Science.gov

Sample records for acting cb1 receptor

  1. The peptide hemopressin acts through CB1 cannabinoid receptors to reduce food intake in rats and mice.

    PubMed

    Dodd, Garron T; Mancini, Giacomo; Lutz, Beat; Luckman, Simon M

    2010-05-26

    Hemopressin is a short, nine amino acid peptide (H-Pro-Val-Asn-Phe-Lys-Leu-Leu-Ser-His-OH) isolated from rat brain that behaves as an inverse agonist at the cannabinoid receptor CB(1), and is shown here to inhibit agonist-induced receptor internalization in a heterologous cell model. Since this peptide occurs naturally in the rodent brain, we determined its effect on appetite, an established central target of cannabinoid signaling. Hemopressin dose-dependently decreases night-time food intake in normal male rats and mice, as well as in obese ob/ob male mice, when administered centrally or systemically, without causing any obvious adverse side effects. The normal, behavioral satiety sequence is maintained in male mice fasted overnight, though refeeding is attenuated. The anorectic effect is absent in CB(1) receptor null mutant male mice, and hemopressin can block CB(1) agonist-induced hyperphagia in male rats, providing strong evidence for antagonism of the CB(1) receptor in vivo. We speculate that hemopressin may act as an endogenous functional antagonist at CB(1) receptors and modulate the activity of appetite pathways in the brain.

  2. Cannabinoid receptor-interacting protein 1a modulates CB1 receptor signaling and regulation.

    PubMed

    Smith, Tricia H; Blume, Lawrence C; Straiker, Alex; Cox, Jordan O; David, Bethany G; McVoy, Julie R Secor; Sayers, Katherine W; Poklis, Justin L; Abdullah, Rehab A; Egertová, Michaela; Chen, Ching-Kang; Mackie, Ken; Elphick, Maurice R; Howlett, Allyn C; Selley, Dana E

    2015-04-01

    Cannabinoid CB1 receptors (CB1Rs) mediate the presynaptic effects of endocannabinoids in the central nervous system (CNS) and most behavioral effects of exogenous cannabinoids. Cannabinoid receptor-interacting protein 1a (CRIP1a) binds to the CB1R C-terminus and can attenuate constitutive CB1R-mediated inhibition of Ca(2+) channel activity. We now demonstrate cellular colocalization of CRIP1a at neuronal elements in the CNS and show that CRIP1a inhibits both constitutive and agonist-stimulated CB1R-mediated guanine nucleotide-binding regulatory protein (G-protein) activity. Stable overexpression of CRIP1a in human embryonic kidney (HEK)-293 cells stably expressing CB1Rs (CB1-HEK), or in N18TG2 cells endogenously expressing CB1Rs, decreased CB1R-mediated G-protein activation (measured by agonist-stimulated [(35)S]GTPγS (guanylyl-5'-[O-thio]-triphosphate) binding) in both cell lines and attenuated inverse agonism by rimonabant in CB1-HEK cells. Conversely, small-interfering RNA-mediated knockdown of CRIP1a in N18TG2 cells enhanced CB1R-mediated G-protein activation. These effects were not attributable to differences in CB1R expression or endocannabinoid tone because CB1R levels did not differ between cell lines varying in CRIP1a expression, and endocannabinoid levels were undetectable (CB1-HEK) or unchanged (N18TG2) by CRIP1a overexpression. In CB1-HEK cells, 4-hour pretreatment with cannabinoid agonists downregulated CB1Rs and desensitized agonist-stimulated [(35)S]GTPγS binding. CRIP1a overexpression attenuated CB1R downregulation without altering CB1R desensitization. Finally, in cultured autaptic hippocampal neurons, CRIP1a overexpression attenuated both depolarization-induced suppression of excitation and inhibition of excitatory synaptic activity induced by exogenous application of cannabinoid but not by adenosine A1 agonists. These results confirm that CRIP1a inhibits constitutive CB1R activity and demonstrate that CRIP1a can also inhibit agonist

  3. Stress regulates endocannabinoid-CB1 receptor signaling.

    PubMed

    Hillard, Cecilia J

    2014-10-01

    The CB1 cannabinoid receptor is a G protein coupled receptor that is widely expressed throughout the brain. The endogenous ligands for the CB1 receptor (endocannabinoids) are N-arachidonylethanolamine and 2-arachidonoylglycerol; together the endocannabinoids and CB1R subserve activity dependent, retrograde inhibition of neurotransmitter release in the brain. Deficiency of CB1 receptor signaling is associated with anhedonia, anxiety, and persistence of negative memories. CB1 receptor-endocannabinoid signaling is activated by stress and functions to buffer or dampen the behavioral and endocrine effects of acute stress. Its role in regulation of neuronal responses is more complex. Chronic variable stress exposure reduces endocannabinoid-CB1 receptor signaling and it is hypothesized that the resultant deficiency in endocannabinoid signaling contributes to the negative consequences of chronic stress. On the other hand, repeated exposure to the same stress can sensitize CB1 receptor signaling, resulting in dampening of the stress response. Data are reviewed that support the hypothesis that CB1 receptor signaling is stress responsive and that maintaining robust endocannabinoid/CB1 receptor signaling provides resilience against the development of stress-related pathologies.

  4. Cannabinoid Receptor–Interacting Protein 1a Modulates CB1 Receptor Signaling and Regulation

    PubMed Central

    Smith, Tricia H.; Blume, Lawrence C.; Straiker, Alex; Cox, Jordan O.; David, Bethany G.; McVoy, Julie R. Secor; Sayers, Katherine W.; Poklis, Justin L.; Abdullah, Rehab A.; Egertová, Michaela; Chen, Ching-Kang; Mackie, Ken; Elphick, Maurice R.; Howlett, Allyn C.

    2015-01-01

    Cannabinoid CB1 receptors (CB1Rs) mediate the presynaptic effects of endocannabinoids in the central nervous system (CNS) and most behavioral effects of exogenous cannabinoids. Cannabinoid receptor–interacting protein 1a (CRIP1a) binds to the CB1R C-terminus and can attenuate constitutive CB1R-mediated inhibition of Ca2+ channel activity. We now demonstrate cellular colocalization of CRIP1a at neuronal elements in the CNS and show that CRIP1a inhibits both constitutive and agonist-stimulated CB1R-mediated guanine nucleotide–binding regulatory protein (G-protein) activity. Stable overexpression of CRIP1a in human embryonic kidney (HEK)-293 cells stably expressing CB1Rs (CB1-HEK), or in N18TG2 cells endogenously expressing CB1Rs, decreased CB1R-mediated G-protein activation (measured by agonist-stimulated [35S]GTPγS (guanylyl-5′-[O-thio]-triphosphate) binding) in both cell lines and attenuated inverse agonism by rimonabant in CB1-HEK cells. Conversely, small-interfering RNA–mediated knockdown of CRIP1a in N18TG2 cells enhanced CB1R-mediated G-protein activation. These effects were not attributable to differences in CB1R expression or endocannabinoid tone because CB1R levels did not differ between cell lines varying in CRIP1a expression, and endocannabinoid levels were undetectable (CB1-HEK) or unchanged (N18TG2) by CRIP1a overexpression. In CB1-HEK cells, 4-hour pretreatment with cannabinoid agonists downregulated CB1Rs and desensitized agonist-stimulated [35S]GTPγS binding. CRIP1a overexpression attenuated CB1R downregulation without altering CB1R desensitization. Finally, in cultured autaptic hippocampal neurons, CRIP1a overexpression attenuated both depolarization-induced suppression of excitation and inhibition of excitatory synaptic activity induced by exogenous application of cannabinoid but not by adenosine A1 agonists. These results confirm that CRIP1a inhibits constitutive CB1R activity and demonstrate that CRIP1a can also inhibit agonist

  5. Characterization of two cloned human CB1 cannabinoid receptor isoforms.

    PubMed

    Rinaldi-Carmona, M; Calandra, B; Shire, D; Bouaboula, M; Oustric, D; Barth, F; Casellas, P; Ferrara, P; Le Fur, G

    1996-08-01

    We have investigated the pharmacology of two central human cannabinoid receptor isoforms, designated CB1 and CB1A, stably expressed in Chinese hamster ovary cell lines, designated as CHO-CB1 and CHO-CB1A, respectively. In direct binding assays on isolated membranes the agonist [3H]CP 55,940 bound in a saturable and highly specific manner to both cannabinoid receptor isoforms. Competition binding experiments performed with other commonly used receptor agonists showed the following rank order of potency: CP 55,940 > tetrahydrocannabinol > WIN 55212-2 > anandamide. Except for the endogenous ligand anandamide (CB1, Ki = 359.6 nM vs. CB1A, Ki = 298 nM), these agonists bound to CB1A (CP 55,940, WIN 55212-2 and delta 9-THC, Ki = 7.24,345 and 26.7 nM, respectively) with about 3-fold less affinity than to CB1 (CP 55,940, WIN 55212-2 and delta 9-THC, Ki = 2.26, 93 and 7.1 nM, respectively). The cannabinoid receptor antagonist SR 141716A also bound to CB1A (Ki = 43.3 nM) with slightly less affinity than to CB1 (Ki = 4.9 nM). Cannabinoid receptor-linked second messenger system studies performed in the CHO-CB1 and CHO-CB1A cells showed that both receptors mediated their action through the agonist-induced inhibition of forskolin-stimulated cAMP accumulation. This activity was totally blocked by pretreatment with PTX. Additionally, both isoforms activated mitogen-activated protein kinase. The selective antagonist SR 141716A was able to selectively block these responses in both cell lines, to an extent that reflected its binding characteristics. Our results show that the amino-truncated and -modified CB1 isoform CB1A exhibits all the properties of CB1 to a slightly attenuated extent.

  6. CB1 receptors modulate affective behaviour induced by neuropathic pain.

    PubMed

    Rácz, Ildikó; Nent, Elisa; Erxlebe, Edda; Zimmer, Andreas

    2015-05-01

    Patients suffering from chronic pain are often diagnosed with a psychiatric condition, in particular generalized anxiety and major depression. The underlying pathomechanisms contributing to this comorbidity, however, are not entirely clear. In this manuscript we have focussed on the potential role of the cannabinoid receptor CB1, because it is known to modulate neuronal circuits contributing to chronic pain states and affective behaviours. For this purpose we analysed the consequences of a partial sciatic nerve ligation on anxiety- and depression-related behaviours in mice lacking CB1 receptors. Our results show that the development of mechanical hypersensitivity was similar in CB1 deficient mice and wild type controls. However, CB1 knockouts showed much more pronounced behavioural manifestations of anxiety-related behaviours in the light-dark and zero-maze tests, sucrose anhedonia, and disturbed home-cage activity. These results indicate that the endocannabinoid system affects chronic pain-induced mood changes through CB1 receptors.

  7. Are CB1 Receptor Antagonists Nootropic or Cognitive Impairing Agents?

    PubMed Central

    Varvel, Stephen A.; Wise, Laura E.; Lichtman, Aron H.

    2010-01-01

    For more than a decade, a considerable amount of research has examined the effects of rimonabant (SR 141716) and other CB1 receptor antagonists in both in vivo and in vitro models of learning and memory. In addition to its utility in determining whether the effects of drugs are mediated though a CB1 receptor mechanism of action, these antagonists are useful in providing insight into the physiological function of the endogenous cannabinoid system. Several groups have reported that CB1 receptor antagonists enhance memory duration in a variety of spatial and operant paradigms, but not in all paradigms. Conversely, disruption of CB1 receptor signaling also impairs extinction learning in which the animal actively suppresses a learned response when reinforcement has been withheld. These extinction deficits occur in aversively motivated tasks, such as in fear conditioning or escape behavior in the Morris water maze task, but not in appetitively motivated tasks. Similarly, in electrophysiological models, CB1 receptor antagonists elicit a variety of effects, including enhancement of long-term potentiation (LTP), while disrupting long-term depression (LTD) and interfering with transient forms of plasticity, including depolarization-induced suppression of inhibition (DSI) and depolarization-induced suppression of excitation (DSE). The collective results of the in vivo and in vitro studies employing CB1 receptor antagonists, demonstrate that these receptors play integral roles in different components of cognitive processing. Functionally, pharmacological blockade of CB1 receptors may strengthen memory duration, but interferes with extinction of learned behaviors that are associated with traumatic or aversive memories. PMID:20539824

  8. Human CB1 Receptor Isoforms, present in Hepatocytes and β-cells, are Involved in Regulating Metabolism.

    PubMed

    González-Mariscal, Isabel; Krzysik-Walker, Susan M; Doyle, Máire E; Liu, Qing-Rong; Cimbro, Raffaello; Santa-Cruz Calvo, Sara; Ghosh, Soumita; Cieśla, Łukasz; Moaddel, Ruin; Carlson, Olga D; Witek, Rafal P; O'Connell, Jennifer F; Egan, Josephine M

    2016-01-01

    Therapeutics aimed at blocking the cannabinoid 1 (CB1) receptor for treatment of obesity resulted in significant improvements in liver function, glucose uptake and pancreatic β-cell function independent of weight loss or CB1 receptor blockade in the brain, suggesting that peripherally-acting only CB1 receptor blockers may be useful therapeutic agents. Neuropsychiatric side effects and lack of tissue specificity precluded clinical use of first-generation, centrally acting CB1 receptor blockers. In this study we specifically analyzed the potential relevance to diabetes of human CB1 receptor isoforms in extraneural tissues involved in glucose metabolism. We identified an isoform of the human CB1 receptor (CB1b) that is highly expressed in β-cells and hepatocytes but not in the brain. Importantly, CB1b shows stronger affinity for the inverse agonist JD-5037 than for rimonabant compared to CB1 full length. Most relevant to the field, CB1b is a potent regulator of adenylyl cyclase activity in peripheral metabolic tissues. CB1b blockade by JD-5037 results in stronger adenylyl cyclase activation compared to rimonabant and it is a better enhancer of insulin secretion in β-cells. We propose this isoform as a principal pharmacological target for the treatment of metabolic disorders involving glucose metabolism. PMID:27641999

  9. Human CB1 Receptor Isoforms, present in Hepatocytes and β-cells, are Involved in Regulating Metabolism.

    PubMed

    González-Mariscal, Isabel; Krzysik-Walker, Susan M; Doyle, Máire E; Liu, Qing-Rong; Cimbro, Raffaello; Santa-Cruz Calvo, Sara; Ghosh, Soumita; Cieśla, Łukasz; Moaddel, Ruin; Carlson, Olga D; Witek, Rafal P; O'Connell, Jennifer F; Egan, Josephine M

    2016-09-19

    Therapeutics aimed at blocking the cannabinoid 1 (CB1) receptor for treatment of obesity resulted in significant improvements in liver function, glucose uptake and pancreatic β-cell function independent of weight loss or CB1 receptor blockade in the brain, suggesting that peripherally-acting only CB1 receptor blockers may be useful therapeutic agents. Neuropsychiatric side effects and lack of tissue specificity precluded clinical use of first-generation, centrally acting CB1 receptor blockers. In this study we specifically analyzed the potential relevance to diabetes of human CB1 receptor isoforms in extraneural tissues involved in glucose metabolism. We identified an isoform of the human CB1 receptor (CB1b) that is highly expressed in β-cells and hepatocytes but not in the brain. Importantly, CB1b shows stronger affinity for the inverse agonist JD-5037 than for rimonabant compared to CB1 full length. Most relevant to the field, CB1b is a potent regulator of adenylyl cyclase activity in peripheral metabolic tissues. CB1b blockade by JD-5037 results in stronger adenylyl cyclase activation compared to rimonabant and it is a better enhancer of insulin secretion in β-cells. We propose this isoform as a principal pharmacological target for the treatment of metabolic disorders involving glucose metabolism.

  10. Human CB1 Receptor Isoforms, present in Hepatocytes and β-cells, are Involved in Regulating Metabolism

    PubMed Central

    González-Mariscal, Isabel; Krzysik-Walker, Susan M.; Doyle, Máire E.; Liu, Qing-Rong; Cimbro, Raffaello; Santa-Cruz Calvo, Sara; Ghosh, Soumita; Cieśla, Łukasz; Moaddel, Ruin; Carlson, Olga D.; Witek, Rafal P.; O’Connell, Jennifer F.; Egan, Josephine M.

    2016-01-01

    Therapeutics aimed at blocking the cannabinoid 1 (CB1) receptor for treatment of obesity resulted in significant improvements in liver function, glucose uptake and pancreatic β-cell function independent of weight loss or CB1 receptor blockade in the brain, suggesting that peripherally-acting only CB1 receptor blockers may be useful therapeutic agents. Neuropsychiatric side effects and lack of tissue specificity precluded clinical use of first-generation, centrally acting CB1 receptor blockers. In this study we specifically analyzed the potential relevance to diabetes of human CB1 receptor isoforms in extraneural tissues involved in glucose metabolism. We identified an isoform of the human CB1 receptor (CB1b) that is highly expressed in β-cells and hepatocytes but not in the brain. Importantly, CB1b shows stronger affinity for the inverse agonist JD-5037 than for rimonabant compared to CB1 full length. Most relevant to the field, CB1b is a potent regulator of adenylyl cyclase activity in peripheral metabolic tissues. CB1b blockade by JD-5037 results in stronger adenylyl cyclase activation compared to rimonabant and it is a better enhancer of insulin secretion in β-cells. We propose this isoform as a principal pharmacological target for the treatment of metabolic disorders involving glucose metabolism. PMID:27641999

  11. Novel Adamantyl Cannabinoids as CB1 Receptor Probes

    PubMed Central

    Thakur, Ganesh A.; Bajaj, Shama; Paronis, Carol; Peng, Yan; Bowman, Anna L.; Barak, Lawrence S.; Caron, Marc G.; Parrish, Demon; Deschamps, Jeffrey R.; Makriyannis, Alexandros

    2013-01-01

    In previous studies compound 1 (AM411), a 3-(1-adamantyl) analog of the phytocannabinoid (−)-Δ8-tetrahydrocannabinol (Δ8-THC) was shown to have improved affinity and selectivity for the CB1 receptor. In this work, we further explored the role of the 1-adamantyl group at the C-3 position in a series of tricyclic cannabinoid analogs modified at the 9-northern aliphatic hydroxyl (NAH) position. Of these, 9-hydroxymethyl hexahydrocannabinol 11 (AM4054) exhibited high CB1 affinity and full agonist profile. In the cAMP assay, the 11-hydroxymethyl cannabinol analog 24 (AM4089) had a partial agonist profile, with high affinity and moderate selectivity for rCB1 over hCB2. In vivo results in rat models of hypothermia and analgesia were congruent with in vitro data. Our in vivo data indicates that 3-(1-adamantyl) substitution, within NAH cannabinergics, imparts improved pharmacological profiles when compared to the corresponding, traditionally used, 3-dimethylheptyl analogs and identifies 11 and 24 as a potential useful in vivo CB1 cannabinergic probes. PMID:23621789

  12. Binding affinity and agonist activity of putative endogenous cannabinoids at the human neocortical CB1 receptor.

    PubMed

    Steffens, Marc; Zentner, Josef; Honegger, Jürgen; Feuerstein, Thomas J

    2005-01-01

    We investigated the affinity of putative endocannabinoids (2-arachidonylglycerol, 2-AG; noladin ether, virodhamine) for the human neocortical CB1 receptor. Functional activity of these compounds (including anandamide, AEA) was determined by examining basal and forskolin-stimulated cAMP formation. Assays were performed with synaptosomes, prepared from fresh human neocortical tissue. Receptor affinity was assessed from competition binding experiments with the CB1/2 agonist [3H]-CP55.940 in absence or presence of a protease inhibitor to assess enzymatic stability. Noladin ether and virodhamine inhibited [3H]-CP55.940 binding (Ki: 98, 1740 nM, respectively). Protease inhibition decreased the Ki value of virodhamine (Ki: 912 nM), but left that of noladin ether unchanged. 2-AG almost lacked affinity (Ki lymphoblasic )10 microM). Basal cAMP formation was unaffected by AEA and noladin ether, but strongly enhanced by 2-AG and virodhamine. Forskolin-stimulated cAMP formation was inhibited by AEA and noladin ether (IC50: 69, 427 nM, respectively) to the same extent as by CP55.940 (Imax each approximately 30%). Inhibitions by AEA or noladin ether were blocked by the CB1 receptor antagonist AM251. Virodhamine increased forskolin-stimulated cAMP formation, also in presence of AM251, by approximately 20%. 2-AG had no effect; in presence of AM251, however, 10 microM 2-AG stimulated cAMP formation by approximately 15%. Our results suggest, that AEA and noladin ether are full CB1 receptor agonists in human neocortex, whereas virodhamine may act as a CB1 receptor antagonist/inverse agonist. Particularly the (patho)physiological role of 2-AG should be further investigated, since its CB1 receptor affinity and agonist activity especially in humans might be lower than generally assumed. PMID:15588725

  13. A Cannabinoid CB1 Receptor-Positive Allosteric Modulator Reduces Neuropathic Pain in the Mouse with No Psychoactive Effects.

    PubMed

    Ignatowska-Jankowska, Bogna M; Baillie, Gemma L; Kinsey, Steven; Crowe, Molly; Ghosh, Sudeshna; Owens, Robert A; Damaj, Imad M; Poklis, Justin; Wiley, Jenny L; Zanda, Matteo; Zanato, Chiara; Greig, Iain R; Lichtman, Aron H; Ross, Ruth A

    2015-12-01

    The CB1 receptor represents a promising target for the treatment of several disorders including pain-related disease states. However, therapeutic applications of Δ(9)-tetrahydrocannabinol and other CB1 orthosteric receptor agonists remain limited because of psychoactive side effects. Positive allosteric modulators (PAMs) offer an alternative approach to enhance CB1 receptor function for therapeutic gain with the promise of reduced side effects. Here we describe the development of the novel synthetic CB1 PAM, 6-methyl-3-(2-nitro-1-(thiophen-2-yl)ethyl)-2-phenyl-1H-indole (ZCZ011), which augments the in vitro and in vivo pharmacological actions of the CB1 orthosteric agonists CP55,940 and N-arachidonoylethanolamine (AEA). ZCZ011 potentiated binding of [(3)H]CP55,940 to the CB1 receptor as well as enhancing AEA-stimulated [(35)S]GTPγS binding in mouse brain membranes and β-arrestin recruitment and ERK phosphorylation in hCB1 cells. In the whole animal, ZCZ011 is brain penetrant, increased the potency of these orthosteric agonists in mouse behavioral assays indicative of cannabimimetic activity, including antinociception, hypothermia, catalepsy, locomotor activity, and in the drug discrimination paradigm. Administration of ZCZ011 alone was devoid of activity in these assays and did not produce a conditioned place preference or aversion, but elicited CB1 receptor-mediated antinociceptive effects in the chronic constriction nerve injury model of neuropathic pain and carrageenan model of inflammatory pain. These data suggest that ZCZ011 acts as a CB1 PAM and provide the first proof of principle that CB1 PAMs offer a promising strategy to treat neuropathic and inflammatory pain with minimal or no cannabimimetic side effects.

  14. Mutations in the 'DRY' motif of the CB1 cannabinoid receptor result in biased receptor variants.

    PubMed

    Gyombolai, Pál; Tóth, András D; Tímár, Dániel; Turu, Gábor; Hunyady, László

    2015-02-01

    The role of the highly conserved 'DRY' motif in the signaling of the CB1 cannabinoid receptor (CB1R) was investigated by inducing single-, double-, and triple-alanine mutations into this site of the receptor. We found that the CB1R-R3.50A mutant displays a partial decrease in its ability to activate heterotrimeric Go proteins (∼80% of WT CB1R (CB1R-WT)). Moreover, this mutant showed an enhanced basal β-arrestin2 (β-arr2) recruitment. More strikingly, the double-mutant CB1R-D3.49A/R3.50A was biased toward β-arrs, as it gained a robustly increased β-arr1 and β-arr2 recruitment ability compared with the WT receptor, while its G-protein activation was decreased. In contrast, the double-mutant CB1R-R3.50A/Y3.51A proved to be G-protein-biased, as it was practically unable to recruit β-arrs in response to agonist stimulus, while still activating G-proteins, although at a reduced level (∼70% of CB1R-WT). Agonist-induced ERK1/2 activation of the CB1R mutants showed a good correlation with their β-arr recruitment ability but not with their G-protein activation or inhibition of cAMP accumulation. Our results suggest that G-protein activation and β-arr binding of the CB1R are mediated by distinct receptor conformations, and the conserved 'DRY' motif plays different roles in the stabilization of these conformations, thus mediating both G-protein- and β-arr-mediated functions of CB1R.

  15. Induction of proteinuria by cannabinoid receptors 1 signaling activation in CB1 transgenic mice.

    PubMed

    Hsu, Yung-Chien; Lei, Chen-Chou; Shih, Ya-Hsueh; Ho, Cheng; Lin, Chun-Liang

    2015-02-01

    Proteinuria is not only a sign of kidney damage but is also involved in the progression of renal disease as an independent pathologic factor. Although patients with mutated type 1 cannabinoid receptors (CB1) polymorphism are associated with renal microvascular damage, the biologic role of CB1 signaling in proteinuria remains uncharacterized till now. Herein, we investigate whether CB1 participates in glomerular proteinuria in CB1 transgenic mice and treatment with CB1 agonist WIN55212-2 rat, neither of which are diabetic models. The CB1 transgenic mice and rats treated with CB1 agonist WIN55212-2 had higher kidney weight and urinary protein concentrations but not blood glucose levels compared with the wild-type group. A combination of laser-capture microsdissection, quantitative reverse transcription-polymerase chain reaction, immunoblotting and immunohistochemical validation revealed that CB1 transgenic mice and rats treated with CB1 agonist WIN55212-2 had higher vascular endothelial growth factor (VEGF) expression in renal glomeruli than that of the wild-type group. Geneticorpharmacological activation of CB1 by transgenic CB1 mice or treatment with WIN55212-2 reduced nephrin expression in the renal glomeruli compared with that of the wild-type group in the glomerular mesanglium. Taken together, CB1 transgenic mice and rats treated with CB1 agonist WIN55212-2 induced proteinuria with upregulation of CB1 resulting in impaired nephrin expression, by inducing excess VEGF reaction in the renal glomeruli. Genetic and pharmacological manipulation of CB1 signaling revealed VEGF-dependent nephrin depression of glomerulopathy. Controlling CB1 activity can be used an alternative strategy for sustaining renal function in the presence of CB1 activation.

  16. Differential Control of Cocaine Self-Administration by GABAergic and Glutamatergic CB1 Cannabinoid Receptors.

    PubMed

    Martín-García, Elena; Bourgoin, Lucie; Cathala, Adeline; Kasanetz, Fernando; Mondesir, Miguel; Gutiérrez-Rodriguez, Ana; Reguero, Leire; Fiancette, Jean-François; Grandes, Pedro; Spampinato, Umberto; Maldonado, Rafael; Piazza, Pier Vincenzo; Marsicano, Giovanni; Deroche-Gamonet, Véronique

    2016-08-01

    The type 1 cannabinoid receptor (CB1) modulates numerous neurobehavioral processes and is therefore explored as a target for the treatment of several mental and neurological diseases. However, previous studies have investigated CB1 by targeting it globally, regardless of its two main neuronal localizations on glutamatergic and GABAergic neurons. In the context of cocaine addiction this lack of selectivity is critical since glutamatergic and GABAergic neuronal transmission is involved in different aspects of the disease. To determine whether CB1 exerts different control on cocaine seeking according to its two main neuronal localizations, we used mutant mice with deleted CB1 in cortical glutamatergic neurons (Glu-CB1) or in forebrain GABAergic neurons (GABA-CB1). In Glu-CB1, gene deletion concerns the dorsal telencephalon, including neocortex, paleocortex, archicortex, hippocampal formation and the cortical portions of the amygdala. In GABA-CB1, it concerns several cortical and non-cortical areas including the dorsal striatum, nucleus accumbens, thalamic, and hypothalamic nuclei. We tested complementary components of cocaine self-administration, separating the influence of primary and conditioned effects. Mechanisms underlying each phenotype were explored using in vivo microdialysis and ex vivo electrophysiology. We show that CB1 expression in forebrain GABAergic neurons controls mouse sensitivity to cocaine, while CB1 expression in cortical glutamatergic neurons controls associative learning processes. In accordance, in the nucleus accumbens, GABA-CB1 receptors control cocaine-induced dopamine release and Glu-CB1 receptors control AMPAR/NMDAR ratio; a marker of synaptic plasticity. Our findings demonstrate a critical distinction of the altered balance of Glu-CB1 and GABA-CB1 activity that could participate in the vulnerability to cocaine abuse and addiction. Moreover, these novel insights advance our understanding of CB1 neuropathophysiology.

  17. The disease-modifying effects of a Sativex-like combination of phytocannabinoids in mice with experimental autoimmune encephalomyelitis are preferentially due to Δ9-tetrahydrocannabinol acting through CB1 receptors.

    PubMed

    Moreno-Martet, Miguel; Feliú, Ana; Espejo-Porras, Francisco; Mecha, Miriam; Carrillo-Salinas, Francisco J; Fernández-Ruiz, Javier; Guaza, Carmen; de Lago, Eva

    2015-11-01

    Sativex(®), an equimolecular combination of Δ(9)-tetrahydrocannabinol-botanical drug substance (Δ(9)-THC-BDS) and cannabidiol-botanical drug substance (CBD-BDS), is a licensed medicine that may be prescribed for alleviating specific symptoms of multiple sclerosis (MS) such as spasticity and pain. However, further evidence suggest that it could be also active as disease-modifying therapy given the immunomodulatory, anti-inflammatory and cytoprotective properties of their two major components. In this study, we investigated this potential in the experimental autoimmune encephalitis (EAE) model of MS in mice. We compared the effect of a Sativex-like combination of Δ(9)-THC-BDS (10 mg/kg) and CBD-BDS (10 mg/kg) with Δ(9)-THC-BDS (20 mg/kg) or CBD-BDS (20 mg/kg) administered separately by intraperitoneal administration to EAE mice. Treatments were initiated at the time that symptoms appear and continued up to the first relapse of the disease. The results show that the treatment with a Sativex-like combination significantly improved the neurological deficits typical of EAE mice, in parallel with a reduction in the number and extent of cell aggregates present in the spinal cord which derived from cell infiltration to the CNS. These effects were completely reproduced by the treatment with Δ(9)-THC-BDS alone, but not by CBD-BDS alone which only delayed the onset of the disease without improving disease progression and reducing the cell infiltrates in the spinal cord. Next, we investigated the potential targets involved in the effects of Δ(9)-THC-BDS by selectively blocking CB(1) or PPAR-γ receptors, and we found a complete reversion of neurological benefits and the reduction in cell aggregates only with rimonabant, a selective CB(1) receptor antagonist. Collectively, our data support the therapeutic potential of Sativex as a phytocannabinoid formulation capable of attenuating EAE progression, and that the active compound was Δ(9)-THC-BDS acting through CB(1

  18. The disease-modifying effects of a Sativex-like combination of phytocannabinoids in mice with experimental autoimmune encephalomyelitis are preferentially due to Δ9-tetrahydrocannabinol acting through CB1 receptors.

    PubMed

    Moreno-Martet, Miguel; Feliú, Ana; Espejo-Porras, Francisco; Mecha, Miriam; Carrillo-Salinas, Francisco J; Fernández-Ruiz, Javier; Guaza, Carmen; de Lago, Eva

    2015-11-01

    Sativex(®), an equimolecular combination of Δ(9)-tetrahydrocannabinol-botanical drug substance (Δ(9)-THC-BDS) and cannabidiol-botanical drug substance (CBD-BDS), is a licensed medicine that may be prescribed for alleviating specific symptoms of multiple sclerosis (MS) such as spasticity and pain. However, further evidence suggest that it could be also active as disease-modifying therapy given the immunomodulatory, anti-inflammatory and cytoprotective properties of their two major components. In this study, we investigated this potential in the experimental autoimmune encephalitis (EAE) model of MS in mice. We compared the effect of a Sativex-like combination of Δ(9)-THC-BDS (10 mg/kg) and CBD-BDS (10 mg/kg) with Δ(9)-THC-BDS (20 mg/kg) or CBD-BDS (20 mg/kg) administered separately by intraperitoneal administration to EAE mice. Treatments were initiated at the time that symptoms appear and continued up to the first relapse of the disease. The results show that the treatment with a Sativex-like combination significantly improved the neurological deficits typical of EAE mice, in parallel with a reduction in the number and extent of cell aggregates present in the spinal cord which derived from cell infiltration to the CNS. These effects were completely reproduced by the treatment with Δ(9)-THC-BDS alone, but not by CBD-BDS alone which only delayed the onset of the disease without improving disease progression and reducing the cell infiltrates in the spinal cord. Next, we investigated the potential targets involved in the effects of Δ(9)-THC-BDS by selectively blocking CB(1) or PPAR-γ receptors, and we found a complete reversion of neurological benefits and the reduction in cell aggregates only with rimonabant, a selective CB(1) receptor antagonist. Collectively, our data support the therapeutic potential of Sativex as a phytocannabinoid formulation capable of attenuating EAE progression, and that the active compound was Δ(9)-THC-BDS acting through CB(1

  19. A restricted population of CB1 cannabinoid receptors with neuroprotective activity

    PubMed Central

    Chiarlone, Anna; Bellocchio, Luigi; Blázquez, Cristina; Resel, Eva; Soria-Gómez, Edgar; Cannich, Astrid; Ferrero, José J.; Sagredo, Onintza; Benito, Cristina; Romero, Julián; Sánchez-Prieto, José; Lutz, Beat; Fernández-Ruiz, Javier; Galve-Roperh, Ismael; Guzmán, Manuel

    2014-01-01

    The CB1 cannabinoid receptor, the main molecular target of endocannabinoids and cannabis active components, is the most abundant G protein-coupled receptor in the mammalian brain. Of note, CB1 receptors are expressed at the synapses of two opposing (i.e., GABAergic/inhibitory and glutamatergic/excitatory) neuronal populations, so the activation of one and/or another receptor population may conceivably evoke different effects. Despite the widely reported neuroprotective activity of the CB1 receptor in animal models, the precise pathophysiological relevance of those two CB1 receptor pools in neurodegenerative processes is unknown. Here, we first induced excitotoxic damage in the mouse brain by (i) administering quinolinic acid to conditional mutant animals lacking CB1 receptors selectively in GABAergic or glutamatergic neurons, and (ii) manipulating corticostriatal glutamatergic projections remotely with a designer receptor exclusively activated by designer drug pharmacogenetic approach. We next examined the alterations that occur in the R6/2 mouse, a well-established model of Huntington disease, upon (i) fully knocking out CB1 receptors, and (ii) deleting CB1 receptors selectively in corticostriatal glutamatergic or striatal GABAergic neurons. The data unequivocally identify the restricted population of CB1 receptors located on glutamatergic terminals as an indispensable player in the neuroprotective activity of (endo)cannabinoids, therefore suggesting that this precise receptor pool constitutes a promising target for neuroprotective therapeutic strategies. PMID:24843137

  20. CB1 receptor deficiency decreases wheel-running activity: consequences on emotional behaviours and hippocampal neurogenesis.

    PubMed

    Dubreucq, Sarah; Koehl, Muriel; Abrous, Djoher N; Marsicano, Giovanni; Chaouloff, Francis

    2010-07-01

    Chronic voluntary wheel-running activity has been reported to hypersensitise central CB1 receptors in mice. On the other hand, pharmacological findings suggest that the CB1 receptor could be involved in wheel-running behaviour and in running-induced neurogenesis in the hippocampus. We analysed wheel-running behaviour for 6 weeks and measured its consequences on hippocampal neurogenesis in CB1 knockout (CB1(-/-)) animals, compared to wild-type (CB1(+/+)) littermates. Because wheel running has been shown to affect locomotor reactivity in novel environments, memory for aversive events and depression-like behaviours, we also assessed these behaviours in control and running CB1(+/+) and CB1(-/-) mice. When compared with running CB1(+/+) mice, the distance covered weekly by CB1(-/-) mice was decreased by 30-40%, an observation accounted for by decreased time spent and maximal velocity on the wheels. Analyses of running distances with respect to the light/dark cycle revealed that mutant covered less distance throughout both the inactive and the active phases of that cycle. Locomotion in an activity cage, exploration in an open field, and immobility time in the forced swim test proved insensitive to chronic wheel running in either genotype. Wheel running, per se, did not influence the expression and extinction of cued fear memory but counteracted in a time-dependent manner the deficiency of extinction measured in CB1(-/-) mice. Hippocampal neurogenesis, assessed by doublecortin labelling of immature neurons in the dentate gyrus, was lowered by 40% in control CB1(-/-) mice, compared to control CB1(+/+) mice. Although CB1(-/-) mice ran less than their wild-type littermates, the 6-week running protocol increased neurogenesis to similar extents (37-39%) in both genotypes. This study suggests that mouse CB1 receptors control wheel running but not its neurogenic consequences in the hippocampus.

  1. Structural dynamics and energetics underlying allosteric inactivation of the cannabinoid receptor CB1.

    PubMed

    Fay, Jonathan F; Farrens, David L

    2015-07-01

    G protein-coupled receptors (GPCRs) are surprisingly flexible molecules that can do much more than simply turn on G proteins. Some even exhibit biased signaling, wherein the same receptor preferentially activates different G-protein or arrestin signaling pathways depending on the type of ligand bound. Why this behavior occurs is still unclear, but it can happen with both traditional ligands and ligands that bind allosterically outside the orthosteric receptor binding pocket. Here, we looked for structural mechanisms underlying these phenomena in the marijuana receptor CB1. Our work focused on the allosteric ligand Org 27569, which has an unusual effect on CB1-it simultaneously increases agonist binding, decreases G--protein activation, and induces biased signaling. Using classical pharmacological binding studies, we find that Org 27569 binds to a unique allosteric site on CB1 and show that it can act alone (without need for agonist cobinding). Through mutagenesis studies, we find that the ability of Org 27569 to bind is related to how much receptor is in an active conformation that can couple with G protein. Using these data, we estimated the energy differences between the inactive and active states. Finally, site-directed fluorescence labeling studies show the CB1 structure stabilized by Org 27569 is different and unique from that stabilized by antagonist or agonist. Specifically, transmembrane helix 6 (TM6) movements associated with G-protein activation are blocked, but at the same time, helix 8/TM7 movements are enhanced, suggesting a possible mechanism for the ability of Org 27569 to induce biased signaling.

  2. Distribution of type 1 cannabinoid receptor (CB1)-immunoreactive axons in the mouse hypothalamus.

    PubMed

    Wittmann, Gábor; Deli, Levente; Kalló, Imre; Hrabovszky, Erik; Watanabe, Masahiko; Liposits, Zsolt; Fekete, Csaba

    2007-07-10

    Type 1 cannabinoid receptor (CB1) is the principal receptor for endocannabinoids in the brain; it mainly occurs in preterminal/terminal axons and mediates retrograde neuronal signaling mechanisms. A large body of physiological and electrophysiological evidence indicates the critical role of CB1 in the regulation of hypothalamic functions. Conversely, the distribution of CB1-containing axons in the hypothalamus is essentially unknown. Therefore, we have analyzed the distribution and the ultrastructural characteristics of the CB1-immunoreactive (IR) axons in the mouse hypothalamus by using an antiserum against the C-terminal 31 amino acids of the mouse CB1. We found that CB1-IR axons innervated densely the majority of hypothalamic nuclei, except for the suprachiasmatic and lateral mammillary nuclei, in which only scattered CB1-IR fibers occurred. CB1-IR innervation of the arcuate, ventromedial, dorsomedial, and paraventricular nuclei and the external zone of the median eminence corroborated the important role of CB1 in the regulation of energy homeostasis and neuroendocrine functions. Ultrastructural studies to characterize the phenotype of CB1-IR fibers established that most CB1 immunoreactivity appeared in the preterminal and terminal portions of axons. The CB1-IR boutons formed axospinous, axodendritic, and axosomatic synapses. Analysis of labeled synapses in the paraventricular and arcuate nuclei detected approximately equal numbers of symmetric and asymmetric specializations. In conclusion, the study revealed the dense and differential CB1-IR innervation of most hypothalamic nuclei and the median eminence of the mouse brain. At the ultrastructural level, CB1-IR axons established communication with hypothalamic neurons via symmetric and asymmetric synapses indicating the occurrence of retrograde signaling by endocannabinoids in hypothalamic neuronal networks.

  3. Chronic ethanol exposure decreases CB1 receptor function at GABAergic synapses in the rat central amygdala.

    PubMed

    Varodayan, Florence P; Soni, Neeraj; Bajo, Michal; Luu, George; Madamba, Samuel G; Schweitzer, Paul; Parsons, Loren H; Roberto, Marisa

    2016-07-01

    The endogenous cannabinoids (eCBs) influence the acute response to ethanol and the development of tolerance, dependence and relapse. Chronic alcohol exposure alters eCB levels and Type 1 cannabinoid receptor (CB1 ) expression and function in brain regions associated with addiction. CB1 inhibits GABA release, and GABAergic dysregulation in the central nucleus of the amygdala (CeA) is critical in the transition to alcohol dependence. We investigated possible disruptions in CB1 signaling of rat CeA GABAergic transmission following intermittent ethanol exposure. In the CeA of alcohol-naive rats, CB1 agonist WIN 55,212-2 (WIN) decreased the frequency of spontaneous and miniature GABAA receptor-mediated inhibitory postsynaptic currents (s/mIPSCs). This effect was prevented by CB1 antagonism, but not Type 2 cannabinoid receptor (CB2 ) antagonism. After 2-3 weeks of intermittent ethanol exposure, these WIN inhibitory effects were attenuated, suggesting ethanol-induced impairments in CB1 function. The CB1 antagonist AM251 revealed a tonic eCB/CB1 control of GABAergic transmission in the alcohol-naive CeA that was occluded by calcium chelation in the postsynaptic cell. Chronic ethanol exposure abolished this tonic CB1 influence on mIPSC, but not sIPSC, frequency. Finally, acute ethanol increased CeA GABA release in both naive and ethanol-exposed rats. Although CB1 activation prevented this effect, the AM251- and ethanol-induced GABA release were additive, ruling out a direct participation of CB1 signaling in the ethanol effect. Collectively, these observations demonstrate an important CB1 influence on CeA GABAergic transmission and indicate that the CeA is particularly sensitive to alcohol-induced disruptions of CB1 signaling.

  4. Towards rational design of cannabinoid receptor 1 (CB1) antagonists for peripheral selectivity.

    PubMed

    Fulp, Alan; Bortoff, Katherine; Zhang, Yanan; Seltzman, Herbert; Snyder, Rodney; Maitra, Rangan

    2011-10-01

    CB1 receptor antagonists that are peripherally restricted were targeted. Compounds with permanent charge as well as compounds that have increased polar surface area were made and tested against CB1 for binding and activity. Sulfonamide and sulfamide with high polar surface area and good activity at CB1 were rationally designed and pharmacologically tested. Further optimization of these compounds and testing could lead to the development of a new class of therapeutics to treat disorders where the CB1 receptor system has been implicated. PMID:21875798

  5. Towards rational design of cannabinoid receptor 1 (CB1) antagonists for peripheral selectivity

    PubMed Central

    Fulp, Alan; Bortoff, Katherine; Zhang, Yanan; Seltzman, Herbert; Snyder, Rodney; Maitra, Rangan

    2011-01-01

    CB1 receptor antagonists that are peripherally restricted were targeted. Compounds with permanent charge as well as compounds that have increased polar surface area were made and tested against CB1 for binding and activity. Sulfonamide and sulfamide with high polar surface area and good activity at CB1 were rationally designed and pharmacologically tested. Further optimization of these compounds and testing could lead to the development of a new class of therapeutics to treat disorders where the CB1 receptor system has been implicated. PMID:21875798

  6. Computational analysis of the CB1 carboxyl-terminus in the receptor-G protein complex.

    PubMed

    Shim, Joong-Youn; Khurana, Leepakshi; Kendall, Debra A

    2016-04-01

    Despite the important role of the carboxyl-terminus (Ct) of the activated brain cannabinoid receptor one (CB1) in the regulation of G protein signaling, a structural understanding of interactions with G proteins is lacking. This is largely due to the highly flexible nature of the CB1 Ct that dynamically adapts its conformation to the presence of G proteins. In the present study, we explored how the CB1 Ct can interact with the G protein by building on our prior modeling of the CB1-Gi complex (Shim, Ahn, and Kendall, The Journal of Biological Chemistry 2013;288:32449-32465) to incorporate a complete CB1 Ct (Glu416(Ct)-Leu472(Ct)). Based on the structural constraints from NMR studies, we employed ROSETTA to predict tertiary folds, ZDOCK to predict docking orientation, and molecular dynamics (MD) simulations to obtain two distinct plausible models of CB1 Ct in the CB1-Gi complex. The resulting models were consistent with the NMR-determined helical structure (H9) in the middle region of the CB1 Ct. The CB1 Ct directly interacted with both Gα and Gβ and stabilized the receptor at the Gi interface. The results of site-directed mutagenesis studies of Glu416(Ct), Asp423(Ct), Asp428(Ct), and Arg444(Ct) of CB1 Ct suggested that the CB1 Ct can influence receptor-G protein coupling by stabilizing the receptor at the Gi interface. This research provided, for the first time, models of the CB1 Ct in contact with the G protein. PMID:26994549

  7. Computational analysis of the CB1 carboxyl-terminus in the receptor-G protein complex.

    PubMed

    Shim, Joong-Youn; Khurana, Leepakshi; Kendall, Debra A

    2016-04-01

    Despite the important role of the carboxyl-terminus (Ct) of the activated brain cannabinoid receptor one (CB1) in the regulation of G protein signaling, a structural understanding of interactions with G proteins is lacking. This is largely due to the highly flexible nature of the CB1 Ct that dynamically adapts its conformation to the presence of G proteins. In the present study, we explored how the CB1 Ct can interact with the G protein by building on our prior modeling of the CB1-Gi complex (Shim, Ahn, and Kendall, The Journal of Biological Chemistry 2013;288:32449-32465) to incorporate a complete CB1 Ct (Glu416(Ct)-Leu472(Ct)). Based on the structural constraints from NMR studies, we employed ROSETTA to predict tertiary folds, ZDOCK to predict docking orientation, and molecular dynamics (MD) simulations to obtain two distinct plausible models of CB1 Ct in the CB1-Gi complex. The resulting models were consistent with the NMR-determined helical structure (H9) in the middle region of the CB1 Ct. The CB1 Ct directly interacted with both Gα and Gβ and stabilized the receptor at the Gi interface. The results of site-directed mutagenesis studies of Glu416(Ct), Asp423(Ct), Asp428(Ct), and Arg444(Ct) of CB1 Ct suggested that the CB1 Ct can influence receptor-G protein coupling by stabilizing the receptor at the Gi interface. This research provided, for the first time, models of the CB1 Ct in contact with the G protein.

  8. In-vivo pharmacological evaluation of the CB1-receptor allosteric modulator Org-27569.

    PubMed

    Gamage, Thomas F; Ignatowska-Jankowska, Bogna M; Wiley, Jenny L; Abdelrahman, Mostafa; Trembleau, Laurent; Greig, Iain R; Thakur, Ganesh A; Tichkule, Ritesh; Poklis, Justin; Ross, Ruth A; Pertwee, Roger G; Lichtman, Aron H

    2014-04-01

    Several allosteric modulators (AMs) of the CB1 receptor have been characterized in vitro, including Org27569, which enhances CB1-specific binding of [H]CP55,940, but behaves as an insurmountable CB1-receptor antagonist in several biochemical assays. Although a growing body of research has investigated the molecular actions of this unusual AM, it is unknown whether these actions translate to the whole animal. The purpose of the present study was to determine whether Org27569 would produce effects in well-established mouse behavioral assays sensitive to CB1 orthosteric agonists and antagonists. Similar to the orthosteric CB1 antagonist/inverse agonist rimonabant, Org27569 reduced food intake; however, this anorectic effect occurred independently of the CB1 receptor. Org27569 did not elicit CB1-mediated effects alone and lacked efficacy in altering antinociceptive, cataleptic, and hypothermic actions of the orthosteric agonists anandamide, CP55,940, and Δ-tetrahydrocannabinol. Moreover, it did not alter the discriminative stimulus effects of anandamide in FAAH-deficient mice or Δ-tetrahydrocannabinol in wild-type mice in the drug discrimination paradigm. These findings question the utility of Org27569 as a 'gold standard' CB1 AM and underscore the need for the development of CB1 AMs with pharmacology that translates from the molecular level to the whole animal. PMID:24603340

  9. Cannabinoid control of brain bioenergetics: Exploring the subcellular localization of the CB1 receptor.

    PubMed

    Hebert-Chatelain, Etienne; Reguero, Leire; Puente, Nagore; Lutz, Beat; Chaouloff, Francis; Rossignol, Rodrigue; Piazza, Pier-Vincenzo; Benard, Giovanni; Grandes, Pedro; Marsicano, Giovanni

    2014-07-01

    Brain mitochondrial activity is centrally involved in the central control of energy balance. When studying mitochondrial functions in the brain, however, discrepant results might be obtained, depending on the experimental approaches. For instance, immunostaining experiments and biochemical isolation of organelles expose investigators to risks of false positive and/or false negative results. As an example, the functional presence of cannabinoid type 1 (CB1) receptors on brain mitochondrial membranes (mtCB1) was recently reported and rapidly challenged, claiming that the original observation was likely due to artifact results. Here, we addressed this issue by directly comparing the procedures used in the two studies. Our results show that the use of appropriate controls and quantifications allows detecting mtCB1 receptor with CB1 receptor antibodies, and that, if mitochondrial fractions are enriched and purified, CB1 receptor agonists reliably decrease respiration in brain mitochondria. These data further underline the importance of adapted experimental procedures to study brain mitochondrial functions.

  10. A peripherally selective diphenyl purine antagonist of the CB1 receptor

    PubMed Central

    Fulp, Alan; Bortoff, Katherine; Zhang, Yanan; Mathews, James; Snyder, Rodney; Fennell, Tim; Marusich, Julie A.; Wiley, Jenny L.; Seltzman, Herbert; Maitra, Rangan

    2014-01-01

    Antagonists of the CB1 receptor can be useful in the treatment of several diseases including obesity, diabetes, and liver disease. However, to date, the only clinically approved CB1 receptor antagonist, rimonabant, was withdrawn due to adverse CNS related side effects such as depression and suicidal ideation. Since rimonabant’s withdrawal, several groups have begun pursuing peripherally selective CB1 antagonists. These compounds are expected to be devoid of undesirable CNS related effects but maintain efficacy through antagonism of peripherally expressed CB1 receptors within target tissues. Reported here are our latest results toward development of a peripherally selective analog of the diphenyl purine CB1 antagonist otenabant 1. Compound 9 (N-{1-[8-(2-Chlorophenyl)-9-(4-chlorophenyl)-9H-purin-6-yl]piperidin-4-yl}pentanamide) is a potent, orally absorbed antagonist of the CB1 receptor that is >50-fold selective for CB1 over CB2, highly selective for the periphery in a rodent model, and without efficacy in a series of in vivo assays designed to evaluate its ability to mitigate the central effects of Δ9-THC through the CB1 receptor. PMID:24041123

  11. Modulatory effects by CB1 receptors on rat spinal locomotor networks after sustained application of agonists or antagonists.

    PubMed

    Veeraraghavan, P; Nistri, A

    2015-09-10

    Sustained administration of cannabinoid agonists acting on neuronal CB1 receptors (CB1Rs) are proposed for treating spasticity and chronic pain. The impact of CB1Rs on mammalian locomotor networks remains, however, incompletely understood. To clarify how CB1Rs may control synaptic activity and locomotor network function, we used the rat spinal cord in vitro which is an advantageous model to investigate locomotor circuit mechanisms produced by the local central pattern generator. Neither the CB1 agonist anandamide (AEA) nor the CB1R antagonist AM-251 evoked early (<3h) changes in mono or polysynaptic reflexes or in locomotor rhythms. Application of AEA (24h) significantly decreased the ability of dorsal root (DR) afferents to elicit oscillatory cycles, and left synaptic responses unchanged. Similar application of LY 2183240, or JZL 184, inhibitors of endocannabinoid uptake processes, produced analogous results. Application of the antagonist AM-251 (or rimonabant) for >3-24h largely impaired locomotor network activity induced by DR stimuli or neurochemicals, and depressed disinhibited bursting without changing reflex amplitude or inducing neurotoxicity even if CB1R immunoreactivity was lowered in the central region. Since CB1R activation usually inhibits cyclic adenosine monophosphate (cAMP) synthesis, we investigated how a 24-h application of AEA or AM-251 affected basal or forskolin-stimulated cAMP levels. While AEA decreased them in an AM-251-sensitive manner, AM-251 per se did not change resting or stimulated cAMP. Our data suggest that CB1Rs may control the circuit gateway regulating the inflow of sensory afferent inputs into the locomotor circuits, indicating a potential site of action for restricting peripheral signals disruptive for locomotor activity.

  12. Targeting Dopamine D2 and Cannabinoid-1 (CB1) Receptors in Rat Nucleus Accumbens

    PubMed Central

    PICKEL, VIRGINA M.; CHAN, JANE; KEARN, CHRISTOPHER S.; MACKIE, KENNETH

    2006-01-01

    The nucleus accumbens (Acb) shell and core are essential components of neural circuitry mediating the reward and motor effects produced by activation of dopamine D2 or cannabinoid-1 (CB1) receptors. D2 receptors can form heterodimeric complexes with cannabinoid-1 (CB1) receptors and are also involved in control of the availability of both dopamine and endocannabinoids. Thus, the subcellular locations of D2 and CB1 receptors with respect to each other are implicit to their physiological actions in the Acb. We used electron microscopic immunocytochemistry to determine these locations in the Acb shell and core of rat brain. In each region, many neuronal profiles showed endomembrane and plasmalemmal distributions of one or both receptors. Approximately one-third of the labeled profiles were somata and dendrites, some of which showed overlapping subcellular distributions of D2 and CB1 immunoreactivities. The remaining labeled profiles were small axons and axon terminals containing CB1 and/or D2 receptors. Of the labeled terminals forming recognizable synapses, ~20% of those containing CB1 receptors contacted D2-labeled dendrites, while conversely, almost 15% of those containing D2 receptors contacted CB1-labeled dendrites. These results provide the first ultrastructural evidence that D2 and CB1 receptors in the Acb shell and core have subcellular distributions supporting both intracellular associations and local involvement of D2 receptors in making available endocannabinoids that are active on CB1 receptors in synaptic neurons. These distributions have direct relevance to the rewarding and euphoric as well as motor effects produced by marijuana and by addictive drugs enhancing dopamine levels in the Acb. PMID:16440297

  13. Deficits in Sensory-Specific Devaluation Task Performance Following Genetic Deletions of Cannabinoid (CB1) Receptor

    ERIC Educational Resources Information Center

    Crombag, Hans S.; Johnson, Alexander W.; Zimmer, Anne M.; Zimmer, Andreas; Holland, Peter C.

    2010-01-01

    Cannabinoid CB1 receptor is abundantly expressed throughout the CNS and is implicated in numerous physiological and behavioral functions, including appetite and feeding. In the present study, wild-type and CB1 heterozygous and homozygous knockout mice were tested on an instrumental outcome-selective devaluation task to assess changes in acquired…

  14. Cannabinoid CB1 receptor calibrates excitatory synaptic balance in the mouse hippocampus.

    PubMed

    Monory, Krisztina; Polack, Martin; Remus, Anita; Lutz, Beat; Korte, Martin

    2015-03-01

    The endocannabinoid system negatively regulates the release of various neurotransmitters in an activity-dependent manner, thereby influencing the excitability of neuronal circuits. In the hippocampus, cannabinoid type 1 (CB1) receptor is present on both GABAergic and glutamatergic axon terminals. CB1 receptor-deficient mice were previously shown to have increased hippocampal long-term potentiation (LTP). In this study, we have investigated the consequences of cell-type-specific deletion of the CB1 receptor on the induction of hippocampal LTP and on CA1 pyramidal cell morphology. Deletion of CB1 receptor in GABAergic neurons in GABA-CB1-KO mice leads to a significantly decreased hippocampal LTP compared with WT controls. Concomitantly, CA1 pyramidal neurons have a significantly reduced dendritic branching both on the apical and on the basal dendrites. Moreover, the average spine density on the apical dendrites of CA1 pyramidal neurons is significantly diminished. In contrast, in mice lacking CB1 receptor in glutamatergic cells (Glu-CB1-KO), hippocampal LTP is significantly enhanced and CA1 pyramidal neurons show an increased branching and an increased spine density in the apical dendritic region. Together, these results indicate that the CB1 receptor signaling system both on inhibitory and excitatory neurons controls functional and structural synaptic plasticity of pyramidal neurons in the hippocampal CA1 region to maintain an appropriate homeostatic state upon neuronal activation. Consequently, if the CB1 receptor is lost in either neuronal population, an allostatic shift will occur leading to a long-term dysregulation of neuronal functions.

  15. A major glucuronidated metabolite of JWH-018 is a neutral antagonist at CB1 receptors.

    PubMed

    Seely, Kathryn A; Brents, Lisa K; Radominska-Pandya, Anna; Endres, Gregory W; Keyes, Gregory S; Moran, Jeffery H; Prather, Paul L

    2012-04-16

    Recently, hydroxylated metabolites of JWH-018, a synthetic cannabinoid found in many K2/Spice preparations, have been shown to retain affinity and activity for cannabinoid type 1 receptors (CB1Rs). The activity of glucuronidated metabolites of JWH-018 is not known; hence, this study investigated the affinity and activity of a major metabolite, JWH-018-N-(5-hydroxypentyl) β-D-glucuronide (018-gluc), for CB1Rs. The 018-gluc binds CB1Rs (K(i) = 922 nM), has no effect on G-protein activity, but antagonizes JWH-018 activity at CB1Rs. The data suggests that hydroxylation by cytochrome P450s and subsequent glucuronidation by UDP-glucuronosyltransferases produces a metabolite, 018-gluc, which possesses antagonistic activity at CB1Rs.

  16. A major glucuronidated metabolite of JWH-018 is a neutral antagonist at CB1 receptors

    PubMed Central

    Seely, Kathryn A.; Brents, Lisa K.; Radominska-Pandya, Anna; Endres, Gregory W.; Keyes, Gregory S.; Moran, Jeffery H.; Prather, Paul L.

    2014-01-01

    Recently, hydroxylated metabolites of JWH-018, a synthetic cannabinoid found in many K2/Spice preparations, have been shown to retain affinity and activity for cannabinoid type 1 receptors (CB1Rs). The activity of glucuronidated metabolites of JWH-018 is not known; hence this study investigated the affinity and activity of a major metabolite, JWH-018-N-(5-hydroxypentyl) β-D-glucuronide (018-gluc), for CB1Rs. The 018-gluc binds CB1Rs (Ki = 922 nM), has no effect on G-protein activity, but antagonizes JWH-018 activity at CB1Rs. The data suggests that hydroxylation by cytochrome P450s and subsequent glucuronidation by UDP-glucuronosyltransferases produces a metabolite, 018-gluc, which possesses antagonistic activity at CB1Rs. PMID:22404317

  17. Peripheral and central CB1 cannabinoid receptors control stress-induced impairment of memory consolidation.

    PubMed

    Busquets-Garcia, Arnau; Gomis-González, Maria; Srivastava, Raj Kamal; Cutando, Laura; Ortega-Alvaro, Antonio; Ruehle, Sabine; Remmers, Floortje; Bindila, Laura; Bellocchio, Luigi; Marsicano, Giovanni; Lutz, Beat; Maldonado, Rafael; Ozaita, Andrés

    2016-08-30

    Stressful events can generate emotional memories linked to the traumatic incident, but they also can impair the formation of nonemotional memories. Although the impact of stress on emotional memories is well studied, much less is known about the influence of the emotional state on the formation of nonemotional memories. We used the novel object-recognition task as a model of nonemotional memory in mice to investigate the underlying mechanism of the deleterious effect of stress on memory consolidation. Systemic, hippocampal, and peripheral blockade of cannabinoid type-1 (CB1) receptors abolished the stress-induced memory impairment. Genetic deletion and rescue of CB1 receptors in specific cell types revealed that the CB1 receptor population specifically in dopamine β-hydroxylase (DBH)-expressing cells is both necessary and sufficient for stress-induced impairment of memory consolidation, but CB1 receptors present in other neuronal populations are not involved. Strikingly, pharmacological manipulations in mice expressing CB1 receptors exclusively in DBH(+) cells revealed that both hippocampal and peripheral receptors mediate the impact of stress on memory consolidation. Thus, CB1 receptors on adrenergic and noradrenergic cells provide previously unrecognized cross-talk between central and peripheral mechanisms in the stress-dependent regulation of nonemotional memory consolidation, suggesting new potential avenues for the treatment of cognitive aspects on stress-related disorders. PMID:27528659

  18. Peripheral and central CB1 cannabinoid receptors control stress-induced impairment of memory consolidation.

    PubMed

    Busquets-Garcia, Arnau; Gomis-González, Maria; Srivastava, Raj Kamal; Cutando, Laura; Ortega-Alvaro, Antonio; Ruehle, Sabine; Remmers, Floortje; Bindila, Laura; Bellocchio, Luigi; Marsicano, Giovanni; Lutz, Beat; Maldonado, Rafael; Ozaita, Andrés

    2016-08-30

    Stressful events can generate emotional memories linked to the traumatic incident, but they also can impair the formation of nonemotional memories. Although the impact of stress on emotional memories is well studied, much less is known about the influence of the emotional state on the formation of nonemotional memories. We used the novel object-recognition task as a model of nonemotional memory in mice to investigate the underlying mechanism of the deleterious effect of stress on memory consolidation. Systemic, hippocampal, and peripheral blockade of cannabinoid type-1 (CB1) receptors abolished the stress-induced memory impairment. Genetic deletion and rescue of CB1 receptors in specific cell types revealed that the CB1 receptor population specifically in dopamine β-hydroxylase (DBH)-expressing cells is both necessary and sufficient for stress-induced impairment of memory consolidation, but CB1 receptors present in other neuronal populations are not involved. Strikingly, pharmacological manipulations in mice expressing CB1 receptors exclusively in DBH(+) cells revealed that both hippocampal and peripheral receptors mediate the impact of stress on memory consolidation. Thus, CB1 receptors on adrenergic and noradrenergic cells provide previously unrecognized cross-talk between central and peripheral mechanisms in the stress-dependent regulation of nonemotional memory consolidation, suggesting new potential avenues for the treatment of cognitive aspects on stress-related disorders.

  19. CB1 receptor mediates the effects of glucocorticoids on AMPK activity in the hypothalamus.

    PubMed

    Scerif, Miski; Füzesi, Tamás; Thomas, Julia D; Kola, Blerina; Grossman, Ashley B; Fekete, Csaba; Korbonits, Márta

    2013-10-01

    AMP-activated protein kinase (AMPK), a regulator of cellular and systemic energy homeostasis, can be influenced by several hormones. Tissue-specific alteration of AMPK activity by glucocorticoids may explain the increase in appetite, the accumulation of lipids in adipose tissues, and the detrimental cardiac effects of Cushing's syndrome. Endocannabinoids are known to mediate the effects of various hormones and to influence AMPK activity. Cannabinoids have central orexigenic and direct peripheral metabolic effects via the cannabinoid receptor type 1 (CB1). In our preliminary experiments, WT mice received implants of a corticosterone-containing pellet to establish a mouse model of Cushing's syndrome. Subsequently, WT and Cb1 (Cnr1)-knockout (CB1-KO) littermates were treated with corticosterone and AMPK activity in the hypothalamus, various adipose tissues, liver and cardiac tissue was measured. Corticosterone-treated CB1-KO mice showed a lack of weight gain and of increase in hypothalamic and hepatic AMPK activity. In adipose tissues, baseline AMPK activity was higher in CB1-KO mice, but a glucocorticoid-induced drop was observed, similar to that observed in WT mice. Cardiac AMPK levels were reduced in CB1-KO mice, but while WT mice showed significantly reduced AMPK activity following glucocorticoid treatment, CB1-KO mice showed a paradoxical increase. Our findings indicate the importance of the CB1 receptor in the central orexigenic effect of glucocorticoid-induced activation of hypothalamic AMPK activity. In the periphery adipose tissues, changes may occur independently of the CB1 receptor, but the receptor appears to alter the responsiveness of the liver and myocardial tissues to glucocorticoids. In conclusion, our data suggest that an intact cannabinoid pathway is required for the full metabolic effects of chronic glucocorticoid excess.

  20. CB1 receptor mediates the effects of glucocorticoids on AMPK activity in the hypothalamus.

    PubMed

    Scerif, Miski; Füzesi, Tamás; Thomas, Julia D; Kola, Blerina; Grossman, Ashley B; Fekete, Csaba; Korbonits, Márta

    2013-10-01

    AMP-activated protein kinase (AMPK), a regulator of cellular and systemic energy homeostasis, can be influenced by several hormones. Tissue-specific alteration of AMPK activity by glucocorticoids may explain the increase in appetite, the accumulation of lipids in adipose tissues, and the detrimental cardiac effects of Cushing's syndrome. Endocannabinoids are known to mediate the effects of various hormones and to influence AMPK activity. Cannabinoids have central orexigenic and direct peripheral metabolic effects via the cannabinoid receptor type 1 (CB1). In our preliminary experiments, WT mice received implants of a corticosterone-containing pellet to establish a mouse model of Cushing's syndrome. Subsequently, WT and Cb1 (Cnr1)-knockout (CB1-KO) littermates were treated with corticosterone and AMPK activity in the hypothalamus, various adipose tissues, liver and cardiac tissue was measured. Corticosterone-treated CB1-KO mice showed a lack of weight gain and of increase in hypothalamic and hepatic AMPK activity. In adipose tissues, baseline AMPK activity was higher in CB1-KO mice, but a glucocorticoid-induced drop was observed, similar to that observed in WT mice. Cardiac AMPK levels were reduced in CB1-KO mice, but while WT mice showed significantly reduced AMPK activity following glucocorticoid treatment, CB1-KO mice showed a paradoxical increase. Our findings indicate the importance of the CB1 receptor in the central orexigenic effect of glucocorticoid-induced activation of hypothalamic AMPK activity. In the periphery adipose tissues, changes may occur independently of the CB1 receptor, but the receptor appears to alter the responsiveness of the liver and myocardial tissues to glucocorticoids. In conclusion, our data suggest that an intact cannabinoid pathway is required for the full metabolic effects of chronic glucocorticoid excess. PMID:23884964

  1. The endocannabinoid system in renal cells: regulation of Na+ transport by CB1 receptors through distinct cell signalling pathways

    PubMed Central

    Sampaio, L S; Taveira Da Silva, R; Lima, D; Sampaio, C L C; Iannotti, F A; Mazzarella, E; Di Marzo, V; Vieyra, A; Reis, R A M; Einicker-Lamas, M

    2015-01-01

    Background and Purpose The function of the endocannabinoid system (ECS) in renal tissue is not completely understood. Kidney function is closely related to ion reabsorption in the proximal tubule, the nephron segment responsible for the re-absorption of 70–80% of the filtrate. We studied the effect of compounds modulating the activity of cannabinoid (CB) receptors on the active re-absorption of Na+ in LLC-PK1 cells. Experimental Approach Changes in Na+/K+-ATPase activity were assessed after treatment with WIN55,212-2 (WIN), a non-selective lipid agonist, and haemopressin (HP), an inverse peptide agonist at CB1 receptors. Pharmacological tools were used to investigate the signalling pathways involved in the modulation of Na+ transport. Key Results In addition to CB1 and CB2 receptors and TRPV1 channels, the mRNAs encoding for enzymes of the ECS were also expressed in LLC-PK1. WIN (10−7 M) and HP (10−6 M) altered Na+ re-absorption in LLC-PK1 in a dual manner. They both acutely (after 1 min) increased Na+/K+-ATPase activity in a TRPV1 antagonist-sensitive way. WIN's stimulating effect persisted for 30 min, and this effect was partially blocked by a CB1 antagonist or a PKC inhibitor. In contrast, HP inhibited Na+/K+-ATPase after 30 min incubation, and this effect was attenuated by a CB1 antagonist or a PKA inhibitor. Conclusion and Implications The ECS is expressed in LLC-PK1 cells. Both CB1 receptors and TRPV1 channels regulate Na+/K+-ATPase activity in these cells, and are modulated by lipid and peptide CB1 receptor ligands, which act via different signalling pathways. PMID:25537261

  2. Astroglial CB1 cannabinoid receptors regulate leptin signaling in mouse brain astrocytes.

    PubMed

    Bosier, Barbara; Bellocchio, Luigi; Metna-Laurent, Mathilde; Soria-Gomez, Edgar; Matias, Isabelle; Hebert-Chatelain, Etienne; Cannich, Astrid; Maitre, Marlène; Leste-Lasserre, Thierry; Cardinal, Pierre; Mendizabal-Zubiaga, Juan; Canduela, Miren Josune; Reguero, Leire; Hermans, Emmanuel; Grandes, Pedro; Cota, Daniela; Marsicano, Giovanni

    2013-01-01

    Type-1 cannabinoid (CB1) and leptin (ObR) receptors regulate metabolic and astroglial functions, but the potential links between the two systems in astrocytes were not investigated so far. Genetic and pharmacological manipulations of CB1 receptor expression and activity in cultured cortical and hypothalamic astrocytes demonstrated that cannabinoid signaling controls the levels of ObR expression. Lack of CB1 receptors also markedly impaired leptin-mediated activation of signal transducers and activators of transcription 3 and 5 (STAT3 and STAT5) in astrocytes. In particular, CB1 deletion determined a basal overactivation of STAT5, thereby leading to the downregulation of ObR expression, and leptin failed to regulate STAT5-dependent glycogen storage in the absence of CB1 receptors. These results show that CB1 receptors directly interfere with leptin signaling and its ability to regulate glycogen storage, thereby representing a novel mechanism linking endocannabinoid and leptin signaling in the regulation of brain energy storage and neuronal functions.

  3. Computational Prediction and Biochemical Analyses of New Inverse Agonists for the CB1 Receptor.

    PubMed

    Scott, Caitlin E; Ahn, Kwang H; Graf, Steven T; Goddard, William A; Kendall, Debra A; Abrol, Ravinder

    2016-01-25

    Human cannabinoid type 1 (CB1) G-protein coupled receptor is a potential therapeutic target for obesity. The previously predicted and experimentally validated ensemble of ligand-free conformations of CB1 [Scott, C. E. et al. Protein Sci. 2013 , 22 , 101 - 113 ; Ahn, K. H. et al. Proteins 2013 , 81 , 1304 - 1317] are used here to predict the binding sites for known CB1-selective inverse agonists including rimonabant and its seven known derivatives. This binding pocket, which differs significantly from previously published models, is used to identify 16 novel compounds expected to be CB1 inverse agonists by exploiting potential new interactions. We show experimentally that two of these compounds exhibit inverse agonist properties including inhibition of basal and agonist-induced G-protein coupling activity, as well as an enhanced level of CB1 cell surface localization. This demonstrates the utility of using the predicted binding sites for an ensemble of CB1 receptor structures for designing new CB1 inverse agonists.

  4. The CB1 cannabinoid receptor mediates excitotoxicity-induced neural progenitor proliferation and neurogenesis.

    PubMed

    Aguado, Tania; Romero, Eva; Monory, Krisztina; Palazuelos, Javier; Sendtner, Michael; Marsicano, Giovanni; Lutz, Beat; Guzmán, Manuel; Galve-Roperh, Ismael

    2007-08-17

    Endocannabinoids are lipid signaling mediators that exert an important neuromodulatory role and confer neuroprotection in several types of brain injury. Excitotoxicity and stroke can induce neural progenitor (NP) proliferation and differentiation as an attempt of neuroregeneration after damage. Here we investigated the mechanism of hippocampal progenitor cell engagement upon excitotoxicity induced by kainic acid administration and the putative involvement of the CB1 cannabinoid receptor in this process. Adult NPs express kainate receptors that mediate proliferation and neurosphere generation in vitro via CB1 cannabinoid receptors. Similarly, in vivo studies showed that excitotoxicity-induced hippocampal NPs proliferation and neurogenesis are abrogated in CB1-deficient mice and in wild-type mice administered with the selective CB1 antagonist rimonabant (N-piperidino-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-3-pyrazolecarboxamide; SR141716). Kainate stimulation increased basic fibroblast growth factor (bFGF) expression in cultured NPs in a CB1-dependent manner as this response was prevented by rimonabant and mimicked by endocannabinoids. Likewise, in vivo analyses showed that increased hippocampal expression of bFGF, as well as of brain-derived neurotrophic factor and epidermal growth factor, occurs upon excitotoxicity and that CB1 receptor ablation prevents this induction. Moreover, excitotoxicity increased the number of CB1+ bFGF+ cells, and this up-regulation preceded NP proliferation. In summary, our results show the involvement of the CB1 cannabinoid receptor in NP proliferation and neurogenesis induced by excitotoxic injury and support a role for bFGF signaling in this process.

  5. CB1 and CB2 receptors are novel molecular targets for Tamoxifen and 4OH-Tamoxifen

    SciTech Connect

    Prather, Paul L.; FrancisDevaraj, FeAna; Dates, Centdrika R.; Greer, Aleksandra K.; Bratton, Stacie M.; Ford, Benjamin M.; Franks, Lirit N.; Radominska-Pandya, Anna

    2013-11-15

    Highlights: •Tamoxifen produces cytotoxicity via estrogen-receptor (ER) independent mechanisms. •Tamoxifen binds to CB1 and CB2 cannabinoid receptors and acts as an inverse agonist. •CB1 and CB2 receptors are novel molecular targets for Tamoxifen. •ER-independent effects for Tamoxifen may be mediated via CB1 and/or CB2 receptors. -- Abstract: Tamoxifen (Tam) is classified as a selective estrogen receptor modulator (SERM) and is used for treatment of patients with ER-positive breast cancer. However, it has been shown that Tam and its cytochrome P450-generated metabolite 4-hydroxy-Tam (4OH-Tam) also exhibit cytotoxic effects in ER-negative breast cancer cells. These observations suggest that Tam and 4OH-Tam can produce cytotoxicity via estrogen receptor (ER)-independent mechanism(s) of action. The molecular targets responsible for the ER-independent effects of Tam and its derivatives are poorly understood. Interestingly, similar to Tam and 4OH-Tam, cannabinoids have also been shown to exhibit anti-proliferative and apoptotic effects in ER-negative breast cancer cells, and estrogen can regulate expression levels of cannabinoid receptors (CBRs). Therefore, this study investigated whether CBRs might serve as novel molecular targets for Tam and 4OH-Tam. We report that both compounds bind to CB1 and CB2Rs with moderate affinity (0.9–3 μM). Furthermore, Tam and 4OH-Tam exhibit inverse activity at CB1 and CB2Rs in membrane preparations, reducing basal G-protein activity. Tam and 4OH-Tam also act as CB1/CB2R-inverse agonists to regulate the downstream intracellular effector adenylyl cyclase in intact cells, producing concentration-dependent increases in intracellular cAMP. These results suggest that CBRs are molecular targets for Tam and 4OH-Tam and may contribute to the ER-independent cytotoxic effects reported for these drugs. Importantly, these findings also indicate that Tam and 4OH-Tam might be used as structural scaffolds for development of novel

  6. Beyond the CB1 Receptor: Is Cannabidiol the Answer for Disorders of Motivation?

    PubMed

    Zlebnik, Natalie E; Cheer, Joseph F

    2016-07-01

    The Cannabis sativa plant has been used to treat various physiological and psychiatric conditions for millennia. Current research is focused on isolating potentially therapeutic chemical constituents from the plant for use in the treatment of many central nervous system disorders. Of particular interest is the primary nonpsychoactive constituent cannabidiol (CBD). Unlike Δ(9)-tetrahydrocannabinol (THC), CBD does not act through the cannabinoid type 1 (CB1) receptor but has many other receptor targets that may play a role in psychiatric disorders. Here we review preclinical and clinical data outlining the therapeutic efficacy of CBD for the treatment of motivational disorders such as drug addiction, anxiety, and depression. Across studies, findings suggest promising treatment effects and potentially overlapping mechanisms of action for CBD in these disorders and indicate the need for further systematic investigation of the viability of CBD as a psychiatric pharmacotherapy. PMID:27023732

  7. Pharmacological activation of CB1 receptor modulates long term potentiation by interfering with protein synthesis.

    PubMed

    Navakkode, Sheeja; Korte, Martin

    2014-04-01

    Cognitive impairment is one of the most important side effects associated with cannabis drug abuse, as well as the serious issue concerning the therapeutic use of cannabinoids. Cognitive impairments and neuropsychiatric symptoms are caused by early synaptic dysfunctions, such as loss of synaptic connections in different brain structures including the hippocampus, a region that is believed to play an important role in certain forms of learning and memory. We report here that metaplastic priming of synapses with a cannabinoid type 1 receptor (CB1 receptor) agonist, WIN55,212-2 (WIN55), significantly impaired long-term potentiation in the apical dendrites of CA1 pyramidal neurons. Interestingly, the CB1 receptor exerts its effect by altering the balance of protein synthesis machinery towards higher protein production. Therefore the activation of CB1 receptor, prior to strong tetanization, increased the propensity to produce new proteins. In addition, WIN55 priming resulted in the expression of late-LTP in a synaptic input that would have normally expressed early-LTP, thus confirming that WIN55 priming of LTP induces new synthesis of plasticity-related proteins. Furthermore, in addition to the effects on protein translation, WIN55 also induced synaptic deficits due to the ability of CB1 receptors to inhibit the release of acetylcholine, mediated by both muscarinic and nicotinic acetylcholine receptors. Taken together this supports the notion that the modulation of cholinergic activity by CB1 receptor activation is one mechanism that regulates the synthesis of plasticity-related proteins.

  8. CB1 cannabinoid receptor enrichment in the ependymal region of the adult human spinal cord.

    PubMed

    Paniagua-Torija, Beatriz; Arevalo-Martin, Angel; Ferrer, Isidro; Molina-Holgado, Eduardo; Garcia-Ovejero, Daniel

    2015-12-04

    Cannabinoids are involved in the regulation of neural stem cell biology and their receptors are expressed in the neurogenic niches of adult rodents. In the spinal cord of rats and mice, neural stem cells can be found in the ependymal region, surrounding the central canal, but there is evidence that this region is largely different in adult humans: lacks a patent canal and presents perivascular pseudorosettes, typically found in low grade ependymomas. Using Laser Capture Microdissection, Taqman gene expression assays and immunohistochemistry, we have studied the expression of endocannabinoid system components (receptors and enzymes) at the human spinal cord ependymal region. We observe that ependymal region is enriched in CB1 cannabinoid receptor, due to high CB1 expression in GFAP+ astrocytic domains. However, in human spinal cord levels that retain central canal patency we found ependymal cells with high CB1 expression, equivalent to the CB1(HIGH) cell subpopulation described in rodents. Our results support the existence of ependymal CB1(HIGH) cells across species, and may encourage further studies on this subpopulation, although only in cases when central canal is patent. In the adult human ependyma, which usually shows central canal absence, CB1 may play a different role by modulating astrocyte functions.

  9. CB1 cannabinoid receptor enrichment in the ependymal region of the adult human spinal cord

    PubMed Central

    Paniagua-Torija, Beatriz; Arevalo-Martin, Angel; Ferrer, Isidro; Molina-Holgado, Eduardo; Garcia-Ovejero, Daniel

    2015-01-01

    Cannabinoids are involved in the regulation of neural stem cell biology and their receptors are expressed in the neurogenic niches of adult rodents. In the spinal cord of rats and mice, neural stem cells can be found in the ependymal region, surrounding the central canal, but there is evidence that this region is largely different in adult humans: lacks a patent canal and presents perivascular pseudorosettes, typically found in low grade ependymomas. Using Laser Capture Microdissection, Taqman gene expression assays and immunohistochemistry, we have studied the expression of endocannabinoid system components (receptors and enzymes) at the human spinal cord ependymal region. We observe that ependymal region is enriched in CB1 cannabinoid receptor, due to high CB1 expression in GFAP+ astrocytic domains. However, in human spinal cord levels that retain central canal patency we found ependymal cells with high CB1 expression, equivalent to the CB1HIGH cell subpopulation described in rodents. Our results support the existence of ependymal CB1HIGH cells across species, and may encourage further studies on this subpopulation, although only in cases when central canal is patent. In the adult human ependyma, which usually shows central canal absence, CB1 may play a different role by modulating astrocyte functions. PMID:26634814

  10. Cannabinoid CB1 receptor signaling dichotomously modulates inhibitory and excitatory synaptic transmission in rat inner retina.

    PubMed

    Wang, Xiao-Han; Wu, Yi; Yang, Xiao-Fang; Miao, Yanying; Zhang, Chuan-Qiang; Dong, Ling-Dan; Yang, Xiong-Li; Wang, Zhongfeng

    2016-01-01

    In the inner retina, ganglion cells (RGCs) integrate and process excitatory signal from bipolar cells (BCs) and inhibitory signal from amacrine cells (ACs). Using multiple labeling immunohistochemistry, we first revealed the expression of the cannabinoid CB1 receptor (CB1R) at the terminals of ACs and BCs in rat retina. By patch-clamp techniques, we then showed how the activation of this receptor dichotomously regulated miniature inhibitory postsynaptic currents (mIPSCs), mediated by GABAA receptors and glycine receptors, and miniature excitatory postsynaptic currents (mEPSCs), mediated by AMPA receptors, of RGCs in rat retinal slices. WIN55212-2 (WIN), a CB1R agonist, reduced the mIPSC frequency due to an inhibition of L-type Ca(2+) channels no matter whether AMPA receptors were blocked. In contrast, WIN reduced the mEPSC frequency by suppressing T-type Ca(2+) channels only when inhibitory inputs to RGCs were present, which could be in part due to less T-type Ca(2+) channels of cone BCs, presynaptic to RGCs, being in an inactivation state under such condition. This unique feature of CB1R-mediated retrograde regulation provides a novel mechanism for modulating excitatory synaptic transmission in the inner retina. Moreover, depolarization of RGCs suppressed mIPSCs of these cells, an effect that was eliminated by the CB1R antagonist SR141716, suggesting that endocannabinoid is indeed released from RGCs.

  11. Physiological impact of CB1 receptor expression by hippocampal GABAergic interneurons.

    PubMed

    Albayram, Önder; Passlick, Stefan; Bilkei-Gorzo, Andras; Zimmer, Andreas; Steinhäuser, Christian

    2016-04-01

    A subset of hippocampal GABAergic neurons, which are cholecystokinin-positive, highly express cannabinoid type 1 (CB1) receptors. Activation of these receptors inhibits GABA release and thereby limits inhibitory control. While genetic deletion of CB1 receptors from GABAergic neurons led to behavioural alterations and neuroinflammatory reactions, it remained unclear whether these changes in the knockout animals were a direct consequence of the enhanced transmitter release or reflected developmental deficits. The hippocampus is vital for the generation of spatial, declarative and working memory. Here, we addressed the question how CB1 receptors in GABAergic neurons influence hippocampal function. Patch clamp and field potential recordings in mice devoid of CB1 receptors in GABAergic neurons revealed an enhanced frequency and faster kinetics of spontaneous inhibitory postsynaptic currents in CA1 pyramidal neurons while tonic inhibition, paired-pulse facilitation and long-term potentiation in the hippocampus were not affected. Evaluation of cognitive functions demonstrated impaired acquisition of spatial memory and deficits in novel object recognition and partner recognition in the knockout mice, while working memory and spatial memory remained intact. The density of GABAergic neurons was also similar in knockout mice and their littermates, which argues against global deficits in hippocampal development. Together, these results suggest that CB1 receptors in GABAergic neurons influence specific aspects of neuronal excitability and hippocampal learning.

  12. CB1 receptor affects cortical plasticity and response to physiotherapy in multiple sclerosis

    PubMed Central

    Mori, Francesco; Ljoka, Concetta; Nicoletti, Carolina G.; Kusayanagi, Hajime; Buttari, Fabio; Giordani, Laura; Rossi, Silvia; Foti, Calogero

    2014-01-01

    Objectives: Therapeutic effects of physical therapy in neurologic disorders mostly rely on the promotion of use-dependent synaptic plasticity in damaged neuronal circuits. Genetic differences affecting the efficiency of synaptic plasticity mechanisms could explain why some patients do not respond adequately to the treatment. It is known that physical exercise activates the endocannabinoid system and that stimulation of cannabinoid CB1 receptors (CB1Rs) promotes synaptic plasticity in both rodents and humans. We thus tested whether CB1R genetic variants affect responsiveness to exercise therapy. Methods: We evaluated the effect of a genetic variant of the CB1R associated with reduced receptor expression (patients with long AAT trinucleotide short tandem repeats in the CNR1 gene) on long-term potentiation (LTP)–like cortical plasticity induced by transcranial magnetic theta burst stimulation (TBS) of the motor cortex and, in parallel, on clinical response to exercise therapy in patients with multiple sclerosis. Results: We found that patients with long AAT CNR1 repeats do not express TBS-induced LTP-like cortical plasticity and show poor clinical benefit after exercise therapy. Conclusions: Our results provide the first evidence that genetic differences within the CB1R may influence clinical responses to exercise therapy, and they strengthen the hypothesis that CB1Rs are involved in the regulation of synaptic plasticity and in the control of spasticity in humans. This information might be of great relevance for patient stratification and personalized rehabilitation treatment programs. PMID:25520956

  13. A neutral CB1 receptor antagonist reduces weight gain in rat.

    PubMed

    Chambers, Adam P; Vemuri, V Kiran; Peng, Yan; Wood, Jodianne T; Olszewska, Teresa; Pittman, Quentin J; Makriyannis, Alexandros; Sharkey, Keith A

    2007-12-01

    Cannabinoid (CB)1 receptor inverse agonists inhibit food intake in animals and humans but also potentiate emesis. It is not clear whether these effects result from inverse agonist properties or from the blockade of endogenous cannabinoid signaling. Here, we examine the effect of a neutral CB1 antagonist, AM4113, on food intake, weight gain, and emesis. Neutral antagonist and binding properties were confirmed in HEK-293 cells transfected with human CB1 or CB2 receptors. AM4113 had no effect on forskolin-stimulated cAMP production at concentrations up to 630 nM. The Ki value of AM4113 (0.80 +/- 0.44 nM) in competitive binding assays with the CB1/2 agonist [3H]CP55,940 was 100-fold more selective for CB1 over CB2 receptors. We determined that AM4113 antagonized CB1 receptors in brain by blocking hypothermia induced by CP55,940. AM4113 (0-20 mg/kg) significantly reduced food intake and weight gain in rat. Compared with AM251, higher doses of AM4113 were needed to produce similar effects on food intake and body weight. Unlike AM251 (5 mg/kg), a highly anorectic dose of AM4113 (10 mg/kg) did not significantly potentiate vomiting induced by the emetic morphine-6-glucoronide. We show that a centrally active neutral CB1 receptor antagonist shares the appetite suppressant and weight loss effects of inverse agonists. If these compounds display similar properties in humans, they could be developed into a new class of antiobesity agents. PMID:17959701

  14. Hydroxytyrosol Inhibits Cannabinoid CB1 Receptor Gene Expression in 3T3-L1 Preadipocyte Cell Line.

    PubMed

    Tutino, Valeria; Orlando, Antonella; Russo, Francesco; Notarnicola, Maria

    2016-02-01

    The 3T3-L1 preadipocyte cell line is a well characterized cell model for studying the adipocyte status and the molecular mechanisms involved in differentiation of these cells. 3T3-L1 preadipocytes have the ability to synthesize and degrade endocannabinoid anandamide (AEA) and their differentiation into adipocytes increases the expression of cannabinoid (CB1) and PPAR-γ receptors. Clinically, the blocking stimulation of the endocannabinoid pathway has been one of the first approaches proposed to counteract the obesity and obesity-associated diseases (such as diabetes, metabolic syndrome and cancer). In this connection, here we studied in cultured 3T3-L1 pre-adipocytes the effects of n-3-PUFA, α-Linolenic acid (OM-3), n-6-PUFA, Linoleic acid (OM-6), and hydroxytyrosol (HT) on the expression of CB1 receptor gene and the adipogenesis-related genes PPAR-γ, Fatty Acid Synthase (FAS) and Lipoprotein Lipase (LPL). HT was able to inhibit 3T3-L1 cell differentiation by down-regulating cell proliferation and CB1 receptor gene expression. HT exhibited anti-adipogenic effects, whereas OM-3 and OM-6 exerted an inhibitory action on cell proliferation associated with an induction of the preadipocytes differentiation and CB1 receptor gene expression. Moreover, the expression of FAS and LPL genes resulted increased after treatment with both HT and OM-3 and OM-6. The present study points out that the intake of molecules such as HT, contained in extra virgin olive oil, may be considered also in view of antiobesity and antineoplastic properties by acting directly on the adipose tissue and modulating CB1 receptor gene transcription.

  15. Distribution of CB1 Cannabinoid Receptors and Their Relationship with Mu-Opioid Receptors in the Rat Periaqueductal Gray

    PubMed Central

    Wilson-Poe, A.R.; Morgan, M.M.; Aicher, S.A.; Hegarty, D.M.

    2012-01-01

    The periaqueductal gray (PAG) is part of a descending pain modulatory system that, when activated, produces widespread and profound antinociception. Microinjection of either opioids or cannabinoids into the PAG elicits antinociception. Moreover, microinjection of the cannabinoid 1 (CB1) receptor agonist HU-210 into the PAG enhances the antinociceptive effect of subsequent morphine injections, indicating a direct relationship between these two systems. The objective of this study was to characterize the distribution of CB1 receptors in the dorsolateral and ventrolateral PAG in relationship to mu-opioid peptide (MOP) receptors. Immunocytochemical analysis revealed extensive and diffuse CB1 receptor labeling in the PAG, 60% of which was found in somatodendritic profiles. CB1 and MOP receptor immunolabeling were co-localized in 32% of fluorescent Nissl-stained cells that were analyzed. Eight percent (8%) of PAG neurons that were MOP receptor-immunoreactive received CB1 receptor-immunoreactive appositions. Ultrastructural analysis confirmed the presence CB1 receptor-immunoreactive somata, dendrites and axon terminals in the PAG. These results indicate that behavioral interactions between cannabinoids and opioids may be the result of cellular adaptations within PAG neurons co-expressing CB1 and MOP receptors. PMID:22521830

  16. The cannabinoid CB1 receptor antagonist AM251 does not modify methamphetamine reinstatement of responding.

    PubMed

    Boctor, Sherin Y; Martinez, Joe L; Koek, Wouter; France, Charles P

    2007-09-24

    Cannabinoid CB(1) receptor antagonists can decrease methamphetamine self-administration. This study examined whether the CB(1) receptor antagonist AM251 [N-(piperidin-1-yl)-5-(4-indophonyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide] modifies reinstatement in rats that previously self-administered methamphetamine. Rats (n=10) self-administered methamphetamine (0.1 mg/kg/infusion) under a fixed ratio 2 schedule. Non-contingent methamphetamine (0.01-1.78 mg/kg, i.v.) yielded responding for saline (reinstatement) that was similar to responding for self-administered methamphetamine. AM251 (0.032-0.32, i.v.) did not affect methamphetamine-induced reinstatement but significantly attenuated Delta(9)-tetrahydrocannabinol (2.0 mg/kg, i.p.)-induced hypothermia. These data fail to support a role for endogenous cannabinoids or cannabinoid CB(1) receptors in reinstatement and, therefore, relapse to stimulant abuse.

  17. Paranoid schizophrenia is characterized by increased CB1 receptor binding in the dorsolateral prefrontal cortex.

    PubMed

    Dalton, Victoria S; Long, Leonora E; Weickert, Cyndi Shannon; Zavitsanou, Katerina

    2011-07-01

    A number of studies suggest a dysregulation of the endogenous cannabinoid system in schizophrenia (SCZ). In the present study, we examined cannabinoid CB(1) receptor (CB(1)R) binding and mRNA expression in the dorsolateral prefrontal cortex (DLPFC) (Brodmann's area 46) of SCZ patients and controls, post-mortem. Receptor density was investigated using autoradiography with the CB(1)R ligand [(3)H] CP 55,940 and CB(1)R mRNA expression was measured using quantitative RT-PCR in a cohort of 16 patients with paranoid SCZ, 21 patients with non-paranoid SCZ and 37 controls matched for age, post-mortem interval and pH. All cases were obtained from the University of Sydney Tissue Resource Centre. Results were analyzed using one-way analysis of variance (ANOVA) and post hoc Bonferroni tests and with analysis of covariance (ANCOVA) to control for demographic factors that would potentially influence CB(1)R expression. There was a main effect of diagnosis on [(3)H] CP 55,940 binding quantified across all layers of the DLPFC (F(2,71) = 3.740, p = 0.029). Post hoc tests indicated that this main effect was due to patients with paranoid SCZ having 22% higher levels of CB(1)R binding compared with the control group. When ANCOVA was employed, this effect was strengthened (F(2,67) = 6.048, p = 0.004) with paranoid SCZ patients differing significantly from the control (p = 0.004) and from the non-paranoid group (p = 0.016). In contrast, no significant differences were observed in mRNA expression between the different disease subtypes and the control group. Our findings confirm the existence of a CB(1)R dysregulation in SCZ and underline the need for further investigation of the role of this receptor particularly in those diagnosed with paranoid SCZ.

  18. Profiling two indole-2-carboxamides for allosteric modulation of the CB1 receptor.

    PubMed

    Ahn, Kwang H; Mahmoud, Mariam M; Samala, Sushma; Lu, Dai; Kendall, Debra A

    2013-03-01

    Allosteric modulation of G-protein coupled receptors (GPCRs) represents a novel approach for fine-tuning GPCR functions. The cannabinoid CB1 receptor, a GPCR associated with the CNS, has been implicated in the treatment of drug addiction, pain, and appetite disorders. We report here the synthesis and pharmacological characterization of two indole-2-carboxamides:5-chloro-3-ethyl-1-methyl-N-(4-(piperidin-1-yl)phenethyl)-1H-indole-2-carboxamide (ICAM-a) and 5-chloro-3-pentyl-N-(4-(piperidin-1-yl)phenethyl)-1H-indole-2-carboxamide (ICAM-b). Although both ICAM-a and ICAM-b enhanced CP55, 940 binding, ICAM-b exhibited the strongest positive cooperativity thus far demonstrated for enhancing agonist binding to the CB1 receptor. Although it displayed negative modulatory effects on G-protein coupling to CB1, ICAM-b induced β-arrestin-mediated downstream activation of extracellular signal-regulated kinase (ERK) signaling. These results indicate that this compound represents a novel class of CB1 ligands that produce biased signaling via CB1.

  19. Cannabinoid CB1 receptors in the dorsal hippocampus and prelimbic medial prefrontal cortex modulate anxiety-like behavior in rats: additional evidence.

    PubMed

    Lisboa, Sabrina F; Borges, Anna A; Nejo, Priscila; Fassini, Aline; Guimarães, Francisco S; Resstel, Leonardo B

    2015-06-01

    Endocannabinoids (ECBs) such as anandamide (AEA) act by activating cannabinoid type 1 (CB1) or 2 (CB2) receptors. The anxiolytic effect of drugs that facilitate ECB effects is associated with increase in AEA levels in several encephalic areas, including the prefrontal cortex (PFC). Activation of CB1 receptors by CB1 agonists injected directly into these areas is usually anxiolytic. However, depending on the encephalic region being investigated and on the stressful experiences, opposite effects were observed, as reported in the ventral HIP. In addition, contradictory results have been reported after CB1 activation in the dorsal HIP (dHIP). Therefore, in the present paper we have attempted to verify if directly interfering with ECB metabolism/reuptake in the prelimbic (PL) portion of the medial PFC (MPFC) and dHIP would produce different effects in two conceptually distinct animal models: the elevated plus maze (EPM) and the Vogel conflict test (VCT). We observed that drugs which interfere with ECB reuptake/metabolism in both the PL and in the dentate gyrus of the dHIP induced anxiolytic-like effect, in both the EPM and in the VCT via CB1 receptors, suggesting that CB1 signaling in these brain regions modulates defensive responses to both innate and learned threatening stimuli. This data further strengthens previous results indicating modulation of hippocampal and MPFC activity via CB1 by ECBs, which could be therapeutically targeted to treat anxiety disorders.

  20. Adolescent chronic mild stress alters hippocampal CB1 receptor-mediated excitatory neurotransmission and plasticity.

    PubMed

    Reich, C G; Mihalik, G R; Iskander, A N; Seckler, J C; Weiss, M S

    2013-12-01

    Endocannabinoids (eCBs) are involved in the stress response and alterations in eCB signaling may contribute to the etiology of mood disorders. Exposure to chronic mild stress (CMS), a model of depression, produces downregulation of the cannabinoid 1 (CB1) receptor in the hippocampus of male rats. However, it is unknown how this stress-induced change in CB1 levels affects eCB-mediated neurotransmission. In vitro, field potential recordings from CMS-exposed (21-days) rats were performed to assess the effects of stress on eCB-regulated glutamatergic neurotransmission in/on hippocampal area CA1. We observed that application of the CB1 agonist, WIN 55,212-5 (1 μM), in stress animals resulted in a ∼135% increase in excitatory neurotransmission, whereas CB1 activation in non-stress animals leads to a ∼30% decrease. However, during blockade of GABA(A) neurotransmission with picrotoxin, CB1 activation yielded a ∼35% decrease in stress animals. These findings indicate that CMS does not directly affect glutamatergic neurotransmission. Rather, CMS sensitizes CB1 function on GABAergic terminals, leading to less inhibition and an increase in excitatory neurotransmission. This finding is reinforced in that induction of weak long-term-potentiation (LTP) is enhanced in CMS-exposed animals compared to controls and this enhancement is CB1-dependent. Lastly, we observed that the LTP-blocking property of WIN 55,212-5 shifts from being glutamate-dependent in non-stress animals to being GABA-dependent in stress animals. These results effectively demonstrate that CMS significantly alters hippocampal eCB-mediated neurotransmission and synaptic plasticity.

  1. Neural endocannabinoid CB1 receptor expression, social status, and behavior in male European starlings.

    PubMed

    DeVries, M Susan; Cordes, Melissa A; Rodriguez, Jonathan D; Stevenson, Sharon A; Riters, Lauren V

    2016-08-01

    Many species modify behavior in response to changes in resource availability or social status; however, the neural mechanisms underlying these modifications are not well understood. Prior work in male starlings demonstrates that status-appropriate changes in behavior involve brain regions that regulate social behavior and vocal production. Endocannabinoids are ubiquitously distributed neuromodulators that are proposed to play a role in adjusting behavior to match social status. As an initial step to provide insight into this hypothesis we observed flocks of male starlings in outdoor aviaries during the breeding season. We used quantitative real-time PCR to measure expression of endocannabinoid CB1 receptors in brain regions involved in social behavior and motivation (lateral septum [LS], ventral tegmental area [VTA], medial preoptic nucleus [POM]) and vocal behavior (Area X and robust nucleus of the arcopallium; RA). Males with nesting sites sang to females and displaced other males more than males without nesting sites. They also had higher levels of CB1 receptor expression in LS and RA. CB1 expression in LS correlated positively with agonistic behaviors. CB1 expression in RA correlated positively with singing behavior. CB1 in VTA also correlated positively with singing when only singing birds were considered. These correlations nicely map onto the well-established role of LS in agonistic behavior and the known role of RA in song production and VTA in motivation and song production. Studies are now needed to precisely characterize the role of CB1 receptors in these regions in the production of status-appropriate social behaviors. PMID:27206544

  2. CP47,497-C8 and JWH073, commonly found in `Spice' herbal blends, are potent and efficacious CB1 cannabinoid receptor agonists

    PubMed Central

    Atwood, Brady K.; Lee, Donghoon; Straiker, Alex; Widlanski, Theodore S.; Mackie, Ken

    2011-01-01

    `Spice' is an herbal blend that has been reported to produce cannabis-like effects when smoked and is marketed as an alternative to marijuana. Synthetic additives have been identified in numerous `Spice' preparations from different sources. Common among many of the preparations were the compounds JWH018 and a dimethyloctyl variant of CP47,497 (CP47,497-C8) and, more recently JWH073. The synaptic effects of each of these compounds were uncharacterized. We previously reported that JWH018 is a potent and efficacious CB1 cannabinoid receptor agonist. In this study we have examined the abilities of CP47,497-C8 and JWH073 to inhibit neurotransmission in cultured autaptic hippocampal neurons. Each inhibited EPSCs with an efficacy and potency similar to JWH018. We also analyzed these compounds' effects on promoting internalization of CB1 receptors in HEK293 cells stably expressing CB1 receptors. Similar to our neurotransmission data, CP47,497-C8 internalized CB1 in a fashion indistinguishable from JWH018. However, JWH073 was less potent and produced slower internalization than JWH018 and CP47,497-C8. It appears that `Spice' contains a number of cannabinoid receptor agonists that activate CB1 receptors to inhibit synaptic transmission with similar potencies and efficacies. It is highly probable that the cannabis-like effects of `Spice' are due to the presence of these and analogous synthetic additives acting on CB1 receptors. PMID:21333643

  3. CP47,497-C8 and JWH073, commonly found in 'Spice' herbal blends, are potent and efficacious CB(1) cannabinoid receptor agonists.

    PubMed

    Atwood, Brady K; Lee, Donghoon; Straiker, Alex; Widlanski, Theodore S; Mackie, Ken

    2011-06-01

    'Spice' is an herbal blend that has been reported to produce cannabis-like effects when smoked and is marketed as an alternative to marijuana. Synthetic additives have been identified in numerous 'Spice' preparations from different sources. Common among many of the preparations were the compounds JWH018 and a dimethyloctyl variant of CP47,497 (CP47,497-C8) and, more recently JWH073. The synaptic effects of each of these compounds were uncharacterized. We previously reported that JWH018 is a potent and efficacious CB(1) cannabinoid receptor agonist. In this study we have examined the abilities of CP47,497-C8 and JWH073 to inhibit neurotransmission in cultured autaptic hippocampal neurons. Each inhibited EPSCs with an efficacy and potency similar to JWH018. We also analyzed these compounds' effects on promoting internalization of CB(1) receptors in HEK293 cells stably expressing CB(1) receptors. Similar to our neurotransmission data, CP47,497-C8 internalized CB(1) in a fashion indistinguishable from JWH018. However, JWH073 was less potent and produced slower internalization than JWH018 and CP47,497-C8. It appears that 'Spice' contains a number of cannabinoid receptor agonists that activate CB(1) receptors to inhibit synaptic transmission with similar potencies and efficacies. It is highly probable that the cannabis-like effects of 'Spice' are due to the presence of these and analogous synthetic additives acting on CB(1) receptors.

  4. CB1 Cannabinoid Receptors Modulate Kinase and Phosphatase Activity during Extinction of Conditioned Fear in Mice

    ERIC Educational Resources Information Center

    Kamprath, Kornelia; Hermann, Heike; Lutz, Beat; Marsicano, Giovanni; Cannich, Astrid; Wotjak, Carsten T.

    2004-01-01

    Cannabinoid receptors type 1 (CB1) play a central role in both short-term and long-term extinction of auditory-cued fear memory. The molecular mechanisms underlying this function remain to be clarified. Several studies indicated extracellular signal-regulated kinases (ERKs), the phosphatidylinositol 3-kinase with its downstream effector AKT, and…

  5. Biphasic Effects of Cannabinoids in Anxiety Responses: CB1 and GABAB Receptors in the Balance of GABAergic and Glutamatergic Neurotransmission

    PubMed Central

    Rey, Alejandro Aparisi; Purrio, Martin; Viveros, Maria-Paz; Lutz, Beat

    2012-01-01

    Biphasic effects of cannabinoids have been shown in processes such as feeding behavior, motor activity, motivational processes and anxiety responses. Using two different tests for the characterization of anxiety-related behavior (elevated plus-maze and holeboard), we first identified in wild-type C57BL/6N mice, two doses of the synthetic CB1 cannabinoid receptor agonist CP-55,940 with anxiolytic (1 μg/kg) and anxiogenic properties (50 μg/kg), respectively. To clarify the role of CB1 receptors in this biphasic effect, both doses were applied to two different conditional CB1 receptor knockout (KO) mouse lines, GABA-CB1-KO (CB1 receptor inactivation in forebrain GABAergic neurons) and Glu-CB1-KO (CB1 receptor inactivation in cortical glutamatergic neurons). We found that the anxiolytic-like effects of the low dose of cannabinoids are mediated via the CB1 receptor on cortical glutamatergic terminals, because this anxiolytic-like response was abrogated only in Glu-CB1-KO mice. On the contrary, the CB1 receptor on the GABAergic terminals is required to induce an anxiogenic-like effect under a high-dose treatment because of the fact that this effect was abolished specifically in GABA-CB1-KO mice. These experiments were carried out in both sexes, and no differences occurred with the doses tested in the mutant mice. Interestingly, the positive allosteric modulation of GABAB receptor with GS-39783 was found to largely abrogate the anxiogenic-like effect of the high dose of CP-55,940. Our results shed new light in further understanding the biphasic effects of cannabinoids at the molecular level and, importantly, pave the way for the development of novel anxiolytic cannabinoid drugs, which may have favorable effect profiles targeting the CB1 receptor on glutamatergic terminals. PMID:22850737

  6. Pyrazole antagonists of the CB1 receptor with reduced brain penetration.

    PubMed

    Fulp, Alan; Zhang, Yanan; Bortoff, Katherine; Seltzman, Herbert; Snyder, Rodney; Wiethe, Robert; Amato, George; Maitra, Rangan

    2016-03-01

    Type 1 cannabinoid receptor (CB1) antagonists might be useful for treating obesity, liver disease, metabolic syndrome, and dyslipidemias. Unfortunately, inhibition of CB1 in the central nervous system (CNS) produces adverse effects, including depression, anxiety and suicidal ideation in some patients, which led to withdrawal of the pyrazole inverse agonist rimonabant (SR141716A) from European markets. Efforts are underway to produce peripherally selective CB1 antagonists to circumvent CNS-associated adverse effects. In this study, novel analogs of rimonabant (1) were explored in which the 1-aminopiperidine group was switched to a 4-aminopiperidine, attached at the 4-amino position (5). The piperidine nitrogen was functionalized with carbamates, amides, and sulfonamides, providing compounds that are potent inverse agonists of hCB1 with good selectivity for hCB1 over hCB2. Select compounds were further studied using in vitro models of brain penetration, oral absorption and metabolic stability. Several compounds were identified with predicted minimal brain penetration and good metabolic stability. In vivo pharmacokinetic testing revealed that inverse agonist 8c is orally bioavailable and has vastly reduced brain penetration compared to rimonabant.

  7. Pyrazole antagonists of the CB1 receptor with reduced brain penetration.

    PubMed

    Fulp, Alan; Zhang, Yanan; Bortoff, Katherine; Seltzman, Herbert; Snyder, Rodney; Wiethe, Robert; Amato, George; Maitra, Rangan

    2016-03-01

    Type 1 cannabinoid receptor (CB1) antagonists might be useful for treating obesity, liver disease, metabolic syndrome, and dyslipidemias. Unfortunately, inhibition of CB1 in the central nervous system (CNS) produces adverse effects, including depression, anxiety and suicidal ideation in some patients, which led to withdrawal of the pyrazole inverse agonist rimonabant (SR141716A) from European markets. Efforts are underway to produce peripherally selective CB1 antagonists to circumvent CNS-associated adverse effects. In this study, novel analogs of rimonabant (1) were explored in which the 1-aminopiperidine group was switched to a 4-aminopiperidine, attached at the 4-amino position (5). The piperidine nitrogen was functionalized with carbamates, amides, and sulfonamides, providing compounds that are potent inverse agonists of hCB1 with good selectivity for hCB1 over hCB2. Select compounds were further studied using in vitro models of brain penetration, oral absorption and metabolic stability. Several compounds were identified with predicted minimal brain penetration and good metabolic stability. In vivo pharmacokinetic testing revealed that inverse agonist 8c is orally bioavailable and has vastly reduced brain penetration compared to rimonabant. PMID:26827137

  8. Cannabinoid CB1 receptor mediates glucocorticoid effects on hormone secretion induced by volume and osmotic changes.

    PubMed

    Ruginsk, S G; Uchoa, E T; Elias, L L K; Antunes-Rodrigues, J

    2012-02-01

    The present study provides the first in vivo evidence that the cannabinoid CB(1) receptor mediates the effects of dexamethasone on hormone release induced by changes in circulating volume and osmolality. Male adult rats were administered with the CB(1) receptor antagonist rimonabant (10 mg/Kg, p.o.), followed or not in 1 hour by dexamethasone (1 mg/Kg, i.p.). Extracellular volume expansion (EVE, 2 mL/100 g of body weight, i.v.) was performed 2 hours after dexamethasone or vehicle treatment using either isotonic (I-EVE, 0.15 mol/L) or hypertonic (H-EVE, 0.30 mol/L) NaCl solution. Five minutes after EVE, animals were decapitated and trunk blood was collected for all plasma measurements. Rimonabant potentiated oxytocin (OT) secretion induced by H-EVE and completely reversed the inhibitory effects of dexamethasone in response to the same stimulus. These data suggest that glucocorticoid modulation of OT release is mediated by the CB(1) receptor. Although dexamethasone did not affect vasopressin (AVP) secretion induced by H-EVE, the administration of rimonabant potentiated AVP release in response to the same stimulus, supporting the hypothesis that the CB(1) receptor regulates AVP secretion independently of glucocorticoid-mediated signalling. Dexamethasone alone did not affect atrial natriuretic peptide (ANP) release stimulated by I-EVE or H-EVE. However, pretreatment with rimonabant potentiated ANP secretion induced by H-EVE, suggesting a possible role for the CB(1) receptor in the control of peripheral factors that modulate cardiovascular function. Rimonabant also reversed the inhibitory effects of dexamethasone on H-EVE-induced corticosterone secretion, reinforcing the hypothesis that the CB(1) receptor may be involved in the negative feedback exerted by glucocorticoids on the activity of the hypothalamic-pituitary-adrenal axis. Collectively, the results of the present study indicate that the CB(1) receptor modulates neurohypophyseal hormone secretion and

  9. Behavioral effects of the cannabinoid CB1 receptor allosteric modulator ORG27569 in rats

    PubMed Central

    Ding, Yuanyuan; Qiu, Yanyan; Jing, Li; Thorn, David A; Zhang, Yanan; Li, Jun-Xu

    2014-01-01

    The cannabinoid CB1 receptor system is involved in feeding behaviors and the CB1 receptor antagonist SR141716A is an effective antiobesity drug. However, SR141716A also has serious side effects, which prompted the exploration of alternative strategies to modulate this important drug target. Recently a CB1 receptor allosteric modulating site has been discovered and the allosteric modulating activity of several modulators including ORG27569 has been characterized in vitro. Yet, little is known of the in vivo pharmacological effects of ORG27569. This study examined the behavioral pharmacology of ORG27569 in rats. ORG27569 (3.2–10 mg/kg, i.p.) selectively attenuated the hypothermic effects of CB1 receptor agonists CP55940 (0.1–1 mg/kg) and anandamide (3.2–32 mg/kg). In contrast, SR141716A only attenuated the hypothermic effects of CP55940 but not anandamide. SR141716A but not ORG27569 blocked CP55940-induced catalepsy and antinociception. In addition, ORG27569 did not modify SR141716A-elicited grooming and scratching behaviors. In feeding studies, ORG27569 decreased palatable and plain food intake which was partially blocked by CP55940. The hypophagic effect of ORG27569 developed tolerance after 4 days of daily 5.6 mg/kg treatment; however, the effect on body weight gain outlasted the drug treatment for 10 days. These data suggest that ORG27569 may not function as a CB1 receptor allosteric modulator in vivo, although its hypophagic activity still has potential therapeutic utility. PMID:25431655

  10. The endocannabinoid N-arachidonoyldopamine (NADA) exerts neuroprotective effects after excitotoxic neuronal damage via cannabinoid receptor 1 (CB(1)).

    PubMed

    Grabiec, Urszula; Koch, Marco; Kallendrusch, Sonja; Kraft, Robert; Hill, Kerstin; Merkwitz, Claudia; Ghadban, Chalid; Lutz, Beat; Straiker, Alex; Dehghani, Faramarz

    2012-03-01

    Endocannabinoids exert numerous effects in the CNS under physiological and pathological conditions. The aim of the present study was to examine whether the endocannabinoid N-arachidonoyldopamine (NADA) may protect neurons in excitotoxically lesioned organotypic hippocampal slice cultures (OHSC). OHSC were excitotoxically lesioned by application of N-methyl-d-aspartate (NMDA, 50 μM) for 4 h and subsequently treated with different NADA concentrations (0.1 pM-50 μM) alone or in combination with cannabinoid receptor antagonists. NADA protected dentate gyrus granule cells and caused a slight reduction in the number of microglial cells. The number of degenerated neurons significantly decreased between 100 pM and 10 μM NADA (p < 0.05). To identify the responsive receptor type of NADA mediated neuroprotection, we applied the cannabinoid (CB) receptor 1 (CB(1)) inverse agonist/antagonist AM251, CB(2) inverse agonist/antagonist AM630, abnormal-cannabidiol (abn-CBD)-sensitive receptor antagonist O-1918, transient receptor potential channel V1 (TRPV1) antagonist 6-iodonordihydrocapsaicin and A1 (TRPA1) antagonist HC-030031. Neuroprotective properties of low (1 nM) but not high (10 μM) NADA concentrations were solely blocked by AM251 and were absent in CB(1)(-/-) mice. AM630, O-1918, 6-iodonordihydrocapsaicin and HC-030031 showed no effects at all NADA concentrations applied. Our findings demonstrate that NADA protects dentate gyrus granule cells by acting via CB(1). NADA reduced the number of microglial cells at distinct concentrations. TRPV1 and TRPA1 were not involved in NADA mediated neuroprotection. Thus, our data implicate that NADA mediated activation of neuronal CB(1) may serve as a novel pharmacological target to mitigate symptoms of neuronal damage.

  11. The CB1 cannabinoid receptor signals striatal neuroprotection via a PI3K/Akt/mTORC1/BDNF pathway

    PubMed Central

    Blázquez, C; Chiarlone, A; Bellocchio, L; Resel, E; Pruunsild, P; García-Rincón, D; Sendtner, M; Timmusk, T; Lutz, B; Galve-Roperh, I; Guzmán, M

    2015-01-01

    The CB1 cannabinoid receptor, the main molecular target of endocannabinoids and cannabis active components, is the most abundant G protein-coupled receptor in the mammalian brain. In particular, the CB1 receptor is highly expressed in the basal ganglia, mostly on terminals of medium-sized spiny neurons, where it plays a key neuromodulatory function. The CB1 receptor also confers neuroprotection in various experimental models of striatal damage. However, the assessment of the physiological relevance and therapeutic potential of the CB1 receptor in basal ganglia-related diseases is hampered, at least in part, by the lack of knowledge of the precise mechanism of CB1 receptor neuroprotective activity. Here, by using an array of pharmacological, genetic and pharmacogenetic (designer receptor exclusively activated by designer drug) approaches, we show that (1) CB1 receptor engagement protects striatal cells from excitotoxic death via the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin complex 1 pathway, which, in turn, (2) induces brain-derived neurotrophic factor (BDNF) expression through the selective activation of BDNF gene promoter IV, an effect that is mediated by multiple transcription factors. To assess the possible functional impact of the CB1/BDNF axis in a neurodegenerative-disease context in vivo, we conducted experiments in the R6/2 mouse, a well-established model of Huntington's disease, in which the CB1 receptor and BDNF are known to be severely downregulated in the dorsolateral striatum. Adeno-associated viral vector-enforced re-expression of the CB1 receptor in the dorsolateral striatum of R6/2 mice allowed the re-expression of BDNF and the concerted rescue of the neuropathological deficits in these animals. Collectively, these findings unravel a molecular link between CB1 receptor activation and BDNF expression, and support the relevance of the CB1/BDNF axis in promoting striatal neuron survival. PMID:25698444

  12. Cannabinoid CB1 receptor as a target for chlorpyrifos oxon and other organophosphorus pesticides.

    PubMed

    Quistad, Gary B; Nomura, Daniel K; Sparks, Susan E; Segall, Yoffi; Casida, John E

    2002-09-01

    Binding of the endocannabinoid anandamide or of Delta(9)-tetrahydrocannabinol to the agonist site of the cannabinoid receptor (CB1) is commonly assayed with [3H]CP 55,940. Potent long-chain alkylfluorophosphonate inhibitors of agonist binding suggest an additional, important and closely-coupled nucleophilic site, possibly undergoing phosphorylation. We find that the CB1 receptor is also sensitive to inhibition in vitro and in vivo by several organophosphorus pesticides and analogs. Binding of [3H]CP 55,940 to mouse brain CB1 receptor in vitro is inhibited 50% by chlorpyrifos oxon at 14 nM, chlorpyrifos methyl oxon at 64 nM and paraoxon, diazoxon and dichlorvos at 1200-4200 nM. Some 15 other organophosphorus pesticides and analogs are less active in vitro. The plant defoliant tribufos inhibits CB1 in vivo, without cholinergic poisoning signs, by 50% at 50 mg/kg intraperitoneally with a recovery half-time of 3-4 days, indicating covalent derivatization. [3H-ethyl]Chlorpyrifos oxon may be suitable for radiolabeling and characterization of this proposed nucleophilic site. PMID:12243867

  13. Cannabinoid Receptors CB1 and CB2 Modulate the Electroretinographic Waves in Vervet Monkeys

    PubMed Central

    Bouskila, Joseph; Harrar, Vanessa; Javadi, Pasha; Beierschmitt, Amy; Palmour, Roberta; Casanova, Christian; Bouchard, Jean-François; Ptito, Maurice

    2016-01-01

    The expression patterns of the cannabinoid receptor type 1 (CB1R) and the cannabinoid receptor type 2 (CB2R) are well documented in rodents and primates. In vervet monkeys, CB1R is present in the retinal neurons (photoreceptors, horizontal cells, bipolar cells, amacrine cells, and ganglion cells) and CB2R is exclusively found in the retinal glia (Müller cells). However, the role of these cannabinoid receptors in normal primate retinal function remains elusive. Using full-field electroretinography in adult vervet monkeys, we recorded changes in neural activity following the blockade of CB1R and CB2R by the intravitreal administration of their antagonists (AM251 and AM630, resp.) in photopic and scotopic conditions. Our results show that AM251 increases the photopic a-wave amplitude at high flash intensities, whereas AM630 increases the amplitude of both the photopic a- and b-waves. In scotopic conditions, both blockers increased the b-wave amplitude but did not change the a-wave amplitude. These findings suggest an important role of CB1R and CB2R in primate retinal function. PMID:27069692

  14. Cannabinoid CB1 receptor as a target for chlorpyrifos oxon and other organophosphorus pesticides.

    PubMed

    Quistad, Gary B; Nomura, Daniel K; Sparks, Susan E; Segall, Yoffi; Casida, John E

    2002-09-01

    Binding of the endocannabinoid anandamide or of Delta(9)-tetrahydrocannabinol to the agonist site of the cannabinoid receptor (CB1) is commonly assayed with [3H]CP 55,940. Potent long-chain alkylfluorophosphonate inhibitors of agonist binding suggest an additional, important and closely-coupled nucleophilic site, possibly undergoing phosphorylation. We find that the CB1 receptor is also sensitive to inhibition in vitro and in vivo by several organophosphorus pesticides and analogs. Binding of [3H]CP 55,940 to mouse brain CB1 receptor in vitro is inhibited 50% by chlorpyrifos oxon at 14 nM, chlorpyrifos methyl oxon at 64 nM and paraoxon, diazoxon and dichlorvos at 1200-4200 nM. Some 15 other organophosphorus pesticides and analogs are less active in vitro. The plant defoliant tribufos inhibits CB1 in vivo, without cholinergic poisoning signs, by 50% at 50 mg/kg intraperitoneally with a recovery half-time of 3-4 days, indicating covalent derivatization. [3H-ethyl]Chlorpyrifos oxon may be suitable for radiolabeling and characterization of this proposed nucleophilic site.

  15. The CB1 receptor mediates the peripheral effects of ghrelin on AMPK activity but not on growth hormone release.

    PubMed

    Kola, Blerina; Wittman, Gábor; Bodnár, Ibolya; Amin, Faisal; Lim, Chung Thong; Oláh, Márk; Christ-Crain, Mirjam; Lolli, Francesca; van Thuijl, Hinke; Leontiou, Chrysanthia A; Füzesi, Tamás; Dalino, Paolo; Isidori, Andrea M; Harvey-White, Judith; Kunos, George; Nagy, György M; Grossman, Ashley B; Fekete, Csaba; Korbonits, Márta

    2013-12-01

    This study aimed to investigate whether the growth hormone release and metabolic effects of ghrelin on AMPK activity of peripheral tissues are mediated by cannabinoid receptor type 1 (CB1) and the central nervous system. CB1-knockout (KO) and/or wild-type mice were injected peripherally or intracerebroventricularly with ghrelin and CB1 antagonist rimonabant to study tissue AMPK activity and gene expression (transcription factors SREBP1c, transmembrane protein FAS, enzyme PEPCK, and protein HSL). Growth hormone levels were studied both in vivo and in vitro. Peripherally administered ghrelin in liver, heart, and adipose tissue AMPK activity cannot be observed in CB1-KO or CB1 antagonist-treated mice. Intracerebroventricular ghrelin treatment can influence peripheral AMPK activity. This effect is abolished in CB1-KO mice and by intracerebroventricular rimonabant treatment, suggesting that central CB1 receptors also participate in the signaling pathway that mediates the effects of ghrelin on peripheral tissues. Interestingly, in vivo or in vitro growth hormone release is intact in response to ghrelin in CB1-KO animals. Our data suggest that the metabolic effects of ghrelin on AMPK in peripheral tissues are abolished by the lack of functional CB1 receptor via direct peripheral effect and partially through the central nervous system, thus supporting the existence of a possible ghrelin-cannabinoid-CB1-AMPK pathway.

  16. [18F]MK-9470 PET measurement of cannabinoid CB1 receptor availability in chronic cannabis users.

    PubMed

    Ceccarini, Jenny; Kuepper, Rebecca; Kemels, Dieter; van Os, Jim; Henquet, Cécile; Van Laere, Koen

    2015-03-01

    Δ(9) -Tetrahydrocannabinol, the main psychoactive component of cannabis, exerts its central effects through activation of the cerebral type 1 cannabinoid (CB1 ) receptor. Pre-clinical studies have provided evidence that chronic cannabis exposure is linked to decreased CB1 receptor expression and this is thought to be a component underlying drug tolerance and dependence. In this study, we make first use of the selective high-affinity positron emission tomography (PET) ligand [(18) F]MK-9470 to obtain in vivo measurements of cerebral CB1 receptor availability in 10 chronic cannabis users (age = 26.0 ± 4.1 years). Each patient underwent [(18) F]MK-9470 PET within the first week following the last cannabis consumption. A population of 10 age-matched healthy subjects (age = 23.0 ± 2.9 years) was used as control group. Parametric modified standardized uptake value images, reflecting CB1 receptor availability, were calculated. Statistical parametric mapping and volume-of-interest (VOI) analyses of CB1 receptor availability were performed. Compared with controls, cannabis users showed a global decrease in CB1 receptor availability (-11.7 percent). VOI-based analysis demonstrated that the CB1 receptor decrease was significant in the temporal lobe (-12.7 percent), anterior (-12.6 percent) and posterior cingulate cortex (-13.5 percent) and nucleus accumbens (-11.2 percent). Voxel-based analysis confirmed this decrease and regional pattern in CB1 receptor availability in cannabis users. These findings revealed that chronic cannabis use may alter specific regional CB1 receptor expression through neuroadaptive changes in CB1 receptor availability, opening the way for the examination of specific CB1 -cannabis addiction interactions which may predict future cannabis-related treatment outcome.

  17. Elevated Brain Cannabinoid CB1 Receptor Availability in Posttraumatic Stress Disorder: A Positron Emission Tomography Study

    PubMed Central

    Neumeister, Alexander; Normandin, Marc D.; Pietrzak, Robert H.; Piomelli, Daniele; Zheng, Ming-Qiang; Gujarro-Anton, Ana; Potenza, Marc N.; Bailey, Christopher R.; Lin, Shu-fei; Najafzadeh, Soheila; Ropchan, Jim; Henry, Shannan; Corsi-Travali, Stefani; Carson, Richard E.; Huang, Yiyun

    2013-01-01

    Endocannabinoids and their attending cannabinoid type 1 receptor (CB1) have been implicated in animal models of posttraumatic stress disorder (PTSD). However, their specific role has not been studied in people with PTSD. Herein, we present an in vivo imaging study using positron emission tomography (PET) and the CB1-selective radioligand [11C]OMAR in individuals with PTSD, and healthy controls with lifetime histories of trauma (trauma controls [TC]) and those without such histories (healthy controls [HC]). Untreated individuals with PTSD (N=25) with non-combat trauma histories, and TC (N=12) and HC (N=23) participated in a magnetic resonance (MR) imaging scan and a resting PET scan with the CB1 receptor antagonist radiotracer [11C]OMAR, which measures volume of distribution (VT) linearly related to CB1 receptor availability. Peripheral levels of anandamide, 2-arachidonoylglycerol (2-AG), oleoylethanolamide (OEA), palmitoylethanolamide (PEA), and cortisol were also assessed. In the PTSD group, relative to the HC and TC groups, we found elevated brain-wide [11C]OMAR VT values (F(2,53)=7.96, p=.001; 19.5% and 14.5% higher, respectively) which were most pronounced in women (F(1,53)=5.52, p=.023). Anandamide concentrations were reduced in the PTSD relative to the TC (53.1% lower) and HC (58.2% lower) groups. Cortisol levels were lower in the PTSD and TC groups relative to the HC group. Three biomarkers examined collectively—OMAR VT, anandamide, and cortisol—correctly classified nearly 85% of PTSD cases. These results suggest that abnormal CB1 receptor-mediated anandamide signaling is implicated in the etiology of PTSD, and provide a promising neurobiological model to develop novel, evidence-based pharmacotherapies for this disorder. PMID:23670490

  18. Elevation of endogenous anandamide impairs LTP, learning, and memory through CB1 receptor signaling in mice.

    PubMed

    Basavarajappa, Balapal S; Nagre, Nagaraja N; Xie, Shan; Subbanna, Shivakumar

    2014-07-01

    In rodents, many exogenous and endogenous cannabinoids, such as anandamide (AEA) and 2-arachidonyl glycerol (2-AG), have been shown to play an important role in certain hippocampal memory processes. However, the mechanisms by which endogenous AEA regulate this processes are not well understood. Here the effects of AEA on long-term potentiation (LTP), hippocampal-dependent learning and memory tasks, pERK1/2, pCaMKIV, and pCREB signaling events in both cannabinoid receptor type 1 (CB1R) wild-type (WT) and knockout (KO) mice were assessed following administration of URB597, an inhibitor of the fatty acid amide hydrolase (FAAH). Acute administration of URB597 enhanced AEA levels without affecting the levels of 2-AG or CB1R in the hippocampus and neocortex as compared to vehicle. In hippocampal slices, URB597 impaired LTP in CB1R WT but not in KO littermates. URB597 impaired object recognition, spontaneous alternation and spatial memory in the Y-maze test in CB1R WT mice but not in KO mice. Furthermore, URB597 enhanced ERK phosphorylation in WT without affecting total ERK levels in WT or KO mice. URB597 impaired CaMKIV and CREB phosphorylation in WT but not in KO mice. CB1R KO mice have a lower pCaMKIV/CaMKIV ratio and higher pCREB/CREB ratio as compared to WT littermates. Our results indicate that pharmacologically elevated AEA impair LTP, learning and memory and inhibit CaMKIV and CREB phosphorylation, via the activation of CB1Rs. Collectively, these findings also suggest that pharmacological elevation of AEA beyond normal concentrations is also detrimental for the underlying physiological responses.

  19. Elevation of Endogenous Anandamide Impairs LTP, Learning and Memory through CB1 Receptor Signaling in Mice

    PubMed Central

    Basavarajappa, Balapal S.; Nagre, Nagaraja N.; Xie, Shan; Subbanna, Shivakumar

    2014-01-01

    In rodents, many exogenous and endogenous cannabinoids, such as anandamide (AEA) and 2-arachidonyl glycerol (2-AG), have been shown to play an important role in certain hippocampal memory processes. However, the mechanisms by which endogenous AEA regulate this processes are not well understood. Here the effects of AEA on long-term potentiation (LTP), hippocampal-dependent learning and memory tasks, pERK1/2, pCaMKIV, and pCREB signaling events in both cannabinoid receptor type 1 (CB1R) wild type (WT) and knockout (KO) mice were assessed following administration of URB597, an inhibitor of the fatty acid amide hydrolase (FAAH). Acute administration of URB597 enhanced AEA levels without affecting the levels of 2-AG or CB1R in the hippocampus and neocortex compared to vehicle. In hippocampal slices, URB597 impaired LTP in CB1R WT but not in KO littermates. URB597 impaired object recognition, spontaneous alternation and spatial memory in the Y-maze test in CB1R WT mice but not in KO mice. Furthermore, URB597 enhanced ERK phosphorylation in WT without affecting total ERK levels in WT or KO mice. URB597 impaired CaMKIV and CREB phosphorylation in WT but not in KO mice. CB1R KO mice have a lower pCaMKIV/CaMKIV ratio and higher pCREB/CREB ratio compared to WT littermates. Our results indicate that pharmacologically elevated AEA impair LTP, learning and memory and inhibit CaMKIV and CREB phosphorylation, via the activation of CB1Rs. Collectively, these findings also suggest that pharmacological elevation of AEA beyond normal concentrations is also detrimental for the underlying physiological responses. PMID:24648181

  20. Morphological and Behavioural Evidence for Impaired Prefrontal Cortical Function in Female CB1 Receptor Deficient Mice

    PubMed Central

    Lee, Tiffany T.-Y.; Filipski, Sarah B.; Hill, Matthew N.; McEwen, Bruce S.

    2014-01-01

    The medial prefrontal cortex (mPFC) is known to regulate higher order processes like cognitive flexibility. Accumulating behavioral evidence suggests that endocannabinoid (eCB) signaling regulates neuronal architecture within the PFC, as well as certain forms of cognitive flexibility; however, all of these studies have been performed in male rodents and it is currently unknown whether the eCB system performs a similar role in females. To this extent, dendritic morphology of layer II/III neurons in the infra- and prelimbic regions of the mPFC was analyzed and cognitive ability and flexibility in a fixed-platform Morris water maze task was assessed in adult female CB1 receptor knockout (CB1KO) mice. Similar to data generated in male mice, female mice exhibited no difference in acquisition relative to wildtype (WT); however, during reversal learning, CB1KO females spent more time in the original training quadrant and took significantly longer to learn the location of the new platform relative to WT. Within the mPFC, female mice had reduced length and complexity of layer II/III neurons within the prelimbic, but not infralimbic region of the PFC. Taken together, these findings indicate that the role of eCB signaling in cognitive flexibility is independent of sex and disrupted CB1 receptor signaling results in compromised structure and function of the PFC, at least within the prelimbic division. PMID:24907533

  1. Effects of Intra-Amygdala Infusion of CB1 Receptor Agonists on the Reconsolidation of Fear-Potentiated Startle

    ERIC Educational Resources Information Center

    Lin, Hui-Ching; Mao, Sheng-Chun; Gean, Po-Wu

    2006-01-01

    The cannabinoid CB1 receptor has been shown to be critically involved in the extinction of fear memory. Systemic injection of a CB1 receptor antagonist prior to extinction training blocked extinction. Conversely, administration of the cannabinoid uptake inhibitor AM404 facilitated extinction in a dose-dependent manner. Here we show that bilateral…

  2. Energetic Metabolism and Human Sperm Motility: Impact of CB1 Receptor Activation

    PubMed Central

    Barbonetti, A.; Vassallo, M. R. C.; Fortunato, D.; Francavilla, S.; Maccarrone, M.; Francavilla, F.

    2010-01-01

    It has been reported that the endocannabinoid anandamide (AEA) exerts an adverse effect on human sperm motility, which has been ascribed to inhibition of mitochondrial activity. This seems to be at variance with evidence suggesting a major role of glycolysis in supplying ATP for sperm motility; furthermore, the role of AEA-binding receptors in mediating mitochondrial inhibition has not yet been explored. In this study, human sperm exposure to Met-AEA (methanandamide, nonhydrolyzable analog of AEA) in the micromolar range significantly decreased mitochondrial transmembrane potential (ΔΨm), similarly to rotenone, mitochondrial complex I inhibitor. The effect of Met-AEA (1 μm) was prevented by SR141716, CB1 cannabinoid receptor antagonist, but not by SR144528, CB2 antagonist, nor by iodoresiniferatoxin, vanilloid receptor antagonist. The effect of Met-AEA did not involve activation of caspase-9 or caspase-3 and was reverted by washing. In the presence of glucose, sperm exposure either to Met-AEA up to 1 μm or to rotenone for up to 18 h did not affect sperm motility. At higher doses Met-AEA produced a CB1-independent poisoning of spermatozoa, reducing their viability. Under glycolysis blockage, 1 μm Met-AEA, similarly to rotenone, dramatically abolished sperm motility, an effect that was prevented by SR1 and reverted by washing. In conclusion, CB1 activation induced a nonapoptotic decrease of ΔΨm, the detrimental reflection on sperm motility of which could be revealed only under glycolysis blockage, unless very high doses of Met-AEA, producing CB1-independent sperm toxicity, were used. The effects of CB1 activation reported here contribute to elucidate the relationship between energetic metabolism and human sperm motility. PMID:20962050

  3. Cannabinoid type 1 (CB1) receptors on Sim1-expressing neurons regulate energy expenditure in male mice.

    PubMed

    Cardinal, Pierre; Bellocchio, Luigi; Guzmán-Quevedo, Omar; André, Caroline; Clark, Samantha; Elie, Melissa; Leste-Lasserre, Thierry; Gonzales, Delphine; Cannich, Astrid; Marsicano, Giovanni; Cota, Daniela

    2015-02-01

    The paraventricular nucleus of the hypothalamus (PVN) regulates energy balance by modulating not only food intake, but also energy expenditure (EE) and brown adipose tissue thermogenesis. To test the hypothesis that cannabinoid type 1 (CB1) receptor in PVN neurons might control these processes, we used the Cre/loxP system to delete CB1 from single-minded 1 (Sim1) neurons, which account for the majority of PVN neurons. On standard chow, mice lacking CB1 receptor in Sim1 neurons (Sim1-CB1-knockout [KO]) had food intake, body weight, adiposity, glucose metabolism, and EE comparable with wild-type (WT) (Sim1-CB1-WT) littermates. However, maintenance on a high-fat diet revealed a gene-by-diet interaction whereby Sim1-CB1-KO mice had decreased adiposity, improved insulin sensitivity, and increased EE, whereas feeding behavior was similar to Sim1-CB1-WT mice. Additionally, high-fat diet-fed Sim1-CB1-KO mice had increased mRNA expression of the β3-adrenergic receptor, as well as of uncoupling protein-1, cytochrome-c oxidase subunit IV and mitochondrial transcription factor A in the brown adipose tissue, all molecular changes suggestive of increased thermogenesis. Pharmacological studies using β-blockers suggested that modulation of β-adrenergic transmission play an important role in determining EE changes observed in Sim1-CB1-KO. Finally, chemical sympathectomy abolished the obesity-resistant phenotype of Sim1-CB1-KO mice. Altogether, these findings reveal a diet-dependent dissociation in the CB1 receptor control of food intake and EE, likely mediated by the PVN, where CB1 receptors on Sim1-positive neurons do not impact food intake but hinder EE during dietary environmental challenges that promote body weight gain.

  4. Molecular Basis of Cannabinoid CB1 Receptor Coupling to the G Protein Heterotrimer Gαiβγ

    PubMed Central

    Shim, Joong-Youn; Ahn, Kwang H.; Kendall, Debra A.

    2013-01-01

    The cannabinoid (CB1) receptor is a member of the rhodopsin-like G protein-coupled receptor superfamily. The human CB1 receptor, which is among the most expressed receptors in the brain, has been implicated in several disease states, including drug addiction, anxiety, depression, obesity, and chronic pain. Different classes of CB1 agonists evoke signaling pathways through the activation of specific subtypes of G proteins. The molecular basis of CB1 receptor coupling to its cognate G protein is unknown. As a first step toward understanding CB1 receptor-mediated G protein signaling, we have constructed a ternary complex structural model of the CB1 receptor and Gi heterotrimer (CB1-Gi), guided by the x-ray structure of β2-adrenergic receptor (β2AR) in complex with Gs (β2AR-Gs), through 824-ns duration molecular dynamics simulations in a fully hydrated 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine bilayer environment. We identified a group of residues at the juxtamembrane regions of the intracellular loops 2 and 3 (IC2 and IC3) of the CB1 receptor, including Ile-2183.54, Tyr-224IC2, Asp-3386.30, Arg-3406.32, Leu-3416.33, and Thr-3446.36, as potential key contacts with the extreme C-terminal helix α5 of Gαi. Ala mutations of these residues at the receptor-Gi interface resulted in little G protein coupling activity, consistent with the present model of the CB1-Gi complex, which suggests tight interactions between CB1 and the extreme C-terminal helix α5 of Gαi. The model also suggests that unique conformational changes in the extreme C-terminal helix α5 of Gα play a crucial role in the receptor-mediated G protein activation. PMID:24092756

  5. Medial prefrontal cortex endocannabinoid system modulates baroreflex activity through CB(1) receptors.

    PubMed

    Ferreira-Junior, Nilson C; Fedoce, Alessandra G; Alves, Fernando H F; Corrêa, Fernando M A; Resstel, Leonardo B M

    2012-04-01

    Neural reflex mechanisms, such as the baroreflex, are involved in the regulation of cardiovascular system activity. Previous results from our group (Resstel LB, Correa FM. Medial prefrontal cortex NMDA receptors and nitric oxide modulate the parasympathetic component of the baroreflex. Eur J Neurosci 23: 481-488, 2006) have shown that glutamatergic synapses in the ventral portion of the medial prefrontal cortex (vMPFC) modulate baroreflex activity. Moreover, glutamatergic neurotransmission in the vMPFC can be modulated by the endocannabinoids system (eCBs), particularly the endocannabinoid anandamide, through presynaptic CB(1) receptor activation. Therefore, in the present study, we investigated eCBs receptors that are present in the vMPFC, and more specifically whether CB(1) receptors modulate baroreflex activity. We found that bilateral microinjection of the CB(1) receptor antagonist AM251 (100 or 300 pmol/200 nl) into the vMPFC increased baroreflex activity in unanesthetized rats. Moreover, bilateral microinjection of either the anandamide transporter inhibitor AM404 (100 pmol/200 nl) or the inhibitor of the enzyme fatty acid amide hydrolase that degrades anandamide, URB597 (100 pmol/200 nl), into the MPFC decreased baroreflex activity. Finally, pretreatment of the vMPFC with an ineffective dose of AM251 (10 pmol/200 nl) was able to block baroreflex effects of both AM404 and URB597. Taken together, our results support the view that the eCBs in the vMPFC is involved in the modulation of baroreflex activity through the activation of CB(1) receptors, which modulate local glutamate release. PMID:22204950

  6. Activation of the sympathetic nervous system mediates hypophagic and anxiety-like effects of CB1 receptor blockade

    PubMed Central

    Bellocchio, Luigi; Soria-Gómez, Edgar; Quarta, Carmelo; Metna-Laurent, Mathilde; Cardinal, Pierre; Binder, Elke; Cannich, Astrid; Delamarre, Anna; Häring, Martin; Martín-Fontecha, Mar; Vega, David; Leste-Lasserre, Thierry; Bartsch, Dusan; Monory, Krisztina; Lutz, Beat; Chaouloff, Francis; Pagotto, Uberto; Guzman, Manuel; Cota, Daniela; Marsicano, Giovanni

    2013-01-01

    Complex interactions between periphery and the brain regulate food intake in mammals. Cannabinoid type-1 (CB1) receptor antagonists are potent hypophagic agents, but the sites where this acute action is exerted and the underlying mechanisms are not fully elucidated. To dissect the mechanisms underlying the hypophagic effect of CB1 receptor blockade, we combined the acute injection of the CB1 receptor antagonist rimonabant with the use of conditional CB1-knockout mice, as well as with pharmacological modulation of different central and peripheral circuits. Fasting/refeeding experiments revealed that CB1 receptor signaling in many specific brain neurons is dispensable for the acute hypophagic effects of rimonabant. CB1 receptor antagonist-induced hypophagia was fully abolished by peripheral blockade of β-adrenergic transmission, suggesting that this effect is mediated by increased activity of the sympathetic nervous system. Consistently, we found that rimonabant increases gastrointestinal metabolism via increased peripheral β-adrenergic receptor signaling in peripheral organs, including the gastrointestinal tract. Blockade of both visceral afferents and glutamatergic transmission in the nucleus tractus solitarii abolished rimonabant-induced hypophagia. Importantly, these mechanisms were specifically triggered by lipid-deprivation, revealing a nutrient-specific component acutely regulated by CB1 receptor blockade. Finally, peripheral blockade of sympathetic neurotransmission also blunted central effects of CB1 receptor blockade, such as fear responses and anxiety-like behaviors. These data demonstrate that, independently of their site of origin, important effects of CB1 receptor blockade are expressed via activation of peripheral sympathetic activity. Thus, CB1 receptors modulate bidirectional circuits between the periphery and the brain to regulate feeding and other behaviors. PMID:23487769

  7. CB1 cannabinoid receptors mediate endochondral skeletal growth attenuation by Δ9-tetrahydrocannabinol.

    PubMed

    Wasserman, Elad; Tam, Joseph; Mechoulam, Raphael; Zimmer, Andreas; Maor, Gila; Bab, Itai

    2015-01-01

    The endocannabinoid (EC) system regulates bone mass. Because cannabis use during pregnancy results in stature shorter than normal, we examined the role of the EC system in skeletal elongation. We show that CB1 and CB2 cannabinoid receptors are expressed specifically in hypertrophic chondrocytes of the epiphyseal growth cartilage (EGC), which drives vertebrate growth. These cells also express diacylglycerol lipases, critical biosynthetic enzymes of the main EC, and 2-arachidonoylglycerol (2-AG), which is present at significant levels in the EGC. Femora of CB1- and/or CB2-deficient mice at the end of the rapid growth phase are longer compared to wild-type (WT) animals. We find that Δ(9) -tetrahydrocannabinol (THC) slows skeletal elongation of female WT and CB2-, but not CB1-, deficient mice, which is reflected in femoral and lumbar vertebral body length. This in turn results in lower body weight, but unaltered fat content. THC inhibits EGC chondrocyte hypertrophy in ex vivo cultures and reduces the hypertrophic cell zone thickness of CB1-, but not CB2-, deficient mice. These results demonstrate a local growth-restraining EC system in the EGC. The relevance of the present findings to humans remains to be studied.

  8. Comparison of the pharmacology and signal transduction of the human cannabinoid CB1 and CB2 receptors.

    PubMed

    Felder, C C; Joyce, K E; Briley, E M; Mansouri, J; Mackie, K; Blond, O; Lai, Y; Ma, A L; Mitchell, R L

    1995-09-01

    The recently cloned CB2 cannabinoid receptor subtype was stably transfected into AtT-20 and Chinese hamster ovary cells to compare the binding and signal transduction properties of this receptor with those of the CB1 receptor subtype. The binding of [3H]CP 55,940 to both CB1 and CB2 was of similar high affinity (2.6 and 3.7 nM, respectively) and saturable. In competitive binding experiments, (-)-delta 9-tetrahydrocannabinol and CP 55,940 were equipotent at the CB1 and CB2 receptors, but WIN 55212-2 and cannabinol bound with higher affinity to the CB2 than the CB1 receptor. HU 210 had a higher affinity for the CB1 receptor. Anandamide, a recently identified endogenous cannabinoid agonist, was essentially equipotent at both receptor subtypes. The structurally related fatty acid ethanolamides dihomo-gamma-linolenylethanolamide and mead ethanolamide also bound with relatively equal affinity to both receptors, but adrenylethanolamide had a higher affinity for the CB1 receptor. The rank order of potency and efficacy for binding of the selected agonists to the CB1 and CB2 receptors was mimicked in functional inhibition of cAMP accumulation experiments for all compounds tested. Both CB1 and CB2 receptors couple to the inhibition of cAMP accumulation that was pertussis toxin sensitive. SR141716A, a CB1 receptor antagonist, was a poor antagonist at the CB2 receptor in both binding and functional inhibition of cAMP accumulation experiments. When expressed in AtT-20 cells, the CB1 receptor mediated an inhibition of Q-type calcium channels and an activation of inward rectifying potassium channels. In contrast, the CB2 receptor did not modulate the activity of either channel under identical assay conditions. Similar to results obtained for CB1 receptor, the CB2 receptor did not couple to the activation of phospholipases A2, C, or D or to the mobilization of intracellular Ca2+. Except for its inability to couple to the modulation of Q-type calcium channels or inwardly rectifying

  9. The Orphan Nuclear Receptor ERRγ Regulates Hepatic CB1 Receptor-Mediated Fibroblast Growth Factor 21 Gene Expression

    PubMed Central

    Jung, Yoon Seok; Lee, Ji-Min; Kim, Don-Kyu; Lee, Yong-Soo; Kim, Ki-Sun; Kim, Yong-Hoon; Kim, Jina; Lee, Myung-Shik; Lee, In-Kyu; Kim, Seong Heon; Cho, Sung Jin; Jeong, Won-Il; Lee, Chul-Ho; Harris, Robert A.; Choi, Hueng-Sik

    2016-01-01

    Background Fibroblast growth factor 21 (FGF21), a stress inducible hepatokine, is synthesized in the liver and plays important roles in glucose and lipid metabolism. However, the mechanism of hepatic cannabinoid type 1 (CB1) receptor-mediated induction of FGF21 gene expression is largely unknown. Results Activation of the hepatic CB1 receptor by arachidonyl-2’-chloroethylamide (ACEA), a CB1 receptor selective agonist, significantly increased FGF21 gene expression. Overexpression of estrogen-related receptor (ERR) γ increased FGF21 gene expression and secretion both in hepatocytes and mice, whereas knockdown of ERRγ decreased ACEA-mediated FGF21 gene expression and secretion. Moreover, ERRγ, but not ERRα and ERRβ, induced FGF21 gene promoter activity. In addition, deletion and mutation analysis of the FGF21 promoter identified a putative ERRγ-binding motif (AGGTGC, a near-consensus response element). A chromatin immunoprecipitation assay revealed direct binding of ERRγ to the FGF21 gene promoter. Finally, GSK5182, an ERRγ inverse agonist, significantly inhibited hepatic CB1 receptor-mediated FGF21 gene expression and secretion. Conclusion Based on our data, we conclude that ERRγ plays a key role in hepatic CB1 receptor-mediated induction of FGF21 gene expression and secretion. PMID:27455076

  10. The CB1 receptor as an important mediator of hedonic reward processing.

    PubMed

    Friemel, Chris M; Zimmer, Andreas; Schneider, Miriam

    2014-09-01

    The endocannabinoid (ECB) system has emerged recently as a key mediator for reward processing. It is well known that cannabinoids affect appetitive learning processes and can induce reinforcing and rewarding effects. However, the involvement of the ECB system in hedonic aspects of reward-related behavior is not completely understood. With the present study, we investigated the modulatory role of the ECB system on hedonic perception, measured by the pleasure attenuated startle (PAS) paradigm for a palatable food reward. Here, a conditioned odor is thought to induce a pleasant affective state that attenuates an aversive reflex-the acoustic startle response. Modulatory effects of the CB1 receptor antagonist/inverse agonist SR1411716 and the cannabinoid agonist WIN 55 212-2 on PAS were examined in rats. PAS was also measured in CB1 receptor knockout (KO) and wild-type (WT) mice. Pharmacological inhibition as well as the absence of CB1 receptors was found to reduce PAS, whereas WIN 55 212-2 administration increased PAS. Finally, presentation of a conditioned reward cue was found to induce striatal FosB/ΔFosB expression in WT mice, but not in KO mice, indicating a reduced stimulation of reward-related brain regions in conditioned KO mice by odor presentation. We here show that in addition to our previous studies in rats, PAS may also serve as a valuable and suitable measure to assess hedonic processing in mice. Our data further indicate that the ECB system, and in particular CB1 receptor signaling, appears to be highly important for the mediation of hedonic aspects of reward processing.

  11. The CB1 receptor as an important mediator of hedonic reward processing.

    PubMed

    Friemel, Chris M; Zimmer, Andreas; Schneider, Miriam

    2014-09-01

    The endocannabinoid (ECB) system has emerged recently as a key mediator for reward processing. It is well known that cannabinoids affect appetitive learning processes and can induce reinforcing and rewarding effects. However, the involvement of the ECB system in hedonic aspects of reward-related behavior is not completely understood. With the present study, we investigated the modulatory role of the ECB system on hedonic perception, measured by the pleasure attenuated startle (PAS) paradigm for a palatable food reward. Here, a conditioned odor is thought to induce a pleasant affective state that attenuates an aversive reflex-the acoustic startle response. Modulatory effects of the CB1 receptor antagonist/inverse agonist SR1411716 and the cannabinoid agonist WIN 55 212-2 on PAS were examined in rats. PAS was also measured in CB1 receptor knockout (KO) and wild-type (WT) mice. Pharmacological inhibition as well as the absence of CB1 receptors was found to reduce PAS, whereas WIN 55 212-2 administration increased PAS. Finally, presentation of a conditioned reward cue was found to induce striatal FosB/ΔFosB expression in WT mice, but not in KO mice, indicating a reduced stimulation of reward-related brain regions in conditioned KO mice by odor presentation. We here show that in addition to our previous studies in rats, PAS may also serve as a valuable and suitable measure to assess hedonic processing in mice. Our data further indicate that the ECB system, and in particular CB1 receptor signaling, appears to be highly important for the mediation of hedonic aspects of reward processing. PMID:24718372

  12. Blockade of cannabinoid CB(1) receptor function protects against in vivo disseminating brain damage following NMDA-induced excitotoxicity.

    PubMed

    Hansen, Henrik H; Azcoitia, Iñigo; Pons, Sebastián; Romero, Julián; García-Segura, Luis Miguel; Ramos, José Antonio; Hansen, Harald S; Fernández-Ruiz, Javier

    2002-07-01

    The ability of cannabinoid CB(1) receptors to influence glutamatergic excitatory neurotransmission has fueled interest in how these receptors and their endogenous ligands may interact in conditions of excitotoxic insults. The present study characterized the impact of stimulated and inhibited CB(1) receptor function on NMDA-induced excitotoxicity. Neonatal (6-day-old) rat pups received a systemic injection of a mixed CB(1) /CB(2) receptor agonist (WIN55,212-2) or their respective antagonists (SR141716A for CB(1) and SR144528 for CB(2) ) prior to an unilateral intrastriatal microinjection of NMDA. The NMDA-induced excitotoxic damage in the ipsilateral forebrain was not influenced by agonist-stimulated CB(1) receptor function. In contrast, blockade of CB(1), but not CB(2), receptor activity evoked a robust neuroprotective response by reducing the infarct area and the number of cortical degenerating neurons. These results suggest a critical involvement of CB(1) receptor tonus on neuronal survival following NMDA receptor-induced excitotoxicity in vivo.

  13. CB1 cannabinoid receptor in SF1-expressing neurons of the ventromedial hypothalamus determines metabolic responses to diet and leptin.

    PubMed

    Cardinal, Pierre; André, Caroline; Quarta, Carmelo; Bellocchio, Luigi; Clark, Samantha; Elie, Melissa; Leste-Lasserre, Thierry; Maitre, Marlene; Gonzales, Delphine; Cannich, Astrid; Pagotto, Uberto; Marsicano, Giovanni; Cota, Daniela

    2014-10-01

    Metabolic flexibility allows rapid adaptation to dietary change, however, little is known about the CNS mechanisms regulating this process. Neurons in the hypothalamic ventromedial nucleus (VMN) participate in energy balance and are the target of the metabolically relevant hormone leptin. Cannabinoid type-1 (CB1) receptors are expressed in VMN neurons, but the specific contribution of endocannabinoid signaling in this neuronal population to energy balance regulation is unknown. Here we demonstrate that VMN CB1 receptors regulate metabolic flexibility and actions of leptin. In chow-fed mice, conditional deletion of CB1 in VMN neurons (expressing the steroidogenic factor 1, SF1) decreases adiposity by increasing sympathetic activity and lipolysis, and facilitates metabolic effects of leptin. Conversely, under high-fat diet, lack of CB1 in VMN neurons produces leptin resistance, blunts peripheral use of lipid substrates and increases adiposity. Thus, CB1 receptors in VMN neurons provide a molecular switch adapting the organism to dietary change.

  14. CB1 cannabinoid receptor antagonist attenuates left ventricular hypertrophy and Akt-mediated cardiac fibrosis in experimental uremia.

    PubMed

    Lin, Chih-Yuan; Hsu, Yu-Juei; Hsu, Shih-Che; Chen, Ying; Lee, Herng-Sheng; Lin, Shih-Hua; Huang, Shih-Ming; Tsai, Chien-Sung; Shih, Chun-Che

    2015-08-01

    Cannabinoid receptor type 1 (CB1R) plays an important role in the development of myocardial hypertrophy and fibrosis-2 pathological features of uremic cardiomyopathy. However, it remains unknown whether CB1R is involved in the pathogenesis of uremic cardiomyopathy. Here, we aimed to elucidate the role of CB1R in the development of uremic cardiomyopathy via modulation of Akt signalling. The heart size and myocardial fibrosis were evaluated by echocardiography and immunohistochemical staining, respectively, in 5/6 nephrectomy chronic kidney disease (CKD) mice treated with a CB1R antagonist. CB1R and fibrosis marker expression levels were determined by immunoblotting in H9c2 cells exposed to the uremic toxin indoxyl sulfate (IS), with an organic anion transporter 1 inhibitor or a CB1R antagonist or agonist. Akt phosphorylation was also assessed to examine the signaling pathways downstream of CB1R activation induced by IS in H9c2 cells. CKD mice exhibited marked left ventricular hypertrophy and myocardial fibrosis, which were reversed by treatment with the CB1R antagonist. CB1R, collagen I, transforming growth factor (TGF)-β, and α-smooth muscle actin (SMA) expression showed time- and dose-dependent upregulation in H9c2 cells treated with IS. The inhibition of CB1R by either CB1R antagonist or small interfering RNA-mediated knockdown attenuated the expression of collagen I, TGF-β, and α-SMA in IS-treated H9c2 cells, while Akt phosphorylation was enhanced by CB1R agonist and abrogated by CB1R antagonist in these cells. In summary, we conclude that CB1R blockade attenuates LVH and Akt-mediated cardiac fibrosis in a CKD mouse model. Uremic toxin IS stimulates the expression of CB1R and fibrotic markers and CB1R inhibition exerts anti-fibrotic effects via modulation of Akt signaling in H9c2 myofibroblasts. Therefore, the development of drugs targeting CB1R may have therapeutic potential in the treatment of uremic cardiomyopathy. PMID:26093151

  15. Evidence against a critical role of CB1 receptors in adaptation of the hypothalamic-pituitary-adrenal axis and other consequences of daily repeated stress.

    PubMed

    Rabasa, Cristina; Pastor-Ciurana, Jordi; Delgado-Morales, Raúl; Gómez-Román, Almudena; Carrasco, Javier; Gagliano, Humberto; García-Gutiérrez, María S; Manzanares, Jorge; Armario, Antonio

    2015-08-01

    There is evidence that endogenous cannabinoids (eCBs) play a role in the control of the hypothalamic-pituitary-adrenal (HPA) axis, although they appear to have dual, stimulatory and inhibitory, effects. Recent data in rats suggest that eCBs, acting through CB1 receptors (CB1R), may be involved in adaptation of the HPA axis to daily repeated stress. In the present study we analyze this issue in male mice and rats. Using a knock-out mice for the CB1 receptor (CB1-/-) we showed that mutant mice presented similar adrenocorticotropic hormone (ACTH) response to the first IMO as wild-type mice. Daily repeated exposure to 1h of immobilization reduced the ACTH response to the stressor, regardless of the genotype, demonstrating that adaptation occurred to the same extent in absence of CB1R. Prototypical changes observed after repeated stress such as enhanced corticotropin releasing factor (CRH) gene expression in the paraventricular nucleus of the hypothalamus, impaired body weight gain and reduced thymus weight were similarly observed in both genotypes. The lack of effect of CB1R in the expression of HPA adaptation to another similar stressor (restraint) was confirmed in wild-type CD1 mice by the lack of effect of the CB1R antagonist AM251 just before the last exposure to stress. Finally, the latter drug did not blunt the HPA, glucose and behavioral adaptation to daily repeated forced swim in rats. Thus, the present results indicate that CB1R is not critical for overall effects of daily repeated stress or proper adaptation of the HPA axis in mice and rats.

  16. Effects of pro-inflammatory cytokines on cannabinoid CB1 and CB2 receptors in immune cells

    PubMed Central

    Jean-Gilles, Lucie; Braitch, Manjit; Latif, M. Liaque; Aram, Jehan; Fahey, Angela J.; Edwards, Laura J.; Robins, R. Adrian; Tanasescu, Radu; Tighe, Patrick J.; Gran, Bruno; Showe, Louise C.; Alexander, Steve P.; Chapman, Victoria; Kendall, David A.; Constantinescu, Cris S.

    2015-01-01

    Aims To investigate the regulation of cannabinoid receptors CB1 and CB2 on immune cells by proinflammatory cytokines and its potential relevance to the inflammatory neurological disease, multiple sclerosis (MS). CB1 and CB2 signalling may be anti-inflammatory and neuroprotective in neuroinflammatory diseases. Cannabinoids can suppress inflammatory cytokines but the effects of these cytokines on CB1 and CB2 expression and function are unknown. Methods Immune cells from peripheral blood were obtained from healthy volunteers and patients with MS. Expression of CB1 and CB2 mRNA in whole blood cells, peripheral blood mononuclear cells (PBMC) and T cells was determined by quantitative real time-polymerase chain reaction (qRT-PCR). Expression of CB1 and CB2 protein was determined by flow cytometry. CB1 and CB2 signaling in PBMC was determined by Western blotting for Erk1/2. Results Proinflammatory cytokines IL-1β, IL-6 and TNF-α (the latter likely NFκB-dependently) can up-regulate CB1 and CB2 on human whole blood and peripheral blood mononuclear cells (PBMC). We also demonstrate up-regulation of CB1 and CB2 and increased IL-1β, IL-6 and TNF-α mRNA in blood of MS patients compared with controls. Conclusion The levels of CB1 and CB2 can be up-regulated by inflammatory cytokines, which can explain their increase in inflammatory conditions including MS. PMID:25704169

  17. High fat diet and body weight have different effects on cannabinoid CB1 receptor expression in rat nodose ganglia

    PubMed Central

    Cluny, N.L.; Baraboi, E.D.; Mackie, K; Burdyga, G.; Richard, D.; Dockray, G.J.; Sharkey, K.A.

    2013-01-01

    Energy balance is regulated, in part, by orexigenic signaling pathways of the vagus nerve. Fasting-induced modifications in the expression of orexigenic signaling systems have been observed in vagal afferents of lean animals. Altered basal cannabinoid (CB)1 receptor expression in the nodose ganglia in obesity has been reported. Whether altered body weight or a high fat diet modifies independent or additive changes in CB1 expression is unknown. We investigated the expression of CB1 and orexin 1 receptor (OX-1R) in nodose ganglia of rats fed ad libitum or food deprived (24h), maintained on low or high fat diets (HFD), with differing body weights. Male Wistar rats were fed chow or HFD (diet-induced obese: DIO or diet-resistant: DR) or were body weight matched to the DR group but fed chow (wmDR). CB1 and OX-1R immunoreactivity were investigated and CB1 mRNA density was determined using in situ hybridization. CB1 immunoreactivity was measured in fasted rats after sulfated cholecystokinin octapeptide (CCK8s) administration. In chow rats, fasting did not modify the level of CB1 mRNA. More CB1 immunoreactive cells were measured in fed DIO, DR and wmDR rats than chow rats; levels increased after fasting in chow and wmDR rats but not in DIO or DR rats. In HFD fasted rats CCK8s did not reduce CB1 immunoreactivity. OX-1R immunoreactivity was modified by fasting only in DR rats. These data suggest that body weight contributes to the proportion of neurons expressing CB1 immunoreactivity in the nodose ganglion, while HFD blunts fasting-induced increases, and CCK-induced suppression of, CB1-immunoreactivity. PMID:24145047

  18. International Union of Basic and Clinical Pharmacology. LXXIX. Cannabinoid Receptors and Their Ligands: Beyond CB1 and CB2

    PubMed Central

    Howlett, A. C.; Abood, M. E.; Alexander, S. P. H.; Di Marzo, V.; Elphick, M. R.; Greasley, P. J.; Hansen, H. S.; Kunos, G.; Mackie, K.; Mechoulam, R.; Ross, R. A.

    2010-01-01

    There are at least two types of cannabinoid receptors (CB1 and CB2). Ligands activating these G protein-coupled receptors (GPCRs) include the phytocannabinoid Δ9-tetrahydrocannabinol, numerous synthetic compounds, and endogenous compounds known as endocannabinoids. Cannabinoid receptor antagonists have also been developed. Some of these ligands activate or block one type of cannabinoid receptor more potently than the other type. This review summarizes current data indicating the extent to which cannabinoid receptor ligands undergo orthosteric or allosteric interactions with non-CB1, non-CB2 established GPCRs, deorphanized receptors such as GPR55, ligand-gated ion channels, transient receptor potential (TRP) channels, and other ion channels or peroxisome proliferator-activated nuclear receptors. From these data, it is clear that some ligands that interact similarly with CB1 and/or CB2 receptors are likely to display significantly different pharmacological profiles. The review also lists some criteria that any novel “CB3” cannabinoid receptor or channel should fulfil and concludes that these criteria are not currently met by any non-CB1, non-CB2 pharmacological receptor or channel. However, it does identify certain pharmacological targets that should be investigated further as potential CB3 receptors or channels. These include TRP vanilloid 1, which possibly functions as an ionotropic cannabinoid receptor under physiological and/or pathological conditions, and some deorphanized GPCRs. Also discussed are 1) the ability of CB1 receptors to form heteromeric complexes with certain other GPCRs, 2) phylogenetic relationships that exist between CB1/CB2 receptors and other GPCRs, 3) evidence for the existence of several as-yet-uncharacterized non-CB1, non-CB2 cannabinoid receptors; and 4) current cannabinoid receptor nomenclature. PMID:21079038

  19. Comparative effects of chlorpyrifos in wild type and cannabinoid Cb1 receptor knockout mice

    SciTech Connect

    Baireddy, Praveena; Liu, Jing; Hinsdale, Myron; Pope, Carey

    2011-11-15

    Endocannabinoids (eCBs) modulate neurotransmission by inhibiting the release of a variety of neurotransmitters. The cannabinoid receptor agonist WIN 55.212-2 (WIN) can modulate organophosphorus (OP) anticholinesterase toxicity in rats, presumably by inhibiting acetylcholine (ACh) release. Some OP anticholinesterases also inhibit eCB-degrading enzymes. We studied the effects of the OP insecticide chlorpyrifos (CPF) on cholinergic signs of toxicity, cholinesterase activity and ACh release in tissues from wild type (+/+) and cannabinoid CB1 receptor knockout (-/-) mice. Mice of both genotypes (n = 5-6/treatment group) were challenged with CPF (300 mg/kg, 2 ml/kg in peanut oil, sc) and evaluated for functional and neurochemical changes. Both genotypes exhibited similar cholinergic signs and cholinesterase inhibition (82-95% at 48 h after dosing) in cortex, cerebellum and heart. WIN reduced depolarization-induced ACh release in vitro in hippocampal slices from wild type mice, but had no effect in hippocampal slices from knockouts or in striatal slices from either genotype. Chlorpyrifos oxon (CPO, 100 {mu}M) reduced release in hippocampal slices from both genotypes in vitro, but with a greater reduction in tissues from wild types (21% vs 12%). CPO had no significant in vitro effect on ACh release in striatum. CPF reduced ACh release in hippocampus from both genotypes ex vivo, but reduction was again significantly greater in tissues from wild types (52% vs 36%). In striatum, CPF led to a similar reduction (20-23%) in tissues from both genotypes. Thus, while CB1 deletion in mice had little influence on the expression of acute toxicity following CPF, CPF- or CPO-induced changes in ACh release appeared sensitive to modulation by CB1-mediated eCB signaling in a brain-regional manner. -- Highlights: Black-Right-Pointing-Pointer C57Bl/6 mice showed dose-related cholinergic toxicity following subcutaneous chlorpyrifos exposure. Black-Right-Pointing-Pointer Wild type and

  20. Molecular basis of cannabinoid CB1 receptor coupling to the G protein heterotrimer Gαiβγ: identification of key CB1 contacts with the C-terminal helix α5 of Gαi.

    PubMed

    Shim, Joong-Youn; Ahn, Kwang H; Kendall, Debra A

    2013-11-01

    The cannabinoid (CB1) receptor is a member of the rhodopsin-like G protein-coupled receptor superfamily. The human CB1 receptor, which is among the most expressed receptors in the brain, has been implicated in several disease states, including drug addiction, anxiety, depression, obesity, and chronic pain. Different classes of CB1 agonists evoke signaling pathways through the activation of specific subtypes of G proteins. The molecular basis of CB1 receptor coupling to its cognate G protein is unknown. As a first step toward understanding CB1 receptor-mediated G protein signaling, we have constructed a ternary complex structural model of the CB1 receptor and Gi heterotrimer (CB1-Gi), guided by the x-ray structure of β2-adrenergic receptor (β2AR) in complex with Gs (β2AR-Gs), through 824-ns duration molecular dynamics simulations in a fully hydrated 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine bilayer environment. We identified a group of residues at the juxtamembrane regions of the intracellular loops 2 and 3 (IC2 and IC3) of the CB1 receptor, including Ile-218(3.54), Tyr-224(IC2), Asp-338(6.30), Arg-340(6.32), Leu-341(6.33), and Thr-344(6.36), as potential key contacts with the extreme C-terminal helix α5 of Gαi. Ala mutations of these residues at the receptor-Gi interface resulted in little G protein coupling activity, consistent with the present model of the CB1-Gi complex, which suggests tight interactions between CB1 and the extreme C-terminal helix α5 of Gαi. The model also suggests that unique conformational changes in the extreme C-terminal helix α5 of Gα play a crucial role in the receptor-mediated G protein activation.

  1. Basolateral amygdala CB1 cannabinoid receptors mediate nicotine-induced place preference.

    PubMed

    Hashemizadeh, Shiva; Sardari, Maryam; Rezayof, Ameneh

    2014-06-01

    In the present study, the effects of bilateral microinjections of cannabinoid CB1 receptor agonist and antagonist into the basolateral amygdala (intra-BLA) on nicotine-induced place preference were examined in rats. A conditioned place preference (CPP) apparatus was used for the assessment of rewarding effects of the drugs in adult male Wistar rats. Subcutaneous (s.c.) administration of nicotine (0.2mg/kg) induced a significant CPP, without any effect on the locomotor activity during the testing phase. Intra-BLA microinjection of a non-selective cannabinoid CB1/CB2 receptor agonist, WIN 55,212-2 (0.1-0.5 μg/rat) with an ineffective dose of nicotine (0.1mg/kg, s.c.) induced a significant place preference. On the other hand, intra-BLA administration of AM251 (20-60 ng/rat), a selective cannabinoid CB1 receptor antagonist inhibited the acquisition of nicotine-induced place preference. It should be considered that the microinjection of the same doses of WIN 55,212-2 or AM251 into the BLA, by itself had no effect on the CPP score. The administration of a higher dose of AM251 (60 ng/rat) during the acquisition decreased the locomotor activity of animals on the testing phase. Interestingly, the microinjection of AM251 (20 and 40 ng/rat), but not WIN55,212-2 (0.1-0.5 μg/rat), into the BLA inhibited the expression of nicotine-induced place preference without any effect on the locomotor activity. Taken together, these findings support the possible role of endogenous cannabinoid system of the BLA in the acquisition and the expression of nicotine-induced place preference. Furthermore, it seems that there is a functional interaction between the BLA cannabinoid receptors and nicotine in producing the rewarding effects.

  2. Altered expression of the CB1 cannabinoid receptor in the triple transgenic mouse model of Alzheimer's disease.

    PubMed

    Bedse, Gaurav; Romano, Adele; Cianci, Silvia; Lavecchia, Angelo M; Lorenzo, Pace; Elphick, Maurice R; Laferla, Frank M; Vendemiale, Gianluigi; Grillo, Caterina; Altieri, Fabio; Cassano, Tommaso; Gaetani, Silvana

    2014-01-01

    The endocannabinoid system has gained much attention as a new potential pharmacotherapeutic target in various neurodegenerative diseases, including Alzheimer's disease (AD). However, the association between CB1 alterations and the development of AD neuropathology is unclear and often contradictory. In this study, brain CB1 mRNA and CB1 protein levels were analyzed in 3 × Tg-AD mice and compared to wild-type littermates at 2, 6 and 12 months of age, using in-situ hybridization and immunohistochemistry, respectively. Semiquantitative analysis of CB1 expression focused on the prefrontal cortex (PFC), prelimbic cortex, dorsal hippocampus (DH), basolateral amygdala complex (BLA), and ventral hippocampus (VH), all areas with high CB1 densities that are strongly affected by neuropathology in 3 × Tg-AD mice. At 2 months of age, there was no change in CB1 mRNA and protein levels in 3 × Tg-AD mice compared to Non-Tg mice in all brain areas analyzed. However, at 6 and 12 months of age, CB1 mRNA levels were significantly higher in PFC, DH, and BLA, and lower in VH in 3 × Tg-AD mice compared to wild-type littermates. CB1 immunohistochemistry revealed that CB1 protein expression was unchanged in 3 × Tg-AD at 2 and 6 months of age, while a significant decrease in CB1 receptor immunoreactivity was detected in the BLA and DH of 12-month-old 3 × Tg-AD mice, with no sign of alteration in other brain areas. The altered CB1 levels appear, rather, to be age-and/or pathology-dependent, indicating an involvement of the endocannabinoid system in AD pathology and supporting the ECS as a potential novel therapeutic target for treatment of AD.

  3. Development and Characterization of Immobilized Cannabinoid Receptor (CB1/CB2) Open Tubular Column for On-line Screening

    PubMed Central

    Moaddel, R.; Rosenberg, A.; Spelman, K.; Frazier, J.; Frazier, C.; Nocerino, S.; Brizzi, A.; Mugnaini, C.; Wainer, I.W.

    2011-01-01

    Cannabinoid Receptors, CB1 and CB2, are therapeutic targets in the treatment of anxiety, obesity, movement disorders, glaucoma and pain. We have developed an on-line screening method for CB1 and CB2 ligands, where cellular membrane fragments of a chronic myelogenous leukemia cell line, (KU-812), were immobilized onto the surface of an open tubular capillary to create a CB1/CB2-OT column. The binding activities of the immobilized CB1/CB2 receptors were established using frontal affinity chromatographic techniques. This is the first report that confirms the presence of functional CB1 and CB2 receptors on KU-812 cells. The data from this study confirm that the CB1/CB2-OT column can be used to determine the binding affinities (Ki values) for a single compound and to screen individual or a mixture of multiple compounds. The CB1/CB2-OT column was also used to screen a botanical matrix, Zanthoxylum clava-herculis, where preliminary results suggest the presence of a high affinity phytocannabinoid. PMID:21215722

  4. Prenatal exposure to cannabinoids evokes long-lasting functional alterations by targeting CB1 receptors on developing cortical neurons

    PubMed Central

    de Salas-Quiroga, Adán; Díaz-Alonso, Javier; García-Rincón, Daniel; Remmers, Floortje; Vega, David; Gómez-Cañas, María; Lutz, Beat; Guzmán, Manuel; Galve-Roperh, Ismael

    2015-01-01

    The CB1 cannabinoid receptor, the main target of Δ9-tetrahydrocannabinol (THC), the most prominent psychoactive compound of marijuana, plays a crucial regulatory role in brain development as evidenced by the neurodevelopmental consequences of its manipulation in animal models. Likewise, recreational cannabis use during pregnancy affects brain structure and function of the progeny. However, the precise neurobiological substrates underlying the consequences of prenatal THC exposure remain unknown. As CB1 signaling is known to modulate long-range corticofugal connectivity, we analyzed the impact of THC exposure on cortical projection neuron development. THC administration to pregnant mice in a restricted time window interfered with subcerebral projection neuron generation, thereby altering corticospinal connectivity, and produced long-lasting alterations in the fine motor performance of the adult offspring. Consequences of THC exposure were reminiscent of those elicited by CB1 receptor genetic ablation, and CB1-null mice were resistant to THC-induced alterations. The identity of embryonic THC neuronal targets was determined by a Cre-mediated, lineage-specific, CB1 expression-rescue strategy in a CB1-null background. Early and selective CB1 reexpression in dorsal telencephalic glutamatergic neurons but not forebrain GABAergic neurons rescued the deficits in corticospinal motor neuron development of CB1-null mice and restored susceptibility to THC-induced motor alterations. In addition, THC administration induced an increase in seizure susceptibility that was mediated by its interference with CB1-dependent regulation of both glutamatergic and GABAergic neuron development. These findings demonstrate that prenatal exposure to THC has long-lasting deleterious consequences in the adult offspring solely mediated by its ability to disrupt the neurodevelopmental role of CB1 signaling. PMID:26460022

  5. Prenatal exposure to cannabinoids evokes long-lasting functional alterations by targeting CB1 receptors on developing cortical neurons.

    PubMed

    de Salas-Quiroga, Adán; Díaz-Alonso, Javier; García-Rincón, Daniel; Remmers, Floortje; Vega, David; Gómez-Cañas, María; Lutz, Beat; Guzmán, Manuel; Galve-Roperh, Ismael

    2015-11-01

    The CB1 cannabinoid receptor, the main target of Δ(9)-tetrahydrocannabinol (THC), the most prominent psychoactive compound of marijuana, plays a crucial regulatory role in brain development as evidenced by the neurodevelopmental consequences of its manipulation in animal models. Likewise, recreational cannabis use during pregnancy affects brain structure and function of the progeny. However, the precise neurobiological substrates underlying the consequences of prenatal THC exposure remain unknown. As CB1 signaling is known to modulate long-range corticofugal connectivity, we analyzed the impact of THC exposure on cortical projection neuron development. THC administration to pregnant mice in a restricted time window interfered with subcerebral projection neuron generation, thereby altering corticospinal connectivity, and produced long-lasting alterations in the fine motor performance of the adult offspring. Consequences of THC exposure were reminiscent of those elicited by CB1 receptor genetic ablation, and CB1-null mice were resistant to THC-induced alterations. The identity of embryonic THC neuronal targets was determined by a Cre-mediated, lineage-specific, CB1 expression-rescue strategy in a CB1-null background. Early and selective CB1 reexpression in dorsal telencephalic glutamatergic neurons but not forebrain GABAergic neurons rescued the deficits in corticospinal motor neuron development of CB1-null mice and restored susceptibility to THC-induced motor alterations. In addition, THC administration induced an increase in seizure susceptibility that was mediated by its interference with CB1-dependent regulation of both glutamatergic and GABAergic neuron development. These findings demonstrate that prenatal exposure to THC has long-lasting deleterious consequences in the adult offspring solely mediated by its ability to disrupt the neurodevelopmental role of CB1 signaling.

  6. Localization of CB1 Cannabinoid Receptor mRNA in the Brain of the Chick (Gallus domesticus)

    PubMed Central

    Stincic, Todd L.; Hyson, Richard L.

    2008-01-01

    The cannabinoid receptor one (CB1) is prevalent in the brains of many species. Receptor binding, in situ hybridization and immunohistochemical surveys have described the distribution of this receptor in a limited number of species. The current study used in situ hybridization to examine the expression of CB1 mRNA in the chick brain, a non-mammalian vertebrate. The results were compared to the observed patterns of expression for CB1 mRNA, protein, and agonist binding that have been reported for other avian species and mammals. Importantly, since CB1 receptors are typically located on neuronal terminals, comparison of the somatic mRNA expression with previously reported descriptions of the location of functional receptors, allows speculation about the circuits that make use of these receptors. The expression pattern for CB1 mRNA appears to be highly conserved across species in key areas such as the cerebellum and portions of the forebrain. For example, high levels of expression were observed in the avian amygdala and hippocampus, areas which express high levels of CB1 in mammals. The avian substantia nigra and ventral tegmental area, however, showed specific labeling. This finding is in stark contrast to the high levels of receptor binding or CB1 protein, but not CB1 mRNA in these areas of the mammalian brain. Moderate labeling was also seen throughout the hyperpallium and mesopallium. Throughout the brain, a number of regions that are known to be involved in visual processing displayed high levels of expression. For example, the tectum also had strong mRNA expression within layers 9-11 of the stratum griseum et fibrosum superficale and stratum album centrale. PMID:18835551

  7. Pharmacological Blockade of Cannabinoid CB1 Receptors in Diet-Induced Obesity Regulates Mitochondrial Dihydrolipoamide Dehydrogenase in Muscle.

    PubMed

    Arrabal, Sergio; Lucena, Miguel Angel; Canduela, Miren Josune; Ramos-Uriarte, Almudena; Rivera, Patricia; Serrano, Antonia; Pavón, Francisco Javier; Decara, Juan; Vargas, Antonio; Baixeras, Elena; Martín-Rufián, Mercedes; Márquez, Javier; Fernández-Llébrez, Pedro; De Roos, Baukje; Grandes, Pedro; Rodríguez de Fonseca, Fernando; Suárez, Juan

    2015-01-01

    Cannabinoid CB1 receptors peripherally modulate energy metabolism. Here, we investigated the role of CB1 receptors in the expression of glucose/pyruvate/tricarboxylic acid (TCA) metabolism in rat abdominal muscle. Dihydrolipoamide dehydrogenase (DLD), a flavoprotein component (E3) of α-ketoacid dehydrogenase complexes with diaphorase activity in mitochondria, was specifically analyzed. After assessing the effectiveness of the CB1 receptor antagonist AM251 (3 mg kg(-1), 14 days) on food intake and body weight, we could identified seven key enzymes from either glycolytic pathway or TCA cycle--regulated by both diet and CB1 receptor activity--through comprehensive proteomic approaches involving two-dimensional electrophoresis and MALDI-TOF/LC-ESI trap mass spectrometry. These enzymes were glucose 6-phosphate isomerase (GPI), triosephosphate isomerase (TPI), enolase (Eno3), lactate dehydrogenase (LDHa), glyoxalase-1 (Glo1) and the mitochondrial DLD, whose expressions were modified by AM251 in hypercaloric diet-induced obesity. Specifically, AM251 blocked high-carbohydrate diet (HCD)-induced expression of GPI, TPI, Eno3 and LDHa, suggesting a down-regulation of glucose/pyruvate/lactate pathways under glucose availability. AM251 reversed the HCD-inhibited expression of Glo1 and DLD in the muscle, and the DLD and CB1 receptor expression in the mitochondrial fraction. Interestingly, we identified the presence of CB1 receptors at the membrane of striate muscle mitochondria. DLD over-expression was confirmed in muscle of CB1-/- mice. AM251 increased the pyruvate dehydrogenase and glutathione reductase activity in C2C12 myotubes, and the diaphorase/oxidative activity in the mitochondria fraction. These results indicated an up-regulation of methylglyoxal and TCA cycle activity. Findings suggest that CB1 receptors in muscle modulate glucose/pyruvate/lactate pathways and mitochondrial oxidative activity by targeting DLD.

  8. Genetic deletion and pharmacological blockade of CB1 receptors modulates anxiety in the shock-probe burying test.

    PubMed

    Degroot, Aldemar; Nomikos, George G

    2004-08-01

    Cannabinoids affect various behavioral processes, including emotion, learning and memory, which may be specifically regulated through the CB1 receptors. The exact role CB1 receptors play in anxiety remains unclear. Both genetic and pharmacological blockade of CB1 receptors have produced inconsistent effects on anxiety. However, these studies examined passive avoidance as an index of anxiety. In the present study, both active and passive avoidance were examined using the shock-probe burying test while CB1 receptors were blocked genetically or pharmacologically. In the shock-probe burying test, anxiety is reflected by increased burying (increased active avoidance) and increased freezing (increased passive avoidance). In addition, probe-contacts may reflect cognitive performance and/or passive avoidance. As there have been few studies examining mouse behavior in the shock-probe burying test, experiment 1 was designed to pharmacologically validate this model in mice. Our results indicated that administration (i.p.) of chlordiazepoxide (4 mg/kg) or FG7412 (5 mg/kg) decreased and increased burying behavior, respectively, without affecting freezing or the number of probe contacts. Experiments 2 and 3 showed that both CB1 knockout mice and mice injected (i.p.) with 3 or 10 mg/kg, but not 1 mg/kg, of the CB1 receptor antagonist SR141716A had lower burying scores, fewer contacts with the probe and similar freezing times compared with wild-type mice and mice injected with vehicle (experiments 2 and 3). Collectively, these results suggest that CB1 receptor blockade reduces some, but not all, aspects of anxiety. The decrease in probe contacts induced by CB1 receptor blockade may be due to enhanced cognition.

  9. Pharmacological Blockade of Cannabinoid CB1 Receptors in Diet-Induced Obesity Regulates Mitochondrial Dihydrolipoamide Dehydrogenase in Muscle

    PubMed Central

    Arrabal, Sergio; Lucena, Miguel Angel; Canduela, Miren Josune; Ramos-Uriarte, Almudena; Rivera, Patricia; Serrano, Antonia; Pavón, Francisco Javier; Decara, Juan; Vargas, Antonio; Baixeras, Elena; Martín-Rufián, Mercedes; Márquez, Javier; Fernández-Llébrez, Pedro; De Roos, Baukje; Grandes, Pedro; Rodríguez de Fonseca, Fernando; Suárez, Juan

    2015-01-01

    Cannabinoid CB1 receptors peripherally modulate energy metabolism. Here, we investigated the role of CB1 receptors in the expression of glucose/pyruvate/tricarboxylic acid (TCA) metabolism in rat abdominal muscle. Dihydrolipoamide dehydrogenase (DLD), a flavoprotein component (E3) of α-ketoacid dehydrogenase complexes with diaphorase activity in mitochondria, was specifically analyzed. After assessing the effectiveness of the CB1 receptor antagonist AM251 (3 mg kg-1, 14 days) on food intake and body weight, we could identified seven key enzymes from either glycolytic pathway or TCA cycle—regulated by both diet and CB1 receptor activity—through comprehensive proteomic approaches involving two-dimensional electrophoresis and MALDI-TOF/LC-ESI trap mass spectrometry. These enzymes were glucose 6-phosphate isomerase (GPI), triosephosphate isomerase (TPI), enolase (Eno3), lactate dehydrogenase (LDHa), glyoxalase-1 (Glo1) and the mitochondrial DLD, whose expressions were modified by AM251 in hypercaloric diet-induced obesity. Specifically, AM251 blocked high-carbohydrate diet (HCD)-induced expression of GPI, TPI, Eno3 and LDHa, suggesting a down-regulation of glucose/pyruvate/lactate pathways under glucose availability. AM251 reversed the HCD-inhibited expression of Glo1 and DLD in the muscle, and the DLD and CB1 receptor expression in the mitochondrial fraction. Interestingly, we identified the presence of CB1 receptors at the membrane of striate muscle mitochondria. DLD over-expression was confirmed in muscle of CB1-/- mice. AM251 increased the pyruvate dehydrogenase and glutathione reductase activity in C2C12 myotubes, and the diaphorase/oxidative activity in the mitochondria fraction. These results indicated an up-regulation of methylglyoxal and TCA cycle activity. Findings suggest that CB1 receptors in muscle modulate glucose/pyruvate/lactate pathways and mitochondrial oxidative activity by targeting DLD. PMID:26671069

  10. Presynaptic TRPV1 vanilloid receptor function is age- but not CB1 cannabinoid receptor-dependent in the rodent forebrain.

    PubMed

    Köles, László; Garção, Pedro; Zádori, Zoltán S; Ferreira, Samira G; Pinheiro, Bárbara S; da Silva-Santos, Carla S; Ledent, Catherine; Köfalvi, Attila

    2013-08-01

    Neocortical and striatal TRPV1 (vanilloid or capsaicin) receptors (TRPV1Rs) are excitatory ligand-gated ion channels, and are implicated in psychiatric disorders. However, the purported presynaptic neuromodulator role of TRPV1Rs in glutamatergic, serotonergic or dopaminergic terminals of the rodent forebrain remains little understood. With the help of patch-clamp electrophysiology and neurochemical approaches, we mapped the age-dependence of presynaptic TRPV1R function, and furthermore, we aimed at exploring whether the presence of CB1 cannabinoid receptors (CB1Rs) influences the function of the TRPV1Rs, as both receptor types share endogenous ligands. We found that the major factor which affects presynaptic TRPV1R function is age: by post-natal day 13, the amplitude of capsaicin-induced release of dopamine and glutamate is halved in the rat striatum, and two weeks later, capsaicin already loses its effect. However, TRPV1R receptor function is not enhanced by chemical or genetic ablation of the CB1Rs in dopaminergic, glutamatergic and serotonergic terminals of the mouse brain. Altogether, our data indicate a possible neurodevelopmental role for presynaptic TRPV1Rs in the rodent brain, but we found no cross-talk between TRPV1Rs and CB1Rs in the same nerve terminal.

  11. Presynaptic TRPV1 vanilloid receptor function is age- but not CB1 cannabinoid receptor-dependent in the rodent forebrain.

    PubMed

    Köles, László; Garção, Pedro; Zádori, Zoltán S; Ferreira, Samira G; Pinheiro, Bárbara S; da Silva-Santos, Carla S; Ledent, Catherine; Köfalvi, Attila

    2013-08-01

    Neocortical and striatal TRPV1 (vanilloid or capsaicin) receptors (TRPV1Rs) are excitatory ligand-gated ion channels, and are implicated in psychiatric disorders. However, the purported presynaptic neuromodulator role of TRPV1Rs in glutamatergic, serotonergic or dopaminergic terminals of the rodent forebrain remains little understood. With the help of patch-clamp electrophysiology and neurochemical approaches, we mapped the age-dependence of presynaptic TRPV1R function, and furthermore, we aimed at exploring whether the presence of CB1 cannabinoid receptors (CB1Rs) influences the function of the TRPV1Rs, as both receptor types share endogenous ligands. We found that the major factor which affects presynaptic TRPV1R function is age: by post-natal day 13, the amplitude of capsaicin-induced release of dopamine and glutamate is halved in the rat striatum, and two weeks later, capsaicin already loses its effect. However, TRPV1R receptor function is not enhanced by chemical or genetic ablation of the CB1Rs in dopaminergic, glutamatergic and serotonergic terminals of the mouse brain. Altogether, our data indicate a possible neurodevelopmental role for presynaptic TRPV1Rs in the rodent brain, but we found no cross-talk between TRPV1Rs and CB1Rs in the same nerve terminal. PMID:23831917

  12. The CB1 cannabinoid receptor drives corticospinal motor neuron differentiation through the Ctip2/Satb2 transcriptional regulation axis

    PubMed Central

    Díaz-Alonso, Javier; Aguado, Tania; Wu, Chia-Shan; Palazuelos, Javier; Hofmann, Clementine; Garcez, Patricia; Guillemot, Francois; Lu, Hui-Chen; Lutz, Beat; Guzmán, Manuel; Galve-Roperh, Ismael

    2012-01-01

    The generation and specification of pyramidal neuron subpopulations during development relies on a complex network of transcription factors. The CB1 cannabinoid receptor is the major molecular target of endocannabinoids and marijuana active compounds. This receptor has been shown to influence neural progenitor proliferation and axonal growth, but its involvement in neuronal differentiation and the functional impact in the adulthood caused by altering its signaling during brain development are not known. Here we show that the CB1 receptor, by preventing Satb2-mediated repression, increased Ctip2 promoter activity and Ctip2+ neuron generation. Unbalanced neurogenic fate determination found in complete CB1−/− mice and in glutamatergic neuron-specific Nex-CB1−/− mice induced overt alterations in corticospinal motor neuron generation and subcerebral connectivity, thereby resulting in an impairment of skilled motor function in adult mice. Likewise, genetic deletion of CB1 receptors in Thy1-YFP-H mice elicited alterations in corticospinal tract development. Altogether, these data demonstrate that the CB1 receptor contributes to the generation of deep-layer cortical neurons, by coupling endocannabinoid signals from the neurogenic niche to the intrinsic proneurogenic Ctip2/Satb2 axis, thus influencing appropriate subcerebral projection neuron specification and corticospinal motor function in the adulthood. PMID:23175820

  13. The CB(1) cannabinoid receptor drives corticospinal motor neuron differentiation through the Ctip2/Satb2 transcriptional regulation axis.

    PubMed

    Díaz-Alonso, Javier; Aguado, Tania; Wu, Chia-Shan; Palazuelos, Javier; Hofmann, Clementine; Garcez, Patricia; Guillemot, François; Lu, Hui-Chen; Lutz, Beat; Guzmán, Manuel; Galve-Roperh, Ismael

    2012-11-21

    The generation and specification of pyramidal neuron subpopulations during development relies on a complex network of transcription factors. The CB(1) cannabinoid receptor is the major molecular target of endocannabinoids and marijuana active compounds. This receptor has been shown to influence neural progenitor proliferation and axonal growth, but its involvement in neuronal differentiation and the functional impact in the adulthood caused by altering its signaling during brain development are not known. Here we show that the CB(1) receptor, by preventing Satb2 (special AT-rich binding protein 2)-mediated repression, increased Ctip2 (COUP-TF interacting protein 2) promoter activity, and Ctip2-positive neuron generation. Unbalanced neurogenic fate determination found in complete CB(1)(-/-) mice and in glutamatergic neuron-specific Nex-CB(1)(-/-) mice induced overt alterations in corticospinal motor neuron generation and subcerebral connectivity, thereby resulting in an impairment of skilled motor function in adult mice. Likewise, genetic deletion of CB(1) receptors in Thy1-YFP-H mice elicited alterations in corticospinal tract development. Altogether, these data demonstrate that the CB(1) receptor contributes to the generation of deep-layer cortical neurons by coupling endocannabinoid signals from the neurogenic niche to the intrinsic proneurogenic Ctip2/Satb2 axis, thus influencing appropriate subcerebral projection neuron specification and corticospinal motor function in the adulthood.

  14. Cannabinoid-induced mesenteric vasodilation through an endothelial site distinct from CB1 or CB2 receptors.

    PubMed

    Járai, Z; Wagner, J A; Varga, K; Lake, K D; Compton, D R; Martin, B R; Zimmer, A M; Bonner, T I; Buckley, N E; Mezey, E; Razdan, R K; Zimmer, A; Kunos, G

    1999-11-23

    Cannabinoids, including the endogenous ligand arachidonyl ethanolamide (anandamide), elicit not only neurobehavioral but also cardiovascular effects. Two cannabinoid receptors, CB1 and CB2, have been cloned, and studies with the selective CB1 receptor antagonist SR141716A have implicated peripherally located CB1 receptors in the hypotensive action of cannabinoids. In rat mesenteric arteries, anandamide-induced vasodilation is inhibited by SR141716A, but other potent CB1 receptor agonists, such as HU-210, do not cause vasodilation, which implicates an as-yet-unidentified receptor in this effect. Here we show that "abnormal cannabidiol" (Abn-cbd) is a neurobehaviorally inactive cannabinoid that does not bind to CB1 receptors, yet causes SR141716A-sensitive hypotension and mesenteric vasodilation in wild-type mice and in mice lacking CB1 receptors or both CB1 and CB2 receptors. Hypotension by Abn-cbd is also inhibited by cannabidiol (20 microgram/g), which does not influence anandamide- or HU-210-induced hypotension. In the rat mesenteric arterial bed, Abn-cbd-induced vasodilation is unaffected by blockade of endothelial NO synthase, cyclooxygenase, or capsaicin receptors, but it is abolished by endothelial denudation. Mesenteric vasodilation by Abn-cbd, but not by acetylcholine, sodium nitroprusside, or capsaicine, is blocked by SR141716A (1 microM) or by cannabidiol (10 microM). Abn-cbd-induced vasodilation is also blocked in the presence of charybdotoxin (100 nM) plus apamin (100 nM), a combination of K(+)-channel toxins reported to block the release of an endothelium-derived hyperpolarizing factor (EDHF). These findings suggest that Abn-cbd and cannabidiol are a selective agonist and antagonist, respectively, of an as-yet-unidentified endothelial receptor for anandamide, activation of which elicits NO-independent mesenteric vasodilation, possibly by means of the release of EDHF.

  15. Benzyl-1,2,4-triazoles as CB1 Cannabinoid Receptor Ligands: Preparation and In Vitro Pharmacological Evaluation

    PubMed Central

    Hernandez-Folgado, Laura; Decara, Juan; Rodríguez de Fonseca, Fernando; Goya, Pilar; Jagerovic, Nadine

    2016-01-01

    In a previous study, we have identified 3-alkyl-1,5-diaryl-1H-1,2,4-triazoles to be a novel class of cannabinoid type 1 receptor (CB1R) antagonists. In order to expand the number of cannabinoid ligands with a central 1,2,4-triazole scaffold, we have synthesized a novel series of 1-benzyl-1H-1,2,4-triazoles, and some of them were evaluated by CB1R radioligand binding assays. Compound 12a showed the most interesting pharmacological properties, possessing a CB1R affinity in the nanomolar range. PMID:27127651

  16. Benzyl-1,2,4-triazoles as CB 1 Cannabinoid Receptor Ligands: Preparation and In Vitro Pharmacological Evaluation.

    PubMed

    Hernandez-Folgado, Laura; Decara, Juan; Rodríguez de Fonseca, Fernando; Goya, Pilar; Jagerovic, Nadine

    2016-01-01

    In a previous study, we have identified 3-alkyl-1,5-diaryl-1H-1,2,4-triazoles to be a novel class of cannabinoid type 1 receptor (CB1R) antagonists. In order to expand the number of cannabinoid ligands with a central 1,2,4-triazole scaffold, we have synthesized a novel series of 1-benzyl-1H-1,2,4-triazoles, and some of them were evaluated by CB1R radioligand binding assays. Compound 12a showed the most interesting pharmacological properties, possessing a CB1R affinity in the nanomolar range.

  17. MicroRNA let-7d is a target of cannabinoid CB1 receptor and controls cannabinoid signaling.

    PubMed

    Chiarlone, Anna; Börner, Christine; Martín-Gómez, Laura; Jiménez-González, Ada; García-Concejo, Adrián; García-Bermejo, María L; Lorente, Mar; Blázquez, Cristina; García-Taboada, Elena; de Haro, Amador; Martella, Elisa; Höllt, Volker; Rodríguez, Raquel; Galve-Roperh, Ismael; Kraus, Jürgen; Guzmán, Manuel

    2016-09-01

    Cannabinoid CB1 receptor, the molecular target of endocannabinoids and cannabis active components, is one of the most abundant metabotropic receptors in the brain. Cannabis is widely used for both recreational and medicinal purposes. Despite the ever-growing fundamental roles of microRNAs in the brain, the possible molecular connections between the CB1 receptor and microRNAs are surprisingly unknown. Here, by using reporter gene constructs that express interaction sequences for microRNAs in human SH-SY5Y neuroblastoma cells, we show that CB1 receptor activation enhances the expression of several microRNAs, including let-7d. This was confirmed by measuring hsa-let-7d expression levels. Accordingly, knocking-down CB1 receptor in zebrafish reduced dre-let-7d levels, and knocking-out CB1 receptor in mice decreased mmu-let-7d levels in the cortex, striatum and hippocampus. Conversely, knocking-down let-7d increased CB1 receptor mRNA expression in zebrafish, SH-SY5Y cells and primary striatal neurons. Likewise, in primary striatal neurons chronically exposed to a cannabinoid or opioid agonist, a let-7d-inhibiting sequence facilitated not only cannabinoid or opioid signaling but also cannabinoid/opioid cross-signaling. Taken together, these findings provide the first evidence for a bidirectional link between the CB1 receptor and a microRNA, namely let-7d, and thus unveil a new player in the complex process of cannabinoid action. PMID:27179908

  18. MicroRNA let-7d is a target of cannabinoid CB1 receptor and controls cannabinoid signaling.

    PubMed

    Chiarlone, Anna; Börner, Christine; Martín-Gómez, Laura; Jiménez-González, Ada; García-Concejo, Adrián; García-Bermejo, María L; Lorente, Mar; Blázquez, Cristina; García-Taboada, Elena; de Haro, Amador; Martella, Elisa; Höllt, Volker; Rodríguez, Raquel; Galve-Roperh, Ismael; Kraus, Jürgen; Guzmán, Manuel

    2016-09-01

    Cannabinoid CB1 receptor, the molecular target of endocannabinoids and cannabis active components, is one of the most abundant metabotropic receptors in the brain. Cannabis is widely used for both recreational and medicinal purposes. Despite the ever-growing fundamental roles of microRNAs in the brain, the possible molecular connections between the CB1 receptor and microRNAs are surprisingly unknown. Here, by using reporter gene constructs that express interaction sequences for microRNAs in human SH-SY5Y neuroblastoma cells, we show that CB1 receptor activation enhances the expression of several microRNAs, including let-7d. This was confirmed by measuring hsa-let-7d expression levels. Accordingly, knocking-down CB1 receptor in zebrafish reduced dre-let-7d levels, and knocking-out CB1 receptor in mice decreased mmu-let-7d levels in the cortex, striatum and hippocampus. Conversely, knocking-down let-7d increased CB1 receptor mRNA expression in zebrafish, SH-SY5Y cells and primary striatal neurons. Likewise, in primary striatal neurons chronically exposed to a cannabinoid or opioid agonist, a let-7d-inhibiting sequence facilitated not only cannabinoid or opioid signaling but also cannabinoid/opioid cross-signaling. Taken together, these findings provide the first evidence for a bidirectional link between the CB1 receptor and a microRNA, namely let-7d, and thus unveil a new player in the complex process of cannabinoid action.

  19. Ghrelin-Induced Orexigenic Effect in Rats Depends on the Metabolic Status and Is Counteracted by Peripheral CB1 Receptor Antagonism

    PubMed Central

    Alen, Francisco; Crespo, Inmaculada; Ramírez-López, María Teresa; Jagerovic, Nadine; Goya, Pilar; de Fonseca, Fernando Rodríguez; de Heras, Raquel Gómez; Orio, Laura

    2013-01-01

    Ghrelin is an endogenous regulator of energy homeostasis synthesized by the stomach to stimulate appetite and positive energy balance. Similarly, the endocannabinoid system is part of our internal machinery controlling food intake and energy expenditure. Both peripheral and central mechanisms regulate CB1-mediated control of food intake and a functional relationship between hypothalamic ghrelin and cannabinoid CB1 receptor has been proposed. First of all, we investigated brain ghrelin actions on food intake in rats with different metabolic status (negative or equilibrate energy balance). Secondly, we tested a sub-anxiogenic ultra-low dose of the CB1 antagonist SR141716A (Rimonabant) and the peripheral-acting CB1 antagonist LH-21 on ghrelin orexigenic actions. We found that: 1) central administration of ghrelin promotes food intake in free feeding animals but not in 24 h food-deprived or chronically food-restricted animals; 2) an ultra-low dose of SR141716A (a subthreshold dose 75 folds lower than the EC50 for induction of anxiety) completely counteracts the orexigenic actions of central ghrelin in free feeding animals; 3) the peripheral-restricted CB1 antagonist LH-21 blocks ghrelin-induced hyperphagia in free feeding animals. Our study highlights the importance of the animaĺs metabolic status for the effectiveness of ghrelin in promoting feeding, and suggests that the peripheral endocannabinoid system may interact with ghrelińs signal in the control of food intake under equilibrate energy balance conditions. PMID:23565287

  20. Dysregulation of cannabinoid CB1 receptor and associated signaling networks in brains of cocaine addicts and cocaine-treated rodents.

    PubMed

    Álvaro-Bartolomé, M; García-Sevilla, J A

    2013-09-01

    The endocannabinoid system is implicated in the neurobiology of cocaine addiction. This study evaluated the status of cannabinoid (CB) CB1 and CB2 receptors, the endocytic cycle of CB1 receptors, G protein-coupled receptor regulatory kinases (GRK), and associated signaling (mammalian target of rapamicin (mTOR) and 70kDa ribosomal protein S6 kinase (p70S6K)) in brain cortices of drug abusers and cocaine- and cannabinoid-treated rodents. The main results indicate that in cocaine adddicts, but not in mixed cocaine/opiate or opiate abusers, CB1 receptor protein in the prefrontal cortex (PFC) was reduced (-44%, total homogenate) with a concomitant receptor redistribution and/or internalization (decreases in membranes and increases in cytosol). In cocaine addicts, the reductions of CB1 receptors and GRK2/3/5 (-26% to -30%) indicated receptor desensitization. CB2 receptor protein was not significantly altered in the PFC of cocacine addicts. Chronic cocaine in mice and rats also reduced CB1 receptor protein (-41% and -80%) in the cerebral cortex inducing receptor redistribution and/or internalization. The CB1 receptor agonist WIN55212-2 caused receptor downregulation (decreases in membranes and cytosol) and the antagonists rimonabant and AM281 induced opposite effects (receptor upregulation in membranes and cytosol). Rimonabant and AM281 also behaved as inverse agonists on the activation of mTOR and its target p70S6K. Chronic cocaine in mice was associated with tolerance to the acute activation of mTOR and p70S6K. In long-term cocaine addicts, mTOR and p70S6K activations were not altered when compared with controls, indicating that CB1 receptor signaling was dampened. The dysregulation of CB1 receptor, GRK2/3/5, and mTOR/p70S6K signaling by cocaine may contribute to alterations of neuroplasticity and/or neurotoxicity in brains of cocaine addicts.

  1. Dysregulation of cannabinoid CB1 receptor and associated signaling networks in brains of cocaine addicts and cocaine-treated rodents.

    PubMed

    Álvaro-Bartolomé, M; García-Sevilla, J A

    2013-09-01

    The endocannabinoid system is implicated in the neurobiology of cocaine addiction. This study evaluated the status of cannabinoid (CB) CB1 and CB2 receptors, the endocytic cycle of CB1 receptors, G protein-coupled receptor regulatory kinases (GRK), and associated signaling (mammalian target of rapamicin (mTOR) and 70kDa ribosomal protein S6 kinase (p70S6K)) in brain cortices of drug abusers and cocaine- and cannabinoid-treated rodents. The main results indicate that in cocaine adddicts, but not in mixed cocaine/opiate or opiate abusers, CB1 receptor protein in the prefrontal cortex (PFC) was reduced (-44%, total homogenate) with a concomitant receptor redistribution and/or internalization (decreases in membranes and increases in cytosol). In cocaine addicts, the reductions of CB1 receptors and GRK2/3/5 (-26% to -30%) indicated receptor desensitization. CB2 receptor protein was not significantly altered in the PFC of cocacine addicts. Chronic cocaine in mice and rats also reduced CB1 receptor protein (-41% and -80%) in the cerebral cortex inducing receptor redistribution and/or internalization. The CB1 receptor agonist WIN55212-2 caused receptor downregulation (decreases in membranes and cytosol) and the antagonists rimonabant and AM281 induced opposite effects (receptor upregulation in membranes and cytosol). Rimonabant and AM281 also behaved as inverse agonists on the activation of mTOR and its target p70S6K. Chronic cocaine in mice was associated with tolerance to the acute activation of mTOR and p70S6K. In long-term cocaine addicts, mTOR and p70S6K activations were not altered when compared with controls, indicating that CB1 receptor signaling was dampened. The dysregulation of CB1 receptor, GRK2/3/5, and mTOR/p70S6K signaling by cocaine may contribute to alterations of neuroplasticity and/or neurotoxicity in brains of cocaine addicts. PMID:23727505

  2. Intra-accumbal CB1 receptor blockade reduced extinction and reinstatement of morphine.

    PubMed

    Khaleghzadeh-Ahangar, Hossein; Haghparast, Abbas

    2015-10-01

    The limbic dopaminergic reward system is the main target of morphine-like drugs which begins from the ventral tegmental area (VTA) and sends its dopaminergic projections to the nucleus accumbens (NAc), amygdala, hippocampus and prefrontal cortex. Cannabinoid receptors exist in afferent neurons from these areas to the NAc and can modulate glutamate synaptic transmission in the NAc. Cannabinoids can interact with the opiate system in reward-related behaviors; nevertheless these systems' interaction in extinction duration and reinstatement has not been shown. In the present study, the effects of bilateral intra-accumbal administration of AM251, a CB1 receptor antagonist, on the duration of the extinction phase and reinstatement to morphine were investigated by conditioned place preference (CPP) paradigm. Forty eight adult male albino Wistar rats were used. Bilateral intra-accumbal administration of AM251 (15, 45 and 90μM/0.5μl DMSO per side) was performed. Subcutaneous administration of morphine (5mg/kg) in three consecutive days was used to induce CPP. The results showed that administration of the maximal dose of AM251 during the extinction period significantly reduces duration of extinction and reinstatement to morphine. Administration of the middle dose during the extinction period significantly attenuated reinstatement to morphine. A single microinjection of the middle dose just before the reinstatement phase significantly attenuated reinstatement to morphine only, while bilateral intra-accumbal administration of neither the lowest dose nor the vehicle (DMSO) had any effects. These results for the first time indicated that CB1 receptors within the NAc are involved in the maintenance of morphine rewarding properties, and morphine seeking behaviors in extinguished morphine-induced CPP rats.

  3. Attenuation of morphine antinociceptive tolerance by a CB1 receptor agonist and an NMDA receptor antagonist: interactive effects

    PubMed Central

    Fischer, Bradford D.; Ward, Sara J.; Henry, Fredrick E.; Dykstra, Linda A.

    2009-01-01

    CB1 cannabinoid (CB1) receptor agonists and N-Methyl-d-Aspartate (NMDA) receptor antagonists attenuate the development of morphine antinociceptive tolerance. The present study used dose-addition analysis to evaluate CB1/NMDA receptor interactions on this endpoint. Chronic morphine administration (5 days, 100 mg/kg, twice daily) resulted in a 2.8-fold rightward shift in the morphine dose-effect curve. Co-administration of either the CB1 receptor agonist CP-55940 (5-(1,1-Dimethylheptyl)-2-[5-hydroxy-2-(3-hydroxypropyl)cyclohexyl]phenol; 0.32-1.0 mg/kg) or the NMDA receptor antagonist (−)-6-phosphonomethyl-deca-hydroisoquinoline-3-carboxylic acid (LY235959; 1.0-3.2 mg/kg) with morphine dose-dependently attenuated morphine tolerance. The relative potency of each drug alone was quantified using a defined level of effect (one-quarter log shift in the morphine dose-effect curve), resulting in equieffective doses of 0.42 mg/kg and 1.1 mg/kg for CP-55940 and LY235959, respectively. Subsequent experiments assessed CP-55940/LY235959 interactions using a fixed-proportion design. Co-administration of CP-55940/LY235959 mixtures (1:1, 1:3.2, or 1:10 CP-55940/LY235959) with morphine dose-dependently attenuated morphine tolerance. Isobolographic and dose-addition analysis were used to statistically compare the experimentally determined potency for each mixture (zmix) with predicted additive potency (zadd). Mixtures of 1:1 and 1:3.2 CP-55940/LY235959 produced additive effects (zadd = zmix), while the mixture of 1:10 CP-55940/LY235959 produced a supra-additive effect (zadd > zmix). These results suggest that CP-55940 and LY235959 produce additive or supra-additive attenuation of morphine antinociceptive tolerance after repeated morphine administration, depending on their relative concentrations. PMID:19699755

  4. Evaluation of the abuse potential of AM281, a new synthetic cannabinoid CB1 receptor antagonist.

    PubMed

    Botanas, Chrislean Jun; de la Peña, June Bryan; Dela Pena, Irene Joy; Tampus, Reinholdgher; Kim, Hee Jin; Yoon, Seong Shoon; Seo, Joung-Wook; Jeong, Eun Ju; Cheong, Jae Hoon

    2015-11-01

    AM281 (1-(2,4-dichlorophenyl)-5-(4-iodophenyl)-4-methyl-N-4-morpholinyl-1H-pyrazole-3-carboxamide) is a new synthetic cannabinoid CB1 receptor antagonist. Similar to other cannabinoid antagonists, AM281 has been suggested to have therapeutic indications. However, recent reports have suggested that cannabinoid CB1 receptor antagonists may share similar behavioral effects with other drugs of abuse such as cocaine and amphetamine. These reports cast doubts on the safety profile of AM281. Thus, in the present study we evaluated the abuse potential (rewarding and reinforcing effects) of AM281 through two of the most widely used animal models for assessing the abuse potential of drugs: the conditioned place preference (CPP) and self-administration (SA) tests. Experiments were performed in Sprague-Dawley rats in various dosages [CPP (0.1, 0.5 or 2.5mg/kg), SA (0.005, 0.025 or 0.1mg/kg/infusion)]. We also delved into the consequences of repeated drug exposure on the subsequent response to the drug. Thus, parallel experiments were carried out in rats pretreated with AM281 for 7 or 14 days. Our findings indicated that AM281, at any dose, did not induce CPP and SA in drug-naïve rats. Interestingly, significant CPP (0.5mg/kg of AM281), but not SA, was observed in 14 days pretreated rats. These observations suggest that AM281 per se has no or minimal rewarding and reinforcing properties, but alterations in neuronal functions and behavior due to repeated AM281 exposure may contribute in part to the abuse potential of this drug. In view of this finding, we advocate the careful use, monitoring, and dispensation of AM281.

  5. The endocannabinoid 2-AG controls skeletal muscle cell differentiation via CB1 receptor-dependent inhibition of Kv7 channels

    PubMed Central

    Iannotti, Fabio A.; Silvestri, Cristoforo; Mazzarella, Enrico; Martella, Andrea; Calvigioni, Daniela; Piscitelli, Fabiana; Ambrosino, Paolo; Petrosino, Stefania; Czifra, Gabriella; Bíró, Tamás; Harkany, Tibor; Taglialatela, Maurizio; Di Marzo, Vincenzo

    2014-01-01

    Little is known of the involvement of endocannabinoids and cannabinoid receptors in skeletal muscle cell differentiation. We report that, due to changes in the expression of genes involved in its metabolism, the levels of the endocannabinoid 2-arachidonoylglycerol (2-AG) are decreased both during myotube formation in vitro from murine C2C12 myoblasts and during mouse muscle growth in vivo. The endocannabinoid, as well as the CB1 agonist arachidonoyl-2-chloroethylamide, prevent myotube formation in a manner antagonized by CB1 knockdown and by CB1 antagonists, which, per se, instead stimulate differentiation. Importantly, 2-AG also inhibits differentiation of primary human satellite cells. Muscle fascicles from CB1 knockout embryos contain more muscle fibers, and postnatal mice show muscle fibers of an increased diameter relative to wild-type littermates. Inhibition of Kv7.4 channel activity, which plays a permissive role in myogenesis and depends on phosphatidylinositol 4,5-bisphosphate (PIP2), underlies the effects of 2-AG. We find that CB1 stimulation reduces both total and Kv7.4-bound PIP2 levels in C2C12 cells and inhibits Kv7.4 currents in transfected CHO cells. We suggest that 2-AG is an endogenous repressor of myoblast differentiation via CB1-mediated inhibition of Kv7.4 channels. PMID:24927567

  6. The endocannabinoid anandamide during lactation increases body fat content and CB1 receptor levels in mice adipose tissue

    PubMed Central

    Aguirre, C A; Castillo, V A; Llanos, M N

    2015-01-01

    Type 1 cannabinoid receptors (CB1R) modulate energy balance; thus, their premature activation may result in altered physiology of tissues involved in such a function. Activation of CB1R mainly occurs after binding to the endocannabinoid Anandamide (AEA). The objective of this study was to evaluate the effects of AEA treatment during lactation on epididymal and body fat content, in addition to CB1R protein level at weaning. With this purpose, male mice pups were orally treated with AEA (20 μg g−1 body weight) or vehicle during lactation. Mice (21 days old) were killed and epididymal fat was extracted to evaluate its amount, adipocyte size and CB1R protein levels by western blot analysis. Total body fat percentage was also evaluated. Anandamide-treated mice showed an increased body fat content at 21 and 150 days of age. Moreover, epididymal adipose tissue amount, adipocyte size and CB1R protein levels were higher in the AEA-treated group. This in vivo study shows for the first time that a progressive increase in body fat accumulation can be programmed in early stages of life by oral treatment with the endocannabinoid AEA, a fact associated with an increased amount of epididymal fat pads and a higher expression of CB1R in this tissue. PMID:26098446

  7. The localization and physiological effects of cannabinoid receptor 1 (CB1) in the brain stem auditory system of the chick

    PubMed Central

    Stincic, Todd L.; Hyson, Richard L.

    2011-01-01

    Fast, temporally-precise, and consistent synaptic transmission is required to encode features of acoustic stimuli. Neurons of nucleus magnocellularis (NM) in the auditory brain stem of the chick possess numerous adaptations to optimize the coding of temporal information. One potential problem for the system is the depression of synaptic transmission during a prolonged stimulus. The present studies tested the hypothesis that cannabinoid receptor one (CB1) signaling may limit synaptic depression at the auditory nerve-NM synapse. In situ hybridization was used to confirm that CB1 mRNA is expressed in the cochlear ganglion; immunohistochemistry was used to confirm the presence of CB1 protein in NM. These findings are consistent with the common presynaptic locus of CB1 in the brain. Rate-dependent synaptic depression was then examined in a brain slice preparation before and after administration of WIN 55,212-2 (WIN), a potent CB1 agonist. WIN decreased the amplitude of excitatory postsynaptic currents and also reduced depression across a train of stimuli. The effect was most obvious late in the pulse train and during high rates of stimulation. This CB1-mediated influence could allow for lower, but more consistent activation of NM neurons, which could be of importance for optimizing the coding of prolonged, temporally-locked acoustic stimuli. PMID:21703331

  8. The endocannabinoid anandamide during lactation increases body fat content and CB1 receptor levels in mice adipose tissue.

    PubMed

    Aguirre, C A; Castillo, V A; Llanos, M N

    2015-01-01

    Type 1 cannabinoid receptors (CB1R) modulate energy balance; thus, their premature activation may result in altered physiology of tissues involved in such a function. Activation of CB1R mainly occurs after binding to the endocannabinoid Anandamide (AEA). The objective of this study was to evaluate the effects of AEA treatment during lactation on epididymal and body fat content, in addition to CB1R protein level at weaning. With this purpose, male mice pups were orally treated with AEA (20 μg g(-1) body weight) or vehicle during lactation. Mice (21 days old) were killed and epididymal fat was extracted to evaluate its amount, adipocyte size and CB1R protein levels by western blot analysis. Total body fat percentage was also evaluated. Anandamide-treated mice showed an increased body fat content at 21 and 150 days of age. Moreover, epididymal adipose tissue amount, adipocyte size and CB1R protein levels were higher in the AEA-treated group. This in vivo study shows for the first time that a progressive increase in body fat accumulation can be programmed in early stages of life by oral treatment with the endocannabinoid AEA, a fact associated with an increased amount of epididymal fat pads and a higher expression of CB1R in this tissue. PMID:26098446

  9. Anti-obesity efficacy of LH-21, a cannabinoid CB1 receptor antagonist with poor brain penetration, in diet-induced obese rats

    PubMed Central

    Alonso, Mónica; Serrano, Antonia; Vida, Margarita; Crespillo, Ana; Hernandez-Folgado, Laura; Jagerovic, Nadine; Goya, Pilar; Reyes-Cabello, Carmen; Perez-Valero, Vidal; Decara, Juan; Macías-González, Manuel; Bermúdez-Silva, Francisco Javier; Suárez, Juan; Rodríguez de Fonseca, Fernando; Pavón, Francisco Javier

    2012-01-01

    BACKGROUND AND PURPOSE Peripheral blockade of cannabinoid CB1 receptors has been proposed as a safe and effective therapy against obesity, putatively devoid of the adverse psychiatric side effects of centrally acting CB1 receptor antagonists. In this study we analysed the effects of LH-21, a peripherally acting neutral cannabinoid receptor antagonist with poor brain penetration, in an animal model of diet-induced obesity. EXPERIMENTAL APPROACH To induce obesity, male Wistar rats were fed a high-fat diet (HFD; 60 kcal% fat) whereas controls received a standard diet (SD; 10 kcal% fat). Following 10 weeks of feeding, animals received a daily i.p. injection of vehicle or 3 mg·kg−1 LH-21 for 10 days. Plasma and liver samples were used for biochemical analyses whereas visceral fat-pad samples were analysed for lipid metabolism gene expression using real-time RT-PCR. In addition, the potential of LH-21 to interact with hepatic cytochrome P450 isoforms and cardiac human Ether-à-go-go Related Gene (hERG) channels was evaluated. KEY RESULTS LH-21 reduced feeding and body weight gain in HFD-fed animals compared with the control group fed SD. In adipose tissue, this effect was associated with decreased gene expression of: (i) leptin; (ii) lipogenic enzymes, including SCD-1; (iii) CB1 receptors; and (iv) both PPARα and PPARγ. Although there were no significant differences in plasma parameters between HFD- and SD-fed rats, LH-21 did not seem to induce hepatic, cardiac or renal toxicity. CONCLUSIONS AND IMPLICATIONS These results support the hypothesis that treatment with the peripherally neutral acting CB1 receptor antagonist, LH-21, may promote weight loss through modulation of visceral adipose tissue. PMID:21951309

  10. Anandamide drives cell cycle progression through CB1 receptors in a rat model of synchronized liver regeneration.

    PubMed

    Pisanti, Simona; Picardi, Paola; Pallottini, Valentina; Martini, Chiara; Petrosino, Stefania; Proto, Maria Chiara; Vitale, Mario; Laezza, Chiara; Gazzerro, Patrizia; Di Marzo, Vincenzo; Bifulco, Maurizio

    2015-12-01

    The endocannabinoid system, through cannabinoid receptor signaling by endocannabinoids, is involved in a wide range of functions and physiopathological conditions. To date, very little is known concerning the role of the endocannabinoids in the control and regulation of cell proliferation. An anti-proliferative action of CB1 signaling blockade in neurogenesis and angiogenesis argues in favor of proliferation-promoting functions of endocannabinoids through CB1 receptors when pro-growth signals are present. Furthermore, liver regeneration, a useful in vivo model of synchronized cell proliferation, is characterized by a peak of anandamide that elicits through CB1 receptor, the expression of critical mitosis genes. The aim of this study was to focus on the timing of endocannabinoid signaling changes during the different phases of the cell cycle, exploiting the rat liver regeneration model following partial hepatectomy, the most useful to study synchronized cell cycle in vivo. Hepatic regeneration led to increased levels of anandamide and endocannabinoid-like molecules oleoylethanolamide (OEA) and palmitoylethanolamide (PEA) in the G1 phase of the cell cycle, with a concomitant increase in CB1 mRNA levels, whose protein expression peaked later during the S phase. Blocking of CB1 receptor with a low dose of the selective antagonist/inverse agonist SR141716 (0.7 mg/kg/dose) affected cell cycle progression reducing the expression of PCNA, and through the inhibition of pERK and pSTAT3 pathways. These results support the notion that the signaling mediated by anandamide through CB1 receptor may be important for the entry and progression of cells into the cell cycle and hence for their proliferation under mitogenic signals.

  11. Regulation of Hippocampal Cannabinoid CB1 Receptor Actions by Adenosine A1 Receptors and Chronic Caffeine Administration: Implications for the Effects of Δ9-Tetrahydrocannabinol on Spatial Memory

    PubMed Central

    Sousa, Vasco C; Assaife-Lopes, Natália; Ribeiro, Joaquim A; Pratt, Judith A; Brett, Ros R; Sebastião, Ana M

    2011-01-01

    The cannabinoid CB1 receptor-mediated modulation of γ-aminobutyric acid (GABA) release from inhibitory interneurons is important for the integrity of hippocampal-dependent spatial memory. Although adenosine A1 receptors have a central role in fine-tuning excitatory transmission in the hippocampus, A1 receptors localized in GABAergic cells do not directly influence GABA release. CB1 and A1 receptors are the main targets for the effects of two of the most heavily consumed psychoactive substances worldwide: Δ9-tetrahydrocannabinol (THC, a CB1 receptor agonist) and caffeine (an adenosine receptor antagonist). We first tested the hypothesis that an A1–CB1 interaction influences GABA and glutamate release in the hippocampus. We found that A1 receptor activation attenuated the CB1-mediated inhibition of GABA and glutamate release and this interaction was manifested at the level of G-protein activation. Using in vivo and in vitro approaches, we then investigated the functional implications of the adenosine–cannabinoid interplay that may arise following chronic caffeine consumption. Chronic administration of caffeine in mice (intraperitoneally, 3 mg/kg/day, for 15 days, >12 h before trials) led to an A1-mediated enhancement of the CB1-dependent acute disruptive effects of THC on a short-term spatial memory task, despite inducing a reduction in cortical and hippocampal CB1 receptor number and an attenuation of CB1 coupling with G protein. A1 receptor levels were increased following chronic caffeine administration. This study shows that A1 receptors exert a negative modulatory effect on CB1-mediated inhibition of GABA and glutamate release, and provides the first evidence of chronic caffeine-induced alterations on the cannabinoid system in the cortex and hippocampus, with functional implications in spatial memory. PMID:20927050

  12. Dorsolateral periaqueductal gray matter CB1 and TRPV1 receptors exert opposite modulation on expression of contextual fear conditioning.

    PubMed

    Uliana, D L; Hott, S C; Lisboa, S F; Resstel, L B M

    2016-04-01

    Cannabinoid type 1 (CB1) and Transient Potential Vanilloid type 1 (TRPV1) receptors in the dorsolateral periaqueductal gray (dlPAG) matter are involved in the modulation of conditioned response. Both CB1 and TRPV1 receptors are related to glutamate release and nitric oxide (NO) synthesis. It was previously demonstrated that both NMDA glutamate receptors and NO are involved in the conditioned emotional response. Therefore, one aim of this work was to verify whether dlPAG CB1 and TRPV1 receptors modulate the expression of contextual conditioned emotional response. Moreover, we also investigated the involvement of NMDA receptors and the NO pathway in this response. Male Wistar rats with local dlPAG guide cannula were submitted to contextual fear conditioning. Following 24 h, a polyethylene catheter was implanted in the femoral artery for cardiovascular recordings. After an additional 24 h, drugs were administered in the dlPAG and freezing behavior and autonomic responses were recorded during chamber re-exposure. Both a CB1 antagonist (AM251) and a TRPV1 agonist (Capsaicin; CPS) increased the expression of a conditioned emotional response. This response was prevented by an NMDA antagonist, a preferential neuronal NO synthase inhibitor, an NO scavenger and a soluble guanylate cyclase inhibitor (sGC). Furthermore, pretreatment with a TRPV1 antagonist also prevented the increased conditioned emotional response induced by AM251. Considering that GABA can counterbalance glutamate effects, we also investigated whether GABAA receptors were involved in the effect of a higher dose of AM251. Pretreatment with a GABAA receptor antagonist caused an increased conditioned emotional response by AM251. Our results support the possibility that dlPAG CB1 and TRPV1 receptors are involved in the expression of conditioned emotional response through the NMDA/NO/sGC pathway. Moreover, the opposite effects exerted by GABA and glutamate could produce different outcomes of drugs modulating eCBs.

  13. Bi-directional CB1 receptor-mediated cardiovascular effects of cannabinoids in anaesthetized rats: role of the paraventricular nucleus.

    PubMed

    Grzeda, E; Schlicker, E; Luczaj, W; Harasim, E; Baranowska-Kuczko, M; Malinowska, B

    2015-06-01

    The activation of cannabinoid CB1 receptors decreases and increases blood pressure (BP) in anaesthetized and conscious rats, respectively. The aim of our study was to check the possible involvement of CB1 receptors in the paraventricular nucleus of the hypothalamus (PVN) in the cardiovascular effects of cannabinoids in rats. Methanandamide (metabolically stable analogue of the endocannabinoid anandamide) and the synthetic cannabinoid receptor agonist CP55940 were microinjected into the PVN of urethane-anaesthetized rats twice (S1 and S2, 20 min apart). Receptor antagonists were administered intravenously (i.v.) 5 min before S1. Methanandamide and CP55940 decreased blood pressure by 15 - 20%. The CB1 receptor antagonist AM251 reversed the depressor effect into a pressor response of 20 - 30%. The pressor effect of CP55940 observed in the presence of AM251 i.v. was reduced by AM251 given additionally into the PVN but not by the i.v. injection of the CB2 antagonist SR144528 or the vanilloid TRPV1 antagonist ruthenium red. In the presence of the peripherally restricted CB1 receptor antagonist AM6545, CP55940 given into the PVN increased BP by 40%. AM6545 reversed the decrease in BP induced by CP55940 i.v. into a marked increase. Bilateral chemical lesion of the PVN by kainic acid abolished all cardiovascular effects of CP55940 i.v. In conclusion, the cannabinoid CP55940 administered to the PVN of urethane-anaesthetized rats can induce depressor and pressor effects. The direction of the response probably depends on the sympathetic tone. The centrally induced hypertensive response of CP55940 can, in addition, be masked by peripheral CB1 receptors.

  14. Clinical Significance of Cannabinoid Receptors CB1 and CB2 Expression in Human Malignant and Benign Thyroid Lesions

    PubMed Central

    Lakiotaki, Eleftheria; Giaginis, Constantinos; Tolia, Maria; Alexandrou, Paraskevi; Delladetsima, Ioanna; Giannopoulou, Ioanna; Kyrgias, George; Patsouris, Efstratios; Theocharis, Stamatios

    2015-01-01

    The endocannabinoid system is comprised of cannabinoid receptors (CB1 and CB2), their endogenous ligands (endocannabinoids), and proteins responsible for their metabolism participate in many different functions indispensable to homeostatic regulation in several tissues, exerting also antitumorigenic effects. The present study aimed to evaluate the clinical significance of CB1 and CB2 expression in human benign and malignant thyroid lesions. CB1 and CB2 proteins' expression was assessed immunohistochemically on paraffin-embedded thyroid tissues obtained from 87 patients with benign (n = 43) and malignant (n = 44) lesions and was statistically analyzed with clinicopathological parameters, follicular cells' proliferative capacity, and risk of recurrence rate estimated according to the American Thyroid Association (ATA) staging system. Enhanced CB1 and CB2 expression was significantly more frequently observed in malignant compared to benign thyroid lesions (p = 0.0010 and p = 0.0005, resp.). Enhanced CB1 and CB2 expression was also significantly more frequently observed in papillary carcinomas compared to hyperplastic nodules (p = 0.0097 and p = 0.0110, resp.). In malignant thyroid lesions, elevated CB2 expression was significantly associated with the presence of lymph node metastases (p = 0.0301). Enhanced CB2 expression was also more frequently observed in malignant thyroid cases with presence of capsular (p = 0.1165), lymphatic (p = 0.1989), and vascular invasion (p = 0.0555), as well as in those with increased risk of recurrence rate (p = 0.1165), at a nonsignificant level though, whereas CB1 expression was not associated with any of the clinicopathological parameters examined. Our data suggest that CB receptors may be involved in malignant thyroid transformation and especially CB2 receptor could serve as useful biomarker and potential therapeutic target in thyroid neoplasia. PMID:26539529

  15. Clinical Significance of Cannabinoid Receptors CB1 and CB2 Expression in Human Malignant and Benign Thyroid Lesions.

    PubMed

    Lakiotaki, Eleftheria; Giaginis, Constantinos; Tolia, Maria; Alexandrou, Paraskevi; Delladetsima, Ioanna; Giannopoulou, Ioanna; Kyrgias, George; Patsouris, Efstratios; Theocharis, Stamatios

    2015-01-01

    The endocannabinoid system is comprised of cannabinoid receptors (CB1 and CB2), their endogenous ligands (endocannabinoids), and proteins responsible for their metabolism participate in many different functions indispensable to homeostatic regulation in several tissues, exerting also antitumorigenic effects. The present study aimed to evaluate the clinical significance of CB1 and CB2 expression in human benign and malignant thyroid lesions. CB1 and CB2 proteins' expression was assessed immunohistochemically on paraffin-embedded thyroid tissues obtained from 87 patients with benign (n = 43) and malignant (n = 44) lesions and was statistically analyzed with clinicopathological parameters, follicular cells' proliferative capacity, and risk of recurrence rate estimated according to the American Thyroid Association (ATA) staging system. Enhanced CB1 and CB2 expression was significantly more frequently observed in malignant compared to benign thyroid lesions (p = 0.0010 and p = 0.0005, resp.). Enhanced CB1 and CB2 expression was also significantly more frequently observed in papillary carcinomas compared to hyperplastic nodules (p = 0.0097 and p = 0.0110, resp.). In malignant thyroid lesions, elevated CB2 expression was significantly associated with the presence of lymph node metastases (p = 0.0301). Enhanced CB2 expression was also more frequently observed in malignant thyroid cases with presence of capsular (p = 0.1165), lymphatic (p = 0.1989), and vascular invasion (p = 0.0555), as well as in those with increased risk of recurrence rate (p = 0.1165), at a nonsignificant level though, whereas CB1 expression was not associated with any of the clinicopathological parameters examined. Our data suggest that CB receptors may be involved in malignant thyroid transformation and especially CB2 receptor could serve as useful biomarker and potential therapeutic target in thyroid neoplasia.

  16. Curcumin and hemopressin treatment attenuates cholestasis-induced liver fibrosis in rats: role of CB1 receptors.

    PubMed

    El Swefy, Sahar; Hasan, Rehab A; Ibrahim, Amal; Mahmoud, Mona F

    2016-01-01

    Curcumin exerts hepatoprotective effects via poorly defined mechanisms. Recently, some studies suggested that this effect was mediated by antagonizing CB1 receptors in hepatic stellate cells. The current study aimed to investigate whether CB1 antagonist, hemopressin, could potentiate the hepatoprotective effect of curcumin, in comparison with silymarin in bile duct-ligated (BDL) rats. Curcumin and hemopressin each alone and in combination ameliorated biochemical and structural fibrotic injury, and downregulated cyclooxygenase-2 (COX-2) and both mRNA and protein levels of nuclear factor kappa B (NF-κB) in fibrotic liver. In contrast to the previous studies, curcumin alone did not affect the gene expression of cannabinoid receptors. However, the combination of hemopressin and curcumin reduced the expression of CB1 in fibrotic liver. Surprisingly, silymarin upregulated CB2 receptors and downregulated CB1 at mRNA level more than all the administered drugs. Both curcumin and hemopressin each alone decreased lipid peroxidation product, malondialdehyde (MDA), while the combination increased the reduced glutathione content. All the administered drugs increased the hepatic antiapoptotic marker, Bcl2. Our study suggests that hemopressin potentiates the hepatoprotective effect of curcumin on fibrotic liver. We identified a new mechanism of the hepatoprotective effect of silymarin via modulation of cannabinoid receptors in fibrotic liver.

  17. Biphasic effects of cannabinoids in anxiety responses: CB1 and GABA(B) receptors in the balance of GABAergic and glutamatergic neurotransmission.

    PubMed

    Rey, Alejandro Aparisi; Purrio, Martin; Viveros, Maria-Paz; Lutz, Beat

    2012-11-01

    Biphasic effects of cannabinoids have been shown in processes such as feeding behavior, motor activity, motivational processes and anxiety responses. Using two different tests for the characterization of anxiety-related behavior (elevated plus-maze and holeboard), we first identified in wild-type C57BL/6N mice, two doses of the synthetic CB1 cannabinoid receptor agonist CP-55,940 with anxiolytic (1 μg/kg) and anxiogenic properties (50 μg/kg), respectively. To clarify the role of CB1 receptors in this biphasic effect, both doses were applied to two different conditional CB1 receptor knockout (KO) mouse lines, GABA-CB1-KO (CB1 receptor inactivation in forebrain GABAergic neurons) and Glu-CB1-KO (CB1 receptor inactivation in cortical glutamatergic neurons). We found that the anxiolytic-like effects of the low dose of cannabinoids are mediated via the CB1 receptor on cortical glutamatergic terminals, because this anxiolytic-like response was abrogated only in Glu-CB1-KO mice. On the contrary, the CB1 receptor on the GABAergic terminals is required to induce an anxiogenic-like effect under a high-dose treatment because of the fact that this effect was abolished specifically in GABA-CB1-KO mice. These experiments were carried out in both sexes, and no differences occurred with the doses tested in the mutant mice. Interestingly, the positive allosteric modulation of GABA(B) receptor with GS-39783 was found to largely abrogate the anxiogenic-like effect of the high dose of CP-55,940. Our results shed new light in further understanding the biphasic effects of cannabinoids at the molecular level and, importantly, pave the way for the development of novel anxiolytic cannabinoid drugs, which may have favorable effect profiles targeting the CB1 receptor on glutamatergic terminals.

  18. Activation of cannabinoid CB1 receptors in the ventral hippocampus improved stress-induced amnesia in rat.

    PubMed

    Mohammadmirzaei, Negin; Rezayof, Ameneh; Ghasemzadeh, Zahra

    2016-09-01

    The ventral hippocampus (VH) has a high distribution of cannabinoid CB1 receptors which are important in modulating stress responses. Stress exposure activates the hypothalamic-pituitary-adrenal axis (HPA) which can impact hippocampal formation to change hippocampus-based memories. The purpose of the present study was to determine the possible role of the VH cannabinoid CB1 receptors in stress-induced amnesia using a step-through passive avoidance procedure in male Wistar rats. In order to induce acute stress, the animals were placed on an elevated platform for different time periods (10, 20 and 30min). Our results indicated that post-training 20 and 30min exposure to stress, but not 10min, induced amnesia. Post-training microinjection of a cannabinoid CB1 receptor agonist, arachydonilcyclopropylamide (ACPA; 2.5-7.5ng/rat) into the VH (intra-VH) induced amnesia. Interestingly, post-training intra-VH microinjection of the same doses of ACPA improved stress-induced amnesia. On the other hand, post-training intra-VH microinjection of a selective CB1 receptor antagonist, AM-251 (20-50ng/rat) with exposure to an ineffective stress (10min) potentiated the effect of stress on memory consolidation and induced amnesia. It should be noted that post-training intra-VH microinjection of the same doses of AM-251 alone had no effect on memory consolidation. Our results revealed that post-training intra-VH microinjection of AM-251, prior to ACPA microinjection, inhibited the reversal effect of ACPA on acute elevated platform stress. Taken together, it can be concluded that exposure to post-training inescapable stress impaired memory consolidation. The impairing effects of stress on memory retrieval may be mediated by the VH cannabinoid CB1 receptors.

  19. Activation of cannabinoid CB1 receptors in the ventral hippocampus improved stress-induced amnesia in rat.

    PubMed

    Mohammadmirzaei, Negin; Rezayof, Ameneh; Ghasemzadeh, Zahra

    2016-09-01

    The ventral hippocampus (VH) has a high distribution of cannabinoid CB1 receptors which are important in modulating stress responses. Stress exposure activates the hypothalamic-pituitary-adrenal axis (HPA) which can impact hippocampal formation to change hippocampus-based memories. The purpose of the present study was to determine the possible role of the VH cannabinoid CB1 receptors in stress-induced amnesia using a step-through passive avoidance procedure in male Wistar rats. In order to induce acute stress, the animals were placed on an elevated platform for different time periods (10, 20 and 30min). Our results indicated that post-training 20 and 30min exposure to stress, but not 10min, induced amnesia. Post-training microinjection of a cannabinoid CB1 receptor agonist, arachydonilcyclopropylamide (ACPA; 2.5-7.5ng/rat) into the VH (intra-VH) induced amnesia. Interestingly, post-training intra-VH microinjection of the same doses of ACPA improved stress-induced amnesia. On the other hand, post-training intra-VH microinjection of a selective CB1 receptor antagonist, AM-251 (20-50ng/rat) with exposure to an ineffective stress (10min) potentiated the effect of stress on memory consolidation and induced amnesia. It should be noted that post-training intra-VH microinjection of the same doses of AM-251 alone had no effect on memory consolidation. Our results revealed that post-training intra-VH microinjection of AM-251, prior to ACPA microinjection, inhibited the reversal effect of ACPA on acute elevated platform stress. Taken together, it can be concluded that exposure to post-training inescapable stress impaired memory consolidation. The impairing effects of stress on memory retrieval may be mediated by the VH cannabinoid CB1 receptors. PMID:27282634

  20. Identification and Quantification of a New Family of Peptide Endocannabinoids (Pepcans) Showing Negative Allosteric Modulation at CB1 Receptors*

    PubMed Central

    Bauer, Mark; Chicca, Andrea; Tamborrini, Marco; Eisen, David; Lerner, Raissa; Lutz, Beat; Poetz, Oliver; Pluschke, Gerd; Gertsch, Jürg

    2012-01-01

    The α-hemoglobin-derived dodecapeptide RVD-hemopressin (RVDPVNFKLLSH) has been proposed to be an endogenous agonist for the cannabinoid receptor type 1 (CB1). To study this peptide, we have raised mAbs against its C-terminal part. Using an immunoaffinity mass spectrometry approach, a whole family of N-terminally extended peptides in addition to RVD-Hpα were identified in rodent brain extracts and human and mouse plasma. We designated these peptides Pepcan-12 (RVDPVNFKLLSH) to Pepcan-23 (SALSDLHAHKLRVDPVNFKLLSH), referring to peptide length. The most abundant Pepcans found in the brain were tested for CB1 receptor binding. In the classical radioligand displacement assay, Pepcan-12 was the most efficacious ligand but only partially displaced both [3H]CP55,940 and [3H]WIN55,212-2. The data were fitted with the allosteric ternary complex model, revealing a cooperativity factor value α < 1, thus indicating a negative allosteric modulation. Dissociation kinetic studies of [3H]CP55,940 in the absence and presence of Pepcan-12 confirmed these results by showing increased dissociation rate constants induced by Pepcan-12. A fluorescently labeled Pepcan-12 analog was synthesized to investigate the binding to CB1 receptors. Competition binding studies revealed Ki values of several Pepcans in the nanomolar range. Accordingly, using competitive ELISA, we found low nanomolar concentrations of Pepcans in human plasma and ∼100 pmol/g in mouse brain. Surprisingly, Pepcan-12 exhibited potent negative allosteric modulation of the orthosteric agonist-induced cAMP accumulation, [35S]GTPγS binding, and CB1 receptor internalization. Pepcans are the first endogenous allosteric modulators identified for CB1 receptors. Given their abundance in the brain, Pepcans could play an important physiological role in modulating endocannabinoid signaling. PMID:22952224

  1. Changes in CB1 and CB2 receptors in the post-mortem cerebellum of humans affected by spinocerebellar ataxias

    PubMed Central

    Rodríguez-Cueto, Carmen; Benito, Cristina; Fernández-Ruiz, Javier; Romero, Julián; Hernández-Gálvez, Mariluz; Gómez-Ruiz, María

    2014-01-01

    Background and PurposeSpinocerebellar ataxias (SCAs) are a family of chronic progressive neurodegenerative diseases, clinically and genetically heterogeneous, characterized by loss of balance and motor coordination due to degeneration of the cerebellum and its afferent and efferent connections. Unlike other motor disorders, the possible role of changes in the endocannabinoid system in the pathogenesis of SCAs has not been investigated. Experimental ApproachThe status of cannabinoid receptor type 1 (CB1) and cannabinoid receptor type 2 (CB2) receptors in the post-mortem cerebellum of SCA patients and controls was investigated using immunohistochemical procedures. Key ResultsImmunoreactivity for the CB1 receptor, and also for the CB2 receptor, was found in the granular layer, Purkinje cells, neurons of the dentate nucleus and areas of white matter in the cerebellum of SCA patients at levels notably higher than controls. Double-labelling procedures demonstrated co-localization of CB1 and, in particular, CB2 receptors with calbindin, supporting the presence of these receptors in Purkinje neurons. Both receptors also co-localized with Iba-1 and glial fibrillary acidic protein in the granular layer and white matter areas, indicating that they are present in microglia and astrocytes respectively. Conclusions and ImplicationsOur results demonstrate that CB1 and CB2 receptor levels are significantly altered in the cerebellum of SCA patients. Their identification in Purkinje neurons, which are the main cells affected in SCAs, as well as the changes they experienced, suggest that alterations in endocannabinoid receptors may be related to the pathogenesis of SCAs. Therefore, the endocannabinoid system could provide potential therapeutic targets for the treatment of SCAs and its progression. Linked ArticlesThis article is part of a themed section on Cannabinoids 2013. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-6 PMID:23808969

  2. Controlled downregulation of the cannabinoid CB1 receptor provides a promising approach for the treatment of obesity and obesity-derived type 2 diabetes.

    PubMed

    Lu, Dai; Dopart, Rachel; Kendall, Debra A

    2016-01-01

    Increased activity of the endocannabinoid system has emerged as a pathogenic factor in visceral obesity, which is a risk factor for type 2 diabetes mellitus (T2DM). The endocannabinoid system is composed of at least two Gprotein-coupled receptors (GPCRs), the cannabinoid receptor type 1 (CB1), and the cannabinoid receptor type 2 (CB2). Downregulation of CB1 activity in rodents and humans has proven efficacious to reduce food intake, abdominal adiposity, fasting glucose levels, and cardiometabolic risk factors. Unfortunately, downregulation of CB1 activity by universally active CB1 inverse agonists has been found to elicit psychiatric side effects, which led to the termination of using globally active CB1 inverse agonists to treat diet-induced obesity. Interestingly, preclinical studies have shown that downregulation of CB1 activity by CB1 neutral antagonists or peripherally restricted CB1 inverse agonists provided similar anorectic effects and metabolic benefits without psychiatric side effects seen in globally active CB1 inverse agonists. Furthermore, downregulation of CB1 activity may ease endoplasmic reticulum and mitochondrial stress which are contributors to obesity-induced insulin resistance and type 2 diabetes. This suggests new approaches for cannabinoid-based therapy in the management of obesity and obesity-related metabolic disorders including type 2 diabetes.

  3. Baseline anandamide levels and body weight impact the weight loss effect of CB1 receptor antagonism in male rats.

    PubMed

    Karlsson, Cecilia; Hjorth, Stephan; Karpefors, Martin; Hansson, Göran I; Carlsson, Björn

    2015-04-01

    The individual weight loss response to obesity treatment is diverse. Here we test the hypothesis that the weight loss response to the CB1 receptor antagonist rimonabant is influenced by endogenous levels of receptor agonists. We show that baseline anandamide levels and body weight independently contribute to predict the treatment response to rimonabant in rodents, demonstrating that addition of biomarkers related to mode of action is relevant for a personalized health care approach to obesity treatment.

  4. Structure-activity relationships of substituted 1H-indole-2-carboxamides as CB1 receptor allosteric modulators.

    PubMed

    Nguyen, Thuy; German, Nadezhda; Decker, Ann M; Li, Jun-Xu; Wiley, Jenny L; Thomas, Brian F; Kenakin, Terry P; Zhang, Yanan

    2015-05-01

    A series of substituted 1H-indole-2-carboxamides structurally related to compounds Org27569 (1), Org29647 (2) and Org27759 (3) were synthesized and evaluated for CB1 allosteric modulating activity in calcium mobilization assays. Structure-activity relationship studies showed that the modulation potency of this series at the CB1 receptor was enhanced by the presence of a diethylamino group at the 4-position of the phenyl ring, a chloro or fluoro group at the C5 position and short alkyl groups at the C3 position on the indole ring. The most potent compound (45) had an IC₅₀ value of 79 nM which is ∼2.5 and 10 fold more potent than the parent compounds 3 and 1, respectively. These compounds appeared to be negative allosteric modulators at the CB1 receptor and dose-dependently reduced the Emax of agonist CP55,940. These analogs may provide the basis for further optimization and use of CB1 allosteric modulators.

  5. The Dopamine and Cannabinoid Interaction in the Modulation of Emotions and Cognition: Assessing the Role of Cannabinoid CB1 Receptor in Neurons Expressing Dopamine D1 Receptors.

    PubMed

    Terzian, Ana Luisa; Drago, Filippo; Wotjak, Carsten T; Micale, Vincenzo

    2011-01-01

    Although cannabinoid CB1 receptors (CB1Rs) are densely expressed in neurons expressing dopamine D1 receptors (D1Rs), it is not fully understood to what extent they modulate emotional behaviors. We used conditional CB1R knock-out animals lacking CB1Rs in neurons expressing D1R (D1-CB1(-/-)) in order to answer this question. To elucidate the behavioral effects of CB1R deficiency in this specific neuronal subpopulation, we subjected D1-CB1(-/-) mice to a battery of behavioral tests which included exploration-based tests, depressive-like behavioral tests, social behavior, and fear-related memory paradigms. D1-CB1(-/-) did not show any difference in the exploration-based paradigms such as open field, elevated plus maze, or novel object investigation test, except for an increase in novelty-induced grooming. By contrast, they showed a mild anhedonia-like state as described by the slightly decreased preference for sweet solution, as compared to wild-type control group. This decrease, however, could be observed only during the first day of exposure, thus suggesting increased neophobia as an alternative explanation. Accordingly, mutant mice performed normally in the forced swim test, a procedure widely used for evaluating behavioral despair in rodents. However, weak- to moderate anxiety-like phenotypes were evident when D1-CB1(-/-) mice were tested for social behavior. Most strikingly, D1-CB1(-/-) mice exhibited significantly increased contextual and auditory-cued fear, with attenuated within session extinction, suggesting that a specific reduction of endocannabinoid signaling in neurons expressing dopamine D1Rs is able to affect acute fear adaptation. These results provided first direct evidence for a cross-talk between dopaminergic D1Rs and endocannabinoid system in terms of controlling negative affect.

  6. MAM-2201, a synthetic cannabinoid drug of abuse, suppresses the synaptic input to cerebellar Purkinje cells via activation of presynaptic CB1 receptors.

    PubMed

    Irie, Tomohiko; Kikura-Hanajiri, Ruri; Usami, Makoto; Uchiyama, Nahoko; Goda, Yukihiro; Sekino, Yuko

    2015-08-01

    Herbal products containing synthetic cannabinoids-initially sold as legal alternatives to marijuana-have become major drugs of abuse. Among the synthetic cannabinoids, [1-(5-fluoropentyl)-1H-indol-3-yl](4-methyl-1-naphthalenyl)-methanone (MAM-2201) has been recently detected in herbal products and has psychoactive and intoxicating effects in humans, suggesting that MAM-2201 alters brain function. Nevertheless, the pharmacological actions of MAM-2201 on cannabinoid receptor type 1 (CB1R) and neuronal functions have not been elucidated. We found that MAM-2201 acted as an agonist of human CB1Rs expressed in AtT-20 cells. In whole-cell patch-clamp recordings made from Purkinje cells (PCs) in slice preparations of the mouse cerebellum, we also found that MAM-2201 inhibited glutamate release at parallel fiber-PC synapses via activation of presynaptic CB1Rs. MAM-2201 inhibited neurotransmitter release with an inhibitory concentration 50% of 0.36 μM. MAM-2201 caused greater inhibition of neurotransmitter release than Δ(9)-tetrahydrocannabinol within the range of 0.1-30 μM and JWH-018, one of the most popular and potent synthetic cannabinoids detected in the herbal products, within the range of 0.03-3 μM. MAM-2201 caused a concentration-dependent suppression of GABA release onto PCs. Furthermore, MAM-2201 induced suppression of glutamate release at climbing fiber-PC synapses, leading to reduced dendritic Ca(2+) transients in PCs. These results suggest that MAM-2201 is likely to suppress neurotransmitter release at CB1R-expressing synapses in humans. The reduction of neurotransmitter release from CB1R-containing synapses could contribute to some of the symptoms of synthetic cannabinoid intoxication including impairments in cerebellum-dependent motor coordination and motor learning. PMID:25747605

  7. MAM-2201, a synthetic cannabinoid drug of abuse, suppresses the synaptic input to cerebellar Purkinje cells via activation of presynaptic CB1 receptors.

    PubMed

    Irie, Tomohiko; Kikura-Hanajiri, Ruri; Usami, Makoto; Uchiyama, Nahoko; Goda, Yukihiro; Sekino, Yuko

    2015-08-01

    Herbal products containing synthetic cannabinoids-initially sold as legal alternatives to marijuana-have become major drugs of abuse. Among the synthetic cannabinoids, [1-(5-fluoropentyl)-1H-indol-3-yl](4-methyl-1-naphthalenyl)-methanone (MAM-2201) has been recently detected in herbal products and has psychoactive and intoxicating effects in humans, suggesting that MAM-2201 alters brain function. Nevertheless, the pharmacological actions of MAM-2201 on cannabinoid receptor type 1 (CB1R) and neuronal functions have not been elucidated. We found that MAM-2201 acted as an agonist of human CB1Rs expressed in AtT-20 cells. In whole-cell patch-clamp recordings made from Purkinje cells (PCs) in slice preparations of the mouse cerebellum, we also found that MAM-2201 inhibited glutamate release at parallel fiber-PC synapses via activation of presynaptic CB1Rs. MAM-2201 inhibited neurotransmitter release with an inhibitory concentration 50% of 0.36 μM. MAM-2201 caused greater inhibition of neurotransmitter release than Δ(9)-tetrahydrocannabinol within the range of 0.1-30 μM and JWH-018, one of the most popular and potent synthetic cannabinoids detected in the herbal products, within the range of 0.03-3 μM. MAM-2201 caused a concentration-dependent suppression of GABA release onto PCs. Furthermore, MAM-2201 induced suppression of glutamate release at climbing fiber-PC synapses, leading to reduced dendritic Ca(2+) transients in PCs. These results suggest that MAM-2201 is likely to suppress neurotransmitter release at CB1R-expressing synapses in humans. The reduction of neurotransmitter release from CB1R-containing synapses could contribute to some of the symptoms of synthetic cannabinoid intoxication including impairments in cerebellum-dependent motor coordination and motor learning.

  8. Negative Regulation of Leptin-induced Reactive Oxygen Species (ROS) Formation by Cannabinoid CB1 Receptor Activation in Hypothalamic Neurons.

    PubMed

    Palomba, Letizia; Silvestri, Cristoforo; Imperatore, Roberta; Morello, Giovanna; Piscitelli, Fabiana; Martella, Andrea; Cristino, Luigia; Di Marzo, Vincenzo

    2015-05-29

    The adipocyte-derived, anorectic hormone leptin was recently shown to owe part of its regulatory effects on appetite-regulating hypothalamic neuropeptides to the elevation of reactive oxygen species (ROS) levels in arcuate nucleus (ARC) neurons. Leptin is also known to exert a negative regulation on hypothalamic endocannabinoid levels and hence on cannabinoid CB1 receptor activity. Here we investigated the possibility of a negative regulation by CB1 receptors of leptin-mediated ROS formation in the ARC. Through pharmacological and molecular biology experiments we report data showing that leptin-induced ROS accumulation is 1) blunted by arachidonyl-2'-chloroethylamide (ACEA) in a CB1-dependent manner in both the mouse hypothalamic cell line mHypoE-N41 and ARC neuron primary cultures, 2) likewise blocked by a peroxisome proliferator-activated receptor-γ (PPAR-γ) agonist, troglitazone, in a manner inhibited by T0070907, a PPAR-γ antagonist that also inhibited the ACEA effect on leptin, 3) blunted under conditions of increased endocannabinoid tone due to either pharmacological or genetic inhibition of endocannabinoid degradation in mHypoE-N41 and primary ARC neuronal cultures from MAGL(-/-) mice, respectively, and 4) associated with reduction of both PPAR-γ and catalase activity, which are reversed by both ACEA and troglitazone. We conclude that CB1 activation reverses leptin-induced ROS formation and hence possibly some of the ROS-mediated effects of the hormone by preventing PPAR-γ inhibition by leptin, with subsequent increase of catalase activity. This mechanism might underlie in part CB1 orexigenic actions under physiopathological conditions accompanied by elevated hypothalamic endocannabinoid levels.

  9. In vivo SPECT and ex vivo autoradiographic brain imaging of the novel selective CB1 receptor antagonist radioligand [125I]SD7015 in CB1 knock-out and wildtype mouse

    PubMed Central

    Máthé, Domokos; Horváth, Ildikó; Szigeti, Krisztián; Donohue, Sean R.; Pike, Victor W.; Jia, Zisheng; Ledent, Catherine; Palkovits, Miklós; Freund, Tamás F.; Halldin, Christer; Gulyás, Balázs

    2014-01-01

    We aimed to evaluate the novel high-affinity and relatively lipophilic CB1 receptor (CB1R) antagonist radioligand [125I]SD7015 for SPECT imaging of CB1Rs in vivo using the multiplexed multipinhole dedicated small animal SPECT/CT system, NanoSPECT/CTPLUS (Mediso, Budapest, Hungary), in knock-out CB1 receptor knock-out (CB1R-/-) and wildtype mice. In order to exclude possible differences in cerebral blood flow between the two types of animals, HMPAO SPECT scans were performed, whereas in order to confirm the brain uptake differences of the radioligand between knock-out mice and wildtype mice, in vivo scans were complemented with ex vivo autoradiographic measurements using the brains of the same animals. With SPECT/CT imaging, we measured the brain uptake of radioactivity, using %SUV (% standardised uptake values) in CB1R-/- mice (n = 3) and C57BL6 wildtype mice (n = 7) under urethane anaesthesia after injecting [125I]SD7015 intravenously or intraperitoneally. The Brookhaven Laboratory mouse MRI atlas was fused to the SPECT/CT images by using a combination of rigid and non-rigid algorithms in the Mediso Fusion™ (Mediso, Budapest, Hungary) and VivoQuant (inviCRO, Boston, MA, USA) softwares. Phosphor imager plate autoradiography (ARG) was performed on 4 μm-thin cryostat sections of the excised brains. %SUV was 8.6 ± 3.6 (average ± SD) in CB1R-/- mice and 22.1 ± 12.4 in wildtype mice between 2 and 4 h after injection (p < 0.05). ARG of identically taken sections from wildtype mouse brain showed moderate radioactivity uptake when compared with the in vivo images, with a clear difference between grey matter and white matter, whereas ARG in CB1R(-/-) mice showed practically no radioactivity uptake. [125I]SD7015 enters the mouse brain in sufficient amount to enable SPECT imaging. Brain radioactivity distribution largely coincides with that of the known CB1R expression pattern in rodent brain. We conclude that [125I]SD7015 should be a useful SPECT radioligand for

  10. In vivo SPECT and ex vivo autoradiographic brain imaging of the novel selective CB1 receptor antagonist radioligand [125I]SD7015 in CB1 knock-out and wildtype mouse.

    PubMed

    Máthé, Domokos; Horváth, Ildikó; Szigeti, Krisztián; Donohue, Sean R; Pike, Victor W; Jia, Zisheng; Ledent, Catherine; Palkovits, Miklós; Freund, Tamás F; Halldin, Christer; Gulyás, Balázs

    2013-02-01

    We aimed to evaluate the novel high-affinity and relatively lipophilic CB(1) receptor (CB(1)R) antagonist radioligand [(125)I]SD7015 for SPECT imaging of CB(1)Rs in vivo using the multiplexed multipinhole dedicated small animal SPECT/CT system, NanoSPECT/CT(PLUS) (Mediso, Budapest, Hungary), in knock-out CB(1) receptor knock-out (CB(1)R-/-) and wildtype mice. In order to exclude possible differences in cerebral blood flow between the two types of animals, HMPAO SPECT scans were performed, whereas in order to confirm the brain uptake differences of the radioligand between knock-out mice and wildtype mice, in vivo scans were complemented with ex vivo autoradiographic measurements using the brains of the same animals. With SPECT/CT imaging, we measured the brain uptake of radioactivity, using %SUV (% standardised uptake values) in CB(1)R-/- mice (n=3) and C57BL6 wildtype mice (n=7) under urethane anaesthesia after injecting [(125)I]SD7015 intravenously or intraperitoneally. The Brookhaven Laboratory mouse MRI atlas was fused to the SPECT/CT images by using a combination of rigid and non-rigid algorithms in the Mediso Fusion™ (Mediso, Budapest, Hungary) and VivoQuant (inviCRO, Boston, MA, USA) softwares. Phosphor imager plate autoradiography (ARG) was performed on 4 μm-thin cryostat sections of the excised brains. %SUV was 8.6±3.6 (average±SD) in CB(1)R-/- mice and 22.1±12.4 in wildtype mice between 2 and 4 h after injection (p<0.05). ARG of identically taken sections from wildtype mouse brain showed moderate radioactivity uptake when compared with the in vivo images, with a clear difference between grey matter and white matter, whereas ARG in CB(1)R(-/-) mice showed practically no radioactivity uptake. [(125)I]SD7015 enters the mouse brain in sufficient amount to enable SPECT imaging. Brain radioactivity distribution largely coincides with that of the known CB(1)R expression pattern in rodent brain. We conclude that [(125)I]SD7015 should be a useful SPECT

  11. JWH018, a common constituent of ‘Spice’ herbal blends, is a potent and efficacious cannabinoid CB1 receptor agonist

    PubMed Central

    Atwood, Brady K; Huffman, John; Straiker, Alex; Mackie, Ken

    2010-01-01

    Background and purpose: ‘Spice’ is an herbal blend primarily marketed in Europe as a mild hallucinogen with prominent cannabis-like effects and as a legal alternative to cannabis. However, a recent report identified a number of synthetic additives in samples of ‘Spice’. One of these, the indole derivative JWH018, is a ligand for the cannabinoid receptor 1 (CB1) cannabinoid receptor and inhibits cAMP production in CB1 receptor-expressing CHO cells. Other effects of JWH018 on CB1 receptor-mediated signalling are not known, particularly in neurons. Here we have evaluated the signalling pathways activated by JWH018 at CB1 receptors. Experimental approach: We investigated the effects of JWH018 on neurotransmission in cultured autaptic hippocampal neurons. We further analysed its activation of ERK1/2 mitogen activated protein kinase (MAPK) and internalization of CB1 receptors in HEK293 cells stably expressing this receptor. Key results: In cultured autaptic hippocampal neurons, JWH018 potently inhibited excitatory postsynaptic currents (IC50= 14.9 nM) in a concentration- and CB1 receptor-dependent manner. Furthermore, it increased ERK1/2 MAPK phosphorylation (EC50= 4.4 nM). We also found that JWH018 potently induced rapid and robust CB1 receptor internalization (EC50= 2.8 nM; t1/2= 17.3 min). Conclusions and implications: JWH018, a prominent component of several herbal preparations marketed for their psychoactivity, is a potent and effective CB1 receptor agonist that activates multiple CB1 receptor signalling pathways. Thus, it is likely that the subjective effects of ‘Spice’ are due to activation of cannabinoid CB1 receptors by JWH018, added to this herbal preparation. PMID:20100276

  12. Peripherally Selective Cannabinoid 1 Receptor (CB1R) Agonists for the Treatment of Neuropathic Pain.

    PubMed

    Seltzman, Herbert H; Shiner, Craig; Hirt, Erin E; Gilliam, Anne F; Thomas, Brian F; Maitra, Rangan; Snyder, Rod; Black, Sherry L; Patel, Purvi R; Mulpuri, Yatendra; Spigelman, Igor

    2016-08-25

    Alleviation of neuropathic pain by cannabinoids is limited by their central nervous system (CNS) side effects. Indole and indene compounds were engineered for high hCB1R affinity, peripheral selectivity, metabolic stability, and in vivo efficacy. An epithelial cell line assay identified candidates with <1% blood-brain barrier penetration for testing in a rat neuropathy induced by unilateral sciatic nerve entrapment (SNE). The SNE-induced mechanical allodynia was reversibly suppressed, partially or completely, after intraperitoneal or oral administration of several indenes. At doses that relieve neuropathy symptoms, the indenes completely lacked, while the brain-permeant CB1R agonist HU-210 (1) exhibited strong CNS side effects, in catalepsy, hypothermia, and motor incoordination assays. Pharmacokinetic findings of ∼0.001 cerebrospinal fluid:plasma ratio further supported limited CNS penetration. Pretreatment with selective CB1R or CB2R blockers suggested mainly CB1R contribution to an indene's antiallodynic effects. Therefore, this class of CB1R agonists holds promise as a viable treatment for neuropathic pain. PMID:27482723

  13. Adolescent peer-rejection persistently alters pain perception and CB1 receptor expression in female rats.

    PubMed

    Schneider, Peggy; Hannusch, Christin; Schmahl, Christian; Bohus, Martin; Spanagel, Rainer; Schneider, Miriam

    2014-02-01

    Peer-interactions are particularly important during adolescence and teenagers display enhanced sensitivity toward rejection by peers. Social rejection has been shown to induce alterations in pain perception in humans. However, the neurobiological consequences of adolescent social rejection have yet to be extensively characterized, and no appropriate animal model is available. Here, we propose inadequate playful interactions in adolescent rats as a novel animal model for social peer-rejection and examine potential long-term consequences into adulthood. Acute social pairing of female adolescent Wistar rats with an age-matched rat from the less playful Fischer344 strain was found to alter social play and decrease pain reactivity, indicating Fischer rats as inadequate social partners for Wistar animals. Therefore, in a second experiment, adolescent female Wistar rats were either reared with another Wistar rat (adequate social rearing; control) or with a Fischer rat (inadequate social rearing; play-deprived). Beginning on day 50, all Wistar rats were group housed with same-strain partners and tested for behavioral, neurobiological and endocrine differences in adulthood. Playful peer-interactions were decreased during adolescence in play-deprived animals, without affecting social contact behavior. Consequently, adult play-deprived rats showed decreased pain sensitivity and increased startle reactivity compared to controls, but did not differ in activity, anxiety-related behavior or social interaction. Both groups also differed in their endocrine stress-response, and expression levels of the cannabinoid CB1 receptor were increased in the thalamus, whereas FAAH levels were decreased in the amygdala. The present animal model therefore represents a novel approach to assess the long-term consequences of peer-rejection during adolescence. PMID:23669059

  14. Enhanced Glutamatergic Synaptic Plasticity in the Hippocampal CA1 Field of Food-Restricted Rats: Involvement of CB1 Receptors.

    PubMed

    Talani, Giuseppe; Licheri, Valentina; Biggio, Francesca; Locci, Valentina; Mostallino, Maria Cristina; Secci, Pietro Paolo; Melis, Valentina; Dazzi, Laura; Carta, Gianfranca; Banni, Sebastiano; Biggio, Giovanni; Sanna, Enrico

    2016-04-01

    The endogenous endocannabinoid system has a crucial role in regulating appetite and feeding behavior in mammals, as well as working memory and reward mechanisms. In order to elucidate the possible role of cannabinoid type-1 receptors (CB1Rs) in the regulation of hippocampal plasticity in animals exposed to food restriction (FR), we limited the availability of food to a 2-h daily period for 3 weeks in Sprague-Dawley rats. FR rats showed a higher long-term potentiation at hippocampal CA1 excitatory synapses with a parallel increase in glutamate release when compared with animals fed ad libitum. FR rats showed a significant increase in the long-term spatial memory determined by Barnes maze. FR was also associated with a decreased inhibitory effect of the CB1R agonist win55,212-2 on glutamatergic field excitatory postsynaptic potentials, together with a decrease in hippocampal CB1R protein expression. In addition, hippocampal brain-derived neurotrophic factor protein levels and mushroom dendritic spine density were significantly enhanced in FR rats. Altogether, our data suggest that alterations of hippocampal CB1R expression and function in FR rats are associated with dendritic spine remodeling and functional potentiation of CA1 excitatory synapses, and these findings are consistent with increasing evidence supporting the idea that FR may improve cognitive functions.

  15. Monohydroxylated metabolites of the K2 synthetic cannabinoid JWH-073 retain intermediate to high cannabinoid 1 receptor (CB1R) affinity and exhibit neutral antagonist to partial agonist activity.

    PubMed

    Brents, Lisa K; Gallus-Zawada, Anna; Radominska-Pandya, Anna; Vasiljevik, Tamara; Prisinzano, Thomas E; Fantegrossi, William E; Moran, Jeffery H; Prather, Paul L

    2012-04-01

    K2 and several similar purported "incense products" spiked with synthetic cannabinoids are abused as cannabis substitutes. We hypothesized that metabolism of JWH-073, a prevalent cannabinoid found in K2, contributes to toxicity associated with K2 use. Competition receptor binding studies and G-protein activation assays, both performed by employing mouse brain homogenates, were used to determine the affinity and intrinsic activity, respectively, of potential monohydroxylated (M1, M3-M5) and monocarboxylated (M6) metabolites at cannabinoid 1 receptors (CB1Rs). Surprisingly, M1, M4 and M5 retain nanomolar affinity for CB1Rs, while M3 displays micromolar affinity and M6 does not bind to CB1Rs. JWH-073 displays equivalent efficacy to that of the CB1R full agonist CP-55,940, while M1, M3, and M5 act as CB1R partial agonists, and M4 shows little or no intrinsic activity. Further in vitro investigation by Schild analysis revealed that M4 acts as a competitive neutral CB1R antagonist (K(b)∼40nM). In agreement with in vitro studies, M4 also demonstrates CB1R antagonism in vivo by blunting cannabinoid-induced hypothermia in mice. Interestingly, M4 does not block agonist-mediated responses of other measures in the cannabinoid tetrad (e.g., locomotor suppression, catalepsy or analgesia). Finally, also as predicted by in vitro results, M1 exhibits agonist activity in vivo by inducing significant hypothermia and suppression of locomotor activity in mice. In conclusion, the present study indicates that further work examining the physiological effects of synthetic cannabinoid metabolism is warranted. Such a complex mix of metabolically produced CB1R ligands may contribute to the adverse effect profile of JWH-073-containing products.

  16. Monohydroxylated metabolites of the K2 synthetic cannabinoid JWH-073 retain intermediate to high cannabinoid 1 receptor (CB1R) affinity and exhibit neutral antagonist to partial agonist activity

    PubMed Central

    Brents, Lisa K.; Gallus-Zawada, Anna; Radominska-Pandya, Anna; Vasiljevik, Tamara; Prisinzano, Thomas E.; Fantegrossi, William E.; Moran, Jeffery H.; Prather, Paul L.

    2012-01-01

    K2 and several similar purported “incense products” spiked with synthetic cannabinoids are abused as cannabis substitutes. We hypothesized that metabolism of JWH-073, a prevalent cannabinoid found in K2, contributes to toxicity associated with K2 use. Competition receptor binding studies and G-protein activation assays, both performed by employing mouse brain homogenates, were used to determine the affinity and intrinsic activity, respectively, of potential monohydroxylated (M1, M3–M5) and monocarboxylated (M6) metabolites at cannabinoid 1 receptors (CB1Rs). Surprisingly, M1, M4 and M5 retain nanomolar affinity for CB1Rs, while M3 displays micromolar affinity and M6 does not bind to CB1Rs. JWH-073 displays equivalent efficacy to that of the CB1R full agonist CP-55,940, while M1, M3, and M5 act as CB1R partial agonists, and M4 shows little or no intrinsic activity. Further in vitro investigation by Schild analysis revealed that M4 acts as a competitive neutral CB1R antagonist (Kb~40nM). In agreement with in vitro studies, M4 also demonstrates CB1R antagonism in vivo by blunting cannabinoid-induced hypothermia in mice. Interestingly, M4 does not block agonist-mediated responses of other measures in the cannabinoid tetrad (e.g., locomotor suppression, catalepsy or analgesia). Finally, also as predicted by in vitro results, M1 exhibits agonist activity in vivo by inducing significant hypothermia and suppression of locomotor activity in mice. In conclusion, the present study indicates that further work examining the physiological effects of synthetic cannabinoid metabolism is warranted. Such a complex mix of metabolically produced CB1R ligands may contribute to the adverse effect profile of JWH-073-containing products. PMID:22266354

  17. Differential effects of CB1 receptor agonism in behavioural tests of unconditioned and conditioned fear in adult male rats.

    PubMed

    Simone, Jonathan J; Green, Matthew R; Hodges, Travis E; McCormick, Cheryl M

    2015-02-15

    We investigated the effects of the highly selective CB1 receptor agonist ACEA and the CB1 receptor antagonist/inverse agonist AM251 on two behavioural tests of unconditioned fear, the elevated plus maze (EPM) and open field test (OFT), as well as on the recall and extinction of a conditioned auditory fear. Both ACEA and AM251 increased anxiety-like behaviour in the EPM and OFT. There was no effect of either drug on recall of the conditioned fear, and ACEA enhanced and AM251 impaired fear extinction. Further, though both the low (0.1 mg/kg) and high (0.5 mg/kg) dose of ACEA facilitated fear extinction, the low dose attenuated, and the high dose potentiated, fear induced corticosterone release suggesting independent effects of the drug on fear and stress responses. Although the extent to which cannabinoids are anxiogenic or anxiolytic has been proposed to be dose-dependent, these results indicate that the same dose has differential effects across tasks, likely based in differences in sensitivities of CB1 receptors to the agonist in the neural regions subserving unconditioned and conditioned fear.

  18. The cannabinoid CB1 receptor and mTORC1 signalling pathways interact to modulate glucose homeostasis in mice

    PubMed Central

    Bermudez-Silva, Francisco J.; Romero-Zerbo, Silvana Y.; Haissaguerre, Magalie; Ruz-Maldonado, Inmaculada; Lhamyani, Said; El Bekay, Rajaa; Tabarin, Antoine; Marsicano, Giovanni; Cota, Daniela

    2016-01-01

    ABSTRACT The endocannabinoid system (ECS) is an intercellular signalling mechanism that is present in the islets of Langerhans and plays a role in the modulation of insulin secretion and expansion of the β-cell mass. The downstream signalling pathways mediating these effects are poorly understood. Mammalian target of rapamycin complex 1 (mTORC1) signalling is a key intracellular pathway involved in energy homeostasis and is known to importantly affect the physiology of pancreatic islets. We investigated the possible relationship between cannabinoid type 1 (CB1) receptor signalling and the mTORC1 pathway in the endocrine pancreas of mice by using pharmacological analysis as well as mice genetically lacking the CB1 receptor or the downstream target of mTORC1, the kinase p70S6K1. In vitro static secretion experiments on islets, western blotting, and in vivo glucose and insulin tolerance tests were performed. The CB1 receptor antagonist rimonabant decreased glucose-stimulated insulin secretion (GSIS) at 0.1 µM while increasing phosphorylation of p70S6K1 and ribosomal protein S6 (rpS6) within the islets. Specific pharmacological blockade of mTORC1 by 3 nM rapamycin, as well as genetic deletion of p70S6K1, impaired the CB1-antagonist-mediated decrease in GSIS. In vivo experiments showed that 3 mg/kg body weight rimonabant decreased insulin levels and induced glucose intolerance in lean mice without altering peripheral insulin sensitivity; this effect was prevented by peripheral administration of low doses of rapamycin (0.1 mg/kg body weight), which increased insulin sensitivity. These findings suggest a functional interaction between the ECS and the mTORC1 pathway within the endocrine pancreas and at the whole-organism level, which could have implications for the development of new therapeutic approaches for pancreatic β-cell diseases. PMID:26563389

  19. The cannabinoid CB1 receptor and mTORC1 signalling pathways interact to modulate glucose homeostasis in mice.

    PubMed

    Bermudez-Silva, Francisco J; Romero-Zerbo, Silvana Y; Haissaguerre, Magalie; Ruz-Maldonado, Inmaculada; Lhamyani, Said; El Bekay, Rajaa; Tabarin, Antoine; Marsicano, Giovanni; Cota, Daniela

    2016-01-01

    The endocannabinoid system (ECS) is an intercellular signalling mechanism that is present in the islets of Langerhans and plays a role in the modulation of insulin secretion and expansion of the β-cell mass. The downstream signalling pathways mediating these effects are poorly understood. Mammalian target of rapamycin complex 1 (mTORC1) signalling is a key intracellular pathway involved in energy homeostasis and is known to importantly affect the physiology of pancreatic islets. We investigated the possible relationship between cannabinoid type 1 (CB1) receptor signalling and the mTORC1 pathway in the endocrine pancreas of mice by using pharmacological analysis as well as mice genetically lacking the CB1 receptor or the downstream target of mTORC1, the kinase p70S6K1. In vitro static secretion experiments on islets, western blotting, and in vivo glucose and insulin tolerance tests were performed. The CB1 receptor antagonist rimonabant decreased glucose-stimulated insulin secretion (GSIS) at 0.1 µM while increasing phosphorylation of p70S6K1 and ribosomal protein S6 (rpS6) within the islets. Specific pharmacological blockade of mTORC1 by 3 nM rapamycin, as well as genetic deletion of p70S6K1, impaired the CB1-antagonist-mediated decrease in GSIS. In vivo experiments showed that 3 mg/kg body weight rimonabant decreased insulin levels and induced glucose intolerance in lean mice without altering peripheral insulin sensitivity; this effect was prevented by peripheral administration of low doses of rapamycin (0.1 mg/kg body weight), which increased insulin sensitivity. These findings suggest a functional interaction between the ECS and the mTORC1 pathway within the endocrine pancreas and at the whole-organism level, which could have implications for the development of new therapeutic approaches for pancreatic β-cell diseases.

  20. The impact of adolescent social isolation on dopamine D2 and cannabinoid CB1 receptors in the adult rat prefrontal cortex

    PubMed Central

    Fitzgerald, Megan L.; Mackie, Kenneth; Pickel, Virginia M.

    2013-01-01

    Adolescent experiences of social deprivation result in profound and enduring perturbations in adult behavior, including impaired sensorimotor gating. The behavioral deficits induced by adolescent social isolation in rats can be ameliorated by antipsychotic drugs blocking dopamine D2 receptors in the prefrontal cortex (PFC) or by chronic administration of a cannabinoid CB1 receptor antagonist. The patterning and abundance of D2 receptors in the PFC evolves concurrently with CB1 receptors through the period of adolescence. This evidence suggests that mature expression and/or surface distribution of D2 and CB1 receptors may be influenced by the adolescent social environment. We tested this hypothesis using electron microscopic immunolabeling to compare the distribution of CB1 and D2 receptors in the PFC of adult male Sprague-Dawley rats that were isolated or socially reared throughout the adolescent transition period. Prepulse inhibition (PPI) of acoustic startle was assessed as a measure of sensorimotor gating. Social isolation reduced PPI and selectively decreased dendritic D2 immunogold labeling in the PFC. However, the decrease was only evident in dendrites that were not contacted by axon terminals containing CB1. There was no apparent change in the expression of CB1 or D2 receptors in presynaptic terminals. The D2 deficit therefore may be tempered by local CB1-mediated retrograde signaling. This suggests a biological mechanism whereby the adolescent social environment can persistently influence cortical dopaminergic activity and resultant behavior. PMID:23333674

  1. Long-lasting increase in [³H]CP55,940 binding to CB1 receptors following cocaine self-administration and its withdrawal in rats.

    PubMed

    Adamczyk, Przemysław; Faron-Górecka, Agata; Kuśmider, Maciej; Dziedzicka-Wasylewska, Marta; Papp, Mariusz; Filip, Małgorzata

    2012-04-27

    The present work has aimed on the neuroadaptive changes in CB1 receptor density that are evoked by self-administered cocaine use and subsequent withdrawal in rats. We employed a quantitative autoradiographic analysis using labeled [³H]CP55,940, a CB1 receptor agonist. To distinguish the passive pharmacological effects of cocaine from those related to motivation and the cognitive processes evoked by active cocaine self-administration, the "yoked" procedure was used. Our results demonstrate that repeated cocaine administration over 14 days induced up-regulation of CB1 receptors in the cortical and subcortical brain areas of animals who received cocaine, whether the cocaine was actively self-administered or received passively (the "yoked" control group) and that the neuroadaptation of CB1 receptors persisted after the 10-day extinction phase. On the other hand, we found that only self-administering rats showed CB1 receptor up-regulation in numerous brain areas, which suggests that these structures may be directly linked to CB1 receptor control over motivational and cognitive processes. Moreover, the observed increase in [³H]CP55,940 binding in these brain areas likely indicates long-lasting neurobiological adaptations resulting from chronic cocaine self-administration. In conclusion, we demonstrated that chronic cocaine self-administration leads to increased CB1 receptor levels in numerous brain areas and that this neuroadaptation is maintained over a long-lasting extinction period.

  2. O-2050 facilitates noradrenaline release and increases the CB1 receptor inverse agonistic effect of rimonabant in the guinea pig hippocampus.

    PubMed

    Jergas, Bernd; Schulte, Kirsten; Bindila, Laura; Lutz, Beat; Schlicker, Eberhard

    2014-07-01

    The cannabinoid CB1 receptors on the noradrenergic neurons in guinea pig hippocampal slices show an endogenous endocannabinoid tone. This conclusion is based on rimonabant, the facilitatory effect of which on noradrenaline release might be due to its inverse CB1 receptor agonism and/or the interruption of a tonic inhibition elicited by endocannabinoids. To examine the latter mechanism, a neutral antagonist would be suitable. Therefore, we studied whether O-2050 is a neutral CB1 receptor antagonist in the guinea pig hippocampus and whether it mimics the facilitatory effect of rimonabant. CB1 receptor affinity of O-2050 was quantified in cerebrocortical membranes, using (3)H-rimonabant binding. Its CB1 receptor potency and effect on (3)H-noradrenaline release were determined in superfused hippocampal slices. Its intrinsic activity at CB1 receptors was studied in hippocampal membranes, using (35)S-GTPγS binding. Endocannabinoid levels in hippocampus were determined by liquid chromatography-multiple reaction monitoring. O-2050 was about ten times less potent than rimonabant in its CB1 receptor affinity, potency and facilitatory effect on noradrenaline release. Although not affecting (35)S-GTPγS binding by itself, O-2050 shifted the concentration-response curve of a CB1 receptor agonist to the right but that of rimonabant to the left. Levels of anandamide and 2-arachidonoyl glycerol in guinea pig hippocampus closely resembled those in mouse hippocampus. In conclusion, our results with O-2050 confirm that the CB1 receptors on noradrenergic neurons of the guinea pig hippocampus show an endogenous tone. To differentiate between the two mechanisms leading to an endogenous tone, O-2050 is not superior to rimonabant since O-2050 may increase the inverse agonistic effect of endocannabinoids.

  3. Loss of striatal cannabinoid CB1 receptor function in attention-deficit / hyperactivity disorder mice with point-mutation of the dopamine transporter.

    PubMed

    Castelli, Maura; Federici, Mauro; Rossi, Silvia; De Chiara, Valentina; Napolitano, Francesco; Studer, Valeria; Motta, Caterina; Sacchetti, Lucia; Romano, Rosaria; Musella, Alessandra; Bernardi, Giorgio; Siracusano, Alberto; Gu, Howard H; Mercuri, Nicola B; Usiello, Alessandro; Centonze, Diego

    2011-11-01

    Abnormal dopamine (DA) transmission in the striatum plays a pivotal role in attention-deficit/hyperactivity disorder (ADHD). As striatal DA signalling modulates the endocannabinoid system (ECS), the present study was aimed at investigating cannabinoid CB1 receptor (CB1R) function in a model of ADHD obtained by triple point-mutation in the dopamine transporter (DAT) gene in mice, making them insensitive to cocaine [DAT cocaine-insensitive (DAT-CI) mice]. DAT-CI mice had a marked hyperactive phenotype, and neurophysiological recordings revealed that the sensitivity of CB1Rs controlling GABA-mediated synaptic currents [CB1Rs((GABA)) ] in the striatum was completely lost. In contrast, CB1Rs modulating glutamate transmission [CB1Rs((Glu)) ], and GABA(B) receptors were not affected in this model of ADHD. In DAT-CI mice, the blockade of CB1R((GABA)) function was complete even after cocaine or environmental manipulations activating the endogenous DA-dependent reward system, which are known to sensitize these receptors in control animals. Conversely, the hedonic property of sucrose was intact in DAT-CI mice, indicating normal sweet perception in these animals. Our results point to CB1Rs as novel molecular players in ADHD, and suggest that therapeutic strategies aimed at interfering with the ECS might prove effective in this disorder. PMID:22034972

  4. Loss of striatal cannabinoid CB1 receptor function in attention-deficit / hyperactivity disorder mice with point-mutation of the dopamine transporter.

    PubMed

    Castelli, Maura; Federici, Mauro; Rossi, Silvia; De Chiara, Valentina; Napolitano, Francesco; Studer, Valeria; Motta, Caterina; Sacchetti, Lucia; Romano, Rosaria; Musella, Alessandra; Bernardi, Giorgio; Siracusano, Alberto; Gu, Howard H; Mercuri, Nicola B; Usiello, Alessandro; Centonze, Diego

    2011-11-01

    Abnormal dopamine (DA) transmission in the striatum plays a pivotal role in attention-deficit/hyperactivity disorder (ADHD). As striatal DA signalling modulates the endocannabinoid system (ECS), the present study was aimed at investigating cannabinoid CB1 receptor (CB1R) function in a model of ADHD obtained by triple point-mutation in the dopamine transporter (DAT) gene in mice, making them insensitive to cocaine [DAT cocaine-insensitive (DAT-CI) mice]. DAT-CI mice had a marked hyperactive phenotype, and neurophysiological recordings revealed that the sensitivity of CB1Rs controlling GABA-mediated synaptic currents [CB1Rs((GABA)) ] in the striatum was completely lost. In contrast, CB1Rs modulating glutamate transmission [CB1Rs((Glu)) ], and GABA(B) receptors were not affected in this model of ADHD. In DAT-CI mice, the blockade of CB1R((GABA)) function was complete even after cocaine or environmental manipulations activating the endogenous DA-dependent reward system, which are known to sensitize these receptors in control animals. Conversely, the hedonic property of sucrose was intact in DAT-CI mice, indicating normal sweet perception in these animals. Our results point to CB1Rs as novel molecular players in ADHD, and suggest that therapeutic strategies aimed at interfering with the ECS might prove effective in this disorder.

  5. Photoperiodic changes in endocannabinoid levels and energetic responses to altered signalling at CB1 receptors in Siberian hamsters.

    PubMed

    Ho, J M; Smith, N S; Adams, S A; Bradshaw, H B; Demas, G E

    2012-07-01

    Siberian hamsters (Phodopus sungorus) adapt to seasonal environmental conditions with marked changes in body mass, primarily in the form of adiposity. Winter-like conditions (e.g. short days) are sufficient to decrease body mass by approximately 30% in part via reductions in food intake. The neuroendocrine mechanisms responsible for these changes are not well understood, and homeostatic orexigenic/anorexigenic systems of the hypothalamus provide little explanation. We investigated the potential role of endocannabinoids, which are known modulators of appetite and metabolism, in mediating seasonal changes in energy balance. Specifically, we housed hamsters in long or short days for 0, 3, or 9 weeks and measured endocannabinoid levels in the hypothalamus, brainstem, liver and retroperitoneal white adipose tissue (RWAT). An additional group of males housed in short days for 25 weeks were also compared with long-day controls. Following 9 weeks in short days, levels of the endocannabinoid 2-arachidonoylglycerol (2-AG) were significantly elevated in RWAT and reduced in brainstem, although they returned to long-day levels by week 25 in short-day males that had cycled back to summer-like energy balance. Endocannabinoid levels in these tissues correlated significantly with adiposity and change in body mass. No photoperiodic changes were observed in the hypothalamus or liver; however, sex differences in 2-AG levels were found in the liver (males > females). We further tested the effects of CB(1) receptor signalling on ingestive behaviour. Five daily injections of CB(1) antagonist SR141716 significantly reduced food intake and body mass but not food hoarding. Although the CB(1) agonist arachidonyl-2-chloroethylamide did not appreciably affect either ingestive behaviour, body mass was significantly elevated following 2 days of injections. Taken altogether, these findings demonstrate that endocannabinoid levels vary with sex and photoperiod in a site-specific manner, and that

  6. CB1 Receptor-Mediated Signaling Underlies the Hippocampal Synaptic, Learning and Memory Deficits Following Treatment with JWH-081, a New Component of Spice/K2 Preparations

    PubMed Central

    Basavarajappa, Balapal S.; Subbanna, Shivakumar

    2014-01-01

    Recently, synthetic cannabinoids have been sprayed onto plant material, which is subsequently packaged and sold as “Spice” or “K2” to mimic the effects of marijuana. A recent report identified several synthetic additives in samples of “Spice/K2”, including JWH-081, a synthetic ligand for the cannabinoid receptor 1 (CB1). The deleterious effects of JWH-081 on brain function are not known, particularly on CB1 signaling, synaptic plasticity, learning and memory. Here, we evaluated the effects of JWH-081 on pCaMKIV, pCREB and pERK1/2 signaling events followed by long-term potentiation (LTP), hippocampal-dependent learning and memory tasks using CB1 receptor wild type (WT) and knockout (KO) mice. Acute administration of JWH-081 impaired CaMKIV phosphorylation in a dose-dependent manner, whereas inhibition of CREB phosphorylation in CB1 receptor WT mice was observed only at higher dose of JWH-081 (1.25 mg/kg). JWH-081 at higher dose impaired CaMKIV and CREB phosphorylation in a time –dependent manner in CB1 receptor WT mice but not in KO mice and failed to alter ERK1/2 phosphorylation. In addition, SR treated or CB1 receptor KO mice have a lower pCaMKIV/CaMKIV ratio and higher pCREB/CREB ratio compared to vehicle or WT littermates. In hippocampal slices, JWH-081 impaired LTP in CB1 receptor WT but not in KO littermates. Furthermore, JWH-081 at higher dose impaired object recognition, spontaneous alternation and spatial memory on the Y-maze in CB1 receptor WT mice but not in KO mice. Collectively our findings suggest that deleterious effects of JWH-081 on hippocampal function involves CB1 receptor mediated impairments in CaMKIV and CREB phosphorylation, LTP, learning and memory in mice. PMID:24123667

  7. Involvement of a non-CB1/CB2 cannabinoid receptor in the aqueous humor outflow-enhancing effects of abnormal-cannabidiol.

    PubMed

    Qiao, Zhuanhong; Kumar, Akhilesh; Kumar, Pritesh; Song, Zhao-Hui

    2012-07-01

    The purpose of this study was to investigate the effects of abnormal-cannabidiol (abn-cbd), a non-psychoactive cannabinoid agonist, on aqueous humor outflow via the trabecular meshwork (TM) of porcine eye, and to examine the involvement of a non-CB1/CB2 cannabinoid receptor and the p42/44 mitogen-activated protein kinase (p42/44 MAPK) pathway. The effects of abn-cbd on aqueous humor outflow were measured using a porcine anterior segment perfused organ culture model. The activation of p42/44 MAPK by abn-cbd was determined in cultured TM cells with western blot analysis using an anti-phospho-p42/44 MAPK antibody. Administration of abn-cbd caused a concentration-dependent enhancement of aqueous humor outflow facility with a maximum effect (155.0 ± 11.7% of basal outflow facility) after administration of 30 nM abn-cbd. Pretreatment with 1 μM of O-1918, a cannabidiol analog that acts as a selective antagonist at the non-CB1/CB2 receptor, produced a full antagonism of 30 nM abn-cbd induced increase of aqueous humor outflow facility. Pretreatment with 1 μM of CB1 antagonist SR141716A partially blocked, whereas pretreatment with either 1 μM of CB1 antagonist AM251 or 1 μM of CB2 antagonist SR144528 had no effect on abn-cbd induced enhancement of outflow facility. Treatment of TM cells with 30 nM of abn-cbd activated p42/44 MAPK, which was blocked completely by pretreatment with O-1918, and partially by pretreatment with SR141716A, but not by either AM251 or SR144528. In addition, PD98059, an inhibitor of p42/44 MAPK pathway, blocked completely the abn-cbd induced p42/44 MAPK activation and blocked partially the abn-cbd induced enhancement of outflow facility. In conclusion, the results from this study demonstrate that abn-cbd increases aqueous humor outflow through the TM pathway of the eye, and this effect is mediated by a non-CB1/CB2 cannabinoid receptor, with an involvement of p42/44 MAPK signaling pathway.

  8. Involvement of a non-CB1/CB2 cannabinoid receptor in the aqueous humor outflow-enhancing effects of abnormal-cannabidiol

    PubMed Central

    Qiao, Zhuanhong; Kumar, Akhilesh; Kumar, Pritesh; Song, Zhao-Hui

    2016-01-01

    The purpose of this study was to investigate the effects of abnormal-cannabidiol (abn-cbd), a non-psychoactive cannabinoid agonist, on aqueous humor outflow via the trabecular meshwork (TM) of porcine eye, and to examine the involvement of a non-CB1/CB2 cannabinoid receptor and the p42/44 mitogen-activated protein kinase (p42/44 MAPK) pathway. The effects of abn-cbd on aqueous humor outflow were measured using a porcine anterior segment perfused organ culture model. The activation of p42/44 MAPK by abn-cbd was determined in cultured TM cells with western blot analysis using an anti-phospho-p42/44 MAPK antibody. Administration of abn-cbd caused a concentration-dependent enhancement of aqueous humor outflow facility with a maximum effect (155.0 ± 11.7% of basal outflow facility) after administration of 30 nM abn-cbd. Pretreatment with 1 μM of O-1918, a cannabidiol analog that acts as a selective antagonist at the non-CB1/CB2 receptor, produced a full antagonism of 30 nM abn-cbd induced increase of aqueous humor outflow facility. Pretreatment with 1 μM of CB1 antagonist SR141716A partially blocked, whereas pretreatment with either 1 μM of CB1 antagonist AM251 or 1 μM of CB2 antagonist SR144528 had no effect on abn-cbd induced enhancement of outflow facility. Treatment of TM cells with 30 nM of abn-cbd activated p42/44 MAPK, which was blocked completely by pretreatment with O-1918, and partially by pretreatment with SR141716A, but not by either AM251 or SR144528. In addition, PD98059, an inhibitor of p42/44 MAPK pathway, blocked completely the abn-cbd induced p42/44 MAPK activation and blocked partially the abn-cbd induced enhancement of outflow facility. In conclusion, the results from this study demonstrate that abn-cbd increases aqueous humor outflow through the TM pathway of the eye, and this effect is mediated by a non-CB1/CB2 cannabinoid receptor, with an involvement of p42/44 MAPK signaling pathway. PMID:22580290

  9. CB1 Cannabinoid Receptor-Dependent Activation of mTORC1/Pax6 Signaling Drives Tbr2 Expression and Basal Progenitor Expansion in the Developing Mouse Cortex.

    PubMed

    Díaz-Alonso, Javier; Aguado, Tania; de Salas-Quiroga, Adán; Ortega, Zaira; Guzmán, Manuel; Galve-Roperh, Ismael

    2015-09-01

    The CB1 cannabinoid receptor regulates cortical progenitor proliferation during embryonic development, but the molecular mechanism of this action remains unknown. Here, we report that CB1-deficient mouse embryos show premature cell cycle exit, decreased Pax6- and Tbr2-positive cell number, and reduced mammalian target of rapamycin complex 1 (mTORC1) activation in the ventricular and subventricular cortical zones. Pharmacological stimulation of the CB1 receptor in cortical slices and progenitor cell cultures activated the mTORC1 pathway and increased the number of Pax6- and Tbr2-expressing cells. Likewise, acute CB1 knockdown in utero reduced mTORC1 activation and cannabinoid-induced Tbr2-positive cell generation. Luciferase reporter and chromatin immunoprecipitation assays revealed that the CB1 receptor drives Tbr2 expression downstream of Pax6 induction in an mTORC1-dependent manner. Altogether, our results demonstrate that the CB1 receptor tunes dorsal telencephalic progenitor proliferation by sustaining the transcriptional activity of the Pax6-Tbr2 axis via the mTORC1 pathway, and suggest that alterations of CB1 receptor signaling, by producing the missexpression of progenitor identity determinants may contribute to neurodevelopmental alterations.

  10. Long-term consequences of URB597 administration during adolescence on cannabinoid CB1 receptor binding in brain areas.

    PubMed

    Marco, Eva María; Rubino, Tiziana; Adriani, Walter; Viveros, María-Paz; Parolaro, Daniela; Laviola, Giovanni

    2009-02-27

    Despite the alarming increment in the use and abuse of cannabis preparations among young people, little is known about possible long-term consequences of targeting the endocannabinoid system during the critical developmental period of adolescence. Therefore, we aimed to analyze possible long-lasting neurobiological consequences of enhancing endocannabinoid signalling during adolescence, by means of blocking anandamide (AEA) hydrolysis. Adolescent Wistar male rats were administered an inhibitor of AEA hydrolysis, i.e. URB597 (0, 0.1 or 0.5 mg/kg/day from postnatal days 38 to 43). The expression of brain cannabinoid receptor type 1 (CB1R) was then analyzed by [(3)H]CP-55,940 auto-radiographic binding at adulthood. Repeated URB597 administration during adolescence persistently modified CB1R binding in a region-dependent manner. A long-lasting decrease of CB1R binding levels was found in caudate-putamen, nucleus accumbens, ventral tegmental area and hippocampus, while an opposite increment was observed in the locus coeruleus. Present results provide evidence for long-lasting effects of adolescent URB597 administration. Activation of endocannabinoid transmission during the still plastic phase of adolescence may have implications for the maturational end-point of the endocannabinoid system itself, which could lead to permanent alterations in neuronal brain circuits and behavioural responses. Insights into the developmental trajectories of this neuromodulatory system may help us to better understand and prevent outcomes of neonatal and adolescent cannabis exposure.

  11. Gz mediates the long-lasting desensitization of brain CB1 receptors and is essential for cross-tolerance with morphine

    PubMed Central

    Garzón, Javier; de la Torre-Madrid, Elena; Rodríguez-Muñoz, María; Vicente-Sánchez, Ana; Sánchez-Blázquez, Pilar

    2009-01-01

    Background Although the systemic administration of cannabinoids produces antinociception, their chronic use leads to analgesic tolerance as well as cross-tolerance to morphine. These effects are mediated by cannabinoids binding to peripheral, spinal and supraspinal CB1 and CB2 receptors, making it difficult to determine the relevance of each receptor type to these phenomena. However, in the brain, the CB1 receptors (CB1Rs) are expressed at high levels in neurons, whereas the expression of CB2Rs is marginal. Thus, CB1Rs mediate the effects of smoked cannabis and are also implicated in emotional behaviors. We have analyzed the production of supraspinal analgesia and the development of tolerance at CB1Rs by the direct injection of a series of cannabinoids into the brain. The influence of the activation of CB1Rs on supraspinal analgesia evoked by morphine was also evaluated. Results Intracerebroventricular (icv) administration of cannabinoid receptor agonists, WIN55,212-2, ACEA or methanandamide, generated a dose-dependent analgesia. Notably, a single administration of these compounds brought about profound analgesic tolerance that lasted for more than 14 days. This decrease in the effect of cannabinoid receptor agonists was not mediated by depletion of CB1Rs or the loss of regulated G proteins, but, nevertheless, it was accompanied by reduced morphine analgesia. On the other hand, acute morphine administration produced tolerance that lasted only 3 days and did not affect the CB1R. We found that both neural mu-opioid receptors (MORs) and CB1Rs interact with the HINT1-RGSZ module, thereby regulating pertussis toxin-insensitive Gz proteins. In mice with reduced levels of these Gz proteins, the CB1R agonists produced no such desensitization or morphine cross-tolerance. On the other hand, experimental enhancement of Gz signaling enabled an acute icv administration of morphine to produce a long-lasting tolerance at MORs that persisted for more than 2 weeks, and it also

  12. Acute and chronic ethanol exposure differentially regulate CB1 receptor function at glutamatergic synapses in the rat basolateral amygdala.

    PubMed

    Robinson, Stacey L; Alexander, Nancy J; Bluett, Rebecca J; Patel, Sachin; McCool, Brian A

    2016-09-01

    The endogenous cannabinoid (eCB) system has been suggested to play a key role in ethanol preference and intake, the acute effects of ethanol, and in the development of withdrawal symptoms following ethanol dependence. Ethanol-dependent alterations in glutamatergic signaling within the lateral/basolateral nucleus of the amygdala (BLA) are critical for the development and expression of withdrawal-induced anxiety. Notably, the eCB system significantly regulates both glutamatergic and GABAergic synaptic activity within the BLA. Chronic ethanol exposure significantly alters eCB system expression within regions critical to the expression of emotionality and anxiety-related behavior, including the BLA. Here, we investigated specific interactions between the BLA eCB system and its functional regulation of synaptic activity during acute and chronic ethanol exposure. In tissue from ethanol naïve-rats, a prolonged acute ethanol exposure caused a dose dependent inhibition of glutamatergic synaptic activity via a presynaptic mechanism that was occluded by CB1 antagonist/inverse agonists SR141716a and AM251. Importantly, this acute ethanol inhibition was attenuated following 10 day chronic intermittent ethanol vapor exposure (CIE). CIE exposure also significantly down-regulated CB1-mediated presynaptic inhibition at glutamatergic afferent terminals but spared CB1-inhibition of GABAergic synapses arising from local inhibitory-interneurons. CIE also significantly elevated BLA N-arachidonoylethanolamine (AEA or anandamide) levels and decreased CB1 receptor protein levels. Collectively, these data suggest a dynamic regulation of the BLA eCB system by acute and chronic ethanol.

  13. The gastric CB1 receptor modulates ghrelin production through the mTOR pathway to regulate food intake.

    PubMed

    Senin, Lucia L; Al-Massadi, Omar; Folgueira, Cintia; Castelao, Cecilia; Pardo, Maria; Barja-Fernandez, Silvia; Roca-Rivada, Arturo; Amil, Maria; Crujeiras, Ana B; Garcia-Caballero, Tomas; Gabellieri, Enrico; Leis, Rosaura; Dieguez, Carlos; Pagotto, Uberto; Casanueva, Felipe F; Seoane, Luisa M

    2013-01-01

    Over the years, the knowledge regarding the relevance of the cannabinoid system to the regulation of metabolism has grown steadily. A central interaction between the cannabinoid system and ghrelin has been suggested to regulate food intake. Although the stomach is the main source of ghrelin and CB1 receptor expression in the stomach has been described, little information is available regarding the possible interaction between the gastric cannabinoid and ghrelin systems in the integrated control of energy homeostasis. The main objective of the present work was to assess the functional interaction between these two systems in terms of food intake using a combination of in vivo and in vitro approaches. The present work demonstrates that the peripheral blockade of the CB1 receptor by rimonabant treatment decreased food intake but only in food-deprived animals. This anorexigenic effect is likely a consequence of decreases in gastric ghrelin secretion induced by the activation of the mTOR/S6K1 intracellular pathway in the stomach following treatment with rimonabant. In support of this supposition, animals in which the mTOR/S6K1 intracellular pathway was blocked by chronic rapamycin treatment, rimonabant had no effect on ghrelin secretion. Vagal communication may also be involved because rimonabant treatment was no longer effective when administered to animals that had undergone surgical vagotomy. In conclusion, to the best of our knowledge, the present work is the first to describe a CB1 receptor-mediated mechanism that influences gastric ghrelin secretion and food intake through the mTOR pathway. PMID:24303008

  14. Effects of the cannabinoid CB1 receptor antagonist rimonabant on distinct measures of impulsive behavior in rats

    PubMed Central

    Janssen, Mieke C. W.; Schepers, Inga; González-Cuevas, Gustavo; de Vries, Taco J.; Schoffelmeer, Anton N. M.

    2007-01-01

    Rationale Pathological impulsivity is a prominent feature in several psychiatric disorders, but detailed understanding of the specific neuronal processes underlying impulsive behavior is as yet lacking. Objectives As recent findings have suggested involvement of the brain cannabinoid system in impulsivity, the present study aimed at further elucidating the role of cannabinoid CB1 receptor activation in distinct measures of impulsive behavior. Materials and methods The effects of the selective cannabinoid CB1 receptor antagonist, rimonabant (SR141716A) and agonist WIN55,212-2 were tested in various measures of impulsive behavior, namely, inhibitory control in a five-choice serial reaction time task (5-CSRTT), impulsive choice in a delayed reward paradigm, and response inhibition in a stop-signal paradigm. Results In the 5-CSRTT, SR141716A dose-dependently improved inhibitory control by decreasing the number of premature responses. Furthermore, SR141716A slightly improved attentional function, increased correct response latency, but did not affect other parameters. The CB1 receptor agonist WIN55,212-2 did not change inhibitory control in the 5-CSRTT and only increased response latencies and errors of omissions. Coadministration of WIN55,212-2 prevented the effects of SR141716A on inhibitory control in the 5-CSRTT. Impulsive choice and response inhibition were not affected by SR141716A at any dose, whereas WIN55,212-2 slightly impaired response inhibition but did not change impulsive choice. Conclusions The present data suggest that particularly the endocannabinoid system seems involved in some measures of impulsivity and provides further evidence for the existence of distinct forms of impulsivity that can be pharmacologically dissociated. PMID:17387457

  15. Basolateral amygdala CB1 cannabinoid receptors are involved in cross state-dependent memory retrieval between morphine and ethanol.

    PubMed

    Ofogh, Sattar Norouzi; Rezayof, Ameneh; Sardari, Maryam; Ghasemzadeh, Zahra

    2016-09-01

    Ethanol and morphine are largely co-abused and affect memory formation. The present study intended to investigate the involvement of cannabinoid CB1 receptors of the basolateral amygdala (BLA) in cross state-dependent memory retrieval between morphine and ethanol. Adult male Wistar rats received bilateral cannulation of the BLA, and memory retrieval was measured in step-through type passive avoidance apparatus. Our results showed that post-training intraperitoneal (i.p.) administration of morphine (6mg/kg) induced amnesia. Pre-test administration of ethanol (0.5g/kg, i.p.) significantly improved morphine-induced memory impairment, suggesting that there is cross state-dependent memory retrieval between morphine and ethanol. It should be considered that pre-test administration of ethanol (0.1 and 0.5g/kg, i.p.) by itself had no effect on memory retrieval in the passive avoidance task. Interestingly, pre-test intra-BLA microinjection of different doses of WIN55,212-2 (0.1, 0.2 and 0.3μg/rat), a non-selective CB1/CB2 receptor agonist, plus an ineffective dose of ethanol (0.1g/kg, i.p.) improved morphine-induced memory impairment. Intra-BLA microinjection of AM251 (0.4-0.6ng/rat), a selective CB1 receptor antagonist, inhibited the improved effect of ethanol (0.5g/kg, i.p.) on morphine response. Pre-test intra-BLA microinjection of WIN55,212-2 or AM251 had no effect on memory retrieval or morphine-induced amnesia. Taken together, it can be concluded that morphine and ethanol can induce state-dependent memory retrieval. In addition, the BLA endocannabinoid system mediates via CB1 receptors the functional interaction of morphine and ethanol state-dependent memory retrieval which may depend on the rewarding effects of the drugs. PMID:27327764

  16. CB1 Receptors Regulate Alcohol-Seeking Behavior and Alcohol Self-administration of Female Alcohol-Preferring (P) Rats

    PubMed Central

    Getachew, Bruk; Hauser, Sheketha R.; Dhaher, Ronnie; Bell, Richard L.; Oster, Scott M.; McBride, William J.; Rodd, Zachary A.

    2015-01-01

    Rationale The endogenous cannabinoid (CB) system mediates a number of behaviors associated with drug-seeking and drug self-administration. In this study the effects of CB1 receptor manipulations on operant ethanol (EtOH) responding during EtOH-seeking, EtOH- relapse as well as on-going EtOH self-administration were determined. Methods Alcohol-preferring (P) rats were trained in 2-lever operant chambers to self-administer 15% EtOH (v/v) and water on a concurrent fixed-ratio 5 – fixed-ratio 1 (FR5-FR1) schedule of reinforcement in daily 1-hr sessions. After 10 weeks, rats underwent 7 extinction sessions, followed by 2 weeks in their home cages without access to EtOH or operant chambers. Rats were then returned to the operant chambers for testing of EtOH-seeking behavior (no EtOH present) for 4 sessions. After a week in their home cages following the EtOH-seeking test, rats were returned to the operant chambers with access to EtOH and water (relapse). Rats were then maintained in the operant chambers for daily 1-hr sessions with access to 15% EtOH and water for several weeks. Results The CB1 receptor antagonist (SR141716A), at doses of 1 and 2 mg/kg, i.p. reduced EtOH-seeking and transiently reduced EtOH self-administration during relapse and maintenance. Conversely, treatment with the CB1 receptor agonist CP, 55-940, at doses of 1 and 10 μg/kg i.p., increased EtOH-seeking and EtOH self-administration during relapse. Conclusions The results of this study demonstrate that activation of CB1 receptors are involved in regulating EtOH-seeking as well as the reinforcing effects of EtOH under relapse and on-going self-administration conditions. PMID:21110997

  17. Effects of the novel cannabinoid CB1 receptor antagonist PF 514273 on the acquisition and expression of ethanol conditioned place preference.

    PubMed

    Pina, Melanie M; Cunningham, Christopher L

    2014-08-01

    The centrally expressed cannabinoid receptor (CB1) has been considered a potential therapeutic target in treating alcoholism. Though CB1 receptors have been shown to modulate primary and conditioned ethanol reward, much of this research employed animal models that require ethanol ingestion or oral routes of administration. This is problematic considering CB1 antagonist drugs have high anorectic liability and have been used clinically in the treatment of obesity. Therefore, the present study examined CB1 antagonism in DBA/2J mice using an unbiased ethanol-induced conditioned place preference (CPP) procedure, a paradigm that does not require ethanol ingestion. To evaluate the role of CB1 receptors in primary ethanol reward, the highly potent and selective novel CB1 antagonist 2-(2-chlorophenyl)-3-(4-chlorophenyl)-7-(2,2-difluoropropyl)-6,7-dihydro-2H-pyrazolo[3,4-f][1,4]oxazepin-8(5H)-one (PF 514273) was administered 30 min before place preference conditioning with a fixed dose of ethanol (acquisition). To evaluate the role of CB1 receptors in ethanol-conditioned reward, PF 514273 was administered 30 min before place preference testing (expression). Although PF 514273 reduced ethanol-stimulated and basal locomotor activity, it did not perturb the acquisition or expression of ethanol-induced CPP. Results from the present study appear inconsistent with other studies that have demonstrated a role for CB1 antagonism in ethanol reward using oral administration paradigms. Our findings suggest that CB1 antagonism may have greater involvement in consummatory behavior than ethanol reward.

  18. Differentiation between low- and high-efficacy CB1 receptor agonists using a drug discrimination protocol for rats

    PubMed Central

    LeMay, Brian J.; Halikhedkar, Aneetha; Wood, JodiAnne; Vadivel, Subramanian K.; Zvonok, Alexander; Makriyannis, Alexandros

    2013-01-01

    Rationale The “subjective high” from marijuana ingestion is likely due to Δ9-tetrahydrocannabinol (THC) activating the central cannabinoid receptor type 1 (CB1R) of the endocannabinoid signaling system. THC is a weak partial agonist according to in vitro assays, yet THC mimics the behavioral effects induced by more efficacious cannabinergics. This distinction may be important for understanding similarities and differences in the dose–effect spectra produced by marijuana/THC and designer cannabimimetics (“synthetic marijuana”). Objective We evaluated if drug discrimination is able to functionally detect/differentiate between a full, high-efficacy CB1R agonist [(±)AM5983] and the low-efficacy agonist THC in vivo. Materials and methods Rats were trained to discriminate between four different doses of AM5983 (0.10 to 0.56 mg/kg), and vehicle and dose generalization curves were determined for both ligands at all four training doses of AM5983. The high-efficacy WIN55,212-2 and the lower-efficacy (R)-(+)-methanandamide were examined at some AM5983 training conditions. Antagonism tests involved rimonabant and WIN55,212-2 and AM5983. The separate (S)- and (R)-isomers of (±)AM5983 were tested at one AM5983 training dose (0.30 mg/kg). The in vitro cyclic adenosine monophosphate (cAMP) assay examined AM5983 and the known CB1R agonist CP55,940. Results Dose generalization ed50 values increased as a function of the training dose of AM5983, but more so for the partial agonists. The order of potency was (R)-isomer > (±)AM5983 > (S)-isomer and AM5983 > WIN55,212-2 ≥ THC > (R)-(+)-methanandamide. Surmountable antagonism of AM5983 and WIN55,212-2 occurred with rimonabant. The cAMP assay confirmed the cannabinergic nature of AM5983 and CP55,940. Conclusions Drug discrimination using different training doses of a high-efficacy, full CB1R agonist differentiated between low- and high-efficacy CB1R agonists. PMID:24005529

  19. Effects of Neuroendocrine CB1 Activity on Adult Leydig Cells

    PubMed Central

    Cobellis, Gilda; Meccariello, Rosaria; Chianese, Rosanna; Chioccarelli, Teresa; Fasano, Silvia; Pierantoni, Riccardo

    2016-01-01

    Endocannabinoids control male reproduction acting at central and local level via cannabinoid receptors. The cannabinoid receptor CB1 has been characterized in the testis, in somatic and germ cells of mammalian and non-mammalian animal models, and its activity related to Leydig cell differentiation, steroidogenesis, spermiogenesis, sperm quality, and maturation. In this short review, we provide a summary of the insights concerning neuroendocrine CB1 activity in male reproduction focusing on adult Leydig cell ontogenesis and steroid biosynthesis. PMID:27375550

  20. The effects of cannabinoid CB1, CB2 and vanilloid TRPV1 receptor antagonists on cocaine addictive behavior in rats.

    PubMed

    Adamczyk, Przemysław; Miszkiel, Joanna; McCreary, Andrew C; Filip, Małgorzata; Papp, Mariusz; Przegaliński, Edmund

    2012-03-20

    There is evidence that indicates that tonic activation of cannabinoid CB1 receptors plays a role in extinction/reinstatement of cocaine seeking-behavior but is not involved in the maintenance of cocaine self-administration. To further explore the importance of other endocannabinoid-related receptors in an animal model of cocaine addiction, the present paper examines cannabinoid CB2 receptor antagonist N-((1S)-endo-1,3,3-trimethylbicyclo(2.2.1)heptan-2-yl)-5-(4-chloro-3-methylphenyl)-1-(4-methylbenzyl)-pyrazole-3-carboxamide (SR144528) and the transient receptor potential vanilloid type-1 (TRPV1) receptor antagonist N-(3-methoxyphenyl)-4-chlorocinnamide (SB366791) on intravenous (i.v.) cocaine self-administration and extinction/reinstatement of cocaine-seeking behavior in rats. For comparison and reference purposes, the effect of the cannabinoid CB1 receptor antagonist N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (AM251) was also examined. Moreover, for comparison effects of those drugs on operant lever responding for artificial (cocaine) vs. natural (food) reward, food self-administration was also evaluated. Our findings show that AM251 (1-3mg/kg), SR144528 (0.1-1mg/kg) and SB366791 (0.3-1mg/kg) did not affect cocaine self-administration. However, AM251 (0.1-1mg/kg), SR144528 (0.1-1mg/kg) and SB366791 (0.1-1mg/kg) decreased cocaine-induced reinstatement of cocaine-seeking behavior, and AM251 (0.3-1mg/kg) decreased cue-induced reinstatement. Moreover, AM251 (3mg/kg), SR144528 (0.1-1mg/kg) and SB366791 (0.1-1mg/kg) slightly decreased food self-administration behavior, but only AM251 (3mg/kg) reduced food reward. In conclusion, our results indicate for the first time, that tonic activation of CB2 or TRPV1 receptors is involved in cocaine-induced reinstatement of cocaine-seeking behavior, but their activity is not necessary for the rewarding effect of this psychostimulant. In contrast to CB1 receptors, neither CB2 nor

  1. The cannabinoid CB1 receptor biphasically modulates motor activity and regulates dopamine and glutamate release region dependently.

    PubMed

    Polissidis, Alexia; Galanopoulos, Andreas; Naxakis, George; Papahatjis, Demetris; Papadopoulou-Daifoti, Zeta; Antoniou, Katerina

    2013-03-01

    Cannabinoid administration modulates both dopaminergic and glutamatergic neurotransmission. The present study examines the effects of high and low dose WIN55,212-2, a CB1 receptor agonist, on extracellular dopamine and glutamate release in vivo via brain microdialysis in the nucleus accumbens (NAc), striatum and prefrontal cortex (PFC) in parallel to its effects on locomotor activity. WIN55,212-2 increased extracellular dopamine in the NAc (1 mg/kg i.p.), striatum (0.1 and 1 mg/kg i.p.) and PFC (1 mg/kg i.p.). Glutamate release was also elevated by WIN55,212-2 in the PFC (1 mg/kg i.p.) whereas in the NAc (0.1 and 1 mg/kg i.p.) and striatum, it was reduced (1 mg/kg i.p.). WIN55,212-2 administration produced hyperlocomotion at the lower dose (0.1 mg/kg i.p.) and hypolocomotion at the higher dose (1 mg/kg i.p.). Co-administration with the CB1 antagonist, SR-141716A (0.03 mg/kg i.p.), prevented the above effects. According to the present results, WIN55,212-2 affected locomotor activity biphasically while exerting converging effects on dopamine activity but diverging effects on glutamate release between cortical and subcortical regions, especially at the higher dose. These findings emphasize the involvement of the CB1 receptor in the simultaneous modulation of dopaminergic and glutamatergic neurotransmission in brain regions involved in reward and locomotion and suggest possible underlying mechanisms of acute cannabinoid exposure and its psychoactive and behavioural manifestations.

  2. Anatomically heterogeneous populations of CB1 cannabinoid receptor-expressing interneurons in the CA3 region of the hippocampus show homogeneous input-output characteristics.

    PubMed

    Szabó, Gergely G; Papp, Orsolya I; Máté, Zoltán; Szabó, Gábor; Hájos, Norbert

    2014-12-01

    A subpopulation of GABAergic cells in cortical structures expresses CB1 cannabinoid receptors (CB1 ) on their axon terminals. To understand the function of these interneurons in information processing, it is necessary to uncover how they are embedded into neuronal circuits. Therefore, the proportion of GABAergic terminals expressing CB1 and the morphological and electrophysiological properties of CB1 -immunoreactive interneurons should be revealed. We investigated the ratio and the origin of CB1 -expressing inhibitory boutons in the CA3 region of the hippocampus. Using immunocytochemical techniques, we estimated that ∼40% of GABAergic axon terminals in different layers of CA3 also expressed CB1 . To identify the inhibitory cell types expressing CB1 in this region, we recorded and intracellularly labeled interneurons in hippocampal slices. CB1 -expressing interneurons showed distinct axonal arborization, and were classified as basket cells, mossy-fiber-associated cells, dendritic-layer-innervating cells or perforant-path-associated cells. In each morphological category, a substantial variability in axonal projection was observed. In contrast to the diverse morphology, the active and passive membrane properties were found to be rather similar. Using paired recordings, we found that pyramidal cells displayed large and fast unitary postsynaptic currents in response to activating basket and mossy-fiber-associated cells, while they showed slower and smaller synaptic events in pairs originating from interneurons that innervate the dendritic layer, which may be due to dendritic filtering. In addition, CB1 activation significantly reduced the amplitude of the postsynaptic currents in each cell pair tested. Our data suggest that CB1 -expressing interneurons with different axonal projections have comparable physiological characteristics, contributing to a similar proportion of GABAergic inputs along the somato-dendritic axis of CA3 pyramidal cells.

  3. AAV-Mediated Overexpression of the CB1 Receptor in the mPFC of Adult Rats Alters Cognitive Flexibility, Social Behavior, and Emotional Reactivity

    PubMed Central

    Klugmann, Matthias; Goepfrich, Anja; Friemel, Chris M.; Schneider, Miriam

    2011-01-01

    The endocannabinoid (ECB) system is strongly involved in the regulation of cognitive processing and emotional behavior and evidence indicates that ECB signaling might affect these behavioral abilities by modulations of prefrontal cortical functions. The aim of the present study was to examine the role of the CB1 receptor in the medial prefrontal cortex (mPFC) on cognitive flexibility and emotional behavior. Therefore, the CB1 receptor was overexpressed by adeno-associated virus vector-mediated gene transfer specifically in the mPFC of adult Wistar rats. Animals were then tested in different anxiety-related paradigms for emotional reactivity [e.g., elevated plus maze (EPM), light/dark emergence test (EMT), social interaction] and the attentional set shift task (ASST) – an adaptation of the human Wisconsin card sorting test – for cognitive abilities and behavioral flexibility. A subtle increase in exploratory behavior was found in CB1 receptor overexpressing animals (CB1-R) compared to Empty vector injected controls (Empty) in the EMT and EPM, although general locomotor activity did not differ between the groups. During social interaction testing, social contact behavior toward the unknown conspecific was found to be decreased, whereas social withdrawal was increased in CB1-R animals and they showed an inadequate increase in exploratory behavior compared to control animals. In the ASST, impaired reversal learning abilities were detected in CB1-R animals compared to controls, indicating reduced behavioral flexibility. In conclusion, upregulation of the CB1 receptor specifically in the rat mPFC induces alterations in emotional reactivity, leads to inadequate social behavior, and impairs cognitive flexibility. These findings might be relevant for neuropsychiatric disorders, since higher cortical CB1 receptor expression levels as well as similar behavioral impairments as observed in the present study have been described in schizophrenic patients. PMID:21808613

  4. CB1 and CB2 cannabinoid receptor antagonists prevent minocycline-induced neuroprotection following traumatic brain injury in mice.

    PubMed

    Lopez-Rodriguez, Ana Belen; Siopi, Eleni; Finn, David P; Marchand-Leroux, Catherine; Garcia-Segura, Luis M; Jafarian-Tehrani, Mehrnaz; Viveros, Maria-Paz

    2015-01-01

    Traumatic brain injury (TBI) and its consequences represent one of the leading causes of death in young adults. This lesion mediates glial activation and the release of harmful molecules and causes brain edema, axonal injury, and functional impairment. Since glial activation plays a key role in the development of this damage, it seems that controlling it could be beneficial and could lead to neuroprotective effects. Recent studies show that minocycline suppresses microglial activation, reduces the lesion volume, and decreases TBI-induced locomotor hyperactivity up to 3 months. The endocannabinoid system (ECS) plays an important role in reparative mechanisms and inflammation under pathological situations by controlling some mechanisms that are shared with minocycline pathways. We hypothesized that the ECS could be involved in the neuroprotective effects of minocycline. To address this hypothesis, we used a murine TBI model in combination with selective CB1 and CB2 receptor antagonists (AM251 and AM630, respectively). The results provided the first evidence for the involvement of ECS in the neuroprotective action of minocycline on brain edema, neurological impairment, diffuse axonal injury, and microglial activation, since all these effects were prevented by the CB1 and CB2 receptor antagonists.

  5. Altered CB1 receptor coupling to G-proteins in the post-mortem caudate nucleus and cerebellum of alcoholic subjects.

    PubMed

    Erdozain, Amaia M; Rubio, Marina; Meana, J Javier; Fernández-Ruiz, Javier; Callado, Luis F

    2015-11-01

    Biochemical, pharmacological and genetic evidence suggests the involvement of the endocannabinoid system in alcohol dependence. The aim of the present study was to evaluate the state of CB1 receptors in post-mortem caudate nucleus, hippocampus and cerebellum of alcoholic subjects.CB1 protein levels were measured by Western blot, CB1 receptor density and affinity by [(3)H]WIN55,212-2 saturation assays and CB1 functionality by [(35)S]GTPγS binding assays. Experiments were performed in samples from 24 subjects classified as non-suicidal alcoholics (n = 6), suicidal alcoholics (n = 6), non-alcoholic suicide victims (n = 6) and control subjects (n = 6).Alcoholic subjects presented hyperfunctional CB1 receptors in the caudate nucleus resulting in a higher maximal effect in both alcoholic groups compared to the non-alcoholic groups (p < 0.001). Conversely, in the cerebellum the non-suicidal alcoholic subjects showed hypofunctional receptors with lower maximal effect and potency (p < 0.001). No changes were found in the CB1 protein expression in either region. In the hippocampus of alcoholic subjects, no changes were observed either in the functionality, density or protein levels.Our data support an association between endocannabinoid system activity and alcoholism. The modifications reported here could be either a consequence of high lifetime ethanol consumption or a vulnerability factor to develop alcohol addiction.

  6. Mice Expressing a "Hyper-Sensitive" Form of the Cannabinoid Receptor 1 (CB1) Are Neither Obese Nor Diabetic

    PubMed Central

    Andrews, Mary-Jeanette; Amin, Randa; Henderson-Redmond, Angela N.; Mackie, Ken; Czyzyk, Traci A.; Morgan, Daniel J.

    2016-01-01

    Multiple lines of evidence implicate the endocannabinoid signaling system in the modulation of metabolic disease. Genetic or pharmacological inactivation of CB1 in rodents leads to reduced body weight, resistance to diet-induced obesity, decreased intake of highly palatable food, and increased energy expenditure. Cannabinoid agonists stimulate feeding in rodents and increased levels of endocannabinoids can disrupt lipid metabolism. Therefore, the hypothesis that sustained endocannabinoid signaling can lead to obesity and diabetes was examined in this study using S426A/S430A mutant mice expressing a desensitization-resistant CB1 receptor. These mice display exaggerated and prolonged responses to acute administration of phytocannabinoids, synthetic cannabinoids, and endocannabinoids. As a consequence these mice represent a novel model for determining the effect of enhanced endocannabinoid signaling on metabolic disease. S426A/S430A mutants consumed equivalent amounts of both high fat (45%) and low fat (10%) chow control diet compared to wild-type littermate controls. S426A/S430A mutants and wild-type mice fed either high or low fat control diet displayed similar fasting blood glucose levels and normal glucose clearance following a 2 g/kg glucose challenge. Furthermore, S426A/S430A mutants and wild-type mice consumed similar amounts of chow following an overnight fast. While both THC and JZL195 significantly increased food intake two hours after injection, this increase was similar between the S426A/S430A mutant and wildtype control mice Our results indicate that S426A/S430A mutant mice expressing the desensitization-resistant form of CB1 do not exhibit differences in body weight, food intake, glucose homeostasis, or re-feeding following a fast. PMID:27501235

  7. Mice Expressing a "Hyper-Sensitive" Form of the Cannabinoid Receptor 1 (CB1) Are Neither Obese Nor Diabetic.

    PubMed

    Marcus, David J; Zee, Michael L; Davis, Brian J; Haskins, Chris P; Andrews, Mary-Jeanette; Amin, Randa; Henderson-Redmond, Angela N; Mackie, Ken; Czyzyk, Traci A; Morgan, Daniel J

    2016-01-01

    Multiple lines of evidence implicate the endocannabinoid signaling system in the modulation of metabolic disease. Genetic or pharmacological inactivation of CB1 in rodents leads to reduced body weight, resistance to diet-induced obesity, decreased intake of highly palatable food, and increased energy expenditure. Cannabinoid agonists stimulate feeding in rodents and increased levels of endocannabinoids can disrupt lipid metabolism. Therefore, the hypothesis that sustained endocannabinoid signaling can lead to obesity and diabetes was examined in this study using S426A/S430A mutant mice expressing a desensitization-resistant CB1 receptor. These mice display exaggerated and prolonged responses to acute administration of phytocannabinoids, synthetic cannabinoids, and endocannabinoids. As a consequence these mice represent a novel model for determining the effect of enhanced endocannabinoid signaling on metabolic disease. S426A/S430A mutants consumed equivalent amounts of both high fat (45%) and low fat (10%) chow control diet compared to wild-type littermate controls. S426A/S430A mutants and wild-type mice fed either high or low fat control diet displayed similar fasting blood glucose levels and normal glucose clearance following a 2 g/kg glucose challenge. Furthermore, S426A/S430A mutants and wild-type mice consumed similar amounts of chow following an overnight fast. While both THC and JZL195 significantly increased food intake two hours after injection, this increase was similar between the S426A/S430A mutant and wildtype control mice Our results indicate that S426A/S430A mutant mice expressing the desensitization-resistant form of CB1 do not exhibit differences in body weight, food intake, glucose homeostasis, or re-feeding following a fast. PMID:27501235

  8. CB1 receptors in the formation of the different phases of memory-related processes in the inhibitory avoidance test in mice.

    PubMed

    Kruk-Slomka, Marta; Biala, Grażyna

    2016-03-15

    The endocannabinoid system, through the cannabinoid type 1 (CB1) and 2 (CB2) receptors modulates many physiological functions, including different aspects of memory-related processes. The aim of the present experiments was to explore the role of the endocannabinoid system, through CB1 receptors in the different stages of short-term (acquisition, retention and retrieval) and long-term (acquisition, consolidation and retrieval) memory-related responses, using the inhibitory avoidance (IA) test in mice. Our results revealed that an acute injection of oleamide (10 and 20mg/kg), a CB1 receptor agonist, impairs the short-term or/and long-term acquisition, retention/consolidation, retrieval memory and learning processes in the IA test in mice. In turn, in this test an acute injection of AM 251 (1 and 3mg/kg), a CB1 receptor antagonist, improves the short-term or/and long-term memory stages, described above. Moreover, this memory impairment induced by effective dose of oleamide (20mg/kg) is reversed by non-effective dose of AM 251 (0.25mg/kg) in the IA task, which proves the selectivity of oleamide to CB1 receptors and confirms that the CB1 receptor-related mechanism is one of the possible mechanisms, responsible for memory and learning responses. Obtained results provide clear evidence that the endocannabinoid system, through CB1 receptors, participates in the different stages of short- and long-term memory-related behavior. This knowledge may open in the future new possibilities for the development of CB-based therapies, especially for memory impairment human disorders.

  9. Opposite regulation of cannabinoid CB1 and CB2 receptors in the prefrontal cortex of rats treated with cocaine during adolescence.

    PubMed

    García-Cabrerizo, Rubén; García-Fuster, M Julia

    2016-02-26

    The endocannabinoid system is implicated in the neurobiology of cocaine addiction, although it is not clear how cocaine regulates brain CB1 and CB2 receptors, especially during adolescence, a critical moment for shaping adult response to drug use. This study evaluated CB1 and CB2 protein levels in prefrontal cortex (PFC) and hippocampus (HC) by western blot analysis with specific and validated antibodies: (1) basally during adolescence (post-natal day PND 40, PND 47, PND 54), (2) by a sensitizing regimen of cocaine (15mg/kg, 7 days, i.p.) during different windows of adolescence vulnerability (PND 33-39, PND 40-46, PND 47-53), and (3) following repeated cocaine administration during adolescence (PND 33-39) in adulthood (PND 64). The results demonstrated a dynamic and opposite basal modulation of CB1 and CB2 receptors in PFC and HC during adolescence. CB1 receptor levels were increased while CB2 receptors were decreased as compared to adulthood with asymptotes values around mid adolescence (PND 47) both in PFC (CB1: +45±22, p<0.05; CB2: -24±6%, p<0.05) and HC (CB1: +53±23, p<0.05; CB2: -20±8%, p<0.05). Interestingly, cocaine only altered CB1 (+55±10%, p<0.05) and CB2 (-25±10%, p<0.05) receptors when administered during early adolescence and only in PFC. However, the changes observed in PFC by repeated cocaine administration in adolescence were transient and did not endure into adulthood. These results identified a period of vulnerability during adolescence at which cocaine dysregulated the content of CB receptors in PFC, suggesting an opposite role for these receptors in the effects mediated by cocaine.

  10. Opposite regulation of cannabinoid CB1 and CB2 receptors in the prefrontal cortex of rats treated with cocaine during adolescence.

    PubMed

    García-Cabrerizo, Rubén; García-Fuster, M Julia

    2016-02-26

    The endocannabinoid system is implicated in the neurobiology of cocaine addiction, although it is not clear how cocaine regulates brain CB1 and CB2 receptors, especially during adolescence, a critical moment for shaping adult response to drug use. This study evaluated CB1 and CB2 protein levels in prefrontal cortex (PFC) and hippocampus (HC) by western blot analysis with specific and validated antibodies: (1) basally during adolescence (post-natal day PND 40, PND 47, PND 54), (2) by a sensitizing regimen of cocaine (15mg/kg, 7 days, i.p.) during different windows of adolescence vulnerability (PND 33-39, PND 40-46, PND 47-53), and (3) following repeated cocaine administration during adolescence (PND 33-39) in adulthood (PND 64). The results demonstrated a dynamic and opposite basal modulation of CB1 and CB2 receptors in PFC and HC during adolescence. CB1 receptor levels were increased while CB2 receptors were decreased as compared to adulthood with asymptotes values around mid adolescence (PND 47) both in PFC (CB1: +45±22, p<0.05; CB2: -24±6%, p<0.05) and HC (CB1: +53±23, p<0.05; CB2: -20±8%, p<0.05). Interestingly, cocaine only altered CB1 (+55±10%, p<0.05) and CB2 (-25±10%, p<0.05) receptors when administered during early adolescence and only in PFC. However, the changes observed in PFC by repeated cocaine administration in adolescence were transient and did not endure into adulthood. These results identified a period of vulnerability during adolescence at which cocaine dysregulated the content of CB receptors in PFC, suggesting an opposite role for these receptors in the effects mediated by cocaine. PMID:26797579

  11. Assessment of the abuse potential of MDMA in the conditioned place preference paradigm: role of CB1 receptors.

    PubMed

    Rodríguez-Arias, Marta; Valverde, Olga; Daza-Losada, Manuel; Blanco-Gandía, M Carmen; Aguilar, María A; Miñarro, José

    2013-12-01

    Numerous reports have highlighted the role of the endocannabinoid system in the addictive potential of MDMA (3,4-methylenedioxy-methamphetamine). A previous report showed that CB1 knockout (KOCB1) mice do not acquire MDMA self-administration, despite developing conditioned place preference (CPP). This contradiction could be due to the particular procedure of place conditioning used. The present work compares MDMA-induced CPP in KOCB1 mice using unbiased and biased procedures of place conditioning. In the unbiased procedure, MDMA induced CPP and reinstatement of the extinguished preference in wild type (WT) mice, but not in KOCB1 mice. In contrast, in a biased protocol of CPP, MDMA produced preference in both types of mice. The anxiolytic response induced by MDMA in the elevated plus maze (EPM) was observed only in KOCB1 mice and may have been responsible, at least partially, for the CPP in the biased procedure. A neurochemical analysis revealed that KOCB1 mice presented higher striatal DA and DOPAC levels in response to MDMA, but no alterations in their levels of monoamine transporters. In line with previous self-administration studies, our data suggest that CB1 receptors play an important role in the reinforcing effects of MDMA, and that the experimental procedure of CPP employed should be taken into account when drawing conclusions. PMID:23959085

  12. 6-Alkoxy-5-aryl-3-pyridinecarboxamides, a new series of bioavailable cannabinoid receptor type 1 (CB1) antagonists including peripherally selective compounds.

    PubMed

    Röver, Stephan; Andjelkovic, Mirjana; Bénardeau, Agnès; Chaput, Evelyne; Guba, Wolfgang; Hebeisen, Paul; Mohr, Susanne; Nettekoven, Matthias; Obst, Ulrike; Richter, Wolfgang F; Ullmer, Christoph; Waldmeier, Pius; Wright, Matthew B

    2013-12-27

    We identified 6-alkoxy-5-aryl-3-pyridinecarboxamides as potent CB1 receptor antagonists with high selectivity over CB2 receptors. The series was optimized to reduce lipophilicity compared to rimonabant to achieve peripherally active molecules with minimal central effects. Several compounds that showed high plasma exposures in rats were evaluated in vivo to probe the contribution of central vs peripheral CB1 agonism to metabolic improvement. Both rimonabant and 14g, a potent brain penetrant CB1 receptor antagonist, significantly reduced the rate of body weight gain. However, 14h, a molecule with markedly reduced brain exposure, had no significant effect on body weight. PK studies confirmed similarly high exposure of both 14h and 14g in the periphery but 10-fold lower exposure in the brain for 14h. On the basis of these data, which are consistent with reported effects in tissue-specific CB1 receptor KO mice, we conclude that the metabolic benefits of CB1 receptor antagonists are primarily centrally mediated as originally believed.

  13. Discovery and Labeling of High Affinity 3,4-Diarylpyrazolines as Candidate Radioligands for In Vivo Imaging of Cannabinoid Subtype-1 (CB1) Receptors

    PubMed Central

    Donohue, Sean R.; Pike, Victor W.; Finnema, Sjoerd J.; Truong, Phong; Andersson, Jan; Gulyás, Balázs; Halldin, Christer

    2008-01-01

    Imaging of cannabinoid subtype-1 (CB1) receptors in vivo with positron emission tomography (PET) is likely to be important for understanding their role in neuropsychiatric disorders and for drug development. Radioligands for imaging with PET are required for this purpose. We synthesized new ligands from a 3,4-diarylpyrazoline platform of which (-)-12a ((-)-3-(4-chlorophenyl)-N’-[(4-cyanophenyl)sulfonyl]-4-phenyl-4,5-dihydro-1H-pyrazole-1-carboxamidine) was found to have high-affinity and selectivity for binding to CB1 receptors. (-)-12a and its lower affinity enantiomer ((+)-12a) were labeled with carbon-11 (t1/2 = 20.4 min) using [11C]cyanide ion as labeling agent and evaluated as PET radioligands in cynomolgus monkey. After injection of [11C](-)-12a there was high uptake and retention of radioactivity across brain according to the rank order of CB1 receptor densities. The distomer, [11C](+)-12a, failed to give a sustained CB1 receptor-specific distribution. Polar radiometabolites of [11C](-)-12a appeared moderately slowly in plasma. Radioligand [11C](-)-12a is promising for the study of brain CB1 receptors and merits further investigation in human subjects. PMID:18754613

  14. Direct and indirect interactions between cannabinoid CB1 receptor and group II metabotropic glutamate receptor signalling in layer V pyramidal neurons from the rat prefrontal cortex.

    PubMed

    Barbara, Jean-Gaël; Auclair, Nathalie; Roisin, Marie-Paule; Otani, Satoru; Valjent, Emmanuel; Caboche, Jocelyne; Soubrie, Philippe; Crepel, Francis

    2003-03-01

    At proximal synapses from layer V pyramidal neurons from the rat prefrontal cortex, activation of group II metabotropic glutamate receptors (group II mGlu) by (2S,2'R,3'R)-2-(2',3'-dicarboxycyclopropyl) glycine (DCG IV) induced a long-lasting depression of excitatory postsynaptic currents. Paired-pulse experiments suggested that the depression was expressed presynaptically. Activation of type 1 cannabinoid receptors (CB1) by WIN 55,212-2 occluded the DCG IV-induced depression in a mutually occlusive manner. At the postsynaptic level, WIN 55,212-2 and DCG IV were also occlusive for the activation of extracellular signal-regulated kinase. The postsynaptic localization of active extracellular signal-regulated kinase was confirmed by immunocytochemistry after activation of CB1 receptors. However, phosphorylation of extracellular signal-regulated kinase in layer V pyramidal neurons was dependent on the activation of N-methyl-d-aspartate receptors, consequently to a release of glutamate in the local network. Group II mGlu were also shown to be involved in long-term changes in synaptic plasticity induced by high frequency stimulations. The group II mGlu antagonist (RS)-alpha-methylserine-O-phosphate monophenyl ester (MSOPPE) favoured long-term depression. However, no interaction was found between MSOPPE, WIN 55,212-2 and the CB1 receptor antagonist SR 141716A on the modulation of long-term depression or long-term potentiation and the effects of these drugs were rather additive. We suggest that CB1 receptor and group II mGlu signalling may interact through a presynaptic mechanism in the induction of a DCG IV-induced depression. Postsynaptically, an indirect interaction occurs for activation of extracellular signal-regulated kinase. However, none of these interactions seem to play a role in synaptic plasticities induced with high frequency stimulations.

  15. The Cannabinoid Receptor CB1 Interacts with the WAVE1 Complex and Plays a Role in Actin Dynamics and Structural Plasticity in Neurons.

    PubMed

    Njoo, Christian; Agarwal, Nitin; Lutz, Beat; Kuner, Rohini

    2015-10-01

    The molecular composition of the cannabinoid type 1 (CB1) receptor complex beyond the classical G-protein signaling components is not known. Using proteomics on mouse cortex in vivo, we pulled down proteins interacting with CB1 in neurons and show that the CB1 receptor assembles with multiple members of the WAVE1 complex and the RhoGTPase Rac1 and modulates their activity. Activation levels of CB1 receptor directly impacted on actin polymerization and stability via WAVE1 in growth cones of developing neurons, leading to their collapse, as well as in synaptic spines of mature neurons, leading to their retraction. In adult mice, CB1 receptor agonists attenuated activity-dependent remodeling of dendritic spines in spinal cord neurons in vivo and suppressed inflammatory pain by regulating the WAVE1 complex. This study reports novel signaling mechanisms for cannabinoidergic modulation of the nervous system and demonstrates a previously unreported role for the WAVE1 complex in therapeutic applications of cannabinoids.

  16. The Cannabinoid Receptor CB1 Interacts with the WAVE1 Complex and Plays a Role in Actin Dynamics and Structural Plasticity in Neurons

    PubMed Central

    Njoo, Christian; Agarwal, Nitin; Lutz, Beat; Kuner, Rohini

    2015-01-01

    The molecular composition of the cannabinoid type 1 (CB1) receptor complex beyond the classical G-protein signaling components is not known. Using proteomics on mouse cortex in vivo, we pulled down proteins interacting with CB1 in neurons and show that the CB1 receptor assembles with multiple members of the WAVE1 complex and the RhoGTPase Rac1 and modulates their activity. Activation levels of CB1 receptor directly impacted on actin polymerization and stability via WAVE1 in growth cones of developing neurons, leading to their collapse, as well as in synaptic spines of mature neurons, leading to their retraction. In adult mice, CB1 receptor agonists attenuated activity-dependent remodeling of dendritic spines in spinal cord neurons in vivo and suppressed inflammatory pain by regulating the WAVE1 complex. This study reports novel signaling mechanisms for cannabinoidergic modulation of the nervous system and demonstrates a previously unreported role for the WAVE1 complex in therapeutic applications of cannabinoids. PMID:26496209

  17. A novel near-infrared fluorescence imaging probe that preferentially binds to cannabinoid receptors CB2R over CB1R

    PubMed Central

    Ling, Xiaoxi; Zhang, Shaojuan; Shao, Pin; Li, Weixia; Yang, Ling; Ding, Ying; Xu, Cong; Stella, Nephi; Bai, Mingfeng

    2015-01-01

    The type 2 cannabinoid receptors (CB2R) have gained much attention recently due to their important regulatory role in a host of pathophysiological processes. However, the exact biological function of CB2R and how this function might change depending on disease progression remains unclear and could be better studied with highly sensitive and selective imaging tools for identifying the receptors. Here we report the first near infrared fluorescence imaging probe (NIR760-XLP6) that binds preferentially to CB2R over the type 1 cannabinoid receptors (CB1R). The selectivity of the probe was demonstrated by fluorescence microscopy using DBT-CB2 and DBT-CB1 cells. Furthermore, in mouse tumor models, NIR760-XLP6 showed significantly higher uptake in DBT-CB2 than that in DBT-CB1 tumors. These findings indicate that NIR760-XLP6 is a promising imaging tool for the study of CB2R regulation. PMID:25916505

  18. Cannabinoid receptor CB1 is involved in nicotine-induced protection against Aβ1-42 neurotoxicity in HT22 cells.

    PubMed

    Wu, Mingchun; Jia, Ji; Lei, Chong; Ji, Ling; Chen, Xiaodan; Sang, Hanfei; Xiong, Lize

    2015-03-01

    Emerging evidences suggest that nicotine exerts a neuroprotective effect on Alzheimer's disease (AD), yet the precise mechanism is not fully elucidated. Here, HT22 cells were exposed to amyloid beta protein fragment (Aβ)1-42 to mimic the pathological process of neuron in AD. We hypothesized that cannabinoid receptor CB1 is involved in the nicotine-induced neuroprotection against Aβ1-42 injury in HT22 cells. CB1 expression in HT22 cells was investigated by immunocytochemistry and Western blot. The injury of HT22 cells was evaluated by cellular morphology, cell viability, and lactate dehydrogenase (LDH) release. The apoptosis of HT22 cells was assessed by flow cytometry and expressions of Bcl-2 and Bax. The results demonstrated that nicotine markedly upregulated CB1 expression, increased cell viability, ameliorated cellular morphology, decreased LDH release, and reduced the apoptotic rate of HT22 cells exposed to Aβ1-42 for 24 h, while the blockade of CB1 or the inhibition of protein kinase C (PKC) partially reversed the neuroprotection. Furthermore, the blockade of CB1 reversed nicotine-induced PKC activation in HT22 cells exposed to Aβ1-42. These results suggest that CB1 is involved in the nicotine-induced neuroprotection against Aβ1-42 neurotoxicity, and the neuroprotection may be dependent on the activation of PKC.

  19. Cognitive Impairment Induced by Delta9-tetrahydrocannabinol Occurs through Heteromers between Cannabinoid CB1 and Serotonin 5-HT2A Receptors

    PubMed Central

    Lanfumey, Laurence; Cordomí, Arnau; Pastor, Antoni; de La Torre, Rafael; Gasperini, Paola; Navarro, Gemma; Howell, Lesley A.; Pardo, Leonardo; Lluís, Carmen; Canela, Enric I.; McCormick, Peter J.; Maldonado, Rafael; Robledo, Patricia

    2015-01-01

    Activation of cannabinoid CB1 receptors (CB1R) by delta9-tetrahydrocannabinol (THC) produces a variety of negative effects with major consequences in cannabis users that constitute important drawbacks for the use of cannabinoids as therapeutic agents. For this reason, there is a tremendous medical interest in harnessing the beneficial effects of THC. Behavioral studies carried out in mice lacking 5-HT2A receptors (5-HT2AR) revealed a remarkable 5-HT2AR-dependent dissociation in the beneficial antinociceptive effects of THC and its detrimental amnesic properties. We found that specific effects of THC such as memory deficits, anxiolytic-like effects, and social interaction are under the control of 5-HT2AR, but its acute hypolocomotor, hypothermic, anxiogenic, and antinociceptive effects are not. In biochemical studies, we show that CB1R and 5-HT2AR form heteromers that are expressed and functionally active in specific brain regions involved in memory impairment. Remarkably, our functional data shows that costimulation of both receptors by agonists reduces cell signaling, antagonist binding to one receptor blocks signaling of the interacting receptor, and heteromer formation leads to a switch in G-protein coupling for 5-HT2AR from Gq to Gi proteins. Synthetic peptides with the sequence of transmembrane helices 5 and 6 of CB1R, fused to a cell-penetrating peptide, were able to disrupt receptor heteromerization in vivo, leading to a selective abrogation of memory impairments caused by exposure to THC. These data reveal a novel molecular mechanism for the functional interaction between CB1R and 5-HT2AR mediating cognitive impairment. CB1R-5-HT2AR heteromers are thus good targets to dissociate the cognitive deficits induced by THC from its beneficial antinociceptive properties. PMID:26158621

  20. Cannabinoid receptor CB1 regulates STAT3 activity and its expression dictates the responsiveness to SR141716 treatment in human glioma patients' cells

    PubMed Central

    Ciaglia, Elena; Torelli, Giovanni; Pisanti, Simona; Picardi, Paola; D'Alessandro, Alba; Laezza, Chiara; Malfitano, Anna Maria; Fiore, Donatella; Zottola, Antonio Christian Pagano; Proto, Maria Chiara; Catapano, Giuseppe; Gazzerro, Patrizia; Bifulco, Maurizio

    2015-01-01

    Herein we show that a majority of human brain tumor samples and cell lines over-expressed cannabinoid receptor CB1 as compared to normal human astrocytes (NHA), while uniformly expressed low levels of CB2. This finding prompted us to investigate the therapeutic exploitation of CB1 inactivation by SR141716 treatment, with regard to its direct and indirect cell-mediated effects against gliomas. Functional studies, using U251MG glioma cells and primary tumor cell lines derived from glioma patients expressing different levels of CB1, highlighted SR141716 efficacy in inducing apoptosis via G1 phase stasis and block of TGF-β1 secretion through a mechanism that involves STAT3 inhibition. According to the multivariate role of STAT3 in the immune escape too, interestingly SR141716 lead also to the functional and selective expression of MICA/B on the surface of responsive malignant glioma cells, but not on NHA. This makes SR141716 treated-glioma cells potent targets for allogeneic NK cell-mediated recognition through a NKG2D restricted mechanism, thus priming them for NK cell antitumor reactivity. These results indicate that CB1 and STAT3 participate in a new oncogenic network in the complex biology of glioma and their expression levels in patients dictate the efficacy of the CB1 antagonist SR141716 in multimodal glioma destruction. SIGNIFICANCE CB1 is implicated in the regulation of cellular processes linked to survival, proliferation, invasion and angiogenesis in several physio-pathological conditions. We shed light on previously unrecognized molecular mechanism of CB1-mediated modulation of human glioma progression and provide the first and original demonstration of CB1-STAT3 axis as a new target and predictor biomarkers of the benefit from specific therapies. Indeed CB1 antagonism capable of tumoral cell division' control while making the glioma immunovisible and engaging the immune system to fight it may represent a hopeful alternative to other established

  1. Posttraining activation of CB1 cannabinoid receptors in the CA1 region of the dorsal hippocampus impairs object recognition long-term memory.

    PubMed

    Clarke, Julia R; Rossato, Janine I; Monteiro, Siomara; Bevilaqua, Lia R M; Izquierdo, Iván; Cammarota, Martín

    2008-09-01

    Evidence indicates that brain endocannabinoids are involved in memory processing. However, the participation of CB1 and CB2 cannabinoid receptors in recognition memory has not been yet conclusively determined. Therefore, we evaluated the effect of the posttraining activation of hippocampal cannabinoid receptors on the consolidation of object recognition memory. Rats with infusion cannulae stereotaxically aimed to the CA1 region of the dorsal hippocampus were trained in an object recognition learning task involving exposure to two different stimulus objects. Memory retention was assessed at different times after training. In the test sessions, one of the objects presented during training was replaced by a novel one. When infused in the CA1 region immediately after training, the non-selective cannabinoid receptor agonist WIN-55,212-2 and the endocannabinoid membrane transporter inhibitor VDM-11 blocked long-term memory retention in a dose-dependent manner without affecting short-term memory, exploratory behavior, anxiety state or the functionality of the hippocampus. The amnesic effect of WIN-55,212-2 and VDM-11 was not due to state-dependency and was completely reversed by co-infusion of the CB1 receptor antagonist AM-251 and mimicked by the CB1 receptor agonist ACEA but not by the CB2 receptor agonists JWH-015 and palmitoylethanolamide. Our data indicate that activation of hippocampal CB1 receptors early after training hampers consolidation of object recognition memory.

  2. Anti Proliferative and Pro Apoptotic Effects of Flavonoid Quercetin Are Mediated by CB1 Receptor in Human Colon Cancer Cell Lines.

    PubMed

    Refolo, Maria Grazia; D'Alessandro, Rosalba; Malerba, Natascia; Laezza, Chiara; Bifulco, Maurizio; Messa, Caterina; Caruso, Maria Gabriella; Notarnicola, Maria; Tutino, Valeria

    2015-12-01

    Quercetin, the major constituent of flavonoid and widely present in fruits and vegetables, is an attractive compound for cancer prevention due to its beneficial anti proliferative effects, showing a crucial role in the regulation of apoptosis and cell cycle signaling. In vitro studies have demonstrated that quercetin specifically influences colon cancer cell proliferation. Our experiments, using human colon adenocarcinoma cells, confirmed the anti proliferative effect of quercetin and gave intriguing new insight in to the knowledge of the mechanisms involved. We observed a significant increase in the expression of the endocannabinoids receptor (CB1-R) after quercetin treatment. CB1-R can be considered an estrogen responsive receptor and quercetin, having a structure similar to that of the estrogens, can interact with CB1-R leading to the regulation of cell growth. In order to clarify the contribution of the CB1-R to the quercetin action, we investigated some of the principal molecular pathways that are inhibited or activated by this natural compound. In particular we detected the inhibition of the major survival signals like the PI3K/Akt/mTOR and an induction of the pro apoptotic JNK/JUN pathways. Interestingly, the metabolism of β-catenin was modified by flavonoid both directly and through activated CB1-R. In all the experiments done, the quercetin action has proven to be reinforced by anandamide (Met-F-AEA), a CB1-R agonist, and partially counteracted by SR141716, a CB1-R antagonist. These findings open new perspectives for anticancer therapeutic strategies.

  3. Anandamide reverses depressive-like behavior, neurochemical abnormalities and oxidative-stress parameters in streptozotocin-diabetic rats: Role of CB1 receptors.

    PubMed

    de Morais, Helen; de Souza, Camila P; da Silva, Luisa M; Ferreira, Daniele M; Baggio, Cristiane Hatsuko; Vanvossen, Ana Carolina; Cristina de Carvalho, Milene; da Silva-Santos, José Eduardo; Bertoglio, Leandro José; Cunha, Joice M; Zanoveli, Janaina M

    2016-10-01

    The pathophysiology associated with increased prevalence of depression in diabetics is not completely understood, although studies have pointed the endocannabinoid system as a possible target. Then, we aimed to investigate the role of this system in the pathophysiology of depression associated with diabetes. For this, diabetic (DBT) male Wistar rats were intraperitoneally treated with cannabinoid CB1 (AM251, 1mg/kg) or CB2 (AM630, 1mg/kg) receptor antagonists followed by anandamide (AEA, 0.005mg/kg) and then submitted to the forced swimming test (FST). Oxidative stress parameters, CB1 receptor expression and serotonin (5-HT) and noradrenaline levels in the hippocampus (HIP) and prefrontal cortex (PFC) were also performed. It was observed that DBT animals presented a more pronounced depressive-like behavior and increase of CB1 receptor expression in the HIP. AEA treatment induced a significant improvement in the depressive-like behavior, which was reversed by the CB1 antagonist AM251, without affecting the hyperglycemia or weight gain. AEA was also able to restore the elevated CB1 expression and also to elevate the reduced level of 5-HT in the HIP from DBT animals. In addition, AEA restored the elevated noradrenaline levels in the PFC and induced a neuroprotective effect by restoring the decreased reduced glutathione and increased lipid hydroperoxides levels along with the decreased superoxide dismutase activity observed in HIP or PFC. Together, our data suggest that in depression associated with diabetes, the endocannabinoid anandamide has a potential to induce neuroadaptative changes able to improve the depressive-like response by its action as a CB1 receptor agonist.

  4. Systemic or intra-amygdala infusion of an endocannabinoid CB1 receptor antagonist AM251 blocked propofol-induced anterograde amnesia.

    PubMed

    Ren, Y; Wang, J; Xu, P B; Xu, Y J; Miao, C H

    2015-01-01

    Propofol is well-known for its anterograde amnesic actions. However, a recent experiment showed that propofol can also produce retrograde memory enhancement effects via an interaction with the endocannabinoid CB1 system. Therefore, the authors hypothesized that the regulating effect of propofol on the endocannabinoid CB1 system might also decrease the anterograde amnesic effect of propofol under some conditions, which might be a risk factor for intraoperative awareness. Since, the basolateral amygdala (BLA) has been confirmed to mediate propofol-induced anterograde amnesia and the BLA contains a high concentration of CB1 receptors, the authors investigated whether and how the endocannabinoid system, particularly the CB1 receptor within BLA, influences propofol-induced anterograde amnesia. Male Sprague-Dawley rats trained with inhibitory avoidance (IA) were systematically pre-trained using a memory-impairing dose of propofol (25 mg/kg). Before propofol administration, rats received an intraperitoneal injection of a CB1 receptor antagonist AM251 (1 mg/kg or 2 mg/kg) or a bilateral intra-BLA injection of AM251 (0.6 ng or 6 ng per 0.5 μl). Twenty-four hours after IA training, the IA retention latency was tested. It was found that systemic or intra-BLA injection of a non-regulating dose of AM251 (2 mg/kg or 6 ng per 0.5 μl, respectively) blocked the memory-impairing effect of propofol. These results indicate that the anterograde amnesic effect of propofol is mediated, in part, by activation of the CB1 cannabinoid receptors in the BLA.

  5. Subchronic nicotine exposure in adolescence induces long-term effects on hippocampal and striatal cannabinoid-CB1 and mu-opioid receptors in rats.

    PubMed

    Marco, Eva M; Granstrem, Oleg; Moreno, Enrique; Llorente, Ricardo; Adriani, Walter; Laviola, Giovanni; Viveros, Maria-Paz

    2007-02-14

    There is evidence for the existence of functional interactions between nicotine and cannabinoids and opioid compounds in adult experimental animals. However, there is scarce information about these relationships in young animals. In the present study we evaluated short and long-term effects of a subchronic nicotine treatment [0.4 mg/kg daily i.p. injections from postnatal day (PND) 34 to PND 43], upon hippocampal and striatal cannabinoid-CB(1) and mu-opioid receptors in Wistar rats of both genders. Rats were sacrificed 2 h after the last nicotine injection (short-term effects, PND 43) or one month later (long-term effects, PND 75). Hippocampal and striatal cannabinoid CB(1) and mu-opioid receptors were quantified by Western blotting. The subchronic nicotine treatment induced a region-dependent long-lasting effect in cannabinoid CB(1) receptor: a significant increase in hippocampal cannabinoid CB(1) receptors and a significant decrease in striatal cannabinoid CB(1) receptors, with these effects being similar in males and females. With respect to mu-opioid receptors, subchronic nicotine induced a significant down-regulation in hippocampal and striatal mu-opioid receptors in the long-term, and within the striatum the effects were more marked in adult males than in females. The present results indicate that juvenile nicotine taking may have implications for the endocannabinoid and endogenous opioid function and for the behaviors served by those systems, this includes possible modification of the response of adults to different psychotropic drugs, i.e. cannabis and morphine/heroin when taken later in life.

  6. Dissociable effects of CB1 receptor blockade on anxiety-like and consummatory behaviors in the novelty-induced hypophagia test in mice

    PubMed Central

    Gamble-George, Joyonna C.; Conger, Jordan R.; Hartley, Nolan D.; Gupta, Prerna; Sumislawski, Joshua J.; Patel, Sachin

    2013-01-01

    Rationale Central CB1 cannabinoid receptors regulate anxiety-like and appetitive consummatory behaviors. Pharmacological antagonism/inverse-agonism of CB1 receptors increases anxiety and decreases appetitive behaviors; however, neither well-defined dose- nor context-dependence of these effects has been simultaneously assessed in one behavioral assay. Objectives We sought to determine the context- and dose-dependence of the effects of CB1 receptor blockade on anxiety-like and consummatory behaviors in a model that allowed for simultaneous detection of anxiety-like and consummatory related behaviors. Methods We determined the effects of the CB1 receptor antagonist/inverse-agonist, rimonabant, in the novelty-induced hypophagia (NIH) assay in juvenile male ICR mice. Results Rimonabant dose-dependently decreased consumption of a palatable reward solution completely independent of contextual novelty. Grooming and scratching behavior was also increased by rimonabant in a context-independent manner. In contrast, rimonabant increased feeding latency, a measure of anxiety-like behaviors, only in a novel, mildly anxiogenic context. The effects of rimonabant were specific since no effects of rimonabant on despair-like behavior were observed in the tail suspension assay. Blockade of CB2 receptors had no effect on novelty-induced increases in feeding latency or palatable food consumption. Conclusions Our findings indicate that CB1 receptor blockade decreases the hedonic value of palatable food irrespective of environmental novelty, whereas the anxiogenic-like effects are highly context dependent. Blockade of CB2 receptors does not regulate either anxiety-like or consummatory behaviors in the NIH assay. These findings suggest rimonabant modulates distinct and dissociable neural processes regulating anxiety and consummatory behavior to sculpt complex and context-dependent behavioral repertories. PMID:23483200

  7. Adolescent social rejection alters pain processing in a CB1 receptor dependent manner.

    PubMed

    Schneider, Peggy; Pätz, Monique; Spanagel, Rainer; Schneider, Miriam

    2016-07-01

    Experiences of social rejection represent a major source of distress and in particular peer rejection during adolescence has been implicated in various psychiatric disorders. Moreover, experimentally induced acute social rejection alters pain perception in humans, implicating overlapping neurocircuits for social and physical pains. We recently demonstrated that rearing of adolescent Wistar rats with inadequate, less playful play partners (Fischer 344) persistently decreases pain sensitivity, although the detailed mechanisms mediating the aversiveness during the social encounter remained unsettled. With the present study we examined the behavioral performance during acute interaction of female adolescent Wistar rats with either age-matched same-strain partners or rats from the Fischer 344 strain. We here identify the low responsiveness upon playful attacks, which appears to be characteristic for social play in the Fischer 344 strain, as one of the main aversive components for adolescent Wistar animals during cross-strain encounters, which subsequently diminishes thermal pain reactivity. A detailed behavioral analysis further revealed increased ultrasonic vocalization at 50kHz and an increased frequency of playful attacks for adolescent Wistar animals paired with a Fischer 344 rat compared to same-strain control pairs. Finally, an acute injection of a subthreshold dose of the cannabinoid type 1 receptor inverse agonist/antagonist SR141716 before the social encounter abolished enhanced play-soliciting behavior in Wistar/Fischer 344 pairs as well as the behavioral consequences of the rejection experience in adolescent Wistar rats, further emphasizing an important modulatory role of the endocannabinoid system in mediating the effects of social behavior and social pain. PMID:27157075

  8. The analgesic effect of dipyrone in peripheral tissue involves two different mechanisms: neuronal K(ATP) channel opening and CB(1) receptor activation.

    PubMed

    dos Santos, Gilson Gonçalves; Dias, Elayne Vieira; Teixeira, Juliana Maia; Athie, Maria Carolina Pedro; Bonet, Ivan José Magayewski; Tambeli, Cláudia Herrera; Parada, Carlos Amilcar

    2014-10-15

    Dipyrone (metamizole) is an analgesic pro-drug used to control moderate pain. It is metabolized in two major bioactive metabolites: 4-methylaminoantipyrine (4-MAA) and 4-aminoantipyrine (4-AA). The aim of this study was to investigate the participation of peripheral CB1 and CB2 cannabinoid receptors activation in the anti-hyperalgesic effect of dipyrone, 4-MAA or 4-AA. PGE2 (100ng/50µL/paw) was locally administered in the hindpaw of male Wistar rats, and the mechanical nociceptive threshold was quantified by electronic von Frey test, before and 3h after its injection. Dipyrone, 4-MAA or 4-AA was administered 30min before the von Frey test. The selective CB1 receptor antagonist AM251, CB2 receptor antagonist AM630, cGMP inhibitor ODQ or KATP channel blocker glibenclamide were administered 30min before dipyrone, 4-MAA or 4-AA. The antisense-ODN against CB1 receptor expression was intrathecally administered once a day during four consecutive days. PGE2-induced mechanical hyperalgesia was inhibited by dipyrone, 4-MAA, and 4-AA in a dose-response manner. AM251 or ODN anti-sense against neuronal CB1 receptor, but not AM630, reversed the anti-hyperalgesic effect mediated by 4-AA, but not by dipyrone or 4-MAA. On the other hand, the anti-hyperalgesic effect of dipyrone or 4-MAA was reversed by glibenclamide or ODQ. These results suggest that the activation of neuronal CB1, but not CB2 receptor, in peripheral tissue is involved in the anti-hyperalgesic effect of 4-aminoantipyrine. In addition, 4-methylaminoantipyrine mediates the anti-hyperalgesic effect by cGMP activation and KATP opening.

  9. Cannabinoid receptor CB1 regulates STAT3 activity and its expression dictates the responsiveness to SR141716 treatment in human glioma patients' cells.

    PubMed

    Ciaglia, Elena; Torelli, Giovanni; Pisanti, Simona; Picardi, Paola; D'Alessandro, Alba; Laezza, Chiara; Malfitano, Anna Maria; Fiore, Donatella; Pagano Zottola, Antonio Christian; Proto, Maria Chiara; Catapano, Giuseppe; Gazzerro, Patrizia; Bifulco, Maurizio

    2015-06-20

    Herein we show that a majority of human brain tumor samples and cell lines over-expressed cannabinoid receptor CB1 as compared to normal human astrocytes (NHA), while uniformly expressed low levels of CB2. This finding prompted us to investigate the therapeutic exploitation of CB1 inactivation by SR141716 treatment, with regard to its direct and indirect cell-mediated effects against gliomas. Functional studies, using U251MG glioma cells and primary tumor cell lines derived from glioma patients expressing different levels of CB1, highlighted SR141716 efficacy in inducing apoptosis via G1 phase stasis and block of TGF-β1 secretion through a mechanism that involves STAT3 inhibition. According to the multivariate role of STAT3 in the immune escape too, interestingly SR141716 lead also to the functional and selective expression of MICA/B on the surface of responsive malignant glioma cells, but not on NHA. This makes SR141716 treated-glioma cells potent targets for allogeneic NK cell-mediated recognition through a NKG2D restricted mechanism, thus priming them for NK cell antitumor reactivity. These results indicate that CB1 and STAT3 participate in a new oncogenic network in the complex biology of glioma and their expression levels in patients dictate the efficacy of the CB1 antagonist SR141716 in multimodal glioma destruction.

  10. Ligand-induced internalization of the orexin OX1 and cannabinoid CB1 receptors assessed via N-terminal SNAP and CLIP-tagging

    PubMed Central

    Ward, Richard J; Pediani, John D; Milligan, Graeme

    2011-01-01

    BACKGROUND AND PURPOSE Many G protein-coupled receptors internalize following agonist binding. The studies were designed to identify novel means to effectively quantify this process using the orexin OX1 receptor and the cannabinoid CB1 receptor as exemplars. EXPERIMENTAL APPROACH The human OX1 and CB1 receptors were modified to incorporate both epitope tags and variants (SNAP and CLIP) of the enzyme O6-alkylguanine-DNA-alkyltransferase within their extracellular, N-terminal domain. Cells able to regulate expression of differing amounts of these constructs upon addition of an antibiotic were developed and analysed. KEY RESULTS Cell surface forms of each receptor construct were detected by both antibody recognition of the epitope tags and covalent binding of fluorophores to the O6-alkylguanine-DNA-alkyltransferase variants. Receptor internalization in response to agonists but not antagonists could be monitored by each approach but sensitivity was up to six- to 10-fold greater than other approaches when employing a novel, time-resolved fluorescence probe for the SNAP tag. Sensitivity was not enhanced, however, for the CLIP tag, possibly due to higher levels of nonspecific binding. CONCLUSIONS AND IMPLICATIONS These studies demonstrate that highly sensitive and quantitative assays that monitor cell surface CB1 and OX1 receptors and their internalization by agonists can be developed based on introduction of variants of O6-alkylguanine-DNA-alkyltransferase into the N-terminal domain of the receptor. This should be equally suitable for other G protein-coupled receptors. PMID:21175569

  11. Orchestrated activation of mGluR5 and CB1 promotes neuroprotection.

    PubMed

    Batista, Edleusa M L; Doria, Juliana G; Ferreira-Vieira, Talita H; Alves-Silva, Juliana; Ferguson, Stephen S G; Moreira, Fabricio A; Ribeiro, Fabiola M

    2016-08-20

    The metabotropic glutamate receptor 5 (mGluR5) and the cannabinoid receptor 1 (CB1) exhibit a functional interaction, as CB1 regulates pre-synaptic glutamate release and mGluR5 activation increases endocannabinoid synthesis at the post-synaptic site. Since both mGluR5 and CB1 promote neuroprotection, we delineated experiments to investigate a possible link between CB1 and mGluR5 activation in the induction of neuroprotection using primary cultured corticostriatal neurons. We find that either the pharmacological blockade or the genetic ablation of either mGluR5 or CB1 can abrogate both CB1- and mGluR5-mediated neuroprotection against glutamate insult. Interestingly, decreased glutamate release and diminished intracellular Ca(2+) do not appear to play a role in CB1 and mGluR5-mediated neuroprotection. Rather, these two receptors work cooperatively to trigger the activation of cell signaling pathways to promote neuronal survival, which involves MEK/ERK1/2 and PI3K/AKT activation. Interestingly, although mGluR5 activation protects postsynaptic terminals and CB1 the presynaptic site, intact signaling of both receptors is required to effectively promote neuronal survival. In conclusion, mGluR5 and CB1 act in concert to activate neuroprotective cell signaling pathways and promote neuronal survival.

  12. Inhibitory signaling by CB1 receptors in smooth muscle mediated by GRK5/β-arrestin activation of ERK1/2 and Src kinase.

    PubMed

    Mahavadi, Sunila; Sriwai, Wimolpak; Huang, Jiean; Grider, John R; Murthy, Karnam S

    2014-03-01

    We examined whether CB1 receptors in smooth muscle conform to the signaling pattern observed with other Gi-coupled receptors that stimulate contraction via two Gβγ-dependent pathways (PLC-β3 and phosphatidylinositol 3-kinase/integrin-linked kinase). Here we show that the anticipated Gβγ-dependent signaling was abrogated. Except for inhibition of adenylyl cyclase via Gαi, signaling resulted from Gβγ-independent phosphorylation of CB1 receptors by GRK5, recruitment of β-arrestin1/2, and activation of ERK1/2 and Src kinase. Neither uncoupling of CB1 receptors from Gi by pertussis toxin (PTx) or Gi minigene nor expression of a Gβγ-scavenging peptide had any effect on ERK1/2 activity. The latter was abolished in muscle cells expressing β-arrestin1/2 siRNA. CB1 receptor internalization and both ERK1/2 and Src kinase activities were abolished in cells expressing kinase-deficient GRK5(K215R). Activation of ERK1/2 and Src kinase endowed CB1 receptors with the ability to inhibit concurrent contractile activity. We identified a consensus sequence (102KSPSKLSP109) for phosphorylation of RGS4 by ERK1/2 and showed that expression of a RGS4 mutant lacking Ser103/Ser108 blocked the ability of anandamide to inhibit acetylcholine-mediated phosphoinositide hydrolysis or enhance Gαq:RGS4 association and inactivation of Gαq. Activation of Src kinase by anandamide enhanced both myosin phosphatase RhoA-interacting protein (M-RIP):RhoA and M-RIP:MYPT1 association and inhibited Rho kinase activity, leading to increase of myosin light chain (MLC) phosphatase activity and inhibition of sustained muscle contraction. Thus, unlike other Gi-coupled receptors in smooth muscle, CB1 receptors did not engage Gβγ but signaled via GRK5/β-arrestin activation of ERK1/2 and Src kinase: ERK1/2 accelerated inactivation of Gαq by RGS4, and Src kinase enhanced MLC phosphatase activity, leading to inhibition of ACh-stimulated contraction.

  13. Genetic rescue of CB1 receptors on medium spiny neurons prevents loss of excitatory striatal synapses but not motor impairment in HD mice.

    PubMed

    Naydenov, Alipi V; Sepers, Marja D; Swinney, Katie; Raymond, Lynn A; Palmiter, Richard D; Stella, Nephi

    2014-11-01

    Huntington's disease (HD) is caused by an expanded polyglutamine repeat in huntingtin protein that disrupts synaptic function in specific neuronal populations and results in characteristic motor, cognitive and affective deficits. Histopathological hallmarks observed in both HD patients and genetic mouse models include the reduced expression of synaptic proteins, reduced medium spiny neuron (MSN) dendritic spine density and decreased frequency of spontaneous excitatory post-synaptic currents (sEPSCs). Early down-regulation of cannabinoid CB1 receptor expression on MSN (CB1(MSN)) is thought to participate in HD pathogenesis. Here we present a cell-specific genetic rescue of CB1(MSN) in R6/2 mice and report that treatment prevents the reduction of excitatory synaptic markers in the striatum (synaptophysin, vGLUT1 and vGLUT2), of dendritic spine density on MSNs and of MSN sEPSCs, but does not prevent motor impairment. We conclude that loss of excitatory striatal synapses in HD mice is controlled by CB1(MSN) and can be uncoupled from the motor phenotype.

  14. Synthesis and biological evaluation of indole-2-carboxamides bearing photoactivatable functionalities as novel allosteric modulators for the cannabinoid CB1 receptor.

    PubMed

    Qiao, Chang-Jiang; Ali, Hamed I; Ahn, Kwang H; Kolluru, Srikanth; Kendall, Debra A; Lu, Dai

    2016-10-01

    5-Chloro-3-ethyl-N-(4-(piperidin-1-yl)phenethyl)-1H-indole-2-carboxamide (ORG27569, 1) is a prototypical allosteric modulator for the cannabinoid CB1 receptor. Based on this indole-2-carboxamide scaffold, we designed and synthesized novel CB1 allosteric modulators that possess photoactivatable functionalities, which include benzophenone, phenyl azide, aliphatic azide and phenyltrifluoromethyldiazrine. To assess their allosteric effects, the dissociation constant (KB) and allosteric binding cooperativity factor (α) were determined and compared to their parent compounds. Within this series, benzophenone-containing compounds 26 and 27, phenylazide-containing compound 28, and the aliphatic azide containing compound 36b showed allosteric binding parameters (KB and α) comparable to their parent compound 1, 7, 8, and 9, respectively. We further assessed these modulators for their impact on G-protein coupling activity. Interestingly, these compounds exhibited negative allosteric modulator properties in a manner similar to their parent compounds, which antagonize agonist-induced G-protein coupling. These novel CB1 allosteric modulators, possessing photoactivatable functionalities, provide valuable tools for future photo-affinity labeling and mapping the CB1 allosteric binding site(s). PMID:27318976

  15. Altered dendritic distribution of dopamine D2 receptors and reduction in mitochondrial number in parvalbumin-containing interneurons in the medial prefrontal cortex of cannabinoid-1 (CB1) receptor knockout mice

    PubMed Central

    Fitzgerald, Megan L.; Chan, June; Mackie, Kenneth; Lupica, Carl R.; Pickel, Virginia M.

    2013-01-01

    The prelimbic prefrontal cortex (PL) is a brain region integral to complex behaviors that are highly influenced by cannabinoids and by dopamine D2 receptor (D2R)-mediated regulation of fast-firing parvalbumin-containing interneurons. We have recently shown that constitutive deletion of the cannabinoid CB1 receptor (CB1R) greatly reduces parvalbumin levels in these neurons. The effects of CB1R deletion on PL parvalbumin interneurons may be ascribed to loss of CB1R-mediated retrograde signaling on mesocortical dopamine transmission, and, in turn, altered expression and/or subcellular distribution of the D2R in the PL. Furthermore, diminished parvalbumin expression could indicate metabolic changes in fast-firing interneurons that may be reflected in changes in mitochondrial density in this population. We therefore comparatively examined electron microscopic dual labeling of the D2R and parvalbumin in CB1 (−/−) and CB1 (+/+) mice to test the hypothesis that absence of the CB1R produces changes in D2R localization and mitochondrial distribution in parvalbumin-containing interneurons of the PL. CB1 (−/−) mice had a significantly lower density of cytoplasmic D2R-immunogold particles in medium parvalbumin-labeled dendrites and a concomitant increase in the density of these particles in small dendrites. These dendrites received both excitatory and inhibitory-type synapses from unlabeled terminals and contained many mitochondria, whose numbers were significantly reduced in the CB1 (−/−) mice. Non-parvalbumin containing dendrites showed no between-group differences in either D2R distribution or mitochondrial number. These results suggest that cannabinoid signaling provides an important determinant of dendritic D2 receptor distribution and mitochondrial availability in fast-spiking interneurons. PMID:22592925

  16. Regulation of transient receptor potential channels of melastatin type 8 (TRPM8): effect of cAMP, cannabinoid CB(1) receptors and endovanilloids.

    PubMed

    De Petrocellis, Luciano; Starowicz, Katarzyna; Moriello, Aniello Schiano; Vivese, Marta; Orlando, Pierangelo; Di Marzo, Vincenzo

    2007-05-15

    The transient receptor potential channel of melastatin type 8 (TRPM8), which is gated by low (<25 degrees C) temperature and chemical compounds, is regulated by protein kinase C-mediated phosphorylation in a way opposite to that observed with the transient receptor potential channel of vanilloid type 1 (TRPV1), i.e. by being desensitized and not sensitized. As TRPV1 is sensitized also by protein kinase A (PKA)-mediated phosphorylation, we investigated the effect of two activators of the PKA pathway, 8-Br-cAMP and forskolin, on the activity of menthol and icilin at TRPM8 in HEK-293 cells stably overexpressing the channel (TRPM8-HEK-293 cells). We also studied the effect on TRPM8 of: (1) a series of compounds previously shown to activate or antagonize TRPV1, and (2) co-stimulation of transiently co-expressed cannabinoid CB(1) receptors. Both 8-Br-cAMP (100 microM) and forskolin (10 microM) right-shifted the dose-response curves for the TRPM8-mediated effect of icilin and menthol on intracellular Ca(2+). The inhibitory effects of 8-Br-cAMP and forskolin were attenuated by the selective PKA inhibitor Rp-cAMP-S. Stimulation of human CB(1) receptors transiently co-expressed in TRPM8-HEK-293 cells also inhibited TRPM8 response to icilin. Finally, some TRPV1 agonists and antagonists, but not iodinated antagonists, antagonized icilin- and much less so menthol-, induced TRPM8 activation. Importantly, the endovanilloids/endocannabinoids, anandamide and NADA, also antagonized TRPM8 at submicromolar concentrations. Although these findings need to be confirmed by experiments directly measuring TRPM8 activity in natively TRPM8-expressing cells, they support the notion that the same regulatory events have opposing actions on TRPM8 and TRPV1 receptors and identify anandamide and NADA as the first potential endogenous functional antagonists of TRPM8 channels.

  17. Mutation of putative GRK phosphorylation sites in the cannabinoid receptor 1 (CB1R) confers resistance to cannabinoid tolerance and hypersensitivity to cannabinoids in mice.

    PubMed

    Morgan, Daniel J; Davis, Brian J; Kearn, Chris S; Marcus, David; Cook, Alex J; Wager-Miller, Jim; Straiker, Alex; Myoga, Michael H; Karduck, Jeffrey; Leishman, Emma; Sim-Selley, Laura J; Czyzyk, Traci A; Bradshaw, Heather B; Selley, Dana E; Mackie, Ken

    2014-04-01

    For many G-protein-coupled receptors (GPCRs), including cannabinoid receptor 1 (CB1R), desensitization has been proposed as a principal mechanism driving initial tolerance to agonists. GPCR desensitization typically requires phosphorylation by a G-protein-coupled receptor kinase (GRK) and interaction of the phosphorylated receptor with an arrestin. In simple model systems, CB1R is desensitized by GRK phosphorylation at two serine residues (S426 and S430). However, the role of these serine residues in tolerance and dependence for cannabinoids in vivo was unclear. Therefore, we generated mice where S426 and S430 were mutated to nonphosphorylatable alanines (S426A/S430A). S426A/S430A mutant mice were more sensitive to acutely administered delta-9-tetrahydrocannabinol (Δ(9)-THC), have delayed tolerance to Δ(9)-THC, and showed increased dependence for Δ(9)-THC. S426A/S430A mutants also showed increased responses to elevated levels of endogenous cannabinoids. CB1R desensitization in the periaqueductal gray and spinal cord following 7 d of treatment with Δ(9)-THC was absent in S426A/S430A mutants. Δ(9)-THC-induced downregulation of CB1R in the spinal cord was also absent in S426A/S430A mutants. Cultured autaptic hippocampal neurons from S426A/S430A mice showed enhanced endocannabinoid-mediated depolarization-induced suppression of excitation (DSE) and reduced agonist-mediated desensitization of DSE. These results indicate that S426 and S430 play major roles in the acute response to, tolerance to, and dependence on cannabinoids. Additionally, S426A/S430A mice are a novel model for studying pathophysiological processes thought to involve excessive endocannabinoid signaling such as drug addiction and metabolic disease. These mice also validate the approach of mutating GRK phosphorylation sites involved in desensitization as a general means to confer exaggerated signaling to GPCRs in vivo.

  18. Anxiogenic profile of AM-251, a selective cannabinoid CB1 receptor antagonist, in plus-maze-naïve and plus-maze-experienced mice.

    PubMed

    Rodgers, R J; Evans, P M; Murphy, A

    2005-09-01

    The notoriously inconsistent effects of cannabinoids on anxiety-like behaviour may be explained by recent research on CB1 receptor knockout (CB1-KO) mice suggesting that cannabinoids exert bidirectional effects via the CB1 receptor (anxiolysis) and a novel rimonabant-sensitive neuronal cannabinoid receptor (anxiogenesis). This hypothesis is supported by the anxiogenic-like profile of AM-251, an analogue of rimonabant that is a potent and selective CB1 receptor antagonist but which, unlike rimonabant, has no activity at the novel receptor. As we have previously shown that rimonabant reduces anxiety-like behaviour in test-experienced animals only, the current study assessed the effects of AM-251 (1.5-3.0 mg/kg) in male Swiss-Webster mice that were either plus-maze-naïve or had been exposed undrugged to the apparatus 24 h prior to testing. Results confirmed that prior maze experience per se significantly increases behavioural indices of anxiety without altering measures of general activity. In maze-naïve mice, the lower dose of AM-251 (1.5 mg/kg) significantly reduced % open-arm time and increased grooming while the higher dose (3.0 mg/kg) additionally reduced open-arm entries and total head-dipping, and increased closed-arm returns. These anxiogenic-like effects were observed in the absence of significant changes in general activity levels. Although AM-251 had a very similar profile in maze-experienced animals, significant drug effects on open-arm avoidance measures were precluded by experientially-induced changes in behavioural baselines (i.e. 'ceiling' effects). Nevertheless, AM-251 again significantly reduced total head-dipping and increased grooming (3.0 mg/kg) and, unlike effects in naïve animals, both doses markedly reduced time spent on the centre platform and increased time spent in the enclosed arms. Against a baseline of almost total open-arm avoidance, the pattern of behavioural change in maze-experienced mice would also be consistent with an anxiogenic

  19. Anandamide inhibits Theiler's virus induced VCAM-1 in brain endothelial cells and reduces leukocyte transmigration in a model of blood brain barrier by activation of CB1 receptors

    PubMed Central

    2011-01-01

    Background VCAM-1 represents one of the most important adhesion molecule involved in the transmigration of blood leukocytes across the blood-brain barrier (BBB) that is an essential step in the pathogenesis of MS. Several evidences have suggested the potential therapeutic value of cannabinoids (CBs) in the treatment of MS and their experimental models. However, the effects of endocannabinoids on VCAM-1 regulation are poorly understood. In the present study we investigated the effects of anandamide (AEA) in the regulation of VCAM-1 expression induced by Theiler's virus (TMEV) infection of brain endothelial cells using in vitro and in vivo approaches. Methods i) in vitro: VCAM-1 was measured by ELISA in supernatants of brain endothelial cells infected with TMEV and subjected to AEA and/or cannabinoid receptors antagonist treatment. To evaluate the functional effect of VCAM-1 modulation we developed a blood brain barrier model based on a system of astrocytes and brain endothelial cells co-culture. ii) in vivo: CB1 receptor deficient mice (Cnr1-/-) infected with TMEV were treated with the AEA uptake inhibitor UCM-707 for three days. VCAM-1 expression and microglial reactivity were evaluated by immunohistochemistry. Results Anandamide-induced inhibition of VCAM-1 expression in brain endothelial cell cultures was mediated by activation of CB1 receptors. The study of leukocyte transmigration confirmed the functional relevance of VCAM-1 inhibition by AEA. In vivo approaches also showed that the inhibition of AEA uptake reduced the expression of brain VCAM-1 in response to TMEV infection. Although a decreased expression of VCAM-1 by UCM-707 was observed in both, wild type and CB1 receptor deficient mice (Cnr1-/-), the magnitude of VCAM-1 inhibition was significantly higher in the wild type mice. Interestingly, Cnr1-/- mice showed enhanced microglial reactivity and VCAM-1 expression following TMEV infection, indicating that the lack of CB1 receptor exacerbated

  20. ACEA (a highly selective cannabinoid CB1 receptor agonist) stimulates hippocampal neurogenesis in mice treated with antiepileptic drugs.

    PubMed

    Andres-Mach, Marta; Haratym-Maj, Agnieszka; Zagaja, Miroslaw; Rola, Radoslaw; Maj, Maciej; Chrościńska-Krawczyk, Magdalena; Luszczki, Jarogniew J

    2015-10-22

    Hippocampal neurogenesis plays a very important role in learning and memory functions. In a search for best neurological drugs that protect neuronal cells and stimulate neurogenesis with no side effects, cannabinoids proved to be a strong group of substances having many beneficial properties. The aim of this study was to evaluate the impact of ACEA (arachidonyl-2'-chloroethylamide--a highly selective cannabinoid CB1 receptor agonist) combined with a classical antiepileptic drug sodium valproate (VPA) on neural precursor cells' proliferation and differentiation in the mouse brain. All experiments were performed on adolescent CB57/BL male mice injected i.p. with VPA (10mg/kg), ACEA (10mg/kg) and PMSF (30 mg/kg) (phenylmethylsulfonyl fluoride--a substance protecting ACEA against degradation by the fatty-acid amidohydrolase) for 10 days. Next an acute response of proliferating neural precursor cells to ACEA and VPA administration was evaluated with Ki-67 staining (Time point 1). Next, in order to determine whether acute changes translated into long-term alterations in neurogenesis, proliferating cells were labeled with 5-bromo-2deoxyuridine (BrdU) followed by confocal microscopy used to determine the percentage of BrdU-labeled cells that showed mature cell phenotypes (Time point 2). Results indicate that ACEA with PMSF significantly increase the total number of Ki-67-positive cells when compared to the control group. Moreover, ACEA in combination with VPA increased the number of Ki-67-positive cells, whereas VPA administered alone had no impact on proliferating cells' population. Accordingly, neurogenesis study results indicate that the combination of ACEA+PMSF administered alone and in combination with VPA considerably increases the total number of BrdU-positive cells in comparison to the control group while ACEA+PMSF alone and in combination with VPA increased total numbers of BrdU-positive cells, newly born neurons and astrocytes as compared to VPA group but not to

  1. (4-(Bis(4-fluorophenyl)methyl)piperazin-1-yl)(cyclohexyl)methanone hydrochloride (LDK1229): a new cannabinoid CB1 receptor inverse agonist from the class of benzhydryl piperazine analogs.

    PubMed

    Mahmoud, Mariam M; Olszewska, Teresa; Liu, Hui; Shore, Derek M; Hurst, Dow P; Reggio, Patricia H; Lu, Dai; Kendall, Debra A

    2015-02-01

    Some inverse agonists of cannabinoid receptor type 1 (CB1) have been demonstrated to be anorectic antiobesity drug candidates. However, the first generation of CB1 inverse agonists, represented by rimonabant (SR141716A), otenabant, and taranabant, are centrally active, with a high level of psychiatric side effects. Hence, the discovery of CB1 inverse agonists with a chemical scaffold distinct from these holds promise for developing peripherally active CB1 inverse agonists with fewer side effects. We generated a new CB1 inverse agonist, (4-(bis(4-fluorophenyl)methyl)piperazin-1-yl)(cyclohexyl)methanone hydrochloride (LDK1229), from the class of benzhydryl piperazine analogs. This compound binds to CB1 more selectively than cannabinoid receptor type 2, with a Ki value of 220 nM. Comparable CB1 binding was also observed by analogs 1-[bis(4-fluorophenyl)methyl]-4-cinnamylpiperazine dihydrochloride (LDK1203) and 1-[bis(4-fluorophenyl)methyl]-4-tosylpiperazine hydrochloride (LDK1222), which differed by the substitution on the piperazine ring where the piperazine of LDK1203 and LDK1222 are substituted by an alkyl group and a tosyl group, respectively. LDK1229 exhibits efficacy comparable with SR141716A in antagonizing the basal G protein coupling activity of CB1, as indicated by a reduction in guanosine 5'-O-(3-thio)triphosphate binding. Consistent with inverse agonist behavior, increased cell surface localization of CB1 upon treatment with LDK1229 was also observed. Although docking and mutational analysis showed that LDK1229 forms similar interactions with the receptor as SR141716A does, the benzhydryl piperazine scaffold is structurally distinct from the first-generation CB1 inverse agonists. It offers new opportunities for developing novel CB1 inverse agonists through the optimization of molecular properties, such as the polar surface area and hydrophilicity, to reduce the central activity observed with SR141716A.

  2. (4-(Bis(4-Fluorophenyl)Methyl)Piperazin-1-yl)(Cyclohexyl)Methanone Hydrochloride (LDK1229): A New Cannabinoid CB1 Receptor Inverse Agonist from the Class of Benzhydryl Piperazine Analogs

    PubMed Central

    Mahmoud, Mariam M.; Olszewska, Teresa; Liu, Hui; Shore, Derek M.; Hurst, Dow P.; Reggio, Patricia H.; Lu, Dai

    2015-01-01

    Some inverse agonists of cannabinoid receptor type 1 (CB1) have been demonstrated to be anorectic antiobesity drug candidates. However, the first generation of CB1 inverse agonists, represented by rimonabant (SR141716A), otenabant, and taranabant, are centrally active, with a high level of psychiatric side effects. Hence, the discovery of CB1 inverse agonists with a chemical scaffold distinct from these holds promise for developing peripherally active CB1 inverse agonists with fewer side effects. We generated a new CB1 inverse agonist, (4-(bis(4-fluorophenyl)methyl)piperazin-1-yl)(cyclohexyl)methanone hydrochloride (LDK1229), from the class of benzhydryl piperazine analogs. This compound binds to CB1 more selectively than cannabinoid receptor type 2, with a Ki value of 220 nM. Comparable CB1 binding was also observed by analogs 1-[bis(4-fluorophenyl)methyl]-4-cinnamylpiperazine dihydrochloride (LDK1203) and 1-[bis(4-fluorophenyl)methyl]-4-tosylpiperazine hydrochloride (LDK1222), which differed by the substitution on the piperazine ring where the piperazine of LDK1203 and LDK1222 are substituted by an alkyl group and a tosyl group, respectively. LDK1229 exhibits efficacy comparable with SR141716A in antagonizing the basal G protein coupling activity of CB1, as indicated by a reduction in guanosine 5′-O-(3-thio)triphosphate binding. Consistent with inverse agonist behavior, increased cell surface localization of CB1 upon treatment with LDK1229 was also observed. Although docking and mutational analysis showed that LDK1229 forms similar interactions with the receptor as SR141716A does, the benzhydryl piperazine scaffold is structurally distinct from the first-generation CB1 inverse agonists. It offers new opportunities for developing novel CB1 inverse agonists through the optimization of molecular properties, such as the polar surface area and hydrophilicity, to reduce the central activity observed with SR141716A. PMID:25411367

  3. Involvement of the infralimbic cortex and CA1 hippocampal area in reconsolidation of a contextual fear memory through CB1 receptors: Effects of CP55,940.

    PubMed

    Santana, Fabiana; Sierra, Rodrigo O; Haubrich, Josué; Crestani, Ana Paula; Duran, Johanna Marcela; de Freitas Cassini, Lindsey; de Oliveira Alvares, Lucas; Quillfeldt, Jorge A

    2016-01-01

    The endocannabinoid system (ECS) has a pivotal role in different cognitive functions such as learning and memory. Recent evidence confirm the involvement of the hippocampal CB1 receptors in the modulation of both memory extinction and reconsolidation processes in different brain areas, but few studies focused on the infralimbic cortex, another important cognitive area. Here, we infused the cannabinoid agonist CP55,940 either into the infralimbic cortex (IL) or the CA1 area of the dorsal hippocampus (HPC) of adult male Wistar rats immediately after a short (3min) reactivation session, known to labilize a previously consolidated memory trace in order to allow its reconsolidation with some modification. In both structures, the treatment was able to disrupt reconsolidation in a relatively long lasting way, reducing the freezing response. To our notice, this is the first demonstration of ECS involvement in reconsolidation in the Infralimbic Cortex. Despite poorly discriminative between CB1 and CB2 receptors, CP55,940 is a potent agent, and these results suggest that a similar CB1-dependent circuitry is at work both in HPC and in the IL during memory reconsolidation.

  4. Sativex-like combination of phytocannabinoids is neuroprotective in malonate-lesioned rats, an inflammatory model of Huntington's disease: role of CB1 and CB2 receptors.

    PubMed

    Valdeolivas, Sara; Satta, Valentina; Pertwee, Roger G; Fernández-Ruiz, Javier; Sagredo, Onintza

    2012-05-16

    We have investigated whether a 1:1 combination of botanical extracts enriched in either Δ(9)-tetrahydrocannabinol (Δ(9)-THC) or cannabidiol (CBD), which are the main constituents of the cannabis-based medicine Sativex, is neuroprotective in Huntington's disease (HD), using an experimental model of this disease generated by unilateral lesions of the striatum with the mitochondrial complex II inhibitor malonate. This toxin damages striatal neurons by mechanisms that primarily involve apoptosis and microglial activation. We monitored the extent of this damage and the possible preservation of the striatal parenchyma by treatment with a Sativex-like combination of phytocannabinoids using different histological and biochemical markers. Results were as follows: (i) malonate increased the volume of edema measured by in vivo NMR imaging and the Sativex-like combination of phytocannabinoids partially reduced this increase; (ii) malonate reduced the number of Nissl-stained cells, while enhancing the number of degenerating cells stained with FluoroJade-B, and the Sativex-like combination of phytocannabinoids reversed both effects; (iii) malonate caused a strong glial activation (i.e., reactive microglia labeled with Iba-1, and astrogliosis labeled with GFAP) and the Sativex-like combination of phytocannabinoids attenuated both responses; and (iv) malonate increased the expression of inducible nitric oxide synthase and the neurotrophin IGF-1, and both responses were attenuated after the treatment with the Sativex-like combination of phytocannabinoids. We also wanted to establish whether targets within the endocannabinoid system (i.e., CB(1) and CB(2) receptors) are involved in the beneficial effects induced in this model by the Sativex-like combination of phytocannabinoids. This we did using selective antagonists for both receptor types (i.e., SR141716 and AM630) combined with the Sativex-like phytocannabinoid combination. Our results indicated that the effects of this

  5. Palmitoylethanolamide normalizes intestinal motility in a model of post-inflammatory accelerated transit: involvement of CB1 receptors and TRPV1 channels

    PubMed Central

    Capasso, Raffaele; Orlando, Pierangelo; Pagano, Ester; Aveta, Teresa; Buono, Lorena; Borrelli, Francesca; Di Marzo, Vincenzo; Izzo, Angelo A

    2014-01-01

    Background and Purpose Palmitoylethanolamide (PEA), a naturally occurring acylethanolamide chemically related to the endocannabinoid anandamide, interacts with targets that have been identified in peripheral nerves controlling gastrointestinal motility, such as cannabinoid CB1 and CB2 receptors, TRPV1 channels and PPARα. Here, we investigated the effect of PEA in a mouse model of functional accelerated transit which persists after the resolution of colonic inflammation (post-inflammatory irritable bowel syndrome). Experimental Approach Intestinal inflammation was induced by intracolonic administration of oil of mustard (OM). Mice were tested for motility and biochemical and molecular biology changes 4 weeks later. PEA, oleoylethanolamide and endocannabinoid levels were measured by liquid chromatography-mass spectrometry and receptor and enzyme mRNA expression by qRT-PCR. Key Results OM induced transient colitis and a functional post-inflammatory increase in upper gastrointestinal transit, associated with increased intestinal anandamide (but not 2-arachidonoylglycerol, PEA or oleoylethanolamide) levels and down-regulation of mRNA for TRPV1 channels. Exogenous PEA inhibited the OM-induced increase in transit and tended to increase anandamide levels. Palmitic acid had a weaker effect on transit. Inhibition of transit by PEA was blocked by rimonabant (CB1 receptor antagonist), further increased by 5′-iodoresiniferatoxin (TRPV1 antagonist) and not significantly modified by the PPARα antagonist GW6471. Conclusions and Implications Intestinal endocannabinoids and TRPV1 channel were dysregulated in a functional model of accelerated transit exhibiting aspects of post-inflammatory irritable bowel syndrome. PEA counteracted the accelerated transit, the effect being mediated by CB1 receptors (possibly via increased anandamide levels) and modulated by TRPV1 channels. PMID:24818658

  6. 1-Aryl-5-(1H-pyrrol-1-yl)-1H-pyrazole-3-carboxamide: an effective scaffold for the design of either CB1 or CB2 receptor ligands.

    PubMed

    Piscitelli, Francesco; Ligresti, Alessia; La Regina, Giuseppe; Gatti, Valerio; Brizzi, Antonella; Pasquini, Serena; Allarà, Marco; Carai, Mauro Antonio Maria; Novellino, Ettore; Colombo, Giancarlo; Di Marzo, Vincenzo; Corelli, Federico; Silvestri, Romano

    2011-11-01

    New 1-aryl-5-(1H-pyrrol-1-yl)-1H-pyrazole-3-carboxamides were synthesized as cannabinoid (CB) receptor ligands. Compound 11 (CB(1)K(i) = 2.3 nM, CB(1) SI = 163.6) showed CB(1) receptor affinity and selectivity superior to Rimonabant and AM251. Acute administration of 2mg/kg 11 reduced sucrose, but not regular food, intake in rats. On the other hand, compound 23 (CB(2)K(i) = 0.51 nM, CB(2) SI = 30.0) showed significant affinity and selectivity for the CB(2) receptor. The results presented here show that the 1-aryl-5-(1H-pyrrol-1-yl)-1H-pyrazole-3-carboxamide may serve as an effective scaffold for the design of either CB(1) or CB(2) receptor ligands. PMID:21996466

  7. Cytotoxicity of synthetic cannabinoids on primary neuronal cells of the forebrain: the involvement of cannabinoid CB1 receptors and apoptotic cell death.

    PubMed

    Tomiyama, Ken-ichi; Funada, Masahiko

    2014-01-01

    The abuse of herbal products containing synthetic cannabinoids has become an issue of public concern. The purpose of this paper was to evaluate the acute cytotoxicity of synthetic cannabinoids on mouse brain neuronal cells. Cytotoxicity induced by synthetic cannabinoid (CP-55,940, CP-47,497, CP-47,497-C8, HU-210, JWH-018, JWH-210, AM-2201, and MAM-2201) was examined using forebrain neuronal cultures. These synthetic cannabinoids induced cytotoxicity in the forebrain cultures in a concentration-dependent manner. The cytotoxicity was suppressed by preincubation with the selective CB1 receptor antagonist AM251, but not with the selective CB2 receptor antagonist AM630. Furthermore, annexin-V-positive cells were found among the treated forebrain cells. Synthetic cannabinoid treatment induced the activation of caspase-3, and preincubation with a caspase-3 inhibitor significantly suppressed the cytotoxicity. These synthetic cannabinoids induced apoptosis through a caspase-3-dependent mechanism in the forebrain cultures. Our results indicate that the cytotoxicity of synthetic cannabinoids towards primary neuronal cells is mediated by the CB1 receptor, but not by the CB2 receptor, and further suggest that caspase cascades may play an important role in the apoptosis induced by these synthetic cannabinoids. In conclusion, excessive synthetic cannabinoid abuse may present a serious acute health concern due to neuronal damage or deficits in the brain.

  8. The CB1 cannabinoid receptor agonist reduces L-DOPA-induced motor fluctuation and ERK1/2 phosphorylation in 6-OHDA-lesioned rats.

    PubMed

    Song, Lu; Yang, Xinxin; Ma, Yaping; Wu, Na; Liu, Zhenguo

    2014-01-01

    The dopamine precursor L-3,4-dihydroxyphenylalanine (L-DOPA) has been used as an effective drug for treating dopamine depletion-induced Parkinson's disease (PD). However, long-term administration of L-DOPA produces motor complications. L-DOPA has also been found to modify the two key signaling cascades, protein kinase A/dopamine- and cAMP-regulated phosphoprotein of 32 kDa (DARPP-32) and extracellular signal-regulated kinases 1 and 2 (ERK1/2), in striatal neurons, which are thought to play a pivotal role in forming motor complications. In the present study, we tested the possible effect of a CB1 cannabinoid receptor agonist on L-DOPA-stimulated abnormal behavioral and signaling responses in vivo. Intermittent L-DOPA administration for 3 weeks induced motor fluctuation in a rat model of PD induced by intrastriatal infusion of dopamine-depleting neurotoxin 6-hydroxydopamine (6-OHDA). A single injection of a CB1 cannabinoid receptor agonist WIN-55,212-2 had no effect on L-DOPA-induced motor fluctuation. However, chronic injections of WIN-55,212-2 significantly attenuated abnormal behavioral responses to L-DOPA in 6-OHDA-lesioned rats. Similarly, chronic injections of WIN-55,212-2 influence the L-DOPA-induced alteration of DARPP-32 and ERK1/2 phosphorylation status in striatal neurons. These data provide evidence for the active involvement of CB1 cannabinoid receptors in the regulation of L-DOPA action during PD therapy.

  9. The CB1 cannabinoid receptor agonist reduces L-DOPA-induced motor fluctuation and ERK1/2 phosphorylation in 6-OHDA-lesioned rats

    PubMed Central

    Song, Lu; Yang, Xinxin; Ma, Yaping; Wu, Na; Liu, Zhenguo

    2014-01-01

    The dopamine precursor L-3,4-dihydroxyphenylalanine (L-DOPA) has been used as an effective drug for treating dopamine depletion-induced Parkinson’s disease (PD). However, long-term administration of L-DOPA produces motor complications. L-DOPA has also been found to modify the two key signaling cascades, protein kinase A/dopamine- and cAMP-regulated phosphoprotein of 32 kDa (DARPP-32) and extracellular signal-regulated kinases 1 and 2 (ERK1/2), in striatal neurons, which are thought to play a pivotal role in forming motor complications. In the present study, we tested the possible effect of a CB1 cannabinoid receptor agonist on L-DOPA-stimulated abnormal behavioral and signaling responses in vivo. Intermittent L-DOPA administration for 3 weeks induced motor fluctuation in a rat model of PD induced by intrastriatal infusion of dopamine-depleting neurotoxin 6-hydroxydopamine (6-OHDA). A single injection of a CB1 cannabinoid receptor agonist WIN-55,212-2 had no effect on L-DOPA-induced motor fluctuation. However, chronic injections of WIN-55,212-2 significantly attenuated abnormal behavioral responses to L-DOPA in 6-OHDA-lesioned rats. Similarly, chronic injections of WIN-55,212-2 influence the L-DOPA-induced alteration of DARPP-32 and ERK1/2 phosphorylation status in striatal neurons. These data provide evidence for the active involvement of CB1 cannabinoid receptors in the regulation of L-DOPA action during PD therapy. PMID:25395834

  10. Early maternal deprivation induces gender-dependent changes on the expression of hippocampal CB(1) and CB(2) cannabinoid receptors of neonatal rats.

    PubMed

    Suárez, Juan; Llorente, Ricardo; Romero-Zerbo, Silvana Y; Mateos, Beatriz; Bermúdez-Silva, Francisco J; de Fonseca, Fernando Rodríguez; Viveros, María-Paz

    2009-07-01

    Early maternal deprivation (MD) in rats (24 h, postnatal day 9-10) is a model for neurodevelopmental stress. There are some data proving that MD affects the endocannabinoid system (ECS) in a gender-dependent manner, and that these changes may account for the proposed schizophrenia-like phenotype of MD rats. The impact of MD on cannabinoid receptor distribution in the hippocampus is unknown. The aim of this study is to evaluate the expression of CB(1) and CB(2) receptors in diverse relevant subregions (DG, CA1, and CA3) of the hippocampus in 13-day-old rats by immunohistochemistry and densitometry. MD induced a significant decrease in CB(1) immunoreactivity (more marked in males than in females), which was mainly associated with fibers in the strata pyramidale and radiatum of CA1 and in the strata oriens, pyramidale, and radiatum of CA3. In contrast, MD males and females showed a significant increase in CB(2) immunoreactivity in the three hippocampal areas analyzed that was detected in neuropil and puncta in the stratum oriens of CA1 and CA3, and in the polymorphic cell layer of the dentate gyrus. A marked sex dimorphism was observed in CA3, with females exhibiting higher CB(1) immunoreactivity than males, and in dentate gyrus, with females exhibiting lower CB(2) immunoreactivity than males. These results point to a clear association between developmental stress and dysregulation of the ECS. The present MD procedure may provide an interesting experimental model to further address the role of the ECS in neurodevelopmental mental illnesses such as schizophrenia.

  11. Diarylureas as allosteric modulators of the cannabinoid CB1 receptor: structure-activity relationship studies on 1-(4-chlorophenyl)-3-{3-[6-(pyrrolidin-1-yl)pyridin-2-yl]phenyl}urea (PSNCBAM-1).

    PubMed

    German, Nadezhda; Decker, Ann M; Gilmour, Brian P; Gay, Elaine A; Wiley, Jenny L; Thomas, Brian F; Zhang, Yanan

    2014-09-25

    The recent discovery of allosteric modulators of the CB1 receptor including PSNCBAM-1 (4) has generated significant interest in CB1 receptor allosteric modulation. Here in the first SAR study on 4, we have designed and synthesized a series of analogs focusing on modifications at two positions. Pharmacological evaluation in calcium mobilization and binding assays revealed the importance of alkyl substitution at the 2-aminopyridine moiety and electron deficient aromatic groups at the 4-chlorophenyl position for activity at the CB1 receptor, resulting in several analogs with comparable potency to 4. These compounds increased the specific binding of [(3)H]CP55,940, in agreement with previous reports. Importantly, 4 and two analogs dose-dependently reduced the Emax of the agonist curve in the CB1 calcium mobilization assays, confirming their negative allosteric modulator characteristics. Given the side effects associated with CB1 receptor orthosteric antagonists, negative allosteric modulators provide an alternative approach to modulate the pharmacologically important CB1 receptor.

  12. Presynaptic cannabinoid CB1 receptors are involved in the inhibition of the neurogenic vasopressor response during septic shock in pithed rats

    PubMed Central

    Godlewski, Grzegorz; Malinowska, Barbara; Schlicker, Eberhard

    2004-01-01

    Our study was undertaken to investigate whether bacterial endotoxin/lipopolysaccharide (LPS) affects the neurogenic vasopressor response in rats in vivo by presynaptic mechanisms and, if so, to characterize the type of presynaptic receptor(s) operating in the initial phase of septic shock. In pithed and vagotomized rats treated with pancuronium, electrical stimulation (ES) (1 Hz, 1 ms, 50 V for 10 s) of the preganglionic sympathetic nerve fibers or intravenous bolus injection of noradrenaline (NA) (1–3 nmol kg−1) increased the diastolic blood pressure (DBP) by about 30 mmHg. Administration of LPS (0.4 and 4 mg kg−1) under continuous infusion of vasopressin inhibited the neurogenic vasopressor response by 25 and 50%, respectively. LPS did not affect the increase in DBP induced by exogenous NA. The LPS-induced inhibition of the neurogenic vasopressor response was counteracted by the cannabinoid CB1 receptor antagonist SR 141716A (0.1 μmol kg−1), but not by the CB2 receptor antagonist SR 144528 (3 μmol kg−1), the vanilloid VR1 receptor antagonist capsazepine (1 μmol kg−1) or the histamine H3 receptor antagonist clobenpropit (0.1 μmol kg−1). The four antagonists by themselves did not affect the increase in DBP induced by ES or by injection of NA in rats not exposed to LPS. We conclude that in the initial phase of septic shock, the activation of presynaptic CB1 receptors by endogenously formed cannabinoids contributes to the inhibition of the neurogenic vasopressor response. PMID:15159284

  13. Presynaptic cannabinoid CB(1) receptors are involved in the inhibition of the neurogenic vasopressor response during septic shock in pithed rats.

    PubMed

    Godlewski, Grzegorz; Malinowska, Barbara; Schlicker, Eberhard

    2004-06-01

    1. Our study was undertaken to investigate whether bacterial endotoxin/lipopolysaccharide (LPS) affects the neurogenic vasopressor response in rats in vivo by presynaptic mechanisms and, if so, to characterize the type of presynaptic receptor(s) operating in the initial phase of septic shock. 2. In pithed and vagotomized rats treated with pancuronium, electrical stimulation (ES) (1 Hz, 1 ms, 50 V for 10 s) of the preganglionic sympathetic nerve fibers or intravenous bolus injection of noradrenaline (NA) (1-3 nmol x kg(-1)) increased the diastolic blood pressure (DBP) by about 30 mmHg. Administration of LPS (0.4 and 4 mg x kg(-1)) under continuous infusion of vasopressin inhibited the neurogenic vasopressor response by 25 and 50%, respectively. LPS did not affect the increase in DBP induced by exogenous NA. 3. The LPS-induced inhibition of the neurogenic vasopressor response was counteracted by the cannabinoid CB(1) receptor antagonist SR 141716A (0.1 micromol x kg(-1)), but not by the CB(2) receptor antagonist SR 144528 (3 micromol x kg(-1)), the vanilloid VR1 receptor antagonist capsazepine (1 micromol x kg(-1)) or the histamine H(3) receptor antagonist clobenpropit (0.1 micromol x kg(-1)). The four antagonists by themselves did not affect the increase in DBP induced by ES or by injection of NA in rats not exposed to LPS. 4. We conclude that in the initial phase of septic shock, the activation of presynaptic CB(1) receptors by endogenously formed cannabinoids contributes to the inhibition of the neurogenic vasopressor response.

  14. Atypical cannabinoid stimulates endothelial cell migration via a Gi/Go-coupled receptor distinct from CB1, CB2 or EDG-1.

    PubMed

    Mo, Fong Ming; Offertáler, László; Kunos, George

    2004-04-01

    The endothelium-dependent mesenteric vasorelaxant effect of anandamide has been attributed to stimulation of a Gi/Go-coupled receptor, for which the nonpsychoactive analog abnormal cannabidiol (abn-cbd, (-)-4-(3-3,4-trans-p-menthadien-[1,8]-yl)olivetol) is a selective agonist and the compound O-1918 ((-)-4-(3-3,4-trans-p-menthadien-(1,8)-yl)-orcinol) is a selective antagonist. In human umbilical vein endothelial cells abn-cbd was reported to increase the phosphorylation of p44/42 mitogen activated protein kinase (MAPK) and protein kinase B/Akt, and these effects could be inhibited by pertussis toxin, by phosphatidylinositol 3-kinase (PI3K) inhibitors or by O-1918 [Mol. Pharmacol. 63 (2003) 699]. In the present experiments, abn-cbd caused a concentration-dependent increase in human umbilical vein endothelial cell migration, as quantified in a transwell chamber. This effect was antagonized by O-1918, by the PI3K inhibitor wortmannin, and by pertussis toxin, but not by the cannabinoid CB1 receptor antagonist AM251 or the cannabinoid CB2 receptor antagonist SR144528. The EDG-1 receptor agonist sphingosine-1-phosphate also increased human umbilical vein endothelial cell migration, but this response was unaffected by O-1918. In Chinese hamster ovary cells stably transfected with the gene encoding the EDG-1 receptor, p44/42 MAPK phosphorylation was unaffected by abn-cbd, but strongly induced by sphingosine-1-phosphate. These results indicate that an abn-cbd-sensitive endothelial receptor distinct from cannabinoid CB1, CB2 or EDG-1 receptors mediates not only vasorelaxation but also endothelial cell migration.

  15. Anticonvulsant effects of N-arachidonoyl-serotonin, a dual fatty acid amide hydrolase enzyme and transient receptor potential vanilloid type-1 (TRPV1) channel blocker, on experimental seizures: the roles of cannabinoid CB1 receptors and TRPV1 channels.

    PubMed

    Vilela, Luciano R; Medeiros, Daniel C; de Oliveira, Antonio Carlos P; Moraes, Marcio F; Moreira, Fabricio A

    2014-10-01

    Selective blockade of anandamide hydrolysis, through the inhibition of the FAAH enzyme, has anticonvulsant effects, which are mediated by CB1 receptors. Anandamide, however, also activates TRPV1 channels, generally with an opposite outcome on neuronal modulation. Thus, we suggested that the dual FAAH and TRPV1 blockade with N-arachidonoyl-serotonin (AA-5-HT) would be efficacious in inhibiting pentylenetetrazole (PTZ)-induced seizures in mice. We also investigated the contribution of CB1 activation and TRPV1 blockade to the overt effect of AA-5-HT. In the first experiment, injection of AA-5-HT (0.3-3.0 mg/kg) delayed the onset and reduced the duration of PTZ (60 mg)-induced seizures in mice. These effects were reversed by pre-treatment with the CB1 antagonist, AM251 (1.0-3.0 mg/kg). Finally, we observed that administration of the selective TRPV1 antagonist, SB366791 (0.1-1 mg/kg), did not entirely mimic AA-5-HT effects. In conclusion, AA-5-HT alleviates seizures in mice, an effect inhibited by CB1 antagonism, but not completely mimicked by TRPV1 blockage, indicating that the overall effect of AA-5-HT seems to depend mainly on CB1 receptors. This may represent a new strategy for the development of drugs against seizures, epilepsies and related syndromes.

  16. Cannabinoid receptors are widely expressed in goldfish: molecular cloning of a CB2-like receptor and evaluation of CB1 and CB2 mRNA expression profiles in different organs

    PubMed Central

    Cottone, Erika; Pomatto, Valentina; Cerri, Fulvio; Campantico, Ezio; Mackie, Ken; Delpero, Massimiliano; Guastalla, Alda; Dati, Claudio; Bovolin, Patrizia; Franzoni, Maria Fosca

    2013-01-01

    Cannabinoids, the bioactive constituents of Cannabis sativa, and endocannabinoids, among which the most important are anandamide and 2-arachidonoylglycerol, control various biological processes by binding to specific G protein-coupled receptors, namely CB1 and CB2 cannabinoid receptors. While a vast amount of information on the mammalian endocannabinoid system does exist, few data have been reported on bony fish. In the goldfish, Carassius auratus, the CB1 receptor has been cloned and its distribution has been analyzed in the retina, brain and gonads, while CB2 had not yet been isolated. In the present paper we cloned the goldfish CB2 receptor and show that it presents a quite high degree of amino acid identity with zebrafish Danio rerio CB2A and CB2B receptors, while the percentage of identity is lower with the pufferfish Fugu rubripes CB2, as also confirmed by the phylogenetic analysis. The sequence identity becomes much lower when comparing the goldfish and the mammalian CB2 sequences; as for other species, goldfish CB2 and CB1 amino acid sequences share moderate levels of identity. Western-blotting analysis shows the CB2 receptor as two major bands of about 53 kDa and 40 kDa, and other faint bands with apparent molecular masses around 70 kDa, 57 kDa and 55 kDa. Since the distribution of a receptor could give information on its physiological role, we evaluated and compared CB1 and CB2 mRNA expression in different goldfish organs by means of quantitative Real-Time PCR. Our results show that both CB1 and CB2 receptors are widely expressed in the goldfish, displaying some tissue specificities, thus opening the way for further functional studies on bony fish and other non-mammalian vertebrates. PMID:23504102

  17. Cannabinoid receptors are widely expressed in goldfish: molecular cloning of a CB2-like receptor and evaluation of CB1 and CB2 mRNA expression profiles in different organs.

    PubMed

    Cottone, Erika; Pomatto, Valentina; Cerri, Fulvio; Campantico, Ezio; Mackie, Ken; Delpero, Massimiliano; Guastalla, Alda; Dati, Claudio; Bovolin, Patrizia; Franzoni, Maria Fosca

    2013-10-01

    Cannabinoids, the bioactive constituents of Cannabis sativa, and endocannabinoids, among which the most important are anandamide and 2-arachidonoylglycerol, control various biological processes by binding to specific G protein-coupled receptors, namely CB1 and CB2 cannabinoid receptors. While a vast amount of information on the mammalian endocannabinoid system does exist, few data have been reported on bony fish. In the goldfish, Carassius auratus, the CB1 receptor has been cloned and its distribution has been analyzed in the retina, brain and gonads, while CB2 had not yet been isolated. In the present paper, we cloned the goldfish CB2 receptor and show that it presents a quite high degree of amino acid identity with zebrafish Danio rerio CB2A and CB2B receptors, while the percentage of identity is lower with the puffer fish Fugu rubripes CB2, as also confirmed by the phylogenetic analysis. The sequence identity becomes much lower when comparing the goldfish and the mammalian CB2 sequences; as for other species, goldfish CB2 and CB1 amino acid sequences share moderate levels of identity. Western-blotting analysis shows the CB2 receptor as two major bands of about 53 and 40 kDa and other faint bands with apparent molecular masses around 70, 57 and 55 kDa. Since the distribution of a receptor could give information on its physiological role, we evaluated and compared CB1 and CB2 mRNA expression in different goldfish organs by means of qReal-Time PCR. Our results show that both CB1 and CB2 receptors are widely expressed in the goldfish, displaying some tissue specificities, thus opening the way for further functional studies on bony fish and other nonmammalian vertebrates.

  18. Delta(9)-tetrahydrocannabinol increases endogenous extracellular glutamate levels in primary cultures of rat cerebral cortex neurons: involvement of CB(1) receptors.

    PubMed

    Tomasini, Maria Cristina; Ferraro, Luca; Bebe, Berta Wonjie; Tanganelli, Sergio; Cassano, Tommaso; Cuomo, Vincenzo; Antonelli, Tiziana

    2002-05-15

    The effects of the principal psychoactive component of marijuana, Delta(9)-tetrahydrocannabinol (Delta(9)-THC), on endogenous extracellular glutamate levels in primary cultures of rat cerebral cortex neurons were investigated. Locally applied Delta(9)-THC (0.03, 3, 300, and 1,000 nM) concentration-dependently increased basal extracellular glutamate levels (+18% +/- 11%, +54% +/- 10%, +90% +/- 14%, +149% +/- 33% vs. basal). The facilitatory effects of Delta(9)-THC (3 and 300 nM) on cortical glutamate were fully counteracted in the presence of the selective CB(1) receptor antagonist SR141716A (10 nM) and by replacement of the normal Krebs-Ringer bicarbonate buffer with a low-Ca(2+) (0.2 mM) medium. Delta(9)-THC application also induced an enhancement in K(+)-evoked glutamate levels. These findings suggest that an increase in cortical glutamatergic transmission mediated by local CB(1) receptor activation may underlie some of the psychoactive and behavioral effects of acute marijuana consumption.

  19. Maternal deprivation and adolescent cannabinoid exposure impact hippocampal astrocytes, CB1 receptors and brain-derived neurotrophic factor in a sexually dimorphic fashion.

    PubMed

    López-Gallardo, M; López-Rodríguez, A B; Llorente-Berzal, Á; Rotllant, D; Mackie, K; Armario, A; Nadal, R; Viveros, M-P

    2012-03-01

    We have recently reported that early maternal deprivation (MD) for 24 h [postnatal day (PND) 9-10] and/or an adolescent chronic treatment with the cannabinoid agonist CP-55,940 (CP) [0.4 mg/kg, PND 28-42] in Wistar rats induced, in adulthood, diverse sex-dependent long-term behavioral and physiological modifications. Here we show the results obtained from investigating the immunohistochemical analysis of CB1 cannabinoid receptors, glial fibrillary acidic protein (GFAP) positive (+) cells and brain-derived neurotrophic factor (BDNF) expression in the hippocampus of the same animals. MD induced, in males, a significant increase in the number of GFAP+ cells in CA1 and CA3 areas and in the polymorphic layer of the dentate gyrus (DG), an effect that was attenuated by CP in the two latter regions. Adolescent cannabinoid exposure induced, in control non-deprived males, a significant increase in the number of GFAP+ cells in the polymorphic layer of the DG. MD induced a decrease in CB1 expression in both sexes, and this effect was reversed in males by the cannabinoid treatment. In turn, the drug "per se" induced, in males, a general decrease in CB1 immunoreactivity, and the opposite effect was observed in females. Cannabinoid exposure tended to reduce BDNF expression in CA1 and CA3 of females, whereas MD counteracted this trend and induced an increase of BDNF in females. As a whole, the present results show sex-dependent long-term effects of both MD and juvenile cannabinoid exposure as well as functional interactions between the two treatments.

  20. MATERNAL DEPRIVATION AND ADOLESCENT CANNABINOID EXPOSURE IMPACT HIPPOCAMPAL ASTROCYTES, CB1 RECEPTORS AND BRAIN-DERIVED NEUROTROPHIC FACTOR IN A SEXUALLY DIMORPHIC FASHION

    PubMed Central

    LÓPEZ-GALLARDO, M.; LÓPEZ-RODRÍGUEZ, A. B.; LLORENTE-BERZAL, Á.; ROTLLANT, D.; MACKIE, K.; ARMARIO, A.; NADAL, R.; VIVEROS, M.-P.

    2013-01-01

    We have recently reported that early maternal deprivation (MD) for 24 h [postnatal day (PND) 9–10] and/or an adolescent chronic treatment with the cannabinoid agonist CP-55,940 (CP) [0.4 mg/kg, PND 28–42] in Wistar rats induced, in adulthood, diverse sex-dependent long-term behavioral and physiological modifications. Here we show the results obtained from investigating the immunohistochemical analysis of CB1 cannabinoid receptors, glial fibrillary acidic protein (GFAP) positive (+) cells and brain-derived neurotrophic factor (BDNF) expression in the hippocampus of the same animals. MD induced, in males, a significant increase in the number of GFAP+ cells in CA1 and CA3 areas and in the polymorphic layer of the dentate gyrus (DG), an effect that was attenuated by CP in the two latter regions. Adolescent cannabinoid exposure induced, in control non-deprived males, a significant increase in the number of GFAP+ cells in the polymorphic layer of the DG. MD induced a decrease in CB1 expression in both sexes, and this effect was reversed in males by the cannabinoid treatment. In turn, the drug “per se” induced, in males, a general decrease in CB1 immunoreactivity, and the opposite effect was observed in females. Cannabinoid exposure tended to reduce BDNF expression in CA1 and CA3 of females, whereas MD counteracted this trend and induced an increase of BDNF in females. As a whole, the present results show sex-dependent long-term effects of both MD and juvenile cannabinoid exposure as well as functional interactions between the two treatments. PMID:22001306

  1. Native CB1 receptor affinity, intrinsic activity and accumbens shell dopamine stimulant properties of third generation SPICE/K2 cannabinoids: BB-22, 5F-PB-22, 5F-AKB-48 and STS-135.

    PubMed

    De Luca, Maria Antonietta; Castelli, M Paola; Loi, Barbara; Porcu, Alessandra; Martorelli, Mariella; Miliano, Cristina; Kellett, Kathryn; Davidson, Colin; Stair, Jacqueline L; Schifano, Fabrizio; Di Chiara, Gaetano

    2016-06-01

    In order to investigate the in vivo dopamine (DA) stimulant properties of selected 3rd generation Spice/K2 cannabinoids, BB-22, 5F-PB-22, 5F-AKB-48 and STS-135, their in vitro affinity and agonist potency at native rat and mice CB1 receptors was studied. The compounds bind with high affinity to CB1 receptors in rat cerebral cortex homogenates and stimulate CB1-induced [(35)S]GTPγS binding with high potency and efficacy. BB-22 and 5F-PB-22 showed the lowest Ki of binding to CB1 receptors (0.11 and 0.13 nM), i.e., 30 and 26 times lower respectively than that of JWH-018 (3.38 nM), and a potency (EC50, 2.9 and 3.7 nM, respectively) and efficacy (Emax, 217% and 203%, respectively) as CB1 agonists higher than JWH-018 (EC50, 20.2 nM; Emax, 163%). 5F-AKB-48 and STS-135 had higher Ki for CB1 binding, higher EC50 and lower Emax as CB1 agonists than BB-22 and 5F-PB-22 but still comparatively more favourable than JWH-018. The agonist properties of all the compounds were abolished or drastically reduced by the CB1 antagonist/inverse agonist AM251 (0.1 μM). No activation of G-protein was observed in CB1-KO mice. BB-22 (0.003-0.01 mg/kg i.v.) increased dialysate DA in the accumbens shell but not in the core or in the medial prefrontal cortex, with a bell shaped dose-response curve and an effect at 0.01 mg/kg and a biphasic time-course. Systemic AM251 (1.0 mg/kg i.p.) completely prevented the stimulant effect of BB-22 on dialysate DA in the NAc shell. All the other compounds increased dialysate DA in the NAc shell at doses consistent with their in vitro affinity for CB1 receptors (5F-PB-22, 0.01 mg/kg; 5F-AKB-48, 0.1 mg/kg; STS-135, 0.15 mg/kg i.v.). 3rd generation cannabinoids can be even more potent and super-high CB1 receptor agonists compared to JWH-018. Future research will try to establish if these properties can explain the high toxicity and lethality associated with these compounds.

  2. Blocking the postpartum mouse dam's CB1 receptors impairs maternal behavior as well as offspring development and their adult social-emotional behavior.

    PubMed

    Schechter, Michal; Pinhasov, Albert; Weller, Aron; Fride, Ester

    2012-01-15

    Maternal care is the newborns' first experience of social interaction, which affects their development and social competence throughout life. For the first time, we investigated the involvement of the endocannabinoid system (ECS) in mother-infant interaction in mice. We found that blocking the dam's CB1 receptors (CB1R) by the antagonist/inverse agonist rimonabant (SR141716) during postpartum days 1-8 affected maternal behavior as well as the social and emotional characteristics of the offspring as adults. Pups of rimonabant treated dams (RTD) had lower body weight during the first week of life and emitted fewer ultrasonic vocalizations (USVs) than vehicle treated dams (VTD). RTD crouched less over their pups and exhibited delayed pup retrieval. In Y-maze preference tests conducted at weaning age, females and males of both groups preferred their dam over milk. Males and females of RTD preferred dam over pup and pup over milk as opposed to the control group. At the age of 2.5 months, males of RTD displayed less motor activity. In the social behavior test, RTD male and female offspring were both more active, showing higher levels of active social interaction and rearing. These results indicate that the ECS is crucial for establishment of maternal behavior during the first postpartum week, with a long-term impact on the offspring's socio-emotional development. PMID:22020200

  3. The combined inhibitory effect of the adenosine A1 and cannabinoid CB1 receptors on cAMP accumulation in the hippocampus is additive and independent of A1 receptor desensitization.

    PubMed

    Serpa, André; Correia, Sara; Ribeiro, Joaquim A; Sebastião, Ana M; Cascalheira, José F

    2015-01-01

    Adenosine A1 and cannabinoid CB1 receptors are highly expressed in hippocampus where they trigger similar transduction pathways. We investigated how the combined acute activation of A1 and CB1 receptors modulates cAMP accumulation in rat hippocampal slices. The CB1 agonist WIN55212-2 (0.3-30 μM) decreased forskolin-stimulated cAMP accumulation with an EC50 of 6.6±2.7 μM and an Emax of 31%±2%, whereas for the A1 agonist, N6-cyclopentyladenosine (CPA, 10-150 nM), an EC50 of 35±19 nM, and an Emax of 29%±5 were obtained. The combined inhibitory effect of WIN55212-2 (30 μM) and CPA (100 nM) on cAMP accumulation was 41%±6% (n=4), which did not differ (P>0.7) from the sum of the individual effects of each agonist (43%±8%) but was different (P<0.05) from the effects of CPA or WIN55212-2 alone. Preincubation with CPA (100 nM) for 95 min caused desensitization of adenosine A1 activity, which did not modify the effect of WIN55212-2 (30 μM) on cAMP accumulation. In conclusion, the combined effect of CB1 and A1 receptors on cAMP formation is additive and CB1 receptor activity is not affected by short-term A1 receptor desensitization.

  4. Effects of CB1 receptor agonism and antagonism on behavioral fear and physiological stress responses in adult intact, ovariectomized, and estradiol-replaced female rats.

    PubMed

    Simone, J J; Malivoire, B L; McCormick, C M

    2015-10-15

    There is growing interest in the development of cannabis-based therapies for the treatment of fear and anxiety disorders. There are a few studies, but none in females, of the effects of the highly selective cannabinoid receptor type 1 (CB1) agonist, arachidonyl 2'-chlorethylamide (ACEA), on behavioral fear. In experiment 1 involving gonadally-intact females, ACEA (either 0.1 or 0.01 mg/kg) was without effect in the elevated plus maze (EPM), and the lower dose decreased anxiety in the open field test (OFT). AM251 increased anxiety in the EPM and decreased locomotor activity in the OFT. Twenty-four hours after fear conditioning, neither ACEA nor AM251 affected generalized fear or conditioned fear recall. AM251 and 0.1 mg/kg ACEA impaired, and 0.01 mg/kg ACEA enhanced, within-session fear extinction. AM251 increased plasma corticosterone concentrations after the fear extinction session, whereas ACEA was without effect. Based on evidence that estradiol may moderate the effects of CB1 receptor signaling in females, experiment 2 involved ovariectomized (OVX) rats provided with 10-μg 17β-Estradiol and compared with OVX rats without hormone replacement (oil vehicle). Irrespective of hormone treatment, AM251 increased anxiety in the EPM, whereas ACEA (0.01 mg/kg) was without effect. Neither hormone nor drug altered anxiety in the OFT, but estradiol increased and AM251 decreased distance traveled. After fear conditioning, AM251 decreased generalized fear. Neither hormone nor drug had any effect on recall or extinction of conditioned fear, however, ACEA and AM251 increased fear-induced plasma corticosterone concentrations. Further, when results with intact rats were compared with those from OVX rats, gonadal status did not moderate the effects of either AM251 or ACEA, although OVX displayed greater anxiety and fear than did intact rats. Thus, the effects of CB1 receptor antagonism and agonism in adult female rats do not depend on ovarian estradiol. PMID:26311003

  5. Effects of CB1 receptor agonism and antagonism on behavioral fear and physiological stress responses in adult intact, ovariectomized, and estradiol-replaced female rats.

    PubMed

    Simone, J J; Malivoire, B L; McCormick, C M

    2015-10-15

    There is growing interest in the development of cannabis-based therapies for the treatment of fear and anxiety disorders. There are a few studies, but none in females, of the effects of the highly selective cannabinoid receptor type 1 (CB1) agonist, arachidonyl 2'-chlorethylamide (ACEA), on behavioral fear. In experiment 1 involving gonadally-intact females, ACEA (either 0.1 or 0.01 mg/kg) was without effect in the elevated plus maze (EPM), and the lower dose decreased anxiety in the open field test (OFT). AM251 increased anxiety in the EPM and decreased locomotor activity in the OFT. Twenty-four hours after fear conditioning, neither ACEA nor AM251 affected generalized fear or conditioned fear recall. AM251 and 0.1 mg/kg ACEA impaired, and 0.01 mg/kg ACEA enhanced, within-session fear extinction. AM251 increased plasma corticosterone concentrations after the fear extinction session, whereas ACEA was without effect. Based on evidence that estradiol may moderate the effects of CB1 receptor signaling in females, experiment 2 involved ovariectomized (OVX) rats provided with 10-μg 17β-Estradiol and compared with OVX rats without hormone replacement (oil vehicle). Irrespective of hormone treatment, AM251 increased anxiety in the EPM, whereas ACEA (0.01 mg/kg) was without effect. Neither hormone nor drug altered anxiety in the OFT, but estradiol increased and AM251 decreased distance traveled. After fear conditioning, AM251 decreased generalized fear. Neither hormone nor drug had any effect on recall or extinction of conditioned fear, however, ACEA and AM251 increased fear-induced plasma corticosterone concentrations. Further, when results with intact rats were compared with those from OVX rats, gonadal status did not moderate the effects of either AM251 or ACEA, although OVX displayed greater anxiety and fear than did intact rats. Thus, the effects of CB1 receptor antagonism and agonism in adult female rats do not depend on ovarian estradiol.

  6. Enhanced self-administration of the CB1 receptor agonist WIN55,212-2 in olfactory bulbectomized rats: evaluation of possible serotonergic and dopaminergic underlying mechanisms

    PubMed Central

    Amchova, Petra; Kucerova, Jana; Giugliano, Valentina; Babinska, Zuzana; Zanda, Mary T.; Scherma, Maria; Dusek, Ladislav; Fadda, Paola; Micale, Vincenzo; Sulcova, Alexandra; Fratta, Walter; Fattore, Liana

    2013-01-01

    Depression has been associated with drug consumption, including heavy or problematic cannabis use. According to an animal model of depression and substance use disorder comorbidity, we combined the olfactory bulbectomy (OBX) model of depression with intravenous drug self-administration procedure to verify whether depressive-like rats displayed altered voluntary intake of the CB1 receptor agonist WIN55,212-2 (WIN, 12.5 μg/kg/infusion). To this aim, olfactory-bulbectomized (OBX) and sham-operated (SHAM) Lister Hooded rats were allowed to self-administer WIN by lever-pressing under a continuous [fixed ratio 1 (FR-1)] schedule of reinforcement in 2 h daily sessions. Data showed that both OBX and SHAM rats developed stable WIN intake; yet, responses in OBX were constantly higher than in SHAM rats soon after the first week of training. In addition, OBX rats took significantly longer to extinguish the drug-seeking behavior after vehicle substitution. Acute pre-treatment with serotonin 5HT1B receptor agonist, CGS-12066B (2.5–10 mg/kg), did not significantly modify WIN intake in OBX and SHAM Lister Hooded rats. Furthermore, acute pre-treatment with CGS-12066B (10 and 15 mg/kg) did not alter responses in parallel groups of OBX and SHAM Sprague Dawley rats self-administering methamphetamine under higher (FR-2) reinforcement schedule with nose-poking as operandum. Finally, dopamine levels in the nucleus accumbens (NAc) of OBX rats did not increase in response to a WIN challenge, as in SHAM rats, indicating a dopaminergic dysfunction in bulbectomized rats. Altogether, our findings suggest that a depressive-like state may alter cannabinoid CB1 receptor agonist-induced brain reward function and that a dopaminergic rather than a 5-HT1B mechanism is likely to underlie enhanced WIN self-administration in OBX rats. PMID:24688470

  7. CB1-receptor knockout neonatal mice are protected against ethanol-induced impairments of DNMT1, DNMT3A, and DNA methylation.

    PubMed

    Nagre, Nagaraja N; Subbanna, Shivakumar; Shivakumar, Madhu; Psychoyos, Delphine; Basavarajappa, Balapal S

    2015-02-01

    The significant consequences of ethanol use during pregnancy are neurobehavioral abnormalities involving hippocampal and neocortex malfunctions that cause learning and memory deficits collectively named fetal alcohol spectrum disorder. However, the molecular mechanisms underlying these abnormalities are still poorly understood and therefore warrant systematic research. Here, we document novel epigenetic abnormalities in the mouse model of fetal alcohol spectrum disorder. Ethanol treatment of P7 mice, which induces activation of caspase 3, impaired DNA methylation through reduced DNA methyltransferases (DNMT1 and DNMT3A) levels. Inhibition of caspase 3 activity, before ethanol treatment, rescued DNMT1, DNMT3A proteins as well as DNA methylation levels. Blockade of histone methyltransferase (G9a) activity or cannabinoid receptor type-1 (CB1R), prior to ethanol treatment, which, respectively, inhibits or prevents activation of caspase 3, rescued the DNMT1 and DNMT3A proteins and DNA methylation. No reduction of DNMT1 and DNMT3A proteins and DNA methylation was found in P7 CB1R null mice, which exhibit no ethanol-induced activation of caspase 3. Together, these data demonstrate that ethanol-induced activation of caspase 3 impairs DNA methylation through DNMT1 and DNMT3A in the neonatal mouse brain, and such impairments are absent in CB1R null mice. Epigenetic events mediated by DNA methylation may be one of the essential mechanisms of ethanol teratogenesis. Schematic mechanism of action by which ethanol impairs DNA methylation. Studies have demonstrated that ethanol has the capacity to bring epigenetic changes to contribute to the development of fetal alcohol spectrum disorder (FASD). However, the mechanisms are not well studied. P7 ethanol induces the activation of caspase 3 and impairs DNA methylation through reduced DNA methyltransferases (DNMT1 and DNMT3A) proteins (→). The inhibition or genetic ablation of cannabinoid receptor type-1 or inhibition of histone

  8. Involvement of endocannabinoids in alcohol “binge” drinking: studies of mice with human fatty acid amide hydrolase genetic variation and after CB1 receptor antagonists

    PubMed Central

    Zhou, Yan; Huang, Ted; Lee, Francis; Kreek, Mary Jeanne

    2016-01-01

    Background The endocannabinoid system has been found to play an important role in modulating alcohol intake. Inhibition or genetic deletion of fatty acid amide hydrolase (FAAH, a key catabolic enzyme for endocannabinoids) leads to increased alcohol consumption and preference in rodent models. A common human single-nucleotide polymorphism (SNP; C385A, rs324420) in the FAAH gene is associated with decreased enzymatic activity of FAAH, resulting in increased anandamide levels in both humans and FAAH C385A knock-in mice. Methods As this FAAH SNP has been reported to be associated with altered alcohol abuse, the present study used these genetic knock-in mice containing the human SNP C385A to determine the impact of variant FAAH gene on alcohol “binge” drinking in the drinking-in-the-dark (DID) model. Results We found that the FAAHA/A mice had greater alcohol intake and preference than the wild-type FAAHC/C mice, suggesting that increased endocannabinoid signaling in FAAHA/A mice led to increased alcohol “binge” consumption. The specificity on alcohol vulnerability was suggested by the lack of any FAAH genotype difference on sucrose or saccharin intake. Using the “binge” DID model, we confirmed that selective CB1 receptor antagonist AM251 reduced alcohol intake in the wild-type mice. Conclusions These data suggest that there is direct and selective involvement of the human FAAH C385A SNP and CB1 receptors in alcohol “binge” drinking. PMID:26857901

  9. Effects of glucagon-like peptide-1 receptor stimulation and blockade on food consumption and body weight in rats treated with a cannabinoid CB1 receptor agonist WIN 55,212-2

    PubMed Central

    Radziszewska, Elżbieta; Bojanowska, Ewa

    2013-01-01

    Background Glucagon-like peptide-1 (GLP-1) and endocannabinoids are involved in appetite control. Recently we have demonstrated that cannabinoid (CB)1 receptor antagonist and GLP-1 receptor agonist synergistically suppress food intake in the rat. The aim of the present study was to determine the effects of GLP-1 receptor stimulation or blockade on feeding behavior in rats treated with WIN 55,212-2, a CB1 receptor agonist. Material/Methods Experiments were performed on adult male Wistar rats. In the first experiment the effects of increasing doses (0.5–4.0 mg/kg) of WIN 55,212-2 injected intraperitoneally on 24-hour food consumption were tested. In further experiments a GLP-1 receptor antagonist, exendin (9-39), and WIN 55,212-2 or a GLP-1 receptor agonist, exendin-4, and WIN 55,212-2 were injected intraperitoneally at subthreshold doses (that alone did not change food intake and body weight) to investigate whether these agents may interact to affect food intake in rats. Results WIN 55,212-2 administered at low doses (0.5–2 mg/kg) did not markedly change 24-hour food consumption; however, at the highest dose, daily food intake was inhibited. Combined administration of WIN 55,212-2 and exendin (9-39) did not change the amount of food consumed compared to either the control group or to each agent injected alone. Combined injection of WIN 55,212-2 and exendin-4 at subthreshold doses resulted in a significant decrease in food intake and body weight in rats. Conclusions Stimulation of the peripheral CB1 receptor by its agonist WIN 55,212-2 can induce anorexigenic effects or potentiate, even at a subthreshold dose, the effects of exendin-4, a known anorectic agent. Hence, this dual action of the cannabinoid system should be considered in the medical use of CB1 agonists. PMID:23291632

  10. AM2389, a high-affinity, in vivo potent CB1-receptor-selective cannabinergic ligand as evidenced by drug discrimination in rats and hypothermia testing in mice

    PubMed Central

    Tai, Sherrica; LeMay, Brian J.; Nikas, Spyros P.; Shukla, Vidyanand G.; Zvonok, Alexander; Makriyannis, Alexandros

    2012-01-01

    Rationale The endocannabinoid signaling system (ECS) has been targeted for developing novel therapeutics since ECS dysfunction has been implicated in various pathologies. Current focus is on chemical modifications of the hexahydrocannabinol (HHC) nabilone (Cesamet®). Objective To characterize the novel, high-affinity cannabinoid receptor 1 (CB1R) HHC-ligand AM2389 [9β-hydroxy-3-(1-hexyl-cyclobut-1-yl)-hexahydrocannabinol in two rodent pre-clinical assays. Materials and methods CB1R mediation of AM2389-induced hypothermia in mice was evaluated with AM251, a CB1R-selective antagonist/inverse agonist. Additionally, two groups of rats discriminated the full cannabinergic aminoalkylindole AM5983 (0.18 and 0.56 mg/kg) from vehicle 20 min post-injection in a two-choice operant conditioning task motivated by 0.1% saccharin/water. Generalization/substitution tests were conducted with AM2389, AM5983, and Δ9-tetrahydrocannabinol (Δ9-THC). Results Δ9-THC (30 mg/kg)-induced hypothermia exhibited a faster onset and shorter duration of action compared with AM2389 (0.1 and 0.3 mg/kg). AM251 (3 and 10 mg/kg) attenuated/blocked hypothermia induced by 0.3 mg/kg AM2389. In drug discrimination, the order of potency was AM2389>AM5983>Δ9-THC with ED50 values of 0.0025, 0.0571, and 0.2635 mg/kg, respectively, in the low-dose condition. The corresponding ED50 values in the high-dose condition were 0.0069, 0.1246, and 0.8438 mg/kg, respectively. Onset of the effects of AM2389 was slow with a protracted time-course; the functional, perceptual in vivo half-life was approximately 17 h. Conclusions This potent cannabinergic HHC exhibited a slow onset of action with a protracted time-course. The AM2389 chemotype appears well suited for further drug development, and AM2389 currently is used to probe behavioral consequences of sustained ECS activation. PMID:21989802

  11. Involvement of the Cannabinoid CB1 Receptor in Modulation of Dopamine Output in the Prefrontal Cortex Associated with Food Restriction in Rats

    PubMed Central

    Biggio, Francesca; Utzeri, Cinzia; Lallai, Valeria; Licheri, Valentina; Lutzu, Stefano; Mostallino, Maria Cristina; Secci, Pietro Paolo; Biggio, Giovanni; Sanna, Enrico

    2014-01-01

    Increase in dopamine output on corticolimbic structures, such as medial prefrontal cortex (mPFC) and nucleus accumbens, has been related to reward effects associated with palatable food or food presentation after a fasting period. The endocannabinoid system regulates feeding behavior through a modulatory action on different neurotransmitter systems, including the dopaminergic system. To elucidate the involvement of type 1 cannabinoid receptors in the regulation of dopamine output in the mPFC associated with feeding in hungry rats, we restricted the food availability to a 2-h period daily for 3 weeks. In food-restricted rats the extracellular dopamine concentration in the mPFC increased starting 80 min before food presentation and returned to baseline after food removal. These changes were attenuated in animals treated with the CB1 receptor antagonist SR141716. To better understand how food restriction can change the response of mesocortical dopaminergic neurons, we studied several components of the neuronal circuit that regulates dopamine output in the mPFC. Patch-clamp experiments revealed that the inhibitory effect of the CB1 receptor agonist WIN 55,212-2 on GABAergic sIPSC frequency was diminished in mPFC neurons of FR compared to fed ad libitum rats. The basal sIPSC frequency resulted reduced in mPFC neurons of food-restricted rats, suggestive of an altered regulation of presynaptic GABA release; these changes were accompanied by an enhanced excitability of mPFC and ventral tegmental area neurons. Finally, type 1 cannabinoid receptor expression in the mPFC was reduced in food-restricted rats. Together, our data support an involvement of the endocannabinoid system in regulation of dopamine release in the mPFC through changes in GABA inhibitory synapses and suggest that the emphasized feeding-associated increase in dopamine output in the mPFC of food-restricted rats might be correlated with an altered expression and function of type 1 cannabinoid receptor in this

  12. Involvement of the cannabinoid CB1 receptor in modulation of dopamine output in the prefrontal cortex associated with food restriction in rats.

    PubMed

    Dazzi, Laura; Talani, Giuseppe; Biggio, Francesca; Utzeri, Cinzia; Lallai, Valeria; Licheri, Valentina; Lutzu, Stefano; Mostallino, Maria Cristina; Secci, Pietro Paolo; Biggio, Giovanni; Sanna, Enrico

    2014-01-01

    Increase in dopamine output on corticolimbic structures, such as medial prefrontal cortex (mPFC) and nucleus accumbens, has been related to reward effects associated with palatable food or food presentation after a fasting period. The endocannabinoid system regulates feeding behavior through a modulatory action on different neurotransmitter systems, including the dopaminergic system. To elucidate the involvement of type 1 cannabinoid receptors in the regulation of dopamine output in the mPFC associated with feeding in hungry rats, we restricted the food availability to a 2-h period daily for 3 weeks. In food-restricted rats the extracellular dopamine concentration in the mPFC increased starting 80 min before food presentation and returned to baseline after food removal. These changes were attenuated in animals treated with the CB1 receptor antagonist SR141716. To better understand how food restriction can change the response of mesocortical dopaminergic neurons, we studied several components of the neuronal circuit that regulates dopamine output in the mPFC. Patch-clamp experiments revealed that the inhibitory effect of the CB1 receptor agonist WIN 55,212-2 on GABAergic sIPSC frequency was diminished in mPFC neurons of FR compared to fed ad libitum rats. The basal sIPSC frequency resulted reduced in mPFC neurons of food-restricted rats, suggestive of an altered regulation of presynaptic GABA release; these changes were accompanied by an enhanced excitability of mPFC and ventral tegmental area neurons. Finally, type 1 cannabinoid receptor expression in the mPFC was reduced in food-restricted rats. Together, our data support an involvement of the endocannabinoid system in regulation of dopamine release in the mPFC through changes in GABA inhibitory synapses and suggest that the emphasized feeding-associated increase in dopamine output in the mPFC of food-restricted rats might be correlated with an altered expression and function of type 1 cannabinoid receptor in this

  13. Localization of the cannabinoid CB1 receptor and the 2-AG synthesizing (DAGLα) and degrading (MAGL, FAAH) enzymes in cells expressing the Ca2+-binding proteins calbindin, calretinin, and parvalbumin in the adult rat hippocampus

    PubMed Central

    Rivera, Patricia; Arrabal, Sergio; Cifuentes, Manuel; Grondona, Jesús M.; Pérez-Martín, Margarita; Rubio, Leticia; Vargas, Antonio; Serrano, Antonia; Pavón, Francisco J.; Suárez, Juan; Rodríguez de Fonseca, Fernando

    2014-01-01

    The retrograde suppression of the synaptic transmission by the endocannabinoid sn-2-arachidonoylglycerol (2-AG) is mediated by the cannabinoid CB1 receptors and requires the elevation of intracellular Ca2+ and the activation of specific 2-AG synthesizing (i.e., DAGLα) enzymes. However, the anatomical organization of the neuronal substrates that express 2-AG/CB1 signaling system-related molecules associated with selective Ca2+-binding proteins (CaBPs) is still unknown. For this purpose, we used double-label immunofluorescence and confocal laser scanning microscopy for the characterization of the expression of the 2-AG/CB1 signaling system (CB1 receptor, DAGLα, MAGL, and FAAH) and the CaBPs calbindin D28k, calretinin, and parvalbumin in the rat hippocampus. CB1, DAGLα, and MAGL labeling was mainly localized in fibers and neuropil, which were differentially organized depending on the hippocampal CaBPs-expressing cells. CB+1 fiber terminals localized in all hippocampal principal cell layers were tightly attached to calbindin+ cells (granular and pyramidal neurons), and calretinin+ and parvalbumin+ interneurons. DAGLα neuropil labeling was selectively found surrounding calbindin+ principal cells in the dentate gyrus and CA1, and in the calretinin+ and parvalbumin+ interneurons in the pyramidal cell layers of the CA1/3 fields. MAGL+ terminals were only observed around CA1 calbindin+ pyramidal cells, CA1/3 calretinin+ interneurons and CA3 parvalbumin+ interneurons localized in the pyramidal cell layers. Interestingly, calbindin+ pyramidal cells expressed FAAH specifically in the CA1 field. The identification of anatomically related-neuronal substrates that expressed 2-AG/CB1 signaling system and selective CaBPs should be considered when analyzing the cannabinoid signaling associated with hippocampal functions. PMID:25018703

  14. Localization of the cannabinoid CB1 receptor and the 2-AG synthesizing (DAGLα) and degrading (MAGL, FAAH) enzymes in cells expressing the Ca(2+)-binding proteins calbindin, calretinin, and parvalbumin in the adult rat hippocampus.

    PubMed

    Rivera, Patricia; Arrabal, Sergio; Cifuentes, Manuel; Grondona, Jesús M; Pérez-Martín, Margarita; Rubio, Leticia; Vargas, Antonio; Serrano, Antonia; Pavón, Francisco J; Suárez, Juan; Rodríguez de Fonseca, Fernando

    2014-01-01

    The retrograde suppression of the synaptic transmission by the endocannabinoid sn-2-arachidonoylglycerol (2-AG) is mediated by the cannabinoid CB1 receptors and requires the elevation of intracellular Ca(2+) and the activation of specific 2-AG synthesizing (i.e., DAGLα) enzymes. However, the anatomical organization of the neuronal substrates that express 2-AG/CB1 signaling system-related molecules associated with selective Ca(2+)-binding proteins (CaBPs) is still unknown. For this purpose, we used double-label immunofluorescence and confocal laser scanning microscopy for the characterization of the expression of the 2-AG/CB1 signaling system (CB1 receptor, DAGLα, MAGL, and FAAH) and the CaBPs calbindin D28k, calretinin, and parvalbumin in the rat hippocampus. CB1, DAGLα, and MAGL labeling was mainly localized in fibers and neuropil, which were differentially organized depending on the hippocampal CaBPs-expressing cells. CB(+) 1 fiber terminals localized in all hippocampal principal cell layers were tightly attached to calbindin(+) cells (granular and pyramidal neurons), and calretinin(+) and parvalbumin(+) interneurons. DAGLα neuropil labeling was selectively found surrounding calbindin(+) principal cells in the dentate gyrus and CA1, and in the calretinin(+) and parvalbumin(+) interneurons in the pyramidal cell layers of the CA1/3 fields. MAGL(+) terminals were only observed around CA1 calbindin(+) pyramidal cells, CA1/3 calretinin(+) interneurons and CA3 parvalbumin(+) interneurons localized in the pyramidal cell layers. Interestingly, calbindin(+) pyramidal cells expressed FAAH specifically in the CA1 field. The identification of anatomically related-neuronal substrates that expressed 2-AG/CB1 signaling system and selective CaBPs should be considered when analyzing the cannabinoid signaling associated with hippocampal functions.

  15. Delta(9)-tetrahydrocannabinol prolongs the immobility time in the mouse forced swim test: involvement of cannabinoid CB(1) receptor and serotonergic system.

    PubMed

    Egashira, Nobuaki; Matsuda, Tomomi; Koushi, Emi; Higashihara, Fuminori; Mishima, Kenichi; Chidori, Shozo; Hasebe, Nobuyoshi; Iwasaki, Katsunori; Nishimura, Ryoji; Oishi, Ryozo; Fujiwara, Michihiro

    2008-07-28

    In the present study, we investigated the effect of Delta(9)-tetrahydrocannabinol (THC), the principal psychoactive component of marijuana, on immobility time during the forced swim test. THC (2 and 6 mg/kg, i.p.) significantly prolonged the immobility time. In addition, THC at the same doses did not significantly affect locomotor activity in the open-field test. The selective cannabinoid CB(1) receptor antagonist rimonabant (3 mg/kg, i.p.) significantly reduced the enhancement of immobility by THC (6 mg/kg). Similarly, the selective serotonin (5-HT) reuptake inhibitor (SSRI) citalopram (10 mg/kg, i.p.) and 5-HT(1A/7) receptor agonist 8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT, 0.3 mg/kg, i.p.) significantly reduced this THC-induced effect. Moreover, the selective 5-HT(1A) receptor antagonist N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-(2-pyridinyl) cyclohexane carboxamide dihydrochloride (WAY100635, 1 mg/kg, i.p.) and the postsynaptic 5-HT(1A) receptor antagonist MM-77 (0.1 mg/kg, i.p.) reversed this reduction effect of 8-OH-DPAT (0.3 mg/kg). In contrast, the selective 5-HT(7) receptor antagonist (R)-3-[2-[2-(4-methylpiperidin-1-yl)ethyl]pyrrolidine-1-sulfonyl]phenol hydrochloride (SB269970) had no effect on this reduction effect of 8-OH-DPAT. WAY100635 (1 mg/kg) also reversed the reduction effect of citalopram (10 mg/kg). These findings suggest that the 5-HT(1A) receptors are involved in THC-induced enhancement of immobility.

  16. Activation of CB1 and CB2 receptors attenuates the induction and maintenance of inflammatory pain in the rat.

    PubMed

    Elmes, Steven J R; Winyard, Lisa A; Medhurst, Stephen J; Clayton, Nick M; Wilson, Alex W; Kendall, David A; Chapman, Victoria

    2005-12-01

    The aim of the present study was to investigate the effects of cannabinoid agonists on established inflammatory hyperalgesia. We have compared the effects of pre-administration versus post-administration of a potent non-selective cannabinoid agonist HU210 and a selective CB2 receptor agonist JWH-133 on hindpaw weight bearing and paw oedema in the carrageenan model of inflammatory hyperalgesia. For comparative purposes we also determined the effects of the mu-opioid receptor agonist morphine and the COX2 inhibitor rofecoxib in this model. At 3 h following intraplantar injection of carrageenan (2%, 100 microl) there was a significant (P < 0.001) reduction in weight bearing on the ipsilateral hindpaw, compared to vehicle treated rats and a concomitant increase in ipsilateral hindpaw volume (P < 0.001), compared to vehicle treated rats. Systemic administration of HU210 (10 microg/kg) and JWH-133 (10 mg/kg) at 3 h following injection of carrageenan, significantly attenuated decreases in ipsilateral hindpaw weight bearing (P < 0.05 for both) and paw volume (P < 0.001 for both). Pre-administration of HU210 and JWH-133 had similar effects on weight bearing in this model. Pre-administered HU210 also significantly decreased carrageenan-induced changes in paw volume (P < 0.001), this was not the case for JWH-133. Effects of post-administered HU210 and JWH-133 on ipsilateral hindpaw weight bearing and paw volume were comparable to the effect of systemic post-administration of morphine and rofecoxib (3 mg/kg for both). In summary, both HU210 and JWH-133 attenuated established inflammatory hypersensitivity and swelling, suggesting that cannabinoid-based drugs have clinical potential for the treatment of established inflammatory pain responses.

  17. Localization of cannabinoid CB1 receptor mRNA using ribonucleotide probes: methods for double- and single-label in situ hybridization.

    PubMed

    Hohmann, Andrea G

    2006-01-01

    This chapter presents a reliable, detailed method for performing double-label in situ hybridization (ISH) that has been validated for use in studies identifying the co-localization of cannabinoid CB1 receptor mRNA with other distinct species of mRNAs. This method permits simultaneous detection of two different species of mRNA within the same tissue section. Double-label ISH may be accomplished by hybridizing tissue sections with a combination of radiolabeled and digoxigenin-labeled RNA probes that are complementary to their target mRNAs. Single-label ISH may be accomplished by following the procedures described for use with radioisotopic probes (here [35S]-labeled) only. Silver grains derived from conventional emulsion autoradiography are used to detect the radiolabeled cRNA probe. An alkaline phosphatase-dependent chromogen reaction product is used to detect the nonisotopic (here, digoxigenin-labeled) cRNA probe. Necessary controls that are required to document the specificity of the labeling of the digoxigenin and radiolabeled probes are described. The methods detailed herein may be employed to detect even low levels of a target mRNA. These methods may be utilized to study co-localization and coregulation of expression of a particular gene within identified neurons in multiple systems.

  18. A spontaneous deletion of α-synuclein is associated with an increase in CB1 mRNA transcript and receptor expression in the hippocampus and amygdala: effects on alcohol consumption

    PubMed Central

    López-Jiménez, Alejandro; Walter, Nicole A. R.; Giné, Elena; Santos, Ángel; Echeverry-Alzate, Victor; Bühler, Kora-Mareen; Olmos, Pedro; Giezendanner, Stéphanie; Moratalla, Rosario; Montoliu, Lluis; Buck, Kari J.; López-Moreno, Jose Antonio

    2014-01-01

    α-Synuclein (α-syn) protein and endocannabinoid CB1 receptors are primarily located in presynaptic terminals. An association between α-syn and CB1 receptors has recently been established in Parkinson’s disease, but it is completely unknown whether there is an association between these two proteins in alcohol addiction. Therefore, we aimed to examine the α-syn mRNA transcript and protein expression levels in the prefrontal cortex, striatum, amygdala and hippocampus. These brain regions are the most frequently implicated in alcohol and other drug addiction. In these studies, we used C57BL/6 mice carrying a spontaneous deletion of the α-syn gene (C57BL/6Snca−/−) and their respective controls (C57BL/6Snca+/+). These animals were monitored for spontaneous alcohol consumption (3–10%) and their response to a hypnotic-sedative dose of alcohol (3 g/kg) was also assessed. Compared with the C57BL/6Snca+/+ mice, we found that the C57BL/6Snca−/− mice exhibited a higher expression level of the CB1 mRNA transcript and CB1 receptor in the hippocampus and amygdala. Furthermore, C57BL/6Snca−/− mice showed an increase in alcohol consumption when offered a 10% alcohol solution. There was no significant difference in sleep time after the injection of 3 g/kg alcohol. These results are the first to reveal an association between α-syn and the CB1 receptor in the brain regions that are most frequently implicated in alcohol and other drug addictions. PMID:23345080

  19. Endocannabinoid CB1 antagonists inhibit hepatitis C virus production, providing a novel class of antiviral host-targeting agents.

    PubMed

    Shahidi, Mahsa; Tay, Enoch S E; Read, Scott A; Ramezani-Moghadam, Mehdi; Chayama, Kazuaki; George, Jacob; Douglas, Mark W

    2014-11-01

    Direct-acting antivirals have significantly improved treatment outcomes in chronic hepatitis C (CHC), but side effects, drug resistance and cost mean that better treatments are still needed. Lipid metabolism is closely linked with hepatitis C virus (HCV) replication, and endocannabinoids are major regulators of lipid homeostasis. The cannabinoid 1 (CB1) receptor mediates these effects in the liver. We have previously shown upregulation of CB1 receptors in the livers of patients with CHC, and in a HCV cell-culture model. Here, we investigated whether CB1 blockade inhibited HCV replication. The antiviral effect of a CB1 antagonist, N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (AM251), was examined in HCV strain JFH1 cell-culture and subgenomic replicon models. The effects on the expression of genes involved in lipid metabolism were also measured. CB1 short hairpin RNA (shRNA) was used to confirm that the effects were specific for the cannabinoid receptor. Treatment with AM251 strongly inhibited HCV RNA (~70 %), viral protein (~80 %), the production of new virus particles (~70 %) and virus infectivity (~90 %). As expected, AM251 reduced the expression of pro-lipogenic genes (SREBP-1c, FASN, SCD1 and ACC1) and stimulated genes promoting lipid oxidation (CPT1 and PPARα). This effect was mediated by AMP-activated protein kinase (AMPK). Stable CB1 knockdown of cells infected with HCV showed reduced levels of HCV RNA compared with controls. Thus, reduced CB1 signalling inhibits HCV replication using either pharmacological inhibitors or CB1 shRNA. This may be due, at least in part, to reduced lipogenesis, mediated by AMPK activation. We suggest that CB1 antagonists may represent an entirely new class of drug with activity against HCV.

  20. Adolescent exposure to nicotine and/or the cannabinoid agonist CP 55,940 induces gender-dependent long-lasting memory impairments and changes in brain nicotinic and CB(1) cannabinoid receptors.

    PubMed

    Mateos, B; Borcel, E; Loriga, R; Luesu, W; Bini, V; Llorente, R; Castelli, M P; Viveros, M-P

    2011-12-01

    We have analysed the long-term effects of adolescent (postnatal day 28-43) exposure of male and female rats to nicotine (NIC, 1.4 mg/kg/day) and/or the cannabinoid agonist CP 55,940 (CP, 0.4 mg/kg/day) on the following parameters measured in the adulthood: (1) the memory ability evaluated in the object location task (OL) and in the novel object test (NOT); (2) the anxiety-like behaviour in the elevated plus maze; and (3) nicotinic and CB(1) cannabinoid receptors in cingulated cortex and hippocampus. In the OL, all pharmacological treatments induced significant decreases in the DI of females, whereas no significant effects were found among males. In the NOT, NIC-treated females showed a significantly reduced DI, whereas the effect of the cannabinoid agonist (a decrease in the DI) was only significant in males. The anxiety-related behaviour was not changed by any drug. Both, nicotine and cannabinoid treatments induced a long-lasting increase in CB(1) receptor activity (CP-stimulated GTPγS binding) in male rats, and the nicotine treatment also induced a decrease in nicotinic receptor density in the prefrontal cortex of females. The results show gender-dependent harmful effects of both drugs and long-lasting changes in CB(1) and nicotinic receptors.

  1. The cannabinoids R(-)-7-hydroxy-delta-6-tetra-hydrocannabinol-dimethylheptyl (HU-210), 2-O-arachidonoylglycerylether (HU-310) and arachidonyl-2-chloroethylamide (ACEA) increase isoflurane provoked sleep duration by activation of cannabinoids 1 (CB1)-receptors in mice.

    PubMed

    Schuster, Johannes; Ates, Mehmet; Brune, Kay; Gühring, Hans

    2002-07-01

    Cannabinoids produce antinociception via specific cannabinoid receptor activation, but there are also non-receptor mediated effects like for example the activation of the arachidonic acid cascade. Here we investigate the influence of cannabinoids (CB) on sleep duration after isoflurane anesthesia. We found that the CB receptor agonists R(-)-7-hydroxy-delta-6-tetra-hydrocannabinol-dimethylheptyl (HU-210) (0.1 mg/kg), 2-O-arachidonoylglycerylether (30 mg/kg) and arachidonyl-2-chloroethylamide (3 mg/kg) significantly prolong the duration of isoflurane induced sleep in mice (P<0.05). This effect was absent when co-injecting the selective CB(1) antagonist N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (1 mg/kg). Furthermore, HU-210 was ineffective in CB(1) receptor knockout mice (CB(1)-/-). Our behavioral tests (tail flick, rotarod) indicate that the sleep latency can be prolonged even at low drug dosages which do not influence thermal nociception. In the chosen dosages thimerosal (20 mg/kg), 2-AG (10 mg/kg), R(1)-methanandamide (R(1)-MAEA) (10 mg/kg) and flurbiprofen (27 mg/kg) were ineffective to increase sleep duration.

  2. Synthesis, Ex Vivo Evaluation and Radiolabeling of Potent 1,5-Diphenyl-pyrrolidin-2-one Cannabinoid Subtype-1 (CB1) Receptor Ligands as Candidates for In Vivo Imaging

    PubMed Central

    Donohue, Sean R.; Krushinski, Joseph H.; Pike, Victor W.; Chernet, Eyassu; Lee, Phebus; Chesterfield, Amy K.; Felder, Christian C.; Halldin, Christer; Schaus, John M.

    2008-01-01

    We have reported that [methyl-11C](3R,5R)-5-(3-methoxy-phenyl)-3-((R)-1-phenyl-ethylamino)-1-(4-trifluoromethyl-phenyl)-pyrrolidin-2-one ([11C]8, [11C]MePPEP) binds with high selectivity to cannabinoid type-1 (CB1) receptors in monkey brain in vivo. We now describe the synthesis of 8 and four analogs, namely the 4-fluoro-phenyl (16, FMePPEP), 3-fluoromethoxy (20, FMPEP), 3-fluoromethoxy-d2 (21, FMPEP-d2) and 3-fluoro-ethoxy analogs (22, FEPEP), and report their activity in an ex vivo model designed to identify compounds suitable for use as PET ligands. These ligands showed high, selective potency at CB1 receptors in vitro (Kb < 1 nM). Each ligand (30 μg/kg, i.v.) was injected into rats under baseline and pretreatment conditions (3, rimonabant, 10 mg/kg, i.v.), and quantified at later times in frontal cortex ex vivo with LC-MS detection. Maximal ligand uptakes were high (22.6-48.0 ng/g). Under pretreatment, maximal brain uptakes were greatly reduced (6.5-17.3 ng/g). Since each ligand readily entered brain and bound with high selectivity to CB1 receptors, we then established and here describe methods to produce [11C]8, [11C]16 and [18F]20-22 in adequate activities for evaluation as candidate PET radioligands in vivo. PMID:18800770

  3. Prospective therapeutic agents for obesity: molecular modification approaches of centrally and peripherally acting selective cannabinoid 1 receptor antagonists.

    PubMed

    Sharma, Mayank Kumar; Murumkar, Prashant R; Kanhed, Ashish M; Giridhar, Rajani; Yadav, Mange Ram

    2014-05-22

    Presently, obesity is one of the major health problems in the developed as well as developing countries due to lack of physical work and increasing sedentary life style. Endocannabinoid system (ECS) and especially cannabinoid 1 (CB1) receptor play a key role in energy homeostasis. Food intake and energy storage is enhanced due to the stimulation of ECS hence, inhibition of ECS by blocking CB1 receptors could be a promising approach in the treatment of obesity. Rimonabant, a diaryl pyrazole was the first potent and selective CB1 receptor antagonist that was introduced into the market in 2006 but was withdrawn in 2008 due to its psychiatric side effects. Researchers all over the world are interested to develop peripherally acting potent and selective CB1 receptor antagonists having a better pharmacokinetic profile and therapeutic index. In this development process, pyrazole ring of rimonabant has been replaced by different bioisosteric scaffolds like pyrrole, imidazole, triazole, pyrazoline, pyridine etc. Variations in substituents around the pyrazole ring have also been done. New strategies were also employed for minimizing the psychiatric side effects by making more polar and less lipophilic antagonists/inverse agonists along with neutral antagonists acting peripherally. It has been observed that some of the peripherally acting compounds do not show adverse effects and could be used as potential leads for the further design of selective CB1 receptor antagonists. Chemical modification strategies used for the development of selective CB1 receptor antagonists are discussed here in this review.

  4. Repeated administration of phytocannabinoid Δ(9)-THC or synthetic cannabinoids JWH-018 and JWH-073 induces tolerance to hypothermia but not locomotor suppression in mice, and reduces CB1 receptor expression and function in a brain region-specific manner.

    PubMed

    Tai, S; Hyatt, W S; Gu, C; Franks, L N; Vasiljevik, T; Brents, L K; Prather, P L; Fantegrossi, W E

    2015-12-01

    These studies probed the relationship between intrinsic efficacy and tolerance/cross-tolerance between ∆(9)-THC and synthetic cannabinoid drugs of abuse (SCBs) by examining in vivo effects and cellular changes concomitant with their repeated administration in mice. Dose-effect relationships for hypothermic effects were determined in order to confirm that SCBs JWH-018 and JWH-073 are higher efficacy agonists than ∆(9)-THC in mice. Separate groups of mice were treated with saline, sub-maximal hypothermic doses of JWH-018 or JWH-073 (3.0mg/kg or 10.0mg/kg, respectively) or a maximally hypothermic dose of 30.0mg/kg ∆(9)-THC once per day for 5 consecutive days while core temperature and locomotor activity were monitored via biotelemetry. Repeated administration of all drugs resulted in tolerance to hypothermic effects, but not locomotor effects, and this tolerance was still evident 14 days after the last drug administration. Further studies treated mice with 30.0mg/kg ∆(9)-THC once per day for 4 days, then tested with SCBs on day 5. Mice with a ∆(9)-THC history were cross-tolerant to both SCBs, and this cross-tolerance also persisted 14 days after testing. Select brain regions from chronically treated mice were examined for changes in CB1 receptor expression and function. Expression and function of hypothalamic CB1Rs were reduced in mice receiving chronic drugs, but cortical CB1R expression and function were not altered. Collectively, these data demonstrate that repeated ∆(9)-THC, JWH-018 and JWH-073 can induce long-lasting tolerance to some in vivo effects, which is likely mediated by region-specific downregulation and desensitization of CB1Rs.

  5. Sativex-like Combination of Phytocannabinoids is Neuroprotective in Malonate-Lesioned Rats, an Inflammatory Model of Huntington’s Disease: Role of CB1 and CB2 Receptors

    PubMed Central

    2012-01-01

    We have investigated whether a 1:1 combination of botanical extracts enriched in either Δ9-tetrahydrocannabinol (Δ9-THC) or cannabidiol (CBD), which are the main constituents of the cannabis-based medicine Sativex, is neuroprotective in Huntington’s disease (HD), using an experimental model of this disease generated by unilateral lesions of the striatum with the mitochondrial complex II inhibitor malonate. This toxin damages striatal neurons by mechanisms that primarily involve apoptosis and microglial activation. We monitored the extent of this damage and the possible preservation of the striatal parenchyma by treatment with a Sativex-like combination of phytocannabinoids using different histological and biochemical markers. Results were as follows: (i) malonate increased the volume of edema measured by in vivo NMR imaging and the Sativex-like combination of phytocannabinoids partially reduced this increase; (ii) malonate reduced the number of Nissl-stained cells, while enhancing the number of degenerating cells stained with FluoroJade-B, and the Sativex-like combination of phytocannabinoids reversed both effects; (iii) malonate caused a strong glial activation (i.e., reactive microglia labeled with Iba-1, and astrogliosis labeled with GFAP) and the Sativex-like combination of phytocannabinoids attenuated both responses; and (iv) malonate increased the expression of inducible nitric oxide synthase and the neurotrophin IGF-1, and both responses were attenuated after the treatment with the Sativex-like combination of phytocannabinoids. We also wanted to establish whether targets within the endocannabinoid system (i.e., CB1 and CB2 receptors) are involved in the beneficial effects induced in this model by the Sativex-like combination of phytocannabinoids. This we did using selective antagonists for both receptor types (i.e., SR141716 and AM630) combined with the Sativex-like phytocannabinoid combination. Our results indicated that the effects of this combination

  6. Synthetic and endogenous cannabinoids protect retinal neurons from AMPA excitotoxicity in vivo, via activation of CB1 receptors: Involvement of PI3K/Akt and MEK/ERK signaling pathways.

    PubMed

    Kokona, Despina; Thermos, Kyriaki

    2015-07-01

    Cannabinoids have been suggested to protect retinal ganglion cells in different models of toxicity, but their effects on other retinal neurons are poorly known. We investigated the neuroprotective actions of the endocannabinoid N-arachidonoyl ethanolamine (Anandamide/AEA) and the synthetic cannabinoids R1-Methanandamide (MethAEA) and HU-210, in an in vivo retinal model of AMPA excitotoxicity, and the mechanisms involved in the neuroprotection. Sprague-Dawley rats were intravitreally injected with PBS or AMPA in the absence or presence of the cannabinoid agonists. Brain nitric oxide synthase (bNOS) and choline acetyltransferase (ChAT) immunoreactivity (IR), as well as TUNEL staining, assessed the AMPA-induced retinal amacrine cell loss and the dose-dependent neuroprotection afforded by cannabinoids. The CB1 receptor selective antagonist AM251 and the PI3K/Akt inhibitor wortmannin reversed the cannabinoid-induced neuroprotection, suggesting the involvement of CB1 receptors and the PI3K/Akt pathway in cannabinoids' actions. Experiments with the CB2 agonist JWH015 and [(3)H]CP55940 radioligand binding suggested that the CB2 receptor is not involved in the neuroprotection. AEA and HU-210 induced phosphorylation of Akt but only AEA induced phosphorylation of ERK1/2 kinases, as revealed by western blot analysis. To investigate the role of caspase-3 in the AMPA-induced cell death, the caspase-3 inhibitor Z-DEVD-FMK was co-injected with AMPA. Z-DEVD-FMK had no effect on AMPA excitotoxicity. Moreover, no difference was observed in the phosphorylation of SAPK/JNK kinases between PBS- and AMPA-treated retinas. These results suggest that endogenous and synthetic cannabinoids protect retinal amacrine neurons from AMPA excitotoxicity in vivo via a mechanism involving the CB1 receptors, and the PI3K/Akt and/or MEK/ERK1/2 signaling pathways.

  7. Additive antiemetic efficacy of low-doses of the cannabinoid CB(1/2) receptor agonist Δ(9)-THC with ultralow-doses of the vanilloid TRPV1 receptor agonist resiniferatoxin in the least shrew (Cryptotis parva).

    PubMed

    Darmani, Nissar A; Chebolu, Seetha; Zhong, Weixia; Trinh, Chung; McClanahan, Bryan; Brar, Rajivinder S

    2014-01-01

    Previous studies have shown that cannabinoid CB1/2 and vanilloid TRPV1 agonists (delta-9-tetrahydrocannabinol (Δ(9)-THC) and resiniferatoxin (RTX), respectively) can attenuate the emetic effects of chemotherapeutic agents such as cisplatin. In this study we used the least shrew to demonstrate whether combinations of varying doses of Δ(9)-THC with resiniferatoxin can produce additive antiemetic efficacy against cisplatin-induced vomiting. RTX by itself caused vomiting in a bell-shaped dose-dependent manner with maximal vomiting at 18 μg/kg when administered subcutaneously (s.c.) but not intraperitoneally (i.p.). Δ(9)-THC up to 10 mg/kg provides only 80% protection of least shrews from cisplatin-induced emesis with an ID50 of 0.3-1.8 mg/kg. Combinations of 1 or 5 μg/kg RTX with varying doses of Δ(9)-THC completely suppressed both the frequency and the percentage of shrews vomiting with ID50 dose values 5-50 times lower than Δ(9)-THC doses tested alone against cisplatin. A less potent TRPV1 agonist, capsaicin, by itself did not cause emesis (i.p. or s.c.), but it did significantly reduce vomiting induced by cisplatin given after 30 min but not at 2 h. The TRPV1-receptor antagonist, ruthenium red, attenuated cisplatin-induced emesis at 5mg/kg; however, another TRPV1-receptor antagonist, capsazepine, did not. In summary, we present evidence that combination of CB1/2 and TRPV1 agonists have the capacity to completely abolish cisplatin-induced emesis at doses that are ineffective when used individually.

  8. Pharmacological blockade of either cannabinoid CB1 or CB2 receptors prevents both cocaine-induced conditioned locomotion and cocaine-induced reduction of cell proliferation in the hippocampus of adult male rat.

    PubMed

    Blanco-Calvo, Eduardo; Rivera, Patricia; Arrabal, Sergio; Vargas, Antonio; Pavón, Francisco Javier; Serrano, Antonia; Castilla-Ortega, Estela; Galeano, Pablo; Rubio, Leticia; Suárez, Juan; Rodriguez de Fonseca, Fernando

    2014-01-01

    Addiction to major drugs of abuse, such as cocaine, has recently been linked to alterations in adult neurogenesis in the hippocampus. The endogenous cannabinoid system modulates this proliferative response as demonstrated by the finding that pharmacological activation/blockade of cannabinoid CB1 and CB2 receptors not only modulates neurogenesis but also modulates cell death in the brain. In the present study, we evaluated whether the endogenous cannabinoid system affects cocaine-induced alterations in cell proliferation. To this end, we examined whether pharmacological blockade of either CB1 (Rimonabant, 3 mg/kg) or CB2 receptors (AM630, 3 mg/kg) would affect cell proliferation [the cells were labeled with 5-bromo-2'-deoxyuridine (BrdU)] in the subventricular zone (SVZ) of the lateral ventricle and the dentate subgranular zone (SGZ). Additionally, we measured cell apoptosis (as monitored by the expression of cleaved caspase-3) and glial activation [by analyzing the expression of glial fibrillary acidic protein (GFAP) and Iba-1] in the striatum and hippocampus during acute and repeated (4 days) cocaine administration (20 mg/kg). The results showed that acute cocaine exposure decreased the number of BrdU-immunoreactive (ir) cells in the SVZ and SGZ. In contrast, repeated cocaine exposure reduced the number of BrdU-ir cells only in the SVZ. Both acute and repeated cocaine exposure increased the number of cleaved caspase-3-, GFAP- and Iba1-ir cells in the hippocampus, and this effect was counteracted by AM630 or Rimonabant, which increased the number of BrdU-, GFAP-, and Iba1-ir cells in the hippocampus. These results indicate that the changes in neurogenic, apoptotic and gliotic processes that were produced by repeated cocaine administration were normalized by pharmacological blockade of CB1 and CB2. The restorative effects of cannabinoid receptor blockade on hippocampal cell proliferation were associated with the prevention of the induction of conditioned locomotion

  9. Pharmacological blockade of either cannabinoid CB1 or CB2 receptors prevents both cocaine-induced conditioned locomotion and cocaine-induced reduction of cell proliferation in the hippocampus of adult male rat.

    PubMed

    Blanco-Calvo, Eduardo; Rivera, Patricia; Arrabal, Sergio; Vargas, Antonio; Pavón, Francisco Javier; Serrano, Antonia; Castilla-Ortega, Estela; Galeano, Pablo; Rubio, Leticia; Suárez, Juan; Rodriguez de Fonseca, Fernando

    2014-01-01

    Addiction to major drugs of abuse, such as cocaine, has recently been linked to alterations in adult neurogenesis in the hippocampus. The endogenous cannabinoid system modulates this proliferative response as demonstrated by the finding that pharmacological activation/blockade of cannabinoid CB1 and CB2 receptors not only modulates neurogenesis but also modulates cell death in the brain. In the present study, we evaluated whether the endogenous cannabinoid system affects cocaine-induced alterations in cell proliferation. To this end, we examined whether pharmacological blockade of either CB1 (Rimonabant, 3 mg/kg) or CB2 receptors (AM630, 3 mg/kg) would affect cell proliferation [the cells were labeled with 5-bromo-2'-deoxyuridine (BrdU)] in the subventricular zone (SVZ) of the lateral ventricle and the dentate subgranular zone (SGZ). Additionally, we measured cell apoptosis (as monitored by the expression of cleaved caspase-3) and glial activation [by analyzing the expression of glial fibrillary acidic protein (GFAP) and Iba-1] in the striatum and hippocampus during acute and repeated (4 days) cocaine administration (20 mg/kg). The results showed that acute cocaine exposure decreased the number of BrdU-immunoreactive (ir) cells in the SVZ and SGZ. In contrast, repeated cocaine exposure reduced the number of BrdU-ir cells only in the SVZ. Both acute and repeated cocaine exposure increased the number of cleaved caspase-3-, GFAP- and Iba1-ir cells in the hippocampus, and this effect was counteracted by AM630 or Rimonabant, which increased the number of BrdU-, GFAP-, and Iba1-ir cells in the hippocampus. These results indicate that the changes in neurogenic, apoptotic and gliotic processes that were produced by repeated cocaine administration were normalized by pharmacological blockade of CB1 and CB2. The restorative effects of cannabinoid receptor blockade on hippocampal cell proliferation were associated with the prevention of the induction of conditioned locomotion

  10. Pharmacological blockade of either cannabinoid CB1 or CB2 receptors prevents both cocaine-induced conditioned locomotion and cocaine-induced reduction of cell proliferation in the hippocampus of adult male rat

    PubMed Central

    Blanco-Calvo, Eduardo; Rivera, Patricia; Arrabal, Sergio; Vargas, Antonio; Pavón, Francisco Javier; Serrano, Antonia; Castilla-Ortega, Estela; Galeano, Pablo; Rubio, Leticia; Suárez, Juan; Rodriguez de Fonseca, Fernando

    2014-01-01

    Addiction to major drugs of abuse, such as cocaine, has recently been linked to alterations in adult neurogenesis in the hippocampus. The endogenous cannabinoid system modulates this proliferative response as demonstrated by the finding that pharmacological activation/blockade of cannabinoid CB1 and CB2 receptors not only modulates neurogenesis but also modulates cell death in the brain. In the present study, we evaluated whether the endogenous cannabinoid system affects cocaine-induced alterations in cell proliferation. To this end, we examined whether pharmacological blockade of either CB1 (Rimonabant, 3 mg/kg) or CB2 receptors (AM630, 3 mg/kg) would affect cell proliferation [the cells were labeled with 5-bromo-2′-deoxyuridine (BrdU)] in the subventricular zone (SVZ) of the lateral ventricle and the dentate subgranular zone (SGZ). Additionally, we measured cell apoptosis (as monitored by the expression of cleaved caspase-3) and glial activation [by analyzing the expression of glial fibrillary acidic protein (GFAP) and Iba-1] in the striatum and hippocampus during acute and repeated (4 days) cocaine administration (20 mg/kg). The results showed that acute cocaine exposure decreased the number of BrdU-immunoreactive (ir) cells in the SVZ and SGZ. In contrast, repeated cocaine exposure reduced the number of BrdU-ir cells only in the SVZ. Both acute and repeated cocaine exposure increased the number of cleaved caspase-3-, GFAP- and Iba1-ir cells in the hippocampus, and this effect was counteracted by AM630 or Rimonabant, which increased the number of BrdU-, GFAP-, and Iba1-ir cells in the hippocampus. These results indicate that the changes in neurogenic, apoptotic and gliotic processes that were produced by repeated cocaine administration were normalized by pharmacological blockade of CB1 and CB2. The restorative effects of cannabinoid receptor blockade on hippocampal cell proliferation were associated with the prevention of the induction of conditioned

  11. Involvement of medial prefrontal cortex alpha-2 adrenoceptors on memory acquisition deficit induced by arachidonylcyclopropylamide, a cannabinoid CB1 receptor agonist, in rats; possible involvement of Ca2+ channels.

    PubMed

    Beiranvand, Afsaneh; Nasehi, Mohammad; Zarrindast, Mohammad-Reza; Moghaddasi, Mehrnoush

    2016-09-01

    Functional interactions between cannabinoid and alpha-2 adrenergic systems in cognitive control in the medial prefrontal cortex (mPFC) seem possible. The present study evaluated the possible role of alpha-2 adrenoceptors of the prefrontal cortex on effect of arachidonylcyclopropylamide (ACPA), a cannabinoid CB1 receptor (CB1R) agonist, in adult male Wistar rats. The animals were bilaterally implanted with chronic cannulae in the mPFC, trained in a step-through task, and tested 24 h after training to measure step-through latency. Results indicate that pre-training microinjection of ACPA (0.05 and 0.5 μg/rat) and clonidine (alpha-2 adrenoceptor agonist; 1 and 2 μg/rat) reduce memory acquisition. Pre-training subthreshold dose of clonidine (0.5 µg/rat) restored memory-impairing effect of ACPA (0.05 and 0.5 µg/rat). On the other hand, pre-training administration of the alpha-2 adrenoceptor antagonist yohimbine in all doses used (0.5, 1, and 2 μg/rat) did not affect memory acquisition by itself, while a subthreshold dose of yohimbine (2 µg/rat) potentiated memory impairment induced by ACPA (0.005 µg/rat). Finally, a subthreshold dose of SKF96365 (a Ca(2+) channel blocker) blocked clonidine and yohimbine effect of memory responses induced by ACPA. In conclusion, these data indicate that mPFC alpha-2 adrenoceptors play an important role in ACPA-induced amnesia and Ca(2+) channels have a critical role this phenomenon. PMID:27317021

  12. Prenatal exposure to the CB1 and CB2 cannabinoid receptor agonist WIN 55,212-2 alters migration of early-born glutamatergic neurons and GABAergic interneurons in the rat cerebral cortex.

    PubMed

    Saez, Trinidad M M; Aronne, María P; Caltana, Laura; Brusco, Alicia H

    2014-05-01

    The endocannabinoid system, composed of cannabinoid receptors, endocannabinoids, and synthesis and degradation enzymes, is present since early stages of brain development. During this period, the endocannabinoid system is involved in the regulation of neural progenitor proliferation and specification as well as the migration and differentiation of pyramidal neurons and interneurons. Marijuana consumption during pregnancy represents a serious risk in relation to the fetal brain development since Δ(9) -tetrahidrocannabinol, the main active compound of cannabis, can reach the fetus through placenta and hemato-encephalic barrier. Cohort studies performed on children and adolescents of mothers who consumed marijuana during pregnancy reported cognitive and comportamental abnormalities. In the present study, we examined the expression of the cannabinoid receptor CB1 R during corticogenesis in radially and tangentially migrating post-mitotic neurons. We found that prenatal exposure to WIN impaired tangential and radial migration of post-mitotic neurons in the dorsal pallium. In addition, we described alterations of two transcription factors associated with proliferating and newly post-mitotic glutamatergic cells in the dorsal pallium, Tbr1 and Tbr2, and disruption in the number of Cajal-Retzius cells. The present results contribute to the knowledge of neurobiological substrates that determine neuro-comportamental changes that will persist through post-natal life.

  13. Benzophenanthridine alkaloid, piperonyl butoxide and (S)-methoprene action at the cannabinoid-1 receptor (CB1-receptor) pathway of mouse brain: Interference with [(3)H]CP55940 and [(3)H]SR141716A binding and modification of WIN55212-2-dependent inhibition of synaptosomal l-glutamate release.

    PubMed

    Dhopeshwarkar, Amey Sadashiv; Nicholson, Russell Alfred

    2014-01-15

    Benzophenanthridine alkaloids (chelerythrine and sanguinarine) inhibited binding of [(3)H]SR141716A to mouse brain membranes (IC50s: <1µM). Piperonyl butoxide and (S)-methoprene were less potent (IC50s: 21 and 63µM respectively). Benzophenanthridines and piperonyl butoxide were more selective towards brain CB1 receptors versus spleen CB2 receptors. All compounds reduced Bmax of [(3)H]SR141716A binding to CB1 receptors, but only methoprene and piperonyl butoxide increased Kd (3-5-fold). Benzophenanthridines increased the Kd of [(3)H]CP55940 binding (6-fold), but did not alter Bmax. (S)-methoprene increased the Kd of [(3)H]CP55940 binding (by almost 4-fold) and reduced Bmax by 60%. Piperonyl butoxide lowered the Bmax of [(3)H]CP55940 binding by 50%, but did not influence Kd. All compounds reduced [(3)H]SR141716A and [(3)H]CP55940 association with CB1 receptors. Combined with a saturating concentration of SR141716A, only piperonyl butoxide and (S)-methoprene increased dissociation of [(3)H]SR141716A above that of SR141716A alone. Only piperonyl butoxide increased dissociation of [(3)H]CP55940 to a level greater than CP55940 alone. Binding results indicate predominantly allosteric components to the study compounds action. 4-Aminopyridine-(4-AP-) evoked release of l-glutamate from synaptosomes was partially inhibited by WIN55212-2, an effect completely neutralized by AM251, (S)-methoprene and piperonyl butoxide. With WIN55212-2 present, benzophenanthridines enhanced 4-AP-evoked l-glutamate release above 4-AP alone. Modulatory patterns of l-glutamate release (with WIN-55212-2 present) align with previous antagonist/inverse agonist profiling based on [(35)S]GTPγS binding. Although these compounds exhibit lower potencies compared to many classical CB1 receptor inhibitors, they may have potential to modify CB1-receptor-dependent behavioral/physiological outcomes in the whole animal.

  14. Discovery of Potent Dual PPARα Agonists/CB1 Ligands

    PubMed Central

    2011-01-01

    This letter describes the synthesis and in vitro and in vivo evaluation of dual ligands targeting the cannabinoid and peroxisome proliferator-activated receptors (PPAR). These compounds were obtained from fusing the pharmacophores of fibrates and the diarylpyrazole rimonabant, a cannabinoid receptor antagonist. They are the first examples of dual compounds with nanomolar affinity for both PPARα and cannabinoid receptors. Besides, lead compound 2 proved to be CB1 selective. Unexpectedly, the phenol intermediates tested were equipotent (compound 1 as compared to 2) or even more potent (compound 3 as compared with 4). This discovery opens the way to design new dual ligands. PMID:24936232

  15. Discovery of Potent Dual PPARα Agonists/CB1 Ligands.

    PubMed

    Pérez-Fernández, Ruth; Fresno, Nieves; Macías-González, Manuel; Elguero, José; Decara, Juan; Girón, Rocío; Rodríguez-Álvarez, Ana; Martín, María Isabel; Rodríguez de Fonseca, Fernando; Goya, Pilar

    2011-11-10

    This letter describes the synthesis and in vitro and in vivo evaluation of dual ligands targeting the cannabinoid and peroxisome proliferator-activated receptors (PPAR). These compounds were obtained from fusing the pharmacophores of fibrates and the diarylpyrazole rimonabant, a cannabinoid receptor antagonist. They are the first examples of dual compounds with nanomolar affinity for both PPARα and cannabinoid receptors. Besides, lead compound 2 proved to be CB1 selective. Unexpectedly, the phenol intermediates tested were equipotent (compound 1 as compared to 2) or even more potent (compound 3 as compared with 4). This discovery opens the way to design new dual ligands. PMID:24936232

  16. Discovery of Potent Dual PPARα Agonists/CB1 Ligands.

    PubMed

    Pérez-Fernández, Ruth; Fresno, Nieves; Macías-González, Manuel; Elguero, José; Decara, Juan; Girón, Rocío; Rodríguez-Álvarez, Ana; Martín, María Isabel; Rodríguez de Fonseca, Fernando; Goya, Pilar

    2011-11-10

    This letter describes the synthesis and in vitro and in vivo evaluation of dual ligands targeting the cannabinoid and peroxisome proliferator-activated receptors (PPAR). These compounds were obtained from fusing the pharmacophores of fibrates and the diarylpyrazole rimonabant, a cannabinoid receptor antagonist. They are the first examples of dual compounds with nanomolar affinity for both PPARα and cannabinoid receptors. Besides, lead compound 2 proved to be CB1 selective. Unexpectedly, the phenol intermediates tested were equipotent (compound 1 as compared to 2) or even more potent (compound 3 as compared with 4). This discovery opens the way to design new dual ligands.

  17. Tonic endocannabinoid-mediated modulation of GABA release is independent of the CB1 content of axon terminals.

    PubMed

    Lenkey, Nora; Kirizs, Tekla; Holderith, Noemi; Máté, Zoltán; Szabó, Gábor; Vizi, E Sylvester; Hájos, Norbert; Nusser, Zoltan

    2015-04-20

    The release of GABA from cholecystokinin-containing interneurons is modulated by type-1 cannabinoid receptors (CB1). Here we tested the hypothesis that the strength of CB1-mediated modulation of GABA release is related to the CB1 content of axon terminals. Basket cell boutons have on average 78% higher CB1 content than those of dendritic-layer-innervating (DLI) cells, a consequence of larger bouton surface and higher CB1 density. The CB1 antagonist AM251 caused a 54% increase in action potential-evoked [Ca(2+)] in boutons of basket cells, but not in DLI cells. However, the effect of AM251 did not correlate with CB1 immunoreactivity of individual boutons. Moreover, a CB1 agonist decreased [Ca(2+)] in a cell type- and CB1-content-independent manner. Replica immunogold labelling demonstrated the colocalization of CB1 with the Cav2.2 Ca(2+) channel subunit. Our data suggest that only a subpopulation of CB1s, within nanometre distances from their target Cav2.2 channels, are responsible for endocannabinoid-mediated modulation of GABA release.

  18. CHROMENOPYRAZOLES: NON-PSYCHOACTIVE AND SELECTIVE CB1 CANNABINOID AGONISTS WITH PERIPHERAL ANTINOCICEPTIVE PROPERTIES

    PubMed Central

    Cumella, Jose; Hernández-Folgado, Laura; Girón, Rocio; Sánchez, Eva; Morales, Paula; Hurst, Dow P.; Gómez-Cañas, Maria; Gómez-Ruiz, Maria; Pinto, Diana C. G. A.; Goya, Pilar; Reggio, Patricia H.; Martin, María Isabel; Fernández-Ruiz, Javier; Silva, Artur M. S.; Jagerovic, Nadine

    2014-01-01

    The unwanted psychoactive effects of cannabinoid receptor agonists have limited their development as medicines. These CB1 mediated side effects are due to the fact that CB1 receptors are largely expressed in the Central Nervous System (CNS). Since it is known that CB1 receptors are also located peripherally, there is a growing interest in targeting cannabinoid receptors located outside the brain. A library of chromenopyrazoles designed in analogy to the classical cannabinoid cannabinol were synthesized, characterized and tested for cannabinoid activity. Radiolabeled binding assays were used to determine their affinities at CB1 and CB2 receptors. Structural features required for CB1/CB2 affinity and selectivity were explored using molecular modeling. Within the chromenopyrazoles series, some of them showed to be selective CB1 ligands. These modeling studies suggest that CB1 full selectivity over CB2 can be accounted for the presence of a pyrazole ring in the structure. The functional activities of selected chromenopyrazoles were evaluated in isolated tissues. Behavioral tests, in vivo, were then carried on the most effective CB1 cannabinoid agonist (13a). Chromenopyrazole 13a did not induce modifications in any of the tested parameters on the mouse cannabinoid tetrad, discarding CNS-mediated effects. This lack of agonistic activity in the CNS suggests that it does not readily cross the blood-brain barrier. Moreover, compound 13a can induce antinociception in a peripheral model of orofacial pain in rat. Taking into account the negative results obtained in the hot plate test, it could be suggested that the antinociception induced by 13a in the orofacial test may be mediated through peripheral mechanisms. PMID:22302767

  19. Chronic cannabinoid CB2 activation reverses paclitaxel neuropathy without tolerance or CB1-dependent withdrawal

    PubMed Central

    Deng, Liting; Guindon, Josée; Cornett, Benjamin L.; Makriyannis, Alexandros; Mackie, Ken; Hohmann, Andrea G.

    2014-01-01

    Background Mixed cannabinoid CB1/CB2 agonists such as Δ9-tetrahydrocannabinol (Δ9-THC) can produce tolerance, physical withdrawal, and unwanted CB1-mediated central nervous system side effects. Whether repeated systemic administration of a CB2-preferring agonist engages CB1 receptors or produces CB1-mediated side effects is unknown. Methods We evaluated anti-allodynic efficacy, possible tolerance, and cannabimimetic side effects of repeated dosing with a CB2-preferring agonist AM1710 in a model of chemotherapy-induced neuropathy produced by paclitaxel using CB1KO, CB2KO, and WT mice. Comparisons were made with the prototypic classical cannabinoid Δ9-THC. We also explored the site and possible mechanism of action of AM1710. Results Paclitaxel-induced mechanical and cold allodynia developed equivalently in CB1KO, CB2KO, and WT mice. Both AM1710 and Δ9-THC suppressed established paclitaxel-induced allodynia in WT mice. Unlike Δ9-THC, chronic AM1710 did not engage CB1 activity or produce antinociceptive tolerance, CB1-mediated cannabinoid withdrawal, hypothermia, or motor dysfunction. Anti-allodynic efficacy of systemic AM1710 was absent in CB2KO mice or WT mice receiving the CB2 antagonist AM630, administered either systemically or intrathecally. Intrathecal AM1710 also attenuated paclitaxel-induced allodynia in WT but not CB2KO mice, implicating a possible role for spinal CB2 receptors in AM1710 anti-allodynic efficacy. Finally, both acute and chronic treatment with AM1710 decreased mRNA levels of tumor necrosis factor alpha and monocyte chemoattractant protein-1 in lumbar spinal cord of paclitaxel-treated WT mice. Conclusions Our results highlight the potential of prolonged use of CB2 agonists for managing chemotherapy-induced allodynia with a favorable therapeutic ratio marked by sustained efficacy and absence of tolerance, physical withdrawal, or CB1-mediated side effects. PMID:24853387

  20. CB1 Knockout Mice Unveil Sustained CB2-Mediated Antiallodynic Effects of the Mixed CB1/CB2 Agonist CP55,940 in a Mouse Model of Paclitaxel-Induced Neuropathic Pain.

    PubMed

    Deng, Liting; Cornett, Benjamin L; Mackie, Ken; Hohmann, Andrea G

    2015-07-01

    Cannabinoids suppress neuropathic pain through activation of cannabinoid CB1 and/or CB2 receptors; however, unwanted CB1-mediated cannabimimetic effects limit clinical use. We asked whether CP55,940 [(-)-3-[2-hydroxy-4-(1,1-dimethylheptyl)phenyl]-4-(3-hydroxypropyl)cyclohexanol], a potent cannabinoid that binds with similar affinity to CB1 and CB2 in vitro, produces functionally separable CB1- and CB2-mediated pharmacological effects in vivo. We evaluated antiallodynic effects, possible tolerance, and cannabimimetic effects (e.g., hypothermia, catalepsy, CB1-dependent withdrawal signs) after systemic CP55,940 treatment in a mouse model of toxic neuropathy produced by a chemotherapeutic agent, paclitaxel. The contribution of CB1 and CB2 receptors to in vivo actions of CP55,940 was evaluated using CB1 knockout (KO), CB2KO, and wild-type (WT) mice. Low-dose CP55,940 (0.3 mg/kg daily, i.p. ) suppressed paclitaxel-induced allodynia in WT and CB2KO mice, but not CB1KO mice. Low-dose CP55,940 also produced hypothermia and rimonabant-precipitated withdrawal in WT, but not CB1KO, mice. In WT mice, tolerance developed to CB1-mediated hypothermic effects of CP55,940 earlier than to antiallodynic effects. High-dose CP55,940 (10 mg/kg daily, i.p.) produced catalepsy in WT mice, which precluded determination of antiallodynic efficacy but produced sustained CB2-mediated suppression of paclitaxel-induced allodynia in CB1KO mice; these antiallodynic effects were blocked by the CB2 antagonist 6-iodopravadoline (AM630). High-dose CP55,940 did not produce hypothermia or rimonabant-precipitated withdrawal in CB1KO mice. Our results using the mixed CB1/CB2 agonist CP55,940 document that CB1 and CB2 receptor activations produce mechanistically distinct suppression of neuropathic pain. Our study highlights the therapeutic potential of targeting cannabinoid CB2 receptors to bypass unwanted central effects associated with CB1 receptor activation.

  1. Endogenous vs Exogenous Allosteric Modulators in GPCRs: A dispute for shuttling CB1 among different membrane microenvironments.

    PubMed

    Stornaiuolo, Mariano; Bruno, Agostino; Botta, Lorenzo; La Regina, Giuseppe; Cosconati, Sandro; Silvestri, Romano; Marinelli, Luciana; Novellino, Ettore

    2015-10-20

    A Cannabinoid Receptor 1 (CB1) binding site for the selective allosteric modulator ORG27569 is here identified through an integrate approach of consensus pocket prediction, mutagenesis studies and Mass Spectrometry. This unprecedented ORG27569 pocket presents the structural features of a Cholesterol Consensus Motif, a cholesterol interacting region already found in other GPCRs. ORG27569 and cholesterol affects oppositely CB1 affinity for orthosteric ligands. Moreover, the rise in cholesterol intracellular level results in CB1 trafficking to the axonal region of neuronal cells, while, on the contrary, ORG27568 binding induces CB1 enrichment at the soma. This control of receptor migration among functionally different membrane regions of the cell further contributes to downstream signalling and adds a previously unknown mechanism underpinning CB1 modulation by ORG27569 , that goes beyond a mere control of receptor affinity for orthosteric ligands.

  2. Endogenous vs Exogenous Allosteric Modulators in GPCRs: A dispute for shuttling CB1 among different membrane microenvironments

    NASA Astrophysics Data System (ADS)

    Stornaiuolo, Mariano; Bruno, Agostino; Botta, Lorenzo; Regina, Giuseppe La; Cosconati, Sandro; Silvestri, Romano; Marinelli, Luciana; Novellino, Ettore

    2015-10-01

    A Cannabinoid Receptor 1 (CB1) binding site for the selective allosteric modulator ORG27569 is here identified through an integrate approach of consensus pocket prediction, mutagenesis studies and Mass Spectrometry. This unprecedented ORG27569 pocket presents the structural features of a Cholesterol Consensus Motif, a cholesterol interacting region already found in other GPCRs. ORG27569 and cholesterol affects oppositely CB1 affinity for orthosteric ligands. Moreover, the rise in cholesterol intracellular level results in CB1 trafficking to the axonal region of neuronal cells, while, on the contrary, ORG27568 binding induces CB1 enrichment at the soma. This control of receptor migration among functionally different membrane regions of the cell further contributes to downstream signalling and adds a previously unknown mechanism underpinning CB1 modulation by ORG27569 , that goes beyond a mere control of receptor affinity for orthosteric ligands.

  3. Endogenous vs Exogenous Allosteric Modulators in GPCRs: A dispute for shuttling CB1 among different membrane microenvironments

    PubMed Central

    Stornaiuolo, Mariano; Bruno, Agostino; Botta, Lorenzo; Regina, Giuseppe La; Cosconati, Sandro; Silvestri, Romano; Marinelli, Luciana; Novellino, Ettore

    2015-01-01

    A Cannabinoid Receptor 1 (CB1) binding site for the selective allosteric modulator ORG27569 is here identified through an integrate approach of consensus pocket prediction, mutagenesis studies and Mass Spectrometry. This unprecedented ORG27569 pocket presents the structural features of a Cholesterol Consensus Motif, a cholesterol interacting region already found in other GPCRs. ORG27569 and cholesterol affects oppositely CB1 affinity for orthosteric ligands. Moreover, the rise in cholesterol intracellular level results in CB1 trafficking to the axonal region of neuronal cells, while, on the contrary, ORG27568 binding induces CB1 enrichment at the soma. This control of receptor migration among functionally different membrane regions of the cell further contributes to downstream signalling and adds a previously unknown mechanism underpinning CB1 modulation by ORG27569 , that goes beyond a mere control of receptor affinity for orthosteric ligands. PMID:26482099

  4. Dissociation between the panicolytic effect of cannabidiol microinjected into the substantia nigra, pars reticulata, and fear-induced antinociception elicited by bicuculline administration in deep layers of the superior colliculus: The role of CB1-cannabinoid receptor in the ventral mesencephalon.

    PubMed

    da Silva, Juliana Almeida; Biagioni, Audrey Francisco; Almada, Rafael Carvalho; de Souza Crippa, José Alexandre; Cecílio Hallak, Jaime Eduardo; Zuardi, Antônio Waldo; Coimbra, Norberto Cysne

    2015-07-01

    Many studies suggest that the substantia nigra, pars reticulata (SNpr), a tegmental mesencephalic structure rich in γ-aminobutyric acid (GABA)- and cannabinoid receptor-containing neurons, is involved in the complex control of defensive responses through the neostriatum-nigral disinhibitory and nigro-tectal inhibitory GABAergic pathways during imminently dangerous situations. The aim of the present work was to investigate the role played by CB1-cannabinoid receptor of GABAergic pathways terminal boutons in the SNpr or of SNpr-endocannabinoid receptor-containing interneurons on the effect of intra-nigral microinjections of cannabidiol in the activity of nigro-tectal inhibitory pathways. GABAA receptor blockade in the deep layers of the superior colliculus (dlSC) elicited vigorous defensive behaviour. This explosive escape behaviour was followed by significant antinociception. Cannabidiol microinjection into the SNpr had a clear anti-aversive effect, decreasing the duration of defensive alertness, the frequency and duration of defensive immobility, and the frequency and duration of explosive escape behaviour, expressed by running and jumps, elicited by transitory GABAergic dysfunction in dlSC. However, the innate fear induced-antinociception was not significantly changed. The blockade of CB1 endocannabinoid receptor in the SNpr decreased the anti-aversive effect of canabidiol based on the frequency and duration of defensive immobility, the frequency of escape expressed by running, and both the frequency and duration of escape expressed by jumps. These findings suggest a CB1 mediated endocannabinoid signalling in cannabidiol modulation of panic-like defensive behaviour, but not of innate fear-induced antinociception evoked by GABAA receptor blockade with bicuculline microinjection into the superior colliculus, with a putative activity in nigro-collicular GABAergic pathways. PMID:25841876

  5. Dissociation between the panicolytic effect of cannabidiol microinjected into the substantia nigra, pars reticulata, and fear-induced antinociception elicited by bicuculline administration in deep layers of the superior colliculus: The role of CB1-cannabinoid receptor in the ventral mesencephalon.

    PubMed

    da Silva, Juliana Almeida; Biagioni, Audrey Francisco; Almada, Rafael Carvalho; de Souza Crippa, José Alexandre; Cecílio Hallak, Jaime Eduardo; Zuardi, Antônio Waldo; Coimbra, Norberto Cysne

    2015-07-01

    Many studies suggest that the substantia nigra, pars reticulata (SNpr), a tegmental mesencephalic structure rich in γ-aminobutyric acid (GABA)- and cannabinoid receptor-containing neurons, is involved in the complex control of defensive responses through the neostriatum-nigral disinhibitory and nigro-tectal inhibitory GABAergic pathways during imminently dangerous situations. The aim of the present work was to investigate the role played by CB1-cannabinoid receptor of GABAergic pathways terminal boutons in the SNpr or of SNpr-endocannabinoid receptor-containing interneurons on the effect of intra-nigral microinjections of cannabidiol in the activity of nigro-tectal inhibitory pathways. GABAA receptor blockade in the deep layers of the superior colliculus (dlSC) elicited vigorous defensive behaviour. This explosive escape behaviour was followed by significant antinociception. Cannabidiol microinjection into the SNpr had a clear anti-aversive effect, decreasing the duration of defensive alertness, the frequency and duration of defensive immobility, and the frequency and duration of explosive escape behaviour, expressed by running and jumps, elicited by transitory GABAergic dysfunction in dlSC. However, the innate fear induced-antinociception was not significantly changed. The blockade of CB1 endocannabinoid receptor in the SNpr decreased the anti-aversive effect of canabidiol based on the frequency and duration of defensive immobility, the frequency of escape expressed by running, and both the frequency and duration of escape expressed by jumps. These findings suggest a CB1 mediated endocannabinoid signalling in cannabidiol modulation of panic-like defensive behaviour, but not of innate fear-induced antinociception evoked by GABAA receptor blockade with bicuculline microinjection into the superior colliculus, with a putative activity in nigro-collicular GABAergic pathways.

  6. Cannabinoid-based drugs targeting CB1 and TRPV1, the sympathetic nervous system, and arthritis.

    PubMed

    Lowin, Torsten; Straub, Rainer H

    2015-09-06

    Chronic inflammation in rheumatoid arthritis (RA) is accompanied by activation of the sympathetic nervous system, which can support the immune system to perpetuate inflammation. Several animal models of arthritis already demonstrated a profound influence of adrenergic signaling on the course of RA. Peripheral norepinephrine release from sympathetic terminals is controlled by cannabinoid receptor type 1 (CB1), which is activated by two major endocannabinoids (ECs), arachidonylethanolamine (anandamide) and 2-arachidonylglycerol. These ECs also modulate function of transient receptor potential channels (TRPs) located on sensory nerve fibers, which are abundant in arthritic synovial tissue. TRPs not only induce the sensation of pain but also support inflammation via secretion of pro-inflammatory neuropeptides. In addition, many cell types in synovial tissue express CB1 and TRPs. In this review, we focus on CB1 and transient receptor potential vanilloid 1 (TRPV1)-mediated effects on RA since most anti-inflammatory mechanisms induced by cannabinoids are attributed to cannabinoid receptor type 2 (CB2) activation. We demonstrate how CB1 agonism or antagonism can modulate arthritic disease. The concept of functional antagonism with continuous CB1 activation is discussed. Since fatty acid amide hydrolase (FAAH) is a major EC-degrading enzyme, the therapeutic possibility of FAAH inhibition is studied. Finally, the therapeutic potential of ECs is examined since they interact with cannabinoid receptors and TRPs but do not produce central side effects.

  7. Beyond radio-displacement techniques for Identification of CB1 Ligands: The First Application of a Fluorescence-quenching Assay

    PubMed Central

    Bruno, Agostino; Lembo, Francesca; Novellino, Ettore; Stornaiuolo, Mariano; Marinelli, Luciana

    2014-01-01

    Cannabinoid type 1 Receptor (CB1) belongs to the GPCR family and it has been targeted, so far, for the discovery of drugs aimed at the treatment of neuropathic pain, nausea, vomit, and food intake disorders. Here, we present the development of the first fluorescent assay enabling the measurement of kinetic binding constants for CB1orthosteric ligands. The assay is based on the use of T1117, a fluorescent analogue of AM251. We prove that T1117 binds endogenous and recombinant CB1 receptors with nanomolar affinity. Moreover, T1117 binding to CB1 is sensitive to the allosteric ligand ORG27569 and thus it is applicable to the discovery of new allosteric drugs. The herein presented assay constitutes a sustainable valid alternative to the expensive and environmental impacting radiodisplacement techniques and paves the way for an easy, fast and cheap high-throughput drug screening toward CB1 for identification of new orthosteric and allosteric modulators. PMID:24441508

  8. The Structure-Function Relationships of Classical Cannabinoids: CB1/CB2 Modulation.

    PubMed

    Bow, Eric W; Rimoldi, John M

    2016-01-01

    The cannabinoids are members of a deceptively simple class of terpenophenolic secondary metabolites isolated from Cannabis sativa highlighted by (-)-Δ(9)-tetrahydrocannabinol (THC), eliciting distinct pharmacological effects mediated largely by cannabinoid receptor (CB1 or CB2) signaling. Since the initial discovery of THC and related cannabinoids, synthetic and semisynthetic classical cannabinoid analogs have been evaluated to help define receptor binding modes and structure-CB1/CB2 functional activity relationships. This perspective will examine the classical cannabinoids, with particular emphasis on the structure-activity relationship of five regions: C3 side chain, phenolic hydroxyl, aromatic A-ring, pyran B-ring, and cyclohexenyl C-ring. Cumulative structure-activity relationship studies to date have helped define the critical structural elements required for potency and selectivity toward CB1 and CB2 and, more importantly, ushered the discovery and development of contemporary nonclassical cannabinoid modulators with enhanced physicochemical and pharmacological profiles. PMID:27398024

  9. The Structure–Function Relationships of Classical Cannabinoids: CB1/CB2 Modulation

    PubMed Central

    Bow, Eric W.; Rimoldi, John M.

    2016-01-01

    The cannabinoids are members of a deceptively simple class of terpenophenolic secondary metabolites isolated from Cannabis sativa highlighted by (−)-Δ9-tetrahydrocannabinol (THC), eliciting distinct pharmacological effects mediated largely by cannabinoid receptor (CB1 or CB2) signaling. Since the initial discovery of THC and related cannabinoids, synthetic and semisynthetic classical cannabinoid analogs have been evaluated to help define receptor binding modes and structure–CB1/CB2 functional activity relationships. This perspective will examine the classical cannabinoids, with particular emphasis on the structure–activity relationship of five regions: C3 side chain, phenolic hydroxyl, aromatic A-ring, pyran B-ring, and cyclohexenyl C-ring. Cumulative structure–activity relationship studies to date have helped define the critical structural elements required for potency and selectivity toward CB1 and CB2 and, more importantly, ushered the discovery and development of contemporary nonclassical cannabinoid modulators with enhanced physicochemical and pharmacological profiles. PMID:27398024

  10. Differential Pharmacological Regulation of Sensorimotor Gating Deficit in CB1 Knockout Mice and Associated Neurochemical and Histological Alterations

    PubMed Central

    Ortega-Álvaro, Antonio; Navarrete, Francisco; Aracil-Fernández, Auxiliadora; Navarro, Daniela; Berbel, Pere; Manzanares, Jorge

    2015-01-01

    The endocannabinoid system has been widely involved in the pathophysiology of sensorimotor gating deficits. This study aimed to evaluate the pharmacological modulation of the sensorimotor gating impairment induced by cannabinoid CB1 receptor (CB1r) deletion. For this purpose, the prepulse inhibition (PPI) paradigm was used to evaluate the effect of two antipsychotics drugs (risperidone and haloperidol) and a psychostimulant (methylphenidate) on the preattentional deficit presented by CB1KO mice. Furthermore, the effects of the CB1r antagonist AM251 on PPI were evaluated in WT mice. Real-time PCR and immunohistochemical studies were carried out to analyze dopamine transporter (DAT) and α-2C adrenergic receptor (ADRA2C) gene expressions and the distribution of parvalbumin (PV) and cholecystokinin-8 (CCK) immunoreactive (ir) cortical neurons, respectively. Neither risperidone nor haloperidol significantly modified the PPI of WT and CB1KO mice, whereas methylphenidate improved the preattentional deficit of CB1KO mice. In addition, treatment with AM251 (3 mg/kg; i.p.) significantly decreased the PPI of WT animals. The administration of methylphenidate increased DAT and ADRA2C gene expressions in CB1KO mice without producing any effect in WT animals. Immunohistochemical studies revealed that there were no significant changes in CCK immunolabeling between WT and CB1KO mice, whereas the radial distribution of PV-ir neurons was abnormal in CB1KO mice. These data further support the important role of CB1r in sensorimotor gating regulation and the therapeutic usefulness of methylphenidate for the treatment of psychiatric disorders with associated preattentional deficits. PMID:25895455

  11. Rising stars: modulation of brain functions by astroglial type-1 cannabinoid receptors.

    PubMed

    Metna-Laurent, Mathilde; Marsicano, Giovanni

    2015-03-01

    The type-1-cannabinoid (CB1 ) receptor is amongst the most widely expressed G protein-coupled receptors in the brain. In few decades, CB1 receptors have been shown to regulate a large array of functions from brain cell development and survival to complex cognitive processes. Understanding the cellular mechanisms underlying these functions of CB1 is complex due to the heterogeneity of the brain cell types on which the receptor is expressed. Although the large majority of CB1 receptors act on neurons, early studies pointed to a direct control of CB1 receptors over astroglial functions including brain energy supply and neuroprotection. In line with the growing concept of the tripartite synapse highlighting astrocytes as direct players in synaptic plasticity, astroglial CB1 receptor signaling recently emerged as the mediator of several forms of synaptic plasticity associated to important cognitive functions. Here, we shortly review the current knowledge on CB1 receptor-mediated astroglial functions. This functional spectrum is large and most of the mechanisms by which CB1 receptors control astrocytes, as well as their consequences in vivo, are still unknown, requiring innovative approaches to improve this new cannabinoid research field.

  12. Activation of CB1 inhibits NGF-induced sensitization of TRPV1 in adult mouse afferent neurons.

    PubMed

    Wang, Z-Y; McDowell, T; Wang, P; Alvarez, R; Gomez, T; Bjorling, D E

    2014-09-26

    Transient receptor potential vanilloid 1 (TRPV1)-containing afferent neurons convey nociceptive signals and play an essential role in pain sensation. Exposure to nerve growth factor (NGF) rapidly increases TRPV1 activity (sensitization). In the present study, we investigated whether treatment with the selective cannabinoid receptor 1 (CB1) agonist arachidonyl-2'-chloroethylamide (ACEA) affects NGF-induced sensitization of TRPV1 in adult mouse dorsal root ganglion (DRG) afferent neurons. We found that CB1, NGF receptor tyrosine kinase A (trkA), and TRPV1 are present in cultured adult mouse small- to medium-sized afferent neurons and treatment with NGF (100ng/ml) for 30 min significantly increased the number of neurons that responded to capsaicin (as indicated by increased intracellular Ca(2 +) concentration). Pretreatment with the CB1 agonist ACEA (10nM) inhibited the NGF-induced response, and this effect of ACEA was reversed by a selective CB1 antagonist. Further, pretreatment with ACEA inhibited NGF-induced phosphorylation of AKT. Blocking PI3 kinase activity also attenuated the NGF-induced increase in the number of neurons that responded to capsaicin. Our results indicate that the analgesic effect of CB1 activation may in part be due to inhibition of NGF-induced sensitization of TRPV1 and also that the effect of CB1 activation is at least partly mediated by attenuation of NGF-induced increased PI3 signaling.

  13. Nicotine self-administration induces CB1-dependent LTP in the bed nucleus of the stria terminalis.

    PubMed

    Reisiger, Anne-Ruth; Kaufling, Jennifer; Manzoni, Olivier; Cador, Martine; Georges, François; Caillé, Stephanie

    2014-03-19

    Nicotine addiction is characterized by repetitive drug taking and drug seeking, both tightly controlled by cannabinoid CB1 receptors. The responsiveness of neurons of the bed nucleus of the stria terminalis (BNST) to infralimbic cortex (ILCx) excitatory inputs is increased in rats with active, but not passive, nicotine taking. Therefore, we hypothesize that acquisition of the learned association between nicotine infusion and a paired cue light permits the strengthening of the ILCx-BNST synapses after ILCx tetanic stimulation. We exposed rats to intravenous nicotine self-administration for 2 months. Using a combination of in vivo protocols (electrical stimulations, extracellular recordings, and pharmacological manipulations), we characterized the effects of 10 Hz stimulation of the ILCx on BNST excitatory responses, under different conditions of exposure to nicotine. In addition, we tested whether the effects of the stimulation were CB1 receptor-dependent. The results show that nicotine self-administration supports the induction of evoked spike potentiation in the BNST in response to 10 Hz stimulation of ILCx afferents. Although not altered by nicotine abstinence, this cellular adaptation was blocked by CB1 receptor antagonism. Moreover, blockade of BNST CB1 receptors prevented increases in time-out responding subsequent to ILCx stimulation and decreased cue-induced reinstatement. Thus, the synaptic potentiation within the BNST in response to ILCx stimulation seems to contribute to the cue-elicited responding associated with nicotine self-administration and is tightly controlled by CB1 receptors.

  14. Developmental regulation of CB1-mediated spike-time dependent depression at immature mossy fiber-CA3 synapses

    PubMed Central

    Caiati, Maddalena D.; Sivakumaran, Sudhir; Lanore, Frederic; Mulle, Christophe; Richard, Elodie; Verrier, Dany; Marsicano, Giovanni; Miles, Richard; Cherubini, Enrico

    2012-01-01

    Early in postnatal life, mossy fibres (MF), the axons of granule cells in the dentate gyrus, release GABA which is depolarizing and excitatory. Synaptic currents undergo spike-time dependent long-term depression (STD-LTD) regardless of the temporal order of stimulation (pre versus post and viceversa). Here we show that at P3 but not at P21, STD-LTD, induced by negative pairing, is mediated by endocannabinoids mobilized from the postsynaptic cell during spiking-induced membrane depolarization. By diffusing backward, endocannabinoids activate cannabinoid type-1 (CB1) receptors probably expressed on MF. Thus, STD-LTD was prevented by CB1 receptor antagonists and was absent in CB1-KO mice. Consistent with these data, in situ hybridization experiments revealed detectable level of CB1 mRNA in the granule cell layer at P3 but not at P21. These results indicate that CB1 receptors are transiently expressed on immature MF terminals where they counteract the enhanced neuronal excitability induced by the excitatory action of GABA. PMID:22368777

  15. Cannabidiol causes endothelium-dependent vasorelaxation of human mesenteric arteries via CB1 activation

    PubMed Central

    Stanley, Christopher P.; Hind, William H.; Tufarelli, Cristina; O'Sullivan, Saoirse E.

    2015-01-01

    Aims The protective effects of cannabidiol (CBD) have been widely shown in preclinical models and have translated into medicines for the treatment of multiple sclerosis and epilepsy. However, the direct vascular effects of CBD in humans are unknown. Methods and results Using wire myography, the vascular effects of CBD were assessed in human mesenteric arteries, and the mechanisms of action probed pharmacologically. CBD-induced intracellular signalling was characterized using human aortic endothelial cells (HAECs). CBD caused acute, non-recoverable vasorelaxation of human mesenteric arteries with an Rmax of ∼40%. This was inhibited by cannabinoid receptor 1 (CB1) receptor antagonists, desensitization of transient receptor potential channels using capsaicin, removal of the endothelium, and inhibition of potassium efflux. There was no role for cannabinoid receptor-2 (CB2) receptor, peroxisome proliferator activated receptor (PPAR)γ, the novel endothelial cannabinoid receptor (CBe), or cyclooxygenase. CBD-induced vasorelaxation was blunted in males, and in patients with type 2 diabetes or hypercholesterolemia. In HAECs, CBD significantly reduced phosphorylated JNK, NFκB, p70s6 K and STAT5, and significantly increased phosphorylated CREB, ERK1/2, and Akt levels. CBD also increased phosphorylated eNOS (ser1177), which was correlated with increased levels of ERK1/2 and Akt levels. CB1 receptor antagonism prevented the increase in eNOS phosphorylation. Conclusion This study shows, for the first time, that CBD causes vasorelaxation of human mesenteric arteries via activation of CB1 and TRP channels, and is endothelium- and nitric oxide-dependent. PMID:26092099

  16. Mn-SOD Upregulation by Electroacupuncture Attenuates Ischemic Oxidative Damage via CB1R-Mediated STAT3 Phosphorylation.

    PubMed

    Sun, Sisi; Chen, Xiyao; Gao, Yang; Liu, Zhaoyu; Zhai, Qian; Xiong, Lize; Cai, Min; Wang, Qiang

    2016-01-01

    Electroacupuncture (EA) pretreatment elicits the neuroprotective effect against cerebral ischemic injury through cannabinoid receptor type 1 receptor (CB1R). In current study, we aimed to investigate whether the signal transducer and activator of transcription 3 (STAT3) and manganese superoxide dismutase (Mn-SOD) were involved in the antioxidant effect of EA pretreatment through CB1R. At 2 h after EA pretreatment, focal cerebral ischemic injury was induced by transient middle cerebral artery occlusion for 60 min in C57BL/6 mice. The expression of Mn-SOD in the penumbra was assessed by Western blot and immunoflourescent staining at 2 h after reperfusion. In the presence or absence of Mn-SOD small interfering RNA (siRNA), the neurological deficit score, the infarct volume, the terminal deoxynucleotidyl transferase-mediated dUDP-biotin nick end labeling (TUNEL) staining, and oxidative stress were evaluated. Furthermore, the Mn-SOD protein expression and phosphorylation of STAT3 at Y705 were also determined in the presence and absence of CB1R antagonists (AM251, SR141716) and CB1R agonists (arachidonyl-2-chloroethylamide (ACEA), WIN 55,212-2). EA pretreatment upregulated the Mn-SOD protein expression and Mn-SOD-positive neuronal cells at 2 h after reperfusion. EA pretreatment also attenuated oxidative stress, inhibited cellular apoptosis, and induced neuroprotection against ischemic damage, whereas these beneficial effects of EA pretreatment were reversed by knockdown of Mn-SOD. Mn-SOD upregulation and STAT3 phosphorylation by EA pretreatment were abolished by two CB1R antagonists, while pretreatment with two CB1R agonists increased the expression of Mn-SOD and phosphorylation level of STAT3. Mn-SOD upregulation by EA attenuates ischemic oxidative damage through CB1R-mediated STAT3 phosphorylation in stroke mice, which may represent one new mechanism of EA pretreatment-induced neuroprotection against cerebral ischemia.

  17. Constrained analogs of CB-1 antagonists: 1,5,6,7-Tetrahydro-4H-pyrrolo[3,2-c]pyridine-4-one derivatives.

    PubMed

    Smith, Roger A; Fathi, Zahra; Brown, Su-Ellen; Choi, Soongyu; Fan, Jianmei; Jenkins, Susan; Kluender, Harold C E; Konkar, Anish; Lavoie, Rico; Mays, Ronald; Natoli, Jennifer; O'Connor, Stephen J; Ortiz, Astrid A; Podlogar, Brent; Taing, Christy; Tomlinson, Susan; Tritto, Theresa; Zhang, Zhonghua

    2007-02-01

    A series of pyrrolopyridinones was designed and synthesized as constrained analogs of the pyrazole CB-1 antagonist rimonabant. Certain examples exhibited very potent hCB-1 receptor binding affinity and functional antagonism with Ki and Kb values below 10 nM, and with high selectivity for CB-1 over CB-2 (>100-fold). A representative analog was established to cause significant appetite suppression and reduction in body weight gain in industry-standard rat models used to develop new therapeutics for obesity. PMID:17107792

  18. Pharmacological properties and therapeutic possibilities for drugs acting upon endocannabinoid receptors.

    PubMed

    Fowler, Christopher J

    2005-12-01

    Clinical trial data are beginning to emerge with respect to the therapeutic efficacy of cannabis extracts for the treatment of chronic pain. Although there is some evidence of efficacy, a major issue concerns the narrow margin between doses producing therapeutic effects and those producing the "highs" associated with cannabis misuse. In addition, long-term use is associated with an increased risk of psychiatric illness. These negative aspects constrain the doses of cannabis extracts and psychoactive cannabinoids that can be given to patients, and raise the risk that properly conducted clinical trials with too low dosages will impact negatively on subsequent drug development in this field. However, recent research has opened up a number of avenues whereby compounds acting directly upon cannabinoid (CB) receptors may have therapeutic potential. In this review, two such areas are discussed, namely a) the possible use of peripherally acting CB agonists and CB2 receptor-selective agonists for the treatment of pain, and b) the possible utility of CB2 receptor agonists for the prevention of stress-induced exacerbations of skin disorders such as psoriasis. A second area of drug development at present is that of CB1 receptor antagonists/inverse agonists, spearheaded by rimonabant, for the treatment of obesity and as an aid for smoking cessation. An important aspect of these compounds is their efficacy and selectivity, and this is discussed in detail in the present review.

  19. Changes and overlapping distribution in the expression of CB1/OX1-GPCRs in rat hippocampus by kainic acid-induced status epilepticus.

    PubMed

    Zhu, Fei; Wang, Xiang-Qing; Chen, Ya-Nan; Yang, Nan; Lang, Sen-Yang; Zuo, Ping-Ping; Zhang, Jia-Tang; Li, Rui-Sheng

    2015-02-01

    Status epilepticus (SE) is a life-threatening neurological disorder. It is important to discover new drugs to control SE without the development of pharmacoresistance. Focus on the cannabinoid receptor and cannabinoid-related compounds might be a good option. Cannabinoid receptor 1 (CB1) and orexin receptor 1 (OX1) both belong to the GPCR superfamily and display "cross-talk" interactions, however, there has been no study of the effect of OX1/CB1 in epilepsy. Therefore, we investigated the potential long-term effects of SE on CB1 and OX1 expression in rat hippocampus, aiming to elucidate whether they are involved in the causative mechanism of epilepsy and whether they might form a heterodimer. In this study, SE was induced with kainic acid, and results of immunohistochemistry and RT-PCR both showed that the expression of CB1 in the hippocampus increased after SE and was significantly higher compared to controls especially 1 week post-SE. However we did not find any significant difference in the expression of OX1 between the SE group and the controls at any time. Under immunofluorescence staining, we observed an overlapping distribution of CB1 and OX1 in the hippocampus. The increased expression of CB1 in the hippocampus indicates that CB1 may play an important role in the underlying mechanism of SE, but the effect of OX1 was not obvious. The overlapping distribution of CB1 and OX1 in the hippocampus indicates that they may form a heterodimer to exert their effect in epilepsy.

  20. Synthesis and characterization of a peripherally restricted CB1 cannabinoid antagonist, URB447, that reduces feeding and body-weight gain in mice.

    PubMed

    LoVerme, Jesse; Duranti, Andrea; Tontini, Andrea; Spadoni, Gilberto; Mor, Marco; Rivara, Silvia; Stella, Nephi; Xu, Cong; Tarzia, Giorgio; Piomelli, Daniele

    2009-02-01

    Cannabinoid CB(1) receptor antagonists reduce body weight in rodents and humans, but their clinical utility as anti-obesity agents is limited by centrally mediated side effects. Here, we describe the first mixed CB(1) antagonist/CB(2) agonist, URB447 ([4-amino-1-(4-chlorobenzyl)-2-methyl-5-phenyl-1H-pyrrol-3-yl](phenyl)methanone), which lowers food intake and body-weight gain in mice without entering the brain or antagonizing central CB(1)-dependent responses. URB447 may provide a useful pharmacological tool for investigating the cannabinoid system, and might serve as a starting point for developing clinically viable CB(1) antagonists devoid of central side effects.

  1. The CB1 antagonist, SR141716A, is protective in permanent photothrombotic cerebral ischemia.

    PubMed

    Reichenbach, Zachary Wilmer; Li, Hongbo; Ward, Sara Jane; Tuma, Ronald F

    2016-09-01

    Modulation of the endocannabinoid system has been shown to have a significant impact on outcomes in animal models of stroke. We have previously reported a protective effect of the CB1 antagonist, SR141716A, in a transient reperfusion mouse model of cerebral ischemia. This protective effect was in part mediated by activation of the 5HT1A receptor. Here we have examined its effect in a mouse model of permanent ischemia induced by photoinjury. The CB1 antagonist was found to be protective in this model. As was the case following transient ischemia reperfusion, SR141716A (5mg/kg) resulted in smaller infarct fractions and stroke volumes when utilized both as a pretreatment and as a post-treatment. In contrast to the effect in a transient ischemia model, the pretreatment effect did not depend on the 5HT1A receptor. Neurological function correlated favorably to the reduction in stroke size when SR141716A was given as a pretreatment. With the incidence of stroke predicted to rise in parallel with an ever aging population, understanding mechanisms underlying ischemia and therapeutics remains a paramount goal of research. PMID:27453059

  2. ENP11, a potential CB1R antagonist, induces anorexia in rats.

    PubMed

    Méndez-Díaz, Mónica; Amancio-Belmont, Octavio; Hernández-Vázquez, Eduardo; Ruiz-Contreras, Alejandra E; Hernández-Luis, Francisco; Prospéro-García, Oscar

    2015-08-01

    Over the past decade, pharmacological manipulation of cannabinoid 1 receptor (CB1R) has become an interesting approach for the management of food ingestion disorders, among other physiological functions. Searching for new substances with similar desirable effects, but fewer side-effects we have synthesized a SR141716A (a cannabinoid receptor inverse agonist also called Rimonabant) analog, 1-(2,4-Difluorophenyl)-4-methyl-N-(1-piperidinyl)-5-[4-(trifluoromethyl)phenyl]-1H-pyrazole-3-carboxamide, ENP11, that so far, as we have previously shown, has induced changes in glucose availability, i.e. hypoglycemia, in rats. In this study we tested the effects, if any, of ENP11 (0.5, 1.0, and 3.0mg/kg) in food ingestion, core temperature, pain perception and motor control in adult Wistar rats. Results showed that ENP11 reduced food ingestion during the first hour immediately after administration. Likewise, ENP11 (1.0mg/kg) blocked anandamide (AEA)-induced hyperphagia during the first 4h of the dark phase of the light-dark cycle, and it also blocked AEA-induced hypothermia. However, none of the ENP11 doses used affected pain perception or motor control. We believe that ENP11 is a potential useful CB1R antagonist that reduces food ingestion and regulates core temperature.

  3. ENP11, a potential CB1R antagonist, induces anorexia in rats.

    PubMed

    Méndez-Díaz, Mónica; Amancio-Belmont, Octavio; Hernández-Vázquez, Eduardo; Ruiz-Contreras, Alejandra E; Hernández-Luis, Francisco; Prospéro-García, Oscar

    2015-08-01

    Over the past decade, pharmacological manipulation of cannabinoid 1 receptor (CB1R) has become an interesting approach for the management of food ingestion disorders, among other physiological functions. Searching for new substances with similar desirable effects, but fewer side-effects we have synthesized a SR141716A (a cannabinoid receptor inverse agonist also called Rimonabant) analog, 1-(2,4-Difluorophenyl)-4-methyl-N-(1-piperidinyl)-5-[4-(trifluoromethyl)phenyl]-1H-pyrazole-3-carboxamide, ENP11, that so far, as we have previously shown, has induced changes in glucose availability, i.e. hypoglycemia, in rats. In this study we tested the effects, if any, of ENP11 (0.5, 1.0, and 3.0mg/kg) in food ingestion, core temperature, pain perception and motor control in adult Wistar rats. Results showed that ENP11 reduced food ingestion during the first hour immediately after administration. Likewise, ENP11 (1.0mg/kg) blocked anandamide (AEA)-induced hyperphagia during the first 4h of the dark phase of the light-dark cycle, and it also blocked AEA-induced hypothermia. However, none of the ENP11 doses used affected pain perception or motor control. We believe that ENP11 is a potential useful CB1R antagonist that reduces food ingestion and regulates core temperature. PMID:26072692

  4. The type 1 cannabinoid receptor is highly expressed in embryonic cortical projection neurons and negatively regulates neurite growth in vitro.

    PubMed

    Vitalis, Tania; Lainé, Jeanne; Simon, Anne; Roland, Alexandre; Leterrier, Christophe; Lenkei, Zsolt

    2008-11-01

    In the rodent and human embryonic brains, the cerebral cortex and hippocampus transiently express high levels of type 1 cannabinoid receptors (CB(1)Rs), at a developmental stage when these areas are composed mainly of glutamatergic neurons. However, the precise cellular and subcellular localization of CB(1)R expression as well as effects of CB(1)R modulation in this cell population remain largely unknown. We report that, starting from embryonic day 12.5, CB(1)Rs are strongly expressed in both reelin-expressing Cajal-Retzius cells and newly differentiated postmitotic glutamatergic neurons of the mouse telencephalon. CB(1)R protein is localized first to somato-dendritic endosomes and at later developmental stages it localizes mostly to developing axons. In young axons, CB(1)Rs are localized both to the axolemma and to large, often multivesicular endosomes. Acute maternal injection of agonist CP-55940 results in the relocation of receptors from axons to somato-dendritic endosomes, indicating the functional competence of embryonic CB(1)Rs. The adult phenotype of CB(1)R expression is established around postnatal day 5. By using pharmacological and mutational modulation of CB(1)R activity in isolated cultured rat hippocampal neurons, we also show that basal activation of CB(1)R acts as a negative regulatory signal for dendritogenesis, dendritic and axonal outgrowth, and branching. Together, the overall negative regulatory role in neurite development suggests that embryonic CB(1)R signaling may participate in the correct establishment of neuronal connectivity and suggests a possible mechanism for the development of reported glutamatergic dysfunction in the offspring following maternal cannabis consumption.

  5. Endocannabinoid System Contributes to Liver Injury and Inflammation by Activation of Bone Marrow-Derived Monocytes/Macrophages in a CB1-Dependent Manner.

    PubMed

    Mai, Ping; Yang, Le; Tian, Lei; Wang, Lin; Jia, Shuangshuang; Zhang, Yuanyuan; Liu, Xin; Yang, Lin; Li, Liying

    2015-10-01

    Hepatic injury undergoes significant increases in endocannabinoidsand infiltrations of macrophages, yet the concrete mechanisms of changes in endocannabinoids and the functions of macrophage-expressed cannabinoid receptors (CBs) are unclear. Biosynthetic and degradative enzymes of endocannabinoids revealed a significant change in human fibrotic liver. Meanwhile, we showed dynamic changes of these enzymes and CBs (CB1 and CB2) from 1 to 56 d in carbon tetrachloride-induced murine liver injury. Biosynthetic enzymes (N-acylphosphatidyl-ethanolamine selective phospholipase D and diacylglycerol lipase-α) and CBs were markedly increased, whereas degradative enzymes (fatty acid amidohydrolase and monoacylglycerol lipase) were downregulated. Moreover, these enzymes intimately correlated with the fibrosis parameter [procollagen α1(III)]. Bone marrow-derived monocytes/macrophages (BMM) expressed CBs. Interestingly, CB1 but not CB2 mediated BMM migration through a Boyden chambers assay, and the effect depended on the G(α)i/o/RhoA/ROCK signaling pathway. ICR mice were lethally irradiated and received BM transplants from enhanced GFP transgenic mice. Four weeks later, mice of BM reconstruction were subjected to carbon tetrachloride-induced liver injury. In the chimeric murine model, we found that blockade of CB1 by administration of a CB1 antagonist inhibited the recruitment of BMM into injured liver using immunofluorescence staining and FACS, but it did not have effects on migration of T cells and dendritic cells without CB1 expression. Furthermore, activation of CB1 enhanced cytokine expression of BMM. In vivo, inhibition of CB1 attenuated the inflammatory cytokine level through real-time RT-PCR and cytometric bead array, ameliorating hepatic inflammation and fibrosis. In this study, we identify inactivation of BMM-expressed CB1 as a therapeutic strategy for reducing hepatic inflammation and fibrosis.

  6. A role of CB1R in inducing θ-rhythm coordination between the gustatory and gastrointestinal insula.

    PubMed

    Kang, Youngnam; Sato, Hajime; Saito, Mitsuru; Yin, Dong Xu; Park, Sook Kyung; Oh, Seog Bae; Bae, Yong Chul; Toyoda, Hiroki

    2016-01-01

    Anandamide (AEA) and N-oleoylethanolamine (OEA) are produced in the intestine and brain during fasting and satiety, respectively. Subsequently, AEA facilitates food intake via activation of cannabinoid type-1 receptors (CB1Rs) while OEA decreases food intake via activation of peroxisome proliferator-activated receptor-α (PPARα) and/or G-protein-coupled receptor 119 (GPR119). Neuronal activity in the gastrointestinal region of the autonomic insula (GI-Au-I) that rostrally adjoins the gustatory insula (Gu-I) increases during fasting, enhancing appetite while umami and sweet taste sensations in Gu-I enhances appetite in GI-Au-I, strongly suggesting the presence of a neural interaction between the Gu-I and GI-Au-I which changes depending on the concentrations of AEA and OEA. However, this possibility has never been investigated. In rat slice preparations, we demonstrate with voltage-sensitive dye imaging that activation of CB1Rs by AEA induces θ-rhythm oscillatory synchronization in the Gu-I which propagates into the GI-Au-I but stops at its caudal end, displaying an oscillatory coordination. The AEA-induced oscillation was abolished by a CB1R antagonist or OEA through activation of GPR119. Our results demonstrate that the neural coordination between the Gu-I and GI-Au-I is generated or suppressed by the opposing activities between CB1R and GPR119. This mechanism may be involved in the feeding behavior based on taste recognition. PMID:27581068

  7. A role of CB1R in inducing θ-rhythm coordination between the gustatory and gastrointestinal insula

    PubMed Central

    Kang, Youngnam; Sato, Hajime; Saito, Mitsuru; Yin, Dong Xu; Park, Sook Kyung; Oh, Seog Bae; Bae, Yong Chul; Toyoda, Hiroki

    2016-01-01

    Anandamide (AEA) and N-oleoylethanolamine (OEA) are produced in the intestine and brain during fasting and satiety, respectively. Subsequently, AEA facilitates food intake via activation of cannabinoid type-1 receptors (CB1Rs) while OEA decreases food intake via activation of peroxisome proliferator-activated receptor-α (PPARα) and/or G-protein-coupled receptor 119 (GPR119). Neuronal activity in the gastrointestinal region of the autonomic insula (GI-Au-I) that rostrally adjoins the gustatory insula (Gu-I) increases during fasting, enhancing appetite while umami and sweet taste sensations in Gu-I enhances appetite in GI-Au-I, strongly suggesting the presence of a neural interaction between the Gu-I and GI-Au-I which changes depending on the concentrations of AEA and OEA. However, this possibility has never been investigated. In rat slice preparations, we demonstrate with voltage-sensitive dye imaging that activation of CB1Rs by AEA induces θ-rhythm oscillatory synchronization in the Gu-I which propagates into the GI-Au-I but stops at its caudal end, displaying an oscillatory coordination. The AEA-induced oscillation was abolished by a CB1R antagonist or OEA through activation of GPR119. Our results demonstrate that the neural coordination between the Gu-I and GI-Au-I is generated or suppressed by the opposing activities between CB1R and GPR119. This mechanism may be involved in the feeding behavior based on taste recognition. PMID:27581068

  8. Deletion of G-protein-coupled receptor 55 promotes obesity by reducing physical activity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cannabinoid receptor 1 (CB1) is the best-characterized cannabinoid receptor, and CB1 antagonists are used in clinical trials to treat obesity. Because of the wide range of CB1 functions, the side effects of CB1 antagonists pose serious concerns. G-protein-coupled receptor 55 (GPR55) is an atypical c...

  9. The future of endocannabinoid-oriented clinical research after CB1 antagonists

    PubMed Central

    Le Foll, Bernard; Gorelick, David A.; Goldberg, Steven R.

    2009-01-01

    Great interest has been shown by the medical community and the public in the cannabinoid CB1 receptor antagonists, such as rimonabant, for treatment of obesity, metabolic syndrome, and possibly drug addiction. This novel class of drug has therapeutic potential for other disorders, as the endocannabinoid system is involved in various health conditions. However, rimonabant, the first clinically available member of this class of drugs, has been linked to increased risk of anxiety, depression, and suicidality. Due to those risks, the European Medicines Agency (EMEA) called for its withdrawal from the market in October, 2008. Shortly after this decision, several pharmaceutical companies (Sanofi-aventis, Merck, Pfizer, Solvay) announced they would stop further clinical research on this class of drug. Here, we provide an overview of those events and make several suggestions for continuing such clinical research, while safeguarding the safety of patients and clinical trial subjects. PMID:19300982

  10. Receptor-dependent and Receptor-independent Endocannabinoid Signaling: A Therapeutic Target for Regulation of Cancer Growth

    PubMed Central

    Van Dross, Rukiyah; Soliman, Eman; Jha, Shalini; Johnson, Travious; Mukhopadhyay, Somnath

    2012-01-01

    The endocannabinoid system comprises the G-protein coupled CB1 cannabinoid receptor (CB1R) and CB2 cannabinoid receptor (CB2R), their endogenous ligands (endocannabinoids), and the enzymes responsible for their synthesis and catabolism. Recent works have revealed several important interactions between the endocannabinoid system and cancer. Moreover, it is now well established that synthetic small molecule cannabinoid receptor agonist acting on either CB1R or CB2R or both exert anti-cancer effects on a variety of tumor cells. Recent results from many laboratories reported that the expression of CB1R and CB2R in prostate cancer, breast cancer, and many other cancer cells are higher than corresponding non-malignant tissues. The mechanisms by which cannabinoids acting on CB1R or CB2R exert their effects on cancer cells are quite diverse and complex. Further, several studies demonstrated that some of the anti-proliferative and apoptotic effects of cannabinoids are mediated by receptor-independent mechanisms. In this minreview we provide an overview of the major findings on the effects of endogenous and/or synthetic cannabinoids on breast and prostate cancer. We also provide insight into receptor independent mechanisms of the anti-cancer effects of cannabinoids under in vitro and in vivo conditions. PMID:23069587

  11. The PVH as a site of CB1-mediated stimulation of thermogenesis by MC4R agonism in male rats.

    PubMed

    Monge-Roffarello, Boris; Labbe, Sebastien M; Roy, Marie-Claude; Lemay, Marie-Laurence; Coneggo, Estelle; Samson, Pierre; Lanfray, Damien; Richard, Denis

    2014-09-01

    The present study was designed to investigate the involvement of the cannabinoid receptor 1 (CB1) in the stimulating effects of the melanocortin-4 receptor (MC4R) agonism on whole-body and brown adipose tissue (BAT) thermogenesis. In a first series of experiments, whole-body and BAT thermogenesis were investigated in rats infused in the third ventricle of the brain with the MC4R agonist melanotan II (MTII) and the CB1 agonist δ9-tetrahydrocannabinol (δ(9)-THC) or the CB1 antagonist AM251. Whole-body thermogenesis was measured by indirect calorimetry and BAT thermogenesis assessed from interscapular BAT (iBAT) temperature. δ(9)-THC blunted the effects of MTII on energy expenditure and iBAT temperature, whereas AM251 tended to potentiate the MTII effects. δ(9)-THC also blocked the stimulating effect of MTII on (14)C-bromopalmitate and (3)H-deoxyglucose uptakes in iBAT. Additionally, δ(9)-THC attenuated the stimulating effect of MTII on the expression of peroxisome proliferator-activated receptor-γ coactivator 1-α (Pgc1α), type II iodothyronine deiodinase (Dio2), carnitine palmitoyltransferase 1B (Cpt1b), and uncoupling protein 1 (Ucp1). In a second series of experiments, we addressed the involvement of the paraventricular hypothalamic nucleus (PVH) in the CB1-mediated effects of MTII on iBAT thermogenesis, which were assessed following the infusion of MTII in the PVH and δ(9)-THC or AM251 in the fourth ventricle of the brain. We demonstrated the ability of δ(9)-THC to blunt MTII-induced iBAT temperature elevation. δ(9)-THC also blocked the PVH effect of MTII on (14)C-bromopalmitate uptake as well as on Pgc1α and Dio2 expression in iBAT. Altogether the results of this study demonstrate the involvement of the PVH in the CB1-mediated stimulating effects of the MC4R agonist MTII on whole-body and BAT thermogenesis.

  12. CB1 Blockade Potentiates Down-Regulation of Lipogenic Gene Expression in Perirenal Adipose Tissue in High Carbohydrate Diet-Induced Obesity

    PubMed Central

    Gavito, Ana Luisa; Suárez, Juan; Pavón, Francisco Javier; Arrabal, Sergio; Romero-Cuevas, Miguel; Bautista, Dolores; Martínez, Ana; de Fonseca, Fernando Rodríguez; Serrano, Antonia; Baixeras, Elena

    2014-01-01

    De novo lipogenesis and hypercaloric diets are thought to contribute to increased fat mass, particularly in abdominal fat depots. CB1 is highly expressed in adipose tissue, and CB1-mediated signalling is associated with stimulation of lipogenesis and diet-induced obesity, though its contribution to increasing fat deposition in adipose tissue is controversial. Lipogenesis is regulated by transcription factors such as liver X receptor (LXR), sterol-response element binding protein (SREBP) and carbohydrate-responsive-element-binding protein (ChREBP). We evaluated the role of CB1 in the gene expression of these factors and their target genes in relation to lipogenesis in the perirenal adipose tissue (PrAT) of rats fed a high-carbohydrate diet (HCHD) or a high-fat diet (HFD). Both obesity models showed an up-regulated gene expression of CB1 and Lxrα in this adipose pad. The Srebf-1 and ChREBP gene expressions were down-regulated in HFD but not in HCHD. The expression of their target genes encoding for lipogenic enzymes showed a decrease in diet-induced obesity and was particularly dramatic in HFD. In HCHD, CB1 blockade by AM251 reduced the Srebf-1 and ChREBP expression and totally abrogated the remnant gene expression of their target lipogenic enzymes. The phosphorylated form of the extracellular signal-regulated kinase (ERK-p), which participates in the CB1-mediated signalling pathway, was markedly present in the PrAT of obese rats. ERK-p was drastically repressed by AM251 indicating that CB1 is actually functional in PrAT of obese animals, though its activation loses the ability to stimulate lipogenesis in PrAT of obese rats. Even so, the remnant expression levels of lipogenic transcription factors found in HCHD-fed rats are still dependent on CB1 activity. Hence, in HCHD-induced obesity, CB1 blockade may help to further potentiate the reduction of lipogenesis in PrAT by means of inducing down-regulation of the ChREBP and Srebf-1 gene expression, and consequently in

  13. THE NEURONAL DISTRIBUTION OF CANNABINOID RECEPTOR TYPE 1 IN THE TRIGEMINAL GANGLION OF THE RAT

    PubMed Central

    PRICE, T. J.; HELESIC, G.; PARGHI, D.; HARGREAVES, K. M.; FLORES, C. M.

    2007-01-01

    Cannabinoid compounds have been shown to produce antinociception and antihyperalgesia by acting upon cannabinoid receptors located in both the CNS and the periphery. A potential mechanism by which cannabinoids could inhibit nociception in the periphery is the activation of cannabinoid receptors located on one or more classes of primary nociceptive neurons. To address this hypothesis, we evaluated the neuronal distribution of cannabinoid receptor type 1 (CB1) in the trigeminal ganglion (TG) of the adult rat through combined in situ hybridization (ISH) and immunohistochemistry (IHC). CB1 receptor mRNA was localized mainly to medium and large diameter neurons of the maxillary and mandibular branches of the TG. Consistent with this distribution, in a de facto nociceptive sensory neuron population that exhibited vanilloid receptor type 1 immunoreactivity, colocalization with CB1 mRNA was also sparse (<5%). Furthermore, very few neurons (approximately 5%) in the peptidergic (defined as calcitonin gene-related peptide- or substance P-immunoreactive) or the isolectin B4-binding sensory neuron populations contained CB1 mRNA. In contrast, and consistent with the neuron-size distribution for CB1, nearly 75% of CB1-positive neurons exhibited N52-immunoreactivity, a marker of myelinated axons. These results indicate that in the rat TG, CB1 receptors are expressed predominantly in neurons that are not thought to subserve nociceptive neurotransmission in the noninjured animal. Taken together with the absence of an above background in situ signal for CB2 mRNA in TG neurons, these findings suggest that the peripherally mediated antinociceptive effects of cannabinoids may involve either as yet unidentified receptors or interaction with afferent neuron populations that normally subserve non-nociceptive functions. PMID:12849749

  14. The neuronal distribution of cannabinoid receptor type 1 in the trigeminal ganglion of the rat.

    PubMed

    Price, T J; Helesic, G; Parghi, D; Hargreaves, K M; Flores, C M

    2003-01-01

    Cannabinoid compounds have been shown to produce antinociception and antihyperalgesia by acting upon cannabinoid receptors located in both the CNS and the periphery. A potential mechanism by which cannabinoids could inhibit nociception in the periphery is the activation of cannabinoid receptors located on one or more classes of primary nociceptive neurons. To address this hypothesis, we evaluated the neuronal distribution of cannabinoid receptor type 1 (CB1) in the trigeminal ganglion (TG) of the adult rat through combined in situ hybridization (ISH) and immunohistochemistry (IHC). CB1 receptor mRNA was localized mainly to medium and large diameter neurons of the maxillary and mandibular branches of the TG. Consistent with this distribution, in a de facto nociceptive sensory neuron population that exhibited vanilloid receptor type 1 immunoreactivity, colocalization with CB1 mRNA was also sparse (<5%). Furthermore, very few neurons (approximately 5%) in the peptidergic (defined as calcitonin gene-related peptide- or substance P-immunoreactive) or the isolectin B4-binding sensory neuron populations contained CB1 mRNA. In contrast, and consistent with the neuron-size distribution for CB1, nearly 75% of CB1-positive neurons exhibited N52-immunoreactivity, a marker of myelinated axons. These results indicate that in the rat TG, CB1 receptors are expressed predominantly in neurons that are not thought to subserve nociceptive neurotransmission in the noninjured animal. Taken together with the absence of an above background in situ signal for CB2 mRNA in TG neurons, these findings suggest that the peripherally mediated antinociceptive effects of cannabinoids may involve either as yet unidentified receptors or interaction with afferent neuron populations that normally subserve non-nociceptive functions.

  15. The CB1 antagonist rimonabant decreases insulin hypersecretion in rat pancreatic islets.

    PubMed

    Getty-Kaushik, Lisa; Richard, Ann-Marie T; Deeney, Jude T; Krawczyk, Sarah; Shirihai, Orian; Corkey, Barbara E

    2009-10-01

    Type 2 diabetes and obesity are characterized by elevated nocturnal circulating free fatty acids, elevated basal insulin secretion, and blunted glucose-stimulated insulin secretion (GSIS). The CB1 receptor antagonist, Rimonabant, has been shown to improve glucose tolerance and insulin sensitivity in vivo but its direct effect on islets has been unclear. Islets from lean littermates and obese Zucker (ZF) and Zucker Diabetic Fatty (ZDF) rats were incubated for 24 h in vitro and exposed to 11 mmol/l glucose and 0.3 mmol/l palmitate (GL) with or without Rimonabant. Insulin secretion was determined at basal (3 mmol/l) or stimulatory (15 mmol/l) glucose concentrations. As expected, basal secretion was significantly elevated in islets from obese or GL-treated lean rats whereas the fold increase in GSIS was diminished. Rimonabant decreased basal hypersecretion in islets from obese rats and GL-treated lean rats without decreasing the fold increase in GSIS. However, it decreased GSIS in islets from lean rats without affecting basal secretion. These findings indicate that Rimonabant has direct effects on islets to reduce insulin secretion when secretion is elevated above normal levels by diet or in obesity. In contrast, it appears to decrease stimulated secretion in islets from lean animals but not in obese or GL-exposed islets. PMID:19644453

  16. Modulation of food consumption and sleep-wake cycle in mice by the neutral CB1 antagonist ABD459.

    PubMed

    Goonawardena, Anushka V; Plano, Andrea; Robinson, Lianne; Ross, Ruth; Greig, Iain; Pertwee, Roger G; Hampson, Robert E; Platt, Bettina; Riedel, Gernot

    2015-04-01

    The brain endocannabinoid system is a potential target for the treatment of psychiatric and metabolic conditions. Here, a novel CB1 receptor antagonist (ABD459) was synthesized and assayed for pharmacological efficacy in vitro and for modulation of food consumption, vigilance staging and cortical electroencephalography in the mouse. ABD459 completely displaced the CB1 agonist CP99540 at a Ki of 8.6 nmol/l, and did not affect basal, but antagonized CP55940-induced GTPγS binding with a KB of 7.7 nmol/l. Acute ABD459 (3-20 mg/kg) reliably inhibited food consumption in nonfasted mice, without affecting motor activity. Active food seeking was reduced for 5-6 h postdrug, with no rebound after washout. Epidural recording of electroencephalogram confirmed that ABD459 (3 mg/kg) robustly reduced rapid eye movement (REM) sleep, with no alterations of wakefulness or non-REM sleep. Effects were strongest during 3 h postdrug, followed by a progressive washout period. The CB1 antagonist AM251 (3 mg/kg) and agonist WIN-55,212-2 (WIN-2: 3 mg/kg) also reduced REM, but variously affected other vigilance stages. WIN-2 caused a global suppression of normalized spectral power. AM251 and ABD459 lowered delta power and increased power in the theta band in the hippocampus, but not the prefrontal cortex. The neutral antagonist ABD459 thus showed a specific role of endocannabinoid release in attention and arousal, possibly through modulation of cholinergic activity.

  17. Modulation of food consumption and sleep–wake cycle in mice by the neutral CB1 antagonist ABD459

    PubMed Central

    Goonawardena, Anushka V.; Plano, Andrea; Robinson, Lianne; Ross, Ruth; Greig, Iain; Pertwee, Roger G.; Hampson, Robert E.; Platt, Bettina; Riedel, Gernot

    2015-01-01

    The brain endocannabinoid system is a potential target for the treatment of psychiatric and metabolic conditions. Here, a novel CB1 receptor antagonist (ABD459) was synthesized and assayed for pharmacological efficacy in vitro and for modulation of food consumption, vigilance staging and cortical electroencephalography in the mouse. ABD459 completely displaced the CB1 agonist CP99540 at a Ki of 8.6 nmol/l, and did not affect basal, but antagonized CP55940-induced GTPγS binding with a KB of 7.7 nmol/l. Acute ABD459 (3–20 mg/kg) reliably inhibited food consumption in nonfasted mice, without affecting motor activity. Active food seeking was reduced for 5–6 h postdrug, with no rebound after washout. Epidural recording of electroencephalogram confirmed that ABD459 (3 mg/kg) robustly reduced rapid eye movement (REM) sleep, with no alterations of wakefulness or non-REM sleep. Effects were strongest during 3 h postdrug, followed by a progressive washout period. The CB1 antagonist AM251 (3mg/kg) and agonist WIN-55,212-2 (WIN-2: 3 mg/kg) also reduced REM, but variously affected other vigilance stages. WIN-2 caused a global suppression of normalized spectral power. AM251 and ABD459 lowered delta power and increased power in the theta band in the hippocampus, but not the prefrontal cortex. The neutral antagonist ABD459 thus showed a specific role of endocannabinoid release in attention and arousal, possibly through modulation of cholinergic activity. PMID:25356730

  18. Lipopolysaccharide-induced murine embryonic resorption involves changes in endocannabinoid profiling and alters progesterone secretion and inflammatory response by a CB1-mediated fashion.

    PubMed

    Wolfson, Manuel L; Correa, Fernando; Leishman, Emma; Vercelli, Claudia; Cymeryng, Cora; Blanco, Julieta; Bradshaw, Heather B; Franchi, Ana María

    2015-08-15

    Genital tract infections are a common complication of human pregnancy that can result in miscarriage. We have previously shown that a lipopolysaccharide (LPS) induces embryonic resorption in a murine model of inflammatory miscarriage. This is accompanied by a dramatic decrease in systemic progesterone levels associated with a robust pro-inflammatory response that results in embryo resorption. Here, we tested the hypothesis that the endogenous cannabinoid system (eCS), through cannabinoid receptor 1 (CB1), plays a role in regulating progesterone levels and, therefore, the pro-inflammatory response. We show that LPS treatment in pregnant mice causes significant changes in the eCS ligands, which are reversed by progesterone treatment. We further show the CB1-KO mice maintain higher plasma progesterone levels after LPS treatment, which is associated with a feebler uterine inflammatory response and a significant drop in embryo resorption. These data suggest that manipulation of CB1 receptors and/or ligands is a potential therapeutic avenue to decrease infection-induced miscarriage.

  19. Hybrid inhibitor of peripheral cannabinoid-1 receptors and inducible nitric oxide synthase mitigates liver fibrosis

    PubMed Central

    Iyer, Malliga R.; Liu, Ziyi; Cao, Zongxian; Jourdan, Tony; Erdelyi, Katalin; Godlewski, Grzegorz; Szanda, Gergő; Liu, Jie; Park, Joshua K.; Mukhopadhyay, Bani; Rosenberg, Avi Z.; Liow, Jeih-San; Lorenz, Robin G.; Pacher, Pal; Innis, Robert B.

    2016-01-01

    Liver fibrosis, a consequence of chronic liver injury and a way station to cirrhosis and hepatocellular carcinoma, lacks effective treatment. Endocannabinoids acting via cannabinoid-1 receptors (CB1R) induce profibrotic gene expression and promote pathologies that predispose to liver fibrosis. CB1R antagonists produce opposite effects, but their therapeutic development was halted due to neuropsychiatric side effects. Inducible nitric oxide synthase (iNOS) also promotes liver fibrosis and its underlying pathologies, but iNOS inhibitors tested to date showed limited therapeutic efficacy in inflammatory diseases. Here, we introduce a peripherally restricted, orally bioavailable CB1R antagonist, which accumulates in liver to release an iNOS inhibitory leaving group. In mouse models of fibrosis induced by CCl4 or bile duct ligation, the hybrid CB1R/iNOS antagonist surpassed the antifibrotic efficacy of the CB1R antagonist rimonabant or the iNOS inhibitor 1400W, without inducing anxiety-like behaviors or CB1R occupancy in the CNS. The hybrid inhibitor also targeted CB1R-independent, iNOS-mediated profibrotic pathways, including increased PDGF, Nlrp3/Asc3, and integrin αvβ6 signaling, as judged by its ability to inhibit these pathways in cnr1–/– but not in nos2–/– mice. Additionally, it was able to slow fibrosis progression and to attenuate established fibrosis. Thus, dual-target peripheral CB1R/iNOS antagonists have therapeutic potential in liver fibrosis. PMID:27525312

  20. Hybrid inhibitor of peripheral cannabinoid-1 receptors and inducible nitric oxide synthase mitigates liver fibrosis

    PubMed Central

    Liu, Ziyi; Cao, Zongxian; Jourdan, Tony; Erdelyi, Katalin; Godlewski, Grzegorz; Szanda, Gergő; Liu, Jie; Park, Joshua K.; Mukhopadhyay, Bani; Rosenberg, Avi Z.; Liow, Jeih-San; Lorenz, Robin G.; Pacher, Pal; Innis, Robert B.; Kunos, George

    2016-01-01

    Liver fibrosis, a consequence of chronic liver injury and a way station to cirrhosis and hepatocellular carcinoma, lacks effective treatment. Endocannabinoids acting via cannabinoid-1 receptors (CB1R) induce profibrotic gene expression and promote pathologies that predispose to liver fibrosis. CB1R antagonists produce opposite effects, but their therapeutic development was halted due to neuropsychiatric side effects. Inducible nitric oxide synthase (iNOS) also promotes liver fibrosis and its underlying pathologies, but iNOS inhibitors tested to date showed limited therapeutic efficacy in inflammatory diseases. Here, we introduce a peripherally restricted, orally bioavailable CB1R antagonist, which accumulates in liver to release an iNOS inhibitory leaving group. In mouse models of fibrosis induced by CCl4 or bile duct ligation, the hybrid CB1R/iNOS antagonist surpassed the antifibrotic efficacy of the CB1R antagonist rimonabant or the iNOS inhibitor 1400W, without inducing anxiety-like behaviors or CB1R occupancy in the CNS. The hybrid inhibitor also targeted CB1R-independent, iNOS-mediated profibrotic pathways, including increased PDGF, Nlrp3/Asc3, and integrin αvβ6 signaling, as judged by its ability to inhibit these pathways in cnr1−/− but not in nos2−/− mice. Additionally, it was able to slow fibrosis progression and to attenuate established fibrosis. Thus, dual-target peripheral CB1R/iNOS antagonists have therapeutic potential in liver fibrosis. PMID:27525312

  1. Human metabolites of synthetic cannabinoids JWH-018 and JWH-073 bind with high affinity and act as potent agonists at cannabinoid type-2 receptors

    PubMed Central

    Rajasekaran, Maheswari; Brents, Lisa K.; Franks, Lirit N.; Moran, Jeffery H.; Prather, Paul L.

    2013-01-01

    K2 or Spice is an emerging drug of abuse that contains synthetic cannabinoids, including JWH-018 and JWH-073. Recent reports indicate that monohydroxylated metabolites of JWH-018 and JWH-073 retain high affinity and activity at cannabinoid type-1 receptors (CB1Rs), potentially contributing to the enhanced toxicity of K2 compared to marijuana. Since the parent compounds also bind to cannabinoid type-2 receptors (CB2Rs), this study investigated the affinity and intrinsic activity of JWH-018, JWH-073 and several monohydroxylated metabolites at human CB2Rs (hCB2Rs). The affinity of cannabinoids for hCB2Rs was determined by competition binding studies employing CHO-hCB2 membranes. Intrinsic activity of compounds was assessed by G-protein activation and adenylyl cyclase (AC)-inhibition in CHO-hCB2 cells. JWH-073, JWH-018 and several of their human metabolites exhibit nanomolar affinity and act as potent agonists at hCB2Rs. Furthermore, a major omega hydroxyl metabolite of JWH-073 (JWH-073-M5) binds to CB2Rs with 10-fold less affinity than the parent molecule, but unexpectedly, is equipotent in regulating AC-activity when compared to the parent molecule. Finally, when compared to CP-55,940 and Δ9-tetrahydrocannabinol (Δ9-THC), JWH-018, JWH-018-M5 and JWH-073-M5 require significantly less CB2R occupancy to produce similar levels of AC-inhibition, indicating that these compounds may more efficiently couple CB2Rs to AC than the well characterized cannabinoid agonists examined. These results indicate that JWH-018, JWH-073 and several major human metabolites of these compounds exhibit high affinity and demonstrate distinctive signaling properties at CB2Rs. Therefore, future studies examining pharmacological and toxicological properties of synthetic cannabinoids present in K2 products should consider potential actions of these drugs at both CB1 and CB2Rs. PMID:23537664

  2. Human metabolites of synthetic cannabinoids JWH-018 and JWH-073 bind with high affinity and act as potent agonists at cannabinoid type-2 receptors.

    PubMed

    Rajasekaran, Maheswari; Brents, Lisa K; Franks, Lirit N; Moran, Jeffery H; Prather, Paul L

    2013-06-01

    K2 or Spice is an emerging drug of abuse that contains synthetic cannabinoids, including JWH-018 and JWH-073. Recent reports indicate that monohydroxylated metabolites of JWH-018 and JWH-073 retain high affinity and activity at cannabinoid type-1 receptors (CB1Rs), potentially contributing to the enhanced toxicity of K2 compared to marijuana. Since the parent compounds also bind to cannabinoid type-2 receptors (CB2Rs), this study investigated the affinity and intrinsic activity of JWH-018, JWH-073 and several monohydroxylated metabolites at human CB2Rs (hCB2Rs). The affinity of cannabinoids for hCB2Rs was determined by competition binding studies employing CHO-hCB2 membranes. Intrinsic activity of compounds was assessed by G-protein activation and adenylyl cyclase (AC)-inhibition in CHO-hCB2 cells. JWH-073, JWH-018 and several of their human metabolites exhibit nanomolar affinity and act as potent agonists at hCB2Rs. Furthermore, a major omega hydroxyl metabolite of JWH-073 (JWH-073-M5) binds to CB2Rs with 10-fold less affinity than the parent molecule, but unexpectedly, is equipotent in regulating AC-activity when compared to the parent molecule. Finally, when compared to CP-55,940 and Δ(9)-tetrahydrocannabinol (Δ(9)-THC), JWH-018, JWH-018-M5 and JWH-073-M5 require significantly less CB2R occupancy to produce similar levels of AC-inhibition, indicating that these compounds may more efficiently couple CB2Rs to AC than the well characterized cannabinoid agonists examined. These results indicate that JWH-018, JWH-073 and several major human metabolites of these compounds exhibit high affinity and demonstrate distinctive signaling properties at CB2Rs. Therefore, future studies examining pharmacological and toxicological properties of synthetic cannabinoids present in K2 products should consider potential actions of these drugs at both CB1 and CB2Rs.

  3. Permanent Suppression of Cortical Oscillations in Mice After Adolescent Exposure to Cannabinoids: Receptor Mechanisms

    PubMed Central

    Raver, Sylvina M.; Keller, Asaf

    2014-01-01

    Marijuana use in adolescence, but not adulthood, may permanently impair cognitive functioning and increase the risk of developing schizophrenia. Cortical oscillations are patterns of neural network activity implicated in cognitive processing, and are abnormal in patients with schizophrenia. We have recently reported that cortical oscillations are suppressed in adult mice that were treated, in adolescence but not adulthood, with the cannabinoids WIN55,212-2 (WIN) or Δ9tetrahydrocannabinol (THC). WIN and THC are cannabinoid types 1 and 2 receptor (CB1R & CB2R) agonists, and also have activity at non-cannabinoid receptor targets. However, as acute WIN and THC administration can suppress oscillations through CB1Rs, we hypothesize that a similar mechanism underlies the permanent suppression of oscillations by repeated cannabinoid exposure in adolescence. Here we test the prediction that cannabinoid exposure in adolescence permanently suppresses cortical oscillations by acting through CB1Rs, and that these suppressive effects can be antagonized by a CB1R antagonist. We treated adolescent mice with various cannabinoid compounds, and pharmacologically-evoked oscillations in vitro in adult mice. We find that WIN exposure for six days in early adolescence suppresses oscillations preferentially in adult medial prefrontal cortex (mPFC) via CB1Rs, and that a similar CB1R mechanism accounts for the suppressive effects of long-term (20 day) adolescent THC in adult somatosensory cortex (SCx). Unexpectedly, we also find that CB2Rs may be involved in the suppression of oscillations in both mPFC and SCx by long-term adolescent cannabinoid exposure, and that non-cannabinoid receptors may also contribute to oscillation suppression in adult mPFC. These findings represent a novel attempt to antagonize the effects of adolescent cannabinoid exposure on neural network activity, and reveal the contribution of non-CB1R targets to the suppression of cortical oscillations. PMID:25036610

  4. Effects of a Novel CB1 Agonist on Visual Attention in Male Rats: Role of Strategy and Expectancy in Task Accuracy

    PubMed Central

    Miller, Rikki L. A.; Thakur, Ganesh A.; Stewart, William N.; Bow, Joshua P.; Bajaj, Shama; Makriyannis, Alexandros; McLaughlin, Peter J.

    2014-01-01

    The effects of cannabinoid CB1 agonists (including Δ9-tetrahydrocannabinol, the main psychoactive component of marijuana) on attention are uncertain, with reports of impairments, no effects, and occasionally performance enhancements. To better understand these effects, we sought to uncover a role of changing online (within-session) strategy as a possible mediator of the effects of the novel, potent CB1 agonist AM 4054, on a model of sustained attention in male Sprague–Dawley rats. In this operant, two-choice reaction time (RT) task, AM 4054 decreased accuracy in an asymmetric manner; that is, performance was spared on one lever but impaired on the other. Furthermore, this pattern was enhanced by the outcome of the previous trial such that AM 4054 strengthened a win-stay strategy on the “preferred” lever and a lose-shift strategy on the “nonpreferred” lever. This pattern is often found in tests of expectancy; therefore, in a second experiment AM 4054 enhanced expectancy that we engendered by altering the probability of the two stimulus cues. Accuracy was impaired in reporting the less frequent cue, but only after two or more presentations of the more frequent cue. Taking the results of the experiments together, AM 4054 engendered expectancy by increasing the role of previous trial location and outcome on performance of future trials, diminishing stimulus control (and therefore, accuracy). This novel effect of CB1 receptor agonism may contribute to the deleterious effects of cannabinoids on attention. PMID:24099361

  5. Prefrontal activity during working memory is modulated by the interaction of variation in CB1 and COX2 coding genes and correlates with frequency of cannabis use.

    PubMed

    Taurisano, Paolo; Antonucci, Linda A; Fazio, Leonardo; Rampino, Antonio; Romano, Raffaella; Porcelli, Annamaria; Masellis, Rita; Colizzi, Marco; Quarto, Tiziana; Torretta, Silvia; Di Giorgio, Annabella; Pergola, Giulio; Bertolino, Alessandro; Blasi, Giuseppe

    2016-08-01

    The CB1 cannabinoid receptor is targeted in the brain by endocannabinoids under physiological conditions as well as by delta9-tetrahydrocannabinol under cannabis use. Furthermore, its signaling appears to affect brain cognitive processing. Recent findings highlight a crucial role of cyclooxygenase-2 (COX-2) in the mechanism of intraneuronal CB1 signaling transduction, while others indicate that two single nucleotide polymorphisms (SNPs) (rs1406977 and rs20417) modulate expression of CB1 (CNR1) and COX-2 (PTGS2) coding genes, respectively. Here, our aim was to use fMRI to investigate in healthy humans whether these SNPs interact in modulating prefrontal activity during working memory processing and if this modulation is linked with cannabis use. We recruited 242 healthy subjects genotyped for CNR1 rs1406977 and PTGS2 rs20417 that performed the N-back working memory task during fMRI and were interviewed using the Cannabis Experience Questionnaire (CEQ). We found that the interaction between CNR1 rs1406977 and PTGS2 rs20417 is associated with dorsolateral prefrontal cortex (DLPFC) activity such that specific genotype configurations (CNR1 C carriers/PTGS2 C carriers and CNR1 TT/PTGS2 GG) predict lower cortical response versus others in spite of similar behavioral accuracy. Furthermore, DLPFC activity in the cluster associated with the CNR1 by PTGS2 interaction was negatively correlated with behavioral efficiency and positively correlated with frequency of cannabis use in cannabis users. These results suggest that a genetically modulated balancing of signaling within the CB1-COX-2 pathway may reflect on more or less efficient patterns of prefrontal activity during working memory. Frequency of cannabis use may be a factor for further modulation of CNR1/PTGS2-mediated cortical processing associated with this cognitive process. PMID:27261878

  6. Sex-Specific Alterations in Hippocampal Cannabinoid 1 Receptor Expression Following Adolescent Delta-9-Tetrahydrocannabinol Treatment in the Rat

    PubMed Central

    Silva, Lindsay; Harte-Hargrove, Lauren; Izenwasser, Sari; Frank, Ashley; Wade, Dean; Dow-Edwards, Diana

    2015-01-01

    Marijuana use by adolescents has been on the rise since the early 1990’s. With recent legalization and decriminalization acts passed, cannabinoid exposure in adolescents will undoubtedly increase. Human studies are limited in their ability to examine underlying changes in brain biochemistry making rodent models valuable. Studies in adult and adolescent animals show region and sex specific downregulation of the cannabinoid 1 (CB1) receptor following chronic cannabinoid treatment. However, although sex-dependent changes in behavior have been observed during the drug abstinence period following adolescent cannabinoid exposure, little is known about CB1 receptor expression during this critical time. In order to characterize CB1 receptor expression following chronic adolescent Δ-9-tetrahydrocannabinol (THC) exposure, we used [3H]CP55,940 binding to assess CB1 receptor expression in the dentate gyrus and areas CA1, CA2, and CA3 of the hippocampus in both male and female adolescent rats at both 24 hours and 2 weeks post chronic THC treatment. Consistent with other reported findings, we found downregulation of the CB1 receptor in the hippocampal formation at 24 hours post treatment. While this downregulation persisted in both sexes following two weeks of abstinence in the CA2 region, in females, this downregulation also persisted in areas CA1 and CA3. Expression in the dentate gyrus returned to the normal range by two weeks. These data suggest that selective regions of the hippocampus show persistent reductions in CB1 receptor expression and that these reductions are more widespread in female compared to male adolescents. PMID:26118897

  7. Nonpsychotropic cannabinoids, abnormal cannabidiol and canabigerol-dimethyl heptyl, act at novel cannabinoid receptors to reduce intraocular pressure.

    PubMed

    Szczesniak, Anna-Maria; Maor, Yehoshua; Robertson, Harold; Hung, Orlando; Kelly, Melanie E M

    2011-10-01

    The objective of our study was to examine the pharmacology of the intraocular pressure (IOP)-lowering actions of the behaviorally inactive cannabinoids, abnormal cannabidiol (abn-CBD), and a cannabigerol analog, cannabigerol-dimethyl heptyl (CBG-DMH), in comparison to that of the nonselective cannabinoid 1 receptor (CB(1)R) and CB(2)R agonist, WIN55,212-2, in Brown Norway rats. The IOP was measured noninvasively using a hand-held tonometer in nonanesthetized animals. The IOP measurements were taken every 15 min for a period of 2 h after drug administration. All drugs were administered via intraperitoneal (i.p.) injections, and abn-CBD and CBG-DMH were also given topically. Both abn-CBD and CBG-DMH reduced IOP when administrated i.p. at doses of ≥2.5 mg/kg or topically at concentrations of 1%-2%. The IOP-lowering effects of abn-CBD and CBG-DMH were reduced by i.p. administration of O-1918 (2.5 mg/kg), a selective antagonist of the abn-CBD-sensitive cannabinoid-related receptor (CBx), but were unaffected by the CB(1)R antagonist, AM251 (2.5 mg/kg), or the CB(2)R antagonist, AM630 (2.5 mg/kg). In contrast, the IOP-lowering action of WIN55,212-2 was completely blocked by the CB(1)R-selective antagonist, AM251, and was unaffected by the CBx receptor antagonist, O-1918. However, similar to the nonpsychotropic cannabinoids, the ocular hypotensive actions of WIN55,212-2 were also insensitive to block by the CB(2)R antagonist, AM630. Consistent with this, the selective CB(2)R agonist, HU-308 (2 mg/kg) failed to reduce IOP in Brown Norway rats. Concurrent application of a dose of WIN55,212-2 that was subthreshold to reduce IOP (0.25 mg/kg), together with a topical dose of either abn-CBD (0.5%) or CBG-DMH (0.25%), respectively, potentiated the ocular hypotensive effect of either compound applied alone. This study demonstrates that the atypical cannabinoid, abn-CBD, and the cannabigerol analog, CBG-DMH, decrease IOP in the normotensive Brown Norway rat eye independent of CB

  8. Double Dissociation of Monoacylglycerol Lipase Inhibition and CB1 Antagonism in the Central Amygdala, Basolateral Amygdala, and the Interoceptive Insular Cortex on the Affective Properties of Acute Naloxone-Precipitated Morphine Withdrawal in Rats.

    PubMed

    Wills, Kiri L; Petrie, Gavin N; Millett, Geneva; Limebeer, Cheryl L; Rock, Erin M; Niphakis, Micah J; Cravatt, Benjamin F; Parker, Linda A

    2016-06-01

    Both CB1 receptor antagonism and agonism, in particular by 2-arachidonyl glycerol (2-AG), have been shown to reduce somatic symptoms of morphine withdrawal (MWD). Here we evaluated the effects of both systemic pretreatment with the monoacylglycerol lipase (MAGL) inhibitor MJN110 (which selectively elevates 2-AG) and central administration of both MJN110 and the CB1 antagonist (AM251) on the affective properties of MWD. Acute MWD induced place aversion occurs when naloxone is administered 24 h following a single exposure to a high dose of morphine. Systemic pretreatment with the MAGL inhibitor, MJN110, prevented the aversive effects of acute MWD by a CB1 receptor-dependent mechanism. Furthermore, in a double dissociation, AM251 infusions into the central amygdala, but MJN110 infusions into the basolateral amygdala, interfered with the naloxone-precipitated MWD induced place aversion. As well, MJN110, but not AM251, infusions into the interoceptive insular cortex (a region known to be activated in acute MWD) also prevented the establishment of the place aversion by a CB1 mechanism of action. These findings reveal the respective sites of action of systemically administered MJN110 and AM251 in regulating the aversive effects of MWD.

  9. Targeting Cannabinoid CB2 Receptors in the Central Nervous System. Medicinal Chemistry Approaches with Focus on Neurodegenerative Disorders

    PubMed Central

    Navarro, Gemma; Morales, Paula; Rodríguez-Cueto, Carmen; Fernández-Ruiz, Javier; Jagerovic, Nadine; Franco, Rafael

    2016-01-01

    Endocannabinoids activate two types of specific G-protein-coupled receptors (GPCRs), namely cannabinoid CB1 and CB2. Contrary to the psychotropic actions of agonists of CB1 receptors, and serious side effects of the selective antagonists of this receptor, drugs acting on CB2 receptors appear as promising drugs to combat CNS diseases (Parkinson's disease, Huntington's chorea, cerebellar ataxia, amyotrohic lateral sclerosis). Differential localization of CB2 receptors in neural cell types and upregulation in neuroinflammation are keys to understand the therapeutic potential in inter alia diseases that imply progressive neurodegeneration. Medicinal chemistry approaches are now engaged to develop imaging tools to map receptors in the living human brain, to develop more efficacious agonists, and to investigate the possibility to develop allosteric modulators. PMID:27679556

  10. Targeting Cannabinoid CB2 Receptors in the Central Nervous System. Medicinal Chemistry Approaches with Focus on Neurodegenerative Disorders.

    PubMed

    Navarro, Gemma; Morales, Paula; Rodríguez-Cueto, Carmen; Fernández-Ruiz, Javier; Jagerovic, Nadine; Franco, Rafael

    2016-01-01

    Endocannabinoids activate two types of specific G-protein-coupled receptors (GPCRs), namely cannabinoid CB1 and CB2. Contrary to the psychotropic actions of agonists of CB1 receptors, and serious side effects of the selective antagonists of this receptor, drugs acting on CB2 receptors appear as promising drugs to combat CNS diseases (Parkinson's disease, Huntington's chorea, cerebellar ataxia, amyotrohic lateral sclerosis). Differential localization of CB2 receptors in neural cell types and upregulation in neuroinflammation are keys to understand the therapeutic potential in inter alia diseases that imply progressive neurodegeneration. Medicinal chemistry approaches are now engaged to develop imaging tools to map receptors in the living human brain, to develop more efficacious agonists, and to investigate the possibility to develop allosteric modulators.

  11. Targeting Cannabinoid CB2 Receptors in the Central Nervous System. Medicinal Chemistry Approaches with Focus on Neurodegenerative Disorders.

    PubMed

    Navarro, Gemma; Morales, Paula; Rodríguez-Cueto, Carmen; Fernández-Ruiz, Javier; Jagerovic, Nadine; Franco, Rafael

    2016-01-01

    Endocannabinoids activate two types of specific G-protein-coupled receptors (GPCRs), namely cannabinoid CB1 and CB2. Contrary to the psychotropic actions of agonists of CB1 receptors, and serious side effects of the selective antagonists of this receptor, drugs acting on CB2 receptors appear as promising drugs to combat CNS diseases (Parkinson's disease, Huntington's chorea, cerebellar ataxia, amyotrohic lateral sclerosis). Differential localization of CB2 receptors in neural cell types and upregulation in neuroinflammation are keys to understand the therapeutic potential in inter alia diseases that imply progressive neurodegeneration. Medicinal chemistry approaches are now engaged to develop imaging tools to map receptors in the living human brain, to develop more efficacious agonists, and to investigate the possibility to develop allosteric modulators. PMID:27679556

  12. Targeting Cannabinoid CB2 Receptors in the Central Nervous System. Medicinal Chemistry Approaches with Focus on Neurodegenerative Disorders

    PubMed Central

    Navarro, Gemma; Morales, Paula; Rodríguez-Cueto, Carmen; Fernández-Ruiz, Javier; Jagerovic, Nadine; Franco, Rafael

    2016-01-01

    Endocannabinoids activate two types of specific G-protein-coupled receptors (GPCRs), namely cannabinoid CB1 and CB2. Contrary to the psychotropic actions of agonists of CB1 receptors, and serious side effects of the selective antagonists of this receptor, drugs acting on CB2 receptors appear as promising drugs to combat CNS diseases (Parkinson's disease, Huntington's chorea, cerebellar ataxia, amyotrohic lateral sclerosis). Differential localization of CB2 receptors in neural cell types and upregulation in neuroinflammation are keys to understand the therapeutic potential in inter alia diseases that imply progressive neurodegeneration. Medicinal chemistry approaches are now engaged to develop imaging tools to map receptors in the living human brain, to develop more efficacious agonists, and to investigate the possibility to develop allosteric modulators.

  13. Agrin acts via a MuSK receptor complex.

    PubMed

    Glass, D J; Bowen, D C; Stitt, T N; Radziejewski, C; Bruno, J; Ryan, T E; Gies, D R; Shah, S; Mattsson, K; Burden, S J; DiStefano, P S; Valenzuela, D M; DeChiara, T M; Yancopoulos, G D

    1996-05-17

    Formation of th neuromuscular junction depends upon reciprocal inductive interactions between the developing nerve and muscle, resulting in the precise juxtaposition of a differentiated nerve terminal with a highly specialized patch on the muscle membrane, termed the motor endplate. Agrin is a nerve-derived factor that can induced molecular reorganizations at the motor endplate, but the mechanism of action of agrin remains poorly understood. MuSK is a receptor tyrosine kinase localized to the motor endplate, seemingly well positioned to receive a key nerve-derived signal. Mice lacking either agrin or MuSK have recently been generated and exhibit similarly profound defects in their neuromuscular junctions. Here we demonstrate that agrin acts via a receptor complex that includes MuSK as well as a myotube-specific accessory component.

  14. Signal transduction activated by cannabinoid receptors.

    PubMed

    Díaz-Laviada, Inés; Ruiz-Llorente, Lidia

    2005-07-01

    Since the discovery that cannabinoids exert biological actions through binding to specific receptors, signal mechanisms triggered by these receptors have been focus of extensive study. This review summarizes the current knowledge of the signalling events produced by cannabinoids from membrane receptors to downstream regulators. Two types of cannabinoid receptors have been identified to date: CB(1) and CB(2) both belonging to the heptahelichoidal receptor family but with different tissue distribution and signalling mechanisms. Coupling to inhibitory guanine nucleotide-binding protein and thus inhibition of adenylyl cyclase has been observed in both receptors but other signal transduction pathways that are regulated or not by these G proteins are differently activated upon ligand-receptor binding including ion channels, sphingomyelin hydrolysis, ceramide generation, phospholipases activation and downstream targets as MAP kinase cascade, PI3K, FAK or NOS regulation. Cannabinoids may also act independently of CB(1)or CB(2) receptors. The existence of new unidentified putative cannabinoid receptors has been claimed by many investigators. Endocannabinoids activate vanilloid TRPV1 receptors that may mediate some of the cannabinoid effects. Other actions of cannabinoids can occur through non-receptor-mediated mechanisms.

  15. Activation of LVGCCs and CB1 Receptors Required for Destabilization of Reactivated Contextual Fear Memories

    ERIC Educational Resources Information Center

    Suzuki, Akinobu; Mukawa, Takuya; Tsukagoshi, Akinori; Frankland, Paul W.; Kida, Satoshi

    2008-01-01

    Previous studies have shown that inhibiting protein synthesis shortly after reactivation impairs the subsequent expression of a previously consolidated fear memory. This has suggested that reactivation returns a memory to a labile state and that protein synthesis is required for the subsequent restabilization of memory. While the molecular…

  16. Piezometric response in shallow bedrock at CB1: Implications for runoff generation and landsliding

    NASA Astrophysics Data System (ADS)

    Montgomery, David R.; Dietrich, William E.; Heffner, John T.

    2002-12-01

    Experimental observations comparing two steep unchanneled valleys in the Oregon Coast Range, one intensively instrumented (CB1) and the other monitored for runoff but which produced a debris flow (CB2), shed light on the mechanisms of shallow flow in bedrock, its interaction with the vadose zone, and its role in generating landslides. Previous work at CB1 led to the proposal that during storms pulses of rainfall transmit pressure waves through the vadose zone and down to the saturated zone to create rapid pore pressure response and runoff [, 1998]. Here, we document the associated rapid pore pressure response in the shallow fractured bedrock that underlies these colluvium-mantled sites and examine its influence on the generation of storm flow, seasonal variations in base flow, and slope stability in the overlying colluvial soil. Our observations document rapid piezometric response in the shallow bedrock and a substantial contribution of shallow fracture flow to both storm flow and seasonal variations in base flow. Saturated hydraulic conductivity in the colluvial soil decreases with depth below the ground surface, but the conductivity of the near-surface bedrock displays no depth dependence and varies over five orders of magnitude. Analysis of runoff intensity and duration in a series of storms that did and did not trigger debris flows in the surrounding area shows that the landslide inducing storms had the greatest intensity over durations similar to those predicted by a simple model of piezometric response. During a monitored storm in February 1992, the channel head at the base of the neighboring CB2 site failed as a debris flow. Automated piezometric measurements document that the CB2 debris flow initiated several hours after peak discharge, coincident with localized development of upward spikes of pressure head from near-surface bedrock into the overlying colluvial soil in CB1. Artesian flow observed exfiltrating from bedrock fractures on the failure surfaces

  17. Effects of cannabinoid receptor 1 (brain) on lipid accumulation by transcriptional control of CPT1A and CPT1B.

    PubMed

    Zhang, Y-F; Yuan, Z-Q; Song, D-G; Zhou, X-H; Wang, Y-Z

    2014-02-01

    CB1 (also known as CNR1), a main receptor for cannabinoids acting at PPARs, can enhance fat deposition. Carnitine palmitoyltransferase-1 (CPT1), an enzyme responsible for the transport of long-chain fatty acids for β-oxidation, is closely related to fat deposition. Whether CB1 can regulate intramuscular adipocytes lipid accumulation through regulation of CPT1 is unclear. Based on the investigation of tissue- and breed-specific CPT1A and CPT1B mRNA expression levels in Jinhua and Landrace pigs, we studied the effects of CB1 on lipid accumulation and CPT1B expression by treating porcine intramuscular adipocytes with CB1 antagonist Δ9-THC and antagonist SR141716. Results showed that muscle CPT1 mRNA was expressed at higher levels in the longissimus dorsi and subcutaneous fat. Liver CPT1A mRNA expression levels were higher in the pancreas, duodenum and liver. Compared with Landrace pigs, CPT1A and CPT1B in the longissimus dorsi of Jinhua pigs were significantly higher and positively correlated with intramuscular fat content. However, for subcutaneous fat, CPT1 levels were significantly lower and negatively correlated with body fat percentage. Δ9-THC significantly increased CB1 mRNA levels and lipid accumulation but decreased CPT1A and CPT1B mRNA levels. Conversely, SR141716 reduced CB1 mRNA levels but increased CPT1A and CPT1B mRNA levels, resulting in decreased lipid accumulation. The CPT1 antagonist etomoxir did not affect CB1 expression, suggesting that CB1 is likely upstream of CPT1A and CPT1B. Meanwhile, PPARA expression was greatly decreased when CPT1A and CPT1B were inhibited and enhanced when CPT1A and CPT1B were activated. Taken together, these data indicate that CB1 can affect intramuscular fat deposition by regulating both CPT1A and CPT1B mRNA expression, with the PPARA signal pathway likely playing a major role in this process. PMID:23914904

  18. Metalloproteolytic receptor shedding…platelets "acting their age".

    PubMed

    Andrews, Robert K; Gardiner, Elizabeth E

    2016-09-01

    Whilst significant effort has been focused on development of tools and approaches to clinically modulate activation processes that consume platelets, the platelet receptors that initiate activation processes remain untargeted. The modulation of receptor levels is also linked to underlying platelet aging processes which influence normal platelet lifespan and also the functionality and survival of stored platelets that are used in transfusion. In this review, we will focus on platelet adhesion receptors initiating thrombus formation, and discuss how regulation of levels of these receptors impact platelet function and platelet survival. PMID:27459696

  19. Cannabinoid receptor 1 is a major mediator of renal fibrosis.

    PubMed

    Lecru, Lola; Desterke, Christophe; Grassin-Delyle, Stanislas; Chatziantoniou, Christos; Vandermeersch, Sophie; Devocelle, Aurore; Vernochet, Amelia; Ivanovski, Ninoslav; Ledent, Catherine; Ferlicot, Sophie; Dalia, Meriem; Saïd, Myriam; Beaudreuil, Séverine; Charpentier, Bernard; Vazquez, Aimé; Giron-Michel, Julien; Azzarone, Bruno; Durrbach, Antoine; François, Hélène

    2015-07-01

    Chronic kidney disease, secondary to renal fibrogenesis, is a burden on public health. There is a need to explore new therapeutic pathways to reduce renal fibrogenesis. To study this, we used unilateral ureteral obstruction (UUO) in mice as an experimental model of renal fibrosis and microarray analysis to compare gene expression in fibrotic and normal kidneys. The cannabinoid receptor 1 (CB1) was among the most upregulated genes in mice, and the main endogenous CB1 ligand (2-arachidonoylglycerol) was significantly increased in the fibrotic kidney. Interestingly, CB1 expression was highly increased in kidney biopsies of patients with IgA nephropathy, diabetes, and acute interstitial nephritis. Both genetic and pharmacological knockout of CB1 induced a profound reduction in renal fibrosis during UUO. While CB2 is also involved in renal fibrogenesis, it did not potentiate the role of CB1. CB1 expression was significantly increased in myofibroblasts, the main effector cells in renal fibrogenesis, upon TGF-β1 stimulation. The decrease in renal fibrosis during CB1 blockade could be explained by a direct action on myofibroblasts. CB1 blockade reduced collagen expression in vitro. Rimonabant, a selective CB1 endocannabinoid receptor antagonist, modulated the macrophage infiltrate responsible for renal fibrosis in UUO through a decrease in monocyte chemoattractant protein-1 synthesis. Thus, CB1 has a major role in the activation of myofibroblasts and may be a new target for treating chronic kidney disease.

  20. Mechanism of Positive Allosteric Modulators Acting on AMPA Receptors

    SciTech Connect

    Jin,R.; Clark, S.; Weeks, A.; Dudman, J.; Gouaux, E.; Partin, K.

    2005-01-01

    Ligand-gated ion channels involved in the modulation of synaptic strength are the AMPA, kainate, and NMDA glutamate receptors. Small molecules that potentiate AMPA receptor currents relieve cognitive deficits caused by neurodegenerative diseases such as Alzheimer's disease and show promise in the treatment of depression. Previously, there has been limited understanding of the molecular mechanism of action for AMPA receptor potentiators. Here we present cocrystal structures of the glutamate receptor GluR2 S1S2 ligand-binding domain in complex with aniracetam [1-(4-methoxybenzoyl)-2-pyrrolidinone] or CX614 (pyrrolidino-1, 3-oxazino benzo-1, 4-dioxan-10-one), two AMPA receptor potentiators that preferentially slow AMPA receptor deactivation. Both potentiators bind within the dimer interface of the nondesensitized receptor at a common site located on the twofold axis of molecular symmetry. Importantly, the potentiator binding site is adjacent to the 'hinge' in the ligand-binding core 'clamshell' that undergoes conformational rearrangement after glutamate binding. Using rapid solution exchange, patch-clamp electrophysiology experiments, we show that point mutations of residues that interact with potentiators in the cocrystal disrupt potentiator function. We suggest that the potentiators slow deactivation by stabilizing the clamshell in its closed-cleft, glutamate-bound conformation.

  1. Selective ligands and cellular effectors of a G protein-coupled endothelial cannabinoid receptor.

    PubMed

    Offertáler, László; Mo, Fong-Ming; Bátkai, Sándor; Liu, Jie; Begg, Malcolm; Razdan, Raj K; Martin, Billy R; Bukoski, Richard D; Kunos, George

    2003-03-01

    The cannabinoid analog abnormal cannabidiol [abn-cbd; (-)-4-(3-3,4-trans-p-menthadien-[1,8]-yl)-olivetol] does not bind to CB(1) or CB(2) receptors, yet it acts as a full agonist in relaxing rat isolated mesenteric artery segments. Vasorelaxation by abn-cbd is endothelium-dependent, pertussis toxin-sensitive, and is inhibited by the BK(Ca) channel inhibitor charybdotoxin, but not by the nitric-oxide synthase inhibitor N(omega)-nitro-L-arginine methyl ester or by the vanilloid VR1 receptor antagonist capsazepine. The cannabidiol analog O-1918 does not bind to CB(1) or CB(2) receptors and does not cause vasorelaxation at concentrations up to 30 microM, but it does cause concentration-dependent (1-30 microM) inhibition of the vasorelaxant effects of abn-cbd and anandamide. In anesthetized mice, O-1918 dose-dependently inhibits the hypotensive effect of abn-cbd but not the hypotensive effect of the CB(1) receptor agonist (-)-11-OH-Delta(9)-tetrahydrocannabinol dimethylheptyl. In human umbilical vein endothelial cells, abn-cbd induces phosphorylation of p42/44 mitogen-activated protein kinase and protein kinase B/Akt, which is inhibited by O-1918, by pertussis toxin or by phosphatidylinositol 3 (PI3) kinase inhibitors. These findings indicate that abn-cbd is a selective agonist and that O-1918 is a selective, silent antagonist of an endothelial "anandamide receptor", which is distinct from CB(1) or CB(2) receptors and is coupled through G(i)/G(o) to the PI3 kinase/Akt signaling pathway.

  2. Monoglyceride lipase deficiency causes desensitization of intestinal cannabinoid receptor type 1 and increased colonic μ-opioid receptor sensitivity

    PubMed Central

    Taschler, U; Eichmann, T O; Radner, F P W; Grabner, G F; Wolinski, H; Storr, M; Lass, A; Schicho, R; Zimmermann, R

    2015-01-01

    Background and Purpose Monoglyceride lipase (MGL) degrades 2-arachidonoyl glycerol (2-AG), an endogenous agonist of cannabinoid receptors (CB1/2). Because the CB1 receptor is involved in the control of gut function, we investigated the effects of pharmacological inhibition and genetic deletion of MGL on intestinal motility. Furthermore, we determined whether defective 2-AG degradation affects μ-opioid receptorreceptor) signalling, a parallel pathway regulating gut motility. Experimental Approach Gut motility was investigated by monitoring Evans Blue transit and colonic bead propulsion in response to MGL inhibition and CB1 receptor or μ receptor stimulation. Ileal contractility was investigated by electrical field stimulation. CB1 receptor expression in ileum and colon was assessed by immunohistochemical analyses. Key Results Pharmacological inhibition of MGL slowed down whole gut transit in a CB1 receptor-dependent manner. Conversely, genetic deletion of MGL did not affect gut transit despite increased 2-AG levels. Notably, MGL deficiency caused complete insensitivity to CB1 receptor agonist-mediated inhibition of whole gut transit and ileal contractility suggesting local desensitization of CB1 receptors. Accordingly, immunohistochemical analyses of myenteric ganglia of MGL-deficient mice revealed that CB1 receptors were trapped in endocytic vesicles. Finally, MGL-deficient mice displayed accelerated colonic propulsion and were hypersensitive to μ receptor agonist-mediated inhibition of colonic motility. This phenotype was reproduced by chronic pharmacological inhibition of MGL. Conclusion and Implications Constantly elevated 2-AG levels induce severe desensitization of intestinal CB1 receptors and increased sensitivity to μ receptor-mediated inhibition of colonic motility. These changes should be considered when cannabinoid-based drugs are used in the therapy of gastrointestinal diseases. PMID:26075589

  3. Proteoglycans Act as Cellular Hepatitis Delta Virus Attachment Receptors

    PubMed Central

    Lamas Longarela, Oscar; Schmidt, Tobias T.; Schöneweis, Katrin; Romeo, Raffaella; Wedemeyer, Heiner; Urban, Stephan; Schulze, Andreas

    2013-01-01

    The hepatitis delta virus (HDV) is a small, defective RNA virus that requires the presence of the hepatitis B virus (HBV) for its life cycle. Worldwide more than 15 million people are co-infected with HBV and HDV. Although much effort has been made, the early steps of the HBV/HDV entry process, including hepatocyte attachment and receptor interaction are still not fully understood. Numerous possible cellular HBV/HDV binding partners have been described over the last years; however, so far only heparan sulfate proteoglycans have been functionally confirmed as cell-associated HBV attachment factors. Recently, it has been suggested that ionotrophic purinergic receptors (P2XR) participate as receptors in HBV/HDV entry. Using the HBV/HDV susceptible HepaRG cell line and primary human hepatocytes (PHH), we here demonstrate that HDV entry into hepatocytes depends on the interaction with the glycosaminoglycan (GAG) side chains of cellular heparan sulfate proteoglycans. We furthermore provide evidence that P2XR are not involved in HBV/HDV entry and that effects observed with inhibitors for these receptors are a consequence of their negative charge. HDV infection was abrogated by soluble GAGs and other highly sulfated compounds. Enzymatic removal of defined carbohydrate structures from the cell surface using heparinase III or the obstruction of GAG synthesis by sodium chlorate inhibited HDV infection of HepaRG cells. Highly sulfated P2XR antagonists blocked HBV/HDV infection of HepaRG cells and PHH. In contrast, no effect on HBV/HDV infection was found when uncharged P2XR antagonists or agonists were applied. In summary, HDV infection, comparable to HBV infection, requires binding to the carbohydrate side chains of hepatocyte-associated heparan sulfate proteoglycans as attachment receptors, while P2XR are not actively involved. PMID:23505490

  4. Frequency-Dependent Cannabinoid Receptor-Independent Modulation of Glycine Receptors by Endocannabinoid 2-AG.

    PubMed

    Lozovaya, Natalia; Mukhtarov, Marat; Tsintsadze, Timur; Ledent, Catherine; Burnashev, Nail; Bregestovski, Piotr

    2011-01-01

    Endocannabinoids are known as retrograde messengers, being released from the postsynaptic neuron and acting on specific presynaptic G-protein-coupled cannabinoid (CB) receptors to decrease neurotransmitter release. Also, at physiologically relevant concentrations cannabinoids can directly modulate the function of voltage-gated and receptor-operated ion channels. Using patch-clamp recording we analyzed the consequences of the direct action of an endocannabinoid, 2-arachidonoylglycerol (2-AG), on the functional properties of glycine receptor channels (GlyRs) and ionic currents in glycinergic synapses. At physiologically relevant concentrations (0.1-1 μM), 2-AG directly affected the functions of recombinant homomeric α1H GlyR: it inhibited peak amplitude and dramatically enhanced desensitization. The action of 2-AG on GlyR-mediated currents developed rapidly, within ∼300 ms. Addition of 1 μM 2-AG strongly facilitated the depression of glycine-induced currents during repetitive (4-10 Hz) application of short (2 ms duration) pulses of glycine to outside-out patches. In brainstem slices from CB1 receptor knockout mice, 2-AG significantly decreased the extent of facilitation of synaptic currents in hypoglossal motoneurons during repetitive (10-20 Hz) stimulation. These observations suggest that endocannabinoids can modulate postsynaptic metaplasticity of glycinergic synaptic currents in a CB1 receptor-independent manner.

  5. The CB₁ cannabinoid receptor signals striatal neuroprotection via a PI3K/Akt/mTORC1/BDNF pathway.

    PubMed

    Blázquez, C; Chiarlone, A; Bellocchio, L; Resel, E; Pruunsild, P; García-Rincón, D; Sendtner, M; Timmusk, T; Lutz, B; Galve-Roperh, I; Guzmán, M

    2015-10-01

    The CB1 cannabinoid receptor, the main molecular target of endocannabinoids and cannabis active components, is the most abundant G protein-coupled receptor in the mammalian brain. In particular, the CB1 receptor is highly expressed in the basal ganglia, mostly on terminals of medium-sized spiny neurons, where it plays a key neuromodulatory function. The CB1 receptor also confers neuroprotection in various experimental models of striatal damage. However, the assessment of the physiological relevance and therapeutic potential of the CB1 receptor in basal ganglia-related diseases is hampered, at least in part, by the lack of knowledge of the precise mechanism of CB1 receptor neuroprotective activity. Here, by using an array of pharmacological, genetic and pharmacogenetic (designer receptor exclusively activated by designer drug) approaches, we show that (1) CB1 receptor engagement protects striatal cells from excitotoxic death via the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin complex 1 pathway, which, in turn, (2) induces brain-derived neurotrophic factor (BDNF) expression through the selective activation of BDNF gene promoter IV, an effect that is mediated by multiple transcription factors. To assess the possible functional impact of the CB1/BDNF axis in a neurodegenerative-disease context in vivo, we conducted experiments in the R6/2 mouse, a well-established model of Huntington's disease, in which the CB1 receptor and BDNF are known to be severely downregulated in the dorsolateral striatum. Adeno-associated viral vector-enforced re-expression of the CB1 receptor in the dorsolateral striatum of R6/2 mice allowed the re-expression of BDNF and the concerted rescue of the neuropathological deficits in these animals. Collectively, these findings unravel a molecular link between CB1 receptor activation and BDNF expression, and support the relevance of the CB1/BDNF axis in promoting striatal neuron survival.

  6. G-Protein Coupled Receptor Resensitization – Appreciating the Balancing Act of Receptor Function

    PubMed Central

    Mohan, Maradumane L.; Vasudevan, Neelakantan T.; Gupta, Manveen K.; Martelli, Elizabeth E.; Prasad, Sathyamangla V. Naga

    2015-01-01

    G-protein coupled receptors (GPCRs) are seven transmembrane receptors that are pivotal regulators of cellular responses including vision, cardiac contractility, olfaction, and platelet activation. GPCRs have been a major target for drug discovery due to their role in regulating a broad range of physiological and pathological responses. GPCRs mediate these responses through a cyclical process of receptor activation (initiation of downstream signals), desensitization (inactivation that results in diminution of downstream signals), and resensitization (receptor reactivation for next wave of activation). Although these steps may be of equal importance in regulating receptor function, significant advances have been made in understanding activation and desensitization with limited effort towards resensitization. Inadequate importance has been given to resensitization due to the understanding that resensitization is a homeostasis maintaining process and is not acutely regulated. Evidence indicates that resensitization is a critical step in regulating GPCR function and may contribute towards receptor signaling and cellular responses. In light of these observations, it is imperative to discuss resensitization as a dynamic and mechanistic regulator of GPCR function. In this review we discuss components regulating GPCR function like activation, desensitization, and internalization with special emphasis on resensitization. Although we have used β-adrenergic receptor as a proto-type GPCR to discuss mechanisms regulating receptor function, other GPCRs are also described to put forth a view point on the universality of such mechanisms. PMID:22697395

  7. Low Temperature Creep of a Titanium Alloy Ti-6Al-2Cb-1Ta-0.8Mo

    NASA Technical Reports Server (NTRS)

    Chu, H. P.

    1997-01-01

    This paper presents a methodology for the analysis of low temperature creep of titanium alloys in order to establish design limitations due to the effect of creep. The creep data on a titanium Ti-6Al-2Cb-1Ta-0.8Mo are used in the analysis. A creep equation is formulated to determine the allowable stresses so that creep at ambient temperatures can be kept within an acceptable limit during the service life of engineering structures or instruments. Microcreep which is important to design of precision instruments is included in the discussion also.

  8. Role of cannabinoid CB2 receptors in glucose homeostasis in rats.

    PubMed

    Bermudez-Silva, Francisco Javier; Sanchez-Vera, Irene; Suárez, Juan; Serrano, Antonia; Fuentes, Esther; Juan-Pico, Pablo; Nadal, Angel; Rodríguez de Fonseca, Fernando

    2007-06-22

    Here we show that the activation of cannabinoid CB2 receptors improved glucose tolerance after a glucose load. Blockade of cannabinoid CB2 receptors counteracted this effect, leading to glucose intolerance. Since blockade of cannabinoid CB1 receptors mimics the actions of cannabinoid CB2 receptor agonists, we propose that the endocannabinoid system modulates glucose homeostasis through the coordinated actions of cannabinoid CB1 and CB2 receptors. We also describe the presence of both cannabinoid CB1 and CB2 receptor immunoreactivity in rat pancreatic beta- and non-beta-cells, adding the endocrine pancreas to adipose tissue and the liver as potential sites for endocannabinoid regulation of glucose homeostasis.

  9. Cannabinoid receptor 1 suppresses transient receptor potential vanilloid 1-induced inflammatory responses to corneal injury

    PubMed Central

    Yang, Y.; Yang, H.; Wang, Z.; Varadaraj, K.; Kumari, S.S.; Mergler, S.; Okada, Y.; Saika, S.; Kingsley, P.J.; Marnett, L.J.; Reinach, P.S.

    2013-01-01

    Cannabinoid receptor type 1 (CB1)-induced suppression of transient receptor potential vanilloid type 1 (TRPV1) activation provides a therapeutic option to reduce inflammation and pain in different animal disease models through mechanisms involving dampening of TRPV1 activation and signaling events. As we found in both mouse corneal epithelium and human corneal epithelial cells (HCEC) that there is CB1 and TRPV1 expression colocalization based on overlap of coimmunostaining, we determined in mouse corneal wound healing models and in human corneal epithelial cells (HCEC) if they interact with one another to reduce TRPV1-induced inflammatory and scarring responses. Corneal epithelial debridement elicited in vivo a more rapid wound healing response in wildtype (WT) than in CB1−/− mice suggesting functional interaction between CB1 and TRPV1. CB1 activation by injury is tenable based on the identification in mouse corneas of 2-arachidonylglycerol (2-AG) with tandem LC–MS/MS, a selective endocannabinoid CB1 ligand. Suppression of corneal TRPV1 activation by CB1 is indicated since following alkali burning, CB1 activation with WIN55,212-2 (WIN) reduced immune cell stromal infiltration and scarring. Western blot analysis of coimmunoprecipitates identified protein–protein interaction between CB1 and TRPV1. Other immunocomplexes were also identified containing transforming growth factor kinase 1 (TAK1), TRPV1 and CB1. CB1 siRNA gene silencing prevented suppression by WIN of TRPV1-induced TAK1–JNK1 signaling. WIN reduced TRPV1-induced Ca2+ transients in fura2-loaded HCEC whereas pertussis toxin (PTX) preincubation obviated suppression by WIN of such rises caused by capsaicin (CAP). Whole cell patch clamp analysis of HCEC showed that WIN blocked subsequent CAP-induced increases in nonselective outward currents. Taken together, CB1 activation by injury-induced release of endocannabinoids such as 2-AG downregulates TRPV1 mediated inflammation and corneal opacification

  10. Comparative proteomic and phosphoproteomic profiling of pancreatic adenocarcinoma cells treated with CB1 or CB2 agonists.

    PubMed

    Brandi, Jessica; Dando, Ilaria; Palmieri, Marta; Donadelli, Massimo; Cecconi, Daniela

    2013-05-01

    The pancreatic adenocarcinoma cell line Panc1 was treated with cannabinoid receptor ligands (arachidonylcyclopropylamide or GW405833) in order to elucidate the molecular mechanism of their anticancer effect. A proteomic approach was used to analyze the protein and phosphoprotein profiles. Western blot and functional data mining were also employed in order to validate results, classify proteins, and explore their potential relationships. We demonstrated that the two cannabinoids act through a widely common mechanism involving up- and down-regulation of proteins related to energetic metabolism and cell growth regulation. Overall, the results reported might contribute to the development of a therapy based on cannabinoids for pancreatic adenocarcinoma.

  11. Cannabinoid CB1 Receptor Agonists Do Not Decrease, but may Increase Acoustic Trauma-Induced Tinnitus in Rats

    PubMed Central

    Zheng, Yiwen; Reid, Peter; Smith, Paul F.

    2015-01-01

    Tinnitus has been suggested to arise from neuronal hyperactivity in auditory areas of the brain, and anti-epileptic drugs are sometimes used to provide relief from tinnitus. Recently, the anti-epileptic properties of the cannabinoid drugs have gained increasing interest; however, the use of cannabinoids as a form of treatment for tinnitus is controversial. In this study, we tested whether a combination of delta-9-tetrahydrocannabinol (delta-9-THC) and cannabidiol (CBD), delivered in a 1:1 ratio, could affect tinnitus perception in a rat model of acoustic trauma-induced tinnitus. Following sham treatment or acoustic trauma, the animals were divided into the following groups: (1) sham (i.e., no acoustic trauma) with vehicle treatment; (2) sham with drug treatment (i.e., delta-9-THC + CBD); (3) acoustic trauma-exposed exhibiting tinnitus, with drug treatment; and (4) acoustic trauma-exposed exhibiting no tinnitus, with drug treatment. The animals received either the vehicle or the cannabinoid drugs every day, 30 min before the tinnitus behavioral testing. Acoustic trauma caused a significant increase in the auditory brainstem response (ABR) thresholds in the exposed animals, indicating hearing loss; however, there was a partial recovery over 6 months. Acoustic trauma did not always result in tinnitus; however, among those that did exhibit tinnitus, some of them had tinnitus at multiple frequencies while others had it only at a single frequency. The cannabinoids significantly increased the number of tinnitus animals in the exposed-tinnitus group, but not in the sham group. The results suggest that cannabinoids may promote the development of tinnitus, especially when there is pre-existing hearing damage. PMID:25852639

  12. Nuclear tristetraprolin acts as a corepressor of multiple steroid nuclear receptors in breast cancer cells.

    PubMed

    Barrios-García, Tonatiuh; Gómez-Romero, Vania; Tecalco-Cruz, Ángeles; Valadéz-Graham, Viviana; León-Del-Río, Alfonso

    2016-06-01

    Tristetraprolin (TTP) is a 34-kDa, zinc finger-containing factor that in mammalian cells acts as a tumor suppressor protein through two different mechanisms. In the cytoplasm TTP promotes the decay of hundreds of mRNAs encoding cell factors involved in inflammation, tissue invasion, and metastasis. In the cell nucleus TTP has been identified as a transcriptional corepressor of the estrogen receptor alpha (ERα), which has been associated to the development and progression of the majority of breast cancer tumors. In this work we report that nuclear TTP modulates the transactivation activity of progesterone receptor (PR), glucocorticoid receptor (GR) and androgen receptor (AR). In recent years these steroid nuclear receptors have been shown to be of clinical and therapeutical relevance in breast cancer. The functional association between TTP and steroid nuclear receptors is supported by the finding that TTP physically interacts with ERα, PR, GR and AR in vivo. We also show that TTP overexpression attenuates the transactivation of all the steroid nuclear receptors tested. In contrast, siRNA-mediated reduction of endogenous TTP expression in MCF-7 cells produced an increase in the transcriptional activities of ERα, PR, GR and AR. Taken together, these results suggest that the function of nuclear TTP in breast cancer cells is to act as a corepressor of ERα, PR, GR and AR. We propose that the reduction of TTP expression observed in different types of breast cancer tumors may contribute to the development of this disease by producing a dysregulation of the transactivation activity of multiple steroid nuclear receptors. PMID:27114912

  13. Nuclear tristetraprolin acts as a corepressor of multiple steroid nuclear receptors in breast cancer cells.

    PubMed

    Barrios-García, Tonatiuh; Gómez-Romero, Vania; Tecalco-Cruz, Ángeles; Valadéz-Graham, Viviana; León-Del-Río, Alfonso

    2016-06-01

    Tristetraprolin (TTP) is a 34-kDa, zinc finger-containing factor that in mammalian cells acts as a tumor suppressor protein through two different mechanisms. In the cytoplasm TTP promotes the decay of hundreds of mRNAs encoding cell factors involved in inflammation, tissue invasion, and metastasis. In the cell nucleus TTP has been identified as a transcriptional corepressor of the estrogen receptor alpha (ERα), which has been associated to the development and progression of the majority of breast cancer tumors. In this work we report that nuclear TTP modulates the transactivation activity of progesterone receptor (PR), glucocorticoid receptor (GR) and androgen receptor (AR). In recent years these steroid nuclear receptors have been shown to be of clinical and therapeutical relevance in breast cancer. The functional association between TTP and steroid nuclear receptors is supported by the finding that TTP physically interacts with ERα, PR, GR and AR in vivo. We also show that TTP overexpression attenuates the transactivation of all the steroid nuclear receptors tested. In contrast, siRNA-mediated reduction of endogenous TTP expression in MCF-7 cells produced an increase in the transcriptional activities of ERα, PR, GR and AR. Taken together, these results suggest that the function of nuclear TTP in breast cancer cells is to act as a corepressor of ERα, PR, GR and AR. We propose that the reduction of TTP expression observed in different types of breast cancer tumors may contribute to the development of this disease by producing a dysregulation of the transactivation activity of multiple steroid nuclear receptors.

  14. Long-acting muscarinic receptor antagonists for the treatment of chronic airway diseases

    PubMed Central

    Palot, Alain; Sofalvi, Tunde; Pahus, Laurie; Gouitaa, Marion; Tummino, Celine; Martinez, Stephanie; Charpin, Denis; Bourdin, Arnaud; Chanez, Pascal

    2014-01-01

    Acetylcholine (neuronal and non-neuronal origin) regulates bronchoconstriction, and mucus secretion. It has an inflammatory effect by inducing attraction, survival and cytokine release from inflammatory cells. Muscarinic receptors throughout the bronchial tree are mainly restricted to muscarinic M1, M2 and M3 receptors. Three long-acting muscarinic receptor antagonists (LAMAs) were approved for the treatment of chronic obstructive pulmonary disease (COPD) in Europe: once-daily tiotropium bromide; once-daily glycopyrronium bromide; and twice-daily aclidinium bromide. All have higher selectivity for M3 receptors than for M2 receptors, and dissociate more slowly from the M3 receptors than they do from the M2 receptors. Some LAMAs showed anti-inflammatory effects [inhibition of neutrophil chemotactic activity and migration of alveolar neutrophils, decrease of several cytokines in the bronchoalveolar lavage (BAL) including interleukin (IL)-6, tumor necrosis factor (TNF)-α and leukotriene (LT)B4] and antiremodeling effects (inhibition of mucus gland hypertrophy and decrease in MUC5AC-positive goblet cell number, decrease in MUC5AC overexpression). In the clinic, LAMAs showed a significant improvement of forced expiratory volume in 1 second (FEV1), quality of life, dyspnea and reduced the number of exacerbations in COPD and more recently in asthma. This review will focus on the three LAMAs approved in Europe in the treatment of chronic airway diseases. PMID:24587893

  15. The proteolytic system of Lactobacillus sanfrancisco CB1: purification and characterization of a proteinase, a dipeptidase, and an aminopeptidase.

    PubMed Central

    Gobbetti, M; Smacchi, E; Corsetti, A

    1996-01-01

    A cell envelope 57-kDa proteinase, a cytoplasmic 65-kDa dipeptidase, and a 75-kDa aminopeptidase were purified from Lactobacillus sanfrancisco CB1 sourdough lactic acid bacterium by sequential fast protein liquid chromatography steps. All of the enzymes are monomers. The proteinase was most active at pH 7.0 and 40 degrees C, while aminopeptidase and dipeptidase had optima at pH 7.5 and 30 to 35 degrees C. Relatively high activities were observed at the pH and temperature of the sourdough fermentation. The proteinase is a serine enzyme. Urea-polyacrylamide gel electrophoresis of digest of alpha s1- and beta-caseins showed differences in the pattern of peptides released by the purified proteinase and those produced by crude preparations of the cell envelope proteinases of Lactobacillus delbrueckii subsp. bulgaricus B397 and Lactococcus lactis subsp. lactis SK11. Reversed-phase fast protein liquid chromatography of gliadin digests showed a more-complex peptide pattern produced by the proteinase of Lactobacillus sanfrancisco CB1. The dipeptidase is a metalloenzyme with high affinity for dipeptides containing hydrophobic amino acids but had no activity on tripeptides or larger peptides. The aminopeptidase was also inhibited by metal-chelating agents, and showed a broad N-terminal hydrolytic activity including di- and tripeptides. Km values of 0.70 and 0.44 mM were determined for the dipeptidase on Leu-Leu and the aminopeptidase on Leu-p-nitroanilide, respectively. PMID:8795211

  16. Activation of the sympathetic nervous system mediates hypophagic and anxiety-like effects of CB₁ receptor blockade.

    PubMed

    Bellocchio, Luigi; Soria-Gómez, Edgar; Quarta, Carmelo; Metna-Laurent, Mathilde; Cardinal, Pierre; Binder, Elke; Cannich, Astrid; Delamarre, Anna; Häring, Martin; Martín-Fontecha, Mar; Vega, David; Leste-Lasserre, Thierry; Bartsch, Dusan; Monory, Krisztina; Lutz, Beat; Chaouloff, Francis; Pagotto, Uberto; Guzman, Manuel; Cota, Daniela; Marsicano, Giovanni

    2013-03-19

    Complex interactions between periphery and the brain regulate food intake in mammals. Cannabinoid type-1 (CB1) receptor antagonists are potent hypophagic agents, but the sites where this acute action is exerted and the underlying mechanisms are not fully elucidated. To dissect the mechanisms underlying the hypophagic effect of CB1 receptor blockade, we combined the acute injection of the CB1 receptor antagonist rimonabant with the use of conditional CB1-knockout mice, as well as with pharmacological modulation of different central and peripheral circuits. Fasting/refeeding experiments revealed that CB1 receptor signaling in many specific brain neurons is dispensable for the acute hypophagic effects of rimonabant. CB1 receptor antagonist-induced hypophagia was fully abolished by peripheral blockade of β-adrenergic transmission, suggesting that this effect is mediated by increased activity of the sympathetic nervous system. Consistently, we found that rimonabant increases gastrointestinal metabolism via increased peripheral β-adrenergic receptor signaling in peripheral organs, including the gastrointestinal tract. Blockade of both visceral afferents and glutamatergic transmission in the nucleus tractus solitarii abolished rimonabant-induced hypophagia. Importantly, these mechanisms were specifically triggered by lipid-deprivation, revealing a nutrient-specific component acutely regulated by CB1 receptor blockade. Finally, peripheral blockade of sympathetic neurotransmission also blunted central effects of CB1 receptor blockade, such as fear responses and anxiety-like behaviors. These data demonstrate that, independently of their site of origin, important effects of CB1 receptor blockade are expressed via activation of peripheral sympathetic activity. Thus, CB1 receptors modulate bidirectional circuits between the periphery and the brain to regulate feeding and other behaviors.

  17. Different characteristics of AMPA receptor agonists acting at AMPA receptors expressed in Xenopus oocytes.

    PubMed

    Wahl, P; Madsen, U; Banke, T; Krogsgaard-Larsen, P; Schousboe, A

    1996-07-18

    A series of (RS)-2-amino-3-(3-hydroxy-5-methyl-4-isoxazolyl)propionic acid (AMPA) analogues were evaluated for activity at homo-oligomeric glutamate1-flop (Glu1-flop) receptors expressed in Xenopus oocytes, using the two-electrode voltage clamp technique. (RS)-2-Amino-3-(3-carboxy-5-methyl-4-isoxazolyl)propionic acid (ACPA) (EC50, 2.4 microM), a homologue of AMPA having a carboxyl group as the terminal acidic functionality, was five times more potent than AMPA (EC50, 12 microM) and 20 times more potent than kainate (EC50, 46 microM). (RS)-2-Amino-3(3-hydroxy-5-trifluoromethyl-4-isoxazolyl)propionic acid (Tri-F-AMPA), in which an electronegative trifluoromethyl group is substituted for the methyl group on the isoxazole ring in the AMPA structure, was three times more potent than AMPA, whereas (RS)-3-hydroxy-4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridine-5-carboxylic acid (5-HPCA), a bicyclic analogue of AMPA with highly restricted conformational flexibility was 10 times less potent than AMPA. The limiting slope of log-log plots of Glu1-flop receptor currents versus low agonist concentrations had a value of 1.7 for ACPA and kainate compared to 1.5 for Tri-F-AMPA and 1.3 for 5-HPCA and AMPA. The amplitude of responses evoked by near saturating concentrations of the agonists varied more than 7-fold. The sequence of efficacy was ACPA = kainate > Tri-F-AMPA > AMPA > 5-HPCA. Moreover, when saturating concentrations of Tri-F-AMPA and kainate were co-applied, the response was significantly greater than when each of the agonists was applied separately. The potency of the antagonist 2,3-dihydroxy-6-nitro-7-sulfamoylbenzo(f)quinoxaline (NBQX) (estimated KB, approximately 200 nM), to block currents mediated by Glu1-flop receptors was similar for all of the agonists tested in this study. These results indicate that relatively minor changes in the molecular structure of AMPA are associated with marked effects on potency and efficacy. In particular, it is suggested that the acidity of

  18. Lepidozenolide from the liverwort Lepidozia fauriana acts as a farnesoid X receptor agonist.

    PubMed

    Lin, Hsiang-Ru

    2015-01-01

    Lepidozenolide is a sesquiterpenoid isolated from the liverwort Lepidozia fauriana and its possible bioactivity is unclear. The farnesoid X receptor (FXR) is a member of nuclear receptor superfamily that has been widely targeted for developing treatments for chronic liver disease and hyperglycemia. In this study, whether lepidozenolide may act as a FXR agonist was determined. Indeed, in mammalian one-hybrid and transient transfection reporter assays, lepidozenolide transactivated FXR to modulate promoter action including GAL4, CYP7A1, and PLTP promoters in a dose-dependent manner, while it exhibited slightly less agonistic activity than chenodeoxycholic acid, an endogenous FXR agonist. Through the molecular modeling docking studies lepidozenolide was shown to bind to FXR ligand binding pocket fairly well. All these results indicate that lepidozenolide acts as a FXR agonist. PMID:25315435

  19. Spatial Distribution of the Cannabinoid Type 1 and Capsaicin Receptors May Contribute to the Complexity of Their Crosstalk

    PubMed Central

    Chen, Jie; Varga, Angelika; Selvarajah, Srikumaran; Jenes, Agnes; Dienes, Beatrix; Sousa-Valente, Joao; Kulik, Akos; Veress, Gabor; Brain, Susan D.; Baker, David; Urban, Laszlo; Mackie, Ken; Nagy, Istvan

    2016-01-01

    The cannabinoid type 1 (CB1) receptor and the capsaicin receptor (TRPV1) exhibit co-expression and complex, but largely unknown, functional interactions in a sub-population of primary sensory neurons (PSN). We report that PSN co-expressing CB1 receptor and TRPV1 form two distinct sub-populations based on their pharmacological properties, which could be due to the distribution pattern of the two receptors. Pharmacologically, neurons respond either only to capsaicin (COR neurons) or to both capsaicin and the endogenous TRPV1 and CB1 receptor ligand anandamide (ACR neurons). Blocking or deleting the CB1 receptor only reduces both anandamide- and capsaicin-evoked responses in ACR neurons. Deleting the CB1 receptor also reduces the proportion of ACR neurons without any effect on the overall number of capsaicin-responding cells. Regarding the distribution pattern of the two receptors, neurons express CB1 and TRPV1 receptors either isolated in low densities or in close proximity with medium/high densities. We suggest that spatial distribution of the CB1 receptor and TRPV1 contributes to the complexity of their functional interaction. PMID:27653550

  20. Sex-dependent changes in brain CB1R expression and functionality and immune CB2R expression as a consequence of maternal deprivation and adolescent cocaine exposure.

    PubMed

    Llorente-Berzal, Alvaro; Assis, María A; Rubino, Tiziana; Zamberletti, Erica; Marco, Eva M; Parolaro, Daniela; Ambrosio, Emilio; Viveros, María-Paz

    2013-08-01

    Early life stress has been associated with several psychiatric disorders, including drug addiction. Actually, maternal deprivation (MD) alters the endocannabinoid system, which participates in motivation and reward for drugs, including cocaine. At youth, the rate of cocaine abuse is alarmingly increasing. Herein, we have investigated the consequences of MD and/or adolescent cocaine exposure in brain CB1Rs and CB2Rs in immune tissues. Control and maternally deprived (24h on postnatal day, pnd, 9) male and female Wistar rats were administered cocaine (8mg/kg/day) or saline during adolescence (pnd 28-42). At adulthood, [(3)H]-CP-55,940 autoradiographic binding was employed for the analysis of CB1R density and CP-55,940-stimulated [(35)S]-GTPgammaS binding for CB1R functionality; CB2R expression was analyzed by Western blotting. Sex differences in CB1R expression and functionality were found, and MD induced important and enduring sex-dependent changes. In addition, the plastic changes induced by adolescent cocaine administration in brain CB1Rs were differentially influenced by early life events. MD increased spleen CB2R expression while adolescent cocaine administration attenuated this effect; cocaine exposure also diminished CB2R expression in bone marrow. Present findings provide evidence for changes in brain CB1R expression and functionality and immune CB2R expression as a consequence of early life stress and adolescent cocaine exposure, and indicate functional interactions between both treatments, which in many regions differ between males and females.

  1. Sex-dependent changes in brain CB1R expression and functionality and immune CB2R expression as a consequence of maternal deprivation and adolescent cocaine exposure.

    PubMed

    Llorente-Berzal, Alvaro; Assis, María A; Rubino, Tiziana; Zamberletti, Erica; Marco, Eva M; Parolaro, Daniela; Ambrosio, Emilio; Viveros, María-Paz

    2013-08-01

    Early life stress has been associated with several psychiatric disorders, including drug addiction. Actually, maternal deprivation (MD) alters the endocannabinoid system, which participates in motivation and reward for drugs, including cocaine. At youth, the rate of cocaine abuse is alarmingly increasing. Herein, we have investigated the consequences of MD and/or adolescent cocaine exposure in brain CB1Rs and CB2Rs in immune tissues. Control and maternally deprived (24h on postnatal day, pnd, 9) male and female Wistar rats were administered cocaine (8mg/kg/day) or saline during adolescence (pnd 28-42). At adulthood, [(3)H]-CP-55,940 autoradiographic binding was employed for the analysis of CB1R density and CP-55,940-stimulated [(35)S]-GTPgammaS binding for CB1R functionality; CB2R expression was analyzed by Western blotting. Sex differences in CB1R expression and functionality were found, and MD induced important and enduring sex-dependent changes. In addition, the plastic changes induced by adolescent cocaine administration in brain CB1Rs were differentially influenced by early life events. MD increased spleen CB2R expression while adolescent cocaine administration attenuated this effect; cocaine exposure also diminished CB2R expression in bone marrow. Present findings provide evidence for changes in brain CB1R expression and functionality and immune CB2R expression as a consequence of early life stress and adolescent cocaine exposure, and indicate functional interactions between both treatments, which in many regions differ between males and females. PMID:23680694

  2. Pyridopyrimidine based cannabinoid-1 receptor inverse agonists: Synthesis and biological evaluation.

    PubMed

    Debenham, John S; Madsen-Duggan, Christina B; Wang, Junying; Tong, Xinchun; Lao, Julie; Fong, Tung M; Schaeffer, Marie-Therese; Xiao, Jing Chen; Huang, Cathy C R-R; Shen, Chun-Pyn; Sloan Stribling, D; Shearman, Lauren P; Strack, Alison M; Euan Macintyre, D; Hale, Jeffrey J; Walsh, Thomas F

    2009-05-01

    The synthesis, SAR and binding affinities are described for cannabinoid-1 receptor (CB1R) specific inverse agonists based on pyridopyrimidine and heterotricyclic scaffolds. Food intake and pharmacokinetic evaluation of several of these compounds indicate that they are effective orally active modulators of CB1R.

  3. The cannabinoid type-1 receptor carboxyl-terminus, more than just a tail.

    PubMed

    Stadel, Rebecca; Ahn, Kwang H; Kendall, Debra A

    2011-04-01

    The cannabinoid type-1 (CB(1)) receptor is a G protein-coupled receptor that binds the main active ingredient of marijuana, Δ(9)-tetrahydrocannabinol, and has been implicated in several disease states, including drug addiction, anxiety, depression, obesity, and chronic pain. In the two decades since the discovery of CB(1), studies at the molecular level have centered on the transmembrane core. This interest has now expanded as we discover that other regions of CB(1), including the CB(1) carboxyl-terminus, have critical structures that are important for CB(1) activity and regulation. Following the recent description of the three dimensional structure of the full-length CB(1) carboxyl-terminal tail [Biopolymers (2009) vol. 91, pp. 565-573], several residues and structural motifs including two α-helices (termed H8 and H9) have been postulated to interact with common G protein-coupled receptor accessory proteins, such as G-proteins and β-arrestins. This discourse will focus on the CB(1) carboxyl-terminus; our current understanding of the structural features of this region, evidence for its interaction with proteins, and the impact of structure on the binding and regulatory function of CB(1) accessory proteins. The involvement of the carboxyl-terminus in the receptor life cycle including activation, desensitization, and internalization will be highlighted.

  4. Electroacupuncture Inhibition of Hyperalgesia in Rats with Adjuvant Arthritis: Involvement of Cannabinoid Receptor 1 and Dopamine Receptor Subtypes in Striatum

    PubMed Central

    Shou, Yin; Yang, Yang; Xu, Ming-Shu; Zhao, Ying-Qian; Ge, Lin-Bao; Zhang, Bi-Meng

    2013-01-01

    Electroacupuncture (EA) has been regarded as an alternative treatment for inflammatory pain for several decades. However, the molecular mechanisms underlying the antinociceptive effect of EA have not been thoroughly clarified. Previous studies have shown that cannabinoid CB1 receptors are related to pain relief. Accumulating evidence has shown that the CB1 and dopamine systems sometimes interact and may operate synergistically in rat striatum. To our knowledge, dopamine D1/D2 receptors are involved in EA analgesia. In this study, we found that repeated EA at Zusanli (ST36) and Kunlun (BL60) acupoints resulted in marked improvements in thermal hyperalgesia. Both western blot assays and FQ-PCR analysis results showed that the levels of CB1 expression in the repeated-EA group were much higher than those in any other group (P = 0.001). The CB1-selective antagonist AM251 inhibited the effects of repeated EA by attenuating the increases in CB1 expression. The two kinds of dopamine receptors imparted different actions on the EA-induced CB1 upregulation in AA rat model. These results suggested that the strong activation of the CB1 receptor after repeated EA resulted in the concomitant phenomenon of the upregulation of D1 and D2 levels of gene expression. PMID:23762129

  5. Auxiliary Subunit GSG1L Acts to Suppress Calcium-Permeable AMPA Receptor Function

    PubMed Central

    McGee, Thomas P.; Bats, Cécile

    2015-01-01

    AMPA-type glutamate receptors are ligand-gated cation channels responsible for a majority of the fast excitatory synaptic transmission in the brain. Their behavior and calcium permeability depends critically on their subunit composition and the identity of associated auxiliary proteins. Calcium-permeable AMPA receptors (CP-AMPARs) contribute to various forms of synaptic plasticity, and their dysfunction underlies a number of serious neurological conditions. For CP-AMPARs, the prototypical transmembrane AMPAR regulatory protein stargazin, which acts as an auxiliary subunit, enhances receptor function by increasing single-channel conductance, slowing channel gating, increasing calcium permeability, and relieving the voltage-dependent block by endogenous intracellular polyamines. We find that, in contrast, GSG1L, a transmembrane auxiliary protein identified recently as being part of the AMPAR proteome, acts to reduce the weighted mean single-channel conductance and calcium permeability of recombinant CP-AMPARs, while increasing polyamine-dependent rectification. To examine the effects of GSG1L on native AMPARs, we manipulated its expression in cerebellar and hippocampal neurons. Transfection of GSG1L into mouse cultured cerebellar stellate cells that lack this protein increased the inward rectification of mEPSCs. Conversely, shRNA-mediated knockdown of endogenous GSG1L in rat cultured hippocampal pyramidal neurons led to an increase in mEPSC amplitude and in the underlying weighted mean single-channel conductance, revealing that GSG1L acts to suppress current flow through native CP-AMPARs. Thus, our data suggest that GSG1L extends the functional repertoire of AMPAR auxiliary subunits, which can act not only to enhance but also diminish current flow through their associated AMPARs. SIGNIFICANCE STATEMENT Calcium-permeable AMPA receptors (CP-AMPARs) are an important group of receptors for the neurotransmitter glutamate. These receptors contribute to various forms of

  6. Motor activity affects adult skeletal muscle re-innervation acting via tyrosine kinase receptors.

    PubMed

    Sartini, Stefano; Bartolini, Fanny; Ambrogini, Patrizia; Betti, Michele; Ciuffoli, Stefano; Lattanzi, Davide; Di Palma, Michael; Cuppini, Riccardo

    2013-05-01

    Recently, muscle expression of brain-derived neurotrophic factor (BDNF) mRNA and protein under activity control has been reported. BDNF is a neurotrophin known to be involved in axon sprouting in the CNS. Hence, we set out to study the effect of chronic treadmill mid-intensity running on adult rat muscle re-innervation, and to explore the involvement of BDNF and tropomyosin-related kinase (Trk) receptors. After nerve crush, muscle re-innervation was evaluated using intracellular recordings, tension recordings, immunostaining and Western blot analyses. An enhanced muscle multiple innervation was found in running rats that was fully reversed to control values blocking Trk receptors or interrupting the running activity. An increase in muscle multiple innervation was also found in sedentary rats treated with a selective TrkB receptor agonist. The expression of TrkB receptors by intramuscular axons was demonstrated, and increased muscle expression of BDNF was found in running animals. The increase in muscle multiple innervation was consistent with the faster muscle re-innervation that we found in running animals. We conclude that, when regenerating axons contact muscle cells, muscle activity progressively increases modulating BDNF and possibly other growth factors, which in turn, acting via Trk receptors, induce axon sprouting to re-innervate skeletal muscle.

  7. Vascular Dysfunction in a Transgenic Model of Alzheimer's Disease: Effects of CB1R and CB2R Cannabinoid Agonists

    PubMed Central

    Navarro-Dorado, Jorge; Villalba, Nuria; Prieto, Dolores; Brera, Begoña; Martín-Moreno, Ana M.; Tejerina, Teresa; de Ceballos, María L.

    2016-01-01

    There is evidence of altered vascular function, including cerebrovascular, in Alzheimer's disease (AD) and transgenic models of the disease. Indeed vasoconstrictor responses are increased, while vasodilation is reduced in both conditions. β-Amyloid (Aβ) appears to be responsible, at least in part, of alterations in vascular function. Cannabinoids, neuroprotective and anti-inflammatory agents, induce vasodilation both in vivo and in vitro. We have demonstrated a beneficial effect of cannabinoids in models of AD by preventing glial activation. In this work we have studied the effects of these compounds on vessel density in amyloid precursor protein (APP) transgenic mice, line 2576, and on altered vascular responses in aortae isolated ring. First we showed increased collagen IV positive vessels in AD brain compared to control subjects, with a similar increase in TgAPP mice, which was normalized by prolonged oral treatment with the CB1/CB2 mixed agonist WIN 55,212-2 (WIN) and the CB2 selective agonist JWH-133 (JWH). In Tg APP mice the vasoconstriction induced by phenylephrine and the thromboxane agonist U46619 was significantly increased, and no change in the vasodilation to acetylcholine (ACh) was observed. Tg APP displayed decreased vasodilation to both cannabinoid agonists, which were able to prevent decreased ACh relaxation in the presence of Aβ. In summary, we have confirmed and extended the existence of altered vascular responses in Tg APP mice. Moreover, our results suggest that treatment with cannabinoids may ameliorate the vascular responses in AD-type pathology.

  8. Vascular Dysfunction in a Transgenic Model of Alzheimer's Disease: Effects of CB1R and CB2R Cannabinoid Agonists

    PubMed Central

    Navarro-Dorado, Jorge; Villalba, Nuria; Prieto, Dolores; Brera, Begoña; Martín-Moreno, Ana M.; Tejerina, Teresa; de Ceballos, María L.

    2016-01-01

    There is evidence of altered vascular function, including cerebrovascular, in Alzheimer's disease (AD) and transgenic models of the disease. Indeed vasoconstrictor responses are increased, while vasodilation is reduced in both conditions. β-Amyloid (Aβ) appears to be responsible, at least in part, of alterations in vascular function. Cannabinoids, neuroprotective and anti-inflammatory agents, induce vasodilation both in vivo and in vitro. We have demonstrated a beneficial effect of cannabinoids in models of AD by preventing glial activation. In this work we have studied the effects of these compounds on vessel density in amyloid precursor protein (APP) transgenic mice, line 2576, and on altered vascular responses in aortae isolated ring. First we showed increased collagen IV positive vessels in AD brain compared to control subjects, with a similar increase in TgAPP mice, which was normalized by prolonged oral treatment with the CB1/CB2 mixed agonist WIN 55,212-2 (WIN) and the CB2 selective agonist JWH-133 (JWH). In Tg APP mice the vasoconstriction induced by phenylephrine and the thromboxane agonist U46619 was significantly increased, and no change in the vasodilation to acetylcholine (ACh) was observed. Tg APP displayed decreased vasodilation to both cannabinoid agonists, which were able to prevent decreased ACh relaxation in the presence of Aβ. In summary, we have confirmed and extended the existence of altered vascular responses in Tg APP mice. Moreover, our results suggest that treatment with cannabinoids may ameliorate the vascular responses in AD-type pathology. PMID:27695396

  9. Astrocytic expression of cannabinoid type 1 receptor in rat and human sclerotic hippocampi

    PubMed Central

    Meng, Xian-Dong; Wei, Dong; Li, Juan; Kang, Jun-Jun; Wu, Chen; Ma, Lei; Yang, Feng; Zhu, Ge-Min; Ou-Yang, Tang-Peng; Liu, Ying-Ying; Jiang, Wen

    2014-01-01

    Cannabinoid type 1 receptor (CB1R), which is traditionally located on axon terminals, plays an important role in the pathology of epilepsy and neurodegenerative diseases by modulating synaptic transmission. Using the pilocarpine model of chronic spontaneous recurrent seizures, which mimics the main features of mesial temporal lobe epilepsy (TLE) with hippocampal sclerosis (HS) in humans, we examined the expression of CB1R in hippocampal astrocytes of epileptic rats. Furthermore, we also examined the expression of astrocytic CB1R in the resected hippocampi from patients with medically refractory mesial TLE. Using immunofluorescent double labeling, we found increased expression of astrocytic CB1R in hippocampi of epileptic rats, whereas expression of astrocytic CB1R was not detectable in hippocampi of saline treated animals. Furthermore, CB1R was also found in some astrocytes in sclerotic hippocampi in a subset of patients with intractable mesial TLE. Detection with immune electron microscopy showed that the expression of CB1R was increased in astrocytes of epileptic rats and modest levels of CB1R were also found on the astrocytic membrane of sclerotic hippocampi. These results suggest that increased expression of astrocytic CB1R in sclerotic hippocampi might be involved in the cellular basis of the effects of cannabinoids on epilepsy. PMID:25031702

  10. Cannabinoid transmission in the prelimbic cortex bidirectionally controls opiate reward and aversion signaling through dissociable kappa versus μ-opiate receptor dependent mechanisms.

    PubMed

    Ahmad, Tasha; Lauzon, Nicole M; de Jaeger, Xavier; Laviolette, Steven R

    2013-09-25

    Cannabinoid, dopamine (DA), and opiate receptor pathways play integrative roles in emotional learning, associative memory, and sensory perception. Modulation of cannabinoid CB1 receptor transmission within the medial prefrontal cortex (mPFC) regulates the emotional valence of both rewarding and aversive experiences. Furthermore, CB1 receptor substrates functionally interact with opiate-related motivational processing circuits, particularly in the context of reward-related learning and memory. Considerable evidence demonstrates functional interactions between CB1 and DA signaling pathways during the processing of motivationally salient information. However, the role of mPFC CB1 receptor transmission in the modulation of behavioral opiate-reward processing is not currently known. Using an unbiased conditioned place preference paradigm with rats, we examined the role of intra-mPFC CB1 transmission during opiate reward learning. We report that activation or inhibition of CB1 transmission within the prelimbic cortical (PLC) division of the mPFC bidirectionally regulates the motivational valence of opiates; whereas CB1 activation switched morphine reward signaling into an aversive stimulus, blockade of CB1 transmission potentiated the rewarding properties of normally sub-reward threshold conditioning doses of morphine. Both of these effects were dependent upon DA transmission as systemic blockade of DAergic transmission prevented CB1-dependent modulation of morphine reward and aversion behaviors. We further report that CB1-mediated intra-PLC opiate motivational signaling is mediated through a μ-opiate receptor-dependent reward pathway, or a κ-opiate receptor-dependent aversion pathway, directly within the ventral tegmental area. Our results provide evidence for a novel CB1-mediated motivational valence switching mechanism within the PLC, controlling dissociable subcortical reward and aversion pathways. PMID:24068830

  11. Exercise reduces adipose tissue via cannabinoid receptor type 1 which is regulated by peroxisome proliferator-activated receptor-{delta}

    SciTech Connect

    Yan Zhencheng; Liu Daoyan; Zhang Lili; Shen Chenyi; Ma Qunli; Cao Tingbing; Wang Lijuan; Nie Hai; Zidek, Walter; Tepel, Martin; Zhu Zhiming . E-mail: zhuzm@yahoo.com

    2007-03-09

    Obesity is one major cardiovascular risk factor. We tested effects of endurance exercise on cannabinoid receptor type 1 (CB1) and peroxisome proliferator-activated receptor-{delta} (PPAR-{delta})-dependent pathways in adipose tissue. Male Wistar rats were randomly assigned to standard laboratory chow or a high-fat diet without and with regular endurance exercise. Exercise in rats on high-fat diet significantly reduced visceral fat mass, blood pressure, and adipocyte size (each p < 0.05). Adipocyte hypertrophy induced by high-fat diet was accompanied by increased CB1 expression in adipose tissue, whereas exercise significantly reduced CB1 expression (each p < 0.05). CB1 receptor expression and adipocyte differentiation were directly regulated by PPAR-{delta}. Adipocyte hypertrophy induced by high-fat diet was accompanied by reduced PPAR-{delta}. Furthermore, selective silencing of PPAR-{delta} by RNA interference in 3T3-L1-preadipocyte cells significantly increased CB1 expression from 1.00 {+-} 0.06 (n = 3) to 1.91 {+-} 0.06 (n = 3; p < 0.01) and increased adipocyte differentiation, whereas adenovirus-mediated overexpression of PPAR-{delta} significantly reduced CB1 expression to 0.39 {+-} 0.03 (n = 3; p < 0.01) and reduced adipocyte differentiation. In the presence of the CB1 antagonist rimonabant adipocyte differentiation in stimulated 3T3 L1 preadipocyte cells was significantly reduced. The study indicates that high-fat diet-induced hypertrophy of adipocytes is associated with increased CB1 receptor expression which is directly regulated by PPAR-{delta}. Both CB1 and PPAR-{delta} are intimately involved in therapeutic interventions against a most important cardiovascular risk factor.

  12. Mapping Cannabinoid 1 Receptor Allosteric Site(s): Critical Molecular Determinant and Signaling Profile of GAT100, a Novel, Potent, and Irreversibly Binding Probe.

    PubMed

    Laprairie, Robert B; Kulkarni, Abhijit R; Kulkarni, Pushkar M; Hurst, Dow P; Lynch, Diane; Reggio, Patricia H; Janero, David R; Pertwee, Roger G; Stevenson, Lesley A; Kelly, Melanie E M; Denovan-Wright, Eileen M; Thakur, Ganesh A

    2016-06-15

    One of the most abundant G-protein coupled receptors (GPCRs) in brain, the cannabinoid 1 receptor (CB1R), is a tractable therapeutic target for treating diverse psychobehavioral and somatic disorders. Adverse on-target effects associated with small-molecule CB1R orthosteric agonists and inverse agonists/antagonists have plagued their translational potential. Allosteric CB1R modulators offer a potentially safer modality through which CB1R signaling may be directed for therapeutic benefit. Rational design of candidate, druglike CB1R allosteric modulators requires greater understanding of the architecture of the CB1R allosteric endodomain(s) and the capacity of CB1R allosteric ligands to tune the receptor's information output. We have recently reported the synthesis of a focused library of rationally designed, covalent analogues of Org27569 and PSNCBAM-1, two prototypic CB1R negative allosteric modulators (NAMs). Among the novel, pharmacologically active CB1R NAMs reported, the isothiocyanate GAT100 emerged as the lead by virtue of its exceptional potency in the [(35)S]GTPγS and β-arrestin signaling assays and its ability to label CB1R as a covalent allosteric probe with significantly reduced inverse agonism in the [(35)S]GTPγS assay as compared to Org27569. We report here a comprehensive functional profiling of GAT100 across an array of important downstream cell-signaling pathways and analysis of its potential orthosteric probe-dependence and signaling bias. The results demonstrate that GAT100 is a NAM of the orthosteric CB1R agonist CP55,940 and the endocannabinoids 2-arachidonoylglycerol and anandamide for β-arrestin1 recruitment, PLCβ3 and ERK1/2 phosphorylation, cAMP accumulation, and CB1R internalization in HEK293A cells overexpressing CB1R and in Neuro2a and STHdh(Q7/Q7) cells endogenously expressing CB1R. Distinctively, GAT100 was a more potent and efficacious CB1R NAM than Org27569 and PSNCBAM-1 in all signaling assays and did not exhibit the inverse

  13. Fos-Zippered GH Receptor Cytosolic Tails Act as Jak2 Substrates and Signal Transducers.

    PubMed

    Nespital, Tobias; van der Velden, Lieke M; Mensinga, Anneloes; van der Vaart, Elisabeth D; Strous, Ger J

    2016-03-01

    Members of the Janus kinase (Jak) family initiate the majority of downstream signaling events of the cytokine receptor family. The prevailing principle is that the receptors act in dimers: 2 Jak2 molecules bind to the cytosolic tails of a cytokine receptor family member and initiate Jak-signal transducer and activator of transcription signaling upon a conformational change in the receptor complex, induced by the cognate cytokine. Due to the complexity of signaling complexes, there is a strong need for in vitro model systems. To investigate the molecular details of the Jak2 interaction with the GH receptor (GHR), we used cytosolic tails provided with leucine zippers derived from c-Fos to mimic the dimerized state of GHR. Expressed together with Jak2, fos-zippered tails, but not unzippered tails, were stabilized. In addition, the Jak-signal transducer and activator of transcription signaling pathway was activated by the fos-zippered tails. The stabilization depended also on α-helix rotation of the zippers. Fos-zippered GHR tails and Jak2, both purified from baculovirus-infected insect cells, interacted via box1 with a binding affinity of approximately 40nM. As expected, the Jak kinase inhibitor Ruxolitinib inhibited the stabilization but did not affect the c-Fos-zippered GHR tail-Jak2 interaction. Analysis by blue-native gel electrophoresis revealed high molecular-weight complexes containing both Jak2 and nonphosphorylated GHR tails, whereas Jak2-dissociated tails were highly phosphorylated and monomeric, implying that Jak2 detaches from its substrate upon phosphorylation. PMID:26859362

  14. Different Wnt signals act through the Frizzled and RYK receptors during Drosophila salivary gland migration.

    PubMed

    Harris, Katherine E; Beckendorf, Steven K

    2007-06-01

    Guided cell migration is necessary for the proper function and development of many tissues, one of which is the Drosophila embryonic salivary gland. Here we show that two distinct Wnt signaling pathways regulate salivary gland migration. Early in migration, the salivary gland responds to a WNT4-Frizzled signal for proper positioning within the embryo. Disruption of this signal, through mutations in Wnt4, frizzled or frizzled 2, results in misguided salivary glands that curve ventrally. Furthermore, disruption of downstream components of the canonical Wnt pathway, such as dishevelled or Tcf, also results in ventrally curved salivary glands. Analysis of a second Wnt signal, which acts through the atypical Wnt receptor Derailed, indicates a requirement for Wnt5 signaling late in salivary gland migration. WNT5 is expressed in the central nervous system and acts as a repulsive signal, needed to keep the migrating salivary gland on course. The receptor for WNT5, Derailed, is expressed in the actively migrating tip of the salivary glands. In embryos mutant for derailed or Wnt5, salivary gland migration is disrupted; the tip of the gland migrates abnormally toward the central nervous system. Our results suggest that both the Wnt4-frizzled pathway and a separate Wnt5-derailed pathway are needed for proper salivary gland migration. PMID:17507403

  15. Pharmacodynamics of long-acting folic acid-receptor targeted ritonavir boosted atazanavir nanoformulations

    PubMed Central

    Puligujja, Pavan; Balkundi, Shantanu; Kendrick, Lindsey; Baldridge, Hannah; Hilaire, James; Bade, Aditya N.; Dash, Prasanta K.; Zhang, Gang; Poluektova, Larisa; Gorantla, Santhi; Liu, Xin-Ming; Ying, Tianlei; Feng, Yang; Wang, Yanping; Dimitrov, Dimiter S.; McMillan, JoEllyn M.; Gendelman, Howard E.

    2014-01-01

    Long-acting nanoformulated antiretroviral therapy (nanoART) that target monocyte-macrophage could improve the drug’s half-life and protein binding capacities while facilitating cell and tissue depots. To this end, ART nanoparticles that target the folic acid (FA) receptor and permit cell-based drug depots were examined using pharmacokinetic and pharmacodynamic (PD) tests. FA receptor-targeted poloxamer 407 nanocrystals, containing ritonavir-boosted atazanavir (ATV/r), significantly affected several therapeutic factors: drug bioavailability increased as much as 5 times and PD activity improved as much as 100 times. Drug particles administered to human peripheral blood lymphocyte reconstituted NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ mice and infected with HIV-1ADA at a tissue culture infective dose50 of 104 infectious viral particles/ml led to ATV/r drug concentrations that paralleled FA receptor beta staining in both the macrophage-rich parafollicular areas of spleen and lymph nodes. Drug levels were higher in these tissues than what could be achieved by either native drug or untargeted nanoART particles. The data also mirrored potent reductions in viral loads, tissue viral RNA and numbers of HIV-1p24+ cells in infected and treated animals. We conclude that FA-P407 coating of ART nanoparticles readily facilitate drug carriage and facilitate antiretroviral responses. PMID:25522973

  16. Synergistically acting agonists and antagonists of G protein–coupled receptors prevent photoreceptor cell degeneration

    PubMed Central

    Chen, Yu; Palczewska, Grazyna; Masuho, Ikuo; Gao, Songqi; Jin, Hui; Dong, Zhiqian; Gieser, Linn; Brooks, Matthew J.; Kiser, Philip D.; Kern, Timothy S.; Martemyanov, Kirill A.; Swaroop, Anand; Palczewski, Krzysztof

    2016-01-01

    Photoreceptor cell degeneration leads to visual impairment and blindness in several types of retinal disease. However, the discovery of safe and effective therapeutic strategies conferring photoreceptor cell protection remains challenging. Targeting distinct cellular pathways with low doses of different drugs that produce a functionally synergistic effect could provide a strategy for preventing or treating retinal dystrophies. We took a systems pharmacology approach to identify potential combination therapies using a mouse model of light-induced retinal degeneration. We showed that a combination of U.S. Food and Drug Administration–approved drugs that act on different G protein (guanine nucleotide–binding protein)–coupled receptors (GPCRs) exhibited synergistic activity that protected retinas from light-induced degeneration even when each drug was administered at a low dose. In functional assays, the combined effects of these drugs were stimulation of Gi/o signaling by activating the dopamine receptors D2R and D4R, as well as inhibition of Gs and Gq signaling by antagonizing D1R and the α1A-adrenergic receptor ADRA1A, respectively. Moreover, transcriptome analyses demonstrated that such combined GPCR-targeted treatments preserved patterns of retinal gene expression that were more similar to those of the normal retina than did higher-dose monotherapy. Our study thus supports a systems pharmacology approach to identify treatments for retinopathies, an approach that could extend to other complex disorders. PMID:27460988

  17. Synergistically acting agonists and antagonists of G protein-coupled receptors prevent photoreceptor cell degeneration.

    PubMed

    Chen, Yu; Palczewska, Grazyna; Masuho, Ikuo; Gao, Songqi; Jin, Hui; Dong, Zhiqian; Gieser, Linn; Brooks, Matthew J; Kiser, Philip D; Kern, Timothy S; Martemyanov, Kirill A; Swaroop, Anand; Palczewski, Krzysztof

    2016-01-01

    Photoreceptor cell degeneration leads to visual impairment and blindness in several types of retinal disease. However, the discovery of safe and effective therapeutic strategies conferring photoreceptor cell protection remains challenging. Targeting distinct cellular pathways with low doses of different drugs that produce a functionally synergistic effect could provide a strategy for preventing or treating retinal dystrophies. We took a systems pharmacology approach to identify potential combination therapies using a mouse model of light-induced retinal degeneration. We showed that a combination of U.S. Food and Drug Administration-approved drugs that act on different G protein (heterotrimeric guanine nucleotide-binding protein)-coupled receptors (GPCRs) exhibited synergistic activity that protected retinas from light-induced degeneration even when each drug was administered at a low dose. In functional assays, the combined effects of these drugs were stimulation of Gi/o signaling by activating the dopamine receptors D2R and D4R, as well as inhibition of Gs and Gq signaling by antagonizing D1R and the α1A-adrenergic receptor ADRA1A, respectively. Moreover, transcriptome analyses demonstrated that such combined GPCR-targeted treatments preserved patterns of retinal gene expression that were more similar to those of the normal retina than did higher-dose monotherapy. Our study thus supports a systems pharmacology approach to identify treatments for retinopathies, an approach that could extend to other complex disorders. PMID:27460988

  18. Distribution of cannabinoid receptor 1 in the CNS of zebrafish.

    PubMed

    Lam, C S; Rastegar, S; Strähle, U

    2006-01-01

    The cannabinoid receptor 1 (Cb1) mediates the psychoactive effect of marijuana. In mammals, there is abundant evidence advocating the importance of cannabinoid signaling; activation of Cb1 exerts diverse functions, chiefly by its ability to modulate neurotransmission. Thus, much attention has been devoted to understand its role in health and disease and to evaluate its therapeutic potential. Here, we have cloned zebrafish cb1 and investigated its expression in developing and adult zebrafish brain. Sequence analysis showed that there is a high degree of conservation, especially in residues demonstrated to be critical for function in mammals. In situ hybridization revealed that zebrafish cb1 appears first in the preoptic area at 24 hours post-fertilization. Subsequently, transcripts are detected in the dorsal telencephalon, hypothalamus, pretectum and torus longitudinalis. A similar pattern of expression is recapitulated in the adult brain. While cb1 is intensively stained in the medial zone of the dorsal telencephalon, expression elsewhere is weak by comparison. In particular, localization of cb1 in the telencephalic periventricular matrix is suggestive of the involvement of Cb1 in neurogenesis, bearing strong resemblance in terms of expression and function to the proliferative mammalian hippocampal formation. In addition, a gradient-like expression of cb1 is detected in the torus longitudinalis, a teleost specific neural tissue. In relation to dopaminergic neurons in the diencephalic posterior tuberculum (considered to be the teleostean homologue of the mammalian midbrain dopaminergic system), both cb1 and tyrosine hydroxylase-expressing cells occupy non-overlapping domains. However there is evidence that they are co-localized in the caudal zone of the hypothalamus, implying a direct modulation of dopamine release in this particular region. Collectively, our data indicate the propensity of zebrafish cb1 to participate in multiple neurological processes.

  19. CB2 cannabinoid receptors as an emerging target for demyelinating diseases: from neuroimmune interactions to cell replacement strategies

    PubMed Central

    Arévalo-Martín, Á; García-Ovejero, D; Gómez, O; Rubio-Araiz, A; Navarro-Galve, B; Guaza, C; Molina-Holgado, E; Molina-Holgado, F

    2007-01-01

    Amongst the various demyelinating diseases that affect the central nervous system, those induced by an inflammatory response stand out because of their epidemiological relevance. The best known inflammatory-induced demyelinating disease is multiple sclerosis, but the immune response is a common pathogenic mechanism in many other less common pathologies (e.g., acute disseminated encephalomyelitis and acute necrotizing haemorrhagic encephalomyelitis). In all such cases, modulation of the immune response seems to be a logical therapeutic approach. Cannabinoids are well known immunomodulatory molecules that act through CB1 and CB2 receptors. While activation of CB1 receptors has a psychotropic effect, activation of CB2 receptors alone does not. Therefore, to bypass the ethical problems that could result from the treatment of inflammation with psychotropic molecules, considerable effort is being made to study the potential therapeutic value of activating CB2 receptors. In this review we examine the current knowledge and understanding of the utility of cannabinoids as therapeutic molecules for inflammatory-mediated demyelinating pathologies. Moreover, we discuss how CB2 receptor activation is related to the modulation of immunopathogenic states. PMID:17891163

  20. Expression of the Endocannabinoid Receptors in Human Fascial Tissue

    PubMed Central

    Fede, C.; Albertin, G.; Petrelli, L.; Sfriso, M.M.; Biz, C.; Caro, R. De; Stecco, C.

    2016-01-01

    Cannabinoid receptors have been localized in the central and peripheral nervous system as well as on cells of the immune system, but recent studies on animal tissue gave evidence for the presence of cannabinoid receptors in different types of tissues. Their presence was supposed also in myofascial tissue, suggesting that the endocannabinoid system may help resolve myofascial trigger points and relieve symptoms of fibromyalgia. However, until now the expression of CB1 (cannabinoid receptor 1) and CB2 (cannabinoid receptor 2) in fasciae has not yet been established. Small samples of fascia were collected from volunteers patients during orthopedic surgery. For each sample were done a cell isolation, immunohistochemical investigation (CB1 and CB2 antibodies) and real time RT-PCR to detect the expression of CB1 and CB2. Both cannabinoid receptors are expressed in human fascia and in human fascial fibroblasts culture cells, although to a lesser extent than the control gene. We can assume that the expression of mRNA and protein of CB1 and CB2 receptors in fascial tissue are concentrated into the fibroblasts. This is the first demonstration that the fibroblasts of the muscular fasciae express CB1 and CB2. The presence of these receptors could help to provide a description of cannabinoid receptors distribution and to better explain the role of fasciae as pain generator and the efficacy of some fascial treatments. Indeed the endocannabinoid receptors of fascial fibroblasts can contribute to modulate the fascial fibrosis and inflammation. PMID:27349320

  1. Type-1 cannabinoid receptor activity during Alzheimer's disease progression.

    PubMed

    Manuel, Iván; González de San Román, Estíbaliz; Giralt, M Teresa; Ferrer, Isidro; Rodríguez-Puertas, Rafael

    2014-01-01

    The activity of CB1 cannabinoid receptors was studied in postmortem brain samples of Alzheimer's disease (AD) patients during clinical deterioration. CB1 activity was higher at earlier AD stages in limited hippocampal areas and internal layers of frontal cortex, but a decrease was observed at the advanced stages. The pattern of modification appears to indicate initial hyperactivity of the endocannabinoid system in brain areas that lack classical histopathological markers at earlier stages of AD, indicating an attempt to compensate for the initial synaptic impairment, which is then surpassed by disease progression. These results suggest that initial CB1 stimulation might have therapeutic relevance.