with beta 2-adrenoceptor agonists (10 microM). However, when tissues were treated with beta 2-agonists and then washed for a period of 4 h, salmeterol was the only agonist which significantly inhibited the anti-IgE response. 4. Histamine response curves were shifted to the right immediately after pretreatment of tissues with the beta 2-adrenoceptor agonists (10 microM; 20 min), but maximal contractions were not affected. After a 4 h washing period, the histamine curves were not significantly different from controls. Concentration-effect curves to acetylcholine (ACh) or leukotriene C4 (LTC4) were not significantly modified after beta 2-agonist pretreatment. 5. These results suggest that beta 2-adrenoceptor agonists may prevent anti-IgE-induced contraction by inhibition of mediator release rather than alterations of those mechanisms involved in airway smooth muscle contraction. PMID:7780648

  3. Inhibitory effect of beta3-adrenoceptor agonist in lower esophageal sphincter smooth muscle: in vitro studies.

    PubMed

    Sarma, D N K; Banwait, Kuldip; Basak, Ashim; DiMarino, Anthony J; Rattan, Satish

    2003-01-01

    We investigated the effects of (R,R)-5-[2-[2-3-chlorophenyl)-2-hydroxyethyl] - amino]propyl] - 1,3 - benzodioxole - 2, 2 - dicarboxylate (CL 316243) (a typical beta3-agonist) on the spontaneously tonic smooth muscle of the lower esophageal sphincter (LES). Studies were carried out in smooth muscle strips and smooth muscle cells (SMCs) of opossum LES. Isometric tension was recorded in the basal state and after CL 316243, and before and after beta3-antagonist (S)-N-[4-[2-[[3-[-(acetamidomethyl)phenoxy]-2-hydroxypropyl]amino]ethyl]phenyl]benzenesulfonamide (L 748337) and nonselective antagonist propranolol. In some experiments, the effects of nonadrenergic noncholinergic (NANC) nerve activation by electrical field stimulation (EFS) were also examined. The effects of CL 316243 were compared with those of nonselective beta-agonist isoproterenol. CL 316243 caused a concentration-dependent relaxation of the LES smooth muscle. The relaxant action of CL 316243 was determined to be directly at the smooth muscle because it remained unmodified by the neurotoxin tetrodotoxin and other neurohumoral antagonists, and also was observed in the SMCs. L 748337 selectively antagonized the relaxant effect of CL 316243 and, conversely, had no significant effect on the inhibitory actions of isoproterenol. CL 316243 (1 x 10(-8) M) caused an augmentation of NANC relaxation in the LES. Another beta3-agonist, (S)-4-[hydroxy-3-phenoxy-propylamino-ethoxy]-N-(2-methoxyethyl)-phenoxyacetamide (ZD 7114), also caused concentration-dependent full relaxation of the LES that was selectively antagonized by beta3-anatagonist 3-(2-ethylphenoxy)-1-[(1S)1,2,3,4-tetrahydronaphth-1-ylaminol]-(2S)-2-propanol oxalate (SR 59230A). These studies defined the effects of characteristic inhibitory beta3-adrenoceptors in the spontaneously tonic LES smooth muscle and suggested a potential therapeutic role in the esophageal motility disorders characterized by hypertensive LES. PMID:12490574

  4. Anti-obesity effects of selective agonists to the beta 3-adrenergic receptor in dogs. I. The presence of canine beta 3-adrenergic receptor and in vivo lipomobilization by its agonists.

    PubMed

    Sasaki, N; Uchida, E; Niiyama, M; Yoshida, T; Saito, M

    1998-04-01

    It is known that in rodents and humans the beta 3-adrenergic receptor (beta 3-AR) is present primarily in adipocytes and plays a significant role in the adrenergic stimulation of lipolysis. We examined the expression of beta 3-AR mRNA in the dog and the lipomobilizing effects of beta 3-AR-selective agonists in vivo. Reverse transcription polymerase chain reaction of RNA extracted from dog adipose tissue produced a cDNA fragment, the nucleotide sequence of which was highly homologous to the corresponding regions of human (86.4%) and mouse (79.5%) beta 3-AR cDNA. The beta 3-AR mRNA was present at high levels in subcutaneous and visceral adipose tissues, but undetectable in other organs. When a selective beta 3-AR agonist, CL316,243, was infused intravenously into beagle dogs, the plasma level of free fatty acid increased in 30 min and persisted at higher levels for several hours. ICI D7114, another beta 3-AR agonist, also showed a similar lipomobilizing effect, but with lower potency. beta 3-AR agonist infusion also increased the plasma insulin level. These results suggested that functional beta 3-AR is present in adipose tissues of the dog and that it is effective for in vivo lipomobilization. PMID:9592718

  5. Neuroprotection by a selective estrogen receptor beta agonist in a mouse model of global ischemia.

    PubMed

    Carswell, H V O; Macrae, I M; Gallagher, L; Harrop, E; Horsburgh, K J

    2004-10-01

    The present study employs selective estrogen receptor (ER) agonists to determine whether 17beta-estradiol-induced neuroprotection in global ischemia is receptor mediated and, if so, which subtype of receptor (ERalpha or ERbeta) is predominantly responsible. Halothane-anesthetized female C57Bl/6J mice were ovariectomized, and osmotic minipumps containing ERbeta agonist diarylpropiolnitrile (DPN) (8 mg.kg(-1).day(-1), n = 12) or vehicle (50% DMSO in 0.9% saline) (n = 9) or ERalpha agonist propyl pyrazole triol (PPT) (2 mg.kg(-1).day(-1), n = 13) or vehicle (50% DMSO in 0.9% saline) (n = 10) were implanted subcutaneously. One week later transient global ischemia was induced by bilateral carotid artery occlusion under halothane anesthesia, and the mice were perfusion fixed 72 h later. ERbeta agonist DPN significantly reduced ischemic damage by 70% in the caudate nucleus and 55% in the CA1 region compared with vehicle controls (P < 0.05, Mann-Whitney U-statistic). In contrast, pretreatment with the ERalpha agonist PPT had no effect on the extent of neuronal damage compared with controls. The data indicate a significant estrogen receptor-mediated neuroprotection in a global cerebral ischemia model involving ERbeta.

  6. The acid metabolite of ZD7114 is a partial agonist of lipolysis mediated by the rat beta 3-adrenoceptor.

    PubMed

    Mayers, R M; Quayle, S P; Thompson, A J; Grant, T L; Holloway, B R

    1996-01-11

    Experiments were performed to characterise the lipolytic effects of the acid metabolite, ZM215001, ((S)-4-[2-hydroxy-3-phenoxy-propylamino-ethoxy] phenoxyacetic acid) of the putative beta 3-adrenoceptor agonist, ZD7114 ((S)-4-[2-hydroxy-3-phenoxy-propylamino-ethoxy]-N-(2-methoxyethyl) phenoxyacetamide) on isolated rat white adipocytes. ZM215001 was used for these studies since it is the predominant moiety after in vivo administration of ZD7114. The agonist properties of ZM215001 were assessed in comparison to the standard nonselective beta-adrenoceptor agonist (+/-)-isoprenaline and the beta 3-adrenoceptor-selective agonist BRL 37344. Isoprenaline, BRL 37344 and ZM215001 all stimulated the rate of free fatty acid release from isolated adipocytes with the order of potency being BRL > isoprenaline > ZM215001. The maximum effect of BRL 37344 was equivalent to that of isoprenaline, but ZM215001 achieved only 30% of the maximum isoprenaline response. ZM215001 competitively antagonised the lipolytic response to BRL 37344 (pA2 = 7.26), whereas the agonist effects of BRL 37344 were not antagonised competitively by the selective antagonists ICI 118551 and CGP 20712A, at concentrations which would be expected to block beta 1- and beta 2-adrenoceptors respectively. These results indicate that ZM215001 has low intrinsic activity at the rat adipocyte beta 3-adrenoceptor, and is a partial agonist of lipolysis in rat white adipocytes. PMID:8720584

  7. Efficacy and safety of conventional long acting β2- agonists: systematic review and meta-analysis

    PubMed Central

    Karbasi-Afshar, Reza; Aslani, Jafar; Ghanei, Mostafa

    2016-01-01

    Background: Chronic obstructive pulmonary disease (COPD) is usually considered one of the leading causes of death worldwide, so finding proper therapeutic strategies for this disease is of high importance. In this meta-analysis, we reviewed the existing literature on the efficacy and safety of conventional long acting beta agonists (LABAs) in COPD patients. Methods: We searched MEDLINE and Google scholar to identify relevant articles. We limited data to double-blinded randomized controlled trials (RCTs). Data of 14, 832 COPD subjects including 7540 patients under a β2 agonist (cases) and 7292 taking placebo (controls) retrieved from 20 randomized controlled trials and were enrolled into this meta-analysis. Evaluated outcomes included overall mortality, exacerbations and tolerance to the drug. Results: The analysis of survival showed no significant difference between those taking LABAs or placebo (relative risk (RR): 0.945, 95% confidence interval (CI): 0.821-1.088, P=0.432). Exacerbation rate, however, was significantly lower among the cases than among the controls (RR: 0.859, 95%CI: 0.800-0.922, p<0.001). Similar observation was detected in analyzing the rate of drug withdrawal in patients of the two groups with patients under placebo having significantly higher rate of drug discontinuation due to adverse events or disease symptoms (RR:0.821, 95% CI: 0.774-0.871; p<0.007). Conclusion: In conclusion, we found that the use of conventional LABA therapy in COPD patients is associated with a lower exacerbation rate of the disease as well as higher tolerance to the drug, but no survival advantage is expectable. Substitution of LABAs with new agents is recommended. PMID:27386055

  8. Lepidozenolide from the liverwort Lepidozia fauriana acts as a farnesoid X receptor agonist.

    PubMed

    Lin, Hsiang-Ru

    2015-01-01

    Lepidozenolide is a sesquiterpenoid isolated from the liverwort Lepidozia fauriana and its possible bioactivity is unclear. The farnesoid X receptor (FXR) is a member of nuclear receptor superfamily that has been widely targeted for developing treatments for chronic liver disease and hyperglycemia. In this study, whether lepidozenolide may act as a FXR agonist was determined. Indeed, in mammalian one-hybrid and transient transfection reporter assays, lepidozenolide transactivated FXR to modulate promoter action including GAL4, CYP7A1, and PLTP promoters in a dose-dependent manner, while it exhibited slightly less agonistic activity than chenodeoxycholic acid, an endogenous FXR agonist. Through the molecular modeling docking studies lepidozenolide was shown to bind to FXR ligand binding pocket fairly well. All these results indicate that lepidozenolide acts as a FXR agonist. PMID:25315435

  9. Decreased numbers of lymphocyte beta 2-adrenoceptors in pregnant women receiving beta 2-adrenergic agonist therapy.

    PubMed

    Santala, M; Saarikoski, S; Castrén, O

    1990-01-01

    Intravenous infusion of buphenine hydrochloride was administered on 4 successive days to 8 pregnant women with imminent preterm labor. Serial blood samples taken before and throughout the study were assayed for lymphocyte beta 2-adrenoceptor density and cyclic adenosine-3',5'-monophosphate (cAMP). The lymphocyte beta 2-adrenoceptor density declined significantly (p less than 0.01) during the treatment. The plasma cAMP concentration was highest 4 h after commencement of infusion and decreased thereafter. Despite the decrease in lymphocyte beta 2-adrenoceptor density, the clinical response remained good and the parturients did not go into labor until several days after infusion was started.

  10. Enhanced antidepressant effect of sigma(1) (sigma(1)) receptor agonists in beta(25-35)-amyloid peptide-treated mice.

    PubMed

    Urani, Alexandre; Romieu, Pascal; Roman, François J; Maurice, Tangui

    2002-08-21

    This study examined the antidepressant efficacy of the selective sigma(1) receptor agonists igmesine or PRE-084 in mice injected intracerebroventricularly (i.c.v.) with beta(25-35)-amyloid peptide and submitted to the forced swim test. Beta(25-35) peptide-injected animals developed memory deficits after 8 days contrarily to controls injected with scrambled beta(25-35) peptide or vehicle solution. In the forced swim test, the i.c.v. treatment failed to affect the immobility duration, but the antidepressant effect of the sigma(1) agonists was facilitated in beta(25-35) animals. Igmesine reduced immobility duration at 30 versus 60 mg/kg in control groups. PRE-084 decreased immobility duration at 30 and 60 mg/kg only in beta(25-35) animals. Desipramine reduced the immobility duration similarly among groups and fluoxetine appeared less potent in beta(25-35) animals. The beta(25-35) animals exhibited decreased progesterone levels in the hippocampus (-47%). The behavioural efficacy of sigma(1) agonists is known to depend on neuro(active)steroids levels synthesised by glial cells and neurones, which are affected by the beta-amyloid toxicity. This behavioural study suggests that sigma(1) agonists, due to their enhanced efficacy, may allow to alleviate the depressive symptoms associated with Alzheimer's disease.

  11. Regular inhaled beta agonist in asthma: effects on exacerbations and lung function.

    PubMed Central

    Taylor, D R; Sears, M R; Herbison, G P; Flannery, E M; Print, C G; Lake, D C; Yates, D M; Lucas, M K; Li, Q

    1993-01-01

    BACKGROUND: A comparison of the effects of regular upsilon as needed inhaled beta agonist treatment on the control of asthma in the last 16 weeks of each of two 24 week treatment periods has been reported. This paper presents additional information on exacerbations of asthma and trends in lung function, airways hyperresponsiveness to methacholine, and bronchodilator responsiveness during the entire 24 week periods of regular or as needed beta agonist treatment. METHODS: Subjects undertook a year long randomised, double blind crossover study of regular upsilon as needed inhaled beta agonist treatment. Fenoterol (400 micrograms) or matching placebo was inhaled as a dry powder four times daily for 24 weeks, then subjects crossed over to the alternative regimen. Treatment with inhaled corticosteroids was used by 50 of the 64 subjects in constant doses throughout the study. Symptoms, peak expiratory flow rates, and drug use were recorded daily, spirometry was performed every four weeks, and methacholine and bronchodilator responsiveness were measured every eight weeks. RESULTS: Exacerbations of asthma symptoms occurred earlier and more often during regular treatment with fenoterol and four of five severe exacerbations requiring admission to hospital occurred during the period of regular treatment. Prebronchodilator forced expiratory volume in one second (FEV1) was on average 0.15 litres lower (95% confidence interval (95% CI) 0.11-0.19) and vital capacity (VC) 0.12 litres lower (95% CI 0.08-0.16) than during the placebo period. Morning peak flow rates were significantly lower and evening peak flow rates significantly higher, with an increase in diurnal variation from 9.8% (95% CI 6.9-12.8) to 17.5% (95% CI 13.8-21.3) during regular treatment. Geometric mean concentration of methacholine causing a 20% fall in FEV1 from the value after saline (PC20) decreased significantly from 1.63 to 1.15 mg/ml, indicating increased bronchial hyperresponsiveness during regular treatment

  12. Slow to fast alterations in skeletal muscle fibers caused by clenbuterol, a beta(2)-receptor agonist

    NASA Technical Reports Server (NTRS)

    Zeman, Richard J.; Ludemann, Robert; Easton, Thomas G.; Etlinger, Joseph D.

    1988-01-01

    The effects of a beta(2)-receptor agonist, clenbuterol, and a beta(2) antagonist, butoxamine, on the skeletal muscle fibers of rats were investigated. It was found that chronic treatment of rats with clenbuterol caused hypertrophy of histochemically identified fast-twitch, but not slow-twitch, fibers within the soleus, while in the extensor digitorum longus the mean areas of both fiber types were increased; in both muscles, the ratio of the number of fast-twitch to slow-twitch fibers was increased. In contrast, a treatment with butoxamine caused a reduction of the fast-twitch fiber size in both muscles, and the ratio of the fast-twitch to slow-twitch fibers was decreased.

  13. Spatial analysis and source profiling of beta-agonists and sulfonamides in Langat River basin, Malaysia.

    PubMed

    Sakai, Nobumitsu; Yusof, Roslan Mohd; Sapar, Marni; Yoneda, Minoru; Mohd, Mustafa Ali

    2016-04-01

    Beta-agonists and sulfonamides are widely used for treating both humans and livestock for bronchial and cardiac problems, infectious disease and even as growth promoters. There are concerns about their potential environmental impacts, such as producing drug resistance in bacteria. This study focused on their spatial distribution in surface water and the identification of pollution sources in the Langat River basin, which is one of the most urbanized watersheds in Malaysia. Fourteen beta-agonists and 12 sulfonamides were quantitatively analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). A geographic information system (GIS) was used to visualize catchment areas of the sampling points, and source profiling was conducted to identify the pollution sources based on a correlation between a daily pollutant load of the detected contaminant and an estimated density of human or livestock population in the catchment areas. As a result, 6 compounds (salbutamol, sulfadiazine, sulfapyridine, sulfamethazine, sulfadimethoxine and sulfamethoxazole) were widely detected in mid catchment areas towards estuary. The source profiling indicated that the pollution sources of salbutamol and sulfamethoxazole were from sewage, while sulfadiazine was from effluents of cattle, goat and sheep farms. Thus, this combination method of quantitative and spatial analysis clarified the spatial distribution of these drugs and assisted for identifying the pollution sources. PMID:26799806

  14. Long-term hypotensive effect of beta-agonist in conscious dogs.

    PubMed

    Nuwayhid, B S; Young, D B; Tipayamontri, U; Montani, J P

    1988-09-01

    The purpose of this study was to investigate the arterial pressure response to long-term administration of beta-agonists in the chronically instrumented conscious animal model. Chronically instrumented dogs were given intravenous infusions of ritodrine (2 micrograms.kg-1.min-1) for a period of 2 wk. Several cardiovascular and renal parameters were monitored before, during, and after the ritodrine infusion, and renal function curves were constructed. After the 1st wk of infusion, a new steady state was reestablished, and this was characterized by hypotension, reduced plasma protein concentration, elevated cardiac output, expanded extracellular fluid space, and near normal levels of activity of renin-angiotensin-aldosterone systems. The renal function curve during ritodrine infusion shifted to the left with no change in slope. We propose the following: 1) the persistence of hypotension is most probably related to the resetting of the arterial pressure-kidney blood volume servocontrol mechanisms, and 2) the persistent elevation of cardiac output and reduction in peripheral resistance are most probably related to increased oxygen and nutrient demand during beta-agonist infusions.

  15. Validation of radioimmunoassay screening methods for beta-agonists in bovine liver according to Commission Decision 2002/657/EC.

    PubMed

    Granja, R H M M; Montes Niño, A M; Rabone, F; Montes Niño, R E; Cannavan, A; Salerno, A Gonzalez

    2008-12-01

    Validation studies were carried out on a multi-residue screening method for anilinic type beta-agonists (clenbuterol, mabuterol, brombuterol, cimaterol, cimbuterol, mapenterol, clenpenterol) and a method for the phenolic type beta-agonist, salbutamol, in bovine liver. The validation was performed according to the European Union Commission Decision 2002/657/EC (European Commission 2002), which establishes criteria and procedures for the determination of parameters such as the detection capability (CCbeta), specificity, stability of standard solutions and stability of the analyte in matrix. CCbeta values for the eight target compounds were between 0.25 and 0.5 microg kg(-1). The stability of standard solutions and analytes in matrix and the specificity of the antibody were characterized. The methods are applicable for qualitative screening of beta-agonists for regulatory programmes according to European Union performance requirements, or as a semi-quantitative research tool for known target compounds.

  16. Mutated human beta3-adrenergic receptor (Trp64Arg) lowers the response to beta3-adrenergic agonists in transfected 3T3-L1 preadipocytes.

    PubMed

    Kimura, K; Sasaki, N; Asano, A; Mizukami, J; Kayahashi, S; Kawada, T; Fushiki, T; Morimatsu, M; Yoshida, T; Saito, M

    2000-03-01

    Wild-type or mutated human beta3-adrenergic receptor (Trp64Arg) cDNAs were stably expressed in mouse 3T3-L1 cells. Saturation binding study using a beta-adrenergic ligand revealed that there was no significant difference in the receptor density and the equilibrium dissociation constant between the two cell lines. However, the ability of the mutant beta3-adrenergic receptor to accumulate cyclic AMP (cAMP) in response to isoproterenol was much reduced and Kact for cAMP accumulation was lowered as compared to the wild type receptor. The amount of alpha subunit of stimulatory GTP-binding protein (GSalpha) and adenylyl cyclase activity in response to forskolin were not different in the two cell lines. The responses of the mutant receptor to epinephrine, norepinephrine and L-755,507, a highly specific agonist for human beta3-adrenergic receptor, were also reduced, but the reduction of Kact for L-755,507 was more evident than other agonists tested. The cAMP accumulation in response to some conventional beta3 agonists was less than 10% of that to isoproterenol even in the cells expressing the wild type receptor. These results suggest that the Trp64Arg mutant beta3-adrenergic receptor has less ability to stimulate adenylyl cyclase, and that lipolytic activity through the beta3-adrenergic receptor by catecholamines in subjects carrying this mutation might be suppressed. PMID:10786926

  17. Beta2-adrenergic agonist residues: simultaneous methyl- and butylboronic derivatization for confirmatory analysis by gas chromatography-mass spectrometry.

    PubMed

    Ramos, F; Santos, C; Silva, A; da Silveira, M I

    1998-09-25

    A derivatization procedure for confirmatory residue analysis of beta2-agonists is described. Methyl (MBA) and butyl (BBA) boronic acids are simultaneously used for the derivatization of tulobuterol, mabuterol, mapenterol, salbutamol, clenproperol, clenbuterol, clenpenterol and bromobuterol by GC-MS determination. A temperature of 55 degrees C during 60 min was selected as optimal temperature-time condition for simultaneous MBA and BBA beta2-agonists derivatization. It was also observed that stability of boronic derivatives was maintained at -20 degrees C over a period of four days. The proposed methodology was tested in urine and it could be applied for confirmatory residue analysis of clenbuterol-like compounds.

  18. Hit to lead studies on (hetero)arylpyrimidines--agonists of the canonical Wnt-beta-catenin cellular messaging system.

    PubMed

    Gilbert, Adam M; Bursavich, Matthew G; Alon, Nippa; Bhat, Bheem M; Bex, Frederick J; Cain, Michael; Coleburn, Valerie; Gironda, Virginia; Green, Paula; Hauze, Diane B; Kharode, Yogendra; Krishnamurthy, Girija; Kirisits, Matthew; Lam, Ho-Sun; Liu, Yao-Bin; Lombardi, Sabrina; Matteo, Jeanne; Murrills, Richard; Robinson, John A; Selim, Sally; Sharp, Michael; Unwalla, Raymond; Varadarajan, Usha; Zhao, Weiguang; Yaworsky, Paul J

    2010-01-01

    A series of (hetero)arylpyrimidines agonists of the Wnt-beta-catenin cellular messaging system have been prepared. These compounds show activity in U2OS cells transfected with Wnt-3a, TCF-luciferase, Dkk-1 and tk-Renilla. Selected compounds show minimal GSK-3beta inhibition indicating that the Wnt-beta-catenin agonism activity most likely comes from interaction at Wnt-3a/Dkk-1. Two examples 1 and 25 show in vivo osteogenic activity in a mouse calvaria model. One example 1 is shown to activate non-phosphorylated beta-catenin formation in bone. PMID:19897365

  19. Experimental study of bone formation around a titanium rod with beta-tricalcium phosphate and prostaglandin E2 receptor agonists.

    PubMed

    Masuzawa, Michinaga; Beppu, Moroe; Ishii, Shoji; Oyake, Yuichiro; Aoki, Haruhito; Takagi, Masayuki

    2005-05-01

    beta-Tricalcium phosphate (beta-TCP) is an excellent bone-filling material that is completely absorbed by the body and replaced by autologous bone. Unfortunately, its mechanical strength is low, rendering its application at loaded regions difficult. The purpose of this study is to evaluate the histological and mechanical effects of single and combined use of beta-TCP and EP4 agonist on bone formation around a titanium rod. beta-TCP was loaded into the femoral bone marrow from the distal end of the femur, where the titanium implants were inserted, and the animals received twice-daily subcutaneous injections of EP4 agonist. Group I received the rod only and was designated the control group; group II received EP4 agonist only; group III received beta-TCP only; and group IV received both beta-TCP and EP4 agonist. Examination of decalcified specimens revealed favorable bone formation in all treatment groups compared with that in group I, with the most active bone formation seen in group IV. Mechanical evaluation revealed significant differences in maximum pull-out force compared with group I at weeks 4 and 8. There were no differences between groups II and III at either week 4 or 8, but the values seen in group IV at weeks 4 and 8 were significantly higher compared with the other groups. Combined use of beta-TCP and EP4 agonist is expected to compensate for bone defects resulting from revision total joint arthroplasty and to achieve stability at an early stage. PMID:15928895

  20. Tissue specific effects of the beta 2-adrenergic agonist salbutamol on LPS-induced IFN-gamma, IL-10 and TGF-beta responses in vivo.

    PubMed

    Eijkelkamp, Niels; Cobelens, Pieter M; Sanders, Virginia M; Heijnen, Cobi J; Kavelaars, Annemieke

    2004-05-01

    Beta2-adrenergic agonists have immunomodulatory effects both in vitro and in vivo. We describe that oral salbutamol (beta-adrenergic agonist) administration has tissue-specific effects on cytokine production induced by intraperitoneal (i.p.) lipopolysaccharide (LPS) administration. Salbutamol reduced LPS-induced IFN-gamma levels at both mucosal and non-mucosal sites. However, salbutamol increased IL-10 levels in the peritoneal cavity, but decreased levels in terminal ileum and lung. Salbutamol did not alter LPS-induced TGF-beta levels in the terminal ileum, but increased levels in liver and peritoneal cavity. Thus, orally administered salbutamol decreases LPS-induced IFN-gamma levels in all tissues tested, but has tissue specific effects on IL-10 and TGF-beta levels.

  1. Effect of beta-ADrenergic Agonist on Cyclic AMP Synthesis in Chicken Skeletal Muscle Cells in Culture

    NASA Technical Reports Server (NTRS)

    Young, R. B.; Bridge, K. Y.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    Several beta-adrenergic receptor (bAR) agonists are known to cause hypertrophy of skeletal muscle tissue. Because it seems logical that these agonists exert their action on muscle through stimulation of cAMP synthesis, five bAR agonists encompassing a range in activity from strong to weak were evaluated for their ability to stimulate cAMP accumulation in embryonic chicken skeletal muscle cells in culture. Two strong agonists (epinephrine and isoproterenol), one moderate agonist (albuterol), and two weak agonists known to cause hypertrophy in animals (clenbuterol and cimaterol) were studied. Dose response curves were determined over six orders of magnitude in concentration for each agonist, and values were determined for their maximum stimulation of cAMP synthesis rate (Bmax) and the agonist concentration at which 50% stimulation of cAMP synthesis (EC50) occurred. Bmax values decreased in the following order: isoproterenol, epinephrine, albuterol, cimaterol, clenbuterol. Cimaterol and clenbuterol at their Bmax levels were approximately 15-fold weaker than isoproterenol in stimulating the rate of cAMP synthesis. In addition, the EC50 values for isoproterenol, cimaterol, clenbuterol, epinephrine, and albuterol were 360 nM, 630 nM, 900 nM, 2,470 nM, and 3,650 nM, respectively. Finally, dose response curves show that the concentrations of cimaterol and clenbuterol in culture media at concentrations known to cause significant muscle hypertrophy in animals had no detectable effect on stimulation of CAMP accumulation in chicken skeletal muscle cells.

  2. IFN-alpha/beta-dependent cross-priming induced by specific toll-like receptor agonists.

    PubMed

    Durand, Vanessa; Wong, Simon Y C; Tough, David F; Le Bon, Agnes

    2006-04-12

    Toll-like receptors (TLR) are pattern recognition receptors that have been identified as crucial in the initiation of innate immune responses against pathogens. They are thought to be involved in shaping appropriate adaptive immune responses, although their precise contribution has not yet been fully characterised. Our aim was to investigate in vivo the effect of different TLR stimuli on cellular immune responses. We examined the ability of a range of TLR stimuli to induce CD8+ T cell responses against a model soluble protein antigen, ovalbumin (OVA). We found that TLR 3, TLR 4, and TLR 9 agonists induced functional cross-priming, and that this process was dependent on IFN-alpha/beta signalling pathway. PMID:16823911

  3. Association between availability of non-prescription beta 2 agonist inhalers and undertreatment of asthma.

    PubMed Central

    Gibson, P; Henry, D; Francis, L; Cruickshank, D; Dupen, F; Higginbotham, N; Henry, R; Sutherland, D

    1993-01-01

    OBJECTIVE--To determine whether the availability of beta 2 agonist inhalers without prescription leads to undertreatment of asthma. DESIGN--Cross sectional study of adequacy of treatment in asthmatic subjects who purchased beta 2 agonist inhalers and subjects who obtained inhalers by prescription. SETTING--Community pharmacies in New South Wales, Australia. SUBJECTS--403 eligible consecutive asthmatic subjects aged 13 to 55 purchasing salbutamol metered dose inhalers over the counter or by prescription; 197 attended for follow up and spirometry and 139 returned 14 day symptom, peak flow, and medication diaries. MAIN OUTCOME MEASURES--Severity of asthma assessed on frequency of day time and night time wheezing, frequency of inhaler use, and peak expiratory flow rates. Adequacy of treatment according to published guidelines. RESULTS--Of the 139 patients who completed the diary 83, (60%) purchased their inhalers without prescription and 83 were undertreated. The characteristics of patients in the prescription and purchasing groups were similar. Multiple logistic regression analysis identified use of non-prescribed salbutamol as being associated with a 2.9-fold increase in the odds of undertreatment (95% confidence interval 1.3 to 6.8). Smoking increased the odds of undertreatment (3.3, 1.2 to 9.5) and use of a peak flow meter reduced the odds (0.11, 0.04 to 0.34). Adjustment for frequency of consultation made use of non-prescription salbutamol insignificant (1.4, 0.55 to 3.8). Attitudes to services provided by doctors and pharmacists were favourable and not associated with undertreatment. CONCLUSION--Over the counter purchase of salbutamol is associated with infrequent consultation with doctors and undertreatment of asthma. PMID:8518681

  4. Illegal use of beta-adrenergic agonists in the United States.

    PubMed

    Mitchell, G A; Dunnavan, G

    1998-01-01

    Clenbuterol (CBL) is a member of the class of drugs called beta-agonists, which have powerful desirable and undesirable effects. Clenbuterol has the ability to increase muscle mass and residues in tissue of treated animals but can cause symptoms of acute poisoning in people. Symptoms, but no deaths, from CBL residue-induced food poisoning have been reported from investigations of separate events in Spain and France. In 1991, FDA sent letters to all states and USDA/FSIS advising them of the possibility of illegal CBL use in domestic animals and of our concern about adverse effects on public health if residue was present in food. The FDA asked U.S. Customs to be alert to attempts at illegal importation and to advise that we were prepared to investigate distribution, sale, or use of the drug. Analytical methods are available to assay for CBL residue in edible tissues and in the retinal tissues of the eye. Methods are being developed for assay of noninvasive samples such as hair. Residues of CBL have been found in one sample of edible tissue and several samples of retinal tissues from show animals and in some classes of commercial meat-producing animals. Several individuals have been found guilty of distributing CBL, cases are pending, and investigations are continuing. It is possible that CBL will be approved for safe conditions of use. The scenario of ultimately one or more beta-agonist drugs approved for legal use in food-producing animals and the probable continued availability of several illegal analogs will be a challenging containment task for regulators and the leaders of the meat-producing livestock industries.

  5. Enzyme-linked immunosorbent assay development for the beta-adrenergic agonist zilpaterol.

    PubMed

    Shelver, Weilin L; Smith, David J

    2004-04-21

    Zilpaterol is an beta-adrenergic agonist approved for use in cattle in South Africa and Mexico as a growth promoter. It is not currently approved for use in the EU, USA, or Asia. Here, we report the development of an ELISA for zilpaterol. Zilpaterol was reacted with ethyl 4-bromobutyrate followed by refluxing in 0.1 M potassium hydroxide. The resulting hapten was reacted with two carrier proteins, bovine serum albumin (BSA) or keyhole limpet hemocyanin (KLH), using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) as an activating agent. Immunization of goats with the zilpaterol-butyrate-KLH resulted in an antibody useful for an ELISA. We utilized zilpaterol-butyrate-BSA as a coating antigen for ELISA development. The average IC(50) derived from the developed zilpaterol immunoassay was 3.94 +/- 0.48 ng/mL (n = 25). The antibody did not cross react with N-alkyl [bamethane, clenbuterol, (-)-isoproterenol, (+)-isoproterenol, metaproterenol, or salbutamol] or N-arylalkyl (dobutamine, fenoterol, isoxsuprine, ractopamine, or salmeterol) beta-agonists. The assay was tolerant of up to 10% (v/v) of acetone, ethanol, or methanol, and 15% (v/v) of acetonitrile or DMSO. Salt concentrations ranging from 0.05 to 1.0 M minimally affected B(0) or IC(50) values. When buffer pH was <7 or >8.8, the IC(50) values increased in comparison to those measured at pH 7.4. In conclusion, a sensitive, specific zilpaterol ELISA has been developed that can serve as a rapid screening assay.

  6. Benzodiazepine receptor agonists affect both binding and gating of recombinant alpha1beta2gamma2 gamma-aminobutyric acid-A receptors.

    PubMed

    Mercik, Katarzyna; Piast, Michał; Mozrzymas, Jerzy W

    2007-05-28

    Benzodiazepines are known to act by enhancing the effect of gamma-aminobutyric acid-A receptor agonists. Positive modulation by benzodiazepines is typically ascribed to upregulation of agonist binding affinity but their effect on gamma-aminobutyric acid-A receptor gating remain unclear. In this work, we have used the ultrafast application system to examine the impact of flurazepam and zolpidem on recombinant alpha1beta2gamma2 gamma-aminobutyric acid-A receptors. As expected, both drugs strongly enhanced currents evoked by low [gamma-aminobutyric acid]. These compounds, however, also affected currents elicited by saturating agonist concentration. In particular, flurazepam and zolpidem reduced current amplitudes and slowed down the recovery process in paired-pulse experiments. Moreover, flurazepam accelerated the current rise time and zolpidem enhanced the rate and extent of desensitization. We propose that flurazepam and zolpidem modulate gamma-aminobutyric acid-A receptors by strong enhancement of agonist binding with a superimposed limited effect on the receptor gating.

  7. Effects of two beta-adrenergic agonists on finishing performance, carcass characteristics, and meat quality of feedlot steers.

    PubMed

    Avendaño-Reyes, L; Torres-Rodríguez, V; Meraz-Murillo, F J; Pérez-Linares, C; Figueroa-Saavedra, F; Robinson, P H

    2006-12-01

    The impact of using 2 beta-adrenergic agonists in feedlot cattle fed finishing diets was evaluated using 54 steers (45 crossbred Charolais and 9 Brangus) initially weighing 424 +/- 26.6 kg in a randomized complete block design with 3 treatments and 6 blocks (i.e., 18 pens with 3 steers per pen). Response variables were feedlot performance, carcass characteristics, and meat quality. Treatments were 1) control (no supplement added); 2) zilpaterol hydrochloride (ZH; 60 mg.steer(-1).d(-1)); and 3) ractopamine hydrochloride (RH; 300 mg.steer(-1).d(-1)). The beta-agonists were added to the diets during the final 33 d of the experiment. The groups of steers fed ZH or RH improved (P < 0.01) ADG by 26 or 24%, respectively, compared with control steers. Steers supplemented with RH consumed less (P = 0.03) DM (8.37 kg) than control steers (8.51 kg), whereas intake was similar (P = 0.37) for ZH and control steers. Addition of either beta-agonist to the diet considerably improved (P < 0.01) the G:F (ZH, 0.253 and RH, 0.248 vs. control, 0.185). Hot carcass weight and carcass yield were enhanced (P < 0.05) with both beta-agonists. The LM area was increased (P = 0.026) by ZH (75.2 cm(2)), but that of RH (72.2 cm(2)) was similar (P = 0.132) to the control steers (66.8 cm(2)). Meat from the ZH- (P = 0.0007) and RH- (P = 0.0267) supplemented steers had greater shear force values than control steers (ZH = 5.11; RH = 4.83; control = 4.39 kg/cm(2)). Variables related to meat color indicated that both beta-agonists led to a similar redness of the LM area related to the control group. In general, feedlot performance was greatly enhanced by beta-adrenergic agonists, and meat tenderness from treated animals was classified as intermediate. Furthermore, meat color was not altered by beta-agonist supplementation. PMID:17093218

  8. Activation of Cyclic AMP Synthesis by Full and Partial Beta-Adrenergic Receptor Agonists in Chicken Skeletal Muscle Cells

    NASA Technical Reports Server (NTRS)

    Young, R. B.; Bridge, K. Y.

    2003-01-01

    Several beta-adrenergic receptor (bAR) agonists are known to cause hypertrophy of skeletal muscle tissue. Accordingly, five bAR agonists encompassing a range in activity from strong to weak were evaluated for their ability to stimulate CAMP accumulation in embryonic chicken skeletal muscle cells in culture. Two strong agonists (epinephrine and isoproterenol), one moderate agonist (albuterol), and two weak agonists known to cause hypertrophy in animals (clenbuterol and cimaterol) were studied. Dose response curves were determined over six orders of magnitude in concentration for each agonist, and values were determined for their maximum stimulation of CAMP synthesis rate (Bmax) and the agonist concentration at which 50% stimulation of CAMP synthesis (EC50) occurred. Bmax values decreased in the following order: isoproterenol, epinephrine, albuterol, cimaterol, clenbuterol. Cimaterol and clenbuterol at their Bmax concentrations were approximately 15-fold weaker than isoproterenol in stimulating the rate of CAMP synthesis. When cimaterol and clenbuterol were added to culture media at concentrations known to cause significant muscle hypertrophy in animals, there was no detectable effect on stimulation of CAMP synthesis. Finally, these same levels of cimaterol and clenbuterol did not antagonize the stimulation of CAMP by either epinephrine or isoproterenol.

  9. Activation of Cyclic AMP Synthesis by Full and Partial Beta-Adrenergic Receptor Agonists in Chicken Skeletal Muscle Cells

    NASA Technical Reports Server (NTRS)

    Young, R. B.; Bridge, K. Y.; Cureri, Peter A. (Technical Monitor)

    2002-01-01

    Several beta-adrenergic receptor (bAR) agonists are known to cause hypertrophy of skeletal muscle tissue. Accordingly, five bAR agonists encompassing a range in activity from strong to weak were evaluated for their ability to stimulate cAMP accumulation in embryonic chicken skeletal muscle cells in culture. Two strong agonists (epinephrine and isoproterenol), one moderate agonist (albuterol), and two weak agonists known to cause hypertrophy in animals (clenbuterol and cimaterol) were studied. Dose response curves were determined over six orders of magnitude in concentration for each agonist, and values were determined for their maximum stimulation of cAMP synthesis rate (Bmax) and the agonist concentration at which 50% stimulation of cAMP synthesis (EC50) occurred. Bmax values decreased in the following order: isoproterenol, epinephrine, albuterol, cimaterol, clenbuterol. Cimaterol and clenbuterol at their Bmax concentrations were approximately 15-fold weaker than isoproterenol in stimulating the rate of cAMP synthesis. When cimaterol and clenbuterol were added to culture media at concentrations known to cause significant muscle hypertrophy in animals, there was no detectable effect on stimulation of cAMP synthesis. Finally, these same levels of cimaterol and clenbuterol did not antagonize the stimulation of cAMP by either epinephrine or isoproterenol.

  10. Effects of beta 2-agonist- and dexamethasone-treatment on relaxation and regulation of beta-adrenoceptors in human bronchi and lung tissue.

    PubMed

    Hauck, R W; Harth, M; Schulz, C; Präuer, H; Böhm, M; Schömig, A

    1997-08-01

    1. Long-term treatment with beta 2-adrenoceptor agonists can lead to a decreased therapeutic efficacy of bronchodilatation in patients with obstructive pulmonary disease. In order to examine whether or not this is due to beta-adrenoceptor desensitization, human bronchial muscle relaxation was studied in isolated bronchial rings after pretreatment with beta 2-adrenoceptor agonists. Additionally, the influence of pretreatment with dexamethasone on desensitization was studied. 2. The effect of beta 2-agonist incubation alone and after coincubation with dexamethasone on density and affinity of beta-adrenoceptors was investigated by radioligand binding experiments. 3. In human isolated bronchi, isoprenaline induces a time- and concentration-dependent beta-adrenoceptor desensitization as judged from maximal reduction in potency by a factor of 7 and reduction of 73 +/- 4% in efficacy of isoprenaline to relax human bronchial smooth muscle. 4. After an incubation period of 60 min with 100 mumol l-1 terbutaline, a significant decline in its relaxing efficacy (81 +/- 8%) and potency (by a factor 5.5) occurred. 5. Incubation with 30 mumol l-1 isoprenaline for 60 min did not impair the maximal effect of a subsequent aminophylline response but led to an increase in potency (factor 4.4). 6. Coincubation of dexamethasone with isoprenaline (120 min; 30 mumol l-1) preserved the effect of isoprenaline on relaxation (129 +/- 15%). 7. In radioligand binding experiments, pretreatment of lung tissue for 60 min with isoprenaline (30 mumol l-1) resulted in a decrease in beta-adrenoceptor binding sites (Bmax) to 64 +/- 1.6% (P < 0.05), while the antagonist affinity (KD) for [3H]-CGP-12177 remained unchanged. 8. In contrast, radioligand binding studies on lung tissue pretreated with either dexamethasone (30 mumol l-1) or isoprenaline (30 mumol l-1) plus dexamethasone (30 mumol l-1) for 120 min did not lead to a significant change of Bmax (160 +/- 22.1% vs 142.3 +/- 28.7%) or KD (5.0 nmol l-1

  11. Monitoring of PAEMs and beta-agonists in urine for a small group of experimental subjects and PAEs and beta-agonists in drinking water consumed by the same subjects.

    PubMed

    Liou, Saou-Hsing; Yang, Gordon C C; Wang, Chih-Lung; Chiu, Yu-Han

    2014-07-30

    This 5-month study contains two parts: (1) to monitor the concentrations of 11 phthalate esters metabolites (PAEMs) and two beta-agonists in human urine samples collected from a small group of consented participants including 16 females and five males; and (2) to analyze the residues of phthalate esters (PAEs) and beta-agonists in various categories of drinking water consumed by the same group of subjects. Each category of human urine and drinking water had 183 samples of its own. The analytical results showed that nine PAEMs were detected in human urine and eight PAEs were detected in drinking water samples. It was found that average concentrations of PAEMs increased as the age increased, but no significant difference between sexes. Further, using the principal component analysis, the loadings of age effect were found to be two times greater than that of gender effect in terms of four DEHP metabolites. Regarding beta-agonists of concern (i.e., ractopamine and salbutamol), they were neither detected in human urine nor drinking water samples in this study.

  12. Concepts of establishing clinical bioequivalence of chlorofluorocarbon and hydrofluoroalkane beta-agonists.

    PubMed

    Parameswaran, K

    1999-12-01

    There are no established guidelines for judging equivalence between inhaled medications. The principles of establishing bioequivalence on the basis of bioavailability and pharmacokinetics may not be applicable to inhaled medications with predominantly topical and minimal systemic effects. For inhaled beta(2)-agonists, the most practical method of showing in vivo therapeutic equivalence is by comparing relative potencies (RPs) of pharmacodynamic effects (bronchodilation and bronchoprotection). A range of doses that includes placebo should be studied in an appropriate design with adequate sample size, and relative potency should be estimated. Hydrofluoroalkane and chlorofluorocarbon salbutamol are bioequivalent for both their bronchodilator (RP, 1.08; 90% confidence interval, 0.95%, 1.23%) and bronchoprotective effects (RP, 1.08; 90% confidence interval, 0.81%, 1.46%) with similar safety profile. Eighteen subjects are required in a cross-over design to demonstrate bronchoprotective bioequivalence with a confidence interval of 67% to 150% for the relative potency (80% power). For salbutamol, this can be achieved with a comparison of 100 and 200 microgram doses. Twelve subjects would suffice for a cumulative dose-response study for bronchodilator bioequivalence. For both outcomes, repeatability and quality control of measurements have to be ensured for an accurate interpretation of the results.

  13. beta3-adrenoceptor agonist prevents alterations of muscle diacylglycerol and adipose tissue phospholipids induced by a cafeteria diet.

    PubMed

    Darimont, Christian; Turini, Marco; Epitaux, Micheline; Zbinden, Irène; Richelle, Myriam; Montell, Eulàlia; Ferrer-Martinez, Andreu; Macé, Katherine

    2004-08-17

    BACKGROUND: Insulin resistance induced by a high fat diet has been associated with alterations in lipid content and composition in skeletal muscle and adipose tissue. Administration of beta3-adrenoceptor (beta3-AR) agonists was recently reported to prevent insulin resistance induced by a high fat diet, such as the cafeteria diet. The objective of the present study was to determine whether a selective beta3-AR agonist (ZD7114) could prevent alterations of the lipid profile of skeletal muscle and adipose tissue lipids induced by a cafeteria diet. METHODS: Male Sprague-Dawley rats fed a cafeteria diet were treated orally with either the beta3-AR agonist ZD7114 (1 mg/kg per day) or the vehicle for 60 days. Rats fed a chow diet were used as a reference group. In addition to the determination of body weight and insulin plasma level, lipid content and fatty acid composition in gastronemius and in epididymal adipose tissue were measured by gas-liquid chromatography, at the end of the study. RESULTS: In addition to higher body weights and plasma insulin concentrations, rats fed a cafeteria diet had greater triacylglycerol (TAG) and diacylglycerol (DAG) accumulation in skeletal muscle, contrary to animals fed a chow diet. As expected, ZD7114 treatment prevented the excessive weight gain and hyperinsulinemia induced by the cafeteria diet. Furthermore, in ZD7114 treated rats, intramyocellular DAG levels were lower and the proportion of polyunsaturated fatty acids, particularly arachidonic acid, in adipose tissue phospholipids was higher than in animals fed a cafeteria diet. CONCLUSIONS: These results show that activation of the beta3-AR was able to prevent lipid alterations in muscle and adipose tissue associated with insulin resistance induced by the cafeteria diet. These changes in intramyocellular DAG levels and adipose tissue PL composition may contribute to the improved insulin sensitivity associated with beta3-AR activation. PMID:15507149

  14. The estrogen receptor antagonist ICI 182,780 can act both as an agonist and an inverse agonist when estrogen receptor α AF-2 is modified

    PubMed Central

    Movérare-Skrtic, Sofia; Börjesson, Anna E.; Farman, Helen H.; Sjögren, Klara; Windahl, Sara H.; Lagerquist, Marie K.; Andersson, Annica; Stubelius, Alexandra; Carlsten, Hans; Gustafsson, Jan-Åke; Ohlsson, Claes

    2014-01-01

    The bone-sparing effect of estrogen is primarily mediated via estrogen receptor (ER) α, which stimulates target gene transcription through two activation functions (AFs), AF-1 in the N-terminal and AF-2 in the ligand-binding domain. It was recently demonstrated that the ER antagonist ICI 182,780 (ICI) acts as an ER agonist in uterus of mice with mutations in the ERα AF-2. To evaluate the estrogen-like effects of ICI in different tissues, ovariectomized wild-type mice and mice with mutations in the ERα AF-2 (ERαAF-20) were treated with ICI, estradiol, or vehicle for 3 wk. Estradiol increased the trabecular and cortical bone mass as well as the uterine weight, whereas it reduced fat mass, thymus weight, and the growth plate height in wild-type but not in ERαAF-20 mice. Although ICI had no effect in wild-type mice, it exerted tissue-specific effects in ERαAF-20 mice. It acted as an ERα agonist on trabecular bone mass and uterine weight, whereas no effect was seen on cortical bone mass, fat mass, or thymus weight. Surprisingly, a pronounced inverse agonistic activity was seen on the growth plate height, resulting in enhanced longitudinal bone growth. In conclusion, ICI uses ERα AF-1 in a tissue-dependent manner in mice lacking ERαAF-2, resulting in no effect, agonistic activity, or inverse agonistic activity. We propose that ERα lacking AF-2 is constitutively active in the absence of ligand in the growth plate, enabling ICI to act as an inverse agonist. PMID:24395795

  15. Regulation of UCP gene expression in brown adipocytes differentiated in primary culture. Effects of a new beta-adrenoceptor agonist.

    PubMed

    Champigny, O; Holloway, B R; Ricquier, D

    1992-07-01

    Primary cultures of precursor cells from mouse and rat brown adipose tissue (BAT) were used to study the effect of a new beta-agonist (ICI D7114) on the uncoupling protein (UCP) gene expression. ICI 215001 (the active metabolite of D7114) increased the expression of UCP and its mRNA in brown adipocytes differentiating in vitro in a dose-dependent manner. This stimulating effect was not inhibited by propranolol, a non-specific beta-antagonist, but was partially reduced by bupranolol, a beta 3-antagonist. No expression of UCP mRNA was ever induced by ICI 215001 in white adipocytes differentiated in vitro. It was concluded that the drug could affect the brown adipose cells through a beta 3-pathway. It could clearly modulate the expression of UCP in brown adipocytes differentiated in vitro, but was not able by itself to turn on the gene. PMID:1355051

  16. Combined inhalation of beta2 -agonists improves swim ergometer sprint performance but not high-intensity swim performance.

    PubMed

    Kalsen, A; Hostrup, M; Bangsbo, J; Backer, V

    2014-10-01

    There is a high prevalence of asthma and airway hyperresponsiveness (AHR) in elite athletes, which leads to a major use of beta2 -agonists. In a randomized double-blinded crossover study, we investigated the effects of combined inhalation of beta2 -agonists (salbutamol, formoterol, and salmeterol), in permitted doses within the World Anti-Doping Agency 2013 prohibited list, in elite swimmers with (AHR, n = 13) or without (non-AHR, n = 17) AHR. Maximal voluntary isometric contraction of m. quadriceps (MVC), sprint performance on a swim ergometer and performance in an exhaustive swim test at 110% of VO2max were determined. Venous plasma interleukin-6 (IL-6) and interleukin-8 (IL-8) were measured post-exercise. No improvement was observed in the exhaustive swim test, but swim ergometer sprint time was improved (P < 0.05) in both groups from 57 ± 1.7 to 56 ± 1.8 s in AHR and 58.3 ± 1 to 57.4 ± 1 s in non-AHR. MVC and post-exercise plasma IL-6 increased (P < 0.05) with beta2 -agonists in both groups, whereas IL-8 only increased in AHR. In summary, inhalation of beta2 -agonists, in permitted doses, did not improve swim performance in elite swimmers. However, swim ergometer sprint performance and MVC were increased, which should be considered when making future anti-doping regulations. PMID:23834392

  17. Combined inhalation of beta2 -agonists improves swim ergometer sprint performance but not high-intensity swim performance.

    PubMed

    Kalsen, A; Hostrup, M; Bangsbo, J; Backer, V

    2014-10-01

    There is a high prevalence of asthma and airway hyperresponsiveness (AHR) in elite athletes, which leads to a major use of beta2 -agonists. In a randomized double-blinded crossover study, we investigated the effects of combined inhalation of beta2 -agonists (salbutamol, formoterol, and salmeterol), in permitted doses within the World Anti-Doping Agency 2013 prohibited list, in elite swimmers with (AHR, n = 13) or without (non-AHR, n = 17) AHR. Maximal voluntary isometric contraction of m. quadriceps (MVC), sprint performance on a swim ergometer and performance in an exhaustive swim test at 110% of VO2max were determined. Venous plasma interleukin-6 (IL-6) and interleukin-8 (IL-8) were measured post-exercise. No improvement was observed in the exhaustive swim test, but swim ergometer sprint time was improved (P < 0.05) in both groups from 57 ± 1.7 to 56 ± 1.8 s in AHR and 58.3 ± 1 to 57.4 ± 1 s in non-AHR. MVC and post-exercise plasma IL-6 increased (P < 0.05) with beta2 -agonists in both groups, whereas IL-8 only increased in AHR. In summary, inhalation of beta2 -agonists, in permitted doses, did not improve swim performance in elite swimmers. However, swim ergometer sprint performance and MVC were increased, which should be considered when making future anti-doping regulations.

  18. The agonistic and antagonistic effects of short acting estrogens: a review.

    PubMed

    Clark, J H; Markaverich, B M

    1983-01-01

    Based on a review of the literature, this paper clarifies the pharmacologic properties of shortacting estrogens and their role in physiology and medicine. Shortacting estrogens display mixed agonist-antagonistic properties when injected in saline. The mixed estrogenic function results from the rapid clearance of these compounds from target tissue. When administered by pellet implant, however, shortacting estrogens act as full agonists. Both the uterotropic and vaginotropic response patterns of these compounds are detailed. Shortacting estrogens stimulate early uterotropic responses while having little effect on true uterine growth when administered by injection in saline. Thus, they have no antagonistic action when examined by shortterm uterotropic assays, but display partial antagonism when longterm uterine growth assays are used. Previous research has suggested that shortacting estrogens would not be effectual or antagonistic if present in a continuous fashion which would result in constant or longterm occupancy of the estrogen receptor. Estradiol, however, does manifest these properties when injected. Shortacting estrogens do not act as antagonists on vaginotropic responses as they do uterotropic responses. The paper also reviews the functions of these compounds in various physiological states, including blood binding, metabolism, menstruation, and pregnancy. Finally, clinical considerations are discussed. Estriol has an apparent selective effect on vaginotropic events. It has been effective in correcting symptoms of menopause, for example. However, estriol is not believed to have a protective effect against breast cancer. When it is present in a continuous fashion, estriol acts as an estrogen, thereby ruling out such an effect. PMID:6356176

  19. Thienorphine is a potent long-acting partial opioid agonist: a comparative study with buprenorphine.

    PubMed

    Yu, Gang; Yue, Yong-Juan; Cui, Meng-Xun; Gong, Ze-Hui

    2006-07-01

    A strategy in the development of new treatment for opioid addiction is to find partial opioid agonists with properties of long duration of action and high oral bioavailability. In a search for such compounds, thienorphine, a novel analog of buprenorphine, was synthesized. Here, we reported that, like buprenorphine, thienorphine bound potently and nonselectively to mu-, delta-, and kappa-opioid receptors stably expressed in CHO (Chinese hamster ovary) cells and behaved as a partial agonist at mu-opioid receptor. However, some differences were observed between the pharmacological profiles of thienorphine and buprenorphine. In vitro, thienorphine was more potent than buprenorphine in inhibiting [3H]diprenorphine and stimulating guanosine 5'-O-(3-[35S]thio)triphosphate binding to rat mu-opioid receptor stably expressed in CHO cells. In vivo, thienorphine exhibited a less potent but more efficacious antinociceptive effect with an ED50 value of 0.25 mg/kg s.c. and more potent antimorphine effect with an ED50 value of 0.64 mg/kg intragastric, compared with buprenorphine. Additionally, the bioavailability of thienorphine was greatly higher than that of buprenorphine after oral administration. Moreover, compared with buprenorphine, thienorphine showed a similar long-lasting antinociceptive effect but a much longer antagonism of morphine-induced lethality (more than 15 days). These results indicate that thienorphine is a potent, long-acting partial opioid agonist with high oral bioavailability and may have possible application in treating addiction. PMID:16569757

  20. Selective beta 3-adrenergic agonists of brown adipose tissue and thermogenesis. 2. [4-[2-[(2-Hydroxy-3-phenoxypropyl)amino]ethoxy]phenoxy]acetamides.

    PubMed

    Howe, R; Rao, B S; Holloway, B R; Stribling, D

    1992-05-15

    The ester methyl [4-[2-[(2-hydroxy-3-phenoxypropyl)amino]ethoxy]phenoxy]acetate (1) (R1 = OMe) had previously been identified as the most interesting member of a series of selective beta 3-adrenergic agonists of brown adipose tissue and thermogenesis in the rat. In vivo it acts mainly via the related acid 1 (R1 = OH). Amides have been examined to determine whether they have advantages over the ester. In particular, in the rat and dog the half-lives of amides of appropriate potency were no longer than those of the ester. The amide (S)-4-[2-[(2-hydroxy-3-phenoxypropyl)amino]ethoxy]-N-(2- methoxyethyl)phenoxyacetamide [S-27, ICI D7114] was selected as having properties consistent with a sustained-release formulation should that prove necessary. Unlike the ester it is resistant to hydrolysis in the gut lumen. Further testing of ICI D7114 has shown that in the rat, cat, and dog it stimulates the beta 3-adrenergic receptor in brown adipose tissue at doses lower than those at which it affects beta 1- and beta 2-adrenergic receptors in other tissues. Slimming effects were observed in the dog. ICI D7114 may be a selective thermogenic agent in man and may be useful in the treatment of obesity and diabetes. PMID:1350310

  1. Risk of severe life threatening asthma and beta agonist type: an example of confounding by severity.

    PubMed Central

    Garrett, J E; Lanes, S F; Kolbe, J; Rea, H H

    1996-01-01

    BACKGROUND: A study was undertaken to test the hypothesis that a particular inhaled beta agonist, fenoterol, increases the incidence of severe life threatening asthma. METHODS: A retrospective cohort was assembled comprising 655 patients with asthma aged 15-55 years who attended a single Auckland hospital for acute asthma between 1 January 1986 and 31 December 1987 (the "index event"). Patients were followed for the occurrence of death from asthma or admission to the intensive care unit for asthma, until death or 31 May 1989. Data on asthma medications and asthma severity were obtained from forms used specifically for managing patients with acute asthma in the emergency department and maintained as part of the hospital record and/or from the hospital record (when patients were admitted). RESULTS: Following the index event 90 admissions to the intensive care unit (ICU) and 15 asthma deaths were identified. Before adjusting for asthma severity, patients using inhaled fenoterol had a greater incidence of severe life threatening asthma than patients using inhaled salbutamol (RR = 2.1, 95% CI 1.4 to 3.1). After controlling for two markers of severe asthma used in previous studies-a hospital admission in the previous year and prescribed oral corticosteroids-the relative risk estimate declined to 1.5 (95% CI 1.0 to 2.3). After controlling further for the number of hospital admissions during the study period, continuous oral corticosteroid use rather than short courses of treatment, severity of the previous attack requiring a hospital visit, and race, fenoterol was not associated with severe life threatening asthma at the time of attendance for a previous hospital visit (RR = 1.0, 95% CI 0.6 to 1.7). CONCLUSION: Fenoterol is used more often by patients with severe asthma and, after adjusting for differences in baseline risk, it does not increase the risk of severe life threatening asthma. PMID:8958891

  2. Effects of insulin, biguanide antihyperglycaemic agents and beta-adrenergic agonists on pathways of myocardial proteolysis.

    PubMed

    Thorne, D P; Lockwood, T D

    1990-03-15

    Pathways of bulk protein degradation controlled by insulin and isoprenaline (isoproterenol) were distinguished in Langendorff-perfused rat hearts. Proteins were biosynthetically labelled in vitro with [3H]leucine, followed by addition of 2 mM non-radioactive leucine to competitively prevent reincorporation. Rapidly degraded proteins were eliminated during a 3 h preliminary perfusion period without insulin. One third of bulk myocardial protein degradation was inhibited by isoprenaline as described previously. An insulin concentration of 5 nM maximally inhibited proteolysis, beginning within 2 min. Inhibition reached 32% within 1.25 h and 35% after 1.5 h. The minimum effective insulin concentration was approx. 10-50 pM, which caused 10-20% inhibition. Following 3 h of perfusion without insulin, the lysosomal inhibitor, chloroquine (30 microM), inhibited 38% of bulk degradation. The 35% proteolytic inhibition caused by insulin was followed by very little further inhibition on subsequent concurrent infusion of chloroquine, i.e. the inhibitory effects of insulin and chloroquine were not additive. In contrast, prior inhibition of lysosomal proteolysis by insulin or chloroquine did not prevent the subsequent additive inhibition caused by isoprenaline. Insulin and beta-agonists additively inhibited approx. two-thirds of bulk degradation. The biguanide antihyperglycaemic agent phenformin (2 microM) inhibited 35% of bulk degradation, beginning at 2 min and reaching a near maximum at approx. 1.25-1.5 h. Following inhibition of proteolysis with phenformin (20 microM), subsequent infusion of chloroquine (30 microM) produced only a slight additional inhibition. Following inhibition of 35% of degradation by 1.5 h of perfusion with insulin (5 nM), subsequent exposure to phenformin (2 microM) produced only a slight additional inhibition which did not exceed 38% of basal proteolysis. Thus insulin and phenformin both inhibit lysosomal proteolysis; however, the adrenergic

  3. Effects of insulin, biguanide antihyperglycaemic agents and beta-adrenergic agonists on pathways of myocardial proteolysis.

    PubMed Central

    Thorne, D P; Lockwood, T D

    1990-01-01

    Pathways of bulk protein degradation controlled by insulin and isoprenaline (isoproterenol) were distinguished in Langendorff-perfused rat hearts. Proteins were biosynthetically labelled in vitro with [3H]leucine, followed by addition of 2 mM non-radioactive leucine to competitively prevent reincorporation. Rapidly degraded proteins were eliminated during a 3 h preliminary perfusion period without insulin. One third of bulk myocardial protein degradation was inhibited by isoprenaline as described previously. An insulin concentration of 5 nM maximally inhibited proteolysis, beginning within 2 min. Inhibition reached 32% within 1.25 h and 35% after 1.5 h. The minimum effective insulin concentration was approx. 10-50 pM, which caused 10-20% inhibition. Following 3 h of perfusion without insulin, the lysosomal inhibitor, chloroquine (30 microM), inhibited 38% of bulk degradation. The 35% proteolytic inhibition caused by insulin was followed by very little further inhibition on subsequent concurrent infusion of chloroquine, i.e. the inhibitory effects of insulin and chloroquine were not additive. In contrast, prior inhibition of lysosomal proteolysis by insulin or chloroquine did not prevent the subsequent additive inhibition caused by isoprenaline. Insulin and beta-agonists additively inhibited approx. two-thirds of bulk degradation. The biguanide antihyperglycaemic agent phenformin (2 microM) inhibited 35% of bulk degradation, beginning at 2 min and reaching a near maximum at approx. 1.25-1.5 h. Following inhibition of proteolysis with phenformin (20 microM), subsequent infusion of chloroquine (30 microM) produced only a slight additional inhibition. Following inhibition of 35% of degradation by 1.5 h of perfusion with insulin (5 nM), subsequent exposure to phenformin (2 microM) produced only a slight additional inhibition which did not exceed 38% of basal proteolysis. Thus insulin and phenformin both inhibit lysosomal proteolysis; however, the adrenergic

  4. Effects of ZD7114, a selective beta3-adrenoceptor agonist, on neuroendocrine mechanisms controlling energy balance.

    PubMed

    Savontaus, E; Pesonen, U; Rouru, J; Huupponen, R; Koulu, M

    1998-04-24

    Selective beta3-adrenoceptor agonists increase energy expenditure by increasing non-shivering thermogenesis in brown adipose tissue. The aim of this study was to investigate how changes in energy balance affect energy intake and interaction of peripheral metabolic feedback signals with central neuroendocrine mechanisms participating in the control of body energy balance. Expression of preproneuropeptide Y (preproNPY) mRNA in the arcuate nucleus and preprocorticotropin-releasing factor (CRF) mRNA in the paraventricular nucleus were measured by in situ hybridisation technique after 1 day, 1 and 5 weeks of treatment with ZD7114 ((S)-4-[2-[(2-hydroxy-3-phenoxypropyl)amino]ethoxy]-N-(2-methoxyet hyl)phenoxyacetamide, 3 mg kg(-1) day(-1) in drinking water) in obese fa/fa Zucker rats. In addition, expression of leptin mRNA in epididymal fat and serum levels of leptin were analysed. Food intake, body weights, binding of GDP to brown adipose tissue mitochondria, plasma insulin and glucose were also measured. Treatment with ZD7114 significantly reduced weight gain and activated brown adipose tissue thermogenesis, but had no effect on food intake. Expressions of preproNPY or preproCRF mRNAs were similarly not changed by treatment with ZD7114. Furthermore, ZD7114 had no effect on plasma insulin or leptin and the expression of leptin mRNA in epididymal fat. However, statistically significant correlations were found between preproNPY and preproCRF mRNA expressions and brown fat thermogenic activity and plasma insulin levels in the ZD7114 treated rats, but not in the control rats. It is concluded that treatment with ZD7114 markedly activated brown fat thermogenesis, but did not affect neuropeptide Y (NPY) and CRF gene expression per se. However, the correlation analyses suggest that ZD7114 may modulate feedback connections of brown adipose tissue thermogenesis and plasma insulin with the hypothalamic neuroendocrine mechanisms integrating body energy balance. PMID:9653893

  5. Gastroprotective effect of beta3 adrenoreceptor agonists ZD 7114 and CGP 12177A in rats.

    PubMed

    Sevak, Rajkumar; Paul, Arindam; Goswami, Sunita; Santani, Devdas

    2002-10-01

    The effects of beta(3) adrenergic receptor agonists, (S)-4-[2-hydroxy-3-phenoxy-propylamino-ethoxy]-N-(2-methoxyethyl)-phenoxyacetamide (ZD 7114) and (+/-)-4-(3-t-butylamino-2-hydroxypropoxy)benzimidazol-2-one (CGP 12177A), were studied on aspirin plus pylorus ligation-induced gastric ulcers, gastric mucosal blood flow and gastric motility in rats. Pretreatment with ZD 7114 (3 mg kg(-1), p.o.) and CGP 12177A (3.5 mg kg(-1), p.o.) resulted in significant reduction in the incidences of gastric ulceration in aspirin plus pylorus ligated rats and results were comparable with the cimetidine treated group. Ulcer index was significantly reduced by ZD 7114 (0.71+/-0.05, P<0.05) and CGP 12177A (1.15+/-0.27, P<0.05) when compared with the control group (4.47+/-0.38). Further, significant increase in total carbohydrates to protein content ratio (mucin activity) was also observed. However, they did not alter the acid secretory parameters such as total acidity, total acid output and pepsin activity. Effects of ZD 7114 and CGP 12177A on gastric mucosal blood flow were studied using neutral red clearance method. Both the treatments showed significant increase in gastric mucosal blood flow (GV/Bt) as compared to control group. Effect on gastric motility was evaluated by estimation of phenol red concentration in rat stomach. Significantly higher concentrations of phenol red in the stomach were observed in ZD 7114 and CGP 12177A treated rats. Both ZD 7114 and CGP 12177A showed significant gastroprotective effect in the present study. The mechanism of this effect may be attributed to enhancement of gastric mucosal blood flow, reduction in gastric motility and strengthening of gastric mucosal barrier. PMID:12361698

  6. Agonist-dependent single channel current and gating in alpha4beta2delta and alpha1beta2gamma2S GABAA receptors.

    PubMed

    Keramidas, Angelo; Harrison, Neil L

    2008-02-01

    The family of gamma-aminobutyric acid type A receptors (GABA(A)Rs) mediates two types of inhibition in the mammalian brain. Phasic inhibition is mediated by synaptic GABA(A)Rs that are mainly comprised of alpha(1), beta(2), and gamma(2) subunits, whereas tonic inhibition is mediated by extrasynaptic GABA(A)Rs comprised of alpha(4/6), beta(2), and delta subunits. We investigated the activation properties of recombinant alpha(4)beta(2)delta and alpha(1)beta(2)gamma(2S) GABA(A)Rs in response to GABA and 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3(2H)-one (THIP) using electrophysiological recordings from outside-out membrane patches. Rapid agonist application experiments indicated that THIP produced faster opening rates at alpha(4)beta(2)delta GABA(A)Rs (beta approximately 1600 s(-1)) than at alpha(1)beta(2)gamma(2S) GABA(A)Rs (beta approximately 460 s(-1)), whereas GABA activated alpha(1)beta(2)gamma(2S) GABA(A)Rs more rapidly (beta approximately 1800 s(-1)) than alpha(4)beta(2)delta GABA(A)Rs (beta < 440 s(-1)). Single channel recordings of alpha(1)beta(2)gamma(2S) and alpha(4)beta(2)delta GABA(A)Rs showed that both channels open to a main conductance state of approximately 25 pS at -70 mV when activated by GABA and low concentrations of THIP, whereas saturating concentrations of THIP elicited approximately 36 pS openings at both channels. Saturating concentrations of GABA elicited brief (<10 ms) openings with low intraburst open probability (P(O) approximately 0.3) at alpha(4)beta(2)delta GABA(A)Rs and at least two "modes" of single channel bursting activity, lasting approximately 100 ms at alpha(1)beta(2)gamma(2S) GABA(A)Rs. The most prevalent bursting mode had a P(O) of approximately 0.7 and was described by a reaction scheme with three open and three shut states, whereas the "high" P(O) mode ( approximately 0.9) was characterized by two shut and three open states. Single channel activity elicited by THIP in alpha(4)beta(2)delta and alpha(1)beta(2)gamma(2S) GABA

  7. Prolonged treatment with the beta3-adrenergic agonist CL 316243 induces adipose tissue remodeling in rat but not in guinea pig: 1) fat store depletion and desensitization of beta-adrenergic responses.

    PubMed

    Ferrand, C; Redonnet, A; Prévot, D; Carpéné, C; Atgié, C

    2006-06-01

    Beta3-adrenergic agonists have been considered as potent antiobesity and antidiabetic agents mainly on the basis of their beneficial actions discovered twenty years ago in obese and diabetic rodents. The aim of this work was to verify whether prolonged treatment with a beta3-adrenergic agonist known to stimulate lipid mobilisation, could promote desensitization of beta-adrenergic responses. Wistar rats and guinea pigs were treated during one week with CL 316243 (CL, 1 mg/kg/d) by implanted osmotic minipumps. In control animals, beta3-adrenergic agonists were lipolytic in rat but not in guinea pig adipocytes. CL-treatment did not alter body weight gain in both species, but reduced fat stores in rats. Lipolysis stimulation by forskolin was unmodified but responses to beta1-, beta2- and beta3-agonists were reduced in visceral or subcutaneous white adipose tissues of CL-treated rats. Similarly, the beta3-adrenergic-dependent impairment of insulin action on glucose transport and lipogenesis in rat adipocytes was diminished after CL-treatment. In rat adipocytes, [125I]ICYP binding and beta3-adrenoceptor mRNA levels were reduced after sustained CL administration. These findings show that CL 316243 exerts (beta3-adrenergic lipolytic and antilipogenic effects in rat adipocytes. These actions, which are likely involved in the fat depletion observed in rat, also lead to the desensitization of all beta-adrenergic responses. Therefore this desensitization, together with the lack of slimming action in guinea pig, seriously attenuates the usefulness of beta3-agonists as antiobesity agents, and may explain why such agonists have not been conducted to a widespread clinical use.

  8. The long-acting β2-adrenoceptor agonist, indacaterol, enhances glucocorticoid receptor-mediated transcription in human airway epithelial cells in a gene- and agonist-dependent manner

    PubMed Central

    Joshi, T; Johnson, M; Newton, R; Giembycz, M A

    2015-01-01

    Background and Purpose Inhaled glucocorticoid (ICS)/long-acting β2-adrenoceptor agonist (LABA) combination therapy is a recommended treatment option for patients with moderate/severe asthma in whom adequate control cannot be achieved by an ICS alone. Previously, we discovered that LABAs can augment dexamethasone-inducible gene expression and proposed that this effect may explain how these two drugs interact to deliver superior clinical benefit. Herein, we extended that observation by analysing, pharmacodynamically, the effect of the LABA, indacaterol, on glucocorticoid receptor (GR)-mediated gene transcription induced by seven ligands with intrinsic activity values that span the spectrum of full agonism to antagonism. Experimental Approach BEAS-2B human airway epithelial cells stably transfected with a 2× glucocorticoid response element luciferase reporter were used to model gene transcription together with an analysis of several glucocorticoid-inducible genes. Key Results Indacaterol augmented glucocorticoid-induced reporter activation in a manner that was positively related to the intrinsic activity of the GR agonist. This effect was demonstrated by an increase in response maxima without a change in GR agonist affinity or efficacy. Indacaterol also enhanced glucocorticoid-inducible gene expression. However, the magnitude of this effect was dependent on both the GR agonist and the gene of interest. Conclusions and Implications These data suggest that indacaterol activates a molecular rheostat, which increases the transcriptional competency of GR in an agonist- and gene-dependent manner without apparently changing the relationship between fractional GR occupancy and response. These findings provide a platform to rationally design ICS/LABA combination therapy that is based on the generation of agonist-dependent gene expression profiles in target and off-target tissues. PMID:25598440

  9. Zeneca ZD7114 acts as an antagonist at beta 3-adrenoceptors in rat isolated ileum.

    PubMed Central

    Growcott, J. W.; Holloway, B.; Green, M.; Wilson, C.

    1993-01-01

    1. The relaxant effects of Zeneca ZD7114, BRL37344 (putative beta 3-adrenoceptor agonists) and various phenylethylamine-based agonists were studied in isolated ileum of the rat where tone was increased with carbachol (0.5 microM). Agonist-induced relaxation.was measured under equilibrium conditions with alpha-, beta 1- and beta 2-adrenoceptors inhibited. 2. Relaxant responses were obtained to isoprenaline, noradrenaline, and BRL37344, although, the efficacy of this latter agent was significantly.lower than that of isoprenaline. Salbutamol caused weak relaxation (< 20%) at high concentrations (10 microM) and ZD7114 was without significant relaxant effect even at high concentrations (10 microM). 3. Relaxant responses to isoprenaline and BRL37344 were weakly antagonized by high concentrations of (+/-)-propranolol (10 and 100 microM) yielding pKB values of 5.7 with isoprenaline as the agonist and 5.5 with BRL37344 as the agonist. 4. The non-selective beta-adrenoceptor antagonist, (+/-)-alprenolol (1-100 microM) caused competitive antagonism of the relaxant responses to isoprenaline (pA2 value = 6.5). A similar pKB value was obtained when BRL37344 was used as the agonist (6.4). 5. Relaxant effects of isoprenaline and BRL37344 were also antagonized by ZD7114 (1-100 microM) yielding pA2 and pKB values of 6.3 and 6.7 respectively. 6. The low potencies of (+/-)-propranolol and (+/-)-alprenolol as antagonists of the relaxant responses to isoprenaline and BRL37344 indicate that both the agonists and antagonists employed in the current study may interact with beta 3-adrenoceptors in the rat isolated ileum.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7905770

  10. Beta-adrenoceptor agonist mediated relaxation of rat isolated resistance arteries: a role for the endothelium and nitric oxide.

    PubMed Central

    Graves, J.; Poston, L.

    1993-01-01

    1. Isoprenaline (10(-9)-10(-5) M) relaxed rat isolated mesenteric resistance arteries pre-contracted with K+ (30-60 mM) (p EC50 (M) 8.03 +/- 0.40; maximum relaxation 66.79 +/- 2.43%, n = 7). This relaxation was partially attenuated by the nitric oxide (NO) synthase inhibitor N omega-nitro-L-arginine methyl ester (L-NAME, 10(-4) M). 2. The beta 2-adrenoceptor agonist, salbutamol (10(-9)-10(-5) M), produced a modest maximum relaxation (35.93 +/- 2.93%), which was not sensitive to L-NAME. 3. The beta 1-adrenoceptor agonist, dobutamine (10(-9)-10(-5) M), relaxed arteries precontracted with K+. This relaxation was abolished by L-NAME (10(-4) M) and also by propranolol (10(-6) M), but not affected by D-NAME (10(-4) M). The inhibition by L-NAME was partially reversed by L-arginine (10(-3) M). Removal of the endothelium severely attenuated relaxation to dobutamine. 4. Contractile responses to depolarizing K+ solutions were enhanced by the addition of L-NAME, and also by removal of the endothelium. 5. The above findings demonstrate that beta 1-adrenoceptor causes relaxation via NO release from the endothelium of rat mesenteric resistance arteries. In addition, contraction to K+ is modified by release of NO from the endothelium, possibly in response to tension development. PMID:8096781

  11. Self-limitation of intravenous tocolysis with beta2-adrenergic agonists is mediated through receptor G protein uncoupling.

    PubMed

    Frambach, Torsten; Müller, Thomas; Freund, Sebastian; Engelhardt, Stefan; Sütterlin, Marc; Lohse, Martin J; Dietl, Johannes

    2005-05-01

    Tocolysis with a beta-adrenergic receptor agonist is the most common approach to premature labor management after the 25th wk of pregnancy. However, prolonged treatment is associated with a marked loss of efficacy. The biochemical mechanisms involved remain unclear. This study was undertaken to investigate the effect of fenoterol on beta-adrenergic receptor signal transduction in human myometrium. Myometrial biopsy specimens were obtained from 40 women at cesarean section between the 25th and 34th wk of pregnancy. Nineteen patients had received no tocolysis (controls, group I) and 21 had been treated with fenoterol (<48 h in 10, group II; > or = 48 h in 11, group III). As methods we used membrane preparation, adenylyl cyclase assay and cAMP RIA. Adenylyl cyclase activity was determined by the measurement of cAMP levels to evaluate signal transduction after stimulation of beta-adrenergic receptors with isoproterenol, G protein with GTP, and adenylyl cyclase with forskolin. The functional activity of GTP-binding regulatory proteins (G(s)) and adenylyl cyclase was not altered by fenoterol treatment. In the control group, the increase in adenylyl cyclase activity in response to GTP plus isoproterenol was greater than in response to GTP alone. The increase was reduced by 50% in group II and was insignificant in group III. There was no correlation between gestational age and basal adenylyl cyclase activity. Intravenous tocolysis with the beta2-adrenergic receptor agonist fenoterol leads to complete desensitization of the beta-adrenergic receptor system. In addition to the known reduction in receptor number (down-regulation) as underlying mechanism, uncoupling of the receptor from the stimulatory G protein G(s) was identified.

  12. Gas-phase lithium cation basicity of histamine and its agonist 2-([beta]-aminoethyl)-pyridine

    NASA Astrophysics Data System (ADS)

    Hallmann, M.; Raczynska, E. D.; Gal, J. F.; Maria, P. C.

    2007-11-01

    The gas-phase lithium cation basicities (LCBs) were obtained for histamine (HA) and its agonist 2-([beta]-aminoethyl)-pyridine (AEP) from collision-induced dissociation of lithium adducts using Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). For measurements, MeO(CH2)2OMe, Et3PO and (Me2N)3PO (HMPA) were used as the reference compounds. The experimental LCB of AEP was located between those of Et3PO and (Me2N)3PO. The experimental LCB of HA was found to be higher than those of AEP and HMPA by more than 2 kcal mol-1 clearly indicating that the LCB of HA is higher than any LCB for a neutral base yet measured (crown-ethers excepted). The experimental LCBs of the parent bases (pyridine and imidazole) are lower by more than 10 kcal mol-1. In parallel, DFT calculations {B3LYP/6-31G*//B3LYP/6-31G* and B3LYP/6-311+G**//B3LYP/6-31G*} were performed for HA, AEP and their lithium adducts. Among the 22 reasonable conformations of the HA-Li+ adduct, only one appears to be significantly more stable than the others. This is also the case for one structure among seven conformations of the AEP-Li+ adduct. These two stable structures have the [`]scorpion' conformation, in which the Li+ cation is almost equally chelated by two basic nitrogen atoms, the ring N-aza and the chain N-amino. Other HA-Li+ and AEP-Li+ conformations have noticeably higher energies than the [`]scorpion' structures. The difference between the DFT calculated LCBs of HA and AEP (about 4 kcal mol-1) is in agreement with that experimentally obtained (>2 kcal mol-1). The high experimental and theoretical values of LCB for HA and AEP militate in favor of a strong chelation of Li+ by both ligands in the gas-phase. This chelation effect was also evidenced previously for the proton gas-phase basicity.

  13. Beta-agonists and secretory cell number and intracellular glycoproteins in airway epithelium. The effect of isoproterenol and salbutamol.

    PubMed Central

    Jones, R.; Reid, L.

    1979-01-01

    This study describes the effect of systemic administration of the beta-adrenergic agonists isoproterenol and salbutamol on the secretory cell populations in seven regions of rat airway epithelium (three extrapulmonary and four intrapulmonary) and on the size of salivary glands and heart. Isoproterenol (a nonselective beta-adrenergic agonist) significantly increases secretory cell number in all airway regions except the midtrachea; salbutamol (a selective beta 2 agonist) increases secretory cell number only in proximal and peripheral regions. The absolute number of secretory cells is greatest in the most peripheral region after isoproterenol administration and in the most proximal region after salbutamol, although both drugs produce the greatest relative increase at the periphery. In proximal and, particularly, peripheral regions, the increase by isoproterenol (less than 3- and 14-fold, respectively) is greater than by salbutamol (less than 2- and less than 3-fold, respectively). In all airway regions, both drugs modify intracellular glycoprotein in the secretory cell population; within a given region, modification is much the same. In the most proximal region, the population of cells synthesizing only granules of neutral glycoprotein significantly increases while in other regions increase is in cells synthesizing only granules of acid. A significant shift in glycoprotein synthesis occurs whether or not the secretory cell population is increased, which suggests that existing as well as newly appearing cells modify their product. Isoproterenol significantly increases the size of the parotid and submaxillary glands; salbutamol increases the size of the parotid only. Isoproterenol significantly increases the weight of both ventricles of the heart; salbutamol has no such effect. PMID:36762

  14. Effect of beta 3-adrenergic agonist (Zeneca D7114) on thermoregulation in near-term lambs delivered by cesarean section.

    PubMed

    Clarke, L; Bird, J A; Lomax, M A; Symonds, M E

    1996-08-01

    We investigated the effect of a beta 3-adrenergic agonist, Zeneca D7114, on thermoregulation in near-term lambs delivered by cesarean section. Lambs were delivered into a cool ambient temperature of 15 degrees C, and between 60 and 80 min of life were given an oral dose of Zeneca D7114 (10 mg.kg body weight-1) dissolved in 20 mL of milk, or milk alone. During the first 0.5 h of life colonic temperature decreased in all lambs, and then increased to plateau levels (39.6-40.4 degrees C) after 120-150 min of life, in 19 out of 23 lambs studied. In the remaining lambs, colonic temperature failed to return to normothermic values, plateauing at 34.3 degrees C. All control lambs were observed to shiver throughout the study, but after Zeneca D7114 treatment 7 out of 10 normothermic lambs stopped shivering, and plateau colonic temperature was 0.8 degree C higher. Hypothermic beta 3-agonist-treated lambs had significantly lower rates of heat production, breathing frequency, and plasma triiodothyronine and cortisol concentrations than normothermic lambs. the level of GDP binding and norepinephrine content of brown adipose tissue (BAT) sampled from hypothermic beta 3-agonist-treated lambs was significantly lower than in normothermic lambs. There was no difference in GDP binding in BAT between control and Zeneca D7114-treated groups, but the Hb content was higher in the latter group. It is concluded that administration of Zeneca D7114 to euthyroid lambs enhances their ability to thermoregulate and restore colonic temperature without altering the thermogenic activity of BAT. This response may be mediated by increasing blood flow to BAT and/or an improvement in the animal's thermal efficiency (i.e. decreased heat loss) due to a reduced reliance on shivering thermogenesis. PMID:8827786

  15. Zeneca ZD7114 acts as an antagonist at beta 3-adrenoceptors in rat isolated ileum.

    PubMed

    Growcott, J W; Holloway, B; Green, M; Wilson, C

    1993-12-01

    1. The relaxant effects of Zeneca ZD7114, BRL37344 (putative beta 3-adrenoceptor agonists) and various phenylethylamine-based agonists were studied in isolated ileum of the rat where tone was increased with carbachol (0.5 microM). Agonist-induced relaxation.was measured under equilibrium conditions with alpha-, beta 1- and beta 2-adrenoceptors inhibited. 2. Relaxant responses were obtained to isoprenaline, noradrenaline, and BRL37344, although, the efficacy of this latter agent was significantly.lower than that of isoprenaline. Salbutamol caused weak relaxation (< 20%) at high concentrations (10 microM) and ZD7114 was without significant relaxant effect even at high concentrations (10 microM). 3. Relaxant responses to isoprenaline and BRL37344 were weakly antagonized by high concentrations of (+/-)-propranolol (10 and 100 microM) yielding pKB values of 5.7 with isoprenaline as the agonist and 5.5 with BRL37344 as the agonist. 4. The non-selective beta-adrenoceptor antagonist, (+/-)-alprenolol (1-100 microM) caused competitive antagonism of the relaxant responses to isoprenaline (pA2 value = 6.5). A similar pKB value was obtained when BRL37344 was used as the agonist (6.4). 5. Relaxant effects of isoprenaline and BRL37344 were also antagonized by ZD7114 (1-100 microM) yielding pA2 and pKB values of 6.3 and 6.7 respectively. 6. The low potencies of (+/-)-propranolol and (+/-)-alprenolol as antagonists of the relaxant responses to isoprenaline and BRL37344 indicate that both the agonists and antagonists employed in the current study may interact with beta 3-adrenoceptors in the rat isolated ileum. Contrary to the previous findings in guinea-pig ileum, where BRL37344 and ZD7114 were full agonists, in the current study, BRL37344 was a partial agonist and ZD7114 an antagonist at the beta 3-adrenoceptor in rat ileum. PMID:7905770

  16. The management of a case of treatment-resistant paraphilia with a long-acting LHRH agonist.

    PubMed

    Dickey, R

    1992-10-01

    A patient with multiple paraphilias who had been treated for several years with sex drive reducing agents (cyproterone acetate and medroxyprogesterone acetate) with little effect on sexual activity or fantasy was offered treatment with long-acting leuprolide acetate, on LHRH agonist. This produced a marked decrease in all reported sexual thoughts and activities with no significant side-effects.

  17. TRPM4 impacts on Ca2+ signals during agonist-induced insulin secretion in pancreatic beta-cells.

    PubMed

    Marigo, V; Courville, K; Hsu, W H; Feng, J M; Cheng, H

    2009-02-27

    TRPM4 is a Ca(2+)-activated non-selective cation (CAN) channel that functions in cell depolarization, which is important for Ca(2+) influx and insulin secretion in pancreatic beta-cells. We investigated TRPM4 expression and function in the beta-cell lines HIT-T15 (hamster), RINm5F (rat), beta-TC3 (mouse), MIN-6 (mouse) and the alpha-cell line INR1G9 (hamster). By RT-PCR, we identified TRPM4 transcripts in alpha- and beta-cells. Patch-clamp recordings with increasing Ca(2+) concentrations resulted in a dose-dependent activation of TRPM4 with the greatest depolarizing currents recorded from hamster-derived cells. Further, Ca(2+) imaging experiments revealed that inhibition of TRPM4 by a dominant-negative effect significantly decreased the magnitude of the Ca(2+) signals generated by agonist stimulation compared to control cells. The decrease in the [Ca(2+)](i) resulted in reduced insulin secretion. Our data suggest that depolarizing currents generated by TRPM4 are an important component in the control of intracellular Ca(2+) signals necessary for insulin secretion and perhaps glucagon from alpha-cells.

  18. Inhibitory effects of the beta-adrenergic receptor agonist zilpaterol on the LPS-induced production of TNF-alpha in vitro and in vivo.

    PubMed

    Verhoeckx, K C M; Doornbos, R P; van der Greef, J; Witkamp, R F; Rodenburg, R J T

    2005-12-01

    In this study the anti-inflammatory properties of zilpaterol, a beta2-adrenergic receptor (AR) agonist specifically developed as a growth promoter in cattle were investigated. Although zilpaterol has a different structure compared with the beta2-AR agonists known to date, it was noted that it was able to bind to both the beta2-AR (Ki = 1.1 x 10(-6)) and the beta1-AR (Ki = 1.0 x 10(-5)). Using lipopolysaccharide (LPS)-exposed U937 macrophages, the production of cyclic adenosine-3',5'-cyclic monophosphate (cAMP) and tumor necrosis factor alpha (TNF-alpha) were investigated. Zilpaterol inhibited TNF-alpha release and induced intracellular cAMP levels in a dose-dependent manner. The inhibition of TNF-alpha release and induction of cAMP production was mainly mediated via the beta2-AR, as indicated by addition of beta1- and beta2-specific antagonists. The effects of zilpaterol were investigated in LPS-treated male Wistar rats after pretreatment with zilpaterol. Zilpaterol dosed at 500 microg/kg body weight reduced the TNF-alpha plasma levels. In conclusion, zilpaterol is a beta2-adrenergic agonist and an inhibitor of TNF-alpha production induced by LPS both in vivo and in vitro.

  19. Biphasic effects of the beta-adrenoceptor agonist, BRL 37344, on glucose utilization in rat isolated skeletal muscle.

    PubMed Central

    Liu, Y. L.; Cawthorne, M. A.; Stock, M. J.

    1996-01-01

    1. The effects of the selective beta 3-adrenoceptor agonist, BRL 37344 (BRL) on glucose uptake and phosphorylation (i.e. glucose utilization; GU) and glycogen synthesis in rat isolated soleus and extensor digitorium longus (EDL) muscle preparations in vitro were investigated by use of 2-deoxy-[3H]-glucose (GU) and [U-14C]-glucose (glycogen synthesis). 2. Low concentrations of BRL (10(-11)-10(-9) M) significantly increased GU, with maximal increases of 30% in soleus and 24% in EDL at 10(-11) M. Neither the selective beta 1-adrenoceptor antagonist, atenolol (10(-8)-10(-6) M), nor the selective beta 2-adrenoceptor antagonist, ICI 118551 (10(-8)-10(-6) M) had any effect on the stimulation of GU induced by 10(-11) M BRL. 3. High concentrations of BRL (10(-6)-10(-5) M) caused significant inhibition (up to 30%) of GU in both soleus and EDL muscles. The inhibition of 10(-6) M BRL was blocked completely by 10(-6) and 10(-7) M ICI 118551 in soleus, and by 10(-6)-10(-8) M ICI 118551 in EDL; atenolol (10(-8)-10(6) M) had no effect. 4. Another selective beta 3-adrenoceptor agonist, CL 316,243, also caused a significant stimulation of muscle GU, with maximal increases of 43% at 10(-9) M in soleus and 45% at 10(-10) M in EDL. The stimulation of GU declined with further increases in the concentration of CL 316,243, but no inhibition of GU was seen, even at the highest concentration (10(-5) M) tested. 5. BRL at 10(-5) M inhibited completely insulin-stimulated glycogen synthesis in both soleus and EDL, but this inhibitory effect of BRL was abolished by 10(-6) M ICI 118551. BRL at 10(-11) M (with or without 10(-6) M ICI 118551) had no effect on insulin-stimulated glycogen synthesis. 6. It is concluded that: (i) low (< nM) concentrations of BRL stimulate GU via an atypical beta-adrenoceptor that is resistant to conventional beta 1-adrenoceptor and beta 2-adrenoceptor antagonists; (ii) the stimulation of GU is negated by the activation of beta 2-adrenoceptors that occurs at higher (> n

  20. Effect of postnatal age and a beta(3)-adrenergic agonist (Zeneca D7114) administration on uncoupling protein-1 abundance in the lamb.

    PubMed

    Bird, J A; Mostyn, A; Clarke, L; Juniper, D T; Budge, H; Stephenson, T; Symonds, M E

    2001-01-01

    We examined the effect of time after birth and beta(3)-adrenergic agonist (Zeneca D7114) administration on uncoupling protein-1 (UCP1) abundance and thermoregulation in the lamb. Forty twin lambs, all born normally at term, were maintained at a cold ambient temperature of between 3 and 8 degrees C. At 0.5, 1.75, 5.25, 11.25 and 23.25 h after birth eight sets of twins were fed 20 ml of formula milk +/- 10 mg kg(-1) of beta(3)-adrenergic agonist, and 45 min after feeding brown adipose tissue (BAT) was sampled. Colonic temperature was measured and BAT analysed for UCP1 abundance, GDP-binding to mitochondrial protein (i.e. thermogenic activity) and catecholamine content. Colonic temperature declined between 1.25 and 6 h from 40.2 degrees C to 39.2 degrees C and then increased to 39.8 degrees C at 12 h, but increased after feeding at all ages. UCP1 abundance increased from 1.25 h after birth, to peak at 2 h after birth in controls, compared with 6 h after birth in beta(3)-adrenergic agonist-treated lambs. The level of GDP-binding to mitochondrial protein did not change significantly with age but was increased by beta(3)-adrenergic agonist treatment. The noradrenaline (norepinephrine) content of BAT increased between 1.25 and 12 h after birth, irrespective of beta(3)-adrenergic agonist administration. The total weight of perirenal BAT plus its lipid, protein and mitochondrial protein content declined over the first 6 h of life. UCP1 development continues over the first 24 h of neonatal life, and can be manipulated by beta(3)-adrenergic agonist administration. This may represent one method of improving thermoregulation in newborn lambs. Experimental Physiology (2001) 86.1, 65-70. PMID:11429621

  1. Shaping of adaptive immune responses to soluble proteins by TLR agonists: a role for IFN-alpha/beta.

    PubMed

    Durand, Vanessa; Wong, Simon Yc; Tough, David F; Le Bon, Agnes

    2004-12-01

    Toll-like receptors (TLR) are believed to play a major role in the recognition of invading organisms, although their ability to shape immune responses is not completely understood. Our aim was to investigate in vivo the effect of different TLR stimuli on the generation of antibody responses and the induction of CD8+ T-cell cross-priming after immunization with soluble protein antigens. While all TLR agonists tested elicited the production of immunomodulatory cytokines, marked differences were observed in their ability to stimulate antigen-specific immune responses. Zymosan, poly(I:C) and CpG DNA, which signal through TLR2/6, 3 and 9, respectively, were found to strongly induce the production of IgG2a antibodies, whereas R-848 (TLR7) and LPS (TLR4) did so much more weakly. In contrast, LPS, poly(I:C) and CpG DNA, but not zymosan, induced functional CD8+ T-cell responses against OVA; peptidoglycan (TLR2/?) and R-848 were also ineffective in stimulating cross-priming. Experiments using IFN-alpha/beta R-deficient mice showed that the induction of cross-priming by LPS and poly(I:C) was abrogated in the absence of IFN-alpha/beta signalling, and induction by CpG DNA was greatly reduced. Overall, our results identify LPS as another TLR agonist that is able to generate functional cross-priming against a soluble protein antigen. In addition, our results demonstrate that the ability of TLR stimuli to initiate CD8+ T-cell responses against soluble protein antigens is largely dependent on the IFN-alpha/beta signalling pathway. PMID:15550117

  2. New beta-adrenergic agonists used illicitly as growth promoters in animal breeding: chemical and pharmacodynamic studies.

    PubMed

    Mazzanti, Gabriela; Daniele, Claudia; Boatto, Gianpiero; Manca, Giuliana; Brambilla, Gianfranco; Loizzo, Alberto

    2003-05-01

    Clenbuterol and beta-adrenergic receptor agonist drugs are illegally used as growth promoters in animal production. Pharmacologically active residues in edible tissues led to intoxication outbreaks in several countries. Pressure of official controls pulsed synthesis of new compounds to escape analytical procedures. We report two new compounds named 'A' and 'G4', found in feeding stuffs. Chemical structure was studied through nuclear magnetic resonance-imaging and infrared spectroscopy, and beta(1)- and beta(2)-adrenergic activity was evaluated on isolated guinea-pig atrium and trachea in comparison with clenbuterol. Both compounds share with clenbuterol an halogenated aromatic ring with a primary amino group. Main modifications consisted of substitution of secondary amino group with an alkyl chain in compound A and substitution of the ter-butyl group with a benzene ring in compound G4. In guinea-pig trachea these compounds showed myorelaxant potency lower than clenbuterol (EC(50) was 43.8 nM for clenbuterol, 11700 nM for compound A, 2140 nM for G4). On the contrary, in the guinea-pig atrium (heart-beat rate stimulant effect) the compounds were more potent than clenbuterol (EC(50) was 15.2 nM for clenbuterol, 3.4 nM for compound A, 2.8 nM for G4). These pharmacodynamic properties, and stronger lipophilic properties shown by the two compounds may result in increased cardiovascular risk for consumers of illicitly treated animals.

  3. Role of beta2 agonists in respiratory medicine with particular attention to novel patents and effects on endocrine system and immune response.

    PubMed

    Larocca, Nancy E; Moreno, Dolores; Garmendia, Jenny V; De Sanctis, Juan B

    2011-09-01

    Beta adrenergic receptors are very important in respiratory medicine. Traditionally, the stimulation of beta adrenergic receptors by beta2-agonists is commonly used for giving bronchodilation in chronic airflow obstruction However; the wide distribution of these receptors in cells and tissues other than airway smooth muscle suggests that beta agonists should offer other beneficial effects in respiratory disease. Recent studies have shown the importance of these receptors in the modulation of endocrine and immune system that affect respiratory function and may decrease therapy effectiveness in asthma and chronic obstructive pulmonary disease. New patented compound and uses have provided new insights in future therapeutics of respiratory diseases in which genetic, endocrine and immune response should be considered.

  4. Prediction of selective estrogen receptor beta agonist using open data and machine learning approach

    PubMed Central

    Niu, Ai-qin; Xie, Liang-jun; Wang, Hui; Zhu, Bing; Wang, Sheng-qi

    2016-01-01

    Background Estrogen receptors (ERs) are nuclear transcription factors that are involved in the regulation of many complex physiological processes in humans. ERs have been validated as important drug targets for the treatment of various diseases, including breast cancer, ovarian cancer, osteoporosis, and cardiovascular disease. ERs have two subtypes, ER-α and ER-β. Emerging data suggest that the development of subtype-selective ligands that specifically target ER-β could be a more optimal approach to elicit beneficial estrogen-like activities and reduce side effects. Methods Herein, we focused on ER-β and developed its in silico quantitative structure-activity relationship models using machine learning (ML) methods. Results The chemical structures and ER-β bioactivity data were extracted from public chemogenomics databases. Four types of popular fingerprint generation methods including MACCS fingerprint, PubChem fingerprint, 2D atom pairs, and Chemistry Development Kit extended fingerprint were used as descriptors. Four ML methods including Naïve Bayesian classifier, k-nearest neighbor, random forest, and support vector machine were used to train the models. The range of classification accuracies was 77.10% to 88.34%, and the range of area under the ROC (receiver operating characteristic) curve values was 0.8151 to 0.9475, evaluated by the 5-fold cross-validation. Comparison analysis suggests that both the random forest and the support vector machine are superior for the classification of selective ER-β agonists. Chemistry Development Kit extended fingerprints and MACCS fingerprint performed better in structural representation between active and inactive agonists. Conclusion These results demonstrate that combining the fingerprint and ML approaches leads to robust ER-β agonist prediction models, which are potentially applicable to the identification of selective ER-β agonists. PMID:27486309

  5. Beta agonists in livestock feed: status, health concerns, and international trade.

    PubMed

    Centner, T J; Alvey, J C; Stelzleni, A M

    2014-09-01

    Since the U.S. Food and Drug Administration approved ractopamine hydrochloride and zilpaterol hydrochloride in animal feeds, usage of those compounds has been a topic of worldwide debate. Ractopamine and zilpaterol are β-adrenergic agonists used as veterinary drugs to increase weight gain in certain animals raised for food. The Joint FAO/WHO Expert Committee on Food Additives (JECFA) established maximum residue limits for ractopamine, which were adopted by the Codex Alimentarius Commission (Codex). No maximum residue limits for zilpaterol have been adopted by JECFA, and new reports of animal mobility issues confront the use of this feed additive. However, many countries disagree with the Codex standards and are restricting or banning meat products containing β agonists. The bans by major importers of U.S. meat products have prompted some to advocate that the United States use the World Trade Organization dispute settlement body. This paper looks at the developments to provide a fuller accounting of what the issues may mean to U.S. firms selling meat products containing residues of β agonists.

  6. Terbutaline slow-release tablets in children with asthma. A comparison with t.i.d. beta 2-agonist therapy.

    PubMed

    Croner, S; Gustafsson, M; Kjellman, N I; Säwedal, L

    1986-07-01

    The effects of 5 mg slow-release terbutaline sulphate tablets (Bricanyl Depot) given twice daily were compared with those of ordinary oral beta 2-agonist treatment given three times daily. The study was open, randomized and cross-over and was carried out over 8 weeks in 18 children with bronchial asthma. Compared with ordinary medication, the slow-release tablets obtained higher morning expiratory peak flow values and an improvement in the asthma symptoms during the night and during exercise (P less than 0.05). No differences were found in side effects in spite of a higher total daily dose during the period with terbutaline slow-release tablets. The slow-release tablets were preferred by 15 of 18 children and their families when the effects, side effects and dosage were evaluated. PMID:2876658

  7. Beta-1 adrenergic agonist treatment mitigates negative changes in cancellous bone microarchitecture and inhibits osteocyte apoptosis during disuse.

    PubMed

    Swift, Joshua M; Swift, Sibyl N; Allen, Matthew R; Bloomfield, Susan A

    2014-01-01

    The sympathetic nervous system (SNS) plays an important role in mediating bone remodeling. However, the exact role that beta-1 adrenergic receptors (beta1AR) have in this process has not been elucidated. We have previously demonstrated the ability of dobutamine (DOB), primarily a beta1AR agonist, to inhibit reductions in cancellous bone formation and mitigate disuse-induced loss of bone mass. The purpose of this study was to characterize the independent and combined effects of DOB and hindlimb unloading (HU) on cancellous bone microarchitecture, tissue-level bone cell activity, and osteocyte apoptosis. Male Sprague-Dawley rats, aged 6-mos, were assigned to either normal cage activity (CC) or HU (n = 18/group) for 28 days. Animals were administered either daily DOB (4 mg/kg BW/d) or an equal volume of saline (VEH) (n = 9/gp). Unloading resulted in significantly lower distal femur cancellous BV/TV (-33%), Tb.Th (-11%), and Tb.N (-25%) compared to ambulatory controls (CC-VEH). DOB treatment during HU attenuated these changes in cancellous bone microarchitecture, resulting in greater BV/TV (+29%), Tb.Th (+7%), and Tb.N (+21%) vs. HU-VEH. Distal femur cancellous vBMD (+11%) and total BMC (+8%) were significantly greater in DOB- vs. VEH-treated unloaded rats. Administration of DOB during HU resulted in significantly greater osteoid surface (+158%) and osteoblast surface (+110%) vs. HU-VEH group. Furthermore, Oc.S/BS was significantly greater in HU-DOB (+55%) vs. CC-DOB group. DOB treatment during unloading fully restored bone formation, resulting in significantly greater bone formation rate (+200%) than in HU-VEH rats. HU resulted in an increased percentage of apoptotic cancellous osteocytes (+85%), reduced osteocyte number (-16%), lower percentage of occupied osteocytic lacunae (-30%) as compared to CC-VEH, these parameters were all normalized with DOB treatment. Altogether, these data indicate that beta1AR agonist treatment during disuse mitigates negative

  8. A sensitive non-aqueous capillary electrophoresis-mass spectrometric method for multiresidue analyses of beta-agonists in pork.

    PubMed

    Anurukvorakun, Oraphan; Buchberger, Wolfgang; Himmelsbach, Markus; Klampel, Christian W; Suntornsuk, Leena

    2010-06-01

    Non-aqueous capillary electrophoresis-mass spectrometry (NACE-MS) was developed for trace analyses of beta-agonists (i.e. clenbuterol, salbutamol and terbutaline) in pork. The NACE was in 18 mM ammonium acetate in methanol-acetonitrile-glacial acetic acid (66 : 33 : 1, v/v/v) using a voltage of 28 kV. The hyphenation of CE with a time-of-flight MS was performed by electrospray ionization interface employing 5 mM ammonium acetate in methanol-water (80 : 20, v/v) as the sheath liquid at a flow rate of 2 microL/min. Method sensitivity was enhanced by a co-injection technique (combination of hydrodynamic and electrokinetic injection) using a pressure of 50 mbar and a voltage of 10 kV for 12 s. The method was validated in comparison with HPLC-MS-MS. The NACE-MS procedure provided excellent detection limits of 0.3 ppb for all analytes. Method linearity was good (r(2) > 0.999, in a range of 0.8-1000 ppb for all analytes). Precision showed %RSDs of <17.7%. Sample pre-treatment was carried out by solid-phase extraction using mixed mode reversed phase/cation exchange cartridges yielding recoveries between 69 and 80%. The NACE-MS could be successfully used for the analysis of beta-agonists in pork samples and results showed no statistical differences from the values reported by the Ministry of Public Health, Thailand using HPLC-MS-MS method.

  9. Development of a monoclonal antibody-based enzyme-linked immuosorbent assay for the beta-adrenergic agonist zilpaterol.

    PubMed

    Shelver, Weilin L; Kim, Hee-Joo; Li, Qing X

    2005-05-01

    Zilpaterol is a beta-adrenergic agonist approved for use as a growth promoter in cattle in South Africa and Mexico but not in the European Union, United States, or Asia. Here, we report the development of a monoclonal antibody-based enzyme-linked immunosorbent assay (ELISA) for zilpaterol. Mice immunized with zilpaterol-butyrate-keyhole limpet hemocyanin were utilized for monoclonal antibody generation whereas zilpaterol-butyrate-bovine serum albumin was used as a coating antigen for ELISA. Thirteen clones were isolated, and after the initial sensitivity and isotyping experiments, three clones were selected for further ELISA optimization. Studies indicated that the optimum pH was near 7.4. Clone 3H5 had the highest sensitivity to zilpaterol and some interaction with clenbuterol and terbutaline at high concentrations but not other N-alkyl [bamethane, (-)-isoproterenol, (+)-isoproterenol, metaproterenol, or salbutamol] or N-arylalkyl (fenoterol, isoxsuprine, ractopamine, or salmeterol) beta-agonists tested. However, clone 3H5 was not functional at high salt concentrations, which precluded further development for urine analysis. Clone 2E10 showed increased sensitivity as salt concentrations were increased and did not cross-react with any of the structural analogues tested. However, its sensitivity to salt and urine concentration changes could cause high variability. Clone 7A8 showed good sensitivity and only a modest change with the salt concentration changes. Clone 7A8 also demonstrated smaller changes in IC(50) and B(0) with increasing sheep urine or cattle urine concentrations as compared to clones 2E10 or 3H5 and, thus, was selected for further development. The IC(50) for all of the antibodies showed exponential increases with increasing organic solvents concentrations, making it desirable to minimize solvent levels. In conclusion, a sensitive, specific zilpaterol monoclonal antibody-based ELISA has been developed that can serve as a rapid screening assay.

  10. Blood eosinophils and inhaled corticosteroid/long-acting β-2 agonist efficacy in COPD

    PubMed Central

    Pavord, Ian D; Lettis, Sally; Locantore, Nicholas; Pascoe, Steve; Jones, Paul W; Wedzicha, Jadwiga A; Barnes, Neil C

    2016-01-01

    Objective We performed a review of studies of fluticasone propionate (FP)/salmeterol (SAL) (combination inhaled corticosteroid (ICS)/long-acting β2-agonist (LABA)) in patients with COPD, which measured baseline (pretreatment) blood eosinophil levels, to test whether blood eosinophil levels ≥2% were associated with a greater reduction in exacerbation rates with ICS therapy. Methods Three studies of ≥1-year duration met the inclusion criteria. Moderate and severe exacerbation rates were analysed according to baseline blood eosinophil levels (<2% vs ≥2%). At baseline, 57–75% of patients had ≥2% blood eosinophils. Changes in FEV1 and St George's Respiratory Questionnaire (SGRQ) scores were compared by eosinophil level. Results For patients with ≥2% eosinophils, FP/SAL was associated with significant reductions in exacerbation rates versus tiotropium (INSPIRE: n=719, rate ratio (RR)=0.75, 95% CI 0.60 to 0.92, p=0.006) and versus placebo (TRISTAN: n=1049, RR=0.63, 95% CI 0.50 to 0.79, p<0.001). No significant difference was seen in the <2% eosinophil subgroup in either study (INSPIRE: n=550, RR=1.18, 95% CI 0.92 to 1.51, p=0.186; TRISTAN: n=354, RR=0.99, 95% CI 0.67 to 1.47, p=0.957, respectively). In SCO30002 (n=373), no significant effects were observed (FP or FP/SAL vs placebo). No relationship was observed in any study between eosinophil subgroup and treatment effect on FEV1 and SGRQ. Discussion Baseline blood eosinophil levels may represent an informative marker for exacerbation reduction with ICS/LABA in patients with COPD and a history of moderate/severe exacerbations. PMID:26585525

  11. The Beta Agonist Lung Injury Trial Prevention. A Randomized Controlled Trial

    PubMed Central

    Gates, Simon; Park, Daniel; Gao, Fang; Knox, Chris; Holloway, Ben; McAuley, Daniel F.; Ryan, James; Marzouk, Joseph; Cooke, Matthew W.; Lamb, Sarah E.; Thickett, David R.

    2014-01-01

    Rationale: Experimental studies suggest that pretreatment with β-agonists might prevent acute lung injury (ALI). Objectives: To determine if in adult patients undergoing elective esophagectomy, perioperative treatment with inhaled β-agonists effects the development of early ALI. Methods: We conducted a randomized placebo-controlled trial in 12 UK centers (2008–2011). Adult patients undergoing elective esophagectomy were allocated to prerandomized, sequentially numbered treatment packs containing inhaled salmeterol (100 μg twice daily) or a matching placebo. Patients, clinicians, and researchers were masked to treatment allocation. The primary outcome was development of ALI within 72 hours of surgery. Secondary outcomes were ALI within 28 days, organ failure, adverse events, survival, and health-related quality of life. An exploratory substudy measured biomarkers of alveolar-capillary inflammation and injury. Measurements and Main Results: A total of 179 patients were randomized to salmeterol and 183 to placebo. Baseline characteristics were similar. Treatment with salmeterol did not prevent early lung injury (32 [19.2%] of 168 vs. 27 [16.0%] of 170; odds ratio [OR], 1.25; 95% confidence interval [CI], 0.71–2.22). There was no difference in organ failure, survival, or health-related quality of life. Adverse events were less frequent in the salmeterol group (55 vs. 70; OR, 0.63; 95% CI, 0.39–0.99), predominantly because of a lower number of pneumonia (7 vs. 17; OR, 0.39; 95% CI, 0.16–0.96). Salmeterol reduced some biomarkers of alveolar inflammation and epithelial injury. Conclusion: Perioperative treatment with inhaled salmeterol was well tolerated but did not prevent ALI. Clinical trial registered with International Standard Randomized Controlled Trial Register (ISRCTN47481946) and European Union database of randomized Controlled Trials (EudraCT 2007-004096-19). PMID:24392848

  12. Beta-3 adrenergic agonists reduce pulmonary vascular resistance and improve right ventricular performance in a porcine model of chronic pulmonary hypertension.

    PubMed

    García-Álvarez, Ana; Pereda, Daniel; García-Lunar, Inés; Sanz-Rosa, David; Fernández-Jiménez, Rodrigo; García-Prieto, Jaime; Nuño-Ayala, Mario; Sierra, Federico; Santiago, Evelyn; Sandoval, Elena; Campelos, Paula; Agüero, Jaume; Pizarro, Gonzalo; Peinado, Víctor I; Fernández-Friera, Leticia; García-Ruiz, José M; Barberá, Joan A; Castellá, Manuel; Sabaté, Manel; Fuster, Valentín; Ibañez, Borja

    2016-07-01

    Beta-3 adrenergic receptor (β3AR) agonists have been shown to produce vasodilation and prevention of ventricular remodeling in different conditions. Given that these biological functions are critical in pulmonary hypertension (PH), we aimed to demonstrate a beneficial effect of β3AR agonists in PH. An experimental study in pigs (n = 34) with chronic PH created by pulmonary vein banding was designed to evaluate the acute hemodynamic effect and the long-term effect of β3AR agonists on hemodynamics, vascular remodeling and RV performance in chronic PH. Ex vivo human experiments were performed to explore the expression of β3AR mRNA and the vasodilator response of β3AR agonists in pulmonary arteries. Single intravenous administration of the β3AR agonist BRL37344 produced a significant acute reduction in PVR, and two-weeks treatment with two different β3AR selective agonists, intravenous BRL37344 or oral mirabegron, resulted in a significant reduction in PVR (median of -2.0 Wood units/m(2) for BRL37344 vs. +1.5 for vehicle, p = 0.04; and -1.8 Wood units/m(2) for mirabegron vs. +1.6 for vehicle, p = 0.002) associated with a significant improvement in magnetic resonance-measured RV performance. Histological markers of pulmonary vascular proliferation (p27 and Ki67) were significantly attenuated in β3AR agonists-treated pigs. β3AR was expressed in human pulmonary arteries and β3AR agonists produced vasodilatation. β3AR agonists produced a significant reduction in PVR and improved RV performance in experimental PH, emerging as a potential novel approach for treating patients with chronic PH.

  13. Rapid agonist-induced loss of sup 125 I-. beta. -endorphin opioid receptor sites in NG108-15, but not SK-N-SH neuroblastoma cells

    SciTech Connect

    Cone, R.I.; Lameh, J.; Sadee, W. )

    1991-01-01

    The authors have measured {mu} and {delta} opioid receptor sites on intact SK-N-SH and NG108-15 neuroblastoma cells, respectively, in culture. Use of {sup 125}I-{beta}-endorphin ({beta}E) as a tracer, together with {beta}E(6-31) to block high-affinity non-opioid binding in both cell lines, permitted the measurement of cell surface {mu} and {delta} opioid receptor sites. Labeling was at {delta} sites in NG108-15 cells and predominantly at {mu} sites in SK-N-SH cells. Pretreatment with the {mu} and {delta} agonist, DADLE, caused a rapid loss of cell surface {delta} receptor sites in NG108-15 cells, but failed to reduce significantly {mu} receptor density in SK-N-SH cells.

  14. Acute Impact of Inhaled Short Acting B2-Agonists on 5 Km Running Performance

    PubMed Central

    Dickinson, John; Hu, Jiu; Chester, Neil; Loosemore, Mike; Whyte, Greg

    2014-01-01

    Whilst there appears to be no ergogenic effect from inhaled salbutamol no study has investigated the impact of the acute inhalation of 1600 µg, the World Anti-Doping Agency (WADA) daily upper limit, on endurance running performance. To investigate the ergogenic effect of an acute inhalation of short acting β2-agonists at doses up to 1600 µg on 5 km time trial performance and resultant urine concentration. Seven male non-asthmatic runners (mean ± SD; age 22.4 ± 4.3 years; height 1.80 ± 0.07 m; body mass 76.6 ± 8.6 kg) provided written informed consent. Participants completed six 5 km time-trials on separate days (three at 18 °C and three at 30 °C). Fifteen minutes prior to the initiation of each 5 km time-trial participants inhaled: placebo (PLA), 800 µg salbutamol (SAL800) or 1600 µg salbutamol (SAL1600). During each 5 km time-trial HR, VO2, VCO2, VE, RPE and blood lactate were measured. Urine samples (90 ml) were collected between 30-180 minutes post 5 km time-trial and analysed for salbutamol concentration. There was no significant difference in total 5 km time between treatments (PLA 1714.7 ± 186.2 s; SAL800 1683.3 ± 179.7 s; SAL1600 1683.6 ± 190.7 s). Post 5 km time-trial salbutamol urine concentration between SAL800 (122.96 ± 69.22 ug·ml-1) and SAL1600 (574.06 ± 448.17 ug·ml-1) were not significantly different. There was no improvement in 5 km time-trial performance following the inhalation of up to 1600 µg of salbutamol in non-asthmatic athletes. This would suggest that the current WADA guidelines, which allow athletes to inhale up to 1600 µg per day, is sufficient to avoid pharmaceutical induced performance enhancement. Key points Inhaling up to 1600 µg of Salbutamol does not result in improved 5 km time trial performance. The position of Salbutamol on the World Anti-Doping Agency list of prohibited appears justified. Athletes who use up to 1600 µg Salbutamol in one day need to review their therapy as it would suggest their respiratory

  15. A Genome-wide analysis of the response to inhaled beta2-agonists in Chronic Obstructive Pulmonary Disease

    PubMed Central

    Hardin, Megan; Cho, Michael H.; McDonald, Merry-Lynn; Wan, Emily; Lomas, David A.; Coxson, Harvey O.; MacNee, William; Vestbo, Jørgen; Yates, Julie C.; Agusti, Alvar; Calverley, Peter MA; Celli, Bartolome; Crim, Courtney; Rennard, Stephen; Wouters, Emiel; Bakke, Per; Bhatt, Surya P; Kim, Victor; Ramsdell, Joe; Regan, Elizabeth A.; Make, Barry J.; Hokanson, John E.; Crapo, James D.; Beaty, Terri H.; Hersh, Craig P.

    2015-01-01

    Short-acting β2-agonist bronchodilators are the most common medications used in treating chronic obstructive pulmonary disease (COPD). Genetic variants determining bronchodilator responsiveness (BDR) in COPD have not been identified. We performed a genome-wide association study (GWAS) of BDR in 5789 current or former smokers with COPD in one African American and four white populations. BDR was defined as the quantitative spirometric response to inhaled β2-agonists. We combined results in a meta-analysis. In the meta-analysis, SNPs in the genes KCNK1 (P=2.02×10−7) and KCNJ2 (P=1.79×10−7) were the top associations with BDR. Among African Americans, SNPs in CDH13 were significantly associated with BDR (P=5.1×10−9). A nominal association with CDH13 was identified in a gene-based analysis in all subjects. We identified suggestive association with BDR among COPD subjects for variants near two potassium channel genes (KCNK1 and KCNJ2). SNPs in CDH13 were significantly associated with BDR in African Americans. PMID:26503814

  16. MEAT SCIENCE AND MUSCLE BIOLOGY SYMPOSIUM--implant and beta agonist impacts on beef palatability.

    PubMed

    Garmyn, A J; Miller, M F

    2014-01-01

    The use of anabolic implants has a long-standing place in the cattle feeding industry, due to their positive impact on growth performance and subsequent profitability. However, implants can have adverse effects on carcass quality, shear force, and eating quality depending on the dose and frequency, or what some refer to as the aggressiveness of the implant regimen administered. Within the past decade, a new class of growth promotants, known as β-adrenergic agonists (βAA), has emerged in the beef feeding industry in the United States. Currently, 2 have gained U.S. Food and Drug Administration approval for use in beef finishing diets to improve performance and carcass yields. Much like anabolic implants, these repartitioning agents can have negative effects on Warner-Bratzler shear force (WBSF), but the differences do not necessarily translate directly to consumer responses for palatability and acceptance in some instances, especially when tenderness is managed through proper postmortem aging. As researchers continued to investigate the mechanisms responsible for the impact of βAA, inevitably this led to consideration of the interaction between βAA and anabolic implants. Early work combining zilpaterol hydrochloride (ZH) with anabolic implants improved performance, carcass yield, and meat yield with additive negative effects on WBSF. Similar results were produced when pairing ZH with anabolic steroids equipped with various release patterns. As with any tool, the key to success is proper management. Certain cattle populations may be better suited to receive growth promotants such as implants and βAA, and postmortem management of subprimal cuts becomes vital when producers take more aggressive approaches to improve performance and yield. The objective of this review is to overview research findings related to the impact of growth promotant technologies on beef palatability, focusing specifically on the role of implants and βAA on carcass quality, beef tenderness

  17. A novel 4 S [3H]beta-naphthoflavone-binding protein in liver cytosol of female Sprague-Dawley rats treated with aryl hydrocarbon receptor agonists.

    PubMed Central

    Brauze, D; Malejka-Giganti, D

    2000-01-01

    beta-Naphthoflavone (beta-NF) is a widely used inducer of phase-I and phase-II enzymes controlled by aryl hydrocarbon receptor (AhR). Studies of competitive binding with (3)H-labelled 2,3,7, 8-tetrachlorodibenzo-p-dioxin (TCDD), 3-methylcholanthrene (3-MC) and benzo[a]pyrene (B[a]P) have shown that beta-NF is a high-affinity ligand for AhR and also for polycyclic aromatic hydrocarbon (PAH)-binding protein, both soluble proteins of rat liver in 8 S and 4 S fractions, respectively, of sucrose gradients. This study examined binding of [(3)H]beta-NF to liver cytosolic proteins of female Sprague-Dawley rats. Treatment of rats with beta-NF, 3-MC, TCDD or alpha-naphthoflavone (alpha-NF) increased the specific [(3)H]beta-NF binding to liver cytosol up to 125-fold that of vehicle (corn oil)-treated rats (<100 fmol/mg of protein). Sucrose gradients revealed a large 4 S and a small 8 S peak of radioactivity from [(3)H]beta-NF binding to cytosols of beta-NF-, 3-MC-, TCDD- or alpha-NF-treated rats. Whereas co-incubation with the unlabelled beta-NF eliminated both peaks, co-incubation with 2,3, 7,8-tetrachlorodibenzofuran (TCDF) eliminated only the 8 S peak. The sucrose density gradient from [(3)H]TCDD binding to cytosol of beta-NF- or TCDD-treated rats yielded a small 4 S and a larger 8 S peak; only the latter was abolished by co-incubation with TCDF. Thus, the patterns of sedimentation, distribution and elimination of radioactivity from the 8 S fraction of the liver cytosols from beta-NF-, 3-MC-, TCDD- or alpha-NF-treated rats were characteristic for the AhR, whereas those from the 4 S fraction appeared specific for [(3)H]beta-NF binding. The data indicate that potent AhR agonists, TCDD, 3-MC and beta-NF, and to a lesser extent alpha-NF, a weak AhR agonist, induce a 4 S [(3)H]beta-NF-binding protein in liver cytosol of female rats. alpha-NF, beta-NF and 3-MC were effective competitors (80-85% inhibition) of the [(3)H]beta-NF-specific binding to the beta-NF-, 3 MC- or TCDD

  18. Randomized, placebo-controlled trial of albuterol and epinephrine at equipotent beta-2 agonist doses in acute bronchiolitis.

    PubMed

    Ralston, Shawn; Hartenberger, Carol; Anaya, Theresa; Qualls, Clifford; Kelly, H William

    2005-10-01

    Our objective was to determine if nebulized racemic epinephrine is more efficacious than nebulized albuterol or saline placebo in the treatment of bronchiolitis in the outpatient setting when dosing is equivalent in terms of beta-2 agonist potency. Sixty-five patients between ages 6 weeks and 24 months with a diagnosis of bronchiolitis, defined as first-time wheezing, upper respiratory symptoms and/or fever, and a Respiratory Distress Assessment Instrument score of at least 4, were randomized to receive 5 mg nebulized albuterol, 5 mg nebulized racemic epinephrine, or an equivalent volume of placebo at 0, 30, and 60 min. The primary outcome measure was need for hospital admission or home oxygen. Secondary outcome measures were changes in clinical scores and oxygen saturations. There were no significant statistical differences between groups in terms of need for hospital admission or outpatient management with home oxygen therapy. There were no differences between groups in terms of changes in clinical scores or oxygen saturations. Racemic epinephrine and albuterol at equivalent doses had no effect on the need for hospitalization or supplemental oxygen in bronchiolitis in the outpatient setting compared to nebulized saline placebo, though this study may have missed less dramatic clinical effects due to small sample size.

  19. Effects of beta 2 adrenergic agonists on axonal injury and mitochondrial metabolism in experimental autoimmune encephalomyelitis rats.

    PubMed

    Zhang, Z W; Qin, X Y; Che, F Y; Xie, G; Shen, L; Bai, Y Y

    2015-01-01

    The primary aims of this study were to investigate mitochondrial metabolism during experimental allergic encephalomyelitis (EAE) animal model axonal injury and to determine the correlation among neurological function scores, pathological changes, and the activities of the BB isoenzyme of creatine kinase (CK-BB), catalase (CAT), and calpain in the brain tissues of EAE rats. Another goal was to preliminarily define the mechanism of mitochondrial metabolism resulting from the effect of beta 2 adrenergic agonists in the process of EAE animal model axonal damage. EAE was induced in specific pathogen free Wistar rats by guinea pig spinal cord homogenate, complete Freund's adjuvant, and pertussis vaccine. We recorded the behavioral change in EAE rats, detected pathological changes in central nervous tissue, and observed the changes of the CK-BB, CAT, and calpain in the EAE rat brain and spinal cord. The results indicated that the average neurologic function score increased in the EAE group compared to that of the controls (P < 0.01). In addition, CAT and CK-BB activities significantly decreased and the calpain activity significantly increased compared with those of the control group (P < 0.05). The decrease of the activity of central nervous CK-BB and CAT content, as well as the increase of calpain activity at the highest time point were considered to be the consequences of EAE. Furthermore, the results revealed that use of salbutamol could alleviate disease symptoms and reduce the recurrence of the EAE disease. PMID:26535670

  20. Cardiovascular effects of KUR-1246, a new tetrahydronaphthalen derivative beta2-adrenoceptor agonist and a selective uterine relaxant.

    PubMed

    Furihata, Yoshio; Motokawa, Yoshiyuki; Murata, Satoshi; Kiguchi, Sumiyoshi; Kobayashi, Mamoru; Murakami, Makoto; Kojima, Masami; Yamamoto, Toshinori

    2006-01-01

    The aim of this study was to assess the cardiovascular effects of KUR-1246 (CAS 194785-31-4, (-)-bis(2-{[(2S)-2-({(2R)-2-hydroxy-2-[4-hydroxy-3-(2-hydroxyethyl) phenyl] ethyl}amino)-1,2,3,4-tetrahydronaphthalen-7-yl]oxy}-N,N-dimethylacetamide)monosulfate), a new beta2-adrenoceptor agonist tocolytic agent. In conscious dogs, the intravenous administration of KUR-1246 at 0.1 and 1 microg/kg had no effects on blood pressure, heart rate or femoral artery blood flow. KUR-1246 at 10 and 100 microg/kg significantly decreased blood pressure and increased heart rate. In the electrocardiograms, KUR-1246 did not affect QT intervals or QTc. In addition, the cardiac effects of KUR-1246 were evaluated in in vitro electrophysiological studies. KUR-1246 at 10 micromol/L did not affect action potential parameters (the maximal upstroke velocity, resting membrane potential, action potential amplitude and action potential durations) in isolated papillary muscles of guinea pigs or in the human ether-a-go-go related gene (HERG) tail current recorded from stably transfected human embryonic kidney (HEK) 293 cells. On the basis of these results, the effects of KUR-1246 in conscious dogs on the cardiovascular system appear to be limited to changes in blood pressure and heart rate. Therefore, KUR-1246 is unlikely to provoke ventricular arrhythmias by delaying the ventricular repolarization.

  1. Urinary tract toxicity in rats following administration of beta 3-adrenoceptor agonists.

    PubMed

    Waghe, M; Westwood, R; Nunn, G; Kalinowski, A; Aldridge, A

    1999-01-01

    ZD7114, [(S)-4-[2-(2-hydroxy-3 phenoxypropylamine)ethoxy]-N-(2-methoxyethyl) phenoxyacetamide], and ZD2079, [(R)-N-(2-[4- (carboxymethyl)phenoxy]ethyl)-N-(beta-hydroxyphenethyl)ammonium chloride], are beta 3-adrenoceptor stimulants with selectivity for brown adipose tissue. ZD7144 is the hydrochloride salt of the S-enantiomer of the racemic amide ZD2079. They were developed as potential novel treatments for obesity and non-insulin-dependent diabetes mellitus. Male and female rats were dosed separately by gavage for a minimum of 28 days with 0, 10, 50, and 500 mg/kg/day of ZD7114 or with 0, 10, 30, and 150 mg/kg/day of ZD2079. Two further groups of male and female rats were dosed with 0 and 500 mg/kg/day of ZD7114 for 28 days and were then allowed a 6-wk, undosed withdrawal period. At high doses, both compounds caused urinary tract toxicity, which primarily affected the distal tubules and collecting ducts of the kidney via tubular necrosis. They also caused ureteric inflammation, cystitis, and accumulation of crystalline inclusions throughout the urinary tract. As a result of urinary tract toxicity, affected animals from one or both studies showed reduced red blood cell indices, lower platelet counts, and higher white cell counts. Blood chemistry revealed lower plasma concentrations of glucose (7.28 +/- 1.37 compared to 8.11 +/- 0.65 for the control) and total protein (63.42 +/- 3.65 compared to 69.17 +/- 3.24 for the control) and increased plasma urea (37.15 +/- 19.96 compared to 8.09 +/- 0.87 for the control). Urinalysis showed an increase in the number of crystals, blood, and protein. In the urinary tract, the severe crystalluria with accumulation of crystalline material indicated that this may have a role in the etiology of the target organ toxicity. Poor solubility of the compounds at normal urinary pH was considered a possible mechanism for the crystalluria. PMID:10207980

  2. Multiresidue analysis of beta-agonists in pork by coupling polymer monolith microextraction to electrospray quadrupole time-of-flight mass spectrometry.

    PubMed

    Huang, Jing-Fang; Zhang, Hui-Juan; Lin, Bo; Yu, Qiong-Wei; Feng, Yu-Qi

    2007-01-01

    A novel method of polymer monolith microextraction (PMME) using poly(methacrylic acid-co-ethylene glycol dimethacrylate) monolith combined with electrospray ionization quadrupole time-of-flight mass spectrometry (ESI-QTOF MS) was developed for the rapid and sensitive determination of beta-agonists in pork samples. The conditions of PMME were optimized for the improvement of extraction efficiency and reduction of the matrix interferences from pork. Under the optimal condition, the eluate solution allowed direct analysis by mass spectrometry. In the positive ion mode and in the multiple reaction monitoring (MRM) mode, the limits of detection (LODs) for beta-agonists were found to be 0.08 ng/g (clenbuterol, CLB), 0.18 ng/g (salbutamol, SBTM) and 0.26 ng/g (terbutaline, TBTL) in pork, respectively, with good inter- and intra-day precisions (2-10% for CLB, 11-23% for SBTM and 4-16% for TBTL). The proposed PMME/ESI-QTOF MS method was successfully applied to the determination of beta-agonist residues in thirteen real samples, and the positive samples were confirmed according to the identification points (IPs) system defined by Commission Decision 2002/657/EC. To investigate the matrix effect, the proposed method was compared with PMME-HPLC/ESI-QTOF MS and the slight decrease in sensitivity of PMME/ESI-QTOF MS was ascribed to the inter-analyte ion suppression.

  3. Clinical-pharmacokinetic aspects of prolonged effect duration as illustrated by beta2-agonists.

    PubMed

    Rosenburg, Johan

    2002-07-01

    stimulation of beta2-adrenoceptors have their pros and cons. Bambuterol can be dosed orally once daily, but full effect is reached slowly. The effect of formoterol is reached within a few minutes, but administration must occur via the lungs, often twice daily. Both treatments, however, give 24-h symptom relief during regular treatment. PMID:12214578

  4. Enhanced behavioral sensitivity to the competitive GABA agonist, gaboxadol, in transgenic mice over-expressing hippocampal extrasynaptic alpha6beta GABA(A) receptors.

    PubMed

    Saarelainen, Kati S; Ranna, Martin; Rabe, Holger; Sinkkonen, Saku T; Möykkynen, Tommi; Uusi-Oukari, Mikko; Linden, Anni-Maija; Lüddens, Hartmut; Korpi, Esa R

    2008-04-01

    The behavioral and functional significance of the extrasynaptic inhibitory GABA(A) receptors in the brain is still poorly known. We used a transgenic mouse line expressing the GABA(A) receptor alpha6 subunit gene in the forebrain under the Thy-1.2 promoter (Thy1alpha6) mice ectopically expressing alpha6 subunits especially in the hippocampus to study how extrasynaptically enriched alphabeta(gamma2)-type receptors alter animal behavior and receptor responses. In these mice extrasynaptic alpha6beta receptors make up about 10% of the hippocampal GABA(A) receptors resulting in imbalance between synaptic and extrasynaptic inhibition. The synthetic GABA-site competitive agonist gaboxadol (4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol; 3 mg/kg) induced remarkable anxiolytic-like response in the light : dark exploration and elevated plus-maze tests in Thy1alpha6 mice, while being almost inactive in wild-type mice. The transgenic mice also lost quicker and for longer time their righting reflex after 25 mg/kg gaboxadol than wild-type mice. In hippocampal sections of Thy1alpha6 mice, the alpha6beta receptors could be visualized autoradiographically by interactions between gaboxadol and GABA via [(35)S]TBPS binding to the GABA(A) receptor ionophore. Gaboxadol inhibition of the binding could be partially prevented by GABA. Electrophysiology of recombinant GABA(A) receptors revealed that GABA was a partial agonist at alpha6beta3 and alpha6beta3delta receptors, but a full agonist at alpha6beta3gamma2 receptors when compared with gaboxadol. The results suggest strong behavioral effects via selective pharmacological activation of enriched extrasynaptic alphabeta GABA(A) receptors, and the mouse model represents an example of the functional consequences of altered balance between extrasynaptic and synaptic inhibition.

  5. Different characteristics of AMPA receptor agonists acting at AMPA receptors expressed in Xenopus oocytes.

    PubMed

    Wahl, P; Madsen, U; Banke, T; Krogsgaard-Larsen, P; Schousboe, A

    1996-07-18

    A series of (RS)-2-amino-3-(3-hydroxy-5-methyl-4-isoxazolyl)propionic acid (AMPA) analogues were evaluated for activity at homo-oligomeric glutamate1-flop (Glu1-flop) receptors expressed in Xenopus oocytes, using the two-electrode voltage clamp technique. (RS)-2-Amino-3-(3-carboxy-5-methyl-4-isoxazolyl)propionic acid (ACPA) (EC50, 2.4 microM), a homologue of AMPA having a carboxyl group as the terminal acidic functionality, was five times more potent than AMPA (EC50, 12 microM) and 20 times more potent than kainate (EC50, 46 microM). (RS)-2-Amino-3(3-hydroxy-5-trifluoromethyl-4-isoxazolyl)propionic acid (Tri-F-AMPA), in which an electronegative trifluoromethyl group is substituted for the methyl group on the isoxazole ring in the AMPA structure, was three times more potent than AMPA, whereas (RS)-3-hydroxy-4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridine-5-carboxylic acid (5-HPCA), a bicyclic analogue of AMPA with highly restricted conformational flexibility was 10 times less potent than AMPA. The limiting slope of log-log plots of Glu1-flop receptor currents versus low agonist concentrations had a value of 1.7 for ACPA and kainate compared to 1.5 for Tri-F-AMPA and 1.3 for 5-HPCA and AMPA. The amplitude of responses evoked by near saturating concentrations of the agonists varied more than 7-fold. The sequence of efficacy was ACPA = kainate > Tri-F-AMPA > AMPA > 5-HPCA. Moreover, when saturating concentrations of Tri-F-AMPA and kainate were co-applied, the response was significantly greater than when each of the agonists was applied separately. The potency of the antagonist 2,3-dihydroxy-6-nitro-7-sulfamoylbenzo(f)quinoxaline (NBQX) (estimated KB, approximately 200 nM), to block currents mediated by Glu1-flop receptors was similar for all of the agonists tested in this study. These results indicate that relatively minor changes in the molecular structure of AMPA are associated with marked effects on potency and efficacy. In particular, it is suggested that the acidity of

  6. Gating allosterism at a single class of etomidate sites on alpha1beta2gamma2L GABA A receptors accounts for both direct activation and agonist modulation.

    PubMed

    Rüsch, Dirk; Zhong, Huijun; Forman, Stuart A

    2004-05-14

    At clinical concentrations, the potent intravenous general anesthetic etomidate enhances gamma-aminobutyric acid, type A (GABA(A)) receptor activity elicited with low gamma-aminobutyric acid (GABA) concentrations, whereas much higher etomidate concentrations activate receptors in the absence of GABA. Therefore, GABA(A) receptors may possess two types of etomidate sites: high affinity GABA-modulating sites and low affinity channel-activating sites. However, GABA modulation and direct activation share stereoselectivity for the (R)(+)-etomidate isomer and display parallel dependence on GABA(A) beta subunit isoforms, suggesting that these two actions may be mediated by a single class of etomidate site(s) that exert one or more molecular effects. In this study, we assessed GABA modulation by etomidate using leftward shifts of electrophysiological GABA concentration responses in cells expressing human alpha1beta2gamma2L receptors. Etomidate at up to 100 microm reduced GABA EC(50) values by over 100-fold but without apparent saturation, indicating the absence of high affinity etomidate sites. In experiments using a partial agonist, P4S, etomidate both reduced EC(50) and increased maximal efficacy, demonstrating that etomidate shifts the GABA(A) receptor gating equilibrium toward open states. Results were quantitatively analyzed using equilibrium receptor gating models, wherein a postulated class of equivalent etomidate sites both directly activates receptors and enhances agonist gating. A Monod-Wyman-Changeux co-agonist mechanism with two equivalent etomidate sites that allosterically enhance GABA(A) receptor gating independently of agonist binding most simply accounts for direct activation and agonist modulation. This model also correctly predicts the actions of etomidate on GABA(A) receptors containing a point mutation that increases constitutive gating activity.

  7. Time-dependent propensity score and collider-stratification bias: an example of beta2-agonist use and the risk of coronary heart disease.

    PubMed

    Sanni Ali, M; Groenwold, Rolf H H; Pestman, Wiebe R; Belitser, Svetlana V; Hoes, Arno W; de Boer, A; Klungel, Olaf H

    2013-04-01

    Stratification and conditioning on time-varying cofounders which are also intermediates can induce collider-stratification bias and adjust-away the (indirect) effect of exposure. Similar bias could be expected when one conditions on time-dependent PS. We explored collider-stratification and confounding bias due to conditioning or stratifying on time-dependent PS using a clinical example on the effect of inhaled short- and long-acting beta2-agonist use (SABA and LABA, respectively) on coronary heart disease (CHD). In an electronic general practice database we selected a cohort of patients with an indication for SABA and/or LABA use and ascertained potential confounders and SABA/LABA use per three month intervals. Hazard ratios (HR) were estimated using PS stratification as well as covariate adjustment and compared with those of Marginal Structural Models (MSMs) in both SABA and LABA use separately. In MSMs, censoring was accounted for by including inverse probability of censoring weights.The crude HR of CHD was 0.90 [95 % CI: 0.63, 1.28] and 1.55 [95 % CI: 1.06, 2.62] in SABA and LABA users respectively. When PS stratification, covariate adjustment using PS, and MSMs were used, the HRs were 1.09 [95 % CI: 0.74, 1.61], 1.07 [95 % CI: 0.72, 1.60], and 0.86 [95 % CI: 0.55, 1.34] for SABA, and 1.09 [95 % CI: 0.74, 1.62], 1.13 [95 % CI: 0.76, 1.67], 0.77 [95 % CI: 0.45, 1.33] for LABA, respectively. Results were similar for different PS methods, but higher than those of MSMs. When treatment and confounders vary during follow-up, conditioning or stratification on time-dependent PS could induce substantial collider-stratification or confounding bias; hence, other methods such as MSMs are recommended.

  8. Use of indium-111 oxine to study pulmonary and hepatic leukocyte sequestration in endotoxin shock and effects of the beta-2 receptor agonist terbutaline

    SciTech Connect

    Sigurdsson, G.H.; Christenson, J.T.; al-Mousawi, M.; Owunwanne, A. )

    1989-01-01

    The dynamic behavior of indium-111 oxine-labeled leukocytes was simultaneously recorded in multiple organs during endotoxin shock in sheep. Also, the effects of the beta-2 receptor agonist terbutaline were studied. An experimental protocol was designed to mimic a clinical condition in an intensive care setting as far as possible. The animals were ventilated with 50% oxygen to avoid hypoxemia and were given large amounts of intravenous fluids to reduce adverse effects of hypovolemia. A moderate dose of E. coli endotoxin (10 micrograms/kg bwt) was given by intravenous infusion to 14 adult sheep, seven of them receiving continuous intravenous infusion of terbutaline (20 micrograms/kg/hr) during 4 hr, starting 30 min after endotoxin, when signs of lung injury had developed. The other seven acted as controls. A marked pulmonary and hepatic leukocyte sequestration together with a sharp drop in leukocyte counts in peripheral blood occurred within minutes after start of the endotoxin infusion in both groups. However, no changes were observed in the kidneys or the gut. After 60 min and until the end of the experiment, there was a significantly lower activity in the lungs and in the liver of the animals treated with terbutaline than in the controls (P less than .01). Furthermore, less marked hemodynamic and respiratory alterations occurred in the terbutaline group compared with the controls. This study confirms the results of other investigators showing that significant leukocyte sequestration occurs in the lungs during endotoxemia, but it also demonstrates that leukocytes sequestrate in the liver, although slightly less than in the lungs.

  9. ICI D7114 a novel selective beta-adrenoceptor agonist selectively stimulates brown fat and increases whole-body oxygen consumption.

    PubMed

    Holloway, B R; Howe, R; Rao, B S; Stribling, D; Mayers, R M; Briscoe, M G; Jackson, J M

    1991-09-01

    1. ICI D7114 is a novel, beta-adrenoceptor agonist which stimulates whole body oxygen consumption in conscious rats, cats and dogs and brown adipose tissue (BAT) activity in conscious rats. Treatment of rats with ICI D7114 stimulated oxygen consumption (ED50, 0.04 mg kg-1, p.o.) and BAT mitochondrial guanosine diphosphate (GDP)-binding (ED50, 0.15 mg kg-1, p.o.) with no chronotropic effects on the heart at these doses. 2. Reference beta-adrenoceptor agonists, isoprenaline and clenbuterol, also stimulated oxygen consumption and BAT activity but were less selective because they also produced effects on heart rate at these doses. 3. Treatment of conscious rats with ICI D7114 did not attenuate the chronotropic effects on the heart of a subsequent isoprenaline challenge. 4. Administration of ICI D7114 or of its acid metabolite had no effect in a cat soleus muscle model of tremor or on blood potassium levels in the conscious dog, indicating lack of effects at beta 2-adrenoceptors. 5. The results indicate that ICI D7114 may have activity at atypical beta-adrenoceptors in brown adipose tissue leading to increased whole body oxygen consumption. PMID:1686210

  10. ICI D7114 a novel selective beta-adrenoceptor agonist selectively stimulates brown fat and increases whole-body oxygen consumption.

    PubMed Central

    Holloway, B. R.; Howe, R.; Rao, B. S.; Stribling, D.; Mayers, R. M.; Briscoe, M. G.; Jackson, J. M.

    1991-01-01

    1. ICI D7114 is a novel, beta-adrenoceptor agonist which stimulates whole body oxygen consumption in conscious rats, cats and dogs and brown adipose tissue (BAT) activity in conscious rats. Treatment of rats with ICI D7114 stimulated oxygen consumption (ED50, 0.04 mg kg-1, p.o.) and BAT mitochondrial guanosine diphosphate (GDP)-binding (ED50, 0.15 mg kg-1, p.o.) with no chronotropic effects on the heart at these doses. 2. Reference beta-adrenoceptor agonists, isoprenaline and clenbuterol, also stimulated oxygen consumption and BAT activity but were less selective because they also produced effects on heart rate at these doses. 3. Treatment of conscious rats with ICI D7114 did not attenuate the chronotropic effects on the heart of a subsequent isoprenaline challenge. 4. Administration of ICI D7114 or of its acid metabolite had no effect in a cat soleus muscle model of tremor or on blood potassium levels in the conscious dog, indicating lack of effects at beta 2-adrenoceptors. 5. The results indicate that ICI D7114 may have activity at atypical beta-adrenoceptors in brown adipose tissue leading to increased whole body oxygen consumption. PMID:1686210

  11. Adenosine A(3) receptor agonist acts as a homeostatic regulator of bone marrow hematopoiesis.

    PubMed

    Hofer, Michal; Pospísil, Milan; Znojil, Vladimír; Holá, Jirina; Vacek, Antonín; Streitová, Denisa

    2007-07-01

    The present study was performed to define the optimum conditions of the stimulatory action of the adenosine A(3) receptor agonist, N(6)-(3-iodobenzyl)adenosine-5'-N-methyluronamide (IB-MECA), on bone marrow hematopoiesis in mice. Effects of 2-day treatment with IB-MECA given at single doses of 200nmol/kg twice daily were investigated in normal mice and in mice whose femoral bone marrow cells were either depleted or regenerating after pretreatment with the cytotoxic drug 5-fluorouracil. Morphological criteria were used to determine the proliferation state of the granulocytic and erythroid cell systems. Significant negative correlation between the control proliferation state and the increase of cell proliferation after IB-MECA treatment irrespective of the cell lineage investigated was found. The results suggest the homeostatic character of the induced stimulatory effects and the need to respect the functional state of the target tissue when investigating effects of adenosine receptor agonists under in vivo conditions.

  12. Retail cut yields of Rambouillet wether lambs fed the beta-adrenergic agonist L644,969.

    PubMed

    Shackelford, S D; Edwards, J W; Smarr, E K; Savell, J W

    1992-01-01

    Twenty Rambouillet wether lambs were given ad libitum access to a diet with (BAA, n = 10) or without (control, n = 10) 1 ppm of the beta-adrenergic agonist L644,969. Lambs were fed to a constant slaughter weight end point of 54.5 kg. Carcasses were fabricated to yield bone-in and boneless cuts that were trimmed progressively to 1.27, .64, .32, and .00 cm of s.c. fat remaining. Addition of BAA did not affect growth traits. Actual and adjusted fat thickness, body wall thickness, and percentage of kidney-pelvic fat did not differ between control and BAA lambs. However, BAA increased longissimus muscle area, longissimus muscle depth, and leg score while decreasing USDA yield grade. The BAA increased carcass conformation scores and decreased flank lean color scores. No other carcass quality measurements were affected by BAA. Addition of BAA did not affect overall carcass yields of bone-in retail cuts. However, BAA increased overall carcass yields of boneless retail cuts regardless of fat trim level. The BAA increased bone-in leg yield. Yield of boneless sirloin, bone-in loin and boneless loin were not affected by BAA. For these cuts, the percentage change from the control was highly dependent on fat trim level. There was no difference in short-cut, shank-off, semiboneless leg yield between control and BAA. Addition of BAA did not affect yield of bone-in rack regardless of fat trim level. However, BAA greatly increased yield of boneless ribeye. The BAA did not affect yield of bone-in or boneless shoulder.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. Peripherally mediated antinociception of the mu-opioid receptor agonist 2-[(4,5alpha-epoxy-3-hydroxy-14beta-methoxy-17-methylmorphinan-6beta-yl)amino]acetic acid (HS-731) after subcutaneous and oral administration in rats with carrageenan-induced hindpaw inflammation.

    PubMed

    Bileviciute-Ljungar, Indre; Spetea, Mariana; Guo, Yan; Schütz, Johannes; Windisch, Petra; Schmidhammer, Helmut

    2006-04-01

    Opioids induce analgesia by activating opioid receptors not only within the central nervous system but also on peripheral sensory neurons. This study investigated peripherally mediated antinociception produced by the mu-opioid receptor agonist 2-[(4,5alpha-epoxy-3-hydroxy-14beta-methoxy-17-methylmorphinan-6beta-yl)amino]acetic acid (HS-731) after s.c. and oral administration in rats with carrageenan-induced hindpaw inflammation. Antinociceptive effects after s.c. administration were assessed 3 h after intraplantar carrageenan injection and compared with those of centrally acting mu-opioid agonists 14-methoxymetopon and morphine. Opioid agonists caused dose-dependent increases in inflamed paw withdrawal latencies to mechanical and thermal stimulation. The time course of action was different, in that HS-731 (20 microg/kg s.c.) produced significant long-lasting effects up to 4 h after administration, whereas 14-methoxymetopon (20 microg/kg) and morphine (2 mg/kg) reached their peak of action at 10 to 30 min, and their effect declined rapidly thereafter. Subcutaneous administration of the peripherally selective opioid antagonist naloxone methiodide inhibited antinociception elicited by HS-731 (20 microg/kg s.c.), whereas it was ineffective against 14-methoxymetopon (20 microg/kg s.c.). Moreover, the antinociception produced by 100 microg/kg s.c. HS-731 was dose-dependently reversed by s.c. naloxone methiodide. This indicates that HS-731 preferentially activates peripheral opioid receptors, whereas 14-methoxymetopon mediates analgesia via central mechanisms. Orally administered HS-731 significantly reduced hyperalgesia in the inflamed paw induced by carrageenan, which was reversible by s.c. administered naloxone methiodide. These results show that systemic (s.c. and oral) treatment with the mu-opioid agonist HS-731 produces potent and long-lasting antinociception through peripheral mechanisms in rats with carrageenan-induced hindpaw inflammation.

  14. TLR9 agonist acts by different mechanisms synergizing with bevacizumab in sensitive and cetuximab-resistant colon cancer xenografts.

    PubMed

    Damiano, Vincenzo; Caputo, Rosa; Garofalo, Sonia; Bianco, Roberto; Rosa, Roberta; Merola, Gerardina; Gelardi, Teresa; Racioppi, Luigi; Fontanini, Gabriella; De Placido, Sabino; Kandimalla, Ekambar R; Agrawal, Sudhir; Ciardiello, Fortunato; Tortora, Giampaolo

    2007-07-24

    Synthetic agonists of Toll-like receptor 9 (TLR9), a class of agents that induce specific immune response, exhibit antitumor activity and are currently being investigated in cancer patients. Intriguingly, their mechanisms of action on tumor growth and angiogenesis are still incompletely understood. We recently discovered that a synthetic agonist of TLR9, immune modulatory oligonucleotide (IMO), acts by impairing epidermal growth factor receptor (EGFR) signaling and potently synergizes with anti-EGFR antibody cetuximab in GEO human colon cancer xenografts, whereas it is ineffective in VEGF-overexpressing cetuximab-resistant GEO cetuximab-resistant (GEO-CR) tumors. VEGF is activated by EGFR, and its overexpression causes resistance to EGFR inhibitors. Therefore, we used IMO and the anti-VEGF antibody bevacizumab as tools to study IMO's role on EGFR and angiogenesis and to explore its therapeutic potential in GEO, LS174T, and GEO-CR cancer xenografts. We found that IMO enhances the antibody-dependent cell-mediated cytotoxicity (ADCC) activity of cetuximab, that bevacizumab has no ADCC, and IMO is unable to enhance it. Nevertheless, the IMO-plus-bevacizumab combination synergistically inhibits the growth of GEO and LS174T as well as of GEO-CR tumors, preceded by inhibition of signaling protein expression, microvessel formation, and human, but not murine, VEGF secretion. Moreover, IMO inhibited the growth, adhesion, migration, and capillary formation of VEGF-stimulated endothelial cells. The antitumor activity was irrespective of the TLR9 expression on tumor cells. These studies demonstrate that synthetic agonists of TLR9 interfere with growth and angiogenesis also by EGFR- and ADCC-independent mechanisms affecting endothelial cell functions and provide a strong rationale to combine IMO with bevacizumab and EGFR inhibitory drugs in colon cancer patients.

  15. TLR9 agonist acts by different mechanisms synergizing with bevacizumab in sensitive and cetuximab-resistant colon cancer xenografts

    PubMed Central

    Damiano, Vincenzo; Caputo, Rosa; Garofalo, Sonia; Bianco, Roberto; Rosa, Roberta; Merola, Gerardina; Gelardi, Teresa; Racioppi, Luigi; Fontanini, Gabriella; De Placido, Sabino; Kandimalla, Ekambar R.; Agrawal, Sudhir; Ciardiello, Fortunato; Tortora, Giampaolo

    2007-01-01

    Synthetic agonists of Toll-like receptor 9 (TLR9), a class of agents that induce specific immune response, exhibit antitumor activity and are currently being investigated in cancer patients. Intriguingly, their mechanisms of action on tumor growth and angiogenesis are still incompletely understood. We recently discovered that a synthetic agonist of TLR9, immune modulatory oligonucleotide (IMO), acts by impairing epidermal growth factor receptor (EGFR) signaling and potently synergizes with anti-EGFR antibody cetuximab in GEO human colon cancer xenografts, whereas it is ineffective in VEGF-overexpressing cetuximab-resistant GEO cetuximab-resistant (GEO-CR) tumors. VEGF is activated by EGFR, and its overexpression causes resistance to EGFR inhibitors. Therefore, we used IMO and the anti-VEGF antibody bevacizumab as tools to study IMO's role on EGFR and angiogenesis and to explore its therapeutic potential in GEO, LS174T, and GEO-CR cancer xenografts. We found that IMO enhances the antibody-dependent cell-mediated cytotoxicity (ADCC) activity of cetuximab, that bevacizumab has no ADCC, and IMO is unable to enhance it. Nevertheless, the IMO-plus-bevacizumab combination synergistically inhibits the growth of GEO and LS174T as well as of GEO-CR tumors, preceded by inhibition of signaling protein expression, microvessel formation, and human, but not murine, VEGF secretion. Moreover, IMO inhibited the growth, adhesion, migration, and capillary formation of VEGF-stimulated endothelial cells. The antitumor activity was irrespective of the TLR9 expression on tumor cells. These studies demonstrate that synthetic agonists of TLR9 interfere with growth and angiogenesis also by EGFR- and ADCC-independent mechanisms affecting endothelial cell functions and provide a strong rationale to combine IMO with bevacizumab and EGFR inhibitory drugs in colon cancer patients. PMID:17636117

  16. Bronchial reversibility with a short-acting β2-agonist predicts the FEV1 response to administration of a long-acting β2-agonist with inhaled corticosteroids in patients with bronchial asthma.

    PubMed

    Ohwada, Akihiko; Inami, Kei; Onuma, Emi; Matsumoto-Yamazaki, Mariko; Atsuta, Ryo; Takahashi, Kazuhisa

    2011-07-01

    A long-acting β2-agonist (LABA) combined with an inhaled corticosteroid (ICS) is frequently prescribed as initial therapy in steroid-naïve asthma patients because of its effective control of symptoms and improvement of pulmonary function. However, it is unclear which patients will be responsive to LABAs and whether bronchial responsiveness to LABAs is similar to that to short-acting β2-agonists (SABAs) in a clinical setting. Therefore, the goal of the present study was to compare the changes in spirometric parameters after SABA (salbutamol) inhalation to those after 1-month LABA/ICS (salmeterol/fluticasone propionate) therapy. Spirometric changes were evaluated as absolute values, as the percentage of predicted normal values and as the percentage of baseline values after salbutamol inhalation or 1-month LABA/ICS therapy in 45 patients with asthma. Compared to SABA inhalation, LABA/ICS therapy produced significant improvements in forced expiratory volume in 1 sec (FEV1), peak expiratory flow (PEF), forced expiratory flow at 50% of vital capacity expired (FEF50%) from baseline (expressed as the percentage predicted) in all patients. FEV1 and the FEV1/forced vital capacity (FVC) ratio after SABA or LABA/ICS therapy were inversely related to the corresponding baseline values. Analysis of spirometric changes after SABA inhalation showed that FEV1 was the best among spirometric parameters, such as PEF, correlated with responsiveness to LABA/ICS therapy. Reversibility of FEV1 with SABA inhalation predicts the spirometric response to LABA/ICS as initial therapy in patients with bronchial asthma. LABA/ICS therapy had a greater effect on bronchial reversibility in asthmatic patients, compared to SABA inhalation. This suggested that evaluation of bronchial reversibility after LABA/ICS therapy would be superior to that after SABA inhalation.

  17. Peripheral Administration of a Long-Acting Peptide Oxytocin Receptor Agonist Inhibits Fear-Induced Freezing

    PubMed Central

    Modi, Meera E.; Majchrzak, Mark J.; Fonseca, Kari R.; Doran, Angela; Osgood, Sarah; Vanase-Frawley, Michelle; Feyfant, Eric; McInnes, Heather; Darvari, Ramin; Buhl, Derek L.

    2016-01-01

    Oxytocin (OT) modulates the expression of social and emotional behaviors and consequently has been proposed as a pharmacologic treatment of psychiatric diseases, including autism spectrum disorders and schizophrenia; however, endogenous OT has a short half-life in plasma and poor permeability across the blood-brain barrier. Recent efforts have focused on the development of novel drug delivery methods to enhance brain penetration, but few efforts have aimed at improving its half-life. To explore the behavioral efficacy of an OT analog with enhanced plasma stability, we developed PF-06655075 (PF1), a novel non–brain-penetrant OT receptor agonist with increased selectivity for the OT receptor and significantly increased pharmacokinetic stability. PF-06478939 was generated with only increased stability to disambiguate changes to selectivity versus stability. The efficacy of these compounds in evoking behavioral effects was tested in a conditioned fear paradigm. Both central and peripheral administration of PF1 inhibited freezing in response to a conditioned fear stimulus. Peripheral administration of PF1 resulted in a sustained level of plasma concentrations for greater than 20 hours but no detectable accumulation in brain tissue, suggesting that plasma or cerebrospinal fluid exposure was sufficient to evoke behavioral effects. Behavioral efficacy of peripherally administered OT receptor agonists on conditioned fear response opens the door to potential peripheral mechanisms in other behavioral paradigms, whether they are mediated by direct peripheral activation or feed-forward responses. Compound PF1 is freely available as a tool compound to further explore the role of peripheral OT in behavioral response. PMID:27217590

  18. Inhalation of a Short-Acting β2-Adrenoreceptor Agonist Induces a Hypercoagulable State in Healthy Subjects

    PubMed Central

    Ali-Saleh, Mais; Sarig, Galit; Ablin, Jacob N.; Brenner, Benjamin; Jacob, Giris

    2016-01-01

    Background Catecholamine infusion elicits an increase in clotting factors and this increase has been attributed to stimulation of β2-adrenorecptors (β2AR). Accordingly, we tested the hypothesis that inhalation of a short-acting selective β2AR agonist can induce a procoagulant state in healthy individuals. Methods We recruited 23 healthy volunteers (nine females; mean age: 26±0.8 years; body mass index: 24.7±0.5 kg/m2) and randomly allocated them into two groups, the β2AR arm (seventeen subjects) and the saline arm (six subjects). Hemodynamics, plasma norepinephrine concentration, and procoagulant, anticoagulant, and fibrinolytic profiles of each participant were determined using specific assays before and after inhalation of either 2 mL nebulized normal saline or a mixture of 1 mL saline and 1 mL of salbutamol (5 mg salbutamol sulfate), a selective β2AR agonist, which were delivered by a nebulizer over ten minutes. Results Saline inhalation had no effect on the procoagulant, anticoagulant and fibrinolytic profiles of the six healthy volunteer in the study's saline arm. Salbutamol inhalation caused (a) a significant increase in the activity or levels of the procoagulant factors; FVIII increased by 11±3% (p = 0.04), von Willebrand factor increased by 7±1% (p = 0.03), and (b) a significant decrease in the activated partial prothrombin time from 27.4±0.4 seconds to 25.5 ±0.5 seconds (p<0.001) in the 17 volunteers in the study's β2AR arm. D-dimer and prothrombin fragments F1+2 were elevated by 200 ±90% and 505.0 ±300.0%, respectively. In addition, the activity of the anticoagulant protein C pathway (demonstrated by the protein C Global assay) decreased from 1.0±0.08 to 0.82±0.06 (p<0.001). Although plasma levels of tissue plasminogen activator decreased, all other indices of the fibrinolytic system did not change following salbutamol inhalation. Conclusion We found that a single inhalation of salbutamol, a short-acting β2AR agonist, activates the

  19. The action of the beta-agonist clenbuterol on protein and energy metabolism in fattening wether lambs.

    PubMed

    MacRae, J C; Skene, P A; Connell, A; Buchan, V; Lobley, G E

    1988-05-01

    1. Five Greyface wethers (42-45 kg) fed on various fixed amounts of dried grass pellets (either approximately 1.3 times maintenance or 2 times maintenance) by means of belt-type continuous feeders were housed in open-circuit respiration chambers for periods of 45 d. Between days 15 and 35 they received daily oral doses of 1.5 mg of the beta-adrenergic agonist clenbuterol (adsorbed on to the feed). Continuous energy and nitrogen balance measurements each of 5 d duration were conducted throughout the chamber confinement. 2. On six occasions (twice during the 15 d pre-clenbuterol period, on days +4, +11 and +18 of clenbuterol administration and once during the post-treatment period) animals were infused with [1-14C]leucine to determine the rates of leucine oxidation and the amounts of leucine available for protein synthesis. 3. Clenbuterol administration caused a marked increase in N retention (2-3 g N/d; P less than 0.001) throughout the 20 d treatment period. It also increased (P less than 0.001) the energy expenditure of the animals (on average by 1.1 MJ/d over the first 5 d, compared with immediate pretreatment values, and 0.6 MJ/d over the 20 d period, compared with the mean of pre- and post-treatment control values). The effect of treatment was calculated to result, on average, in the daily retention of 19 (SE 1.5) g more protein and 30 (SE 5.5) g less fat. 4. During clenbuterol treatment leucine oxidation was reduced (P less than 0.01). However, values for the amounts of leucine available for protein synthesis were equivocal, with an increase (P less than 0.001) on day 11 of treatment, but no change on days 4 and 18. 5. Withdrawal of the clenbuterol resulted in rapid alterations of N and energy metabolism towards those expected of control animals of that weight.

  20. Evaluation of the efficacy of Grofactor, a beta-adrenergic agonist based on zilpaterol hydrochloride, using feedlot finishing bulls.

    PubMed

    Avendaño-Reyes, L; Meraz-Murillo, F J; Pérez-Linares, C; Figueroa-Saavedra, F; Correa, A; Álvarez-Valenzuela, F D; Guerra-Liera, J E; López-Rincón, G; Macías-Cruz, U

    2016-07-01

    Beta-adrenergic agonists (β-AA) have been shown to positively impact finishing performance and some carcass traits of feedlot cattle. Our objective was to evaluate the efficacy of a β-AA on the basis of zilpaterol hydrochloride (Grofactor, Laboratorios Virbac México, Guadalajara, Mexico) on growth and DMI, carcass characteristics, and meat quality of finishing bulls. Forty-five bulls (75% 25% ) initially weighing 448.7 ± 2.58 kg were blocked by BW and randomly assigned to 1 of 3 diets, using pens of 3 animals, in a randomized complete block design: 1) daily feeding without β-AA in the basal diet (Control), 2) daily feeding with 0.15 mg/kg BW of Grofactor added to the basal diet (ZHG), or 3) daily feeding with 0.15 mg/kg BW of Zilmax (MSD Salud Animal México, Mexico City, Mexico) added to the basal diet (ZHZ). The duration of the feeding period was 30 d with a subsequent 4-d withdrawal period. Compared with Control bulls, the group fed ZHG had a 12% better ( < 0.025) G:F ratio, and their final BW ( 0.094) and ADG ( 0.084) tended to be enhanced. Feedlot performance of ZHG and ZHZ bulls was similar, although the DMI was ∼4% lower ( 0.05) in ZHG bulls vs. the ZHZ and Control groups. The HCW ( 0.001) and dressing percentage ( 0.015) were higher by 20 kg and 3%, respectively, in ZHG bulls vs. Control bulls. The KPH fat was lower ( 0.007) in bulls fed ZHG than in nonsupplemented bulls, but other carcass characteristics were not different in the ZHG and ZHZ bulls, and noncarcass components were not affected by ZHG or ZHZ supplementation. At 48 h postmortem, ZHG bulls had lower ( 0.007) water holding capacity and trended toward ( 0.06) increased chroma and reduced pH ( 0.09) compared to Control bulls. However, compared to ZHZ bulls, ZHG bulls had higher ( 0.02) chroma and a trend ( 0.08) toward increased hue angle. At 14 d postmortem, meat quality variables did not differ between the 3 groups of bulls. Supplementation of ZH Grofactor improved feedlot performance and

  1. [Determination of nine beta-agonist residues in pig tissues by liquid chromatography-tandem mass spectrometry combining with library search].

    PubMed

    Cai, Qinren; Wu, Jieshan; Qian, Zhenjie; Peng, Yufen; Cai, Jie; Du, Zhifeng

    2013-03-01

    A new method has been developed using a hybrid triple-quadrupole linear ion trap (QTrap) mass spectrometer for the fast detection and identification of nine beta-agonists, clenbuterol, salbutamol, ractopamine, ritodrine, terbutaline, isoxsuprine, tulobuterol, cimaterol and bambuterol, in one single liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. The homogenized tissue samples were purified with liquid-liquid extraction after enzymatic hydrolysis by P-glucuronidase/aryl sulfatase. After gradient elution separation on C(18) LC column using acetonitrile and formic acid aqueous solution as the mobile phases, a multiple reaction monitoring (MRM) scan as survey scan and an enhanced product ion (EPI) scan as dependent scan were performed in an information dependent acquisition (IDA) experiment. Finally, the identification of the drugs was carried out by library search with a newly developed MS/MS library based on EPI spectra at three different collision energies in positive mode. The analytical method in the present study was well validated and good results were obtained with respect to precision, repeatability and spiked recovery. The limits of detection of residues were 0.1 -0.2 micro g/kg for beta-agonists, and with a linear range from 0.1 to 50.0 micro g/L. Three concentration levels of 0. 5, 1. 0 and 5. 0 pg/kg were spiked in pig tissues, and the overall recoveries were between 72.0% and 95.1% with the relative standard deviations (RSDs) between 3. 1% and 12.1%. The real sample test showed that this method could be used for sensitive and accurate determination of beta-agonist residues in pig tissue

  2. Investigation of ractopamine molecularly imprinted stir bar sorptive extraction and its application for trace analysis of beta2-agonists in complex samples.

    PubMed

    Xu, Zhigang; Hu, Yufei; Hu, Yuling; Li, Gongke

    2010-05-28

    In this paper, a novel molecularly imprinted polymer (MIP) coated stir bar with ractopamine as template by glass capillary filling with magnetic core as substrate was prepared reproducibly. The ractopamine MIP coating was homogeneous and porous with the average thickness of 20.6 microm. The extraction apparatus for the stir bar was improved to avoid coating loss. The MIP-coated stir bar showed better extraction capacity and good selectivity than that of non-imprinted polymer (NIP) coated stir bar to ractopamine and its analogues. The extraction capacities of ractopamine, isoxsuprine, clenbuterol and fenoterol for MIP-coated stir bar were 3.3, 3.1, 2.8 and 2.4 times as much as that of the NIP coated stir bar, respectively. The MIP-coated stir bars could be used at least 40 times without apparent damage and kept in dried air for 8 months without reduce of extraction ability. A method for the determination of beta(2)-agonists in complex samples by MIP-coated stir bar sorptive extraction coupled with high-performance liquid chromatography (HPLC) was developed. The linear ranges were 0.5-40 microg/L for ractopamine and 1.0-40 microg/L for isoxsuprine and clenbuterol. The detection limits were within the range of 0.10-0.21 microg/L. The method was successfully applied to the analysis of beta(2)-agonists in spiked pork, liver and feed samples with the recoveries of 83.7-92.3%, 80.5-90.2% and 73.6-86.2%, respectively. The RSDs was within 2.9-8.1%. The method is very suitable for the determination of trace beta(2)-agonists in pork, liver and feed samples.

  3. Potentiation of the anti-obesity effect of the selective beta 3-adrenoceptor agonist BRL 35135 in obese Zucker rats by exercise.

    PubMed Central

    Santti, E; Huupponen, R; Rouru, J; Hänninen, V; Pesonen, U; Jhanwar-Uniyal, M; Koulu, M

    1994-01-01

    1. The effects of chronic treatments with a selective beta 3-adrenoceptor agonist and a selective alpha 2-adrenoceptor antagonist and their interactions with physical exercise training were studied in experimental obesity. 2. BRL 35135 (beta 3-agonist, 0.5 mg kg-1 day-1 p.o.), atipamezole (alpha 2-antagonist, 4.0 mg kg-1 day-1 p.o.) and placebo were given to genetically obese male Zucker rats. Half of the rats were kept sedentary whereas the other half were subjected to moderate treadmill exercise training. Body weight gain, cumulative food intake, the neuropeptide Y content of the hypothalamic paraventricular nucleus, brown adipose tissue thermogenic activity (measured as GDP binding), plasma insulin and glucose levels were measured after 3 weeks' treatment and exercise. 3. Treatment with BRL 35135 reduced weight gain by 19%, increased brown adipose tissue thermogenic activity 45-fold and reduced plasma insulin by 50%. Atipamezole slightly increased food intake and neuropeptide Y content in the paraventricular hypothalamic nucleus but had no effect on the other measured parameters. Exercise alone had no effect on weight gain, food intake or thermogenic activity, whereas it reduced plasma insulin and glucose levels. 4. The effect of BRL 35135 on weight gain and thermogenic activity was significantly potentiated by exercise; the reduction in weight gain was 56% in comparison with 19% in sedentary animals. Food intake was significantly reduced in the BRL 35135-treated-exercise-trained animals, although neither beta 3-agonist nor exercise alone affected it.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7889277

  4. Identification of a Ser/Thr cluster in the C-terminal domain of the human prostaglandin receptor EP4 that is essential for agonist-induced beta-arrestin1 recruitment but differs from the apparent principal phosphorylation site.

    PubMed Central

    Neuschäfer-Rube, Frank; Hermosilla, Ricardo; Rehwald, Mathias; Rönnstrand, Lars; Schülein, Ralf; Wernstedt, Christer; Püschel, Gerhard Paul

    2004-01-01

    hEP4-R (human prostaglandin E2 receptor, subtype EP4) is a G(s)-linked heterotrimeric GPCR (G-protein-coupled receptor). It undergoes agonist-induced desensitization and internalization that depend on the presence of its C-terminal domain. Desensitization and internalization of GPCRs are often linked to agonist-induced beta-arrestin complex formation, which is stabilized by phosphorylation. Subsequently beta-arrestin uncouples the receptor from its G-protein and links it to the endocytotic machinery. The C-terminal domain of hEP4-R contains 38 Ser/Thr residues that represent potential phosphorylation sites. The present study aimed to analyse the relevance of these Ser/Thr residues for agonist-induced phosphorylation, interaction with beta-arrestin and internalization. In response to agonist treatment, hEP4-R was phosphorylated. By analysis of proteolytic phosphopeptides of the wild-type receptor and mutants in which groups of Ser/Thr residues had been replaced by Ala, the principal phosphorylation site was mapped to a Ser/Thr-containing region comprising residues 370-382, the presence of which was necessary and sufficient to obtain full agonist-induced phosphorylation. A cluster of Ser/Thr residues (Ser-389-Ser-390-Thr-391-Ser-392) distal to this site, but not the principal phosphorylation site, was essential to allow agonist-induced recruitment of beta-arrestin1. However, phosphorylation greatly enhanced the stability of the beta-arrestin1-receptor complexes. For maximal agonist-induced internalization, phosphorylation of the principal phosphorylation site was not required, but both beta-arrestin1 recruitment and the presence of Ser/Thr residues in the distal half of the C-terminal domain were necessary. PMID:14709160

  5. HelpDesk answers: is it safe to add long-acting β-2 agonists to inhaled corticosteroids in patients with persistent asthma?

    PubMed

    Townsend, Laurie; Madlon-Kay, Diane J

    2015-06-01

    Possibly. Long-acting β-2 agonists (LABAs) used in combination with inhaled corticosteroids (ICS) don't appear to increase all-cause mortality or serious adverse events in patients with persistent asthma compared with ICS alone. Studies showing an increase in catastrophic events had serious methodologic issues. A large surveillance study is ongoing.

  6. Sweet Taste-Sensing Receptors Expressed in Pancreatic β-Cells: Sweet Molecules Act as Biased Agonists

    PubMed Central

    Nakagawa, Yuko; Ohtsu, Yoshiaki; Medina, Anya; Nagasawa, Masahiro

    2014-01-01

    The sweet taste receptors present in the taste buds are heterodimers comprised of T1R2 and T1R3. This receptor is also expressed in pancreatic β-cells. When the expression of receptor subunits is determined in β-cells by quantitative reverse transcription polymerase chain reaction, the mRNA expression level of T1R2 is extremely low compared to that of T1R3. In fact, the expression of T1R2 is undetectable at the protein level. Furthermore, knockdown of T1R2 does not affect the effect of sweet molecules, whereas knockdown of T1R3 markedly attenuates the effect of sweet molecules. Consequently, a homodimer of T1R3 functions as a receptor sensing sweet molecules in β-cells, which we designate as sweet taste-sensing receptors (STSRs). Various sweet molecules activate STSR in β-cells and augment insulin secretion. With regard to intracellular signals, sweet molecules act on STSRs and increase cytoplasmic Ca2+ and/or cyclic AMP (cAMP). Specifically, when an STSR is stimulated by one of four different sweet molecules (sucralose, acesulfame potassium, sodium saccharin, or glycyrrhizin), distinct signaling pathways are activated. Patterns of changes in cytoplasmic Ca2+ and/or cAMP induced by these sweet molecules are all different from each other. Hence, sweet molecules activate STSRs by acting as biased agonists. PMID:24741449

  7. Medical treatment of uterine myoma with long-acting gonadotropin-releasing hormone agonist prior to myomectomy.

    PubMed

    Liu, C H; Lin, Y S; Lin, C C; Tzeng, C C; Chou, C Y

    1993-06-01

    A less bulky uterine myoma is technically easier to deal with during surgery. Recently gonadotropin-releasing hormone agonists (GnRH-a) have been used for the purpose of medical hypophysectomy, thereby reducing the size of uterine myomas. Ten premenopausal women with infertility and intramural-submucous myoma manifesting with menorrhagia and obstruction of the tubal ostia were recruited for this study. A long-acting depot GnRH-a, Decapeptyl, was given intramuscularly every four weeks for three months as an adjunct prior to myomectomy. Luteinizing hormone, follicular stimulating hormone and estradiol declined to the menopausal range following treatment. The size of the myoma decreased to a mean of 32.3 +/- 13.3% of the original volume. Myomectomy was performed in eight patients at the end of the study. Remarkably little blood loss was observed during the surgery. All of the patients had their uteri preserved, and six out of eight patients achieved pregnancy within 12 months after surgery. Our results indicate that monthly administration of long-acting GnRH-a significantly reduces the myoma volume and makes myomectomy technically easier to perform with the possibility of reduced complication rates and better preservation of future fertility.

  8. The reassertion profiles of long acting β2-adrenoceptor agonists in the guinea pig isolated trachea and human recombinant β2-adrenoceptor.

    PubMed

    Patel, S; Summerhill, S; Stanley, M; Perros-Huguet, C; Trevethick, M A

    2011-04-01

    Long acting β(2)-adrenoceptor agonists as exemplified by salmeterol and formoterol, exhibit reassertion behaviour in isolated airway preparations. This phenomenon is the inhibition of relaxation by a β(2)-antagonist (e.g. sotalol), followed by the re-establishment of the relaxation when all drugs have been washed out and in the absence of any further agonist addition to the bathing solution. In this study we have compared the reassertion behaviour of salmeterol and formoterol with the new long acting β(2)-adrenoceptor agonists indacaterol, carmoterol and three Pfizer agonists (PF610,355, PF613,322, UK503590) in the guinea pig isolated trachea and in a novel assay developed in CHO cells expressing the recombinant human β(2)-adrenoceptor. The results obtained can be divided into two groups: salmeterol-like (persistent duration of action following agonist removal--coupled with reassertion behaviour), as exemplified by indacaterol, PF610,355, PF613,322 and UK503,590 and, formoterol-like (short duration of agonist action and little reassertion behaviour unless supramaximal concentrations are used), as exemplified by carmoterol. Results are discussed in the context of the two theories proposed to explain the long duration of action of salmeterol (binding to a specific 'exosite' of the β(2)-adrenoceptor) and formoterol (membrane deposition: micro-kinetic theory). Our data suggest that the micro-kinetic theory is an adequate explanation to explain the long duration of action of the β(2)-adrenoceptor agonists studied in these two assays, although with the current data set we cannot definitively exclude the 'exosite' theory. PMID:21134482

  9. Dynamin-association with agonist-mediated sequestration of beta-adrenergic receptor in single-cell eukaryote Paramecium.

    PubMed

    Wiejak, Jolanta; Surmacz, Liliana; Wyroba, Elzbieta

    2004-04-01

    Evidence that dynamin is associated with the sequestration of the Paramecium beta(2)-adrenergic receptor (betaAR) immunoanalogue is presented. We previously reported a dramatic change in the distribution of betaAR analogue in the subcellular fractions upon isoproterenol treatment: it is redistributed from the membraneous to the cytosolic fraction, as revealed by quantitative image analysis of western blots. Here we confirm and extend this observation by laser scanning confocal and immunogold electron microscopy. In the presence of isoproterenol (10 micro mol l(-1)) betaAR translocated from the cell surface into dynamin-positive vesicles in the cytoplasmic compartment, as observed by dual fluorochrome immunolabeling in a series of the confocal optical sections. Colocalization of betaAR and dynamin in the tiny endocytic vesicles was detected by further electron microscopic studies. Generally receptor sequestration follows its desensitization, which is initiated by receptor phosphorylation by G-protein-coupled receptor kinase. We cloned and sequenced the gene fragment of 407 nucleotides homologous to the beta-adrenergic receptor kinase (betaARK): its deduced amino acid sequence shows 51.6% homology in 126 amino acids that overlap with the human betaARK2 (GRK3), and may participate in Paramecium betaAR desensitization. These results suggest that the molecular machinery for the desensitization/sequestration of the receptor immunorelated to vertebrate betaAR exists in unicellular PARAMECIUM:

  10. Beta-Adrenoceptor agonists and other cAMP elevating agents suppress PAI-1 production of human adipocytes in primary culture.

    PubMed

    Gottschling-Zeller, H; Aprath, I; Skurk, T; Hauner, H

    2000-01-01

    Recent studies showed that catecholamines contribute to the regulation of plasminogen activator inhibitor-1 (PAI-1) expression, at least in endothelial cells. Aim of this study was to examine the role of catecholamines on PAI-1 production by human adipocytes and, in particular, to clarify which adrenoceptor (AR) subtypes are involved. Addition of the unselective AR agonist isoproterenol led to a dose- and time-dependent suppression of PAI-1 mRNA and protein release in adipocytes from the subcutaneous and omental depot of obese subjects. A similar degree of suppression was observed in subcutaneous mammary adipocytes of lean women. This effect was mainly mediated via the beta2-adrenoceptor according to experiments using selective agonists. Moreover, addition of cAMP-elevating agents such as dibutyryl-cAMP, forskolin and the phosphodiesterase inhibitors isobutyl-methylxanthine and milrinone resulted in a reduction of PAI-1 of varying degrees. In conclusion, the results of this study support the assumption that catecholamines are able to down-regulate PAI-1 expression and secretion in human adipocytes via beta-adrenergic receptors.

  11. The effects of a beta-agonist treatment, vitamin D3 supplementation and electrical stimulation on meat quality of feedlot steers.

    PubMed

    Strydom, P E; Hope-Jones, M; Frylinck, L; Webb, E C

    2011-12-01

    In this study, 20 young steers received no beta-agonist (C), 100 animals all received zilpaterol hydrochloride (Z), with 1 group only receiving Z while the other 4 groups received zilpaterol and vitamin D3 at the following levels (IU/animal/day) and durations before slaughter: 7 million for 3 days (3D7M); 7 million for 6 days (6D7M); 7 million for 6 days with 7 days no supplementation (6D7M7N) and 1 million for 9 days (9D1M). Left carcass sides were electrically stimulated (ES) and the right side not stimulated (NES). Samples were aged for 3 or 14 days post mortem. Parameters included Warner-Bratzler shear force (WBSF), myofibril filament length, sarcomere length and calpastatin and calpain enzyme activity. Both ES and prolonged aging reduced WBSF (P<0.001). 6D7M, 6D7M7N and Z remained significantly tougher than C (P<0.001), while 3D7M and 9D1M improved WBSF under NES conditions. ES is more effective to alleviate beta-agonist induced toughness than high vitamin D3 supplements.

  12. Influence of beta-agonists (ractopamine HCl and zilpaterol HCl) on fecal shedding of Escherichia coli O157:H7 in feedlot cattle.

    PubMed

    Edrington, Tom S; Farrow, Russell L; Loneragan, Guy H; Ives, Sam E; Engler, Michael J; Wagner, John J; Corbin, Marilyn J; Platter, William J; Yates, David; Hutcheson, John P; Zinn, Richard A; Callaway, Todd R; Anderson, Robin C; Nisbet, David J

    2009-12-01

    Ractopamine HCl and zilpaterol HCl, beta-agonists recently approved for use in feedlot cattle to improve performance traits and carcass leanness, were examined for their effects on fecal shedding of Escherichia coli O157:H7 in feedlot cattle. Fecal samples (n = 2,454) were obtained from four experiments (one ractopamine HCl, three zilpaterol HCl) over the course of a 3-year period, either by rectal palpation (ractopamine HCl experiment) or from pen-floor fecal pats. Samples were cultured quantitatively and qualitatively for E. coli O157:H7. No significant treatment differences were detected for fecal prevalence of E. coli O157:H7 in the ractopamine HCl experiment. Zilpaterol HCl feeding had no effect (P > 0.20) on fecal shedding in the first or second experiments, with overall E. coli O157:H7 prevalence relatively low (<7%). In the third zilpaterol HCl experiment, the percentage of fecal samples that were E. coli O157:H7 positive following qualitative culture was higher (P < 0.05) in the zilpaterol HCl treatment (10.3%) than for the control (6.1%). The current research showed minimal effects of beta-agonists on fecal shedding of E. coli O157:H7 and indicated that these compounds (fed immediately prior to slaughter) are not a cause for concern from a food safety standpoint.

  13. Stimulation of Wnt/beta-Catenin Signaling Pathway with Wnt Agonist Reduces Organ Injury after Hemorrhagic Shock

    PubMed Central

    Kuncewitch, Michael; Yang, Weng-Lang; Jacob, Asha; Khader, Adam; Giangola, Matthew; Nicastro, Jeffrey; Coppa, Gene F.; Wang, Ping

    2014-01-01

    Background Hemorrhagic shock is a leading cause of morbidity and mortality in surgery and trauma patients. Despite a large number of preclinical trials conducted to develop therapeutic strategies against hemorrhagic shock, there is still an unmet need exist for effective therapy for hemorrhage victims. Wnt/β-catenin signaling controls developmental processes and cellular regeneration owing to its central role in cell survival and proliferation. We therefore hypothesized that the activation of Wnt signaling reduces systemic injury caused by hemorrhagic shock. Methods Adult male Sprague-Dawley rats underwent hemorrhagic shock by controlled bleeding of the femoral artery to maintain a mean arterial pressure (MAP) of 30 mmHg for 90 min, followed by resuscitation with crystalloid equal to two times the shed blood volume. After resuscitation, animals were infused with Wnt agonist (5 mg/kg) or Vehicle (20% DMSO in saline). Blood and tissue samples were collected 6 h after resuscitation for analysis. Results Hemorrhagic shock increased serum levels of AST, lactate, and LDH. Treatment with Wnt agonist significantly reduced these levels by 40%, 36%, and 77%, respectively. Wnt agonist also decreased BUN and creatinine by 34% and 56%, respectively. Treatment reduced lung myeloperoxidase activity and IL-6 mRNA by 55% and 68% respectively and, significantly improved lung histology. Wnt agonist treatment increased Bcl-2 protein to Sham values and decreased cleaved caspase-3 by 46% indicating attenuation of hemorrhage-induced apoptosis in the lungs. Hemorrhage resulted in significant reductions of β-catenin protein levels in the lungs as well as down-regulation of a Wnt target gene, Cyclin-D1, while Wnt agonist treatment preserved these levels. Conclusions The administration of Wnt agonist attenuated hemorrhage-induced organ injury, inflammation and apoptosis. This was correlated with preservation of the Wnt signaling pathway. Thus, Wnt/β-catenin activation could be protective

  14. Combined inhaled corticosteroid and long-acting β2-adrenergic agonist therapy for noncystic fibrosis bronchiectasis with airflow limitation

    PubMed Central

    Wei, Ping; Yang, Jia-Wei; Lu, Hai-Wen; Mao, Bei; Yang, Wen-Lan; Xu, Jin-Fu

    2016-01-01

    Abstract Background and objective: There is presently no clear evidence on the effect of combined treatment for non-cystic fibrosis (non-CF) bronchiectasis with inhaled corticosteroid (ICS) and long-acting β2-adrenergic agonist (LABA). The objective of this study is to assess the efficacy and safety of salmeterol-fluticasone combined inhaled therapy for non-CF bronchiectasis with airflow limitation. Methods: An observational study was performed in 120 non-CF bronchiectasis patients diagnosed by high-resolution computed tomography (HRCT) scanning of the chest. Patients received either routine therapy or salmeterol-fluticasone (100/500 μg daily) combined inhaled therapy on the basis of routine therapy. Clinical symptoms, health-related quality of life (HRQL), lung function, short-acting β2-adrenergic agonist (SABA) use, and safety were monitored throughout the study. Results: OF the 120 subjects, 60 received combined inhaled therapy and 60 received routine therapy. Compared to the control group, the combined inhaled therapy group showed significant improvement in their clinical symptom scores (−2.21 vs. −0.31, P = 0.002) and a reduction in number of weekly SABA usage (−4.2 vs. 0.1, P < 0.01). In addition, patients in the inhaled therapy group achieved a significant improvement in HRQL based on mMRC (−1.51 vs. −0.31, P < 0.005) and SGRQ (−7.83 vs. −2.16, P < 0.01) scoring accompanied with no severe adverse events. There were fewer exacerbation frequencies in the combined inhaled therapy group over the 12 months of treatment compared to the control group (1 [0–2] vs. 2 [1–4], P = 0.017). Furthermore, stratified analysis indicated that combined inhaled therapy partially improve lung function for patients for whom it is severely impaired and those with pseudomonas aeruginosa isolated. Conclusion: Our results show that salmeterol-fluticasone combined inhaled therapy should be effective and safe for non-CF bronchiectasis patients

  15. Synergistically acting agonists and antagonists of G protein–coupled receptors prevent photoreceptor cell degeneration

    PubMed Central

    Chen, Yu; Palczewska, Grazyna; Masuho, Ikuo; Gao, Songqi; Jin, Hui; Dong, Zhiqian; Gieser, Linn; Brooks, Matthew J.; Kiser, Philip D.; Kern, Timothy S.; Martemyanov, Kirill A.; Swaroop, Anand; Palczewski, Krzysztof

    2016-01-01

    Photoreceptor cell degeneration leads to visual impairment and blindness in several types of retinal disease. However, the discovery of safe and effective therapeutic strategies conferring photoreceptor cell protection remains challenging. Targeting distinct cellular pathways with low doses of different drugs that produce a functionally synergistic effect could provide a strategy for preventing or treating retinal dystrophies. We took a systems pharmacology approach to identify potential combination therapies using a mouse model of light-induced retinal degeneration. We showed that a combination of U.S. Food and Drug Administration–approved drugs that act on different G protein (guanine nucleotide–binding protein)–coupled receptors (GPCRs) exhibited synergistic activity that protected retinas from light-induced degeneration even when each drug was administered at a low dose. In functional assays, the combined effects of these drugs were stimulation of Gi/o signaling by activating the dopamine receptors D2R and D4R, as well as inhibition of Gs and Gq signaling by antagonizing D1R and the α1A-adrenergic receptor ADRA1A, respectively. Moreover, transcriptome analyses demonstrated that such combined GPCR-targeted treatments preserved patterns of retinal gene expression that were more similar to those of the normal retina than did higher-dose monotherapy. Our study thus supports a systems pharmacology approach to identify treatments for retinopathies, an approach that could extend to other complex disorders. PMID:27460988

  16. Synergistically acting agonists and antagonists of G protein-coupled receptors prevent photoreceptor cell degeneration.

    PubMed

    Chen, Yu; Palczewska, Grazyna; Masuho, Ikuo; Gao, Songqi; Jin, Hui; Dong, Zhiqian; Gieser, Linn; Brooks, Matthew J; Kiser, Philip D; Kern, Timothy S; Martemyanov, Kirill A; Swaroop, Anand; Palczewski, Krzysztof

    2016-01-01

    Photoreceptor cell degeneration leads to visual impairment and blindness in several types of retinal disease. However, the discovery of safe and effective therapeutic strategies conferring photoreceptor cell protection remains challenging. Targeting distinct cellular pathways with low doses of different drugs that produce a functionally synergistic effect could provide a strategy for preventing or treating retinal dystrophies. We took a systems pharmacology approach to identify potential combination therapies using a mouse model of light-induced retinal degeneration. We showed that a combination of U.S. Food and Drug Administration-approved drugs that act on different G protein (heterotrimeric guanine nucleotide-binding protein)-coupled receptors (GPCRs) exhibited synergistic activity that protected retinas from light-induced degeneration even when each drug was administered at a low dose. In functional assays, the combined effects of these drugs were stimulation of Gi/o signaling by activating the dopamine receptors D2R and D4R, as well as inhibition of Gs and Gq signaling by antagonizing D1R and the α1A-adrenergic receptor ADRA1A, respectively. Moreover, transcriptome analyses demonstrated that such combined GPCR-targeted treatments preserved patterns of retinal gene expression that were more similar to those of the normal retina than did higher-dose monotherapy. Our study thus supports a systems pharmacology approach to identify treatments for retinopathies, an approach that could extend to other complex disorders. PMID:27460988

  17. Quinuclidine compounds differently act as agonists of Kenyon cell nicotinic acetylcholine receptors and induced distinct effect on insect ganglionic depolarizations.

    PubMed

    Mathé-Allainmat, Monique; Swale, Daniel; Leray, Xavier; Benzidane, Yassine; Lebreton, Jacques; Bloomquist, Jeffrey R; Thany, Steeve H

    2013-12-01

    We have recently demonstrated that a new quinuclidine benzamide compound named LMA10203 acted as an agonist of insect nicotinic acetylcholine receptors. Its specific pharmacological profile on cockroach dorsal unpaired median neurons (DUM) helped to identify alpha-bungarotoxin-insensitive nAChR2 receptors. In the present study, we tested its effect on cockroach Kenyon cells. We found that it induced an inward current demonstrating that it bounds to nicotinic acetylcholine receptors expressed on Kenyon cells. Interestingly, LMA10203-induced currents were completely blocked by the nicotinic antagonist α-bungarotoxin. We suggested that LMA10203 effect occurred through the activation of α-bungarotoxin-sensitive receptors and did not involve α-bungarotoxin-insensitive nAChR2, previously identified in DUM neurons. In addition, we have synthesized two new compounds, LMA10210 and LMA10211, and compared their effects on Kenyon cells. These compounds were members of the 3-quinuclidinyl benzamide or benzoate families. Interestingly, 1 mM LMA10210 was not able to induce an inward current on Kenyon cells compared to LMA10211. Similarly, we did not find any significant effect of LMA10210 on cockroach ganglionic depolarization, whereas these three compounds were able to induce an effect on the central nervous system of the third instar M. domestica larvae. Our data suggested that these three compounds could bind to distinct cockroach nicotinic acetylcholine receptors. PMID:23884575

  18. Clobetasol and Halcinonide Act as Smoothened Agonists to Promote Myelin Gene Expression and RxRγ Receptor Activation.

    PubMed

    Porcu, Giampiero; Serone, Eliseo; De Nardis, Velia; Di Giandomenico, Daniele; Lucisano, Giuseppe; Scardapane, Marco; Poma, Anna; Ragnini-Wilson, Antonella

    2015-01-01

    One of the causes of permanent disability in chronic multiple sclerosis patients is the inability of oligodendrocyte progenitor cells (OPCs) to terminate their maturation program at lesions. To identify key regulators of myelin gene expression acting at the last stages of OPC maturation we developed a drug repositioning strategy based on the mouse immortalized oligodendrocyte (OL) cell line Oli-neu brought to the premyelination stage by stably expressing a key factor regulating the last stages of OL maturation. The Prestwick Chemical Library of 1,200 FDA-approved compound(s) was repositioned at three dosages based on the induction of Myelin Basic Protein (MBP) expression. Drug hits were further validated using dosage-dependent reproducibility tests and biochemical assays. The glucocorticoid class of compounds was the most highly represented and we found that they can be divided in three groups according to their efficacy on MBP up-regulation. Since target identification is crucial before bringing compounds to the clinic, we searched for common targets of the primary screen hits based on their known chemical-target interactomes, and the pathways predicted by top ranking compounds were validated using specific inhibitors. Two of the top ranking compounds, Halcinonide and Clobetasol, act as Smoothened (Smo) agonists to up-regulate myelin gene expression in the Oli-neuM cell line. Further, RxRγ activation is required for MBP expression upon Halcinonide and Clobetasol treatment. These data indicate Clobetasol and Halcinonide as potential promyelinating drugs and also provide a mechanistic understanding of their mode of action in the pathway leading to myelination in OPCs. Furthermore, our classification of glucocorticoids with respect to MBP expression provides important novel insights into their effects in the CNS and a rational criteria for their choice in combinatorial therapies in de-myelinating diseases. PMID:26658258

  19. Clobetasol and Halcinonide Act as Smoothened Agonists to Promote Myelin Gene Expression and RxRγ Receptor Activation

    PubMed Central

    De Nardis, Velia; Di Giandomenico, Daniele; Lucisano, Giuseppe; Scardapane, Marco; Poma, Anna; Ragnini-Wilson, Antonella

    2015-01-01

    One of the causes of permanent disability in chronic multiple sclerosis patients is the inability of oligodendrocyte progenitor cells (OPCs) to terminate their maturation program at lesions. To identify key regulators of myelin gene expression acting at the last stages of OPC maturation we developed a drug repositioning strategy based on the mouse immortalized oligodendrocyte (OL) cell line Oli-neu brought to the premyelination stage by stably expressing a key factor regulating the last stages of OL maturation. The Prestwick Chemical Library® of 1,200 FDA-approved compound(s) was repositioned at three dosages based on the induction of Myelin Basic Protein (MBP) expression. Drug hits were further validated using dosage-dependent reproducibility tests and biochemical assays. The glucocorticoid class of compounds was the most highly represented and we found that they can be divided in three groups according to their efficacy on MBP up-regulation. Since target identification is crucial before bringing compounds to the clinic, we searched for common targets of the primary screen hits based on their known chemical-target interactomes, and the pathways predicted by top ranking compounds were validated using specific inhibitors. Two of the top ranking compounds, Halcinonide and Clobetasol, act as Smoothened (Smo) agonists to up-regulate myelin gene expression in the Oli-neuM cell line. Further, RxRγ activation is required for MBP expression upon Halcinonide and Clobetasol treatment. These data indicate Clobetasol and Halcinonide as potential promyelinating drugs and also provide a mechanistic understanding of their mode of action in the pathway leading to myelination in OPCs. Furthermore, our classification of glucocorticoids with respect to MBP expression provides important novel insights into their effects in the CNS and a rational criteria for their choice in combinatorial therapies in de-myelinating diseases. PMID:26658258

  20. Clobetasol and Halcinonide Act as Smoothened Agonists to Promote Myelin Gene Expression and RxRγ Receptor Activation.

    PubMed

    Porcu, Giampiero; Serone, Eliseo; De Nardis, Velia; Di Giandomenico, Daniele; Lucisano, Giuseppe; Scardapane, Marco; Poma, Anna; Ragnini-Wilson, Antonella

    2015-01-01

    One of the causes of permanent disability in chronic multiple sclerosis patients is the inability of oligodendrocyte progenitor cells (OPCs) to terminate their maturation program at lesions. To identify key regulators of myelin gene expression acting at the last stages of OPC maturation we developed a drug repositioning strategy based on the mouse immortalized oligodendrocyte (OL) cell line Oli-neu brought to the premyelination stage by stably expressing a key factor regulating the last stages of OL maturation. The Prestwick Chemical Library of 1,200 FDA-approved compound(s) was repositioned at three dosages based on the induction of Myelin Basic Protein (MBP) expression. Drug hits were further validated using dosage-dependent reproducibility tests and biochemical assays. The glucocorticoid class of compounds was the most highly represented and we found that they can be divided in three groups according to their efficacy on MBP up-regulation. Since target identification is crucial before bringing compounds to the clinic, we searched for common targets of the primary screen hits based on their known chemical-target interactomes, and the pathways predicted by top ranking compounds were validated using specific inhibitors. Two of the top ranking compounds, Halcinonide and Clobetasol, act as Smoothened (Smo) agonists to up-regulate myelin gene expression in the Oli-neuM cell line. Further, RxRγ activation is required for MBP expression upon Halcinonide and Clobetasol treatment. These data indicate Clobetasol and Halcinonide as potential promyelinating drugs and also provide a mechanistic understanding of their mode of action in the pathway leading to myelination in OPCs. Furthermore, our classification of glucocorticoids with respect to MBP expression provides important novel insights into their effects in the CNS and a rational criteria for their choice in combinatorial therapies in de-myelinating diseases.

  1. A novel, long-acting glucagon-like peptide receptor-agonist: dulaglutide

    PubMed Central

    Gurung, Tara; Shyangdan, Deepson S; O’Hare, Joseph Paul; Waugh, Norman

    2015-01-01

    Background Dulaglutide is a new, long-acting glucagon-like peptide analogue in the treatment of type 2 diabetes. It is available in two doses, 0.75 and 1.5 mg, given by injection once weekly. This systematic review reports the effectiveness and safety of dulaglutide in type 2 diabetes in dual and triple therapy. Methods MEDLINE, MEDLINE In-Process and Other Non-Indexed Citations, EMBASE, and conference abstracts were searched from 2005 to August 2014, and updated in January 2015. Company websites and references of included studies were checked for potentially relevant studies. European Medicines Agency and US Food and Drug Administration websites were searched. Results Four trials were included. All were manufacturer-funded randomized controlled trials from the Assessment of Weekly Administration of Dulaglutide in Diabetes (AWARD) program. AWARD-1 compared dulaglutide 1.5 mg against exenatide 10 µg twice daily and placebo, AWARD-2 compared dulaglutide 0.75 and 1.5 mg against insulin glargine, AWARD-5 compared dulaglutide 0.75 and 1.5 mg against sitagliptin 100 mg and placebo, and AWARD-6 compared dulaglutide 1.5 mg against liraglutide 1.8 mg. The duration of follow-up in the trials ranged from 26 to 104 weeks. The primary outcome of all the included trials was change in HbA1c. At 26 weeks, greater HbA1c reductions were seen with dulaglutide than with twice daily exenatide (dulaglutide 1.5/0.75 mg: −1.5%/−1.3%; exe: 0.99%) and sitagliptin (1.5/0.75 mg −1.22%/−1.01%; sitagliptin: −0.6%). HbA1c change was greater with dulaglutide 1.5 mg (−1.08%) than with glargine (−0.63%), but not with dulaglutide 0.75 mg (−0.76%). Dulaglutide 1.5 mg was found to be noninferior to liraglutide 1.8 mg. More patients treated with dulaglutide achieved HbA1c targets of <7% and ≤6.5%. Reduction in weight was greater with dulaglutide than with sitagliptin and exenatide. Hypoglycemia was infrequent. The main adverse events were nausea, diarrhea, and vomiting. Conclusion

  2. Steroid secretion in polycystic ovarian disease after ovarian suppression by a long-acting gonadotropin-releasing hormone agonist.

    PubMed

    Chang, R J; Laufer, L R; Meldrum, D R; DeFazio, J; Lu, J K; Vale, W W; Rivier, J E; Judd, H L

    1983-05-01

    The principal glandular source of increased serum androgens in polycystic ovarian disease (PCO) is controversial), since complete separation of ovarian from adrenal function has not been achieved. The purpose of this study was to determine whether a long-acting GnRH agonist could be used to selectively inhibit ovarian steroid secretion in PCO and ovulatory women. Each of five typical PCO patients and six ovulatory subjects on day 2 of their menstrual cycles received D-Trp6-Pro9-NEt-LHRH (GnRH-a; 100 micrograms) for 28 consecutive days. Their results were compared to basal serum hormone values in eight oophorectomized women. In response to GnRH-a, PCO and normal subjects exhibited sharp and sustained rises of LH and gradual decreases in FSH. These levels were clearly less than basal levels seen in oophorectomized women. Episodic LH release was significantly attenuated in both groups at the end of GnRH-a treatment. After the administration of agonist, serum estradiol (E2), estrone (E1), androstenedione (A), and testosterone (T) were suppressed to castrate levels in both groups. The decrements of E2 and E1 in PCO were gradual and continuous compared to initial dramatic rises, which reached peaks at 14 days, and subsequent abrupt falls in the ovulatory controls. Serum A and T declined steadily in both groups. Basal serum dehydroepiandrosterone and dehydroepiandrosterone sulfate, but not cortisol, levels were elevated in PCO subjects. The 24-h secretion patterns and responses to ACTH of these hormones in PCO and ovulatory subjects were unaltered by GnRH-a administration. These data demonstrate that 1) in PCO subjects, GnRH-a induced complete suppression of ovarian steroid secretion, as circulating levels at the end of treatment were comparable to those seen in our oophorectomy subjects; 2) elevated A and T levels in PCO patients were derived primarily from the ovary; and 3) adrenal steroid secretion was unaltered by GnRH-a in both PCO and normal women.

  3. Prolonged administration in vivo of alpha and beta adrenergic agonists decreases insulin binding to rat myocardial membranes in vitro by different mechanisms

    SciTech Connect

    Desoye, G.; Ertl-Stockinger, U.; Porta, S. )

    1991-01-01

    Male Sprague Dawley rats were continuously treated in vivo for 6, 12 and 20 hours with a combination of an alpha- (beta-) adrenoreceptor agonist and a beta- (alpha-) adrenoreceptor antagonist in subcutaneously implanted depot tablets. Crude membranes prepared from myocardial cells exhibited a decreased maximum binding of ({sup 125}I)-insulin after 20 hours irrespective of the treatment applied. Scatchard and non-linear regression analysis of the displacement curves assuming two non-cooperative binding sites revealed a downregulation of the high affinity receptors for about 85% and a concomitant 2.5-fold increased receptor affinity under beta-adrenergic influence. In contrast, alpha-adrenergic treatment did not affect the receptor number but decreased the high affinity by 70%. The low affinity binding sites were virtually unaffected by the different treatments. The phospholipid and cholesterol contents of the membranes were not significantly altered. The phospholipid/cholesterol ratios after 12 and 20 hours of alpha-adrenergic treatment, however, were decreased.

  4. Dendritic cells and NK cells stimulate bystander T cell activation in response to TLR agonists through secretion of IFN-alpha beta and IFN-gamma.

    PubMed

    Kamath, Arun T; Sheasby, Christopher E; Tough, David F

    2005-01-15

    Recognition of conserved features of infectious agents by innate pathogen receptors plays an important role in initiating the adaptive immune response. We have investigated early changes occurring among T cells after injection of TLR agonists into mice. Widespread, transient phenotypic activation of both naive and memory T cells was observed rapidly after injection of molecules acting through TLR3, -4, -7, and -9, but not TLR2. T cell activation was shown to be mediated by a combination of IFN-alphabeta, secreted by dendritic cells (DCs), and IFN-gamma, secreted by NK cells; notably, IFN-gamma-secreting NK cells expressed CD11c and copurified with DCs. Production of IFN-gamma by NK cells could be stimulated by DCs from TLR agonist-injected mice, and although soluble factors secreted by LPS-stimulated DCs were sufficient to induce IFN-gamma, maximal IFN-gamma production required both direct contact of NK cells with DCs and DC-secreted cytokines. In vitro, IFN-alphabeta, IL-18, and IL-12 all contributed to DC stimulation of NK cell IFN-gamma, whereas IFN-alphabeta was shown to be important for induction of T cell bystander activation and NK cell IFN-gamma production in vivo. The results delineate a pathway involving innate immune mediators through which TLR agonists trigger bystander activation of T cells. PMID:15634897

  5. Treatment with CNX-011-67, a novel GPR40 agonist, delays onset and progression of diabetes and improves beta cell preservation and function in male ZDF rats

    PubMed Central

    2013-01-01

    Background The role of G protein-coupled receptor (GPR40), which is highly expressed in pancreatic beta cells, has been studied extensively in the amelioration of beta cell dysfunction in T2D using rat and mouse islets, beta cell lines and in animal models of diabetes. But its potential as a therapeutic target has not been fully explored. This aim of the study is to evaluate the therapeutic potential of CNX-011-67, a highly selective, potent and orally bioavailable GPR40 agonist, in controlling diabetes and other metabolic parameters. Methods Seven week old male ZDF rats were treated with either vehicle or CNX-011-67, 5 mg/kg twice daily, for seven weeks. The animals were subjected to oral glucose tolerance and insulin tolerance tests. Plasma glucose, insulin, triglyceride, HbA1c, fructosamine and free fatty acids were measured at selected time points. Pancreas from control and treated animals were subjected to insulin and pancreatic and duodenal homeobox 1 (PDX1) immunohistochemistry and were also evaluated by electron microscopy. Also the potential impact of CNX-011-67 on islet insulin secretion, content, ATP levels and markers of both glucose oxidation, beta cell health in rat islets under chronic glucolipotoxic conditions was evaluated. Results Treatment of male ZDF rats with CNX-011-67 for 7 weeks significantly enhanced insulin secretion in response to oral glucose load, delayed the onset of fasting hyperglycemia by 3 weeks, reduced nonfasting glucose excursions, fasting free fatty acids and triglyceride levels. A significant increase in PDX1 expression and insulin content and reduction in plasma fructosamine, HOMA-IR, and beta cell apoptosis were observed. CNX-011-67 improves glucose mediated insulin secretion, insulin gene transcription and islet insulin content in cultured rat islets under chronic glucolipotoxic condition. Also enhanced glucose oxidation in the form of increased islet ATP content and overall improvement in beta cell health in the form of

  6. Development of an analytical method for the determination of beta2-agonist residues in animal tissues by high-performance liquid chromatography with on-line electrogenerated [Cu(HIO6)2]5- -luminol chemiluminescence detection.

    PubMed

    Zhang, Yantu; Zhang, Zhujun; Sun, Yonghua; Wei, Yue

    2007-06-27

    A novel method was developed for the simultaneous determination of beta2-agonist residues such as terbutaline, salbutamol, and clenbuterol by high-performance liquid chromatography (HPLC) coupled with chemiluminescence (CL) detection. The procedure was based on the enhancement effect of beta2-agonists on the CL reaction between luminol and the complex of trivalent copper and periodate ([Cu(HIO6)2]5-), which was on-line electrogenerated by constant current electrolysis. The HPLC separation used a Nucleosil RP-C18 column (250 mm x 4.6 mm i.d., 5 microm; pore size, 100 A) with a mobile phase consisting of 90% acetonitrile and 10% aqueous ammonium acetate (20 mmol L-1, pH 4.0) at a flow rate of 1.0 mL min-1. The effects of several parameters on the HPLC resolution and CL emission were studied systematically. Liver samples were hydrolyzed with beta-glucuronidase followed by a solid-phase extraction procedure using Waters OasisMCX cartridges. Under optimum conditions, the limits of detection at a signal-to-noise ratio of 3 ranged from 0.007 to 0.01 ng g-1 and the limits of quantification at a signal-to-noise ratio of 10 ranged from 0.023 to 0.033 ng g-1 for three beta2-agonists. The relative standard deviations (RSDs) of intra- and interday precision were below 4.5%. The average recoveries for beta2-agonists (spiked at the levels of 0.05-5.0 ng g-1) in pig liver ranged from 84 to 110%, and the RSDs of the quantitative results were from 1.6 to 7.2%. The proposed method was successfully applied to the determination of beta2-agonist residues in pig liver samples.

  7. Effect of dietary beta-agonist treatment, vitamin D3 supplementation and electrical stimulation of carcasses on colour and drip loss of steaks from feedlot steers.

    PubMed

    Hope-Jones, M; Strydom, P E; Frylinck, L; Webb, E C

    2012-03-01

    In this study, 20 young steers received no beta-agonist (C) and 100 animals all received zilpaterol hydrochloride (Z), with 1 group receiving Z while the other 4 groups receiving Z and vitamin D(3) at the following levels (IU/animal/day) and durations before slaughter: 7million for 3days (3D7M) or 6days (6D7M), 7million for 6days with 7days no supplementation (6D7M7N) and 1million for 9days (9D1M). Left carcass sides were electrically stimulated (ES) and right sides not (NES). Samples were analysed fresh or vacuum-aged for 14days post mortem. Parameters included drip loss and instrumental colour measurements. In general, zilpaterol showed increased drip loss, lighter meat, and reduced redness. Vitamin D(3) supplementation could not consistently overcome these negative effects. All vitamin D(3) treatments reduced drip loss of stimulated aged steaks.

  8. [Simultaneous determination of nine beta-agonist residues in animal derived foods by ultra performance liquid chromatography-tandem mass spectrometry].

    PubMed

    Sun, Lei; Zhang, Li; Zhu, Yonglin; Wang, Shuhuai; Wang, Xia

    2008-11-01

    An ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/ MS) method was established for the simultaneous determination of terbutaline, cimaterol, salbutamol, fenoterol, clorprenaline, ractopamine, clenbuterol, tulobuterol, penbutolol residues in animal derived foods. After enzymolysis, the samples were extracted by perchloric acid, centrifuged, neutralized, followed by liquid-liquid extraction with ethyl acetate and tert-butyl methyl ether, separately. The combined extracts were applied to a solid phase extraction MCX cartridge for cleanup. The separation of beta-agonists was performed on Waters Acquity UPLC system with a BEH C18 column (50 mm x 2.1 mm, 1.7 microm) and the gradient elution solvent of acetonitrile (containing 0.1% formic acid) and water (containing 0.1% formic acid) at a flow rate of 0.3 mL/min. The method was quantified by external standard method. The calibration curves were good linear between the peak areas and the concentrations of 0.25 - 5 microg/kg with the correlation coefficient r > 0.990. The limit of detection of the 8 beta-agonists was 0.1 microg/kg, and the limit of quantification was 0.25 microg/kg. The limit of detection of penbutolol was 0.25 microg/kg, and the limit of quantification was 0.5 microg/kg. The average recoveries from spiked animal tissues at three concentrations of 0.5, 1 and 2 microg/kg ranged 87.1% - 108.6%. The relative standard deviations of intra- and inter-batch were both less than 20%.

  9. Memory Enhancement Induced by Post-Training Intrabasolateral Amygdala Infusions of [beta]-Adrenergic or Muscarinic Agonists Requires Activation of Dopamine Receptors: Involvement of Right, but Not Left, Basolateral Amygdala

    ERIC Educational Resources Information Center

    LaLumiere, Ryan T.; McGaugh, James L.

    2005-01-01

    Previous findings indicate that the noradrenergic, dopaminergic, and cholinergic innervations of the basolateral amygdala (BLA) modulate memory consolidation. The current study investigated whether memory enhancement induced by post-training intra-BLA infusions of a [beta]-adrenergic or muscarinic cholinergic agonist requires concurrent activation…

  10. Beta-adrenoceptor blocking effects of a selective beta 2-agonist, mabuterol, on the isolated, blood-perfused right atrium of the dog.

    PubMed Central

    Akahane, K.; Furukawa, Y.; Ogiwara, Y.; Haniuda, M.; Chiba, S.

    1989-01-01

    1. Effects of (+/-)-1-(4-amino-3-chloro-5-trifluoromethyl-phenyl)-2-tert.- butylamino-ethanol hydrochloride (mabuterol) on pacemaker activity and atrial contractility were investigated in the isolated and blood-perfused right atrium of the dog. 2. Mabuterol, injected into the sinus node artery of the isolated atrium, dose-dependently increased atrial rate and contractile force at doses of 0.01-10 nmol but the responses to over 10 nmol of mabuterol gradually decreased and mabuterol at higher doses induced biphasic cardiac responses, i.e., negative followed by positive cardiac responses. 3. The maximal increases in atrial rate and contractile force induced by mabuterol were 41.4% and 12.9%, respectively, of the maximal chronotropic and inotropic effects of isoprenaline. 4. Positive chronotropic and inotropic responses to mabuterol were dose-dependently inhibited by a selective beta 2-adrenoceptor antagonist, ICI 118,551. These responses were only slightly attenuated by atenolol. 5. Mabuterol (1-300 nmol) dose-dependently inhibited both dobutamine- and procaterol-induced positive chronotropic and inotropic responses. 6. These results indicate that mabuterol causes weak positive chronotropic and inotropic effects on the perfused canine right atrium by activating beta 2-adrenoceptors, and that higher concentrations non-selectively block both beta 1-and beta 2-adrenoceptors. PMID:2474351

  11. Mediation of most atypical effects by species homologues of the beta 3-adrenoceptor.

    PubMed Central

    Blin, N.; Nahmias, C.; Drumare, M. F.; Strosberg, A. D.

    1994-01-01

    1. A wide panel of compounds acting on beta-adrenoceptors active either in mammalian heart or in rodent digestive tract and adipose tissues, were investigated for their effects on Chinese hamster ovary cells transfected with the human or murine beta 3-adrenoceptor gene. 2. The beta 3-agonists, bucindolol, CGP 12177A and pindolol exhibited the highest binding affinities; BRL 37344, LY 79771, ICI 201651 and SR 58611A presented high potencies in stimulating adenylyl cyclase; bupranolol appeared as the most efficient beta 3-antagonist. 3. This pharmacological analysis further established that the beta 3-adrenoceptor is the prototype of the adipose tissue atypical beta-adrenoceptor, since these receptors share a number of pharmacological properties which differ strikingly from those of beta 1- and beta 2-adrenoceptors: low affinities for conventional beta-adrenoceptor agonists and antagonists, high potencies for novel compounds active in adipose tissues, partial agonistic activities for several beta 1/beta 2-antagonists. 4. Although the pharmacological profiles of the human and murine beta 3-receptor were very similar, some quantitative or even qualitative differences were observed for particular compounds such as propranolol, which exhibited weak and partial agonistic effects at the human beta 3-receptors and antagonistic effects at the murine beta 3-receptors. These differences may result from key amino-acid substitutions between the human and the murine beta 3-receptor sequences, which may alter the binding site or signal processing.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7921620

  12. Beta2-agonist abuse in food producing animals: use of in vitro liver preparations to assess biotransformation and potential target residues for surveillance.

    PubMed

    Sauer, M J; Dave, M; Lake, B G; Manchee, G R; Howells, L C; Coldham, N G

    1999-05-01

    1. The biotransformation of [3H]clenbuterol, [3H]salbutamol, [14C]salmeterol and 7-ethoxycoumarin by bovine liver was investigated by incubation with freshly prepared microsomes, suspension and monolayer cultures of isolated hepatocytes, precision-cut (250 microm) and chopped (600 microm) tissue slices. 2. Radio-HPLC analysis indicated that the saligenin beta2-agonists salmeterol and salbutamol were extensively metabolized by all intact cell preparations. A single major product (SmM1) was evident for salmeterol and two unresolved products for salbutamol (SbM1 and SbM2). Differential enzyme hydrolysis studies with Helix pomatia beta-glucuronidase/aryl sulphatase indicated that the main metabolites were glucuronide conjugates. Consistent with this, analysis of metabolites by liquid chromatography-mass spectrometry showed molecular ions ([M+H]+) at m/z 592 for Sm1 and 416 for both Sb1 and Sb2. 3. Comparable studies with clenbuterol revealed three minor metabolites. Prolonged incubations generated products representing, at maximum, 27% biotransformation. Two of the products have been identified as a glucuronide ([M+H]+, m/z 453) and hydroxyclenbuterol ([M+H]+, m/z 293). 4. These findings indicate that in vitro studies provide simple and cost-effective means of evaluating xenobiotic metabolism, and thus of identifying potential target residues to enable surveillance of use of unlicensed veterinary drugs, or prohibited substances in farm animals.

  13. Enzyme-catalyzed formation of beta-peptides: beta-peptidyl aminopeptidases BapA and DmpA acting as beta-peptide-synthesizing enzymes.

    PubMed

    Heck, Tobias; Kohler, Hans-Peter E; Limbach, Michael; Flögel, Oliver; Seebach, Dieter; Geueke, Birgit

    2007-09-01

    In recent studies, we discovered that the three beta-peptidyl aminopeptidases, BapA from Sphingosinicella xenopeptidilytica 3-2W4, BapA from S. microcystinivorans Y2, and DmpA from Ochrobactrum anthropi LMG7991, possess the unique feature of cleaving N-terminal beta-amino acid residues from beta- and alpha/beta-peptides. Herein, we investigated the use of the same three enzymes for the reverse reaction catalyzing the oligomerization of beta-amino acids and the synthesis of mixed peptides with N-terminal beta-amino acid residues. As substrates, we employed the beta-homoamino acid derivatives H-beta hGly-pNA, H-beta3 hAla-pNA, H-(R)-beta3 hAla-pNA, H-beta3 hPhe-pNA, H-(R)-beta3 hPhe-pNA, and H-beta3 hLeu-pNA. All three enzymes were capable of coupling the six beta-amino acids to oligomers with chain lengths of up to eight amino acid residues. With the enzyme DmpA as the catalyst, we observed very high conversion rates, which correspond to dimer yields of up to 76%. The beta-dipeptide H-beta3 hAla-beta3 hLeu-OH and the beta/alpha-dipeptide H-beta hGly-His-OH (carnosine) were formed with almost 50% conversion, when a five-fold excess of beta3-homoleucine or histidine was incubated with H-beta3 hAla-pNA and H-beta hGly-pNA, respectively, in the presence of the enzyme BapA from S. microcystinivorans Y2. BapA from S. xenopeptidilytica 3-2W4 turned out to be a versatile catalyst capable of coupling various beta-amino acid residues to the free N-termini of beta- and alpha-amino acids and even to an alpha-tripeptide. Thus, these aminopeptidases might be useful to introduce a beta-amino acid residue as an N-terminal protecting group into a 'natural' alpha-peptide, thereby stabilizing the peptide against degradation by other proteolytic enzymes. PMID:17886858

  14. Enzyme-catalyzed formation of beta-peptides: beta-peptidyl aminopeptidases BapA and DmpA acting as beta-peptide-synthesizing enzymes.

    PubMed

    Heck, Tobias; Kohler, Hans-Peter E; Limbach, Michael; Flögel, Oliver; Seebach, Dieter; Geueke, Birgit

    2007-09-01

    In recent studies, we discovered that the three beta-peptidyl aminopeptidases, BapA from Sphingosinicella xenopeptidilytica 3-2W4, BapA from S. microcystinivorans Y2, and DmpA from Ochrobactrum anthropi LMG7991, possess the unique feature of cleaving N-terminal beta-amino acid residues from beta- and alpha/beta-peptides. Herein, we investigated the use of the same three enzymes for the reverse reaction catalyzing the oligomerization of beta-amino acids and the synthesis of mixed peptides with N-terminal beta-amino acid residues. As substrates, we employed the beta-homoamino acid derivatives H-beta hGly-pNA, H-beta3 hAla-pNA, H-(R)-beta3 hAla-pNA, H-beta3 hPhe-pNA, H-(R)-beta3 hPhe-pNA, and H-beta3 hLeu-pNA. All three enzymes were capable of coupling the six beta-amino acids to oligomers with chain lengths of up to eight amino acid residues. With the enzyme DmpA as the catalyst, we observed very high conversion rates, which correspond to dimer yields of up to 76%. The beta-dipeptide H-beta3 hAla-beta3 hLeu-OH and the beta/alpha-dipeptide H-beta hGly-His-OH (carnosine) were formed with almost 50% conversion, when a five-fold excess of beta3-homoleucine or histidine was incubated with H-beta3 hAla-pNA and H-beta hGly-pNA, respectively, in the presence of the enzyme BapA from S. microcystinivorans Y2. BapA from S. xenopeptidilytica 3-2W4 turned out to be a versatile catalyst capable of coupling various beta-amino acid residues to the free N-termini of beta- and alpha-amino acids and even to an alpha-tripeptide. Thus, these aminopeptidases might be useful to introduce a beta-amino acid residue as an N-terminal protecting group into a 'natural' alpha-peptide, thereby stabilizing the peptide against degradation by other proteolytic enzymes.

  15. Sample preparation on polymeric solid phase extraction sorbents for liquid chromatographic-tandem mass spectrometric analysis of human whole blood--a study on a number of beta-agonists and beta-antagonists.

    PubMed

    Josefsson, Martin; Sabanovic, Alma

    2006-07-01

    Alternative strategies for sample preparation of human blood samples were evaluated including protein precipitation (PP) and solid phase extraction (SPE) on Waters Oasis polymeric columns. Gradient chromatography within 15 min was performed on a Hypersil Polar-RP column combined with a Sciex API 2000 triple quadrupol instrument equipped with an electro-spray interface. Beta-agonists and beta-antagonists available on the Swedish market were included in the study. A combination of zinc sulphate and ethanol was found effective for PP. A clear supernatant was achieved that either could be injected directly on the LC-MS-MS system for analysis or transferred to a SPE column for further extraction and analyte concentration. Retention on the hydrophilic-lipophilic balanced sorbent HLB as well as the mixed mode cationic MCX and anionic MAX sorbents were investigated. On HBL the relative lipophilicity of the target analytes was investigated. At a high pH when the amino alcohols are deprotonised the more non-polar analytes (e.g., carvediol, betaxolol, bisoprolol and propranolol) were well retained on the sorbent and for the majority methanol content higher than 50% in water (v/v) was needed for elution. Some analytes though, with additional weak acidic functionalities (fenoterol, salbutamol, sotalol, and terbutaline) were poorly retained. On MAX the retention of these weak acids was improved when loaded under basic conditions but under neutral conditions analyte recoveries was comparable with HLB. On MCX all the analytes were well retained allowing a wash step of 100% methanol at neutral and low pH. By applying the supernatant from PP in combination with an additional portion of aqueous formic acid (2%) the analytes could be loaded and retained. High extraction recoveries were found for most analytes but for a few, significant losses were seen during PP (e.g., formoterol) and/or evaporation (e.g., fenoterol, formoterol, labetalol and terbutaline). The effectiveness of the

  16. Isoproterenol Acts as a Biased Agonist of the Alpha-1A-Adrenoceptor that Selectively Activates the MAPK/ERK Pathway

    PubMed Central

    Copik, Alicja. J.; Baldys, Aleksander; Nguyen, Khanh; Sahdeo, Sunil; Ho, Hoangdung; Kosaka, Alan; Dietrich, Paul J.; Fitch, Bill; Raymond, John R.; Ford, Anthony P. D. W.; Button, Donald; Milla, Marcos E.

    2015-01-01

    The α1A-AR is thought to couple predominantly to the Gαq/PLC pathway and lead to phosphoinositide hydrolysis and calcium mobilization, although certain agonists acting at this receptor have been reported to trigger activation of arachidonic acid formation and MAPK pathways. For several G protein-coupled receptors (GPCRs) agonists can manifest a bias for activation of particular effector signaling output, i.e. not all agonists of a given GPCR generate responses through utilization of the same signaling cascade(s). Previous work with Gαq coupling-defective variants of α1A-AR, as well as a combination of Ca2+ channel blockers, uncovered cross-talk between α1A-AR and β2-AR that leads to potentiation of a Gαq-independent signaling cascade in response to α1A-AR activation. We hypothesized that molecules exist that act as biased agonists to selectively activate this pathway. In this report, isoproterenol (Iso), typically viewed as β-AR-selective agonist, was examined with respect to activation of α1A-AR. α1A-AR selective antagonists were used to specifically block Iso evoked signaling in different cellular backgrounds and confirm its action at α1A-AR. Iso induced signaling at α1A-AR was further interrogated by probing steps along the Gαq /PLC, Gαs and MAPK/ERK pathways. In HEK-293/EBNA cells transiently transduced with α1A-AR, and CHO_α1A-AR stable cells, Iso evoked low potency ERK activity as well as Ca2+ mobilization that could be blocked by α1A-AR selective antagonists. The kinetics of Iso induced Ca2+ transients differed from typical Gαq- mediated Ca2+ mobilization, lacking both the fast IP3R mediated response and the sustained phase of Ca2+ re-entry. Moreover, no inositol phosphate (IP) accumulation could be detected in either cell line after stimulation with Iso, but activation was accompanied by receptor internalization. Data are presented that indicate that Iso represents a novel type of α1A-AR partial agonist with signaling bias toward MAPK

  17. Long-Term Estrogen Receptor Beta Agonist Treatment Modifies the Hippocampal Transcriptome in Middle-Aged Ovariectomized Rats

    PubMed Central

    Sárvári, Miklós; Kalló, Imre; Hrabovszky, Erik; Solymosi, Norbert; Rodolosse, Annie; Liposits, Zsolt

    2016-01-01

    Estradiol (E2) robustly activates transcription of a broad array of genes in the hippocampal formation of middle-aged ovariectomized rats via estrogen receptors (ERα, ERβ, and G protein-coupled ER). Selective ERβ agonists also influence hippocampal functions, although their downstream molecular targets and mechanisms are not known. In this study, we explored the effects of long-term treatment with ERβ agonist diarylpropionitrile (DPN, 0.05 mg/kg/day, sc.) on the hippocampal transcriptome in ovariectomized, middle-aged (13 month) rats. Isolated hippocampal formations were analyzed by Affymetrix oligonucleotide microarray and quantitative real-time PCR. Four hundred ninety-seven genes fulfilled the absolute fold change higher than 2 (FC > 2) selection criterion. Among them 370 genes were activated. Pathway analysis identified terms including glutamatergic and cholinergic synapse, RNA transport, endocytosis, thyroid hormone signaling, RNA degradation, retrograde endocannabinoid signaling, and mRNA surveillance. PCR studies showed transcriptional regulation of 58 genes encoding growth factors (Igf2, Igfb2, Igf1r, Fgf1, Mdk, Ntf3, Bdnf), transcription factors (Otx2, Msx1), potassium channels (Kcne2), neuropeptides (Cck, Pdyn), peptide receptors (Crhr2, Oprm1, Gnrhr, Galr2, Sstr1, Sstr3), neurotransmitter receptors (Htr1a, Htr2c, Htr2a, Gria2, Gria3, Grm5, Gabra1, Chrm5, Adrb1), and vesicular neurotransmitter transporters (Slc32a1, Slc17a7). Protein-protein interaction analysis revealed networking of clusters associated with the regulation of growth/troph factor signaling, transcription, translation, neurotransmitter and neurohormone signaling mechanisms and potassium channels. Collectively, the results reveal the contribution of ERβ-mediated processes to the regulation of transcription, translation, neurogenesis, neuromodulation, and neuroprotection in the hippocampal formation of ovariectomized, middle-aged rats and elucidate regulatory channels responsible for

  18. Simultaneous determination of Zilpaterol and other beta agonists in calf eye by gas chromatography/tandem mass spectrometry.

    PubMed

    Bocca, Beatrice; Fiori, Maurizio; Cartoni, Claudia; Brambilla, Gianfranco

    2003-01-01

    Adrenergic drugs for growth promotion have been outlawed in European meat production; however, molecules such as Ractopamine and Zilpaterol are licensed for feeding swine and cattle in the United States, Mexico, and South Africa. Analysis of bovine retinal extracts has recently shown considerable extension in the detection period following withdrawal. Previous studies demonstrated that residual concentrations of Clenbuterol and related substances in retinal tissue were > 100 ng/g at day 50 of withdrawal. A method was developed to identify and simultaneously quantify Clenbuterol-like substances with anilinic moieties and drugs with phenolic and catecholic moieties, such as Ractopamine and Zilpaterol, in retinal tissue. The method was validated according to SANCO/1805/2000. After extraction in 0.1 N HCl, samples were cleaned up on C18 non-endcapped solid-phase extraction columns and analyzed as trimethylchlorosilane derivatives by gas chromatography/tandem mass spectrometry, electron impact mode. At concentrations of agonists between 62.5 and 250.0 ng/g in bovine retina, mean recoveries ranged from 85.3 to 94.8%, repeatability was < 9.6%, and within-laboratory reproducibility was < 10.5%. The decision limits (CCalpha) were within the range of 66.3-70.4 ng/g, and the detection capability (CCbeta) varied from 73.9 to 79.8 ng/g. Results are discussed in terms of a multiresidue approach to improve reliability of the monitoring strategy.

  19. Cytokine-Induced Loss of Glucocorticoid Function: Effect of Kinase Inhibitors, Long-Acting β2-Adrenoceptor Agonist and Glucocorticoid Receptor Ligands

    PubMed Central

    Rider, Christopher F.; Shah, Suharsh; Miller-Larsson, Anna; Giembycz, Mark A.; Newton, Robert

    2015-01-01

    Acting on the glucocorticoid receptor (NR3C1), glucocorticoids are widely used to treat inflammatory diseases. However, glucocorticoid resistance often leads to suboptimal asthma control. Since glucocorticoid-induced gene expression contributes to glucocorticoid activity, the aim of this study was to use a 2×glucocorticoid response element (GRE) reporter and glucocorticoid-induced gene expression to investigate approaches to combat cytokine-induced glucocorticoid resistance. Pre-treatment with tumor necrosis factor-α (TNF) or interleukin-1β inhibited dexamethasone-induced mRNA expression of the putative anti-inflammatory genes RGS2 and TSC22D3, or just TSC22D3, in primary human airway epithelial and smooth muscle cells, respectively. Dexamethasone-induced DUSP1 mRNA was unaffected. In human bronchial epithelial BEAS-2B cells, dexamethasone-induced TSC22D3 and CDKN1C expression (at 6 h) was reduced by TNF pre-treatment, whereas DUSP1 and RGS2 mRNAs were unaffected. TNF pre-treatment also reduced dexamethasone-dependent 2×GRE reporter activation. This was partially reversed by PS-1145 and c-jun N-terminal kinase (JNK) inhibitor VIII, inhibitors of IKK2 and JNK, respectively. However, neither inhibitor affected TNF-dependent loss of dexamethasone-induced CDKN1C or TSC22D3 mRNA. Similarly, inhibitors of the extracellular signal-regulated kinase, p38, phosphoinositide 3-kinase or protein kinase C pathways failed to attenuate TNF-dependent repression of the 2×GRE reporter. Fluticasone furoate, fluticasone propionate and budesonide were full agonists relative to dexamethasone, while GSK9027, RU24858, des-ciclesonide and GW870086X were partial agonists on the 2×GRE reporter. TNF reduced reporter activity in proportion with agonist efficacy. Full and partial agonists showed various degrees of agonism on RGS2 and TSC22D3 expression, but were equally effective at inducing CDKN1C and DUSP1, and did not affect the repression of CDKN1C or TSC22D3 expression by TNF. Finally

  20. Monoamine receptor agonists, acting preferentially at presynaptic autoreceptors and heteroreceptors, downregulate the cell fate adaptor FADD in rat brain cortex.

    PubMed

    García-Fuster, M Julia; García-Sevilla, Jesús A

    2015-02-01

    FADD is a crucial adaptor of death receptors that can engage apoptosis or survival actions (e.g. neuroplasticity) through its phosphorylated form (p-FADD). Although FADD was shown to participate in receptor mechanisms related to drugs of abuse, little is known on its role in the signaling of classic neurotransmitters (dopamine, noradrenaline, and serotonin) in brain. This study assessed the modulation of FADD (and p-FADD/FADD ratio, as an index of neuroplasticity) and FLIP-L (a neuroprotective FADD interacting partner), as well as the role of MEK-ERK signaling, after activation of monoamine auto/heteroreceptors by selective agonists in rat cortex. Acute depletion of monoamines with reserpine, but not with AMPT or PCPA, reduced FADD (28%) and increased p-FADD/FADD ratio (1.34-fold). Activation of presynaptic α2A-adrenoceptors (UK-14304 and clonidine), 5-HT1A receptors (8-OH-DPAT), and D2 dopamine receptor (bromocriptine) dose-dependently decreased FADD (up to 54%) and increased p-FADD (up to 29%) and p-FADD/FADD ratios (up to 2.93-fold), through specific receptor mechanisms. Activation of rat 5-HT1B autoreceptor in axon terminals by CP-94253 did not modulate FADD forms. Activation of postsynaptic D1 dopamine receptor by SKF-81297 also reduced FADD (25%) and increased p-FADD (32%). Disruption of MEK-ERK activation with SL327 did not modify clonidine (α2A-adrenoceptor)-induced FADD inhibition, indicating that agonist effect was not dependent on ERK signaling. The various monoamine receptor agonists and antagonists did not alter FLIP-L content, or the activation of executioner caspase-3 and PARP-1 cleavage, indicating that the agonists attenuated apoptotic signals and promoted neuroplasticity through FADD regulation. These novel results indicate that inhibition of pro-apoptotic FADD adaptor could function as a common signaling step in the initial activation of monoamine receptors in the brain.

  1. Monoamine receptor agonists, acting preferentially at presynaptic autoreceptors and heteroreceptors, downregulate the cell fate adaptor FADD in rat brain cortex.

    PubMed

    García-Fuster, M Julia; García-Sevilla, Jesús A

    2015-02-01

    FADD is a crucial adaptor of death receptors that can engage apoptosis or survival actions (e.g. neuroplasticity) through its phosphorylated form (p-FADD). Although FADD was shown to participate in receptor mechanisms related to drugs of abuse, little is known on its role in the signaling of classic neurotransmitters (dopamine, noradrenaline, and serotonin) in brain. This study assessed the modulation of FADD (and p-FADD/FADD ratio, as an index of neuroplasticity) and FLIP-L (a neuroprotective FADD interacting partner), as well as the role of MEK-ERK signaling, after activation of monoamine auto/heteroreceptors by selective agonists in rat cortex. Acute depletion of monoamines with reserpine, but not with AMPT or PCPA, reduced FADD (28%) and increased p-FADD/FADD ratio (1.34-fold). Activation of presynaptic α2A-adrenoceptors (UK-14304 and clonidine), 5-HT1A receptors (8-OH-DPAT), and D2 dopamine receptor (bromocriptine) dose-dependently decreased FADD (up to 54%) and increased p-FADD (up to 29%) and p-FADD/FADD ratios (up to 2.93-fold), through specific receptor mechanisms. Activation of rat 5-HT1B autoreceptor in axon terminals by CP-94253 did not modulate FADD forms. Activation of postsynaptic D1 dopamine receptor by SKF-81297 also reduced FADD (25%) and increased p-FADD (32%). Disruption of MEK-ERK activation with SL327 did not modify clonidine (α2A-adrenoceptor)-induced FADD inhibition, indicating that agonist effect was not dependent on ERK signaling. The various monoamine receptor agonists and antagonists did not alter FLIP-L content, or the activation of executioner caspase-3 and PARP-1 cleavage, indicating that the agonists attenuated apoptotic signals and promoted neuroplasticity through FADD regulation. These novel results indicate that inhibition of pro-apoptotic FADD adaptor could function as a common signaling step in the initial activation of monoamine receptors in the brain. PMID:25286119

  2. The effect of the beta-2-adrenergic agonist clenbuterol or implantation with oestradiol plus trenbolone acetate on protein metabolism in wether lambs.

    PubMed

    Bohorov, O; Buttery, P J; Correia, J H; Soar, J B

    1987-01-01

    The effects of Revalor (trenbolone acetate plus oestradiol) implantation or the inclusion of clenbuterol (a beta-2-adrenergic agonist) in the diet of wether lambs was studied. Using continuous intravenous infusion of [3H]tyrosine the fractional synthetic rate of mixed protein from three separate muscles was measured. Clenbuterol slightly increased growth rate but had a significant (P less than 0.02) effect on food conversion efficiency. The weight and protein content of the longissimus dorsi and vastus lateralis muscles were increased but no such changes were observed for the vastus intermedius. For the longissimus dorsi at least the increase was probably achieved by a reduction in fractional degradation rate of the muscle protein. Revalor significantly increased the growth rate and food conversion efficiency of the animals. This increase was not specific for muscle. Estimated degradation rates of muscle protein were lower in the treated animals. The possible mode of action of these materials was discussed. The results obtained again highlight the importance of protein degradation in controlling growth.

  3. Effect of chronic treatment with ICI D7114, a selective beta 3-adrenoceptor agonist, on macronutrient selection and brown adipose tissue thermogenesis in Sprague-Dawley rats.

    PubMed

    Santti, E; Rouvari, T; Rouru, J; Huupponen, R; Koulu, M

    1994-01-01

    ICI D7114 is a selective beta 3-agonist which stimulates brown adipose tissue thermogenesis. In the present study the effects of 18 days treatment with ICI D7114 (2 mg/kg/day orally) on macronutrient selection and brown adipose tissue thermogenesis were investigated in Sprague-Dawley rats. The rats were maintained on a free-feeding self-selection paradigm with three pure macronutrient diets of carbohydrate, fat and protein. Treatment with ICI D7114 did not change the macronutrient selection or total calories consumed by the rats. To monitor the thermogenic activation of brown adipose tissue the binding of [3H]GDP to brown adipose tissue mitochondria was measured. The treatment with ICI D7114 increased the binding of GDP both when expressed as total binding per lobe (P < 0.001) and per mg of protein (P < 0.01). It is concluded that ICI D7114, used in doses affecting brown adipose tissue thermogenesis, does not change the macronutrient selection or total energy intake in Sprague-Dawley rats. PMID:7800658

  4. Determination of a beta(3)-agonist in human plasma by LC/MS/MS with semi-automated 48-well diatomaceous earth plate.

    PubMed

    Wang, A Q; Fisher, A L; Hsieh, J; Cairns, A M; Rogers, J D; Musson, D G

    2001-10-01

    Methods for the determination of a beta(3)-agonist (A) in human plasma were developed and compared based on high-performance liquid chromatography (HPLC) with tandem mass spectrometric (MS/MS) detection using a turbo ion spray (TIS) interface. Drug and internal standard were isolated from plasma by three sample preparation methods, liquid-liquid extraction, Chem Elut cartridges and 48-well diatomaceous earth plates, that successively improved sample throughput for LC/MS/MS. MS/MS detection was performed on a PE Sciex API 365 tandem mass spectrometer operated in positive ion mode and using multiple reaction monitoring (MRM). The precursor/product ion combinations of m/z 625/607 and 653/515 were used to quantify A and internal standard, respectively, after chromatographic separation of the analytes. Using liquid-liquid extraction and Chem Elut cartridges, the assay concentration range was 0.5-100 ng/ml. Using diatomaceous earth plates, the concentration range of the assay was extended to 0.5-200 ng/ml. For all three assays, the statistics for precision and accuracy is comparable. The assay accuracy ranged from 91-107% and intraday precision as measured by the coefficient of variation (CV) ranged 2-10%. The sample throughput was tripled when the diatomaceous earth plate method was compared with the original liquid-liquid extraction method. PMID:11489381

  5. Induction of regulator of G-protein signaling 2 expression by long-acting β2-adrenoceptor agonists and glucocorticoids in human airway epithelial cells.

    PubMed

    Holden, Neil S; George, Tresa; Rider, Christopher F; Chandrasekhar, Ambika; Shah, Suharsh; Kaur, Manminder; Johnson, Malcolm; Siderovski, David P; Leigh, Richard; Giembycz, Mark A; Newton, Robert

    2014-01-01

    In asthma and chronic obstructive pulmonary disease (COPD) multiple mediators act on Gαq-linked G-protein-coupled receptors (GPCRs) to cause bronchoconstriction. However, acting on the airway epithelium, such mediators may also elicit inflammatory responses. In human bronchial epithelial BEAS-2B cells (bronchial epithelium + adenovirus 12-SV40 hybrid), regulator of G-protein signaling (RGS) 2 mRNA and protein were synergistically induced in response to combinations of long-acting β2-adrenoceptor agonist (LABA) (salmeterol, formoterol) plus glucocorticoid (dexamethasone, fluticasone propionate, budesonide). Equivalent responses occurred in primary human bronchial epithelial cells. Concentrations of glucocorticoid plus LABA required to induce RGS2 expression in BEAS-2B cells were consistent with the levels achieved therapeutically in the lungs. As RGS2 is a GTPase-activating protein that switches off Gαq, intracellular free calcium ([Ca(2+)]i) flux was used as a surrogate of responses induced by histamine, methacholine, and the thromboxane receptor agonist U46619 [(Z)-7-[(1S,4R,5R,6S)-5-[(E,3S)-3-hydroxyoct-1-enyl]-3-oxabicyclo[2.2.1]heptan-6-yl]hept-5-enoic acid]. This was significantly attenuated by salmeterol plus dexamethasone pretreatment, or RGS2 overexpression, and the protective effect of salmeterol plus dexamethasone was abolished by RGS2 RNA silencing. Although methacholine and U46619 induced interleukin-8 (IL-8) release and this was inhibited by RGS2 overexpression, the repression of U46619-induced IL-8 release by salmeterol plus dexamethasone was unaffected by RGS2 knockdown. Given a role for Gαq-mediated pathways in inducing IL-8 release, we propose that RGS2 acts redundantly with other effector processes to repress IL-8 expression. Thus, RGS2 expression is a novel effector mechanism in the airway epithelium that is induced by glucocorticoid/LABA combinations. This could contribute to the efficacy of glucocorticoid/LABA combinations in asthma and

  6. Monascin and ankaflavin act as natural AMPK activators with PPARα agonist activity to down-regulate nonalcoholic steatohepatitis in high-fat diet-fed C57BL/6 mice.

    PubMed

    Hsu, Wei-Hsuan; Chen, Ting-Hung; Lee, Bao-Hong; Hsu, Ya-Wen; Pan, Tzu-Ming

    2014-02-01

    Yellow pigments monascin (MS) and ankaflavin (AK) are secondary metabolites derived from Monascus-fermented products. The hypolipidemic and anti-inflammatory effects of MS and AK indicate that they have potential on preventing or curing nonalcoholic fatty liver disease (NAFLD). Oleic acid (OA) and high-fat diet were used to induce steatosis in FL83B hepatocytes and NAFLD in mice, respectively. We found that both MS and AK prevented fatty acid accumulation in hepatocytes by inhibiting fatty acid uptake, lipogenesis, and promoting fatty acid beta-oxidation mediated by activating peroxisome proliferator-activated receptor (PPAR)-α and AMP-activated kinase (AMPK). Furthermore, MS and AK significantly attenuated high-fat diet-induced elevation of total cholesterol (TC), triaceylglycerol (TG), free fatty acid (FFA), and low density lipoprotein-cholesterol (LDL-C) in plasma. MS and AK promoted AMPK phosphorylation, suppressed the steatosis-related mRNA expression and inflammatory cytokines secretion, as well as upregulated farnesoid X receptor (FXR), peroxisome proliferator-activated receptor gamma co-activator (PGC)-1α, and PPARα expression to induce fatty acid oxidation in the liver of mice. We provided evidence that MS and AK act as PPARα agonists to upregulate AMPK activity and attenuate NAFLD. MS and AK may be supplied in food supplements or developed as functional foods to reduce the risk of diabetes and obesity. PMID:24275089

  7. Systemic challenge with the TLR3 agonist poly I:C induces amplified IFNalpha/beta and IL-1beta responses in the diseased brain and exacerbates chronic neurodegeneration.

    PubMed

    Field, Robert; Campion, Suzanne; Warren, Colleen; Murray, Carol; Cunningham, Colm

    2010-08-01

    The role of inflammation in the progression of neurodegenerative disease remains unclear. We have shown that systemic bacterial insults accelerate disease progression in animals and in patients with Alzheimer's disease. Disease exacerbation is associated with exaggerated CNS inflammatory responses to systemic inflammation mediated by microglia that become 'primed' by the underlying neurodegeneration. The impact of systemic viral insults on existing neurodegenerative disease has not been investigated. Polyinosinic:polycytidylic acid (poly I:C) is a toll-like receptor-3 (TLR3) agonist and induces type I interferons, thus mimicking inflammatory responses to systemic viral infection. In the current study we hypothesized that systemic challenge with poly I:C, during chronic neurodegenerative disease, would amplify CNS inflammation and exacerbate disease. Using the ME7 model of prion disease and systemic challenge with poly I:C (12 mg/kg i.p.) we have shown an amplified expression of IFN-alpha and beta and of the pro-inflammatory genes IL-1beta and IL-6. Similarly amplified expression of specific IFN-dependent genes confirmed that type I IFNs were secreted and active in the brain and this appeared to have anti-inflammatory consequences. However, prion-diseased animals were susceptible to heightened acute sickness behaviour and acute neurological impairments in response to poly I:C and this treatment also accelerated disease progression in diseased animals without effect in normal animals. Increased apoptosis coupled with double-stranded RNA-dependent protein kinase (PKR) and Fas transcription suggested activation of interferon-dependent, pro-apoptotic pathways in the brain of ME7+poly I:C animals. That systemic poly I:C accelerates neurodegeneration has implications for the control of systemic viral infection during chronic neurodegeneration and indicates that type I interferon responses in the brain merit further study. PMID:20399848

  8. Systemic challenge with the TLR3 agonist poly I:C induces amplified IFNalpha/beta and IL-1beta responses in the diseased brain and exacerbates chronic neurodegeneration.

    PubMed

    Field, Robert; Campion, Suzanne; Warren, Colleen; Murray, Carol; Cunningham, Colm

    2010-08-01

    The role of inflammation in the progression of neurodegenerative disease remains unclear. We have shown that systemic bacterial insults accelerate disease progression in animals and in patients with Alzheimer's disease. Disease exacerbation is associated with exaggerated CNS inflammatory responses to systemic inflammation mediated by microglia that become 'primed' by the underlying neurodegeneration. The impact of systemic viral insults on existing neurodegenerative disease has not been investigated. Polyinosinic:polycytidylic acid (poly I:C) is a toll-like receptor-3 (TLR3) agonist and induces type I interferons, thus mimicking inflammatory responses to systemic viral infection. In the current study we hypothesized that systemic challenge with poly I:C, during chronic neurodegenerative disease, would amplify CNS inflammation and exacerbate disease. Using the ME7 model of prion disease and systemic challenge with poly I:C (12 mg/kg i.p.) we have shown an amplified expression of IFN-alpha and beta and of the pro-inflammatory genes IL-1beta and IL-6. Similarly amplified expression of specific IFN-dependent genes confirmed that type I IFNs were secreted and active in the brain and this appeared to have anti-inflammatory consequences. However, prion-diseased animals were susceptible to heightened acute sickness behaviour and acute neurological impairments in response to poly I:C and this treatment also accelerated disease progression in diseased animals without effect in normal animals. Increased apoptosis coupled with double-stranded RNA-dependent protein kinase (PKR) and Fas transcription suggested activation of interferon-dependent, pro-apoptotic pathways in the brain of ME7+poly I:C animals. That systemic poly I:C accelerates neurodegeneration has implications for the control of systemic viral infection during chronic neurodegeneration and indicates that type I interferon responses in the brain merit further study.

  9. Effects over time of feeding a beta-adrenergic agonist to wether lambs on animal performance, muscle growth, endogenous muscle proteinase activities, and meat tenderness.

    PubMed

    Pringle, T D; Calkins, C R; Koohmaraie, M; Jones, S J

    1993-03-01

    Forty wether lambs were used in a 2 x 4 factorial arrangement to determine the response of animal performance, muscle growth, proteinase activity, and meat tenderness to beta-adrenergic agonist (BAA) supplementation. Lambs were fed a finishing diet with or without 4 ppm of L644,969 and slaughtered after 0, 2, 4, and 6 wk of treatment. The ADG was higher (P < .05) in the treated than in the control lambs after 2 wk and returned to control levels thereafter. Semitendinosus weight and calpastatin activity were higher and mu-calpain activity was lower in the treated than in the control lambs after 2, 4, and 6 wk. Cathepsin B activity was higher (P < .01) and cystatin-like activity was lower (P < .05) after 2 wk in treated than in control lambs but returned to control levels thereafter. Longissimus protein:DNA was higher after 4 (P < .05) and 6 (P < .01) wk in the treated lambs than in the controls. The concentration of RNA and RNA:DNA ratio were higher (P < .01) in the longissimus and semitendinosus muscles in the treated lambs after 2 wk and remained higher throughout the study. Semitendinosus protein and RNA content were higher after 2, 4, and 6 wk and DNA content was higher after 2 and 6 wk in the treated than in the control lambs. Longissimus shear-force values were higher (P < .001) in the treated than in the control lambs at all slaughter end points. These data indicate a rapid alteration of muscle growth, activity of the calpain-calpastatin system, and meat tenderness during BAA treatment.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Effect of the beta-adrenergic agonist L644,969 on muscle growth, endogenous proteinase activities, and postmortem proteolysis in wether lambs.

    PubMed

    Koohmaraie, M; Shackelford, S D; Muggli-Cockett, N E; Stone, R T

    1991-12-01

    To examine the effect of a beta-adrenergic agonist (BAA) on muscle growth, proteinase activities, and postmortem proteolysis, 16 wether lambs were randomly assigned to receive 0 or 4 ppm of L644,969 in a completely mixed high-concentrate diet for 6 wk. Weight of the biceps femoris was 18.6% heavier in treated lambs. At 0 h after slaughter, treated lambs had higher cathepsin B (35.6%), cathepsins B + L (19.1%), calpastatin (62.8%), and m-calpain (24.6%) than control lambs, but both groups had similar mu-calpain activities. In both longissimus and biceps femoris muscles, treated lambs had higher protein and RNA and lower DNA concentrations. However, total DNA was not affected, indicating that the increase in muscle mass was probably due to muscle hypertrophy rather than to hyperplasia. The pattern of postmortem proteolysis was significantly altered by BAA feeding. In treated lambs, postmortem storage had no effect on the myofibril fragmentation index and degradation of desmin and troponin-T. These results indicate that the ability of the muscle to undergo postmortem proteolysis has been dramatically reduced with BAA feeding. Similar proteolytic systems are thought to be involved in antemortem and postmortem degradation of myofibrillar proteins, so BAA-mediated protein accretion is probably due, at least in part, to reduced protein degradation. To examine whether protein synthesis was altered with BAA feeding, the level of skeletal muscle alpha-actin mRNA was quantified. Longissimus muscle alpha-actin mRNA abundance was 30% greater in BAA-fed lambs. Collectively, these results indicate that dietary administration of BAA increases muscle mass through hypertrophy and that the increase in muscle protein accretion is due to reduced degradation and possibly to increased synthesis of muscle proteins.

  11. The beta 3-adrenoceptor agonist ICI-D7114 is not as efficient on reinduction of uncoupling protein mRNA in sheep as it is in dogs and smaller species.

    PubMed

    Nouguès, J; Reyne, Y; Champigny, O; Holloway, B; Casteilla, L; Ricquier, D

    1993-09-01

    Adipose tissue in newborn lambs is brown, but within a few days it is transformed into white adipose tissue. In the same way, preadipocytes cultured in serum-free chemically defined medium achieve full differentiation and express uncoupling protein (UCP), a marker of brown adipose tissue, when isolated from perirenal adipose tissue of the newborn, whereas they no longer express UCP when isolated from older lambs. The effects of a chronic stimulation of adipose tissue by novel beta 3-adrenoceptor agonist (ICI D7114) on the maintenance after birth and on the reinduction in older lambs of UCP mRNA in adipose tissue were studied. Treatment of newborn lambs with this agonist for 25 d maintained a slight level of UCP mRNA in perirenal and pericardiac, but not in omental and inguinal, adipose tissue depots. Preadipocytes isolated from perirenal adipose tissue of treated animals differentiated, in vitro, into adipocytes, but no UCP mRNA could be detected either in the absence or in the presence of the beta 3-adrenoceptor agonist in the culture medium. Treatment of 1-mo-old lambs with ICI D7114 for 12 d restored UCP mRNA in perirenal and pericardiac adipose tissues of two of four treated lambs, but at a much lower level than in the same tissues at birth. In both experiments, the final BW and the ADG of lambs treated with ICI D7114 were not statistically different from controls. These results are quite different from those obtained with the same beta 3-adrenoceptor agonist in dogs and rodents. PMID:8104921

  12. Redoubling the ring size of an endomorphin-2 analog transforms a centrally acting mu-opioid receptor agonist into a pure peripheral analgesic.

    PubMed

    Piekielna, Justyna; De Marco, Rossella; Gentilucci, Luca; Cerlesi, Maria Camilla; Calo', Girolamo; Tömböly, Csaba; Artali, Roberto; Janecka, Anna

    2016-05-01

    The study reports the synthesis and biological evaluation of two opioid analogs, a monomer and a dimer, obtained as products of the solid-phase, side-chain to side-chain cyclization of the pentapeptide Tyr-d-Lys-Phe-Phe-AspNH2 . The binding affinities to the mu, delta, and kappa opioid receptors, as well as results obtained in a calcium mobilization functional assay are reported. Tyr-[d-Lys-Phe-Phe-Asp]2 -NH2 1 was a potent and selective full agonist of mu with sub-nanomolar affinity, while the dimer (Tyr-[d-Lys-Phe-Phe-Asp]2 -NH2 )2 2 showed a significant mixed mu/kappa affinity, acting as an agonist at the mu. Molecular docking computations were utilized to explain the ability of the dimeric cyclopeptide 2 to interact with the receptor. Interestingly, in spite of the increased ring size, the higher flexibility allowed 2 to fold and fit into the mu receptor binding pocket. Both cyclopeptides were shown to elicit strong antinociceptive activity after intraventricular injection but only cyclomonomer 1 was able to cross the blood-brain barrier. However, the cyclodimer 2 displayed a potent peripheral antinociceptive activity in a mouse model of visceral inflammatory pain. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 309-317, 2016. PMID:27038094

  13. A liver X receptor (LXR)-{beta} alternative splicing variant (LXRBSV) acts as an RNA co-activator of LXR-{beta}

    SciTech Connect

    Hashimoto, Koshi; Ishida, Emi; Matsumoto, Shunichi; Shibusawa, Nobuyuki; Okada, Shuichi; Monden, Tsuyoshi; Satoh, Tetsurou; Yamada, Masanobu; Mori, Masatomo

    2009-12-25

    We report the isolation and functional characterization of a novel transcriptional co-activator, termed LXRBSV. LXRBSV is an alternative splicing variant of liver X receptor (LXR)-{beta} LXRBSV has an intronic sequence between exons 2 and 3 in the mouse LXR-{beta} gene. The LXRBSV gene is expressed in various tissues including the liver and brain. We sub-cloned LXRBSV into pSG5, a mammalian expression vector, and LXRBSV in pSG5 augmented human Sterol Response Element Binding Protein (SREBP)-1c promoter activity in HepG2 cells in a ligand (TO901317) dependent manner. The transactivation mediated by LXRBSV is selective for LXR-{beta}. The LXRBSV protein was deduced to be 64 amino acids in length; however, a GAL4-LXRBSV fusion protein was not able to induce transactivation. Serial deletion constructs of LXRBSV demonstrated that the intronic sequence inserted in LXRBSV is required for its transactivation activity. An ATG mutant of LXRBSV was able to induce transactivation as wild type. Furthermore, LXRBSV functions in the presence of cycloheximide. Taken together, we have concluded that LXRBSV acts as an RNA transcript not as a protein. In the current study, we have demonstrated for the first time that an alternative splicing variant of a nuclear receptor acts as an RNA co-activator.

  14. ACT-ONE - ACTION at last on cancer cachexia by adapting a novel action beta-blocker.

    PubMed

    Lainscak, Mitja; Laviano, Alessandro

    2016-09-01

    Novel action beta-blockers combine many different pharmacological effects. The espindolol exhibits effects through β and central 5-HT1α receptors to demonstrate pro-anabolic, anti-catabolic, and appetite-stimulating actions. In the ACT-ONE trial, espindolol reversed weight loss and improved handgrip strength in patients with cachexia due to non-small cell lung cancer or colorectal cancer. With this trial, another frontier of cachexia management is in sight. Nonetheless, more efficacy and safety data is needed before new therapeutic indications for novel action beta-blockers can be endorsed. PMID:27625919

  15. Thyroid Storm with Heart Failure Treated with a Short-acting Beta-adrenoreceptor Blocker, Landiolol Hydrochloride.

    PubMed

    Yamashita, Yugo; Iguchi, Moritake; Nakatani, Rieko; Usui, Takeshi; Takagi, Daisuke; Hamatani, Yasuhiro; Unoki, Takashi; Ishii, Mitsuru; Ogawa, Hisashi; Masunaga, Nobutoyo; Abe, Mitsuru; Akao, Masaharu

    2015-01-01

    Beta-adrenoreceptor blockers are essential in controlling the peripheral actions of thyroid hormones and a rapid heart rate in patients with thyroid storm, although they should be used with great caution when there is the potential for heart failure. A 67-year-old woman was diagnosed as having thyroid storm in addition to marked tachycardia with atrial fibrillation and heart failure associated with a reduced left ventricular function. The administration of an oral beta blocker, bisoprolol fumarate, induced hypotension and was not tolerable for the patient, whereas landiolol hydrochloride, a short-acting intravenous beta-adrenoreceptor blocker with high cardioselectivity and a short elimination half-life, was useful for controlling the patient's tachycardia and heart failure without causing hemodynamic deterioration. PMID:26134196

  16. Muscle protein waste in tumor-bearing rats is effectively antagonized by a beta 2-adrenergic agonist (clenbuterol). Role of the ATP-ubiquitin-dependent proteolytic pathway.

    PubMed Central

    Costelli, P; García-Martínez, C; Llovera, M; Carbó, N; López-Soriano, F J; Agell, N; Tessitore, L; Baccino, F M; Argilés, J M

    1995-01-01

    Tissue protein hypercatabolism (TPH) is a most important feature in cancer cachexia, particularly with regard to the skeletal muscle. The rat ascites hepatoma Yoshida AH-130 is a very suitable model system for studying the mechanisms involved in the processes that lead to tissue depletion, since it induces in the host a rapid and progressive muscle waste mainly due to TPH (Tessitore, L., G. Bonelli, and F. M. Baccino. 1987. Biochem. J. 241:153-159). Detectable plasma levels of tumor necrosis factor-alpha associated with marked perturbations in the hormonal homeostasis have been shown to concur in forcing metabolism into a catabolic setting (Tessitore, L., P. Costelli, and F. M. Baccino. 1993. Br. J. Cancer. 67:15-23). The present study was directed to investigate if beta 2-adrenergic agonists, which are known to favor skeletal muscle hypertrophy, could effectively antagonize the enhanced muscle protein breakdown in this cancer cachexia model. One such agent, i.e., clenbuterol, indeed largely prevented skeletal muscle waste in AH-130-bearing rats by restoring protein degradative rates close to control values. This normalization of protein breakdown rates was achieved through a decrease of the hyperactivation of the ATP-ubiquitin-dependent proteolytic pathway, as previously demonstrated in our laboratory (Llovera, M., C. García-Martínez, N. Agell, M. Marzábal, F. J. López-Soriano, and J. M. Argilés. 1994. FEBS (Fed. Eur. Biochem. Soc.) Lett. 338:311-318). By contrast, the drug did not exert any measurable effect on various parenchymal organs, nor did it modify the plasma level of corticosterone and insulin, which were increased and decreased, respectively, in the tumor hosts. The present data give new insights into the mechanisms by which clenbuterol exerts its preventive effect on muscle protein waste and seem to warrant the implementation of experimental protocols involving the use of clenbuterol or alike drugs in the treatment of pathological states involving

  17. Human metabolites of synthetic cannabinoids JWH-018 and JWH-073 bind with high affinity and act as potent agonists at cannabinoid type-2 receptors

    SciTech Connect

    Rajasekaran, Maheswari; Brents, Lisa K.; Franks, Lirit N.; Moran, Jeffery H.; Prather, Paul L.

    2013-06-01

    K2 or Spice is an emerging drug of abuse that contains synthetic cannabinoids, including JWH-018 and JWH-073. Recent reports indicate that monohydroxylated metabolites of JWH-018 and JWH-073 retain high affinity and activity at cannabinoid type-1 receptors (CB{sub 1}Rs), potentially contributing to the enhanced toxicity of K2 compared to marijuana. Since the parent compounds also bind to cannabinoid type-2 receptors (CB{sub 2}Rs), this study investigated the affinity and intrinsic activity of JWH-018, JWH-073 and several monohydroxylated metabolites at human CB{sub 2}Rs (hCB{sub 2}Rs). The affinity of cannabinoids for hCB{sub 2}Rs was determined by competition binding studies employing CHO-hCB{sub 2} membranes. Intrinsic activity of compounds was assessed by G-protein activation and adenylyl cyclase (AC)-inhibition in CHO-hCB{sub 2} cells. JWH-073, JWH-018 and several of their human metabolites exhibit nanomolar affinity and act as potent agonists at hCB{sub 2}Rs. Furthermore, a major omega hydroxyl metabolite of JWH-073 (JWH-073-M5) binds to CB{sub 2}Rs with 10-fold less affinity than the parent molecule, but unexpectedly, is equipotent in regulating AC-activity when compared to the parent molecule. Finally, when compared to CP-55,940 and Δ{sup 9}-tetrahydrocannabinol (Δ{sup 9}-THC), JWH-018, JWH-018-M5 and JWH-073-M5 require significantly less CB{sub 2}R occupancy to produce similar levels of AC-inhibition, indicating that these compounds may more efficiently couple CB{sub 2}Rs to AC than the well characterized cannabinoid agonists examined. These results indicate that JWH-018, JWH-073 and several major human metabolites of these compounds exhibit high affinity and demonstrate distinctive signaling properties at CB{sub 2}Rs. Therefore, future studies examining pharmacological and toxicological properties of synthetic cannabinoids present in K2 products should consider potential actions of these drugs at both CB{sub 1} and CB{sub 2}Rs. - Highlights: • JWH-018

  18. Human metabolites of synthetic cannabinoids JWH-018 and JWH-073 bind with high affinity and act as potent agonists at cannabinoid type-2 receptors

    PubMed Central

    Rajasekaran, Maheswari; Brents, Lisa K.; Franks, Lirit N.; Moran, Jeffery H.; Prather, Paul L.

    2013-01-01

    K2 or Spice is an emerging drug of abuse that contains synthetic cannabinoids, including JWH-018 and JWH-073. Recent reports indicate that monohydroxylated metabolites of JWH-018 and JWH-073 retain high affinity and activity at cannabinoid type-1 receptors (CB1Rs), potentially contributing to the enhanced toxicity of K2 compared to marijuana. Since the parent compounds also bind to cannabinoid type-2 receptors (CB2Rs), this study investigated the affinity and intrinsic activity of JWH-018, JWH-073 and several monohydroxylated metabolites at human CB2Rs (hCB2Rs). The affinity of cannabinoids for hCB2Rs was determined by competition binding studies employing CHO-hCB2 membranes. Intrinsic activity of compounds was assessed by G-protein activation and adenylyl cyclase (AC)-inhibition in CHO-hCB2 cells. JWH-073, JWH-018 and several of their human metabolites exhibit nanomolar affinity and act as potent agonists at hCB2Rs. Furthermore, a major omega hydroxyl metabolite of JWH-073 (JWH-073-M5) binds to CB2Rs with 10-fold less affinity than the parent molecule, but unexpectedly, is equipotent in regulating AC-activity when compared to the parent molecule. Finally, when compared to CP-55,940 and Δ9-tetrahydrocannabinol (Δ9-THC), JWH-018, JWH-018-M5 and JWH-073-M5 require significantly less CB2R occupancy to produce similar levels of AC-inhibition, indicating that these compounds may more efficiently couple CB2Rs to AC than the well characterized cannabinoid agonists examined. These results indicate that JWH-018, JWH-073 and several major human metabolites of these compounds exhibit high affinity and demonstrate distinctive signaling properties at CB2Rs. Therefore, future studies examining pharmacological and toxicological properties of synthetic cannabinoids present in K2 products should consider potential actions of these drugs at both CB1 and CB2Rs. PMID:23537664

  19. Human metabolites of synthetic cannabinoids JWH-018 and JWH-073 bind with high affinity and act as potent agonists at cannabinoid type-2 receptors.

    PubMed

    Rajasekaran, Maheswari; Brents, Lisa K; Franks, Lirit N; Moran, Jeffery H; Prather, Paul L

    2013-06-01

    K2 or Spice is an emerging drug of abuse that contains synthetic cannabinoids, including JWH-018 and JWH-073. Recent reports indicate that monohydroxylated metabolites of JWH-018 and JWH-073 retain high affinity and activity at cannabinoid type-1 receptors (CB1Rs), potentially contributing to the enhanced toxicity of K2 compared to marijuana. Since the parent compounds also bind to cannabinoid type-2 receptors (CB2Rs), this study investigated the affinity and intrinsic activity of JWH-018, JWH-073 and several monohydroxylated metabolites at human CB2Rs (hCB2Rs). The affinity of cannabinoids for hCB2Rs was determined by competition binding studies employing CHO-hCB2 membranes. Intrinsic activity of compounds was assessed by G-protein activation and adenylyl cyclase (AC)-inhibition in CHO-hCB2 cells. JWH-073, JWH-018 and several of their human metabolites exhibit nanomolar affinity and act as potent agonists at hCB2Rs. Furthermore, a major omega hydroxyl metabolite of JWH-073 (JWH-073-M5) binds to CB2Rs with 10-fold less affinity than the parent molecule, but unexpectedly, is equipotent in regulating AC-activity when compared to the parent molecule. Finally, when compared to CP-55,940 and Δ(9)-tetrahydrocannabinol (Δ(9)-THC), JWH-018, JWH-018-M5 and JWH-073-M5 require significantly less CB2R occupancy to produce similar levels of AC-inhibition, indicating that these compounds may more efficiently couple CB2Rs to AC than the well characterized cannabinoid agonists examined. These results indicate that JWH-018, JWH-073 and several major human metabolites of these compounds exhibit high affinity and demonstrate distinctive signaling properties at CB2Rs. Therefore, future studies examining pharmacological and toxicological properties of synthetic cannabinoids present in K2 products should consider potential actions of these drugs at both CB1 and CB2Rs.

  20. In search of secreted protein biomarkers for the anti-inflammatory effect of beta2-adrenergic receptor agonists: application of DIGE technology in combination with multivariate and univariate data analysis tools.

    PubMed

    Verhoeckx, Kitty C M; Gaspari, Marco; Bijlsma, Sabina; van der Greef, Jan; Witkamp, Renger F; Doornbos, Robert P; Rodenburg, Richard J T

    2005-01-01

    Two-dimensional difference gel electrophoresis (DIGE) in combination with univariate (Student's t-test) and multivariate data analysis, principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) were used to study the anti-inflammatory effects of the beta(2)-adrenergic receptor (beta(2)-AR) agonist zilpaterol. U937 macrophages were exposed to the endotoxin lipopolysaccharide (LPS) to induce an inflammatory reaction, which was inhibited by the addition of zilpaterol (LZ). This inhibition was counteracted by addition of the beta(2)-AR antagonist propranolol (LZP). The extracellular proteome of the U937 cells induced by the three treatments were examined by DIGE. PCA was used as an explorative tool to investigate the clustering of the proteome dataset. Using this tool, the dataset obtained from cells treated with LPS and LZP were separated from those obtained from LZ treated cells. PLS-DA, a multivariate data analysis tool that also takes correlations between protein spots and class assignment into account, correctly classified the different extracellular proteomes and showed that many proteins were differentially expressed between the proteome of inflamed cells (LPS and LZP) and cells in which the inflammatory response was inhibited (LZ). The Student's t-test revealed 8 potential protein biomarkers, each of which was expressed at a similar level in the LPS and LZP treated cells, but differently expressed in the LZ treated cells. Two of the identified proteins, macrophage inflammatory protein-1beta (MIP-1beta) and macrophage inflammatory protein-1alpha (MIP-1alpha) are known secreted proteins. The inhibition of MIP-1beta by zilpaterol and the involvement of the beta(2)-AR and cAMP were confirmed using a specific immunoassay.

  1. A low dose of daidzein acts as an ERbeta-selective agonist in trabecular osteoblasts of young female piglets.

    PubMed

    De Wilde, Anne; Lieberherr, Michele; Colin, Colette; Pointillart, Alain

    2004-08-01

    The role of estrogens and estrogen-like molecules, including isoflavones, in regulating bone cell activities is essential in understanding the etiology and treatment of post-menopausal osteoporosis. Although estrogen replacement (HRT) has been the main therapy used to prevent and treat osteoporosis, there are concerns about its safety. Isoflavones have attracted attention to their potential roles in osteoporosis prevention and treatment. We have compared the effects of the isoflavone daidzein (1 nM), which has no effect on tyrosine kinases, and 17beta-estradiol (1 nM) on the development and function of cultured osteoblasts isolated from long bones of young female piglets. Daidzein increased ALP activity, osteocalcin secretion, and mineralization, while E2 increased only ALP activity. The content of ERbeta and osteoprotegerin secretion by control cells gradually increased during osteoblast differentiation, whereas the ERalpha and RANK-L content decreased. Daidzein enhanced only the nuclear ERbeta whereas estradiol increased both ERalpha and ERbeta. Daidzein and estradiol increased osteoprotegerin and RANK-L secretion. Daidzein had a more pronounced effect than did estradiol. Daidzein and estradiol increased the membrane content of RANK-L and the nuclear content of runx2/Cbfa1. Daidzein enhanced the nuclear content of progesterone and vitamin D receptors but not as much as did estradiol. All the effects of daidzein were blocked by ICI 182,780. We conclude that a low concentration of daidzein may exert its anti-resorptive action by increasing the activity of porcine mature osteoblasts via ERbeta, by regulating runx2/Cbfa1 production, and by stimulating the secretion of key proteins involved in osteoclastogenesis, such as osteoprotegerin and RANK-ligand. PMID:15174095

  2. Estradiol acts via estrogen receptors alpha and beta on pathways important for synaptic plasticity in the mouse hippocampal formation

    PubMed Central

    Spencer-Segal, Joanna L.; Tsuda, Mumeko C.; Mattei, Larissa; Waters, Elizabeth M.; Romeo, Russell D.; Milner, Teresa A.; McEwen, Bruce S.; Ogawa, Sonoko

    2012-01-01

    Estradiol affects hippocampal-dependent spatial memory and underlying structural and electrical synaptic plasticity in female mice and rats. Using estrogen receptor (ER) alpha and beta knockout mice and wild-type littermates, we investigated the role of ERs in estradiol effects on multiple pathways important for hippocampal plasticity and learning. Six hours of estradiol administration increased immunoreactivity for phosphorylated Akt throughout the hippocampal formation, while 48 hours of estradiol increased immunoreactivity for phosphorylated TrkB receptor. Estradiol effects on phosphorylated Akt and TrkB immunoreactivities were abolished in ER alpha and ER beta knockout mice. Estradiol also had distinct effects on immunoreactivity for PSD-95 and BDNF mRNA in ER alpha and beta knockout mice. Thus, estradiol acts through both ERs alpha and beta in several subregions of the hippocampal formation. The different effects of estradiol at 6 and 48 hours indicate that several mechanisms of estrogen receptor signaling contribute to this female hormone’s influence on hippocampal synaptic plasticity. By further delineating these mechanisms, we will better understand and predict the effects of endogenous and exogenous ovarian steroids on mood, cognition, and other hippocampal-dependent behaviors. PMID:22133892

  3. Effect of β2 -adrenergic receptor gene Arg16Gly polymorphisms on response to long-acting β2-agonist in Chinese Han asthmatic patients

    PubMed Central

    2014-01-01

    Background To evaluate the effect of variation of the Arg16Gly polymorphism of the β2-adrenergic receptor gene on clinical response to salmeterol administered with fluticasone propionate in Chinese Han asthmatic patients. Methods Moderate persistent asthmatic patients (n = 62) currently receiving short-acting β2-agonists were administered twice-daily therapy with salmeterol/fluticasone propionate 50/250 μg in a single inhaler for 12 weeks, followed by a 2-to-4-day run-out period. Using direct DNA sequencing, five single nucleotide polymorphisms (SNPs) in the promoter and coding block regions of β2-adrenergic receptor gene were determined in 62 subjects and haplotypes were combined. Results There was sustained and significant improvement (p < 0.001) over baseline in all measures of asthma control in subjects receiving salmeterol and fluticasone, regardless of Arg16Gly genotype. However, there was no significant difference in the improvement among three genotypes (p > 0.05). Responses to salmeterol did not appear to be modified by haplotype pairs (p > 0.05). During the run-out period, all subjects had similar decreases in measures of asthma control, with no differences between genotypes (p > 0.05). Conclusions Response to salmeterol does not vary with Arg16Gly polymorphisms after chronic dosing with inhaled corticosteroids in Chinese Han asthmatic patients. PMID:24721141

  4. Management of asthma and chronic obstructive pulmonary disease with combination inhaled corticosteroids and long-acting β-agonists: a review of comparative effectiveness research.

    PubMed

    Mapel, Douglas W; Roberts, Melissa H

    2014-05-01

    The value of combination therapy with inhaled corticosteroids and long-acting β-agonists (ICS/LABA) is well recognized in the management of asthma and chronic obstructive pulmonary disease (COPD). Despite differences in the pharmacological properties between two well-established ICS/LABA products (budesonide/formoterol and fluticasone/salmeterol), data from randomized clinical trials (RCTs) and meta-analyses suggest that these two products perform similarly under RCT conditions. In contrast, a few recently reported real-world comparative effectiveness studies have suggested that there are substantial differences between ICS/LABA combination treatments in terms of clinical and healthcare outcomes in patients with asthma or COPD. The purpose of this article is to provide a brief review of the benefits, as well as the limitations, of comparative effectiveness research (CER) in the therapeutic area of asthma and COPD. We conducted a structured literature review of the current CER studies on ICS/LABA combinations in asthma and COPD. These articles were then used to illustrate the unique challenges of CER studies, providing a summary of study results and limitations. We focus particularly on difficult biases and confounding factors that may be introduced before, during, and after the initiation of therapy. Beyond being a review of these two ICS/LABA combination treatments, this article is intended to help those who wish to assess the quality of CER published projects in asthma and COPD, or guide investigators who wish to design new CER studies for chronic respiratory disease treatments.

  5. Effects of roflumilast in COPD patients receiving inhaled corticosteroid/long-acting β2-agonist fixed-dose combination: RE2SPOND rationale and study design

    PubMed Central

    Rennard, Stephen I; Martinez, Fernando J; Rabe, Klaus F; Sethi, Sanjay; Pizzichini, Emilio; McIvor, Andrew; Siddiqui, Shahid; Anzueto, Antonio; Zhu, Haiyuan

    2016-01-01

    Background Roflumilast, a once-daily, selective phosphodiesterase-4 inhibitor, reduces the risk of COPD exacerbations in patients with severe COPD associated with chronic bronchitis and a history of exacerbations. The RE2SPOND study is examining whether roflumilast, when added to an inhaled corticosteroid/long-acting β2-agonist (ICS/LABA) fixed-dose combination (FDC), further reduces exacerbations. The methodology is described herein. Methods In this Phase IV, multicenter, double-blind, placebo-controlled, parallel-group trial, participants were randomized 1:1 (stratified by long-acting muscarinic antagonist use) to receive roflumilast or placebo, plus ICS/LABA FDC, for 52 weeks. Eligible participants had severe COPD associated with chronic bronchitis, had two or more moderate–severe exacerbations within 12 months, and were receiving ICS/LABA FDC for ≥3 months. The primary efficacy measure is the rate of moderate or severe COPD exacerbations per participant per year. The secondary efficacy outcomes include mean change in prebronchodilator forced expiratory volume in 1 second (FEV1) over 52 weeks, rate of severe exacerbations, and rate of moderate, severe, or antibiotic-treated exacerbations. Additional assessments include spirometry, rescue medication use, the COPD assessment test, daily symptoms using the EXACT-Respiratory symptoms (E-RS) questionnaire, all-cause and COPD-related hospitalizations, and safety and pharmacokinetic measures. Results Across 17 countries, 2,354 participants were randomized from September 2011 to October 2014. Enrollment goal was met in October 2014, and study completion occurred in June 2016. Conclusion This study will further characterize the effects of roflumilast added to ICS/LABA on exacerbation rates, lung function, and health of severe–very severe COPD participants at risk of further exacerbations. The results will determine the clinical benefits of roflumilast combined with standard-of-care inhaled COPD treatment. PMID

  6. Bacterial cyclic beta-(1,2)-glucan acts in systemic suppression of plant immune responses.

    PubMed

    Rigano, Luciano Ariel; Payette, Caroline; Brouillard, Geneviève; Marano, Maria Rosa; Abramowicz, Laura; Torres, Pablo Sebastián; Yun, Maximina; Castagnaro, Atilio Pedro; Oirdi, Mohamed El; Dufour, Vanessa; Malamud, Florencia; Dow, John Maxwell; Bouarab, Kamal; Vojnov, Adrian Alberto

    2007-06-01

    Although cyclic glucans have been shown to be important for a number of symbiotic and pathogenic bacterium-plant interactions, their precise roles are unclear. Here, we examined the role of cyclic beta-(1,2)-glucan in the virulence of the black rot pathogen Xanthomonas campestris pv campestris (Xcc). Disruption of the Xcc nodule development B (ndvB) gene, which encodes a glycosyltransferase required for cyclic glucan synthesis, generated a mutant that failed to synthesize extracellular cyclic beta-(1,2)-glucan and was compromised in virulence in the model plants Arabidopsis thaliana and Nicotiana benthamiana. Infection of the mutant bacterium in N. benthamiana was associated with enhanced callose deposition and earlier expression of the PATHOGENESIS-RELATED1 (PR-1) gene. Application of purified cyclic beta-(1,2)-glucan prior to inoculation of the ndvB mutant suppressed the accumulation of callose deposition and the expression of PR-1 in N. benthamiana and restored virulence in both N. benthamiana and Arabidopsis plants. These effects were seen when cyclic glucan and bacteria were applied either to the same or to different leaves. Cyclic beta-(1,2)-glucan-induced systemic suppression was associated with the transport of the molecule throughout the plant. Systemic suppression is a novel counterdefensive strategy that may facilitate pathogen spread in plants and may have important implications for the understanding of plant-pathogen coevolution and for the development of phytoprotection measures. PMID:17601826

  7. [Preparation and the biological effect of fusion protein GLP-1-exendin-4/ IgG4(Fc) fusion protein as long acting GLP-1 receptor agonist].

    PubMed

    Zheng, Yun-cheng

    2015-12-01

    . It can be used as a long-acting GLP-1 agonists. PMID:27169293

  8. Effect of β2-adrenergic receptor gene (ADRB2) 3′ untranslated region polymorphisms on inhaled corticosteroid/long-acting β2-adrenergic agonist response

    PubMed Central

    2012-01-01

    Background Evidence suggests that variation in the length of the poly-C repeat in the 3′ untranslated region (3′UTR) of the β2-adrenergic receptor gene (ADRB2) may contribute to interindividual variation in β-agonist response. However, methodology in previous studies limited the assessment of the effect of sequence variation in the context of poly-C repeat length. The objectives of this study were to design a novel genotyping method to fully characterize sequence variation in the ADRB2 3′UTR poly-C repeat in asthma patients treated with inhaled corticosteroid and long-acting β2-adrenergic agonist (ICS/LABA) combination therapy, and to analyze the effect of the poly-C repeat polymorphism on clinical response. Methods In 2,250 asthma patients randomized to treatment with budesonide/formoterol or fluticasone/salmeterol in a six-month study (AstraZeneca study code: SD-039-0735), sequence diversity in the ADRB2 poly-C repeat region was determined using a novel sequencing-based genotyping method. The relationship between the poly-C repeat polymorphism and the incidence of severe asthma exacerbations, and changes in pulmonary function and asthma symptoms from baseline to the average during the treatment period, were analyzed. Results Poly-C repeat genotypes were assigned in 97% (2,192/2,250) of patients. Of the 13 different poly-C repeat alleles identified, six alleles occurred at a frequency of >5% in one or more population in this study. The repeat length of these six common alleles ranged from 10 to 14 nucleotides. Twelve poly-C repeat genotypes were observed at a frequency of >1%. No evidence of an association between poly-C repeat genotype and the incidence of severe asthma exacerbations was observed. Patients’ pulmonary function measurements improved and asthma symptoms declined when treated with ICS/LABA combination therapy regardless of poly-C repeat genotype. Conclusions The extensive sequence diversity present in the poly-C repeat region of the ADRB2

  9. Modification of TLR-induced activation of human dendritic cells by type I IFN: synergistic interaction with TLR4 but not TLR3 agonists.

    PubMed

    Walker, Josef; Tough, David F

    2006-07-01

    Upon detection of direct and indirect signs of infection, dendritic cells (DC) undergo functional changes that modify their ability to elicit immune responses. Type I interferon (IFN-alpha/beta), which includes a large family of closely related infection-inducible cytokines, represents one indirect signal that can act as a DC stimulus. We have investigated the ability of IFN-alpha/beta subtypes to affect DC function and to influence DC responses to Toll-like receptor (TLR) agonists (i.e., direct infection-associated signals). Subtle differences were observed among 15 subtypes of IFN-alpha/beta in the ability to stimulate expression of maturation markers and chemokines by human monocyte-derived DC, with IFN-omega being the most unique in its effects. Pre-treatment with IFN-alpha/beta did not alter the ability of DC to mature in response to subsequent contact with TLR agonists, but did modulate their secretion of chemokines. Conversely, IFN-alpha/beta was shown to act synergistically with TLR4 but not TLR3 agonists for the induction of maturation and chemokine production when DC were exposed to IFN-alpha/beta and TLR ligands simultaneously. Taken together, these results indicate a complex role for IFN-alpha/beta in regulating DC function during the course an infection, which varies according to IFN-alpha/beta subtype and the timing of exposure to other stimuli. PMID:16783851

  10. Expression and Characterization of a Potent Long-Acting GLP-1 Receptor Agonist, GLP-1-IgG2σ-Fc

    PubMed Central

    Yang, Yi; Chen, Fang; Wan, Deyou; Liu, Yunhui; Yang, Li; Feng, Hongru; Cui, Xinling; Gao, Xin; Song, Haifeng

    2016-01-01

    Human GLP-1 (glucagon-like peptide-1) can produce a remarkable improvement in glycemic control in patients with type 2 diabetes. However, its clinical benefits are limited by its short half-life, which is less than 2 min because of its small size and rapid enzymatic inactivation by dipeptidyl peptidase IV. We engineered GLP-1-IgG2σ-Fc, a 68-kDa fusion protein linking a variant human GLP-1 (A8G/G26E/R36G) to a human IgG2σ constant heavy-chain. A stably transfected Chinese hamster ovary cell line was obtained using electroporation. Western blotting showed that the expressed protein was immunoreactive to both GLP-1 and IgG antibodies. GLP-1-IgG2σ-Fc stimulated insulin secretion from INS-1 cells in a dose- and glucose-dependent manner and increased insulin mRNA expression. The half-life of GLP-1-IgG2σ-Fc in cynomolgus monkeys was approximately 57.1 ± 4.5 h. In the KKAy mouse model of diabetes, one intraperitoneal injection of GLP-1-IgG2σ-Fc (1 mg/kg) reduced blood glucose levels for 5 days. A 4-week repeat-administration study identified sustained effects on blood glucose levels. Oral glucose tolerance tests conducted at the beginning and end of this 4-week period showed that GLP-1-IgG2σ-Fc produced a stable glucose lowering effect. In addition, KKAy mice treated with GLP-1-IgG2σ-Fc showed statistically significant weight loss from day 23. In conclusion, these properties of GLP-1-IgG2σ-Fc demonstrated that it represented a potential long-acting GLP-1 receptor agonist for the treatment of type 2 diabetes. PMID:27232339

  11. Association of MicroRNA-196a2 Variant with Response to Short-Acting β2-Agonist in COPD: An Egyptian Pilot Study.

    PubMed

    Fawzy, Manal S; Hussein, Mohammad H; Abdelaziz, Eman Z; Yamany, Hussain A; Ismail, Hussein M; Toraih, Eman A

    2016-01-01

    Chronic obstructive pulmonary disease (COPD) is a multifactorial chronic respiratory disease, characterized by an obstructive pattern. Understanding the genetic predisposition of COPD is essential to develop personalized treatment regimens. MicroRNAs (miRNAs) are small, endogenous, non-coding RNAs that modulate the expression levels of specific proteins based on sequence complementarity with their target mRNA molecules. Emerging evidences demonstrated the potential use of miRNAs as a disease biomarker. This pilot study aimed to investigate the association of the MIR-196a2 rs11614913 (C/T) polymorphism with COPD susceptibility, the clinical outcome and bronchodilator response to short-acting β2-agonist. Genotyping of rs11614913 polymorphism was determined in 108 COPD male patients and 116 unrelated controls using real-time polymerase chain reaction technology. In silico target prediction and network core analysis were performed. COPD patients did not show significant differences in the genotype distribution (p = 0.415) and allele frequencies (p = 0.306) of the studied miRNA when compared with controls. There were also no associations with GOLD stage, dyspnea grade, disease exacerbations, COPD assessment test for estimating impact on health status score, or the frequency of intensive care unit admission. However, COPD patients with CC genotype corresponded to the smallest bronchodilator response after Salbutamol inhalation, the heterozygotes (CT) had an intermediate response, while those with the TT genotype showed the highest response (p < 0.001). In conclusion MIR-196a2 rs11614913 polymorphism is associated with the bronchodilator response of COPD in our sample of the Egyptian population, generating hypothesis of the potential use of MIR-196a2 variant as a pharmacogenetic marker for COPD. PMID:27043015

  12. HDL-bound sphingosine 1-phosphate acts as a biased agonist for the endothelial cell receptor S1P1 to limit vascular inflammation

    PubMed Central

    Galvani, Sylvain; Sanson, Marie; Blaho, Victoria A.; Swendeman, Steven L.; Obinata, Hideru; Conger, Heather; Dahlbäck, Björn; Kono, Mari; Proia, Richard L.; Smith, Jonathan D.; Hla, Timothy

    2016-01-01

    The sphingosine 1-phosphate receptor 1 (S1P1) is abundant in endothelial cells, where it regulates vascular development and microvascular barrier function. In investigating the role of endothelial cell S1P1 in adult mice, we found that the endothelial S1P1 signal was enhanced in regions of the arterial vasculature experiencing inflammation. The abundance of proinflammatory adhesion proteins, such as ICAM-1, was enhanced in mice with endothelial cell–specific deletion of S1pr1 and suppressed in mice with endothelial cell–specific overexpression of S1pr1, suggesting a protective function of S1P1 in vascular disease. The chaperones ApoM+HDL (HDL) or albumin bind to sphingosine 1-phosphate (S1P) in the circulation; therefore, we tested the effects of S1P bound to each chaperone on S1P1 signaling in cultured human umbilical vein endothelial cells (HUVECs). Exposure of HUVECs to ApoM+HDL-S1P, but not to albumin-S1P, promoted the formation of a cell surface S1P1–β-arrestin 2 complex and attenuated the ability of the proinflammatory cytokine TNFα to activate NF-κB and increase ICAM-1 abundance. Although S1P bound to either chaperone induced MAPK activation, albumin-S1P triggered greater Gi activation and receptor endocytosis. Endothelial cell–specific deletion of S1pr1 in the hypercholesterolemic Apoe−/− mouse model of atherosclerosis enhanced atherosclerotic lesion formation in the descending aorta. We propose that the ability of ApoM+HDL to act as a biased agonist on S1P1 inhibits vascular inflammation, which may partially explain the cardiovascular protective functions of HDL. PMID:26268607

  13. Association of MicroRNA-196a2 Variant with Response to Short-Acting β2-Agonist in COPD: An Egyptian Pilot Study

    PubMed Central

    Fawzy, Manal S.; Hussein, Mohammad H.; Abdelaziz, Eman Z.; Yamany, Hussain A.; Ismail, Hussein M.; Toraih, Eman A.

    2016-01-01

    Chronic obstructive pulmonary disease (COPD) is a multifactorial chronic respiratory disease, characterized by an obstructive pattern. Understanding the genetic predisposition of COPD is essential to develop personalized treatment regimens. MicroRNAs (miRNAs) are small, endogenous, non-coding RNAs that modulate the expression levels of specific proteins based on sequence complementarity with their target mRNA molecules. Emerging evidences demonstrated the potential use of miRNAs as a disease biomarker. This pilot study aimed to investigate the association of the MIR-196a2 rs11614913 (C/T) polymorphism with COPD susceptibility, the clinical outcome and bronchodilator response to short-acting β2-agonist. Genotyping of rs11614913 polymorphism was determined in 108 COPD male patients and 116 unrelated controls using real-time polymerase chain reaction technology. In silico target prediction and network core analysis were performed. COPD patients did not show significant differences in the genotype distribution (p = 0.415) and allele frequencies (p = 0.306) of the studied miRNA when compared with controls. There were also no associations with GOLD stage, dyspnea grade, disease exacerbations, COPD assessment test for estimating impact on health status score, or the frequency of intensive care unit admission. However, COPD patients with CC genotype corresponded to the smallest bronchodilator response after Salbutamol inhalation, the heterozygotes (CT) had an intermediate response, while those with the TT genotype showed the highest response (p < 0.001). In conclusion MIR-196a2 rs11614913 polymorphism is associated with the bronchodilator response of COPD in our sample of the Egyptian population, generating hypothesis of the potential use of MIR-196a2 variant as a pharmacogenetic marker for COPD. PMID:27043015

  14. The effect of umeclidinium added to inhaled corticosteroid/long-acting β2-agonist in patients with symptomatic COPD: a randomised, double-blind, parallel-group study.

    PubMed

    Sousa, Ana R; Riley, John H; Church, Alison; Zhu, Chang-Qing; Punekar, Yogesh S; Fahy, William A

    2016-01-01

    Benefits of triple therapy with a long-acting muscarinic antagonist (LAMA), added to inhaled corticosteroid (ICS)/long-acting β2-agonist (LABA), have been demonstrated. Limited data assessing the efficacy of the LAMA umeclidinium (UMEC) added to ICS/LABA are available. The aim of this study is to evaluate the efficacy and safety of UMEC added to ICS/LABAs in patients with moderate-to-very-severe COPD. This is a multicentre, randomised, double-blind, parallel-group study. Patients were symptomatic (modified Medical Research Council Dyspnoea Scale score ⩾2), despite receiving ICS/LABA (fluticasone propionate/salmeterol (FP/SAL, branded) 500/50 mcg, budesonide/formoterol (BD/FOR, branded) 200/6 mcg or 400/12 mcg, or other ICS/LABAs) ⩾30 days before the run-in (7±2 days). Patients were randomised 1:1 to once-daily UMEC 62.5 mcg or placebo (PBO), added to twice-daily open-label ICS/LABA for 12 weeks. Primary end point was trough forced expiratory volume in 1 s (FEV1) at Day 85; secondary end point was weighted mean (WM) 0-6 h FEV1 at Day 84; other end points included COPD Assessment Test (CAT) score and Transition Dyspnoea Index (TDI) score. Adverse events (AEs) were investigated. In the UMEC+ICS/LABA and PBO+ICS/LABA groups, 119 and 117 patients were randomised, respectively. Patients received FP/SAL (40%), BD/FOR (43%) and other ICS/LABAs (17%). UMEC+ICS/LABA resulted in significant improvements in trough FEV1 (Day 85) and in WM 0-6 h FEV1 (Day 84) versus PBO+ICS/LABA (difference: 123 and 148 ml, respectively, both P<0.001). Change from baseline for UMEC+ICS/LABA versus PBO+ICS/LABA was significantly different for CAT score at Day 84 (-1.31, P<0.05), but not for TDI score (0.40, P=0.152). AE incidence was similar with UMEC+ICS/LABA (38%) and PBO+ICS/LABA (42%). UMEC+ICS/LABA improved lung function and CAT score in patients with symptomatic COPD versus PBO+ICS/LABA (ClinicalTrials.gov NCT02257372). PMID:27334739

  15. Solution structure of toxin 2 from centruroides noxius Hoffmann, a beta-scorpion neurotoxin acting on sodium channels.

    PubMed

    Pintar, A; Possani, L D; Delepierre, M

    1999-03-26

    We have determined the solution structure of Cn2, a beta-toxin extracted from the venom of the New World scorpion Centruroides noxius Hoffmann. Cn2 belongs to the family of scorpion toxins that affect the sodium channel activity, and is very toxic to mammals (LD50=0.4 microg/20 g mouse mass). The three-dimensional structure was determined using 1H-1H two-dimensional NMR spectroscopy, torsion angle dynamics, and restrained energy minimization. The final set of 15 structures was calculated from 876 experimental distance constraints and 58 angle constraints. The structures have a global r. m.s.d. of 1.38 A for backbone atoms and 2.21 A for all heavy atoms. The overall fold is similar to that found in the other scorpion toxins acting on sodium channels. It is made of a triple-stranded antiparallel beta-sheet and an alpha-helix, and is stabilized by four disulfide bridges. A cis-proline residue at position 59 induces a kink of the polypeptide chain in the C-terminal region. The hydrophobic core of the protein is made up of residues L5, V6, L51, A55, and by the eight cysteine residues. A hydrophobic patch is defined by the aromatic residues Y4, Y40, Y42, W47 and by V57 on the side of the beta-sheet facing the solvent. A positively charged patch is formed by K8 and K63 on one edge of the molecule in the C-terminal region. Another positively charged spot is represented by the highly exposed K35. The structure of Cn2 is compared with those of other scorpion toxins acting on sodium channels, in particular Aah II and CsE-v3. This is the first structural report of an anti-mammal beta-scorpion toxin and it provides the necessary information for the design of recombinant mutants that can be used to probe structure-function relationships in scorpion toxins affecting sodium channel activity.

  16. PP2A and GSK-3beta act antagonistically to regulate active zone development.

    PubMed

    Viquez, Natasha M; Füger, Petra; Valakh, Vera; Daniels, Richard W; Rasse, Tobias M; DiAntonio, Aaron

    2009-09-16

    The synapse is composed of an active zone apposed to a postsynaptic cluster of neurotransmitter receptors. Each Drosophila neuromuscular junction comprises hundreds of such individual release sites apposed to clusters of glutamate receptors. Here, we show that protein phosphatase 2A (PP2A) is required for the development of structurally normal active zones opposite glutamate receptors. When PP2A is inhibited presynaptically, many glutamate receptor clusters are unapposed to Bruchpilot (Brp), an active zone protein required for normal transmitter release. These unapposed receptors are not due to presynaptic retraction of synaptic boutons, since other presynaptic components are still apposed to the entire postsynaptic specialization. Instead, these data suggest that Brp localization is regulated at the level of individual release sites. Live imaging of glutamate receptors demonstrates that this disruption to active zone development is accompanied by abnormal postsynaptic development, with decreased formation of glutamate receptor clusters. Remarkably, inhibition of the serine-threonine kinase GSK-3beta completely suppresses the active zone defect, as well as other synaptic morphology phenotypes associated with inhibition of PP2A. These data suggest that PP2A and GSK-3beta function antagonistically to control active zone development, providing a potential mechanism for regulating synaptic efficacy at a single release site.

  17. {beta}-Catenin can act as a nuclear import receptor for its partner transcription factor, lymphocyte enhancer factor-1 (lef-1)

    SciTech Connect

    Asally, Munehiro; Yoneda, Yoshihiro . E-mail: yyoneda@anat3.med.osaka-u.ac.jp

    2005-08-15

    Nuclear accumulation of {beta}-catenin plays an important role in the Wnt signaling pathway. In the nucleus, {beta}-catenin acts as a transcriptional co-activator for TCF/LEF family of transcription factors. It has been shown that lef-1 contains a typical basic type nuclear localization signal (NLS) and is transported into the nucleus by the conventional import pathway. In this study, we found that a mutant lef-1 lacking the classical NLS accumulated in the nucleus of living cells, when {beta}-catenin was co-expressed. In addition, in a cell-free import assay, lef-1 migrated into the nucleus in the presence of {beta}-catenin alone without any other soluble factors. In contrast, another mutant lef-1 lacking the {beta}-catenin binding domain failed to migrate into the nucleus, even in the presence of {beta}-catenin. These findings indicate that {beta}-catenin alone can mediate the nuclear import of lef-1 through the direct binding. Collectively, we propose that there are two distinct pathways for the nuclear import of lef-1: importin {alpha}/{beta}-mediated and {beta}-catenin-mediated one, which provides a novel paradigm for Wnt signaling pathway.

  18. Agonist-induced activation releases peroxisome proliferator-activated receptor beta/delta from its inhibition by palmitate-induced nuclear factor-kappaB in skeletal muscle cells.

    PubMed

    Jové, Mireia; Laguna, Juan C; Vázquez-Carrera, Manuel

    2005-05-01

    The mechanisms by which elevated levels of free fatty acids cause insulin resistance are not well understood, but there is a strong correlation between insulin resistance and intramyocellular lipid accumulation in skeletal muscle. In addition, accumulating evidence suggests a link between inflammation and type 2 diabetes. The aim of this work was to study whether the exposure of skeletal muscle cells to palmitate affected peroxisome proliferator-activated receptor (PPAR) beta/delta activity. Here, we report that exposure of C2C12 skeletal muscle cells to 0.75 mM palmitate reduced (74%, P<0.01) the mRNA levels of the PPARbeta/delta-target gene pyruvatedehydrogenase kinase 4 (PDK-4), which is involved in fatty acid utilization. This reduction was not observed in the presence of the PPARbeta/delta agonist L-165041. This drug prevented palmitate-induced nuclear factor (NF)-kappaB activation. Increased NF-kappaB activity after palmitate exposure was associated with enhanced protein-protein interaction between PPARbeta/delta and p65. Interestingly, treatment with the PPARbeta/delta agonist L-165041 completely abolished this interaction. These results indicate that palmitate may reduce fatty acid utilization in skeletal muscle cells by reducing PPARbeta/delta signaling through increased NF-kappaB activity.

  19. Treatment intensification in patients with inadequate glycemic control on basal insulin: rationale and clinical evidence for the use of short‐acting and other glucagon‐like peptide‐1 receptor agonists

    PubMed Central

    Bonadonna, Riccardo C.; Gentile, Sandro; Vettor, Roberto; Pozzilli, Paolo

    2016-01-01

    Summary A substantial proportion of patients with type 2 diabetes mellitus do not reach glycemic targets, despite treatment with oral anti‐diabetic drugs and basal insulin therapy. Several options exist for treatment intensification beyond basal insulin, and the treatment paradigm is complex. In this review, the options for treatment intensification will be explored, focusing on drug classes that act via the incretin system and paying particular attention to the short‐acting glucagon‐like peptide‐1 receptor agonists exenatide and lixisenatide. Current treatment guidelines will be summarized and discussed. © 2016 The Authors. Diabetes/Metabolism Research and Reviews Published by John Wiley & Sons Ltd. PMID:26787264

  20. Aspects on evolution of fungal beta-lactam biosynthesis gene clusters and recruitment of trans-acting factors.

    PubMed

    Brakhage, Axel A; Thön, Marcel; Spröte, Petra; Scharf, Daniel H; Al-Abdallah, Qusai; Wolke, Sandra M; Hortschansky, Peter

    2009-01-01

    Penicillins and cephalosporins are beta-lactam antibiotics. The formation of hydrophobic penicillins has been reported in fungi only, notably Penicillium chrysogenum and Aspergillus (Emericella) nidulans, whereas the hydrophilic cephalosporins are produced by both fungi, e.g., Acremonium chrysogenum (cephalosporin C), and bacteria. The producing bacteria include Gram-negatives and Gram-positives, e.g., Streptomyces clavuligerus (cephamycin C) and Lysobacter lactamgenus (cephabacins), respectively. The evolutionary origin of beta-lactam biosynthesis genes has been the subject of discussion for many years, and two main hypotheses have been proposed: (i) horizontal gene transfer (HGT) from bacteria to fungi or (ii) vertical decent. There are strong arguments in favour of HGT, e.g., unlike most other fungal genes, beta-lactam biosynthesis genes are clustered and some of these genes lack introns. In contrast to S. clavuligerus, all regulators of fungal beta-lactam biosynthesis genes represent wide-domain regulators that are not part of the gene cluster. If bacterial regulators were co-transferred with the gene cluster from bacteria to fungi, most likely they would have been non-functional in eukaryotes and lost during evolution. Recently, the penicillin biosynthesis gene aatB was discovered, which is not part of the penicillin biosynthesis gene cluster and is even located on a different chromosome. The aatB gene is regulated by the same regulators AnCF and AnBH1 as the penicillin biosynthesis gene aatA (penDE). Data suggest that aatA and aatB are paralogues derived by duplication of a common ancestor gene. This data supports a model in which part of the beta-lactam biosynthesis gene cluster was transferred to some fungi, i.e., the acvA and ipnA gene without a regulatory gene. We propose that during the assembly of aatA and acvA-ipnA into a single gene cluster, recruitment of transcriptional regulators occurred along with acquisition of the duplicated aatA ancestor gene

  1. Effect of formoterol, a long-acting β2-adrenergic agonist, on muscle strength and power output, metabolism, and fatigue during maximal sprinting in men.

    PubMed

    Kalsen, Anders; Hostrup, Morten; Backer, Vibeke; Bangsbo, Jens

    2016-06-01

    The aim was to investigate the effect of the long-acting β2-adrenergic agonist formoterol on muscle strength and power output, muscle metabolism, and phosphorylation of CaMKII Thr(287) and FXYD1 during maximal sprinting. In a double-blind crossover study, 13 males [V̇o2 max: 45.0 ± 0.2 (means ± SE) ml·min(-1)·kg(-1)] performed a 30-s cycle ergometer sprint after inhalation of either 54 μg of formoterol (FOR) or placebo (PLA). Before and after the sprint, muscle biopsies were collected from vastus lateralis and maximal voluntary contraction (MVC), and contractile properties of quadriceps were measured. Oxygen uptake was measured during the sprint. During the sprint, peak power, mean power, and end power were 4.6 ± 0.8, 3.9 ± 1.1, and 9.5 ± 3.2% higher (P < 0.05) in FOR than in PLA, respectively. Net rates of glycogenolysis and glycolysis were 45.7 ± 21.0 and 28.5 ± 13.4% higher (P < 0.05) in FOR than in PLA, respectively, and the decrease in ATP content was lower (P < 0.05) in FOR than in PLA (3.7 ± 1.5 vs. 8.0 ± 1.6 mmol/kg dry weight). There was no difference in breakdown of phosphocreatine and oxygen uptake between treatments. Before and after the sprint, MVC and peak twitch force were higher (P < 0.05) in FOR than in PLA. No differences were observed in phosphorylation of CaMKII Thr(287) and FXYD1 between treatments before the sprint, whereas phosphorylation of CaMKII Thr(287) and FXYD1 was greater (P < 0.05) in FOR than in PLA after the sprint. In conclusion, formoterol-induced enhancement in power output during maximal sprinting is associated with increased rates of glycogenolysis and glycolysis that may counteract development of fatigue.

  2. Tetrahydro-beta-carboline alkaloids that occur in foods and biological systems act as radical scavengers and antioxidants in the ABTS assay.

    PubMed

    Herraiz, Tomas; Galisteo, Juan

    2002-08-01

    Tetrahydro-beta-carboline alkaloids that occur in foods such as wine, seasonings, vinegar and fruit products juices, jams) acted as good radical scavengers (hydrogen- or electron donating) in the ABTS (2,2'-Azinobis-(3-ethylbenzothiazoline-6-sulfonic acid)) assay, and therefore, they could contribute to the beneficial antioxidant capacity attributed to foods. In contrast, the fully aromatic beta-carbolines norharman and harman did not show any radical scavenger activity in the same assay. During the reaction with ABTS.+ radical cation, tetrahydro-beta-carboline-3-carboxylic acid such as 1-methyl-1,2,3,4-tetrahydro-beta-carboline-3-carboxylic acid (MTCA) and 1-methyl-1,2,3,4-tetrahydro-beta-carboline-1,3-dicarboxylic acid (MTCA-COOH) were converted to harman, whereas 1,2,3,4-tetrahydro-beta-carboline-3-carboxylic acid (THCA) and 1,2,3,4-tetrahydro-beta-carboline-1,3-dicarboxylic acid (THCA-COOH) afforded norharman. These results suggest that food and naturally-occurring tetrahydro-beta-carboline alkaloids if accumulated in tissues, as reported elsewhere, might exhibit antioxidant activity.

  3. Subtle side-chain modifications of the hop phytoestrogen 8-prenylnaringenin result in distinct agonist/antagonist activity profiles for estrogen receptors alpha and beta.

    PubMed

    Roelens, Frederik; Heldring, Nina; Dhooge, Willem; Bengtsson, Martin; Comhaire, Frank; Gustafsson, Jan-Ake; Treuter, Eckardt; De Keukeleire, Denis

    2006-12-14

    In search of therapeutic agents for estrogen-related pathologies, phytoestrogens are being extensively explored. In contrast to naringenin, 8-prenylnaringenin is a potent hop-derived estrogenic compound, highlighting the importance of the prenyl group for hormonal activity. We investigated the effects of substituting the prenyl group at C(8) with alkyl chains of varying lengths and branching patterns on estrogen receptor (ER) subtype ERalpha- and ERbeta-binding affinities and transcriptional activities. In addition, features of the ligand-induced receptor conformations were explored using a set of specific ER-binding peptides. The new 8-alkylnaringenins were found to span an activity spectrum ranging from full agonism to partial agonism to antagonism. Most strikingly, 8-(2,2-dimethylpropyl)naringenin exhibited full agonist character on ERalpha, but pronounced antagonist character on ERbeta. Knowledge on how ER-subtype-selective activities can be designed provides valuable information for future drug or tool compound discovery.

  4. Soluble interleukin-15 receptor alpha (IL-15R alpha)-sushi as a selective and potent agonist of IL-15 action through IL-15R beta/gamma. Hyperagonist IL-15 x IL-15R alpha fusion proteins.

    PubMed

    Mortier, Erwan; Quéméner, Agnès; Vusio, Patricia; Lorenzen, Inken; Boublik, Yvan; Grötzinger, Joachim; Plet, Ariane; Jacques, Yannick

    2006-01-20

    Interleukin-15 (IL-15) is crucial for the generation of multiple lymphocyte subsets (natural killer (NK), NK-T cells, and memory CD8 T cells), and transpresentation of IL-15 by monocytes and dendritic cells has been suggested to be the dominant activating process of these lymphocytes. We have previously shown that a natural soluble form of IL-15R alpha chain corresponding to the entire extracellular domain of IL-15R alpha behaves as a high affinity IL-15 antagonist. In sharp contrast with this finding, we demonstrate in this report that a recombinant, soluble sushi domain of IL-15R alpha, which bears most of the binding affinity for IL-15, behaves as a potent IL-15 agonist by enhancing its binding and biological effects (proliferation and protection from apoptosis) through the IL-15R beta/gamma heterodimer, whereas it does not affect IL-15 binding and function of the tripartite IL-15R alpha/beta/gamma membrane receptor. Our results suggest that, if naturally produced, such soluble sushi domains might be involved in the IL-15 transpresentation mechanism. Fusion proteins (RLI and ILR), in which IL-15 and IL-15R alpha-sushi are attached by a flexible linker, are even more potent than the combination of IL-15 plus sIL-15R alpha-sushi. After binding to IL-15R beta/gamma, RLI is internalized and induces a biological response very similar to the IL-15 high affinity response. Such hyper-IL-15 fusion proteins appear to constitute potent adjuvants for the expansion of lymphocyte subsets.

  5. ICI D7114: a novel selective adrenoceptor agonist of brown fat and thermogenesis.

    PubMed

    Holloway, B R; Howe, R; Rao, B S; Stribling, D

    1992-01-01

    Increasing energy expenditure by treatment with thermogenic drugs is not new, but available drugs have suffered from the problem of lack of selectivity. In the last decade two key findings have allowed the development of selective thermogenic drugs that have promise in the treatment of obesity. 1) The recognition that brown adipose tissue (BAT) plays a role in compensatory increases in energy expenditure has allowed an approach directed at a target organ. 2) The demonstration showing that increases in the activity of BAT may be modulated by an atypical (beta 3) adrenoceptor has led to the development of a new peripherally acting beta-adrenoceptor agonist ICI D7114, which stimulates thermogenesis at doses that have little effect on beta 1 or beta 2 adrenoceptors. Treatment with the compound activates BAT and thermogenesis even in species and situations where the intrinsic capacity is low. 3) The compound has beneficial effects in animal models of obesity and disturbed glucose and lipid homeostasis. PMID:1345891

  6. Combination of a long-acting delivery system for luteinizing hormone-releasing hormone agonist with Novantrone chemotherapy: increased efficacy in the rat prostate cancer model.

    PubMed Central

    Schally, A V; Kook, A I; Monje, E; Redding, T W; Paz-Bouza, J I

    1986-01-01

    The combination of hormonal treatment based on a long-acting delivery system for the agonist [6-D-tryptophan]luteinizing hormone-releasing hormone ([D-Trp6]-LH-RH) with the chemotherapeutic agent Novantrone (mitoxantrone dihydrochloride) was studied in the Dunning R3327H rat prostate cancer model. Microcapsules of [D-Trp6]-LH-RH formulated from poly(DL-lactide-co-glycolide) and calculated to release a controlled dose of 25 micrograms/day were injected intramuscularly once a month. Novantrone (0.25 mg/kg) was injected intravenously once every 3 weeks. Three separate experiments were carried out. When the therapy was started 45 days after transplantation and continued for 70 days, tumor volume in the presence of the microcapsules (966 +/- 219 mm3) or Novantrone (3606 +/- 785 mm3) given alone was significantly decreased compared to controls (14,476 +/- 3045 mm3). However, the combination of microcapsules and Novantrone caused a greater inhibition of tumor growth (189 +/- 31 mm3) than the single agents. Similar effects were seen when the percent increase in tumor volume was examined. Tumor volume increased 10,527 +/- 1803% for the control group. The inhibition of growth caused by the [D-Trp6]LH-RH microcapsules alone (672 +/- 153% increase in volume) was again greater than that caused by Novantrone alone (2722 +/- 421% increase). The combination of the two agents was again the most effective, resulting in an increase in tumor volume of only 105 +/- 29%. Control tumors weighed 30.0 +/- 6.5 g. Tumor weights were much less in the groups treated with either microcapsules (3.28 +/- 0.69 g) or Novantrone (19.53 +/- 3.3 g) alone. The lowest tumor weights after 70 days of treatment were obtained in the group that received the combination of [D-Trp6]LH-RH microcapsules and Novantrone (1.02 +/- 0.2 g). Testes and ventral prostate weights were significantly diminished by the administration of microcapsules of [D-Trp6]LH-RH alone or in combination with Novantrone. In both of these

  7. Comparative effects of beta-adrenergic agonist supplementation on the yield and quality attributes of selected subprimals from calf-fed Holstein steers.

    PubMed

    Martin, J N; Garmyn, A J; Miller, M F; Hodgen, J M; Pfeiffer, K D; Thomas, C L; Rathmann, R J; Yates, D A; Hutcheson, J P; Brooks, J C

    2014-09-01

    Mechanical portioning tests were performed on beef rib, strip loin, tenderloin, and top sirloin subprimals obtained from calf-fed Holstein steers to characterize the influence of zilpaterol hydrochloride (ZH), ractopamine hydrochloride (RH), or no β-adrenergic agonist (βAA; CON) on subprimal and steak yield. In addition, βAA effects on tenderness, composition, and raw and cooked color of steaks from the aforementioned strip loin subprimals were characterized. At 14 to 15 d (ribs, tenderloins, and top sirloin) or 16 d (strip loin) postmortem, subprimals were portioned into steaks using a mechanical portioning machine. The appropriate variables were measured before and after portioning to determine βAA influence on trimmed and untrimmed subprimal weight, subprimal length (rib only), steak weight and yield, and steak thickness (rib only). Steaks obtained from the strip loin subprimals were subjected to analysis of raw instrument color (L*, a*, b*), proximate composition, and pH. In addition, strip steaks were aged (16 or 23 d) before analysis of cooked internal color, Warner-Bratzler shear force (WBSF), and slice shear force (SSF). Briefly, ZH supplementation increased (P < 0.01) the weight of all subprimals when compared to CON. Furthermore, subprimals from CON animals consistently had fewer and lighter steaks (P ≤ 0.04) than subprimals from ZH-fed steers. Additionally, raw steaks from ZH cattle were a less vivid red (lower a* and saturation index values; P < 0.01) when compared to CON and RH steaks, which did not differ (P > 0.05). There was no interaction between βAA treatment and postmortem aging length for WBSF or SSF (P > 0.10). However, CON steaks (3.25 kg) had lower WBSF values (P < 0.05) than ZH or RH steaks (3.68 and 3.67 kg, respectively). Regardless, aging for 23 d vs. 16 d resulted in decreased WBSF and SSF (P < 0.01) for all βAA treatments. Although differences were numerically small, evaluations indicated the internal cooked surfaces of ZH and

  8. Fasiglifam/TAK-875, a Selective GPR40 Agonist, Improves Hyperglycemia in Rats Unresponsive to Sulfonylureas and Acts Additively with Sulfonylureas.

    PubMed

    Ito, Ryo; Tsujihata, Yoshiyuki; Suzuki, Masami; Miyawaki, Kazumasa; Matsuda, Kae; Takeuchi, Koji

    2016-04-01

    Sulfonylureas (SUs) are widely used insulin secretagogues, but they have adverse effects including hypoglycemia and secondary failure. Fasiglifam/TAK-875, a selective GPR40 agonist, enhances glucose-stimulated insulin secretion and improves hyperglycemia. In the present study, we compared the in vivo glucose-lowering effects of fasiglifam with SUs. The risk of secondary failure of fasiglifam and the efficacy in rats desensitized to SUs were also evaluated. Moreover, we assessed whether fasiglifam was effective when combined with SUs. In diabetic neonatally streptozotocin-induced rats 1.5 days after birth (N-STZ-1.5), oral administrations of fasiglifam (3-30 mg/kg) dose dependently improved glucose tolerance; the effect was greater than that of glibenclamide at maximal effective doses (glucose AUC: fasiglifam, -37.6%; glibenclamide, -12.3%). Although the glucose-lowering effects of glibenclamide (10 mg/kg/day) were completely diminished in N-STZ-1.5 rats after 4 weeks of treatment, effects were maintained in rats receiving fasiglifam (10 mg/kg/day), even after 15 weeks. Fasiglifam (3-10 mg/kg) was still effective in two models desensitized to SUs: 15-week glibenclamide-treated N-STZ-1.5 rats and aged Zucker diabetic fatty (ZDF) rats. Acute administration of fasiglifam (3 mg/kg) and glimepiride (10 mg/kg) in combination additively decreased glucose AUC (fasiglifam, -25.3%; glimepiride, -20.0%; combination, -43.1%). Although glimepiride (10 mg/kg) decreased plasma glucose below normal in nonfasted control rats, fasiglifam (3 mg/kg) maintained normoglycemia, and no further exaggeration of hypoglycemia was observed with combination treatment. These results indicate that GPR40 agonists could be more effective and durable than SUs. Our results also provide new insights into GPR40 pharmacology and rationale for the use of GPR40 agonists in diabetic patients with SU failure. PMID:26813930

  9. Pharmacology and anti-addiction effects of the novel κ opioid receptor agonist Mesyl Sal B, a potent and long-acting analogue of salvinorin A

    PubMed Central

    Simonson, B; Morani, A S; Ewald, A W M; Walker, L; Kumar, N; Simpson, D; Miller, J H; Prisinzano, T E; Kivell, B M

    2015-01-01

    BACKGROUND AND PURPOSE Acute activation of κ opioid (KOP) receptors results in anticocaine-like effects, but adverse effects, such as dysphoria, aversion, sedation and depression, limit their clinical development. Salvinorin A, isolated from the plant Salvia divinorum, and its semi-synthetic analogues have been shown to have potent KOP receptor agonist activity and may induce a unique response with similar anticocaine addiction effects as the classic KOP receptor agonists, but with a different side effect profile. EXPERIMENTAL APPROACH We evaluated the duration of effects of Mesyl Sal B in vivo utilizing antinociception assays and screened for cocaine-prime induced cocaine-seeking behaviour in self-administering rats to predict anti-addiction effects. Cellular transporter uptake assays and in vitro voltammetry were used to assess modulation of dopamine transporter (DAT) function and to investigate transporter trafficking and kinase signalling pathways modulated by KOP receptor agonists. KEY RESULTS Mesyl Sal B had a longer duration of action than SalA, had anti-addiction properties and increased DAT function in vitro in a KOP receptor-dependent and Pertussis toxin-sensitive manner. These effects on DAT function required ERK1/2 activation. We identified differences between Mesyl Sal B and SalA, with Mesyl Sal B increasing the Vmax of dopamine uptake without altering cell-surface expression of DAT. CONCLUSIONS AND IMPLICATIONS SalA analogues, such as Mesyl Sal B, have potential for development as anticocaine agents. Further tests are warranted to elucidate the mechanisms by which the novel salvinorin-based neoclerodane diterpene KOP receptor ligands produce both anti-addiction and adverse side effects. LINKED ARTICLES This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2 PMID:24641310

  10. Sonic hedgehog acts as a negative regulator of {beta}-catenin signaling in the adult tongue epithelium.

    PubMed

    Schneider, Fabian T; Schänzer, Anne; Czupalla, Cathrin J; Thom, Sonja; Engels, Knut; Schmidt, Mirko H H; Plate, Karl H; Liebner, Stefan

    2010-07-01

    Wnt/beta-catenin signaling has been implicated in taste papilla development; however, its role in epithelial maintenance and tumor progression in the adult tongue remains elusive. We show Wnt/beta-catenin pathway activation in reporter mice and by nuclear beta-catenin staining in the epithelium and taste papilla of adult mouse and human tongues. beta-Catenin activation in APC(min/+) mice, which carry a mutation in adenomatous poliposis coli (APC), up-regulates Sonic hedgehog (Shh) and Jagged-2 (JAG2) in the tongue epithelium without formation of squamous cell carcinoma (SCC). We demonstrate that Shh suppresses beta-catenin transcriptional activity in a signaling-dependent manner in vitro and in vivo. A similar regulation and function was observed for JAG2, suggesting that both pathways negatively regulate beta-catenin, thereby preventing SCC formation in the tongue. This was supported by reduced nuclear beta-catenin in the tongue epithelium of Patched(+/-) mice, exhibiting dominant active Shh signaling. At the invasive front of human tongue cancer, nuclear beta-catenin and Shh were increased, suggesting their participation in tumor progression. Interestingly, Shh but not JAG2 was able to reduce beta-catenin signaling in SCC cells, arguing for a partial loss of negative feedback on beta-catenin transcription in tongue cancer. We show for the first time that the putative Wnt/beta-catenin targets Shh and JAG2 control beta-catenin signaling in the adult tongue epithelium, a function that is partially lost in lingual SCC. PMID:20508033

  11. Conversion of the interleukin 1 receptor antagonist into an agonist by site-specific mutagenesis.

    PubMed Central

    Ju, G; Labriola-Tompkins, E; Campen, C A; Benjamin, W R; Karas, J; Plocinski, J; Biondi, D; Kaffka, K L; Kilian, P L; Eisenberg, S P

    1991-01-01

    Interleukin 1 (IL-1) receptor antagonist (IL-1ra) is a naturally occurring protein that binds to the IL-1 receptor present on T cells, fibroblasts, and other cell types and acts to block IL-1-induced responses. IL-1ra is a pure antagonist and has no agonist activity in in vitro or in vivo systems. By site-specific mutagenesis, an analog of IL-1ra was created that contained a substitution of a single amino acid, Lys-145----Asp. This analog, IL-1ra K145D, exhibited partial agonist activity in the D10.G4.1 cell proliferation assay. The newly acquired agonist activity could not be neutralized by antisera to IL-1 alpha or IL-1 beta, but it could be blocked by a monoclonal antibody to the T-cell IL-1 receptor. The analog also showed agonist activity as assayed by increased prostaglandin E2 synthesis from CHO cells expressing recombinant mouse IL-1 receptor. These results with IL-1ra K145D demonstrate the importance of the region surrounding the corresponding Asp-145 residue in IL-1 beta for triggering the biological response to IL-1. Images PMID:1826365

  12. Affinity modulation of the alpha IIb beta 3 integrin (platelet GPIIb-IIIa) is an intrinsic property of the receptor.

    PubMed Central

    O'Toole, T E; Loftus, J C; Du, X P; Glass, A A; Ruggeri, Z M; Shattil, S J; Plow, E F; Ginsberg, M H

    1990-01-01

    To analyze the basis of affinity modulation of integrin function, we studied cloned stable Chinese hamster ovary cell lines expressing recombinant integrins of the beta 3 family (alpha IIb beta 3 and alpha v beta 3). Antigenic and peptide recognition specificities of the recombinant receptors resembled those of the native receptors found in platelets or endothelial cells. The alpha IIb beta 3-expressing cell line (A5) bound RGD peptides and immobilized fibrinogen (Fg) but not soluble fibrinogen or the activation-specific monoclonal anti-alpha IIb beta 3 (PAC1), indicating that it was in the affinity state found on resting platelets. Several platelet agonists failed to alter the affinity state of ("activate") recombinant alpha IIb beta 3. The binding of soluble Fg and PAC1, however, was stimulated in both platelets and A5 cells by addition of IgG papain-digestion products (Fab) fragments of certain beta 3-specific monoclonal antibodies. These antibodies stimulated PAC1 binding to platelets fixed under conditions rendering them unresponsive to other agonists. Addition of these antibodies to detergent-solubilized alpha IIb beta 3 also stimulated specific Fg binding. These data demonstrate that certain anti-beta 3 antibodies activate alpha IIb beta 3 by acting directly on the receptor, possibly by altering its conformation. Furthermore, they indicate that the activation state of alpha IIb beta 3 is a property of the receptor itself rather than of the surrounding cell membrane microenvironment. Images PMID:2100193

  13. β2-agonist therapy in lung disease.

    PubMed

    Cazzola, Mario; Page, Clive P; Rogliani, Paola; Matera, M Gabriella

    2013-04-01

    β2-Agonists are effective bronchodilators due primarily to their ability to relax airway smooth muscle (ASM). They exert their effects via their binding to the active site of β2-adrenoceptors on ASM, which triggers a signaling cascade that results in a number of events, all of which contribute to relaxation of ASM. There are some differences between β2-agonists. Traditional inhaled short-acting β2-agonists albuterol, fenoterol, and terbutaline provide rapid as-needed symptom relief and short-term prophylactic protection against bronchoconstriction induced by exercise or other stimuli. The twice-daily β2-agonists formoterol and salmeterol represent important advances. Their effective bronchodilating properties and long-term improvement in lung function offer considerable clinical benefits to patients. More recently, a newer β2-agonist (indacaterol) with a longer pharmacodynamic half-life has been discovered, with the hopes of achieving once-daily dosing. In general, β2-agonists have an acceptable safety profile, although there is still controversy as to whether long-acting β2-agonists may increase the risk of asthma mortality. In any case, they can induce adverse effects, such as increased heart rate, palpitations, transient decrease in PaO2, and tremor. Desensitization of β2-adrenoceptors that occurs during the first few days of regular use of β2-agonist treatment may account for the commonly observed resolution of the majority of these adverse events after the first few doses. Nevertheless, it can also induce tolerance to bronchoprotective effects of β2-agonists and has the potential to reduce bronchodilator sensitivity to them. Some novel once-daily β2-agonists (olodaterol, vilanterol, abediterol) are under development, mainly in combination with an inhaled corticosteroid or a long-acting antimuscarinic agent. PMID:23348973

  14. Pharmacological properties of beta-amyrin palmitate, a novel centrally acting compound, isolated from Lobelia inflata leaves.

    PubMed

    Subarnas, A; Tadano, T; Oshima, Y; Kisara, K; Ohizumi, Y

    1993-06-01

    Effects of beta-amyrin palmitate isolated from the leaves of Lobelia inflata were studied on the central nervous system of mice and were compared with those of antidepressant drugs, mianserin and imipramine. In the forced swimming test, beta-amyrin palmitate, like mianserin and imipramine, reduced the duration of immobility of mice significantly in a dose-dependent manner (5, 10 and 20 mg kg-1). beta-Amyrin palmitate (5, 10 and 20 mg kg-1) or mianserin (5, 10 and 20 mg kg-1) elicited a dose-related reduction in locomotor activity of mice and antagonized locomotor stimulation induced by methamphetamine. In contrast, imipramine (5, 10 and 20 mg kg-1) increased locomotor activity and potentiated methamphetamine-induced hyperactivity. beta-Amyrin palmitate showed no effect on reserpine-induced hypothermia, whilst mianserin (10 mg kg-1) and imipramine (10 and 20 mg kg-1) antagonized the reserpine-induced effect. Unlike imipramine, beta-amyrin palmitate and mianserin did not affect haloperidol-induced catalepsy, tetrabenazine-induced ptosis and apomorphine-induced stereotypy. beta-Amyrin palmitate and imipramine had no effects on the head-twitch response induced by 5-hydroxytryptophan, whereas mianserin (5, 10 and 20 mg kg-1) decreased it in a dose-dependent manner. A potentiating effect of beta-amyrin palmitate (5, 10 and 20 mg kg-1) on narcosis induced by sodium pentobarbitone was stronger than that of imipramine (10, 20 and 40 mg kg-1) but weaker than that of mianserin (2.5, 5 and 10 mg kg-1). These results suggest that beta-amyrin palmitate has similar properties in some respects to mianserin and might possess a sedative action.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Pre-clinical pharmacology of zolmitriptan (Zomig; formerly 311C90), a centrally and peripherally acting 5HT1B/1D agonist for migraine.

    PubMed

    Martin, G R

    1997-10-01

    Zolmitriptan (Zomig; formerly 311C90) is a novel 5-hydroxytryptamine (5HT)1B/1D receptor agonist with proven efficacy in the acute treatment of migraine with or without preceding aura. The drug differs from presently available members of this drug class in that it combines 5HT1B/1D receptor partial agonist activity with robust oral pharmacokinetics and an ability to inhibit trigeminovascular activation centrally as well as peripherally in preclinical studies. Consistent with its selectivity for 5HT1B/1D receptors, zolmitriptan produces constriction of various isolated blood vessels, most notably cranial arteries. In anaesthetized animals, these vascular effects manifest as a selective constriction of cranial arterio-venous anastomoses resulting in a redistribution of carotid arterial blood flow. This effect is produced without significant effects on heart rate, blood pressure or blood flow to the brain, heart or lungs. Zolmitriptan also inhibits trigeminal-evoked increases in cerebral blood flow in anaesthetized cats and blocks trigeminal-evoked plasma protein extravasation in the dura of guinea-pigs. These actions are consistent with a pre-junctional inhibition of neuropeptide release from perivascular afferents of the trigeminal nerve, as confirmed by independent studies showing that zolmitriptan blocks elevations of calcitonin-gene-related peptide in jugular venous blood during electrical stimulation of the trigeminal ganglion. In all of these effects, zolmitriptan is three to four times more potent than sumatriptan, but produces the same maximum response. Zolmitriptan crosses the intact blood-brain barrier to inhibit trigeminovascular activation in the brainstem. This was shown initially by the ability of the drug to block a brainstem reflex provoking vasoactive intestinal peptide release from the VIIth cranial (facial) nerve during trigeminal stimulation. Subsequent ex vivo autoradiography confirmed that intravenously injected [3H]zolmitriptan labels a

  16. Long-term suppression of fertility in female giraffe using the GnRH agonist deslorelin as a long-acting implant.

    PubMed

    Patton, Marilyn L; Bashaw, Meredith J; del Castillo, Susan M; Jöchle, Wolfgang; Lamberski, Nadine; Rieches, Randy; Bercovitch, Fred B

    2006-07-15

    Zoological institutions provide an environment conducive to studying proximate mechanisms influencing reproduction that can provide guidance to both field and captive settings seeking to manage their stock. Both national parks and zoos have space limitations that sometimes require the use of reversible contraception in order to reduce reproductive rate or limit specific individuals from reproducing. We designed a study to test the efficacy of a long-lasting contraceptive in female giraffe by monitoring reproductive endocrinology and behavior. We implanted two animals with the GnRH agonist deslorelin and monitored their endocrine status using fecal steroid analysis. We have previously validated an assay for fecal pregnanes and here we report our validation for fecal estrogens. Both sex steroid concentrations were suppressed in two females, although one female exhibited an immediate post-implantation positive feedback response. Sexual activity nearly disappeared in one animal, whereas the other showed regular sexual behavior. The contraceptive effect lasted for at least 472 d, and successfully suppressed estrous cyclicity in one female for >2 y. We conclude that deslorelin implants provide a minimally invasive means for long-term suppression of reproduction in female giraffe.

  17. Enhanced GRK2 expression and desensitization of betaAR vasodilatation in hypertensive patients.

    PubMed

    Izzo, Raffaele; Cipolletta, Ersilia; Ciccarelli, Michele; Campanile, Alfonso; Santulli, Gaetano; Palumbo, Gianluigi; Vasta, Antonio; Formisano, Salvatore; Trimarco, Bruno; Iaccarino, Guido

    2008-12-01

    Increased levels of G protein coupled receptor kinase GRK2 appear to participate in hypertension presumably through the desensitization of beta adrenergic receptors (betaARs) that mediate vasodilatation. There are contrasting data on the occurrence of betaAR desensitization in the vasculature, we therefore investigated betaAR vasodilatation and desensitization in normotensives and in hypertensive humans. In blood lymphocytes, we assessed betaAR signaling and GRK2 expression and found betaAR signaling alterations and, consistent with desensitization, ncreased GRK2 levels in hypertensives. We studied in vivo vasodilatation to the betaAR agonist isoproterenol (ISO) injected in the brachia artery in control conditions and during the concomitant infusion of heparin, a known in vitro nonspecific GRK inhibitor. ISO induced a dose-dependent vasorelaxation that was attenuated in hypertensives indicating a loss of betaAR signaling. Intra-arterial infusion of heparin nhibited lymphocyte GRK2 activity and prevented desensitization of betaAR vasodilatation in normotensives. In hypertensives, heparin restored vasodilatation to ISO, to levels observed in normotensives. Our results suggest that betaAR desensitization does indeed occur at the vascular levels in vivo, and that heparin by acting as a GRK inhibitor prevents this in normotensives and restores impaired betaAR vasodilation in hypertensives. We conclude that desensitization participates to impaired betaAR vasodilation in hypertension.

  18. Topographic probes of angiotensin and receptor: potent angiotensin II agonist containing diphenylalanine and long-acting antagonists containing biphenylalanine and 2-indan amino acid in position 8.

    PubMed

    Hsieh, K H; LaHann, T R; Speth, R C

    1989-04-01

    A series of phenylalanine-mimicking amino acids with increasing conformational restraint were prepared and incorporated into angiotensin II, in order to develop topographic probes of angiotensin useful for probing receptor boundaries by molecular graphics analysis and for conformational analysis of the ligand by NMR. In binding studies, all analogues displayed high affinity for rat uterus (Ki of 0.74-6.08 nM) and brain (0.46-1.82 nM) receptors. In smooth muscle (rat uterus) contraction assay, the diphenylalanine-containing [Sar1,Dip8]AII and [Sar1,D-Dip8]AII were potent agonists with respectively 284% and 48% activity of [Asn1]AII. In contrast, the biphenylalanine-containing [Sar1,Bip8]AII, [Sar1,D-Bip8]AII, and the 2-indan amino acid containing [Sar1,2-Ind8]AII were potent inhibitors, approximately 9, 2, and 1.4 times more effective than a standard antagonist, [Sar1,Leu8]AII. Their respective pA10 values in rat uterus assay were 8.87, 8.70, and 8.82. By comparison, the pA10 value for [Sar1,Leu8]AII was 8.35. In rats, a single dose of 10 micrograms of [Sar1,2-Ind8]AII or [Sar1,Bip8]AII produced prolonged blockade of the pressor response toward angiotensin II for over 90 min. The very different pharmacological profiles of these rigid aromatic analogues suggest that the angiotensin receptor activation site consists of a relatively wide and elongated pocket with a narrow opening.

  19. A long-acting β2-adrenergic agonist increases the expression of muscarine cholinergic subtype‑3 receptors by activating the β2-adrenoceptor cyclic adenosine monophosphate signaling pathway in airway smooth muscle cells.

    PubMed

    Liu, Yuan-Hua; Wu, Song-Ze; Wang, Gang; Huang, Ni-Wen; Liu, Chun-Tao

    2015-06-01

    The persistent administration of β2‑adrenergic (β2AR) agonists has been demonstrated to increase the risk of severe asthma, partly due to the induction of tolerance to bronchoprotection via undefined mechanisms. The present study investigated the potential effect of the long‑acting β2‑adrenergic agonist, formoterol, on the expression of muscarinic M3 receptor (M3R) in rat airway smooth muscle cells (ASMCs). Primary rat ASMCs were isolated and characterized following immunostaining with anti‑α‑smooth muscle actin antibodies. The protein expression levels of M3R and phospholipase C‑β1 (PLCβ1) were characterized by western blot analysis and the production of inositol 1,4,5‑trisphosphate (IP3) was determined using an enzyme‑linked immunosorbent assay. Formoterol increased the protein expression of M3R in rat ASMCs in a time‑ and dose‑dependent manner, which was significantly inhibited by the β2AR antagonist, ICI118,551 and the cyclic adenosine monophosphate (cAMP) inhibitor, SQ22,536. The increased protein expression of M3R was positively correlated with increased production of PLCβ1 and IP3. Furthermore, treatment with the glucocorticoid, budesonide, and the PLC inhibitor, U73,122, significantly suppressed the formoterol‑induced upregulated protein expression levels of M3R and PLCβ1 and production of IP3. The present study demonstrated that formoterol mediated the upregulation of M3R in the rat ASMCs by activating the β2AR‑cAMP signaling pathway, resulting in increased expression levels of PLCβ1 and IP3, which are key to inducing bronchoprotection tolerance. Administration of glucocorticoids or a PLC antagonist prevented formoterol‑induced bronchoprotection tolerance by suppressing the protein expression of M3R. PMID:25672589

  20. A long-acting β2-adrenergic agonist increases the expression of muscarine cholinergic subtype-3 receptors by activating the β2-adrenoceptor cyclic adenosine monophosphate signaling pathway in airway smooth muscle cells

    PubMed Central

    LIU, YUAN-HUA; WU, SONG-ZE; WANG, GANG; HUANG, NI-WEN; LIU, CHUN-TAO

    2015-01-01

    The persistent administration of β2-adrenergic (β2AR) agonists has been demonstrated to increase the risk of severe asthma, partly due to the induction of tolerance to bronchoprotection via undefined mechanisms. The present study investigated the potential effect of the long-acting β2-adrenergic agonist, formoterol, on the expression of muscarinic M3 receptor (M3R) in rat airway smooth muscle cells (ASMCs). Primary rat ASMCs were isolated and characterized following immunostaining with anti-α-smooth muscle actin antibodies. The protein expression levels of M3R and phospholipase C-β1 (PLCβ1) were characterized by western blot analysis and the production of inositol 1,4,5-trisphosphate (IP3) was determined using an enzyme-linked immunosorbent assay. Formoterol increased the protein expression of M3R in rat ASMCs in a time- and dose-dependent manner, which was significantly inhibited by the β2AR antagonist, ICI118,551 and the cyclic adenosine monophosphate (cAMP) inhibitor, SQ22,536. The increased protein expression of M3R was positively correlated with increased production of PLCβ1 and IP3. Furthermore, treatment with the glucocorticoid, budesonide, and the PLC inhibitor, U73,122, significantly suppressed the formoterol-induced upregulated protein expression levels of M3R and PLCβ1 and production of IP3. The present study demonstrated that formoterol mediated the upregulation of M3R in the rat ASMCs by activating the β2AR-cAMP signaling pathway, resulting in increased expression levels of PLCβ1 and IP3, which are key to inducing bronchoprotection tolerance. Administration of glucocorticoids or a PLC antagonist prevented formoterol-induced bronchoprotection tolerance by suppressing the protein expression of M3R. PMID:25672589

  1. Troglitazone stimulates {beta}-arrestin-dependent cardiomyocyte contractility via the angiotensin II type 1{sub A} receptor

    SciTech Connect

    Tilley, Douglas G.; Nguyen, Anny D.; Rockman, Howard A.

    2010-06-11

    Peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) agonists are commonly used to treat cardiovascular diseases, and are reported to have several effects on cardiovascular function that may be due to PPAR{gamma}-independent signaling events. Select angiotensin receptor blockers (ARBs) interact with and modulate PPAR{gamma} activity, thus we hypothesized that a PPAR{gamma} agonist may exert physiologic effects via the angiotensin II type 1{sub A} receptor (AT1{sub A}R). In AT1{sub A}R-overexpressing HEK 293 cells, both angiotensin II (Ang II) and the PPAR{gamma} agonist troglitazone (Trog) enhanced AT1{sub A}R internalization and recruitment of endogenous {beta}-arrestin1/2 ({beta}arr1/2) to the AT1{sub A}R. A fluorescence assay to measure diacylglycerol (DAG) accumulation showed that although Ang II induced AT1{sub A}R-G{sub q} protein-mediated DAG accumulation, Trog had no impact on DAG generation. Trog-mediated recruitment of {beta}arr1/2 was selective to AT1{sub A}R as the response was prevented by an ARB- and Trog-mediated {beta}arr1/2 recruitment to {beta}1-adrenergic receptor ({beta}1AR) was not observed. In isolated mouse cardiomyocytes, Trog increased both % and rate of cell shortening to a similar extent as Ang II, effects which were blocked with an ARB. Additionally, these effects were found to be {beta}arr2-dependent, as cardiomyocytes isolated from {beta}arr2-KO mice showed blunted contractile responses to Trog. These findings show for the first time that the PPAR{gamma} agonist Trog acts at the AT1{sub A}R to simultaneously block G{sub q} protein activation and induce the recruitment of {beta}arr1/2, which leads to an increase in cardiomyocyte contractility.

  2. Recent advances in the discovery of alpha1-adrenoceptor agonists.

    PubMed

    Bishop, Michael J

    2007-01-01

    The alpha(1) adrenoceptors are three of nine well-characterized receptors that are activated by epinephrine and norepinephrine. Agonists acting at the alpha(1) adrenoceptors produce numerous physiological effects, and are used therapeutically for several indications. Many known alpha(1) adrenoceptor agonists are alpha(1A) selective, but the discovery of highly selective alpha(1B) and alpha(1D) adrenoceptor agonists has proven to be an extremely difficult goal to achieve. This review will focus on recent advances in the discovery, development and clinical utility of subtype-specific alpha(1) agonists as well as contributions to our understanding of agonist-receptor interactions.

  3. Sports doping: emerging designer and therapeutic β2-agonists.

    PubMed

    Fragkaki, A G; Georgakopoulos, C; Sterk, S; Nielen, M W F

    2013-10-21

    Beta2-adrenergic agonists, or β2-agonists, are considered essential bronchodilator drugs in the treatment of bronchial asthma, both as symptom-relievers and, in combination with inhaled corticosteroids, as disease-controllers. The use of β2-agonists is prohibited in sports by the World Anti-Doping Agency (WADA) due to claimed anabolic effects, and also, is prohibited as growth promoters in cattle fattening in the European Union. This paper reviews the last seven-year (2006-2012) literature concerning the development of novel β2-agonists molecules either by modifying the molecule of known β2-agonists or by introducing moieties producing indole-, adamantyl- or phenyl urea derivatives. New emerging β2-agonists molecules for future therapeutic use are also presented, intending to emphasize their potential use for doping purposes or as growth promoters in the near future.

  4. The in vivo efficacy and side effect pharmacology of GS-5759, a novel bifunctional phosphodiesterase 4 inhibitor and long-acting β 2-adrenoceptor agonist in preclinical animal species.

    PubMed

    Salmon, Michael; Tannheimer, Stacey L; Gentzler, Terry T; Cui, Zhi-Hua; Sorensen, Eric A; Hartsough, Kimberly C; Kim, Musong; Purvis, Lafe J; Barrett, Edward G; McDonald, Jacob D; Rudolph, Karin; Doyle-Eisele, Melanie; Kuehl, Philip J; Royer, Christopher M; Baker, William R; Phillips, Gary B; Wright, Clifford D

    2014-08-01

    Bronchodilators are a central therapy for symptom relief in respiratory diseases such as chronic obstructive pulmonary disease (COPD) and asthma, with inhaled β 2-adrenoceptor agonists and anticholinergics being the primary treatments available. The present studies evaluated the in vivo pharmacology of (R)-6-[[3-[[4-[5-[[2-Hydroxy-2-(8-hydroxy-2-oxo-1,2-dihydroquinolin-5-yl)ethyl]amino]pent-1-ynyl]phenyl]carbamoyl]phenyl]sulfonyl]-4-[(3-methoxyphenyl)amino]-8-methylquinoline-3-carboxamide (GS-5759), a novel bifunctional compound with both phosphodiesterase 4 (PDE4) inhibitor and long-acting β 2-adrenoceptor agonist (LABA) activity, which has been optimized for inhalation delivery. GS-5759 dose-dependently inhibited pulmonary neutrophilia in a lipopolysaccharide (LPS) aerosol challenge model of inflammation in rats with an ED50 ≤ 10 μg/kg. GS-5759 was also a potent bronchodilator with an ED50 of 0.09 μg/kg in guinea pigs and 3.4 μg/kg in dogs after methylcholine (MCh) and ragweed challenges respectively. In cynomolgus monkeys, GS-5759 was dosed as a fine-particle dry powder and was efficacious in the same dose range in both MCh and LPS challenge models, with an ED50 = 70 μg/kg for bronchodilation and ED50 = 4.9 μg/kg for inhibition of LPS-induced pulmonary neutrophilia. In models to determine therapeutic index (T.I.), efficacy for bronchodilation was evaluated against increased heart rate and GS-5759 had a T.I. of 700 in guinea pigs and >31 in dogs. In a ferret model of emesis, no emesis was seen at doses several orders of magnitude greater than the ED50 observed in the rat LPS inflammation model. GS-5759 is a bifunctional molecule developed for the treatment of COPD, which has both bronchodilator and anti-inflammatory activity and has the potential for combination as a triple therapy with a second compound, within a single inhalation device.

  5. Structural basis for receptor subtype-specific regulation revealed by a chimeric beta 3/beta 2-adrenergic receptor.

    PubMed Central

    Liggett, S B; Freedman, N J; Schwinn, D A; Lefkowitz, R J

    1993-01-01

    The physiological significance of multiple G-protein-coupled receptor subtypes, such as the beta-adrenergic receptors (beta ARs), remains obscure, since in many cases several subtypes activate the same effector and utilize the same physiological agonists. We inspected the deduced amino acid sequences of the beta AR subtypes for variations in the determinants for agonist regulation as a potential basis for subtype differentiation. Whereas the beta 2AR has a C terminus containing 11 serine and threonine residues representing potential sites for beta AR kinase phosphorylation, which mediates rapid agonist-promoted desensitization, only 3 serines are present in the comparable region of the beta 3AR, and they are in a nonfavorable context. The beta 3AR also lacks sequence homology in regions which are important for agonist-mediated sequestration and down-regulation of the beta 2AR, although such determinants are less well defined. We therefore tested the idea that the agonist-induced regulatory properties of the two receptors might differ by expressing both subtypes in CHW cells and exposing them to the agonist isoproterenol. The beta 3AR did not display short-term agonist-promoted functional desensitization or sequestration, or long-term down-regulation. To assign a structural basis for these subtype-specific differences in agonist regulation, we constructed a chimeric beta 3/beta 2AR which comprised the beta 3AR up to proline-365 of the cytoplasmic tail and the C terminus of the beta 2AR. When cells expressing this chimeric beta 3/beta 2AR were exposed to isoproterenol, functional desensitization was observed. Whole-cell phosphorylation studies showed that the beta 2AR displayed agonist-dependent phosphorylation, but no such phosphorylation could be demonstrated with the beta 3AR, even when beta AR kinase was overexpressed. In contrast, the chimeric beta 3/beta 2AR did display agonist-dependent phosphorylation, consistent with its functional desensitization. In

  6. [beta]1-Adrenoceptor or [alpha]1-Adrenoceptor Activation Initiates Early Odor Preference Learning in Rat Pups: Support for the Mitral Cell/cAMP Model of Odor Preference Learning

    ERIC Educational Resources Information Center

    Harley, Carolyn W.; Darby-King, Andrea; McCann, Jennifer; McLean, John H.

    2006-01-01

    We proposed that mitral cell [beta]1-adrenoceptor activation mediates rat pup odor preference learning. Here we evaluate [beta]1-, [beta]2-, [alpha]1-, and [alpha]2-adrenoceptor agonists in such learning. The [beta]1-adrenoceptor agonist, dobutamine, and the [alpha]1-adrenoceptor agonist, phenylephrine, induced learning, and both exhibited an…

  7. TOXICITY OF AHR AGONISTS TO FISH EARLY LIFE STAGES

    EPA Science Inventory

    Fish early life stages are exceptionally sensitive to the lethal toxicity of chemicals that act as arylhydrocarbon receptor (AhR) agonists. Toxicity characterizations based on 2,3,7,8-tetrachlorodibenzo-p-dioxin, generally the most potent AhR agonist, support the toxicity equiva...

  8. Selecting, Characterizing, and Acting on Drift Waves and Flute Modes Turbulence in a Low-{beta} Magnetized Plasma Column

    SciTech Connect

    Bonhomme, G.; Brochard, F.; Gravier, E.; Oldenbuerger, S.; Philipp, M.

    2006-01-15

    We report on experiments performed on the low-{beta} plasma device MIRABELLE. Using a limiter, we recently observed that when increasing the magnetic field strength transitions between various gradient driven instabilities occur. New thorough measurements allow to identify unambiguously three instability regimes. At low magnetic field the strong ErxB velocity shear drives a Kelvin-Helmholtz instability, whereas at high magnetic field drift waves are only observed. A centrifugal (Rayleigh-Taylor) instability is also observed in between when the poloidal velocity field is shearless and strong enough. A close connection is made between the ratio {rho}s /L perpendicular of the drift parameter to the radial density gradient length and each instability regime. The transition scenario from regular waves to turbulence was experimentally investigated. As for drift waves the transition from regular state to spatio-temporal chaos and turbulence follows the quasi-periodicity (or Ruelle-Takens-Newhouse) route. Eventually we present new results on the efficiency of control and synchronization methods on Kelvin-Helmholtz and Rayleigh-Taylor spatio-temporal chaos in comparison with drift waves.

  9. An alpha-galactosidase from an acidophilic Bispora sp. MEY-1 strain acts synergistically with beta-mannanase.

    PubMed

    Wang, Hui; Luo, Huiying; Li, Jiang; Bai, Yingguo; Huang, Huoqing; Shi, Pengjun; Fan, Yunliu; Yao, Bin

    2010-11-01

    An alpha-galactosidase gene (AgalB) was cloned from the acidophilic fungus Bispora sp. MEY-1 and expressed in Pichia pastoris. The deduced amino acid sequence showed highest identity (35%) to the alpha-galactosidase from Penicillium simplicissimum, belonging to the glycosyl hydrolase family 27. The purified recombinant alpha-galactosidase (r-AgalB) exhibited optimal activity at pH 3.5 and 55 degrees C, was stable at pH 2.2-8.0, and showed higher hydrolytic activity towards galactomannan polysaccharides (guar gum and locust bean gum) than toward small galacto-oligosaccharides (melibiose, raffinose and stachyose). A synergistic (3-fold) increase in guar gum hydrolysis was observed when beta-mannanase Man5A from Bispora sp. MEY-1 and r-AgalB were combined. Further, an increase in the reaction time from 5h to 12h or increase of the temperature from 37 degrees C to 55 degrees C enhanced guar gum degradation by the enzyme combination. These properties make r-AgalB a good candidate for extensive application in the pulp/paper, food, and feed industries.

  10. Transcriptional co-factor Transducin beta-like (TBL) 1 acts as a checkpoint in pancreatic cancer malignancy

    PubMed Central

    Stoy, Christian; Sundaram, Aishwarya; Rios Garcia, Marcos; Wang, Xiaoyue; Seibert, Oksana; Zota, Annika; Wendler, Susann; Männle, David; Hinz, Ulf; Sticht, Carsten; Muciek, Maria; Gretz, Norbert; Rose, Adam J; Greiner, Vera; Hofmann, Thomas G; Bauer, Andrea; Hoheisel, Jörg; Berriel Diaz, Mauricio; Gaida, Matthias M; Werner, Jens; Schafmeier, Tobias; Strobel, Oliver; Herzig, Stephan

    2015-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer fatalities in Western societies, characterized by high metastatic potential and resistance to chemotherapy. Critical molecular mechanisms of these phenotypical features still remain unknown, thus hampering the development of effective prognostic and therapeutic measures in PDAC. Here, we show that transcriptional co-factor Transducin beta-like (TBL) 1 was over-expressed in both human and murine PDAC. Inactivation of TBL1 in human and mouse pancreatic cancer cells reduced cellular proliferation and invasiveness, correlating with diminished glucose uptake, glycolytic flux, and oncogenic PI3 kinase signaling which in turn could rescue TBL1 deficiency-dependent phenotypes. TBL1 deficiency both prevented and reversed pancreatic tumor growth, mediated transcriptional PI3 kinase inhibition, and increased chemosensitivity of PDAC cells in vivo. As TBL1 mRNA levels were also found to correlate with PI3 kinase levels and overall survival in a cohort of human PDAC patients, TBL1 was identified as a checkpoint in the malignant behavior of pancreatic cancer and its expression may serve as a novel molecular target in the treatment of human PDAC. PMID:26070712

  11. A pharmacodynamic study on clenbuterol-induced toxicity: beta1- and beta2-adrenoceptors involvement in guinea-pig tachycardia in an in vitro model.

    PubMed

    Mazzanti, Gabriela; Di Sotto, Antonella; Daniele, Claudia; Battinelli, Lucia; Brambilla, Gianfranco; Fiori, Maurizio; Loizzo, Stefano; Loizzo, Alberto

    2007-09-01

    Beta(2)-receptor adrenergic agonists as clenbuterol and analogues are illegally used as growth promoters in cattle, in Europe, as well as in other countries. Following consumption of meat or liver, intoxication cases were described, and cardiovascular toxic effects (tachycardia, hypertension) were of clinical relevance. Therefore, we investigated whether heart rate increase induced by clenbuterol could depend upon stimulation of beta(1)- and/or beta(2)-adrenergic receptors, and in which ratio. We used in vitro guinea-pig atria, a model in which beta(1)-/beta(2)-receptors ratio is similar to that found in men. In our experiments both beta(1)- and beta(2)-receptors contributed to clenbuterol-induced heart rate increase, but with a different potency. The selective beta(2)-antagonist ICI-118,551 competitively antagonized responses to clenbuterol with high affinity (pA(2) 9.47+/-0.28, SchildSlope 0.98+/-0.20 not significantly different from unity, K(B) 0.34 nM). The selective beta(1)-antagonist atenolol antagonized clenbuterol with a relatively lower affinity (pA(2)=7.59+/-0.14), the SchildSlope=1.97+/-0.33 was significantly different from unity (P<0.05). Results show that clenbuterol stimulates guinea-pig heart rate by acting chiefly on beta(2)-adrenoceptor, although responses to clenbuterol apparently are mediated by an inter-play between both beta-adrenoceptors. Further experiments are necessary to understand which beta-adrenergic antagonists are of effectiveness to counteract cardiovascular effects in case of intoxication following clenbuterol, or other beta-adrenergic stimulants.

  12. A cross-sectional study of the identification of prevalent asthma and chronic obstructive pulmonary disease among initiators of long-acting β-agonists in health insurance claims data

    PubMed Central

    2014-01-01

    Background Claims data are potentially useful for identifying long-acting β-agonist (LABA) use by patients with asthma, a practice that is associated with increased mortality. We evaluated the accuracy of claims data for classifying prevalent asthma and chronic obstructive pulmonary disease (COPD) among initiators of LABAs. Methods This study included adult LABA initiators during 2005–2008 in a US commercial health plan. Diagnosis codes from the 6 months before LABA initiation identified potential asthma or COPD and a physician adjudicated case status using abstracted medical records. We estimated the positive predictive value (PPV) and 95% confidence intervals (CI) of covariate patterns for identifying asthma and COPD. Results We sought 520 medical records at random from 225,079 LABA initiators and received 370 (71%). The PPV for at least one asthma claim was 74% (CI 63–82), and decreased as age increased. Having at least one COPD claim resulted in a PPV of 82% (CI 72–89), and of over 90% among older patients, men, and recipients of inhaled anticholinergic drugs. Only 2% (CI 0.2–7.6) of patients with a claim for COPD alone were found to have both COPD and asthma, while 9% (CI 4–16) had asthma only. Twenty-one percent (CI 14–30) of patients with claims for both diagnoses had both conditions. Among patients with no asthma or COPD claims, 62% (CI 50–72) had no confirmed diagnosis and 29% (CI 19–39) had confirmed asthma. Conclusions Subsets of patients with asthma, COPD, and both conditions can be identified and differentiated using claims data, although categorization of the remaining patients is infeasible. Safety surveillance for off-label use of LABAs must account for this limitation. PMID:24645984

  13. [PPAR receptors and insulin sensitivity: new agonists in development].

    PubMed

    Pégorier, J-P

    2005-04-01

    Thiazolidinediones (or glitazones) are synthetic PPARgamma (Peroxisome Proliferator-Activated Receptors gamma) ligands with well recognized effects on glucose and lipid metabolism. The clinical use of these PPARgamma agonists in type 2 diabetic patients leads to an improved glycemic control and an inhanced insulin sensitivity, and at least in animal models, to a protective effect on pancreatic beta-cell function. However, they can produce adverse effects, generally mild or moderate, but some of them (mainly peripheral edema and weight gain) may conduct to treatment cessation. Several pharmacological classes are currently in pre-clinical or clinical development, with the objective to retain the beneficial metabolic properties of PPARgamma agonists, either alone or in association with the PPARalpha agonists (fibrates) benefit on lipid profile, but devoid of the side-effects on weight gain and fluid retention. These new pharmacological classes: partial PPARgamma agonists, PPARgamma antagonists, dual PPARalpha/PPARgamma agonists, pan PPARalpha/beta(delta)/gamma agonists, RXR receptor agonists (rexinoids), are presented in this review. Main results from in vitro cell experiments and animal model studies are discussed, as well as the few published short-term studies in type 2 diabetic patients. PMID:15959400

  14. Analysis of agonist dissociation constants as assessed by functional antagonism in guinea pig left atria

    SciTech Connect

    Molenaar, P.; Malta, E.

    1986-04-01

    In electrically driven guinea pig left atria, positive inotropic responses to (-)-isoprenaline and the selective beta 1-adrenoceptor agonist RO363 were obtained in the absence and in the presence of the functional antagonists adenosine, carbachol, gallopamil, nifedipine, and Ro 03-7894. Each of the functional antagonists reduced the maximum response to both agonists and produced nonparallel rightward shifts in the cumulative concentration effect curves. For both agonists, dissociation constants (KA) were calculated using the equation described by Furchgott (1966) for irreversible antagonism. For RO363, which is a partial agonist with high agonist activity, the equations outlined for functional interaction by Mackay (1981) were also employed to calculate KA values. The KA values obtained by each method were compared with the dissociation constants (KD) for the two agonists determined from their ability to displace the radioligand (-)-(/sup 125/I)iodocyanopindolol from beta 1-adrenoceptors in guinea pig left atrial membrane preparations. The estimates of KA varied substantially from KD values. The KD values were taken as more accurate estimates of the true values for the dissociation constants because a high degree of correlation exists between pKD and pD2 values for a number of other beta-adrenoceptor agonists that behave as partial agonists and between pKD and pKB values for a number of beta-adrenoceptor antagonists. Thus, it appears that there are serious limitations in the current theory for using functional antagonism as a means of obtaining agonist dissociation constants.

  15. Agonist-Directed Desensitization of the β2-Adrenergic Receptor

    PubMed Central

    Goral, Vasiliy; Jin, Yan; Sun, Haiyan; Ferrie, Ann M.; Wu, Qi; Fang, Ye

    2011-01-01

    The β2-adrenergic receptor (β2AR) agonists with reduced tachyphylaxis may offer new therapeutic agents with improved tolerance profile. However, receptor desensitization assays are often inferred at the single signaling molecule level, thus ligand-directed desensitization is poorly understood. Here we report a label-free biosensor whole cell assay with microfluidics to determine ligand-directed desensitization of the β2AR. Together with mechanistic deconvolution using small molecule inhibitors, the receptor desensitization and resensitization patterns under the short-term agonist exposure manifested the long-acting agonism of salmeterol, and differentiated the mechanisms of agonist-directed desensitization between a full agonist epinephrine and a partial agonist pindolol. This study reveals the cellular mechanisms of agonist-selective β2AR desensitization at the whole cell level. PMID:21541288

  16. Two mutations in the locus control region hypersensitivity site-2 (5' HS-2) of haplotype 19 beta s chromosomes alter binding of trans-acting factors.

    PubMed

    Morgan, J C; Scott, D F; Lanclos, K D

    1996-01-01

    There are five major haplotypes associated with sickle cell anemia (SS). Individuals homozygous for haplotypes 3 (Senegal) and 31 (Saudi Arabian) have high fetal hemoglobin (HbF) levels (15 to 30% of total hemoglobin) whereas individuals homozygous for haplotypes 17 (Cameroon), 19 (Benin), and 20 (Bantu) have low HbF levels (1 to 10%). We previously identified several point mutations in the LCR 5'HS-2 that were specific for haplotype 19 beta s chromosomes (compared to the GenBank HUMHBB reference sequence, T-->G at position 8580, A-->G at position 8598, and A-->T at position 9114). We postulated that one or more of these mutations may alter the binding of specific trans-acting factors and ultimately affect the expression of HbF in these sickle cell patients. We performed gel mobility shift assays using 32P-end-labeled double-stranded 19mers corresponding to each of the LCR 5'HS-2 normal (GenBank) and mutant sequences. Nuclear extracts prepared from HeLa and HEL cells were used in our experiments and neither the normal nor mutant sequence at position 8580 bound trans-acting factors in either nuclear extract. The 8598 mutant increased binding of Sp1; using purified protein and both nuclear extracts. HEL extracts were used to quantify the increase in Sp1 binding to the 8598 mutation and we found an increase in binding of 66 and 47%, respectively, in two shifted bands. The 9114 mutation sharply decreased binding of an unknown trans-acting factor by 74%. This factor was present in both HeLa and HEL nuclear extracts.

  17. HIGH-THROUGHPUT SCREENING FOR NOVEL HUMAN LYSOSOMAL BETA-N-ACETYL HEXOSAMINIDASE INHIBITORS ACTING AS PHARMACOLOGICAL CHAPERONES

    PubMed Central

    Tropak, Michael B.; Blanchard, Jan; Withers, Stephen G.; Brown, Eric; Mahuran, Don

    2007-01-01

    Summary The Adult forms of Tay-Sachs (ATSD) and Sandhoff (ASD) diseases result when the activity levels of human β-hexosaminidase A (Hex) fall below ~10% of normal, due to mutations that destabilize the native folded form of the enzyme in the endoplasmic reticulum (ER). The native fold not only conveys activity, but is also required for the transport of the enzyme out of the ER to the lysosome. We have shown that conventional carbohydrate-based competitive inhibitors of purified Hex also act as pharmacological chaperones (PC) in ATSD or ASD cells, overcoming to some extent the destabilizing effects of the mutation, increasing the levels of mutant Hex protein and activity in the lysosome 3–6 fold. We now report the development of a fluorescence-based real-time enzyme assay suitable for high throughput screening of the Maybridge library of 50,000 drug-like compounds to identify novel inhibitors (hits) of purified human Hex. Each hit was then evaluated as a PC in a cell-based assay. Three structurally distinct compounds, a bisnaphthalimide, a nitro-indan-1-one, and a pyrrolo[3,4-d]pyridazin-1-one were identified as micromolar competitive inhibitors of the enzyme that also specifically increased the levels of lysosomal Hex protein and activity in patient fibroblasts. PMID:17317569

  18. A circulating IgG in Chagas' disease which binds to beta-adrenoceptors of myocardium and modulates their activity.

    PubMed Central

    Borda, E; Pascual, J; Cossio, P; De La Vega, M; Arana, R; Sterin-Borda, L

    1984-01-01

    It has been shown that sera from chagasic patients with positive EVI serology could act in co-operation with complement or normal human lymphocytes as a partial beta-adrenoceptor agonist increasing the contractile tension and frequency of isolated rat atria, as occurs with IgG purified from chagasic serum. In this paper we demonstrated that IgG present in chagasic patients sera could bind to the beta-adrenoceptors of the heart and stimulate contractile activity of myocardium. The positive inotropic and chronotropic effect could be blocked by the specific beta 1-adrenoceptor antagonist but not by the beta 2-adrenoceptor antagonist. Chagasic IgG inhibited the binding of (-) 3H-DHA to beta-adrenoceptors of purified rat myocardial membranes behaving as non-competitive inhibitors. The reactivity of chagasic serum or IgG with beta 1-adrenoceptor was lost after absorptions with turkey red blood cells. In contrast, guinea-pig red blood cells were unable to remove the beta 1 reactivity of chagasic serum or chagasic IgG. This supports the specificity of beta 1-adrenoceptors of the chagasic IgG and the independence of beta 1-adrenoceptor reactivity in relation to the EVI system. Clinical specificity of the beta 1-adrenoceptor reactivity seems rather high in Chagas' disease since it was lacking in 14 individuals with other cardiopathies, such as ischaemic and rheumatic heart disease, even after heart surgery. PMID:6088139

  19. Labeled ALPHA4BETA2 ligands and methods therefor

    DOEpatents

    Mukherjee, Jogeshwar; Pichika, Ramaiah; Potkin, Steven; Leslie, Frances; Chattopadhyay, Sankha

    2013-02-19

    Contemplated compositions and methods are employed to bind in vitro and in vivo to an .alpha.4.beta.2 nicotinic acetylcholine receptor in a highly selective manner. Where such compounds are labeled, compositions and methods employing such compounds can be used for PET and SPECT analysis. Alternatively, and/or additionally contemplated compounds can be used as antagonists, partial agonists or agonists in the treatment of diseases or conditions associated with .alpha.4.beta..beta.2 dysfunction.

  20. Behaviour of beta 2-adrenoceptors on lymphocytes under continuous and pulsatile tocolysis with Fenoterol.

    PubMed

    Schmidt-Rhode, Peter; Brunke, Björn; Schröer, Heinrich; Obert, Kirstin; Schlegel, Kerstin; Sturm, Gerhard; Schulz, Klaus-Dieter; von Wichert, Peter

    2003-01-01

    The present study investigates the population of beta 2-receptors on lymphocytes in pregnant women with premature labor between the 29th and 34th week of pregnancy. The population of receptors on lymphocytes correlates with that on the myometrium, which is not accessible for study during pregnancy. Fourteen patients received a pulsatile tocolysis, while ten women received a continuous tocolysis with Fenoterol. Assuming an equal population of receptors in both groups before commencement of therapy, the numbers of receptors in the patients with continuous tocolysis fell to about 35% of the initial value after 72 hours. Under pulsatile tocolysis, the numbers of receptors remained unchanged for a period of three days and was still only just below 70% of the initial value by the seventh day. Our data demonstrate that continuous administration of the short-acting beta 2-agonist Fenoterol resulted in a substantial loss of beta 2-adrenoceptors on lymphocytes. In contrast, intermittent administration of the same beta 2-adrenergic agonist prevented the onset of receptor down-regulation in pregnant women with preterm labor. Further studies are required to investigate the impact of the decreased loss of beta 2-adrenoceptor density on the good clinical experience with intermittent tocolysis.

  1. Development of Phodopus sungorus brown preadipocytes in primary cell culture: effect of an atypical beta-adrenergic agonist, insulin, and triiodothyronine on differentiation, mitochondrial development, and expression of the uncoupling protein UCP

    PubMed Central

    1991-01-01

    A new cellular model for the study of brown adipocyte development and differentiation in vitro is presented. Preadipocytes isolated from brown adipose tissue (BAT) of the djungarian dwarf hamster Phodopus sungorus are able to proliferate and differentiate in vitro into true brown adipocytes able to express the BAT marker protein the uncoupling protein (UCP). Whereas basal UCP expression is very low, its mRNA levels as well as the UCP detected by immunoblotting are highly increased by beta-adrenergic stimulation. The novel, atypical beta- adrenergic compound D7114 (ICI Pharmaceuticals, Macclesfield, Cheshire, England) was found to increase the number of adipocytes as well as UCP mRNA and UCP content of mitochondria, indicating the involvement of an atypical or beta 3 receptor. Insulin was found to play an important role in brown adipocyte differentiation and mitochondrial development, whereas T3 seemed to be implicated more directly in UCP expression. In a defined, serum-free medium a synergistic stimulatory action of insulin and T3 on UCP expression was found, which seems to involve a pathway different from that of beta-adrenergic UCP stimulation. PMID:1684582

  2. Development of Phodopus sungorus brown preadipocytes in primary cell culture: effect of an atypical beta-adrenergic agonist, insulin, and triiodothyronine on differentiation, mitochondrial development, and expression of the uncoupling protein UCP.

    PubMed

    Klaus, S; Cassard-Doulcier, A M; Ricquier, D

    1991-12-01

    A new cellular model for the study of brown adipocyte development and differentiation in vitro is presented. Preadipocytes isolated from brown adipose tissue (BAT) of the djungarian dwarf hamster Phodopus sungorus are able to proliferate and differentiate in vitro into true brown adipocytes able to express the BAT marker protein the uncoupling protein (UCP). Whereas basal UCP expression is very low, its mRNA levels as well as the UCP detected by immunoblotting are highly increased by beta-adrenergic stimulation. The novel, atypical beta-adrenergic compound D7114 (ICI Pharmaceuticals, Macclesfield, Cheshire, England) was found to increase the number of adipocytes as well as UCP mRNA and UCP content of mitochondria, indicating the involvement of an atypical or beta 3 receptor. Insulin was found to play an important role in brown adipocyte differentiation and mitochondrial development, whereas T3 seemed to be implicated more directly in UCP expression. In a defined, serum-free medium a synergistic stimulatory action of insulin and T3 on UCP expression was found, which seems to involve a pathway different from that of beta-adrenergic UCP stimulation. PMID:1684582

  3. Transcription factor Egr1 acts as an upstream regulator of beta-catenin signalling through up-regulation of TCF4 and p300 expression during trans-differentiation of endometrial carcinoma cells.

    PubMed

    Saegusa, M; Hashimura, M; Kuwata, T; Hamano, M; Watanabe, J; Kawaguchi, M; Okayasu, I

    2008-12-01

    The beta-catenin/TCF4/p300 pathway is involved in early signalling for trans-differentiation towards the morular phenotype of endometrial carcinoma cells, but little is known about the upstream regulators. Here we show that transcription factor early growth response 1 (Egr1) acts as an initial mediator through up-regulating the expression of TCF4 and p300. In an endometrial carcinoma cell line with abundant oestrogen receptor alpha, Egr1 expression at both mRNA and protein levels was significantly increased by serum and 17beta-oestradiol stimuli. Serum-stimulated cells also showed increased expression of TCF4 and p300, while inhibition of Egr1 by specific siRNAs resulted in decreased expression. Transfection of Egr1 led to transactivation of TCF4 as well as p300 genes, through specific binding to a promoter region, and thus in turn resulted in nuclear accumulation of beta-catenin mediated by the up-regulating TCF4. The overexpression also caused inhibition of beta-catenin/TCF4/p300-mediated transcription, probably through sequestration of p300. Egr1 promoter activity was increased by serum but not 17beta-oestradiol, in contrast to the marked repression associated with TCF4, p300, and Egr1 itself, indicating that the regulation involves several feedback loops. In clinical samples, cells immunopositive for nuclear Egr1, as well as beta-catenin and TCF4, were found to be sporadically distributed in glandular components of endometrial carcinoma with morules. A significant positive correlation between nuclear beta-catenin and TCF4 was observed, but no such link was evident for Egr1, probably due to the existence of negative feedback regulation. Together, these data indicate that Egr1 may participate in modulation of the beta-catenin/TCF4/p300 signalling pathway as an initial event during trans-differentiation of endometrial carcinoma cells, through its impact on several signalling networks.

  4. Pindolol--the pharmacology of a partial agonist.

    PubMed Central

    Clark, B J; Menninger, K; Bertholet, A

    1982-01-01

    1 Pindolol is a non-selective beta-adrenoceptor blocking agent; its affinity to adrenoceptors in guinea pig atria (beta 1) is not significantly different from that in guinea pig trachea (beta 1 + beta 2) and canine vascular smooth muscle (beta 2). 2 Pindolol displays a striking diversity of agonist activities in isolated tissues. Stimulant effects correspond to 40--50% of the maximum effects of isoprenaline in isolated kitten atria and guinea pig trachea and to only 10% in guinea pig atria. Effects in canine isolated mesenteric vessels are those of a full agonist, maximum responses equaling those of isoprenaline. These findings suggest that the stimulant effects of pindolol are exerted principally on beta 2-adrenoceptors. 3 Cardiac stimulation produced by pindolol in the dog is sufficient to compensate for the cardiac depression resulting from blockade of beta-adrenoceptors in the heart. Reductions in cardiac output and compensatory increases in total peripheral resistance do not occur or are much smaller than those produced by beta-adrenoceptor blocking agents lacking sympathomimetic activity. 4 Pindolol-induced relaxation of bronchial smooth muscle prevents or minimizes the bronchoconstrictor effects of injected spasmogens in the cat. 5 Pindolol has marked vasodilator activity, small doses reducing femoral and mesenteric vascular resistance by approximately 30%. Doses comparable to those used in hypertensive patients lower blood pressure by 20 mmHg in non-anaesthetized dogs. PMID:7049208

  5. Tumor necrosis factor and CD11/CD18 (beta 2) integrins act synergistically to lower cAMP in human neutrophils

    PubMed Central

    1990-01-01

    The ability of neutrophils (PMN) to undergo a prolonged respiratory burst in response to cytokines such as tumor necrosis factor-alpha (TNF) depends on expression of CD11/CD18 (beta 2) integrins and interaction with matrix protein-coated surfaces (Nathan, C., S. Srimal, C. Farber, E. Sanchez, L. Kabbash, A. Asch, J. Gailit, and S. D. Wright. 1989. J. Cell Biol. 109:1341-1349). We tested the hypothesis that changes in cAMP mediate the joint action of cytokines and integrins. When plated on FBS- or fibrinogen-coated surfaces, PMN responded to TNF with a sustained fall in intracellular cAMP. This did not occur without TNF; in suspended PMN; in PMN treated with anti-CD18 mAb; or in PMN genetically deficient in beta 2 integrins. A preceding fall in cAMP appeared essential for TNF to induce a respiratory burst, because drugs that elevate cAMP blocked the burst if added any time before, but not after, its onset. Adenosine analogues and cytochalasins also block the TNF-induced respiratory burst if added before, but not after, its onset. Both also blocked the TNF-induced fall in cAMP. The effect of cytochalasins led us to examine the relationship between cAMP and actin reorganization. The same conditions that led to a sustained fall in cAMP led at the same time to cell spreading and the assembly of actin filaments. As with the respiratory burst, cAMP-elevating agents inhibited TNF-induced cell spreading and actin filament assembly if added before, but not after, spreading began. Thus, occupation of TNF receptors and engagement of CD18 integrins interact synergistically in PMN to promote a fall in cAMP. The fall in cAMP is closely related to cell spreading and actin reorganization. These changes are necessary for TNF to induce a prolonged respiratory burst. We conclude that integrins can act jointly with cytokines to affect cell shape and function through alterations in the level of a second messenger, cAMP. PMID:1699953

  6. Tumor necrosis factor and CD11/CD18 (beta 2) integrins act synergistically to lower cAMP in human neutrophils.

    PubMed

    Nathan, C; Sanchez, E

    1990-11-01

    The ability of neutrophils (PMN) to undergo a prolonged respiratory burst in response to cytokines such as tumor necrosis factor-alpha (TNF) depends on expression of CD11/CD18 (beta 2) integrins and interaction with matrix protein-coated surfaces (Nathan, C., S. Srimal, C. Farber, E. Sanchez, L. Kabbash, A. Asch, J. Gailit, and S. D. Wright. 1989. J. Cell Biol. 109:1341-1349). We tested the hypothesis that changes in cAMP mediate the joint action of cytokines and integrins. When plated on FBS- or fibrinogen-coated surfaces, PMN responded to TNF with a sustained fall in intracellular cAMP. This did not occur without TNF; in suspended PMN; in PMN treated with anti-CD18 mAb; or in PMN genetically deficient in beta 2 integrins. A preceding fall in cAMP appeared essential for TNF to induce a respiratory burst, because drugs that elevate cAMP blocked the burst if added any time before, but not after, its onset. Adenosine analogues and cytochalasins also block the TNF-induced respiratory burst if added before, but not after, its onset. Both also blocked the TNF-induced fall in cAMP. The effect of cytochalasins led us to examine the relationship between cAMP and actin reorganization. The same conditions that led to a sustained fall in cAMP led at the same time to cell spreading and the assembly of actin filaments. As with the respiratory burst, cAMP-elevating agents inhibited TNF-induced cell spreading and actin filament assembly if added before, but not after, spreading began. Thus, occupation of TNF receptors and engagement of CD18 integrins interact synergistically in PMN to promote a fall in cAMP. The fall in cAMP is closely related to cell spreading and actin reorganization. These changes are necessary for TNF to induce a prolonged respiratory burst. We conclude that integrins can act jointly with cytokines to affect cell shape and function through alterations in the level of a second messenger, cAMP.

  7. Toll-like receptor (TLR)7 and TLR9 agonists enhance interferon (IFN) beta-1a's immunoregulatory effects on B cells in patients with relapsing-remitting multiple sclerosis (RRMS).

    PubMed

    Tao, Yazhong; Zhang, Xin; Markovic-Plese, Silva

    2016-09-15

    We report that B cells from patients with RRMS have decreased endogenous IFN-β secretion and deficient IFN receptor (IFNAR)1/2 and TLR7 gene expression in comparison to healthy controls (HCs), which may contribute to disregulation of cytokine secretion by B cells. We propose that TLR7 and TLR9 stimulation with loxorubin (LOX) and CpG, in combination with exogenous IFN-β may effectively reconstitute endogenous IFN-β production deficit and induce the secretion of immunoregulatory cytokines by B cells. Both LOX/IFN-β and CpG/IFN-β in-vitro treatments of B cells from RRMS patients induced higher endogenous IFN-β gene expression in comparison to the exogenous IFN-β alone. CpG/IFN-β combination induced higher secretion of IL-10, TGF-β, and IL-27 in comparison to stimulation with IFN-β. Our study provides a basis for future clinical studies employing IFN-β and TLR7/9 agonists, which may enhance the resolution of the inflammatory response in RRMS. PMID:27609294

  8. Protease-activated receptor-1 (PAR1) acts via a novel Galpha13-dishevelled axis to stabilize beta-catenin levels.

    PubMed

    Turm, Hagit; Maoz, Myriam; Katz, Vered; Yin, Yong-Jun; Offermanns, Steffan; Bar-Shavit, Rachel

    2010-05-14

    We have previously shown a novel link between hPar-1 (human protease-activated receptor-1) and beta-catenin stabilization. Although it is well recognized that Wnt signaling leads to beta-catenin accumulation, the role of PAR1 in the process is unknown. We provide here evidence that PAR1 induces beta-catenin stabilization independent of Wnt, Fz (Frizzled), and the co-receptor LRP5/6 (low density lipoprotein-related protein 5/6) and identify selective mediators of the PAR1-beta-catenin axis. Immunohistological analyses of hPar1-transgenic (TG) mouse mammary tissues show the expression of both Galpha(12) and Galpha(13) compared with age-matched control counterparts. However, only Galpha(13) was found to be actively involved in PAR1-induced beta-catenin stabilization. Indeed, a dominant negative form of Galpha(13) inhibited both PAR1-induced Matrigel invasion and Lef/Tcf (lymphoid enhancer factor/T cell factor) transcription activity. PAR1-Galpha(13) association is followed by the recruitment of DVL (Dishevelled), an upstream Wnt signaling protein via the DIX domain. Small interfering RNA-Dvl silencing leads to a reduction in PAR1-induced Matrigel invasion, inhibition of Lef/Tcf transcription activity, and decreased beta-catenin accumulation. It is of note that PAR1 also promotes the binding of beta-arrestin-2 to DVL, suggesting a role for beta-arrestin-2 in PAR1-induced DVL phosphorylation dynamics. Although infection of small interfering RNA-LRP5/6 or the use of the Wnt antagonists, SFRP2 (soluble Frizzled-related protein 2) or SFRP5 potently reduced Wnt3A-mediated beta-catenin accumulation, no effect was observed on PAR1-induced beta-catenin stabilization. Collectively, our data show that PAR1 mediates beta-catenin stabilization independent of Wnt. We propose here a novel cascade of PAR1-induced Galpha(13)-DVL axis in cancer and beta-catenin stabilization. PMID:20223821

  9. Methyl substitution of 2-aminobicyclo[3.1.0]hexane 2,6-dicarboxylate (LY354740) determines functional activity at metabotropic glutamate receptors: identification of a subtype selective mGlu2 receptor agonist.

    PubMed

    Dominguez, Carmen; Prieto, Lourdes; Valli, Matthew J; Massey, Steven M; Bures, Mark; Wright, Rebecca A; Johnson, Bryan G; Andis, Sherri L; Kingston, Ann; Schoepp, Darryle D; Monn, James A

    2005-05-19

    LY354740 (1) is a highly potent and selective agonist of metabotropic glutamate (mGlu) receptors 2 and 3. In the present study, we have prepared C3- and C4-methyl-substituted variants of rac-1, compounds 5, 9, and 13. Each of these racemic methyl-substituted analogues displaced specific binding of the mGlu2/3 receptor antagonist (3)H-2S-2-amino-2-(1S,2S-2-carboxycycloprop-1-yl)-3-(xanth-9-yl)propanoic acid ((3)H-LY341495) from membranes expressing mGlu2 or mGlu3 receptor subtypes. Evaluation of the functional effects of this series on second messenger responses in cells expressing human mGlu2 or mGlu3 receptors revealed C3beta-methyl analogue 5 to possess antagonist properties at both mGlu2 and mGlu3 receptors while C4beta-methyl analogue 9 acts as a full agonist at each of these targets. Unexpectedly, we found that incorporation of a methyl substituent at the C4alpha-position as in analogue 13 results in a mixed mGlu2 agonist/mGlu3 antagonist pharmacological profile. All of the mGlu2 agonist and mGlu3 antagonist activity of rac-13 was found to reside in its resolved (+)-isomer. PMID:15887967

  10. The beta-arrestin pathway-selective type 1A angiotensin receptor (AT1A) agonist [Sar1,Ile4,Ile8]angiotensin II regulates a robust G protein-independent signaling network.

    PubMed

    Kendall, Ryan T; Strungs, Erik G; Rachidi, Saleh M; Lee, Mi-Hye; El-Shewy, Hesham M; Luttrell, Deirdre K; Janech, Michael G; Luttrell, Louis M

    2011-06-01

    The angiotensin II peptide analog [Sar(1),Ile(4),Ile(8)]AngII (SII) is a biased AT(1A) receptor agonist that stimulates receptor phosphorylation, β-arrestin recruitment, receptor internalization, and β-arrestin-dependent ERK1/2 activation without activating heterotrimeric G-proteins. To determine the scope of G-protein-independent AT(1A) receptor signaling, we performed a gel-based phosphoproteomic analysis of AngII and SII-induced signaling in HEK cells stably expressing AT(1A) receptors. A total of 34 differentially phosphorylated proteins were detected, of which 16 were unique to SII and eight to AngII stimulation. MALDI-TOF/TOF mass fingerprinting was employed to identify 24 SII-sensitive phosphoprotein spots, of which three (two peptide inhibitors of protein phosphatase 2A (I1PP2A and I2PP2A) and prostaglandin E synthase 3 (PGES3)) were selected for validation and further study. We found that phosphorylation of I2PP2A was associated with rapid and transient inhibition of a β-arrestin 2-associated pool of protein phosphatase 2A, leading to activation of Akt and increased phosphorylation of glycogen synthase kinase 3β in an arrestin signalsome complex. SII-stimulated PGES3 phosphorylation coincided with an increase in β-arrestin 1-associated PGES3 and an arrestin-dependent increase in cyclooxygenase 1-dependent prostaglandin E(2) synthesis. These findings suggest that AT(1A) receptors regulate a robust G protein-independent signaling network that affects protein phosphorylation and autocrine/paracrine prostaglandin production and that these pathways can be selectively modulated by biased ligands that antagonize G protein activation.

  11. 17-Beta-estradiol inhibits transforming growth factor-beta signaling and function in breast cancer cells via activation of extracellular signal-regulated kinase through the G protein-coupled receptor 30.

    PubMed

    Kleuser, Burkhard; Malek, Daniela; Gust, Ronald; Pertz, Heinz H; Potteck, Henrik

    2008-12-01

    Breast cancer development and breast cancer progression involves the deregulation of growth factors leading to uncontrolled cellular proliferation, invasion and metastasis. Transforming growth factor (TGF)-beta plays a crucial role in breast cancer because it has the potential to act as either a tumor suppressor or a pro-oncogenic chemokine. A cross-communication between the TGF-beta signaling network and estrogens has been postulated, which is important for breast tumorigenesis. Here, we provide evidence that inhibition of TGF-beta signaling is associated with a rapid estrogen-dependent nongenomic action. Moreover, we were able to demonstrate that estrogens disrupt the TGF-beta signaling network as well as TGF-beta functions in breast cancer cells via the G protein-coupled receptor 30 (GPR30). Silencing of GPR30 in MCF-7 cells completely reduced the ability of 17-beta-estradiol (E2) to inhibit the TGF-beta pathway. Likewise, in GPR30-deficient MDA-MB-231 breast cancer cells, E2 achieved the ability to suppress TGF-beta signaling only after transfection with GPR30-encoding plasmids. It is most interesting that the antiestrogen fulvestrant (ICI 182,780), which possesses agonistic activity at the GPR30, also diminished TGF-beta signaling. Further experiments attempted to characterize the molecular mechanism by which activated GPR30 inhibits the TGF-beta pathway. Our results indicate that GPR30 induces the stimulation of the mitogen-activated protein kinases (MAPKs), which interferes with the activation of Smad proteins. Inhibition of MAPK activity prevented the ability of E2 from suppressing TGF-beta signaling. These findings are of great clinical relevance, because down-regulation of TGF-beta signaling is associated with the development of breast cancer resistance in response to antiestrogens.

  12. PPAR dual agonists: are they opening Pandora's Box?

    PubMed

    Balakumar, Pitchai; Rose, Madhankumar; Ganti, Subrahmanya S; Krishan, Pawan; Singh, Manjeet

    2007-08-01

    Cardiovascular disorders are the major cause of mortality in patients of diabetes mellitus. Peroxisome proliferator activated receptors (PPARs) are ligand-activated transcription factors of nuclear hormone receptor superfamily comprising of three subtypes such as PPARalpha, PPARgamma and PPARdelta/beta. Activation of PPARalpha reduces triglycerides and involves in regulation of energy homeostasis. Activation of PPARgamma causes insulin sensitization and enhances glucose metabolism, whereas activation of PPARdelta enhances fatty acid metabolism. Current therapeutic strategies available for the treatment of diabetes do not inhibit the associated secondary cardiovascular complications. Hence, the development of multimodal drugs which can reduce hyperglycemia and concomitantly inhibit the progression of secondary cardiovascular complications may offer valuable therapeutic option. Several basic and clinical studies have exemplified the beneficial effects of PPARalpha and PPARgamma ligands in preventing the cardiovascular risks. The PPARalpha/gamma dual agonists are developed to increase insulin sensitivity and simultaneously prevent diabetic cardiovascular complications. Such compounds are under clinical trials and proposed for treatment of Type II diabetes with secondary cardiovascular complications. However, PPARalpha/gamma dual agonists such as muraglitazar, tesaglitazar and ragaglitazar have been noted to produce several cardiovascular risks and carcinogenicity, which raised number of questions about the clinical applications of dual agonists in diabetes and its associated complications. The ongoing basic studies have elucidated the cardio protective role of PPARdelta. Therefore, further studies are on the track to develop PPARalpha/delta and PPAR gamma/delta dual agonists and PPARalpha/gamma/delta pan agonists for the treatment of diabetic cardiovascular complications. The present review critically analyzes the protective and detrimental effect of PPAR agonists in

  13. Mixed Kappa/Mu Opioid Receptor Agonists: The 6β-Naltrexamines

    PubMed Central

    Cami-Kobeci, Gerta; Neal, Adrian P.; Bradbury, Faye A.; Purington, Lauren C.; Aceto, Mario D.; Harris, Louis S.; Lewis, John W.; Traynor, John R.; Husbands, Stephen M.

    2011-01-01

    Ligands from the naltrexamine series have consistently demonstrated agonist activity at kappa opioid receptors (KOR), with varying activity at the mu opioid receptor (MOR). Various 6β-cinnamoylamino derivatives were made with the aim of generating ligands with a KOR agonist/MOR partial agonist profile, as ligands with this activity may be of interest as treatment agents for cocaine abuse. The ligands all displayed the desired high affinity, non-selective binding in vitro and in the functional assays were high efficacy KOR agonists with some partial agonist activity at MOR. Two of the new ligands (12a, 12b) have been evaluated in vivo, with 12a acting as a KOR agonist, and therefore somewhat similar to the previously evaluated analogues 3–6, while 12b displayed predominant MOR agonist activity. PMID:19253970

  14. Comparative effects of supplementing beef steers with zilpaterol hydrochloride, ractopamine hydrochloride, or no beta agonist on strip loin composition, raw and cooked color properties, shear force, and consumer assessment of steaks aged for fourteen or twenty-one days postmortem.

    PubMed

    Garmyn, A J; Brooks, J C; Hodgen, J M; Nichols, W T; Hutcheson, J P; Rathmann, R J; Miller, M F

    2014-08-01

    Beef steers (n = 1,914) were assigned to 1 of 3 β-adrenergic agonist (βAA) supplementation treatments-zilpaterol hydrochloride (ZH; 8.3 mg/kg of DM for 20 d with 3-d withdrawal), ractopamine hydrochloride (RH; 308 mg·head(-1)·d(-1) for 28 d), or no βAA (CON)-to determine the effects on consumer eating quality. Strip loins (n = 1,101; CON = 400, RH = 355, and ZH = 346) were obtained and fabricated into 2.5-cm-thick steaks for proximate, Warner-Bratzler shear force (WBSF), slice shear force (SSF), and consumer analyses; steaks were aged until 14 or 21 d postmortem. Fat and moisture contents were not affected by βAA supplementation (P > 0.05), but strip steaks from steers fed ZH had more protein (P < 0.01) than those from steers fed CON or RH, which were similar. An interaction between βAA and aging was observed (P < 0.01) for WBSF but not SSF. Within steaks aged 14 d, ZH steaks required the most force to shear, RH steaks were intermediate, and CON steaks had the lowest WBSF values; however, RH steaks had a stronger response to aging than CON or ZH steaks, resulting in the lowest WBSF values at 21 d. Slice shear force values were greater (P < 0.01) in steaks from steers fed ZH than in steaks from steers fed CON or RH, which did not differ. Following shear force analyses, steaks within 2 SD of each treatment mean for WBSF were selected randomly for consumer assessment of eating quality. Consumer testing (n = 400; 200/postmortem aging period) was arranged in a 3 × 3 factorial representing 3 quality grades (Select, Low Choice, and Premium Choice) and 3 treatments (ZH, RH, and CON). In steaks aged 14 d, βAA supplementation affected (P < 0.01) tenderness, flavor, and overall liking and tenderness acceptability, resulting in lower consumer scores for ZH than CON and RH; however, juiciness, flavor, and overall acceptability were similar (P > 0.05). In steaks aged 21 d, feeding βAA influenced (P < 0.01) only tenderness and juiciness scores. Despite these differences

  15. A natural history of "agonist".

    PubMed

    Russo, Ruth

    2002-01-01

    This paper constructs a brief history of the biochemical term agonist by exploring the multiple meanings of the root agôn in ancient Greek literature and describing how agonist first appeared in the scientific literature of the 20th century in the context of neurophysiologists' debates about the existence and properties of cellular receptors. While the narrow scientific definition of agonist may appear colorless and dead when compared with the web of allusions spun by the ancient Greek agôn, the scientific power and creativity of agonist actually resides precisely in its exact, restricted meaning for biomedical researchers.

  16. Modulation of Photofrin II accumulation in C6 glioma cells by stimulation of beta-adrenergic receptors

    NASA Astrophysics Data System (ADS)

    Croce, Anna C.; Mares, V.; Lisa, V.; Krajci, D.; Bottiroli, Giovanni F.

    1997-12-01

    The influence of drugs acting as (beta) -receptors agonists or antagonists on the uptake of Photofrin II in C6 glioma cultured cells was studied by microspectrofluorometric analysis. The pharmacological effect was evaluated on the semiconfluently grown cells, characterized by a long lasting uptake process and higher values of fluorescence intensity with respect to the solitary ones. Isoproterenol treatments resulted in a significant enhancement (by 50%) of the intracellular fluorescence signal of Photofrin II. This effect was hindered by contemporary treatments with equimolar alprenolol or propranolol, two (beta) -receptor antagonists, indicating a specific effect of isoproterenol. Both pharmacological activation of vesicular transport and changes in the membrane physical-chemico properties can explain the effects induced by drugs interacting with (beta) -receptor.

  17. Functional characterization of five different PRXamide receptors of the red flour beetle Tribolium castaneum with peptidomimetics and identification of agonists and antagonists

    PubMed Central

    Jiang, Hongbo; Wei, Zhaojun; Nachman, Ronald J.; Kaczmarek, Krzysztof; Zabrocki, Janusz; Park, Yoonseong

    2014-01-01

    The neuropeptidergic system in insects is an excellent target for pest control strategies. One promising biorational approach is the use of peptidomimetics modified from endogenous ligands to enhance biostability and bioavailability. In this study, we functionally characterized five different G protein-coupled receptors in a phylogenetic cluster, containing receptors for PRXamide in the red flour beetle Tribolium castaneum, by evaluating a series of 70 different peptides and peptidomimetics. Three pyrokinin receptors (TcPKr-A, -B, and –C), cardioacceleratory peptide receptor (TcCAPAr) and ecdysis triggering hormone receptor (TcETHr) were included in the study. Strong agonistic or antagonistic peptidomimetics were identified, and included beta-proline (β3P) modification of the core amino acid residue proline and also a cyclo-peptide. It is common for a ligand to act on multiple receptors. In a number of cases, a ligand acting as an agonist on one receptor was an efficient antagonist on another receptor, suggesting complex outcomes of a peptidomimetic in a biological system. Interestingly, TcPK-A was highly promiscuous with a high number of agonists, while TcPK-C and TcCAPAr had a lower number of agonists, but a higher number of compounds acting as an antagonist. This observation suggests that a target GPCR with more promiscuity will provide better success for peptidomimetic approaches. This study is the first description of peptidomimetics on a CAPA receptor and resulted in the identification of peptidomimetic analogs that demonstrate antagonism of CAPA ligands. The PRXamide receptor assays with peptidomimetics provide useful insights into the biochemical properties of receptors. PMID:25447413

  18. Adrenergic regulation of ovarian androgen biosynthesis is mediated via beta 2-adrenergic theca-interstitial cell recognition sites.

    PubMed

    Hernandez, E R; Jimenez, J L; Payne, D W; Adashi, E Y

    1988-04-01

    Acting alone or in concert with pituitary gonadotropins, catecholamines have recently been shown to enhance androgen production by ovarian theca-interstitial cells. It is the objective of the in vitro studies reported herein to further characterize this catecholaminergic activity as well as to type and subtype the putative adrenergic recognition sites mediating this phenomenon. Treatment of collagenase-processed whole ovarian dispersates or highly enriched (greater than 90%) theca-interstitial cells from immature rats with norepinephrine (10(-6) M) resulted in a 2.0-fold increment in the accumulation of androsterone (3 alpha-hydroxy-5 alpha-androstane-17-one), the main androgenic steroid identified in culture medium by HPLC. Qualitatively similar stimulation was obtained using beta (isoproterenol)- but not alpha (methoxamine)-selective adrenergic agonists. Moreover, combined treatment with both norepinephrine (10(-6) M) and hCG (1 ng/ml) unmasked a synergistic interaction subject to stereospecific blockade by beta (propranolol)- but not alpha (phentolamine)-selective adrenergic antagonists. Further probing with subtype-selective adrenergic ligands revealed terbutaline (a beta 2-selective agonist) to enhance androgen biosynthesis, with dobutamine (a beta 1-selective agonist) having little or no effect. Moreover, a beta 2 (ICI-118406)- but not a beta 1 (ICI-89406)-selective adrenergic antagonist yielded dose-dependent inhibition of the isoproterenol effect. Unaccounted for by either enhanced cellular growth or an alteration of the overall steroidogenic pattern, catecholaminergically stimulated androgen biosynthesis proved time and dose dependent but independent of the hCG dose (0.1-10 ng/ml) employed. Binding of [125I]iodocyanopindolol to highly enriched theca-interstitial cells proved stereoselective and saturable, displaying a single class (Hill coefficient = 0.96 +/- 0.01) of high affinity (Kd = 5.6 X 10(-11) M), low capacity (1219 +/- 317 sites/cell) binding

  19. Silencing p110{beta} prevents rapid depletion of nuclear pAkt

    SciTech Connect

    Ye, Zhi-wei; Ghalali, Aram; Hoegberg, Johan; Stenius, Ulla

    2011-12-02

    Highlights: Black-Right-Pointing-Pointer p110{beta} was essential for the statin- and ATP-induced depletion of nuclear pAkt and an associated inhibition of growth. Black-Right-Pointing-Pointer p110{beta} knock-out inhibited statin-induced changes in binding between FKBP51, pAkt and PTEN. Black-Right-Pointing-Pointer Data supports the hypothesis that nuclear pAkt is important for anti-cancer effects of statins. -- Abstract: The p110{beta} subunit in the class IA PI3K family may act as an oncogene and is critical for prostate tumor development in PTEN knockout mice. We tested the possible involvement of p110{beta} in a recently described rapid depletion of phosphorylated Akt (pAkt) in the nucleus. Previous work showed that this down-regulation is induced by extracellular ATP or by statins and is mediated by the purinergic receptor P2X7. Here, we used p110{beta} knock out mouse embryonic fibroblasts (MEFs) and siRNA-treated cancer cells. We found that p110{beta} is essential for ATP- or statin-induced nuclear pAkt depletion in MEFs and in several cancer cell lines including prostate cancer cells. ATP, statin or the selective P2X7 agonist BzATP also inhibited cell growth, and this inhibition was not seen in p110{beta} knock out cells. We also found that p110{beta} was necessary for statin-induced changes in binding between FKBP51, pAkt and PTEN. Our data show that p110{beta} is essential for the ATP- and statin-induced effects and support a role of nuclear pAkt in cancer development. They also provide support for a chemopreventive effect of statins mediated by depletion of nuclear pAkt.

  20. Dopamine Agonists and the Suppression of Impulsive Motor Actions in Parkinson’s Disease

    PubMed Central

    Wylie, S.A.; Claassen, D.O.; Huizenga, H.M.; Schewel, K.D.; Ridderinkhof, K.R.; Bashore, T.R.; van den Wildenberg, W.P.M.

    2012-01-01

    The suppression of spontaneous motor impulses is an essential facet of cognitive control that is linked to frontal-basal ganglia circuitry. Basal ganglia dysfunction caused by Parkinson’s disease (PD) disrupts the proficiency of action suppression, but how pharmacotherapy for PD impacts impulsive motor control is poorly understood. Dopamine agonists improve motor symptoms of PD, but can also provoke impulsive-compulsive behaviors (ICB). We investigated whether dopamine agonist medication has a beneficial or detrimental effect on impulsive action control in thirty-eight PD patients, half of whom had current ICB. Participants performed the Simon conflict task, which measures susceptibility to acting on spontaneous action impulses as well as the proficiency of suppressing these impulses. Compared to an off agonist state, patients on their agonist were no more susceptible to reacting impulsively, but were less proficient at suppressing the interference from the activation of impulsive actions. Importantly, agonist effects depended on baseline performance in the off agonist state; more proficient suppressors off agonist experienced a reduction in suppression on agonist, whereas less proficient suppressors off agonist showed improved suppression on agonist. Patients with active ICB were actually less susceptible to making fast, impulsive response errors than patients without ICB, suggesting that behavioral problems in this subset of patients may be less related to impulsivity in motor control. Our findings provide further evidence that dopamine agonist medication impacts specific cognitive control processes and that the direction of its effects depends on individual differences in performance off medication. PMID:22571461

  1. Peripheral endothelin B receptor agonist-induced antinociception involves endogenous opioids in mice.

    PubMed

    Quang, Phuong N; Schmidt, Brian L

    2010-05-01

    Endothelin-1 (ET-1) produced by various cancers is known to be responsible for inducing pain. While ET-1 binding to ETAR on peripheral nerves clearly mediates nociception, effects from binding to ETBR are less clear. The present study assessed the effects of ETBR activation and the role of endogenous opioid analgesia in carcinoma pain using an orthotopic cancer pain mouse model. mRNA expression analysis showed that ET-1 was nearly doubled while ETBR was significantly down-regulated in a human oral SCC cell line compared to normal oral keratinocytes (NOK). Squamous cell carcinoma (SCC) cell culture treated with an ETBR agonist (10(-4)M, 10(-5)M, and 10(-6) M BQ-3020) significantly increased the production of beta-endorphin without any effects on leu-enkephalin or dynorphin. Cancer inoculated in the hind paw of athymic mice with SCC induced significant pain, as indicated by reduction of paw withdrawal thresholds in response to mechanical stimulation, compared to sham-injected and NOK-injected groups. Intratumor administration of 3mg/kg BQ-3020 attenuated cancer pain by approximately 50% up to 3h post-injection compared to PBS-vehicle and contralateral injection, while intratumor ETBR antagonist BQ-788 treatment (100 and 300microg/kg and 3mg/kg) had no effects. Local naloxone methiodide (500microg/kg) or selective mu-opioid receptor antagonist (CTOP, 500microg/kg) injection reversed ETBR agonist-induced antinociception in cancer animals. We propose that these results demonstrate that peripheral ETBR agonism attenuates carcinoma pain by modulating beta-endorphins released from the SCC to act on peripheral opioid receptors found in the cancer microenvironment.

  2. Beta Adrenergic Receptors in Keratinocytes

    PubMed Central

    Sivamani, Raja K.; Lam, Susanne T.; Isseroff, R. Rivkah

    2007-01-01

    Synopsis Beta2 adrenergic receptors were identified in keratinocytes more than 30 years ago, but their function in the epidermis continues to be elucidated. Abnormalities in their expression, signaling pathway, or in the generation of endogenous catecholamine agonists by keratinocytes have been implicated in the pathogenesis of cutaneous diseases such as atopic dermatitis, vitiligo and psoriasis. New studies also indicate that the beta2AR also modulates keratinocyte migration, and thus can function to regulate wound re-epithelialization. This review focuses on the function of these receptors in keratinocytes and their contribution to cutaneous physiology and disease. PMID:17903623

  3. Structural and Biochemical Evidence That a TEM-1 [beta]-Lactamase N170G Active Site Mutant Acts via Substrate-assisted Catalysis

    SciTech Connect

    Brown, Nicholas G.; Shanker, Sreejesh; Prasad, B.V. Venkataram; Palzkill, Timothy

    2010-03-12

    TEM-1 {beta}-lactamase is the most common plasmid-encoded {beta}-lactamase in Gram-negative bacteria and is a model class A enzyme. The active site of class A {beta}-lactamases share several conserved residues including Ser{sup 70}, Glu{sup 166}, and Asn{sub 170} that coordinate a hydrolytic water involved in deacylation. Unlike Ser{sup 70} and Glu{sup 166}, the functional significance of residue Asn{sup 170} is not well understood even though it forms hydrogen bonds with both Glu{sup 166} and the hydrolytic water. The goal of this study was to examine the importance of Asn{sup 170} for catalysis and substrate specificity of {beta}-lactam antibiotic hydrolysis. The codon for position 170 was randomized to create a library containing all 20 possible amino acids. The random library was introduced into Escherichia coli, and functional clones were selected on agar plates containing ampicillin. DNA sequencing of the functional clones revealed that only asparagine (wild type) and glycine at this position are consistent with wild-type function. The determination of kinetic parameters for several substrates revealed that the N170G mutant is very efficient at hydrolyzing substrates that contain a primary amine in the antibiotic R-group that would be close to the Asn{sup 170} side chain in the acyl-intermediate. In addition, the x-ray structure of the N170G enzyme indicated that the position of an active site water important for deacylation is altered compared with the wild-type enzyme. Taken together, the results suggest the N170G TEM-1 enzyme hydrolyzes ampicillin efficiently because of substrate-assisted catalysis where the primary amine of the ampicillin R-group positions the hydrolytic water and allows for efficient deacylation.

  4. Structural and biochemical evidence that a TEM-1 beta-lactamase N170G active site mutant acts via substrate-assisted catalysis.

    PubMed

    Brown, Nicholas G; Shanker, Sreejesh; Prasad, B V Venkataram; Palzkill, Timothy

    2009-11-27

    TEM-1 beta-lactamase is the most common plasmid-encoded beta-lactamase in Gram-negative bacteria and is a model class A enzyme. The active site of class A beta-lactamases share several conserved residues including Ser(70), Glu(166), and Asn(170) that coordinate a hydrolytic water involved in deacylation. Unlike Ser(70) and Glu(166), the functional significance of residue Asn(170) is not well understood even though it forms hydrogen bonds with both Glu(166) and the hydrolytic water. The goal of this study was to examine the importance of Asn(170) for catalysis and substrate specificity of beta-lactam antibiotic hydrolysis. The codon for position 170 was randomized to create a library containing all 20 possible amino acids. The random library was introduced into Escherichia coli, and functional clones were selected on agar plates containing ampicillin. DNA sequencing of the functional clones revealed that only asparagine (wild type) and glycine at this position are consistent with wild-type function. The determination of kinetic parameters for several substrates revealed that the N170G mutant is very efficient at hydrolyzing substrates that contain a primary amine in the antibiotic R-group that would be close to the Asn(170) side chain in the acyl-intermediate. In addition, the x-ray structure of the N170G enzyme indicated that the position of an active site water important for deacylation is altered compared with the wild-type enzyme. Taken together, the results suggest the N170G TEM-1 enzyme hydrolyzes ampicillin efficiently because of substrate-assisted catalysis where the primary amine of the ampicillin R-group positions the hydrolytic water and allows for efficient deacylation.

  5. O-Linked β-N-acetylglucosamine (O-GlcNAc) Acts as a Glucose Sensor to Epigenetically Regulate the Insulin Gene in Pancreatic Beta Cells.

    PubMed

    Durning, Sean P; Flanagan-Steet, Heather; Prasad, Nripesh; Wells, Lance

    2016-01-29

    The post-translational protein modification O-linked β-N-acetylglucosamine (O-GlcNAc) is a proposed nutrient sensor that has been shown to regulate multiple biological pathways. This dynamic and inducible enzymatic modification to intracellular proteins utilizes the end product of the nutrient sensing hexosamine biosynthetic pathway, UDP-GlcNAc, as its substrate donor. Type II diabetic patients have elevated O-GlcNAc-modified proteins within pancreatic beta cells due to chronic hyperglycemia-induced glucose overload, but a molecular role for O-GlcNAc within beta cells remains unclear. Using directed pharmacological approaches in the mouse insulinoma-6 (Min6) cell line, we demonstrate that elevating nuclear O-GlcNAc increases intracellular insulin levels and preserves glucose-stimulated insulin secretion during chronic hyperglycemia. The molecular mechanism for these observed changes appears to be, at least in part, due to elevated O-GlcNAc-dependent increases in Ins1 and Ins2 mRNA levels via elevations in histone H3 transcriptional activation marks. Furthermore, RNA deep sequencing reveals that this mechanism of altered gene transcription is restricted and that the majority of genes regulated by elevated O-GlcNAc levels are similarly regulated by a shift from euglycemic to hyperglycemic conditions. These findings implicate the O-GlcNAc modification as a potential mechanism for hyperglycemic-regulated gene expression in the beta cell.

  6. Evidence for direct coupling of primary agonist-receptor interaction to the exposure of functional IIb-IIIa complexes in human blood platelets. Results from studies with the antiplatelet compound ajoene.

    PubMed

    Apitz-Castro, R; Jain, M K; Bartoli, F; Ledezma, E; Ruiz, M C; Salas, R

    1991-09-24

    Ajoene, (E,Z)-4,5,9-trithiadodeca-1,6,11-triene 9-oxide, is a potent antiplatelet compound isolated from alcoholic extracts of garlic. In vitro, ajoene reversibly inhibits platelet aggregation as well as the release reaction induced by all known agonists. In this paper we show that ajoene has a unique locus of action, that is not shared by any other known antiplatelet compound. For example, ajoene inhibits agonist-induced exposure of fibrinogen receptors, as well as intracellular responses such as activation of protein kinase C and the increase in cytoplasmic free calcium induced by receptor-dependent agonists (collagen, ADP, PAF, low-dose thrombin). On the other hand, with agonists that can by-pass (at least partially) the receptor-transductor-effector sequence, such as high-dose thrombin, PMA, NaF, only the exposure of fibrinogen receptors is blocked by ajoene. Binding of fibrinogen to chymotrypsin-treated platelets is only slightly inhibited by ajoene. The results reported here also show that: (a) ajoene does not act as a calcium chelator, does not impair the initial agonist-receptor interaction and does not influence the basal levels of intracellular inhibitors of platelet activation such as cyclic GMP; (b) the locus of action of ajoene is a yet unknown molecular step that links, in the case of physiological agonists, specific agonist-receptor complexes to the sequence of the signal transduction system on the plasma membrane of platelets. In the case of non-physiological, receptor-independent agonists (PMA, NaF), we can only speculate on the hypothesis that they somehow mimic the effect of the agonist-receptor complexes on the signal transduction system; and (c) the exposure of fibrinogen receptors is not a direct consequence of other intracellular processes. These observations clearly show, for the first time, that the exposure of fibrinogen receptors is a membrane event proximally and obligatorily coupled to the occupancy of other membrane receptors by their

  7. Role of IL-1 beta and prostaglandins in beta 2-microglobulin-induced bone mineral dissolution.

    PubMed

    Moe, S M; Hack, B K; Cummings, S A; Sprague, S M

    1995-02-01

    beta 2-microglobulin (beta 2m) induces an osteoclast-mediated net calcium efflux from neonatal mouse calvariae which occurs only after 48 hours of incubation, suggesting that beta 2m acts via other growth factors. To further test this hypothesis, calvariae were incubated with and without beta 2m in the presence of the prostaglandin inhibitor indomethacin, anti-interleukin-1 beta antibody (anti-IL-1 beta), or interleukin-1 beta receptor antagonist (IL-1 beta RA). The addition of beta 2m to the culture medium stimulated, whereas indomethacin inhibited basal calcium efflux following 48 hours. However, the difference (delta) between the calcium efflux induced in calvariae incubated with and without beta 2m in basal medium and that in calvariae incubated with and without beta 2m in indomethacin supplemented medium was similar, suggesting a prostaglandin independent mechanism. There was a time dependent increase in PGE2 in basal medium which was unaffected by beta 2m. In contrast, pre-incubating calvariae with either anti-IL-1 beta or IL-1 beta RA did not alter basal calcium efflux but completely blocked the beta 2m induced calcium efflux. Anti-IL-1 beta had no effect on the basal release of beta-glucuronidase but partially blocked the beta 2m induced release of beta-glucuronidase. Thus, the beta 2m-induced calcium efflux observed in neonatal mouse calvariae is dependent on interleukin-1 beta but not prostaglandins.

  8. Pairwise agonist scanning predicts cellular signaling responses to combinatorial stimuli.

    PubMed

    Chatterjee, Manash S; Purvis, Jeremy E; Brass, Lawrence F; Diamond, Scott L

    2010-07-01

    Prediction of cellular response to multiple stimuli is central to evaluating patient-specific clinical status and to basic understanding of cell biology. Cross-talk between signaling pathways cannot be predicted by studying them in isolation and the combinatorial complexity of multiple agonists acting together prohibits an exhaustive exploration of the complete experimental space. Here we describe pairwise agonist scanning (PAS), a strategy that trains a neural network model based on measurements of cellular responses to individual and all pairwise combinations of input signals. We apply PAS to predict calcium signaling responses of human platelets in EDTA-treated plasma to six different agonists (ADP, convulxin, U46619, SFLLRN, AYPGKF and PGE(2)) at three concentrations (0.1, 1 and 10 x EC(50)). The model predicted responses to sequentially added agonists, to ternary combinations of agonists and to 45 different combinations of four to six agonists (R = 0.88). Furthermore, we use PAS to distinguish between the phenotypic responses of platelets from ten donors. Training neural networks with pairs of stimuli across the dose-response regime represents an efficient approach for predicting complex signal integration in a patient-specific disease milieu. PMID:20562863

  9. Antispasmodic activity of beta-damascenone and E-phytol isolated from Ipomoea pes-caprae.

    PubMed

    Pongprayoon, U; Baeckström, P; Jacobsson, U; Lindström, M; Bohlin, L

    1992-02-01

    The crude extract (IPA) of the plant Ipomoea pes-caprae (L.) R. Br. has previously been shown to antagonize smooth muscle contractions induced by several agonists via a non-specific mechanism. Bioassay-guided fractionation of IPA resulted in isolation of the antispasmodically acting isoprenoids beta-damascenone and E-phytol. Their antispasmodic potencies were found to be in the same range as that of papaverine, a general spasmolytic agent. This effect was suggested to play a role in the previously observed anti-inflammatory activity of IPA by interfering with the contraction of endothelial cells. Severe vascular contraction has been shown to be involved in the dermatitis caused by toxic jellyfishes. It is possible that beta-damascenone and E-phytol, by interfering with the contraction of vascular smooth muscle cells, are partly responsible for the previously reported effectiveness of IPA in the treatment of such dermatitis.

  10. Antispasmodic activity of beta-damascenone and E-phytol isolated from Ipomoea pes-caprae.

    PubMed

    Pongprayoon, U; Baeckström, P; Jacobsson, U; Lindström, M; Bohlin, L

    1992-02-01

    The crude extract (IPA) of the plant Ipomoea pes-caprae (L.) R. Br. has previously been shown to antagonize smooth muscle contractions induced by several agonists via a non-specific mechanism. Bioassay-guided fractionation of IPA resulted in isolation of the antispasmodically acting isoprenoids beta-damascenone and E-phytol. Their antispasmodic potencies were found to be in the same range as that of papaverine, a general spasmolytic agent. This effect was suggested to play a role in the previously observed anti-inflammatory activity of IPA by interfering with the contraction of endothelial cells. Severe vascular contraction has been shown to be involved in the dermatitis caused by toxic jellyfishes. It is possible that beta-damascenone and E-phytol, by interfering with the contraction of vascular smooth muscle cells, are partly responsible for the previously reported effectiveness of IPA in the treatment of such dermatitis. PMID:1620738

  11. Amyloid beta-peptide possesses a transforming growth factor-beta activity.

    PubMed

    Huang, S S; Huang, F W; Xu, J; Chen, S; Hsu, C Y; Huang, J S

    1998-10-16

    Amyloid beta-peptide (Abeta) of 39-42 amino acid residues is a major constituent of Alzheimer's disease neurite plaques. Abeta aggregates (fibrils) are believed to be responsible for neuronal damage and dysfunction, as well as microglia and astrocyte activation in disease lesions by multiple mechanisms. Since Abeta aggregates possess the multiple valencies of an FAED motif (20th to 23rd amino acid residues), which resembles the putative transforming growth factor-beta (TGF-beta) active site motif, we hypothesize that Abeta monomers and Abeta aggregates may function as TGF-beta antagonists and partial agonists, analogous to previously described monovalent and multivalent TGF-beta peptide antagonists and agonists (Huang, S. S., Liu, Q., Johnson, F. E., Konish, Y., and Huang, J. S. (1997) J. Biol. Chem. 272, 27155-27159). Here, we report that the Abeta monomer, Abeta-(1-40) and its fragment, containing the motif inhibit radiolabeled TGF-beta binding to cell-surface TGF-beta receptors in mink lung epithelial cells (Mv1Lu cells). Abeta-(1-40)-bovine serum albumin conjugate (Abeta-(1-40)-BSA), a multivalent synthetic analogue of Abeta aggregates, exhibited cytotoxicity toward bovine cerebral endothelial cells and rat post-mitotic differentiated hippocampal neuronal cells (H19-7 cells) and inhibitory activities of radiolabeled TGF-beta binding to TGF-beta receptors and TGF-beta-induced plasminogen activator inhibitor-1 expression, that were approximately 100-670 times more potent than those of Abeta-(1-40) monomers. At less than micromolar concentrations, Abeta-(1-40)-BSA but not Abeta-(1-40) monomers inhibited proliferation of Mv1Lu cells. Since TGF-beta is an organizer of responses to neurodegeneration and is also found in neurite plaques, the TGF-beta antagonist and partial agonist activities of Abeta monomers and aggregates may play an important role in the pathogenesis of the disease.

  12. In Silico Design for Adenosine Monophosphate-Activated Protein Kinase Agonist from Traditional Chinese Medicine for Treatment of Metabolic Syndromes

    PubMed Central

    Tang, Hsin-Chieh

    2014-01-01

    Adenosine monophosphate-activated protein kinase (AMPK) acts as a master mediator of metabolic homeostasis. It is considered as a significant millstone to treat metabolic syndromes including obesity, diabetes, and fatty liver. It can sense cellular energy or nutrient status by switching on the catabolic pathways. Investigation of AMPK has new findings recently. AMPK can inhibit cell growth by the way of autophagy. Thus AMPK has become a hot target for small molecular drug design of tumor inhibition. Activation of AMPK must undergo certain extent change of the structure. Through the methods of structure-based virtual screening and molecular dynamics simulation, we attempted to find out appropriate small compounds from the world's largest TCM Database@Taiwan that had the ability to activate the function of AMPK. Finally, we found that two TCM compounds, eugenyl_beta-D-glucopyranoside and 6-O-cinnamoyl-D-glucopyranose, had the qualification to be AMPK agonist. PMID:24899913

  13. Pharmacological, neurochemical, and behavioral profile of JB-788, a new 5-HT1A agonist.

    PubMed

    Picard, M; Morisset, S; Cloix, J F; Bizot, J C; Guerin, M; Beneteau, V; Guillaumet, G; Hevor, T K

    2010-09-01

    A novel pyridine derivative, 8-{4-[(6-methoxy-2,3-dihydro-[1,4]dioxino[2,3-b]pyridine-3-ylmethyl)-amino]-butyl}-8-aza-spiro[4.5]decane-7,9-dione hydrochloride, termed JB-788, was designed to selectively target 5-HT(1A) receptors. In the present study, the pharmacological profile of JB-788 was characterized in vitro using radioligands binding tests and in vivo using neurochemical and behavioural experiments. JB-788 bound tightly to human 5-HT(1A) receptor expressed in human embryonic kidney 293 (HEK-293) cells with a K(i) value of 0.8 nM. Its binding affinity is in the same range as that observed for the (+/-)8-OH-DPAT, a reference 5HT(1A) agonist compound. Notably, JB-788 only bound weakly to 5-HT(1B) or 5-HT(2A) receptors and moreover the drug displayed only weak or indetectable binding to muscarinic, alpha(2), beta(1) and beta(2) adrenergic receptors, or dopaminergic D(1) receptors. JB-788 was found to display substantial binding affinity for dopaminergic D(2) receptors and, to a lesser extend to alpha(1) adrenoreceptors. JB-788 dose-dependently decreased forskolin-induced cAMP accumulation in HEK cells expressing human 5-HT(1A), thus acting as a potent 5-HT(1A) receptor agonist (E(max.) 75%, EC(50) 3.5 nM). JB-788 did not exhibit any D(2) receptor agonism but progressively inhibited the effects of quinpirole, a D(2) receptor agonist, in the cAMP accumulation test with a K(i) value of 250 nM. JB-788 induced a weak change in cAMP levels in mouse brain but, like some antipsychotics, transiently increased glycogen contents in various brain regions. Behavioral effects were investigated in mice using the elevated plus-maze. JB-788 was found to increase the time duration spent by animals in anxiogenic situations. Locomotor hyperactivity induced by methamphetamine in mouse, a model of antipsychotic activity, was dose-dependently inhibited by JB-788. Altogether, these results suggest that JB-788 displays pharmacological properties, which could be of interest in the area

  14. Beta-adrenoceptors in obstetrics and gynecology.

    PubMed

    Modzelewska, Beata

    2016-01-01

    One hundred and twenty years after the description of extracts from the adrenal medulla, the use of beta-blockers and beta-agonists evolved from antianginal drugs and tocolytics to ligand-directed signaling. Beta-blockers in the fields of obstetrics and gynecology have so far been limited to the consideration of continuing treatment of disorders of the cardiovascular system and other dysfunctions that started before pregnancy. Studies in recent years have shown that beta-adrenoceptor signaling might be crucial in carcinogenesis and metastasis, apoptosis and anoikis. On the other hand, the use of beta-adrenoceptor agonists in tocolysis is, as yet, the primary method for inhibiting premature uterine contractions. Unfortunately, the efficacy of current pharmacological treatment for the management of preterm labor is regularly questioned. Moreover, studies related to non-pregnant myometrium performed to date indicate that the rhythmic contractions of the uterus are required for menstruation and have an important role in human reproduction. In turn, abnormal uterine contractility has been linked to dysmenorrhea, a condition associated with painful uterine cramping. The benefits of the use of beta2-adrenoceptor agonists in dysmenorrhea are still unclear and should be balanced against a wide range of adverse effects recognized with this class of medication. The ideal tocolytic agent is one which is effective for the pregnant or non-pregnant woman but has no side effects on either the woman or the baby. Looking to the future with both caution and hope, the potential metamorphosis of beta3-adrenoceptor agonists from experimental tools into therapeutic drugs for tocolysis warrants attention. PMID:27442692

  15. Beta-adrenoceptors in obstetrics and gynecology.

    PubMed

    Modzelewska, Beata

    2016-01-01

    One hundred and twenty years after the description of extracts from the adrenal medulla, the use of beta-blockers and beta-agonists evolved from antianginal drugs and tocolytics to ligand-directed signaling. Beta-blockers in the fields of obstetrics and gynecology have so far been limited to the consideration of continuing treatment of disorders of the cardiovascular system and other dysfunctions that started before pregnancy. Studies in recent years have shown that beta-adrenoceptor signaling might be crucial in carcinogenesis and metastasis, apoptosis and anoikis. On the other hand, the use of beta-adrenoceptor agonists in tocolysis is, as yet, the primary method for inhibiting premature uterine contractions. Unfortunately, the efficacy of current pharmacological treatment for the management of preterm labor is regularly questioned. Moreover, studies related to non-pregnant myometrium performed to date indicate that the rhythmic contractions of the uterus are required for menstruation and have an important role in human reproduction. In turn, abnormal uterine contractility has been linked to dysmenorrhea, a condition associated with painful uterine cramping. The benefits of the use of beta2-adrenoceptor agonists in dysmenorrhea are still unclear and should be balanced against a wide range of adverse effects recognized with this class of medication. The ideal tocolytic agent is one which is effective for the pregnant or non-pregnant woman but has no side effects on either the woman or the baby. Looking to the future with both caution and hope, the potential metamorphosis of beta3-adrenoceptor agonists from experimental tools into therapeutic drugs for tocolysis warrants attention.

  16. Signaling from beta1- and beta2-adrenergic receptors is defined by differential interactions with PDE4.

    PubMed

    Richter, Wito; Day, Peter; Agrawal, Rani; Bruss, Matthew D; Granier, Sébastien; Wang, Yvonne L; Rasmussen, Søren G F; Horner, Kathleen; Wang, Ping; Lei, Tao; Patterson, Andrew J; Kobilka, Brian; Conti, Marco

    2008-01-23

    Beta1- and beta2-adrenergic receptors (betaARs) are highly homologous, yet they play clearly distinct roles in cardiac physiology and pathology. Myocyte contraction, for instance, is readily stimulated by beta1AR but not beta2AR signaling, and chronic stimulation of the two receptors has opposing effects on myocyte apoptosis and cell survival. Differences in the assembly of macromolecular signaling complexes may explain the distinct biological outcomes. Here, we demonstrate that beta1AR forms a signaling complex with a cAMP-specific phosphodiesterase (PDE) in a manner inherently different from a beta2AR/beta-arrestin/PDE complex reported previously. The beta1AR binds a PDE variant, PDE4D8, in a direct manner, and occupancy of the receptor by an agonist causes dissociation of this complex. Conversely, agonist binding to the beta2AR is a prerequisite for the recruitment of a complex consisting of beta-arrestin and the PDE4D variant, PDE4D5, to the receptor. We propose that the distinct modes of interaction with PDEs result in divergent cAMP signals in the vicinity of the two receptors, thus, providing an additional layer of complexity to enforce the specificity of beta1- and beta2-adrenoceptor signaling.

  17. Characteristics of cyanopindolol analogues active at the beta 3-adrenoceptor in rat ileum.

    PubMed Central

    Hoey, A. J.; Jackson, C. M.; Pegg, G. G.; Sillence, M. N.

    1996-01-01

    1. Cyanopindolol (CYP) is a potent antagonist at the beta 3-adrenoceptor in rat ileum. Several analogues of CYP and pindolol were synthesized that also produced antagonist effects at the beta 3-adrenoceptor. However, at high concentrations, these compounds appear to act as "partial agonists'. This study was conducted to determine the structural requirements of CYP analogues necessary for antagonist activity and to examine the possibility that the agonist effects of CYP and its analogues may occur through a mechanism independent of beta-adrenoceptor activation. 2. Analogues of CYP and pindolol were tested for antagonist activity in rat ileum in which the beta 1- and beta 2-adrenoceptors were blocked. Fourteen compounds were tested against (-)-isoprenaline, and four of the more potent analogues were then tested against BRL 37344. The two most potent antagonists were CYP and iodocyanopindolol. The pKb values (negative log of equilibrium dissociation constant) obtained against (-)-isoprenaline were significantly higher than those obtained against BRL 37344, but the cause of this difference is not known. 3. Several structural requirements were determined for antagonist activity. Modification at the carbon atom alpha to the secondary amine caused the antagonist potency to fall as the level of saturation was reduced. Thus, a quaternary carbon group, such as t-butyl, produced the most potent antagonist. Substitution with a large moiety such as a cyclohexyl or benzyl group reduced antagonist activity, probably due to steric hindrance. Inclusion of an electron-withdrawing group, such as a cyano or ethylester moiety, alpha to the indole nitrogen, also increased the potency. Iodination of CYP and ethylesterpindolol at the 3-position of the indole ring did not increase antagonist potency. In contrast, iodination of the almost inactive analogues produced a significant increase in potency, suggesting that a beneficial electronic effect on the indole ring imparted by the iodo

  18. Additive antinociceptive effects of mixtures of the κ-opioid receptor agonist spiradoline and the cannabinoid receptor agonist CP55940 in rats.

    PubMed

    Maguire, David R; France, Charles P

    2016-02-01

    Pain is a significant clinical problem, and there is a need for pharmacotherapies that are more effective with fewer adverse effects than currently available medications. Cannabinoid receptor agonists enhance the antinociceptive effects of μ-opioid receptor agonists; it is unclear whether they impact the effects of agonists acting at other opioid receptors. κ-Opioid receptor agonists have antinociceptive effects, but their clinical use is precluded by adverse effects; however, their therapeutic potential might be realized if antinociceptive effects could be selectively enhanced. In this study, the antinociceptive effects of the cannabinoid receptor agonist CP55940 and the κ-opioid receptor agonist spiradoline, alone and in combination, were studied in rats (n=7) using a warm water tail-withdrawal procedure. When administered alone, CP55940 (0.032-1.0 mg/kg) and spiradoline (1.0-32.0 mg/kg) increased tail-withdrawal latency, and mixtures of CP55940 and spiradoline (ratios of 1 : 3, 1 : 1, and 3 : 1) produced additive effects. It remains to be determined whether this additive interaction between a κ-opioid receptor agonist and a cannabinoid receptor agonist is selective for antinociception and whether it can be generalized to other drugs. PMID:26292184

  19. Honokiol: A non-adipogenic PPARγ agonist from nature☆

    PubMed Central

    Atanasov, Atanas G.; Wang, Jian N.; Gu, Shi P.; Bu, Jing; Kramer, Matthias P.; Baumgartner, Lisa; Fakhrudin, Nanang; Ladurner, Angela; Malainer, Clemens; Vuorinen, Anna; Noha, Stefan M.; Schwaiger, Stefan; Rollinger, Judith M.; Schuster, Daniela; Stuppner, Hermann; Dirsch, Verena M.; Heiss, Elke H.

    2013-01-01

    Background Peroxisome proliferator-activated receptor gamma (PPARγ) agonists are clinically used to counteract hyperglycemia. However, so far experienced unwanted side effects, such as weight gain, promote the search for new PPARγ activators. Methods We used a combination of in silico, in vitro, cell-based and in vivo models to identify and validate natural products as promising leads for partial novel PPARγ agonists. Results The natural product honokiol from the traditional Chinese herbal drug Magnolia bark was in silico predicted to bind into the PPARγ ligand binding pocket as dimer. Honokiol indeed directly bound to purified PPARγ ligand-binding domain (LBD) and acted as partial agonist in a PPARγ-mediated luciferase reporter assay. Honokiol was then directly compared to the clinically used full agonist pioglitazone with regard to stimulation of glucose uptake in adipocytes as well as adipogenic differentiation in 3T3-L1 pre-adipocytes and mouse embryonic fibroblasts. While honokiol stimulated basal glucose uptake to a similar extent as pioglitazone, it did not induce adipogenesis in contrast to pioglitazone. In diabetic KKAy mice oral application of honokiol prevented hyperglycemia and suppressed weight gain. Conclusion We identified honokiol as a partial non-adipogenic PPARγ agonist in vitro which prevented hyperglycemia and weight gain in vivo. General significance This observed activity profile suggests honokiol as promising new pharmaceutical lead or dietary supplement to combat metabolic disease, and provides a molecular explanation for the use of Magnolia in traditional medicine. PMID:23811337

  20. Beta experiment

    NASA Technical Reports Server (NTRS)

    1982-01-01

    A focused laser doppler velocimeter (LDV) system was developed for the measurement of atmospheric backscatter (beta) from aerosols at infrared wavelengths. A Doppler signal generator was used in mapping the coherent sensitive focal volume of a focused LDV system. System calibration data was analyzed during the flight test activity scheduled for the Beta system. These analyses were performed to determine the acceptability of the Beta measurement system's performance.

  1. Agonist-trafficking and hallucinogens.

    PubMed

    González-Maeso, Javier; Sealfon, Stuart C

    2009-01-01

    Seven transmembrane domain receptors, also termed G protein-coupled receptors (GPCRs), represent the most common molecular target for therapeutic drugs. The generally accepted pharmacological model for GPCR activation is the ternary complex model, in which GPCRs exist in a dynamic equilibrium between the active and inactive conformational states. However, the demonstration that different agonists sometimes elicit a different relative activation of two signaling pathways downstream of the same receptor has led to a revision of the ternary complex model. According to this agonist- trafficking model, agonists stabilize distinct activated receptor conformations that preferentially activate specific signaling pathways. Hallucinogenic drugs and non-hallucinogenic drugs represent an attractive experimental system with which to study agonist-trafficking of receptor signaling. Thus many of the behavioral responses induced by hallucinogenic drugs, such as lysergic acid diethylamide (LSD), psilocybin or mescaline, depend on activation of serotonin 5-HT(2A) receptors (5-HT2ARs). In contrast, this neuropsychological state in humans is not induced by closely related chemicals, such as lisuride or ergotamine, despite their similar in vitro activity at the 5-HT2AR. In this review, we summarize the current knowledge, as well as unresolved questions, regarding agonist-trafficking and the mechanism of action of hallucinogenic drugs.

  2. Adrenergic lipolysis in guinea pig is not a beta 3-adrenergic response: comparison with human adipocytes.

    PubMed

    Carpéné, C; Castan, I; Collon, P; Galitzky, J; Moratinos, J; Lafontan, M

    1994-03-01

    beta 3-Adrenoceptor agonists are potent lipolytic activators in rats, but they are only weak stimulators in human adipocytes, indicating interspecies differences in the adrenergic regulation of lipid mobilization. Like human but not rat adipocytes, guinea pig fat cells were poorly responsive to the beta 3-agonists BRL-37344, CGP-12177, SR-58611, and ICI-215001, acid metabolite of ICI-D7114. In guinea pigs, the beta 1-agonist dobutamine was more lipolytic than the beta 2-agonist procaterol. Anatomic location of fat deposits was without major influence on the beta-adrenergic responsiveness. Weak responses to beta 3-agonists were found whatever the sex or the age (from 2 days to 16 mo) of the animals. Even in the interscapular brown adipose tissue, which is well known in rats for its beta 3-adrenergic responsiveness, a blunted response to BRL-37344 was observed. The alpha 2-adrenergic antilipolytic effect and receptor number were smaller in guinea pig than in human adipocytes, but the beta-adrenergic receptor number was similar in the two species. Thus guinea pig adipocytes resemble human fat cells when their weak beta 3-adrenergic responsiveness is considered. PMID:7909205

  3. The effect of smoking cessation pharmacotherapies on pancreatic beta cell function

    SciTech Connect

    Woynillowicz, Amanda K.; Raha, Sandeep; Nicholson, Catherine J.; Holloway, Alison C.

    2012-11-15

    The goal of our study was to evaluate whether drugs currently used for smoking cessation (i.e., nicotine replacement therapy, varenicline [a partial agonist at nicotinic acetylcholine receptors (nAChR)] and bupropion [which acts in part as a nAChR antagonist]) can affect beta cell function and determine the mechanism(s) of this effect. INS-1E cells, a rat beta cell line, were treated with nicotine, varenicline and bupropion to determine their effects on beta cell function, mitochondrial electron transport chain enzyme activity and cellular/oxidative stress. Treatment of INS-1E cells with equimolar concentrations (1 μM) of three test compounds resulted in an ablation of normal glucose-stimulated insulin secretion by the cells. This disruption of normal beta cell function was associated with mitochondrial dysfunction since all three compounds tested significantly decreased the activity of mitochondrial electron transport chain enzyme activity. These results raise the possibility that the currently available smoking cessation pharmacotherapies may also have adverse effects on beta cell function and thus glycemic control in vivo. Therefore whether or not the use of nicotine replacement therapy, varenicline and bupropion can cause endocrine changes which are consistent with impaired pancreatic function warrants further investigation. -- Highlights: ► Smoking cessation drugs have the potential to disrupt beta cell function in vitro. ► The effects of nicotine, varenicline and bupropion are similar. ► The impaired beta cell function is mediated by mitochondrial dysfunction. ► If similar effects are seen in vivo, these drugs may increase the risk of diabetes.

  4. Subclassification of muscarinic receptors in the heart, urinary bladder and sympathetic ganglia in the pithed rat. Selectivity of some classical agonists.

    PubMed

    van Charldorp, K J; de Jonge, A; Thoolen, M J; van Zwieten, P A

    1985-12-01

    In pithed normotensive rats muscarinic receptors were characterized in heart, urinary bladder and sympathetic ganglia; the selectivity of some classical muscarinic agents for these subtypes was investigated. The potencies in decreasing heart rate, increasing bladder pressure and increasing diastolic blood pressure were measured for the following, intraarterially administered cholinergic agonists: McN-A-343 ([4-m-chlorophenylcarbamoyloxy]-2-butynyltrimethylammonium), pilocarpine, carbachol, oxotremorine, arecoline, acetyl-beta-methylcholine and acetylcholine. The selective M1-antagonist pirenzepine, the mixed M1/M2-antagonist dexetimide and the cardioselective M2-antagonist gallamine were used as tools for identification of the receptors. All data were obtained after intravenous pretreatment with a high dose of atenolol to eliminate tachycardia induced by stimulating sympathetic ganglionic muscarinic receptors. Dexetimide strongly antagonized the bradycardia as well as the increase in bladder pressure induced by pilocarpine, carbachol, oxotremorine, arecoline, acetyl-beta-methylcholine and acetylcholine, whereas pirenzepine was much less effective. Gallamine antagonized the bradycardia, whereas no influence was found on the bladder contraction. Pilocarpine acted as a partial agonist in reducing heart rate as well as in increasing bladder pressure, whereas McN-A-343 was almost ineffective in doses up to 1 mg/kg. The hypertensive response to pilocarpine and carbachol was less pronounced than that produced by McN-A-343. Pirenzepine and dexetimide significantly antagonized the hypertensive response to McN-A-343 and pilocarpine, whereas gallamine was much less effective. The hypertensive response induced by carbachol was totally blocked by hexamethonium. The other agonists used in this study did not produce a significant increase in diastolic blood pressure in doses that produced a maximal effect on heart rate and urinary bladder pressure.(ABSTRACT TRUNCATED AT 250 WORDS

  5. A beta-lactam inhibitor of cytosolic phospholipase A2 which acts in a competitive, reversible manner at the lipid/water interface.

    PubMed

    Burke, J R; Gregor, K R; Padmanabha, R; Banville, J; Witmer, M R; Davern, L B; Manly, S P; Tramposch, K M

    1998-06-01

    Cytosolic phospholipase A2 (cPLA2) catalyzes the selective release of arachidonic acid from the sn-2 position of phospholipids and is believed to play a key cellular role in the generation of arachidonic acid. When assaying the human recombinant cPLA2 using membranes isolated from [3H]arachidonate-labeled U937 cells as substrate, 3,3-Dimethyl-6-(3-lauroylureido)-7-oxo-4-thia-1-azabicyclo[3,2,0] heptane-2-carboxylic acid (1) was found to inhibit the enzyme in a dose-dependent manner (IC50 = 72 microM). This beta-lactam did not inhibit other phospholipases, including the human nonpancreatic secreted phospholipase A2. The inhibition of cPLA2 was found not to be time-dependent. This, along with the observation that the degradation of the inhibitor was not catalyzed by the enzyme, demonstrates that the inhibition does not result from the formation of an acyl-enzyme intermediate with the active site serine residue. Moreover, the ring-opened form of 1 is also able to inhibit cPLA2 with near-equal potency. To further characterize the mechanism of inhibition, an assay in which the enzyme is bound to vesicles of 1,2-dimyristoyl-sn-glycero-3-phosphomethanol containing 6-10 mole percent of 1-palmitoyl-2-[1-14C]-arachidonoyl-sn-glycero-3-phosphocholine was employed. With this substrate system, the dose-dependent inhibition was defined by kinetic equations describing competitive inhibition at the lipid/water interface. The apparent dissociation constant for the inhibitor bound to the enzyme at the interface (KI*app) was determined to be 0.5 +/- 0.1 mole% versus an apparent dissociation constant for the arachidonate-containing phospholipid of 0.4 +/- 0.1 mole%. Thus, 1 represents a novel structural class of inhibitors of cPLA2 which partitions into the phospholipid bilayer and competes with the phospholipid substrate for the active site.

  6. Selective estrogen receptor-beta (SERM-beta) compounds modulate raphe nuclei tryptophan hydroxylase-1 (TPH-1) mRNA expression and cause antidepressant-like effects in the forced swim test.

    PubMed

    Clark, J A; Alves, S; Gundlah, C; Rocha, B; Birzin, E T; Cai, S-J; Flick, R; Hayes, E; Ho, K; Warrier, S; Pai, L; Yudkovitz, J; Fleischer, R; Colwell, L; Li, S; Wilkinson, H; Schaeffer, J; Wilkening, R; Mattingly, E; Hammond, M; Rohrer, S P

    2012-11-01

    Estrogen acts through two molecularly distinct receptors termed estrogen receptor alpha (ERα) and estrogen receptor beta (ERβ) which bind estradiol with similar affinities and mediate the effects of estrogen throughout the body. ERα plays a major role in reproductive physiology and behavior, and mediates classic estrogen signaling in such tissues as the uterus, mammary gland, and skeleton. ERβ, however, modulates estrogen signaling in the ovary, the immune system, prostate, gastrointestinal tract, and hypothalamus, and there is some evidence that ERβ can regulate ERα activity. Moreover, ERβ knockout studies and receptor distribution analyses in the CNS suggest that this receptor may play a role in the modulation of mood and cognition. In recent years several ERβ-specific compounds (selective estrogen receptor beta modulators; SERM-beta) have become available, and research suggests potential utility of these compounds in menopausal symptom relief, breast cancer prevention, diseases that have an inflammatory component, osteoporosis, cardiovascular disease, and inflammatory bowel disease, as well as modulation of mood, and anxiety. Here we demonstrate an antidepressant-like effect obtained using two SERM-beta compounds, SERM-beta1 and SERM-beta2. These compounds exhibit full agonist activity at ERβ in a cell based estrogen response element (ERE) transactivation assay. SERM-beta1 and 2 are non-proliferative with respect to breast as determined using the MCF-7 breast cancer cell-based assay and non-proliferative in the uterus as determined by assessing the effects of SERM-beta compounds on immature rat uterine weight and murine uterine weight. In vivo SERM-beta1 and 2 are brain penetrant and display dose dependent efficacy in the murine dorsal raphe assays for induction of tryptophan hydroxylase mRNA and progesterone receptor protein. These compounds show activity in the murine forced swim test and promote hippocampal neurogenesis acutely in rats. Taken

  7. Amino acid sequence of the alpha subunit and computer modelling of the alpha and beta subunits of echicetin from the venom of Echis carinatus (saw-scaled viper).

    PubMed

    Polgár, J; Magnenat, E M; Peitsch, M C; Wells, T N; Saqi, M S; Clemetson, K J

    1997-04-15

    Echicetin, a heterodimeric protein from the venom of Echis carinatus, binds to platelet glycoprotein Ib (GPIb) and so inhibits platelet aggregation or agglutination induced by various platelet agonists acting via GPIb. The amino acid sequence of the beta subunit of echicetin has been reported and found to belong to the recently identified snake venom subclass of the C-type lectin protein family. Echicetin alpha and beta subunits were purified. N-terminal sequence analysis provided direct evidence that the protein purified was echicetin. The paper presents the complete amino acid sequence of the alpha subunit and computer models of the alpha and beta subunits. The sequence of alpha echicetin is highly similar to the alpha and beta chains of various heterodimeric and homodimeric C-type lectins. Neither of the fully reduced and alkylated alpha or beta subunits of echicetin inhibited the platelet agglutination induced by von Willebrand factor-ristocetin or alpha-thrombin. Earlier reports about the inhibitory activity of reduced and alkylated echicetin beta subunit might have been due to partial reduction of the protein. PMID:9163349

  8. 3D-Pharmacophore Identification for κ-Opioid Agonists Using Ligand-Based Drug-Design Techniques

    NASA Astrophysics Data System (ADS)

    Yamaotsu, Noriyuki; Hirono, Shuichi

    A selective κ-opioid receptor (KOR) agonist might act as a powerful analgesic without the side effects of μ-opioid receptor-selective drugs such as morphine. The eight classes of known KOR agonists have different chemical structures, making it difficult to construct a pharmacophore model that takes them all into account. Here, we summarize previous efforts to identify the pharmacophore for κ-opioid agonists and propose a new three-dimensional pharmacophore model that encompasses the κ-activities of all classes. This utilizes conformational sampling of agonists by high-temperature molecular dynamics and pharmacophore extraction through a series of molecular superpositions.

  9. Homologous beta-adrenergic desensitization in isolated rat hepatocytes.

    PubMed Central

    García-Sáinz, J A; Michel, B

    1987-01-01

    Hepatocytes from hypothyroid rats have a marked beta-adrenergic responsiveness. Preincubation of these hepatocytes with isoprenaline induced a time-dependent and concentration-dependent desensitization of the beta-adrenergic responsiveness without altering that to glucagon (homologous desensitization). The desensitization was evidenced both in the cyclic AMP accumulation and in the stimulation of ureagenesis induced by the beta-adrenergic agonists. Under the same conditions, preincubation with glucagon induced no desensitization. Propranolol was also unable to induce desensitization, but blocked that induced by isoprenaline. Pertussis-toxin treatment did not alter the homologous beta-adrenergic desensitization induced by isoprenaline. PMID:2825633

  10. Increased flow precedes remote arteriolar dilations for some microapplied agonists.

    PubMed

    Frame, M D

    2000-04-01

    This study asks which occurs first in time for remote responses: a dilation or a remote change in flow. Arteriolar diameter (approximately 20 microm) and fluorescently labeled red blood cell (RBC) velocity were measured in the cremaster muscle of anesthetized (pentobarbital sodium, 70 mg/kg) hamsters (n = 51). Arterioles were locally stimulated for 60 s with micropipette-applied 10 microg/ml LM-609 (alpha(v)beta(3)-integrin agonist), 10(-3) M adenosine, or 10(-3) M 3-morpholinosydnonimine (SIN-1, nitric oxide donor) as remote response agonists or with 10(-3) M papaverine, which dilates only locally. Observations were made at a remote site 1,200 microm upstream. With LM-609 or adenosine, the RBC velocity increased first (within 5 s), and the remote dilation followed 5-7 s later. N-nitro-L-arginine (100 microM) blocked the LM-609 (100%) and adenosine (60%) remote dilations. SIN-1 induced a concurrent remote dilation and decrease in RBC velocity (approximately 10 s), suggesting the primary signal was to dilate. Papaverine had no remote effects. This study suggests that, although remote responses to some agonists are induced by primary signals to dilate, additionally, network changes in flow can stimulate extensive remote changes in diameter.

  11. Progress report and technology status development of an EG and G Berthold LB-150 alpha/beta particulate monitor for use on the East Tennessee Technology Park Toxic Substances Control Act Incinerator

    SciTech Connect

    Shor, J.T.; Singh, S.P.N.; Gibson, L.V. Jr.

    1998-06-01

    The purpose of this project was to modify and evaluate a commercially available EG and G Berthold LB-150 alpha-beta radionuclide particulate monitor for the high-temperature and moisture-saturation conditions of the East Tennessee Technology Park (formerly K-25 Site) Toxic Substances Control Act (TSCA) Incinerator stack. The monitor was originally outfitted for operation at gas temperatures of 150 F on the defunct Los Alamos National Laboratory (LANL) controlled air incinerator, and the objective was to widen its operating envelope. A laboratory apparatus was constructed that simulated the effects of water-saturated air at the TSCA Incinerator stack-gas temperatures, 183 F. An instrumented set of heat exchangers was constructed to then condition the gas so that the radionuclide monitor could be operated without condensation. Data were collected under the conditions of the elevated temperatures and humidities and are reported herein, and design considerations of the apparatus are provided. The heat exchangers and humidification equipment performed as designed, the Mylar film held, and the instrument suffered no ill effects. However, for reasons as yet undetermined, the sensitivity of the radionuclide detection diminishes as the gas temperature is elevated, whether the gas is humidified or not. The manufacturer has had no experience with (a) the operation of the monitor under these conditions and (b) any commercial market that might exist for an instrument that operates under these conditions. The monitor was not installed into the radiologically contaminated environment of the TSCA Incinerator stack pending resolution of this technical issue.

  12. Novel diazabicycloalkane delta opioid agonists.

    PubMed

    Loriga, Giovanni; Lazzari, Paolo; Manca, Ilaria; Ruiu, Stefania; Falzoi, Matteo; Murineddu, Gabriele; Bottazzi, Mirko Emilio Heiner; Pinna, Giovanni; Pinna, Gérard Aimè

    2015-09-01

    Here we report the investigation of diazabicycloalkane cores as potential new scaffolds for the development of novel analogues of the previously reported diazatricyclodecane selective delta (δ) opioid agonists, as conformationally constrained homologues of the reference δ agonist (+)-4-[(αR)-α((2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-methoxybenzyl]-N,N-diethylbenzamide (SNC80). In particular, we have simplified the diazatricyclodecane motif of δ opioid agonist prototype 1a with bridged bicyclic cores. 3,6-diazabicyclo[3.1.1]heptane, 3,8-diazabicyclo[3.2.1]octane, 3,9-diazabicyclo[3.3.1]nonane, 3,9-diazabicyclo[4.2.1]nonane, and 3,10-diazabicyclo[4.3.1]decane were adopted as core motifs of the novel derivatives. The compounds were synthesized and biologically assayed as racemic (3-5) or diastereoisomeric (6,7) mixtures. All the novel compounds 3-7 showed δ agonism behaviour and remarkable affinity to δ receptors. Amongst the novel derivatives, 3,8-diazabicyclo[3.2.1]octane based compound 4 evidenced improved δ affinity and selectivity relative to SNC80.

  13. Distinct activities of GABA agonists at synaptic- and extrasynaptic-type GABAA receptors.

    PubMed

    Mortensen, Martin; Ebert, Bjarke; Wafford, Keith; Smart, Trevor G

    2010-04-15

    The activation characteristics of synaptic and extrasynaptic GABA(A) receptors are important for shaping the profile of phasic and tonic inhibition in the central nervous system, which will critically impact on the activity of neuronal networks. Here, we study in isolation the activity of three agonists, GABA, muscimol and 4,5,6,7-tetrahydoisoxazolo[5,4-c]pyridin-3(2H)-one (THIP), to further understand the activation profiles of alpha 1 beta 3 gamma 2, alpha 4 beta 3 gamma 2 and alpha 4 beta 3 delta receptors that typify synaptic- and extrasynaptic-type receptors expressed in the hippocampus and thalamus. The agonists display an order of potency that is invariant between the three receptors, which is reliant mostly on the agonist dissociation constant. At delta subunit-containing extrasynaptic-type GABA(A) receptors, both THIP and muscimol additionally exhibited, to different degrees, superagonist behaviour. By comparing whole-cell and single channel currents induced by the agonists, we provide a molecular explanation for their different activation profiles. For THIP at high concentrations, the unusual superagonist behaviour on alpha 4 beta 3 delta receptors is a consequence of its ability to increase the duration of longer channel openings and their frequency, resulting in longer burst durations. By contrast, for muscimol, moderate superagonist behaviour was caused by reduced desensitisation of the extrasynaptic-type receptors. The ability to specifically increase the efficacy of receptor activation, by selected exogenous agonists over that obtained with the natural transmitter, may prove to be of therapeutic benefit under circumstances when synaptic inhibition is compromised or dysfunctional.

  14. Orvinols with Mixed Kappa/Mu Opioid Receptor Agonist Activity

    PubMed Central

    2013-01-01

    Dual-acting kappa opioid receptor (KOR) agonist and mu opioid receptor (MOR) partial agonist ligands have been put forward as potential treatment agents for cocaine and other psychostimulant abuse. Members of the orvinol series of ligands are known for their high binding affinity to both KOR and MOR, but efficacy at the individual receptors has not been thoroughly evaluated. In this study, it is shown that a predictive model for efficacy at KOR can be derived, with efficacy being controlled by the length of the group attached to C20 and by the introduction of branching into the side chain. In vivo evaluation of two ligands with the desired in vitro profile confirms both display KOR, and to a lesser extent MOR, activity in an analgesic assay suggesting that, in this series, in vitro measures of efficacy using the [35S]GTPγS assay are predictive of the in vivo profile. PMID:23438330

  15. Orvinols with mixed kappa/mu opioid receptor agonist activity.

    PubMed

    Greedy, Benjamin M; Bradbury, Faye; Thomas, Mark P; Grivas, Konstantinos; Cami-Kobeci, Gerta; Archambeau, Ashley; Bosse, Kelly; Clark, Mary J; Aceto, Mario; Lewis, John W; Traynor, John R; Husbands, Stephen M

    2013-04-25

    Dual-acting kappa opioid receptor (KOR) agonist and mu opioid receptor (MOR) partial agonist ligands have been put forward as potential treatment agents for cocaine and other psychostimulant abuse. Members of the orvinol series of ligands are known for their high binding affinity to both KOR and MOR, but efficacy at the individual receptors has not been thoroughly evaluated. In this study, it is shown that a predictive model for efficacy at KOR can be derived, with efficacy being controlled by the length of the group attached to C20 and by the introduction of branching into the side chain. In vivo evaluation of two ligands with the desired in vitro profile confirms both display KOR, and to a lesser extent MOR, activity in an analgesic assay suggesting that, in this series, in vitro measures of efficacy using the [(35)S]GTPγS assay are predictive of the in vivo profile.

  16. Kappa Opioid Receptor Agonist and Brain Ischemia

    PubMed Central

    Chunhua, Chen; Chunhua, Xi; Megumi, Sugita; Renyu, Liu

    2014-01-01

    Opioid receptors, especially Kappa opioid receptor (KOR) play an important role in the pathophysiological process of cerebral ischemia reperfusion injury. Previously accepted KOR agonists activity has included anti-nociception, cardiovascular, anti-pruritic, diuretic, and antitussive effects, while compelling evidence from various ischemic animal models indicate that KOR agonist have neuroprotective effects through various mechanisms. In this review, we aimed to demonstrate the property of KOR agonist and its role in global and focal cerebral ischemia. Based on current preclinical research, the KOR agonists may be useful as a neuroprotective agent. The recent discovery of salvinorin A, highly selective non-opioid KOR agonist, offers a new tool to study the role of KOR in brain HI injury and the protective effects of KOR agonist. The unique pharmacological profile of salvinorin A along with the long history of human usage provides its high candidacy as a potential alternative medication for brain HI injury. PMID:25574482

  17. beta2 Adrenergic receptor activation induces microglial NADPH oxidase activation and dopaminergic neurotoxicity through an ERK-dependent/protein kinase A-independent pathway.

    PubMed

    Qian, Li; Hu, Xiaoming; Zhang, Dan; Snyder, Amanda; Wu, Hung-Ming; Li, Yachen; Wilson, Belinda; Lu, Ru-Band; Hong, Jau-Shyong; Flood, Patrick M

    2009-11-15

    Activation of the beta2 adrenergic receptor (beta2AR) on immune cells has been reported to possess anti-inflammatory properties, however, the pro-inflammatory properties of beta2AR activation remain unclear. In this study, using rat primary mesencephalic neuron-glia cultures, we report that salmeterol, a long-acting beta2AR agonist, selectively induces dopaminergic (DA) neurotoxicity through its ability to activate microglia. Salmeterol selectively increased the production of reactive oxygen species (ROS) by NADPH oxidase (PHOX), the major superoxide-producing enzyme in microglia. A key role of PHOX in mediating salmeterol-induced neurotoxicity was demonstrated by the inhibition of DA neurotoxicity in cultures pretreated with diphenylene-iodonium (DPI), an inhibitor of PHOX activity. Mechanistic studies revealed the activation of microglia by salmeterol results in the selective phosphorylation of ERK, a signaling pathway required for the translocation of the PHOX cytosolic subunit p47(phox) to the cell membrane. Furthermore, we found ERK inhibition, but not protein kinase A (PKA) inhibition, significantly abolished salmeterol-induced superoxide production, p47(phox) translocation, and its ability to mediate neurotoxicity. Together, these findings indicate that beta2AR activation induces microglial PHOX activation and DA neurotoxicity through an ERK-dependent/PKA-independent pathway.

  18. beta. -endorphin modulation of mitogen-stimulated calcium uptake by rat thymocytes

    SciTech Connect

    Hemmick, L.M.; Bidlack, J.M.

    1987-10-19

    Lymphocytes stimulated by mitogens or antigens exhibit an enhanced calcium uptake early in the proliferation or activation response. Modulation of this calcium uptake results in alterations of proliferation and immunocompetence. ..beta..-endorphin and other opioids affect several parameters of lymphocyte competence. Limited data are available concerning the mechanism(s) of these effects. This study examines whether a possible opioid mechanism is the modification of the early calcium influx into stimulated lymphocytes. The time course of both concanavalin A (Con A) and phytohemagglutinin (PHA)-stimulated /sup 45/Ca/sup 2 +/ uptake into thymocytes was characterized to determine the optimal time for testing the effects of opioids. BETA-Endorphin 1-31 significantly enhanced Con A-stimulated /sup 45/Ca/sup 2 +/ uptake into rat thymocytes. This peptide had no significant effect on PHA-simulated /sup 45/Ca/sup 2 +/ uptake or on basal thymocyte /sup 45/Ca/sup 2 +/ flux. The ..beta../sub h/-endorphin stimulatory effect was titratable in the range of 0.1 nM to 10 ..mu..M. Naloxone did not reverse the enhancement. Met-enkephalinamide and other opioid agonists did not duplicate the stimulatory effect. Thus, the ..beta../sub h/-endorphin 1-31 enhancement of Con A-stimulated /sup 45/Ca/sup 2 +/ uptake by rat thymocytes does not operate via classical opioid receptor mechanisms. ..beta../sub h/-endorphin 1-31 appears to be acting on a subset of T cells that are responsive to Con A but not to PHA. 30 references, 4 figures, 1 table.

  19. Effects of opiate agonists and an antagonist on food intake and brain neurotransmitters in normophagic and obese "cafeteria" rats.

    PubMed

    Robert, J J; Orosco, M; Rouch, C; Jacquot, C; Cohen, Y

    1989-11-01

    The relationship between the effects of opiates on food intake and on central monoamines in various brain areas was investigated in normophagic and obese "cafeteria" rats. Three agonists, beta-endorphin, dynorphin, and D-Ser2-Leu-Enk-Thr6 (DSLET) and an antagonist, naltrexone, were used. The three agonists enhanced feeling in normophagic rats but had different dopaminergic effects. Serotonergic metabolism increased concomitantly with the enhancement of feeding by the agonists, whereas it decreased following treatment with the antagonist naltrexone. In the cafeteria rats, although the feeding effects of dynorphin and DSLET occurred earlier, there was a complete lack of monoaminergic effects. beta-Endorphin was completely devoid of effects in this model. There would, thus, appear to be a positive correlation between the behavioural effects of these opiates and serotonergic metabolism in normophagic rats, while stimulated feeding situations ("cafeteria" rats) the disruption of a monoaminergic modulation does not prohibit a direct effect on feeding.

  20. Long-acting muscarinic antagonists.

    PubMed

    Melani, Andrea S

    2015-01-01

    Chronic obstructive pulmonary disease (COPD) is a major cause of death and disability worldwide. Inhaled bronchodilators are the mainstay of COPD pharmacological treatment. Long-acting muscarinic antagonists (LAMAs) are a major class of inhaled bronchodilators. Some LAMA/device systems with different characteristics and dosing schedules are currently approved for maintenance therapy of COPD and a range of other products are being developed. They improve lung function and patient-reported outcomes and reduce acute bronchial exacerbations with good safety. LAMAs are used either alone or associated with long-acting β₂-agonists, eventually in fixed dose combinations. Long-acting β₂-agonist/LAMA combinations assure additional benefits over the individual components alone. The reader will obtain a view of the safety and efficacy of the different LAMA/device systems in COPD patients. PMID:26109098

  1. Autoradiographic localization of beta-adrenoreceptors in rat uterus

    SciTech Connect

    Tolszczuk, M.; Pelletier, G.

    1988-12-01

    The inhibitory effects of catecholamines on uterine smooth muscle are known to be mediated through beta-adrenergic receptors. To investigate further the distribution of these receptors in the rat uterus, we utilized in vitro autoradiography using ( SVI)-cyanopindolol (CYP), a specific beta-receptor ligand that has equal activity for both beta 1- and beta 2-receptor subtypes. The specificity of the labeling and the characterization of receptor subtypes in different cell types were achieved by displacement of radioligand with increasing concentrations of zinterol, a beta-adrenergic agonist with preferential affinity for the beta 2-adrenoreceptor subtype, and practolol, a beta-adrenergic antagonist that binds preferentially to the beta 1-subtype. Quantitative estimation of ligand binding was performed by densitometry. It was shown that the vast majority of beta-adrenoreceptors were of the beta 2-subtype and were found in high concentration not only in the myometrium but also in the endometrial and serosal epithelia. Specific labeling was also observed in glandular elements. These results suggest that beta-adrenoreceptors might be involved in different functions in the uterus.

  2. Estrogen reduces beta-adrenoceptor-mediated cAMP production and the concentration of the guanyl nucleotide-regulatory protein, Gs, in rabbit myometrium.

    PubMed

    Riemer, R K; Wu, Y Y; Bottari, S P; Jacobs, M M; Goldfien, A; Roberts, J M

    1988-04-01

    The uterine contractile response to adrenergic agonists or sympathetic stimulation is influenced dramatically by the hormonal milieu. Rabbit uterine contraction is mediated by alpha 1-adrenoceptors, whereas relaxation in response to the same stimulus is mediated by beta 2-adrenoceptors. Whether uterine contractility is increased or decreased by adrenergic stimulation is determined by the gonadal steroids estrogen and progesterone: uterine contraction prevails in the estrogen-dominant or the ovariectomized animal, but in the progesterone-dominant rabbit, uterine relaxation is observed. In previous studies, we have demonstrated that changes in the concentration or agonist affinity of these adrenoceptors cannot account for the changes in contractile response. In the present studies, we tested whether sex steroids might alter beta-adrenergic response by acting on events distal to receptor occupancy, and whether this could explain the conversion of contractile response. We found that myometrial cAMP generation is potently stimulated by beta-agonists in progesterone-treated and also in ovariectomized animals, but this stimulation is absent after estrogen treatment. Similar, but smaller, changes were observed for cAMP generation in response to prostaglandin E2 and forskolin. Stimulation of adenylate cyclase in uterine particulates by agents which act on the guanyl nucleotide-sensitive stimulatory transducer, Gs, is unchanged after estrogen treatment. However, specific labeling of Gs catalyzed by cholera toxin is reduced in membrane particulates from estrogen-treated animals. Recombination of extracts of uterine membranes from the differently treated animals also suggested qualitative differences in Gs. We conclude that at least one component of the adenylate cyclase cascade beyond the beta-adrenoceptor, i.e., Gs, is a target for ovarian steroids; estrogen reduces Gs labeling and beta-adrenoceptor-mediated cAMP production. However, uterine Gs labeling and cAMP production

  3. The therapeutic potential of nicotinic acetylcholine receptor agonists for pain control.

    PubMed

    Decker, M W; Meyer, M D; Sullivan, J P

    2001-10-01

    Due to the limitations of currently available analgesics, a number of novel alternatives are currently under investigation, including neuronal nicotinic acetylcholine receptor (nAChR) agonists. During the 1990s, the discovery of the antinociceptive properties of the potent nAChR agonist epibatidine in rodents sparked interest in the analgesic potential of this class of compounds. Although epibatidine also has several mechanism-related toxicities, the identification of considerable nAChR diversity suggested that the toxicities and therapeutic actions of the compound might be mediated by distinct receptor subtypes. Consistent with this view, a number of novel nAChR agonists with antinociceptive activity and improved safety profiles in preclinical models have now been identified, including A-85380, ABT-594, DBO-83, SIB-1663 and RJR-2403. Of these, ABT-594 is the most advanced and is currently in Phase II clinical evaluation. Nicotinically-mediated antinociception has been demonstrated in a variety of rodent pain models and is likely mediated by the activation of descending inhibitory pathways originating in the brainstem with the predominant high-affinity nicotine site in brain, the alpha4beta2 subtype, playing a critical role. Thus, preclinical findings suggest that nAChR agonists have the potential to be highly efficacious treatments in a variety of pain states. However, clinical proof-of-principle studies will be required to determine if nAChR agonists are active in pathological pain.

  4. beta. -Adrenergic stimulation of brown adipocyte proliferation

    SciTech Connect

    Geloeen, A.; Collet, A.J.; Guay, G.; Bukowiecki, L.J. Laboratoire de Thermoregulation et Metabolisme Energetique, Lyon )

    1988-01-01

    The mechanisms of brown adipose tissue (BAT) growth were studied by quantitative photonic radioautography using tritiated thymidine to follow mitotic activity. To identify the nature of the adrenergic pathways mediating brown adipocyte proliferation and differentiation, the effects of cold exposure (4 days at 4{degree}C) on BAT growth were compared with those induced by treating rats at 25{degree}C with norepinephrine (a mixed agonist), isoproterenol (a {beta}-agonist), and phenylephrine (an {alpha}-agonist). Norepinephrine mimicked the effects of cold exposure, not only on the mitotic activity, but also on the distribution of the labeling among the various cellular types. Isoproterenol entirely reproduced the effects of norepinephrine both on the labeling index and on the cellular type labeling frequency. These results demonstrate that norepinephrine triggers a coordinated proliferation of brown adipocytes and endothelial cells in warm-exposed rats that is similar to that observed after cold exposure. They also suggest that cold exposure stimulates BAT growth by increasing the release of norepinephrine from sympathetic nerves and that the neurohormone activates mitoses in BAT precursor cells via {beta}-adrenergic pathways.

  5. Beta Blockers

    PubMed Central

    Admani, Shehla; Feldstein, Stephanie; Gonzalez, Ernesto M.

    2014-01-01

    Infantile hemangiomas are benign vascular tumors seen in 4.5 percent of neonates and infants. While most infantile hemangiomas can be managed with active nonintervention, a subset of patients will require more aggressive management. Here the authors review the use of beta-blockers in the treatment of infantile hemangiomas, including oral, topical, and multimodal treatment options. They discuss the latest data on propranolol, including criteria for patient selection, dosing recommendations, and appropriate monitoring for side effects and efficacy. Lastly, they review indications for topical timolol treatment and the potential benefits of concomitant laser therapy. PMID:25053982

  6. Identification of metals from osteoblastic ST-2 cell supernatants as novel OGR1 agonists.

    PubMed

    Abe-Ohya, Rie; Ishikawa, Tomio; Shiozawa, Hideyuki; Suda, Koji; Nara, Futoshi

    2015-01-01

    Ovarian cancer G-protein-coupled receptor 1 (OGR1) is a G-protein-coupled receptor (GPCR), which has previously been identified as a receptor for protons. It has been reported in this and previous studies that OGR1 expression was markedly up-regulated during osteoclast differentiation. We predicted the possibility of other molecules activating OGR1 in neutral pH, and that osteoblasts might release OGR1 agonistic molecules and activate OGR1 expressed in osteoclasts such as RANKL. We screened for cell supernatants and organ extracts and discovered OGR1 agonistic activity in ST-2 osteoblastic cell supernatants and pancreatic tissues. Finally, we partially purified and identified essential metals, Fe, Zn, Co, Ni and Mn, as novel OGR1 agonists. These OGR1 agonistic metals induce intracellular Gq-coupled inositol phosphate signals in OGR1-expressing cells and primary osteoclasts through OGR1. We also confirmed that these OGR1 agonistic metals activated OGR1 through the same residues which act with protons. Here, we demonstrate that metals, Fe, Zn, Co, Ni and Mn are the novel OGR1 agonists, which can singly activate OGR1 in neutral pH.

  7. ERβ-specific agonists and genistein inhibit proliferation and induce apoptosis in the large and small intestine.

    PubMed

    Schleipen, B; Hertrampf, T; Fritzemeier, K H; Kluxen, F M; Lorenz, A; Molzberger, A; Velders, M; Diel, P

    2011-11-01

    Epidemiological data indicate that intake of estrogens and isoflavones may be beneficial for the prevention of colorectal cancer (CRC). Based on this data, the aim of the study was to investigate estrogen receptor (ER) subtype-specific effects on intestinal homeostasis. Ovariectomized (OVX) female Wistar rats were either treated with 17β-estradiol (4 μg/kg body wt/day) (E2), an ERα-specific agonist (ALPHA) (10 μg/kg body wt/day), an ERβ-specific agonist (BETA) (100 μg/kg body wt/day) or genistein (GEN) (10 mg/kg body wt/day) for three weeks. Vehicle-treated OVX and SHAM animals and those cotreated with BETA and the pure antiestrogen Fulvestrant (ICI 182780) (100 μg/kg body wt/day and 3 mg/kg body wt/day) served as controls. GEN and BETA treatment but not E2 and ALPHA administration reduced proliferation in ileal and colonic mucosa cells. The rate of apoptosis in the small intestine and colon was increased by treatment with BETA and GEN, but not by E2. BETA induced antiproliferative and proapoptotic activity also in SHAM animals. The effects were antagonized by the pure antiestrogen Fulvestrant. Polymerase chain reaction gene array analysis revealed that BETA resulted in the downregulation of the oncogene transformation-related protein 63 (p63). Our data indicate that activation of the ERβ by specific ERβ agonists and GEN induces antiproliferative and proapoptotic effects in the intestinal tract. This observation can be taken as an indication that intake of GEN and specific ERβ agonists may protect the ileal and colonic epithelium from tumor development via modulation of tissue homeostasis.

  8. Serotonin and dopamine independently regulate pituitary beta-endorphin release in vivo.

    PubMed

    Sapun-Malcolm, D; Farah, J M; Mueller, G P

    1986-01-01

    Serotonin and dopamine neurons have been shown to exert a stimulatory and inhibitory control, respectively, over pituitary release of beta-endorphin-like immunoreactivity (beta-END-LI). In the present study we sought to determine whether an interaction exists between these two reciprocal mechanisms regulating beta-END-LI in the rat. The intraperitoneal (i.p.) administration of 5 mg/kg quipazine, a serotonin receptor agonist, or 2.5 mg/kg haloperidol, a dopamine receptor antagonist, each elevated circulating levels by beta-END-LI 5-fold over control levels by 30 min post-injection. Pretreatment (1 h) with 5 mg/kg, i.p., cinanserin, a serotonin receptor antagonist, completely blocked the quipazine-induced rise in beta-END-LI without affecting the elevated levels of beta-END-LI in haloperidol-treated animals. Conversely, pretreatment (2 h) with 1 mg/kg, i.p., bromocriptine, a dopamine receptor agonist, had no effect on quipazine-induced release of beta-END-LI but did completely prevent the rise in plasma beta-END-LI due to haloperidol treatment. Gel filtration chromatography revealed that quipazine and haloperidol treatments elevated plasma levels of both beta-END-size immunoreactivity and beta-lipotropin (beta-LPH)-sized immunoreactivity though to different relative degrees. However, since circulating levels of beta-LPH serve as a marker for anterior lobe (AL) beta-END-LI secretion, serotonin and dopamine appear to exert stimulatory and inhibitory control, respectively, over AL beta-END-LI release. Further, the quipazine-induced rise in total plasma beta-END-LI primarily resembled beta-LPH in size and was blocked by cinanserin but not bromocriptine pretreatment. And conversely, bromocriptine but not cinanserin prevented the haloperidol-induced rise in circulating beta-END-LI.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Beta-alanine as a small molecule neurotransmitter.

    PubMed

    Tiedje, K E; Stevens, K; Barnes, S; Weaver, D F

    2010-10-01

    This review discusses the role of beta-alanine as a neurotransmitter. Beta-alanine is structurally intermediate between alpha-amino acid (glycine, glutamate) and gamma-amino acid (GABA) neurotransmitters. In general, beta-alanine satisfies a number of the prerequisite classical criteria for being a neurotransmitter: beta-alanine occurs naturally in the CNS, is released by electrical stimulation through a Ca(2+) dependent process, has binding sites, and inhibits neuronal excitability. beta-Alanine has 5 recognized receptor sites: glycine co-agonist site on the NMDA complex (strychnine-insensitive); glycine receptor site (strychnine sensitive); GABA-A receptor; GABA-C receptor; and blockade of GAT protein-mediated glial GABA uptake. Although beta-alanine binding has been identified throughout the hippocampus, limbic structures, and neocortex, unique beta-alaninergic neurons with no GABAergic properties remain unidentified, and it is impossible to discriminate between beta-alaninergic and GABAergic properties in the CNS. Nevertheless, a variety of data suggest that beta-alanine should be considered as a small molecule neurotransmitter and should join the ranks of the other amino acid neurotransmitters. These realizations open the door for a more comprehensive evaluation of beta-alanine's neurochemistry and for its exploitation as a platform for drug design.

  10. Exercise restores beta-adrenergic vasorelaxation in aged rat carotid arteries.

    PubMed

    Leosco, Dario; Iaccarino, Guido; Cipolletta, Ersilia; De Santis, Domenico; Pisani, Eliana; Trimarco, Valentina; Ferrara, Nicola; Abete, Pasquale; Sorriento, Daniela; Rengo, Franco; Trimarco, Bruno

    2003-07-01

    Aging is associated with alterations in beta-adrenergic receptor (beta-AR) signaling and reduction in cardiovascular responses to beta-AR stimulation. Because exercise can attenuate age-related impairment in myocardial beta-AR signaling and function, we tested whether training could also exert favorable effects on vascular beta-AR responses. We evaluated common carotid artery responsiveness in isolated vessel ring preparations from 8 aged male Wistar-Kyoto (WKY) rats trained for 6 wk in a 5 days/wk swimming protocol, 10 untrained age-matched rats, and 10 young WKY rats. Vessels were preconstricted with phenylephrine (10-6 M), and vasodilation was assessed in response to the beta-AR agonist isoproterenol (10-10-3 x 10-8 M), the alpha2-AR agonist UK-14304 (10-9-10-6 M), the muscarinic receptor agonist ACh (10-9-10-6 M), and nitroprusside (10-8-10-5 M). beta-AR density and cytoplasmic beta-AR kinase (beta-ARK) activity were tested on pooled carotid arteries. beta-ARK expression was assessed in two endothelial cell lines from bovine aorta and aorta isolated from a 12-wk WKY rat. beta-AR, alpha2-AR, and muscarinic responses, but not that to nitroprusside, were depressed in untrained aged vs. young animals. Exercise training restored beta-AR and muscarinic responses but did not affect vasodilation induced by UK-14304 and nitroprusside. Aged carotid arteries showed reduced beta-AR number and increased beta-ARK activity. Training counterbalanced these phenomena and restored beta-AR density and beta-ARK activity to levels observed in young rat carotids. Our data indicate that age impairs beta-AR vasorelaxation in rat carotid arteries through beta-AR downregulation and desensitization. Exercise restores this response and reverts age-related modification in beta-ARs and beta-ARK. Our data support an important role for beta-ARK in vascular beta-AR vasorelaxation.

  11. Successful Treatment of Chronic Hepatitis C with Triple Therapy in an Opioid Agonist Treatment Program

    PubMed Central

    Litwin, Alain H.; Soloway, Irene J.; Cockerham-Colas, Lauren; Reynoso, Sheila; Heo, Moonseong; Tenore, Christopher; Roose, Robert J.

    2015-01-01

    Background People who inject drugs (PWID) constitute 10 million people globally with hepatitis C virus, including many opioid agonist treatment patients. Little data exist describing clinical outcomes for patients receiving HCV treatment with direct-acting antiviral agents (DAAs) in opioid agonist treatment settings. Methods In this retrospective observational study, we describe clinical outcomes for 50 genotype-1 patients receiving HCV treatment with triple therapy: telaprevir (n = 42) or boceprevir (n = 8) in combination with pegylated interferon and ribavirin on-site in an opioid agonist treatment program. Results Overall, 70% achieved an end of treatment response (ETR) and 62% achieved a sustained virological response (SVR). These treatment outcomes are nearly equivalent to previously published HCV outcomes shown in registration trials, despite high percentages of recent drug use prior to treatment (52%), ongoing drug use during treatment (45%) and psychiatric comorbidity (86%). Only 12% (n=6) discontinued antiviral treatment early for non-virological reasons. Four patients received a blood transfusion, and one discontinued telaprevir due to severe rash. Conclusions These data demonstrate that on-site HCV treatment with direct-acting antiviral agents is effective in opioid agonist treatment patients including patients who are actively using drugs. Future interferon-free regimens will likely be even more effective. Opioid agonist treatment programs represent an opportunity to safely and effectively treat chronic hepatitis C, and PWID should have unrestricted access to DAAs. PMID:26341685

  12. PPAR agonists regulate brain gene expression: relationship to their effects on ethanol consumption.

    PubMed

    Ferguson, Laura B; Most, Dana; Blednov, Yuri A; Harris, R Adron

    2014-11-01

    Peroxisome proliferator-activated receptors (PPARs) are nuclear hormone receptors that act as ligand-activated transcription factors. Although prescribed for dyslipidemia and type-II diabetes, PPAR agonists also possess anti-addictive characteristics. PPAR agonists decrease ethanol consumption and reduce withdrawal severity and susceptibility to stress-induced relapse in rodents. However, the cellular and molecular mechanisms facilitating these properties have yet to be investigated. We tested three PPAR agonists in a continuous access two-bottle choice (2BC) drinking paradigm and found that tesaglitazar (PPARα/γ; 1.5 mg/kg) and fenofibrate (PPARα; 150 mg/kg) decreased ethanol consumption in male C57BL/6J mice while bezafibrate (PPARα/γ/β; 75 mg/kg) did not. We hypothesized that changes in brain gene expression following fenofibrate and tesaglitazar treatment lead to reduced ethanol drinking. We studied unbiased genomic profiles in areas of the brain known to be important for ethanol dependence, the prefrontal cortex (PFC) and amygdala, and also profiled gene expression in liver. Genomic profiles from the non-effective bezafibrate treatment were used to filter out genes not associated with ethanol consumption. Because PPAR agonists are anti-inflammatory, they would be expected to target microglia and astrocytes. Surprisingly, PPAR agonists produced a strong neuronal signature in mouse brain, and fenofibrate and tesaglitazar (but not bezafibrate) targeted a subset of GABAergic interneurons in the amygdala. Weighted gene co-expression network analysis (WGCNA) revealed co-expression of treatment-significant genes. Functional annotation of these gene networks suggested that PPAR agonists might act via neuropeptide and dopaminergic signaling pathways in the amygdala. Our results reveal gene targets through which PPAR agonists can affect alcohol consumption behavior.

  13. PPAR agonists regulate brain gene expression: relationship to their effects on ethanol consumption.

    PubMed

    Ferguson, Laura B; Most, Dana; Blednov, Yuri A; Harris, R Adron

    2014-11-01

    Peroxisome proliferator-activated receptors (PPARs) are nuclear hormone receptors that act as ligand-activated transcription factors. Although prescribed for dyslipidemia and type-II diabetes, PPAR agonists also possess anti-addictive characteristics. PPAR agonists decrease ethanol consumption and reduce withdrawal severity and susceptibility to stress-induced relapse in rodents. However, the cellular and molecular mechanisms facilitating these properties have yet to be investigated. We tested three PPAR agonists in a continuous access two-bottle choice (2BC) drinking paradigm and found that tesaglitazar (PPARα/γ; 1.5 mg/kg) and fenofibrate (PPARα; 150 mg/kg) decreased ethanol consumption in male C57BL/6J mice while bezafibrate (PPARα/γ/β; 75 mg/kg) did not. We hypothesized that changes in brain gene expression following fenofibrate and tesaglitazar treatment lead to reduced ethanol drinking. We studied unbiased genomic profiles in areas of the brain known to be important for ethanol dependence, the prefrontal cortex (PFC) and amygdala, and also profiled gene expression in liver. Genomic profiles from the non-effective bezafibrate treatment were used to filter out genes not associated with ethanol consumption. Because PPAR agonists are anti-inflammatory, they would be expected to target microglia and astrocytes. Surprisingly, PPAR agonists produced a strong neuronal signature in mouse brain, and fenofibrate and tesaglitazar (but not bezafibrate) targeted a subset of GABAergic interneurons in the amygdala. Weighted gene co-expression network analysis (WGCNA) revealed co-expression of treatment-significant genes. Functional annotation of these gene networks suggested that PPAR agonists might act via neuropeptide and dopaminergic signaling pathways in the amygdala. Our results reveal gene targets through which PPAR agonists can affect alcohol consumption behavior. PMID:25036611

  14. β2-Adrenergic agonists attenuate organic dust-induced lung inflammation.

    PubMed

    Romberger, Debra J; Heires, Art J; Nordgren, Tara M; Poole, Jill A; Toews, Myron L; West, William W; Wyatt, Todd A

    2016-07-01

    Agricultural dust exposure results in significant lung inflammation, and individuals working in concentrated animal feeding operations (CAFOs) are at risk for chronic airway inflammatory diseases. Exposure of bronchial epithelial cells to aqueous extracts of hog CAFO dusts (HDE) leads to inflammatory cytokine production that is driven by protein kinase C (PKC) activation. cAMP-dependent protein kinase (PKA)-activating agents can inhibit PKC activation in epithelial cells, leading to reduced inflammatory cytokine production following HDE exposure. β2-Adrenergic receptor agonists (β2-agonists) activate PKA, and we hypothesized that β2-agonists would beneficially impact HDE-induced adverse airway inflammatory consequences. Bronchial epithelial cells were cultured with the short-acting β2-agonist salbutamol or the long-acting β2-agonist salmeterol prior to stimulation with HDE. β2-Agonist treatment significantly increased PKA activation and significantly decreased HDE-stimulated IL-6 and IL-8 production in a concentration- and time-dependent manner. Salbutamol treatment significantly reduced HDE-induced intracellular adhesion molecule-1 expression and neutrophil adhesion to epithelial cells. Using an established intranasal inhalation exposure model, we found that salbutamol pretreatment reduced airway neutrophil influx and IL-6, TNF-α, CXCL1, and CXCL2 release in bronchoalveolar lavage fluid following a one-time exposure to HDE. Likewise, when mice were pretreated daily with salbutamol prior to HDE exposure for 3 wk, HDE-induced neutrophil influx and inflammatory mediator production were also reduced. The severity of HDE-induced lung pathology in mice repetitively exposed to HDE for 3 wk was also decreased with daily salbutamol pretreatment. Together, these results support the need for future clinical investigations to evaluate the utility of β2-agonist therapies in the treatment of airway inflammation associated with CAFO dust exposure. PMID:27190062

  15. PPAR agonists regulate brain gene expression: Relationship to their effects on ethanol consumption

    PubMed Central

    Ferguson, Laura B.; Most, Dana; Blednov, Yuri A.; Harris, R. Adron

    2014-01-01

    Peroxisome proliferator-activated receptors (PPARs) are nuclear hormone receptors that act as ligand-activated transcription factors. Although prescribed for dyslipidemia and type-II diabetes, PPAR agonists also possess anti-addictive characteristics. PPAR agonists decrease ethanol consumption and reduce withdrawal severity and susceptibility to stress-induced relapse in rodents. However, the cellular and molecular mechanisms facilitating these properties have yet to be investigated. We tested three PPAR agonists in a continuous access two-bottle choice (2BC) drinking paradigm and found that tesaglitazar (PPARα/γ; 1.5 mg/kg) and fenofibrate (PPARα; 150 mg/kg) decreased ethanol consumption in male C57BL/6J mice while bezafibrate (PPARα/γ/β; 75 mg/kg) did not. We hypothesized that changes in brain gene expression following fenofibrate and tesaglitazar treatment lead to reduced ethanol drinking. We studied unbiased genomic profiles in areas of the brain known to be important for ethanol dependence, the prefrontal cortex (PFC) and amygdala, and also profiled gene expression in liver. Genomic profiles from the non-effective bezafibrate treatment were used to filter out genes not associated with ethanol consumption. Because PPAR agonists are anti-inflammatory, they would be expected to target microglia and astrocytes. Surprisingly, PPAR agonists produced a strong neuronal signature in mouse brain, and fenofibrate and tesaglitazar (but not bezafibrate) targeted a subset of GABAergic interneurons in the amygdala. Weighted gene co-expression network analysis (WGCNA) revealed co-expression of treatment-significant genes. Functional annotation of these gene networks suggested that PPAR agonists might act via neuropeptide and dopaminergic signaling pathways in the amygdala. Our results reveal gene targets through which PPAR agonists can affect alcohol consumption behavior. PMID:25036611

  16. Chromosome mapping of the human arrestin (SAG), {beta}-arrestin 2 (ARRB2), and {beta}-adrenergic receptor kinase 2 (ADRBK2) genes

    SciTech Connect

    Calabrese, G.; Sallese, M.; Stornaiuolo, A.

    1994-09-01

    Two types of proteins play a major role in determining homologous desensitization of G-coupled receptors: {beta}-adrenergic receptor kinase ({beta}ARK), which phosphorylates the agonist-occupied receptor and its functional cofactor, {beta}-arrestin. Both {beta}ARK and {beta}-arrestin are members of multigene families. The family of G-protein-coupled receptor kinases includes rhodopsin kinase, {beta}ARK1, {beta}ARK2, IT11-A (GRK4), GRK5, and GRK6. The arrestin/{beta}-arrestin gene family includes arrestin (also known as S-antigen), {beta}-arrestin 1, and {beta}-arrestin 2. Here we report the chromosome mapping of the human genes for arrestin (SAG), {beta}arrestin 2 (ARRB2), and {beta}ARK2 (ADRBK2) by fluorescence in situ hybridization (FISH). FISH results confirmed the assignment of the gene coding for arrestin (SAG) to chromosome 2 and allowed us to refine its localization to band q37. The gene coding for {beta}-arrestin 2 (ARRB2) was mapped to chromosome 17p13 and that coding for {beta}ARK2 (ADRBK2) to chromosome 22q11. 17 refs., 1 fig.

  17. Aspirin metabolites are GPR35 agonists.

    PubMed

    Deng, Huayun; Fang, Ye

    2012-07-01

    Aspirin is widely used as an anti-inflammatory, anti-platelet, anti-pyretic, and cancer-preventive agent; however, the molecular mode of action is unlikely due entirely to the inhibition of cyclooxygenases. Here, we report the agonist activity of several aspirin metabolites at GPR35, a poorly characterized orphan G protein-coupled receptor. 2,3,5-Trihydroxybenzoic acid, an aspirin catabolite, was found to be the most potent GPR35 agonist among aspirin metabolites. Salicyluric acid, the main metabolite of aspirin, was also active. These results suggest that the GPR35 agonist activity of certain aspirin metabolites may contribute to the clinical features of aspirin. PMID:22526472

  18. alpha- and beta-adrenergic receptor mechanisms in spontaneous contractile activity of rat ileal longitudinal smooth muscle.

    PubMed

    Seiler, Roland; Rickenbacher, Andreas; Shaw, Sidney; Balsiger, Bruno M

    2005-02-01

    Gastrointestinal motility is influenced by adrenergic modulation. Our aim was to identify specific subtypes of adrenergic receptors involved in inhibitory mechanisms that modulate gut smooth muscle contractile activity. Muscle strips of rat ileal longitudinal muscle were evaluated for spontaneous contractile activity and for equimolar dose-responses (10(-7) to 3 x 10(-5) M) to the adrenergic agents norepinephrine (nonselective agonist), phenylephrine (alpha(1)-agonist), clonidine (alpha(2)-agonist), prenalterol (beta(1)-agonist), ritodrine (beta(2)-agonist), and ZD7114 (beta(3)-agonist) in the presence and absence of tetrodotoxin (nonselective nerve blocker). Norepinephrine (3 x 10(-5) M) inhibited 65 +/- 6% (mean +/- SEM) of spontaneous contractile activity. The same molar dose of ritodrine, phenylephrine, or ZD7114 resulted in less inhibition (46 +/- 7%, 31 +/- 5%, and 39 +/- 3%, respectively; P < 0.05). The calculated molar concentration of ZD7114 needed to induce 50% inhibition was similar to that of norepinephrine, whereas higher concentrations of phenylephrine or ritodrine were required. Clonidine and prenalterol had no effect on contractile activity. Blockade of intramural neural transmission by tetrodotoxin affected the responses to ritodrine and phenylephrine (but not to norepinephrine or ZD7114), suggesting that these agents exert part of their effects via neurally mediated enteric pathways. Our results suggest that adrenergic modulation of contractile activity in the rat ileum is mediated primarily by muscular beta(3)-, beta(2)-, and alpha(1)-receptor mechanisms; the latter two also involve neural pathways. PMID:15694819

  19. Monoterpenoid agonists of TRPV3

    PubMed Central

    Vogt-Eisele, A K; Weber, K; Sherkheli, M A; Vielhaber, G; Panten, J; Gisselmann, G; Hatt, H

    2007-01-01

    Background and purpose: Transient receptor potential (TRP) V3 is a thermosensitive ion channel expressed predominantly in the skin and neural tissues. It is activated by warmth and the monoterpene camphor and has been hypothesized to be involved in skin sensitization. A selection of monoterpenoid compounds was tested for TRPV3 activation to establish a structure-function relationship. The related channel TRPM8 is activated by cool temperatures and a number of chemicals, among them the monoterpene (-)-menthol. The overlap of the receptor pharmacology between the two channels was investigated. Experimental approach: Transfected HEK293 cells were superfused with the test substances. Evoked currents were measured in whole cell patch clamp measurements. Dose-response curves for the most potent agonists were obtained in Xenopus laevis oocytes. Key results: Six monoterpenes significantly more potent than camphor were identified: 6-tert-butyl-m-cresol, carvacrol, dihydrocarveol, thymol, carveol and (+)-borneol. Their EC50 is up to 16 times lower than that of camphor. All of these compounds carry a ring-located hydroxyl group and neither activates TRPM8 to a major extent. Conclusions and implications: Terpenoids have long been recognized as medically and pharmacologically active compounds, although their molecular targets have only partially been identified. TRPV3 activation may be responsible for several of the described effects of terpenoids. We show here that TRPV3 is activated by a number of monoterpenes and that a secondary hydroxyl-group is a structural requirement. PMID:17420775

  20. Dopamine receptor partial agonists and addiction.

    PubMed

    Moreira, Fabricio A; Dalley, Jeffrey W

    2015-04-01

    Many drugs abused by humans acutely facilitate, either directly or indirectly, dopamine neurotransmission in the mesolimbic pathway. As a consequence dopamine receptor agonists and antagonists have been widely investigated as putative pharmacological therapies for addiction. This general strategy, however, has had only limited success due in part to poor treatment adherence and efficacy and the significant adverse effects of dopaminergic medications. In this perspective, we discuss the potential therapeutic use of dopamine receptor partial agonists in addiction, developed initially as antipsychotic agents. Recent research indicates that the dopamine D2 receptor partial agonists, such as aripiprazole, also shows useful ancillary efficacy in several animal models of psychostimulant and opioid addiction. Notably, these findings suggest that unlike full dopamine receptor agonists and antagonists these compounds have low abuse liability and are generally well tolerated. Indeed, partial dopamine agonists attenuate the rewarding properties of opioids without interfering with their analgesic effects. Herein we discuss the utility and potential of dopamine receptor partial agonists as treatments for both stimulant and non-stimulant drug addiction.

  1. PPAR Agonists and Cardiovascular Disease in Diabetes.

    PubMed

    Calkin, Anna C; Thomas, Merlin C

    2008-01-01

    Peroxisome proliferators activated receptors (PPARs) are ligand-activated nuclear transcription factors that play important roles in lipid and glucose homeostasis. To the extent that PPAR agonists improve diabetic dyslipidaemia and insulin resistance, these agents have been considered to reduce cardiovascular risk. However, data from murine models suggests that PPAR agonists also have independent anti-atherosclerotic actions, including the suppression of vascular inflammation, oxidative stress, and activation of the renin angiotensin system. Many of these potentially anti-atherosclerotic effects are thought to be mediated by transrepression of nuclear factor-kB, STAT, and activator protein-1 dependent pathways. In recent clinical trials, PPARalpha agonists have been shown to be effective in the primary prevention of cardiovascular events, while their cardiovascular benefit in patients with established cardiovascular disease remains equivocal. However, the use of PPARgamma agonists, and more recently dual PPARalpha/gamma coagonists, has been associated with an excess in cardiovascular events, possibly reflecting unrecognised fluid retention with potent agonists of the PPARgamma receptor. Newer pan agonists, which retain their anti-atherosclerotic activity without weight gain, may provide one solution to this problem. However, the complex biologic effects of the PPARs may mean that only vascular targeted agents or pure transrepressors will realise the goal of preventing atherosclerotic vascular disease.

  2. PPAR Agonists and Cardiovascular Disease in Diabetes

    PubMed Central

    Calkin, Anna C.; Thomas, Merlin C.

    2008-01-01

    Peroxisome proliferators activated receptors (PPARs) are ligand-activated nuclear transcription factors that play important roles in lipid and glucose homeostasis. To the extent that PPAR agonists improve diabetic dyslipidaemia and insulin resistance, these agents have been considered to reduce cardiovascular risk. However, data from murine models suggests that PPAR agonists also have independent anti-atherosclerotic actions, including the suppression of vascular inflammation, oxidative stress, and activation of the renin angiotensin system. Many of these potentially anti-atherosclerotic effects are thought to be mediated by transrepression of nuclear factor-kB, STAT, and activator protein-1 dependent pathways. In recent clinical trials, PPARα agonists have been shown to be effective in the primary prevention of cardiovascular events, while their cardiovascular benefit in patients with established cardiovascular disease remains equivocal. However, the use of PPARγ agonists, and more recently dual PPARα/γ coagonists, has been associated with an excess in cardiovascular events, possibly reflecting unrecognised fluid retention with potent agonists of the PPARγ receptor. Newer pan agonists, which retain their anti-atherosclerotic activity without weight gain, may provide one solution to this problem. However, the complex biologic effects of the PPARs may mean that only vascular targeted agents or pure transrepressors will realise the goal of preventing atherosclerotic vascular disease. PMID:18288280

  3. Gender-specific alteration of adrenergic responses in small femoral arteries from estrogen receptor-beta knockout mice.

    PubMed

    Luksha, Leonid; Poston, Lucilla; Gustafsson, Jan-Ake; Aghajanova, Lusine; Kublickiene, Karolina

    2005-11-01

    Estrogen receptor-beta knockout mice become hypertensive as they age, and males have a higher blood pressure than females. We hypothesized that the absence of estrogen receptor-beta may contribute to development of cardiovascular dysfunction by modification of adrenergic responsiveness in the peripheral vasculature. Small femoral arteries (internal diameter <200 microm) were isolated from estrogen receptor-beta knockout and wild-type mice and mounted on a wire myograph. Concentration-response curves to phenylephrine and norepinephrine were compared and the contribution of adrenoceptor subtypes established using specific agonists and antagonists. The involvement of endothelial factors in the modulation of resting tone was also investigated and immunohistochemical analysis used to confirm the presence or absence of estrogen receptor expression. Compared with wild type, arteries from estrogen receptor-beta knockout male, but not female, mice demonstrated gender-specific enhancement of the response to phenylephrine (alpha1-adrenoceptor agonist), which was accompanied by elevated basal tension attributable to endothelial factors. Contractile responses to the mixed adrenoceptor agonist norepinephrine did not differ significantly between estrogen receptor-beta knockout and wild type; however, beta-adrenoceptor inhibition unmasked an enhanced underlying alpha1-adrenoceptor responsiveness in estrogen receptor-beta knockout males. beta-adrenoceptor-mediated dilatation was also enhanced in estrogen receptor-beta knockout versus wild-type males. We suggest that estrogen receptor-beta modifies the adrenergic control of small artery tone in males but not in females.

  4. ( sup 3 H)protein secretion in rat parotid gland: Substance P-. beta. -adrenergic synergism

    SciTech Connect

    Dreux, C.; Imhoff, V.; Rossignol, B. )

    1987-12-01

    In parotid fragment ({sup 3}H)protein, secretion induced by substance P was moderate, but strongly Ca dependent. However, secretion induced by isoproterenol was large and Ca independent. Potentiation of protein secretion was observed when substance P (SP) and isoproterenol (ISO) acted together. Addition of 10{sup {minus}8} M SP caused a shift to the left in the secretion dose-response curve caused by ISO, but did not enhance ISO-induced maximal response. The potentiating effect seems to be a postreceptor event, since it can be mimicked by forskolin (FK), known to induce directly cAMP accumulation, thus bypassing the {beta}-adrenergic receptor. The synergism described above was, therefore, investigated at the second messenger production level. Stimulation of parotid gland fragments by simultaneous addition of SP plus ISO or FK did not modify cAMP nor inositol trisphosphate (IP{sub 3}) accumulation induced independently by each secretagogue alone. The ionophore A23187 was also able to potentiate secretion induced by a {beta}-adrenergic agonist, this effect being totally abolished by external calcium omission, thus suggesting a role for external calcium in this potentiation phenomenon. These results suggest that the potentiation phenomenon observed is a postreceptor event that occurs at a step distal from the second messenger production.

  5. Functional and molecular characterization of beta-adrenoceptors in the internal anal sphincter.

    PubMed

    Rathi, Sandeep; Kazerounian, Shiva; Banwait, Kuldip; Schulz, Stephanie; Waldman, Scott A; Rattan, Satish

    2003-05-01

    The purpose of the present study was to characterize different beta-adrenoceptors (beta-ARs) and determine their role in the spontaneously tonic smooth muscle of the internal anal sphincter (IAS). The beta-AR subtypes in the opossum IAS were investigated by functional in vitro, radioligand binding, Western blot, and reverse transcription-polymerase chain reaction (RT-PCR) studies. ZD 7114 [(S)-4-[2-hydroxy-3-phenoxypropylaminoethoxy]-N-(2-methoxyethyl)phenoxyacetamide], a selective beta(3)-AR agonist, caused a potent and concentration-dependent relaxation of the IAS smooth muscle that was antagonized by the beta(3)-AR antagonist SR 59230A [1-(2-ethylphenoxy)-3-[[(1S)-1,2,3,4-tetrahydro-1-naphthalenyl]amino]-(2S)-2-propanol hydrochloride]. Conversely, the IAS smooth muscle relaxation caused by beta(1)- and beta(2)-AR agonists (xamoterol and procaterol, respectively) was selectively antagonized by their respective antagonists CGP 20712 [(+/-)-2-hydroxy-5-[2-[[2-hydroxy-3-[4-[1-methyl-4-(trifluoromethyl)-1H-imidazol-2-yl]phenoxy]propyl]amino]ethoxy]-benzamide methanesulfonate salt] and ICI 118551. Saturation binding of [(125)I]iodocyanopindolol to beta-AR subtypes revealed the presence of a high-affinity site (K(d1) = 96.4 +/- 8.7 pM; B(max1) = 12.5 +/- 0.6 fmol/mg protein) and a low-affinity site (K(d2) = 1.96 +/- 1.7 nM; B(max2) = 58.7 +/- 4.3 fmol/mg protein). Competition binding with selective beta-AR antagonists revealed that the high-affinity site correspond to beta(1)/beta(2)-AR and the low affinity site to beta(3)-AR. Receptor binding data suggest the predominant presence of beta(3)-AR over beta(1)/beta(2)-AR. Western blot studies identified beta(1)-, beta(2)-, and beta(3)-AR subtypes. The presence of beta(1)-, beta(2)-, and beta(3)-ARs was further demonstrated by mRNA analysis using RT-PCR. The studies demonstrate a comprehensive functional and molecular characterization of beta(1)-, beta(2)-, and beta(3)-ARs in IAS smooth muscle. These studies may have

  6. nAChR agonist-induced cognition enhancement: integration of cognitive and neuronal mechanisms.

    PubMed

    Sarter, Martin; Parikh, Vinay; Howe, William M

    2009-10-01

    The identification and characterization of drugs for the treatment of cognitive disorders has been hampered by the absence of comprehensive hypotheses. Such hypotheses consist of (a) a precisely defined cognitive operation that fundamentally underlies a range of cognitive abilities and capacities and, if impaired, contributes to the manifestation of diverse cognitive symptoms; (b) defined neuronal mechanisms proposed to mediate the cognitive operation of interest; (c) evidence indicating that the putative cognition enhancer facilitates these neuronal mechanisms; (d) and evidence indicating that the cognition enhancer facilitates cognitive performance by modulating these underlying neuronal mechanisms. The evidence on the neuronal and attentional effects of nAChR agonists, specifically agonists selective for alpha4beta2* nAChRs, has begun to support such a hypothesis. nAChR agonists facilitate the detection of signals by augmenting the transient increases in prefrontal cholinergic activity that are necessary for a signal to gain control over behavior in attentional contexts. The prefrontal microcircuitry mediating these effects include alpha4beta2* nAChRs situated on the terminals of thalamic inputs and the glutamatergic stimulation of cholinergic terminals via ionotropic glutamate receptors. Collectively, this evidence forms the basis for hypothesis-guided development and characterization of cognition enhancers.

  7. Conformational variability of the glycine receptor M2 domain in response to activation by different agonists.

    PubMed

    Pless, Stephan A; Dibas, Mohammed I; Lester, Henry A; Lynch, Joseph W

    2007-12-01

    Models describing the structural changes mediating Cys loop receptor activation generally give little attention to the possibility that different agonists may promote activation via distinct M2 pore-lining domain structural rearrangements. We investigated this question by comparing the effects of different ligands on the conformation of the external portion of the homomeric alpha1 glycine receptor M2 domain. Conformational flexibility was assessed by tethering a rhodamine fluorophore to cysteines introduced at the 19' or 22' positions and monitoring fluorescence and current changes during channel activation. During glycine activation, fluorescence of the label attached to R19'C increased by approximately 20%, and the emission peak shifted to lower wavelengths, consistent with a more hydrophobic fluorophore environment. In contrast, ivermectin activated the receptors without producing a fluorescence change. Although taurine and beta-alanine were weak partial agonists at the alpha1R19'C glycine receptor, they induced large fluorescence changes. Propofol, which drastically enhanced these currents, did not induce a glycine-like blue shift in the spectral emission peak. The inhibitors strychnine and picrotoxin elicited fluorescence and current changes as expected for a competitive antagonist and an open channel blocker, respectively. Glycine and taurine (or beta-alanine) also produced an increase and a decrease, respectively, in the fluorescence of a label attached to the nearby L22'C residue. Thus, results from two separate labeled residues support the conclusion that the glycine receptor M2 domain responds with distinct conformational changes to activation by different agonists. PMID:17911099

  8. A clinical review of GLP-1 receptor agonists: efficacy and safety in diabetes and beyond

    PubMed Central

    Prasad-Reddy, Lalita; Isaacs, Diana

    2015-01-01

    The prevalence of type 2 diabetes is increasing at an astounding rate. Many of the agents used to treat type 2 diabetes have undesirable adverse effects of hypoglycemia and weight gain. Glucagon-like peptide-1 (GLP-1) receptor agonists represent a unique approach to the treatment of diabetes, with benefits extending outside glucose control, including positive effects on weight, blood pressure, cholesterol levels, and beta-cell function. They mimic the effects of the incretin hormone GLP-1, which is released from the intestine in response to food intake. Their effects include increasing insulin secretion, decreasing glucagon release, increasing satiety, and slowing gastric emptying. There are currently four approved GLP-1 receptor agonists in the United States: exenatide, liraglutide, albiglutide, and dulaglutide. A fifth agent, lixisenatide, is available in Europe. There are important pharmacodynamic, pharmacokinetic, and clinical differences of each agent. The most common adverse effects seen with GLP-1 therapy include nausea, vomiting, and injection-site reactions. Other warnings and precautions include pancreatitis and thyroid cell carcinomas. GLP-1 receptor agonists are an innovative and effective option to improve blood glucose control, with other potential benefits of preserving beta-cell function, weight loss, and increasing insulin sensitivity. Once-weekly formulations may also improve patient adherence. Overall, these are effective agents for patients with type 2 diabetes, who are either uncontrolled on metformin or intolerant to metformin. PMID:26213556

  9. PPAR{alpha} agonists up-regulate organic cation transporters in rat liver cells

    SciTech Connect

    Luci, Sebastian; Geissler, Stefanie; Koenig, Bettina; Koch, Alexander; Stangl, Gabriele I.; Hirche, Frank; Eder, Klaus . E-mail: klaus.eder@landw.uni-halle.de

    2006-11-24

    It has been shown that clofibrate treatment increases the carnitine concentration in the liver of rats. However, the molecular mechanism is still unknown. In this study, we observed for the first time that treatment of rats with the peroxisome proliferator activated receptor (PPAR)-{alpha} agonist clofibrate increases hepatic mRNA concentrations of organic cation transporters (OCTNs)-1 and -2 which act as transporters of carnitine into the cell. In rat hepatoma (Fao) cells, treatment with WY-14,643 also increased the mRNA concentration of OCTN-2. mRNA concentrations of enzymes involved in carnitine biosynthesis were not altered by treatment with the PPAR{alpha} agonists in livers of rats and in Fao cells. We conclude that PPAR{alpha} agonists increase carnitine concentrations in livers of rats and cells by an increased uptake of carnitine into the cell but not by an increased carnitine biosynthesis.

  10. Structure-guided development of dual β2 adrenergic/dopamine D2 receptor agonists.

    PubMed

    Weichert, Dietmar; Stanek, Markus; Hübner, Harald; Gmeiner, Peter

    2016-06-15

    Aiming to discover dual-acting β2 adrenergic/dopamine D2 receptor ligands, a structure-guided approach for the evolution of GPCR agonists that address multiple targets was elaborated. Starting from GPCR crystal structures, we describe the design, synthesis and biological investigation of a defined set of compounds leading to the identification of the benzoxazinone (R)-3, which shows agonist properties at the adrenergic β2 receptor and substantial G protein-promoted activation at the D2 receptor. This directed approach yielded molecular probes with tuned dual activity. The congener desOH-3 devoid of the benzylic hydroxyl function was shown to be a β2 adrenergic antagonist/D2 receptor agonist with Ki values in the low nanomolar range. The compounds may serve as a promising starting point for the investigation and treatment of neurological disorders. PMID:27132867

  11. Beta-adrenergic stimulation of phagocytosis in the unicellular eukaryote Paramecium aurelia.

    PubMed

    Wyroba, E

    1989-08-01

    Bete-adrenergic agonists isoproterenol and norepinephrine enhanced phagocytosis in Paramecium. Stimulation was stereospecific, dose-dependent and inhibited by the beta-agonists propranolol and alprenolol. Phorbol ester and forskolin potentiated the stimulatory effect of catecholamines on Paramecium phagocytosis. The dansyl analogue of propranolol (DAPN) was used for fluorescent visualization of the beta-adrenergic receptor sites in Paramecium which have been found to be localized at the cell membrane and within the membrane of the nascent digestive vacuoles. The appearance of the characteristic fluorescent pattern has been blocked by 1-propranolol.

  12. Preclinical pharmacology of mGlu2/3 receptor agonists: novel agents for schizophrenia?

    PubMed

    DD, Darryle D Schoepp; Marek, Gerard J

    2002-04-01

    Agonists for mGlu2/3 receptors decrease the evoked release of glutamate at certain (ie. forebrain / limbic) glutamatergic synapses, indicating that the functional role of mGlu2 and/or mGlu3 receptors is to suppress glutamate excitations. This offers a mechanism for dampening glutamate excitation under pathological states resulting from excessive glutamate release. Based, in part, on the psychotomimetic actions of phencyclidine (PCP)- like drugs, excessive or pathological glutamate release has been implicated in a number of clinical conditions including psychosis. With this in mind, the pharmacology of multiple mGlu2/3 receptor agonists have been investigated in PCP treated rats. Agonists for mGlu2/3 receptors such as LY354740 and LY379268 have been shown to block certain behavioral responses to PCP in rats. The effects of mGlu2/3 agonists on PCP-induced behaviors are blocked by a low doses of a selective mGlu2/3 receptor antagonist, indicating that these actions are mediated via mGlu2/3 receptors. In addition, mGlu2/3 agonists potently suppress glutamate release in rat prefrontal cortex, as reflected by excitatory post-synaptic potentials (EPSPs) induced by serotonin (5-HT) acting on 5HT(2A) receptors. These actions of LY354740 and LY379268 are also blocked by a selective mGlu2/3 antagonist. Atypical antipsychotic drugs such as clozapine also suppress 5-HT-induced EPSPs in this brain region, thus suggesting a common pathway for the actions of atypical antipsychotic drugs and mGlu2/3 receptor agonists. As glutamatergic dysfunction has been implicated in psychotic states and possibly in the etiology of schizophrenia, clinical studies with mGlu2/3 agonists may be warranted to further explore the validity of the glutamatergic hypothesis of schizophrenia. PMID:12769628

  13. Glucagon-like peptide-1 receptor agonists suppress water intake independent of effects on food intake.

    PubMed

    McKay, Naomi J; Kanoski, Scott E; Hayes, Matthew R; Daniels, Derek

    2011-12-01

    Glucagon-like peptide-1 (GLP-1) is produced by and released from the small intestine following ingestion of nutrients. GLP-1 receptor (GLP-1R) agonists applied peripherally or centrally decrease food intake and increase glucose-stimulated insulin secretion. These effects make the GLP-1 system an attractive target for the treatment of type 2 diabetes mellitus and obesity. In addition to these more frequently studied effects of GLP-1R stimulation, previous reports indicate that GLP-1R agonists suppress water intake. The present experiments were designed to provide greater temporal resolution and site specificity for the effect of GLP-1 and the long-acting GLP-1R agonists, exendin-4 and liraglutide, on unstimulated water intake when food was and was not available. All three GLP-1R ligands suppressed water intake after peripheral intraperitoneal administration, both in the presence of and the absence of food; however, the magnitude and time frame of water intake suppression varied by drug. GLP-1 had an immediate, but transient, hypodipsic effect when administered peripherally, whereas the water intake suppression by IP exendin-4 and liraglutide was much more persistent. Additionally, intracerebroventricular administration of GLP-1R agonists suppressed water intake when food was absent, but the suppression of intake showed modest differences depending on whether the drug was administered to the lateral or fourth ventricle. To the best of our knowledge, this is the first demonstration of GLP-1 receptor agonists affecting unstimulated, overnight intake in the absence of food, the first test for antidipsogenic effects of hindbrain application of GLP-1 receptor agonists, and the first test of a central effect (forebrain or hindbrain) of liraglutide on water intake. Overall, these results show that GLP-1R agonists have a hypodipsic effect that is independent of GLP-1R-mediated effects on food intake, and this occurs, in part, through central nervous system GLP-1R activation.

  14. Altered phosphorylation and desensitization patterns of a human beta 2-adrenergic receptor lacking the palmitoylated Cys341.

    PubMed Central

    Moffett, S; Mouillac, B; Bonin, H; Bouvier, M

    1993-01-01

    Exposure of beta 2-adrenergic receptors to agonists causes a rapid desensitization of the receptor-stimulated adenylyl cyclase, associated with an increased phosphorylation of the receptor. Agonist-promoted phosphorylation of the beta 2-adrenergic receptor (beta 2AR) by protein kinase A and the beta-adrenergic receptor kinase (beta ARK) is believed to promote a functional uncoupling of the receptor from the guanyl nucleotide regulatory protein Gs. More recently, palmitoylation of Cys341 of the receptor has also been proposed to play an important role in the coupling of the beta 2-adrenergic receptor to Gs. Here we report that substitution of the palmitoylated cysteine by a glycine (Gly341 beta 2 AR) using site directed mutagenesis leads to a receptor being highly phosphorylated and largely uncoupled from Gs. In Chinese hamster fibroblasts (CHW), stably transfected with the human receptor cDNAs, the basal phosphorylation level of Gly341 beta 2AR was found to be approximately 4 times that of the wild type receptor. This elevated phosphorylation level was accompanied by a depressed ability of the receptor to stimulate the adenylyl cyclase and to form a guanyl nucleotide-sensitive high affinity state for agonists. Moreover, exposure of this unpalmitoylated receptor to an agonist did not promote any further phosphorylation or uncoupling. A modest desensitization of the receptor-stimulated adenylyl cyclase response was observed but resulted from the agonist-induced sequestration of the unpalmitoylated receptor and could be blocked by concanavalin A. This contrasts with the agonist-promoted phosphorylation and uncoupling of the wild type receptor.(ABSTRACT TRUNCATED AT 250 WORDS) Images PMID:8381352

  15. Modulation of agonist binding to human dopamine receptor subtypes by L-prolyl-L-leucyl-glycinamide and a peptidomimetic analog.

    PubMed

    Verma, Vaneeta; Mann, Amandeep; Costain, Willard; Pontoriero, Giuseppe; Castellano, Jessica M; Skoblenick, Kevin; Gupta, Suresh K; Pristupa, Zdenek; Niznik, Hyman B; Johnson, Rodney L; Nair, Venugopalan D; Mishra, Ram K

    2005-12-01

    The present study was undertaken to investigate the role of the hypothalamic tripeptide L-prolyl-L-leucyl-glycinamide (PLG) and its conformationally constrained analog 3(R)-[(2(S)-pyrrolidinylcarbonyl)amino]-2-oxo-1-pyrrolidineacetamide (PAOPA) in modulating agonist binding to human dopamine (DA) receptor subtypes using human neuroblastoma SH-SY5Y cells stably transfected with respective cDNAs. Both PLG and PAOPA enhanced agonist [3H]N-propylnorapomorphine (NPA) and [3H]quinpirole binding in a dose-dependent manner to the DA D2L,D2S, and D4 receptors. However, agonist binding to the D1 and D3 receptors and antagonist binding to the D2L receptors by PLG were not significantly affected. Scatchard analysis of [3H]NPA binding to membranes in the presence of PLG revealed a significant increase in affinity of the agonist binding sites for the D2L, D2S, and D4 receptors. Analysis of agonist/antagonist competition curves revealed that PLG and PAOPA increased the population and affinity of the high-affinity form of the D2L receptor and attenuated guanosine 5'-(beta,gamma-imido)-triphosphate-induced inhibition of high-affinity agonist binding sites for the DA D2L receptor. Furthermore, direct NPA binding with D2L cell membranes pretreated with suramin, a compound that can uncouple receptor/G protein complexes, and incubated with and without DA showed that both PLG and PAOPA had only increased agonist binding in membranes pretreated with both suramin and DA, suggesting that PLG requires the D2L receptor/G protein complex to increase agonist binding. These results suggest that PLG possibly modulates DA D2S, D2L, and D4 receptors in an allosteric manner and that the coupling of D2 receptors to the G protein is essential for this modulation to occur. PMID:16126839

  16. Cereal beta-glucans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cereal beta-glucans occur predominantly in oats and barley, but can be found in other cereals. Beta-glucan structure is a mixture of single beta-1,3-linkages and consecutive beta-1,4-linkages, and cellotriosyl and cellotetraosyl units typically make up 90-95% of entire molecule. Lichenase can hydr...

  17. Sulfhydryl group of the canine cardiac beta-adrenergic receptor observed in the absence of hormone

    SciTech Connect

    Strauss, W.L.; Venter, J.C.

    1985-05-06

    Canine cardiac beta-adrenergic receptors contain a free sulfhydryl group in the adrenergic ligand binding site. (/sup 125/I)-Iodohydroxybenzylpindolol ((/sup 125/I)-IHYP) binding to cardiac beta-receptors was inhibitied 80% by treatment with 1 mM p-chloromercuribenzoic acid (pCMB). Occupation of the beta-receptors by an antagonist prior to treatment with pCMB prevented this effect suggesting that a sulfhydryl group is present in or near the ligand binding site of the cardiac beta-receptor. In the presence of agonists, the sensitivity of cardiac beta-receptors to pCMB was increased. Incubation of isoproterenol-occupied cardiac beta-receptors with 0.25 mM pCMB, which had no effect on the unoccupied receptors, resulted in a 57% inhibition of (/sup 125/I)-IHYP binding measured after extensive washing to remove bound agonist. The ability of isoproterenol to increase the reactivity of cardiac beta-adrenergic receptors supports the hypothesis that agonists produce a conformational change upon binding. 13 references, 4 figures, 1 table.

  18. PPAR-γ Agonists and Their Effects on IGF-I Receptor Signaling: Implications for Cancer

    PubMed Central

    Belfiore, A.; Genua, M.; Malaguarnera, R.

    2009-01-01

    It is now well established that the development and progression of a variety of human malignancies are associated with dysregulated activity of the insulin-like growth factor (IGF) system. In this regard, promising drugs have been developed to target the IGF-I receptor or its ligands. These therapies are limited by the development of insulin resistance and compensatory hyperinsulinemia, which in turn, may stimulate cancer growth. Novel therapeutic approaches are, therefore, required. Synthetic PPAR-γ agonists, such as thiazolidinediones (TZDs), are drugs universally used as antidiabetic agents in patients with type 2 diabetes. In addition of acting as insulin sensitizers, PPAR-γ agonists mediate in vitro and in vivo pleiotropic anticancer effects. At least some of these effects appear to be linked with the downregulation of the IGF system, which is induced by the cross-talk of PPAR-γ agonists with multiple components of the IGF system signaling. As hyperinsulinemia is an emerging cancer risk factor, the insulin lowering action of PPAR-γ agonists may be expected to be also beneficial to reduce cancer development and/or progression. In light of these evidences, TZDs or other PPAR-γ agonists may be exploited in those tumors “addicted” to the IGF signaling and/or in tumors occurring in hyperinsulinemic patients. PMID:19609453

  19. Combined sodium ion sensitivity in agonist binding and internalization of vasopressin V1b receptors

    PubMed Central

    Koshimizu, Taka-aki; Kashiwazaki, Aki; Taniguchi, Junichi

    2016-01-01

    Reducing Na+ in the extracellular environment may lead to two beneficial effects for increasing agonist binding to cell surface G-protein coupled receptors (GPCRs): reduction of Na+-mediated binding block and reduce of receptor internalization. However, such combined effects have not been explored. We used Chinese Hamster Ovary cells expressing vasopressin V1b receptors as a model to explore Na+ sensitivity in agonist binding and receptor internalization. Under basal conditions, a large fraction of V1b receptors is located intracellularly, and a small fraction is in the plasma membrane. Decreases in external Na+ increased cell surface [3H]AVP binding and decreased receptor internalization. Substitution of Na+ by Cs+ or NH4+ inhibited agonist binding. To suppress receptor internalization, the concentration of NaCl, but not of CsCl, had to be less than 50 mM, due to the high sensitivity of the internalization machinery to Na+ over Cs+. Iso-osmotic supplementation of glucose or NH4Cl maintained internalization of the V1b receptor, even in a low-NaCl environment. Moreover, iodide ions, which acted as a counter anion, inhibited V1b agonist binding. In summary, we found external ionic conditions that could increase the presence of high-affinity state receptors at the cell surface with minimum internalization during agonist stimulations. PMID:27138239

  20. Mood disorders, circadian rhythms, melatonin and melatonin agonists.

    PubMed

    Quera Salva, M A; Hartley, S

    2012-01-01

    Recent advances in the understanding of circadian rhythms have led to an interest in the treatment of major depressive disorder with chronobiotic agents. Many tissues have autonomous circadian rhythms, which are orchestrated by the master clock, situated in the suprachiasmatic nucleus (SNC). Melatonin (N-acetyl-5-hydroxytryptamine) is secreted from the pineal gland during darkness. Melatonin acts mainly on MT1 and MT2 receptors, which are present in the SNC, regulating physiological and neuroendocrine functions, including circadian entrainment, referred to as the chronobiotic effet. Circadian rhythms has been shown to be either misaligned or phase shifted or decreased in amplitude in both acute episodes and relapse of major depressive disorder (MDD) and bipolar disorder. Manipulation of circadian rhythms either using physical treatments (such as high intensity light) or behavioral therapy has shown promise in improving symptoms. Pharmacotherapy using melatonin and pure melatonin receptor agonists, while improving sleep, has not been shown to improve symptoms of depression. A novel antidepressant, agomelatine, combines 5HT2c antagonist and melatonin agonist action, and has shown promise in both acute treatment of MDD and in preventing relapse.

  1. Pharmacology and toxicology of Cannabis derivatives and endocannabinoid agonists.

    PubMed

    Gerra, Gilberto; Zaimovic, Amir; Gerra, Maria L; Ciccocioppo, Roberto; Cippitelli, Andrea; Serpelloni, Giovanni; Somaini, Lorenzo

    2010-01-01

    For centuries Cannabis sativa and cannabis extracts have been used in natural medicine. Delta(9)-tetrahydrocannabinol (THC) is the main active ingredient of Cannabis. THC seems to be responsible for most of the pharmacological and therapeutic actions of cannabis. In a few countries THC extracts (i.e. Sativex) or THC derivatives such as nabilone, and dronabinol are used in the clinic for the treatment of several pathological conditions like chemotherapy-induced nausea and vomiting, multiple sclerosis and glaucoma. On the other hand the severe side effects and the high abuse liability of these agents represent a serious limitation in their medical use. In addition, diversion in the use of these active ingredients for recreational purpose is a concern. Over recent years, alternative approaches using synthetic cannabinoid receptor agonists or agents acting as activators of the endocannabinoid systems are under scrutiny with the hope to develop more effective and safer clinical applications. Likely, in the near future few of these new molecules will be available for clinical use. The present article review recent study and patents with focus on the cannabinoid system as a target for the treatment of central nervous system disorders with emphasis on agonists. PMID:19832688

  2. Pharmacology and toxicology of Cannabis derivatives and endocannabinoid agonists.

    PubMed

    Gerra, Gilberto; Zaimovic, Amir; Gerra, Maria L; Ciccocioppo, Roberto; Cippitelli, Andrea; Serpelloni, Giovanni; Somaini, Lorenzo

    2010-01-01

    For centuries Cannabis sativa and cannabis extracts have been used in natural medicine. Delta(9)-tetrahydrocannabinol (THC) is the main active ingredient of Cannabis. THC seems to be responsible for most of the pharmacological and therapeutic actions of cannabis. In a few countries THC extracts (i.e. Sativex) or THC derivatives such as nabilone, and dronabinol are used in the clinic for the treatment of several pathological conditions like chemotherapy-induced nausea and vomiting, multiple sclerosis and glaucoma. On the other hand the severe side effects and the high abuse liability of these agents represent a serious limitation in their medical use. In addition, diversion in the use of these active ingredients for recreational purpose is a concern. Over recent years, alternative approaches using synthetic cannabinoid receptor agonists or agents acting as activators of the endocannabinoid systems are under scrutiny with the hope to develop more effective and safer clinical applications. Likely, in the near future few of these new molecules will be available for clinical use. The present article review recent study and patents with focus on the cannabinoid system as a target for the treatment of central nervous system disorders with emphasis on agonists.

  3. Development of agonistic encounters in dominance hierarchy formation in juvenile crayfish.

    PubMed

    Sato, Daisuke; Nagayama, Toshiki

    2012-04-01

    We have characterized the behavioural patterns of crayfish during agonistic bouts between groups of crayfish of four different body lengths (9-19, 20-32, 41-48 and 69-75 mm) to characterize changes in the patterns of agonistic encounter during development. The behaviour of both dominant and subordinate animals was analysed by single frame measurement of video recordings. Behavioural acts that occurred during agonistic bouts were categorized as one of seven types: capture, fight, contact, approach, retreat, tailflip and neutral. Dominant-subordinate relationships were formed between juvenile crayfish as early as the third stage of development. Patterns of agonistic bouts to determine social hierarchy became more aggressive during development. The dominant-subordinate relationship was usually determined after contact in crayfish of less than 20 mm and 20-32 mm in length, while several bouts of fights were necessary for crayfish of 41-48 and 69-75 mm in length. Furthermore, social hierarchy was formed more rapidly in small crayfish. In larger animals, the number of approaches by dominant animals that promoted retreat in subordinate animals increased after the establishment of the winner-loser relationship. In smaller crayfish, in contrast, no measurable changes in these behaviour patterns were observed before and after the establishment of the winner-loser relationship. With increasing body size, the probability of tailflips decreased while that of retreats increased as the submissive behavioural act of subordinate animals.

  4. Beta 1-adrenergic regulation of the GT1 gonadotropin-releasing hormone (GnRH) neuronal cell lines: stimulation of GnRH release via receptors positively coupled to adenylate cyclase.

    PubMed

    Martínez de la Escalera, G; Choi, A L; Weiner, R I

    1992-09-01

    The release of GnRH evoked by norepinephrine (NE) was studied in GT1 GnRH neuronal cell lines in superfusion and static cultures. GnRH release from static cultured GT1-7 cells was stimulated by NE in a dose-dependent fashion. This effect was mimicked by the nonsubtype-selective beta-adrenergic agonist isoproterenol and blocked by the beta-adrenergic antagonist propranolol and the beta 1-adrenergic subtype-specific antagonist CGP 20712A. However, the stimulation of GnRH release by NE was not affected by the beta 2-, alpha-, alpha 1-, or alpha 2-adrenergic antagonists ICI 118.551, phentolamine, prazosin, or yohimbine, respectively. Superfusion of GT1-1 cells with NE for 60-100 min resulted in rapid and sustained increases in GnRH secretion. The NE-stimulated GnRH release showed a higher amplitude and longer duration than the spontaneous GnRH pulses characteristic of GT1-1 cells. In parallel to the stimulation of GnRH release, NE also rapidly increased (first observed at 60 sec) the intracellular concentration of cAMP in isobutylmethylxanthine-pretreated GT1-1 and GT1-7 cells in a dose-dependent fashion. The stimulation of intracellular cAMP concentration was also mimicked by isoproterenol and blocked by propranolol and CGP 20712A. In addition, GT1 cells express beta 1- but not beta 2-adrenergic receptor mRNA, as probed by Northern blot analysis. These results demonstrate a direct stimulatory effect of NE on GnRH neurons. The pharmacological evidence and the mRNA analysis are consistent with NE acting through a beta 1-adrenergic receptor positively coupled to adenylate cyclase.

  5. 11Beta-hydroxysteroid dehydrogenase-type 2 evolved from an ancestral 17beta-hydroxysteroid dehydrogenase-type 2.

    PubMed

    Baker, Michael E

    2010-08-20

    11Beta-hydroxysteroid dehydrogenase-type 2 (11beta-HSD2) regulates the local concentration of cortisol that can activate the glucocorticoid receptor and mineralocorticoid receptor, as well as the concentration of 11-keto-testosterone, the active androgen in fish. Similarly, 17beta-HSD2 regulates the levels of testosterone and estradiol that activate the androgen receptor and estrogen receptor, respectively. Interestingly, although human 11beta-HSD2 and 17beta-HSD2 act at different positions on different steroids, these enzymes are paralogs. Despite the physiological importance of 11beta-HSD2 and 17beta-HSD2, details of their origins and divergence from a common ancestor are not known. An opportunity to understand their evolution is presented by the recent sequencing of genomes from sea urchin, a basal deuterostome, and amphioxus, a basal chordate, and the availability of substantial sequence for acorn worm and elephant shark, which together provide a more complete dataset for analysis of the origins of 11beta-HSD2 and 17beta-HSD2. BLAST searches find an ancestral sequence of 17beta-HSD2 in sea urchin, acorn worm and amphioxus, while an ancestral sequence of 11beta-HSD2 first appears in sharks. Sequence analyses indicate that 17beta-HSD2 in sea urchin may have a non-enzymatic activity. Evolutionary analyses indicate that if acorn worm 17beta-HSD2 is catalytically active, then it metabolizes novel substrate(s). PMID:20654577

  6. G(i)-dependent localization of beta(2)-adrenergic receptor signaling to L-type Ca(2+) channels.

    PubMed Central

    Chen-Izu, Y; Xiao, R P; Izu, L T; Cheng, H; Kuschel, M; Spurgeon, H; Lakatta, E G

    2000-01-01

    A plausible determinant of the specificity of receptor signaling is the cellular compartment over which the signal is broadcast. In rat heart, stimulation of beta(1)-adrenergic receptor (beta(1)-AR), coupled to G(s)-protein, or beta(2)-AR, coupled to G(s)- and G(i)-proteins, both increase L-type Ca(2+) current, causing enhanced contractile strength. But only beta(1)-AR stimulation increases the phosphorylation of phospholamban, troponin-I, and C-protein, causing accelerated muscle relaxation and reduced myofilament sensitivity to Ca(2+). beta(2)-AR stimulation does not affect any of these intracellular proteins. We hypothesized that beta(2)-AR signaling might be localized to the cell membrane. Thus we examined the spatial range and characteristics of beta(1)-AR and beta(2)-AR signaling on their common effector, L-type Ca(2+) channels. Using the cell-attached patch-clamp technique, we show that stimulation of beta(1)-AR or beta(2)-AR in the patch membrane, by adding agonist into patch pipette, both activated the channels in the patch. But when the agonist was applied to the membrane outside the patch pipette, only beta(1)-AR stimulation activated the channels. Thus, beta(1)-AR signaling to the channels is diffusive through cytosol, whereas beta(2)-AR signaling is localized to the cell membrane. Furthermore, activation of G(i) is essential to the localization of beta(2)-AR signaling because in pertussis toxin-treated cells, beta(2)-AR signaling becomes diffusive. Our results suggest that the dual coupling of beta(2)-AR to both G(s)- and G(i)-proteins leads to a highly localized beta(2)-AR signaling pathway to modulate sarcolemmal L-type Ca(2+) channels in rat ventricular myocytes. PMID:11053129

  7. Beta 2-adrenergic receptor regulation of human neutrophil function is sexually dimorphic.

    PubMed

    de Coupade, Catherine; Gear, Robert W; Dazin, Paul F; Sroussi, Herve Y; Green, Paul G; Levine, Jon D

    2004-12-01

    While the mechanisms underlying the marked sexual dimorphism in inflammatory diseases are not well understood, the sexually dimorphic sympathoadrenal axis profoundly affects the inflammatory response. We tested whether adrenergic receptor-mediated activation of human neutrophil function is sexually dimorphic, since neutrophils provide the first line of defense in the inflammatory response. There was a marked sexual dimorphism in beta(2)-adrenergic receptor binding, using the specific beta(2)-adrenergic receptor ligand, [(3)H]-dihydroalprenolol, with almost three times more binding sites on neutrophils from females (20,878 +/- 2470) compared to males (7331 +/- 3179). There was also a marked sexual dimorphism in the effects of isoprenaline, a beta-adrenergic receptor agonist, which increased nondirected locomotion (chemokinesis) in neutrophils obtained from females, while having no effect on neutrophils from males. Isoprenaline stimulated the release of a chemotactic factor from neutrophils obtained from females, but not from males. This chemotactic factor acts on the G protein-coupled CXC chemokine receptor 2 (CXCR2) chemokine receptor, since an anti-CXCR2 antibody and the selective nonpeptide CXCR2 antagonist SB225002, inhibited chemotaxis produced by this factor. While interleukin- (IL-) 8 is a principal CXCR2 ligand, isoprenaline did not produce an increase in IL-8 release from neutrophils. IL-8-induced chemotaxis was inhibited in a sexually dimorphic manner by isoprenaline, which also stimulated release of a mediator from neutrophils that induced chemotaxis, that was inhibited by anti-CXCR2 antibodies. These findings indicate an important role for adrenergic receptors in the modulation of neutrophil trafficking, which could contribute to sex-differences in the inflammatory response. PMID:15477226

  8. Structural complexes of the agonist, inverse agonist and antagonist bound C5a receptor: insights into pharmacology and signaling.

    PubMed

    Rana, Soumendra; Sahoo, Amita Rani; Majhi, Bharat Kumar

    2016-04-26

    The C5a receptor (C5aR) is a pharmacologically important G-protein coupled receptor (GPCR) that interacts with (h)C5a, by recruiting both the "orthosteric" sites (site1 at the N-terminus and site2 at the ECS, extra cellular surface) on C5aR in a two site-binding model. However, the complex pharmacological landscape and the distinguishing chemistry operating either at the "orthosteric" site1 or at the functionally important "orthosteric" site2 of C5aR are still not clear, which greatly limits the understanding of C5aR pharmacology. One of the major bottlenecks is the lack of an experimental structure or a refined model structure of C5aR with appropriately defined active sites. The study attempts to understand the pharmacology at the "orthosteric" site2 of C5aR rationally by generating a highly refined full-blown model structure of C5aR through advanced molecular modeling techniques, and further subjecting it to automated docking and molecular dynamics (MD) studies in the POPC bilayer. The first series of structural complexes of C5aR respectively bound to a linear native peptide agonist ((h)C5a-CT), a small molecule inverse agonist (NDT) and a cyclic peptide antagonist (PMX53) are reported, apparently establishing the unique pharmacological landscape of the "orthosteric" site2, which also illustrates an energetically distinct but coherent competitive chemistry ("cation-π" vs. "π-π" interactions) involved in distinguishing the established ligands known for targeting the "orthosteric" site2 of C5aR. Over a total of 1 μs molecular dynamics (MD) simulation in the POPC bilayer, it is evidenced that while the agonist prefers a "cation-π" interaction, the inverse agonist prefers a "cogwheel/L-shaped" interaction in contrast to the "edge-to-face/T-shaped" type π-π interactions demonstrated by the antagonist by engaging the F275(7.28) of the C5aR. In the absence of a NMR or crystallographically guided model structure of C5aR, the computational model complexes not only

  9. Protective effects of a glucocorticoid on downregulation of pulmonary beta 2-adrenergic receptors in vivo.

    PubMed Central

    Mak, J C; Nishikawa, M; Shirasaki, H; Miyayasu, K; Barnes, P J

    1995-01-01

    We investigated the in vivo effects of a glucocorticoid on beta-agonist-induced downregulation of beta 1- and beta 2-adrenergic receptors (determined by [125I]iodocyanopindolol binding), mRNA expression (assessed by Northern blotting), and gene transcription (using nuclear run-on assays) in rat lung. Dexamethasone (Dex) (0.2 mg/kg/d, days 1-8) increased beta 1- and beta 2-receptor numbers by 70 and 69% above control, respectively, but did not change their mRNA expression. Isoproterenol (Iso) (0.96 mg/kg/d, days 2-8) decreased beta 1- and beta 2-receptor numbers by 48 and 51%, respectively, and also reduced mRNA expression by 69 and 57%, respectively. The combination of Dex and Iso resulted in no net change in beta 2-receptor number and its mRNA expression, although there was a significant reduction in beta 1-receptor number and mRNA expression. The mapping of beta 1- and beta 2-receptors by receptor autoradiography confirmed these findings over alveoli, epithelium, endothelium, and airway and vascular smooth muscle. We also measured the activation of the transcription factor, cyclic AMP response element binding protein (CREB) using an electrophoretic mobility shift assay. CREB-like DNA-binding activity was decreased after Iso treatment but this decrease was prevented after treatment with Dex. Nuclear run-on assays revealed that the transcription rate of the beta 1-receptor gene did not alter after Dex treatment, but was reduced after Iso treatment. The transcription rate of the beta 2-receptor gene was increased after Dex treatment by approximately twofold, but there was no change after Iso treatment. We conclude that glucocorticoids can prevent homologous downregulation of beta 2-receptor number and mRNA expression at the transcriptional level without affecting beta 1-receptors and that the transcription factor CREB may be involved in this phenomenon. Such an effect may have clinical implications for preventing the development of tolerance to beta 2-agonists in

  10. Pancreatic Beta Cell G-Protein Coupled Receptors and Second Messenger Interactions: A Systems Biology Computational Analysis.

    PubMed

    Fridlyand, Leonid E; Philipson, Louis H

    2016-01-01

    Insulin secretory in pancreatic beta-cells responses to nutrient stimuli and hormonal modulators include multiple messengers and signaling pathways with complex interdependencies. Here we present a computational model that incorporates recent data on glucose metabolism, plasma membrane potential, G-protein-coupled-receptors (GPCR), cytoplasmic and endoplasmic reticulum calcium dynamics, cAMP and phospholipase C pathways that regulate interactions between second messengers in pancreatic beta-cells. The values of key model parameters were inferred from published experimental data. The model gives a reasonable fit to important aspects of experimentally measured metabolic and second messenger concentrations and provides a framework for analyzing the role of metabolic, hormones and neurotransmitters changes on insulin secretion. Our analysis of the dynamic data provides support for the hypothesis that activation of Ca2+-dependent adenylyl cyclases play a critical role in modulating the effects of glucagon-like peptide 1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP) and catecholamines. The regulatory properties of adenylyl cyclase isoforms determine fluctuations in cytoplasmic cAMP concentration and reveal a synergistic action of glucose, GLP-1 and GIP on insulin secretion. On the other hand, the regulatory properties of phospholipase C isoforms determine the interaction of glucose, acetylcholine and free fatty acids (FFA) (that act through the FFA receptors) on insulin secretion. We found that a combination of GPCR agonists activating different messenger pathways can stimulate insulin secretion more effectively than a combination of GPCR agonists for a single pathway. This analysis also suggests that the activators of GLP-1, GIP and FFA receptors may have a relatively low risk of hypoglycemia in fasting conditions whereas an activator of muscarinic receptors can increase this risk. This computational analysis demonstrates that study of second messenger

  11. Pancreatic Beta Cell G-Protein Coupled Receptors and Second Messenger Interactions: A Systems Biology Computational Analysis

    PubMed Central

    Fridlyand, Leonid E.; Philipson, Louis H.

    2016-01-01

    Insulin secretory in pancreatic beta-cells responses to nutrient stimuli and hormonal modulators include multiple messengers and signaling pathways with complex interdependencies. Here we present a computational model that incorporates recent data on glucose metabolism, plasma membrane potential, G-protein-coupled-receptors (GPCR), cytoplasmic and endoplasmic reticulum calcium dynamics, cAMP and phospholipase C pathways that regulate interactions between second messengers in pancreatic beta-cells. The values of key model parameters were inferred from published experimental data. The model gives a reasonable fit to important aspects of experimentally measured metabolic and second messenger concentrations and provides a framework for analyzing the role of metabolic, hormones and neurotransmitters changes on insulin secretion. Our analysis of the dynamic data provides support for the hypothesis that activation of Ca2+-dependent adenylyl cyclases play a critical role in modulating the effects of glucagon-like peptide 1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP) and catecholamines. The regulatory properties of adenylyl cyclase isoforms determine fluctuations in cytoplasmic cAMP concentration and reveal a synergistic action of glucose, GLP-1 and GIP on insulin secretion. On the other hand, the regulatory properties of phospholipase C isoforms determine the interaction of glucose, acetylcholine and free fatty acids (FFA) (that act through the FFA receptors) on insulin secretion. We found that a combination of GPCR agonists activating different messenger pathways can stimulate insulin secretion more effectively than a combination of GPCR agonists for a single pathway. This analysis also suggests that the activators of GLP-1, GIP and FFA receptors may have a relatively low risk of hypoglycemia in fasting conditions whereas an activator of muscarinic receptors can increase this risk. This computational analysis demonstrates that study of second messenger

  12. The efficiency of electrical stimulation to counteract the negative effects of β-agonists on meat tenderness of feedlot cattle.

    PubMed

    Hope-Jones, M; Strydom, P E; Frylinck, L; Webb, E C

    2010-11-01

    Beta agonists used as growth enhancers are known to affect the aging potential of beef muscle negatively. On the other hand, procedures like electrical stimulation could accelerate rigor and the aging process. In this study, 20 out of 40 young steers received no beta agonist (C), the remaining twenty steers received a beta agonist (zilpaterol hydrochloride) (Z) for the 30 days prior to slaughter followed by 4 days withdrawal. After slaughter carcasses were split, the left side electrically stimulated (ES) and the right side not stimulated (NES). Samples were aged for 3 or 14 days post mortem. Parameters included Warner Bratzler shear force (WBSF), myofibril filament length (MFL), sarcomere length and calpastatin and calpain enzyme activity. Zilpaterol resulted in increased (P<0.001) WBSF mainly due to an increased (P<0.001) calpastatin activity. ES improved tenderness (P<0.001) in general by early onset of rigor triggering the activity of calpains. ES also reduced the calpastatin activity (P<0.001), which partially countered the effect of high calpastatin activity on the aging potential of Z loins. ES can therefore be implemented to improve meat tenderness in zilpaterol supplemented steers, although steers without zilpaterol will still have an advantage in final tenderness.

  13. Differences between the third cardiac beta-adrenoceptor and the colonic beta 3-adrenoceptor in the rat.

    PubMed Central

    Kaumann, A. J.; Molenaar, P.

    1996-01-01

    1. The heart of several species including man contains atypical beta-adrenoceptors, in addition to coexisting beta 1- and beta 2-adrenoceptors. We now asked the question whether or not the third cardiac beta-adrenoceptor is identical to the putative beta 3-adrenoceptor. We compared the properties of the third cardiac beta-adrenoceptor with those of beta 3-adrenoceptors in isolated tissues of the rat. To study the third cardiac beta-adrenoceptor we used spontaneously beating right atria, paced left atria and paced left ventricular papillary muscles. As a likely model for putative beta 3-adrenoceptors we studied atypical beta-adrenoceptors of the colonic longitudinal muscle precontracted with 30 mM KCl. We used beta 3-adrenoceptor-selective agonists, antagonists and non-conventional partial agonists (ie high-affinity blockers of both beta 1- and beta 2-adrenoceptors know to exert also stimulant effects through beta 3-adrenoceptors). 2. The non-conventional partial agonist (-)-CGP 12177 caused positive chronotropic effects in right atria (pD2 = 7.3) and positive inotropic effects in left atria (pD2 = 7.5). The stimulant effects of (-)-CGP 12177 were resistant to blockade by 200 nM-2 microM (-)-propranolol and 3 microM ICI 118551 (a beta 2-selective antagonist) but antagonized by 1 microM (-)-bupranolol (pKB = 6.4-6.8), 3 microM CGP 20712A (a beta 1-selective antagonist) (pKB = 6.3-6.4) and 6.6 microM SR 59230A (a beta 3-selective antagonist, pKB = 5.1-5.4). 3. The non-conventional partial agonist cyanopindolol caused positive chronotropic effects in right atria (pD2 = 7.7) and positive inotropic effects in left atria (pD2 = 7.1). The stimulant effects of cyanopindolol were resistant to blockade by 200 nM (-)-propranolol but antagonized by 1 microM (-)-bupranolol (pKB = 6.8-7.1). 4. Neither (-)-CGP 12177 nor cyanopindolol caused stimulant effects in papillary muscles at concentrations between 0.2 nM and 20 microM. 5. In the presence of 200 nM (-)-propranolol the beta 3

  14. Definition of two agonist types at the mammalian cold-activated channel TRPM8.

    PubMed

    Janssens, Annelies; Gees, Maarten; Toth, Balazs Istvan; Ghosh, Debapriya; Mulier, Marie; Vennekens, Rudi; Vriens, Joris; Talavera, Karel; Voets, Thomas

    2016-01-01

    Various TRP channels act as polymodal sensors of thermal and chemical stimuli, but the mechanisms whereby chemical ligands impact on TRP channel gating are poorly understood. Here we show that AITC (allyl isothiocyanate; mustard oil) and menthol represent two distinct types of ligands at the mammalian cold sensor TRPM8. Kinetic analysis of channel gating revealed that AITC acts by destabilizing the closed channel, whereas menthol stabilizes the open channel, relative to the transition state. Based on these differences, we classify agonists as either type I (menthol-like) or type II (AITC-like), and provide a kinetic model that faithfully reproduces their differential effects. We further demonstrate that type I and type II agonists have a distinct impact on TRPM8 currents and TRPM8-mediated calcium signals in excitable cells. These findings provide a theoretical framework for understanding the differential actions of TRP channel ligands, with important ramifications for TRP channel structure-function analysis and pharmacology. PMID:27449282

  15. Structural differences determine the relative selectivity of nicotinic compounds for native alpha 4 beta 2*-, alpha 6 beta 2*-, alpha 3 beta 4*- and alpha 7-nicotine acetylcholine receptors.

    PubMed

    Grady, Sharon R; Drenan, Ryan M; Breining, Scott R; Yohannes, Daniel; Wageman, Charles R; Fedorov, Nikolai B; McKinney, Sheri; Whiteaker, Paul; Bencherif, Merouane; Lester, Henry A; Marks, Michael J

    2010-06-01

    Mammalian brain expresses multiple nicotinic acetylcholine receptor (nAChR) subtypes that differ in subunit composition, sites of expression and pharmacological and functional properties. Among known subtypes of receptors, alpha 4 beta 2* and alpha 6 beta 2*-nAChR have the highest affinity for nicotine (where * indicates possibility of other subunits). The alpha 4 beta 2*-nAChRs are widely distributed, while alpha 6 beta 2*-nAChR are restricted to a few regions. Both subtypes modulate release of dopamine from the dopaminergic neurons of the mesoaccumbens pathway thought to be essential for reward and addiction. alpha 4 beta 2*-nAChR also modulate GABA release in these areas. Identification of selective compounds would facilitate study of nAChR subtypes. An improved understanding of the role of nAChR subtypes may help in developing more effective smoking cessation aids with fewer side effects than current therapeutics. We have screened a series of nicotinic compounds that vary in the distance between the pyridine and the cationic center, in steric bulk, and in flexibility of the molecule. These compounds were screened using membrane binding and synaptosomal function assays, or recordings from GH4C1 cells expressing h alpha 7, to determine affinity, potency and efficacy at four subtypes of nAChRs found in brain, alpha 4 beta 2*, alpha 6 beta 2*, alpha 7 and alpha 3 beta 4*. In addition, physiological assays in gain-of-function mutant mice were used to assess in vivo activity at alpha 4 beta 2* and alpha 6 beta 2*-nAChRs. This approach has identified several compounds with agonist or partial agonist activity that display improved selectivity for alpha 6 beta 2*-nAChR.

  16. Identification of Selective ERRγ Inverse Agonists.

    PubMed

    Kim, Jina; Im, Chun Young; Yoo, Eun Kyung; Ma, Min Jung; Kim, Sang-Bum; Hong, Eunmi; Chin, Jungwook; Hwang, Hayoung; Lee, Sungwoo; Kim, Nam Doo; Jeon, Jae-Han; Lee, In-Kyu; Jeon, Yong Hyun; Choi, Hueng-Sik; Kim, Seong Heon; Cho, Sung Jin

    2016-01-12

    GSK5182 (4) is currently one of the lead compounds for the development of estrogen-related receptor gamma (ERRγ) inverse agonists. Here, we report the design, synthesis, pharmacological and in vitro absorption, distribution, metabolism, excretion, toxicity (ADMET) properties of a series of compounds related to 4. Starting from 4, a series of analogs were structurally modified and their ERRγ inverse agonist activity was measured. A key pharmacophore feature of this novel class of ligands is the introduction of a heterocyclic group for A-ring substitution in the core scaffold. Among the tested compounds, several of them are potent ERRγ inverse agonists as determined by binding and functional assays. The most promising compound, 15g, had excellent binding selectivity over related subtypes (IC50 = 0.44, >10, >10, and 10 μM at the ERRγ, ERRα, ERRβ, and ERα subtypes, respectively). Compound 15g also resulted in 95% transcriptional repression at a concentration of 10 μM, while still maintaining an acceptable in vitro ADMET profile. This novel class of ERRγ inverse agonists shows promise in the development of drugs targeting ERRγ-related diseases.

  17. Multiple tyrosine metabolites are GPR35 agonists

    PubMed Central

    Deng, Huayun; Hu, Haibei; Fang, Ye

    2012-01-01

    Both kynurenic acid and 2-acyl lysophosphatidic acid have been postulated to be the endogenous agonists of GPR35. However, controversy remains whether alternative endogenous agonists exist. The molecular targets accounted for many nongenomic actions of thyroid hormones are mostly unknown. Here we report the agonist activity of multiple tyrosine metabolites at the GPR35. Tyrosine metabolism intermediates that contain carboxylic acid and/or catechol functional groups were first selected. Whole cell dynamic mass redistribution (DMR) assays enabled by label-free optical biosensor were then used to characterize their agonist activity in native HT-29. Molecular assays including β-arrestin translocation, ERK phosphorylation and receptor internalization confirmed that GPR35 functions as a receptor for 5,6-dihydroxyindole-2-carboxylic acid, 3,3′,5′-triiodothyronine, 3,3′,5-triiodothyronine, gentisate, rosmarinate, and 3-nitrotyrosine. These results suggest that multiple tyrosine metabolites are alternative endogenous ligands of GPR35, and GPR35 may represent a druggable target for treating certain diseases associated with abnormality of tyrosine metabolism. PMID:22523636

  18. beta-Hexachlorocyclohexane (beta-HCH)

    Integrated Risk Information System (IRIS)

    beta - Hexachlorocyclohexane ( beta - HCH ) ; CASRN 319 - 85 - 7 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Asses

  19. FXR agonist activity of conformationally constrained analogs of GW 4064

    SciTech Connect

    Akwabi-Ameyaw, Adwoa; Bass, Jonathan Y.; Caldwell, Richard D.; Caravella, Justin A.; Chen, Lihong; Creech, Katrina L.; Deaton, David N.; Madauss, Kevin P.; Marr, Harry B.; McFadyen, Robert B.; Miller, Aaron B.; Navas, III, Frank; Parks, Derek J.; Spearing, Paul K.; Todd, Dan; Williams, Shawn P.; Wisely, G. Bruce

    2010-09-27

    Two series of conformationally constrained analogs of the FXR agonist GW 4064 1 were prepared. Replacement of the metabolically labile stilbene with either benzothiophene or naphthalene rings led to the identification of potent full agonists 2a and 2g.

  20. FXR agonist activity of conformationally constrained analogs of GW 4064.

    PubMed

    Akwabi-Ameyaw, Adwoa; Bass, Jonathan Y; Caldwell, Richard D; Caravella, Justin A; Chen, Lihong; Creech, Katrina L; Deaton, David N; Madauss, Kevin P; Marr, Harry B; McFadyen, Robert B; Miller, Aaron B; Navas, Frank; Parks, Derek J; Spearing, Paul K; Todd, Dan; Williams, Shawn P; Bruce Wisely, G

    2009-08-15

    Two series of conformationally constrained analogs of the FXR agonist GW 4064 1 were prepared. Replacement of the metabolically labile stilbene with either benzothiophene or naphthalene rings led to the identification of potent full agonists 2a and 2g.

  1. Antinociceptive properties of 1,8-Cineole and beta-pinene, from the essential oil of Eucalyptus camaldulensis leaves, in rodents.

    PubMed

    Liapi, Charis; Anifandis, Georgios; Anifantis, Georgios; Chinou, Ioanna; Kourounakis, Angeliki P; Theodosopoulos, Stelios; Galanopoulou, Panagiota

    2007-10-01

    1,8-cineole (cineole) and beta-pinene, two monoterpenes isolated from the essential oil obtained from Eucalyptus camaldulensis Dehn leaves were tested for antinociceptive properties. Tail-flick and hot-plate methods, reflecting the spinal and supraspinal levels, respectively, were used in mice and/or rats using morphine and naloxone for comparison. Cineole exhibited an antinociceptive activity comparable to that of morphine, in both algesic stimuli. A significant synergism between cineole and morphine was observed, but naloxone failed to antagonize the effect of cineole. Beta-pinene exerted supraspinal antinociceptive actions in rats only and it reversed the antinociceptive effect of morphine in a degree equivalent to naloxone, probably acting as a partial agonist through the mu opioid receptors. From structure-activity relationships of the pairs morphine+cineole and naloxone+beta-pinene, it was shown that similarities exist in the stereochemistry and in the respective atomic charges of these molecules. Further studies are in progress in order to elucidate the mechanism of action of the two terpenoids.

  2. Pharmacological study of atypical beta-adrenoceptors in rat esophageal smooth muscle.

    PubMed

    Lezama, E J; Konkar, A A; Salazar-Bookaman, M M; Miller, D D; Feller, D R

    1996-07-11

    The chemical specificity for the beta-adrenoceptor mediated relaxation of rat esophageal smooth muscle was evaluated using selective and non-selective beta-adrenoceptor agonists and antagonists. Pindolol, ICI 89,406, ICI 118551 [erythro-1-(7-methylindan-4-yloxy)-3-(isopropylamine)-but an-2-ol] and the beta-adrenoceptor alkylating agent, pindobind, produced only small rightward shifts in the concentration-response curves of (-)-isoprenaline and (-)-trimetoquinol in this preparation. Rank order potency (pD2 values) of agonists was: (+/-)-trimetoquinol [1-(3',4',5'-trimethoxybenzyl)-6,7-dihydroxy-1,2,3, 4-tetrahydroisoquinoline] (8.34) = (-)-trimetoquinol (8.26) = BRL 37344 [(R* R*)-(+/-)-4-[2'-2-hydroxy 2-(3-chlorophenyl)ethylamino]propyl] phenoxyacetic acid] (8.16) = ICID7114 [(S)-4-(2-hydroxy- 3-phenoxy-propylamino-ethoxy)-N-(2-methoxyethyl) phenoxyacetamide] (8.03) > or = (-)-isoprenaline (7.82) > 3',5'-diiodotrimetoquinol [1-(3',5'-diiodo-4'-methoxybenzyl)-6, 7-dihydroxy-1,2,3,4-tetrahydroisoquinoline] (7.28) > 3'-iodotrimetoquinol [1-(3'-iodo-4',5'-dimethoxybenzyl)-6, 7-dihydroxy-1,2,3,4-tetrahydroisoquinoline] (7.04) > ractopamine (6.84) = 5,8-difluorotrimetoquinol [5,8-difluoro-6,7-dihydroxy-1- (3',4',5'-trimethoxybenzyl)-1,2,3,4-tetrahydroisoquinoline] (6.82) > 8-fluorotrimetoquinol [6,7-dihydroxy-8-fluoro-1-(3',4',5'- trimethoxybenzyl)-1,2,3,4-tetrahydroisoquinoline] (6.56) > or = (-)-noradrenaline (6.46) > or = (-)-adrenaline (6.36) > (+/-)-noradrenaline (6.24) > (+/-)-adrenaline (6.00) > clenbuterol (5.83) > (-)-1-benzyl-6, 7-dihydroxy-1,2,3,4-tetrahydroisoquinoline (5.75). Isomeric activity ratios of trimetoquinol isomers [(-)-(S)- > > (+)-(R)-] in esophageal smooth muscle in the presence and absence of 1 microM pindolol were 1995- and 2951-fold, respectively; and were much greater than those in rat atria (282-fold) and rat trachea (107-fold). The atypical beta/beta 3-adrenoceptor partial agonist, ICI D7114, produced concentration-dependent rightward

  3. Beta 2-adrenergic receptors on eosinophils. Binding and functional studies

    SciTech Connect

    Yukawa, T.; Ukena, D.; Kroegel, C.; Chanez, P.; Dent, G.; Chung, K.F.; Barnes, P.J. )

    1990-06-01

    We have studied the binding characteristics and functional effects of beta-adrenoceptors on human and guinea pig eosinophils. We determined the binding of the beta-antagonist radioligand (125I)pindolol (IPIN) to intact eosinophils obtained from the peritoneal cavity of guinea pigs and from blood of patients with eosinophilia. Specific binding was saturable, and Scatchard analysis showed a single binding site with a dissociation constant (Kd) of 24.6 pM and maximal number of binding sites (Bmax) of 7,166 per cell. ICI 118,551, a beta 2-selective antagonist, inhibited IPIN binding with a Ki value of 0.28 nM and was approximately 5,000-fold more effective than the beta 1-selective antagonist, atenolol. Isoproterenol increased cAMP levels about 5.5-fold above basal levels (EC50 = 25 microM); albuterol, a beta 2-agonist, behaved as a partial agonist with a maximal stimulation of 80%. Binding to human eosinophils gave similar results with a Kd of 25.3 pM and a Bmax corresponding to 4,333 sites per cell. Incubation of both human and guinea pig eosinophils with opsonized zymosan (2 mg/ml) or with phorbol myristate acetate (PMA) (10(-8) and 10(-6) M) resulted in superoxide anion generation and the release of eosinophil peroxidase; albuterol (10(-7) to 10(-5) M) had no inhibitory effect on the release of these products. Thus, eosinophils from patients with eosinophilia and from the peritoneal cavity of guinea pigs possess beta-receptors of the beta 2-subtype that are coupled to adenylate cyclase; however, these receptors do not modulate oxidative metabolism or degranulation. The possible therapeutic consequences of these observations to asthma are discussed.

  4. Agonist Met antibodies define the signalling threshold required for a full mitogenic and invasive program of Kaposi's Sarcoma cells

    SciTech Connect

    Bardelli, Claudio; Sala, Marilena; Cavallazzi, Umberto; Prat, Maria . E-mail: mprat@med.unipmn.it

    2005-09-09

    We previously showed that the Kaposi Sarcoma line KS-IMM express a functional Met tyrosine kinase receptor, which, upon HGF stimulation, activates motogenic, proliferative, and invasive responses. In this study, we investigated the signalling pathways activated by HGF, as well as by Met monoclonal antibodies (Mabs), acting as full or partial agonists. The full agonist Mab mimics HGF in all biological and biochemical aspects. It elicits the whole spectrum of responses, while the partial agonist Mab induces only wound healing. These differences correlated with a more prolonged and sustained tyrosine phosphorylation of the receptor and MAPK evoked by HGF and by the full agonist Mab, relative to the partial agonist Mab. Since Gab1, JNK and PI 3-kinase are activated with same intensity and kinetics by HGF and by the two agonist antibodies, it is concluded that level and duration of MAPK activation by Met receptor are crucial for the induction of a full HGF-dependent mitogenic and invasive program in KS cells.

  5. Cell type-dependent agonist/antagonist activities of polybrominated diphenyl ethers.

    PubMed

    Nakamura, N; Matsubara, K; Sanoh, S; Ohta, S; Uramaru, N; Kitamura, S; Yamaguchi, M; Sugihara, K; Fujimoto, N

    2013-11-25

    There have been many concerns expressed regarding the possible adverse effects of thyroid hormone-disrupting chemicals including polychlorinated biphenyls and polybrominated diphenyl ethers (PBDEs), since thyroid hormones play crucial roles in normal vertebrate development. A vast amount of PBDEs have been used as flame retardants for the last two decades and our environment has been contaminated with them. Some PBDEs, especially hydroxylated PBDEs, reportedly show an affinity to the thyroid hormone receptor (TR) and act as thyroid hormone agonists, but in other studies they were reported to inhibit the actions of thyroid hormones. Therefore, in the present study, we investigated the binding affinities of PBDEs and their metabolites to TR and their ability to induce thyroid hormone-responsive transcription using luciferase reporter gene assays in two different cell lines, a pituitary cell line, MtT/E-2, and Chinese hamster ovary (CHO) cells. The binding assay showed that many of the examined PBDEs have significant affinity to TR. Interestingly, some of these PBDEs, such as 4'-OH-BDE-17 and 2'-OH-BDE-28, acted as agonists in the reporter gene assay in MtT/E-2 cells, while they acted as antagonists in CHO cells. Our results demonstrated that whether PBDEs and their metabolites are TR agonists or antagonists depends on the cell type used in the assay, which may suggest that the thyroid hormone-disrupting actions of PBDEs differ among target tissues or species. PMID:24076165

  6. COMPARATIVE EMBRYONIC AND LARVAL DEVELOPMENTAL RESPONSES OF THE ESTUARINE GRASS SHRIMP (PALAEMONETES PUGIO) TO THE JUVENILE HORMONE AGONIST FENOXYCARB

    EPA Science Inventory

    This work was undertaken in order to develop a sensitive bioassay which indicates adverse effects of estuarine-applied insecticides on nontarget species. Newly developed 'third generation' insecticides are designed to act as hormone agonists and bind to endogenous insect hormone...

  7. Dual aminergic regulation of central beta adrenoceptors. Effect of atypical antidepressants and 5-hydroxytryptophan

    SciTech Connect

    Manier, D.H.; Gillespie, D.D.; Sulser, F.

    1989-06-01

    Nonlinear regression analysis of agonist competition binding curves reveals that the (/sup 3/H)-dihydroalprenolol-labeled receptor population with low affinity for isoproterenol is increased by p-chlorophenylalanine (PCPA) and this increase is abolished by 5-hydroxytryptophan (5-HTP) in vivo. Desipramine (DMI) decreased the beta adrenoceptor population with high agonist affinity to the same degree in PCPA-treated animals as in control animals, thus explaining the reported discrepancy between beta adrenoceptor number and responsiveness of the beta adrenoceptor-coupled adenylate cyclase system. Mianserin also selectively reduced the beta adrenoceptor population with high agonist affinity in membrane preparations of normal animals, whereas fluoxetine selectively abolished the upregulation of the low affinity sites in reserpinized animals and had no effect on either receptor population from brain of normal animals. The results emphasize the importance of nonlinear regression analysis of agonist competition binding for the interpretation of drug action and encourage the pursuit of the molecular neurobiology of the serotonin (5-HT)/norepinephrine (NE) link in brain.

  8. [Beta-3 adrenergic receptor--structure and role in obesity and metabolic disorders].

    PubMed

    Wiejak, J; Wyroba, E

    1999-01-01

    Structure and essential motifs of beta 3-adrenergic receptor (known previously as atypical beta-AR), which plays a central role in regulation of lipid metabolism have been described. Obesity results from an imbalance between caloric intake and energy expenditure. The consequence of catecholamine activation of beta 3-AR is increased mobilization of fatty acids from triglyceride stores (lipolysis) in brown and white adipose tissue as well as increased fatty acid beta-oxidation and heat-production via UCP-1 (thermogenesis) in brown adipose tissue. A pharmacokinetic effects of beta 3-agonists and putative involvement of Trp/Arg mutation in beta 3-AR gene in obesity and another metabolic disorders have been discussed.

  9. Matrix metalloproteinase-12 gene regulation by a PPAR alpha agonist in human monocyte-derived macrophages

    SciTech Connect

    Souissi, Imen Jguirim; Billiet, Ludivine; Cuaz-Perolin, Clarisse; Rouis, Mustapha

    2008-11-01

    MMP-12, a macrophage-specific matrix metalloproteinase with large substrate specificity, has been reported to be highly expressed in mice, rabbits and human atherosclerotic lesions. Increased MMP-12 from inflammatory macrophages is associated with several degenerative diseases such as atherosclerosis. In this manuscript, we show that IL-1{beta}, a proinflammatory cytokine found in atherosclerotic plaques, increases both mRNA and protein levels of MMP-12 in human monocyte-derived macrophages (HMDM). Since peroxisome proliferator-activated receptors (PPARs), such as PPAR{alpha} and PPAR{gamma}, are expressed in macrophages and because PPAR activation exerts an anti-inflammatory effect on vascular cells, we have investigated the effect of PPAR{alpha} and {gamma} isoforms on MMP-12 regulation in HMDM. Our results show that MMP-12 expression (mRNA and protein) is down regulated in IL-1{beta}-treated macrophages only in the presence of a specific PPAR{alpha} agonist, GW647, in a dose-dependent manner. In contrast, this inhibitory effect was abolished in IL-1{beta}-stimulated peritoneal macrophages isolated from PPAR{alpha}{sup -/-} mice and treated with the PPAR{alpha} agonist, GW647. Moreover, reporter gene transfection experiments using different MMP-12 promoter constructs showed a reduction of the promoter activities by {approx} 50% in IL-1{beta}-stimulated PPAR{alpha}-pre-treated cells. However, MMP-12 promoter analysis did not reveal the presence of a PPRE response element. The IL-1{beta} effect is known to be mediated through the AP-1 binding site. Mutation of the AP-1 site, located at - 81 in the MMP-12 promoter region relative to the transcription start site, followed by transfection analysis, gel shift and ChIP experiments revealed that the inhibitory effect was the consequence of the protein-protein interaction between GW 647-activated PPAR{alpha} and c-Fos or c-Jun transcription factors, leading to inhibition of their binding to the AP-1 motif. These studies

  10. Incretin-like effects of small molecule trace amine-associated receptor 1 agonists

    PubMed Central

    Raab, Susanne; Wang, Haiyan; Uhles, Sabine; Cole, Nadine; Alvarez-Sanchez, Ruben; Künnecke, Basil; Ullmer, Christoph; Matile, Hugues; Bedoucha, Marc; Norcross, Roger D.; Ottaway-Parker, Nickki; Perez-Tilve, Diego; Conde Knape, Karin; Tschöp, Matthias H.; Hoener, Marius C.; Sewing, Sabine

    2015-01-01

    Objective Type 2 diabetes and obesity are emerging pandemics in the 21st century creating worldwide urgency for the development of novel and safe therapies. We investigated trace amine-associated receptor 1 (TAAR1) as a novel target contributing to the control of glucose homeostasis and body weight. Methods We investigated the peripheral human tissue distribution of TAAR1 by immunohistochemistry and tested the effect of a small molecule TAAR1 agonist on insulin secretion in vitro using INS1E cells and human islets and on glucose tolerance in C57Bl6, and db/db mice. Body weight effects were investigated in obese DIO mice. Results TAAR1 activation by a selective small molecule agonist increased glucose-dependent insulin secretion in INS1E cells and human islets and elevated plasma PYY and GLP-1 levels in mice. In diabetic db/db mice, the TAAR1 agonist normalized glucose excursion during an oral glucose tolerance test. Sub-chronic treatment of diet-induced obese (DIO) mice with the TAAR1 agonist resulted in reduced food intake and body weight. Furthermore insulin sensitivity was improved and plasma triglyceride levels and liver triglyceride content were lower than in controls. Conclusions We have identified TAAR1 as a novel integrator of metabolic control, which acts on gastrointestinal and pancreatic islet hormone secretion. Thus TAAR1 qualifies as a novel and promising target for the treatment of type 2 diabetes and obesity. PMID:26844206

  11. Identification of novel multitargeted PPARα/γ/δ pan agonists by core hopping of rosiglitazone.

    PubMed

    Wang, Xue-Jiao; Zhang, Jun; Wang, Shu-Qing; Xu, Wei-Ren; Cheng, Xian-Chao; Wang, Run-Ling

    2014-01-01

    The thiazolidinedione class peroxisome proliferator-activated receptor gamma (PPARγ) agonists are restricted in clinical use as antidiabetic agents because of side effects such as edema, weight gain, and heart failure. The single and selective agonism of PPARγ is the main cause of these side effects. Multitargeted PPARα/γ/δ pan agonist development is the hot topic in the antidiabetic drug research field. In order to identify PPARα/γ/δ pan agonists, a compound database was established by core hopping of rosiglitazone, which was then docked into a PPARα/γ/δ active site to screen out a number of candidate compounds with a higher docking score and better interaction with the active site. Further, absorption, distribution, metabolism, excretion, and toxicity prediction was done to give eight compounds. Molecular dynamics simulation of the representative Cpd#1 showed more favorable binding conformation for PPARs receptor than the original ligand. Cpd#1 could act as a PPARα/γ/δ pan agonist for novel antidiabetic drug research. PMID:25422585

  12. Identification of novel multitargeted PPARα/γ/δ pan agonists by core hopping of rosiglitazone

    PubMed Central

    Wang, Xue-Jiao; Zhang, Jun; Wang, Shu-Qing; Xu, Wei-Ren; Cheng, Xian-Chao; Wang, Run-Ling

    2014-01-01

    The thiazolidinedione class peroxisome proliferator-activated receptor gamma (PPARγ) agonists are restricted in clinical use as antidiabetic agents because of side effects such as edema, weight gain, and heart failure. The single and selective agonism of PPARγ is the main cause of these side effects. Multitargeted PPARα/γ/δ pan agonist development is the hot topic in the antidiabetic drug research field. In order to identify PPARα/γ/δ pan agonists, a compound database was established by core hopping of rosiglitazone, which was then docked into a PPARα/γ/δ active site to screen out a number of candidate compounds with a higher docking score and better interaction with the active site. Further, absorption, distribution, metabolism, excretion, and toxicity prediction was done to give eight compounds. Molecular dynamics simulation of the representative Cpd#1 showed more favorable binding conformation for PPARs receptor than the original ligand. Cpd#1 could act as a PPARα/γ/δ pan agonist for novel antidiabetic drug research. PMID:25422585

  13. Preclinical evaluation of SMM-189, a cannabinoid receptor 2-specific inverse agonist

    PubMed Central

    Presley, Chaela; Abidi, Ammaar; Suryawanshi, Satyendra; Mustafa, Suni; Meibohm, Bernd; Moore, Bob M

    2015-01-01

    Cannabinoid receptor 2 agonists and inverse agonists are emerging as new therapeutic options for a spectrum of autoimmune-related disease. Of particular interest, is the ability of CB2 ligands to regulate microglia function in neurodegenerative diseases and traumatic brain injury. We have previously reported the receptor affinity of 3′,5′-dichloro-2,6-dihydroxy-biphenyl-4-yl)-phenyl-methanone (SMM-189) and the characterization of the beneficial effects of SMM-189 in the mouse model of mild traumatic brain injury. Herein, we report the further characterization of SMM-189 as a potent and selective CB2 inverse agonist, which acts as a noncompetitive inhibitor of CP 55,940. The ability of SMM-189 to regulate microglial activation, in terms of chemokine expression and cell morphology, has been determined. Finally, we have determined that SMM-189 possesses acceptable biopharmaceutical properties indicating that the triaryl class of CB2 inverse agonists are viable compounds for continued preclinical development for the treatment of neurodegenerative disorders and traumatic brain injury. PMID:26196013

  14. Adoptive immunotherapy combined with intratumoral TLR agonist delivery eradicates established melanoma in mice

    PubMed Central

    Amos, Sally M.; Pegram, Hollie J.; Westwood, Jennifer A.; John, Liza B.; Devaud, Christel; Clarke, Chris J.; Restifo, Nicholas P.; Smyth, Mark J.; Darcy, Phillip K.; Kershaw, Michael H.

    2012-01-01

    Toll-like receptor (TLR) agonists can trigger broad inflammatory responses that elicit rapid innate immunity and promote the activities of lymphocytes, which can potentially enhance adoptive immunotherapy in the tumor-bearing setting. In the present study, we found that Polyinosinic:Polycytidylic Acid [Poly(I:C)] and CpG oligodeoxynucleotide 1826 [CpG], agonists for TLR 3 and 9, respectively, potently activated adoptively transferred T cells against a murine model of established melanoma. Intratumoral injection of Poly(I:C) and CpG, combined with systemic transfer of activated pmel-1 T cells, specific for gp10025–33, led to enhanced survival and eradication of 9-day established subcutaneous B16F10 melanomas in a proportion of mice. A series of survival studies in knockout mice supported a key mechanistic pathway, whereby TLR agonists acted via host cells to enhance IFN-γ production by adoptively transferred T cells. IFN-γ, in turn, enhanced the immunogenicity of the B16F10 melanoma line, leading to increased killing by adoptively transferred T cells. Thus, this combination approach counteracted tumor escape from immunotherapy via downregulation of immunogenicity. In conclusion, TLR agonists may represent advanced adjuvants within the setting of adoptive T-cell immunotherapy of cancer and hold promise as a safe means of enhancing this approach within the clinic. PMID:21327636

  15. Increased agonist affinity at the mu-opioid receptor induced by prolonged agonist exposure

    PubMed Central

    Birdsong, William T.; Arttamangkul, Seksiri; Clark, Mary J.; Cheng, Kejun; Rice, Kenner C.; Traynor, John R.; Williams, John T.

    2013-01-01

    Prolonged exposure to high-efficacy agonists results in desensitization of the mu opioid receptor (MOR). Desensitized receptors are thought to be unable to couple to G-proteins, preventing downstream signaling, however the changes to the receptor itself are not well characterized. In the current study, confocal imaging was used to determine whether desensitizing conditions cause a change in agonist-receptor interactions. Using rapid solution exchange, the binding kinetics of fluorescently labeled opioid agonist, dermorphin Alexa594 (derm A594), to MORs was measured in live cells. The affinity of derm A594 binding increased following prolonged treatment of cells with multiple agonists that are known to cause receptor desensitization. In contrast, binding of a fluorescent antagonist, naltrexamine Alexa 594, was unaffected by similar agonist pre-treatment. The increased affinity of derm A594 for the receptor was long-lived and partially reversed after a 45 min wash. Treatment of the cells with pertussis toxin did not alter the increase in affinity of the derm A594 for MOR. Likewise the affinity of derm A594 for MORs expressed in mouse embryonic fibroblasts derived from arrestin 1 and 2 knockout animals increased following treatment of the cells with the desensitization protocol. Thus, opioid receptors were “imprinted” with a memory of prior agonist exposure that was independent of G-protein activation or arrestin binding that altered subsequent agonist-receptor interactions. The increased affinity suggests that acute desensitization results in a long lasting but reversible conformational change in the receptor. PMID:23447620

  16. Restricting mobility of Gsalpha relative to the beta2-adrenoceptor enhances adenylate cyclase activity by reducing Gsalpha GTPase activity.

    PubMed Central

    Wenzel-Seifert, K; Lee, T W; Seifert, R; Kobilka, B K

    1998-01-01

    The beta2-adrenoceptor (beta2AR) activates the G-protein Gsalpha to stimulate adenylate cyclase (AC). Fusion of the beta2AR C-terminus to the N-terminus of Gsalpha (producing beta2ARGsalpha) markedly increases the efficiency of receptor/G-protein coupling compared with the non-fused state. This increase in coupling efficiency can be attributed to the physical proximity of receptor and G-protein. To determine the optimal length for the tether between receptor and G-protein we constructed fusion proteins from which 26 [beta2AR(Delta26)Gsalpha] or 70 [beta2AR(Delta70)Gsalpha] residues of the beta2AR C-terminus had been deleted and compared the properties of these fusion proteins with the previously described beta2ARGsalpha. Compared with beta2ARGsalpha, basal and agonist-stimulated GTP hydrolysis was markedly decreased in beta2AR(Delta70)Gsalpha, whereas the effect of the deletion on binding of guanosine 5'-[gamma-thio]triphosphate (GTP[S]) was relatively small. Surprisingly, deletions did not alter the efficiency of coupling of the beta2AR to Gsalpha as assessed by GTP[S]-sensitive high-affinity agonist binding. Moreover, basal and ligand-regulated AC activities in membranes expressing beta2AR(Delta70)Gsalpha and beta2AR(Delta26)Gsalpha were higher than in membranes expressing beta2ARGsalpha. These findings suggest that restricting the mobility of Gsalpha relative to the beta2AR results in a decrease in G-protein inactivation by GTP hydrolysis and thereby enhanced activation of AC. PMID:9729456

  17. ACT: Acting Out Central Theme.

    ERIC Educational Resources Information Center

    Kise, Joan Duff

    1982-01-01

    The author describes ACT (Acting Out Central Theme), a method for dealing with psychomotor, cognitive, and affective domains in slow readers. The ACT approach involves three sessions which focus on discussion of a theme such as friendship, presentaton of the theme as a skit, and assignment of topics to individual students. (SW)

  18. Agonistic and reproductive interactions in Betta splendens.

    PubMed

    Bronstein, P M

    1984-12-01

    Reproductive and agonistic behaviors in Siamese fighting fish were investigated in eight experiments, and some consequences and determinants of these sequences were isolated. First, fights and the formation of dominance-subordinancy relations were studied. Second, it was determined that large body size as well as males' prior residency in a tank produced an agonistic advantage; the magnitude of this advantage was positively related to the duration of residency. Third, the prior-residency effect in Bettas was determined by males' familiarity with visual and/or tactile cues in their home tanks. Fourth, dominant males had greater access to living space and were more likely to display at a mirror, build nests, and approach females than were subordinates. Finally, it was discovered that chemical cues associated with presumedly inert plastic tank dividers influence Bettas' social behavior.

  19. (+)-Dinapsoline: an efficient synthesis and pharmacological profile of a novel dopamine agonist.

    PubMed

    Sit, Sing-Yuen; Xie, Kai; Jacutin-Porte, Swanee; Taber, Matthew T; Gulwadi, Amit G; Korpinen, Carolyn D; Burris, Kevin D; Molski, Thaddeus F; Ryan, Elaine; Xu, Cen; Wong, Henry; Zhu, Juliang; Krishnananthan, Subramaniam; Gao, Qi; Verdoorn, Todd; Johnson, Graham

    2002-08-15

    A highly convergent synthesis was developed for the novel dopamine agonist dinapsoline (12) (Ghosh, D.; Snyder, S. E.; Watts, V. J.; Mailman, R. B.; Nichols, D. E. 8,9-Dihydroxy-2,3,7, 11b-tetrahydro-1H-naph[1,2,3-de]isoquinoline: A Potent Full Dopamine D(1) Agonist Containing a Rigid beta-Phenyldopamine Pharmacophore. J. Med. Chem. 1996, 39 (2), 549-555). The crucial step in the new synthesis was a free radical-initiated cyclization to give the complete dinapsoline framework. The improved synthesis required half as many steps as the original procedure (Nichols, D. E.; Mailman, R.; Ghosh, D. Preparation of novel naphtho[1,2,3-de]isoquinolines as dopamine receptor ligands. PCT Int. Appl. WO 9706799 A1, Feb 27, 1997). One of the late-stage intermediates (11) was resolved into a pair of enantiomers. From there, the (R)-(+)-12 (absolute configuration by X-ray) of dinapsoline was identified as the active enantiomer. In unilateral 6-hydroxydopamine (6-OHDA)-lesioned rats, (+)-dinapsoline showed robust rotational behavior comparable to that of an external benchmark, trans-4,5,5a,6,7,11b-hexahydro-2-propyl-benzo[f]thieno[2,3-c]quinoline-9,10-diol, hydrochloride 18 (Michaelides, M. R.; Hong, Y. Preparation of heterotetracyclic compounds as dopamine agonists. PCT Int. Appl. WO 9422858 A1, Oct 13, 1994).

  20. Assignment of the {beta}-arrestin 1 gene (ARRB1) to human chromosome 11q13

    SciTech Connect

    Calabrese, G.; Morizio, E.; Palka, G.

    1994-11-01

    Two types of proteins play a major role in determining homologous desensitization of G-coupled receptors: {beta}-adrenergic receptor kinase ({beta}ARK), which phosphorylates the agonist-occupied receptor, and its functional cofactor, {beta}-arrestin. {beta}ARK is a member of a multigene family, consisting of six known subtypes, which have also been named G-protein-coupled receptor kinases (GRK 1 to 6) due to the apparently unique functional association of such kinases with this receptor family. The gene for {beta}ARK1 has been localized to human chromosome 11q13. The four members of the arrestin/{beta}-arrestin gene family identified so far are arrestin, X-arrestin, {beta}-arrestin 1, and {beta}-arrestin 2. Here the authors report the chromosome mapping of the human gene for {beta}-arrestin 1 (ARRB1) to chromosome 11q13 by fluorescence in situ hybridization (FISH). Two-color FISH confirmed that the two genes coding for the functionally related proteins {beta}ARK1 and {beta}arrestin 1 both map to 11q13. 16 refs., 1 fig., 1 tab.

  1. Beta-Cryptoxanthin Suppresses the Growth of Immortalized Human Bronchial Epithelial Cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent findings of an inverse association between beta-cryptoxanthin and lung cancer risk in several observational epidemiologic studies suggests that beta-cryptoxanthin could potentially act as a chemopreventive agent against lung cancer. However, the biological activity of beta-cryptoxanthin and m...

  2. Down-regulation of phospholipase C-beta1 following chronic muscarinic receptor activation.

    PubMed

    Sorensen, S D; Linseman, D A; Fisher, S K

    1998-04-01

    To determine whether prolonged activation of a phospholipase C-coupled receptor can lead to a down-regulation of its effector enzyme, SH-SY5Y neuroblastoma cells were incubated for 24 h with the muscarinic receptor agonist, oxotremorine-M. Under these conditions, significant reductions (46-53%) in muscarinic cholinergic receptor density, G(alphaq/11) and phospholipase C-beta1 (but not the beta3-or gamma1 isoforms) were observed. These results suggest that a selective down-regulation of phospholipase C-beta1 may play a role in adaptation to chronic muscarinic receptor activation. PMID:9617763

  3. Signal Use by Octopuses in Agonistic Interactions.

    PubMed

    Scheel, David; Godfrey-Smith, Peter; Lawrence, Matthew

    2016-02-01

    Cephalopods show behavioral parallels to birds and mammals despite considerable evolutionary distance [1, 2]. Many cephalopods produce complex body patterns and visual signals, documented especially in cuttlefish and squid, where they are used both in camouflage and a range of interspecific interactions [1, 3-5]. Octopuses, in contrast, are usually seen as solitary and asocial [6, 7]; their body patterns and color changes have primarily been interpreted as camouflage and anti-predator tactics [8-12], though the familiar view of the solitary octopus faces a growing list of exceptions. Here, we show by field observation that in a shallow-water octopus, Octopus tetricus, a range of visible displays are produced during agonistic interactions, and these displays correlate with the outcome of those interactions. Interactions in which dark body color by an approaching octopus was matched by similar color in the reacting octopus were more likely to escalate to grappling. Darkness in an approaching octopus met by paler color in the reacting octopus accompanied retreat of the paler octopus. Octopuses also displayed on high ground and stood with spread web and elevated mantle, often producing these behaviors in combinations. This study is the first to document the systematic use of signals during agonistic interactions among octopuses. We show prima facie conformity of our results to an influential model of agonistic signaling [13]. These results suggest that interactions have a greater influence on octopus evolution than has been recognized and show the importance of convergent evolution in behavioral traits. PMID:26832440

  4. Signal Use by Octopuses in Agonistic Interactions.

    PubMed

    Scheel, David; Godfrey-Smith, Peter; Lawrence, Matthew

    2016-02-01

    Cephalopods show behavioral parallels to birds and mammals despite considerable evolutionary distance [1, 2]. Many cephalopods produce complex body patterns and visual signals, documented especially in cuttlefish and squid, where they are used both in camouflage and a range of interspecific interactions [1, 3-5]. Octopuses, in contrast, are usually seen as solitary and asocial [6, 7]; their body patterns and color changes have primarily been interpreted as camouflage and anti-predator tactics [8-12], though the familiar view of the solitary octopus faces a growing list of exceptions. Here, we show by field observation that in a shallow-water octopus, Octopus tetricus, a range of visible displays are produced during agonistic interactions, and these displays correlate with the outcome of those interactions. Interactions in which dark body color by an approaching octopus was matched by similar color in the reacting octopus were more likely to escalate to grappling. Darkness in an approaching octopus met by paler color in the reacting octopus accompanied retreat of the paler octopus. Octopuses also displayed on high ground and stood with spread web and elevated mantle, often producing these behaviors in combinations. This study is the first to document the systematic use of signals during agonistic interactions among octopuses. We show prima facie conformity of our results to an influential model of agonistic signaling [13]. These results suggest that interactions have a greater influence on octopus evolution than has been recognized and show the importance of convergent evolution in behavioral traits.

  5. Benzodiazepine Site Agonists Differentially Alter Acetylcholine Release in Rat Amygdala

    PubMed Central

    Hambrecht-Wiedbusch, Viviane S.; Mitchell, Melinda F.; Firn, Kelsie A.; Baghdoyan, Helen A.; Lydic, Ralph

    2014-01-01

    Background Agonist binding at the benzodiazepine site of γ-aminobutric acid type A receptors diminishes anxiety and insomnia by actions in the amygdala. The neurochemical effects of benzodiazepine-site agonists remain incompletely understood. Cholinergic neurotransmission modulates amygdala function, and in this study we tested the hypothesis that benzodiazepine-site agonists alter acetylcholine (ACh) release in the amygdala. Methods Microdialysis and high performance liquid chromatography quantified ACh release in the amygdala of Sprague-Dawley rats (n=33). ACh was measured before and after IV administration (3 mg/kg) of midazolam or eszopiclone, with and without anesthesia. ACh in isoflurane-anesthetized rats during dialysis with Ringer’s solution(control) was compared to ACh release during dialysis with Ringer’s solution containing (100 μM) midazolam, diazepam, eszopiclone, or zolpidem. Results In unanesthetized rats, ACh in the amygdala was decreased by IV midazolam (−51.1%; P=0.0029; 95% CI= −73.0% to −29.2%) and eszopiclone (−39.6%; P=0.0222; 95% CI= −69.8% to −9.3%). In anesthetized rats, ACh in the amygdala was decreased by IV administration of midazolam (−46.2%; P=0.0041; 95% CI= −67.9% to −24.5%) and eszopiclone (−34.0%; P=0.0009; 95% CI= −44.7% to −23.3%), and increased by amygdala delivery of diazepam (43.2%; P=0.0434; 95% CI= 2.1% to 84.3%), and eszopiclone (222.2%; P=0.0159; 95% CI= 68.5% to 375.8%). Conclusions ACh release in the amygdala was decreased by IV delivery of midazolam and eszopiclone. Dialysis delivery directly into the amygdala caused either increased (eszopiclone and diazepam) or likely no significant change (midazolam and zolpidem) in ACh release. These contrasting effects of delivery route on ACh release support the interpretation that systemically administered midazolam and eszopiclone decrease ACh release in the amygdala by acting on neuronal systems outside of the amygdala. PMID:24842176

  6. Asimadoline, a κ-Opioid Agonist, and Visceral Sensation

    PubMed Central

    Camilleri, Michael

    2009-01-01

    SUMMARY Asimadoline is a potent κ-opioid receptor agonist with a diaryl acetamide structure. It has high affinity for the κ receptor, with IC50 of 5.6 nM (guinea pig) and 1.2 nM (human recombinant), and high selectively with κ: μ: δ binding ratios of 1:501:498 in human recombinant receptors. It acts as a complete agonist in in vitro assay. Asimadoline reduced sensation in response to colonic distension at subnoxious pressures in healthy volunteers and in IBS patients without alteration of colonic compliance. Asimadoline reduced satiation and enhanced the postprandial gastric volume (in female volunteers). However, there were no significant effects on gastrointestinal transit, colonic compliance, fasting or postprandial colonic tone. In a clinical trial in 40 patients with functional dyspepsia (Rome II), asimadoline did not significantly alter satiation or symptoms over 8 weeks. However, asimadoline, 0.5 mg, significantly decreased satiation in patients with higher postprandial fullness scores, and daily postprandial fullness severity (over 8 weeks); the asimadoline 1.0 mg group was borderline significant. In a clinical trial in patients with IBS, average pain 2 hours post-on-demand treatment with asimadoline was not significantly reduced. Post-hoc analyses suggest asimadoline was effective in mixed IBS. In a 12-week study in 596 patients, chronic treatment with asimadoline, 0.5 mg and 1.0 mg, was associated with adequate relief of pain and discomfort, improvement in pain score and number of pain free days in patients with IBS-D. The 1.0 mg dose was also efficacious in IBS-alternating. There were also weeks with significant reduction in bowel frequency and urgency. Asimadoline has been well tolerated in human trials to date. PMID:18715494

  7. Theory of partial agonist activity of steroid hormones

    PubMed Central

    Chow, Carson C.; Ong, Karen M.; Kagan, Benjamin; Simons, S. Stoney

    2015-01-01

    The different amounts of residual partial agonist activity (PAA) of antisteroids under assorted conditions have long been useful in clinical applications but remain largely unexplained. Not only does a given antagonist often afford unequal induction for multiple genes in the same cell but also the activity of the same antisteroid with the same gene changes with variations in concentration of numerous cofactors. Using glucocorticoid receptors as a model system, we have recently succeeded in constructing from first principles a theory that accurately describes how cofactors can modulate the ability of agonist steroids to regulate both gene induction and gene repression. We now extend this framework to the actions of antisteroids in gene induction. The theory shows why changes in PAA cannot be explained simply by differences in ligand affinity for receptor and requires action at a second step or site in the overall sequence of reactions. The theory also provides a method for locating the position of this second site, relative to a concentration limited step (CLS), which is a previously identified step in glucocorticoid-regulated transactivation that always occurs at the same position in the overall sequence of events of gene induction. Finally, the theory predicts that classes of antagonist ligands may be grouped on the basis of their maximal PAA with excess added cofactor and that the members of each class differ by how they act at the same step in the overall gene induction process. Thus, this theory now makes it possible to predict how different cofactors modulate antisteroid PAA, which should be invaluable in developing more selective antagonists. PMID:25984562

  8. Hyperplasia of brown adipose tissue after chronic stimulation of beta 3-adrenergic receptor in rats.

    PubMed

    Nagase, I; Sasaki, N; Tsukazaki, K; Yoshida, T; Morimatsu, M; Saito, M

    1994-12-01

    When mammals are exposed to a cold environment for a long time, the capacity of nonshivering thermogenesis by brown adipose tissue (BAT) increases in association with the increased expression of some specific proteins and tissue hyperplasia, which are totally dependent on sympathetic innervation to this tissue. To clarify roles of the beta-adrenergic mechanism in BAT hyperplasia, the effects of chronic administration of various beta-adrenergic agonists on BAT were examined in rats, especially focusing on some agonists to the beta 3-adrenoceptor which is present specifically in adipocytes. Chronic administration of noradrenaline or isoproterenol for 7-10 days produced a marked increase in the tissue contents of DNA, total protein, mitochondrial uncoupling protein, and insulin-regulatable glucose transporter protein. The trophic effects of noradrenaline and isoproterenol were mimicked by chronic administration of beta 3-adrenergic agonists, such as CL316,243, BRL 26830A, and ICI D7114. These results suggest that the beta 3-adrenoceptor plays important roles for hyperplasia of BAT, and thereby increasing in the capacity of thermogenesis. PMID:7745877

  9. Evidence for beta3-adrenoceptor subtypes in relaxation of the human urinary bladder detrusor: analysis by molecular biological and pharmacological methods.

    PubMed

    Takeda, M; Obara, K; Mizusawa, T; Tomita, Y; Arai, K; Tsutsui, T; Hatano, A; Takahashi, K; Nomura, S

    1999-03-01

    The purpose of the present study was to confirm the presence of beta3-adrenoceptor subtype in the relaxation of human urinary bladder detrusor tissue by reverse transcription-polymerase chain reaction (PCR); direct sequencing of the PCR product, in situ hybridization; and isometric contraction. Using reverse transcription-PCR, the mRNAs of three receptor subtypes (beta1, beta2, and beta3) were expressed in the human urinary bladder detrusor tissue. Direct sequencing of the PCR product of the above beta3-adrenoceptor revealed no mutation in the amplified regions. In situ hybridization with digoxygenin-labeled oligonucleotide probe revealed the presence of the mRNA of beta3-adrenoceptor subtype in the smooth muscle of the urinary bladder. The relaxant effects of isoproterenol (a nonselective beta-adrenoceptor agonist); ZD7114, BRL37344, and CGP12177A (putative selective beta3-adrenoceptor agonists); and SR59230A (a putative selective beta3-adrenoceptor antagonist) were tested using an isometric contraction technique. Isoproterenol in either the presence or absence of both atenolol (a beta1-adrenoceptor-selective antagonist) and butoxamine (a beta2-adrenoceptor-selective antagonist) revealed a relaxant effect on the carbachol-induced contraction of the human urinary bladder detrusor. Both BRL37344 and CGP12177A also revealed relaxant effects on the human urinary bladder detrusor, but ZD7114 did not elicit any relaxation. These results suggest that beta3-adrenoceptor may have some role in urine storage in the human urinary bladder. PMID:10027879

  10. Truncation of the cytoplasmic tail of the lutropin/choriogonadotropin receptor prevents agonist-induced uncoupling.

    PubMed

    Sánchez-Yagüe, J; Rodríguez, M C; Segaloff, D L; Ascoli, M

    1992-04-15

    An agonist-induced change in the functional properties of a constant number of receptors seems to be a ubiquitous phenomenon involved in the regulation of cell surface receptors. Although the mechanisms responsible for this phenomenon (called uncoupling or desensitization) have been studied in detail using beta 2-adrenergic receptors it is unclear if the models derived from these studies are applicable to other members of the family of G protein-coupled receptors. Since it has been shown previously that truncation of the C-terminal cytoplasmic tail of the beta 2-adrenergic receptor results in a delay in the onset of agonist-induced uncoupling (Bouvier, M., Hausdorff, W.P., De Blasi, A., O'Dowd, B.F., Kobilka, B.K., Caron , M.G., and Lefkowitz, R.J. (1988) Nature 333, 370-373), we now present experiments designed to test the effects of a similar truncation of the lutropin/choriogonadotropin (LH/CG) receptor on its functional properties. The results presented herein show that (i) clonal lines of human embryonic kidney cells stably transfected with cDNAs encoding for the wild-type (rLHR-wt) or a mutant receptor truncated at amino acid residue 631 (rLHR-t631) express functional LH/CG receptors as judged by their ability to bind hCG and to respond to it with increased cAMP accumulation; (ii) a preincubation of the cells expressing rLHR-wt with hCG leads to a reduction in the ability of hCG to activate adenylylcyclase; and (iii) this reduction is severely blunted in cells expressing rLHR-t631. These results demonstrate that the C-terminal cytoplasmic tail of the LH/CG receptor is necessary for agonist-induced uncoupling.

  11. Selective agonists of retinoic acid receptors: comparative toxicokinetics and embryonic exposure.

    PubMed

    Arafa, H M; Elmazar, M M; Hamada, F M; Reichert, U; Shroot, B; Nau, H

    2000-01-01

    Three biologically active synthetic retinoids were investigated that bind selectively to retinoic acid receptors RARs (alpha, beta and gamma). The retinoids were previously demonstrated to have different teratogenic effects in the mouse in terms of potency and regioselectivity. The teratogenic potency rank order (alpha >beta >gamma) was found to be more or less compatible with the receptor binding affinities and transactivation potencies of the retinoid ligands to their respective receptors. The RARalpha agonist (Am580; CD336) induced a wide spectrum of malformations; CD2019 (RARbeta agonist) and especially CD437 (RARgamma agonist) produced more restricted defects. In the current study we tried to address whether the differences in teratogenic effects are solely related to binding affinity and transactivation differences or also due to differences in embryonic exposure. Therefore, transplacental kinetics of the ligands were assessed following administration of a single oral dose of 15 mg/kg of either retinoid given to NMRI mice on day 11 of gestation. Am580 was rapidly transferred to the embryo resulting in the highest embryonic exposure [embryo to maternal plasma area under the time vs concentration curve (AUC)(0-24 h )ratio (E/M) was 1.7], in accordance with its highest teratogenic potency. The low placental transfer of CD2019 (E/M of 0.3) was compatible with its lower teratogenic potential. Of major interest was the finding that the CD437, though being least teratogenic, exhibited considerable embryonic exposure (E/M of 0.6). These findings suggest that both the embryonic exposure and receptor binding transactivation selectivity are crucial determinants of the teratogenicity of these retinoid ligands.

  12. CCAAT/enhancer binding protein {beta} deletion increases mitochondrial function and protects mice from LXR-induced hepatic steatosis

    SciTech Connect

    Rahman, Shaikh M.; Choudhury, Mahua; Janssen, Rachel C.; Baquero, Karalee C.; Miyazaki, Makoto; Friedman, Jacob E.

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer LXR agonist activation increases liver TG accumulation by increasing lipogenesis. Black-Right-Pointing-Pointer C/EBP{beta}{sup -/-} mouse prevents LXR activation-mediated induction of hepatic lipogenesis. Black-Right-Pointing-Pointer C/EBP{beta} deletion increases mitochondrial transport chain function. Black-Right-Pointing-Pointer Beneficial effects of LXR activation on liver cholesterol metabolism did not change. Black-Right-Pointing-Pointer C/EBP{beta} inhibition might have important therapeutic potential. -- Abstract: Drugs designed specifically to activate liver X receptors (LXRs) have beneficial effects on lowering cholesterol metabolism and inflammation but unfortunately lead to severe hepatic steatosis. The transcription factor CCAAT/enhancer binding protein beta (C/EBP{beta}) is an important regulator of liver gene expression but little is known about its involvement in LXR-based steatosis and cholesterol metabolism. The present study investigated the role of C/EBP{beta} expression in LXR agonist (T0901317)-mediated alteration of hepatic triglyceride (TG) and lipogenesis in mice. C/EBP{beta} deletion in mice prevented LXR agonist-mediated induction of lipogenic gene expression in liver in conjunction with significant reduction of liver TG accumulation. Surprisingly, C/EBP{beta}{sup -/-} mice showed a major increase in liver mitochondrial electron chain function compared to WT mice. Furthermore, LXR activation in C/EBP{beta}{sup -/-} mice increased the expression of liver ATP-binding cassette transporter ABCG1, a gene implicated in cholesterol efflux and reducing blood levels of total and LDL-cholesterol. Together, these findings establish a central role for C/EBP{beta} in the LXR-mediated steatosis and mitochondrial function, without impairing the influence of LXR activation on lowering LDL and increasing HDL-cholesterol. Inactivation of C/EBP{beta} might therefore be an important therapeutic strategy to prevent LXR

  13. Effect of beta-adrenoceptors on the behaviour induced by the neuropeptide glutamic acid isoleucine amide.

    PubMed

    Sánchez-Borzone, Mariela E; Attademo, Andrés; Baiardi, Gustavo; Celis, María Ester

    2007-07-30

    Excessive grooming behaviour is induced by intracerebroventricular injections of the neuropeptide glutamic acid isoleucine amide (neuropeptide-EI), via the activation of A-10 dopaminergic neurons and the noradrenergic system. Our object was to study the latter system involved in these behaviours, using male Wistar rats weighing 250-300 g with i.c.v. implants. The results show that all the adrenoceptor antagonists "per se" do not affect excessive grooming behaviour or motor activity. Intracerebroventricular administration of propranolol, a general beta-adrenoceptor antagonist, before neuropeptide-EI, inhibited the induced excessive grooming behaviour in a dose dependent manner. Metoprolol, a beta(1)-adrenoceptor antagonist, also blocked this behaviour. However, intracerebroventricular injections of phentolamine, an alpha-adrenoceptor antagonist, and ((+/-)-1-[2,3-(Dihydro-7-methyl-1H-inden-4-yl)oxy]-3-[(1-methylethyl)amino]-2-butanol), a beta(2)-adrenoceptor antagonist, had no effect on the behaviour induced by neuropeptide-EI induced behaviour for any of the doses tested. On the other hand, isoproterenol, a general beta-adrenoceptor agonist and dobutamine, a beta(1)-adrenoceptor agonist, both elicited similar behaviours as those induced by neuropeptide-EI. These results support the hypothesis that a relationship exists between neuropeptide-EI and beta-adrenoceptors, more specifically the beta(1)-adrenoceptor, as found with other similar endogenous peptides such as neurotensin, cholecystin, substance P and alpha-melanocyte stimulating hormone. Hence, neuropeptide-EI could probably be exerting a neuromodulating effect on the central nervous system.

  14. Adenosine A2A Agonist Improves Lung Function During Ex-vivo Lung Perfusion

    PubMed Central

    Emaminia, Abbas; LaPar, Damien J.; Zhao, Yunge; Steidle, John F.; Harris, David A.; Linden, Joel; Kron, Irving L.; Lau, Christine L.

    2012-01-01

    Background Ex-vivo lung perfusion (EVLP) is a novel technique to assess, and potentially repair marginal lungs that may otherwise be rejected for transplantation. Adenosine has been shown to protect against lung ischemia-reperfusion injury through its A2A receptor. We hypothesized that combining EVLP with adenosine A2A receptor agonist treatment would enhance lung functional quality and increase donor lung usage. Methods Eight bilateral pig lungs were harvested and flushed with cold Perfadex. After 14 hours storage at 4°C, EVLP was performed for 5 hours on two explanted lung groups: 1) Control group lungs (n=4), were perfused with Steen Solution and Dimethyl sulfoxide (DMSO), and 2) treated group lungs (n=4) received 10μM CGS21680, a selective A2A receptor agonist, in a Steen Solution-primed circuit. Lung histology, tissue cytokines, gas analysis and pulmonary function were compared between groups. Results Treated lungs demonstrated significantly less edema as reflected by wet-dry weight ratio (6.6 vs. 5.2, p<0.03) and confirmed by histology. In addition, treated lung demonstrated significantly lower levels of interferon gamma (45.1 vs. 88.5, p<0.05). Other measured tissue cytokines (interleukin (IL) 1 beta, IL-6, and IL-8) were lower in treatment group, but values failed to reach statistical significance. Oxygenation index was improved in the treated group (1.5 vs. 2.3, p<0.01) as well as mean airway pressure (10.3 vs. 13 p<0.009). Conclusions EVLP is a novel and efficient way to assess and optimize lung function and oxygen exchange within donor lungs, and the use of adenosine A2A agonist potentiates its potential. EVLP with the concomitant administration of A2A agonist may enhance donor lung quality and could increase the donor lung pool for transplantation. PMID:22051279

  15. Renal expression of fibrotic matrix proteins and of transforming growth factor-beta (TGF-beta) isoforms in TGF-beta transgenic mice.

    PubMed

    Mozes, M M; Böttinger, E P; Jacot, T A; Kopp, J B

    1999-02-01

    Renal pathology in mice that are transgenic for the murine albumin enhancer/promoter linked to a full-length porcine transforming growth factor-beta1 (TGF-beta1) gene has been described previously. In these mice, transgene expression is limited to the liver and the plasma level of TGF-beta is increased. The earliest renal pathologic change is glomerulosclerosis, at 3 wk of age, and this is followed by tubulointerstitial fibrosis. In this study, it was hypothesized that circulating TGF-beta1 increases renal extracellular matrix accumulation and activates local TGF-beta gene expression. Immunostaining at 5 wk revealed increased amounts of collagen I and III within the mesangium, glomerular capillary loops, and interstitium, while the amount of collagen IV was normal. Similarly, Northern analysis showed increased expression of mRNA encoding collagen I and III, as well as biglycan and decorin, while the expression of collagen IV was unchanged. These changes began as early as 1 wk of age, a time before the appearance of glomerulosclerosis. To evaluate matrix degradation, collagenase IV activity was evaluated by gelatin zymography and an increase in matrix metalloproteinase-2 was found. Finally, the production of tissue inhibitors of metalloproteinase was evaluated. Tissue inhibitor of metalloproteinase-1 (TIMP-1) mRNA was increased 18-fold, while TIMP-2 and TIMP-3 were unchanged. In 2-wk-old transgenic kidney, local expression of TGF-beta1, beta2, and beta3 protein was similar to wild-type mice. In 5-wk-old transgenic mice, TGF-beta1 and beta2 protein was present in increased amounts within glomeruli, and renal TGF-beta1 mRNA was increased threefold. It is concluded that elevated levels of circulating TGF-beta1 may act on the kidney to increase matrix protein production and decrease matrix remodeling. Only after glomerulosclerosis is established does local glomerular overproduction of TGF-beta become manifest.

  16. A fluorescent assay amenable to measuring production of beta-D-glucuronides produced from recombinant UDP-glycosyl transferase enzymes.

    PubMed

    Trubetskoy, O V; Shaw, P M

    1999-05-01

    Beta-glucuronidase cleavage of 4-methylumbelliferyl beta-D-glucuronide generates the highly fluorescent compound, 4-methylumbelliferone. We show that other beta-D-glucuronide compounds act as competitors in this assay. The 4-methylumbelliferyl beta-D-glucuronide cleavage assay can easily be adapted to high throughput formats to detect the presence of beta-D glucuronides generated using recombinant glycosyl transferase preparations.

  17. NOP receptor mediates anti-analgesia induced by agonist-antagonist opioids.

    PubMed

    Gear, R W; Bogen, O; Ferrari, L F; Green, P G; Levine, J D

    2014-01-17

    Clinical studies have shown that agonist-antagonist opioid analgesics that produce their analgesic effect via action on the kappa-opioid receptor, produce a delayed-onset anti-analgesia in men but not women, an effect blocked by co-administration of a low dose of naloxone. We now report the same time-dependent anti-analgesia and its underlying mechanism in an animal model. Using the Randall-Selitto paw-withdrawal assay in male rats, we found that nalbuphine, pentazocine, and butorphanol each produced analgesia during the first hour followed by anti-analgesia starting at ∼90min after administration in males but not females, closely mimicking its clinical effects. As observed in humans, co-administration of nalbuphine with naloxone in a dose ratio of 12.5:1 blocked anti-analgesia but not analgesia. Administration of the highly selective kappa-opioid receptor agonist U69593 produced analgesia without subsequent anti-analgesia, and confirmed by the failure of the selective kappa antagonist nor-binaltorphimine to block nalbuphine-induced anti-analgesia, indicating that anti-analgesia is not mediated by kappa-opioid receptors. We therefore tested the role of other receptors in nalbuphine anti-analgesia. Nociceptin/orphanin FQ (NOP) and sigma-1 and sigma-2 receptors were chosen on the basis of their known anti-analgesic effects and receptor binding studies. The selective NOP receptor antagonists, JTC801, and J-113397, but not the sigma receptor antagonist, BD 1047, antagonized nalbuphine anti-analgesia. Furthermore, the NOP receptor agonist NNC 63-0532 produced anti-analgesia with the same delay in onset observed with the three agonist-antagonists, but without producing preceding analgesia and this anti-analgesia was also blocked by naloxone. These results strongly support the suggestion that clinically used agonist-antagonists act at the NOP receptor to produce anti-analgesia. PMID:24188792

  18. Juggling Act

    ERIC Educational Resources Information Center

    Rudalevige, Andrew

    2009-01-01

    Two education bills from George W. Bush's first term are long overdue for reauthorization. One, of course, is the No Child Left Behind Act (NCLB), passed in late 2001. The other is the Education Sciences Reform Act (ESRA), which in November 2002 replaced the Office of Educational Research and Improvement (OERI) with a new Institute of Education…

  19. Hypothermia and poikilothermia induced by a kappa-agonist opioid and a neuroleptic.

    PubMed

    Adler, M W; Geller, E B

    1987-08-11

    When an opioid acting selectively at the kappa opioid receptor is administered subcutaneously to rats along with a neuroleptic at an ambient temperature of 20 degrees C a marked hypothermia ensues. The combination of U-50,488H (a kappa agonist) and chlorpromazine (a neuroleptic) caused a drop in body temperature amounting to as much as 11 degrees C, with all animals recovering after 24-48 h. Naloxone partially reversed the hypothermia. Similar, but less dramatic, decreases in body temperature occurred with other neuroleptics and weaker kappa agonists. The induction of poikilothermia was indicated when the body temperature approached the environment temperature and lethality resulted in 100% of the animals at ambient temperatures of 5 degrees C or 35 degrees C. The potential utility of this or similar combinations of drugs lies in such diverse applications as cardiac surgery, treatment of the near-drowning syndrome and space travel.

  20. Gonadotropin-releasing hormone agonists in the treatment of girls with central precocious puberty.

    PubMed

    Breyer, P; Haider, A; Pescovitz, O H

    1993-09-01

    The onset of puberty before the age of 8 years in a girl is considered precocious. A child who presents with premature sexual development requires a thorough history, physical examination, and appropriate laboratory evaluation. Making the correct diagnosis is crucial to the selection of the appropriate form of therapy and management. Generally, CPP is the result of premature activation of the hypothalamic-pituitary-gonadal axis and can be successfully managed with long-acting GnRH agonists. In addition, GnRH analogue therapy has been shown to be safe, effective, and reversible. Treatment has resulted in a delay in the progression of secondary sexual development, normalization of the growth velocity, slowing of the rate of bone maturation, and an increase in the predicted final adult height. The GnRH agonists are ineffective in the therapy of gonadotropin-independent precocious puberty.

  1. Clonazepam as Agonist Substitution Treatment for Benzodiazepine Dependence: A Case Report

    PubMed Central

    Maremmani, Angelo Giovanni Icro; Rovai, Luca; Rugani, Fabio; Bacciardi, Silvia; Pacini, Matteo; Dell'Osso, Liliana; Maremmani, Icro

    2013-01-01

    Nowadays, the misuse of benzodiazepines (BZDs) is a cause for a serious concern among pharmacologically inexperienced patients, whether treated or untreated, that could lead to significant complications, including tolerance, dependence, and addiction. We present a case report in which an Italian patient affected by anxiety disorder and treated with BZDs presented a severe case of dependence on BZDs. We treated him according to an agonist substitution approach, switching from the abused BZD to a slow-onset, long-acting, high potency agonist (clonazepam), and looking at the methadone treatment model as paradigm. We decided to use clonazepam for its pharmacokinetic properties. The advantage of choosing a slow-onset, long-lasting BZD for the treatment of our patient was that it led us to a remarkable improvement in the clinical situation, including the cessation of craving, absence of withdrawal symptoms, reduced anxiety, improvements in social functioning, and a better cognition level. PMID:23424702

  2. Structure-guided design of selective Epac1 and Epac2 agonists.

    PubMed

    Schwede, Frank; Bertinetti, Daniela; Langerijs, Carianne N; Hadders, Michael A; Wienk, Hans; Ellenbroek, Johanne H; de Koning, Eelco J P; Bos, Johannes L; Herberg, Friedrich W; Genieser, Hans-Gottfried; Janssen, Richard A J; Rehmann, Holger

    2015-01-01

    The second messenger cAMP is known to augment glucose-induced insulin secretion. However, its downstream targets in pancreatic β-cells have not been unequivocally determined. Therefore, we designed cAMP analogues by a structure-guided approach that act as Epac2-selective agonists both in vitro and in vivo. These analogues activate Epac2 about two orders of magnitude more potently than cAMP. The high potency arises from increased affinity as well as increased maximal activation. Crystallographic studies demonstrate that this is due to unique interactions. At least one of the Epac2-specific agonists, Sp-8-BnT-cAMPS (S-220), enhances glucose-induced insulin secretion in human pancreatic cells. Selective targeting of Epac2 is thus proven possible and may be an option in diabetes treatment. PMID:25603503

  3. Lymphocyte beta 2-adrenoceptors and adenosine 3':5'-cyclic monophosphate during and after normal pregnancy.

    PubMed Central

    von Mandach, U.; Gubler, H. P.; Engel, G.; Huch, R.; Huch, A.

    1993-01-01

    1. The beta 2-sympathomimetics, used to inhibit preterm labour, bind predominantly to beta 2-adrenoceptors, activating adenylate cyclase to form adenosine 3':5'-cyclic monophosphate (cyclic AMP), a messenger substance which inhibits the enzyme cascade triggering smooth muscle contraction. beta 2-Adrenoceptor density and cyclic AMP formation can be used as markers of beta 2-adrenergic effect. 2. The present study addresses the influence of pregnancy on the beta-adrenoceptor system. beta 2-Adrenoceptor density and cyclic AMP concentrations (basal and evoked by isoprenaline) in circulating lymphocytes were determined at three points in gestation (16, 29 and 37 weeks) and 9 weeks post partum in 22 normal pregnancies. (-)-[125Iodo]-cyanopindolol was used as the ligand to identify a homogeneous population of beta 2-adrenoceptors on lymphocytes. B- and T-cell fractions were estimated from the same samples. 3. beta 2-Adrenoceptor density decreased significantly during gestation until week 37 (P < 0.01), then increased post partum (P < 0.005). Cyclic AMP concentrations (basal and evoked by isoprenaline) were significantly lower after 16 weeks of gestation than post partum (P < 0.05). 4. The results, which cannot be explained in terms of a shift in the lymphocyte (B- and T-cell) ratio, indicate that beta-adrenoceptor density and function are reduced in normal pregnancy and only return to normal post partum. These findings may be of significance in devising future tocolytic therapy with beta 2-adrenoceptor agonists. PMID:8383562

  4. Low sodium diet corrects the defect in lymphocyte beta-adrenergic responsiveness in hypertensive subjects.

    PubMed Central

    Feldman, R D; Lawton, W J; McArdle, W L

    1987-01-01

    To determine the role of dietary sodium intake in the reduction in beta-adrenergic sensitivity in hypertension, lymphocyte beta-receptors from 8 borderline hypertensive and 16 normotensive subjects were studied after 5 d on a high sodium diet (400 meq/d) and also following a low sodium diet (10 meq/d). During the high sodium diet, lymphocyte beta-receptor-stimulated adenylate cyclase activity, expressed as the relative increase over basal levels stimulated by the beta-agonist isoproterenol, was significantly (P less than 0.025) decreased in hypertensive (24 +/- 5%, mean +/- SE) compared with normotensive (42 +/- 4%) subjects. Neither beta-receptor density nor the proportion of nonsequestered beta-receptors differed between groups. A low sodium diet significantly increased beta-receptor-stimulated adenylate cyclase activity in hypertensives (low sodium, 51 +/- 7%; high sodium, 24 +/- 5%, P less than 0.025) to a level not different than that of normotensives (46 +/- 5%). Thus, reduced lymphocyte beta-receptor responsiveness in hypertensive subjects is not due to beta-receptor sequestration and is corrected on a low sodium diet. Dietary sodium may be an important factor in the beta-receptor defect in early hypertension. Images PMID:3025262

  5. Effects of dopamine D2-like receptor agonists in mice trained to discriminate cocaine from saline: influence of feeding condition

    PubMed Central

    Collins, Gregory T.; Jackson, Jonathan A.; Koek, Wouter; France, Charles P.

    2014-01-01

    In rats, the discriminative stimulus effects of direct- and indirect-acting dopamine receptor agonists are mediated by multiple dopamine receptor subtypes and the relative contribution of dopamine D2 and D3 receptors to these effects varies as a function of feeding condition. In these studies, free-fed and food-restricted mice were trained to discriminate 10.0 mg/kg cocaine using a two-lever discrimination procedure in which responding was maintained by food. Both groups of mice acquired the discrimination; however, free-fed mice responded at lower rates than food-restricted mice. Dopamine D3 receptor agonists, pramipexole and quinpirole, increased cocaine-appropriate responding (>85%) in food-restricted, but not in free-fed mice. The dopamine D2 receptor agonist, sumanirole, and the nonselective dopamine receptor agonist, apomorphine, failed to increase cocaine-appropriate responding in either group. Free-fed mice were more sensitive than food-restricted mice to the rate-decreasing effects of dopamine receptor agonists and these effects could not be overcome by increasing the magnitude of reinforcement. Because feeding condition did not alter quinpirole-induced hypothermia, it is unlikely that differences in the discriminative stimulus or rate-decreasing effects of dopamine D2-like receptor agonists were due to differences in the pharmacokinetic properties of the drugs. Although these results suggest that the discriminative stimulus effects of cocaine are mediated by both dopamine D2 and D3 receptors in food-restricted mice, the increased sensitivity of free-fed mice to the rate-decreasing effects of dopamine D2-like receptor agonists limited conclusions about the impact of feeding conditions on the relative contribution of dopamine D2 and D3 receptors to the discriminative stimulus effects of cocaine. PMID:24561049

  6. PPARγ partial agonist GQ-16 strongly represses a subset of genes in 3T3-L1 adipocytes

    SciTech Connect

    Milton, Flora Aparecida; Cvoro, Aleksandra; Amato, Angelica A.; Sieglaff, Douglas H.; Filgueira, Carly S.; Arumanayagam, Anithachristy Sigamani; Caro Alves de Lima, Maria do; Rocha Pitta, Ivan; Assis Rocha Neves, Francisco de; Webb, Paul

    2015-08-28

    Thiazolidinediones (TZDs) are peroxisome proliferator-activated receptor gamma (PPARγ) agonists that improve insulin resistance but trigger side effects such as weight gain, edema, congestive heart failure and bone loss. GQ-16 is a PPARγ partial agonist that improves glucose tolerance and insulin sensitivity in mouse models of obesity and diabetes without inducing weight gain or edema. It is not clear whether GQ-16 acts as a partial agonist at all PPARγ target genes, or whether it displays gene-selective actions. To determine how GQ-16 influences PPARγ activity on a gene by gene basis, we compared effects of rosiglitazone (Rosi) and GQ-16 in mature 3T3-L1 adipocytes using microarray and qRT-PCR. Rosi changed expression of 1156 genes in 3T3-L1, but GQ-16 only changed 89 genes. GQ-16 generally showed weak effects upon Rosi induced genes, consistent with partial agonist actions, but a subset of modestly Rosi induced and strongly repressed genes displayed disproportionately strong GQ-16 responses. PPARγ partial agonists MLR24 and SR1664 also exhibit disproportionately strong effects on transcriptional repression. We conclude that GQ-16 displays a continuum of weak partial agonist effects but efficiently represses some negatively regulated PPARγ responsive genes. Strong repressive effects could contribute to physiologic actions of GQ-16. - Highlights: • GQ-16 is an insulin sensitizing PPARγ ligand with reduced harmful side effects. • GQ-16 displays a continuum of weak partial agonist activities at PPARγ-induced genes. • GQ-16 exerts strong repressive effects at a subset of genes. • These inhibitor actions should be evaluated in models of adipose tissue inflammation.

  7. Prostaglandin E2 promotes lung cancer cell migration via EP4-betaArrestin1-c-Src signalsome.

    PubMed

    Kim, Jae Il; Lakshmikanthan, Vijayabaskar; Frilot, Nicole; Daaka, Yehia

    2010-04-01

    Many human cancers express elevated levels of cyclooxygenase-2 (COX-2), an enzyme responsible for the biosynthesis of prostaglandins. Available clinical data establish the protective effect of COX-2 inhibition on human cancer progression. However, despite these encouraging outcomes, the appearance of unwanted side effects remains a major hurdle for the general application of COX-2 inhibitors as effective cancer drugs. Hence, a better understanding of the molecular signals downstream of COX-2 is needed for the elucidation of drug targets that may improve cancer therapy. Here, we show that the COX-2 product prostaglandin E(2) (PGE(2)) acts on cognate receptor EP4 to promote the migration of A549 lung cancer cells. Treatment with PGE(2) enhances tyrosine kinase c-Src activation, and blockade of c-Src activity represses the PGE(2)-mediated lung cancer cell migration. PGE(2) affects target cells by activating four receptors named EP1 to EP4. Use of EP subtype-selective ligand agonists suggested that EP4 mediates prostaglandin-induced A549 lung cancer cell migration, and this conclusion was confirmed using a short hairpin RNA approach to specifically knock down EP4 expression. Proximal EP4 effectors include heterotrimeric Gs and betaArrestin proteins. Knockdown of betaArrestin1 expression with shRNA significantly impaired the PGE(2)-induced c-Src activation and cell migration. Together, these results support the idea that increased expression of the COX-2 product PGE(2) in the lung tumor microenvironment may initiate a mitogenic signaling cascade composed of EP4, betaArrestin1, and c-Src which mediates cancer cell migration. Selective targeting of EP4 with a ligand antagonist may provide an efficient approach to better manage patients with advanced lung cancer.

  8. Effects of kappa opioid agonists alone and in combination with cocaine on heart rate and blood pressure in conscious squirrel monkeys.

    PubMed

    Schindler, Charles W; Graczyk, Zofi; Gilman, Joanne P; Negus, S Stevens; Bergman, Jack; Mello, Nancy K; Goldberg, Steven R

    2007-12-01

    As kappa agonists have been proposed as treatments for cocaine abuse, the cardiovascular effects of the kappa opioid receptor agonists ethylketocyclazocine (EKC) and enadoline were investigated in conscious squirrel monkeys. Both EKC and enadoline increased heart rate with little effect on blood pressure. This effect appeared to be specific for kappa receptors as the mu opioid agonist morphine did not mimic the effects of the kappa agonists. The opioid antagonist naltrexone, at a dose of 1.0 mg/kg, blocked the effect of EKC. An action at both central and peripheral receptors may be responsible for the heart rate increase following kappa agonist treatment. The ganglionic blocker chlorisondamine partially antagonized the effect of EKC on heart rate, suggesting central involvement, while the peripherally-acting agonist ICI 204,448 ((+/-)-1-[2,3- (Dihydro-7-methyl-1H-inden-4-yl)oxy]-3-[(1-methylethyl)amino]-2-butanol hydrochloride) also increased heart rate, supporting a peripheral site of action. When given in combination with cocaine, EKC produced effects that were sub-additive, suggesting that the kappa agonists may be used safely as cocaine abuse treatments.

  9. High Beta Tokamaks

    SciTech Connect

    Cowley, S.

    1998-11-14

    Perhaps the ideal tokamak would have high {beta} ({beta} {approx}> 1) and classical confinement. Such a tokamak has not been found, and we do not know if one does exist. We have searched for such a possibility, so far without success. In 1990, we obtained analytic equilibrium solutions for large aspect ratio tokamaks at {beta} {approx} {Omicron}(1) [1]. These solutions and the extension at high {beta} poloidal to finite aspect ratio [2] provided a basis for the study of high {beta} tokamaks. We have shown that these configurations can be stable to short scale MHD modes [3], and that they have reduced neoclassical transport [4]. Microinstabilities (such as the {del}T{sub i} mode) seem to be stabilized at high {beta} [5] - this is due to the large local shear [3] and the magnetic well. We have some concerns about modes associated with the compressional branch which may appear at high {beta}. Bill Dorland and Mike Kotschenreuther have studied this issue and our concerns may be unfounded. It is certainly tantalizing, especially given the lowered neoclassical transport values, that these configurations could have no microinstabilities and, one could assume, no anomalous transport. Unfortunately, while this work is encouraging, the key question for high {beta} tokamaks is the stability to large scale kink modes. The MHD {beta} limit (Troyon limit) for kink modes at large aspect ratio is problematically low. There is ample evidence from computations that the limit exists. However, it is not known if stable equilibria exist at much higher {beta}--none have been found. We have explored this question in the asymptotic high {beta} poloidal limit. Unfortunately, we are unable to find stable equilibrium and also unable to show that they don't exist. The results of these calculations will be published when a more definitive answer is found.

  10. Alloimmune IgG binds and modulates cardiac beta-adrenoceptor activity.

    PubMed Central

    Sterin-Borda, L; Cremaschi, G; Pascual, J; Genaro, A; Borda, E

    1984-01-01

    Purified IgG from murine alloimmune sera directed against class I products from the major histocompatibility complex of the mouse, could bind to the beta-adrenoceptors and stimulate contractile activity of myocardium. Immune IgG inhibited the binding of (-) 3H-DHA to beta-adrenoceptors of mouse myocardial membranes behaving as a competitive inhibitor. Moreover, immune IgG induced positive inotropic and chronotropic effects on isolated mouse atria. These effects could be blocked by beta-adrenoceptors antagonists. Data prove that immune IgG directed against specific alloantigens are able to recognize the beta-adrenoceptors and mimic the stimulation of the beta-adrenoceptor agonist. PMID:6090043

  11. Lateral paracapsular GABAergic synapses in the basolateral amygdala contribute to the anxiolytic effects of beta 3 adrenoceptor activation.

    PubMed

    Silberman, Yuval; Ariwodola, Olusegun J; Chappell, Ann M; Yorgason, Jordan T; Weiner, Jeff L

    2010-08-01

    Norepinephrine (NE) is known to play an integral role in the neurobiological response to stress. Exposure to stressful stimuli increases NE levels in brain regions that regulate stress and anxiety, like the basolateral amygdala (BLA). NE is thought to increase excitability in these areas through alpha- and beta-adrenoceptors (ARs), leading to increased anxiety. Surprisingly, recent studies have shown that systemic beta 3-AR agonist administration decreases anxiety-like behaviors, suggesting that beta 3-ARs may inhibit excitability in anxiety-related brain regions. Therefore, in this study we integrated electrophysiological and behavioral approaches to test the hypothesis that the anxiolytic effects of beta 3-AR agonists may be mediated by an increase in BLA GABAergic inhibition. We examined the effect of a selective beta 3-AR agonist, BRL37344 (BRL), on GABAergic synapses arising from local circuit interneurons and inhibitory synapses originating from a recently described population of cells called lateral paracapsular (LPCS) interneurons. Surprisingly, BRL selectively enhanced LPCS-evoked inhibitory postsynaptic currents (eIPSCs) with no effect on local GABAergic inhibition. BRL also had no effect on glutamatergic synaptic excitation within the BLA. BRL potentiation of LPCS eIPSCs was blocked by the selective beta 3-AR antagonist, SR59230A, or by intracellular dialysis of Rp-CAMPS (cAMP-dependent protein kinase inhibitor), and this enhancement was not associated with any changes in spontaneous IPSCs or LPCS paired-pulse ratio. BRL also increased the amplitude of unitary LPCS IPSCs (uIPSCs) with no effect on uIPSC failure rate. Finally, bilateral BLA microinjection of BRL reduced anxiety-like behaviors in an open-field assay and the elevated plus-maze. Collectively, these data suggest that beta 3-AR activation selectively enhances LPCS, but not local, BLA GABAergic synapses, and that increases in LPCS-mediated inhibition may contribute to the anxiolytic profile of

  12. GPR119 Agonist AS1269574 Activates TRPA1 Cation Channels to Stimulate GLP-1 Secretion.

    PubMed

    Chepurny, Oleg G; Holz, George G; Roe, Michael W; Leech, Colin A

    2016-06-01

    GPR119 is a G protein-coupled receptor expressed on intestinal L cells that synthesize and secrete the blood glucose-lowering hormone glucagon-like peptide-1 (GLP-1). GPR119 agonists stimulate the release of GLP-1 from L cells, and for this reason there is interest in their potential use as a new treatment for type 2 diabetes mellitus. AS1269574 is one such GPR119 agonist, and it is the prototype of a series of 2,4,6 trisubstituted pyrimidines that exert positive glucoregulatory actions in mice. Here we report the unexpected finding that AS1269574 stimulates GLP-1 release from the STC-1 intestinal cell line by directly promoting Ca(2+) influx through transient receptor potential ankyrin 1 (TRPA1) cation channels. These GPR119-independent actions of AS1269574 are inhibited by TRPA1 channel blockers (AP-18, A967079, HC030031) and are not secondary to intracellular Ca(2+) release or cAMP production. Patch clamp studies reveal that AS1269574 activates an outwardly rectifying membrane current with properties expected of TRPA1 channels. However, the TRPA1 channel-mediated action of AS1269574 to increase intracellular free calcium concentration is not replicated by GPR119 agonists (AR231453, oleoylethanolamide) unrelated in structure to AS1269574. Using human embryonic kidney-293 cells expressing recombinant rat TRPA1 channels but not GPR119, direct TRPA1 channel activating properties of AS1269574 are validated. Because we find that AS1269574 also acts in a conventional GPR119-mediated manner to stimulate proglucagon gene promoter activity in the GLUTag intestinal L cell line, new findings reported here reveal the surprising capacity of AS1269574 to act as a dual agonist at two molecular targets (GPR119/TRPA1) important to the control of L-cell function and type 2 diabetes mellitus drug discovery research. PMID:27082897

  13. Glucagon-like polypeptide agonists in type 2 diabetes mellitus: efficacy and tolerability, a balance

    PubMed Central

    Tella, Sri Harsha

    2015-01-01

    Glucagon-like polypeptide (GLP-1) receptor agonist treatment has multiple effects on glucose metabolism, supports the β cell, and promotes weight loss. There are now five GLP-1 agonists in clinical use with more in development. GLP-1 treatment typically can induce a lowering of hemoglobin A1c (HbA1c) of 0.5–1.5% over time with weight loss of 2–5%. In some individuals, a progressive loss of weight occurs. There is evidence that GLP-1 therapy opposes the loss of β cells which is a feature of type 2 diabetes. The chief downside of GLP-1 treatment is the gastrointestinal motility disturbance which is one of the modes of action of the hormone; significant nausea, vomiting, and diarrhea may lead to discontinuation of treatment. Although daily injection of GLP-1 agents is successful, the development of extended release preparations allows for injection once weekly, and perhaps much longer in the future. The indication for GLP-1 use is diabetes, but now, liraglutide has been approved for primary treatment of obesity. When oral agents fail to control glucose levels in type 2 diabetes, there is a choice between long-acting insulin and GLP-1 agonists as additional treatments. The lowering of HbA1c by either modality is equivalent in most studies. Patients lose weight with GLP-1 treatment and gain weight on insulin. There is a lower incidence of hypoglycemia with GLP-1 therapy but a much higher incidence of gastrointestinal complaints. Insulin dosing is flexible while GLP-1 agents have historically been administered at fixed dosages. Now, the use of combined long-acting insulin and GLP-1 agonists is promising a major therapeutic change. Combined therapy takes advantage of the benefits of both insulin and GLP-1 agents. Furthermore, direct admixture of both in the same syringe will permit flexible dosing, improvement of glucose levels, and reduction of both hypoglycemia and gastrointestinal side effects. PMID:26137215

  14. Acetylcholinesterase, a senile plaque component, affects the fibrillogenesis of amyloid-beta-peptides.

    PubMed

    Alvarez, A; Bronfman, F; Pérez, C A; Vicente, M; Garrido, J; Inestrosa, N C

    1995-12-01

    Acetylcholinesterase (AChE) colocalizes with amyloid-beta peptide (A beta) deposits present in the brain of Alzheimer's patients. Recent studies showed that A beta 1-40 can adopt two different conformational states in solution (an amyloidogenic conformer, A beta ac, and a non-amyloidogenic conformer, A beta nac) which have distinct abilities to form amyloid fibrils. We report here that AChE binds A beta nac and accelerates amyloid formation by the same peptide. No such effect was observed with A beta ac, the amyloidogenic conformer, suggesting that AChE acts as a 'pathological chaperone' inducing a conformational transition from A beta nac into A beta ac in vitro.

  15. Modulation of Innate Immune Responses via Covalently Linked TLR Agonists

    PubMed Central

    2015-01-01

    We present the synthesis of novel adjuvants for vaccine development using multivalent scaffolds and bioconjugation chemistry to spatially manipulate Toll-like receptor (TLR) agonists. TLRs are primary receptors for activation of the innate immune system during vaccination. Vaccines that contain a combination of small and macromolecule TLR agonists elicit more directed immune responses and prolong responses against foreign pathogens. In addition, immune activation is enhanced upon stimulation of two distinct TLRs. Here, we synthesized combinations of TLR agonists as spatially defined tri- and di-agonists to understand how specific TLR agonist combinations contribute to the overall immune response. We covalently conjugated three TLR agonists (TLR4, 7, and 9) to a small molecule core to probe the spatial arrangement of the agonists. Treating immune cells with the linked agonists increased activation of the transcription factor NF-κB and enhanced and directed immune related cytokine production and gene expression beyond cells treated with an unconjugated mixture of the same three agonists. The use of TLR signaling inhibitors and knockout studies confirmed that the tri-agonist molecule activated multiple signaling pathways leading to the observed higher activity. To validate that the TLR4, 7, and 9 agonist combination would activate the immune response to a greater extent, we performed in vivo studies using a vaccinia vaccination model. Mice vaccinated with the linked TLR agonists showed an increase in antibody depth and breadth compared to mice vaccinated with the unconjugated mixture. These studies demonstrate how activation of multiple TLRs through chemically and spatially defined organization assists in guiding immune responses, providing the potential to use chemical tools to design and develop more effective vaccines. PMID:26640818

  16. ACT Test

    MedlinePlus

    ... this page helpful? Also known as: ACT; Activated Coagulation Time Formal name: Activated Clotting Time Related tests: ... in the blood called platelets and proteins called coagulation factors are activated in a sequence of steps ...

  17. Acting Atoms.

    ERIC Educational Resources Information Center

    Farin, Susan Archie

    1997-01-01

    Describes a fun game in which students act as electrons, protons, and neutrons. This activity is designed to help students develop a concrete understanding of the abstract concept of atomic structure. (DKM)

  18. Small Molecule Bax Agonists for Cancer Therapy

    PubMed Central

    Xin, Meiguo; Li, Rui; Xie, Maohua; Park, Dongkyoo; Owonikoko, Taofeek K.; Sica, Gabriel L.; Corsino, Patrick E.; Zhou, Jia; Ding, Chunyong; White, Mark A.; Magis, Andrew T.; Ramalingam, Suresh S.; Curran, Walter J.; Khuri, Fadlo R.; Deng, Xingming

    2014-01-01

    Bax, a central death regulator, is required at the decisional stage of apoptosis. We recently identified serine 184 (S184) of Bax as a critical functional switch controlling its proapoptotic activity. Here, we employed the structural pocket around S184 as a docking site to screen the NCI library of small molecules using the UCSF-DOCK program suite. Three compounds, small molecule Bax agonists SMBA1, SMBA2 and SMBA3, induce conformational changes in Bax by blocking S184 phosphorylation, facilitating Bax insertion into mitochondrial membranes and forming Bax oligomers. The latter leads to cytochrome c release and apoptosis in human lung cancer cells, which occurs in a Bax- but not Bak-dependent fashion. SMBA1 potently suppresses lung tumor growth via apoptosis by selectively activating Bax in vivo without significant normal tissue toxicity. Development of Bax agonists as a new class of anti-cancer drugs offers a strategy for the treatment of lung cancer and other Bax-expressing malignancies. PMID:25230299

  19. Rapid synthesis of beta zeolites

    SciTech Connect

    Fan, Wei; Chang, Chun -Chih; Dornath, Paul; Wang, Zhuopeng

    2015-08-18

    The invention provides methods for rapidly synthesizing heteroatom containing zeolites including Sn-Beta, Si-Beta, Ti-Beta, Zr-Beta and Fe-Beta. The methods for synthesizing heteroatom zeolites include using well-crystalline zeolite crystals as seeds and using a fluoride-free, caustic medium in a seeded dry-gel conversion method. The Beta zeolite catalysts made by the methods of the invention catalyze both isomerization and dehydration reactions.

  20. Functional rescue of a constitutively desensitized beta2AR through receptor dimerization.

    PubMed Central

    Hebert, T E; Loisel, T P; Adam, L; Ethier, N; Onge, S S; Bouvier, M

    1998-01-01

    We have recently demonstrated that wild-type beta2-adrenergic receptors (beta2AR) form homodimers and that disruption of receptor dimerization inhibits signalling via Gs [Hebert, Moffett, Morello, Loisel, Bichet, Barret and Bouvier (1996) J. Biol. Chem. 271, 16384-16392]. Here taking advantage of the altered functional properties of a non-palmitoylated, constitutively desensitized mutant beta2AR (C341Gbeta2AR), we sought to study whether physical interactions between mutant and wild-type beta2AR expressed in Sf9 cells could occur and have functional consequences. Using metabolic labelling with [3H]palmitate and co-immunoprecipitation we demonstrated the existence of heterodimerization between wild-type and C341Gbeta2AR. Furthermore, we show that, in co-expression experiments, wild-type receptors have a dominant positive effect resulting in the functional complementation of C341Gbeta2AR. Indeed, when expressed alone, the mutant C341G receptor displays altered functional characteristics in that (1) the response of the receptor to agonist is reduced as compared to the wild-type receptor and (2) the desensitization of the receptor in response to prolonged exposure to agonist is minimal. In contrast, when C341G and the wild-type beta2AR were expressed together, both the response to agonist and subsequent desensitization (at a constant level of total receptor) were equivalent to the wild-type beta2AR expressed alone. This dominant positive effect was also seen when C341G was co-expressed with a second receptor mutant in which the two protein kinase A phosphorylation sites (S261, 262, 345, 346A beta2AR) were mutated. Taken together these data suggest that intermolecular interactions between receptors may have both functional and structural implications for G-protein-mediated signalling. PMID:9461522

  1. Minireview: Challenges and opportunities in development of PPAR agonists.

    PubMed

    Wright, Matthew B; Bortolini, Michele; Tadayyon, Moh; Bopst, Martin

    2014-11-01

    The clinical impact of the fibrate and thiazolidinedione drugs on dyslipidemia and diabetes is driven mainly through activation of two transcription factors, peroxisome proliferator-activated receptors (PPAR)-α and PPAR-γ. However, substantial differences exist in the therapeutic and side-effect profiles of specific drugs. This has been attributed primarily to the complexity of drug-target complexes that involve many coregulatory proteins in the context of specific target gene promoters. Recent data have revealed that some PPAR ligands interact with other non-PPAR targets. Here we review concepts used to develop new agents that preferentially modulate transcriptional complex assembly, target more than one PPAR receptor simultaneously, or act as partial agonists. We highlight newly described on-target mechanisms of PPAR regulation including phosphorylation and nongenomic regulation. We briefly describe the recently discovered non-PPAR protein targets of thiazolidinediones, mitoNEET, and mTOT. Finally, we summarize the contributions of on- and off-target actions to select therapeutic and side effects of PPAR ligands including insulin sensitivity, cardiovascular actions, inflammation, and carcinogenicity. PMID:25148456

  2. Assessment of bronchial beta blockade after oral bevantolol.

    PubMed

    Mackay, A D; Gribbin, H R; Baldwin, C J; Tattersfield, A E

    1981-01-01

    We have applied a new method for quantitative measurement of bronchial beta adrenoceptor blockade to a new beta adrenoceptor antagonist, bevantolol. Dose-response curves to a beta agonist, albuterol, were obtained in six normal subjects by measuring specific airway conductance (sGaw) after increasing doses of inhaled albuterol. These were repeated on three separate occasions 2 hr after subjects had taken oral placebo or bevantolol (75 or 150 mg), double-blind in random order. The dose-response curves after bevantolol 75 mg were displaced in the right of placebo in four subjects and after 150 mg were displaced to the right of placebo in all subjects. The mean dose ratios for bevantolol 75 or 150 mg were 1.02 and 2.77, much the same as those obtained in the same subjects after practolol 100 and 200 mg and considerably less than that after propranolol 40 mg. The mean reductions in exercise heart rate were 25% and 29% after bevantolol 75 and 150 mg. Our data show that bronchial beta blockade after a beta blocking drug can be assessed quantitatively in many by a double-blind technique.

  3. International society of sports nutrition position stand: Beta-Alanine.

    PubMed

    Trexler, Eric T; Smith-Ryan, Abbie E; Stout, Jeffrey R; Hoffman, Jay R; Wilborn, Colin D; Sale, Craig; Kreider, Richard B; Jäger, Ralf; Earnest, Conrad P; Bannock, Laurent; Campbell, Bill; Kalman, Douglas; Ziegenfuss, Tim N; Antonio, Jose

    2015-01-01

    The International Society of Sports Nutrition (ISSN) provides an objective and critical review of the mechanisms and use of beta-alanine supplementation. Based on the current available literature, the conclusions of the ISSN are as follows: 1) Four weeks of beta-alanine supplementation (4-6 g daily) significantly augments muscle carnosine concentrations, thereby acting as an intracellular pH buffer; 2) Beta-alanine supplementation currently appears to be safe in healthy populations at recommended doses; 3) The only reported side effect is paraesthesia (tingling), but studies indicate this can be attenuated by using divided lower doses (1.6 g) or using a sustained-release formula; 4) Daily supplementation with 4 to 6 g of beta-alanine for at least 2 to 4 weeks has been shown to improve exercise performance, with more pronounced effects in open end-point tasks/time trials lasting 1 to 4 min in duration; 5) Beta-alanine attenuates neuromuscular fatigue, particularly in older subjects, and preliminary evidence indicates that beta-alanine may improve tactical performance; 6) Combining beta-alanine with other single or multi-ingredient supplements may be advantageous when supplementation of beta-alanine is high enough (4-6 g daily) and long enough (minimum 4 weeks); 7) More research is needed to determine the effects of beta-alanine on strength, endurance performance beyond 25 min in duration, and other health-related benefits associated with carnosine. PMID:26175657

  4. International society of sports nutrition position stand: Beta-Alanine.

    PubMed

    Trexler, Eric T; Smith-Ryan, Abbie E; Stout, Jeffrey R; Hoffman, Jay R; Wilborn, Colin D; Sale, Craig; Kreider, Richard B; Jäger, Ralf; Earnest, Conrad P; Bannock, Laurent; Campbell, Bill; Kalman, Douglas; Ziegenfuss, Tim N; Antonio, Jose

    2015-01-01

    The International Society of Sports Nutrition (ISSN) provides an objective and critical review of the mechanisms and use of beta-alanine supplementation. Based on the current available literature, the conclusions of the ISSN are as follows: 1) Four weeks of beta-alanine supplementation (4-6 g daily) significantly augments muscle carnosine concentrations, thereby acting as an intracellular pH buffer; 2) Beta-alanine supplementation currently appears to be safe in healthy populations at recommended doses; 3) The only reported side effect is paraesthesia (tingling), but studies indicate this can be attenuated by using divided lower doses (1.6 g) or using a sustained-release formula; 4) Daily supplementation with 4 to 6 g of beta-alanine for at least 2 to 4 weeks has been shown to improve exercise performance, with more pronounced effects in open end-point tasks/time trials lasting 1 to 4 min in duration; 5) Beta-alanine attenuates neuromuscular fatigue, particularly in older subjects, and preliminary evidence indicates that beta-alanine may improve tactical performance; 6) Combining beta-alanine with other single or multi-ingredient supplements may be advantageous when supplementation of beta-alanine is high enough (4-6 g daily) and long enough (minimum 4 weeks); 7) More research is needed to determine the effects of beta-alanine on strength, endurance performance beyond 25 min in duration, and other health-related benefits associated with carnosine.