Science.gov

Sample records for acting cb1 receptor

  1. Cannabinoid-1 (CB1) receptors regulate colonic propulsion by acting at motor neurons within the ascending motor pathways in mouse colon.

    PubMed

    Sibaev, Andrei; Yüce, Birol; Kemmer, Markus; Van Nassauw, Luc; Broedl, Ulli; Allescher, Hans D; Göke, Burkhard; Timmermans, Jean-Pierre; Storr, Martin

    2009-01-01

    Cannabinoid-1 (CB(1)) receptors on myenteric neurons are involved in the regulation of intestinal motility. Our aim was to investigate CB(1) receptor involvement in ascending neurotransmission in mouse colon and to characterize the involved structures by functional and morphological means. Presence of the CB(1) receptor was investigated by RT-PCR, and immunohistochemistry was used for colabeling studies. Myenteric reflex responses were initiated by electrical stimulation (ES) at different distances, and junction potentials (JP) were recorded from circular smooth muscle cells by intracellular recording in an unpartitioned and a partitioned recording chamber. In vivo colonic propulsion was tested in wild-type and CB(1)(-/-) mice. Immunostaining with the cytoskeletal marker peripherin showed CB(1) immunoreactivity both on Dogiel type I and type II neurons. Further neurochemical characterization revealed CB(1) on choline acetyltransferase-, calretinin-, and 5-HT-immunopositive myenteric neurons, but nitrergic neurons appeared immunonegative for CB(1) immunostaining. Solitary spindle-shaped CB(1)-immunoreactive cells in between smooth muscle cells lacked specific markers for interstitial cells of Cajal or glial cells. ES elicited neuronally mediated excitatory JP (EJP) and inhibitory JP. Gradual increases in distance resulted in a wave-like EJP with EJP amplitudes being maximal at the location of stimulating electrode 6 and a maximal EJP projection distance of approximately 18 mm. The CB(1) receptor agonist WIN 55,212-2 reduced the amplitude of EJP and was responsible for shortening the oral spreading of the excitatory impulse. In a partitioned chamber, WIN 55,212-2 reduced EJP at the separated oral sites, proving that CB(1) activation inhibits interneuron-mediated neurotransmission. These effects were absent in the presence of the CB(1) antagonist SR141716A, which, when given alone, had no effect. WIN 55,212-2 inhibited colonic propulsion in wild-type mice but not in

  2. Autocrine endocannabinoid signaling through CB1 receptors potentiates OX1 orexin receptor signaling.

    PubMed

    Jäntti, Maria H; Putula, Jaana; Turunen, Pauli M; Näsman, Johnny; Reijonen, Sami; Lindqvist, Christer; Kukkonen, Jyrki P

    2013-03-01

    It has been proposed that OX(1) orexin receptors and CB(1) cannabinoid receptors can form heteromeric complexes, which affect the trafficking of OX(1) receptors and potentiate OX(1) receptor signaling to extracellular signal-regulated kinase (ERK). We have recently shown that OX(1) receptor activity releases high levels of the endocannabinoid 2-arachidonoyl glycerol (2-AG), suggesting an alternative route for OX(1)-CB(1) receptor interaction in signaling, for instance, in retrograde synaptic transmission. In the current study, we set out to investigate this possibility utilizing recombinant Chinese hamster ovary K1 cells. 2-AG released from OX(1) receptor-expressing cells acted as a potent paracrine messenger stimulating ERK activity in neighboring CB(1) receptor-expressing cells. When OX(1) and CB(1) receptors were expressed in the same cells, OX(1) stimulation-induced ERK phosphorylation and activity were strongly potentiated. The potentiation but not the OX(1) response as such was fully abolished by specific inhibition of CB(1) receptors or the enzyme responsible for 2-AG generation, diacylglycerol lipase (DAGL). Although the results do not exclude the previously proposed OX(1)-CB(1) heteromerization, they nevertheless unequivocally identify DAGL-dependent 2-AG generation as the pivotal determinant of the OX(1)-CB(1) synergism and thus suggest a functional rather than a molecular interaction of OX(1) and CB(1) receptors. PMID:23233488

  3. Stress Regulates Endocannabinoid-CB1 Receptor Signaling

    PubMed Central

    Hillard, Cecilia J.

    2014-01-01

    The CB1 cannabinoid receptor is a G protein coupled receptor that is widely expressed throughout the brain. The endogenous ligands for the CB1 receptor (endocannabinoids) are N-arachidonylethanolamine and 2-arachidonoylglycerol; together the endocannabinoids and CB1R subserve activity dependent, retrograde inhibition of neurotransmitter release in the brain. Deficiency of CB1 receptor signaling is associated with anhedonia, anxiety, and persistence of negative memories. CB1 receptor-endocannabinoid signaling is activated by stress and functions to buffer or dampen the behavioral and endocrine effects of acute stress. Its role in regulation of neuronal responses is more complex. Chronic variable stress exposure reduces endocannabinoid-CB1 receptor signaling and it is hypothesized that the resultant deficiency in endocannabinoid signaling contributes to the negative consequences of chronic stress. On the other hand, repeated exposure to the same stress can sensitize CB1 receptor signaling, resulting in dampening of the stress response. Data are reviewed that support the hypothesis that CB1 receptor signaling is stress responsive and that maintaining robust endocannabinoid/CB1 receptor signaling provides resilience against the development of stress-related pathologies. PMID:24882055

  4. The role of CB1 receptors in sweet versus fat reinforcement: effect of CB1 receptor deletion, CB1 receptor antagonism (SR141716A) and CB1 receptor agonism (CP-55940).

    PubMed

    Ward, S J; Dykstra, L A

    2005-09-01

    It is well established that Cannabis sativa can increase appetite, particularly for sweet and palatable foods. In laboratory animals, cannabinoid CB1 receptor antagonism decreases motivation for palatable foods, and most recently, the CB1 receptor antagonist SR141716A, or rimonabant (Acomplia), was reported to produce weight loss in obese human subjects. Indeed, the endocannabinoid system plays a select role in the rewarding properties of palatable foods, and this is well characterized in laboratory animals with sweet sucrose solutions. In the present study, CB1 knockout mice (CB1 KO) and wild-type littermate mice (WT) were trained to respond for a complex sweet as well as a pure fat reinforcer under a progressive ratio (PR) schedule, to determine whether motivation to consume different palatable foods is tonically regulated by CB1 receptors. To assess sweet reinforcement, several concentrations of the liquid nutritional drink, Ensure, were presented under the PR schedule. For fat reinforcement, several concentrations of corn oil (emulsified in 3% xanthan gum) were made available. Additionally, to compare the result of genetic invalidation of the CB1 receptor to antagonism of the CB1 receptor system, the effect of SR141716A (3.0 mg/kg) on responding for Ensure and corn oil were also assessed using the PR schedule. We also assessed the effect of the CB1 agonist CP-55940 (30 microg/kg) on responding for Ensure and corn oil. CB1 KOs took significantly longer to acquire operant responding maintained by Ensure, and responding for Ensure under the PR schedule was significantly reduced in CB1 KOs as well as in WTs pretreated with SR141716A, as compared to WT controls. Additionally, pretreatment with the CB1 agonist CP-55940 increased responding for Ensure. In contrast, responding for corn oil during acquisition and under the PR schedule was not significantly different in CB1 KOs versus wild-type mice. However, SR141716A did reduce responding for corn oil in WTs, and CP

  5. Cannabinoid Receptor–Interacting Protein 1a Modulates CB1 Receptor Signaling and Regulation

    PubMed Central

    Smith, Tricia H.; Blume, Lawrence C.; Straiker, Alex; Cox, Jordan O.; David, Bethany G.; McVoy, Julie R. Secor; Sayers, Katherine W.; Poklis, Justin L.; Abdullah, Rehab A.; Egertová, Michaela; Chen, Ching-Kang; Mackie, Ken; Elphick, Maurice R.; Howlett, Allyn C.

    2015-01-01

    Cannabinoid CB1 receptors (CB1Rs) mediate the presynaptic effects of endocannabinoids in the central nervous system (CNS) and most behavioral effects of exogenous cannabinoids. Cannabinoid receptor–interacting protein 1a (CRIP1a) binds to the CB1R C-terminus and can attenuate constitutive CB1R-mediated inhibition of Ca2+ channel activity. We now demonstrate cellular colocalization of CRIP1a at neuronal elements in the CNS and show that CRIP1a inhibits both constitutive and agonist-stimulated CB1R-mediated guanine nucleotide–binding regulatory protein (G-protein) activity. Stable overexpression of CRIP1a in human embryonic kidney (HEK)-293 cells stably expressing CB1Rs (CB1-HEK), or in N18TG2 cells endogenously expressing CB1Rs, decreased CB1R-mediated G-protein activation (measured by agonist-stimulated [35S]GTPγS (guanylyl-5′-[O-thio]-triphosphate) binding) in both cell lines and attenuated inverse agonism by rimonabant in CB1-HEK cells. Conversely, small-interfering RNA–mediated knockdown of CRIP1a in N18TG2 cells enhanced CB1R-mediated G-protein activation. These effects were not attributable to differences in CB1R expression or endocannabinoid tone because CB1R levels did not differ between cell lines varying in CRIP1a expression, and endocannabinoid levels were undetectable (CB1-HEK) or unchanged (N18TG2) by CRIP1a overexpression. In CB1-HEK cells, 4-hour pretreatment with cannabinoid agonists downregulated CB1Rs and desensitized agonist-stimulated [35S]GTPγS binding. CRIP1a overexpression attenuated CB1R downregulation without altering CB1R desensitization. Finally, in cultured autaptic hippocampal neurons, CRIP1a overexpression attenuated both depolarization-induced suppression of excitation and inhibition of excitatory synaptic activity induced by exogenous application of cannabinoid but not by adenosine A1 agonists. These results confirm that CRIP1a inhibits constitutive CB1R activity and demonstrate that CRIP1a can also inhibit agonist

  6. Functional CB1 cannabinoid receptors in human vascular endothelial cells.

    PubMed Central

    Liu, J; Gao, B; Mirshahi, F; Sanyal, A J; Khanolkar, A D; Makriyannis, A; Kunos, G

    2000-01-01

    Cannabinoid CB1 receptor mRNA was detected using reverse transcription-polymerase chain reaction (RT-PCR) in endothelial cells from human aorta and hepatic artery and in the ECV304 cell line derived from human umbilical vein endothelial cells. CB1 receptor-binding sites were detected by the high-affinity antagonist radioligand [(125)I]AM-251. In ECV304 cells, both the highly potent synthetic cannabinoid agonist HU-210 and the endogenous ligand anandamide induce activation of mitogen-activated protein (MAP) kinase, and the effect of HU-210 was completely blocked, whereas the effect of anandamide was partially inhibited by SR141716A, a selective CB1 receptor antagonist. Transfection of ECV304 cells with CB1 receptor antisense, but not sense, oligonucleotides caused the same pattern of inhibition as SR141716A. This provides more definitive evidence for the involvement of CB1 receptors in MAP kinase activation and suggests that anandamide may also activate MAP kinase via an additional, CB1 receptor-independent, SR141716A-resistant mechanism. The MAP kinase activation by anandamide in ECV304 cells requires genistein-sensitive tyrosine kinases and protein kinase C (PKC), and anandamide also activates p38 kinase and c-Jun kinase. These findings indicate that CB1 receptors located in human vascular endothelium are functionally coupled to the MAP kinase cascade. Activation of protein kinase cascades by anandamide may be involved in the modulation of endothelial cell growth and proliferation. PMID:10698714

  7. CB1 receptor signaling regulates social anxiety and memory.

    PubMed

    Litvin, Y; Phan, A; Hill, M N; Pfaff, D W; McEwen, B S

    2013-07-01

    The endocannabinoid (eCB) system regulates emotion, stress, memory and cognition through the cannabinoid type 1 (CB1 ) receptor. To test the role of CB1 signaling in social anxiety and memory, we utilized a genetic knockout (KO) and a pharmacological approach. Specifically, we assessed the effects of a constitutive KO of CB1 receptors (CB1 KOs) and systemic administration of a CB1 antagonist (AM251; 5 mg/kg) on social anxiety in a social investigation paradigm and social memory in a social discrimination test. Results showed that when compared with wild-type (WT) and vehicle-treated animals, CB1 KOs and WT animals that received an acute dose of AM251 displayed anxiety-like behaviors toward a novel male conspecific. When compared with WT animals, KOs showed both active and passive defensive coping behaviors, i.e. elevated avoidance, freezing and risk-assessment behaviors, all consistent with an anxiety-like profile. Animals that received acute doses of AM251 also showed an anxiety-like profile when compared with vehicle-treated animals, yet did not show an active coping strategy, i.e. changes in risk-assessment behaviors. In the social discrimination test, CB1 KOs and animals that received the CB1 antagonist showed enhanced levels of social memory relative to their respective controls. These results clearly implicate CB1 receptors in the regulation of social anxiety, memory and arousal. The elevated arousal/anxiety resulting from either total CB1 deletion or an acute CB1 blockade may promote enhanced social discrimination/memory. These findings may emphasize the role of the eCB system in anxiety and memory to affect social behavior. PMID:23647582

  8. Cardiorespiratory Anomalies in Mice Lacking CB1 Cannabinoid Receptors

    PubMed Central

    Bastianini, Stefano; Cohen, Gary; Lo Martire, Viviana; Mazza, Roberta; Pagotto, Uberto; Quarta, Carmelo; Zoccoli, Giovanna

    2014-01-01

    Cannabinoid type 1 (CB1) receptors are expressed in the nervous and cardiovascular systems. In mice, CB1 receptor deficiency protects from metabolic consequences of a high-fat diet (HFD), increases sympathetic activity to brown fat, and entails sleep anomalies. We investigated whether sleep-wake and diet-dependent cardiorespiratory control is altered in mice lacking CB1 receptors. CB1 receptor knock-out (KO) and intact wild-type (WT) mice were fed standard diet or a HFD for 3 months, and implanted with a telemetric arterial pressure transducer and electrodes for sleep scoring. Sleep state was assessed together with arterial pressure and heart rate (home cage), or breathing (whole-body plethysmograph). Increases in arterial pressure and heart rate on passing from the light (rest) to the dark (activity) period in the KO were significantly enhanced compared with the WT. These increases were unaffected by cardiac (β1) or vascular (α1) adrenergic blockade. The breathing rhythm of the KO during sleep was also more irregular than that of the WT. A HFD increased heart rate, impaired cardiac vagal modulation, and blunted the central autonomic cardiac control during sleep. A HFD also decreased cardiac baroreflex sensitivity in the KO but not in the WT. In conclusion, we performed the first systematic study of cardiovascular function in CB1 receptor deficient mice during spontaneous wake-sleep behavior, and demonstrated that CB1 receptor KO alters cardiorespiratory control particularly in the presence of a HFD. The CB1 receptor signaling may thus play a role in physiological cardiorespiratory regulation and protect from some adverse cardiovascular consequences of a HFD. PMID:24950219

  9. Endocannabinoid system in Xenopus laevis development: CB1 receptor dynamics.

    PubMed

    Migliarini, Beatrice; Beatrice, Migliarini; Marucci, Gabriella; Gabriella, Marucci; Ghelfi, Francesca; Francesca, Ghelfi; Carnevali, Oliana; Oliana, Carnevali

    2006-04-01

    This study investigates for the first time the dynamics of endocannabinoid system appearance during low vertebrate Xenopus laevis development. We observed that the CB1 gene started to be expressed during the organogenesis period (+/- 1 dpf, st. 28) and expression persisted throughout the three further stages analyzed. Attention was focused on the localization of the CB1 messenger that was found both at the central level (in romboencephalon and in olfactory placods) and at the peripheral level (in the gastrointestinal tract) at +/- 3 dpf (st. 41), +/- 4 dpf (st. 46) and +/- 12 dpf (st. 49). We also considered the synthesis of CB1 protein that occurred from st. 41 onwards and, from this stage, we tested the receptor functionality in response to anandamide using cytosensor microphysiometry. CB1 functionality increased with development at both central and peripheral level. These data provide sufficient evidence to encourage further analysis on endocannabinoid physiological roles during embryonic and larval X. laevis growth. PMID:16519888

  10. Novel Adamantyl Cannabinoids as CB1 Receptor Probes

    PubMed Central

    Thakur, Ganesh A.; Bajaj, Shama; Paronis, Carol; Peng, Yan; Bowman, Anna L.; Barak, Lawrence S.; Caron, Marc G.; Parrish, Demon; Deschamps, Jeffrey R.; Makriyannis, Alexandros

    2013-01-01

    In previous studies compound 1 (AM411), a 3-(1-adamantyl) analog of the phytocannabinoid (−)-Δ8-tetrahydrocannabinol (Δ8-THC) was shown to have improved affinity and selectivity for the CB1 receptor. In this work, we further explored the role of the 1-adamantyl group at the C-3 position in a series of tricyclic cannabinoid analogs modified at the 9-northern aliphatic hydroxyl (NAH) position. Of these, 9-hydroxymethyl hexahydrocannabinol 11 (AM4054) exhibited high CB1 affinity and full agonist profile. In the cAMP assay, the 11-hydroxymethyl cannabinol analog 24 (AM4089) had a partial agonist profile, with high affinity and moderate selectivity for rCB1 over hCB2. In vivo results in rat models of hypothermia and analgesia were congruent with in vitro data. Our in vivo data indicates that 3-(1-adamantyl) substitution, within NAH cannabinergics, imparts improved pharmacological profiles when compared to the corresponding, traditionally used, 3-dimethylheptyl analogs and identifies 11 and 24 as a potential useful in vivo CB1 cannabinergic probes. PMID:23621789

  11. Peripheral, but not central effects of cannabidiol derivatives: mediation by CB(1) and unidentified receptors.

    PubMed

    Fride, Ester; Ponde, Datta; Breuer, Aviva; Hanus, Lumir

    2005-06-01

    Delta-9 tetrahydrocannabinol (Delta(9)-THC) and (-)-cannabidiol ((-)-CBD) are major constituents of the Cannabis sativa plant with different pharmacological profiles: (Delta(9)-THC activates cannabinoid CB(1) and CB(2) receptors and induces psychoactive and peripheral effects. (-)-CBD possesses no, or very weak affinity for these receptors. We tested a series of (+)- and (-)-CBD derivatives for central and peripheral effects in mice. None of the (-)-CBD derivatives were centrally active, yet most inhibited intestinal motility. Of the five (+)-CBD derivatives, all with CB(1) receptor affinity, only (+)-7-OH-CBD-DMH (DMH=1,1-dimethylheptyl), acted centrally, while all five arrested defecation. The effects of (+)-CBD-DMH and (+)-7-OH-CBD-DMH were inhibited by the CB(1) receptor antagonist SR141716. The CB(2) receptor antagonist SR144528, and the vanilloid TRPV1 receptor antagonist capsazepine, had no influence. Further, the (-)-CBD derivatives (-)-7-COOH-CBD and (-)-7-COOH-CBD-DMH, displayed antiinflammatory activity. We suggest that (+)-CBD analogues have mixed agonist/antagonist activity in the brain. Second, (-)-CBD analogues which are devoid of cannabinoid receptor affinity but which inhibit intestinal motility, suggest the existence of a non-CB(1), non-CB(2) receptor. Therefore, such analogues should be further developed as antidiarrheal and/or antiinflammatory drugs. We propose to study the therapeutic potential of (-)- and (+)-CBD derivatives for complex conditions such as inflammatory bowel disease and cystic fibrosis. PMID:15910887

  12. Induction of proteinuria by cannabinoid receptors 1 signaling activation in CB1 transgenic mice.

    PubMed

    Hsu, Yung-Chien; Lei, Chen-Chou; Shih, Ya-Hsueh; Ho, Cheng; Lin, Chun-Liang

    2015-02-01

    Proteinuria is not only a sign of kidney damage but is also involved in the progression of renal disease as an independent pathologic factor. Although patients with mutated type 1 cannabinoid receptors (CB1) polymorphism are associated with renal microvascular damage, the biologic role of CB1 signaling in proteinuria remains uncharacterized till now. Herein, we investigate whether CB1 participates in glomerular proteinuria in CB1 transgenic mice and treatment with CB1 agonist WIN55212-2 rat, neither of which are diabetic models. The CB1 transgenic mice and rats treated with CB1 agonist WIN55212-2 had higher kidney weight and urinary protein concentrations but not blood glucose levels compared with the wild-type group. A combination of laser-capture microsdissection, quantitative reverse transcription-polymerase chain reaction, immunoblotting and immunohistochemical validation revealed that CB1 transgenic mice and rats treated with CB1 agonist WIN55212-2 had higher vascular endothelial growth factor (VEGF) expression in renal glomeruli than that of the wild-type group. Geneticorpharmacological activation of CB1 by transgenic CB1 mice or treatment with WIN55212-2 reduced nephrin expression in the renal glomeruli compared with that of the wild-type group in the glomerular mesanglium. Taken together, CB1 transgenic mice and rats treated with CB1 agonist WIN55212-2 induced proteinuria with upregulation of CB1 resulting in impaired nephrin expression, by inducing excess VEGF reaction in the renal glomeruli. Genetic and pharmacological manipulation of CB1 signaling revealed VEGF-dependent nephrin depression of glomerulopathy. Controlling CB1 activity can be used an alternative strategy for sustaining renal function in the presence of CB1 activation. PMID:25474224

  13. The disease-modifying effects of a Sativex-like combination of phytocannabinoids in mice with experimental autoimmune encephalomyelitis are preferentially due to Δ9-tetrahydrocannabinol acting through CB1 receptors.

    PubMed

    Moreno-Martet, Miguel; Feliú, Ana; Espejo-Porras, Francisco; Mecha, Miriam; Carrillo-Salinas, Francisco J; Fernández-Ruiz, Javier; Guaza, Carmen; de Lago, Eva

    2015-11-01

    Sativex(®), an equimolecular combination of Δ(9)-tetrahydrocannabinol-botanical drug substance (Δ(9)-THC-BDS) and cannabidiol-botanical drug substance (CBD-BDS), is a licensed medicine that may be prescribed for alleviating specific symptoms of multiple sclerosis (MS) such as spasticity and pain. However, further evidence suggest that it could be also active as disease-modifying therapy given the immunomodulatory, anti-inflammatory and cytoprotective properties of their two major components. In this study, we investigated this potential in the experimental autoimmune encephalitis (EAE) model of MS in mice. We compared the effect of a Sativex-like combination of Δ(9)-THC-BDS (10 mg/kg) and CBD-BDS (10 mg/kg) with Δ(9)-THC-BDS (20 mg/kg) or CBD-BDS (20 mg/kg) administered separately by intraperitoneal administration to EAE mice. Treatments were initiated at the time that symptoms appear and continued up to the first relapse of the disease. The results show that the treatment with a Sativex-like combination significantly improved the neurological deficits typical of EAE mice, in parallel with a reduction in the number and extent of cell aggregates present in the spinal cord which derived from cell infiltration to the CNS. These effects were completely reproduced by the treatment with Δ(9)-THC-BDS alone, but not by CBD-BDS alone which only delayed the onset of the disease without improving disease progression and reducing the cell infiltrates in the spinal cord. Next, we investigated the potential targets involved in the effects of Δ(9)-THC-BDS by selectively blocking CB(1) or PPAR-γ receptors, and we found a complete reversion of neurological benefits and the reduction in cell aggregates only with rimonabant, a selective CB(1) receptor antagonist. Collectively, our data support the therapeutic potential of Sativex as a phytocannabinoid formulation capable of attenuating EAE progression, and that the active compound was Δ(9)-THC-BDS acting through CB(1

  14. Differential Control of Cocaine Self-Administration by GABAergic and Glutamatergic CB1 Cannabinoid Receptors.

    PubMed

    Martín-García, Elena; Bourgoin, Lucie; Cathala, Adeline; Kasanetz, Fernando; Mondesir, Miguel; Gutiérrez-Rodriguez, Ana; Reguero, Leire; Fiancette, Jean-François; Grandes, Pedro; Spampinato, Umberto; Maldonado, Rafael; Piazza, Pier Vincenzo; Marsicano, Giovanni; Deroche-Gamonet, Véronique

    2016-08-01

    The type 1 cannabinoid receptor (CB1) modulates numerous neurobehavioral processes and is therefore explored as a target for the treatment of several mental and neurological diseases. However, previous studies have investigated CB1 by targeting it globally, regardless of its two main neuronal localizations on glutamatergic and GABAergic neurons. In the context of cocaine addiction this lack of selectivity is critical since glutamatergic and GABAergic neuronal transmission is involved in different aspects of the disease. To determine whether CB1 exerts different control on cocaine seeking according to its two main neuronal localizations, we used mutant mice with deleted CB1 in cortical glutamatergic neurons (Glu-CB1) or in forebrain GABAergic neurons (GABA-CB1). In Glu-CB1, gene deletion concerns the dorsal telencephalon, including neocortex, paleocortex, archicortex, hippocampal formation and the cortical portions of the amygdala. In GABA-CB1, it concerns several cortical and non-cortical areas including the dorsal striatum, nucleus accumbens, thalamic, and hypothalamic nuclei. We tested complementary components of cocaine self-administration, separating the influence of primary and conditioned effects. Mechanisms underlying each phenotype were explored using in vivo microdialysis and ex vivo electrophysiology. We show that CB1 expression in forebrain GABAergic neurons controls mouse sensitivity to cocaine, while CB1 expression in cortical glutamatergic neurons controls associative learning processes. In accordance, in the nucleus accumbens, GABA-CB1 receptors control cocaine-induced dopamine release and Glu-CB1 receptors control AMPAR/NMDAR ratio; a marker of synaptic plasticity. Our findings demonstrate a critical distinction of the altered balance of Glu-CB1 and GABA-CB1 activity that could participate in the vulnerability to cocaine abuse and addiction. Moreover, these novel insights advance our understanding of CB1 neuropathophysiology. PMID:26612422

  15. A restricted population of CB1 cannabinoid receptors with neuroprotective activity

    PubMed Central

    Chiarlone, Anna; Bellocchio, Luigi; Blázquez, Cristina; Resel, Eva; Soria-Gómez, Edgar; Cannich, Astrid; Ferrero, José J.; Sagredo, Onintza; Benito, Cristina; Romero, Julián; Sánchez-Prieto, José; Lutz, Beat; Fernández-Ruiz, Javier; Galve-Roperh, Ismael; Guzmán, Manuel

    2014-01-01

    The CB1 cannabinoid receptor, the main molecular target of endocannabinoids and cannabis active components, is the most abundant G protein-coupled receptor in the mammalian brain. Of note, CB1 receptors are expressed at the synapses of two opposing (i.e., GABAergic/inhibitory and glutamatergic/excitatory) neuronal populations, so the activation of one and/or another receptor population may conceivably evoke different effects. Despite the widely reported neuroprotective activity of the CB1 receptor in animal models, the precise pathophysiological relevance of those two CB1 receptor pools in neurodegenerative processes is unknown. Here, we first induced excitotoxic damage in the mouse brain by (i) administering quinolinic acid to conditional mutant animals lacking CB1 receptors selectively in GABAergic or glutamatergic neurons, and (ii) manipulating corticostriatal glutamatergic projections remotely with a designer receptor exclusively activated by designer drug pharmacogenetic approach. We next examined the alterations that occur in the R6/2 mouse, a well-established model of Huntington disease, upon (i) fully knocking out CB1 receptors, and (ii) deleting CB1 receptors selectively in corticostriatal glutamatergic or striatal GABAergic neurons. The data unequivocally identify the restricted population of CB1 receptors located on glutamatergic terminals as an indispensable player in the neuroprotective activity of (endo)cannabinoids, therefore suggesting that this precise receptor pool constitutes a promising target for neuroprotective therapeutic strategies. PMID:24843137

  16. Structural dynamics and energetics underlying allosteric inactivation of the cannabinoid receptor CB1

    PubMed Central

    Fay, Jonathan F.; Farrens, David L.

    2015-01-01

    G protein-coupled receptors (GPCRs) are surprisingly flexible molecules that can do much more than simply turn on G proteins. Some even exhibit biased signaling, wherein the same receptor preferentially activates different G-protein or arrestin signaling pathways depending on the type of ligand bound. Why this behavior occurs is still unclear, but it can happen with both traditional ligands and ligands that bind allosterically outside the orthosteric receptor binding pocket. Here, we looked for structural mechanisms underlying these phenomena in the marijuana receptor CB1. Our work focused on the allosteric ligand Org 27569, which has an unusual effect on CB1—it simultaneously increases agonist binding, decreases G-protein activation, and induces biased signaling. Using classical pharmacological binding studies, we find that Org 27569 binds to a unique allosteric site on CB1 and show that it can act alone (without need for agonist cobinding). Through mutagenesis studies, we find that the ability of Org 27569 to bind is related to how much receptor is in an active conformation that can couple with G protein. Using these data, we estimated the energy differences between the inactive and active states. Finally, site-directed fluorescence labeling studies show the CB1 structure stabilized by Org 27569 is different and unique from that stabilized by antagonist or agonist. Specifically, transmembrane helix 6 (TM6) movements associated with G-protein activation are blocked, but at the same time, helix 8/TM7 movements are enhanced, suggesting a possible mechanism for the ability of Org 27569 to induce biased signaling. PMID:26100912

  17. Understanding Functional Residues of the Cannabinoid CB1 Receptor for Drug Discovery

    PubMed Central

    Shim, Joong-Youn

    2010-01-01

    The brain cannabinoid (CB1) receptor that mediates numerous physiological processes in response to marijuana and other psychoactive compounds is a G protein coupled receptor (GPCR) and shares common structural features with many rhodopsin class GPCRs. For the rational development of therapeutic agents targeting the CB1 receptor, understanding of the ligand-specific CB1 receptor interactions responsible for unique G protein signals is crucial. For a more than a decade, a combination of mutagenesis and computational modeling approaches has been successfully employed to study the ligand-specific CB1 receptor interactions. In this review, after a brief discussion about recent advances in understanding of some structural and functional features of GPCRs commonly applicable to the CB1 receptor, the CB1 receptor functional residues reported from mutational studies are divided into three different types, ligand binding (B), receptor stabilization (S) and receptor activation (A) residues, to delineate the nature of the binding pockets of anandamide, CP55940, WIN55212-2 and SR141716A and to describe the molecular events of the ligand-specific CB1 receptor activation from ligand binding to G protein signaling. Taken these CB1 receptor functional residues, some of which are unique to the CB1 receptor, together with the biophysical knowledge accumulated for the GPCR active state, it is possible to propose the early stages of the CB1 receptor activation process that not only provide some insights into understanding molecular mechanisms of receptor activation but also are applicable for identifying new therapeutic agents by applying the validated structure-based approaches, such as virtual high throughput screening (HTS) and fragment-based approach (FBA). PMID:20370713

  18. Muscarinic M1 receptor and cannabinoid CB1 receptor do not modulate paraoxon-induced seizures

    PubMed Central

    Kow, Rebecca L; Cheng, Eugene M; Jiang, Kelly; Le, Joshua H; Stella, Nephi; Nathanson, Neil M

    2015-01-01

    One of the major signs of severe organophosphate poisoning is seizures. Previous studies have shown that both muscarinic agonist- and organophosphate-induced seizures require activation of muscarinic acetylcholine receptors in the central nervous system. Seizures induced by the muscarinic agonist pilocarpine require the M1 receptor and are modulated by cannabinoid CB1 receptors. In this study, we determined whether M1 and CB1 receptors also regulated seizures induced by the organophosphate paraoxon. We found no differences in seizures induced by paraoxon in wild-type (WT) and M1 knockout (KO) mice, indicating that in contrast to pilocarpine seizures, M1 receptors are not required for paraoxon seizures. Furthermore, we found that pilocarpine administration resulted in seizure-independent activation of ERK in the hippocampus in a M1 receptor-dependent manner, while paraoxon did not induce seizure-independent activation of ERK in the mouse hippocampus. This shows that pilocarpine and paraoxon activated M1 receptors in the hippocampus to different extents. There were no differences in seizures induced by paraoxon in WT and CB1 KO mice, and neither CB1 agonist nor antagonist administration had significant effects on paraoxon seizures, indicating that, in contrast to pilocarpine seizures, paraoxon seizures are not modulated by CB1 receptors. These results demonstrate that there are fundamental molecular differences in the regulation of seizures induced by pilocarpine and paraoxon. PMID:25692018

  19. Chronic ethanol exposure decreases CB1 receptor function at GABAergic synapses in the rat central amygdala.

    PubMed

    Varodayan, Florence P; Soni, Neeraj; Bajo, Michal; Luu, George; Madamba, Samuel G; Schweitzer, Paul; Parsons, Loren H; Roberto, Marisa

    2016-07-01

    The endogenous cannabinoids (eCBs) influence the acute response to ethanol and the development of tolerance, dependence and relapse. Chronic alcohol exposure alters eCB levels and Type 1 cannabinoid receptor (CB1 ) expression and function in brain regions associated with addiction. CB1 inhibits GABA release, and GABAergic dysregulation in the central nucleus of the amygdala (CeA) is critical in the transition to alcohol dependence. We investigated possible disruptions in CB1 signaling of rat CeA GABAergic transmission following intermittent ethanol exposure. In the CeA of alcohol-naive rats, CB1 agonist WIN 55,212-2 (WIN) decreased the frequency of spontaneous and miniature GABAA receptor-mediated inhibitory postsynaptic currents (s/mIPSCs). This effect was prevented by CB1 antagonism, but not Type 2 cannabinoid receptor (CB2 ) antagonism. After 2-3 weeks of intermittent ethanol exposure, these WIN inhibitory effects were attenuated, suggesting ethanol-induced impairments in CB1 function. The CB1 antagonist AM251 revealed a tonic eCB/CB1 control of GABAergic transmission in the alcohol-naive CeA that was occluded by calcium chelation in the postsynaptic cell. Chronic ethanol exposure abolished this tonic CB1 influence on mIPSC, but not sIPSC, frequency. Finally, acute ethanol increased CeA GABA release in both naive and ethanol-exposed rats. Although CB1 activation prevented this effect, the AM251- and ethanol-induced GABA release were additive, ruling out a direct participation of CB1 signaling in the ethanol effect. Collectively, these observations demonstrate an important CB1 influence on CeA GABAergic transmission and indicate that the CeA is particularly sensitive to alcohol-induced disruptions of CB1 signaling. PMID:25940135

  20. Astroglial type-1 cannabinoid receptor (CB1): A new player in the tripartite synapse.

    PubMed

    Oliveira da Cruz, J F; Robin, L M; Drago, F; Marsicano, G; Metna-Laurent, M

    2016-05-26

    The endocannabinoid system is an important regulator of physiological functions. In the brain, this control is mainly exerted through the type-1-cannabinoid (CB1) receptors. CB1 receptors are abundant at neuron terminals where their stimulation inhibits neurotransmitter release. However, CB1 receptors are also expressed in astrocytes and recent studies showed that astroglial cannabinoid signaling is a key element of the tripartite synapse. In this review we discuss the different mechanisms by which astroglial CB1 receptors control synaptic transmission and plasticity. The recent involvement of astroglial CB1 receptors in the effects of cannabinoids on memory highlights their key roles in cognitive processes and further indicates that astrocytes are central active elements of high-order brain functions. PMID:25967266

  1. Cannabinoid receptor-interacting protein Crip1a modulates CB1 receptor signaling in mouse hippocampus.

    PubMed

    Guggenhuber, Stephan; Alpar, Alan; Chen, Rongqing; Schmitz, Nina; Wickert, Melanie; Mattheus, Tobias; Harasta, Anne E; Purrio, Martin; Kaiser, Nadine; Elphick, Maurice R; Monory, Krisztina; Kilb, Werner; Luhmann, Heiko J; Harkany, Tibor; Lutz, Beat; Klugmann, Matthias

    2016-05-01

    The cannabinoid type 1 receptor (Cnr1, CB1R) mediates a plethora of physiological functions in the central nervous system as a presynaptic modulator of neurotransmitter release. The recently identified cannabinoid receptor-interacting protein 1a (Cnrip1a, CRIP1a) binds to the C-terminal domain of CB1R, a region known to be important for receptor desensitization and internalization. Evidence that CRIP1a and CB1R interact in vivo has been reported, but the neuroanatomical distribution of CRIP1a is unknown. Moreover, while alterations of hippocampal CRIP1a levels following limbic seizures indicate a role in controlling excessive neuronal activity, the physiological function of CRIP1a in vivo has not been investigated. In this study, we analyzed the spatial distribution of CRIP1a in the hippocampus and examined CRIP1a as a potential modulator of CB1R signaling. We found that Cnrip1a mRNA is co-expressed with Cnr1 mRNA in pyramidal neurons and interneurons of the hippocampal formation. CRIP1a protein profiles were largely segregated from CB1R profiles in mossy cell terminals but not in hippocampal CA1 region. CB1R activation induced relocalization to close proximity with CRIP1a. Adeno-associated virus-mediated overexpression of CRIP1a specifically in the hippocampus revealed that CRIP1a modulates CB1R activity by enhancing cannabinoid-induced G protein activation. CRIP1a overexpression extended the depression of excitatory currents by cannabinoids in pyramidal neurons of the hippocampus and diminished the severity of chemically induced acute epileptiform seizures. Collectively, our data indicate that CRIP1a enhances hippocampal CB1R signaling in vivo. PMID:25772509

  2. Presynaptic adenosine A2A receptors dampen cannabinoid CB1 receptor-mediated inhibition of corticostriatal glutamatergic transmission

    PubMed Central

    Ferreira, S G; Gonçalves, F Q; Marques, J M; Tomé, Â R; Rodrigues, R J; Nunes-Correia, I; Ledent, C; Harkany, T; Venance, L; Cunha, R A; Köfalvi, A

    2015-01-01

    Background and Purpose Both cannabinoid CB1 and adenosine A2A receptors (CB1 receptors and A2A receptors) control synaptic transmission at corticostriatal synapses, with great therapeutic importance for neurological and psychiatric disorders. A postsynaptic CB1−A2A receptor interaction has already been elucidated, but the presynaptic A2A receptor-mediated control of presynaptic neuromodulation by CB1 receptors remains to be defined. Because the corticostriatal terminals provide the major input to the basal ganglia, understanding the interactive nature of converging neuromodulation on them will provide us with novel powerful tools to understand the physiology of corticostriatal synaptic transmission and interpret changes associated with pathological conditions. Experimental Approach Pharmacological manipulation of CB1 and A2A receptors was carried out in brain nerve terminals isolated from rats and mice, using flow synaptometry, immunoprecipitation, radioligand binding, ATP and glutamate release measurement. Whole-cell patch-clamp recordings were made in horizontal corticostriatal slices. Key Results Flow synaptometry showed that A2A receptors were extensively co-localized with CB1 receptor-immunopositive corticostriatal terminals and A2A receptors co-immunoprecipitated CB1 receptors in these purified terminals. A2A receptor activation decreased CB1 receptor radioligand binding and decreased the CB1 receptor-mediated inhibition of high-K+-evoked glutamate release in corticostriatal terminals. Accordingly, A2A receptor activation prevented CB1 receptor-mediated paired-pulse facilitation and attenuated the CB1 receptor-mediated inhibition of synaptic transmission in glutamatergic synapses of corticostriatal slices. Conclusions and Implications Activation of presynaptic A2A receptors dampened CB1 receptor-mediated inhibition of corticostriatal terminals. This constitutes a thus far unrecognized mechanism to modulate the potent CB1 receptor-mediated presynaptic

  3. In-vivo pharmacological evaluation of the CB1-receptor allosteric modulator Org-27569.

    PubMed

    Gamage, Thomas F; Ignatowska-Jankowska, Bogna M; Wiley, Jenny L; Abdelrahman, Mostafa; Trembleau, Laurent; Greig, Iain R; Thakur, Ganesh A; Tichkule, Ritesh; Poklis, Justin; Ross, Ruth A; Pertwee, Roger G; Lichtman, Aron H

    2014-04-01

    Several allosteric modulators (AMs) of the CB1 receptor have been characterized in vitro, including Org27569, which enhances CB1-specific binding of [H]CP55,940, but behaves as an insurmountable CB1-receptor antagonist in several biochemical assays. Although a growing body of research has investigated the molecular actions of this unusual AM, it is unknown whether these actions translate to the whole animal. The purpose of the present study was to determine whether Org27569 would produce effects in well-established mouse behavioral assays sensitive to CB1 orthosteric agonists and antagonists. Similar to the orthosteric CB1 antagonist/inverse agonist rimonabant, Org27569 reduced food intake; however, this anorectic effect occurred independently of the CB1 receptor. Org27569 did not elicit CB1-mediated effects alone and lacked efficacy in altering antinociceptive, cataleptic, and hypothermic actions of the orthosteric agonists anandamide, CP55,940, and Δ-tetrahydrocannabinol. Moreover, it did not alter the discriminative stimulus effects of anandamide in FAAH-deficient mice or Δ-tetrahydrocannabinol in wild-type mice in the drug discrimination paradigm. These findings question the utility of Org27569 as a 'gold standard' CB1 AM and underscore the need for the development of CB1 AMs with pharmacology that translates from the molecular level to the whole animal. PMID:24603340

  4. Deficits in Sensory-Specific Devaluation Task Performance Following Genetic Deletions of Cannabinoid (CB1) Receptor

    ERIC Educational Resources Information Center

    Crombag, Hans S.; Johnson, Alexander W.; Zimmer, Anne M.; Zimmer, Andreas; Holland, Peter C.

    2010-01-01

    Cannabinoid CB1 receptor is abundantly expressed throughout the CNS and is implicated in numerous physiological and behavioral functions, including appetite and feeding. In the present study, wild-type and CB1 heterozygous and homozygous knockout mice were tested on an instrumental outcome-selective devaluation task to assess changes in acquired…

  5. Changes in cerebral CB1 receptor availability after acute and chronic alcohol abuse and monitored abstinence.

    PubMed

    Ceccarini, Jenny; Hompes, Titia; Verhaeghen, Anne; Casteels, Cindy; Peuskens, Hendrik; Bormans, Guy; Claes, Stephan; Van Laere, Koen

    2014-02-19

    Involvement of the type 1 cannabinoid receptor (CB1R) in the effects of alcohol on the brain is supported by animal experiments, but how in vivo CB1R levels are altered in alcoholic patients is still unclear. To assess the short-time effects of a binge drinking episode on CB1R availability, 20 healthy social drinkers underwent [(18)F]MK-9470-positron emission tomography (PET) at baseline and after intravenous ethanol administration (ALC ACU). Moreover, 26 alcoholic patients underwent sequential CB1R PET after chronic heavy drinking (ALC CHR) and after 1 month of abstinence (ALC ABST). Seventeen healthy subjects served as controls. Compared with baseline, ALC ACU resulted in a global increase of CB1R availability (+15.8%). In contrast, a global decreased CB1R availability was found in ALC CHR patients (-16.1%) compared with controls, which remained unaltered after abstinence (-17.0%). Voxel-based analysis showed that ALC CHR patients had reduced CB1R availability, especially in the cerebellum and parieto-occipital cortex. After abstinence, reduced CB1R availability extended also to other areas such as the ventral striatum and mesotemporal lobe. In conclusion, whereas the acute alcohol effect is an increase in CB1R availability, chronic heavy drinking leads to reduced CB1R availability that is not reversible after 1 month of abstinence. Longer follow-up is required to differentiate whether this is a compensatory effect of repeated endocannabinoid overstimulation or an enduring trait-like feature. An enhanced CB1R signaling may offer a new therapeutic direction for treatment of the negative affective state produced by alcohol withdrawal and abstinence, which is critical for the maintenance of alcohol addiction. PMID:24553924

  6. Peripheral and central CB1 cannabinoid receptors control stress-induced impairment of memory consolidation.

    PubMed

    Busquets-Garcia, Arnau; Gomis-González, Maria; Srivastava, Raj Kamal; Cutando, Laura; Ortega-Alvaro, Antonio; Ruehle, Sabine; Remmers, Floortje; Bindila, Laura; Bellocchio, Luigi; Marsicano, Giovanni; Lutz, Beat; Maldonado, Rafael; Ozaita, Andrés

    2016-08-30

    Stressful events can generate emotional memories linked to the traumatic incident, but they also can impair the formation of nonemotional memories. Although the impact of stress on emotional memories is well studied, much less is known about the influence of the emotional state on the formation of nonemotional memories. We used the novel object-recognition task as a model of nonemotional memory in mice to investigate the underlying mechanism of the deleterious effect of stress on memory consolidation. Systemic, hippocampal, and peripheral blockade of cannabinoid type-1 (CB1) receptors abolished the stress-induced memory impairment. Genetic deletion and rescue of CB1 receptors in specific cell types revealed that the CB1 receptor population specifically in dopamine β-hydroxylase (DBH)-expressing cells is both necessary and sufficient for stress-induced impairment of memory consolidation, but CB1 receptors present in other neuronal populations are not involved. Strikingly, pharmacological manipulations in mice expressing CB1 receptors exclusively in DBH(+) cells revealed that both hippocampal and peripheral receptors mediate the impact of stress on memory consolidation. Thus, CB1 receptors on adrenergic and noradrenergic cells provide previously unrecognized cross-talk between central and peripheral mechanisms in the stress-dependent regulation of nonemotional memory consolidation, suggesting new potential avenues for the treatment of cognitive aspects on stress-related disorders. PMID:27528659

  7. Nicotine reinforcement is reduced by cannabinoid CB1 receptor blockade in the ventral tegmental area.

    PubMed

    Simonnet, Amelie; Cador, Martine; Caille, Stephanie

    2013-11-01

    Cannabinoid type 1 (CB1) receptors control the motivational properties and reinforcing effects of nicotine. Indeed, peripheral administration of a CB1 receptor antagonist dramatically decreases both nicotine taking and seeking. However, the neural substrates through which the cannabinoid CB1 receptors regulate the voluntary intake of nicotine remain to be elucidated. In the present study, we sought to determine whether central injections of a CB1 receptor antagonist delivered either into the ventral tegmental area (VTA) or the nucleus accumbens (NAC) may alter nicotine intravenous self-administration (IVSA). Rats were first trained to self-administer nicotine (30 μg/kg/0.1 ml). The effect of central infusions of the CB1 antagonist AM 251 (0, 1 and 10 μg/0.5 μl/side) on nicotine-taking behavior was then tested. Intra-VTA infusions of AM 251 dose dependently reduced IVSA with a significant decrease for the dose 10 μg/0.5 μl/side. Moreover, operant responding for water was unaltered by intra-VTA AM 251 at the same dose. Surprisingly, intra-NAC delivery of AM 251 did not alter nicotine behavior at all. These data suggest that in rats chronically exposed to nicotine IVSA, the cannabinoid CB1 receptors located in the VTA rather than in the NAC specifically control nicotine reinforcement and, subsequently, nicotine-taking behavior. PMID:22784230

  8. Beyond the CB1 Receptor: Is Cannabidiol the Answer for Disorders of Motivation?

    PubMed

    Zlebnik, Natalie E; Cheer, Joseph F

    2016-07-01

    The Cannabis sativa plant has been used to treat various physiological and psychiatric conditions for millennia. Current research is focused on isolating potentially therapeutic chemical constituents from the plant for use in the treatment of many central nervous system disorders. Of particular interest is the primary nonpsychoactive constituent cannabidiol (CBD). Unlike Δ(9)-tetrahydrocannabinol (THC), CBD does not act through the cannabinoid type 1 (CB1) receptor but has many other receptor targets that may play a role in psychiatric disorders. Here we review preclinical and clinical data outlining the therapeutic efficacy of CBD for the treatment of motivational disorders such as drug addiction, anxiety, and depression. Across studies, findings suggest promising treatment effects and potentially overlapping mechanisms of action for CBD in these disorders and indicate the need for further systematic investigation of the viability of CBD as a psychiatric pharmacotherapy. PMID:27023732

  9. Dopamine-dependent CB1 receptor dysfunction at corticostriatal synapses in homozygous PINK1 knockout mice.

    PubMed

    Madeo, G; Schirinzi, T; Maltese, M; Martella, G; Rapino, C; Fezza, F; Mastrangelo, N; Bonsi, P; Maccarrone, M; Pisani, A

    2016-02-01

    Recessive mutations in the PTEN-induced putative kinase 1 (PINK1) gene cause early-onset Parkinson's disease (PD). We investigated the interaction between endocannabinoid (eCB) and dopaminergic transmission at corticostriatal synapses in PINK1 deficient mice. Whole-cell patch-clamp and conventional recordings of striatal medium spiny neurons (MSNs) were made from slices of PINK1(-/-), heterozygous PINK1(+/-) mice and wild-type littermates (PINK1(+/+)). In PINK1(+/+) mice, CB1 receptor (CB1R) activation reduced spontaneous excitatory postsynaptic currents (sEPSCs). Likewise, CB1R agonists (ACEA, WIN55,212-3 and HU210) induced a dose-dependent reduction of cortically-evoked excitatory postsynaptic potential (eEPSP) amplitude. While CB1R agonists retained their inhibitory effect in heterozygous PINK1(+/-) mice, conversely, in PINK1(-/-) mice they failed to modulate sEPSC amplitude. Similarly, CB1R activation failed to reduce eEPSP amplitude in PINK1(-/-) mice. Parallel biochemical measurements revealed no significant difference in the levels of the two main eCBs, 2-arachidonoylglycerol (2-AG) and anandamide (AEA) in PINK1(-/-) striata. Similarly, no change was observed in the enzymatic activity of both fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL), responsible for eCB hydrolysis. Instead, a significant reduction of binding ability of CB1R agonists was found in PINK1(-/-) mice. Notably, the CB1R-dependent inhibition of synaptic activity was restored either by amphetamine or after chronic treatment with the D2 dopamine receptor agonist quinpirole. Additionally, CB1R binding activity returned to control levels after chronic pretreatment with quinpirole. Consistent with the hypothesis of a close interplay with dopaminergic neurotransmission, our findings show a CB1R dysfunction at corticostriatal synapses in PINK1(-/-), but not in PINK1(+/-) mice, and provide a mechanistic link to the distinct plasticity deficits observed in both genotypes. PMID

  10. CB1 and CB2 receptors are novel molecular targets for Tamoxifen and 4OH-Tamoxifen

    SciTech Connect

    Prather, Paul L.; FrancisDevaraj, FeAna; Dates, Centdrika R.; Greer, Aleksandra K.; Bratton, Stacie M.; Ford, Benjamin M.; Franks, Lirit N.; Radominska-Pandya, Anna

    2013-11-15

    Highlights: •Tamoxifen produces cytotoxicity via estrogen-receptor (ER) independent mechanisms. •Tamoxifen binds to CB1 and CB2 cannabinoid receptors and acts as an inverse agonist. •CB1 and CB2 receptors are novel molecular targets for Tamoxifen. •ER-independent effects for Tamoxifen may be mediated via CB1 and/or CB2 receptors. -- Abstract: Tamoxifen (Tam) is classified as a selective estrogen receptor modulator (SERM) and is used for treatment of patients with ER-positive breast cancer. However, it has been shown that Tam and its cytochrome P450-generated metabolite 4-hydroxy-Tam (4OH-Tam) also exhibit cytotoxic effects in ER-negative breast cancer cells. These observations suggest that Tam and 4OH-Tam can produce cytotoxicity via estrogen receptor (ER)-independent mechanism(s) of action. The molecular targets responsible for the ER-independent effects of Tam and its derivatives are poorly understood. Interestingly, similar to Tam and 4OH-Tam, cannabinoids have also been shown to exhibit anti-proliferative and apoptotic effects in ER-negative breast cancer cells, and estrogen can regulate expression levels of cannabinoid receptors (CBRs). Therefore, this study investigated whether CBRs might serve as novel molecular targets for Tam and 4OH-Tam. We report that both compounds bind to CB1 and CB2Rs with moderate affinity (0.9–3 μM). Furthermore, Tam and 4OH-Tam exhibit inverse activity at CB1 and CB2Rs in membrane preparations, reducing basal G-protein activity. Tam and 4OH-Tam also act as CB1/CB2R-inverse agonists to regulate the downstream intracellular effector adenylyl cyclase in intact cells, producing concentration-dependent increases in intracellular cAMP. These results suggest that CBRs are molecular targets for Tam and 4OH-Tam and may contribute to the ER-independent cytotoxic effects reported for these drugs. Importantly, these findings also indicate that Tam and 4OH-Tam might be used as structural scaffolds for development of novel

  11. CB1 cannabinoid receptor enrichment in the ependymal region of the adult human spinal cord

    PubMed Central

    Paniagua-Torija, Beatriz; Arevalo-Martin, Angel; Ferrer, Isidro; Molina-Holgado, Eduardo; Garcia-Ovejero, Daniel

    2015-01-01

    Cannabinoids are involved in the regulation of neural stem cell biology and their receptors are expressed in the neurogenic niches of adult rodents. In the spinal cord of rats and mice, neural stem cells can be found in the ependymal region, surrounding the central canal, but there is evidence that this region is largely different in adult humans: lacks a patent canal and presents perivascular pseudorosettes, typically found in low grade ependymomas. Using Laser Capture Microdissection, Taqman gene expression assays and immunohistochemistry, we have studied the expression of endocannabinoid system components (receptors and enzymes) at the human spinal cord ependymal region. We observe that ependymal region is enriched in CB1 cannabinoid receptor, due to high CB1 expression in GFAP+ astrocytic domains. However, in human spinal cord levels that retain central canal patency we found ependymal cells with high CB1 expression, equivalent to the CB1HIGH cell subpopulation described in rodents. Our results support the existence of ependymal CB1HIGH cells across species, and may encourage further studies on this subpopulation, although only in cases when central canal is patent. In the adult human ependyma, which usually shows central canal absence, CB1 may play a different role by modulating astrocyte functions. PMID:26634814

  12. CB1 cannabinoid receptor enrichment in the ependymal region of the adult human spinal cord.

    PubMed

    Paniagua-Torija, Beatriz; Arevalo-Martin, Angel; Ferrer, Isidro; Molina-Holgado, Eduardo; Garcia-Ovejero, Daniel

    2015-01-01

    Cannabinoids are involved in the regulation of neural stem cell biology and their receptors are expressed in the neurogenic niches of adult rodents. In the spinal cord of rats and mice, neural stem cells can be found in the ependymal region, surrounding the central canal, but there is evidence that this region is largely different in adult humans: lacks a patent canal and presents perivascular pseudorosettes, typically found in low grade ependymomas. Using Laser Capture Microdissection, Taqman gene expression assays and immunohistochemistry, we have studied the expression of endocannabinoid system components (receptors and enzymes) at the human spinal cord ependymal region. We observe that ependymal region is enriched in CB1 cannabinoid receptor, due to high CB1 expression in GFAP+ astrocytic domains. However, in human spinal cord levels that retain central canal patency we found ependymal cells with high CB1 expression, equivalent to the CB1(HIGH) cell subpopulation described in rodents. Our results support the existence of ependymal CB1(HIGH) cells across species, and may encourage further studies on this subpopulation, although only in cases when central canal is patent. In the adult human ependyma, which usually shows central canal absence, CB1 may play a different role by modulating astrocyte functions. PMID:26634814

  13. Physiological impact of CB1 receptor expression by hippocampal GABAergic interneurons.

    PubMed

    Albayram, Önder; Passlick, Stefan; Bilkei-Gorzo, Andras; Zimmer, Andreas; Steinhäuser, Christian

    2016-04-01

    A subset of hippocampal GABAergic neurons, which are cholecystokinin-positive, highly express cannabinoid type 1 (CB1) receptors. Activation of these receptors inhibits GABA release and thereby limits inhibitory control. While genetic deletion of CB1 receptors from GABAergic neurons led to behavioural alterations and neuroinflammatory reactions, it remained unclear whether these changes in the knockout animals were a direct consequence of the enhanced transmitter release or reflected developmental deficits. The hippocampus is vital for the generation of spatial, declarative and working memory. Here, we addressed the question how CB1 receptors in GABAergic neurons influence hippocampal function. Patch clamp and field potential recordings in mice devoid of CB1 receptors in GABAergic neurons revealed an enhanced frequency and faster kinetics of spontaneous inhibitory postsynaptic currents in CA1 pyramidal neurons while tonic inhibition, paired-pulse facilitation and long-term potentiation in the hippocampus were not affected. Evaluation of cognitive functions demonstrated impaired acquisition of spatial memory and deficits in novel object recognition and partner recognition in the knockout mice, while working memory and spatial memory remained intact. The density of GABAergic neurons was also similar in knockout mice and their littermates, which argues against global deficits in hippocampal development. Together, these results suggest that CB1 receptors in GABAergic neurons influence specific aspects of neuronal excitability and hippocampal learning. PMID:26739712

  14. CB1 receptor affects cortical plasticity and response to physiotherapy in multiple sclerosis

    PubMed Central

    Mori, Francesco; Ljoka, Concetta; Nicoletti, Carolina G.; Kusayanagi, Hajime; Buttari, Fabio; Giordani, Laura; Rossi, Silvia; Foti, Calogero

    2014-01-01

    Objectives: Therapeutic effects of physical therapy in neurologic disorders mostly rely on the promotion of use-dependent synaptic plasticity in damaged neuronal circuits. Genetic differences affecting the efficiency of synaptic plasticity mechanisms could explain why some patients do not respond adequately to the treatment. It is known that physical exercise activates the endocannabinoid system and that stimulation of cannabinoid CB1 receptors (CB1Rs) promotes synaptic plasticity in both rodents and humans. We thus tested whether CB1R genetic variants affect responsiveness to exercise therapy. Methods: We evaluated the effect of a genetic variant of the CB1R associated with reduced receptor expression (patients with long AAT trinucleotide short tandem repeats in the CNR1 gene) on long-term potentiation (LTP)–like cortical plasticity induced by transcranial magnetic theta burst stimulation (TBS) of the motor cortex and, in parallel, on clinical response to exercise therapy in patients with multiple sclerosis. Results: We found that patients with long AAT CNR1 repeats do not express TBS-induced LTP-like cortical plasticity and show poor clinical benefit after exercise therapy. Conclusions: Our results provide the first evidence that genetic differences within the CB1R may influence clinical responses to exercise therapy, and they strengthen the hypothesis that CB1Rs are involved in the regulation of synaptic plasticity and in the control of spasticity in humans. This information might be of great relevance for patient stratification and personalized rehabilitation treatment programs. PMID:25520956

  15. Protocol to Study β-Arrestin Recruitment by CB1 and CB2 Cannabinoid Receptors.

    PubMed

    Soethoudt, Marjolein; van Gils, Noortje; van der Stelt, Mario; Heitman, Laura H

    2016-01-01

    Cannabinoid CB1 and CB2 receptors are G-protein-coupled receptors (GPCRs) that recruit β-arrestins upon activation by (partial) agonists. β-Arrestin recruitment is induced by phosphorylation of their C-terminal tails, and is associated with the termination of GPCR signaling; yet, it may also activate cellular signaling pathways independent of G-proteins. Here, we describe a detailed protocol to characterize the potency and efficacy of ligands to induce or inhibit β-arrestin recruitment to the human CB1 and CB2 receptors, by using the PathHunter(®) assay. The latter is a cellular assay that can be performed in plates with 384-wells. The PathHunter(®) assay makes use of β-galactosidase complementation, and has a chemiluminescent readout. We used this assay to characterize a set of reference ligands (both agonists and antagonists) on human CB1 and CB2 receptors. PMID:27245896

  16. Dual intracellular signaling pathways mediated by the human cannabinoid CB1 receptor.

    PubMed

    Calandra, B; Portier, M; Kernéis, A; Delpech, M; Carillon, C; Le Fur, G; Ferrara, P; Shire, D

    1999-06-25

    It has long been established that the cannabinoid CB1 receptor transduces signals through a pertussis toxin-sensitive Gi/Go inhibitory pathway. Although there have been reports that the cannabinoid CB1 receptor can also mediate an increase in cyclic AMP levels, in most cases the presence of an adenylyl cyclase costimulant or the use of very high amounts of agonist was necessary. Here, we present evidence for dual coupling of the cannabinoid CB receptor to the classical pathway and to a pertussis toxin-insensitive adenylyl cyclase stimulatory pathway initiated with low quantities of agonist in the absence of any costimulant. Treatment of Chinese hamster ovary (CHO) cells expressing the cannabinoid CB1 receptor with the cannabinoid CP 55,940, {(-)-cis-3-[2-hydroxy-4-(1,1-dimethylheptyl)phenyl]-trans-4-(3-hyd roxypropyl) cyclohexan-1-ol} resulted in cyclic AMP accumulation in a dose-response manner, an accumulation blocked by the cannabinoid CB1 receptor-specific antagonist SR 141716A, {N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-me thyl-1H-pyrazole-3-carboxamide hydrochloride}. In CHO cells coexpressing the cannabinoid CB1 receptor and a cyclic AMP response element (CRE)-luciferase reporter gene system, CP 55,940 induced luciferase expression by a pathway blocked by the protein kinase A inhibitor N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide hydrochloride (H-89). Under the same conditions the peripheral cannabinoid CB2 receptor proved to be incapable of inducing cAMP accumulation or luciferase activity. This incapacity allowed us to study the luciferase activation mediated by CB /CB2 chimeric constructs, from which we determined that the first and second internal loop regions of the cannabinoid CB1 receptor were involved in transducing the pathway leading to luciferase gene expression. PMID:10422789

  17. Hydroxytyrosol Inhibits Cannabinoid CB1 Receptor Gene Expression in 3T3-L1 Preadipocyte Cell Line.

    PubMed

    Tutino, Valeria; Orlando, Antonella; Russo, Francesco; Notarnicola, Maria

    2016-02-01

    The 3T3-L1 preadipocyte cell line is a well characterized cell model for studying the adipocyte status and the molecular mechanisms involved in differentiation of these cells. 3T3-L1 preadipocytes have the ability to synthesize and degrade endocannabinoid anandamide (AEA) and their differentiation into adipocytes increases the expression of cannabinoid (CB1) and PPAR-γ receptors. Clinically, the blocking stimulation of the endocannabinoid pathway has been one of the first approaches proposed to counteract the obesity and obesity-associated diseases (such as diabetes, metabolic syndrome and cancer). In this connection, here we studied in cultured 3T3-L1 pre-adipocytes the effects of n-3-PUFA, α-Linolenic acid (OM-3), n-6-PUFA, Linoleic acid (OM-6), and hydroxytyrosol (HT) on the expression of CB1 receptor gene and the adipogenesis-related genes PPAR-γ, Fatty Acid Synthase (FAS) and Lipoprotein Lipase (LPL). HT was able to inhibit 3T3-L1 cell differentiation by down-regulating cell proliferation and CB1 receptor gene expression. HT exhibited anti-adipogenic effects, whereas OM-3 and OM-6 exerted an inhibitory action on cell proliferation associated with an induction of the preadipocytes differentiation and CB1 receptor gene expression. Moreover, the expression of FAS and LPL genes resulted increased after treatment with both HT and OM-3 and OM-6. The present study points out that the intake of molecules such as HT, contained in extra virgin olive oil, may be considered also in view of antiobesity and antineoplastic properties by acting directly on the adipose tissue and modulating CB1 receptor gene transcription. PMID:26189725

  18. Cannabinoid Receptor Interacting Protein (CRIP1a) attenuates CB1R signaling in neuronal cells

    PubMed Central

    Bass, Caroline E.; Selley, Dana E.; Howlett, Allyn C.

    2014-01-01

    CB1 cannabinoid receptors (CB1R) are one of the most abundantly expressed G protein coupled receptors (GPCR) in the CNS and regulate diverse neuronal functions. The identification of GPCR interacting proteins has provided additional insight into the fine-tuning and regulation of numerous GPCRs. The Cannabinoid Receptor Interacting Protein 1a (CRIP1a) binds to the distal carboxy terminus of CB1R, and has been shown to alter CB1R-mediated neuronal function [1]. The mechanisms by which CRIP1a regulates CB1R activity have not yet been identified; therefore the focus of this investigation is to examine the cellular effects of CRIP1a on CB1R signaling using neuronal N18TG2 cells stably transfected with CRIP1a over-expressing and CRIP1a knockdown constructs. Modulation of endogenous CRIP1a expression did not alter total levels of CB1R, ERK, or forskolin-activated adenylyl cyclase activity. When compared to WT cells, CRIP1a over-expression reduced basal phosphoERK levels, whereas depletion of CRIP1a augmented basal phosphoERK levels. Stimulation of phosphoERK by the CB1R agonists WIN55212-2, CP55940 or methanandamide was unaltered in CRIP1a over-expressing clones compared with WT. However, CRIP1a knockdown clones exhibited enhanced ERK phosphorylation efficacy in response to CP55940. In addition, CRIP1a knockdown clones displayed a leftward shift in CP55940-mediated inhibition of forskolin-stimulated cAMP accumulation. CB1R-mediated Gi3 and Go activation by CP99540 was attenuated by CRIP1a over-expression, but robustly enhanced in cells depleted of CRIP1a. Conversely, CP55940-mediated Gi1 and Gi2 activation was significant enhanced in cells over-expressing CRIP1a, but not in cells deficient of CRIP1a. These studies suggest a mechanism by which endogenous levels of CRIP1a modulate CB1R-mediated signal transduction by facilitating a Gi/o-protein subtype preference for Gi1 and Gi2, accompanied by an overall suppression of G-protein-mediated signaling in neuronal cells. PMID

  19. Biased Agonism and Biased Allosteric Modulation at the CB1 Cannabinoid Receptor.

    PubMed

    Khajehali, Elham; Malone, Daniel T; Glass, Michelle; Sexton, Patrick M; Christopoulos, Arthur; Leach, Katie

    2015-08-01

    CB1 cannabinoid receptors (CB1Rs) are attractive therapeutic targets for numerous central nervous system disorders. However, clinical application of cannabinoid ligands has been hampered owing to their adverse on-target effects. Ligand-biased signaling from, and allosteric modulation of, CB1Rs offer pharmacological approaches that may enable the development of improved CB1R drugs, through modulation of only therapeutically desirable CB1R signaling pathways. There is growing evidence that CB1Rs are subject to ligand-biased signaling and allosterism. Therefore, in the present study, we quantified ligand-biased signaling and allosteric modulation at CB1Rs. Cannabinoid agonists displayed distinct biased signaling profiles at CB1Rs. For instance, whereas 2-arachidonylglycerol and WIN55,212-2 [(R)-(+)-[2,3-dihydro-5-methyl-3-(4-morpholinylmethyl)pyrrolo[1,2,3-de]-1,4-benzoxazin-6-yl]-1-napthalenylmethanone] showed little preference for inhibition of cAMP and phosphorylation of extracellular signal-regulated kinase 1/2 (pERK1/2), N-arachidonoylethanolamine (anandamide), methanandamide, CP55940 [2-[(1R,2R,5R)-5-hydroxy-2-(3-hydroxypropyl)cyclohexyl]-5-(2-methyloctan-2-yl)phenol], and HU-210 [11-hydroxy-Δ(8)-THC-dimethylheptyl] were biased toward cAMP inhibition. The small-molecule allosteric modulator Org27569 [5-chloro-3-ethyl-1H-indole-2-carboxylic acid [2-(4-piperidin-1-yl-phenyl)ethyl]amide] displayed biased allosteric effects by blocking cAMP inhibition mediated by all cannabinoid ligands tested, at the same time having little or no effect on ERK1/2 phosphorylation mediated by a subset of these ligands. Org27569 also displayed negative binding cooperativity with [(3)H]SR141716A [5-(4-chlorophenyl)-1-(2,4-dichloro-phenyl)-4-methyl-N-(piperidin-1-yl)-1H-pyrazole-3-carboxamide]; however, it had minimal effects on binding of cannabinoid agonists. Furthermore, we highlight the need to validate the reported allosteric effects of the endogenous ligands lipoxin A4 and

  20. Inhibition of exocytotic noradrenaline release by presynaptic cannabinoid CB1 receptors on peripheral sympathetic nerves.

    PubMed Central

    Ishac, E. J.; Jiang, L.; Lake, K. D.; Varga, K.; Abood, M. E.; Kunos, G.

    1996-01-01

    1. Activation of CB1 receptors by plant cannabinoids or the endogenous ligand, anandamide, causes hypotension via a sympathoinhibitory action in anaesthetized rats. In mouse isolated vas deferens, activation of CB1 receptors inhibits the electrically evoked twitch response. To determine if these effects are related to presynaptic inhibition of noradrenaline (NA) release, we examined the effects of delta 9-tetrahydrocannabinol (delta 9-THC), anandamide and the CB1 antagonist, SR141716A, on exocytotic NA release in rat isolated atria and vasa deferentia. 2. In isolated atria and vasa deferentia preloaded with [3H]-NA, electrical field stimulation caused [3H]-NA release, which was abolished by tetrodotoxin 0.5 microM and concentration-dependently inhibited by delta 9-THC or anandamide, 0.3-10 microM. The inhibitory effect of delta 9-THC and anandamide was competitively antagonized by SR 141716A, 1-10 microM. 3. Tyramine, 1 microM, also induced [3H]-NA release, which was unaffected by tetrodotoxin, delta 9-THC or anandamide in either atria or vasa deferentia. 4. CB1 receptor mRNA is present in the superior cervical ganglion, as well as in whole brain, cerebellum, hypothalamus, spleen, and vas deferens and absent in medulla oblongata and atria, as demonstrated by reverse transcription-polymerase chain reaction. There was no evidence of the presence of CB1A receptor mRNA in ganglia, brain, or cerebellum. These results suggest that activation of presynaptic CB1 receptors located on peripheral sympathetic nerve terminals mediate sympathoinhibitory effects in vitro and in vivo. Images Figure 5 Figure 6 PMID:8864538

  1. Neural endocannabinoid CB1 receptor expression, social status, and behavior in male European starlings.

    PubMed

    DeVries, M Susan; Cordes, Melissa A; Rodriguez, Jonathan D; Stevenson, Sharon A; Riters, Lauren V

    2016-08-01

    Many species modify behavior in response to changes in resource availability or social status; however, the neural mechanisms underlying these modifications are not well understood. Prior work in male starlings demonstrates that status-appropriate changes in behavior involve brain regions that regulate social behavior and vocal production. Endocannabinoids are ubiquitously distributed neuromodulators that are proposed to play a role in adjusting behavior to match social status. As an initial step to provide insight into this hypothesis we observed flocks of male starlings in outdoor aviaries during the breeding season. We used quantitative real-time PCR to measure expression of endocannabinoid CB1 receptors in brain regions involved in social behavior and motivation (lateral septum [LS], ventral tegmental area [VTA], medial preoptic nucleus [POM]) and vocal behavior (Area X and robust nucleus of the arcopallium; RA). Males with nesting sites sang to females and displaced other males more than males without nesting sites. They also had higher levels of CB1 receptor expression in LS and RA. CB1 expression in LS correlated positively with agonistic behaviors. CB1 expression in RA correlated positively with singing behavior. CB1 in VTA also correlated positively with singing when only singing birds were considered. These correlations nicely map onto the well-established role of LS in agonistic behavior and the known role of RA in song production and VTA in motivation and song production. Studies are now needed to precisely characterize the role of CB1 receptors in these regions in the production of status-appropriate social behaviors. PMID:27206544

  2. CB1 Cannabinoid Receptors Modulate Kinase and Phosphatase Activity during Extinction of Conditioned Fear in Mice

    ERIC Educational Resources Information Center

    Kamprath, Kornelia; Hermann, Heike; Lutz, Beat; Marsicano, Giovanni; Cannich, Astrid; Wotjak, Carsten T.

    2004-01-01

    Cannabinoid receptors type 1 (CB1) play a central role in both short-term and long-term extinction of auditory-cued fear memory. The molecular mechanisms underlying this function remain to be clarified. Several studies indicated extracellular signal-regulated kinases (ERKs), the phosphatidylinositol 3-kinase with its downstream effector AKT, and…

  3. Pyrazole antagonists of the CB1 receptor with reduced brain penetration.

    PubMed

    Fulp, Alan; Zhang, Yanan; Bortoff, Katherine; Seltzman, Herbert; Snyder, Rodney; Wiethe, Robert; Amato, George; Maitra, Rangan

    2016-03-01

    Type 1 cannabinoid receptor (CB1) antagonists might be useful for treating obesity, liver disease, metabolic syndrome, and dyslipidemias. Unfortunately, inhibition of CB1 in the central nervous system (CNS) produces adverse effects, including depression, anxiety and suicidal ideation in some patients, which led to withdrawal of the pyrazole inverse agonist rimonabant (SR141716A) from European markets. Efforts are underway to produce peripherally selective CB1 antagonists to circumvent CNS-associated adverse effects. In this study, novel analogs of rimonabant (1) were explored in which the 1-aminopiperidine group was switched to a 4-aminopiperidine, attached at the 4-amino position (5). The piperidine nitrogen was functionalized with carbamates, amides, and sulfonamides, providing compounds that are potent inverse agonists of hCB1 with good selectivity for hCB1 over hCB2. Select compounds were further studied using in vitro models of brain penetration, oral absorption and metabolic stability. Several compounds were identified with predicted minimal brain penetration and good metabolic stability. In vivo pharmacokinetic testing revealed that inverse agonist 8c is orally bioavailable and has vastly reduced brain penetration compared to rimonabant. PMID:26827137

  4. CB1 receptor blockade counters age-induced insulin resistance and metabolic dysfunction.

    PubMed

    Lipina, Christopher; Vaanholt, Lobke M; Davidova, Anastasija; Mitchell, Sharon E; Storey-Gordon, Emma; Hambly, Catherine; Irving, Andrew J; Speakman, John R; Hundal, Harinder S

    2016-04-01

    The endocannabinoid system can modulate energy homeostasis by regulating feeding behaviour as well as peripheral energy storage and utilization. Importantly, many of its metabolic actions are mediated through the cannabinoid type 1 receptor (CB1R), whose hyperactivation is associated with obesity and impaired metabolic function. Herein, we explored the effects of administering rimonabant, a selective CB1R inverse agonist, upon key metabolic parameters in young (4 month old) and aged (17 month old) adult male C57BL/6 mice. Daily treatment with rimonabant for 14 days transiently reduced food intake in young and aged mice; however, the anorectic response was more profound in aged animals, coinciding with a substantive loss in body fat mass. Notably, reduced insulin sensitivity in aged skeletal muscle and liver concurred with increased CB1R mRNA abundance. Strikingly, rimonabant was shown to improve glucose tolerance and enhance skeletal muscle and liver insulin sensitivity in aged, but not young, adult mice. Moreover, rimonabant-mediated insulin sensitization in aged adipose tissue coincided with amelioration of low-grade inflammation and repressed lipogenic gene expression. Collectively, our findings indicate a key role for CB1R in aging-related insulin resistance and metabolic dysfunction and highlight CB1R blockade as a potential strategy for combating metabolic disorders associated with aging. PMID:26757949

  5. Cannabinoid CB1 receptor mediates glucocorticoid effects on hormone secretion induced by volume and osmotic changes.

    PubMed

    Ruginsk, S G; Uchoa, E T; Elias, L L K; Antunes-Rodrigues, J

    2012-02-01

    The present study provides the first in vivo evidence that the cannabinoid CB(1) receptor mediates the effects of dexamethasone on hormone release induced by changes in circulating volume and osmolality. Male adult rats were administered with the CB(1) receptor antagonist rimonabant (10 mg/Kg, p.o.), followed or not in 1 hour by dexamethasone (1 mg/Kg, i.p.). Extracellular volume expansion (EVE, 2 mL/100 g of body weight, i.v.) was performed 2 hours after dexamethasone or vehicle treatment using either isotonic (I-EVE, 0.15 mol/L) or hypertonic (H-EVE, 0.30 mol/L) NaCl solution. Five minutes after EVE, animals were decapitated and trunk blood was collected for all plasma measurements. Rimonabant potentiated oxytocin (OT) secretion induced by H-EVE and completely reversed the inhibitory effects of dexamethasone in response to the same stimulus. These data suggest that glucocorticoid modulation of OT release is mediated by the CB(1) receptor. Although dexamethasone did not affect vasopressin (AVP) secretion induced by H-EVE, the administration of rimonabant potentiated AVP release in response to the same stimulus, supporting the hypothesis that the CB(1) receptor regulates AVP secretion independently of glucocorticoid-mediated signalling. Dexamethasone alone did not affect atrial natriuretic peptide (ANP) release stimulated by I-EVE or H-EVE. However, pretreatment with rimonabant potentiated ANP secretion induced by H-EVE, suggesting a possible role for the CB(1) receptor in the control of peripheral factors that modulate cardiovascular function. Rimonabant also reversed the inhibitory effects of dexamethasone on H-EVE-induced corticosterone secretion, reinforcing the hypothesis that the CB(1) receptor may be involved in the negative feedback exerted by glucocorticoids on the activity of the hypothalamic-pituitary-adrenal axis. Collectively, the results of the present study indicate that the CB(1) receptor modulates neurohypophyseal hormone secretion and

  6. CP47,497-C8 and JWH073, commonly found in 'Spice' herbal blends, are potent and efficacious CB(1) cannabinoid receptor agonists.

    PubMed

    Atwood, Brady K; Lee, Donghoon; Straiker, Alex; Widlanski, Theodore S; Mackie, Ken

    2011-06-01

    'Spice' is an herbal blend that has been reported to produce cannabis-like effects when smoked and is marketed as an alternative to marijuana. Synthetic additives have been identified in numerous 'Spice' preparations from different sources. Common among many of the preparations were the compounds JWH018 and a dimethyloctyl variant of CP47,497 (CP47,497-C8) and, more recently JWH073. The synaptic effects of each of these compounds were uncharacterized. We previously reported that JWH018 is a potent and efficacious CB(1) cannabinoid receptor agonist. In this study we have examined the abilities of CP47,497-C8 and JWH073 to inhibit neurotransmission in cultured autaptic hippocampal neurons. Each inhibited EPSCs with an efficacy and potency similar to JWH018. We also analyzed these compounds' effects on promoting internalization of CB(1) receptors in HEK293 cells stably expressing CB(1) receptors. Similar to our neurotransmission data, CP47,497-C8 internalized CB(1) in a fashion indistinguishable from JWH018. However, JWH073 was less potent and produced slower internalization than JWH018 and CP47,497-C8. It appears that 'Spice' contains a number of cannabinoid receptor agonists that activate CB(1) receptors to inhibit synaptic transmission with similar potencies and efficacies. It is highly probable that the cannabis-like effects of 'Spice' are due to the presence of these and analogous synthetic additives acting on CB(1) receptors. PMID:21333643

  7. Behavioral effects of the cannabinoid CB1 receptor allosteric modulator ORG27569 in rats

    PubMed Central

    Ding, Yuanyuan; Qiu, Yanyan; Jing, Li; Thorn, David A; Zhang, Yanan; Li, Jun-Xu

    2014-01-01

    The cannabinoid CB1 receptor system is involved in feeding behaviors and the CB1 receptor antagonist SR141716A is an effective antiobesity drug. However, SR141716A also has serious side effects, which prompted the exploration of alternative strategies to modulate this important drug target. Recently a CB1 receptor allosteric modulating site has been discovered and the allosteric modulating activity of several modulators including ORG27569 has been characterized in vitro. Yet, little is known of the in vivo pharmacological effects of ORG27569. This study examined the behavioral pharmacology of ORG27569 in rats. ORG27569 (3.2–10 mg/kg, i.p.) selectively attenuated the hypothermic effects of CB1 receptor agonists CP55940 (0.1–1 mg/kg) and anandamide (3.2–32 mg/kg). In contrast, SR141716A only attenuated the hypothermic effects of CP55940 but not anandamide. SR141716A but not ORG27569 blocked CP55940-induced catalepsy and antinociception. In addition, ORG27569 did not modify SR141716A-elicited grooming and scratching behaviors. In feeding studies, ORG27569 decreased palatable and plain food intake which was partially blocked by CP55940. The hypophagic effect of ORG27569 developed tolerance after 4 days of daily 5.6 mg/kg treatment; however, the effect on body weight gain outlasted the drug treatment for 10 days. These data suggest that ORG27569 may not function as a CB1 receptor allosteric modulator in vivo, although its hypophagic activity still has potential therapeutic utility. PMID:25431655

  8. Cannabinoid Receptors CB1 and CB2 Modulate the Electroretinographic Waves in Vervet Monkeys

    PubMed Central

    Bouskila, Joseph; Harrar, Vanessa; Javadi, Pasha; Beierschmitt, Amy; Palmour, Roberta; Casanova, Christian; Bouchard, Jean-François; Ptito, Maurice

    2016-01-01

    The expression patterns of the cannabinoid receptor type 1 (CB1R) and the cannabinoid receptor type 2 (CB2R) are well documented in rodents and primates. In vervet monkeys, CB1R is present in the retinal neurons (photoreceptors, horizontal cells, bipolar cells, amacrine cells, and ganglion cells) and CB2R is exclusively found in the retinal glia (Müller cells). However, the role of these cannabinoid receptors in normal primate retinal function remains elusive. Using full-field electroretinography in adult vervet monkeys, we recorded changes in neural activity following the blockade of CB1R and CB2R by the intravitreal administration of their antagonists (AM251 and AM630, resp.) in photopic and scotopic conditions. Our results show that AM251 increases the photopic a-wave amplitude at high flash intensities, whereas AM630 increases the amplitude of both the photopic a- and b-waves. In scotopic conditions, both blockers increased the b-wave amplitude but did not change the a-wave amplitude. These findings suggest an important role of CB1R and CB2R in primate retinal function. PMID:27069692

  9. Cannabinoid CB1 receptor as a target for chlorpyrifos oxon and other organophosphorus pesticides.

    PubMed

    Quistad, Gary B; Nomura, Daniel K; Sparks, Susan E; Segall, Yoffi; Casida, John E

    2002-09-01

    Binding of the endocannabinoid anandamide or of Delta(9)-tetrahydrocannabinol to the agonist site of the cannabinoid receptor (CB1) is commonly assayed with [3H]CP 55,940. Potent long-chain alkylfluorophosphonate inhibitors of agonist binding suggest an additional, important and closely-coupled nucleophilic site, possibly undergoing phosphorylation. We find that the CB1 receptor is also sensitive to inhibition in vitro and in vivo by several organophosphorus pesticides and analogs. Binding of [3H]CP 55,940 to mouse brain CB1 receptor in vitro is inhibited 50% by chlorpyrifos oxon at 14 nM, chlorpyrifos methyl oxon at 64 nM and paraoxon, diazoxon and dichlorvos at 1200-4200 nM. Some 15 other organophosphorus pesticides and analogs are less active in vitro. The plant defoliant tribufos inhibits CB1 in vivo, without cholinergic poisoning signs, by 50% at 50 mg/kg intraperitoneally with a recovery half-time of 3-4 days, indicating covalent derivatization. [3H-ethyl]Chlorpyrifos oxon may be suitable for radiolabeling and characterization of this proposed nucleophilic site. PMID:12243867

  10. The endocannabinoid N-arachidonoyldopamine (NADA) exerts neuroprotective effects after excitotoxic neuronal damage via cannabinoid receptor 1 (CB(1)).

    PubMed

    Grabiec, Urszula; Koch, Marco; Kallendrusch, Sonja; Kraft, Robert; Hill, Kerstin; Merkwitz, Claudia; Ghadban, Chalid; Lutz, Beat; Straiker, Alex; Dehghani, Faramarz

    2012-03-01

    Endocannabinoids exert numerous effects in the CNS under physiological and pathological conditions. The aim of the present study was to examine whether the endocannabinoid N-arachidonoyldopamine (NADA) may protect neurons in excitotoxically lesioned organotypic hippocampal slice cultures (OHSC). OHSC were excitotoxically lesioned by application of N-methyl-d-aspartate (NMDA, 50 μM) for 4 h and subsequently treated with different NADA concentrations (0.1 pM-50 μM) alone or in combination with cannabinoid receptor antagonists. NADA protected dentate gyrus granule cells and caused a slight reduction in the number of microglial cells. The number of degenerated neurons significantly decreased between 100 pM and 10 μM NADA (p < 0.05). To identify the responsive receptor type of NADA mediated neuroprotection, we applied the cannabinoid (CB) receptor 1 (CB(1)) inverse agonist/antagonist AM251, CB(2) inverse agonist/antagonist AM630, abnormal-cannabidiol (abn-CBD)-sensitive receptor antagonist O-1918, transient receptor potential channel V1 (TRPV1) antagonist 6-iodonordihydrocapsaicin and A1 (TRPA1) antagonist HC-030031. Neuroprotective properties of low (1 nM) but not high (10 μM) NADA concentrations were solely blocked by AM251 and were absent in CB(1)(-/-) mice. AM630, O-1918, 6-iodonordihydrocapsaicin and HC-030031 showed no effects at all NADA concentrations applied. Our findings demonstrate that NADA protects dentate gyrus granule cells by acting via CB(1). NADA reduced the number of microglial cells at distinct concentrations. TRPV1 and TRPA1 were not involved in NADA mediated neuroprotection. Thus, our data implicate that NADA mediated activation of neuronal CB(1) may serve as a novel pharmacological target to mitigate symptoms of neuronal damage. PMID:22186081

  11. The CB1 cannabinoid receptor signals striatal neuroprotection via a PI3K/Akt/mTORC1/BDNF pathway

    PubMed Central

    Blázquez, C; Chiarlone, A; Bellocchio, L; Resel, E; Pruunsild, P; García-Rincón, D; Sendtner, M; Timmusk, T; Lutz, B; Galve-Roperh, I; Guzmán, M

    2015-01-01

    The CB1 cannabinoid receptor, the main molecular target of endocannabinoids and cannabis active components, is the most abundant G protein-coupled receptor in the mammalian brain. In particular, the CB1 receptor is highly expressed in the basal ganglia, mostly on terminals of medium-sized spiny neurons, where it plays a key neuromodulatory function. The CB1 receptor also confers neuroprotection in various experimental models of striatal damage. However, the assessment of the physiological relevance and therapeutic potential of the CB1 receptor in basal ganglia-related diseases is hampered, at least in part, by the lack of knowledge of the precise mechanism of CB1 receptor neuroprotective activity. Here, by using an array of pharmacological, genetic and pharmacogenetic (designer receptor exclusively activated by designer drug) approaches, we show that (1) CB1 receptor engagement protects striatal cells from excitotoxic death via the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin complex 1 pathway, which, in turn, (2) induces brain-derived neurotrophic factor (BDNF) expression through the selective activation of BDNF gene promoter IV, an effect that is mediated by multiple transcription factors. To assess the possible functional impact of the CB1/BDNF axis in a neurodegenerative-disease context in vivo, we conducted experiments in the R6/2 mouse, a well-established model of Huntington's disease, in which the CB1 receptor and BDNF are known to be severely downregulated in the dorsolateral striatum. Adeno-associated viral vector-enforced re-expression of the CB1 receptor in the dorsolateral striatum of R6/2 mice allowed the re-expression of BDNF and the concerted rescue of the neuropathological deficits in these animals. Collectively, these findings unravel a molecular link between CB1 receptor activation and BDNF expression, and support the relevance of the CB1/BDNF axis in promoting striatal neuron survival. PMID:25698444

  12. Elevated Brain Cannabinoid CB1 Receptor Availability in Posttraumatic Stress Disorder: A Positron Emission Tomography Study

    PubMed Central

    Neumeister, Alexander; Normandin, Marc D.; Pietrzak, Robert H.; Piomelli, Daniele; Zheng, Ming-Qiang; Gujarro-Anton, Ana; Potenza, Marc N.; Bailey, Christopher R.; Lin, Shu-fei; Najafzadeh, Soheila; Ropchan, Jim; Henry, Shannan; Corsi-Travali, Stefani; Carson, Richard E.; Huang, Yiyun

    2013-01-01

    Endocannabinoids and their attending cannabinoid type 1 receptor (CB1) have been implicated in animal models of posttraumatic stress disorder (PTSD). However, their specific role has not been studied in people with PTSD. Herein, we present an in vivo imaging study using positron emission tomography (PET) and the CB1-selective radioligand [11C]OMAR in individuals with PTSD, and healthy controls with lifetime histories of trauma (trauma controls [TC]) and those without such histories (healthy controls [HC]). Untreated individuals with PTSD (N=25) with non-combat trauma histories, and TC (N=12) and HC (N=23) participated in a magnetic resonance (MR) imaging scan and a resting PET scan with the CB1 receptor antagonist radiotracer [11C]OMAR, which measures volume of distribution (VT) linearly related to CB1 receptor availability. Peripheral levels of anandamide, 2-arachidonoylglycerol (2-AG), oleoylethanolamide (OEA), palmitoylethanolamide (PEA), and cortisol were also assessed. In the PTSD group, relative to the HC and TC groups, we found elevated brain-wide [11C]OMAR VT values (F(2,53)=7.96, p=.001; 19.5% and 14.5% higher, respectively) which were most pronounced in women (F(1,53)=5.52, p=.023). Anandamide concentrations were reduced in the PTSD relative to the TC (53.1% lower) and HC (58.2% lower) groups. Cortisol levels were lower in the PTSD and TC groups relative to the HC group. Three biomarkers examined collectively—OMAR VT, anandamide, and cortisol—correctly classified nearly 85% of PTSD cases. These results suggest that abnormal CB1 receptor-mediated anandamide signaling is implicated in the etiology of PTSD, and provide a promising neurobiological model to develop novel, evidence-based pharmacotherapies for this disorder. PMID:23670490

  13. Energetic Metabolism and Human Sperm Motility: Impact of CB1 Receptor Activation

    PubMed Central

    Barbonetti, A.; Vassallo, M. R. C.; Fortunato, D.; Francavilla, S.; Maccarrone, M.; Francavilla, F.

    2010-01-01

    It has been reported that the endocannabinoid anandamide (AEA) exerts an adverse effect on human sperm motility, which has been ascribed to inhibition of mitochondrial activity. This seems to be at variance with evidence suggesting a major role of glycolysis in supplying ATP for sperm motility; furthermore, the role of AEA-binding receptors in mediating mitochondrial inhibition has not yet been explored. In this study, human sperm exposure to Met-AEA (methanandamide, nonhydrolyzable analog of AEA) in the micromolar range significantly decreased mitochondrial transmembrane potential (ΔΨm), similarly to rotenone, mitochondrial complex I inhibitor. The effect of Met-AEA (1 μm) was prevented by SR141716, CB1 cannabinoid receptor antagonist, but not by SR144528, CB2 antagonist, nor by iodoresiniferatoxin, vanilloid receptor antagonist. The effect of Met-AEA did not involve activation of caspase-9 or caspase-3 and was reverted by washing. In the presence of glucose, sperm exposure either to Met-AEA up to 1 μm or to rotenone for up to 18 h did not affect sperm motility. At higher doses Met-AEA produced a CB1-independent poisoning of spermatozoa, reducing their viability. Under glycolysis blockage, 1 μm Met-AEA, similarly to rotenone, dramatically abolished sperm motility, an effect that was prevented by SR1 and reverted by washing. In conclusion, CB1 activation induced a nonapoptotic decrease of ΔΨm, the detrimental reflection on sperm motility of which could be revealed only under glycolysis blockage, unless very high doses of Met-AEA, producing CB1-independent sperm toxicity, were used. The effects of CB1 activation reported here contribute to elucidate the relationship between energetic metabolism and human sperm motility. PMID:20962050

  14. Effects of Intra-Amygdala Infusion of CB1 Receptor Agonists on the Reconsolidation of Fear-Potentiated Startle

    ERIC Educational Resources Information Center

    Lin, Hui-Ching; Mao, Sheng-Chun; Gean, Po-Wu

    2006-01-01

    The cannabinoid CB1 receptor has been shown to be critically involved in the extinction of fear memory. Systemic injection of a CB1 receptor antagonist prior to extinction training blocked extinction. Conversely, administration of the cannabinoid uptake inhibitor AM404 facilitated extinction in a dose-dependent manner. Here we show that bilateral…

  15. Cannabinoids inhibit cholinergic contraction in human airways through prejunctional CB1 receptors

    PubMed Central

    Grassin-Delyle, S; Naline, E; Buenestado, A; Faisy, C; Alvarez, J-C; Salvator, H; Abrial, C; Advenier, C; Zemoura, L; Devillier, P

    2014-01-01

    Background and Purpose Marijuana smoking is widespread in many countries, and the use of smoked synthetic cannabinoids is increasing. Smoking a marijuana joint leads to bronchodilation in both healthy subjects and asthmatics. The effects of Δ9-tetrahydrocannabinol and synthetic cannabinoids on human bronchus reactivity have not previously been investigated. Here, we sought to assess the effects of natural and synthetic cannabinoids on cholinergic bronchial contraction. Experimental Approach Human bronchi isolated from 88 patients were suspended in an organ bath and contracted by electrical field stimulation (EFS) in the presence of the phytocannabinoid Δ9-tetrahydrocannabinol, the endogenous 2-arachidonoylglycerol, the synthetic dual CB1 and CB2 receptor agonists WIN55,212-2 and CP55,940, the synthetic, CB2-receptor-selective agonist JWH-133 or the selective GPR55 agonist O-1602. The receptors involved in the response were characterized by using selective CB1 and CB2 receptor antagonists (SR141716 and SR144528 respectively). Key Results Δ9-tetrahydrocannabinol, WIN55,212-2 and CP55,940 induced concentration-dependent inhibition of cholinergic contractions, with maximum inhibitions of 39, 76 and 77% respectively. JWH-133 only had an effect at high concentrations. 2-Arachidonoylglycerol and O-1602 were devoid of any effect. Only CB1 receptors were involved in the response because the effects of cannabinoids were antagonized by SR141716, but not by SR144528. The cannabinoids did not alter basal tone or contractions induced by exogenous Ach. Conclusions and Implications Activation of prejunctional CB1 receptors mediates the inhibition of EFS-evoked cholinergic contraction in human bronchus. This mechanism may explain the acute bronchodilation produced by marijuana smoking. PMID:24467410

  16. Effects of CB1 receptor blockade on monosodium glutamate induced hypometabolic and hypothalamic obesity in rats.

    PubMed

    Chen, Wei; Chen, Zhenhua; Xue, Nina; Zheng, Zhibing; Li, Song; Wang, Lili

    2013-08-01

    Effects of cannabinoid receptor 1 (CB1R) blockade were observed by comparing 9-day and 6-week SR141716 treatments in monosodium glutamate (MSG)-induced hypometabolic and hypothalamic obesity (HO) in rats for the first time and molecular mechanisms were investigated. Compared with normal rats, the MSG rats display typical symptoms of the metabolic syndrome, i.e., excessive abdominal obesity, hypertriglyceridemia, hyperinsulinemia, insulin resistance, and hepatic steatosis, but with lower food intake. Although both the 9-day and 6-week treatments with the specific CB1R antagonist SR141716 effectively lowered body weight, intraperitoneal adipose tissue mass, serum triglyceride (TG), and insulin level, the effect of chronic treatment is more impressive. Moreover, serum cholesterol, free fatty acids (FFA), fasted and postprandial blood glucose, and insulin insensitivity were more effectively improved by 6-week exposure to SR141716, whereas hypophagia was only effective within the initial 2 weeks. In addition, hepatic steatosis as well as hepatic and adipocyte morphology was improved. Western blot analysis revealed that the markedly increased CB1R expression and decreased insulin receptor (INR) expression in liver and adipose tissues were effectively corrected by SR141716. Consistent with this, deregulated gene expression of lipogenesis and lipolysis as well as glucose metabolic key enzymes were also restored by SR141716. In conclusion, based on present data we found that: (1) alteration of the hypothalamus in MSG rats leads to a lower expression of INR in crucially insulin-targeted tissues and hyperinsulinemia that was reversed by SR141716, (2) the abnormally increased expression of CB1R in liver and adipose tissues plays a vital role in the pathophysiological process of MSG rats, and (3) chronic CB1R blockade leads to a sustained improvement of the metabolic dysfunctions of MSG rats. PMID:23620336

  17. CB1 cannabinoid receptors mediate endochondral skeletal growth attenuation by Δ9-tetrahydrocannabinol.

    PubMed

    Wasserman, Elad; Tam, Joseph; Mechoulam, Raphael; Zimmer, Andreas; Maor, Gila; Bab, Itai

    2015-01-01

    The endocannabinoid (EC) system regulates bone mass. Because cannabis use during pregnancy results in stature shorter than normal, we examined the role of the EC system in skeletal elongation. We show that CB1 and CB2 cannabinoid receptors are expressed specifically in hypertrophic chondrocytes of the epiphyseal growth cartilage (EGC), which drives vertebrate growth. These cells also express diacylglycerol lipases, critical biosynthetic enzymes of the main EC, and 2-arachidonoylglycerol (2-AG), which is present at significant levels in the EGC. Femora of CB1- and/or CB2-deficient mice at the end of the rapid growth phase are longer compared to wild-type (WT) animals. We find that Δ(9) -tetrahydrocannabinol (THC) slows skeletal elongation of female WT and CB2-, but not CB1-, deficient mice, which is reflected in femoral and lumbar vertebral body length. This in turn results in lower body weight, but unaltered fat content. THC inhibits EGC chondrocyte hypertrophy in ex vivo cultures and reduces the hypertrophic cell zone thickness of CB1-, but not CB2-, deficient mice. These results demonstrate a local growth-restraining EC system in the EGC. The relevance of the present findings to humans remains to be studied. PMID:25573322

  18. Conformational memories and the endocannabinoid binding site at the cannabinoid CB1 receptor.

    PubMed

    Barnett-Norris, Judy; Hurst, Dow P; Lynch, Diane L; Guarnieri, Frank; Makriyannis, Alex; Reggio, Patricia H

    2002-08-15

    Endocannabinoid stucture-activity relationships (SAR) indicate that the CB1 receptor recognizes ethanolamides whose fatty acid acyl chains have 20 or 22 carbons, with at least three homoallylic double bonds and saturation in at least the last five carbons of the acyl chain. To probe the molecular basis for these acyl chain requirements, the method of conformational memories (CM) was used to study the conformations available to an n-6 series of ethanolamide fatty acid acyl chain congeners: 22:4, n-6 (K(i) = 34.4 +/- 3.2 nM); 20:4, n-6 (K(i) = 39.2 +/- 5.7 nM); 20:3, n-6 (K(i) = 53.4 +/- 5.5 nM); and 20:2, n-6 (K(i) > 1500 nM). CM studies indicated that each analogue could form both extended and U/J-shaped families of conformers. However, for the low affinity 20:2, n-6 ethanolamide, the higher populated family was the extended conformer family, while for the other analogues in the series, the U/J-shaped family had the higher population. In addition, the 20:2, n-6 ethanolamide U-shaped family was not as tightly curved as were those of the other analogues studied. To quantitate this variation in curvature, the radius of curvature (in the C-3 to C-17 region) of each member of each U/J-shaped family was measured. The average radii of curvature (with their 95% confidence intervals) were found to be 5.8 A (5.3-6.2) for 20:2, n-6; 4.4 A (4.1-4.7) for 20:3, n-6; 4.0 A (3.7-4.2) for 20:4, n-6; and 4.0 A (3.6-4.5) for 22:4, n-6. These results suggest that higher CB1 affinity is associated with endocannabinoids that can form tightly curved structures. Endocannabinoid SAR also indicate that the CB1 receptor does not tolerate large endocannabinoid headgroups; however, it does recognize both polar and nonpolar moieties in the headgroup region. To identify a headgroup orientation that results in high CB1 affinity, a series of dimethyl anandamide analogues (R)-N-(1-methyl-2-hydroxyethyl)-2-(R)-methyl-arachidonamide (K(i) = 7.42 +/- 0.86 nM), (R)-N-(1-methyl-2-hydroxyethyl)-2-(S

  19. The CB1 Receptor as an Important Mediator of Hedonic Reward Processing

    PubMed Central

    Friemel, Chris M; Zimmer, Andreas; Schneider, Miriam

    2014-01-01

    The endocannabinoid (ECB) system has emerged recently as a key mediator for reward processing. It is well known that cannabinoids affect appetitive learning processes and can induce reinforcing and rewarding effects. However, the involvement of the ECB system in hedonic aspects of reward-related behavior is not completely understood. With the present study, we investigated the modulatory role of the ECB system on hedonic perception, measured by the pleasure attenuated startle (PAS) paradigm for a palatable food reward. Here, a conditioned odor is thought to induce a pleasant affective state that attenuates an aversive reflex—the acoustic startle response. Modulatory effects of the CB1 receptor antagonist/inverse agonist SR1411716 and the cannabinoid agonist WIN 55 212-2 on PAS were examined in rats. PAS was also measured in CB1 receptor knockout (KO) and wild-type (WT) mice. Pharmacological inhibition as well as the absence of CB1 receptors was found to reduce PAS, whereas WIN 55 212-2 administration increased PAS. Finally, presentation of a conditioned reward cue was found to induce striatal FosB/ΔFosB expression in WT mice, but not in KO mice, indicating a reduced stimulation of reward-related brain regions in conditioned KO mice by odor presentation. We here show that in addition to our previous studies in rats, PAS may also serve as a valuable and suitable measure to assess hedonic processing in mice. Our data further indicate that the ECB system, and in particular CB1 receptor signaling, appears to be highly important for the mediation of hedonic aspects of reward processing. PMID:24718372

  20. The CB1 receptor as an important mediator of hedonic reward processing.

    PubMed

    Friemel, Chris M; Zimmer, Andreas; Schneider, Miriam

    2014-09-01

    The endocannabinoid (ECB) system has emerged recently as a key mediator for reward processing. It is well known that cannabinoids affect appetitive learning processes and can induce reinforcing and rewarding effects. However, the involvement of the ECB system in hedonic aspects of reward-related behavior is not completely understood. With the present study, we investigated the modulatory role of the ECB system on hedonic perception, measured by the pleasure attenuated startle (PAS) paradigm for a palatable food reward. Here, a conditioned odor is thought to induce a pleasant affective state that attenuates an aversive reflex-the acoustic startle response. Modulatory effects of the CB1 receptor antagonist/inverse agonist SR1411716 and the cannabinoid agonist WIN 55 212-2 on PAS were examined in rats. PAS was also measured in CB1 receptor knockout (KO) and wild-type (WT) mice. Pharmacological inhibition as well as the absence of CB1 receptors was found to reduce PAS, whereas WIN 55 212-2 administration increased PAS. Finally, presentation of a conditioned reward cue was found to induce striatal FosB/ΔFosB expression in WT mice, but not in KO mice, indicating a reduced stimulation of reward-related brain regions in conditioned KO mice by odor presentation. We here show that in addition to our previous studies in rats, PAS may also serve as a valuable and suitable measure to assess hedonic processing in mice. Our data further indicate that the ECB system, and in particular CB1 receptor signaling, appears to be highly important for the mediation of hedonic aspects of reward processing. PMID:24718372

  1. The Orphan Nuclear Receptor ERRγ Regulates Hepatic CB1 Receptor-Mediated Fibroblast Growth Factor 21 Gene Expression

    PubMed Central

    Jung, Yoon Seok; Lee, Ji-Min; Kim, Don-Kyu; Lee, Yong-Soo; Kim, Ki-Sun; Kim, Yong-Hoon; Kim, Jina; Lee, Myung-Shik; Lee, In-Kyu; Kim, Seong Heon; Cho, Sung Jin; Jeong, Won-Il; Lee, Chul-Ho; Harris, Robert A.; Choi, Hueng-Sik

    2016-01-01

    Background Fibroblast growth factor 21 (FGF21), a stress inducible hepatokine, is synthesized in the liver and plays important roles in glucose and lipid metabolism. However, the mechanism of hepatic cannabinoid type 1 (CB1) receptor-mediated induction of FGF21 gene expression is largely unknown. Results Activation of the hepatic CB1 receptor by arachidonyl-2’-chloroethylamide (ACEA), a CB1 receptor selective agonist, significantly increased FGF21 gene expression. Overexpression of estrogen-related receptor (ERR) γ increased FGF21 gene expression and secretion both in hepatocytes and mice, whereas knockdown of ERRγ decreased ACEA-mediated FGF21 gene expression and secretion. Moreover, ERRγ, but not ERRα and ERRβ, induced FGF21 gene promoter activity. In addition, deletion and mutation analysis of the FGF21 promoter identified a putative ERRγ-binding motif (AGGTGC, a near-consensus response element). A chromatin immunoprecipitation assay revealed direct binding of ERRγ to the FGF21 gene promoter. Finally, GSK5182, an ERRγ inverse agonist, significantly inhibited hepatic CB1 receptor-mediated FGF21 gene expression and secretion. Conclusion Based on our data, we conclude that ERRγ plays a key role in hepatic CB1 receptor-mediated induction of FGF21 gene expression and secretion. PMID:27455076

  2. Comparison of the pharmacology and signal transduction of the human cannabinoid CB1 and CB2 receptors.

    PubMed

    Felder, C C; Joyce, K E; Briley, E M; Mansouri, J; Mackie, K; Blond, O; Lai, Y; Ma, A L; Mitchell, R L

    1995-09-01

    The recently cloned CB2 cannabinoid receptor subtype was stably transfected into AtT-20 and Chinese hamster ovary cells to compare the binding and signal transduction properties of this receptor with those of the CB1 receptor subtype. The binding of [3H]CP 55,940 to both CB1 and CB2 was of similar high affinity (2.6 and 3.7 nM, respectively) and saturable. In competitive binding experiments, (-)-delta 9-tetrahydrocannabinol and CP 55,940 were equipotent at the CB1 and CB2 receptors, but WIN 55212-2 and cannabinol bound with higher affinity to the CB2 than the CB1 receptor. HU 210 had a higher affinity for the CB1 receptor. Anandamide, a recently identified endogenous cannabinoid agonist, was essentially equipotent at both receptor subtypes. The structurally related fatty acid ethanolamides dihomo-gamma-linolenylethanolamide and mead ethanolamide also bound with relatively equal affinity to both receptors, but adrenylethanolamide had a higher affinity for the CB1 receptor. The rank order of potency and efficacy for binding of the selected agonists to the CB1 and CB2 receptors was mimicked in functional inhibition of cAMP accumulation experiments for all compounds tested. Both CB1 and CB2 receptors couple to the inhibition of cAMP accumulation that was pertussis toxin sensitive. SR141716A, a CB1 receptor antagonist, was a poor antagonist at the CB2 receptor in both binding and functional inhibition of cAMP accumulation experiments. When expressed in AtT-20 cells, the CB1 receptor mediated an inhibition of Q-type calcium channels and an activation of inward rectifying potassium channels. In contrast, the CB2 receptor did not modulate the activity of either channel under identical assay conditions. Similar to results obtained for CB1 receptor, the CB2 receptor did not couple to the activation of phospholipases A2, C, or D or to the mobilization of intracellular Ca2+. Except for its inability to couple to the modulation of Q-type calcium channels or inwardly rectifying

  3. Cannabinoid CB1 Receptor Activation Mediates the Opposing Effects of Amphetamine on Impulsive Action and Impulsive Choice

    PubMed Central

    Wiskerke, Joost; Stoop, Nicky; Schetters, Dustin; Schoffelmeer, Anton N. M.; Pattij, Tommy

    2011-01-01

    It is well known that acute challenges with psychostimulants such as amphetamine affect impulsive behavior. We here studied the pharmacology underlying the effects of amphetamine in two rat models of impulsivity, the 5-choice serial reaction time task (5-CSRTT) and the delayed reward task (DRT), providing measures of inhibitory control, an aspect of impulsive action, and impulsive choice, respectively. We focused on the role of cannabinoid CB1 receptor activation in amphetamine-induced impulsivity as there is evidence that acute challenges with psychostimulants activate the endogenous cannabinoid system, and CB1 receptor activity modulates impulsivity in both rodents and humans. Results showed that pretreatment with either the CB1 receptor antagonist/inverse agonist SR141716A or the neutral CB1 receptor antagonist O-2050 dose-dependently improved baseline inhibitory control in the 5-CSRTT. Moreover, both compounds similarly attenuated amphetamine-induced inhibitory control deficits, suggesting that CB1 receptor activation by endogenously released cannabinoids mediates this aspect of impulsive action. Direct CB1 receptor activation by Δ9-Tetrahydrocannabinol (Δ9-THC) did, however, not affect inhibitory control. Although neither SR141716A nor O-2050 affected baseline impulsive choice in the DRT, both ligands completely prevented amphetamine-induced reductions in impulsive decision making, indicating that CB1 receptor activity may decrease this form of impulsivity. Indeed, acute Δ9-THC was found to reduce impulsive choice in a CB1 receptor-dependent way. Together, these results indicate an important, though complex role for cannabinoid CB1 receptor activity in the regulation of impulsive action and impulsive choice as well as the opposite effects amphetamine has on both forms of impulsive behavior. PMID:22016780

  4. Activating Parabrachial Cannabinoid CB1 Receptors Selectively Stimulates Feeding of Palatable Foods in Rats

    PubMed Central

    DiPatrizio, Nicholas V.; Simansky, Kenny J.

    2009-01-01

    The endocannabinoid system is emerging as an integral component in central and peripheral regulation of feeding and energy balance. Our investigation analyzed behavioral roles for cannabinoid mechanisms of the pontine parabrachial nucleus (PBN) in modulating intake of presumably palatable foods containing fat and/or sugar. The PBN serves to gate neurotransmission associated with, but not limited to, the gustatory properties of food. Immunofluorescence and in vitro [35S]GTPγS autoradiography of rat tissue sections containing the PBN revealed the presence of cannabinoid receptors and their functional capability to couple to their G-proteins following incubation with the endocannabinoid, 2-arachidonoyl glycerol (2-AG). The selective cannabinoid 1 receptor (CB1R) antagonist, AM251, prevented the response, demonstrating CB1R mediation of 2-AG induced coupling. Microinfusions of 2-AG into the PBN in behaving rats robustly stimulated feeding of pellets high in content of fat and sucrose (HFS), pure sucrose and pure fat (Crisco®), during the first 30min following infusion. In contrast, 2-AG failed to increase consumption of standard chow, even when the feeding regimen was manipulated to match baseline intakes of HFS. Orexigenic responses to 2-AG were attenuated by AM251, again indicating CB1R mediation of 2-AG actions. Furthermore, responses were regionally specific, as 2-AG failed to alter intake when infused into sites ~500µm caudal to infusions that successfully stimulated feeding. Our data suggest that hedonically-positive sensory properties of food enable endocannabinoids at PBN CB1Rs to initiate increases in eating and more generally, these pathways may serve a larger role in brain functions controlling behavioral responses for natural reward. PMID:18815256

  5. Differential developmental trajectories for CB1 cannabinoid receptor expression in limbic/associative and sensorimotor cortical areas

    PubMed Central

    Heng, Lijun; Beverley, Joel A.; Steiner, Heinz; Tseng, Kuei Y.

    2010-01-01

    Cannabis use during adolescence is associated with an increased risk for schizophrenia and other disorders. The neuronal basis is unclear, but prefrontal cortical mechanisms have been implicated. Here, we investigated developmental changes in the endocannabinoid system by assessing expression and function of the CB1 cannabinoid receptor in prefrontal and other cortical areas in juvenile (postnatal day 25, P25), adolescent (P40) and adult (P70) rats. Overall, the expression of CB1 receptors in the cortex is highest in juveniles and drops thereafter towards adult levels. However, CB1 receptor expression follows distinct developmental trajectories in different cortical areas. The most pronounced and progressive decrease in CB1 expression was observed in medial prefrontal and other limbic/associative regions. In contrast, major changes in sensorimotor cortices occurred only after P40. We also assessed electrophysiological measures of CB1 receptor function and found that CB1-dependent inhibition of synaptic transmission in the prefrontal cortex follows the same developmental trajectory as observed for receptor expression. Together, these findings indicate that CB1 receptor-mediated signaling decreases during development, but is differentially regulated in limbic/associative vs. sensorimotor systems. Therefore, cannabis use during adolescence likely differentially affects limbic/associative and sensorimotor cortical circuits. PMID:20687106

  6. Effects of pro-inflammatory cytokines on cannabinoid CB1 and CB2 receptors in immune cells

    PubMed Central

    Jean-Gilles, Lucie; Braitch, Manjit; Latif, M. Liaque; Aram, Jehan; Fahey, Angela J.; Edwards, Laura J.; Robins, R. Adrian; Tanasescu, Radu; Tighe, Patrick J.; Gran, Bruno; Showe, Louise C.; Alexander, Steve P.; Chapman, Victoria; Kendall, David A.; Constantinescu, Cris S.

    2015-01-01

    Aims To investigate the regulation of cannabinoid receptors CB1 and CB2 on immune cells by proinflammatory cytokines and its potential relevance to the inflammatory neurological disease, multiple sclerosis (MS). CB1 and CB2 signalling may be anti-inflammatory and neuroprotective in neuroinflammatory diseases. Cannabinoids can suppress inflammatory cytokines but the effects of these cytokines on CB1 and CB2 expression and function are unknown. Methods Immune cells from peripheral blood were obtained from healthy volunteers and patients with MS. Expression of CB1 and CB2 mRNA in whole blood cells, peripheral blood mononuclear cells (PBMC) and T cells was determined by quantitative real time-polymerase chain reaction (qRT-PCR). Expression of CB1 and CB2 protein was determined by flow cytometry. CB1 and CB2 signaling in PBMC was determined by Western blotting for Erk1/2. Results Proinflammatory cytokines IL-1β, IL-6 and TNF-α (the latter likely NFκB-dependently) can up-regulate CB1 and CB2 on human whole blood and peripheral blood mononuclear cells (PBMC). We also demonstrate up-regulation of CB1 and CB2 and increased IL-1β, IL-6 and TNF-α mRNA in blood of MS patients compared with controls. Conclusion The levels of CB1 and CB2 can be up-regulated by inflammatory cytokines, which can explain their increase in inflammatory conditions including MS. PMID:25704169

  7. International Union of Basic and Clinical Pharmacology. LXXIX. Cannabinoid Receptors and Their Ligands: Beyond CB1 and CB2

    PubMed Central

    Howlett, A. C.; Abood, M. E.; Alexander, S. P. H.; Di Marzo, V.; Elphick, M. R.; Greasley, P. J.; Hansen, H. S.; Kunos, G.; Mackie, K.; Mechoulam, R.; Ross, R. A.

    2010-01-01

    There are at least two types of cannabinoid receptors (CB1 and CB2). Ligands activating these G protein-coupled receptors (GPCRs) include the phytocannabinoid Δ9-tetrahydrocannabinol, numerous synthetic compounds, and endogenous compounds known as endocannabinoids. Cannabinoid receptor antagonists have also been developed. Some of these ligands activate or block one type of cannabinoid receptor more potently than the other type. This review summarizes current data indicating the extent to which cannabinoid receptor ligands undergo orthosteric or allosteric interactions with non-CB1, non-CB2 established GPCRs, deorphanized receptors such as GPR55, ligand-gated ion channels, transient receptor potential (TRP) channels, and other ion channels or peroxisome proliferator-activated nuclear receptors. From these data, it is clear that some ligands that interact similarly with CB1 and/or CB2 receptors are likely to display significantly different pharmacological profiles. The review also lists some criteria that any novel “CB3” cannabinoid receptor or channel should fulfil and concludes that these criteria are not currently met by any non-CB1, non-CB2 pharmacological receptor or channel. However, it does identify certain pharmacological targets that should be investigated further as potential CB3 receptors or channels. These include TRP vanilloid 1, which possibly functions as an ionotropic cannabinoid receptor under physiological and/or pathological conditions, and some deorphanized GPCRs. Also discussed are 1) the ability of CB1 receptors to form heteromeric complexes with certain other GPCRs, 2) phylogenetic relationships that exist between CB1/CB2 receptors and other GPCRs, 3) evidence for the existence of several as-yet-uncharacterized non-CB1, non-CB2 cannabinoid receptors; and 4) current cannabinoid receptor nomenclature. PMID:21079038

  8. Comparative effects of chlorpyrifos in wild type and cannabinoid Cb1 receptor knockout mice

    SciTech Connect

    Baireddy, Praveena; Liu, Jing; Hinsdale, Myron; Pope, Carey

    2011-11-15

    Endocannabinoids (eCBs) modulate neurotransmission by inhibiting the release of a variety of neurotransmitters. The cannabinoid receptor agonist WIN 55.212-2 (WIN) can modulate organophosphorus (OP) anticholinesterase toxicity in rats, presumably by inhibiting acetylcholine (ACh) release. Some OP anticholinesterases also inhibit eCB-degrading enzymes. We studied the effects of the OP insecticide chlorpyrifos (CPF) on cholinergic signs of toxicity, cholinesterase activity and ACh release in tissues from wild type (+/+) and cannabinoid CB1 receptor knockout (-/-) mice. Mice of both genotypes (n = 5-6/treatment group) were challenged with CPF (300 mg/kg, 2 ml/kg in peanut oil, sc) and evaluated for functional and neurochemical changes. Both genotypes exhibited similar cholinergic signs and cholinesterase inhibition (82-95% at 48 h after dosing) in cortex, cerebellum and heart. WIN reduced depolarization-induced ACh release in vitro in hippocampal slices from wild type mice, but had no effect in hippocampal slices from knockouts or in striatal slices from either genotype. Chlorpyrifos oxon (CPO, 100 {mu}M) reduced release in hippocampal slices from both genotypes in vitro, but with a greater reduction in tissues from wild types (21% vs 12%). CPO had no significant in vitro effect on ACh release in striatum. CPF reduced ACh release in hippocampus from both genotypes ex vivo, but reduction was again significantly greater in tissues from wild types (52% vs 36%). In striatum, CPF led to a similar reduction (20-23%) in tissues from both genotypes. Thus, while CB1 deletion in mice had little influence on the expression of acute toxicity following CPF, CPF- or CPO-induced changes in ACh release appeared sensitive to modulation by CB1-mediated eCB signaling in a brain-regional manner. -- Highlights: Black-Right-Pointing-Pointer C57Bl/6 mice showed dose-related cholinergic toxicity following subcutaneous chlorpyrifos exposure. Black-Right-Pointing-Pointer Wild type and

  9. High fat diet and body weight have different effects on cannabinoid CB1 receptor expression in rat nodose ganglia

    PubMed Central

    Cluny, N.L.; Baraboi, E.D.; Mackie, K; Burdyga, G.; Richard, D.; Dockray, G.J.; Sharkey, K.A.

    2013-01-01

    Energy balance is regulated, in part, by orexigenic signaling pathways of the vagus nerve. Fasting-induced modifications in the expression of orexigenic signaling systems have been observed in vagal afferents of lean animals. Altered basal cannabinoid (CB)1 receptor expression in the nodose ganglia in obesity has been reported. Whether altered body weight or a high fat diet modifies independent or additive changes in CB1 expression is unknown. We investigated the expression of CB1 and orexin 1 receptor (OX-1R) in nodose ganglia of rats fed ad libitum or food deprived (24h), maintained on low or high fat diets (HFD), with differing body weights. Male Wistar rats were fed chow or HFD (diet-induced obese: DIO or diet-resistant: DR) or were body weight matched to the DR group but fed chow (wmDR). CB1 and OX-1R immunoreactivity were investigated and CB1 mRNA density was determined using in situ hybridization. CB1 immunoreactivity was measured in fasted rats after sulfated cholecystokinin octapeptide (CCK8s) administration. In chow rats, fasting did not modify the level of CB1 mRNA. More CB1 immunoreactive cells were measured in fed DIO, DR and wmDR rats than chow rats; levels increased after fasting in chow and wmDR rats but not in DIO or DR rats. In HFD fasted rats CCK8s did not reduce CB1 immunoreactivity. OX-1R immunoreactivity was modified by fasting only in DR rats. These data suggest that body weight contributes to the proportion of neurons expressing CB1 immunoreactivity in the nodose ganglion, while HFD blunts fasting-induced increases, and CCK-induced suppression of, CB1-immunoreactivity. PMID:24145047

  10. Prenatal exposure to cannabinoids evokes long-lasting functional alterations by targeting CB1 receptors on developing cortical neurons

    PubMed Central

    de Salas-Quiroga, Adán; Díaz-Alonso, Javier; García-Rincón, Daniel; Remmers, Floortje; Vega, David; Gómez-Cañas, María; Lutz, Beat; Guzmán, Manuel; Galve-Roperh, Ismael

    2015-01-01

    The CB1 cannabinoid receptor, the main target of Δ9-tetrahydrocannabinol (THC), the most prominent psychoactive compound of marijuana, plays a crucial regulatory role in brain development as evidenced by the neurodevelopmental consequences of its manipulation in animal models. Likewise, recreational cannabis use during pregnancy affects brain structure and function of the progeny. However, the precise neurobiological substrates underlying the consequences of prenatal THC exposure remain unknown. As CB1 signaling is known to modulate long-range corticofugal connectivity, we analyzed the impact of THC exposure on cortical projection neuron development. THC administration to pregnant mice in a restricted time window interfered with subcerebral projection neuron generation, thereby altering corticospinal connectivity, and produced long-lasting alterations in the fine motor performance of the adult offspring. Consequences of THC exposure were reminiscent of those elicited by CB1 receptor genetic ablation, and CB1-null mice were resistant to THC-induced alterations. The identity of embryonic THC neuronal targets was determined by a Cre-mediated, lineage-specific, CB1 expression-rescue strategy in a CB1-null background. Early and selective CB1 reexpression in dorsal telencephalic glutamatergic neurons but not forebrain GABAergic neurons rescued the deficits in corticospinal motor neuron development of CB1-null mice and restored susceptibility to THC-induced motor alterations. In addition, THC administration induced an increase in seizure susceptibility that was mediated by its interference with CB1-dependent regulation of both glutamatergic and GABAergic neuron development. These findings demonstrate that prenatal exposure to THC has long-lasting deleterious consequences in the adult offspring solely mediated by its ability to disrupt the neurodevelopmental role of CB1 signaling. PMID:26460022

  11. Prenatal exposure to cannabinoids evokes long-lasting functional alterations by targeting CB1 receptors on developing cortical neurons.

    PubMed

    de Salas-Quiroga, Adán; Díaz-Alonso, Javier; García-Rincón, Daniel; Remmers, Floortje; Vega, David; Gómez-Cañas, María; Lutz, Beat; Guzmán, Manuel; Galve-Roperh, Ismael

    2015-11-01

    The CB1 cannabinoid receptor, the main target of Δ(9)-tetrahydrocannabinol (THC), the most prominent psychoactive compound of marijuana, plays a crucial regulatory role in brain development as evidenced by the neurodevelopmental consequences of its manipulation in animal models. Likewise, recreational cannabis use during pregnancy affects brain structure and function of the progeny. However, the precise neurobiological substrates underlying the consequences of prenatal THC exposure remain unknown. As CB1 signaling is known to modulate long-range corticofugal connectivity, we analyzed the impact of THC exposure on cortical projection neuron development. THC administration to pregnant mice in a restricted time window interfered with subcerebral projection neuron generation, thereby altering corticospinal connectivity, and produced long-lasting alterations in the fine motor performance of the adult offspring. Consequences of THC exposure were reminiscent of those elicited by CB1 receptor genetic ablation, and CB1-null mice were resistant to THC-induced alterations. The identity of embryonic THC neuronal targets was determined by a Cre-mediated, lineage-specific, CB1 expression-rescue strategy in a CB1-null background. Early and selective CB1 reexpression in dorsal telencephalic glutamatergic neurons but not forebrain GABAergic neurons rescued the deficits in corticospinal motor neuron development of CB1-null mice and restored susceptibility to THC-induced motor alterations. In addition, THC administration induced an increase in seizure susceptibility that was mediated by its interference with CB1-dependent regulation of both glutamatergic and GABAergic neuron development. These findings demonstrate that prenatal exposure to THC has long-lasting deleterious consequences in the adult offspring solely mediated by its ability to disrupt the neurodevelopmental role of CB1 signaling. PMID:26460022

  12. Pharmacological Blockade of Cannabinoid CB1 Receptors in Diet-Induced Obesity Regulates Mitochondrial Dihydrolipoamide Dehydrogenase in Muscle

    PubMed Central

    Arrabal, Sergio; Lucena, Miguel Angel; Canduela, Miren Josune; Ramos-Uriarte, Almudena; Rivera, Patricia; Serrano, Antonia; Pavón, Francisco Javier; Decara, Juan; Vargas, Antonio; Baixeras, Elena; Martín-Rufián, Mercedes; Márquez, Javier; Fernández-Llébrez, Pedro; De Roos, Baukje; Grandes, Pedro; Rodríguez de Fonseca, Fernando; Suárez, Juan

    2015-01-01

    Cannabinoid CB1 receptors peripherally modulate energy metabolism. Here, we investigated the role of CB1 receptors in the expression of glucose/pyruvate/tricarboxylic acid (TCA) metabolism in rat abdominal muscle. Dihydrolipoamide dehydrogenase (DLD), a flavoprotein component (E3) of α-ketoacid dehydrogenase complexes with diaphorase activity in mitochondria, was specifically analyzed. After assessing the effectiveness of the CB1 receptor antagonist AM251 (3 mg kg-1, 14 days) on food intake and body weight, we could identified seven key enzymes from either glycolytic pathway or TCA cycle—regulated by both diet and CB1 receptor activity—through comprehensive proteomic approaches involving two-dimensional electrophoresis and MALDI-TOF/LC-ESI trap mass spectrometry. These enzymes were glucose 6-phosphate isomerase (GPI), triosephosphate isomerase (TPI), enolase (Eno3), lactate dehydrogenase (LDHa), glyoxalase-1 (Glo1) and the mitochondrial DLD, whose expressions were modified by AM251 in hypercaloric diet-induced obesity. Specifically, AM251 blocked high-carbohydrate diet (HCD)-induced expression of GPI, TPI, Eno3 and LDHa, suggesting a down-regulation of glucose/pyruvate/lactate pathways under glucose availability. AM251 reversed the HCD-inhibited expression of Glo1 and DLD in the muscle, and the DLD and CB1 receptor expression in the mitochondrial fraction. Interestingly, we identified the presence of CB1 receptors at the membrane of striate muscle mitochondria. DLD over-expression was confirmed in muscle of CB1-/- mice. AM251 increased the pyruvate dehydrogenase and glutathione reductase activity in C2C12 myotubes, and the diaphorase/oxidative activity in the mitochondria fraction. These results indicated an up-regulation of methylglyoxal and TCA cycle activity. Findings suggest that CB1 receptors in muscle modulate glucose/pyruvate/lactate pathways and mitochondrial oxidative activity by targeting DLD. PMID:26671069

  13. Pharmacological Blockade of Cannabinoid CB1 Receptors in Diet-Induced Obesity Regulates Mitochondrial Dihydrolipoamide Dehydrogenase in Muscle.

    PubMed

    Arrabal, Sergio; Lucena, Miguel Angel; Canduela, Miren Josune; Ramos-Uriarte, Almudena; Rivera, Patricia; Serrano, Antonia; Pavón, Francisco Javier; Decara, Juan; Vargas, Antonio; Baixeras, Elena; Martín-Rufián, Mercedes; Márquez, Javier; Fernández-Llébrez, Pedro; De Roos, Baukje; Grandes, Pedro; Rodríguez de Fonseca, Fernando; Suárez, Juan

    2015-01-01

    Cannabinoid CB1 receptors peripherally modulate energy metabolism. Here, we investigated the role of CB1 receptors in the expression of glucose/pyruvate/tricarboxylic acid (TCA) metabolism in rat abdominal muscle. Dihydrolipoamide dehydrogenase (DLD), a flavoprotein component (E3) of α-ketoacid dehydrogenase complexes with diaphorase activity in mitochondria, was specifically analyzed. After assessing the effectiveness of the CB1 receptor antagonist AM251 (3 mg kg(-1), 14 days) on food intake and body weight, we could identified seven key enzymes from either glycolytic pathway or TCA cycle--regulated by both diet and CB1 receptor activity--through comprehensive proteomic approaches involving two-dimensional electrophoresis and MALDI-TOF/LC-ESI trap mass spectrometry. These enzymes were glucose 6-phosphate isomerase (GPI), triosephosphate isomerase (TPI), enolase (Eno3), lactate dehydrogenase (LDHa), glyoxalase-1 (Glo1) and the mitochondrial DLD, whose expressions were modified by AM251 in hypercaloric diet-induced obesity. Specifically, AM251 blocked high-carbohydrate diet (HCD)-induced expression of GPI, TPI, Eno3 and LDHa, suggesting a down-regulation of glucose/pyruvate/lactate pathways under glucose availability. AM251 reversed the HCD-inhibited expression of Glo1 and DLD in the muscle, and the DLD and CB1 receptor expression in the mitochondrial fraction. Interestingly, we identified the presence of CB1 receptors at the membrane of striate muscle mitochondria. DLD over-expression was confirmed in muscle of CB1-/- mice. AM251 increased the pyruvate dehydrogenase and glutathione reductase activity in C2C12 myotubes, and the diaphorase/oxidative activity in the mitochondria fraction. These results indicated an up-regulation of methylglyoxal and TCA cycle activity. Findings suggest that CB1 receptors in muscle modulate glucose/pyruvate/lactate pathways and mitochondrial oxidative activity by targeting DLD. PMID:26671069

  14. Presynaptic TRPV1 vanilloid receptor function is age- but not CB1 cannabinoid receptor-dependent in the rodent forebrain.

    PubMed

    Köles, László; Garção, Pedro; Zádori, Zoltán S; Ferreira, Samira G; Pinheiro, Bárbara S; da Silva-Santos, Carla S; Ledent, Catherine; Köfalvi, Attila

    2013-08-01

    Neocortical and striatal TRPV1 (vanilloid or capsaicin) receptors (TRPV1Rs) are excitatory ligand-gated ion channels, and are implicated in psychiatric disorders. However, the purported presynaptic neuromodulator role of TRPV1Rs in glutamatergic, serotonergic or dopaminergic terminals of the rodent forebrain remains little understood. With the help of patch-clamp electrophysiology and neurochemical approaches, we mapped the age-dependence of presynaptic TRPV1R function, and furthermore, we aimed at exploring whether the presence of CB1 cannabinoid receptors (CB1Rs) influences the function of the TRPV1Rs, as both receptor types share endogenous ligands. We found that the major factor which affects presynaptic TRPV1R function is age: by post-natal day 13, the amplitude of capsaicin-induced release of dopamine and glutamate is halved in the rat striatum, and two weeks later, capsaicin already loses its effect. However, TRPV1R receptor function is not enhanced by chemical or genetic ablation of the CB1Rs in dopaminergic, glutamatergic and serotonergic terminals of the mouse brain. Altogether, our data indicate a possible neurodevelopmental role for presynaptic TRPV1Rs in the rodent brain, but we found no cross-talk between TRPV1Rs and CB1Rs in the same nerve terminal. PMID:23831917

  15. The CB(1) cannabinoid receptor drives corticospinal motor neuron differentiation through the Ctip2/Satb2 transcriptional regulation axis.

    PubMed

    Díaz-Alonso, Javier; Aguado, Tania; Wu, Chia-Shan; Palazuelos, Javier; Hofmann, Clementine; Garcez, Patricia; Guillemot, François; Lu, Hui-Chen; Lutz, Beat; Guzmán, Manuel; Galve-Roperh, Ismael

    2012-11-21

    The generation and specification of pyramidal neuron subpopulations during development relies on a complex network of transcription factors. The CB(1) cannabinoid receptor is the major molecular target of endocannabinoids and marijuana active compounds. This receptor has been shown to influence neural progenitor proliferation and axonal growth, but its involvement in neuronal differentiation and the functional impact in the adulthood caused by altering its signaling during brain development are not known. Here we show that the CB(1) receptor, by preventing Satb2 (special AT-rich binding protein 2)-mediated repression, increased Ctip2 (COUP-TF interacting protein 2) promoter activity, and Ctip2-positive neuron generation. Unbalanced neurogenic fate determination found in complete CB(1)(-/-) mice and in glutamatergic neuron-specific Nex-CB(1)(-/-) mice induced overt alterations in corticospinal motor neuron generation and subcerebral connectivity, thereby resulting in an impairment of skilled motor function in adult mice. Likewise, genetic deletion of CB(1) receptors in Thy1-YFP-H mice elicited alterations in corticospinal tract development. Altogether, these data demonstrate that the CB(1) receptor contributes to the generation of deep-layer cortical neurons by coupling endocannabinoid signals from the neurogenic niche to the intrinsic proneurogenic Ctip2/Satb2 axis, thus influencing appropriate subcerebral projection neuron specification and corticospinal motor function in the adulthood. PMID:23175820

  16. Endogenous cannabinoid signaling through the CB1 receptor is essential for cerebellum-dependent discrete motor learning.

    PubMed

    Kishimoto, Yasushi; Kano, Masanobu

    2006-08-23

    Cannabinoids exert their psychomotor actions through the CB1 cannabinoid receptor in the brain. Genetic deletion of CB1 in mice causes various symptoms, including changes in locomotor activity, increased ring catalepsy, supraspinal hypoalgesia, and impaired memory extinction. Although the cerebellar cortex contains the highest level of CB1, severe cerebellum-related functional deficits have not been reported in CB1 knock-out mice. To clarify the roles of CB1 in cerebellar function, we subjected CB1 knock-out mice to a delay version of classical eyeblink conditioning. This paradigm is a test for cerebellum-dependent discrete motor learning, in which conditioned stimulus (CS) (352 ms tone) and unconditioned stimulus (US) (100 ms periorbital electrical shock) are coterminated. We found that delay eyeblink conditioning performance was severely impaired in CB1 knock-out mice. In contrast, they exhibited normal performance in a trace version of eyeblink conditioning with 500 ms stimulus-free interval intervened between the CS offset and the US onset. This paradigm is a test for hippocampus-dependent associative learning. Sensitivity of CB1 knock-out mice to CS or US was normal, suggesting that impaired delay eyeblink conditioning is attributable to defects in association of responses to CS and US. We also found that intraperitoneal injection of the CB1 antagonist SR141716A [N-piperidino-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-3-pyrazole carboxamide] to wild-type mice caused severe impairment in acquisition but not extinction of delay eyeblink conditioning. SR141716A treatment had no effect on trace eyeblink conditioning with a 500 or 750 ms trace interval. These results indicate that endogenous cannabinoid signaling through CB1 is essential for cerebellum-dependent discrete motor learning, especially for its acquisition. PMID:16928872

  17. Benzyl-1,2,4-triazoles as CB1 Cannabinoid Receptor Ligands: Preparation and In Vitro Pharmacological Evaluation

    PubMed Central

    Hernandez-Folgado, Laura; Decara, Juan; Rodríguez de Fonseca, Fernando; Goya, Pilar; Jagerovic, Nadine

    2016-01-01

    In a previous study, we have identified 3-alkyl-1,5-diaryl-1H-1,2,4-triazoles to be a novel class of cannabinoid type 1 receptor (CB1R) antagonists. In order to expand the number of cannabinoid ligands with a central 1,2,4-triazole scaffold, we have synthesized a novel series of 1-benzyl-1H-1,2,4-triazoles, and some of them were evaluated by CB1R radioligand binding assays. Compound 12a showed the most interesting pharmacological properties, possessing a CB1R affinity in the nanomolar range. PMID:27127651

  18. PKCepsilon regulates behavioral sensitivity, binding and tolerance to the CB1 receptor agonist WIN55,212-2.

    PubMed

    Wallace, Melisa J; Newton, Philip M; McMahon, Thomas; Connolly, Jacklyn; Huibers, Anne; Whistler, Jennifer; Messing, Robert O

    2009-06-01

    The cannabinoid CB1 receptor (CB1) is one of the most abundant G protein-coupled receptors in the brain, but little is known about the mechanisms that modulate CB1 receptor signaling. Here, we show that inhibition or null mutation of the epsilon isozyme of protein kinase C (PKCepsilon) selectively enhances behavioral responses to the CB1 agonist WIN55,212-2 in mice, but not to the structurally unrelated CB1 agonist CP55,940. Binding affinity for [(3)H] WIN55,212-2 was increased in brain membranes from PKCepsilon(-/-) mice compared with PKCepsilon(+/+) mice. There was no difference in binding of the inverse agonist [(3)H] SR141716A. In addition, repeated administration of WIN55,212-2 produced greater analgesic and thermal tolerance in PKCvarepsilon(-/-) mice compared with PKCepsilon(+/+)mice. These results indicate that PKCvarepsilon selectively regulates behavioral sensitivity, CB1 receptor binding and tolerance to WIN55,212-2. PMID:19158669

  19. MicroRNA let-7d is a target of cannabinoid CB1 receptor and controls cannabinoid signaling.

    PubMed

    Chiarlone, Anna; Börner, Christine; Martín-Gómez, Laura; Jiménez-González, Ada; García-Concejo, Adrián; García-Bermejo, María L; Lorente, Mar; Blázquez, Cristina; García-Taboada, Elena; de Haro, Amador; Martella, Elisa; Höllt, Volker; Rodríguez, Raquel; Galve-Roperh, Ismael; Kraus, Jürgen; Guzmán, Manuel

    2016-09-01

    Cannabinoid CB1 receptor, the molecular target of endocannabinoids and cannabis active components, is one of the most abundant metabotropic receptors in the brain. Cannabis is widely used for both recreational and medicinal purposes. Despite the ever-growing fundamental roles of microRNAs in the brain, the possible molecular connections between the CB1 receptor and microRNAs are surprisingly unknown. Here, by using reporter gene constructs that express interaction sequences for microRNAs in human SH-SY5Y neuroblastoma cells, we show that CB1 receptor activation enhances the expression of several microRNAs, including let-7d. This was confirmed by measuring hsa-let-7d expression levels. Accordingly, knocking-down CB1 receptor in zebrafish reduced dre-let-7d levels, and knocking-out CB1 receptor in mice decreased mmu-let-7d levels in the cortex, striatum and hippocampus. Conversely, knocking-down let-7d increased CB1 receptor mRNA expression in zebrafish, SH-SY5Y cells and primary striatal neurons. Likewise, in primary striatal neurons chronically exposed to a cannabinoid or opioid agonist, a let-7d-inhibiting sequence facilitated not only cannabinoid or opioid signaling but also cannabinoid/opioid cross-signaling. Taken together, these findings provide the first evidence for a bidirectional link between the CB1 receptor and a microRNA, namely let-7d, and thus unveil a new player in the complex process of cannabinoid action. PMID:27179908

  20. Dysregulation of cannabinoid CB1 receptor and associated signaling networks in brains of cocaine addicts and cocaine-treated rodents.

    PubMed

    Álvaro-Bartolomé, M; García-Sevilla, J A

    2013-09-01

    The endocannabinoid system is implicated in the neurobiology of cocaine addiction. This study evaluated the status of cannabinoid (CB) CB1 and CB2 receptors, the endocytic cycle of CB1 receptors, G protein-coupled receptor regulatory kinases (GRK), and associated signaling (mammalian target of rapamicin (mTOR) and 70kDa ribosomal protein S6 kinase (p70S6K)) in brain cortices of drug abusers and cocaine- and cannabinoid-treated rodents. The main results indicate that in cocaine adddicts, but not in mixed cocaine/opiate or opiate abusers, CB1 receptor protein in the prefrontal cortex (PFC) was reduced (-44%, total homogenate) with a concomitant receptor redistribution and/or internalization (decreases in membranes and increases in cytosol). In cocaine addicts, the reductions of CB1 receptors and GRK2/3/5 (-26% to -30%) indicated receptor desensitization. CB2 receptor protein was not significantly altered in the PFC of cocacine addicts. Chronic cocaine in mice and rats also reduced CB1 receptor protein (-41% and -80%) in the cerebral cortex inducing receptor redistribution and/or internalization. The CB1 receptor agonist WIN55212-2 caused receptor downregulation (decreases in membranes and cytosol) and the antagonists rimonabant and AM281 induced opposite effects (receptor upregulation in membranes and cytosol). Rimonabant and AM281 also behaved as inverse agonists on the activation of mTOR and its target p70S6K. Chronic cocaine in mice was associated with tolerance to the acute activation of mTOR and p70S6K. In long-term cocaine addicts, mTOR and p70S6K activations were not altered when compared with controls, indicating that CB1 receptor signaling was dampened. The dysregulation of CB1 receptor, GRK2/3/5, and mTOR/p70S6K signaling by cocaine may contribute to alterations of neuroplasticity and/or neurotoxicity in brains of cocaine addicts. PMID:23727505

  1. Mead ethanolamide, a novel eicosanoid, is an agonist for the central (CB1) and peripheral (CB2) cannabinoid receptors.

    PubMed

    Priller, J; Briley, E M; Mansouri, J; Devane, W A; Mackie, K; Felder, C C

    1995-08-01

    The recently discovered endogenous agonist for the cannabinoid receptor, anandamide (arachidonylethanolamide), can be formed enzymatically by the condensation of arachidonic acid with ethanolamine. 5Z,8Z,11Z-Eicosatrienoic acid (mead acid) has been found to substitute for arachidonic acid in the sn-2 position of phospholipids and accumulate during periods of dietary fatty acid deprivation in rats. In the present study, the chemically synthesized ethanolamide of mead acid was evaluated as a potential agonist at the two known subtypes of cannabinoid receptor: CB1 (central) and CB2 (peripheral). This compound was equipotent to anandamide in competing with [3H]CP55,940 binding to plasma membranes prepared from L cells expressing the human CB1 receptor and from ATt-20 cells expressing the human CB2 receptor. Mead ethanolamide was also equipotent to anandamide in inhibiting forskolin-stimulated cAMP accumulation in cells expressing the CB1 receptor. It inhibited N-type calcium currents with a lower potency than anandamide. Mead and arachidonic acid were equally efficacious as substrates for the enzymatic synthesis of their respective ethanolamides in rat and adult human hippocampal P2 membranes. Palmitic acid was not an effective substrate for the enzymatic synthesis of palmitoyl ethanolamide. Mead ethanolamide exhibits several characteristics of a novel agonist to CB1 and CB2 receptors and may represent another candidate endogenous ligand for the CB1 receptor. Due to the anticonvulsant properties of GABA and the positional similarity of L-serine to ethanolamine in membrane phospholipids, these compounds were synthetically coupled to arachidonic acid, and their resulting arachidonamides were tested as potential cannabinoid agonists. The arachidonamides of GABA and L-serine were inactive in both binding and functional assays at the CB1 receptor. PMID:7651362

  2. Cannabinoid 1 (CB1) receptors coupled to cholinergic motorneurones inhibit neurogenic circular muscle contractility in the human colon

    PubMed Central

    Hinds, Nicholas M; Ullrich, Katja; Smid, Scott D

    2006-01-01

    The effects of cannabinoid subtype 1 (CB1) receptor activation were determined on smooth muscle, inhibitory and excitatory motorneuronal function in strips of human colonic longitudinal muscle (LM) and circular muscle (CM) in vitro. Electrical field stimulation (EFS; 0.5–20 Hz, 50 V) evoked a relaxation in LM and CM precontracted with a neurokinin-2 (NK-2) selective receptor agonist (β-ala8-neurokinin A; 10−6 M) in the presence of atropine (10−6 M); this was unaltered following pretreatment with the CB1-receptor selective agonist arachidonyl-2-chloroethylamide (ACEA; 10−6 M). In the presence of nitric oxide synthase blockade with N-nitro-L-arginine (10−4 M), EFS evoked a frequency-dependent ‘on-contraction' during stimulation and an ‘off-contraction' following stimulus cessation. On-contractions were significantly inhibited in CM strips by pretreatment with ACEA (10−6 M). These inhibitory effects were reversed in the presence of the CB1 receptor-selective antagonist N-(piperidine-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (10−7 M). ACEA did not alter LM or CM contractile responses to acetylcholine or NK-2 receptor-evoked contraction. Immunohistochemical studies revealed a colocalisation of CB1 receptors to cholinergic neurones in the human colon based on colabelling with choline acetyltransferase, in addition to CB1 receptor labelling in unidentified structures in the CM. In conclusion, activation of CB1 receptors coupled to cholinergic motorneurones selectively and reversibly inhibits excitatory nerve transmission in colonic human colonic CM. These results provide evidence of a direct role for cannabinoids in the modulation of motor activity in the human colon by coupling to cholinergic motorneurones. PMID:16520743

  3. The inverse agonist of CB1 receptor SR141716 blocks compulsive eating of palatable food.

    PubMed

    Dore, Riccardo; Valenza, Marta; Wang, Xiaofan; Rice, Kenner C; Sabino, Valentina; Cottone, Pietro

    2014-09-01

    Dieting and the increased availability of highly palatable food are considered major contributing factors to the large incidence of eating disorders and obesity. This study was aimed at investigating the role of the cannabinoid (CB) system in a novel animal model of compulsive eating, based on a rapid palatable diet cycling protocol. Male Wistar rats were fed either continuously a regular chow diet (Chow/Chow, control group) or intermittently a regular chow diet for 2 days and a palatable, high-sucrose diet for 1 day (Chow/Palatable). Chow/Palatable rats showed spontaneous and progressively increasing hypophagia and body weight loss when fed the regular chow diet, and excessive food intake and body weight gain when fed the palatable diet. Diet-cycled rats dramatically escalated the intake of the palatable diet during the first hour of renewed access (7.5-fold compared to controls), and after withdrawal, they showed compulsive eating and heightened risk-taking behavior. The inverse agonist of the CB1 receptor, SR141716 reduced the excessive intake of palatable food with higher potency and the body weight with greater efficacy in Chow/Palatable rats, compared to controls. Moreover, SR141716 reduced compulsive eating and risk-taking behavior in Chow/Palatable rats. Finally, consistent with the behavioral and pharmacological observations, withdrawal from the palatable diet decreased the gene expression of the enzyme fatty acid amide hydrolase in the ventromedial hypothalamus while increasing that of CB1 receptors in the dorsal striatum in Chow/Palatable rats, compared to controls. These findings will help understand the role of the CB system in compulsive eating. PMID:23587012

  4. Palmitoylethanolamide attenuates PTZ-induced seizures through CB1 and CB2 receptors.

    PubMed

    Aghaei, Iraj; Rostampour, Mohammad; Shabani, Mohammad; Naderi, Nima; Motamedi, Fereshteh; Babaei, Parvin; Khakpour-Taleghani, Behrooz

    2015-11-01

    Epilepsy is one of the most common neurologic disorders. Though there are effective medications available to reduce the symptoms of the disease, their side effects have limited their usage. Palmitoylethanolamide (PEA) has been shown to attenuate seizure in different animal models. The objective of the current study was to evaluate the role of CB1 and CB2 receptors in this attenuation. Male wistar rats were used for the current experiment. PTZ was injected to induce chemical kindling in animals. After verification of kindling in animals, treatment was performed with PEA, AM251 and AM630 in different groups. Latency to induce seizure, seizure stages and latency and duration of fifth stage of seizure was recorded for each animal. Injection of PTZ led to seizure in the animals. Pretreatment with PEA increased the latency to initiate seizures and reduced the duration of seizure. Pretreatment with different dosages of AM251 had contrary effects so that at lower doses they increased the seizure in animals but at higher doses led to the attenuation of seizure. AM630 increased seizures in a dose dependent manner. Combination of the antagonists increased the seizure parameters and attenuated the effect of PEA on seizure. PEA attenuated the PTZ-induced seizures and pretreatment with CB1 and CB2 antagonists diminished this effect of PEA, but still PEA was effective, which might be attributed to the contribution of other receptors in PEA anti-epileptic properties. Findings of the current study implied that endocannabinoid signaling pathway might have an important role in the effects of PEA. PMID:26370914

  5. The interactive role of CB(1) and GABA(B) receptors in hippocampal synaptic plasticity in rats.

    PubMed

    Nazari, Masoumeh; Komaki, Alireza; Karamian, Ruhollah; Shahidi, Siamak; Sarihi, Abdolrahman; Asadbegi, Masoumeh

    2016-01-01

    Long-term potentiation (LTP) of synaptic transmission is a cellular process underlying learning and memory. Cannabinoids are known to be powerful modulators of this kind of synaptic plasticity. Changes in GABAergic inhibition have also been shown to affect synaptic plasticity in the hippocampus. GABA receptor type B (GABAB) and cannabinoid receptor type 1 (CB1) exhibit overlapping anatomical localization in some brain areas including the hippocampus. CB1 and GABAB are also localized to the same cells and share a common signaling pathway in some brain areas. In this study, we examined the hippocampal effects of co-administrating AM251 and CGP55845, which are CB1 and GABAB antagonists, respectively, on LTP induction in the dentate gyrus (DG) of rats. LTP in the hippocampal area was induced by high-frequency stimulation (HFS) of the perforant path. Our results showed that HFS coupled with administration of the CB1 antagonist increased both the population spike (PS) amplitude and field excitatory post-synaptic potential (fEPSP). Conversely, the GABAB antagonist decreased these parameters along with decreased LTP induction. We also demonstrated that the co-administration of CB1 and GABAB antagonists had different effects on the PS amplitude and fEPSP slope. It is likely that GABAB receptor antagonists modulate cannabinoid outputs that cause a decrease in synaptic plastisity, while in the simultaneous consumption of two antagonists, CB1 antagonists can alter the release of GABA which in turn results in enhancement of LTP induction. These findings suggest that there are functional interactions between the CB1 and GABAB receptor in the hippocampus. PMID:26611204

  6. Blockade of Nicotine and Cannabinoid Reinforcement and Relapse by a Cannabinoid CB1-Receptor Neutral Antagonist AM4113 and Inverse Agonist Rimonabant in Squirrel Monkeys.

    PubMed

    Schindler, Charles W; Redhi, Godfrey H; Vemuri, Kiran; Makriyannis, Alexandros; Le Foll, Bernard; Bergman, Jack; Goldberg, Steven R; Justinova, Zuzana

    2016-08-01

    Nicotine, the main psychoactive component of tobacco, and (-)-Δ(9)-tetrahydrocannabinol (THC), the main psychoactive ingredient in cannabis, play major roles in tobacco and marijuana dependence as reinforcers of drug-seeking and drug-taking behavior. Drugs that act as inverse agonists of cannabinoid CB1 receptors in the brain can attenuate the rewarding and abuse-related effects of nicotine and THC, but their clinical use is hindered by potentially serious side effects. The recently developed CB1-receptor neutral antagonists may provide an alternative therapeutic approach to nicotine and cannabinoid dependence. Here we compare attenuation of nicotine and THC reinforcement and reinstatement in squirrel monkeys by the CB1-receptor inverse agonist rimonabant and by the recently developed CB1-receptor neutral antagonist AM4113. Both rimonabant and AM4113 reduced two effects of nicotine and THC that play major roles in tobacco and marijuana dependence: (1) maintenance of high rates of drug-taking behavior, and (2) priming- or cue-induced reinstatement of drug-seeking behavior in abstinent subjects (models of relapse). In contrast, neither rimonabant nor AM4113 modified cocaine-reinforced or food-reinforced operant behavior under similar experimental conditions. However, both rimonabant and AM4113 reduced cue-induced reinstatement in monkeys trained to self-administer cocaine, suggesting the involvement of a common cannabinoid-mediated mechanism in the cue-induced reinstatement for different drugs of abuse. These findings point to CB1-receptor neutral antagonists as a new class of medications for treatment of both tobacco dependence and cannabis dependence. PMID:26888056

  7. Endogenous cannabinoids induce fever through the activation of CB1 receptors

    PubMed Central

    Fraga, D; Zanoni, CIS; Rae, GA; Parada, CA; Souza, GEP

    2009-01-01

    Background and purpose: The effects of centrally administered cannabinoids on body core temperature (Tc) and the contribution of endogenous cannabinoids to thermoregulation and fever induced by lipopolysaccharide (LPS) (Sigma Chem. Co., St. Louis, MO, USA) were investigated. Experimental approach: Drug-induced changes in Tc of male Wistar rats were recorded over 6 h using a thermistor probe (Yellow Springs Instruments 402, Dayton, OH, USA) inserted into the rectum. Key results: Injection of anandamide [(arachidonoylethanolamide (AEA); Tocris, Ellisville, MO, USA], 0.01–1 µg i.c.v. or 0.1–100 ng intra-hypothalamic (i.h.), induced graded increases in Tc (peaks 1.5 and 1.6°C at 4 h after 1 µg i.c.v. or 10 ng i.h.). The effect of AEA (1 µg, i.c.v.) was preceded by decreases in tail skin temperature and heat loss index (values at 1.5 h: vehicle 0.62, AEA 0.48). Bell-shaped curves were obtained for the increase in Tc induced by the fatty acid amide hydrolase inhibitor [3-(3-carbamoylphenyl)phenyl] N-cyclohexylcarbamate (Cayman Chemical Co., Ann Arbor, MI, USA) (0.001–1 ng i.c.v.; peak 1.9°C at 5 h after 0.1 ng) and arachidonyl-2-chloroethylamide (ACEA; Tocris) (selective CB1 agonist; 0.001–1 µg i.c.v.; peak 1.4°C 5 h after 0.01 µg), but (R,S)-(+)-(2-Iodo-5-nitrobenzoyl)-[1-(1-methyl-piperidin-2-ylmethyl)-1H-indole-3-yl] methanone (Tocris) (selective CB2 agonist) had no effect on Tc. AEA-induced fever was unaffected by i.c.v. pretreatment with 6-Iodo-2-methyl-1-[2-(4-morpholinyl)ethyl]-1H-indole-3-yl](4-methoxyphenyl) methanone (Tocris) (selective CB2 antagonist), but reduced by i.c.v. pretreatment with N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (AM251; Tocris) (selective CB1 antagonist). AM251 also reduced the fever induced by ACEA or LPS. Conclusions and implications: The endogenous cannabinoid AEA induces an integrated febrile response through activation of CB1 receptors. Endocannabinoids participate in

  8. The endocannabinoid 2-AG controls skeletal muscle cell differentiation via CB1 receptor-dependent inhibition of Kv7 channels

    PubMed Central

    Iannotti, Fabio A.; Silvestri, Cristoforo; Mazzarella, Enrico; Martella, Andrea; Calvigioni, Daniela; Piscitelli, Fabiana; Ambrosino, Paolo; Petrosino, Stefania; Czifra, Gabriella; Bíró, Tamás; Harkany, Tibor; Taglialatela, Maurizio; Di Marzo, Vincenzo

    2014-01-01

    Little is known of the involvement of endocannabinoids and cannabinoid receptors in skeletal muscle cell differentiation. We report that, due to changes in the expression of genes involved in its metabolism, the levels of the endocannabinoid 2-arachidonoylglycerol (2-AG) are decreased both during myotube formation in vitro from murine C2C12 myoblasts and during mouse muscle growth in vivo. The endocannabinoid, as well as the CB1 agonist arachidonoyl-2-chloroethylamide, prevent myotube formation in a manner antagonized by CB1 knockdown and by CB1 antagonists, which, per se, instead stimulate differentiation. Importantly, 2-AG also inhibits differentiation of primary human satellite cells. Muscle fascicles from CB1 knockout embryos contain more muscle fibers, and postnatal mice show muscle fibers of an increased diameter relative to wild-type littermates. Inhibition of Kv7.4 channel activity, which plays a permissive role in myogenesis and depends on phosphatidylinositol 4,5-bisphosphate (PIP2), underlies the effects of 2-AG. We find that CB1 stimulation reduces both total and Kv7.4-bound PIP2 levels in C2C12 cells and inhibits Kv7.4 currents in transfected CHO cells. We suggest that 2-AG is an endogenous repressor of myoblast differentiation via CB1-mediated inhibition of Kv7.4 channels. PMID:24927567

  9. Anandamide drives cell cycle progression through CB1 receptors in a rat model of synchronized liver regeneration.

    PubMed

    Pisanti, Simona; Picardi, Paola; Pallottini, Valentina; Martini, Chiara; Petrosino, Stefania; Proto, Maria Chiara; Vitale, Mario; Laezza, Chiara; Gazzerro, Patrizia; Di Marzo, Vincenzo; Bifulco, Maurizio

    2015-12-01

    The endocannabinoid system, through cannabinoid receptor signaling by endocannabinoids, is involved in a wide range of functions and physiopathological conditions. To date, very little is known concerning the role of the endocannabinoids in the control and regulation of cell proliferation. An anti-proliferative action of CB1 signaling blockade in neurogenesis and angiogenesis argues in favor of proliferation-promoting functions of endocannabinoids through CB1 receptors when pro-growth signals are present. Furthermore, liver regeneration, a useful in vivo model of synchronized cell proliferation, is characterized by a peak of anandamide that elicits through CB1 receptor, the expression of critical mitosis genes. The aim of this study was to focus on the timing of endocannabinoid signaling changes during the different phases of the cell cycle, exploiting the rat liver regeneration model following partial hepatectomy, the most useful to study synchronized cell cycle in vivo. Hepatic regeneration led to increased levels of anandamide and endocannabinoid-like molecules oleoylethanolamide (OEA) and palmitoylethanolamide (PEA) in the G1 phase of the cell cycle, with a concomitant increase in CB1 mRNA levels, whose protein expression peaked later during the S phase. Blocking of CB1 receptor with a low dose of the selective antagonist/inverse agonist SR141716 (0.7 mg/kg/dose) affected cell cycle progression reducing the expression of PCNA, and through the inhibition of pERK and pSTAT3 pathways. These results support the notion that the signaling mediated by anandamide through CB1 receptor may be important for the entry and progression of cells into the cell cycle and hence for their proliferation under mitogenic signals. PMID:25684344

  10. Optimization of Chemical Functionalities of Indole-2-carboxamides To Improve Allosteric Parameters for the Cannabinoid Receptor 1 (CB1)

    PubMed Central

    2015-01-01

    5-Chloro-3-ethyl-N-(4-(piperidin-1-yl)phenethyl)-1H-indole-2-carboxamide (1; ORG27569) is a prototypical allosteric modulator for the cannabinoid type 1 receptor (CB1). Here, we reveal key structural requirements of indole-2-carboxamides for allosteric modulation of CB1: a critical chain length at the C3-position, an electron withdrawing group at the C5-position, the length of the linker between the amide bond and the phenyl ring B, and the amino substituent on the phenyl ring B. These significantly impact the binding affinity (KB) and the binding cooperativity (α). A potent CB1 allosteric modulator 5-chloro-N-(4-(dimethylamino)phenethyl)-3-propyl-1H-indole-2-carboxamide (12d) was identified. It exhibited a KB of 259.3 nM with a strikingly high binding α of 24.5. We also identified 5-chloro-N-(4-(dimethylamino)phenethyl)-3-hexyl-1H-indole-2-carboxamide (12f) with a KB of 89.1 nM, which is among the lowest KB values obtained for any allosteric modulator of CB1. These positive allosteric modulators of orthosteric agonist binding nonetheless antagonized the agonist-induced G-protein coupling to the CB1 receptor, yet induced β-arrestin mediated ERK1/2 phosphorylation. PMID:24635495

  11. Control of spasticity in a multiple sclerosis model using central nervous system-excluded CB1 cannabinoid receptor agonists.

    PubMed

    Pryce, Gareth; Visintin, Cristina; Ramagopalan, Sreeram V; Al-Izki, Sarah; De Faveri, Lia E; Nuamah, Rosamond A; Mein, Charles A; Montpetit, Alexandre; Hardcastle, Alison J; Kooij, Gijs; de Vries, Helga E; Amor, Sandra; Thomas, Sarah A; Ledent, Catherine; Marsicano, Giovanni; Lutz, Beat; Thompson, Alan J; Selwood, David L; Giovannoni, Gavin; Baker, David

    2014-01-01

    The purpose of this study was the generation of central nervous system (CNS)-excluded cannabinoid receptor agonists to test the hypothesis that inhibition of spasticity, due to CNS autoimmunity, could be controlled by affecting neurotransmission within the periphery. Procedures included identification of chemicals and modeling to predict the mode of exclusion; induction and control of spasticity in the ABH mouse model of multiple sclerosis; conditional deletion of CB1 receptor in peripheral nerves; side-effect profiling to demonstrate the mechanism of CNS-exclusion via drug pumps; genome-wide association study in N2(129×ABH) backcross to map polymorphic cannabinoid drug pump; and sequencing and detection of cannabinoid drug-pump activity in human brain endothelial cell lines. Three drugs (CT3, SAB378 and SAD448) were identified that control spasticity via action on the peripheral nerve CB1 receptor. These were peripherally restricted via drug pumps that limit the CNS side effects (hypothermia) of cannabinoids to increase the therapeutic window. A cannabinoid drug pump is polymorphic and functionally lacking in many laboratory (C57BL/6, 129, CD-1) mice used for transgenesis, pharmacology, and toxicology studies. This phenotype was mapped and controlled by 1-3 genetic loci. ABCC1 within a cluster showing linkage is a cannabinoid CNS-drug pump. Global and conditional CB1 receptor-knockout mice were used as controls. In summary, CNS-excluded CB1 receptor agonists are a novel class of therapeutic agent for spasticity. PMID:24121462

  12. CB1 receptor antagonism prevents long-term hyperexcitability after head injury by regulation of dynorphin-KOR system and mGluR5 in rat hippocampus.

    PubMed

    Wang, Xiu; Wang, Yao; Zhang, Chao; Liu, Chang; Zhao, Baotian; Wei, Naili; Zhang, Jian-Guo; Zhang, Kai

    2016-09-01

    Both endocannabinoids and dynorphin are feedback messengers in nervous system that act at the presynaptic nerve terminal to inhibit transmitter release. Many studies showed the cannabinoid-opioid cross-modulation in antinociception, hypothermia, sedation and reward. The aim of this study was to assess the influence of early application of cannabinoid type 1 (CB1) receptor antagonism SR141716A after brain injury on dynorphin-κ opioid receptor (KOR) system and the expression of metabotropic glutamate receptors (mGluRs) in a rat model of fluid percussion injury (FPI). Firstly, seizure latency induced by pentylenetetrazole was significantly prolonged 6 weeks after brain injury in group of SR141716A treatment. Then, PCR and western blot showed that SR141716A inhibited the long-term up-regulation of CB1 receptors in hippocampus. However, SR141716A resulted in long-term potentiation of dynorphin release and did not influence the up-regulation of KOR in hippocampus after brain injury. Furthermore, SR141716A reverse the overexpression of mGluR5 in the late stage of brain injury. We propose that during the induction of epileptogenesis after brain injury, early application of CB1 receptor antagonism could prevent long-term hyperexcitability by up-regulation of dynorphin-KOR system and prevention of mGluR5 induced epileptogenesis in hippocampus. PMID:27262683

  13. Clinical Significance of Cannabinoid Receptors CB1 and CB2 Expression in Human Malignant and Benign Thyroid Lesions

    PubMed Central

    Lakiotaki, Eleftheria; Giaginis, Constantinos; Tolia, Maria; Alexandrou, Paraskevi; Delladetsima, Ioanna; Giannopoulou, Ioanna; Kyrgias, George; Patsouris, Efstratios; Theocharis, Stamatios

    2015-01-01

    The endocannabinoid system is comprised of cannabinoid receptors (CB1 and CB2), their endogenous ligands (endocannabinoids), and proteins responsible for their metabolism participate in many different functions indispensable to homeostatic regulation in several tissues, exerting also antitumorigenic effects. The present study aimed to evaluate the clinical significance of CB1 and CB2 expression in human benign and malignant thyroid lesions. CB1 and CB2 proteins' expression was assessed immunohistochemically on paraffin-embedded thyroid tissues obtained from 87 patients with benign (n = 43) and malignant (n = 44) lesions and was statistically analyzed with clinicopathological parameters, follicular cells' proliferative capacity, and risk of recurrence rate estimated according to the American Thyroid Association (ATA) staging system. Enhanced CB1 and CB2 expression was significantly more frequently observed in malignant compared to benign thyroid lesions (p = 0.0010 and p = 0.0005, resp.). Enhanced CB1 and CB2 expression was also significantly more frequently observed in papillary carcinomas compared to hyperplastic nodules (p = 0.0097 and p = 0.0110, resp.). In malignant thyroid lesions, elevated CB2 expression was significantly associated with the presence of lymph node metastases (p = 0.0301). Enhanced CB2 expression was also more frequently observed in malignant thyroid cases with presence of capsular (p = 0.1165), lymphatic (p = 0.1989), and vascular invasion (p = 0.0555), as well as in those with increased risk of recurrence rate (p = 0.1165), at a nonsignificant level though, whereas CB1 expression was not associated with any of the clinicopathological parameters examined. Our data suggest that CB receptors may be involved in malignant thyroid transformation and especially CB2 receptor could serve as useful biomarker and potential therapeutic target in thyroid neoplasia. PMID:26539529

  14. Activation of cannabinoid CB1 receptors in the ventral hippocampus improved stress-induced amnesia in rat.

    PubMed

    Mohammadmirzaei, Negin; Rezayof, Ameneh; Ghasemzadeh, Zahra

    2016-09-01

    The ventral hippocampus (VH) has a high distribution of cannabinoid CB1 receptors which are important in modulating stress responses. Stress exposure activates the hypothalamic-pituitary-adrenal axis (HPA) which can impact hippocampal formation to change hippocampus-based memories. The purpose of the present study was to determine the possible role of the VH cannabinoid CB1 receptors in stress-induced amnesia using a step-through passive avoidance procedure in male Wistar rats. In order to induce acute stress, the animals were placed on an elevated platform for different time periods (10, 20 and 30min). Our results indicated that post-training 20 and 30min exposure to stress, but not 10min, induced amnesia. Post-training microinjection of a cannabinoid CB1 receptor agonist, arachydonilcyclopropylamide (ACPA; 2.5-7.5ng/rat) into the VH (intra-VH) induced amnesia. Interestingly, post-training intra-VH microinjection of the same doses of ACPA improved stress-induced amnesia. On the other hand, post-training intra-VH microinjection of a selective CB1 receptor antagonist, AM-251 (20-50ng/rat) with exposure to an ineffective stress (10min) potentiated the effect of stress on memory consolidation and induced amnesia. It should be noted that post-training intra-VH microinjection of the same doses of AM-251 alone had no effect on memory consolidation. Our results revealed that post-training intra-VH microinjection of AM-251, prior to ACPA microinjection, inhibited the reversal effect of ACPA on acute elevated platform stress. Taken together, it can be concluded that exposure to post-training inescapable stress impaired memory consolidation. The impairing effects of stress on memory retrieval may be mediated by the VH cannabinoid CB1 receptors. PMID:27282634

  15. Identification and Quantification of a New Family of Peptide Endocannabinoids (Pepcans) Showing Negative Allosteric Modulation at CB1 Receptors*

    PubMed Central

    Bauer, Mark; Chicca, Andrea; Tamborrini, Marco; Eisen, David; Lerner, Raissa; Lutz, Beat; Poetz, Oliver; Pluschke, Gerd; Gertsch, Jürg

    2012-01-01

    The α-hemoglobin-derived dodecapeptide RVD-hemopressin (RVDPVNFKLLSH) has been proposed to be an endogenous agonist for the cannabinoid receptor type 1 (CB1). To study this peptide, we have raised mAbs against its C-terminal part. Using an immunoaffinity mass spectrometry approach, a whole family of N-terminally extended peptides in addition to RVD-Hpα were identified in rodent brain extracts and human and mouse plasma. We designated these peptides Pepcan-12 (RVDPVNFKLLSH) to Pepcan-23 (SALSDLHAHKLRVDPVNFKLLSH), referring to peptide length. The most abundant Pepcans found in the brain were tested for CB1 receptor binding. In the classical radioligand displacement assay, Pepcan-12 was the most efficacious ligand but only partially displaced both [3H]CP55,940 and [3H]WIN55,212-2. The data were fitted with the allosteric ternary complex model, revealing a cooperativity factor value α < 1, thus indicating a negative allosteric modulation. Dissociation kinetic studies of [3H]CP55,940 in the absence and presence of Pepcan-12 confirmed these results by showing increased dissociation rate constants induced by Pepcan-12. A fluorescently labeled Pepcan-12 analog was synthesized to investigate the binding to CB1 receptors. Competition binding studies revealed Ki values of several Pepcans in the nanomolar range. Accordingly, using competitive ELISA, we found low nanomolar concentrations of Pepcans in human plasma and ∼100 pmol/g in mouse brain. Surprisingly, Pepcan-12 exhibited potent negative allosteric modulation of the orthosteric agonist-induced cAMP accumulation, [35S]GTPγS binding, and CB1 receptor internalization. Pepcans are the first endogenous allosteric modulators identified for CB1 receptors. Given their abundance in the brain, Pepcans could play an important physiological role in modulating endocannabinoid signaling. PMID:22952224

  16. Peripherally Selective Cannabinoid 1 Receptor (CB1R) Agonists for the Treatment of Neuropathic Pain.

    PubMed

    Seltzman, Herbert H; Shiner, Craig; Hirt, Erin E; Gilliam, Anne F; Thomas, Brian F; Maitra, Rangan; Snyder, Rod; Black, Sherry L; Patel, Purvi R; Mulpuri, Yatendra; Spigelman, Igor

    2016-08-25

    Alleviation of neuropathic pain by cannabinoids is limited by their central nervous system (CNS) side effects. Indole and indene compounds were engineered for high hCB1R affinity, peripheral selectivity, metabolic stability, and in vivo efficacy. An epithelial cell line assay identified candidates with <1% blood-brain barrier penetration for testing in a rat neuropathy induced by unilateral sciatic nerve entrapment (SNE). The SNE-induced mechanical allodynia was reversibly suppressed, partially or completely, after intraperitoneal or oral administration of several indenes. At doses that relieve neuropathy symptoms, the indenes completely lacked, while the brain-permeant CB1R agonist HU-210 (1) exhibited strong CNS side effects, in catalepsy, hypothermia, and motor incoordination assays. Pharmacokinetic findings of ∼0.001 cerebrospinal fluid:plasma ratio further supported limited CNS penetration. Pretreatment with selective CB1R or CB2R blockers suggested mainly CB1R contribution to an indene's antiallodynic effects. Therefore, this class of CB1R agonists holds promise as a viable treatment for neuropathic pain. PMID:27482723

  17. The hypothermic response to bacterial lipopolysaccharide critically depends on brain CB1, but not CB2 or TRPV1, receptors

    PubMed Central

    Steiner, Alexandre A; Molchanova, Alla Y; Dogan, M Devrim; Patel, Shreya; Pétervári, Erika; Balaskó, Márta; Wanner, Samuel P; Eales, Justin; Oliveira, Daniela L; Gavva, Narender R; Almeida, M Camila; Székely, Miklós; Romanovsky, Andrej A

    2011-01-01

    Abstract Hypothermia occurs in the most severe cases of systemic inflammation, but the mechanisms involved are poorly understood. This study evaluated whether the hypothermic response to bacterial lipopolysaccharide (LPS) is modulated by the endocannabinoid anandamide (AEA) and its receptors: cannabinoid-1 (CB1), cannabinoid-2 (CB2) and transient receptor potential vanilloid-1 (TRPV1). In rats exposed to an ambient temperature of 22°C, a moderate dose of LPS (25–100 μg kg−1i.v.) induced a fall in body temperature with a nadir at ∼100 min postinjection. This response was not affected by desensitization of intra-abdominal TRPV1 receptors with resiniferatoxin (20 μg kg−1i.p.), by systemic TRPV1 antagonism with capsazepine (40 mg kg−1i.p.), or by systemic CB2 receptor antagonism with SR144528 (1.4 mg kg−1i.p.). However, CB1 receptor antagonism by rimonabant (4.6 mg kg−1i.p.) or SLV319 (15 mg kg−1i.p.) blocked LPS hypothermia. The effect of rimonabant was further studied. Rimonabant blocked LPS hypothermia when administered i.c.v. at a dose (4.6 μg) that was too low to produce systemic effects. The blockade of LPS hypothermia by i.c.v. rimonabant was associated with suppression of the circulating level of tumour necrosis factor-α. In contrast to rimonabant, the i.c.v. administration of AEA (50 μg) enhanced LPS hypothermia. Importantly, i.c.v. AEA did not evoke hypothermia in rats not treated with LPS, thus indicating that AEA modulates LPS-activated pathways in the brain rather than thermoeffector pathways. In conclusion, the present study reveals a novel, critical role of brain CB1 receptors in LPS hypothermia. Brain CB1 receptors may constitute a new therapeutic target in systemic inflammation and sepsis. PMID:21486787

  18. The hypothermic response to bacterial lipopolysaccharide critically depends on brain CB1, but not CB2 or TRPV1, receptors.

    PubMed

    Steiner, Alexandre A; Molchanova, Alla Y; Dogan, M Devrim; Patel, Shreya; Pétervári, Erika; Balaskó, Márta; Wanner, Samuel P; Eales, Justin; Oliveira, Daniela L; Gavva, Narender R; Almeida, M Camila; Székely, Miklós; Romanovsky, Andrej A

    2011-05-01

    Hypothermia occurs in the most severe cases of systemic inflammation, but the mechanisms involved are poorly understood. This study evaluated whether the hypothermic response to bacterial lipopolysaccharide (LPS) is modulated by the endocannabinoid anandamide(AEA) and its receptors: cannabinoid-1 (CB1), cannabinoid-2 (CB2) and transient receptor potential vanilloid-1 (TRPV1). In rats exposed to an ambient temperature of 22◦C, a moderate dose of LPS (25 - 100 μg kg−1 I.V.) induced a fall in body temperature with a nadir at ∼100 minpostinjection. This response was not affected by desensitization of intra-abdominal TRPV1 receptors with resiniferatoxin (20 μg kg - 1 I.P.), by systemic TRPV1 antagonism with capsazepine(40mg kg−1 I.P.), or by systemic CB2 receptor antagonism with SR144528 (1.4 mg kg−1 I.P.).However, CB1 receptor antagonism by rimonabant (4.6mg kg−1 I.P.) or SLV319 (15mg kg−1 I.P.)blocked LPS hypothermia. The effect of rimonabant was further studied. Rimonabant blocked LPS hypothermia when administered I.C.V. at a dose (4.6 μg) that was too low to produce systemic effects. The blockade of LPS hypothermia by I.C.V. rimonabant was associated with suppression of the circulating level of tumour necrosis factor-α. In contrast to rimonabant,the I.C.V. administration of AEA (50 μg) enhanced LPS hypothermia. Importantly, I.C.V. AEAdid not evoke hypothermia in rats not treated with LPS, thus indicating that AEA modulates LPS-activated pathways in the brain rather than thermo effector pathways. In conclusion, the present study reveals a novel, critical role of brain CB1 receptors in LPS hypothermia. Brain CB1 receptors may constitute a new therapeutic target in systemic inflammation and sepsis. PMID:21486787

  19. In vivo SPECT and ex vivo autoradiographic brain imaging of the novel selective CB1 receptor antagonist radioligand [125I]SD7015 in CB1 knock-out and wildtype mouse.

    PubMed

    Máthé, Domokos; Horváth, Ildikó; Szigeti, Krisztián; Donohue, Sean R; Pike, Victor W; Jia, Zisheng; Ledent, Catherine; Palkovits, Miklós; Freund, Tamás F; Halldin, Christer; Gulyás, Balázs

    2013-02-01

    We aimed to evaluate the novel high-affinity and relatively lipophilic CB(1) receptor (CB(1)R) antagonist radioligand [(125)I]SD7015 for SPECT imaging of CB(1)Rs in vivo using the multiplexed multipinhole dedicated small animal SPECT/CT system, NanoSPECT/CT(PLUS) (Mediso, Budapest, Hungary), in knock-out CB(1) receptor knock-out (CB(1)R-/-) and wildtype mice. In order to exclude possible differences in cerebral blood flow between the two types of animals, HMPAO SPECT scans were performed, whereas in order to confirm the brain uptake differences of the radioligand between knock-out mice and wildtype mice, in vivo scans were complemented with ex vivo autoradiographic measurements using the brains of the same animals. With SPECT/CT imaging, we measured the brain uptake of radioactivity, using %SUV (% standardised uptake values) in CB(1)R-/- mice (n=3) and C57BL6 wildtype mice (n=7) under urethane anaesthesia after injecting [(125)I]SD7015 intravenously or intraperitoneally. The Brookhaven Laboratory mouse MRI atlas was fused to the SPECT/CT images by using a combination of rigid and non-rigid algorithms in the Mediso Fusion™ (Mediso, Budapest, Hungary) and VivoQuant (inviCRO, Boston, MA, USA) softwares. Phosphor imager plate autoradiography (ARG) was performed on 4 μm-thin cryostat sections of the excised brains. %SUV was 8.6±3.6 (average±SD) in CB(1)R-/- mice and 22.1±12.4 in wildtype mice between 2 and 4 h after injection (p<0.05). ARG of identically taken sections from wildtype mouse brain showed moderate radioactivity uptake when compared with the in vivo images, with a clear difference between grey matter and white matter, whereas ARG in CB(1)R(-/-) mice showed practically no radioactivity uptake. [(125)I]SD7015 enters the mouse brain in sufficient amount to enable SPECT imaging. Brain radioactivity distribution largely coincides with that of the known CB(1)R expression pattern in rodent brain. We conclude that [(125)I]SD7015 should be a useful SPECT

  20. In vivo SPECT and ex vivo autoradiographic brain imaging of the novel selective CB1 receptor antagonist radioligand [125I]SD7015 in CB1 knock-out and wildtype mouse

    PubMed Central

    Máthé, Domokos; Horváth, Ildikó; Szigeti, Krisztián; Donohue, Sean R.; Pike, Victor W.; Jia, Zisheng; Ledent, Catherine; Palkovits, Miklós; Freund, Tamás F.; Halldin, Christer; Gulyás, Balázs

    2014-01-01

    We aimed to evaluate the novel high-affinity and relatively lipophilic CB1 receptor (CB1R) antagonist radioligand [125I]SD7015 for SPECT imaging of CB1Rs in vivo using the multiplexed multipinhole dedicated small animal SPECT/CT system, NanoSPECT/CTPLUS (Mediso, Budapest, Hungary), in knock-out CB1 receptor knock-out (CB1R-/-) and wildtype mice. In order to exclude possible differences in cerebral blood flow between the two types of animals, HMPAO SPECT scans were performed, whereas in order to confirm the brain uptake differences of the radioligand between knock-out mice and wildtype mice, in vivo scans were complemented with ex vivo autoradiographic measurements using the brains of the same animals. With SPECT/CT imaging, we measured the brain uptake of radioactivity, using %SUV (% standardised uptake values) in CB1R-/- mice (n = 3) and C57BL6 wildtype mice (n = 7) under urethane anaesthesia after injecting [125I]SD7015 intravenously or intraperitoneally. The Brookhaven Laboratory mouse MRI atlas was fused to the SPECT/CT images by using a combination of rigid and non-rigid algorithms in the Mediso Fusion™ (Mediso, Budapest, Hungary) and VivoQuant (inviCRO, Boston, MA, USA) softwares. Phosphor imager plate autoradiography (ARG) was performed on 4 μm-thin cryostat sections of the excised brains. %SUV was 8.6 ± 3.6 (average ± SD) in CB1R-/- mice and 22.1 ± 12.4 in wildtype mice between 2 and 4 h after injection (p < 0.05). ARG of identically taken sections from wildtype mouse brain showed moderate radioactivity uptake when compared with the in vivo images, with a clear difference between grey matter and white matter, whereas ARG in CB1R(-/-) mice showed practically no radioactivity uptake. [125I]SD7015 enters the mouse brain in sufficient amount to enable SPECT imaging. Brain radioactivity distribution largely coincides with that of the known CB1R expression pattern in rodent brain. We conclude that [125I]SD7015 should be a useful SPECT radioligand for

  1. MAM-2201, a synthetic cannabinoid drug of abuse, suppresses the synaptic input to cerebellar Purkinje cells via activation of presynaptic CB1 receptors.

    PubMed

    Irie, Tomohiko; Kikura-Hanajiri, Ruri; Usami, Makoto; Uchiyama, Nahoko; Goda, Yukihiro; Sekino, Yuko

    2015-08-01

    Herbal products containing synthetic cannabinoids-initially sold as legal alternatives to marijuana-have become major drugs of abuse. Among the synthetic cannabinoids, [1-(5-fluoropentyl)-1H-indol-3-yl](4-methyl-1-naphthalenyl)-methanone (MAM-2201) has been recently detected in herbal products and has psychoactive and intoxicating effects in humans, suggesting that MAM-2201 alters brain function. Nevertheless, the pharmacological actions of MAM-2201 on cannabinoid receptor type 1 (CB1R) and neuronal functions have not been elucidated. We found that MAM-2201 acted as an agonist of human CB1Rs expressed in AtT-20 cells. In whole-cell patch-clamp recordings made from Purkinje cells (PCs) in slice preparations of the mouse cerebellum, we also found that MAM-2201 inhibited glutamate release at parallel fiber-PC synapses via activation of presynaptic CB1Rs. MAM-2201 inhibited neurotransmitter release with an inhibitory concentration 50% of 0.36 μM. MAM-2201 caused greater inhibition of neurotransmitter release than Δ(9)-tetrahydrocannabinol within the range of 0.1-30 μM and JWH-018, one of the most popular and potent synthetic cannabinoids detected in the herbal products, within the range of 0.03-3 μM. MAM-2201 caused a concentration-dependent suppression of GABA release onto PCs. Furthermore, MAM-2201 induced suppression of glutamate release at climbing fiber-PC synapses, leading to reduced dendritic Ca(2+) transients in PCs. These results suggest that MAM-2201 is likely to suppress neurotransmitter release at CB1R-expressing synapses in humans. The reduction of neurotransmitter release from CB1R-containing synapses could contribute to some of the symptoms of synthetic cannabinoid intoxication including impairments in cerebellum-dependent motor coordination and motor learning. PMID:25747605

  2. Endogenous cannabinoid receptor CB1 activation promotes vascular smooth-muscle cell proliferation and neointima formation

    PubMed Central

    Molica, Filippo; Burger, Fabienne; Thomas, Aurélien; Staub, Christian; Tailleux, Anne; Staels, Bart; Pelli, Graziano; Zimmer, Andreas; Cravatt, Benjamin; Matter, Christian M.; Pacher, Pal; Steffens, Sabine

    2013-01-01

    Percutaneous transluminal angioplasty is frequently used in patients with severe arterial narrowing due to atherosclerosis. However, it induces severe arterial injury and an inflammatory response leading to restenosis. Here, we studied a potential activation of the endocannabinoid system and the effect of FA amide hydrolase (FAAH) deficiency, the major enzyme responsible for endocannabinoid anandamide degradation, in arterial injury. We performed carotid balloon injury in atherosclerosis-prone apoE knockout (apoE−/−) and apoE−/−FAAH−/− mice. Anandamide levels were systemically elevated in apoE−/− mice after balloon injury. ApoE−/−FAAH−/− mice had significantly higher baseline anandamide levels and enhanced neointima formation compared with apoE−/− controls. The latter effect was inhibited by treatment with CB1 antagonist AM281. Similarly, apoE−/− mice treated with AM281 had reduced neointimal areas, reduced lesional vascular smooth-muscle cell (SMC) content, and proliferating cell counts. The lesional macrophage content was unchanged. In vitro proliferation rates were significantly reduced in CB1−/− SMCs or when treating apoE−/− or apoE−/−FAAH−/− SMCs with AM281. Macrophage in vitro adhesion and migration were marginally affected by CB1 deficiency. Reendothelialization was not inhibited by treatment with AM281. In conclusion, endogenous CB1 activation contributes to vascular SMC proliferation and neointima formation in response to arterial injury. PMID:23479425

  3. Differential effects of CB1 receptor agonism in behavioural tests of unconditioned and conditioned fear in adult male rats.

    PubMed

    Simone, Jonathan J; Green, Matthew R; Hodges, Travis E; McCormick, Cheryl M

    2015-02-15

    We investigated the effects of the highly selective CB1 receptor agonist ACEA and the CB1 receptor antagonist/inverse agonist AM251 on two behavioural tests of unconditioned fear, the elevated plus maze (EPM) and open field test (OFT), as well as on the recall and extinction of a conditioned auditory fear. Both ACEA and AM251 increased anxiety-like behaviour in the EPM and OFT. There was no effect of either drug on recall of the conditioned fear, and ACEA enhanced and AM251 impaired fear extinction. Further, though both the low (0.1 mg/kg) and high (0.5 mg/kg) dose of ACEA facilitated fear extinction, the low dose attenuated, and the high dose potentiated, fear induced corticosterone release suggesting independent effects of the drug on fear and stress responses. Although the extent to which cannabinoids are anxiogenic or anxiolytic has been proposed to be dose-dependent, these results indicate that the same dose has differential effects across tasks, likely based in differences in sensitivities of CB1 receptors to the agonist in the neural regions subserving unconditioned and conditioned fear. PMID:25446756

  4. The cannabinoid CB1 receptor and mTORC1 signalling pathways interact to modulate glucose homeostasis in mice.

    PubMed

    Bermudez-Silva, Francisco J; Romero-Zerbo, Silvana Y; Haissaguerre, Magalie; Ruz-Maldonado, Inmaculada; Lhamyani, Said; El Bekay, Rajaa; Tabarin, Antoine; Marsicano, Giovanni; Cota, Daniela

    2016-01-01

    The endocannabinoid system (ECS) is an intercellular signalling mechanism that is present in the islets of Langerhans and plays a role in the modulation of insulin secretion and expansion of the β-cell mass. The downstream signalling pathways mediating these effects are poorly understood. Mammalian target of rapamycin complex 1 (mTORC1) signalling is a key intracellular pathway involved in energy homeostasis and is known to importantly affect the physiology of pancreatic islets. We investigated the possible relationship between cannabinoid type 1 (CB1) receptor signalling and the mTORC1 pathway in the endocrine pancreas of mice by using pharmacological analysis as well as mice genetically lacking the CB1 receptor or the downstream target of mTORC1, the kinase p70S6K1. In vitro static secretion experiments on islets, western blotting, and in vivo glucose and insulin tolerance tests were performed. The CB1 receptor antagonist rimonabant decreased glucose-stimulated insulin secretion (GSIS) at 0.1 µM while increasing phosphorylation of p70S6K1 and ribosomal protein S6 (rpS6) within the islets. Specific pharmacological blockade of mTORC1 by 3 nM rapamycin, as well as genetic deletion of p70S6K1, impaired the CB1-antagonist-mediated decrease in GSIS. In vivo experiments showed that 3 mg/kg body weight rimonabant decreased insulin levels and induced glucose intolerance in lean mice without altering peripheral insulin sensitivity; this effect was prevented by peripheral administration of low doses of rapamycin (0.1 mg/kg body weight), which increased insulin sensitivity. These findings suggest a functional interaction between the ECS and the mTORC1 pathway within the endocrine pancreas and at the whole-organism level, which could have implications for the development of new therapeutic approaches for pancreatic β-cell diseases. PMID:26563389

  5. The cannabinoid CB1 receptor and mTORC1 signalling pathways interact to modulate glucose homeostasis in mice

    PubMed Central

    Bermudez-Silva, Francisco J.; Romero-Zerbo, Silvana Y.; Haissaguerre, Magalie; Ruz-Maldonado, Inmaculada; Lhamyani, Said; El Bekay, Rajaa; Tabarin, Antoine; Marsicano, Giovanni; Cota, Daniela

    2016-01-01

    ABSTRACT The endocannabinoid system (ECS) is an intercellular signalling mechanism that is present in the islets of Langerhans and plays a role in the modulation of insulin secretion and expansion of the β-cell mass. The downstream signalling pathways mediating these effects are poorly understood. Mammalian target of rapamycin complex 1 (mTORC1) signalling is a key intracellular pathway involved in energy homeostasis and is known to importantly affect the physiology of pancreatic islets. We investigated the possible relationship between cannabinoid type 1 (CB1) receptor signalling and the mTORC1 pathway in the endocrine pancreas of mice by using pharmacological analysis as well as mice genetically lacking the CB1 receptor or the downstream target of mTORC1, the kinase p70S6K1. In vitro static secretion experiments on islets, western blotting, and in vivo glucose and insulin tolerance tests were performed. The CB1 receptor antagonist rimonabant decreased glucose-stimulated insulin secretion (GSIS) at 0.1 µM while increasing phosphorylation of p70S6K1 and ribosomal protein S6 (rpS6) within the islets. Specific pharmacological blockade of mTORC1 by 3 nM rapamycin, as well as genetic deletion of p70S6K1, impaired the CB1-antagonist-mediated decrease in GSIS. In vivo experiments showed that 3 mg/kg body weight rimonabant decreased insulin levels and induced glucose intolerance in lean mice without altering peripheral insulin sensitivity; this effect was prevented by peripheral administration of low doses of rapamycin (0.1 mg/kg body weight), which increased insulin sensitivity. These findings suggest a functional interaction between the ECS and the mTORC1 pathway within the endocrine pancreas and at the whole-organism level, which could have implications for the development of new therapeutic approaches for pancreatic β-cell diseases. PMID:26563389

  6. Loss of striatal cannabinoid CB1 receptor function in attention-deficit / hyperactivity disorder mice with point-mutation of the dopamine transporter.

    PubMed

    Castelli, Maura; Federici, Mauro; Rossi, Silvia; De Chiara, Valentina; Napolitano, Francesco; Studer, Valeria; Motta, Caterina; Sacchetti, Lucia; Romano, Rosaria; Musella, Alessandra; Bernardi, Giorgio; Siracusano, Alberto; Gu, Howard H; Mercuri, Nicola B; Usiello, Alessandro; Centonze, Diego

    2011-11-01

    Abnormal dopamine (DA) transmission in the striatum plays a pivotal role in attention-deficit/hyperactivity disorder (ADHD). As striatal DA signalling modulates the endocannabinoid system (ECS), the present study was aimed at investigating cannabinoid CB1 receptor (CB1R) function in a model of ADHD obtained by triple point-mutation in the dopamine transporter (DAT) gene in mice, making them insensitive to cocaine [DAT cocaine-insensitive (DAT-CI) mice]. DAT-CI mice had a marked hyperactive phenotype, and neurophysiological recordings revealed that the sensitivity of CB1Rs controlling GABA-mediated synaptic currents [CB1Rs((GABA)) ] in the striatum was completely lost. In contrast, CB1Rs modulating glutamate transmission [CB1Rs((Glu)) ], and GABA(B) receptors were not affected in this model of ADHD. In DAT-CI mice, the blockade of CB1R((GABA)) function was complete even after cocaine or environmental manipulations activating the endogenous DA-dependent reward system, which are known to sensitize these receptors in control animals. Conversely, the hedonic property of sucrose was intact in DAT-CI mice, indicating normal sweet perception in these animals. Our results point to CB1Rs as novel molecular players in ADHD, and suggest that therapeutic strategies aimed at interfering with the ECS might prove effective in this disorder. PMID:22034972

  7. Human orexin/hypocretin receptors form constitutive homo- and heteromeric complexes with each other and with human CB1 cannabinoid receptors.

    PubMed

    Jäntti, Maria H; Mandrika, Ilona; Kukkonen, Jyrki P

    2014-03-01

    Human OX1 orexin receptors have been shown to homodimerize and they have also been suggested to heterodimerize with CB1 cannabinoid receptors. The latter has been suggested to be important for orexin receptor responses and trafficking. In this study, we wanted to assess the ability of the other combinations of receptors to also form similar complexes. Vectors for expression of human OX1, OX2 and CB1 receptors, C-terminally fused with either Renilla luciferase or GFP(2) green fluorescent protein variant, were generated. The constructs were transiently expressed in Chinese hamster ovary cells, and constitutive dimerization between the receptors was assessed by bioluminescence energy transfer (BRET). Orexin receptor subtypes readily formed homo- and hetero(di)mers, as suggested by significant BRET signals. CB1 receptors formed homodimers, and they also heterodimerized with both orexin receptors. Interestingly, BRET efficiency was higher for homodimers than for almost all heterodimers. This is likely to be due to the geometry of the interaction; the putatively symmetric dimers may place the C-termini in a more suitable orientation in homomers. Fusion of luciferase to an orexin receptor and GFP(2) to CB1 produced more effective BRET than the opposite fusions, also suggesting differences in geometry. Similar was seen for the OX1-OX2 interaction. In conclusion, orexin receptors have a significant propensity to make homo- and heterodi-/oligomeric complexes. However, it is unclear whether this affects their signaling. As orexin receptors efficiently signal via endocannabinoid production to CB1 receptors, dimerization could be an effective way of forming signal complexes with optimal cannabinoid concentrations available for cannabinoid receptors. PMID:24530395

  8. Acute and chronic ethanol exposure differentially regulate CB1 receptor function at glutamatergic synapses in the rat basolateral amygdala.

    PubMed

    Robinson, Stacey L; Alexander, Nancy J; Bluett, Rebecca J; Patel, Sachin; McCool, Brian A

    2016-09-01

    The endogenous cannabinoid (eCB) system has been suggested to play a key role in ethanol preference and intake, the acute effects of ethanol, and in the development of withdrawal symptoms following ethanol dependence. Ethanol-dependent alterations in glutamatergic signaling within the lateral/basolateral nucleus of the amygdala (BLA) are critical for the development and expression of withdrawal-induced anxiety. Notably, the eCB system significantly regulates both glutamatergic and GABAergic synaptic activity within the BLA. Chronic ethanol exposure significantly alters eCB system expression within regions critical to the expression of emotionality and anxiety-related behavior, including the BLA. Here, we investigated specific interactions between the BLA eCB system and its functional regulation of synaptic activity during acute and chronic ethanol exposure. In tissue from ethanol naïve-rats, a prolonged acute ethanol exposure caused a dose dependent inhibition of glutamatergic synaptic activity via a presynaptic mechanism that was occluded by CB1 antagonist/inverse agonists SR141716a and AM251. Importantly, this acute ethanol inhibition was attenuated following 10 day chronic intermittent ethanol vapor exposure (CIE). CIE exposure also significantly down-regulated CB1-mediated presynaptic inhibition at glutamatergic afferent terminals but spared CB1-inhibition of GABAergic synapses arising from local inhibitory-interneurons. CIE also significantly elevated BLA N-arachidonoylethanolamine (AEA or anandamide) levels and decreased CB1 receptor protein levels. Collectively, these data suggest a dynamic regulation of the BLA eCB system by acute and chronic ethanol. PMID:26707595

  9. CB1 cannabinoid receptor stimulation during adolescence impairs the maturation of GABA function in the adult rat prefrontal cortex.

    PubMed

    Cass, D K; Flores-Barrera, E; Thomases, D R; Vital, W F; Caballero, A; Tseng, K Y

    2014-05-01

    Converging epidemiological studies indicate that cannabis abuse during adolescence increases the risk of developing psychosis and prefrontal cortex (PFC)-dependent cognitive impairments later in life. However, the mechanisms underlying the adolescent susceptibility to chronic cannabis exposure are poorly understood. Given that the psychoactive constituent of cannabis binds to the CB1 cannabinoid receptor, the present study was designed to determine the impact of a CB1 receptor agonist (WIN) during specific windows of adolescence on the functional maturation of the rat PFC. By means of local field potential recordings and ventral hippocampal stimulation in vivo, we found that a history of WIN exposure during early (postnatal days - P35-40) or mid-(P40-45) adolescence, but not in late adolescence (P50-55) or adulthood (P75-80), is sufficient to yield a state of frequency-dependent prefrontal disinhibition in adulthood comparable to that seen in the juvenile PFC. Remarkably, this prefrontal disinhibition could be normalized following a single acute local infusion of the GABA-Aα1 positive allosteric modulator Indiplon, suggesting that adolescent exposure to WIN causes a functional downregulation of GABAergic transmission in the PFC. Accordingly, in vitro recordings from adult rats exposed to WIN during adolescence demonstrate that local prefrontal GABAergic transmission onto layer V pyramidal neurons is markedly reduced to the level seen in the P30-35 PFC. Together, these results indicate that early and mid-adolescence constitute a critical period during which repeated CB1 receptor stimulation is sufficient to elicit an enduring state of PFC network disinhibition resulting from a developmental impairment of local prefrontal GABAergic transmission. PMID:24589887

  10. Effects of the cannabinoid CB1 receptor antagonist rimonabant on distinct measures of impulsive behavior in rats

    PubMed Central

    Janssen, Mieke C. W.; Schepers, Inga; González-Cuevas, Gustavo; de Vries, Taco J.; Schoffelmeer, Anton N. M.

    2007-01-01

    Rationale Pathological impulsivity is a prominent feature in several psychiatric disorders, but detailed understanding of the specific neuronal processes underlying impulsive behavior is as yet lacking. Objectives As recent findings have suggested involvement of the brain cannabinoid system in impulsivity, the present study aimed at further elucidating the role of cannabinoid CB1 receptor activation in distinct measures of impulsive behavior. Materials and methods The effects of the selective cannabinoid CB1 receptor antagonist, rimonabant (SR141716A) and agonist WIN55,212-2 were tested in various measures of impulsive behavior, namely, inhibitory control in a five-choice serial reaction time task (5-CSRTT), impulsive choice in a delayed reward paradigm, and response inhibition in a stop-signal paradigm. Results In the 5-CSRTT, SR141716A dose-dependently improved inhibitory control by decreasing the number of premature responses. Furthermore, SR141716A slightly improved attentional function, increased correct response latency, but did not affect other parameters. The CB1 receptor agonist WIN55,212-2 did not change inhibitory control in the 5-CSRTT and only increased response latencies and errors of omissions. Coadministration of WIN55,212-2 prevented the effects of SR141716A on inhibitory control in the 5-CSRTT. Impulsive choice and response inhibition were not affected by SR141716A at any dose, whereas WIN55,212-2 slightly impaired response inhibition but did not change impulsive choice. Conclusions The present data suggest that particularly the endocannabinoid system seems involved in some measures of impulsivity and provides further evidence for the existence of distinct forms of impulsivity that can be pharmacologically dissociated. PMID:17387457

  11. Basolateral amygdala CB1 cannabinoid receptors are involved in cross state-dependent memory retrieval between morphine and ethanol.

    PubMed

    Ofogh, Sattar Norouzi; Rezayof, Ameneh; Sardari, Maryam; Ghasemzadeh, Zahra

    2016-09-01

    Ethanol and morphine are largely co-abused and affect memory formation. The present study intended to investigate the involvement of cannabinoid CB1 receptors of the basolateral amygdala (BLA) in cross state-dependent memory retrieval between morphine and ethanol. Adult male Wistar rats received bilateral cannulation of the BLA, and memory retrieval was measured in step-through type passive avoidance apparatus. Our results showed that post-training intraperitoneal (i.p.) administration of morphine (6mg/kg) induced amnesia. Pre-test administration of ethanol (0.5g/kg, i.p.) significantly improved morphine-induced memory impairment, suggesting that there is cross state-dependent memory retrieval between morphine and ethanol. It should be considered that pre-test administration of ethanol (0.1 and 0.5g/kg, i.p.) by itself had no effect on memory retrieval in the passive avoidance task. Interestingly, pre-test intra-BLA microinjection of different doses of WIN55,212-2 (0.1, 0.2 and 0.3μg/rat), a non-selective CB1/CB2 receptor agonist, plus an ineffective dose of ethanol (0.1g/kg, i.p.) improved morphine-induced memory impairment. Intra-BLA microinjection of AM251 (0.4-0.6ng/rat), a selective CB1 receptor antagonist, inhibited the improved effect of ethanol (0.5g/kg, i.p.) on morphine response. Pre-test intra-BLA microinjection of WIN55,212-2 or AM251 had no effect on memory retrieval or morphine-induced amnesia. Taken together, it can be concluded that morphine and ethanol can induce state-dependent memory retrieval. In addition, the BLA endocannabinoid system mediates via CB1 receptors the functional interaction of morphine and ethanol state-dependent memory retrieval which may depend on the rewarding effects of the drugs. PMID:27327764

  12. Effects of the Novel Cannabinoid CB1 Receptor Antagonist PF 514273 on the Acquisition and Expression of Ethanol Conditioned Place Preference

    PubMed Central

    Pina, Melanie M.; Cunningham, Christopher L.

    2014-01-01

    The centrally expressed cannabinoid receptor (CB1) has been considered a potential therapeutic target in treating alcoholism. Though CB1 receptors have been shown to modulate primary and conditioned ethanol reward, much of this research employed animal models that require ethanol ingestion or oral routes of administration. This is problematic considering CB1 antagonist drugs have high anorectic liability and have been used clinically in the treatment of obesity. Therefore, the present study examined CB1 antagonism in DBA/2J mice using an unbiased ethanol-induced conditioned place preference (CPP) procedure, a paradigm that does not require ethanol ingestion. To evaluate the role of CB1 receptors in primary ethanol reward, the highly potent and selective novel CB1 antagonist 2-(2-chlorophenyl)-3-(4-chlorophenyl)-7-(2,2-difluoropropyl)-6,7-dihydro-2H-pyrazolo[3,4-f][1,4]oxazepin-8(5H)-one (PF 514273) was administered 30 min before place preference conditioning with a fixed dose of ethanol (acquisition). To evaluate the role of CB1 receptors in ethanol-conditioned reward, PF 514273 was administered 30 min before place preference testing (expression). Although PF 514273 reduced ethanol-stimulated and basal locomotor activity, it did not perturb the acquisition or expression of ethanol-induced CPP. Results from the present study appear inconsistent with other studies that have demonstrated a role for CB1 antagonism in ethanol reward using oral administration paradigms. Our findings suggest that CB1 antagonism may have greater involvement in consummatory behavior than ethanol reward. PMID:24954022

  13. Effects of Neuroendocrine CB1 Activity on Adult Leydig Cells

    PubMed Central

    Cobellis, Gilda; Meccariello, Rosaria; Chianese, Rosanna; Chioccarelli, Teresa; Fasano, Silvia; Pierantoni, Riccardo

    2016-01-01

    Endocannabinoids control male reproduction acting at central and local level via cannabinoid receptors. The cannabinoid receptor CB1 has been characterized in the testis, in somatic and germ cells of mammalian and non-mammalian animal models, and its activity related to Leydig cell differentiation, steroidogenesis, spermiogenesis, sperm quality, and maturation. In this short review, we provide a summary of the insights concerning neuroendocrine CB1 activity in male reproduction focusing on adult Leydig cell ontogenesis and steroid biosynthesis. PMID:27375550

  14. Effects of Neuroendocrine CB1 Activity on Adult Leydig Cells.

    PubMed

    Cobellis, Gilda; Meccariello, Rosaria; Chianese, Rosanna; Chioccarelli, Teresa; Fasano, Silvia; Pierantoni, Riccardo

    2016-01-01

    Endocannabinoids control male reproduction acting at central and local level via cannabinoid receptors. The cannabinoid receptor CB1 has been characterized in the testis, in somatic and germ cells of mammalian and non-mammalian animal models, and its activity related to Leydig cell differentiation, steroidogenesis, spermiogenesis, sperm quality, and maturation. In this short review, we provide a summary of the insights concerning neuroendocrine CB1 activity in male reproduction focusing on adult Leydig cell ontogenesis and steroid biosynthesis. PMID:27375550

  15. AAV-Mediated Overexpression of the CB1 Receptor in the mPFC of Adult Rats Alters Cognitive Flexibility, Social Behavior, and Emotional Reactivity

    PubMed Central

    Klugmann, Matthias; Goepfrich, Anja; Friemel, Chris M.; Schneider, Miriam

    2011-01-01

    The endocannabinoid (ECB) system is strongly involved in the regulation of cognitive processing and emotional behavior and evidence indicates that ECB signaling might affect these behavioral abilities by modulations of prefrontal cortical functions. The aim of the present study was to examine the role of the CB1 receptor in the medial prefrontal cortex (mPFC) on cognitive flexibility and emotional behavior. Therefore, the CB1 receptor was overexpressed by adeno-associated virus vector-mediated gene transfer specifically in the mPFC of adult Wistar rats. Animals were then tested in different anxiety-related paradigms for emotional reactivity [e.g., elevated plus maze (EPM), light/dark emergence test (EMT), social interaction] and the attentional set shift task (ASST) – an adaptation of the human Wisconsin card sorting test – for cognitive abilities and behavioral flexibility. A subtle increase in exploratory behavior was found in CB1 receptor overexpressing animals (CB1-R) compared to Empty vector injected controls (Empty) in the EMT and EPM, although general locomotor activity did not differ between the groups. During social interaction testing, social contact behavior toward the unknown conspecific was found to be decreased, whereas social withdrawal was increased in CB1-R animals and they showed an inadequate increase in exploratory behavior compared to control animals. In the ASST, impaired reversal learning abilities were detected in CB1-R animals compared to controls, indicating reduced behavioral flexibility. In conclusion, upregulation of the CB1 receptor specifically in the rat mPFC induces alterations in emotional reactivity, leads to inadequate social behavior, and impairs cognitive flexibility. These findings might be relevant for neuropsychiatric disorders, since higher cortical CB1 receptor expression levels as well as similar behavioral impairments as observed in the present study have been described in schizophrenic patients. PMID:21808613

  16. Mice Expressing a "Hyper-Sensitive" Form of the Cannabinoid Receptor 1 (CB1) Are Neither Obese Nor Diabetic

    PubMed Central

    Andrews, Mary-Jeanette; Amin, Randa; Henderson-Redmond, Angela N.; Mackie, Ken; Czyzyk, Traci A.; Morgan, Daniel J.

    2016-01-01

    Multiple lines of evidence implicate the endocannabinoid signaling system in the modulation of metabolic disease. Genetic or pharmacological inactivation of CB1 in rodents leads to reduced body weight, resistance to diet-induced obesity, decreased intake of highly palatable food, and increased energy expenditure. Cannabinoid agonists stimulate feeding in rodents and increased levels of endocannabinoids can disrupt lipid metabolism. Therefore, the hypothesis that sustained endocannabinoid signaling can lead to obesity and diabetes was examined in this study using S426A/S430A mutant mice expressing a desensitization-resistant CB1 receptor. These mice display exaggerated and prolonged responses to acute administration of phytocannabinoids, synthetic cannabinoids, and endocannabinoids. As a consequence these mice represent a novel model for determining the effect of enhanced endocannabinoid signaling on metabolic disease. S426A/S430A mutants consumed equivalent amounts of both high fat (45%) and low fat (10%) chow control diet compared to wild-type littermate controls. S426A/S430A mutants and wild-type mice fed either high or low fat control diet displayed similar fasting blood glucose levels and normal glucose clearance following a 2 g/kg glucose challenge. Furthermore, S426A/S430A mutants and wild-type mice consumed similar amounts of chow following an overnight fast. While both THC and JZL195 significantly increased food intake two hours after injection, this increase was similar between the S426A/S430A mutant and wildtype control mice Our results indicate that S426A/S430A mutant mice expressing the desensitization-resistant form of CB1 do not exhibit differences in body weight, food intake, glucose homeostasis, or re-feeding following a fast. PMID:27501235

  17. Mice Expressing a "Hyper-Sensitive" Form of the Cannabinoid Receptor 1 (CB1) Are Neither Obese Nor Diabetic.

    PubMed

    Marcus, David J; Zee, Michael L; Davis, Brian J; Haskins, Chris P; Andrews, Mary-Jeanette; Amin, Randa; Henderson-Redmond, Angela N; Mackie, Ken; Czyzyk, Traci A; Morgan, Daniel J

    2016-01-01

    Multiple lines of evidence implicate the endocannabinoid signaling system in the modulation of metabolic disease. Genetic or pharmacological inactivation of CB1 in rodents leads to reduced body weight, resistance to diet-induced obesity, decreased intake of highly palatable food, and increased energy expenditure. Cannabinoid agonists stimulate feeding in rodents and increased levels of endocannabinoids can disrupt lipid metabolism. Therefore, the hypothesis that sustained endocannabinoid signaling can lead to obesity and diabetes was examined in this study using S426A/S430A mutant mice expressing a desensitization-resistant CB1 receptor. These mice display exaggerated and prolonged responses to acute administration of phytocannabinoids, synthetic cannabinoids, and endocannabinoids. As a consequence these mice represent a novel model for determining the effect of enhanced endocannabinoid signaling on metabolic disease. S426A/S430A mutants consumed equivalent amounts of both high fat (45%) and low fat (10%) chow control diet compared to wild-type littermate controls. S426A/S430A mutants and wild-type mice fed either high or low fat control diet displayed similar fasting blood glucose levels and normal glucose clearance following a 2 g/kg glucose challenge. Furthermore, S426A/S430A mutants and wild-type mice consumed similar amounts of chow following an overnight fast. While both THC and JZL195 significantly increased food intake two hours after injection, this increase was similar between the S426A/S430A mutant and wildtype control mice Our results indicate that S426A/S430A mutant mice expressing the desensitization-resistant form of CB1 do not exhibit differences in body weight, food intake, glucose homeostasis, or re-feeding following a fast. PMID:27501235

  18. Opposite regulation of cannabinoid CB1 and CB2 receptors in the prefrontal cortex of rats treated with cocaine during adolescence.

    PubMed

    García-Cabrerizo, Rubén; García-Fuster, M Julia

    2016-02-26

    The endocannabinoid system is implicated in the neurobiology of cocaine addiction, although it is not clear how cocaine regulates brain CB1 and CB2 receptors, especially during adolescence, a critical moment for shaping adult response to drug use. This study evaluated CB1 and CB2 protein levels in prefrontal cortex (PFC) and hippocampus (HC) by western blot analysis with specific and validated antibodies: (1) basally during adolescence (post-natal day PND 40, PND 47, PND 54), (2) by a sensitizing regimen of cocaine (15mg/kg, 7 days, i.p.) during different windows of adolescence vulnerability (PND 33-39, PND 40-46, PND 47-53), and (3) following repeated cocaine administration during adolescence (PND 33-39) in adulthood (PND 64). The results demonstrated a dynamic and opposite basal modulation of CB1 and CB2 receptors in PFC and HC during adolescence. CB1 receptor levels were increased while CB2 receptors were decreased as compared to adulthood with asymptotes values around mid adolescence (PND 47) both in PFC (CB1: +45±22, p<0.05; CB2: -24±6%, p<0.05) and HC (CB1: +53±23, p<0.05; CB2: -20±8%, p<0.05). Interestingly, cocaine only altered CB1 (+55±10%, p<0.05) and CB2 (-25±10%, p<0.05) receptors when administered during early adolescence and only in PFC. However, the changes observed in PFC by repeated cocaine administration in adolescence were transient and did not endure into adulthood. These results identified a period of vulnerability during adolescence at which cocaine dysregulated the content of CB receptors in PFC, suggesting an opposite role for these receptors in the effects mediated by cocaine. PMID:26797579

  19. CB1 receptors in the formation of the different phases of memory-related processes in the inhibitory avoidance test in mice.

    PubMed

    Kruk-Slomka, Marta; Biala, Grażyna

    2016-03-15

    The endocannabinoid system, through the cannabinoid type 1 (CB1) and 2 (CB2) receptors modulates many physiological functions, including different aspects of memory-related processes. The aim of the present experiments was to explore the role of the endocannabinoid system, through CB1 receptors in the different stages of short-term (acquisition, retention and retrieval) and long-term (acquisition, consolidation and retrieval) memory-related responses, using the inhibitory avoidance (IA) test in mice. Our results revealed that an acute injection of oleamide (10 and 20mg/kg), a CB1 receptor agonist, impairs the short-term or/and long-term acquisition, retention/consolidation, retrieval memory and learning processes in the IA test in mice. In turn, in this test an acute injection of AM 251 (1 and 3mg/kg), a CB1 receptor antagonist, improves the short-term or/and long-term memory stages, described above. Moreover, this memory impairment induced by effective dose of oleamide (20mg/kg) is reversed by non-effective dose of AM 251 (0.25mg/kg) in the IA task, which proves the selectivity of oleamide to CB1 receptors and confirms that the CB1 receptor-related mechanism is one of the possible mechanisms, responsible for memory and learning responses. Obtained results provide clear evidence that the endocannabinoid system, through CB1 receptors, participates in the different stages of short- and long-term memory-related behavior. This knowledge may open in the future new possibilities for the development of CB-based therapies, especially for memory impairment human disorders. PMID:26711911

  20. Stress induces analgesia via orexin 1 receptor-initiated endocannabinoid/CB1 signaling in the mouse periaqueductal gray.

    PubMed

    Lee, Hsin-Jung; Chang, Lu-Yang; Ho, Yu-Cheng; Teng, Shu-Fang; Hwang, Ling-Ling; Mackie, Ken; Chiou, Lih-Chu

    2016-06-01

    The orexin system consists of orexin A/hypocretin 1 and orexin B/hypocretin 2, and OX1 and OX2 receptors. Our previous electrophysiological study showed that orexin A in the rat ventrolateral periaqueductal gray (vlPAG) induced antinociception via an OX1 receptor-initiated and endocannabinoid-mediated disinhibition mechanism. Here, we further characterized antinociceptive effects of orexins in the mouse vlPAG and investigated whether this mechanism in the vlPAG can contribute to stress-induced analgesia (SIA) in mice. Intra-vlPAG (i.pag.) microinjection of orexin A in the mouse vlPAG increased the hot-plate latency. This effect was mimicked by i.pag. injection of WIN 55,212-2, a CB1 agonist, and antagonized by i.pag. injection of the antagonist of OX1 (SB 334867) or CB1 (AM 251), but not OX2 (TCS-OX2-29) or opioid (naloxone), receptors. [Ala(11), D-Leu(15)]-orexin B (i.pag.), an OX2 selective agonist, also induced antinociception in a manner blocked by i.pag. injection of TCS-OX2-29, but not SB 334867 or AM 251. Mice receiving restraint stress for 30 min showed significantly longer hot-plate latency, more c-Fos-expressing orexin neurons in the lateral hypothalamus and higher orexin levels in the vlPAG than unrestrained mice. Restraint SIA in mice was prevented by i.pag. or intraperitoneal injection of SB 334867 or AM 251, but not TCS-OX2-29 or naloxone. These results suggest that during stress, hypothalamic orexin neurons are activated, releasing orexins into the vlPAG to induce analgesia, possibly via the OX1 receptor-initiated, endocannabinoid-mediated disinhibition mechanism previously reported. Although activating either OX1 or OX2 receptors in the vlPAG can lead to antinociception, only OX1 receptor-initiated antinociception is endocannabinoid-dependent. PMID:26907809

  1. The Cannabinoid Receptor CB1 Interacts with the WAVE1 Complex and Plays a Role in Actin Dynamics and Structural Plasticity in Neurons

    PubMed Central

    Njoo, Christian; Agarwal, Nitin; Lutz, Beat; Kuner, Rohini

    2015-01-01

    The molecular composition of the cannabinoid type 1 (CB1) receptor complex beyond the classical G-protein signaling components is not known. Using proteomics on mouse cortex in vivo, we pulled down proteins interacting with CB1 in neurons and show that the CB1 receptor assembles with multiple members of the WAVE1 complex and the RhoGTPase Rac1 and modulates their activity. Activation levels of CB1 receptor directly impacted on actin polymerization and stability via WAVE1 in growth cones of developing neurons, leading to their collapse, as well as in synaptic spines of mature neurons, leading to their retraction. In adult mice, CB1 receptor agonists attenuated activity-dependent remodeling of dendritic spines in spinal cord neurons in vivo and suppressed inflammatory pain by regulating the WAVE1 complex. This study reports novel signaling mechanisms for cannabinoidergic modulation of the nervous system and demonstrates a previously unreported role for the WAVE1 complex in therapeutic applications of cannabinoids. PMID:26496209

  2. A novel near-infrared fluorescence imaging probe that preferentially binds to cannabinoid receptors CB2R over CB1R

    PubMed Central

    Ling, Xiaoxi; Zhang, Shaojuan; Shao, Pin; Li, Weixia; Yang, Ling; Ding, Ying; Xu, Cong; Stella, Nephi; Bai, Mingfeng

    2015-01-01

    The type 2 cannabinoid receptors (CB2R) have gained much attention recently due to their important regulatory role in a host of pathophysiological processes. However, the exact biological function of CB2R and how this function might change depending on disease progression remains unclear and could be better studied with highly sensitive and selective imaging tools for identifying the receptors. Here we report the first near infrared fluorescence imaging probe (NIR760-XLP6) that binds preferentially to CB2R over the type 1 cannabinoid receptors (CB1R). The selectivity of the probe was demonstrated by fluorescence microscopy using DBT-CB2 and DBT-CB1 cells. Furthermore, in mouse tumor models, NIR760-XLP6 showed significantly higher uptake in DBT-CB2 than that in DBT-CB1 tumors. These findings indicate that NIR760-XLP6 is a promising imaging tool for the study of CB2R regulation. PMID:25916505

  3. Delta FosB and AP-1-mediated transcription modulate cannabinoid CB1 receptor signaling and desensitization in striatal and limbic brain regions

    PubMed Central

    Lazenka, Matthew F.; David, Bethany G.; Lichtman, Aron H.; Nestler, Eric J.; Selley, Dana E.; Sim-Selley, Laura J.

    2014-01-01

    Repeated Δ9-tetrahydrocannabinol (THC) administration produces cannabinoid type 1 receptor (CB1R) desensitization and downregulation, as well as tolerance to its in vivo pharmacological effects. However, the magnitude of CB1R desensitization varies by brain region, with CB1Rs in the striatum and its output nuclei undergoing less desensitization than other regions. A growing body of data indicates that regional differences in CB1R desensitization are produced, in part, by THC-mediated induction of the stable transcription factor, ΔFosB, and subsequent regulation of CB1Rs. The purpose of the present study was to determine whether THC-mediated induction of ΔFosB in the striatum inhibits CB1R desensitization in the striatum and output nuclei. This hypothesis was tested using bitransgenic mice with inducible expression of ΔFosB or ΔcJun, a dominant negative inhibitor of AP-1-mediated transcription, in specific forebrain regions. Mice were treated repeatedly with escalating doses of THC or vehicle for 6.5 days, and CB1R-mediated G-protein activation was assessed using CP55,940-stimulated [35S]GTPγS autoradiography. Overexpression of ΔFosB in striatal dopamine type 1 receptor-containing (D1R) medium spiny neurons (MSNs) attenuated CB1R desensitization in the substantia nigra, ventral tegmental area (VTA) and amygdala. Expression of ΔcJun in striatal D1R- and dopamine type 2 receptor (D2R)-containing MSNs enhanced CB1R desensitization in the caudate-putamen and attenuated desensitization in the hippocampus and VTA. THC-mediated in vivo pharmacological effects were then assessed in ΔcJun-expressing mice. Tolerance to THC-mediated hypomotility was enhanced in ΔcJun-expressing mice. These data reveal that ΔFosB and possibly other AP-1 binding proteins regulate CB1R signaling and adaptation in the striatum and limbic system. PMID:25093286

  4. Cognitive Impairment Induced by Delta9-tetrahydrocannabinol Occurs through Heteromers between Cannabinoid CB1 and Serotonin 5-HT2A Receptors

    PubMed Central

    Lanfumey, Laurence; Cordomí, Arnau; Pastor, Antoni; de La Torre, Rafael; Gasperini, Paola; Navarro, Gemma; Howell, Lesley A.; Pardo, Leonardo; Lluís, Carmen; Canela, Enric I.; McCormick, Peter J.; Maldonado, Rafael; Robledo, Patricia

    2015-01-01

    Activation of cannabinoid CB1 receptors (CB1R) by delta9-tetrahydrocannabinol (THC) produces a variety of negative effects with major consequences in cannabis users that constitute important drawbacks for the use of cannabinoids as therapeutic agents. For this reason, there is a tremendous medical interest in harnessing the beneficial effects of THC. Behavioral studies carried out in mice lacking 5-HT2A receptors (5-HT2AR) revealed a remarkable 5-HT2AR-dependent dissociation in the beneficial antinociceptive effects of THC and its detrimental amnesic properties. We found that specific effects of THC such as memory deficits, anxiolytic-like effects, and social interaction are under the control of 5-HT2AR, but its acute hypolocomotor, hypothermic, anxiogenic, and antinociceptive effects are not. In biochemical studies, we show that CB1R and 5-HT2AR form heteromers that are expressed and functionally active in specific brain regions involved in memory impairment. Remarkably, our functional data shows that costimulation of both receptors by agonists reduces cell signaling, antagonist binding to one receptor blocks signaling of the interacting receptor, and heteromer formation leads to a switch in G-protein coupling for 5-HT2AR from Gq to Gi proteins. Synthetic peptides with the sequence of transmembrane helices 5 and 6 of CB1R, fused to a cell-penetrating peptide, were able to disrupt receptor heteromerization in vivo, leading to a selective abrogation of memory impairments caused by exposure to THC. These data reveal a novel molecular mechanism for the functional interaction between CB1R and 5-HT2AR mediating cognitive impairment. CB1R-5-HT2AR heteromers are thus good targets to dissociate the cognitive deficits induced by THC from its beneficial antinociceptive properties. PMID:26158621

  5. Estrogen-related receptor γ controls hepatic CB1 receptor-mediated CYP2E1 expression and oxidative liver injury by alcohol

    PubMed Central

    Jang, Hyun-Hee; Park, Jinyoung; Kim, Jung Ran; Koh, Minseob; Jeong, Won-Il; Koo, Seung-Hoi; Park, Tae-Sik; Yun, Chul-Ho; Park, Seung Bum; Chiang, John Y L; Lee, Chul-Ho; Choi, Hueng-Sik

    2013-01-01

    Background The hepatic endocannabinoid system and cytochrome P450 2E1 (CYP2E1), a key enzyme causing alcohol-induced reactive oxygen species (ROS) generation, are major contributors to the pathogenesis of alcoholic liver disease. The nuclear hormone receptor oestrogen-related receptor γ (ERRγ) is a constitutively active transcriptional activator regulating gene expression. Objective To investigate the role of ERRγ in the alcohol-mediated regulation of CYP2E1 and to examine the possibility to control alcohol-mediated oxidative stress and liver injury through an ERRγ inverse agonist. Design For chronic alcoholic hepatosteatosis study, C57BL/6J wild-type and CB1−/− mice were administered alcohol for 4 weeks. GSK5182 and chlormethiazole (CMZ) were given by oral gavage for the last 2 weeks of alcohol feeding. Gene expression profiles and biochemical assays were performed using the liver or blood of mice. Results Hepatic ERRγ gene expression induced by alcohol-mediated activation of CB1 receptor results in induction of CYP2E1, while liver-specific ablation of ERRγ gene expression blocks alcohol-induced expression of CYP2E1 in mouse liver. An ERRγ inverse agonist significantly ameliorates chronic alcohol-induced liver injury in mice through inhibition of CYP2E1-mediated generation of ROS, while inhibition of CYP2E1 by CMZ abrogates the beneficial effects of the inverse agonist. Finally, chronic alcohol-mediated ERRγ and CYP2E1 gene expression, ROS generation and liver injury in normal mice were nearly abolished in CB1−/− mice. Conclusions ERRγ, as a previously unrecognised transcriptional regulator of hepatic CB1 receptor, controls alcohol-induced oxidative stress and liver injury through CYP2E1 induction, and its inverse agonist could ameliorate oxidative liver injury due to chronic alcohol exposure. PMID:23023167

  6. Anti Proliferative and Pro Apoptotic Effects of Flavonoid Quercetin Are Mediated by CB1 Receptor in Human Colon Cancer Cell Lines.

    PubMed

    Refolo, Maria Grazia; D'Alessandro, Rosalba; Malerba, Natascia; Laezza, Chiara; Bifulco, Maurizio; Messa, Caterina; Caruso, Maria Gabriella; Notarnicola, Maria; Tutino, Valeria

    2015-12-01

    Quercetin, the major constituent of flavonoid and widely present in fruits and vegetables, is an attractive compound for cancer prevention due to its beneficial anti proliferative effects, showing a crucial role in the regulation of apoptosis and cell cycle signaling. In vitro studies have demonstrated that quercetin specifically influences colon cancer cell proliferation. Our experiments, using human colon adenocarcinoma cells, confirmed the anti proliferative effect of quercetin and gave intriguing new insight in to the knowledge of the mechanisms involved. We observed a significant increase in the expression of the endocannabinoids receptor (CB1-R) after quercetin treatment. CB1-R can be considered an estrogen responsive receptor and quercetin, having a structure similar to that of the estrogens, can interact with CB1-R leading to the regulation of cell growth. In order to clarify the contribution of the CB1-R to the quercetin action, we investigated some of the principal molecular pathways that are inhibited or activated by this natural compound. In particular we detected the inhibition of the major survival signals like the PI3K/Akt/mTOR and an induction of the pro apoptotic JNK/JUN pathways. Interestingly, the metabolism of β-catenin was modified by flavonoid both directly and through activated CB1-R. In all the experiments done, the quercetin action has proven to be reinforced by anandamide (Met-F-AEA), a CB1-R agonist, and partially counteracted by SR141716, a CB1-R antagonist. These findings open new perspectives for anticancer therapeutic strategies. PMID:25893829

  7. Analogs of JHU75528, a PET ligand for imaging of cerebral cannabinoid receptors (CB1): development of ligands with optimized lipophilicity and binding affinity

    PubMed Central

    Fan, Hong; Kotsikorou, Evangelia; Hoffman, Alexander F.; Ravert, Hayden T.; Holt, Daniel; Hurst, Dow P.; Lupica, Carl R.; Reggio, Patricia H.; Dannals, Robert F.; Horti, Andrew G.

    2009-01-01

    Cyano analogs of Rimonabant with high binding affinity for the cerebral cannabinoid receptor (CB1) and with optimized lipophilicity have been synthesized as potential positron emission tomography (PET) ligands. The best ligands of the series are optimal targets for the future radiolabeling with PET isotopes and in vivo evaluation as radioligands with enhanced properties for PET imaging of CB1 receptors in human subjects. Extracellular electrophysiological recordings in rodent brain slices demonstrated that JHU75528, 4, the lead compound of the new series, has functional CB antagonist properties that are consistent with its structural relationship to Rimonabant. Molecular modeling analysis revealed an important role of the binding of the cyano-group with the CB1 binding pocket. PMID:18511157

  8. The cannabinoid CB1 receptor antagonist SR141716A (Rimonabant) enhances the metabolic benefits of long-term treatment with oleoylethanolamide in Zucker rats.

    PubMed

    Serrano, Antonia; Del Arco, Ignacio; Javier Pavón, Francisco; Macías, Manuel; Perez-Valero, Vidal; Rodríguez de Fonseca, Fernando

    2008-01-01

    Anandamide and oleoylethanolamide (OEA) are lipid mediators that regulate feeding and lipid metabolism. While anandamide, a cannabinoid CB1 receptor agonist, promotes feeding and lipogenesis, oleoylethanolamide, an endogenous agonist of peroxisome proliferator activated receptor alpha (PPAR-alpha), decreases food intake and activates lipid mobilization and oxidation. The treatment with a cannabinoid CB1 receptor antagonist results in reduction of body weight gain and cholesterol in obese humans and rodents. In the present study, we show the benefits of the treatment of obese Zucker rats with a combination of a cannabinoid CB1 receptor antagonist (Rimonabant) and oleoylethanolamide. This combinational therapy improved the separate effects of Rimonabant and OEA, and resulted in marked decreases on feeding, body weight gain, and plasma cholesterol levels. Additionally, the treatment with both drugs reduced the hepatic steatosis observed in Zucker rats, decreasing liver fat deposits and damage, as revealed by the levels of alanine aminotransferase activity in serum. The combined treatment inhibits the expression of stearoyl coenzyme-A desaturase-1 (SCD-1), a pivotal enzyme in lipid biosynthesis and triglyceride mobilization that is linked to obesity phenotypes. These results support the use of combined therapies with cannabinoid CB1 receptor antagonists and PPAR-alpha agonists for the treatment of obesity associated with dyslipemia. PMID:17467748

  9. Adolescent social rejection alters pain processing in a CB1 receptor dependent manner.

    PubMed

    Schneider, Peggy; Pätz, Monique; Spanagel, Rainer; Schneider, Miriam

    2016-07-01

    Experiences of social rejection represent a major source of distress and in particular peer rejection during adolescence has been implicated in various psychiatric disorders. Moreover, experimentally induced acute social rejection alters pain perception in humans, implicating overlapping neurocircuits for social and physical pains. We recently demonstrated that rearing of adolescent Wistar rats with inadequate, less playful play partners (Fischer 344) persistently decreases pain sensitivity, although the detailed mechanisms mediating the aversiveness during the social encounter remained unsettled. With the present study we examined the behavioral performance during acute interaction of female adolescent Wistar rats with either age-matched same-strain partners or rats from the Fischer 344 strain. We here identify the low responsiveness upon playful attacks, which appears to be characteristic for social play in the Fischer 344 strain, as one of the main aversive components for adolescent Wistar animals during cross-strain encounters, which subsequently diminishes thermal pain reactivity. A detailed behavioral analysis further revealed increased ultrasonic vocalization at 50kHz and an increased frequency of playful attacks for adolescent Wistar animals paired with a Fischer 344 rat compared to same-strain control pairs. Finally, an acute injection of a subthreshold dose of the cannabinoid type 1 receptor inverse agonist/antagonist SR141716 before the social encounter abolished enhanced play-soliciting behavior in Wistar/Fischer 344 pairs as well as the behavioral consequences of the rejection experience in adolescent Wistar rats, further emphasizing an important modulatory role of the endocannabinoid system in mediating the effects of social behavior and social pain. PMID:27157075

  10. Coadministration of indomethacin and minocycline attenuates established paclitaxel-induced neuropathic thermal hyperalgesia: Involvement of cannabinoid CB1 receptors

    PubMed Central

    Parvathy, Subramanian S.; Masocha, Willias

    2015-01-01

    Taxanes such as paclitaxel, which are chemotherapeutic drugs, cause dose-dependent painful neuropathy in some patients. We investigated whether coadministration of minocycline and indomethacin produces antinociceptive effects in mice with paclitaxel-induced neuropathic thermal hyperalgesia and if the cannabinoid system is involved. Previously, we reported that coadministration of these two drugs results in antinociception against inflammatory pain at doses where either drug alone lack significant activity. In the current study, we observed that treatment of female mice with indomethacin or minocycline alone did not affect established paclitaxel-induced thermal hyperalgesia, whereas coadministration of the two drugs attenuated it. In male mice indomethacin had some antihyperalgesic activity, whilst minocycline did not. Coadministration of the two drugs had supraadditive antihyperalgesic activity in male mice. Administration of a cannabinoid CB1 receptor antagonist AM 251 blocked the antihyperalgesic effects of the combination of minocycline and indomethacin in both male and female mice. In conclusion our results indicate that coadministration of minocycline and indomethacin abrogates established paclitaxel-induced neuropathic thermal hyperalgesia in mice, and the potentiation of the antinociceptive effects of this combination involves the cannabinoid system. PMID:26085115

  11. Coadministration of indomethacin and minocycline attenuates established paclitaxel-induced neuropathic thermal hyperalgesia: Involvement of cannabinoid CB1 receptors.

    PubMed

    Parvathy, Subramanian S; Masocha, Willias

    2015-01-01

    Taxanes such as paclitaxel, which are chemotherapeutic drugs, cause dose-dependent painful neuropathy in some patients. We investigated whether coadministration of minocycline and indomethacin produces antinociceptive effects in mice with paclitaxel-induced neuropathic thermal hyperalgesia and if the cannabinoid system is involved. Previously, we reported that coadministration of these two drugs results in antinociception against inflammatory pain at doses where either drug alone lack significant activity. In the current study, we observed that treatment of female mice with indomethacin or minocycline alone did not affect established paclitaxel-induced thermal hyperalgesia, whereas coadministration of the two drugs attenuated it. In male mice indomethacin had some antihyperalgesic activity, whilst minocycline did not. Coadministration of the two drugs had supraadditive antihyperalgesic activity in male mice. Administration of a cannabinoid CB1 receptor antagonist AM 251 blocked the antihyperalgesic effects of the combination of minocycline and indomethacin in both male and female mice. In conclusion our results indicate that coadministration of minocycline and indomethacin abrogates established paclitaxel-induced neuropathic thermal hyperalgesia in mice, and the potentiation of the antinociceptive effects of this combination involves the cannabinoid system. PMID:26085115

  12. Evaluation of the potential of the phytocannabinoids, cannabidivarin (CBDV) and Δ9-tetrahydrocannabivarin (THCV), to produce CB1 receptor inverse agonism symptoms of nausea in rats

    PubMed Central

    Rock, Erin M; Sticht, Martin A; Duncan, Marnie; Stott, Colin; Parker, Linda A

    2013-01-01

    BACKGROUND AND PURPOSE The cannabinoid 1 (CB1) receptor inverse agonists/antagonists, rimonabant (SR141716, SR) and AM251, produce nausea and potentiate toxin-induced nausea by inverse agonism (rather than antagonism) of the CB1 receptor. Here, we evaluated two phytocannabinoids, cannabidivarin (CBDV) and Δ9-tetrahydrocannabivarin (THCV), for their ability to produce these behavioural effect characteristics of CB1 receptor inverse agonism in rats. EXPERIMENTAL APPROACH In experiment 1, we investigated the potential of THCV and CBDV to produce conditioned gaping (measure of nausea-induced behaviour) in the same manner as SR and AM251. In experiment 2, we investigated the potential of THCV and CBDV to enhance conditioned gaping produced by a toxin in the same manner as CB1 receptor inverse agonists. KEY RESULTS SR (10 and 20 mg·kg−1) and AM251 (10 mg·kg−1) produced conditioned gaping; however, THCV (10 or 20 mg·kg−1) and CBDV (10 or 200 mg·kg−1) did not. At a subthreshold dose for producing nausea, SR (2.5 mg·kg−1) enhanced lithium chloride (LiCl)-induced conditioned gaping, whereas Δ9-tetrahydrocannabinol (THC, 2.5 and 10 mg·kg−1), THCV (2.5 or 10 mg·kg−1) and CBDV (2.5 or 200 mg·kg−1) did not; in fact, THC (2.5 and 10 mg·kg−1), THCV (10 mg·kg−1) and CBDV (200 mg·kg−1) suppressed LiCl-induced conditioned gaping, suggesting anti-nausea potential. CONCLUSIONS AND IMPLICATIONS The pattern of findings indicates that neither THCV nor CBDV produced a behavioural profile characteristic of CB1 receptor inverse agonists. As well, these compounds may have therapeutic potential in reducing nausea. PMID:23902479

  13. Reductions in log P improved protein binding and clearance predictions enabling the prospective design of cannabinoid receptor (CB1) antagonists with desired pharmacokinetic properties.

    PubMed

    Ellsworth, Bruce A; Sher, Philip M; Wu, Ximao; Wu, Gang; Sulsky, Richard B; Gu, Zhengxiang; Murugesan, Natesan; Zhu, Yeheng; Yu, Guixue; Sitkoff, Doree F; Carlson, Kenneth E; Kang, Liya; Yang, Yifan; Lee, Ning; Baska, Rose A; Keim, William J; Cullen, Mary Jane; Azzara, Anthony V; Zuvich, Eva; Thomas, Michael A; Rohrbach, Kenneth W; Devenny, James J; Godonis, Helen E; Harvey, Susan J; Murphy, Brian J; Everlof, Gerry G; Stetsko, Paul I; Gudmundsson, Olafur; Johnghar, Susan; Ranasinghe, Asoka; Behnia, Kamelia; Pelleymounter, Mary Ann; Ewing, William R

    2013-12-12

    Several strategies have been employed to reduce the long in vivo half-life of our lead CB1 antagonist, triazolopyridazinone 3, to differentiate the pharmacokinetic profile versus the lead clinical compounds. An in vitro and in vivo clearance data set revealed a lack of correlation; however, when compounds with <5% free fraction were excluded, a more predictable correlation was observed. Compounds with log P between 3 and 4 were likely to have significant free fraction, so we designed compounds in this range to give more predictable clearance values. This strategy produced compounds with desirable in vivo half-lives, ultimately leading to the discovery of compound 46. The progression of compound 46 was halted due to the contemporaneous marketing and clinical withdrawal of other centrally acting CB1 antagonists; however, the design strategy successfully delivered a potent CB1 antagonist with the desired pharmacokinetic properties and a clean off-target profile. PMID:24182233

  14. Involvement of Central Endothelin ETA and Cannabinoid CB1 Receptors and Arginine Vasopressin Release in Sepsis Induced by Cecal Ligation and Puncture in Rats.

    PubMed

    Leite-Avalca, Mariane C G; Lomba, Luis A; Bastos-Pereira, Amanda L; Brito, Haissa O; Fraga, Daniel; Zampronio, Aleksander R

    2016-09-01

    We previously reported that endothelin-1 (ET-1) reduced the frequency of spontaneous excitatory currents in vasopressinergic magnocellular cells through the activation of endothelin ETA receptors in rat brain slices. This effect was abolished by a cannabinoid CB1 receptor antagonist, suggesting the involvement of endocannabinoids. The present study investigated whether the blockade of ETA or CB1 receptors during the phase of increased levels of ET-1 after severe sepsis increases the survival rate of animals concomitantly with an increase in plasma arginine vasopressin (AVP) levels. Sepsis was induced in male Wistar rats by cecal ligation and puncture (CLP). Treatment with the CB1 receptor antagonist rimonabant (Rim; 10 and 20 mg/kg, orally) 4 h after CLP (three punctures) significantly increased the survival rate compared with the CLP per vehicle group. Intracerebroventricular treatment with the ETA receptor antagonist BQ123 (100 pmol) or with Rim (2 μg) 4 and 8 h after CLP but not the ETB receptor antagonist BQ788 (100 pmol), also significantly improved the survival rate. Sham-operated and CLP animals that were treated with Rim had significantly lower core temperature than CLP animals. However, oral treatment with Rim did not change bacterial count in the peritoneal exudate, neutrophil migration to the peritoneal cavity, leucopenia or increased plasma interleukin-6 levels induced by CLP. Both Rim and BQ123 also increased AVP levels 12 h after CLP. The blockade of central CB1 and ETA receptors in the late phase of sepsis increased the survival rate, reduced body temperature and increased the circulating AVP levels. PMID:26925810

  15. Inhibitory effect of salvinorin A, from Salvia divinorum, on ileitis-induced hypermotility: cross-talk between κ-opioid and cannabinoid CB1 receptors

    PubMed Central

    Capasso, R; Borrelli, F; Cascio, M G; Aviello, G; Huben, K; Zjawiony, J K; Marini, P; Romano, B; Di Marzo, V; Capasso, F; Izzo, A A

    2008-01-01

    Background and purpose: Salvinorin A, the active component of the hallucinogenic herb Salvia divinorum, inhibits intestinal motility through activation of κ-opioid receptors (KORs). However, this compound may have target(s) other than the KORs in the inflamed gut. Because intestinal inflammation upregulates cannabinoid receptors and endogenous cannabinoids, in the present study we investigated the possible involvement of the endogenous cannabinoid system in salvinorin A-induced delay in motility in the inflamed gut. Experimental approach: Motility in vivo was measured by evaluating the distribution of a fluorescent marker along the small intestine; intestinal inflammation was induced by the irritant croton oil; direct or indirect activity at cannabinoid receptors was evaluated by means of binding, enzymic and cellular uptake assays. Key results: Salvinorin A as well as the KOR agonist U-50488 reduced motility in croton oil treated mice. The inhibitory effect of both salvinorin A and U-50488 was counteracted by the KOR antagonist nor-binaltorphimine and by the cannabinoid CB1 receptor antagonist rimonabant. Rimonabant, however, did not counteract the inhibitory effect of salvinorin A on motility in control mice. Binding experiments showed very weak affinity of salvinorin A for cannabinoid CB1 and CB2 and no inhibitory effect on 2-arachidonoylglycerol and anandamide hydrolysis and cellular uptake. Conclusions and implications: The inhibitory effect of salvinorin A on motility reveals a functional interaction between cannabinoid CB1 receptors and KORs in the inflamed—but not in the normal—gut in vivo. PMID:18622408

  16. Involvement of M1 and CB1 receptors in the anxiogenic-like effects induced by neostigmine injected into the rat prelimbic medial prefrontal cortex.

    PubMed

    Fogaça, M V; Fedoce, A G; Ferreira-Junior, N C; Guimarães, F S; Resstel, L B

    2016-04-01

    The prelimbic (PL) medial prefrontal cortex is a brain region highly involved in the control of emotional responses, being modulated by several neurotransmitter systems, including the cholinergic and endocannabinoid. Activation of muscarinic type 1 (M1) receptors in the brain induces retrograde suppression of inhibition through the induction of endocannabinoid release, which, in turn, activates cannabinoid type 1 (CB1) receptors. No study so far, however, has been conducted to investigate if the cholinergic and endocannabinoid systems interact in the PL to modulate anxiety-related behaviors. Thus, the present work aimed at verifying if intra-PL administration of neostigmine, an acetylcholinesterase inhibitor, would produce changes in anxiety-like behavior and if these effects are mediated by M1 and CB1 receptor activation. Independent groups of animals received bilateral injections of vehicle, the M1 receptor antagonist pirenzepine (0.06, 0.6, and 6 nmol), the CB1 receptor antagonist AM251 (0.1 nmol), or the fatty acid amide hydrolase (FAAH) enzyme inhibitor URB597 (1, 3, and 10 pmol), followed by vehicle or neostigmine (0.01, 0.1, and 1 nmol), and were submitted to the elevated plus-maze (EPM) test. Neostigmine (1 nmol) decreased open arm exploration of the maze. This anxiogenic-like effect was reproduced in another anxiety-related animal model, the light-dark box. Previous injection of pirenzepine or AM251 abolished this response in the EPM, whereas URB597 had no effect. These results suggest that CB1 and M1 receptors interact in the PL to control anxiety-like behaviors. PMID:26873081

  17. Synthesis and biological evaluation of indole-2-carboxamides bearing photoactivatable functionalities as novel allosteric modulators for the cannabinoid CB1 receptor.

    PubMed

    Qiao, Chang-Jiang; Ali, Hamed I; Ahn, Kwang H; Kolluru, Srikanth; Kendall, Debra A; Lu, Dai

    2016-10-01

    5-Chloro-3-ethyl-N-(4-(piperidin-1-yl)phenethyl)-1H-indole-2-carboxamide (ORG27569, 1) is a prototypical allosteric modulator for the cannabinoid CB1 receptor. Based on this indole-2-carboxamide scaffold, we designed and synthesized novel CB1 allosteric modulators that possess photoactivatable functionalities, which include benzophenone, phenyl azide, aliphatic azide and phenyltrifluoromethyldiazrine. To assess their allosteric effects, the dissociation constant (KB) and allosteric binding cooperativity factor (α) were determined and compared to their parent compounds. Within this series, benzophenone-containing compounds 26 and 27, phenylazide-containing compound 28, and the aliphatic azide containing compound 36b showed allosteric binding parameters (KB and α) comparable to their parent compound 1, 7, 8, and 9, respectively. We further assessed these modulators for their impact on G-protein coupling activity. Interestingly, these compounds exhibited negative allosteric modulator properties in a manner similar to their parent compounds, which antagonize agonist-induced G-protein coupling. These novel CB1 allosteric modulators, possessing photoactivatable functionalities, provide valuable tools for future photo-affinity labeling and mapping the CB1 allosteric binding site(s). PMID:27318976

  18. Lack of hippocampal CB1 receptor desensitization by Δ(9)-tetrahydrocannabinol in aged mice and by low doses of JZL 184.

    PubMed

    Feliszek, Monika; Bindila, Laura; Lutz, Beat; Zimmer, Andreas; Bilkei-Gorzo, Andras; Schlicker, Eberhard

    2016-06-01

    Activation of cannabinoid CB1 receptors may offer new therapeutic strategies, but the efficiency of CB1 receptor agonists may be impaired by tolerance development upon prolonged administration. We compared the influence of repeated administration of Δ(9)-tetrahydrocannabinol (THC) 10 mg/kg on the motility and on basal and CB1 receptor-stimulated (35)S-GTPγS binding of adolescent and aged mice. Moreover, we determined the influence of JZL 184 (which inhibits the 2-arachidonoylglycerol, 2-AG, degrading enzyme monoacylglycerol lipase, MAGL) on (35)S-GTPγS binding and 2-AG levels of young adult mice. Mouse motility was tested in the open field. (35)S-GTPγS binding was studied in hippocampal membranes. THC and CP 55,940 were used as cannabinoid agonists in the behavioural and biochemical studies, respectively. 2-AG levels were quantified by liquid chromatography-multiple reaction monitoring. The THC (10 mg/kg)-induced hypomotility was stronger in untreated than in THC-pretreated adolescent mice but similar in both treatment groups of aged mice. Basal and stimulated (35)S-GTPγS binding was decreased in membranes from THC-pretreated adolescent but not affected in membranes from aged mice. Treatment of young adult mice with JZL 184 (4, 10 and 40 mg/kg) for 14 days did not affect basal binding. Stimulated binding tended to be decreased by 25 % only in mice treated with JZL 184 (40 mg/kg). Hippocampal 2-AG level was increased by JZL 184 at 40 and 10 but not affected at 4 mg/kg. In conclusion, CB1 receptor tolerance does not occur in aged mice pretreated with THC and in young adult mice treated with a low dose of the MAGL inhibitor JZL 184. PMID:26984820

  19. Male and female rats differ in brain cannabinoid CB1 receptor density and function and in behavioural traits predisposing to drug addiction: effect of ovarian hormones.

    PubMed

    Castelli, Maria Paola; Fadda, Paola; Casu, Angelo; Spano, Maria Sabrina; Casti, Alberto; Fratta, Walter; Fattore, Liana

    2014-01-01

    Sex-dependent differences are frequently observed in the biological and behavioural effects of substances of abuse, including cannabis. We recently demonstrated a modulating effect of sex and oestrous cycle on cannabinoid-taking and seeking behaviours. Here, we investigated the influence of sex and oestrogen in the regulation of cannabinoid CB1 receptor density and function, measured by [(3)H]CP55940 and CP55940-stimulated [(35)S]GTPγS binding autoradiography, respectively, in the prefrontal cortex (Cg1 and Cg3), caudate- putamen, nucleus accumbens, amygdala and hippocampus of male and cycling female rats, as well as ovariectomised (OVX) rats and OVX rats primed with oestradiol (10 µg/rat) (OVX+E). CB1 receptor density was significantly lower in the prefrontal cortex and amygdala of cycling females than in males and in OVX females, a difference that appeared to be oestradiol-dependent, because it was no more evident in the OVX+E group. CP55940-stimulated [(35)S]GTPγS binding was significantly higher in the Cg3 of OVX rats relative to cycling and OVX+E rats. No difference was observed in CB1 receptor density or function in any of the other brain areas analysed. Finally, sex and oestradiol were also found to affect motor activity, social behaviour and sensorimotor gating in rats tested in locomotor activity boxes, social interaction and prepulse inhibition tasks, respectively. Our findings provide biochemical evidence for sex- and hormone- dependent differences in the density and function of CB1 receptors in selected brain regions, and in behaviours associated with greater vulnerability to drug addiction, revealing a more vulnerable behavioural phenotype in female than in male rats. PMID:23829370

  20. Imaging the cannabinoid CB1 receptor in humans with [11C]OMAR: assessment of kinetic analysis methods, test-retest reproducibility, and gender differences.

    PubMed

    Normandin, Marc D; Zheng, Ming-Qiang; Lin, Kuo-Shyan; Mason, N Scott; Lin, Shu-Fei; Ropchan, Jim; Labaree, David; Henry, Shannan; Williams, Wendol A; Carson, Richard E; Neumeister, Alexander; Huang, Yiyun

    2015-08-01

    The Radiotracer [(11)C]OMAR was developed for positron emission tomography (PET) imaging of cannabinoid type-1 receptors (CB1R). The objectives of the present study were to evaluate kinetic analysis methods, determine test-retest reliability, and assess gender differences in receptor availability. Dynamic PET data were acquired in 10 human subjects, and analyzed with one-tissue (1T) and two-tissue (2T) compartment models and by the Logan and multilinear analysis (MA1) methods to estimate regional volume of distribution (VT). The 2T model inclusive of a vascular component (2TV) and MA1 were the preferred techniques. Test-retest reliability of VT was good (mean absolute deviation ~9%; intraclass correlation coefficient ~0.7). Tracer parent fraction in plasma was lower in women (P<0.0001). Cerebral uptake normalized by body weight and injected dose was higher in men by 17% (P<0.0001), but VT was significantly greater in women by 23% (P<0.0001). These findings show that [(11)C]OMAR binding can be reliably quantified by the 2T model or MA1 method and demonstrate the utility of this tracer for in vivo imaging of CB1R. In addition, results from the present study indicate that gender difference in receptor binding should be taken into consideration when [(11)C]OMAR is used to quantify CB1R availability in neuropsychiatric disorders. PMID:25833345

  1. Imaging the cannabinoid CB1 receptor in humans with [11C]OMAR: assessment of kinetic analysis methods, test–retest reproducibility, and gender differences

    PubMed Central

    Normandin, Marc D; Zheng, Ming-Qiang; Lin, Kuo-Shyan; Mason, N Scott; Lin, Shu-Fei; Ropchan, Jim; Labaree, David; Henry, Shannan; Williams, Wendol A; Carson, Richard E; Neumeister, Alexander; Huang, Yiyun

    2015-01-01

    The Radiotracer [11C]OMAR was developed for positron emission tomography (PET) imaging of cannabinoid type-1 receptors (CB1R). The objectives of the present study were to evaluate kinetic analysis methods, determine test–retest reliability, and assess gender differences in receptor availability. Dynamic PET data were acquired in 10 human subjects, and analyzed with one-tissue (1T) and two-tissue (2T) compartment models and by the Logan and multilinear analysis (MA1) methods to estimate regional volume of distribution (VT). The 2T model inclusive of a vascular component (2TV) and MA1 were the preferred techniques. Test–retest reliability of VT was good (mean absolute deviation ~9% intraclass correlation coefficient ~0.7). Tracer parent fraction in plasma was lower in women (P<0.0001). Cerebral uptake normalized by body weight and injected dose was higher in men by 17% (P<0.0001), but VT was significantly greater in women by 23% (P<0.0001). These findings show that [11C]OMAR binding can be reliably quantified by the 2T model or MA1 method and demonstrate the utility of this tracer for in vivo imaging of CB1R. In addition, results from the present study indicate that gender difference in receptor binding should be taken into consideration when [11C]OMAR is used to quantify CB1R availability in neuropsychiatric disorders. PMID:25833345

  2. Anandamide inhibits Theiler's virus induced VCAM-1 in brain endothelial cells and reduces leukocyte transmigration in a model of blood brain barrier by activation of CB1 receptors

    PubMed Central

    2011-01-01

    Background VCAM-1 represents one of the most important adhesion molecule involved in the transmigration of blood leukocytes across the blood-brain barrier (BBB) that is an essential step in the pathogenesis of MS. Several evidences have suggested the potential therapeutic value of cannabinoids (CBs) in the treatment of MS and their experimental models. However, the effects of endocannabinoids on VCAM-1 regulation are poorly understood. In the present study we investigated the effects of anandamide (AEA) in the regulation of VCAM-1 expression induced by Theiler's virus (TMEV) infection of brain endothelial cells using in vitro and in vivo approaches. Methods i) in vitro: VCAM-1 was measured by ELISA in supernatants of brain endothelial cells infected with TMEV and subjected to AEA and/or cannabinoid receptors antagonist treatment. To evaluate the functional effect of VCAM-1 modulation we developed a blood brain barrier model based on a system of astrocytes and brain endothelial cells co-culture. ii) in vivo: CB1 receptor deficient mice (Cnr1-/-) infected with TMEV were treated with the AEA uptake inhibitor UCM-707 for three days. VCAM-1 expression and microglial reactivity were evaluated by immunohistochemistry. Results Anandamide-induced inhibition of VCAM-1 expression in brain endothelial cell cultures was mediated by activation of CB1 receptors. The study of leukocyte transmigration confirmed the functional relevance of VCAM-1 inhibition by AEA. In vivo approaches also showed that the inhibition of AEA uptake reduced the expression of brain VCAM-1 in response to TMEV infection. Although a decreased expression of VCAM-1 by UCM-707 was observed in both, wild type and CB1 receptor deficient mice (Cnr1-/-), the magnitude of VCAM-1 inhibition was significantly higher in the wild type mice. Interestingly, Cnr1-/- mice showed enhanced microglial reactivity and VCAM-1 expression following TMEV infection, indicating that the lack of CB1 receptor exacerbated

  3. Cannabinoid CB1 receptor inhibition blunts adolescent-typical increased binge alcohol and sucrose consumption in male C57BL/6J mice

    PubMed Central

    Agoglia, Abigail E.; Holstein, Sarah E.; Eastman, Vallari R.; Hodge, Clyde W.

    2016-01-01

    Increased binge alcohol consumption has been reported among adolescents as compared to adults in both humans and rodent models, and has been associated with serious long-term health consequences. However, the neurochemical mechanism for age differences in binge drinking between adolescents and adults has not been established. The present study was designed to evaluate the mechanistic role of the cannabinoid CB1 receptor in adolescent and adult binge drinking. Binge consumption was established in adolescent and adult male C57BL/6J mice by providing access to 20% alcohol or 1% sucrose for 4 h every other day. Pretreatment with the CB1 antagonist/inverse agonist AM-251 (0, 1, 3, and 10 mg/kg) in a Latin square design dose-dependently reduced adolescent alcohol consumption to adult levels without altering adult intake. AM-251 (3 mg/kg) also reduced adolescent but not adult sucrose consumption. Adolescent reductions in alcohol and sucrose were not associated with alterations in open-field locomotor activity or thigmotaxis. These findings point to age differences in CB1 receptor activity as a functional mediator of adolescent-typical increased binge drinking as compared to adults. Developmental alterations in endocannabinoid signaling in the adolescent brain may therefore be responsible for the drinking phenotype seen in this age group. PMID:26800788

  4. Presynaptic inhibition upon CB1 or mGlu2/3 receptor activation requires ERK/MAPK phosphorylation of Munc18-1.

    PubMed

    Schmitz, Sabine K; King, Cillian; Kortleven, Christian; Huson, Vincent; Kroon, Tim; Kevenaar, Josta T; Schut, Desiree; Saarloos, Ingrid; Hoetjes, Joost P; de Wit, Heidi; Stiedl, Oliver; Spijker, Sabine; Li, Ka Wan; Mansvelder, Huibert D; Smit, August B; Cornelisse, Lennart Niels; Verhage, Matthijs; Toonen, Ruud F

    2016-06-01

    Presynaptic cannabinoid (CB1R) and metabotropic glutamate receptors (mGluR2/3) regulate synaptic strength by inhibiting secretion. Here, we reveal a presynaptic inhibitory pathway activated by extracellular signal-regulated kinase (ERK) that mediates CB1R- and mGluR2/3-induced secretion inhibition. This pathway is triggered by a variety of events, from foot shock-induced stress to intense neuronal activity, and induces phosphorylation of the presynaptic protein Munc18-1. Mimicking constitutive phosphorylation of Munc18-1 results in a drastic decrease in synaptic transmission. ERK-mediated phosphorylation of Munc18-1 ultimately leads to degradation by the ubiquitin-proteasome system. Conversely, preventing ERK-dependent Munc18-1 phosphorylation increases synaptic strength. CB1R- and mGluR2/3-induced synaptic inhibition and depolarization-induced suppression of excitation (DSE) are reduced upon ERK/MEK pathway inhibition and further reduced when ERK-dependent Munc18-1 phosphorylation is blocked. Thus, ERK-dependent Munc18-1 phosphorylation provides a major negative feedback loop to control synaptic strength upon activation of presynaptic receptors and during intense neuronal activity. PMID:27056679

  5. Cannabinoid CB1 receptor inhibition blunts adolescent-typical increased binge alcohol and sucrose consumption in male C57BL/6J mice.

    PubMed

    Agoglia, Abigail E; Holstein, Sarah E; Eastman, Vallari R; Hodge, Clyde W

    2016-04-01

    Increased binge alcohol consumption has been reported among adolescents as compared to adults in both humans and rodent models, and has been associated with serious long-term health consequences. However, the neurochemical mechanism for age differences in binge drinking between adolescents and adults has not been established. The present study was designed to evaluate the mechanistic role of the cannabinoid CB1 receptor in adolescent and adult binge drinking. Binge consumption was established in adolescent and adult male C57BL/6J mice by providing access to 20% alcohol or 1% sucrose for 4h every other day. Pretreatment with the CB1 antagonist/inverse agonist AM-251 (0, 1, 3, and 10mg/kg) in a Latin square design dose-dependently reduced adolescent alcohol consumption to adult levels without altering adult intake. AM-251 (3mg/kg) also reduced adolescent but not adult sucrose consumption. Adolescent reductions in alcohol and sucrose were not associated with alterations in open-field locomotor activity or thigmotaxis. These findings point to age differences in CB1 receptor activity as a functional mediator of adolescent-typical increased binge drinking as compared to adults. Developmental alterations in endocannabinoid signaling in the adolescent brain may therefore be responsible for the drinking phenotype seen in this age group. PMID:26800788

  6. Anandamide Protects HT22 Cells Exposed to Hydrogen Peroxide by Inhibiting CB1 Receptor-Mediated Type 2 NADPH Oxidase

    PubMed Central

    Jia, Ji; Wu, Mingchun; Zhang, Lei; Zhang, Xiajing; Zhai, Qian; Jiang, Tao; Xiong, Lize

    2014-01-01

    Background. Endogenous cannabinoid anandamide (AEA) protects neurons from oxidative injury in rodent models; however the mechanism of AEA-induced neuroprotection remains to be determined. Activation of neuronal NADPH oxidase 2 (Nox2) contributes to oxidative damage of the brain, and inhibition of Nox2 can attenuate cerebral oxidative stress. We aimed to determine whether the neuronal Nox2 was involved in protection mediated by AEA. Methods. The mouse hippocampal neuron cell line HT22 was exposed to hydrogen peroxide (H2O2) to mimic oxidative injury of neurons. The protective effect of AEA was assessed by measuring cell metabolic activity, apoptosis, lactate dehydrogenase (LDH) release, cellular morphology, intracellular reactive oxygen species (ROS), and antioxidant and oxidant levels and Nox2 expression. Results. HT22 cells exposed to H2O2 demonstrated morphological changes, decreased LDH release, reduced metabolic activity, increased levels of intracellular ROS and oxidized glutathione (GSSG), reduced levels of superoxide dismutase (SOD), and reduced glutathione (GSH) and increased expression of Nox2. AEA prevented these effects, a property abolished by simultaneous administration of CB1 antagonist AM251 or CB1-siRNA. Conclusion. Nox2 inhibition is involved in AEA-induced cytoprotection against oxidative stress through CB1 activation in HT22 cells. PMID:25136404

  7. (4-(Bis(4-Fluorophenyl)Methyl)Piperazin-1-yl)(Cyclohexyl)Methanone Hydrochloride (LDK1229): A New Cannabinoid CB1 Receptor Inverse Agonist from the Class of Benzhydryl Piperazine Analogs

    PubMed Central

    Mahmoud, Mariam M.; Olszewska, Teresa; Liu, Hui; Shore, Derek M.; Hurst, Dow P.; Reggio, Patricia H.; Lu, Dai

    2015-01-01

    Some inverse agonists of cannabinoid receptor type 1 (CB1) have been demonstrated to be anorectic antiobesity drug candidates. However, the first generation of CB1 inverse agonists, represented by rimonabant (SR141716A), otenabant, and taranabant, are centrally active, with a high level of psychiatric side effects. Hence, the discovery of CB1 inverse agonists with a chemical scaffold distinct from these holds promise for developing peripherally active CB1 inverse agonists with fewer side effects. We generated a new CB1 inverse agonist, (4-(bis(4-fluorophenyl)methyl)piperazin-1-yl)(cyclohexyl)methanone hydrochloride (LDK1229), from the class of benzhydryl piperazine analogs. This compound binds to CB1 more selectively than cannabinoid receptor type 2, with a Ki value of 220 nM. Comparable CB1 binding was also observed by analogs 1-[bis(4-fluorophenyl)methyl]-4-cinnamylpiperazine dihydrochloride (LDK1203) and 1-[bis(4-fluorophenyl)methyl]-4-tosylpiperazine hydrochloride (LDK1222), which differed by the substitution on the piperazine ring where the piperazine of LDK1203 and LDK1222 are substituted by an alkyl group and a tosyl group, respectively. LDK1229 exhibits efficacy comparable with SR141716A in antagonizing the basal G protein coupling activity of CB1, as indicated by a reduction in guanosine 5′-O-(3-thio)triphosphate binding. Consistent with inverse agonist behavior, increased cell surface localization of CB1 upon treatment with LDK1229 was also observed. Although docking and mutational analysis showed that LDK1229 forms similar interactions with the receptor as SR141716A does, the benzhydryl piperazine scaffold is structurally distinct from the first-generation CB1 inverse agonists. It offers new opportunities for developing novel CB1 inverse agonists through the optimization of molecular properties, such as the polar surface area and hydrophilicity, to reduce the central activity observed with SR141716A. PMID:25411367

  8. Blockade of Cannabinoid CB1 receptor attenuates the acquisition of morphine-induced conditioned place preference along with a downregulation of ERK, CREB phosphorylation, and BDNF expression in the nucleus accumbens and hippocampus.

    PubMed

    Zhang, Jianbo; Wang, Na; Chen, Bo; Wang, Yi'nan; He, Jing; Cai, Xintong; Zhang, Hongbo; Wei, Shuguang; Li, Shengbin

    2016-09-01

    Cannabinoid CB1 receptor (CB1R) is highly expressed in the mesocorticolimbic system and associated with drug craving and relapse. Clinical trials suggest that CB1R antagonists may represent new therapies for drug addiction. However, the downstream signaling of CB1R is not fully elucidated. In the present study, we investigated the relationship between CB1R and the extracellular signal-regulated kinase (ERK), cAMP response element-binding protein (CREB), brain-derived neurotrophic factor (BDNF) signaling in the nucleus accumbens (NAc) and hippocampus in morphine-induced conditioned place preference (CPP), which is used to assess the morphine-induced reward memory. The protein level of CB1R, ERK, CREB, and BDNF were detected by western blotting. Additionally, a CB1R antagonist, AM251, was used to study whether blockade of CB1R altered the CPP and above-mentioned molecules. We found an increase of CB1R expression in the NAc and hippocampus of the mice following morphine CPP, but not those after repeated morphine in home cage without context exposure (NO-CPP). Both morphine CPP and NO-CPP induced an upregulation of ERK, CREB phosphorylation and BDNF expression. Furthermore, pretreatment with AM251 before morphine attenuated the CPP acquisition and CB1R expression as well as the activation of ERK-CREB-BDNF cascade. Collectively, these findings demonstrate that (1) Repeated morphine with context exposures but not merely the pharmacological effects of morphine increased CB1R expression both in the NAc and hippocampus. (2) CB1R antagonist mediated blockade of ERK-CREB-BDNF signaling activation in the NAc and hippocampus may be an important mechanism underlying the attenuation of morphine CPP. PMID:27461790

  9. Chronic Δ9-Tetrahydrocannabinol during Adolescence Differentially Modulates Striatal CB1 Receptor Expression and the Acute and Chronic Effects on Learning in Adult Rats.

    PubMed

    Weed, Peter F; Filipeanu, Catalin M; Ketchum, Myles J; Winsauer, Peter J

    2016-01-01

    The purpose of this study was to determine whether chronic administration of Δ(9)-tetrahydrocannabinol (THC) during adolescence would (1) modify any sex-specific effects of THC on learning and (2) affect the development of tolerance to THC as an adult. Male and female rats received daily injections of saline or 5.6 mg/kg of THC from postnatal day 35-75, yielding four groups (female/saline, female/THC, male/saline, and male/THC). Rats were then trained on a procedure that assayed both learning and performance behavior and administered 0.32-18 mg/kg of THC acutely as adults (experiment 1). THC produced rate-decreasing and error-increasing effects in both sexes; however, female rats were more sensitive than male rats were to the rate-decreasing effects. Rats were then chronically administered 10 mg/kg of THC (experiment 2). Rats that received THC during adolescence developed tolerance to the rate-decreasing effects more slowly and less completely than did rats that received saline; in addition, females developed tolerance to the error-increasing effects of THC slower than males did. Western blot analysis of brain tissue indicated long-term changes in hippocampal and striatal cannabinoid type-1 receptor (CB1R) levels despite levels that were indistinguishable immediately after chronic treatment during adolescence. Striatal CB1R levels were increased in adult rats that received THC during adolescence; hippocampal CB1R levels varied by sex. In summary, female rats were more sensitive than male rats were to the acute and chronic effects of THC, and chronic administration of THC during adolescence produced long-term changes in CB1R levels that correlated with decreased tolerance development to the rate-decreasing effects of THC. PMID:26462539

  10. Sativex-like combination of phytocannabinoids is neuroprotective in malonate-lesioned rats, an inflammatory model of Huntington's disease: role of CB1 and CB2 receptors.

    PubMed

    Valdeolivas, Sara; Satta, Valentina; Pertwee, Roger G; Fernández-Ruiz, Javier; Sagredo, Onintza

    2012-05-16

    We have investigated whether a 1:1 combination of botanical extracts enriched in either Δ(9)-tetrahydrocannabinol (Δ(9)-THC) or cannabidiol (CBD), which are the main constituents of the cannabis-based medicine Sativex, is neuroprotective in Huntington's disease (HD), using an experimental model of this disease generated by unilateral lesions of the striatum with the mitochondrial complex II inhibitor malonate. This toxin damages striatal neurons by mechanisms that primarily involve apoptosis and microglial activation. We monitored the extent of this damage and the possible preservation of the striatal parenchyma by treatment with a Sativex-like combination of phytocannabinoids using different histological and biochemical markers. Results were as follows: (i) malonate increased the volume of edema measured by in vivo NMR imaging and the Sativex-like combination of phytocannabinoids partially reduced this increase; (ii) malonate reduced the number of Nissl-stained cells, while enhancing the number of degenerating cells stained with FluoroJade-B, and the Sativex-like combination of phytocannabinoids reversed both effects; (iii) malonate caused a strong glial activation (i.e., reactive microglia labeled with Iba-1, and astrogliosis labeled with GFAP) and the Sativex-like combination of phytocannabinoids attenuated both responses; and (iv) malonate increased the expression of inducible nitric oxide synthase and the neurotrophin IGF-1, and both responses were attenuated after the treatment with the Sativex-like combination of phytocannabinoids. We also wanted to establish whether targets within the endocannabinoid system (i.e., CB(1) and CB(2) receptors) are involved in the beneficial effects induced in this model by the Sativex-like combination of phytocannabinoids. This we did using selective antagonists for both receptor types (i.e., SR141716 and AM630) combined with the Sativex-like phytocannabinoid combination. Our results indicated that the effects of this

  11. Palmitoylethanolamide normalizes intestinal motility in a model of post-inflammatory accelerated transit: involvement of CB1 receptors and TRPV1 channels

    PubMed Central

    Capasso, Raffaele; Orlando, Pierangelo; Pagano, Ester; Aveta, Teresa; Buono, Lorena; Borrelli, Francesca; Di Marzo, Vincenzo; Izzo, Angelo A

    2014-01-01

    Background and Purpose Palmitoylethanolamide (PEA), a naturally occurring acylethanolamide chemically related to the endocannabinoid anandamide, interacts with targets that have been identified in peripheral nerves controlling gastrointestinal motility, such as cannabinoid CB1 and CB2 receptors, TRPV1 channels and PPARα. Here, we investigated the effect of PEA in a mouse model of functional accelerated transit which persists after the resolution of colonic inflammation (post-inflammatory irritable bowel syndrome). Experimental Approach Intestinal inflammation was induced by intracolonic administration of oil of mustard (OM). Mice were tested for motility and biochemical and molecular biology changes 4 weeks later. PEA, oleoylethanolamide and endocannabinoid levels were measured by liquid chromatography-mass spectrometry and receptor and enzyme mRNA expression by qRT-PCR. Key Results OM induced transient colitis and a functional post-inflammatory increase in upper gastrointestinal transit, associated with increased intestinal anandamide (but not 2-arachidonoylglycerol, PEA or oleoylethanolamide) levels and down-regulation of mRNA for TRPV1 channels. Exogenous PEA inhibited the OM-induced increase in transit and tended to increase anandamide levels. Palmitic acid had a weaker effect on transit. Inhibition of transit by PEA was blocked by rimonabant (CB1 receptor antagonist), further increased by 5′-iodoresiniferatoxin (TRPV1 antagonist) and not significantly modified by the PPARα antagonist GW6471. Conclusions and Implications Intestinal endocannabinoids and TRPV1 channel were dysregulated in a functional model of accelerated transit exhibiting aspects of post-inflammatory irritable bowel syndrome. PEA counteracted the accelerated transit, the effect being mediated by CB1 receptors (possibly via increased anandamide levels) and modulated by TRPV1 channels. PMID:24818658

  12. The CB1 cannabinoid receptor agonist reduces L-DOPA-induced motor fluctuation and ERK1/2 phosphorylation in 6-OHDA-lesioned rats

    PubMed Central

    Song, Lu; Yang, Xinxin; Ma, Yaping; Wu, Na; Liu, Zhenguo

    2014-01-01

    The dopamine precursor L-3,4-dihydroxyphenylalanine (L-DOPA) has been used as an effective drug for treating dopamine depletion-induced Parkinson’s disease (PD). However, long-term administration of L-DOPA produces motor complications. L-DOPA has also been found to modify the two key signaling cascades, protein kinase A/dopamine- and cAMP-regulated phosphoprotein of 32 kDa (DARPP-32) and extracellular signal-regulated kinases 1 and 2 (ERK1/2), in striatal neurons, which are thought to play a pivotal role in forming motor complications. In the present study, we tested the possible effect of a CB1 cannabinoid receptor agonist on L-DOPA-stimulated abnormal behavioral and signaling responses in vivo. Intermittent L-DOPA administration for 3 weeks induced motor fluctuation in a rat model of PD induced by intrastriatal infusion of dopamine-depleting neurotoxin 6-hydroxydopamine (6-OHDA). A single injection of a CB1 cannabinoid receptor agonist WIN-55,212-2 had no effect on L-DOPA-induced motor fluctuation. However, chronic injections of WIN-55,212-2 significantly attenuated abnormal behavioral responses to L-DOPA in 6-OHDA-lesioned rats. Similarly, chronic injections of WIN-55,212-2 influence the L-DOPA-induced alteration of DARPP-32 and ERK1/2 phosphorylation status in striatal neurons. These data provide evidence for the active involvement of CB1 cannabinoid receptors in the regulation of L-DOPA action during PD therapy. PMID:25395834

  13. MATERNAL DEPRIVATION AND ADOLESCENT CANNABINOID EXPOSURE IMPACT HIPPOCAMPAL ASTROCYTES, CB1 RECEPTORS AND BRAIN-DERIVED NEUROTROPHIC FACTOR IN A SEXUALLY DIMORPHIC FASHION

    PubMed Central

    LÓPEZ-GALLARDO, M.; LÓPEZ-RODRÍGUEZ, A. B.; LLORENTE-BERZAL, Á.; ROTLLANT, D.; MACKIE, K.; ARMARIO, A.; NADAL, R.; VIVEROS, M.-P.

    2013-01-01

    We have recently reported that early maternal deprivation (MD) for 24 h [postnatal day (PND) 9–10] and/or an adolescent chronic treatment with the cannabinoid agonist CP-55,940 (CP) [0.4 mg/kg, PND 28–42] in Wistar rats induced, in adulthood, diverse sex-dependent long-term behavioral and physiological modifications. Here we show the results obtained from investigating the immunohistochemical analysis of CB1 cannabinoid receptors, glial fibrillary acidic protein (GFAP) positive (+) cells and brain-derived neurotrophic factor (BDNF) expression in the hippocampus of the same animals. MD induced, in males, a significant increase in the number of GFAP+ cells in CA1 and CA3 areas and in the polymorphic layer of the dentate gyrus (DG), an effect that was attenuated by CP in the two latter regions. Adolescent cannabinoid exposure induced, in control non-deprived males, a significant increase in the number of GFAP+ cells in the polymorphic layer of the DG. MD induced a decrease in CB1 expression in both sexes, and this effect was reversed in males by the cannabinoid treatment. In turn, the drug “per se” induced, in males, a general decrease in CB1 immunoreactivity, and the opposite effect was observed in females. Cannabinoid exposure tended to reduce BDNF expression in CA1 and CA3 of females, whereas MD counteracted this trend and induced an increase of BDNF in females. As a whole, the present results show sex-dependent long-term effects of both MD and juvenile cannabinoid exposure as well as functional interactions between the two treatments. PMID:22001306

  14. Native CB1 receptor affinity, intrinsic activity and accumbens shell dopamine stimulant properties of third generation SPICE/K2 cannabinoids: BB-22, 5F-PB-22, 5F-AKB-48 and STS-135.

    PubMed

    De Luca, Maria Antonietta; Castelli, M Paola; Loi, Barbara; Porcu, Alessandra; Martorelli, Mariella; Miliano, Cristina; Kellett, Kathryn; Davidson, Colin; Stair, Jacqueline L; Schifano, Fabrizio; Di Chiara, Gaetano

    2016-06-01

    In order to investigate the in vivo dopamine (DA) stimulant properties of selected 3rd generation Spice/K2 cannabinoids, BB-22, 5F-PB-22, 5F-AKB-48 and STS-135, their in vitro affinity and agonist potency at native rat and mice CB1 receptors was studied. The compounds bind with high affinity to CB1 receptors in rat cerebral cortex homogenates and stimulate CB1-induced [(35)S]GTPγS binding with high potency and efficacy. BB-22 and 5F-PB-22 showed the lowest Ki of binding to CB1 receptors (0.11 and 0.13 nM), i.e., 30 and 26 times lower respectively than that of JWH-018 (3.38 nM), and a potency (EC50, 2.9 and 3.7 nM, respectively) and efficacy (Emax, 217% and 203%, respectively) as CB1 agonists higher than JWH-018 (EC50, 20.2 nM; Emax, 163%). 5F-AKB-48 and STS-135 had higher Ki for CB1 binding, higher EC50 and lower Emax as CB1 agonists than BB-22 and 5F-PB-22 but still comparatively more favourable than JWH-018. The agonist properties of all the compounds were abolished or drastically reduced by the CB1 antagonist/inverse agonist AM251 (0.1 μM). No activation of G-protein was observed in CB1-KO mice. BB-22 (0.003-0.01 mg/kg i.v.) increased dialysate DA in the accumbens shell but not in the core or in the medial prefrontal cortex, with a bell shaped dose-response curve and an effect at 0.01 mg/kg and a biphasic time-course. Systemic AM251 (1.0 mg/kg i.p.) completely prevented the stimulant effect of BB-22 on dialysate DA in the NAc shell. All the other compounds increased dialysate DA in the NAc shell at doses consistent with their in vitro affinity for CB1 receptors (5F-PB-22, 0.01 mg/kg; 5F-AKB-48, 0.1 mg/kg; STS-135, 0.15 mg/kg i.v.). 3rd generation cannabinoids can be even more potent and super-high CB1 receptor agonists compared to JWH-018. Future research will try to establish if these properties can explain the high toxicity and lethality associated with these compounds. PMID:26686391

  15. Effects of CB1 receptor agonism and antagonism on behavioral fear and physiological stress responses in adult intact, ovariectomized, and estradiol-replaced female rats.

    PubMed

    Simone, J J; Malivoire, B L; McCormick, C M

    2015-10-15

    There is growing interest in the development of cannabis-based therapies for the treatment of fear and anxiety disorders. There are a few studies, but none in females, of the effects of the highly selective cannabinoid receptor type 1 (CB1) agonist, arachidonyl 2'-chlorethylamide (ACEA), on behavioral fear. In experiment 1 involving gonadally-intact females, ACEA (either 0.1 or 0.01 mg/kg) was without effect in the elevated plus maze (EPM), and the lower dose decreased anxiety in the open field test (OFT). AM251 increased anxiety in the EPM and decreased locomotor activity in the OFT. Twenty-four hours after fear conditioning, neither ACEA nor AM251 affected generalized fear or conditioned fear recall. AM251 and 0.1 mg/kg ACEA impaired, and 0.01 mg/kg ACEA enhanced, within-session fear extinction. AM251 increased plasma corticosterone concentrations after the fear extinction session, whereas ACEA was without effect. Based on evidence that estradiol may moderate the effects of CB1 receptor signaling in females, experiment 2 involved ovariectomized (OVX) rats provided with 10-μg 17β-Estradiol and compared with OVX rats without hormone replacement (oil vehicle). Irrespective of hormone treatment, AM251 increased anxiety in the EPM, whereas ACEA (0.01 mg/kg) was without effect. Neither hormone nor drug altered anxiety in the OFT, but estradiol increased and AM251 decreased distance traveled. After fear conditioning, AM251 decreased generalized fear. Neither hormone nor drug had any effect on recall or extinction of conditioned fear, however, ACEA and AM251 increased fear-induced plasma corticosterone concentrations. Further, when results with intact rats were compared with those from OVX rats, gonadal status did not moderate the effects of either AM251 or ACEA, although OVX displayed greater anxiety and fear than did intact rats. Thus, the effects of CB1 receptor antagonism and agonism in adult female rats do not depend on ovarian estradiol. PMID:26311003

  16. Enhanced self-administration of the CB1 receptor agonist WIN55,212-2 in olfactory bulbectomized rats: evaluation of possible serotonergic and dopaminergic underlying mechanisms

    PubMed Central

    Amchova, Petra; Kucerova, Jana; Giugliano, Valentina; Babinska, Zuzana; Zanda, Mary T.; Scherma, Maria; Dusek, Ladislav; Fadda, Paola; Micale, Vincenzo; Sulcova, Alexandra; Fratta, Walter; Fattore, Liana

    2013-01-01

    Depression has been associated with drug consumption, including heavy or problematic cannabis use. According to an animal model of depression and substance use disorder comorbidity, we combined the olfactory bulbectomy (OBX) model of depression with intravenous drug self-administration procedure to verify whether depressive-like rats displayed altered voluntary intake of the CB1 receptor agonist WIN55,212-2 (WIN, 12.5 μg/kg/infusion). To this aim, olfactory-bulbectomized (OBX) and sham-operated (SHAM) Lister Hooded rats were allowed to self-administer WIN by lever-pressing under a continuous [fixed ratio 1 (FR-1)] schedule of reinforcement in 2 h daily sessions. Data showed that both OBX and SHAM rats developed stable WIN intake; yet, responses in OBX were constantly higher than in SHAM rats soon after the first week of training. In addition, OBX rats took significantly longer to extinguish the drug-seeking behavior after vehicle substitution. Acute pre-treatment with serotonin 5HT1B receptor agonist, CGS-12066B (2.5–10 mg/kg), did not significantly modify WIN intake in OBX and SHAM Lister Hooded rats. Furthermore, acute pre-treatment with CGS-12066B (10 and 15 mg/kg) did not alter responses in parallel groups of OBX and SHAM Sprague Dawley rats self-administering methamphetamine under higher (FR-2) reinforcement schedule with nose-poking as operandum. Finally, dopamine levels in the nucleus accumbens (NAc) of OBX rats did not increase in response to a WIN challenge, as in SHAM rats, indicating a dopaminergic dysfunction in bulbectomized rats. Altogether, our findings suggest that a depressive-like state may alter cannabinoid CB1 receptor agonist-induced brain reward function and that a dopaminergic rather than a 5-HT1B mechanism is likely to underlie enhanced WIN self-administration in OBX rats. PMID:24688470

  17. Involvement of endocannabinoids in alcohol “binge” drinking: studies of mice with human fatty acid amide hydrolase genetic variation and after CB1 receptor antagonists

    PubMed Central

    Zhou, Yan; Huang, Ted; Lee, Francis; Kreek, Mary Jeanne

    2016-01-01

    Background The endocannabinoid system has been found to play an important role in modulating alcohol intake. Inhibition or genetic deletion of fatty acid amide hydrolase (FAAH, a key catabolic enzyme for endocannabinoids) leads to increased alcohol consumption and preference in rodent models. A common human single-nucleotide polymorphism (SNP; C385A, rs324420) in the FAAH gene is associated with decreased enzymatic activity of FAAH, resulting in increased anandamide levels in both humans and FAAH C385A knock-in mice. Methods As this FAAH SNP has been reported to be associated with altered alcohol abuse, the present study used these genetic knock-in mice containing the human SNP C385A to determine the impact of variant FAAH gene on alcohol “binge” drinking in the drinking-in-the-dark (DID) model. Results We found that the FAAHA/A mice had greater alcohol intake and preference than the wild-type FAAHC/C mice, suggesting that increased endocannabinoid signaling in FAAHA/A mice led to increased alcohol “binge” consumption. The specificity on alcohol vulnerability was suggested by the lack of any FAAH genotype difference on sucrose or saccharin intake. Using the “binge” DID model, we confirmed that selective CB1 receptor antagonist AM251 reduced alcohol intake in the wild-type mice. Conclusions These data suggest that there is direct and selective involvement of the human FAAH C385A SNP and CB1 receptors in alcohol “binge” drinking. PMID:26857901

  18. Involvement of the Cannabinoid CB1 Receptor in Modulation of Dopamine Output in the Prefrontal Cortex Associated with Food Restriction in Rats

    PubMed Central

    Biggio, Francesca; Utzeri, Cinzia; Lallai, Valeria; Licheri, Valentina; Lutzu, Stefano; Mostallino, Maria Cristina; Secci, Pietro Paolo; Biggio, Giovanni; Sanna, Enrico

    2014-01-01

    Increase in dopamine output on corticolimbic structures, such as medial prefrontal cortex (mPFC) and nucleus accumbens, has been related to reward effects associated with palatable food or food presentation after a fasting period. The endocannabinoid system regulates feeding behavior through a modulatory action on different neurotransmitter systems, including the dopaminergic system. To elucidate the involvement of type 1 cannabinoid receptors in the regulation of dopamine output in the mPFC associated with feeding in hungry rats, we restricted the food availability to a 2-h period daily for 3 weeks. In food-restricted rats the extracellular dopamine concentration in the mPFC increased starting 80 min before food presentation and returned to baseline after food removal. These changes were attenuated in animals treated with the CB1 receptor antagonist SR141716. To better understand how food restriction can change the response of mesocortical dopaminergic neurons, we studied several components of the neuronal circuit that regulates dopamine output in the mPFC. Patch-clamp experiments revealed that the inhibitory effect of the CB1 receptor agonist WIN 55,212-2 on GABAergic sIPSC frequency was diminished in mPFC neurons of FR compared to fed ad libitum rats. The basal sIPSC frequency resulted reduced in mPFC neurons of food-restricted rats, suggestive of an altered regulation of presynaptic GABA release; these changes were accompanied by an enhanced excitability of mPFC and ventral tegmental area neurons. Finally, type 1 cannabinoid receptor expression in the mPFC was reduced in food-restricted rats. Together, our data support an involvement of the endocannabinoid system in regulation of dopamine release in the mPFC through changes in GABA inhibitory synapses and suggest that the emphasized feeding-associated increase in dopamine output in the mPFC of food-restricted rats might be correlated with an altered expression and function of type 1 cannabinoid receptor in this

  19. Involvement of the cannabinoid CB1 receptor in modulation of dopamine output in the prefrontal cortex associated with food restriction in rats.

    PubMed

    Dazzi, Laura; Talani, Giuseppe; Biggio, Francesca; Utzeri, Cinzia; Lallai, Valeria; Licheri, Valentina; Lutzu, Stefano; Mostallino, Maria Cristina; Secci, Pietro Paolo; Biggio, Giovanni; Sanna, Enrico

    2014-01-01

    Increase in dopamine output on corticolimbic structures, such as medial prefrontal cortex (mPFC) and nucleus accumbens, has been related to reward effects associated with palatable food or food presentation after a fasting period. The endocannabinoid system regulates feeding behavior through a modulatory action on different neurotransmitter systems, including the dopaminergic system. To elucidate the involvement of type 1 cannabinoid receptors in the regulation of dopamine output in the mPFC associated with feeding in hungry rats, we restricted the food availability to a 2-h period daily for 3 weeks. In food-restricted rats the extracellular dopamine concentration in the mPFC increased starting 80 min before food presentation and returned to baseline after food removal. These changes were attenuated in animals treated with the CB1 receptor antagonist SR141716. To better understand how food restriction can change the response of mesocortical dopaminergic neurons, we studied several components of the neuronal circuit that regulates dopamine output in the mPFC. Patch-clamp experiments revealed that the inhibitory effect of the CB1 receptor agonist WIN 55,212-2 on GABAergic sIPSC frequency was diminished in mPFC neurons of FR compared to fed ad libitum rats. The basal sIPSC frequency resulted reduced in mPFC neurons of food-restricted rats, suggestive of an altered regulation of presynaptic GABA release; these changes were accompanied by an enhanced excitability of mPFC and ventral tegmental area neurons. Finally, type 1 cannabinoid receptor expression in the mPFC was reduced in food-restricted rats. Together, our data support an involvement of the endocannabinoid system in regulation of dopamine release in the mPFC through changes in GABA inhibitory synapses and suggest that the emphasized feeding-associated increase in dopamine output in the mPFC of food-restricted rats might be correlated with an altered expression and function of type 1 cannabinoid receptor in this

  20. Synergistic effect between prelimbic 5-HT3 and CB1 receptors on memory consolidation deficit in adult male Sprague-Dawley rats: An isobologram analysis.

    PubMed

    Ahmadi-Mahmoodabadi, N; Nasehi, M; Emam Ghoreishi, M; Zarrindast, M-R

    2016-03-11

    The serotonergic system has often been defined as a neuromodulator system, and is specifically involved in learning and memory via its various receptors. Serotonin is involved in many of the same processes affected by cannabinoids. The present study investigated the influence of bilateral post-training intra-prelimbic (PL) administrations of serotonergic 5-hydroxytryptamine type-3 (5-HT3) receptor agents on arachidonylcyclopropylamide (ACPA) (cannabinoid CB1 receptor agonist)-induced amnesia, using the step-through inhibitory avoidance (IA) task to assess memory in adult male Sprague-Dawley rats. The results indicated that sole intra-PL microinjection of ACPA (0.1 and 0.5μg/rat) and 5-HT3 serotonin receptor agonist (m-Chlorophenylbiguanide hydrochloride, m-CPBG; 0.001, 0.01 and 0.1μg/rat) impaired, whereas Y-25130 (a selective 5-HT3 serotonin receptor antagonist; 0.001 and 0.01 and 0.1μg/rat) did not alter IA memory consolidation, by itself. Moreover, intra-PL administration of subthreshold dose of m-CPBG (0.0005μg/rat) potentiated, while Y-25130 (0. 1μg/rat) restored ACPA-induced memory consolidation deficit. The isobologram analysis showed that there is a synergistic effect between ACPA and m-CPBG on memory consolidation deficit. These findings suggest that 5-HT3 receptor mechanism(s), at least partly, play(s) a role in modulating the effect of ACPA on memory consolidation in the PL area. PMID:26701293

  1. New horizons on the role of cannabinoid CB1 receptors in palatable food intake, obesity and related dysmetabolism.

    PubMed

    Cristino, L; Palomba, L; Di Marzo, V

    2014-07-01

    Excessive consumption of high-energy, palatable food contributes to obesity, which results in the metabolic syndrome, heart disease, type-2 diabetes and death. Current knowledge on the function of the hypothalamus as the brain 'feeding centre' recognizes this region as the main regulator of body weight in the central nervous system. Because of their intrinsically fast and adaptive activities, feeding-controlling neural circuitries are endowed with synaptic plasticity modulated by neurotransmitters and hormones that act at different hierarchical levels of integration. In the hypothalamus, among the chemical mediators involved in this integration, endocannabinoids (eCBs) are ideal candidates for the fast (that is, non-genomic), stress-related fine-tuning of neuronal functions. In this article, we overview the role of the eCB system (ECS) in the control of energy intake, and particularly in the consumption of high-energy, palatable food, and discuss how such a role is affected in the brain by changes in the levels of feeding-regulated hormones, such as the adipose tissue-derived anorexigenic mediator leptin, as well as by high-fat diets. The understanding of the molecular mechanisms underlying the neuronal control of feeding behaviours by eCBs offers many potential opportunities for novel therapeutic approaches against obesity. Highlights of the latest advances in the development of strategies that minimize central ECS overactivity in 'western diet'-driven obesity are discussed. PMID:27152162

  2. Progesterone-dependent Regulation of Endometrial Cannabinoid Receptor Type 1 (CB1-R) Expression is Disrupted in Women with Endometriosis and in Isolated Stromal Cells Exposed to TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin)

    PubMed Central

    Resuehr, David; Glore, Dana R.; Taylor, Hugh S.; Bruner-Tran, Kaylon L.; Osteen, Kevin G.

    2012-01-01

    Objective To examine the differentiation-related expression of CB1-R mRNA and protein in endometrial tissue obtained from women with and without endometriosis and to determine the impact of acute TCDD exposure on CB1-R gene expression in isolated endometrial stromal cells. Design Laboratory-based study Setting University-affiliated medical center Patients Women with and without endometriosis undergoing volunteer endometrial biopsies after informed consent. Interventions None Main Outcome Measures Analysis of in vivo CB1-R mRNA and protein expression in human endometrial tissues and mRNA expression in isolated stromal cells following exposure to TCDD or a progesterone receptor antagonist (Onapristone). Results CB1-R mRNA and protein expression was highest during the progesterone-dominated secretory phase in control women, while expression was minimal in endometrial tissues acquired from women with endometriosis, regardless of the cycle phase. Although progesterone was found to induce CB1-R mRNA expression in endometrial stromal cells from control donors, steroid-induced expression of this gene was inhibited by co-treatment with either TCDD or Onapristone. Conclusions Our studies reveal a role for the anti-inflammatory actions of progesterone in regulating endometrial cannabinoid signaling, which is disrupted in women with endometriosis. Significantly, our studies demonstrate, for the first time, that acute TCDD exposure disrupts cannabinoid signaling in the human endometrium. PMID:22789143

  3. Involvement of prelimbic medial prefrontal cortex in panic-like elaborated defensive behaviour and innate fear-induced antinociception elicited by GABAA receptor blockade in the dorsomedial and ventromedial hypothalamic nuclei: role of the endocannabinoid CB1 receptor.

    PubMed

    Freitas, Renato Leonardo de; Salgado-Rohner, Carlos José; Hallak, Jaime Eduardo Cecílio; Crippa, José Alexandre de Souza; Coimbra, Norberto Cysne

    2013-09-01

    It has been shown that GABAA receptor blockade in the dorsomedial and ventromedial hypothalamic nuclei (DMH and VMH, respectively) induces elaborated defensive behavioural responses accompanied by antinociception, which has been utilized as an experimental model of panic attack. Furthermore, the prelimbic (PL) division of the medial prefrontal cortex (MPFC) has been related to emotional reactions and the processing of nociceptive information. The aim of the present study was to investigate the possible involvement of the PL cortex and the participation of local cannabinoid CB1 receptors in the elaboration of panic-like reactions and in innate fear-induced antinociception. Elaborated fear-induced responses were analysed during a 10-min period in an open-field test arena. Microinjection of the GABAA receptor antagonist bicuculline into the DMH/VMH evoked panic-like behaviour and fear-induced antinociception, which was decreased by microinjection of the non-selective synaptic contact blocker cobalt chloride in the PL cortex. Moreover, microinjection of AM251 (25, 100 or 400 pmol), an endocannabinoid CB1 receptor antagonist, into the PL cortex also attenuated the defensive behavioural responses and the antinociception that follows innate fear behaviour elaborated by DMH/VMH. These data suggest that the PL cortex plays an important role in the organization of elaborated forward escape behaviour and that this cortical area is also involved in the elaboration of innate fear-induced antinociception. Additionally, CB1 receptors in the PL cortex modulate both panic-like behaviours and fear-induced antinociception elicited by disinhibition of the DMH/VMH through microinjection of bicuculline. PMID:23521775

  4. L-type channel inhibition by CB1 cannabinoid receptors is mediated by PTX-sensitive G proteins and cAMP/PKA in GT1-7 hypothalamic neurons.

    PubMed

    Hoddah, Hanaa; Marcantoni, Andrea; Comunanza, Valentina; Carabelli, Valentina; Carbone, Emilio

    2009-01-01

    Using immortalized hypothalamic GT1-7 neurons, which express the CB1 cannabinoid receptor (CB1R) and three Ca2+ channel types (T, R and L), we found that the CB1R agonist WIN 55,212-2 inhibited the voltage-gated Ca2+ currents by about 35%. The inhibition by WIN 55,212-2 (10 microM) was reversible and prevented by nifedipine (3 microM), suggesting a selective action on L-type Ca2+ channels (LTCCs). WIN 55,212-2 action exhibited all the features of voltage-independent Ca2+ channel modulation: (1) no changes of the activation kinetics, (2) equal depressive action at all potentials and (3) no facilitation following strong prepulses. At variance with WIN 55,212-2, the CB1R inverse agonist AM-251 (10 microM) caused 20% increase of Ca2+ currents. The inhibition of LTCCs by WIN 55,212-2 was prevented by overnight PTX-incubation and by intracellular perfusion with GDP-beta-S. The latter caused also a 20% Ca2+ current up-regulation. WIN 55,212-2 action was also prevented by application of the PKA-blocker H89 or by loading the neurons with 8-CPT-cAMP. Our results suggest that LTCCs in GT1-7 neurons are partially inhibited at rest due to a constitutive CB1R activity removed by AM-251 and GDP-beta-S. Activation of CB1R via PTX-sensitive G proteins and cAMP/PKA pathway selectively depresses LTCCs that critically control the synchronized spontaneous firing and pulsatile release of gonadotropin-releasing hormone in GT1-7 neurons. PMID:19818494

  5. Involvement of opioid system in antidepressant-like effect of the cannabinoid CB1 receptor inverse agonist AM-251 after physical stress in mice.

    PubMed

    Ostadhadi, Sattar; Haj-Mirzaian, Arya; Nikoui, Vahid; Kordjazy, Nastaran; Dehpour, Ahmad-Reza

    2016-02-01

    Cannabinoid inverse agonists possess antidepressant-like properties, but the mechanism of this action is unknown. Numerous studies have reported the interaction between opioid and cannabinoid pathways. In this study, acute foot-shock stress was used in mice to investigate the involvement of the opioid pathway in the antidepressant-like effect of the cannabinoid CB1 receptor inverse agonist AM-251. Stress was induced by intermittent foot-shock stimulation for 30 min. Then, using the forced swimming test (FST) and tail suspension test (TST), the immobility time was measured. Results show that the immobility time was significantly prolonged in animals subjected to foot-shock stress, compared with non-stressed controls (P < 0.01). Also, the serum corticosterone level was significantly increased after stress induction (P < 0.001). Administration of AM-251 (0.5 and 0.3 mg/kg, intraperitoneally (i.p.)), significantly decreased the immobility time of stressed mice in the FST (P < 0.001 and P < 0.01, respectively) and TST (P < 0.01 and P < 0.05, respectively). The lowest dose of AM-251 (0.1 mg/kg), naltrexone (0.3 mg/kg), and morphine (1.0 mg/kg) did not show any significant effect on stressed animals (P > 0.05). Co-administration of AM-251 with sub-effective dose of naltrexone decreased the effective dose of this cannabinoid inverse agonist, to 0.1 mg/kg (P < 0.01). On the other hand, administration of the sub-effective dose of morphine reversed the anti-immobility effect of AM-251 (0.5 mg/kg; P < 0.001). In conclusion, the present study for the first time reveals the possible role of opioid signalling in the antidepressant-like properties of AM-251 in a foot-shock stress model. PMID:26609670

  6. Role of pre-junctional CB1, but not CB2 , TRPV1 or GPR55 receptors in anandamide-induced inhibition of the vasodepressor sensory CGRPergic outflow in pithed rats.

    PubMed

    Marichal-Cancino, Bruno A; Altamirano-Espinoza, Alain H; Manrique-Maldonado, Guadalupe; MaassenVanDenBrink, Antoinette; Villalón, Carlos M

    2014-03-01

    Stimulation of the perivascular sensory outflow in pithed rats produces vasodepressor responses mediated by CGRP release. Interestingly, endocannabinoids such as anandamide (which interacts with CB1 , CB2 , TRPV1 and GPR55 receptors) can regulate the activity of perivascular sensory nerves in dural blood vessels by modulating CGRP release. Yet, as no publication has reported whether this mechanism is operative in the healthy systemic vasculature, this study has specifically analysed the receptors mediating the potential inhibitory effects of the cannabinoid (CB) receptor agonists anandamide (non-selective), JWH-015 (CB2 ) and lysophosphatidylinositol (GPR55) on the rat vasodepressor sensory CGRPergic outflow (an index of systemic vasodilatation). Healthy pithed rats were pre-treated with consecutive i.v. continuous infusions of hexamethonium, methoxamine and the above agonists. Electrical spinal (T9 -T12 ) stimulation of the vasodepressor sensory CGRPergic outflow or i.v. injections of α-CGRP produced frequency-dependent or dose-dependent vasodepressor responses. The infusions of anandamide in a dose-dependent manner inhibited the vasodepressor responses by electrical stimulation (remaining unaffected by JWH-015 or lysophosphatidylinositol), but not those by α-CGRP. After i.v. administration of antagonists, the inhibition by 3.1 μg/kg min anandamide was: (i) potently blocked by 31-100 μg/kg NIDA41020 (CB1 ), (ii) unaffected by 180 μg/kg AM630 (CB2 ), 31 μg/kg cannabidiol (GPR55) or 31-100 μg/kg capsazepine (TRPV1) and (iii) slightly blocked by 310 μg/kg AM630. The above doses of antagonists were enough to block their respective receptors. These results suggest that anandamide-induced inhibition of the vasodepressor sensory CGRPergic outflow is mainly mediated by pre-junctional activation of CB1 receptors, with no pharmacological evidence for the role of CB2 , TRPV1 or GPR55 receptors. PMID:24118786

  7. Repeated administration of phytocannabinoid Δ(9)-THC or synthetic cannabinoids JWH-018 and JWH-073 induces tolerance to hypothermia but not locomotor suppression in mice, and reduces CB1 receptor expression and function in a brain region-specific manner.

    PubMed

    Tai, S; Hyatt, W S; Gu, C; Franks, L N; Vasiljevik, T; Brents, L K; Prather, P L; Fantegrossi, W E

    2015-12-01

    These studies probed the relationship between intrinsic efficacy and tolerance/cross-tolerance between ∆(9)-THC and synthetic cannabinoid drugs of abuse (SCBs) by examining in vivo effects and cellular changes concomitant with their repeated administration in mice. Dose-effect relationships for hypothermic effects were determined in order to confirm that SCBs JWH-018 and JWH-073 are higher efficacy agonists than ∆(9)-THC in mice. Separate groups of mice were treated with saline, sub-maximal hypothermic doses of JWH-018 or JWH-073 (3.0mg/kg or 10.0mg/kg, respectively) or a maximally hypothermic dose of 30.0mg/kg ∆(9)-THC once per day for 5 consecutive days while core temperature and locomotor activity were monitored via biotelemetry. Repeated administration of all drugs resulted in tolerance to hypothermic effects, but not locomotor effects, and this tolerance was still evident 14 days after the last drug administration. Further studies treated mice with 30.0mg/kg ∆(9)-THC once per day for 4 days, then tested with SCBs on day 5. Mice with a ∆(9)-THC history were cross-tolerant to both SCBs, and this cross-tolerance also persisted 14 days after testing. Select brain regions from chronically treated mice were examined for changes in CB1 receptor expression and function. Expression and function of hypothalamic CB1Rs were reduced in mice receiving chronic drugs, but cortical CB1R expression and function were not altered. Collectively, these data demonstrate that repeated ∆(9)-THC, JWH-018 and JWH-073 can induce long-lasting tolerance to some in vivo effects, which is likely mediated by region-specific downregulation and desensitization of CB1Rs. PMID:26361728

  8. Pharmacological blockade of either cannabinoid CB1 or CB2 receptors prevents both cocaine-induced conditioned locomotion and cocaine-induced reduction of cell proliferation in the hippocampus of adult male rat.

    PubMed

    Blanco-Calvo, Eduardo; Rivera, Patricia; Arrabal, Sergio; Vargas, Antonio; Pavón, Francisco Javier; Serrano, Antonia; Castilla-Ortega, Estela; Galeano, Pablo; Rubio, Leticia; Suárez, Juan; Rodriguez de Fonseca, Fernando

    2014-01-01

    Addiction to major drugs of abuse, such as cocaine, has recently been linked to alterations in adult neurogenesis in the hippocampus. The endogenous cannabinoid system modulates this proliferative response as demonstrated by the finding that pharmacological activation/blockade of cannabinoid CB1 and CB2 receptors not only modulates neurogenesis but also modulates cell death in the brain. In the present study, we evaluated whether the endogenous cannabinoid system affects cocaine-induced alterations in cell proliferation. To this end, we examined whether pharmacological blockade of either CB1 (Rimonabant, 3 mg/kg) or CB2 receptors (AM630, 3 mg/kg) would affect cell proliferation [the cells were labeled with 5-bromo-2'-deoxyuridine (BrdU)] in the subventricular zone (SVZ) of the lateral ventricle and the dentate subgranular zone (SGZ). Additionally, we measured cell apoptosis (as monitored by the expression of cleaved caspase-3) and glial activation [by analyzing the expression of glial fibrillary acidic protein (GFAP) and Iba-1] in the striatum and hippocampus during acute and repeated (4 days) cocaine administration (20 mg/kg). The results showed that acute cocaine exposure decreased the number of BrdU-immunoreactive (ir) cells in the SVZ and SGZ. In contrast, repeated cocaine exposure reduced the number of BrdU-ir cells only in the SVZ. Both acute and repeated cocaine exposure increased the number of cleaved caspase-3-, GFAP- and Iba1-ir cells in the hippocampus, and this effect was counteracted by AM630 or Rimonabant, which increased the number of BrdU-, GFAP-, and Iba1-ir cells in the hippocampus. These results indicate that the changes in neurogenic, apoptotic and gliotic processes that were produced by repeated cocaine administration were normalized by pharmacological blockade of CB1 and CB2. The restorative effects of cannabinoid receptor blockade on hippocampal cell proliferation were associated with the prevention of the induction of conditioned locomotion

  9. Pharmacological blockade of either cannabinoid CB1 or CB2 receptors prevents both cocaine-induced conditioned locomotion and cocaine-induced reduction of cell proliferation in the hippocampus of adult male rat

    PubMed Central

    Blanco-Calvo, Eduardo; Rivera, Patricia; Arrabal, Sergio; Vargas, Antonio; Pavón, Francisco Javier; Serrano, Antonia; Castilla-Ortega, Estela; Galeano, Pablo; Rubio, Leticia; Suárez, Juan; Rodriguez de Fonseca, Fernando

    2014-01-01

    Addiction to major drugs of abuse, such as cocaine, has recently been linked to alterations in adult neurogenesis in the hippocampus. The endogenous cannabinoid system modulates this proliferative response as demonstrated by the finding that pharmacological activation/blockade of cannabinoid CB1 and CB2 receptors not only modulates neurogenesis but also modulates cell death in the brain. In the present study, we evaluated whether the endogenous cannabinoid system affects cocaine-induced alterations in cell proliferation. To this end, we examined whether pharmacological blockade of either CB1 (Rimonabant, 3 mg/kg) or CB2 receptors (AM630, 3 mg/kg) would affect cell proliferation [the cells were labeled with 5-bromo-2′-deoxyuridine (BrdU)] in the subventricular zone (SVZ) of the lateral ventricle and the dentate subgranular zone (SGZ). Additionally, we measured cell apoptosis (as monitored by the expression of cleaved caspase-3) and glial activation [by analyzing the expression of glial fibrillary acidic protein (GFAP) and Iba-1] in the striatum and hippocampus during acute and repeated (4 days) cocaine administration (20 mg/kg). The results showed that acute cocaine exposure decreased the number of BrdU-immunoreactive (ir) cells in the SVZ and SGZ. In contrast, repeated cocaine exposure reduced the number of BrdU-ir cells only in the SVZ. Both acute and repeated cocaine exposure increased the number of cleaved caspase-3-, GFAP- and Iba1-ir cells in the hippocampus, and this effect was counteracted by AM630 or Rimonabant, which increased the number of BrdU-, GFAP-, and Iba1-ir cells in the hippocampus. These results indicate that the changes in neurogenic, apoptotic and gliotic processes that were produced by repeated cocaine administration were normalized by pharmacological blockade of CB1 and CB2. The restorative effects of cannabinoid receptor blockade on hippocampal cell proliferation were associated with the prevention of the induction of conditioned

  10. Effects of CB1 and CRF1 receptor antagonists on binge-like eating in rats with limited access to a sweet fat diet: lack of withdrawal-like responses.

    PubMed

    Parylak, Sarah L; Cottone, Pietro; Sabino, Valentina; Rice, Kenner C; Zorrilla, Eric P

    2012-09-10

    Positive reinforcement (e.g., appetitive, rewarding properties) has often been hypothesized to maintain excessive intake of palatable foods. Recently, rats receiving intermittent access to high sucrose diets showed binge-like intake with withdrawal-like signs upon cessation of access, suggesting negative reinforcement mechanisms contribute as well. Whether intermittent access to high fat diets also produces withdrawal-like syndromes is controversial. The present study therefore tested the hypothesis that binge-like eating and withdrawal-like anxiety would arise in a novel model of binge eating based on daily 10-min access to a sweet fat diet (35% fat kcal, 31% sucrose kcal). Within 2-3 weeks, female Wistar rats developed binge-like intake comparable to levels seen previously for high sucrose diets (~40% of daily caloric intake within 10 min) plus excess weight gain and adiposity, but absent increased anxiety-like behavior during elevated plus-maze or defensive withdrawal tests after diet withdrawal. Binge-like intake was unaffected by pretreatment with the corticotropin-releasing factor type 1 (CRF(1)) receptor antagonist R121919, and corticosterone responses to restraint stress did not differ between sweet-fat binge rats and chow-fed controls. In contrast, pretreatment with the cannabinoid type 1 (CB(1)) receptor antagonist SR147778 dose-dependently reduced binge-like intake, albeit less effectively than in ad lib chow or sweet fat controls. A priming dose of the sweet fat diet did not precipitate increased anxiety-like behavior, but rather increased plus-maze locomotor activity. The results suggest that CB(1)-dependent positive reinforcement rather than CRF(1)-dependent negative reinforcement mechanisms predominantly maintain excessive intake in this limited access model of sweet-fat diet binges. PMID:22776620

  11. Human lung-resident macrophages express CB1 and CB2 receptors whose activation inhibits the release of angiogenic and lymphangiogenic factors.

    PubMed

    Staiano, Rosaria I; Loffredo, Stefania; Borriello, Francesco; Iannotti, Fabio Arturo; Piscitelli, Fabiana; Orlando, Pierangelo; Secondo, Agnese; Granata, Francescopaolo; Lepore, Maria Teresa; Fiorelli, Alfonso; Varricchi, Gilda; Santini, Mario; Triggiani, Massimo; Di Marzo, Vincenzo; Marone, Gianni

    2016-04-01

    Macrophages are pivotal effector cells in immune responses and tissue remodeling by producing a wide spectrum of mediators, including angiogenic and lymphangiogenic factors. Activation of cannabinoid receptor types 1 and 2 has been suggested as a new strategy to modulate angiogenesis in vitro and in vivo. We investigated whether human lung-resident macrophages express a complete endocannabinoid system by assessing their production of endocannabinoids and expression of cannabinoid receptors. Unstimulated human lung macrophage produce 2-arachidonoylglycerol,N-arachidonoyl-ethanolamine,N-palmitoyl-ethanolamine, andN-oleoyl-ethanolamine. On LPS stimulation, human lung macrophages selectively synthesize 2-arachidonoylglycerol in a calcium-dependent manner. Human lung macrophages express cannabinoid receptor types 1 and 2, and their activation induces ERK1/2 phosphorylation and reactive oxygen species generation. Cannabinoid receptor activation by the specific synthetic agonists ACEA and JWH-133 (but not the endogenous agonist 2-arachidonoylglycerol) markedly inhibits LPS-induced production of vascular endothelial growth factor-A, vascular endothelial growth factor-C, and angiopoietins and modestly affects IL-6 secretion. No significant modulation of TNF-α or IL-8/CXCL8 release was observed. The production of vascular endothelial growth factor-A by human monocyte-derived macrophages is not modulated by activation of cannabinoid receptor types 1 and 2. Given the prominent role of macrophage-assisted vascular remodeling in many tumors, we identified the expression of cannabinoid receptors in lung cancer-associated macrophages. Our results demonstrate that cannabinoid receptor activation selectively inhibits the release of angiogenic and lymphangiogenic factors from human lung macrophage but not from monocyte-derived macrophages. Activation of cannabinoid receptors on tissue-resident macrophages might be a novel strategy to modulate macrophage-assisted vascular remodeling

  12. Involvement of medial prefrontal cortex alpha-2 adrenoceptors on memory acquisition deficit induced by arachidonylcyclopropylamide, a cannabinoid CB1 receptor agonist, in rats; possible involvement of Ca2+ channels.

    PubMed

    Beiranvand, Afsaneh; Nasehi, Mohammad; Zarrindast, Mohammad-Reza; Moghaddasi, Mehrnoush

    2016-09-01

    Functional interactions between cannabinoid and alpha-2 adrenergic systems in cognitive control in the medial prefrontal cortex (mPFC) seem possible. The present study evaluated the possible role of alpha-2 adrenoceptors of the prefrontal cortex on effect of arachidonylcyclopropylamide (ACPA), a cannabinoid CB1 receptor (CB1R) agonist, in adult male Wistar rats. The animals were bilaterally implanted with chronic cannulae in the mPFC, trained in a step-through task, and tested 24 h after training to measure step-through latency. Results indicate that pre-training microinjection of ACPA (0.05 and 0.5 μg/rat) and clonidine (alpha-2 adrenoceptor agonist; 1 and 2 μg/rat) reduce memory acquisition. Pre-training subthreshold dose of clonidine (0.5 µg/rat) restored memory-impairing effect of ACPA (0.05 and 0.5 µg/rat). On the other hand, pre-training administration of the alpha-2 adrenoceptor antagonist yohimbine in all doses used (0.5, 1, and 2 μg/rat) did not affect memory acquisition by itself, while a subthreshold dose of yohimbine (2 µg/rat) potentiated memory impairment induced by ACPA (0.005 µg/rat). Finally, a subthreshold dose of SKF96365 (a Ca(2+) channel blocker) blocked clonidine and yohimbine effect of memory responses induced by ACPA. In conclusion, these data indicate that mPFC alpha-2 adrenoceptors play an important role in ACPA-induced amnesia and Ca(2+) channels have a critical role this phenomenon. PMID:27317021

  13. Effects of WIN 55,212-2 (a non-selective cannabinoid CB1 and CB 2 receptor agonist) on the protective action of various classical antiepileptic drugs in the mouse 6 Hz psychomotor seizure model.

    PubMed

    Florek-Luszczki, Magdalena; Wlaz, Aleksandra; Kondrat-Wrobel, Maria W; Tutka, Piotr; Luszczki, Jarogniew J

    2014-07-01

    The aim of this study was to characterize the influence of WIN 55,212-2 (WIN--a non-selective cannabinoid CB1 and CB2 receptor agonist) on the anticonvulsant effects of various classical antiepileptic drugs (clobazam, clonazepam, phenobarbital and valproate) in the mouse 6 Hz-induced psychomotor seizure model. Limbic (psychomotor) seizure activity was evoked in albino Swiss mice by a current (32 mA, 6 Hz, 3 s stimulus duration) delivered via ocular electrodes. Drug-related adverse effects were ascertained by use of the chimney test (evaluating motor performance), step-through passive avoidance task (assessing learning) and grip-strength test (evaluating skeletal muscular strength). Total brain concentrations of antiepileptic drugs were measured by fluorescence polarization immunoassay to ascertain any pharmacokinetic contribution to the observed antiseizure effect. Results indicate that WIN (5 mg/kg, administered intraperitoneally) significantly enhanced the anticonvulsant action of clonazepam (P < 0.001), phenobarbital (P < 0.05) and valproate (P < 0.05), but not that of clobazam in the mouse 6 Hz model. Moreover, WIN (2.5 mg/kg) significantly potentiated the anticonvulsant action of clonazepam (P < 0.01), but not that of clobazam, phenobarbital or valproate in the 6 Hz test in mice. None of the investigated combinations of WIN with antiepileptic drugs was associated with any concurrent adverse effects with regard to motor performance, learning or muscular strength. Pharmacokinetic experiments revealed that WIN had no impact on total brain concentrations of antiepileptic drugs in mice. These preclinical data would suggest that WIN in combination with clonazepam, phenobarbital and valproate is associated with beneficial anticonvulsant pharmacodynamic interactions in the mouse 6 Hz-induced psychomotor seizure test. PMID:24549572

  14. Tonic endocannabinoid-mediated modulation of GABA release is independent of the CB1 content of axon terminals

    PubMed Central

    Lenkey, Nora; Kirizs, Tekla; Holderith, Noemi; Máté, Zoltán; Szabó, Gábor; Vizi, E. Sylvester; Hájos, Norbert; Nusser, Zoltan

    2015-01-01

    The release of GABA from cholecystokinin-containing interneurons is modulated by type-1 cannabinoid receptors (CB1). Here we tested the hypothesis that the strength of CB1-mediated modulation of GABA release is related to the CB1 content of axon terminals. Basket cell boutons have on average 78% higher CB1 content than those of dendritic-layer-innervating (DLI) cells, a consequence of larger bouton surface and higher CB1 density. The CB1 antagonist AM251 caused a 54% increase in action potential-evoked [Ca2+] in boutons of basket cells, but not in DLI cells. However, the effect of AM251 did not correlate with CB1 immunoreactivity of individual boutons. Moreover, a CB1 agonist decreased [Ca2+] in a cell type- and CB1-content-independent manner. Replica immunogold labelling demonstrated the colocalization of CB1 with the Cav2.2 Ca2+ channel subunit. Our data suggest that only a subpopulation of CB1s, within nanometre distances from their target Cav2.2 channels, are responsible for endocannabinoid-mediated modulation of GABA release. PMID:25891347

  15. Sperm Release From the Oviductal Epithelium Depends on Ca(2+) Influx Upon Activation of CB1 and TRPV1 by Anandamide.

    PubMed

    Gervasi, M G; Osycka-Salut, C; Sanchez, T; Alonso, C A I; Llados, C; Castellano, L; Franchi, A M; Villalón, M; Perez-Martinez, S

    2016-02-01

    The oviduct acts as a functional sperm reservoir in many mammalian species. Both binding and release of spermatozoa from the oviductal epithelium are mainly modulated by sperm capacitation. Several molecules from oviductal fluid are involved in the regulation of sperm function. Anandamide is a lipid mediator involved in reproductive physiology. Previously, we demonstrated that anandamide, through activation of the cannabinoid receptor type 1 (CB1), promotes sperm release from bovine oviductal epithelial cells, and through CB1 and the transient receptor potential vanilloid 1 (TRPV1), induces sperm capacitation. Herein we investigate co-activation between CB1 and TRPV1, and Ca(2+) influx as part of the mechanism of action of anandamide during sperm release from oviductal cells. Our results indicate that in the absence of Ca(2+) anandamide failed to release spermatozoa from oviductal epithelial cells. Additionally, sperm release promoted by cannabinoid and vanilloid agonists was abolished when the spermatozoa were preloaded with BAPTA-AM, a Ca(2+) chelator. We also determined Ca(2+) levels in spermatozoa preloaded with FURA2-AM co-cultured with oviductal cells and incubated with different cannabinoid and vanilloid agonists. The incubation with different agonists induced Ca(2+) influx, which was abolished by CB1 or TRPV1 antagonists. Our results also suggest that a phospholypase C (PLC) might mediate the activation of CB1 and TRPV1 in sperm release from the bovine oviduct. Therefore, our findings indicate that anandamide, through CB1 and TRPV1 activation, is involved in sperm release from the oviductal reservoir. An increase of sperm Ca(2+) levels and the PLC activation might be involved in anandamide signaling pathway. PMID:26129689

  16. CB1 Knockout Mice Unveil Sustained CB2-Mediated Antiallodynic Effects of the Mixed CB1/CB2 Agonist CP55,940 in a Mouse Model of Paclitaxel-Induced Neuropathic Pain.

    PubMed

    Deng, Liting; Cornett, Benjamin L; Mackie, Ken; Hohmann, Andrea G

    2015-07-01

    Cannabinoids suppress neuropathic pain through activation of cannabinoid CB1 and/or CB2 receptors; however, unwanted CB1-mediated cannabimimetic effects limit clinical use. We asked whether CP55,940 [(-)-3-[2-hydroxy-4-(1,1-dimethylheptyl)phenyl]-4-(3-hydroxypropyl)cyclohexanol], a potent cannabinoid that binds with similar affinity to CB1 and CB2 in vitro, produces functionally separable CB1- and CB2-mediated pharmacological effects in vivo. We evaluated antiallodynic effects, possible tolerance, and cannabimimetic effects (e.g., hypothermia, catalepsy, CB1-dependent withdrawal signs) after systemic CP55,940 treatment in a mouse model of toxic neuropathy produced by a chemotherapeutic agent, paclitaxel. The contribution of CB1 and CB2 receptors to in vivo actions of CP55,940 was evaluated using CB1 knockout (KO), CB2KO, and wild-type (WT) mice. Low-dose CP55,940 (0.3 mg/kg daily, i.p. ) suppressed paclitaxel-induced allodynia in WT and CB2KO mice, but not CB1KO mice. Low-dose CP55,940 also produced hypothermia and rimonabant-precipitated withdrawal in WT, but not CB1KO, mice. In WT mice, tolerance developed to CB1-mediated hypothermic effects of CP55,940 earlier than to antiallodynic effects. High-dose CP55,940 (10 mg/kg daily, i.p.) produced catalepsy in WT mice, which precluded determination of antiallodynic efficacy but produced sustained CB2-mediated suppression of paclitaxel-induced allodynia in CB1KO mice; these antiallodynic effects were blocked by the CB2 antagonist 6-iodopravadoline (AM630). High-dose CP55,940 did not produce hypothermia or rimonabant-precipitated withdrawal in CB1KO mice. Our results using the mixed CB1/CB2 agonist CP55,940 document that CB1 and CB2 receptor activations produce mechanistically distinct suppression of neuropathic pain. Our study highlights the therapeutic potential of targeting cannabinoid CB2 receptors to bypass unwanted central effects associated with CB1 receptor activation. PMID:25904556

  17. Endogenous vs Exogenous Allosteric Modulators in GPCRs: A dispute for shuttling CB1 among different membrane microenvironments

    NASA Astrophysics Data System (ADS)

    Stornaiuolo, Mariano; Bruno, Agostino; Botta, Lorenzo; Regina, Giuseppe La; Cosconati, Sandro; Silvestri, Romano; Marinelli, Luciana; Novellino, Ettore

    2015-10-01

    A Cannabinoid Receptor 1 (CB1) binding site for the selective allosteric modulator ORG27569 is here identified through an integrate approach of consensus pocket prediction, mutagenesis studies and Mass Spectrometry. This unprecedented ORG27569 pocket presents the structural features of a Cholesterol Consensus Motif, a cholesterol interacting region already found in other GPCRs. ORG27569 and cholesterol affects oppositely CB1 affinity for orthosteric ligands. Moreover, the rise in cholesterol intracellular level results in CB1 trafficking to the axonal region of neuronal cells, while, on the contrary, ORG27568 binding induces CB1 enrichment at the soma. This control of receptor migration among functionally different membrane regions of the cell further contributes to downstream signalling and adds a previously unknown mechanism underpinning CB1 modulation by ORG27569 , that goes beyond a mere control of receptor affinity for orthosteric ligands.

  18. Endogenous vs Exogenous Allosteric Modulators in GPCRs: A dispute for shuttling CB1 among different membrane microenvironments

    PubMed Central

    Stornaiuolo, Mariano; Bruno, Agostino; Botta, Lorenzo; Regina, Giuseppe La; Cosconati, Sandro; Silvestri, Romano; Marinelli, Luciana; Novellino, Ettore

    2015-01-01

    A Cannabinoid Receptor 1 (CB1) binding site for the selective allosteric modulator ORG27569 is here identified through an integrate approach of consensus pocket prediction, mutagenesis studies and Mass Spectrometry. This unprecedented ORG27569 pocket presents the structural features of a Cholesterol Consensus Motif, a cholesterol interacting region already found in other GPCRs. ORG27569 and cholesterol affects oppositely CB1 affinity for orthosteric ligands. Moreover, the rise in cholesterol intracellular level results in CB1 trafficking to the axonal region of neuronal cells, while, on the contrary, ORG27568 binding induces CB1 enrichment at the soma. This control of receptor migration among functionally different membrane regions of the cell further contributes to downstream signalling and adds a previously unknown mechanism underpinning CB1 modulation by ORG27569 , that goes beyond a mere control of receptor affinity for orthosteric ligands. PMID:26482099

  19. Dissociation between the panicolytic effect of cannabidiol microinjected into the substantia nigra, pars reticulata, and fear-induced antinociception elicited by bicuculline administration in deep layers of the superior colliculus: The role of CB1-cannabinoid receptor in the ventral mesencephalon.

    PubMed

    da Silva, Juliana Almeida; Biagioni, Audrey Francisco; Almada, Rafael Carvalho; de Souza Crippa, José Alexandre; Cecílio Hallak, Jaime Eduardo; Zuardi, Antônio Waldo; Coimbra, Norberto Cysne

    2015-07-01

    Many studies suggest that the substantia nigra, pars reticulata (SNpr), a tegmental mesencephalic structure rich in γ-aminobutyric acid (GABA)- and cannabinoid receptor-containing neurons, is involved in the complex control of defensive responses through the neostriatum-nigral disinhibitory and nigro-tectal inhibitory GABAergic pathways during imminently dangerous situations. The aim of the present work was to investigate the role played by CB1-cannabinoid receptor of GABAergic pathways terminal boutons in the SNpr or of SNpr-endocannabinoid receptor-containing interneurons on the effect of intra-nigral microinjections of cannabidiol in the activity of nigro-tectal inhibitory pathways. GABAA receptor blockade in the deep layers of the superior colliculus (dlSC) elicited vigorous defensive behaviour. This explosive escape behaviour was followed by significant antinociception. Cannabidiol microinjection into the SNpr had a clear anti-aversive effect, decreasing the duration of defensive alertness, the frequency and duration of defensive immobility, and the frequency and duration of explosive escape behaviour, expressed by running and jumps, elicited by transitory GABAergic dysfunction in dlSC. However, the innate fear induced-antinociception was not significantly changed. The blockade of CB1 endocannabinoid receptor in the SNpr decreased the anti-aversive effect of canabidiol based on the frequency and duration of defensive immobility, the frequency of escape expressed by running, and both the frequency and duration of escape expressed by jumps. These findings suggest a CB1 mediated endocannabinoid signalling in cannabidiol modulation of panic-like defensive behaviour, but not of innate fear-induced antinociception evoked by GABAA receptor blockade with bicuculline microinjection into the superior colliculus, with a putative activity in nigro-collicular GABAergic pathways. PMID:25841876

  20. Beyond radio-displacement techniques for Identification of CB1 Ligands: The First Application of a Fluorescence-quenching Assay

    PubMed Central

    Bruno, Agostino; Lembo, Francesca; Novellino, Ettore; Stornaiuolo, Mariano; Marinelli, Luciana

    2014-01-01

    Cannabinoid type 1 Receptor (CB1) belongs to the GPCR family and it has been targeted, so far, for the discovery of drugs aimed at the treatment of neuropathic pain, nausea, vomit, and food intake disorders. Here, we present the development of the first fluorescent assay enabling the measurement of kinetic binding constants for CB1orthosteric ligands. The assay is based on the use of T1117, a fluorescent analogue of AM251. We prove that T1117 binds endogenous and recombinant CB1 receptors with nanomolar affinity. Moreover, T1117 binding to CB1 is sensitive to the allosteric ligand ORG27569 and thus it is applicable to the discovery of new allosteric drugs. The herein presented assay constitutes a sustainable valid alternative to the expensive and environmental impacting radiodisplacement techniques and paves the way for an easy, fast and cheap high-throughput drug screening toward CB1 for identification of new orthosteric and allosteric modulators. PMID:24441508

  1. Beyond radio-displacement techniques for identification of CB1 ligands: the first application of a fluorescence-quenching assay.

    PubMed

    Bruno, Agostino; Lembo, Francesca; Novellino, Ettore; Stornaiuolo, Mariano; Marinelli, Luciana

    2014-01-01

    Cannabinoid type 1 Receptor (CB1) belongs to the GPCR family and it has been targeted, so far, for the discovery of drugs aimed at the treatment of neuropathic pain, nausea, vomit, and food intake disorders. Here, we present the development of the first fluorescent assay enabling the measurement of kinetic binding constants for CB1 orthosteric ligands. The assay is based on the use of T1117, a fluorescent analogue of AM251. We prove that T1117 binds endogenous and recombinant CB1 receptors with nanomolar affinity. Moreover, T1117 binding to CB1 is sensitive to the allosteric ligand ORG27569 and thus it is applicable to the discovery of new allosteric drugs. The herein presented assay constitutes a sustainable valid alternative to the expensive and environmental impacting radiodisplacement techniques and paves the way for an easy, fast and cheap high-throughput drug screening toward CB1 for identification of new orthosteric and allosteric modulators. PMID:24441508

  2. The Structure–Function Relationships of Classical Cannabinoids: CB1/CB2 Modulation

    PubMed Central

    Bow, Eric W.; Rimoldi, John M.

    2016-01-01

    The cannabinoids are members of a deceptively simple class of terpenophenolic secondary metabolites isolated from Cannabis sativa highlighted by (−)-Δ9-tetrahydrocannabinol (THC), eliciting distinct pharmacological effects mediated largely by cannabinoid receptor (CB1 or CB2) signaling. Since the initial discovery of THC and related cannabinoids, synthetic and semisynthetic classical cannabinoid analogs have been evaluated to help define receptor binding modes and structure–CB1/CB2 functional activity relationships. This perspective will examine the classical cannabinoids, with particular emphasis on the structure–activity relationship of five regions: C3 side chain, phenolic hydroxyl, aromatic A-ring, pyran B-ring, and cyclohexenyl C-ring. Cumulative structure–activity relationship studies to date have helped define the critical structural elements required for potency and selectivity toward CB1 and CB2 and, more importantly, ushered the discovery and development of contemporary nonclassical cannabinoid modulators with enhanced physicochemical and pharmacological profiles. PMID:27398024

  3. The Structure-Function Relationships of Classical Cannabinoids: CB1/CB2 Modulation.

    PubMed

    Bow, Eric W; Rimoldi, John M

    2016-01-01

    The cannabinoids are members of a deceptively simple class of terpenophenolic secondary metabolites isolated from Cannabis sativa highlighted by (-)-Δ(9)-tetrahydrocannabinol (THC), eliciting distinct pharmacological effects mediated largely by cannabinoid receptor (CB1 or CB2) signaling. Since the initial discovery of THC and related cannabinoids, synthetic and semisynthetic classical cannabinoid analogs have been evaluated to help define receptor binding modes and structure-CB1/CB2 functional activity relationships. This perspective will examine the classical cannabinoids, with particular emphasis on the structure-activity relationship of five regions: C3 side chain, phenolic hydroxyl, aromatic A-ring, pyran B-ring, and cyclohexenyl C-ring. Cumulative structure-activity relationship studies to date have helped define the critical structural elements required for potency and selectivity toward CB1 and CB2 and, more importantly, ushered the discovery and development of contemporary nonclassical cannabinoid modulators with enhanced physicochemical and pharmacological profiles. PMID:27398024

  4. Activation of CB1 inhibits NGF-induced sensitization of TRPV1 in adult mouse afferent neurons

    PubMed Central

    Wang, Zun-Yi; McDowell, Thomas; Wang, Peiqing; Alvarez, Roxanne; Gomez, Timothy; Bjorling, Dale E.

    2015-01-01

    Transient receptor potential vanilloid 1 (TRPV1)-containing afferent neurons convey nociceptive signals and play an essential role in pain sensation. Exposure to nerve growth factor (NGF) rapidly increases TRPV1 activity (sensitization). In the present study, we investigated whether treatment with the selective cannabinoid receptor 1 (CB1) agonist arachidonyl-2'-chloroethylamide (ACEA) affects NGF-induced sensitization of TRPV1 in adult mouse dorsal root ganglion (DRG) afferent neurons. We found that CB1, NGF receptor tyrosine kinase A (trkA), and TRPV1 are present in cultured adult mouse small- to medium-sized afferent neurons and treatment with NGF (100 ng/ml) for 30 minutes significantly increased the number of neurons that responded to capsaicin (as indicated by increased intracellular Ca2+ concentration). Pretreatment with the CB1 agonist ACEA (10 nM) inhibited the NGF-induced response, and this effect of ACEA was reversed by a selective CB1 antagonist. Further, pretreatment with ACEA inhibited NGF-induced phosphorylation of AKT. Blocking PI3 kinase activity also attenuated the NGF-induced increase in the number of neurons that responded to capsaicin. Our results indicate that the analgesic effect of CB1 activation may in part be due to inhibition of NGF-induced sensitization of TRPV1 and also that the effect of CB1 activation is at least partly mediated by attenuation of NGF-induced increased PI3 signaling. PMID:25088915

  5. Rising stars: modulation of brain functions by astroglial type-1 cannabinoid receptors.

    PubMed

    Metna-Laurent, Mathilde; Marsicano, Giovanni

    2015-03-01

    The type-1-cannabinoid (CB1 ) receptor is amongst the most widely expressed G protein-coupled receptors in the brain. In few decades, CB1 receptors have been shown to regulate a large array of functions from brain cell development and survival to complex cognitive processes. Understanding the cellular mechanisms underlying these functions of CB1 is complex due to the heterogeneity of the brain cell types on which the receptor is expressed. Although the large majority of CB1 receptors act on neurons, early studies pointed to a direct control of CB1 receptors over astroglial functions including brain energy supply and neuroprotection. In line with the growing concept of the tripartite synapse highlighting astrocytes as direct players in synaptic plasticity, astroglial CB1 receptor signaling recently emerged as the mediator of several forms of synaptic plasticity associated to important cognitive functions. Here, we shortly review the current knowledge on CB1 receptor-mediated astroglial functions. This functional spectrum is large and most of the mechanisms by which CB1 receptors control astrocytes, as well as their consequences in vivo, are still unknown, requiring innovative approaches to improve this new cannabinoid research field. PMID:25452006

  6. Nicotine self-administration induces CB1-dependent LTP in the bed nucleus of the stria terminalis.

    PubMed

    Reisiger, Anne-Ruth; Kaufling, Jennifer; Manzoni, Olivier; Cador, Martine; Georges, François; Caillé, Stephanie

    2014-03-19

    Nicotine addiction is characterized by repetitive drug taking and drug seeking, both tightly controlled by cannabinoid CB1 receptors. The responsiveness of neurons of the bed nucleus of the stria terminalis (BNST) to infralimbic cortex (ILCx) excitatory inputs is increased in rats with active, but not passive, nicotine taking. Therefore, we hypothesize that acquisition of the learned association between nicotine infusion and a paired cue light permits the strengthening of the ILCx-BNST synapses after ILCx tetanic stimulation. We exposed rats to intravenous nicotine self-administration for 2 months. Using a combination of in vivo protocols (electrical stimulations, extracellular recordings, and pharmacological manipulations), we characterized the effects of 10 Hz stimulation of the ILCx on BNST excitatory responses, under different conditions of exposure to nicotine. In addition, we tested whether the effects of the stimulation were CB1 receptor-dependent. The results show that nicotine self-administration supports the induction of evoked spike potentiation in the BNST in response to 10 Hz stimulation of ILCx afferents. Although not altered by nicotine abstinence, this cellular adaptation was blocked by CB1 receptor antagonism. Moreover, blockade of BNST CB1 receptors prevented increases in time-out responding subsequent to ILCx stimulation and decreased cue-induced reinstatement. Thus, the synaptic potentiation within the BNST in response to ILCx stimulation seems to contribute to the cue-elicited responding associated with nicotine self-administration and is tightly controlled by CB1 receptors. PMID:24647948

  7. Tetracycline to Prevent Epidermal Growth Factor Receptor Inhibitor-Induced Skin Rashes: Results of a Placebo-Controlled Trial from the North Central Cancer Treatment Group (N03CB)1

    PubMed Central

    Jatoi, Aminah; Rowland, Kendrith; Sloan, Jeff A.; Gross, Howard M.; Fishkin, Paul A.; Kahanic, Stephen P.; Novotny, Paul J.; Schaefer, Paul L.; Johnson, David B.; Tschetter, Loren K.; Loprinzi, Charles L.

    2014-01-01

    PURPOSE Epidermal growth factor receptor inhibitors are effective cancer therapies, but they cause a rash in greater than 50% of patients. This study tested tetracycline for rash prevention. METHODS This placebo-controlled, double-blinded trial enrolled patients who were starting cancer treatment with an epidermal growth factor receptor inhibitor. Patients could not have had a rash at enrollment. All were randomly assigned to either tetracycline 500 milligrams orally twice a day for 28 days versus a placebo. Patients were monitored for rash (monthly physician assessment and weekly patient-reported questionnaires), quality of life (SKINDEX-16), and adverse events. Monitoring occurred during the 4-week intervention and then for an additional 4 weeks. The primary objective was to compare the incidence of rash between study arms, and 30 patients per arm provided a 90% probability of detecting a 40% difference in incidence with a p-value of 0.05 (2-sided). RESULTS Sixty-one evaluable patients were enrolled, and arms were well balanced on baseline characteristics, rates of drop out, and rates of discontinuation of the epidermal growth factor receptor inhibitor. Rash incidence was comparable across arms. Physicians reported that 16 tetracycline-treated patients (70%) and 22 placebo-exposed patients (76%) developed a rash (p=0.61). Tetracycline appears to have lessened rash severity, although high drop out rates invite caution in interpreting findings. By week 4, physician-reported grade 2 rash occurred in 17% of tetracycline-treated patients (n=4) and in 55% of placebo-exposed patients (n=16); (p=0.04). Tetracycline-treated patients reported better scores, as per the SKINDEX-16, on certain quality of life parameters, such as skin burning or stinging, skin irritation, and being bothered by a persistence/recurrence of a skin condition. Adverse events were comparable across arms. CONCLUSION Tetracycline did not prevent epidermal growth factor receptor inhibitor

  8. Cannabidiol causes endothelium-dependent vasorelaxation of human mesenteric arteries via CB1 activation

    PubMed Central

    Stanley, Christopher P.; Hind, William H.; Tufarelli, Cristina; O'Sullivan, Saoirse E.

    2015-01-01

    Aims The protective effects of cannabidiol (CBD) have been widely shown in preclinical models and have translated into medicines for the treatment of multiple sclerosis and epilepsy. However, the direct vascular effects of CBD in humans are unknown. Methods and results Using wire myography, the vascular effects of CBD were assessed in human mesenteric arteries, and the mechanisms of action probed pharmacologically. CBD-induced intracellular signalling was characterized using human aortic endothelial cells (HAECs). CBD caused acute, non-recoverable vasorelaxation of human mesenteric arteries with an Rmax of ∼40%. This was inhibited by cannabinoid receptor 1 (CB1) receptor antagonists, desensitization of transient receptor potential channels using capsaicin, removal of the endothelium, and inhibition of potassium efflux. There was no role for cannabinoid receptor-2 (CB2) receptor, peroxisome proliferator activated receptor (PPAR)γ, the novel endothelial cannabinoid receptor (CBe), or cyclooxygenase. CBD-induced vasorelaxation was blunted in males, and in patients with type 2 diabetes or hypercholesterolemia. In HAECs, CBD significantly reduced phosphorylated JNK, NFκB, p70s6 K and STAT5, and significantly increased phosphorylated CREB, ERK1/2, and Akt levels. CBD also increased phosphorylated eNOS (ser1177), which was correlated with increased levels of ERK1/2 and Akt levels. CB1 receptor antagonism prevented the increase in eNOS phosphorylation. Conclusion This study shows, for the first time, that CBD causes vasorelaxation of human mesenteric arteries via activation of CB1 and TRP channels, and is endothelium- and nitric oxide-dependent. PMID:26092099

  9. The effects of cannabinoids on contextual conditioned fear in CB1 knockout and CD1 mice.

    PubMed

    Mikics, Eva; Dombi, Timea; Barsvári, Beáta; Varga, Balázs; Ledent, Catherine; Freund, Tamás F; Haller, József

    2006-05-01

    We studied the effects of cannabinoids on contextual conditioned fear responses. CB1 knockout and wild-type (CD1) mice were exposed to a brief session of electric shocks, and their behavior was studied in the same context 24 h later. In wild-type mice, shock exposure increased freezing and resting, and decreased locomotion and exploration. The genetic disruption of the CB1 receptor abolished the conditioned fear response. The CB1 antagonist AM-251 reduced the peak of the conditioned fear response when applied 30 min before behavioral testing (i.e. 24 h after shocks) in CD1 (wild-type) mice. The cannabinoid agonist WIN-55,212-2 markedly increased the conditioned fear response in CD1 mice, the effect of which was potently antagonized by AM-251. Thus, cannabinoid receptor activation appears to strongly promote the expression of contextual conditioned fear. In earlier experiments, cannabinoids did not interfere with the expression of cue-induced conditioned fear but strongly promoted its extinction. Considering the primordial role of the amygdala in simple associative learning (e.g. in cue-induced fear) and the role of the hippocampus in learning more complex stimulus relationships (e.g. in contextual fear), the present and earlier findings are not necessarily contradictory, but suggest that cannabinoid signaling plays different roles in the two structures. Data are interpreted in terms of the potential involvement of cannabinoids in trauma-induced behavioral changes. PMID:16572000

  10. Prophylactic Tetracycline Does Not Diminish the Severity of Epidermal Growth Factor Receptor (EGFR) Inhibitor Induced Rash: Results from the North Central Cancer Treatment Group (Supplementary N03CB)1

    PubMed Central

    Jatoi, Aminah; Dakhil, Shaker R.; Sloan, Jeff A.; Kugler, John W.; Rowland, Kendrith M.; Schaefer, Paul L.; Novotny, Paul J.; Wender, Donald B.; Gross, Howard M.; Loprinzi, Charles L.

    2014-01-01

    PURPOSE Previous studies suggest tetracycline and other antibiotics lessen the severity of epidermal growth factor receptor (EGFR) inhibitor-induced rash. This study sought to confirm such findings. METHODS Patients starting an EGFR inhibitor were eligible for this randomized, double-blinded, placebo-controlled study and had to be rash-free. They were then randomly assigned to tetracycline 500 milligrams orally twice a day for 28 days versus a placebo. Rash development and severity (monthly physician assessment and weekly patient-reported questionnaires), quality of life (SKINDEX-16), and adverse events were monitored during the 4-week intervention and then for an additional 4 weeks. The primary objective was to compare the incidence of grade 2 or worse rash between study arms; 32 patients per group provided a 90% probability of detecting a 40% difference in incidence with a type I error rate of 0.05 (2-sided). RESULTS 65 patients were enrolled, and groups were balanced on baseline characteristics. During the first 4 weeks, healthcare provider-reported data found that 27 tetracycline-treated patients (82%) and 24 placebo-exposed patients (75%) developed a rash. This rash was a grade 2+ in 17 (52%) and 14 (44%), respectively (p=0.62). Comparable grade 2+ rash rates were observed during weeks 5 through 8 as well as with patient-reported rash data throughout the study period. Quality of life was comparable across study arms, and tetracycline was well tolerated. CONCLUSION Although previous studies suggest otherwise, this randomized, double-blinded, placebo-controlled did not find that tetracycline lessened rash incidence or severity in patients who were taking EGFR inhibitors. PMID:20820817

  11. Low-pressure oxidation of Cb-1Zr alloy.

    NASA Technical Reports Server (NTRS)

    Lyon, T. F.

    1971-01-01

    Resistively heated strip specimens of Cb-1Zr alloy were exposed at 927 C in a vacuum chamber at various levels of total pressure in the 1-microtorr range and at various oxygen partial pressures in the .1-microtorr range. Oxygen reaction rates (sticking probabilities) were found to depend on whether or not the specimens were annealed immediately before the test exposure. It is shown that a normally undetectable oxide film exists on the Cb-1Zr surface as a result of oxidation by ambient air, and this film reduces the sticking probability as compared with a clean metal surface. The alloy is considerably strengthened by addition of oxygen to a level of about 6000 ppm, while still maintaining reasonably good room temperature ductility.

  12. The CB1 antagonist, SR141716A, is protective in permanent photothrombotic cerebral ischemia.

    PubMed

    Reichenbach, Zachary Wilmer; Li, Hongbo; Ward, Sara Jane; Tuma, Ronald F

    2016-09-01

    Modulation of the endocannabinoid system has been shown to have a significant impact on outcomes in animal models of stroke. We have previously reported a protective effect of the CB1 antagonist, SR141716A, in a transient reperfusion mouse model of cerebral ischemia. This protective effect was in part mediated by activation of the 5HT1A receptor. Here we have examined its effect in a mouse model of permanent ischemia induced by photoinjury. The CB1 antagonist was found to be protective in this model. As was the case following transient ischemia reperfusion, SR141716A (5mg/kg) resulted in smaller infarct fractions and stroke volumes when utilized both as a pretreatment and as a post-treatment. In contrast to the effect in a transient ischemia model, the pretreatment effect did not depend on the 5HT1A receptor. Neurological function correlated favorably to the reduction in stroke size when SR141716A was given as a pretreatment. With the incidence of stroke predicted to rise in parallel with an ever aging population, understanding mechanisms underlying ischemia and therapeutics remains a paramount goal of research. PMID:27453059

  13. ENP11, a potential CB1R antagonist, induces anorexia in rats.

    PubMed

    Méndez-Díaz, Mónica; Amancio-Belmont, Octavio; Hernández-Vázquez, Eduardo; Ruiz-Contreras, Alejandra E; Hernández-Luis, Francisco; Prospéro-García, Oscar

    2015-08-01

    Over the past decade, pharmacological manipulation of cannabinoid 1 receptor (CB1R) has become an interesting approach for the management of food ingestion disorders, among other physiological functions. Searching for new substances with similar desirable effects, but fewer side-effects we have synthesized a SR141716A (a cannabinoid receptor inverse agonist also called Rimonabant) analog, 1-(2,4-Difluorophenyl)-4-methyl-N-(1-piperidinyl)-5-[4-(trifluoromethyl)phenyl]-1H-pyrazole-3-carboxamide, ENP11, that so far, as we have previously shown, has induced changes in glucose availability, i.e. hypoglycemia, in rats. In this study we tested the effects, if any, of ENP11 (0.5, 1.0, and 3.0mg/kg) in food ingestion, core temperature, pain perception and motor control in adult Wistar rats. Results showed that ENP11 reduced food ingestion during the first hour immediately after administration. Likewise, ENP11 (1.0mg/kg) blocked anandamide (AEA)-induced hyperphagia during the first 4h of the dark phase of the light-dark cycle, and it also blocked AEA-induced hypothermia. However, none of the ENP11 doses used affected pain perception or motor control. We believe that ENP11 is a potential useful CB1R antagonist that reduces food ingestion and regulates core temperature. PMID:26072692

  14. CB1 antagonism: interference with affective properties of acute naloxone-precipitated morphine withdrawal in rats

    PubMed Central

    Wills, Kiri L.; Vemuri, Kiran; Kalmar, Alana; Lee, Alan; Limebeer, Cheryl L.; Makriyannis, Alexandros

    2014-01-01

    Rationale Modulation of the endocannabinoid system has been found to interfere with opiate withdrawal. The potential of activation and blockade of the endocannabinoid system to prevent the aversive-affective state of naloxone-precipitated morphine withdrawal (MWD) was investigated in a one-trial conditioned place aversion (CPA) paradigm. Objective CPA provides a sensitive measure of the motivational effects of acute MWD. The potential of the fatty acid amide hydrolase (FAAH) inhibitors, URB597 and PF-3845, the CB1 antagonist/inverse agonist, AM251, and the neutral CB1 antagonists, AM4113 and AM6527 (oral), to interfere with establishment of a MWD-induced CPA was investigated. As well, the potential of AM251 and AM4113 to interfere with reinstatement of a previously established MWD-induced CPA was investigated. Materials and methods Using a one-trial place conditioning paradigm, rats were administered naloxone (1 mg/kg, subcutaneous (sc)) 24 h after receiving a high dose of morphine (20 mg/kg, sc) and were placed on the conditioning floor. To determine the effect of each pretreatment drug on the establishment of the MWD-induced CPA, URB597 (0.3 mg/kg, intraperitoneally (ip)), PF-3845 (10 mg/kg, ip), AM251 (1 or 2.5 mg/kg, ip), AM4113 (1 or 2.5 mg/kg, ip), and AM6527 (5 mg/kg, oral) were administered prior to conditioning. Results AM251 (2.5, but not 1 mg/k), AM4113, and AM6527, but not URB597 or PF-3845, interfered with the establishment of the MWD-induced CPA. AM251 and AM4113 did not prevent reinstatement of the CPA. Conclusions Neutral antagonism of the CB1 receptor reduces the aversive affective properties of morphine withdrawal. PMID:24770676

  15. GABABR-Dependent Long-Term Depression at Hippocampal Synapses between CB1-Positive Interneurons and CA1 Pyramidal Cells

    PubMed Central

    Jappy, Dave; Valiullina, Fliza; Draguhn, Andreas; Rozov, Andrei

    2016-01-01

    Activity induced long lasting modifications of synaptic efficacy have been extensively studied in excitatory synapses, however, long term plasticity is also a property of inhibitory synapses. Inhibitory neurons in the hippocampal CA1 region can be subdivided according to the compartment they target on the pyramidal cell. Some interneurons preferentially innervate the perisomatic area and axon hillock of the pyramidal cells while others preferentially target dendritic branches and spines. Another characteristic feature allowing functional classification of interneurons is cell type specific expression of different neurochemical markers and receptors. In the hippocampal CA1 region, nearly 90% of the interneurons expressing cannabinoid type 1 receptors (CB1R) also express cholecystokinin (CCK). Therefore, the functional presence of CB1 receptors can be used for identification of the inhibitory input from CCK positive (CCK+) interneurons to CA1 pyramidal cells. The goal of this study was to explore the nature of long term plasticity at the synapses between interneurons expressing CB1Rs (putative CCK+) and pyramidal neurons in the CA1 region of the hippocampus in vitro. We found that theta burst stimulation triggered robust long-term depression (LTD) at this synapse. The locus of LTD induction was postsynaptic and required activation of GABAB receptors. We also showed that LTD at this synaptic connection involves GABABR-dependent suppression of adenylyl cyclase and consequent reduction of PKA activity. In this respect, CB1+ to pyramidal cell synapses differ from the majority of the other hippocampal inhibitory connections where theta burst stimulation results in long-term potentiation. PMID:26858602

  16. GABABR-Dependent Long-Term Depression at Hippocampal Synapses between CB1-Positive Interneurons and CA1 Pyramidal Cells.

    PubMed

    Jappy, Dave; Valiullina, Fliza; Draguhn, Andreas; Rozov, Andrei

    2016-01-01

    Activity induced long lasting modifications of synaptic efficacy have been extensively studied in excitatory synapses, however, long term plasticity is also a property of inhibitory synapses. Inhibitory neurons in the hippocampal CA1 region can be subdivided according to the compartment they target on the pyramidal cell. Some interneurons preferentially innervate the perisomatic area and axon hillock of the pyramidal cells while others preferentially target dendritic branches and spines. Another characteristic feature allowing functional classification of interneurons is cell type specific expression of different neurochemical markers and receptors. In the hippocampal CA1 region, nearly 90% of the interneurons expressing cannabinoid type 1 receptors (CB1R) also express cholecystokinin (CCK). Therefore, the functional presence of CB1 receptors can be used for identification of the inhibitory input from CCK positive (CCK+) interneurons to CA1 pyramidal cells. The goal of this study was to explore the nature of long term plasticity at the synapses between interneurons expressing CB1Rs (putative CCK+) and pyramidal neurons in the CA1 region of the hippocampus in vitro. We found that theta burst stimulation triggered robust long-term depression (LTD) at this synapse. The locus of LTD induction was postsynaptic and required activation of GABAB receptors. We also showed that LTD at this synaptic connection involves GABABR-dependent suppression of adenylyl cyclase and consequent reduction of PKA activity. In this respect, CB1+ to pyramidal cell synapses differ from the majority of the other hippocampal inhibitory connections where theta burst stimulation results in long-term potentiation. PMID:26858602

  17. Endocannabinoid System Contributes to Liver Injury and Inflammation by Activation of Bone Marrow-Derived Monocytes/Macrophages in a CB1-Dependent Manner.

    PubMed

    Mai, Ping; Yang, Le; Tian, Lei; Wang, Lin; Jia, Shuangshuang; Zhang, Yuanyuan; Liu, Xin; Yang, Lin; Li, Liying

    2015-10-01

    Hepatic injury undergoes significant increases in endocannabinoidsand infiltrations of macrophages, yet the concrete mechanisms of changes in endocannabinoids and the functions of macrophage-expressed cannabinoid receptors (CBs) are unclear. Biosynthetic and degradative enzymes of endocannabinoids revealed a significant change in human fibrotic liver. Meanwhile, we showed dynamic changes of these enzymes and CBs (CB1 and CB2) from 1 to 56 d in carbon tetrachloride-induced murine liver injury. Biosynthetic enzymes (N-acylphosphatidyl-ethanolamine selective phospholipase D and diacylglycerol lipase-α) and CBs were markedly increased, whereas degradative enzymes (fatty acid amidohydrolase and monoacylglycerol lipase) were downregulated. Moreover, these enzymes intimately correlated with the fibrosis parameter [procollagen α1(III)]. Bone marrow-derived monocytes/macrophages (BMM) expressed CBs. Interestingly, CB1 but not CB2 mediated BMM migration through a Boyden chambers assay, and the effect depended on the G(α)i/o/RhoA/ROCK signaling pathway. ICR mice were lethally irradiated and received BM transplants from enhanced GFP transgenic mice. Four weeks later, mice of BM reconstruction were subjected to carbon tetrachloride-induced liver injury. In the chimeric murine model, we found that blockade of CB1 by administration of a CB1 antagonist inhibited the recruitment of BMM into injured liver using immunofluorescence staining and FACS, but it did not have effects on migration of T cells and dendritic cells without CB1 expression. Furthermore, activation of CB1 enhanced cytokine expression of BMM. In vivo, inhibition of CB1 attenuated the inflammatory cytokine level through real-time RT-PCR and cytometric bead array, ameliorating hepatic inflammation and fibrosis. In this study, we identify inactivation of BMM-expressed CB1 as a therapeutic strategy for reducing hepatic inflammation and fibrosis. PMID:26320250

  18. A role of CB1R in inducing θ-rhythm coordination between the gustatory and gastrointestinal insula

    PubMed Central

    Kang, Youngnam; Sato, Hajime; Saito, Mitsuru; Yin, Dong Xu; Park, Sook Kyung; Oh, Seog Bae; Bae, Yong Chul; Toyoda, Hiroki

    2016-01-01

    Anandamide (AEA) and N-oleoylethanolamine (OEA) are produced in the intestine and brain during fasting and satiety, respectively. Subsequently, AEA facilitates food intake via activation of cannabinoid type-1 receptors (CB1Rs) while OEA decreases food intake via activation of peroxisome proliferator-activated receptor-α (PPARα) and/or G-protein-coupled receptor 119 (GPR119). Neuronal activity in the gastrointestinal region of the autonomic insula (GI-Au-I) that rostrally adjoins the gustatory insula (Gu-I) increases during fasting, enhancing appetite while umami and sweet taste sensations in Gu-I enhances appetite in GI-Au-I, strongly suggesting the presence of a neural interaction between the Gu-I and GI-Au-I which changes depending on the concentrations of AEA and OEA. However, this possibility has never been investigated. In rat slice preparations, we demonstrate with voltage-sensitive dye imaging that activation of CB1Rs by AEA induces θ-rhythm oscillatory synchronization in the Gu-I which propagates into the GI-Au-I but stops at its caudal end, displaying an oscillatory coordination. The AEA-induced oscillation was abolished by a CB1R antagonist or OEA through activation of GPR119. Our results demonstrate that the neural coordination between the Gu-I and GI-Au-I is generated or suppressed by the opposing activities between CB1R and GPR119. This mechanism may be involved in the feeding behavior based on taste recognition. PMID:27581068

  19. A role of CB1R in inducing θ-rhythm coordination between the gustatory and gastrointestinal insula.

    PubMed

    Kang, Youngnam; Sato, Hajime; Saito, Mitsuru; Yin, Dong Xu; Park, Sook Kyung; Oh, Seog Bae; Bae, Yong Chul; Toyoda, Hiroki

    2016-01-01

    Anandamide (AEA) and N-oleoylethanolamine (OEA) are produced in the intestine and brain during fasting and satiety, respectively. Subsequently, AEA facilitates food intake via activation of cannabinoid type-1 receptors (CB1Rs) while OEA decreases food intake via activation of peroxisome proliferator-activated receptor-α (PPARα) and/or G-protein-coupled receptor 119 (GPR119). Neuronal activity in the gastrointestinal region of the autonomic insula (GI-Au-I) that rostrally adjoins the gustatory insula (Gu-I) increases during fasting, enhancing appetite while umami and sweet taste sensations in Gu-I enhances appetite in GI-Au-I, strongly suggesting the presence of a neural interaction between the Gu-I and GI-Au-I which changes depending on the concentrations of AEA and OEA. However, this possibility has never been investigated. In rat slice preparations, we demonstrate with voltage-sensitive dye imaging that activation of CB1Rs by AEA induces θ-rhythm oscillatory synchronization in the Gu-I which propagates into the GI-Au-I but stops at its caudal end, displaying an oscillatory coordination. The AEA-induced oscillation was abolished by a CB1R antagonist or OEA through activation of GPR119. Our results demonstrate that the neural coordination between the Gu-I and GI-Au-I is generated or suppressed by the opposing activities between CB1R and GPR119. This mechanism may be involved in the feeding behavior based on taste recognition. PMID:27581068

  20. Cannabinoids mediate analgesia largely via peripheral type 1 cannabinoid receptors in nociceptors

    PubMed Central

    Agarwal, Nitin; Pacher, Pal; Tegeder, Irmgard; Amaya, Fumimasa; Constantin, Cristina E; Brenner, Gary J; Rubino, Tiziana; Michalski, Christoph W; Marsicano, Giovanni; Monory, Krisztina; Mackie, Ken; Marian, Claudiu; Batkai, Sandor; Parolaro, Daniela; Fischer, Michael J; Reeh, Peter; Kunos, George; Kress, Michaela; Lutz, Beat; Woolf, Clifford J; Kuner, Rohini

    2008-01-01

    Although endocannabinoids constitute one of the first lines of defense against pain, the anatomical locus and the precise receptor mechanisms underlying cannabinergic modulation of pain are uncertain. Clinical exploitation of the system is severely hindered by the cognitive deficits, memory impairment, motor disturbances and psychotropic effects resulting from the central actions of cannabinoids. We deleted the type 1 cannabinoid receptor (CB1) specifically in nociceptive neurons localized in the peripheral nervous system of mice, preserving its expression in the CNS, and analyzed these genetically modified mice in preclinical models of inflammatory and neuropathic pain. The nociceptor-specific loss of CB1 substantially reduced the analgesia produced by local and systemic, but not intrathecal, delivery of cannabinoids. We conclude that the contribution of CB1-type receptors expressed on the peripheral terminals of nociceptors to cannabinoid-induced analgesia is paramount, which should enable the development of peripherally acting CB1 analgesic agonists without any central side effects. PMID:17558404

  1. Dynamic of expression and localization of cannabinoid-degrading enzymes FAAH and MGLL in relation to CB1 during meiotic maturation of human oocytes.

    PubMed

    Agirregoitia, Ekaitz; Totorikaguena, Lide; Expósito, Antonia; Mendoza, Rosario; Matorras, Roberto; Agirregoitia, Naiara

    2016-08-01

    The endogenous cannabinoid system has been characterized in some female reproductive organs but little is known about the expression and localization pattern of cannabinoid-degrading enzymes in relation to the CB1 cannabinoid receptor in human oocytes. In this study, we focus on the investigation of the presence and differential distribution of fatty acid amide hydrolase (FAAH) and monoglyceride lipase (MGLL) in relation to CB1 during the maturation of human oocytes. We used a total of 290 human oocytes not suitable for in vitro fertilization/intracytoplasmic sperm injection (ICSI): germinal-vesicle (GV) and metaphase-I (MI) stages and metaphase-II (MII) oocytes that had not developed into an embryo after ICSI. Cannabinoid-degrading enzymes and the cannabinoid CB1 receptor were present in human oocytes. Specifically, FAAH was detected in the periphery of the oocyte from the GV to MI stage and co-localized with CB1. Later, by the MII stage, FAAH was spread within the oocyte, whereas MGLL immunostaining was homogeneous across the oocyte at all stages of maturation and only overlapped with CB1 at the GV stage. This coordinated redistribution of cannabinoid system proteins suggests a role for this system in the maturation of the female gamete. PMID:26948343

  2. CB1 antagonism restores hepatic insulin sensitivity without normalization of adiposity in diet-induced obese dogs

    PubMed Central

    Woolcott, Orison O.; Hsu, Isabel R.; Stefanoski, Darko; Harrison, L. Nicole; Zheng, Dan; Lottati, Maya; Kolka, Cathryn; Catalano, Karyn J.; Chiu, Jenny D.; Kabir, Morvarid; Ionut, Viorica; Bergman, Richard N.; Richey, Joyce M.

    2012-01-01

    The endocannabinoid system is highly implicated in the development of insulin resistance associated with obesity. It has been shown that antagonism of the CB1 receptor improves insulin sensitivity (SI). However, it is unknown whether this improvement is due to the direct effect of CB1 blockade on peripheral tissues or secondary to decreased fat mass. Here, we examine in the canine dog model the longitudinal changes in SI and fat deposition when obesity was induced with a high-fat diet (HFD) and animals were treated with the CB1 antagonist rimonabant. SI was assessed (n = 20) in animals fed a HFD for 6 wk to establish obesity. Thereafter, while HFD was continued for 16 additional weeks, animals were divided into two groups: rimonabant (1.25 mg·kg−1·day−1 RIM; n = 11) and placebo (n = 9). Euglycemic hyperinsulinemic clamps were performed to evaluate changes in insulin resistance and glucose turnover before HFD (week −6) after HFD but before treatment (week 0) and at weeks 2, 6, 12, and 16 of treatment (or placebo) + HFD. Magnetic resonance imaging was performed to determine adiposity- related changes in SI. Animals developed significant insulin resistance and increased visceral and subcutaneous adiposity after 6 wk of HFD. Treatment with RIM resulted in a modest decrease in total trunk fat with relatively little change in peripheral glucose uptake. However, there was significant improvement in hepatic insulin resistance after only 2 wk of RIM treatment with a concomitant increase in plasma adiponectin levels; both were maintained for the duration of the RIM treatment. CB1 receptor antagonism appears to have a direct effect on hepatic insulin sensitivity that may be mediated by adiponectin and independent of pronounced reductions in body fat. However, the relatively modest effect on peripheral insulin sensitivity suggests that significant improvements may be secondary to reduced fat mass. PMID:22374758

  3. Deletion of G-protein-coupled receptor 55 promotes obesity by reducing physical activity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cannabinoid receptor 1 (CB1) is the best-characterized cannabinoid receptor, and CB1 antagonists are used in clinical trials to treat obesity. Because of the wide range of CB1 functions, the side effects of CB1 antagonists pose serious concerns. G-protein-coupled receptor 55 (GPR55) is an atypical c...

  4. Receptor-dependent and Receptor-independent Endocannabinoid Signaling: A Therapeutic Target for Regulation of Cancer Growth

    PubMed Central

    Van Dross, Rukiyah; Soliman, Eman; Jha, Shalini; Johnson, Travious; Mukhopadhyay, Somnath

    2012-01-01

    The endocannabinoid system comprises the G-protein coupled CB1 cannabinoid receptor (CB1R) and CB2 cannabinoid receptor (CB2R), their endogenous ligands (endocannabinoids), and the enzymes responsible for their synthesis and catabolism. Recent works have revealed several important interactions between the endocannabinoid system and cancer. Moreover, it is now well established that synthetic small molecule cannabinoid receptor agonist acting on either CB1R or CB2R or both exert anti-cancer effects on a variety of tumor cells. Recent results from many laboratories reported that the expression of CB1R and CB2R in prostate cancer, breast cancer, and many other cancer cells are higher than corresponding non-malignant tissues. The mechanisms by which cannabinoids acting on CB1R or CB2R exert their effects on cancer cells are quite diverse and complex. Further, several studies demonstrated that some of the anti-proliferative and apoptotic effects of cannabinoids are mediated by receptor-independent mechanisms. In this minreview we provide an overview of the major findings on the effects of endogenous and/or synthetic cannabinoids on breast and prostate cancer. We also provide insight into receptor independent mechanisms of the anti-cancer effects of cannabinoids under in vitro and in vivo conditions. PMID:23069587

  5. NESS038C6, a novel selective CB1 antagonist agent with anti-obesity activity and improved molecular profile.

    PubMed

    Mastinu, Andrea; Pira, Marilena; Pani, Luca; Pinna, Gérard Aimè; Lazzari, Paolo

    2012-10-01

    The present work aims to study the effects induced by a chronic treatment with a novel CB1 antagonist (NESS038C6) in C57BL/6N diet-induced obesity (DIO) mice. Mice treated with NESS038C6 and fed with a fat diet (NESS038C6 FD) were compared with the following three reference experimental groups: DIO mice fed with the same fat diet used for NESS038C6 and treated with vehicle or the reference CB1 antagonist/inverse agonist rimonabant, "VH FD" and "SR141716 FD", respectively; DIO mice treated with vehicle and switched to a normal diet (VH ND). NESS038C6 chronic treatment (30 mg/kg/day for 31 days) determined a significant reduction in DIO mice weight relative to that of VH FD. The entity of the effect was comparable to that detected in both SR141716 FD and VH ND groups. Moreover, if compared to VH FD, NESS038C6 FD evidenced: (i) improvement of cardiovascular risk factors; (ii) significant decrease in adipose tissue leptin expression; (iii) increase in mRNA expression of hypothalamic orexigenic peptides and a decrease of anorexigenic peptides; (iv) expression increase of metabolic enzymes and peroxisome proliferator-activated receptor-α in the liver; (v) normalization of monoaminergic transporters and neurotrophic expression in mesolimbic area. However, in contrast to the case of rimonabant, the novel CB1 antagonist improved the disrupted expression profile of genes linked to the hunger-satiety circuit, without altering monoaminergic transmission. In conclusion, the novel CB1 antagonist compound NESS038C6 may represent a useful candidate agent for the treatment of obesity and its metabolic complications, without or with reduced side effects relative to those instead observed with rimonabant. PMID:22771813

  6. CB1 Blockade Potentiates Down-Regulation of Lipogenic Gene Expression in Perirenal Adipose Tissue in High Carbohydrate Diet-Induced Obesity

    PubMed Central

    Gavito, Ana Luisa; Suárez, Juan; Pavón, Francisco Javier; Arrabal, Sergio; Romero-Cuevas, Miguel; Bautista, Dolores; Martínez, Ana; de Fonseca, Fernando Rodríguez; Serrano, Antonia; Baixeras, Elena

    2014-01-01

    De novo lipogenesis and hypercaloric diets are thought to contribute to increased fat mass, particularly in abdominal fat depots. CB1 is highly expressed in adipose tissue, and CB1-mediated signalling is associated with stimulation of lipogenesis and diet-induced obesity, though its contribution to increasing fat deposition in adipose tissue is controversial. Lipogenesis is regulated by transcription factors such as liver X receptor (LXR), sterol-response element binding protein (SREBP) and carbohydrate-responsive-element-binding protein (ChREBP). We evaluated the role of CB1 in the gene expression of these factors and their target genes in relation to lipogenesis in the perirenal adipose tissue (PrAT) of rats fed a high-carbohydrate diet (HCHD) or a high-fat diet (HFD). Both obesity models showed an up-regulated gene expression of CB1 and Lxrα in this adipose pad. The Srebf-1 and ChREBP gene expressions were down-regulated in HFD but not in HCHD. The expression of their target genes encoding for lipogenic enzymes showed a decrease in diet-induced obesity and was particularly dramatic in HFD. In HCHD, CB1 blockade by AM251 reduced the Srebf-1 and ChREBP expression and totally abrogated the remnant gene expression of their target lipogenic enzymes. The phosphorylated form of the extracellular signal-regulated kinase (ERK-p), which participates in the CB1-mediated signalling pathway, was markedly present in the PrAT of obese rats. ERK-p was drastically repressed by AM251 indicating that CB1 is actually functional in PrAT of obese animals, though its activation loses the ability to stimulate lipogenesis in PrAT of obese rats. Even so, the remnant expression levels of lipogenic transcription factors found in HCHD-fed rats are still dependent on CB1 activity. Hence, in HCHD-induced obesity, CB1 blockade may help to further potentiate the reduction of lipogenesis in PrAT by means of inducing down-regulation of the ChREBP and Srebf-1 gene expression, and consequently in

  7. Central and peripheral cannabinoid receptors as therapeutic targets in the control of food intake and body weight.

    PubMed

    Engeli, Stefan

    2012-01-01

    The endocannabinoid system consists of lipid-derived agonists that activate cannabinoid (CB) receptors. CB receptor agonists, namely, the phytocannabinoid Δ(9)-THC and the endocannabinoid anandamide, increase hunger sensation and food intake. These discoveries led to the clinical use of Δ(9)-THC derivatives for the treatment of cancer and HIV-related nausea and cachexia. Animal studies clarified the important role of CB1 receptors in the hypothalamus and in the limbic system in mediating orexigenic effects. In parallel, data on CB1-specific blockade either by drugs or by genetic ablation further demonstrated that CB1 inhibition protects against weight gain induced by high-fat feeding and reduces body weight in obese animals and humans. The mechanisms of weight reduction by CB1 blockade are complex: they comprise interactions with several orexigenic and anorexigenic neuropeptides and hormones, regulation of sympathetic activity, influences on mitochondrial function, and on lipogenesis. Although these mechanisms appear to be mainly mediated by the CNS, weight loss also occurs when drugs that do not reach CNS concentrations sufficient to inhibit CB1 signaling are used. The development of peripherally restricted CB1 inverse agonists and antagonists opened new routes in CB1 pharmacology because centrally acting CB1 inverse agonists, e.g., rimonabant and taranabant, exerted unacceptable side effects that precluded their further development and application as weight loss drugs. Tissue and circulating endocannabinoid concentrations are often increased in animal models of obesity and in obese humans, especially those with visceral fat accumulation. Thus, further research on CB1 inhibition is still promising to treat human obesity. PMID:22249824

  8. The CB1 antagonist rimonabant decreases insulin hypersecretion in rat pancreatic islets.

    PubMed

    Getty-Kaushik, Lisa; Richard, Ann-Marie T; Deeney, Jude T; Krawczyk, Sarah; Shirihai, Orian; Corkey, Barbara E

    2009-10-01

    Type 2 diabetes and obesity are characterized by elevated nocturnal circulating free fatty acids, elevated basal insulin secretion, and blunted glucose-stimulated insulin secretion (GSIS). The CB1 receptor antagonist, Rimonabant, has been shown to improve glucose tolerance and insulin sensitivity in vivo but its direct effect on islets has been unclear. Islets from lean littermates and obese Zucker (ZF) and Zucker Diabetic Fatty (ZDF) rats were incubated for 24 h in vitro and exposed to 11 mmol/l glucose and 0.3 mmol/l palmitate (GL) with or without Rimonabant. Insulin secretion was determined at basal (3 mmol/l) or stimulatory (15 mmol/l) glucose concentrations. As expected, basal secretion was significantly elevated in islets from obese or GL-treated lean rats whereas the fold increase in GSIS was diminished. Rimonabant decreased basal hypersecretion in islets from obese rats and GL-treated lean rats without decreasing the fold increase in GSIS. However, it decreased GSIS in islets from lean rats without affecting basal secretion. These findings indicate that Rimonabant has direct effects on islets to reduce insulin secretion when secretion is elevated above normal levels by diet or in obesity. In contrast, it appears to decrease stimulated secretion in islets from lean animals but not in obese or GL-exposed islets. PMID:19644453

  9. Modulation of food consumption and sleep–wake cycle in mice by the neutral CB1 antagonist ABD459

    PubMed Central

    Goonawardena, Anushka V.; Plano, Andrea; Robinson, Lianne; Ross, Ruth; Greig, Iain; Pertwee, Roger G.; Hampson, Robert E.; Platt, Bettina; Riedel, Gernot

    2015-01-01

    The brain endocannabinoid system is a potential target for the treatment of psychiatric and metabolic conditions. Here, a novel CB1 receptor antagonist (ABD459) was synthesized and assayed for pharmacological efficacy in vitro and for modulation of food consumption, vigilance staging and cortical electroencephalography in the mouse. ABD459 completely displaced the CB1 agonist CP99540 at a Ki of 8.6 nmol/l, and did not affect basal, but antagonized CP55940-induced GTPγS binding with a KB of 7.7 nmol/l. Acute ABD459 (3–20 mg/kg) reliably inhibited food consumption in nonfasted mice, without affecting motor activity. Active food seeking was reduced for 5–6 h postdrug, with no rebound after washout. Epidural recording of electroencephalogram confirmed that ABD459 (3 mg/kg) robustly reduced rapid eye movement (REM) sleep, with no alterations of wakefulness or non-REM sleep. Effects were strongest during 3 h postdrug, followed by a progressive washout period. The CB1 antagonist AM251 (3mg/kg) and agonist WIN-55,212-2 (WIN-2: 3 mg/kg) also reduced REM, but variously affected other vigilance stages. WIN-2 caused a global suppression of normalized spectral power. AM251 and ABD459 lowered delta power and increased power in the theta band in the hippocampus, but not the prefrontal cortex. The neutral antagonist ABD459 thus showed a specific role of endocannabinoid release in attention and arousal, possibly through modulation of cholinergic activity. PMID:25356730

  10. Attenuation of cue-induced heroin-seeking behavior by cannabinoid CB1 antagonist infusions into the nucleus accumbens core and prefrontal cortex, but not basolateral amygdala.

    PubMed

    Alvarez-Jaimes, Lily; Polis, Ilham; Parsons, Loren H

    2008-09-01

    As with other drugs of abuse, heroin use is characterized by a high incidence of relapse following detoxification that can be triggered by exposure to conditioned stimuli previously associated with drug availability. Recent findings suggest that cannabinoid CB(1) receptors modulate the motivational properties of heroin-conditioned stimuli that induce relapse behavior. However, the neural substrates through which CB(1) receptors modulate cue-induced heroin seeking have not been elucidated. In this study, we evaluated alterations in cue-induced reinstatement of heroin-seeking behavior produced by infusions of the CB(1) receptor antagonist SR 141716A (0, 0.3 and 3 microg per side) delivered into the prefrontal cortex (PFC), nucleus accumbens (NAC), and basolateral amygdala (BLA) of rats. Results show that following extinction of operant behavior the presentation of a discriminative stimulus conditioned to heroin availability reinstated nonreinforced lever pressing to levels comparable to preextinction levels. Intra-PFC SR 141716A dose-dependently reduced cue-induced reinstatement of heroin seeking, with a significant reduction following the 3 microg per side dose. In the NAC, both SR 141716A doses induced a significant reduction in cue-induced reinstatement, with the highest dose completely blocking the effect of the cue. In contrast, intra-BLA SR 141716A did not alter cue-induced reinstatement of responding while systemic administration of this antagonist (3 mg/kg, i.p.) significantly blocked cue-induced reinstatement in all three-placement groups (BLA, PFC, and NAC). These findings provide new insights into the neural mechanisms through which CB(1) receptors modulate the motivational properties of heroin-associated cues inducing relapse. PMID:18059440

  11. Inclusive prompt χ _{c,b}(1^{++}) production at the LHC

    NASA Astrophysics Data System (ADS)

    Shuvaev, A. G.; Khoze, V. A.; Martin, A. D.; Ryskin, M. G.

    2015-12-01

    We study the prompt production of the χ _c(1^+) and χ _b(1^+) mesons at high energies. Unlike χ (0^+,2^+) production, χ (1^+) mesons cannot be created at LO via the fusion of two on-mass-shell gluons, that is, gg→ χ _{c,b}(1^+) are not allowed. However, the available experimental data show that the cross sections for χ _c(1^+) and χ _c(2^+) are comparable. We therefore investigate four other χ (1^+) production mechanisms: namely, (i) the standard NLO process gg→ χ _{c,b}(1^+)+g, (ii) via gluon virtuality, (iii) via gluon reggeisation and, finally, (iv) the possibility to form χ _{c,b}(1^+) by the fusion of three gluons, where one extra gluon comes from another parton cascade, as in the Double Parton Scattering processes.

  12. Ethanol Exposure Induces Neonatal Neurodegeneration by Enhancing CB1R Exon1 Histone H4K8 Acetylation and Up-regulating CB1R Function causing Neurobehavioral Abnormalities in Adult Mice

    PubMed Central

    Subbanna, Shivakumar; Nagre, Nagaraja N.; Umapathy, Nagavedi S.; Pace, Betty S.

    2015-01-01

    Background: Ethanol exposure to rodents during postnatal day 7 (P7), which is comparable to the third trimester of human pregnancy, induces long-term potentiation and memory deficits. However, the molecular mechanisms underlying these deficits are still poorly understood. Methods: In the present study, we explored the potential role of epigenetic changes at cannabinoid type 1 (CB1R) exon1 and additional CB1R functions, which could promote memory deficits in animal models of fetal alcohol spectrum disorder. Results: We found that ethanol treatment of P7 mice enhances acetylation of H4 on lysine 8 (H4K8ace) at CB1R exon1, CB1R binding as well as the CB1R agonist-stimulated GTPγS binding in the hippocampus and neocortex, two brain regions that are vulnerable to ethanol at P7 and are important for memory formation and storage, respectively. We also found that ethanol inhibits cyclic adenosine monophosphate response element-binding protein (CREB) phosphorylation and activity-regulated cytoskeleton-associated protein (Arc) expression in neonatal and adult mice. The blockade or genetic deletion of CB1Rs prior to ethanol treatment at P7 rescued CREB phosphorylation and Arc expression. CB1R knockout mice exhibited neither ethanol-induced neurodegeneration nor inhibition of CREB phosphorylation or Arc expression. However, both neonatal and adult mice did exhibit enhanced CREB phosphorylation and Arc protein expression. P7 ethanol-treated adult mice exhibited impaired spatial and social recognition memory, which were prevented by the pharmacological blockade or deletion of CB1Rs at P7. Conclusions: Together, these findings suggest that P7 ethanol treatment induces CB1R expression through epigenetic modification of the CB1R gene, and that the enhanced CB1R function induces pCREB, Arc, spatial, and social memory deficits in adult mice. PMID:25609594

  13. Permanent Suppression of Cortical Oscillations in Mice After Adolescent Exposure to Cannabinoids: Receptor Mechanisms

    PubMed Central

    Raver, Sylvina M.; Keller, Asaf

    2014-01-01

    Marijuana use in adolescence, but not adulthood, may permanently impair cognitive functioning and increase the risk of developing schizophrenia. Cortical oscillations are patterns of neural network activity implicated in cognitive processing, and are abnormal in patients with schizophrenia. We have recently reported that cortical oscillations are suppressed in adult mice that were treated, in adolescence but not adulthood, with the cannabinoids WIN55,212-2 (WIN) or Δ9tetrahydrocannabinol (THC). WIN and THC are cannabinoid types 1 and 2 receptor (CB1R & CB2R) agonists, and also have activity at non-cannabinoid receptor targets. However, as acute WIN and THC administration can suppress oscillations through CB1Rs, we hypothesize that a similar mechanism underlies the permanent suppression of oscillations by repeated cannabinoid exposure in adolescence. Here we test the prediction that cannabinoid exposure in adolescence permanently suppresses cortical oscillations by acting through CB1Rs, and that these suppressive effects can be antagonized by a CB1R antagonist. We treated adolescent mice with various cannabinoid compounds, and pharmacologically-evoked oscillations in vitro in adult mice. We find that WIN exposure for six days in early adolescence suppresses oscillations preferentially in adult medial prefrontal cortex (mPFC) via CB1Rs, and that a similar CB1R mechanism accounts for the suppressive effects of long-term (20 day) adolescent THC in adult somatosensory cortex (SCx). Unexpectedly, we also find that CB2Rs may be involved in the suppression of oscillations in both mPFC and SCx by long-term adolescent cannabinoid exposure, and that non-cannabinoid receptors may also contribute to oscillation suppression in adult mPFC. These findings represent a novel attempt to antagonize the effects of adolescent cannabinoid exposure on neural network activity, and reveal the contribution of non-CB1R targets to the suppression of cortical oscillations. PMID:25036610

  14. Hybrid inhibitor of peripheral cannabinoid-1 receptors and inducible nitric oxide synthase mitigates liver fibrosis

    PubMed Central

    Liu, Ziyi; Cao, Zongxian; Jourdan, Tony; Erdelyi, Katalin; Godlewski, Grzegorz; Szanda, Gergő; Liu, Jie; Park, Joshua K.; Mukhopadhyay, Bani; Rosenberg, Avi Z.; Liow, Jeih-San; Lorenz, Robin G.; Pacher, Pal; Innis, Robert B.; Kunos, George

    2016-01-01

    Liver fibrosis, a consequence of chronic liver injury and a way station to cirrhosis and hepatocellular carcinoma, lacks effective treatment. Endocannabinoids acting via cannabinoid-1 receptors (CB1R) induce profibrotic gene expression and promote pathologies that predispose to liver fibrosis. CB1R antagonists produce opposite effects, but their therapeutic development was halted due to neuropsychiatric side effects. Inducible nitric oxide synthase (iNOS) also promotes liver fibrosis and its underlying pathologies, but iNOS inhibitors tested to date showed limited therapeutic efficacy in inflammatory diseases. Here, we introduce a peripherally restricted, orally bioavailable CB1R antagonist, which accumulates in liver to release an iNOS inhibitory leaving group. In mouse models of fibrosis induced by CCl4 or bile duct ligation, the hybrid CB1R/iNOS antagonist surpassed the antifibrotic efficacy of the CB1R antagonist rimonabant or the iNOS inhibitor 1400W, without inducing anxiety-like behaviors or CB1R occupancy in the CNS. The hybrid inhibitor also targeted CB1R-independent, iNOS-mediated profibrotic pathways, including increased PDGF, Nlrp3/Asc3, and integrin αvβ6 signaling, as judged by its ability to inhibit these pathways in cnr1−/− but not in nos2−/− mice. Additionally, it was able to slow fibrosis progression and to attenuate established fibrosis. Thus, dual-target peripheral CB1R/iNOS antagonists have therapeutic potential in liver fibrosis. PMID:27525312

  15. Prefrontal activity during working memory is modulated by the interaction of variation in CB1 and COX2 coding genes and correlates with frequency of cannabis use.

    PubMed

    Taurisano, Paolo; Antonucci, Linda A; Fazio, Leonardo; Rampino, Antonio; Romano, Raffaella; Porcelli, Annamaria; Masellis, Rita; Colizzi, Marco; Quarto, Tiziana; Torretta, Silvia; Di Giorgio, Annabella; Pergola, Giulio; Bertolino, Alessandro; Blasi, Giuseppe

    2016-08-01

    The CB1 cannabinoid receptor is targeted in the brain by endocannabinoids under physiological conditions as well as by delta9-tetrahydrocannabinol under cannabis use. Furthermore, its signaling appears to affect brain cognitive processing. Recent findings highlight a crucial role of cyclooxygenase-2 (COX-2) in the mechanism of intraneuronal CB1 signaling transduction, while others indicate that two single nucleotide polymorphisms (SNPs) (rs1406977 and rs20417) modulate expression of CB1 (CNR1) and COX-2 (PTGS2) coding genes, respectively. Here, our aim was to use fMRI to investigate in healthy humans whether these SNPs interact in modulating prefrontal activity during working memory processing and if this modulation is linked with cannabis use. We recruited 242 healthy subjects genotyped for CNR1 rs1406977 and PTGS2 rs20417 that performed the N-back working memory task during fMRI and were interviewed using the Cannabis Experience Questionnaire (CEQ). We found that the interaction between CNR1 rs1406977 and PTGS2 rs20417 is associated with dorsolateral prefrontal cortex (DLPFC) activity such that specific genotype configurations (CNR1 C carriers/PTGS2 C carriers and CNR1 TT/PTGS2 GG) predict lower cortical response versus others in spite of similar behavioral accuracy. Furthermore, DLPFC activity in the cluster associated with the CNR1 by PTGS2 interaction was negatively correlated with behavioral efficiency and positively correlated with frequency of cannabis use in cannabis users. These results suggest that a genetically modulated balancing of signaling within the CB1-COX-2 pathway may reflect on more or less efficient patterns of prefrontal activity during working memory. Frequency of cannabis use may be a factor for further modulation of CNR1/PTGS2-mediated cortical processing associated with this cognitive process. PMID:27261878

  16. A potential role for cannabinoid receptors in the therapeutic action of fenofibrate.

    PubMed

    Priestley, Richard S; Nickolls, Sarah A; Alexander, Stephen P H; Kendall, David A

    2015-04-01

    Cannabinoids are reported to have actions through peroxisome proliferator-activated receptors (PPARs), which led us to investigate PPAR agonists for activity at the cannabinoid receptors. Radio-ligand binding and functional assays were conducted using human recombinant cannabinoid type 1 (CB1) or cannabinoid type 2 (CB2) receptors, as well as the guinea pig isolated ileum, using the full agonist CP55940 as a positive control. The PPAR-α agonist fenofibrate exhibited submicromolar affinity for both receptors (pKi CB1, 6.3 ± 0.1; CB2, 7.7 ± 0.1). Functionally, fenofibrate acted as an agonist at the CB2 receptor (pEC50, 7.7 ± 0.1) and a partial agonist at the CB1 receptor, although with a decrease in functional response at higher concentrations, producing bell-shaped concentration-response curves. High concentrations of fenofibrate were able to increase the dissociation rate constant for [(3)H]-CP55940 at the CB1 receptor, (kfast without: 1.2 ± 0.2/min; with: 3.8 ± 0.1 × 10(-2)/min) and decrease the maximal response to CP55940 (Rmax, 86 ± 2%), which is consistent with a negative allosteric modulator. Fenofibrate also reduced electrically induced contractions in isolated guinea pig ileum via CB1 receptors (pEC50, 6.0 ± 0.4). Fenofibrate is thus identified as an example of a new class of cannabinoid receptor ligand and allosteric modulator, with the potential to interact therapeutically with cannabinoid receptors in addition to its primary PPAR target. PMID:25550466

  17. Permanent suppression of cortical oscillations in mice after adolescent exposure to cannabinoids: receptor mechanisms.

    PubMed

    Raver, Sylvina M; Keller, Asaf

    2014-11-01

    Marijuana use in adolescence, but not adulthood, may permanently impair cognitive functioning and increase the risk of developing schizophrenia. Cortical oscillations are patterns of neural network activity implicated in cognitive processing, and are abnormal in patients with schizophrenia. We have recently reported that cortical oscillations are suppressed in adult mice that were treated with the cannabinoids WIN55,212-2 (WIN) or Δ(9)tetrahydrocannabinol (THC) in adolescence, but not adulthood. WIN and THC are cannabinoid-1 (CB1R) and CB2R agonists, and also have activity at non-cannabinoid receptor targets. However, as acute WIN and THC administration can suppress oscillations through CB1Rs, we hypothesize that a similar mechanism underlies the permanent suppression of oscillations by repeated cannabinoid exposure in adolescence. Here we test the prediction that cannabinoid exposure in adolescence permanently suppresses cortical oscillations by acting through CB1Rs, and that these suppressive effects can be antagonized by a CB1R antagonist. We treated adolescent mice with various cannabinoid compounds, and pharmacologically-evoked oscillations in local field potentials (LFPs) in vitro in adults. We find that WIN exposure for six days in early adolescence suppresses oscillations preferentially in adult medial prefrontal cortex (mPFC) via CB1Rs, and that a similar CB1R mechanism accounts for the suppressive effects of long-term (20 day) adolescent THC in adult somatosensory cortex (SCx). Unexpectedly, we also find that CB2Rs may be involved in the suppression of oscillations in both mPFC and SCx by long-term adolescent cannabinoid exposure, and that non-cannabinoid receptors may also contribute to oscillation suppression in adult mPFC. These findings represent a novel attempt to antagonize the effects of adolescent cannabinoid exposure on neural network activity, and reveal the contribution of non-CB1R targets to the suppression of cortical oscillations. PMID

  18. Ionic basis of cold receptors acting as thermostats.

    PubMed

    Okazawa, Makoto; Takao, Keizo; Hori, Aiko; Shiraki, Takuma; Matsumura, Kiyoshi; Kobayashi, Shigeo

    2002-05-15

    When temperature (T) of skin decreases stepwise, cold fibers evoke transient afferent discharges, inducing cold sensation and heat-gain responses. Hence we have proposed that cold receptors at distal ends of cold fibers are thermostats to regulate skin T against cold. Here, with patch-clamp techniques, we studied the ionic basis of cold receptors in cultured dorsal root ganglion (DRG) neurons of rats, as a model of nerve endings. Cells that increased cytosolic Ca(2+) level in response to moderate cooling were identified as neurons with cold receptors. In whole-cell current-clamp recordings of these cells, in response to cooling, cold receptors evoked a dynamic receptor potential (RP), eliciting impulses briefly. In voltage-clamp recordings (-60 mV), step cooling induced an inward cold current (I(cold)) with inactivation, underlying the dynamic RP. Ca(2+) ions that entered into cells from extracellular side induced the inactivation. Analysis of the reversal potential implied that I(cold) was nonselective cation current with high Ca(2+) permeability. Threshold temperatures of cooling-induced Ca(2+) response and I(cold) were different primarily among cells. In outside-out patches, when T decreased, single nonselective cation channels became active at a critical T. This implies that a cold receptor is an ion channel and acts as the smallest thermostat. Because these thermal properties were consistent with that in cold fibers, we conclude that the same cold receptors exist at nerve endings and generate afferent impulses for cold sensation and heat-gain behaviors in response to cold. PMID:12019319

  19. Double Dissociation of Monoacylglycerol Lipase Inhibition and CB1 Antagonism in the Central Amygdala, Basolateral Amygdala, and the Interoceptive Insular Cortex on the Affective Properties of Acute Naloxone-Precipitated Morphine Withdrawal in Rats.

    PubMed

    Wills, Kiri L; Petrie, Gavin N; Millett, Geneva; Limebeer, Cheryl L; Rock, Erin M; Niphakis, Micah J; Cravatt, Benjamin F; Parker, Linda A

    2016-06-01

    Both CB1 receptor antagonism and agonism, in particular by 2-arachidonyl glycerol (2-AG), have been shown to reduce somatic symptoms of morphine withdrawal (MWD). Here we evaluated the effects of both systemic pretreatment with the monoacylglycerol lipase (MAGL) inhibitor MJN110 (which selectively elevates 2-AG) and central administration of both MJN110 and the CB1 antagonist (AM251) on the affective properties of MWD. Acute MWD induced place aversion occurs when naloxone is administered 24 h following a single exposure to a high dose of morphine. Systemic pretreatment with the MAGL inhibitor, MJN110, prevented the aversive effects of acute MWD by a CB1 receptor-dependent mechanism. Furthermore, in a double dissociation, AM251 infusions into the central amygdala, but MJN110 infusions into the basolateral amygdala, interfered with the naloxone-precipitated MWD induced place aversion. As well, MJN110, but not AM251, infusions into the interoceptive insular cortex (a region known to be activated in acute MWD) also prevented the establishment of the place aversion by a CB1 mechanism of action. These findings reveal the respective sites of action of systemically administered MJN110 and AM251 in regulating the aversive effects of MWD. PMID:26647976

  20. Activation of LVGCCs and CB1 Receptors Required for Destabilization of Reactivated Contextual Fear Memories

    ERIC Educational Resources Information Center

    Suzuki, Akinobu; Mukawa, Takuya; Tsukagoshi, Akinori; Frankland, Paul W.; Kida, Satoshi

    2008-01-01

    Previous studies have shown that inhibiting protein synthesis shortly after reactivation impairs the subsequent expression of a previously consolidated fear memory. This has suggested that reactivation returns a memory to a labile state and that protein synthesis is required for the subsequent restabilization of memory. While the molecular…

  1. Piezometric response in shallow bedrock at CB1: Implications for runoff generation and landsliding

    NASA Astrophysics Data System (ADS)

    Montgomery, David R.; Dietrich, William E.; Heffner, John T.

    2002-12-01

    Experimental observations comparing two steep unchanneled valleys in the Oregon Coast Range, one intensively instrumented (CB1) and the other monitored for runoff but which produced a debris flow (CB2), shed light on the mechanisms of shallow flow in bedrock, its interaction with the vadose zone, and its role in generating landslides. Previous work at CB1 led to the proposal that during storms pulses of rainfall transmit pressure waves through the vadose zone and down to the saturated zone to create rapid pore pressure response and runoff [, 1998]. Here, we document the associated rapid pore pressure response in the shallow fractured bedrock that underlies these colluvium-mantled sites and examine its influence on the generation of storm flow, seasonal variations in base flow, and slope stability in the overlying colluvial soil. Our observations document rapid piezometric response in the shallow bedrock and a substantial contribution of shallow fracture flow to both storm flow and seasonal variations in base flow. Saturated hydraulic conductivity in the colluvial soil decreases with depth below the ground surface, but the conductivity of the near-surface bedrock displays no depth dependence and varies over five orders of magnitude. Analysis of runoff intensity and duration in a series of storms that did and did not trigger debris flows in the surrounding area shows that the landslide inducing storms had the greatest intensity over durations similar to those predicted by a simple model of piezometric response. During a monitored storm in February 1992, the channel head at the base of the neighboring CB2 site failed as a debris flow. Automated piezometric measurements document that the CB2 debris flow initiated several hours after peak discharge, coincident with localized development of upward spikes of pressure head from near-surface bedrock into the overlying colluvial soil in CB1. Artesian flow observed exfiltrating from bedrock fractures on the failure surfaces

  2. Cryptochinones from Cryptocarya chinensis act as farnesoid X receptor agonists.

    PubMed

    Lin, Hsiang-Ru; Chou, Tsung-Hsien; Huang, Din-Wen; Chen, Ih-Sheng

    2014-09-01

    Cryptochinones A-D are tetrahydroflavanones isolated from the leaves of Cryptocarya chinensis, an evergreen tree whose extracts are believed to have a variety of health benefits. The origin of their possible bioactivity is unclear. The farnesoid X receptor (FXR) is a member of nuclear receptor superfamily that has been widely targeted for developing treatments for chronic liver disease and for hyperglycemia. We studied whether cryptochinones A-D, which are structurally similar to known FXR ligands, may act at this target. Indeed, in mammalian one-hybrid and transient transfection reporter assays, cryptochinones A-D transactivated FXR to modulate promoter action including GAL4, SHP, CYP7A1, and PLTP promoters in dose-dependent manner, while they exhibited similar agonistic activity as chenodeoxycholic acid (CDCA), an endogenous FXR agonist. Through molecular modeling docking studies we evaluated their ability to bind to the FXR ligand binding pocket. Our results indicate that cryptochinones A-D can behave as FXR agonists. PMID:25127166

  3. APJ acts as a dual receptor in cardiac hypertrophy.

    PubMed

    Scimia, Maria Cecilia; Hurtado, Cecilia; Ray, Saugata; Metzler, Scott; Wei, Ke; Wang, Jianming; Woods, Chris E; Purcell, Nicole H; Catalucci, Daniele; Akasaka, Takeshi; Bueno, Orlando F; Vlasuk, George P; Kaliman, Perla; Bodmer, Rolf; Smith, Layton H; Ashley, Euan; Mercola, Mark; Brown, Joan Heller; Ruiz-Lozano, Pilar

    2012-08-16

    Cardiac hypertrophy is initiated as an adaptive response to sustained overload but progresses pathologically as heart failure ensues. Here we report that genetic loss of APJ, a G-protein-coupled receptor, confers resistance to chronic pressure overload by markedly reducing myocardial hypertrophy and heart failure. In contrast, mice lacking apelin (the endogenous APJ ligand) remain sensitive, suggesting an apelin-independent function of APJ. Freshly isolated APJ-null cardiomyocytes exhibit an attenuated response to stretch, indicating that APJ is a mechanosensor. Activation of APJ by stretch increases cardiomyocyte cell size and induces molecular markers of hypertrophy. Whereas apelin stimulates APJ to activate Gαi and elicits a protective response, stretch signals in an APJ-dependent, G-protein-independent fashion to induce hypertrophy. Stretch-mediated hypertrophy is prevented by knockdown of β-arrestins or by pharmacological doses of apelin acting through Gαi. Taken together, our data indicate that APJ is a bifunctional receptor for both mechanical stretch and the endogenous peptide apelin. By sensing the balance between these stimuli, APJ occupies a pivotal point linking sustained overload to cardiomyocyte hypertrophy. PMID:22810587

  4. APJ ACTS AS A DUAL RECEPTOR IN CARDIAC HYPERTROPHY

    PubMed Central

    Scimia, Maria Cecilia; Hurtado, Cecilia; Ray, Saugata; Metzler, Scott; Wei, Ke; Wang, Jianming; Woods, Chris E.; Purcell, Nicole H.; Catalucci, Daniele; Akasaka, Takashi; Bueno, Orlando F.; Vlasuk, George P.; Kaliman, Perla; Bodmer, Rolf; Smith, Layton H.; Ashley, Euan; Mercola, Mark; Brown, Joan Heller; Ruiz-Lozano, Pilar

    2012-01-01

    Cardiac hypertrophy is initiated as an adaptive response to sustained overload but progresses pathologically as heart failure ensues1. Here we report that genetic loss of APJ confers resistance to chronic pressure overload by dramatically reducing myocardial hypertrophy and heart failure. In contrast, mice lacking apelin (the endogenous APJ ligand) remain sensitive, suggesting an apelin independent function of APJ. Freshly isolated APJ-null cardiomyocytes exhibit an attenuated response to stretch, indicating that APJ is a mechano-sensor. Activation of APJ by stretch increases cardiomyocyte cell size and induces molecular markers of hypertrophy. Whereas apelin stimulates APJ to activate Gαi and elicits a protective response, stretch signals in an APJ-dependent G-protein-independent fashion to induce hypertrophy. Stretch-mediated hypertrophy is prevented by knockdown of β-arrestins or by pharmacological doses of apelin acting through Gαi. Taken together, our data indicate that APJ is a bifunctional receptor for both mechanical stretch and for the endogenous peptide apelin. By sensing the balance between these stimuli, APJ occupies a pivotal point linking sustained overload to cardiomyocyte hypertrophy. PMID:22810587

  5. Metalloproteolytic receptor shedding…platelets "acting their age".

    PubMed

    Andrews, Robert K; Gardiner, Elizabeth E

    2016-09-01

    Whilst significant effort has been focused on development of tools and approaches to clinically modulate activation processes that consume platelets, the platelet receptors that initiate activation processes remain untargeted. The modulation of receptor levels is also linked to underlying platelet aging processes which influence normal platelet lifespan and also the functionality and survival of stored platelets that are used in transfusion. In this review, we will focus on platelet adhesion receptors initiating thrombus formation, and discuss how regulation of levels of these receptors impact platelet function and platelet survival. PMID:27459696

  6. Mechanism of Positive Allosteric Modulators Acting on AMPA Receptors

    SciTech Connect

    Jin,R.; Clark, S.; Weeks, A.; Dudman, J.; Gouaux, E.; Partin, K.

    2005-01-01

    Ligand-gated ion channels involved in the modulation of synaptic strength are the AMPA, kainate, and NMDA glutamate receptors. Small molecules that potentiate AMPA receptor currents relieve cognitive deficits caused by neurodegenerative diseases such as Alzheimer's disease and show promise in the treatment of depression. Previously, there has been limited understanding of the molecular mechanism of action for AMPA receptor potentiators. Here we present cocrystal structures of the glutamate receptor GluR2 S1S2 ligand-binding domain in complex with aniracetam [1-(4-methoxybenzoyl)-2-pyrrolidinone] or CX614 (pyrrolidino-1, 3-oxazino benzo-1, 4-dioxan-10-one), two AMPA receptor potentiators that preferentially slow AMPA receptor deactivation. Both potentiators bind within the dimer interface of the nondesensitized receptor at a common site located on the twofold axis of molecular symmetry. Importantly, the potentiator binding site is adjacent to the 'hinge' in the ligand-binding core 'clamshell' that undergoes conformational rearrangement after glutamate binding. Using rapid solution exchange, patch-clamp electrophysiology experiments, we show that point mutations of residues that interact with potentiators in the cocrystal disrupt potentiator function. We suggest that the potentiators slow deactivation by stabilizing the clamshell in its closed-cleft, glutamate-bound conformation.

  7. Antagonism of Dopamine Receptor 2 Long Affects Cannabinoid Receptor 1 Signaling in a Cell Culture Model of Striatal Medium Spiny Projection Neurons.

    PubMed

    Bagher, Amina M; Laprairie, Robert B; Kelly, Melanie E M; Denovan-Wright, Eileen M

    2016-06-01

    Activation of dopamine receptor 2 long (D2L) switches the signaling of type 1 cannabinoid receptor (CB1) from Gαi to Gαs, a process thought to be mediated through CB1-D2L heteromerization. Given the clinical importance of D2 antagonists, the goal of this study was to determine if D2 antagonists could modulate CB1 signaling. Interactions between CB1 and D2L, Gαi, Gαs, and β-arrestin1 were studied using bioluminescence resonance energy transfer 2 (BRET(2)) in STHdh(Q7/Q7) cells. CB1-dependent extracellular regulated kinase (ERK)1/2, CREB phosphorylation, and CB1 internalization following cotreatment of CB1 agonist and D2 antagonist were quantified. Preassembled CB1-Gαi complexes were detected by BRET(2) Arachidonyl-2'-chloroethylamide (ACEA), a selective CB1 agonist, caused a rapid and transient increase in BRET efficiency (BRETEff) between Gαi-Rluc and CB1-green fluorescent protein 2 (GFP(2)), and a Gαi-dependent increase in ERK phosphorylation. Physical interactions between CB1 and D2L were observed using BRET(2) Cotreatment of STHdh(Q7/Q7) cells with ACEA and haloperidol, a D2 antagonist, inhibited BRETEff signals between Gαi-Rluc and CB1-GFP(2) and reduced the EMax and pEC50 of ACEA-mediated Gαi-dependent ERK phosphorylation. ACEA and haloperidol cotreatments produced a delayed and sustained increase in BRETEff between Gαs-Rluc and CB1-GFP(2) and increased the EMax and pEC50 of ACEA-induced Gαs-dependent cAMP response element-binding protein phosphorylation. In cells expressing CB1 and D2L treated with ACEA, binding of haloperidol to D2 receptors switched CB1 coupling from Gαi to Gαs In addition, haloperidol treatment reduced ACEA-induced β-arrestin1 recruitment to CB1 and CB1 internalization. D2 antagonists allosterically modulate cannabinoid-induced CB1 coupling, signaling, and β-arrestin1 recruitment through binding to CB1-D2L heteromers. These findings indicate that D2 antagonism, like D2 agonists, change agonist-mediated CB1 coupling and

  8. A study of cannabinoid-1 receptors during the early phase of excitotoxic damage to rat spinal locomotor networks in vitro.

    PubMed

    Veeraraghavan, Priyadharishini; Dekanic, Ana; Nistri, Andrea

    2016-10-01

    Endocannabinoids acting on cannabinoid-1 receptors (CB1Rs) are proposed to protect brain and spinal neurons from excitotoxic damage. The ability to recover from spinal cord injury (SCI), in which excitotoxicity is a major player, is usually investigated at late times after modulation of CB1Rs whose role in the early phases of SCI remains unclear. Using the rat spinal cord in vitro as a model for studying SCI initial pathophysiology, we investigated if agonists or antagonists of CB1Rs might affect SCI induced by the excitotoxic agent kainate (KA) within 24h from a transient (1h) application of this glutamate agonist. The CB1 agonist anandamide (AEA or pharmacological block of its degradation) did not limit excitotoxic depolarization of spinal networks: cyclic adenosine monophosphate (cAMP) assay demonstrated that CB1Rs remained functional 24h later and similarly expressed among dead or survived cells. Locomotor-like network activity recorded from ventral roots could not recover with such treatments and was associated with persistent depression of synaptic transmission. Motoneurons, that are particularly vulnerable to KA, were not protected by AEA. Application of 2-arachidonoylglycerol also did not attenuate the electrophysiological and histological damage. The intensification of damage by the CB1 antagonist AM251 suggested that endocannabinoids were operative after excitotoxic stimulation, yet insufficient to contrast it efficiently. The present data indicate that the early phases of excitotoxic SCI could not be arrested by pharmacologically exploiting the endocannabinoid system, consistent with the notion that AEA and its derivatives are more useful to treat late SCI phases. PMID:27450568

  9. CB1 antagonism produces behaviors more consistent with satiety than reduced reward value in food-maintained responding in rats.

    PubMed

    Thompson, Emily E; Jagielo-Miller, Julia E; Vemuri, V Kiran; Makriyannis, Alexandros; McLaughlin, Peter J

    2016-05-01

    Cannabinoid CB1 antagonists are widely known to reduce motivation for food, but it is not known whether they induce satiety or reduce reward value of food. It may therefore be necessary to compare effects of altered satiety and reward food value in the same appetitive task, and determine whether CB1 antagonism produces a behavior pattern similar to either, both, or neither. A fine-grained analysis of fixed-ratio 10 (FR10) responding for palatable food initially included number and duration of, and between, all lever presses and food tray entries in order to differentiate the pattern of suppression of prefeeding from that caused by reducing the reward value of the pellets with quinine. Discriminant function analysis then determined that these manipulations were best differentiated by effects on tray entries, pellet retrieval latencies, and time of the first response. At 0.5 mg/kg, AM 6527 produced similar effects to reducing reward value, but at 1.0 and 4.0 mg/kg, effects were more similar to those when animals were satiated. We conclude that AM 6527 both reduced reward value and enhanced satiety, but as dose increased, effects on satiety became much more prominent. These findings contribute to knowledge about the behavioral processes affected by CB1 antagonism. PMID:27005309

  10. The phytocannabinoid, Δ9-tetrahydrocannabivarin, can act through 5-HT1A receptors to produce antipsychotic effects

    PubMed Central

    Cascio, Maria Grazia; Zamberletti, Erica; Marini, Pietro; Parolaro, Daniela; Pertwee, Roger G

    2015-01-01

    Background and Purpose This study aimed to address the questions of whether Δ9-tetrahydrocannabivarin (THCV) can (i) enhance activation of 5-HT1A receptors in vitro and (ii) induce any apparent 5-HT1A receptor-mediated antipsychotic effects in vivo. Experimental Approach In vitro studies investigated the effect of THCV on targeting by 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) of 5-HT1A receptors in membranes obtained from rat brainstem or human 5-HT1A CHO cells, using [35S]-GTPγS and 8-[3H]-OH-DPAT binding assays. In vivo studies investigated whether THCV induces signs of 5-HT1A receptor-mediated antipsychotic effects in rats. Key Results THCV (i) potently, albeit partially, displaced 8-[3H]-OH-DPAT from specific binding sites in rat brainstem membranes; (ii) at 100 nM, significantly enhanced 8-OH-DPAT-induced activation of receptors in these membranes; (iii) produced concentration-related increases in 8-[3H]-OH-DPAT binding to specific sites in membranes of human 5-HT1A receptor-transfected CHO cells; and (iv) at 100 nM, significantly enhanced 8-OH-DPAT-induced activation of these human 5-HT1A receptors. In phencyclidine-treated rats, THCV, like clozapine (i) reduced stereotyped behaviour; (ii) decreased time spent immobile in the forced swim test; and (iii) normalized hyperlocomotor activity, social behaviour and cognitive performance. Some of these effects were counteracted by the 5-HT1A receptor antagonist, WAY100635, or could be reproduced by the CB1 antagonist, AM251. Conclusions and Implications Our findings suggest that THCV can enhance 5-HT1A receptor activation, and that some of its apparent antipsychotic effects may depend on this enhancement. We conclude that THCV has therapeutic potential for ameliorating some of the negative, cognitive and positive symptoms of schizophrenia. PMID:25363799

  11. Monoglyceride lipase deficiency causes desensitization of intestinal cannabinoid receptor type 1 and increased colonic μ-opioid receptor sensitivity

    PubMed Central

    Taschler, U; Eichmann, T O; Radner, F P W; Grabner, G F; Wolinski, H; Storr, M; Lass, A; Schicho, R; Zimmermann, R

    2015-01-01

    Background and Purpose Monoglyceride lipase (MGL) degrades 2-arachidonoyl glycerol (2-AG), an endogenous agonist of cannabinoid receptors (CB1/2). Because the CB1 receptor is involved in the control of gut function, we investigated the effects of pharmacological inhibition and genetic deletion of MGL on intestinal motility. Furthermore, we determined whether defective 2-AG degradation affects μ-opioid receptorreceptor) signalling, a parallel pathway regulating gut motility. Experimental Approach Gut motility was investigated by monitoring Evans Blue transit and colonic bead propulsion in response to MGL inhibition and CB1 receptor or μ receptor stimulation. Ileal contractility was investigated by electrical field stimulation. CB1 receptor expression in ileum and colon was assessed by immunohistochemical analyses. Key Results Pharmacological inhibition of MGL slowed down whole gut transit in a CB1 receptor-dependent manner. Conversely, genetic deletion of MGL did not affect gut transit despite increased 2-AG levels. Notably, MGL deficiency caused complete insensitivity to CB1 receptor agonist-mediated inhibition of whole gut transit and ileal contractility suggesting local desensitization of CB1 receptors. Accordingly, immunohistochemical analyses of myenteric ganglia of MGL-deficient mice revealed that CB1 receptors were trapped in endocytic vesicles. Finally, MGL-deficient mice displayed accelerated colonic propulsion and were hypersensitive to μ receptor agonist-mediated inhibition of colonic motility. This phenotype was reproduced by chronic pharmacological inhibition of MGL. Conclusion and Implications Constantly elevated 2-AG levels induce severe desensitization of intestinal CB1 receptors and increased sensitivity to μ receptor-mediated inhibition of colonic motility. These changes should be considered when cannabinoid-based drugs are used in the therapy of gastrointestinal diseases. PMID:26075589

  12. Low Temperature Creep of a Titanium Alloy Ti-6Al-2Cb-1Ta-0.8Mo

    NASA Technical Reports Server (NTRS)

    Chu, H. P.

    1997-01-01

    This paper presents a methodology for the analysis of low temperature creep of titanium alloys in order to establish design limitations due to the effect of creep. The creep data on a titanium Ti-6Al-2Cb-1Ta-0.8Mo are used in the analysis. A creep equation is formulated to determine the allowable stresses so that creep at ambient temperatures can be kept within an acceptable limit during the service life of engineering structures or instruments. Microcreep which is important to design of precision instruments is included in the discussion also.

  13. The Cannabinoid Delta-9-tetrahydrocannabinol Mediates Inhibition of Macrophage Chemotaxis to RANTES/CCL5 through the CB2 Receptor

    PubMed Central

    Raborn, Erinn S.; Marciano-Cabral, Francine; Buckley, Nancy E.; Martin, Billy R.; Cabral, Guy A.

    2009-01-01

    The chemotactic response of murine peritoneal macrophages to RANTES/CCL5 was inhibited significantly following pretreatment with delta-9-tetrahydrocannabinol (THC), the major psychoactive component in marijuana. Significant inhibition of this chemokine directed migratory response was obtained also when the full cannabinoid agonist CP55940 was used. The CB2 receptor-selective ligand O-2137 exerted a robust inhibition of chemotaxis while the CB1 receptor-selective ligand ACEA had a minimal effect. The THC-mediated inhibition was reversed by the CB2 receptor-specific antagonist SR144528 but not by the CB1 receptor-specific antagonist SR141716A. In addition, THC treatment had a minimal effect on the chemotactic response of peritoneal macrophages from CB2 knockout mice. Collectively, these results suggest that cannabinoids act through the CB2 receptor to trans-deactivate migratory responsiveness to RANTES/CCL5. Furthermore, the results suggest that the CB2 receptor may be a constituent element of a network of G protein-coupled receptor signal transductional systems, inclusive of chemokine receptors, that act coordinately to modulate macrophage migration. PMID:18247131

  14. The CB₁ cannabinoid receptor signals striatal neuroprotection via a PI3K/Akt/mTORC1/BDNF pathway.

    PubMed

    Blázquez, C; Chiarlone, A; Bellocchio, L; Resel, E; Pruunsild, P; García-Rincón, D; Sendtner, M; Timmusk, T; Lutz, B; Galve-Roperh, I; Guzmán, M

    2015-10-01

    The CB1 cannabinoid receptor, the main molecular target of endocannabinoids and cannabis active components, is the most abundant G protein-coupled receptor in the mammalian brain. In particular, the CB1 receptor is highly expressed in the basal ganglia, mostly on terminals of medium-sized spiny neurons, where it plays a key neuromodulatory function. The CB1 receptor also confers neuroprotection in various experimental models of striatal damage. However, the assessment of the physiological relevance and therapeutic potential of the CB1 receptor in basal ganglia-related diseases is hampered, at least in part, by the lack of knowledge of the precise mechanism of CB1 receptor neuroprotective activity. Here, by using an array of pharmacological, genetic and pharmacogenetic (designer receptor exclusively activated by designer drug) approaches, we show that (1) CB1 receptor engagement protects striatal cells from excitotoxic death via the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin complex 1 pathway, which, in turn, (2) induces brain-derived neurotrophic factor (BDNF) expression through the selective activation of BDNF gene promoter IV, an effect that is mediated by multiple transcription factors. To assess the possible functional impact of the CB1/BDNF axis in a neurodegenerative-disease context in vivo, we conducted experiments in the R6/2 mouse, a well-established model of Huntington's disease, in which the CB1 receptor and BDNF are known to be severely downregulated in the dorsolateral striatum. Adeno-associated viral vector-enforced re-expression of the CB1 receptor in the dorsolateral striatum of R6/2 mice allowed the re-expression of BDNF and the concerted rescue of the neuropathological deficits in these animals. Collectively, these findings unravel a molecular link between CB1 receptor activation and BDNF expression, and support the relevance of the CB1/BDNF axis in promoting striatal neuron survival. PMID:25698444

  15. Endocannabinoids shape accumbal encoding of cue-motivated behavior via CB1 receptor activation in the ventral tegmentum

    PubMed Central

    Oleson, Erik B.; Beckert, Michael V.; Morra, Joshua T.; Lansink, Carien S.; Cachope, Roger; Abdullah, Rehab A.; Loriaux, Amy L.; Schetters, Dustin; Pattij, Tommy; Roitman, Mitchell F.; Lichtman, Aron H.; Cheer, Joseph F.

    2012-01-01

    SUMMARY Transient increases in nucleus accumbens (NAc) dopamine concentration are observed when animals are presented with motivationally salient stimuli and are theorized to energize reward seeking. They arise from high frequency firing of dopamine neurons in the ventral tegmental area (VTA), which also results in the release of endocannabinoids from dopamine cell bodies. In this context, endocannabinoids are thought to regulate reward seeking by modulating dopamine signaling, although a direct link has never been demonstrated. To test this, we pharmacologically manipulated endocannabinoid neurotransmission in the VTA while measuring transient changes in dopamine concentration in the NAc during reward seeking. Disrupting endocannabinoid signaling dramatically reduced, whereas augmenting levels of the endocannabinoid 2-arachidonoylglycerol (2AG) increased, cue-evoked dopamine concentrations and reward seeking. These data suggest that 2AG in the VTA regulates reward seeking by sculpting ethologically relevant patterns of dopamine release during reward-directed behavior. PMID:22284189

  16. Cannabinoid CB1 Receptor Agonists Do Not Decrease, but may Increase Acoustic Trauma-Induced Tinnitus in Rats

    PubMed Central

    Zheng, Yiwen; Reid, Peter; Smith, Paul F.

    2015-01-01

    Tinnitus has been suggested to arise from neuronal hyperactivity in auditory areas of the brain, and anti-epileptic drugs are sometimes used to provide relief from tinnitus. Recently, the anti-epileptic properties of the cannabinoid drugs have gained increasing interest; however, the use of cannabinoids as a form of treatment for tinnitus is controversial. In this study, we tested whether a combination of delta-9-tetrahydrocannabinol (delta-9-THC) and cannabidiol (CBD), delivered in a 1:1 ratio, could affect tinnitus perception in a rat model of acoustic trauma-induced tinnitus. Following sham treatment or acoustic trauma, the animals were divided into the following groups: (1) sham (i.e., no acoustic trauma) with vehicle treatment; (2) sham with drug treatment (i.e., delta-9-THC + CBD); (3) acoustic trauma-exposed exhibiting tinnitus, with drug treatment; and (4) acoustic trauma-exposed exhibiting no tinnitus, with drug treatment. The animals received either the vehicle or the cannabinoid drugs every day, 30 min before the tinnitus behavioral testing. Acoustic trauma caused a significant increase in the auditory brainstem response (ABR) thresholds in the exposed animals, indicating hearing loss; however, there was a partial recovery over 6 months. Acoustic trauma did not always result in tinnitus; however, among those that did exhibit tinnitus, some of them had tinnitus at multiple frequencies while others had it only at a single frequency. The cannabinoids significantly increased the number of tinnitus animals in the exposed-tinnitus group, but not in the sham group. The results suggest that cannabinoids may promote the development of tinnitus, especially when there is pre-existing hearing damage. PMID:25852639

  17. Differences in acute anorectic effects of long-acting GLP-1 receptor agonists in rats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Long-acting glucagon-like peptide-1 receptor (GLP-1R) agonists have both glucose- and weight-lowering effects. The brain is poised to mediate both of these actions since GLP-1Rs are present in key areas known to control weight and glucose. Although some research has been performed on the effects of ...

  18. Acute upregulation of neuronal mitochondrial type-1 cannabinoid receptor and it's role in metabolic defects and neuronal apoptosis after TBI.

    PubMed

    Xu, Zhen; Lv, Xiao-Ai; Dai, Qun; Ge, Yu-Qing; Xu, Jie

    2016-01-01

    Metabolic defects and neuronal apoptosis initiated by traumatic brain injury (TBI) contribute to subsequent neurodegeneration. They are all regulated by mechanisms centered around mitochondrion. Type-1 cannabinoid receptor (CB1) is a G-protein coupled receptor (GPCR) enriched on neuronal plasma membrane. Recent evidences point to the substantial presence of CB1 receptors on neuronal mitochondrial outer membranes (mtCB1) and the activation of mtCB1 influences aerobic respiration via inhibiting mitochondrial cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA)/complex I pathway. The expression and role of neuronal mtCB1 under TBI are unknown. Using TBI models of cultured neurons, wild type and CB1 knockout mice, we found mtCB1 quickly upregulated after TBI. Activation of mtCB1 promoted metabolic defects accompanied with ATP shortage but protected neurons from apoptosis. Selective activation of plasma membrane CB1 showed no effects on neuronal metabolism and apoptosis. Activation of mtCB1 receptors inhibited mitochondrial cAMP/PKA/complex I and resulted in exacerbated metabolic defects accompanied with a higher ratio of ATP reduction to oxygen consumption decrease as well as neuronal apoptosis. Further research found the remarkable accumulation of protein kinase B (AKT) on neuronal mitochondria following TBI and the activation of mtCB1 upregulated mitochondrial AKT/complex V activity. Upregulation of mitochondrial AKT/complex V activity showed anti-apoptosis effects and alleviated ATP shortage in metabolic defects. Taken together, we have identified mtCB1 quickly upregulate after TBI and a dual role the mtCB1 might play in metabolic defects and neuronal apoptosis initiated by TBI: the inhibition of mitochondrial cAMP/PKA/complex I aggravates metabolic defects, energy insufficiency as well as neuronal apoptosis, but the coactivation of mitochondrial AKT/complex V mitigates energy insufficiency and neuronal apoptosis. PMID:27485212

  19. Nuclear tristetraprolin acts as a corepressor of multiple steroid nuclear receptors in breast cancer cells.

    PubMed

    Barrios-García, Tonatiuh; Gómez-Romero, Vania; Tecalco-Cruz, Ángeles; Valadéz-Graham, Viviana; León-Del-Río, Alfonso

    2016-06-01

    Tristetraprolin (TTP) is a 34-kDa, zinc finger-containing factor that in mammalian cells acts as a tumor suppressor protein through two different mechanisms. In the cytoplasm TTP promotes the decay of hundreds of mRNAs encoding cell factors involved in inflammation, tissue invasion, and metastasis. In the cell nucleus TTP has been identified as a transcriptional corepressor of the estrogen receptor alpha (ERα), which has been associated to the development and progression of the majority of breast cancer tumors. In this work we report that nuclear TTP modulates the transactivation activity of progesterone receptor (PR), glucocorticoid receptor (GR) and androgen receptor (AR). In recent years these steroid nuclear receptors have been shown to be of clinical and therapeutical relevance in breast cancer. The functional association between TTP and steroid nuclear receptors is supported by the finding that TTP physically interacts with ERα, PR, GR and AR in vivo. We also show that TTP overexpression attenuates the transactivation of all the steroid nuclear receptors tested. In contrast, siRNA-mediated reduction of endogenous TTP expression in MCF-7 cells produced an increase in the transcriptional activities of ERα, PR, GR and AR. Taken together, these results suggest that the function of nuclear TTP in breast cancer cells is to act as a corepressor of ERα, PR, GR and AR. We propose that the reduction of TTP expression observed in different types of breast cancer tumors may contribute to the development of this disease by producing a dysregulation of the transactivation activity of multiple steroid nuclear receptors. PMID:27114912

  20. Nuclear tristetraprolin acts as a corepressor of multiple steroid nuclear receptors in breast cancer cells

    PubMed Central

    Barrios-García, Tonatiuh; Gómez-Romero, Vania; Tecalco-Cruz, Ángeles; Valadéz-Graham, Viviana; León-Del-Río, Alfonso

    2016-01-01

    Tristetraprolin (TTP) is a 34-kDa, zinc finger-containing factor that in mammalian cells acts as a tumor suppressor protein through two different mechanisms. In the cytoplasm TTP promotes the decay of hundreds of mRNAs encoding cell factors involved in inflammation, tissue invasion, and metastasis. In the cell nucleus TTP has been identified as a transcriptional corepressor of the estrogen receptor alpha (ERα), which has been associated to the development and progression of the majority of breast cancer tumors. In this work we report that nuclear TTP modulates the transactivation activity of progesterone receptor (PR), glucocorticoid receptor (GR) and androgen receptor (AR). In recent years these steroid nuclear receptors have been shown to be of clinical and therapeutical relevance in breast cancer. The functional association between TTP and steroid nuclear receptors is supported by the finding that TTP physically interacts with ERα, PR, GR and AR in vivo. We also show that TTP overexpression attenuates the transactivation of all the steroid nuclear receptors tested. In contrast, siRNA-mediated reduction of endogenous TTP expression in MCF-7 cells produced an increase in the transcriptional activities of ERα, PR, GR and AR. Taken together, these results suggest that the function of nuclear TTP in breast cancer cells is to act as a corepressor of ERα, PR, GR and AR. We propose that the reduction of TTP expression observed in different types of breast cancer tumors may contribute to the development of this disease by producing a dysregulation of the transactivation activity of multiple steroid nuclear receptors. PMID:27114912

  1. The proteolytic system of Lactobacillus sanfrancisco CB1: purification and characterization of a proteinase, a dipeptidase, and an aminopeptidase.

    PubMed Central

    Gobbetti, M; Smacchi, E; Corsetti, A

    1996-01-01

    A cell envelope 57-kDa proteinase, a cytoplasmic 65-kDa dipeptidase, and a 75-kDa aminopeptidase were purified from Lactobacillus sanfrancisco CB1 sourdough lactic acid bacterium by sequential fast protein liquid chromatography steps. All of the enzymes are monomers. The proteinase was most active at pH 7.0 and 40 degrees C, while aminopeptidase and dipeptidase had optima at pH 7.5 and 30 to 35 degrees C. Relatively high activities were observed at the pH and temperature of the sourdough fermentation. The proteinase is a serine enzyme. Urea-polyacrylamide gel electrophoresis of digest of alpha s1- and beta-caseins showed differences in the pattern of peptides released by the purified proteinase and those produced by crude preparations of the cell envelope proteinases of Lactobacillus delbrueckii subsp. bulgaricus B397 and Lactococcus lactis subsp. lactis SK11. Reversed-phase fast protein liquid chromatography of gliadin digests showed a more-complex peptide pattern produced by the proteinase of Lactobacillus sanfrancisco CB1. The dipeptidase is a metalloenzyme with high affinity for dipeptides containing hydrophobic amino acids but had no activity on tripeptides or larger peptides. The aminopeptidase was also inhibited by metal-chelating agents, and showed a broad N-terminal hydrolytic activity including di- and tripeptides. Km values of 0.70 and 0.44 mM were determined for the dipeptidase on Leu-Leu and the aminopeptidase on Leu-p-nitroanilide, respectively. PMID:8795211

  2. Striatal adenosine-cannabinoid receptor interactions in rats over-expressing adenosine A2A receptors.

    PubMed

    Chiodi, Valentina; Ferrante, Antonella; Ferraro, Luca; Potenza, Rosa Luisa; Armida, Monica; Beggiato, Sarah; Pèzzola, Antonella; Bader, Michael; Fuxe, Kjell; Popoli, Patrizia; Domenici, Maria Rosaria

    2016-03-01

    Adenosine A2A receptors (A2 A Rs) and cannabinoid CB1 receptors (CB1 Rs) are highly expressed in the striatum, where they functionally interact and form A2A /CB1 heteroreceptor complexes. We investigated the effects of CB1 R stimulation in a transgenic rat strain over-expressing A2 A Rs under the control of the neural-specific enolase promoter (NSEA2A rats) and in age-matched wild-type (WT) animals. The effects of the CB1 R agonist WIN 55,212-2 (WIN) were significantly lower in NSEA2A rats than in WT animals, as demonstrated by i) electrophysiological recordings of synaptic transmission in corticostriatal slices; ii) the measurement of glutamate outflow from striatal synaptosomes and iii) in vivo experiments on locomotor activity. Moreover, while the effects of WIN were modulated by both A2 A R agonist (CGS 21680) and antagonists (ZM 241385, KW-6002 and SCH-442416) in WT animals, the A2 A R antagonists failed to influence WIN-mediated effects in NSEA2A rats. The present results demonstrate that in rats with genetic neuronal over-expression of A2 A Rs, the effects mediated by CB1 R activation in the striatum are significantly reduced, suggesting a change in the stoichiometry of A2A and CB1 receptors and providing a strategy to dissect the involvement of A2 A R forming or not forming heteromers in the modulation of striatal functions. These findings add additional evidence for the existence of an interaction between striatal A2 A Rs and CB1 Rs, playing a fundamental role in the regulation of striatal functions. We studied A2A -CB1 receptor interaction in transgenic rats over-expressing adenosine A2A receptors under the control of the neuron-specific enolase promoter (NSEA2A ). In these rats, we demonstrated a reduced effect of the CB1 receptor agonist WIN 55,212-2 in the modulation of corticostriatal synaptic transmission and locomotor activity, while CB1 receptor expression level did not change with respect to WT rats. A reduction in the expression of A2A -CB1

  3. Leucettamols, Bifunctionalized Marine Sphingoids, Act as Modulators of TRPA1 and TRPM8 Channels

    PubMed Central

    Chianese, Giuseppina; Fattorusso, Ernesto; Putra, Masteria Yunovilsa; Calcinai, Barbara; Bavestrello, Giorgio; Moriello, Aniello Schiano; Petrocellis, Luciano De; Marzo, Vincenzo Di; Taglialatela-Scafati, Orazio

    2012-01-01

    Leucettamols, bifunctionalized sphingoid-like compounds obtained from a marine sponge Leucetta sp., act as non-electrophilic activators of the TRPA1 channel and potent inhibitors of the icilin-mediated activation of the TRPM8 channel, while they are inactive on CB1, CB2 and TRPV1 receptors. Leucettamols represent the first compounds of marine origin to target TRPA1 and the first class of natural products to inhibit TRPM8 channels. The preparation of a small series of semi-synthetic derivatives revealed interesting details on the structure-activity relationships within this new chemotype of simple acyclic TRP modulators. PMID:23203269

  4. Opposite function of dopamine D1 and NMDA receptors in striatal cannabinoid-mediated signaling

    PubMed Central

    Daigle, Tanya L.; Wetsel, William C.; Caron, Marc G.

    2011-01-01

    It is well established that the cannabinoid and dopamine systems interact at various levels to regulate basal ganglia function. While it is well known that acute administration of cannabinoids to mice can modify dopamine-dependent behaviors, an understanding of the intraneuronal signaling pathways employed by these agents in the striatum is not well understood. Here we use knockout (KO) mouse models to examine the regulation of striatal ERK1/2 signaling by behaviorally relevant doses of cannabinoids. This cellular pathway has been implicated as a central mediator of drug reward and synaptic plasticity. In C57BL/6J mice, acute administration of cannabinoid agonists, HU-210 and Δ9-THC, promotes a dose- and time-dependent decrease in the phosphorylation of ERK1/2 in dorsal striatum. Co-administration of the CB1 cannabinoid receptor (CB1R) antagonist AM251 with HU-210 prevents ERK1/2 inactivation, indicating a requirement for activation of this receptor. In dopamine D1 receptor (D1R) KO animals treated with HU-210, the magnitude of the HU-210-dependent decrease in striatal ERK1/2 signaling is greater than in wild-type controls. In contrast, the HU-210 administration to NMDA receptor knockdown mice (NR1-Kd) was ineffective at promoting striatal ERK1/2 inactivation. Genetic deletion of other potential ERK1/2 mediators, the dopamine D2 receptors (D2R)s or βarrestin-1 or -2, did not affect HU-210-induced modulation of ERK1/2 signaling in the striatum. These results support the hypothesis that dopamine D1 receptors and NMDA receptors act in an opposite manner to regulate striatal CB1R signal transduction. PMID:22034973

  5. The liver X receptor agonist T0901317 acts as androgen receptor antagonist in human prostate cancer cells

    SciTech Connect

    Chuu, Chih-pin; Chen, Rou-Yu; Hiipakka, Richard A.; Kokontis, John M.; Warner, Karen V.; Xiang, Jialing; Liao, Shutsung . E-mail: sliao@uchicago.edu

    2007-06-01

    T0901317 is a potent non-steroidal synthetic liver X receptor (LXR) agonist. T0901317 blocked androgenic stimulation of the proliferation of androgen-dependent LNCaP 104-S cells and androgenic suppression of the proliferation of androgen-independent LNCaP 104-R2 cells, inhibited the transcriptional activation of an androgen-dependent reporter gene by androgen, and suppressed gene and protein expression of prostate specific antigen (PSA), a target gene of androgen receptor (AR) without affecting gene and protein expression of AR. T0901317 also inhibited binding of a radiolabeled androgen to AR, but inhibition was much weaker compared to the effect of the antiandrogens, bicalutamide and hydroxyflutamide. The LXR agonist T0901317, therefore, acts as an antiandrogen in human prostate cancer cells.

  6. Sex-dependent changes in brain CB1R expression and functionality and immune CB2R expression as a consequence of maternal deprivation and adolescent cocaine exposure.

    PubMed

    Llorente-Berzal, Alvaro; Assis, María A; Rubino, Tiziana; Zamberletti, Erica; Marco, Eva M; Parolaro, Daniela; Ambrosio, Emilio; Viveros, María-Paz

    2013-08-01

    Early life stress has been associated with several psychiatric disorders, including drug addiction. Actually, maternal deprivation (MD) alters the endocannabinoid system, which participates in motivation and reward for drugs, including cocaine. At youth, the rate of cocaine abuse is alarmingly increasing. Herein, we have investigated the consequences of MD and/or adolescent cocaine exposure in brain CB1Rs and CB2Rs in immune tissues. Control and maternally deprived (24h on postnatal day, pnd, 9) male and female Wistar rats were administered cocaine (8mg/kg/day) or saline during adolescence (pnd 28-42). At adulthood, [(3)H]-CP-55,940 autoradiographic binding was employed for the analysis of CB1R density and CP-55,940-stimulated [(35)S]-GTPgammaS binding for CB1R functionality; CB2R expression was analyzed by Western blotting. Sex differences in CB1R expression and functionality were found, and MD induced important and enduring sex-dependent changes. In addition, the plastic changes induced by adolescent cocaine administration in brain CB1Rs were differentially influenced by early life events. MD increased spleen CB2R expression while adolescent cocaine administration attenuated this effect; cocaine exposure also diminished CB2R expression in bone marrow. Present findings provide evidence for changes in brain CB1R expression and functionality and immune CB2R expression as a consequence of early life stress and adolescent cocaine exposure, and indicate functional interactions between both treatments, which in many regions differ between males and females. PMID:23680694

  7. Lepidozenolide from the liverwort Lepidozia fauriana acts as a farnesoid X receptor agonist.

    PubMed

    Lin, Hsiang-Ru

    2015-01-01

    Lepidozenolide is a sesquiterpenoid isolated from the liverwort Lepidozia fauriana and its possible bioactivity is unclear. The farnesoid X receptor (FXR) is a member of nuclear receptor superfamily that has been widely targeted for developing treatments for chronic liver disease and hyperglycemia. In this study, whether lepidozenolide may act as a FXR agonist was determined. Indeed, in mammalian one-hybrid and transient transfection reporter assays, lepidozenolide transactivated FXR to modulate promoter action including GAL4, CYP7A1, and PLTP promoters in a dose-dependent manner, while it exhibited slightly less agonistic activity than chenodeoxycholic acid, an endogenous FXR agonist. Through the molecular modeling docking studies lepidozenolide was shown to bind to FXR ligand binding pocket fairly well. All these results indicate that lepidozenolide acts as a FXR agonist. PMID:25315435

  8. Identification of short-acting κ-opioid receptor antagonists with anxiolytic-like activity.

    PubMed

    Peters, Matthew F; Zacco, Anna; Gordon, John; Maciag, Carla M; Litwin, Linda C; Thompson, Carolann; Schroeder, Patricia; Sygowski, Linda A; Piser, Timothy M; Brugel, Todd A

    2011-07-01

    The κ-opioid receptor plays a central role in mediating the response to stressful life events. Inhibiting κ-opioid receptor signaling is proposed as a mechanism for treating stress-related conditions such as depression and anxiety. Preclinical testing consistently confirms that disruption of κ-opioid signaling is efficacious in animal models of mood disorders. However, concerns about the feasibility of developing antagonists into drugs stem from an unusual pharmacodynamic property of prototypic κ-opioid receptor-selective antagonists; they inhibit receptor signaling for weeks to months after a single dose. Several fundamental questions include - is it possible to identify short-acting antagonists; is long-lasting inhibition necessary for efficacy; and is it safe to develop long-acting antagonists in the clinic. Here, we test representative compounds (AZ-ECPC, AZ-MTAB, and LY-DMPF) from three new chemical series of κ-opioid receptor ligands for long-lasting inhibition. Each compound dose-dependently reversed κ-opioid agonist-induced diuresis. However, unlike the prototypic antagonist, nBNI, which fully inhibited evoked diuresis for at least four weeks, the new compounds showed no inhibition after one week. The two compounds with greater potency and selectivity were tested in prenatally-stressed rats on the elevated plus maze, an exploration-based model of anxiety. Spontaneous exploration of open arms in the elevated plus maze was suppressed by prenatal stress and restored with both compounds. These findings indicate that persistent inhibition is not an inherent property of κ-opioid-selective antagonists and that post-stress dosing with transient inhibitors can be effective in a mood disorder model. This further supports κ-opioid receptor as a promising target for developing novel psychiatric medications. PMID:21539838

  9. Auxiliary Subunit GSG1L Acts to Suppress Calcium-Permeable AMPA Receptor Function

    PubMed Central

    McGee, Thomas P.; Bats, Cécile

    2015-01-01

    AMPA-type glutamate receptors are ligand-gated cation channels responsible for a majority of the fast excitatory synaptic transmission in the brain. Their behavior and calcium permeability depends critically on their subunit composition and the identity of associated auxiliary proteins. Calcium-permeable AMPA receptors (CP-AMPARs) contribute to various forms of synaptic plasticity, and their dysfunction underlies a number of serious neurological conditions. For CP-AMPARs, the prototypical transmembrane AMPAR regulatory protein stargazin, which acts as an auxiliary subunit, enhances receptor function by increasing single-channel conductance, slowing channel gating, increasing calcium permeability, and relieving the voltage-dependent block by endogenous intracellular polyamines. We find that, in contrast, GSG1L, a transmembrane auxiliary protein identified recently as being part of the AMPAR proteome, acts to reduce the weighted mean single-channel conductance and calcium permeability of recombinant CP-AMPARs, while increasing polyamine-dependent rectification. To examine the effects of GSG1L on native AMPARs, we manipulated its expression in cerebellar and hippocampal neurons. Transfection of GSG1L into mouse cultured cerebellar stellate cells that lack this protein increased the inward rectification of mEPSCs. Conversely, shRNA-mediated knockdown of endogenous GSG1L in rat cultured hippocampal pyramidal neurons led to an increase in mEPSC amplitude and in the underlying weighted mean single-channel conductance, revealing that GSG1L acts to suppress current flow through native CP-AMPARs. Thus, our data suggest that GSG1L extends the functional repertoire of AMPAR auxiliary subunits, which can act not only to enhance but also diminish current flow through their associated AMPARs. SIGNIFICANCE STATEMENT Calcium-permeable AMPA receptors (CP-AMPARs) are an important group of receptors for the neurotransmitter glutamate. These receptors contribute to various forms of

  10. Chicken lutropin acts like follitropin in rat ovarian follitropin receptor: an isoelectric focusing study.

    PubMed

    Iwasawa, A; Hattori, M; Fukuhara, Y; Kawashima, M; Wakabayashi, K; Kamiyoshi, M

    1998-07-01

    This study investigates whether chicken lutropin (LH) specifically binds to rat ovarian follitropin (FSH) receptor and exerts FSH-like bioactivity. Glycoprotein fraction, prepared from the chicken anterior pituitary gland, was fractionated using isoelectric focusing within a pH range of 3.5-11. Analysis of the focused fractions, by a radioreceptor assay (RRA) specific for FSH in rats using rat ovarian homogenate as receptor source, and 125I-labeled rat FSH as radioligand, detected a large component having an isoelectric point of 10.25. This focusing profile obtained by RRA was quite similar to that obtained by a specific radioimmunoassay (RIA) for chicken LH, but clearly different from that obtained by a specific RIA for chicken FSH, indicating this RRA specifically recognizes chicken LH. Chicken LH fraction prepared from the electrofocused material was used for further studies. The chicken LH preparation was three times more potent than rat FSH in the RRA in displacing the radioligand bound to rat ovarian receptor, while chicken LH facilitated an 8-fold less production of estradiol in dispersed rat granulosa cells than rat FSH. These results suggest that chicken LH acts like rat FSH in rat ovarian FSH receptor, but receptor-binding activity is much higher than biological activity. PMID:9827020

  11. Enkephalin levels and the number of neuropeptide Y-containing interneurons in the hippocampus are decreased in female cannabinoid-receptor 1 knock-out mice.

    PubMed

    Rogers, Sophie A; Kempen, Tracey A Van; Pickel, Virginia M; Milner, Teresa A

    2016-05-01

    Drug addiction requires learning and memory processes that are facilitated by activation of cannabinoid-1 (CB1) and opioid receptors in the hippocampus. This involves activity-dependent synaptic plasticity that is partially regulated by endogenous opioid (enkephalin and dynorphin) and non-opioid peptides, specifically cholecystokinin, parvalbumin and neuropeptide Y, the neuropeptides present in inhibitory interneurons that co-express CB1 or selective opioid receptors. We tested the hypothesis that CB1 receptor expression is a determinant of the availability of one or more of these peptide modulators in the hippocampus. This was achieved by quantitatively analyzing the immunoperoxidase labeling for each of these neuropeptide in the dorsal hippocampus of female wild-type (CB1+/+) and cannabinoid receptor 1 knockout (CB1-/-) C57/BL6 mice. The levels of Leu(5)-enkephalin-immunoreactivity were significantly reduced in the hilus of the dentate gyrus and in stratum lucidum of CA3 in CB1-/- mice. Moreover, the numbers of neuropeptide Y-immunoreactive interneurons in the dentate hilus were significantly lower in the CB1-/- compared to wild-type mice. However, CB1+/+ and CB1-/- mice did not significantly differ in expression levels of either dynorphin or cholecystokinin, and showed no differences in numbers of parvalbumin-containing interneurons. These findings suggest that the cannabinoid and opioid systems have a nuanced, regulatory relationship that could affect the balance of excitation and inhibition in the hippocampus and thus processes such as learning that rely on this balance. PMID:27012427

  12. An amino-terminal variant of the central cannabinoid receptor resulting from alternative splicing.

    PubMed

    Shire, D; Carillon, C; Kaghad, M; Calandra, B; Rinaldi-Carmona, M; Le Fur, G; Caput, D; Ferrara, P

    1995-02-24

    The cDNA sequences encoding the central cannabinoid receptor, CB1, are known for two species, rat and human. However, little information concerning the flanking, noncoding regions is presently available. We have isolated two overlapping clones from a human lung cDNA library with CB1 cDNA inserts. One of these, cann7, contains a short stretch of the CB1 coding region and 4 kilobase pairs (kb) of the 3'-untranslated region (UTR), including two polyadenylation signals. The other, cann6, is identical to cann7 upstream from the first polyadenylation signal, and in addition, it contains the whole coding region and extends for 1.8 kb into the 5'-UTR. Comparison of cann6 with the published sequence (Gérard, C. M., Mollereau, C., Vassart, G., and Parmentier, M. (1991) Biochem. J. 279, 129-134) shows the coding regions to be identical, but reveals important differences in the flanking regions. Notably, the cann6 sequence appears to be that of an immature transcript, containing 1.8 kb of an intronic sequence in the 5'-UTR. In addition, polymerase chain reaction amplification of the CB1 coding region in the IM-9 cell line cDNA resulted in two fragments, one containing the whole CB1 coding region and the second lacking a 167-base pair intron within the sequence encoding the amino-terminal tail of the receptor. This alternatively spliced form would translate to an NH2-terminal modified isoform (CB1A) of the receptor, shorter than CB1 by 61 amino acids. In addition, the first 28 amino acids of the putative truncated receptor are completely different from those of CB1, containing more hydrophobic residues. Rat CB1 mRNA is similarly alternatively spliced. A study of the distribution of the human CB1 and CB1A mRNAs by reverse transcription-polymerase chain reaction analysis showed the presence of both CB1 and CB1A throughout the brain and in all the peripheral tissues examined, with CB1A being present in amounts of up to 20% of CB1. PMID:7876112

  13. Fos-Zippered GH Receptor Cytosolic Tails Act as Jak2 Substrates and Signal Transducers.

    PubMed

    Nespital, Tobias; van der Velden, Lieke M; Mensinga, Anneloes; van der Vaart, Elisabeth D; Strous, Ger J

    2016-03-01

    Members of the Janus kinase (Jak) family initiate the majority of downstream signaling events of the cytokine receptor family. The prevailing principle is that the receptors act in dimers: 2 Jak2 molecules bind to the cytosolic tails of a cytokine receptor family member and initiate Jak-signal transducer and activator of transcription signaling upon a conformational change in the receptor complex, induced by the cognate cytokine. Due to the complexity of signaling complexes, there is a strong need for in vitro model systems. To investigate the molecular details of the Jak2 interaction with the GH receptor (GHR), we used cytosolic tails provided with leucine zippers derived from c-Fos to mimic the dimerized state of GHR. Expressed together with Jak2, fos-zippered tails, but not unzippered tails, were stabilized. In addition, the Jak-signal transducer and activator of transcription signaling pathway was activated by the fos-zippered tails. The stabilization depended also on α-helix rotation of the zippers. Fos-zippered GHR tails and Jak2, both purified from baculovirus-infected insect cells, interacted via box1 with a binding affinity of approximately 40nM. As expected, the Jak kinase inhibitor Ruxolitinib inhibited the stabilization but did not affect the c-Fos-zippered GHR tail-Jak2 interaction. Analysis by blue-native gel electrophoresis revealed high molecular-weight complexes containing both Jak2 and nonphosphorylated GHR tails, whereas Jak2-dissociated tails were highly phosphorylated and monomeric, implying that Jak2 detaches from its substrate upon phosphorylation. PMID:26859362

  14. Astrocytic expression of cannabinoid type 1 receptor in rat and human sclerotic hippocampi

    PubMed Central

    Meng, Xian-Dong; Wei, Dong; Li, Juan; Kang, Jun-Jun; Wu, Chen; Ma, Lei; Yang, Feng; Zhu, Ge-Min; Ou-Yang, Tang-Peng; Liu, Ying-Ying; Jiang, Wen

    2014-01-01

    Cannabinoid type 1 receptor (CB1R), which is traditionally located on axon terminals, plays an important role in the pathology of epilepsy and neurodegenerative diseases by modulating synaptic transmission. Using the pilocarpine model of chronic spontaneous recurrent seizures, which mimics the main features of mesial temporal lobe epilepsy (TLE) with hippocampal sclerosis (HS) in humans, we examined the expression of CB1R in hippocampal astrocytes of epileptic rats. Furthermore, we also examined the expression of astrocytic CB1R in the resected hippocampi from patients with medically refractory mesial TLE. Using immunofluorescent double labeling, we found increased expression of astrocytic CB1R in hippocampi of epileptic rats, whereas expression of astrocytic CB1R was not detectable in hippocampi of saline treated animals. Furthermore, CB1R was also found in some astrocytes in sclerotic hippocampi in a subset of patients with intractable mesial TLE. Detection with immune electron microscopy showed that the expression of CB1R was increased in astrocytes of epileptic rats and modest levels of CB1R were also found on the astrocytic membrane of sclerotic hippocampi. These results suggest that increased expression of astrocytic CB1R in sclerotic hippocampi might be involved in the cellular basis of the effects of cannabinoids on epilepsy. PMID:25031702

  15. Exercise reduces adipose tissue via cannabinoid receptor type 1 which is regulated by peroxisome proliferator-activated receptor-delta.

    PubMed

    Yan, Zhen Cheng; Liu, Dao Yan; Zhang, Li Li; Shen, Chen Yi; Ma, Qun Li; Cao, Ting Bing; Wang, Li Juan; Nie, Hai; Zidek, Walter; Tepel, Martin; Zhu, Zhi Ming

    2007-03-01

    Obesity is one major cardiovascular risk factor. We tested effects of endurance exercise on cannabinoid receptor type 1 (CB1) and peroxisome proliferator-activated receptor-delta (PPAR-delta)-dependent pathways in adipose tissue. Male Wistar rats were randomly assigned to standard laboratory chow or a high-fat diet without and with regular endurance exercise. Exercise in rats on high-fat diet significantly reduced visceral fat mass, blood pressure, and adipocyte size (each p<0.05). Adipocyte hypertrophy induced by high-fat diet was accompanied by increased CB1 expression in adipose tissue, whereas exercise significantly reduced CB1 expression (each p<0.05). CB1 receptor expression and adipocyte differentiation were directly regulated by PPAR-delta. Adipocyte hypertrophy induced by high-fat diet was accompanied by reduced PPAR-delta. Furthermore, selective silencing of PPAR-delta by RNA interference in 3T3-L1-preadipocyte cells significantly increased CB1 expression from 1.00+/-0.06 (n=3) to 1.91+/-0.06 (n=3; p<0.01) and increased adipocyte differentiation, whereas adenovirus-mediated overexpression of PPAR-delta significantly reduced CB1 expression to 0.39+/-0.03 (n=3; p<0.01) and reduced adipocyte differentiation. In the presence of the CB1 antagonist rimonabant adipocyte differentiation in stimulated 3T3 L1 preadipocyte cells was significantly reduced. The study indicates that high-fat diet-induced hypertrophy of adipocytes is associated with increased CB1 receptor expression which is directly regulated by PPAR-delta. Both CB1 and PPAR-delta are intimately involved in therapeutic interventions against a most important cardiovascular risk factor. PMID:17223076

  16. Exercise reduces adipose tissue via cannabinoid receptor type 1 which is regulated by peroxisome proliferator-activated receptor-{delta}

    SciTech Connect

    Yan Zhencheng; Liu Daoyan; Zhang Lili; Shen Chenyi; Ma Qunli; Cao Tingbing; Wang Lijuan; Nie Hai; Zidek, Walter; Tepel, Martin; Zhu Zhiming . E-mail: zhuzm@yahoo.com

    2007-03-09

    Obesity is one major cardiovascular risk factor. We tested effects of endurance exercise on cannabinoid receptor type 1 (CB1) and peroxisome proliferator-activated receptor-{delta} (PPAR-{delta})-dependent pathways in adipose tissue. Male Wistar rats were randomly assigned to standard laboratory chow or a high-fat diet without and with regular endurance exercise. Exercise in rats on high-fat diet significantly reduced visceral fat mass, blood pressure, and adipocyte size (each p < 0.05). Adipocyte hypertrophy induced by high-fat diet was accompanied by increased CB1 expression in adipose tissue, whereas exercise significantly reduced CB1 expression (each p < 0.05). CB1 receptor expression and adipocyte differentiation were directly regulated by PPAR-{delta}. Adipocyte hypertrophy induced by high-fat diet was accompanied by reduced PPAR-{delta}. Furthermore, selective silencing of PPAR-{delta} by RNA interference in 3T3-L1-preadipocyte cells significantly increased CB1 expression from 1.00 {+-} 0.06 (n = 3) to 1.91 {+-} 0.06 (n = 3; p < 0.01) and increased adipocyte differentiation, whereas adenovirus-mediated overexpression of PPAR-{delta} significantly reduced CB1 expression to 0.39 {+-} 0.03 (n = 3; p < 0.01) and reduced adipocyte differentiation. In the presence of the CB1 antagonist rimonabant adipocyte differentiation in stimulated 3T3 L1 preadipocyte cells was significantly reduced. The study indicates that high-fat diet-induced hypertrophy of adipocytes is associated with increased CB1 receptor expression which is directly regulated by PPAR-{delta}. Both CB1 and PPAR-{delta} are intimately involved in therapeutic interventions against a most important cardiovascular risk factor.

  17. Different Wnt signals act through the Frizzled and RYK receptors during Drosophila salivary gland migration.

    PubMed

    Harris, Katherine E; Beckendorf, Steven K

    2007-06-01

    Guided cell migration is necessary for the proper function and development of many tissues, one of which is the Drosophila embryonic salivary gland. Here we show that two distinct Wnt signaling pathways regulate salivary gland migration. Early in migration, the salivary gland responds to a WNT4-Frizzled signal for proper positioning within the embryo. Disruption of this signal, through mutations in Wnt4, frizzled or frizzled 2, results in misguided salivary glands that curve ventrally. Furthermore, disruption of downstream components of the canonical Wnt pathway, such as dishevelled or Tcf, also results in ventrally curved salivary glands. Analysis of a second Wnt signal, which acts through the atypical Wnt receptor Derailed, indicates a requirement for Wnt5 signaling late in salivary gland migration. WNT5 is expressed in the central nervous system and acts as a repulsive signal, needed to keep the migrating salivary gland on course. The receptor for WNT5, Derailed, is expressed in the actively migrating tip of the salivary glands. In embryos mutant for derailed or Wnt5, salivary gland migration is disrupted; the tip of the gland migrates abnormally toward the central nervous system. Our results suggest that both the Wnt4-frizzled pathway and a separate Wnt5-derailed pathway are needed for proper salivary gland migration. PMID:17507403

  18. Mapping Cannabinoid 1 Receptor Allosteric Site(s): Critical Molecular Determinant and Signaling Profile of GAT100, a Novel, Potent, and Irreversibly Binding Probe.

    PubMed

    Laprairie, Robert B; Kulkarni, Abhijit R; Kulkarni, Pushkar M; Hurst, Dow P; Lynch, Diane; Reggio, Patricia H; Janero, David R; Pertwee, Roger G; Stevenson, Lesley A; Kelly, Melanie E M; Denovan-Wright, Eileen M; Thakur, Ganesh A

    2016-06-15

    One of the most abundant G-protein coupled receptors (GPCRs) in brain, the cannabinoid 1 receptor (CB1R), is a tractable therapeutic target for treating diverse psychobehavioral and somatic disorders. Adverse on-target effects associated with small-molecule CB1R orthosteric agonists and inverse agonists/antagonists have plagued their translational potential. Allosteric CB1R modulators offer a potentially safer modality through which CB1R signaling may be directed for therapeutic benefit. Rational design of candidate, druglike CB1R allosteric modulators requires greater understanding of the architecture of the CB1R allosteric endodomain(s) and the capacity of CB1R allosteric ligands to tune the receptor's information output. We have recently reported the synthesis of a focused library of rationally designed, covalent analogues of Org27569 and PSNCBAM-1, two prototypic CB1R negative allosteric modulators (NAMs). Among the novel, pharmacologically active CB1R NAMs reported, the isothiocyanate GAT100 emerged as the lead by virtue of its exceptional potency in the [(35)S]GTPγS and β-arrestin signaling assays and its ability to label CB1R as a covalent allosteric probe with significantly reduced inverse agonism in the [(35)S]GTPγS assay as compared to Org27569. We report here a comprehensive functional profiling of GAT100 across an array of important downstream cell-signaling pathways and analysis of its potential orthosteric probe-dependence and signaling bias. The results demonstrate that GAT100 is a NAM of the orthosteric CB1R agonist CP55,940 and the endocannabinoids 2-arachidonoylglycerol and anandamide for β-arrestin1 recruitment, PLCβ3 and ERK1/2 phosphorylation, cAMP accumulation, and CB1R internalization in HEK293A cells overexpressing CB1R and in Neuro2a and STHdh(Q7/Q7) cells endogenously expressing CB1R. Distinctively, GAT100 was a more potent and efficacious CB1R NAM than Org27569 and PSNCBAM-1 in all signaling assays and did not exhibit the inverse

  19. Synergistically acting agonists and antagonists of G protein–coupled receptors prevent photoreceptor cell degeneration

    PubMed Central

    Chen, Yu; Palczewska, Grazyna; Masuho, Ikuo; Gao, Songqi; Jin, Hui; Dong, Zhiqian; Gieser, Linn; Brooks, Matthew J.; Kiser, Philip D.; Kern, Timothy S.; Martemyanov, Kirill A.; Swaroop, Anand; Palczewski, Krzysztof

    2016-01-01

    Photoreceptor cell degeneration leads to visual impairment and blindness in several types of retinal disease. However, the discovery of safe and effective therapeutic strategies conferring photoreceptor cell protection remains challenging. Targeting distinct cellular pathways with low doses of different drugs that produce a functionally synergistic effect could provide a strategy for preventing or treating retinal dystrophies. We took a systems pharmacology approach to identify potential combination therapies using a mouse model of light-induced retinal degeneration. We showed that a combination of U.S. Food and Drug Administration–approved drugs that act on different G protein (guanine nucleotide–binding protein)–coupled receptors (GPCRs) exhibited synergistic activity that protected retinas from light-induced degeneration even when each drug was administered at a low dose. In functional assays, the combined effects of these drugs were stimulation of Gi/o signaling by activating the dopamine receptors D2R and D4R, as well as inhibition of Gs and Gq signaling by antagonizing D1R and the α1A-adrenergic receptor ADRA1A, respectively. Moreover, transcriptome analyses demonstrated that such combined GPCR-targeted treatments preserved patterns of retinal gene expression that were more similar to those of the normal retina than did higher-dose monotherapy. Our study thus supports a systems pharmacology approach to identify treatments for retinopathies, an approach that could extend to other complex disorders. PMID:27460988

  20. Synergistically acting agonists and antagonists of G protein-coupled receptors prevent photoreceptor cell degeneration.

    PubMed

    Chen, Yu; Palczewska, Grazyna; Masuho, Ikuo; Gao, Songqi; Jin, Hui; Dong, Zhiqian; Gieser, Linn; Brooks, Matthew J; Kiser, Philip D; Kern, Timothy S; Martemyanov, Kirill A; Swaroop, Anand; Palczewski, Krzysztof

    2016-01-01

    Photoreceptor cell degeneration leads to visual impairment and blindness in several types of retinal disease. However, the discovery of safe and effective therapeutic strategies conferring photoreceptor cell protection remains challenging. Targeting distinct cellular pathways with low doses of different drugs that produce a functionally synergistic effect could provide a strategy for preventing or treating retinal dystrophies. We took a systems pharmacology approach to identify potential combination therapies using a mouse model of light-induced retinal degeneration. We showed that a combination of U.S. Food and Drug Administration-approved drugs that act on different G protein (heterotrimeric guanine nucleotide-binding protein)-coupled receptors (GPCRs) exhibited synergistic activity that protected retinas from light-induced degeneration even when each drug was administered at a low dose. In functional assays, the combined effects of these drugs were stimulation of Gi/o signaling by activating the dopamine receptors D2R and D4R, as well as inhibition of Gs and Gq signaling by antagonizing D1R and the α1A-adrenergic receptor ADRA1A, respectively. Moreover, transcriptome analyses demonstrated that such combined GPCR-targeted treatments preserved patterns of retinal gene expression that were more similar to those of the normal retina than did higher-dose monotherapy. Our study thus supports a systems pharmacology approach to identify treatments for retinopathies, an approach that could extend to other complex disorders. PMID:27460988

  1. Nucleolin Acts as a Scavenger Receptor for Acetylated Low-Density Lipoprotein on Macrophages.

    PubMed

    Miki, Yuichi; Tachibana, Yoshihiro; Ohminato, Yukari; Fujiwara, Yasuyuki

    2015-01-01

    Although macrophage phagocytoses modified low-density lipoprotein (LDL), excessive accumulation of modified LDL induces macrophage foam cell formation, which is a feature of atherosclerotic plaque. Thus, the identification of scavenger receptor for modified LDL will provide better understanding of an atherosclerotic event. We recently showed that nucleolin expressed on macrophages acts as a scavenger receptor for various endogenous discarded products. Here, we investigated whether or not nucleolin is involved in the uptake of acetylated LDL (AcLDL). In contrast to normal LDL, AcLDL directly bound to immobilized nucleolin. AcLDL exhibited a higher affinity for macrophages than normal LDL. This binding of AcLDL was inhibited by anti-nucleolin antibody and antineoplastic guanine-rich oligonucleotide (AGRO), a nucleolin-specific oligonucleotide aptamer. In addition, AcLDL exhibited a higher affinity for HEK cells transfected with nucleolin than those without. Further, intracellular accumulation of AcLDL was also inhibited by anti-nucleolin antibody. The results of this study suggest that nucleolin expressed on macrophages is a receptor for AcLDL. PMID:26328500

  2. The hepatic cannabinoid 1 receptor as a modulator of hepatic energy state and food intake.

    PubMed

    Cooper, Martin E; Regnell, Simon E

    2014-01-01

    The cannabinoid 1 receptor (CB1R) has a well-established role in appetite regulation. Central CB1R antagonists, notably rimonabant, induced weight loss and improved the metabolic profile in obese individuals, but were discontinued due to psychiatric side-effects. The CB1R is also expressed peripherally, where its effects include promotion of liver fat accumulation, which consumes ATP. Type 2 diabetes in obese subjects is linked to excess liver fat, whilst there is a negative correlation between hepatic ATP content and insulin resistance. A decreased hepatic ATP/AMP ratio increases food intake by signals via the vagus nerve to the brain. The hepatic cannabinoid system is highly upregulated in obesity, and the effects of hepatic CB1R activation include increased activity of lipogenic and gluconeogenic transcription factors. Thus, blockade of hepatic CB1Rs could contribute significantly to the weight-reducing and insulin-sensitizing effects of CB1R antagonists. Additionally, upregulation of the hepatic CB1R may contribute to chronic liver inflammation, fibrosis and cirrhosis from causes including obesity, alcoholism and viral hepatitis. Peripheral CB1R antagonists induce weight loss and metabolic improvements in obese rodents; however, as there is evidence that hepatic CB1Rs are predominately intracellular, due to high intrinsic clearance, many drugs may not effectively block these receptors and therefore have limited efficacy. Hepatoselective CB1R antagonists may be effective at reducing hepatic steatosis, insulin resistance and bodyweight in obese, diabetic patients, with far fewer side-effects than first-generation CB1R antagonists. Additionally, such compounds may be effective in treating inflammatory liver disease, such as non-alcoholic steatohepatitis, reducing the likelihood of disease progression to cirrhosis or cancer. PMID:23452341

  3. The hepatic cannabinoid 1 receptor as a modulator of hepatic energy state and food intake

    PubMed Central

    Cooper, Martin E; Regnell, Simon E

    2014-01-01

    The cannabinoid 1 receptor (CB1R) has a well-established role in appetite regulation. Central CB1R antagonists, notably rimonabant, induced weight loss and improved the metabolic profile in obese individuals, but were discontinued due to psychiatric side-effects. The CB1R is also expressed peripherally, where its effects include promotion of liver fat accumulation, which consumes ATP. Type 2 diabetes in obese subjects is linked to excess liver fat, whilst there is a negative correlation between hepatic ATP content and insulin resistance. A decreased hepatic ATP/AMP ratio increases food intake by signals via the vagus nerve to the brain. The hepatic cannabinoid system is highly upregulated in obesity, and the effects of hepatic CB1R activation include increased activity of lipogenic and gluconeogenic transcription factors. Thus, blockade of hepatic CB1Rs could contribute significantly to the weight-reducing and insulin-sensitizing effects of CB1R antagonists. Additionally, upregulation of the hepatic CB1R may contribute to chronic liver inflammation, fibrosis and cirrhosis from causes including obesity, alcoholism and viral hepatitis. Peripheral CB1R antagonists induce weight loss and metabolic improvements in obese rodents; however, as there is evidence that hepatic CB1Rs are predominately intracellular, due to high intrinsic clearance, many drugs may not effectively block these receptors and therefore have limited efficacy. Hepatoselective CB1R antagonists may be effective at reducing hepatic steatosis, insulin resistance and bodyweight in obese, diabetic patients, with far fewer side-effects than first-generation CB1R antagonists. Additionally, such compounds may be effective in treating inflammatory liver disease, such as non-alcoholic steatohepatitis, reducing the likelihood of disease progression to cirrhosis or cancer. PMID:23452341

  4. Effects of long-term aging on ductility of the columbium alloys C-103, Cb-1Zr, and Cb-752 and the molybdenum alloy Mo-TZM

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.

    1975-01-01

    A program was conducted to determine if aging embrittlement occurs in the columbium alloys C-103, CB-1Zr, and Cb-752 or in the molybdenum alloy Mo-TZM. Results showed that aging embrittlement does not occur in C-103, Cb-1Zr, or Mo-TZM during long-term (1000 hr) aging at temperatures in the range 700 to 1025 C. In contrast, aging embrittlement did occur in the Cb-752 alloy after similar aging at 900 C. A critical combination of the solute additions W and Zr in Cb-752 led to Zr segregation at grain boundaries during long-term aging. This segregation subsequently resulted in embrittlement as indicated by an increase in the ductile-brittle transition temperature from below -1960 C to about -150 C.

  5. Expression of the Endocannabinoid Receptors in Human Fascial Tissue

    PubMed Central

    Fede, C.; Albertin, G.; Petrelli, L.; Sfriso, M.M.; Biz, C.; Caro, R. De; Stecco, C.

    2016-01-01

    Cannabinoid receptors have been localized in the central and peripheral nervous system as well as on cells of the immune system, but recent studies on animal tissue gave evidence for the presence of cannabinoid receptors in different types of tissues. Their presence was supposed also in myofascial tissue, suggesting that the endocannabinoid system may help resolve myofascial trigger points and relieve symptoms of fibromyalgia. However, until now the expression of CB1 (cannabinoid receptor 1) and CB2 (cannabinoid receptor 2) in fasciae has not yet been established. Small samples of fascia were collected from volunteers patients during orthopedic surgery. For each sample were done a cell isolation, immunohistochemical investigation (CB1 and CB2 antibodies) and real time RT-PCR to detect the expression of CB1 and CB2. Both cannabinoid receptors are expressed in human fascia and in human fascial fibroblasts culture cells, although to a lesser extent than the control gene. We can assume that the expression of mRNA and protein of CB1 and CB2 receptors in fascial tissue are concentrated into the fibroblasts. This is the first demonstration that the fibroblasts of the muscular fasciae express CB1 and CB2. The presence of these receptors could help to provide a description of cannabinoid receptors distribution and to better explain the role of fasciae as pain generator and the efficacy of some fascial treatments. Indeed the endocannabinoid receptors of fascial fibroblasts can contribute to modulate the fascial fibrosis and inflammation. PMID:27349320

  6. Expression of the endocannabinoid receptors in human fascial tissue.

    PubMed

    Fede, C; Albertin, G; Petrelli, L; Sfriso, M M; Biz, C; De Caro, R; Stecco, C

    2016-01-01

    Cannabinoid receptors have been localized in the central and peripheral nervous system as well as on cells of the immune system, but recent studies on animal tissue gave evidence for the presence of cannabinoid receptors in different types of tissues. Their presence was supposed also in myofascial tissue, suggesting that the endocannabinoid system may help resolve myofascial trigger points and relieve symptoms of fibromyalgia. However, until now the expression of CB1 (cannabinoid receptor 1) and CB2 (cannabinoid receptor 2) in fasciae has not yet been established. Small samples of fascia were collected from volunteers patients during orthopedic surgery. For each sample were done a cell isolation, immunohistochemical investigation (CB1 and CB2 antibodies) and real time RT-PCR to detect the expression of CB1 and CB2. Both cannabinoid receptors are expressed in human fascia and in human fascial fibroblasts culture cells, although to a lesser extent than the control gene. We can assume that the expression of mRNA and protein of CB1 and CB2 receptors in fascial tissue are concentrated into the fibroblasts. This is the first demonstration that the fibroblasts of the muscular fasciae express CB1 and CB2. The presence of these receptors could help to provide a description of cannabinoid receptors distribution and to better explain the role of fasciae as pain generator and the efficacy of some fascial treatments. Indeed the endocannabinoid receptors of fascial fibroblasts can contribute to modulate the fascial fibrosis and inflammation. PMID:27349320

  7. The type I activin receptor ActRIB is required for egg cylinder organization and gastrulation in the mouse

    PubMed Central

    Gu, Zhenyu; Nomura, Masatoshi; Simpson, Brenda B.; Lei, Hong; Feijen, Alie; van den Eijnden-van Raaij, Janny; Donahoe, Patricia K.; Li, En

    1998-01-01

    ActRIB is a type I transmembrane serine/threonine kinase receptor that has been shown to form heteromeric complexes with the type II activin receptors to mediate activin signal. To investigate the function of ActRIB in mammalian development, we generated ActRIB-deficient ES cell lines and mice by gene targeting. Analysis of the ActRIB−/− embryos showed that the epiblast and the extraembryonic ectoderm were disorganized, resulting in disruption and developmental arrest of the egg cylinder before gastrulation. To assess the function of ActRIB in mesoderm formation and gastrulation, chimera analysis was conducted. We found that ActRIB−/− ES cells injected into wild-type blastocysts were able to contribute to the mesoderm in chimeric embryos, suggesting that ActRIB is not required for mesoderm formation. Primitive streak formation, however, was impaired in chimeras when ActRIB−/− cells contributed highly to the epiblast. Further, chimeras generated by injection of wild-type ES cells into ActRIB−/− blastocysts formed relatively normal extraembryonic tissues, but the embryo proper developed poorly probably resulting from severe gastrulation defect. These results provide genetic evidence that ActRIB functions in both epiblast and extraembryonic cells to mediate signals that are required for egg cylinder organization and gastrulation. PMID:9512518

  8. Discovery of novel Tetrahydrobenzo[b]thiophene and pyrrole based scaffolds as potent and selective CB2 receptor ligands: The structural elements controlling binding affinity, selectivity and functionality.

    PubMed

    Osman, Noha A; Ligresti, Alessia; Klein, Christian D; Allarà, Marco; Rabbito, Alessandro; Di Marzo, Vincenzo; Abouzid, Khaled A; Abadi, Ashraf H

    2016-10-21

    CB2-based therapeutics show strong potential in the treatment of diverse diseases such as inflammation, multiple sclerosis, pain, immune-related disorders, osteoporosis and cancer, without eliciting the typical neurobehavioral side effects of CB1 ligands. For this reason, research activities are currently directed towards the development of CB2 selective ligands. Herein, the synthesis of novel heterocyclic-based CB2 selective compounds is reported. A set of 2,5-dialkyl-1-phenyl-1H-pyrrole-3-carboxamides, 5-subtituted-2-(acylamino)/(2-sulphonylamino)-thiophene-3-carboxylates and 2-(acylamino)/(2-sulphonylamino)-tetrahydrobenzo[b]thiophene-3-carboxylates were synthesized. Biological results revealed compounds with remarkably high CB2 binding affinity and CB2/CB1 subtype selectivity. Compound 19a and 19b from the pyrrole series exhibited the highest CB2 receptor affinity (Ki = 7.59 and 6.15 nM, respectively), as well as the highest CB2/CB1 subtype selectivity (∼70 and ∼200-fold, respectively). In addition, compound 6b from the tetrahydrobenzo[b]thiophene series presented the most potent and selective CB2 ligand in this series (Ki = 2.15 nM and CB2 subtype selectivity of almost 500-fold over CB1). Compound 6b showed a full agonism, while compounds 19a and 19b acted as inverse agonists when tested in an adenylate cyclase assay. The present findings thus pave the way to the design and optimization of heterocyclic-based scaffolds with lipophilic carboxamide and/or retroamide substituent that can be exploited as potential CB2 receptor activity modulators. PMID:27448919

  9. New, potent, selective, and short-acting peptidic V1a receptor agonists.

    PubMed

    Wisniewski, Kazimierz; Galyean, Robert; Tariga, Hiroe; Alagarsamy, Sudarkodi; Croston, Glenn; Heitzmann, Joshua; Kohan, Arash; Wisniewska, Halina; Laporte, Régent; Rivière, Pierre J-M; Schteingart, Claudio D

    2011-07-14

    [Arg(8)]vasopressin (AVP) produces vasoconstriction via V(1a) receptor (V(1a)R)-mediated vascular smooth muscle cell contraction and is being used to increase blood pressure in septic shock, a form of vasodilatory hypotension. However, AVP also induces V(2) receptor (V(2)R)-mediated antidiuresis, vasodilation, and coagulation factor release, all deleterious in septic shock. The V(1a)R agonist terlipressin (H-Gly(3)[Lys(8)]VP) also lacks selectivity vs the V(2)R and has sizably longer duration of action than AVP, preventing rapid titration of its vasopressor effect in the clinic. We designed and synthesized new short acting V(1a)R selective analogues of general structure [Xaa(2),Ile(3),Yaa(4),Zaa(8)]VP. The most potent and selective compounds in in vitro functional assays (e.g., [Phe(2),Ile(3),Asn(Me(2))(4),Orn(8)]VP (31), [Phe(2),Ile(3),Asn((CH(2))(3)OH)(4),Orn(8)]VP (34), [Phe(2),Ile(3),Hgn(4),Orn(iPr)(8)]VP (45), [Phe(2),Ile(3),Asn(Et)(4),Dab(8)]VP (49), [Thi(2),Ile(3),Orn(iPr)(8)]VP (59), [Cha(2),Ile(3),Asn(4),Orn(iPr)(8)]VP (68)) were tested by intravenous bolus in rats for duration of vasopressive action. Analogues 31, 34, 45, and 49 were as short-acting as AVP. Compound 45, FE 202158, is currently undergoing clinical trials in septic shock. PMID:21688787

  10. A [3]rotaxane with two porphyrinic plates acting as an adaptable receptor.

    PubMed

    Frey, Julien; Tock, Christian; Collin, Jean-Paul; Heitz, Valérie; Sauvage, Jean-Pierre

    2008-04-01

    Following a multistep procedure, the copper(I)-templated strategy allowed preparation of a multifunctional [3]rotaxane. The dumbbell consists of a central two-bidentate chelate unit and two terminal stoppers. The two rings threaded on the rotaxane axis consist each of a 1,10-phenanthroline-incorporating macrocycle, rigidly connected to an appended zinc-complexed porphyrin. The copper(I) template can be removed, affording a free rotaxane whose two rings can glide freely along the axis and spin around it. The dumbbell being very long (approximately 85 A in its extended conformation from one stopper to the other), the porphyrin-porphyrin distance can be varied over a wide range. The two porphyrinic plates constitute the key elements of a receptor able to complex various guests between the plates. The ability of the threaded rings to move freely makes the host perfectly adjustable, allowing capture of geometrically very different guests. The copper(I)-complexed rotaxane also acts as an efficient receptor, although its adaptability is obviously more limited than that of its free rotaxane counterpart. PMID:18338892

  11. The orphan nuclear receptor DAX-1 acts as a novel transcriptional corepressor of PPAR{gamma}

    SciTech Connect

    Kim, Gwang Sik; Lee, Gha Young; Nedumaran, Balachandar; Park, Yun-Yong; Kim, Kyung Tae; Park, Sang Chul; Lee, Young Chul; Kim, Jae Bum Choi, Hueng-Sik

    2008-05-30

    DAX-1 is an atypical nuclear receptor (NR) which functions primarily as a transcriptional corepressor of other NRs via heterodimerization. Peroxisome proliferator-activated receptor (PPAR) {gamma} is a ligand-dependent NR which performs a key function in adipogenesis. In this study, we evaluated a novel cross-talk mechanism between DAX-1 and PPAR{gamma}. Transient transfection assays demonstrated that DAX-1 inhibits the transactivity of PPAR{gamma} in a dose-dependent manner. DAX-1 directly competed with the PPAR{gamma} coactivator (PGC)-1{alpha} for binding to PPAR{gamma}. Endogenous levels of DAX-1 were significantly lower in differentiated 3T3-L1 adipocytes as compared to preadipocytes. Using a retroviral expression system, we demonstrated that DAX-1 overexpression downregulates the expression of PPAR{gamma} target genes, resulting in an attenuation of adipogenesis in 3T3-L1 cells. Our results suggest that DAX-1 acts as a corepressor of PPAR{gamma} and performs a potential function in the regulation of PPAR{gamma}-mediated cellular differentiation.

  12. Cucurbitacins are insect steroid hormone antagonists acting at the ecdysteroid receptor.

    PubMed

    Dinan, L; Whiting, P; Girault, J P; Lafont, R; Dhadialla, T S; Cress, D E; Mugat, B; Antoniewski, C; Lepesant, J A

    1997-11-01

    Two triterpenoids, cucurbitacins B and D, have been isolated from seeds of Iberis umbellata (Cruciferae) and shown to be responsible for the antagonistic activity of a methanolic extract of this species in preventing the 20-hydroxyecdysone (20E)-induced morphological changes in the Drosophila melanogaster BII permanent cell line. With a 20E concentration of 50 nM, cucurbitacins B and D give 50% responses at 1.5 and 10 microM respectively. Both cucurbitacins are able to displace specifically bound radiolabelled 25-deoxy-20-hydroxyecdysone (ponasterone A) from a cell-free preparation of the BII cells containing ecdysteroid receptors. The Kd values for cucurbitacins B and D (5 and 50 microM respectively) are similar to the concentrations required to antagonize 20E activity with whole cells. Cucurbitacin B (cucB) prevents stimulation by 20E of an ecdysteroid-responsive reporter gene in a transfection assay. CucB also prevents the formation of the Drosophila ecdysteroid receptor/Ultraspiracle/20E complex with the hsp27 ecdysteroid response element as demonstrated by gel-shift assay. This is therefore the first definitive evidence for the existence of antagonists acting at the ecdysteroid receptor. Preliminary structure/activity studies indicate the importance of the Delta23-22-oxo functional grouping in the side chain for antagonistic activity. Hexanorcucurbitacin D, which lacks carbon atoms C-22 to C-27, is found to be a weak agonist rather than an antagonist. Moreover, the side chain analogue 5-methylhex-3-en-2-one possesses weak antagonistic activity. PMID:9581538

  13. Cucurbitacins are insect steroid hormone antagonists acting at the ecdysteroid receptor.

    PubMed Central

    Dinan, L; Whiting, P; Girault, J P; Lafont, R; Dhadialla, T S; Cress, D E; Mugat, B; Antoniewski, C; Lepesant, J A

    1997-01-01

    Two triterpenoids, cucurbitacins B and D, have been isolated from seeds of Iberis umbellata (Cruciferae) and shown to be responsible for the antagonistic activity of a methanolic extract of this species in preventing the 20-hydroxyecdysone (20E)-induced morphological changes in the Drosophila melanogaster BII permanent cell line. With a 20E concentration of 50 nM, cucurbitacins B and D give 50% responses at 1.5 and 10 microM respectively. Both cucurbitacins are able to displace specifically bound radiolabelled 25-deoxy-20-hydroxyecdysone (ponasterone A) from a cell-free preparation of the BII cells containing ecdysteroid receptors. The Kd values for cucurbitacins B and D (5 and 50 microM respectively) are similar to the concentrations required to antagonize 20E activity with whole cells. Cucurbitacin B (cucB) prevents stimulation by 20E of an ecdysteroid-responsive reporter gene in a transfection assay. CucB also prevents the formation of the Drosophila ecdysteroid receptor/Ultraspiracle/20E complex with the hsp27 ecdysteroid response element as demonstrated by gel-shift assay. This is therefore the first definitive evidence for the existence of antagonists acting at the ecdysteroid receptor. Preliminary structure/activity studies indicate the importance of the Delta23-22-oxo functional grouping in the side chain for antagonistic activity. Hexanorcucurbitacin D, which lacks carbon atoms C-22 to C-27, is found to be a weak agonist rather than an antagonist. Moreover, the side chain analogue 5-methylhex-3-en-2-one possesses weak antagonistic activity. PMID:9581538

  14. Upregulation of Cannabinoid Type 1 Receptors in Dopamine D2 Receptor Knockout Mice Is Reversed by Chronic Forced Ethanol Consumption

    SciTech Connect

    Thanos, P.K.; Wang, G.; Thanos, P.K.; Gopez, V.; Delis, F.; Michaelides, M.; Grand, D.K.; Wang, G.-J.; Kunos, G.; Volkow, N.D.

    2011-01-01

    The anatomical proximity of the cannabinoid type 1 (CNR1/CB1R) and the dopamine D2 receptors (DRD2), their ability to form CB1R-DRD2 heteromers, their opposing roles in locomotion, and their involvement in ethanol's reinforcing and addictive properties prompted us to study the levels and distribution of CB1R after chronic ethanol intake, in the presence and absence of DRD2. We monitored the drinking patterns and locomotor activity of Drd2+/+ and Drd2-/- mice consuming either water or a 20% (v/v) ethanol solution (forced ethanol intake) for 6 months and used the selective CB1 receptor antagonist [{sup 3}H]SR141716A to quantify CB1R levels in different brain regions with in vitro receptor autoradiography. We found that the lack of DRD2 leads to a marked upregulation (approximately 2-fold increase) of CB1R in the cerebral cortex, the caudate-putamen, and the nucleus accumbens, which was reversed by chronic ethanol intake. The results suggest that DRD2-mediated dopaminergic neurotransmission and chronic ethanol intake exert an inhibitory effect on cannabinoid receptor expression in cortical and striatal regions implicated in the reinforcing and addictive properties of ethanol.

  15. Histamine influences body temperature by acting at H1 and H3 receptors on distinct populations of preoptic neurons

    PubMed Central

    Lundius, Ebba Gregorsson; Sanchez-Alavez, Manuel; Ghochani, Yasmin; Klaus, Joseph; Tabarean, Iustin V.

    2010-01-01

    The preoptic area/anterior hypothalamus (PO/AH), a region that contains neurons that control thermoregulation, is the main locus at which histamine affects body temperature. Here we report that histamine reduced the spontaneous firing rate of GABAergic preoptic neurons by activating H3 subtype histamine receptors. This effect involved a decrease in the level of phosphorylation of the extracellular signal-regulated kinase (ERK) and was not dependent on synaptic activity. Furthermore, a population of nonGABAergic neurons was depolarized and their firing rate was enhanced by histamine acting at H1 subtype receptors. In our experiments, activation of the H1R receptors was linked to the PLC pathway and Ca2+ release from intracellular stores. This depolarization persisted in TTX or when fast synaptic potentials were blocked indicating that it represents a postsynaptic effect. Single-cell reverse transcription –PCR analysis revealed expression of H3 receptors in a population of GABAergic neurons while H1 receptors were expressed in nonGABAergic cells. Histamine applied in the median preoptic nucleus induced a robust, long lasting hyperthermia effect that was mimicked by either H1 or H3 histamine receptor subtype specific agonists. Our data indicate that histamine modulates the core body temperature by acting at two distinct populations of preoptic neurons which express H1 and H3 receptor subtypes, respectively. PMID:20335473

  16. Histamine influences body temperature by acting at H1 and H3 receptors on distinct populations of preoptic neurons.

    PubMed

    Lundius, Ebba Gregorsson; Sanchez-Alavez, Manuel; Ghochani, Yasmin; Klaus, Joseph; Tabarean, Iustin V

    2010-03-24

    The preoptic area/anterior hypothalamus, a region that contains neurons that control thermoregulation, is the main locus at which histamine affects body temperature. Here we report that histamine reduced the spontaneous firing rate of GABAergic preoptic neurons by activating H3 subtype histamine receptors. This effect involved a decrease in the level of phosphorylation of the extracellular signal-regulated kinase and was not dependent on synaptic activity. Furthermore, a population of non-GABAergic neurons was depolarized, and their firing rate was enhanced by histamine acting at H1 subtype receptors. In our experiments, activation of the H1R receptors was linked to the PLC pathway and Ca(2+) release from intracellular stores. This depolarization persisted in TTX or when fast synaptic potentials were blocked, indicating that it represents a postsynaptic effect. Single-cell reverse transcription-PCR analysis revealed expression of H3 receptors in a population of GABAergic neurons, while H1 receptors were expressed in non-GABAergic cells. Histamine applied in the median preoptic nucleus induced a robust, long-lasting hyperthermia effect that was mimicked by either H1 or H3 histamine receptor subtype-specific agonists. Our data indicate that histamine modulates the core body temperature by acting at two distinct populations of preoptic neurons that express H1 and H3 receptor subtypes, respectively. PMID:20335473

  17. Optimization of cAMP fluorescence dataset from ACTOne cannabinoid receptor 1 cell line.

    PubMed

    Presley, Chaela S; Abidi, Ammaar H; Moore, Bob M

    2016-06-01

    The ACTOne cannabinoid receptor 1 functional system is comprised of transfected HEK cells with the parental cyclic nucleotide gated channel (CNG) co-transfected with cannabinoid receptor 1 (CB1). The ACTOne CB1 cell line was evaluated for cAMP driven fluorescence by optimizing experimental conditions for sensitivity to forskolin and CP 55,940, reading time point, reliability of cell passage number, and pertussis inactivation of Gi/o. PMID:27115025

  18. Optimization of cAMP fluorescence dataset from ACTOne cannabinoid receptor 1 cell line

    PubMed Central

    Presley, Chaela S.; Abidi, Ammaar H.; Moore, Bob M.

    2016-01-01

    The ACTOne cannabinoid receptor 1 functional system is comprised of transfected HEK cells with the parental cyclic nucleotide gated channel (CNG) co-transfected with cannabinoid receptor 1 (CB1). The ACTOne CB1 cell line was evaluated for cAMP driven fluorescence by optimizing experimental conditions for sensitivity to forskolin and CP 55,940, reading time point, reliability of cell passage number, and pertussis inactivation of Gi/o. PMID:27115025

  19. Small Molecules from Nature Targeting G-Protein Coupled Cannabinoid Receptors: Potential Leads for Drug Discovery and Development.

    PubMed

    Sharma, Charu; Sadek, Bassem; Goyal, Sameer N; Sinha, Satyesh; Kamal, Mohammad Amjad; Ojha, Shreesh

    2015-01-01

    The cannabinoid molecules are derived from Cannabis sativa plant which acts on the cannabinoid receptors types 1 and 2 (CB1 and CB2) which have been explored as potential therapeutic targets for drug discovery and development. Currently, there are numerous cannabinoid based synthetic drugs used in clinical practice like the popular ones such as nabilone, dronabinol, and Δ(9)-tetrahydrocannabinol mediates its action through CB1/CB2 receptors. However, these synthetic based Cannabis derived compounds are known to exert adverse psychiatric effect and have also been exploited for drug abuse. This encourages us to find out an alternative and safe drug with the least psychiatric adverse effects. In recent years, many phytocannabinoids have been isolated from plants other than Cannabis. Several studies have shown that these phytocannabinoids show affinity, potency, selectivity, and efficacy towards cannabinoid receptors and inhibit endocannabinoid metabolizing enzymes, thus reducing hyperactivity of endocannabinoid systems. Also, these naturally derived molecules possess the least adverse effects opposed to the synthetically derived cannabinoids. Therefore, the plant based cannabinoid molecules proved to be promising and emerging therapeutic alternative. The present review provides an overview of therapeutic potential of ligands and plants modulating cannabinoid receptors that may be of interest to pharmaceutical industry in search of new and safer drug discovery and development for future therapeutics. PMID:26664449

  20. Small Molecules from Nature Targeting G-Protein Coupled Cannabinoid Receptors: Potential Leads for Drug Discovery and Development

    PubMed Central

    Sharma, Charu; Sadek, Bassem; Goyal, Sameer N.; Sinha, Satyesh; Ojha, Shreesh

    2015-01-01

    The cannabinoid molecules are derived from Cannabis sativa plant which acts on the cannabinoid receptors types 1 and 2 (CB1 and CB2) which have been explored as potential therapeutic targets for drug discovery and development. Currently, there are numerous cannabinoid based synthetic drugs used in clinical practice like the popular ones such as nabilone, dronabinol, and Δ9-tetrahydrocannabinol mediates its action through CB1/CB2 receptors. However, these synthetic based Cannabis derived compounds are known to exert adverse psychiatric effect and have also been exploited for drug abuse. This encourages us to find out an alternative and safe drug with the least psychiatric adverse effects. In recent years, many phytocannabinoids have been isolated from plants other than Cannabis. Several studies have shown that these phytocannabinoids show affinity, potency, selectivity, and efficacy towards cannabinoid receptors and inhibit endocannabinoid metabolizing enzymes, thus reducing hyperactivity of endocannabinoid systems. Also, these naturally derived molecules possess the least adverse effects opposed to the synthetically derived cannabinoids. Therefore, the plant based cannabinoid molecules proved to be promising and emerging therapeutic alternative. The present review provides an overview of therapeutic potential of ligands and plants modulating cannabinoid receptors that may be of interest to pharmaceutical industry in search of new and safer drug discovery and development for future therapeutics. PMID:26664449

  1. Endocannabinoids Stimulate Human Melanogenesis via Type-1 Cannabinoid Receptor*

    PubMed Central

    Pucci, Mariangela; Pasquariello, Nicoletta; Battista, Natalia; Di Tommaso, Monia; Rapino, Cinzia; Fezza, Filomena; Zuccolo, Michela; Jourdain, Roland; Finazzi Agrò, Alessandro; Breton, Lionel; Maccarrone, Mauro

    2012-01-01

    We show that a fully functional endocannabinoid system is present in primary human melanocytes (normal human epidermal melanocyte cells), including anandamide (AEA), 2-arachidonoylglycerol, the respective target receptors (CB1, CB2, and TRPV1), and their metabolic enzymes. We also show that at higher concentrations AEA induces normal human epidermal melanocyte apoptosis (∼3-fold over controls at 5 μm) through a TRPV1-mediated pathway that increases DNA fragmentation and p53 expression. However, at lower concentrations, AEA and other CB1-binding endocannabinoids dose-dependently stimulate melanin synthesis and enhance tyrosinase gene expression and activity (∼3- and ∼2-fold over controls at 1 μm). This CB1-dependent activity was fully abolished by the selective CB1 antagonist SR141716 or by RNA interference of the receptor. CB1 signaling engaged p38 and p42/44 mitogen-activated protein kinases, which in turn activated the cyclic AMP response element-binding protein and the microphthalmia-associated transcription factor. Silencing of tyrosinase or microphthalmia-associated transcription factor further demonstrated the involvement of these proteins in AEA-induced melanogenesis. In addition, CB1 activation did not engage the key regulator of skin pigmentation, cyclic AMP, showing a major difference compared with the regulation of melanogenesis by α-melanocyte-stimulating hormone through melanocortin 1 receptor. PMID:22431736

  2. Cannabinoid 1 receptor knockout mice display cold allodynia, but enhanced recovery from spared-nerve injury-induced mechanical hypersensitivity

    PubMed Central

    Piskoun, Boris; Russo, Lori; Norcini, Monica; Blanck, Thomas; Recio-Pinto, Esperanza

    2016-01-01

    Background The function of the Cannabinoid 1 receptor (CB1R) in the development of neuropathic pain is not clear. Mounting evidence suggest that CB1R expression and activation may contribute to pain. Cannabinoid 1 receptor knockout mice (CB1R−/−) generated on a C57Bl/6 background exhibit hypoalgesia in the hotplate assay and formalin test. These findings suggest that Cannabinoid 1 receptor expression mediates the responses to at least some types of painful stimuli. By using this mouse line, we sought to determine if the lack of Cannabinoid 1 receptor unveils a general hypoalgesic phenotype, including protection against the development of neuropathic pain. The acetone test was used to measure cold sensitivity, the electronic von Frey was used to measure mechanical thresholds before and after spared-nerve injury, and analysis of footprint patterns was conducted to determine if motor function is differentially affected after nerve-injury in mice with varying levels of Cannabinoid 1 receptor. Results At baseline, CB1R−/− mice were hypersensitive in the acetone test, and this phenotype was maintained after spared-nerve injury. Using calcium imaging of lumbar dorsal root ganglion (DRG) cultures, a higher percentage of neurons isolated from CB1R−/− mice were menthol sensitive relative to DRG isolated from wild-type (CB1R+/+) mice. Baseline mechanical thresholds did not differ among genotypes, and mechanical hypersensitivity developed similarly in the first two weeks following spared-nerve injury (SNI). At two weeks post-SNI, CB1R−/− mice recovered significantly from mechanical hypersensitivity, while the CB1R+/+ mice did not. Heterozygous knockouts (CB1R+/−) transiently developed cold allodynia only after injury, but recovered mechanical thresholds to a similar extent as the CB1R−/− mice. Sciatic functional indices, which reflect overall nerve health, and alternation coefficients, which indicate uniformity of strides, were not significantly different

  3. Rho/ROCK acts downstream of lysophosphatidic acid receptor 1 in modulating P2X3 receptor-mediated bone cancer pain in rats

    PubMed Central

    Wu, Jing-xiang; Yuan, Xiao-min; Wang, Qiong; Wei, Wang

    2016-01-01

    Background Lysophosphatidic acid receptor 1 and Rho/ROCK signaling is implicated in bone cancer pain development. However, it remains unknown whether the two signaling pathways function together in P2X3 receptor-mediated bone cancer pain. Results In this study, using a rat model of bone cancer, we examined the expression of P2X3 and lysophosphatidic acid receptor 1 in rat dorsal root ganglion neurons and further dissected whether lysophosphatidic acid receptor 1 and Rho/ROCK-mediated pathways interacted in modulating rat pain behavior. Bone cancer was established by inoculating Walker 256 cells into the left tibia of female Wistar rats. We observed a gradual and yet significant decline in mean paw withdrawal threshold in rats with bone cancer, but not in control rats. Our immunohistochemical staining revealed that the number of P2X3- and lysophosphatidic acid receptor 1-positive dorsal root ganglion neurons was significantly greater in rats with bone cancer than control rats. Lysophosphatidic acid receptor 1 blockade with VPC32183 significantly attenuated decline in mean paw withdrawal threshold. Flinching behavior test further showed that lysophosphatidic acid receptor 1 inhibition with VPC32183 transiently but significantly attenuated α,β-meATP-induced increase in paw lift time per minute. Rho inhibition by intrathecal BoTXC3 caused a rapid reversal in decline in mean paw withdrawal threshold of rats with bone cancer. Flinching behavior test showed that BoTXC3 transiently and significantly attenuated α,β-meATP-induced increase in paw lift time per minute. Similar findings were observed with ROCK inhibition by intrathecal Y27632. Furthermore, VPC32183 and BoTXC3 effectively aborted the appearance of lysophosphatidic acid-induced calcium influx peak. Conclusions Lysophosphatidic acid and its receptor LPAR1, acting through the Rho-ROCK pathway, regulate P2X3 receptor in the development of both mechanical and spontaneous pain in bone cancer. PMID:27094551

  4. Cannabinoid receptor type-1: breaking the dogmas

    PubMed Central

    Busquets Garcia, Arnau; Soria-Gomez, Edgar; Bellocchio, Luigi; Marsicano, Giovanni

    2016-01-01

    The endocannabinoid system (ECS) is abundantly expressed in the brain. This system regulates a plethora of physiological functions and is composed of cannabinoid receptors, their endogenous ligands (endocannabinoids), and the enzymes involved in the metabolism of endocannabinoids. In this review, we highlight the new advances in cannabinoid signaling, focusing on a key component of the ECS, the type-1 cannabinoid receptor (CB 1). In recent years, the development of new imaging and molecular tools has demonstrated that this receptor can be distributed in many cell types (e.g., neuronal or glial cells) and intracellular compartments (e.g., mitochondria). Interestingly, cellular and molecular effects are differentially mediated by CB 1 receptors according to their specific localization (e.g., glutamatergic or GABAergic neurons). Moreover, this receptor is expressed in the periphery, where it can modulate periphery-brain connections. Finally, the better understanding of the CB 1 receptor structure led researchers to propose interesting and new allosteric modulators. Thus, the advances and the new directions of the CB 1 receptor field will provide new insights and better approaches to profit from its interesting therapeutic profile. PMID:27239293

  5. Neurogenic contractions in intraocular porcine ciliary arteries are mediated by α₂-adrenoceptors and NPY₁ receptors and are inhibited by prostaglandin E₂ acting on prejunctional EP₄ receptors.

    PubMed

    Kringelholt, Sidse; Simonsen, Ulf; Bek, Toke

    2013-02-01

    Prostaglandin analogues and adrenergic drugs are used to reduce the intraocular pressure in glaucoma, which may partly be due to an effect on the tone of the intraocular arteries supplying the ciliary body. The aim of the present study was to investigate the interaction between prostaglandins and autonomic nervous activity induced by electrical stimulation of the tone in these ciliary vessels. The intraocular part of porcine ciliary arteries were isolated and mounted in a microvascular myograph for isometric tension recordings, and the effect of prostaglandin E(2) on electrically induced contractions was studied in the presence of selective EP receptor antagonists. PGE(2) induced concentration-dependent inhibition of electrically induced contractions of intraocular ciliary arteries which depended on the presence of the vascular endothelium. The effect of PGE(2) was blocked by an EP(4) receptor antagonist but not by an EP(1) receptor antagonist. The neurogenic contractions were partially inhibited by an α(2)-adrenoceptor antagonist and totally inhibited by a NPY(1) receptor antagonist. The effect of these antagonists was similar when contraction was induced by noradrenaline and NPY. Neurogenic contractions in intraocular porcine arteries are mediated by α(2)-adrenoceptors and NPY(1) receptors and can be inhibited by PGE(2) acting on prejunctional EP(4) receptors. This contributes to a further understanding of the role of the autonomic nervous system and prostaglandins for regulating blood flow to the anterior segment of the eye. PMID:23178872

  6. Naloxegol: First oral peripherally acting mu opioid receptor antagonists for opioid-induced constipation

    PubMed Central

    Anantharamu, Tejus; Sharma, Sushil; Gupta, Ajay Kumar; Dahiya, Navdeep; Singh Brashier, Dick B.; Sharma, Ashok Kumar

    2015-01-01

    Opioid-induced constipation (OIC) is one of the most troublesome and the most common effects of opioid use leading to deterioration in quality of life of the patients and also has potentially deleterious repercussions on adherence and compliance to opioid therapy. With the current guidelines advocating liberal use of opioids by physicians even for non-cancer chronic pain, the situation is further complicated as these individuals are not undergoing palliative care and hence there cannot be any justification to subject these patients to the severe constipation brought on by opioid therapy which is no less debilitating than the chronic pain. The aim in these patients is to prevent the opioid-induced constipation but at the same time allow the analgesic activity of opioids. Many drugs have been used with limited success but the most specific among them were the peripherally acting mu opioid receptor antagonists (PAMORA). Methylnaltrexone and alvimopan were the early drugs in this group but were not approved for oral use in OIC. However naloxegol, the latest PAMORA has been very recently approved as the first oral drug for OIC. This article gives an overview of OIC, its current management and more specifically the development and approval of naloxegol, including pharmacokinetics, details of various clinical trials, adverse effects and its current status for the management of OIC. PMID:26312011

  7. CysLT1 leukotriene receptor antagonists inhibit the effects of nucleotides acting at P2Y receptors

    PubMed Central

    Mamedova, Liaman; Capra, Valérie; Accomazzo, Maria Rosa; Gao, Zhan-Guo; Ferrario, Silvia; Fumagalli, Marta; Abbracchio, Maria P.; Rovati, G. Enrico; Jacobson, Kenneth A.

    2016-01-01

    Montelukast and pranlukast are orally active leukotriene receptor antagonists selective for the CysLT1 receptor. Conversely, the hP2Y1,2,4,6,11,12,13,14 receptors represent a large family of GPCRs responding to either adenine or uracil nucleotides, or to sugar-nucleotides. Montelukast and pranlukast were found to inhibit nucleotide-induced calcium mobilization in a human monocyte-macrophage like cell line, DMSO-differentiated U937 (dU937). Montelukast and pranlukast inhibited the effects of UTP with IC50 values of 7.7 and 4.3 μM, respectively, and inhibited the effects of UDP with IC50 values of 4.5 and 1.6 μM, respectively, in an insurmountable manner. Furthermore, ligand binding studies using [3H]LTD4 excluded the possibility of orthosteric nucleotide binding to the CysLT1 receptor. dU937 cells were shown to express P2Y2, P2Y4, P2Y6, P2Y11, P2Y13 and P2Y14 receptors. Therefore, these antagonists were studied functionally in a heterologous expression system for the human P2Y receptors. In 1321N1 astrocytoma cells stably expressing human P2Y1,2,4,6 receptors, CysLT1 antagonists inhibited both the P2Y agonist-induced activation of phospholipase C and intracellular Ca2+ mobilization. IC50 values at P2Y1 and P2Y6 receptors were <1 μM. In control astrocytoma cells expressing an endogenous M3 muscarinic receptor, 10 μM montelukast had no effect on the carbachol-induced rise in intracellular Ca2+. These data demonstrated that CysLT1 receptor antagonists interact functionally with signaling pathways of P2Y receptors, and this should foster the study of possible implications for the clinical use of these compounds in asthma or in other inflammatory conditions. PMID:16280122

  8. Sweet Taste-Sensing Receptors Expressed in Pancreatic β-Cells: Sweet Molecules Act as Biased Agonists

    PubMed Central

    Nakagawa, Yuko; Ohtsu, Yoshiaki; Medina, Anya; Nagasawa, Masahiro

    2014-01-01

    The sweet taste receptors present in the taste buds are heterodimers comprised of T1R2 and T1R3. This receptor is also expressed in pancreatic β-cells. When the expression of receptor subunits is determined in β-cells by quantitative reverse transcription polymerase chain reaction, the mRNA expression level of T1R2 is extremely low compared to that of T1R3. In fact, the expression of T1R2 is undetectable at the protein level. Furthermore, knockdown of T1R2 does not affect the effect of sweet molecules, whereas knockdown of T1R3 markedly attenuates the effect of sweet molecules. Consequently, a homodimer of T1R3 functions as a receptor sensing sweet molecules in β-cells, which we designate as sweet taste-sensing receptors (STSRs). Various sweet molecules activate STSR in β-cells and augment insulin secretion. With regard to intracellular signals, sweet molecules act on STSRs and increase cytoplasmic Ca2+ and/or cyclic AMP (cAMP). Specifically, when an STSR is stimulated by one of four different sweet molecules (sucralose, acesulfame potassium, sodium saccharin, or glycyrrhizin), distinct signaling pathways are activated. Patterns of changes in cytoplasmic Ca2+ and/or cAMP induced by these sweet molecules are all different from each other. Hence, sweet molecules activate STSRs by acting as biased agonists. PMID:24741449

  9. Primary Macrophage Chemotaxis Induced by Cannabinoid Receptor 2 Agonists Occurs Independently of the CB2 Receptor

    PubMed Central

    Taylor, Lewis; Christou, Ivy; Kapellos, Theodore S.; Buchan, Alice; Brodermann, Maximillian H.; Gianella-Borradori, Matteo; Russell, Angela; Iqbal, Asif J.; Greaves, David R.

    2015-01-01

    Activation of CB2 has been demonstrated to induce directed immune cell migration. However, the ability of CB2 to act as a chemoattractant receptor in macrophages remains largely unexplored. Using a real-time chemotaxis assay and a panel of chemically diverse and widely used CB2 agonists, we set out to examine whether CB2 modulates primary murine macrophage chemotaxis. We report that of 12 agonists tested, only JWH133, HU308, L-759,656 and L-759,633 acted as macrophage chemoattractants. Surprisingly, neither pharmacological inhibition nor genetic ablation of CB2 had any effect on CB2 agonist-induced macrophage chemotaxis. As chemotaxis was pertussis toxin sensitive in both WT and CB2-/- macrophages, we concluded that a non-CB1/CB2, Gi/o-coupled GPCR must be responsible for CB2 agonist-induced macrophage migration. The obvious candidate receptors GPR18 and GPR55 could not mediate JWH133 or HU308-induced cytoskeletal rearrangement or JWH133-induced β-arrestin recruitment in cells transfected with either receptor, demonstrating that neither are the unidentified GPCR. Taken together our results conclusively demonstrate that CB2 is not a chemoattractant receptor for murine macrophages. Furthermore we show for the first time that JWH133, HU308, L-759,656 and L-759,633 have off-target effects of functional consequence in primary cells and we believe that our findings have wide ranging implications for the entire cannabinoid field. PMID:26033291

  10. Antibodies to cannabinoid type 1 receptor co-react with stomatin-like protein 2 in mouse brain mitochondria.

    PubMed

    Morozov, Yury M; Dominguez, Martin H; Varela, Luis; Shanabrough, Marya; Koch, Marco; Horvath, Tamas L; Rakic, Pasko

    2013-08-01

    Anti-cannabinoid type 1 receptor (CB1 ) polyclonal antibodies are widely used to detect the presence of CB1 in a variety of brain cells and their organelles, including neuronal mitochondria. Surprisingly, we found that anti-CB1 sera, in parallel with CB1 , also recognize the mitochondrial protein stomatin-like protein 2. In addition, we show that the previously reported effect of synthetic cannabinoid WIN 55,212-2 on mitochondrial complex III respiration is not detectable in purified mitochondrial preparations. Thus, our study indicates that a direct relationship between endocannabinoid signaling and mitochondrial functions in the cerebral cortex seems unlikely, and that caution should be taken interpreting findings obtained using anti-CB1 antibodies. PMID:23617247

  11. Protection from Radiation-Induced Pulmonary Fibrosis by Peripheral Targeting of Cannabinoid Receptor-1.

    PubMed

    Bronova, Irina; Smith, Brett; Aydogan, Bulent; Weichselbaum, Ralph R; Vemuri, Kiran; Erdelyi, Katalin; Makriyannis, Alex; Pacher, Pal; Berdyshev, Evgeny V

    2015-10-01

    Radiation-induced pulmonary fibrosis (RIF) is a severe complication of thoracic radiotherapy that limits its dose, intensity, and duration. The contribution of the endocannabinoid signaling system in pulmonary fibrogenesis is not known. Using a well-established mouse model of RIF, we assessed the involvement of cannabinoid receptor-1 (CB1) in the onset and progression of pulmonary fibrosis. Female C57BL/6 mice and CB1 knockout mice generated on C57BL/6 background received 20 Gy (2 Gy/min) single-dose thoracic irradiation that resulted in pulmonary fibrosis and animal death within 15 to 18 weeks. Some C57BL/6 animals received the CB1 peripherally restricted antagonist AM6545 at 1 mg/kg intraperitoneally three times per week. Animal survival and parameters of pulmonary inflammation and fibrosis were evaluated. Thoracic irradiation (20 Gy) was associated with marked pulmonary inflammation and fibrosis in mice and high mortality within 15 to 18 weeks after exposure. Genetic deletion or pharmacological inhibition of CB1 receptors with a peripheral CB1 antagonist AM6545 markedly attenuated or delayed the lung inflammation and fibrosis and increased animal survival. Our results show that CB1 signaling plays a key pathological role in the development of radiation-induced pulmonary inflammation and fibrosis, and peripherally restricted CB1 antagonists may represent a novel therapeutic approach against this devastating complication of radiotherapy/irradiation. PMID:26426981

  12. Discovery of cannabinoid-1 receptor antagonists by virtual screening.

    PubMed

    Lee, Gil Nam; Kim, Kwang Rok; Ahn, Sung-Hoon; Bae, Myung Ae; Kang, Nam Sook

    2010-09-01

    In this work, we tried to find a new scaffold for a CB1 receptor antagonist using virtual screening. We first analyzed structural features for the known cannabinoid-1 receptor antagonists and, then, we built pharmacophore models using the HipHop concept and carried out a docking study based on our homology CB1 receptor 3D structure. The most active compound, including thiazole-4-one moiety, showed an activity value of 125 nM IC(50), with a good PK profile. PMID:20667724

  13. Glucocorticoid receptors in the prefrontal cortex regulate dopamine efflux to stress via descending glutamatergic feedback to the ventral tegmental area.

    PubMed

    Butts, Kelly A; Phillips, Anthony G

    2013-09-01

    Enhanced dopamine (DA) efflux in the medial prefrontal cortex (mPFC) is a well-documented response to acute stress. We have previously shown that glucocorticoid receptors in the mPFC regulate stress-evoked DA efflux but the underlying mechanism is unknown. DA neurons in the ventral tegmental area (VTA) receive excitatory input from and send reciprocal projections to the mPFC. We hypothesize that blockade of prefrontal glucocorticoid receptors can reduce activity of descending glutamatergic input to the VTA, thereby attenuating stress-evoked DA efflux in the mPFC. Using in vivo microdialysis, we demonstrate that acute tail-pinch stress leads to a significant increase in glutamate efflux in the VTA. Blockade of prefrontal glucocorticoid receptors with the selective antagonist CORT 108297 attenuates stress-evoked glutamate efflux in the VTA together with DA efflux in the mPFC. Furthermore, blockade of ionotrophic glutamate receptors in the VTA attenuates stress-evoked DA efflux in the mPFC. We also examine the possible role of glucocorticoid-induced synthesis and release of endocannabinoids acting presynaptically via cannabinoid CB1 receptors to inhibit GABA release onto prefrontal pyramidal cells, thus enhancing descending glutamatergic input to the VTA leading to an increase in mPFC DA efflux during stress. However, administration of the cannabinoid CB1 receptor antagonist into the mPFC does not attenuate stress-evoked DA efflux in the mPFC. Taken together, our data indicate that glucocorticoids act locally within the mPFC to modulate mesocortical DA efflux by potentiation of glutamatergic drive onto DA neurons in the VTA. PMID:23590841

  14. The CB1 Neutral Antagonist Tetrahydrocannabivarin Reduces Default Mode Network and Increases Executive Control Network Resting State Functional Connectivity in Healthy Volunteers

    PubMed Central

    Rzepa, Ewelina; Tudge, Luke

    2016-01-01

    Background: The cannabinoid cannabinoid type 1 (CB1) neutral antagonist tetrahydrocannabivarin (THCv) has been suggested as a possible treatment for obesity, but without the depressogenic side-effects of inverse antagonists such as Rimonabant. However, how THCv might affect the resting state functional connectivity of the human brain is as yet unknown. Method: We examined the effects of a single 10mg oral dose of THCv and placebo in 20 healthy volunteers in a randomized, within-subject, double-blind design. Using resting state functional magnetic resonance imaging and seed-based connectivity analyses, we selected the amygdala, insula, orbitofrontal cortex, and dorsal medial prefrontal cortex (dmPFC) as regions of interest. Mood and subjective experience were also measured before and after drug administration using self-report scales. Results: Our results revealed, as expected, no significant differences in the subjective experience with a single dose of THCv. However, we found reduced resting state functional connectivity between the amygdala seed region and the default mode network and increased resting state functional connectivity between the amygdala seed region and the dorsal anterior cingulate cortex and between the dmPFC seed region and the inferior frontal gyrus/medial frontal gyrus. We also found a positive correlation under placebo for the amygdala-precuneus connectivity with the body mass index, although this correlation was not apparent under THCv. Conclusion: Our findings are the first to show that treatment with the CB1 neutral antagonist THCv decreases resting state functional connectivity in the default mode network and increases connectivity in the cognitive control network and dorsal visual stream network. This effect profile suggests possible therapeutic activity of THCv for obesity, where functional connectivity has been found to be altered in these regions. PMID:26362774

  15. Antinociceptive action of isolated mitragynine from Mitragyna Speciosa through activation of opioid receptor system.

    PubMed

    Shamima, Abdul Rahman; Fakurazi, Sharida; Hidayat, Mohamad Taufik; Hairuszah, Ithnin; Moklas, Mohamad Aris Mohd; Arulselvan, Palanisamy

    2012-01-01

    Cannabinoids and opioids systems share numerous pharmacological properties and antinociception is one of them. Previous findings have shown that mitragynine (MG), a major indole alkaloid found in Mitragyna speciosa (MS) can exert its antinociceptive effects through the opioids system. In the present study, the action of MG was investigated as the antinociceptive agent acting on Cannabinoid receptor type 1 (CB1) and effects on the opioids receptor. The latency time was recorded until the mice showed pain responses such as shaking, licking or jumping and the duration of latency was measured for 2 h at every 15 min interval by hot plate analysis. To investigate the beneficial effects of MG as antinociceptive agent, it was administered intraperitoneally 15 min prior to pain induction with a single dosage (3, 10, 15, 30, and 35 mg/kg b.wt). In this investigation, 35 mg/kg of MG showed significant increase in the latency time and this dosage was used in the antagonist receptor study. The treated groups were administered with AM251 (cannabinoid receptor-1 antagonist), naloxone (non-selective opioid antagonist), naltrindole (δ-opioid antagonist) naloxonazine (μ(1)-receptor antagonist) and norbinaltorpimine (κ-opioid antagonist) respectively, prior to administration of MG (35 mg/kg). The results showed that the antinociceptive effect of MG was not antagonized by AM251; naloxone and naltrindole were effectively blocked; and norbinaltorpimine partially blocked the antinociceptive effect of MG. Naloxonazine did inhibit the effect of MG, but it was not statistically significant. These results demonstrate that CB1 does not directly have a role in the antinociceptive action of MG where the effect was observed with the activation of opioid receptor. PMID:23109863

  16. Antinociceptive Action of Isolated Mitragynine from Mitragyna Speciosa through Activation of Opioid Receptor System

    PubMed Central

    Shamima, Abdul Rahman; Fakurazi, Sharida; Hidayat, Mohamad Taufik; Hairuszah, Ithnin; Moklas, Mohamad Aris Mohd; Arulselvan, Palanisamy

    2012-01-01

    Cannabinoids and opioids systems share numerous pharmacological properties and antinociception is one of them. Previous findings have shown that mitragynine (MG), a major indole alkaloid found in Mitragyna speciosa (MS) can exert its antinociceptive effects through the opioids system. In the present study, the action of MG was investigated as the antinociceptive agent acting on Cannabinoid receptor type 1 (CB1) and effects on the opioids receptor. The latency time was recorded until the mice showed pain responses such as shaking, licking or jumping and the duration of latency was measured for 2 h at every 15 min interval by hot plate analysis. To investigate the beneficial effects of MG as antinociceptive agent, it was administered intraperitoneally 15 min prior to pain induction with a single dosage (3, 10, 15, 30, and 35 mg/kg b.wt). In this investigation, 35 mg/kg of MG showed significant increase in the latency time and this dosage was used in the antagonist receptor study. The treated groups were administered with AM251 (cannabinoid receptor-1 antagonist), naloxone (non-selective opioid antagonist), naltrindole (δ-opioid antagonist) naloxonazine (μ1-receptor antagonist) and norbinaltorpimine (κ-opioid antagonist) respectively, prior to administration of MG (35 mg/kg). The results showed that the antinociceptive effect of MG was not antagonized by AM251; naloxone and naltrindole were effectively blocked; and norbinaltorpimine partially blocked the antinociceptive effect of MG. Naloxonazine did inhibit the effect of MG, but it was not statistically significant. These results demonstrate that CB1 does not directly have a role in the antinociceptive action of MG where the effect was observed with the activation of opioid receptor. PMID:23109863

  17. Quinuclidine compounds differently act as agonists of Kenyon cell nicotinic acetylcholine receptors and induced distinct effect on insect ganglionic depolarizations.

    PubMed

    Mathé-Allainmat, Monique; Swale, Daniel; Leray, Xavier; Benzidane, Yassine; Lebreton, Jacques; Bloomquist, Jeffrey R; Thany, Steeve H

    2013-12-01

    We have recently demonstrated that a new quinuclidine benzamide compound named LMA10203 acted as an agonist of insect nicotinic acetylcholine receptors. Its specific pharmacological profile on cockroach dorsal unpaired median neurons (DUM) helped to identify alpha-bungarotoxin-insensitive nAChR2 receptors. In the present study, we tested its effect on cockroach Kenyon cells. We found that it induced an inward current demonstrating that it bounds to nicotinic acetylcholine receptors expressed on Kenyon cells. Interestingly, LMA10203-induced currents were completely blocked by the nicotinic antagonist α-bungarotoxin. We suggested that LMA10203 effect occurred through the activation of α-bungarotoxin-sensitive receptors and did not involve α-bungarotoxin-insensitive nAChR2, previously identified in DUM neurons. In addition, we have synthesized two new compounds, LMA10210 and LMA10211, and compared their effects on Kenyon cells. These compounds were members of the 3-quinuclidinyl benzamide or benzoate families. Interestingly, 1 mM LMA10210 was not able to induce an inward current on Kenyon cells compared to LMA10211. Similarly, we did not find any significant effect of LMA10210 on cockroach ganglionic depolarization, whereas these three compounds were able to induce an effect on the central nervous system of the third instar M. domestica larvae. Our data suggested that these three compounds could bind to distinct cockroach nicotinic acetylcholine receptors. PMID:23884575

  18. BA321, a novel carborane analog that binds to androgen and estrogen receptors, acts as a new selective androgen receptor modulator of bone in male mice.

    PubMed

    Watanabe, Kenta; Hirata, Michiko; Tominari, Tsukasa; Matsumoto, Chiho; Endo, Yasuyuki; Murphy, Gillian; Nagase, Hideaki; Inada, Masaki; Miyaura, Chisato

    2016-09-01

    Carboranes are a class of carbon-containing polyhedral boron cluster compounds with globular geometry and hydrophobic surface that interact with hormone receptors such as estrogen receptor (ER) and androgen receptor (AR). We have synthesized BA321, a novel carborane compound, which binds to AR. We found here that it also binds to ERs, ERα and ERβ. In orchidectomized (ORX) mice, femoral bone mass was markedly reduced due to androgen deficiency and BA321 restored bone loss in the male, whilst the decreased weight of seminal vesicle in ORX mice was not recovered by administration of BA321. In female mice, BA321 acts as a pure estrogen agonist, and restored both the loss of bone mass and uterine atrophy due to estrogen deficiency in ovariectomized (OVX) mice. In bone tissues, the trabecular bone loss occurred in both ORX and OVX mice, and BA321 completely restored the trabecular bone loss in both sexes. Cortical bone loss occurred in ORX mice but not in OVX mice, and BA321 clearly restored cortical bone loss due to androgen deficiency in ORX mice. Therefore, BA321 is a novel selective androgen receptor modulator (SARM) that may offer a new therapy option for osteoporosis in the male. PMID:27402268

  19. Expression analysis of cannabinoid receptors 1 and 2 in B cells during pregnancy and their role on cytokine production.

    PubMed

    Wolfson, M L; Muzzio, D O; Ehrhardt, J; Franchi, A M; Zygmunt, M; Jensen, F

    2016-08-01

    The endocannabinoid system consists in a family of lipids that binds to and activates cannabinoid receptors. There are two receptors so far described, the cannabinoid receptor 1 (CB1) and 2 (CB2). In the context of pregnancy, the endocannabinoid system was shown participates in different key aspects of reproductive events. B-lymphocytes are pleiotropic cells belonging to the adaptive arm of the immune system. Besides immunoglobulin production, B-lymphocytes were recently shown to be actively involved in antigen presentation as well as cytokine production, thus playing a central role in immunity. In this study we first aimed to characterize the expression of CB1 and CB2 receptors in B cells during pregnancy and then analyze the impact of their activation in term of cytokine production by B cells from pregnant and non-pregnant mice. We observed that the expression of CB1 and CB2 receptors in B-lymphocytes is differentially regulated during pregnancy. While CB2 expression is down regulated CB1 is augmented in B-lymphocytes of pregnant mice. Additionally, the treatment of activated B-lymphocytes with specific CB1 and CB2 agonists, showed a different response in term of cytokine production. Particularly, CB1 against boosted the production of the anti-inflammatory cytokine IL-10 by activated B-lymphocytes from pregnant mice. PMID:27163857

  20. The role of cannabinoid receptors and the endocannabinoid system in mantle cell lymphoma and other non-Hodgkin lymphomas.

    PubMed

    Wasik, Agata M; Christensson, Birger; Sander, Birgitta

    2011-11-01

    The initiating oncogenic event in mantle cell lymphoma (MCL) is the translocation of cyclin D1, t(11;14)(q13;q32). However, other genetic aberrations are necessary for an overt lymphoma to arise. Like other B cell lymphomas, MCL at some points during the oncogenesis is dependent on interactions with other cells and factors in the microenvironment. The G protein coupled receptors cannabinoid receptors 1 and 2 (CB1 and CB2) are expressed at low levels on non-malignant lymphocytes and at higher levels in MCL and other lymphoma subtypes. In this review we give an overview of what is known on the role of the cannabinoid receptors and their ligands in lymphoma as compared to non-malignant T and B lymphocytes. In MCL cannabinoids mainly reduce cell proliferation and induce cell death. Importantly, our recent findings demonstrate that cannabinoids may induce either apoptosis or another type of programmed cell death, cytoplasmic vacuolation/paraptosis in MCL. The signalling to death has been partly characterized. Even though cannabinoid receptors seem to be expressed in many other types of B cell lymphoma, the functional role of cannabinoid receptor targeting is yet largely unknown. In non-malignant B and T lymphocytes, cannabinoid receptors are up-regulated in response to antigen receptor signalling or CD40. For T lymphocytes IL-4 has also a crucial role in transcriptional regulation of CB1. In lymphocytes, cannabinoid act in several ways - by affecting cell migration, cytokine response, at high doses inhibit cell proliferation and inducing cell death. The possible role for the endocannabinoid system in the immune microenvironment of lymphoma is discussed. PMID:22024769

  1. Novel Electrophilic and Photoaffinity Covalent Probes for Mapping the Cannabinoid 1 Receptor Allosteric Site(s)

    PubMed Central

    2015-01-01

    Undesirable side effects associated with orthosteric agonists/antagonists of cannabinoid 1 receptor (CB1R), a tractable target for treating several pathologies affecting humans, have greatly limited their translational potential. Recent discovery of CB1R negative allosteric modulators (NAMs) has renewed interest in CB1R by offering a potentially safer therapeutic avenue. To elucidate the CB1R allosteric binding motif and thereby facilitate rational drug discovery, we report the synthesis and biochemical characterization of first covalent ligands designed to bind irreversibly to the CB1R allosteric site. Either an electrophilic or a photoactivatable group was introduced at key positions of two classical CB1R NAMs: Org27569 (1) and PSNCBAM-1 (2). Among these, 20 (GAT100) emerged as the most potent NAM in functional assays, did not exhibit inverse agonism, and behaved as a robust positive allosteric modulator of binding of orthosteric agonist CP55,940. This novel covalent probe can serve as a useful tool for characterizing CB1R allosteric ligand-binding motifs. PMID:26529344

  2. Novel Electrophilic and Photoaffinity Covalent Probes for Mapping the Cannabinoid 1 Receptor Allosteric Site(s).

    PubMed

    Kulkarni, Pushkar M; Kulkarni, Abhijit R; Korde, Anisha; Tichkule, Ritesh B; Laprairie, Robert B; Denovan-Wright, Eileen M; Zhou, Han; Janero, David R; Zvonok, Nikolai; Makriyannis, Alexandros; Cascio, Maria G; Pertwee, Roger G; Thakur, Ganesh A

    2016-01-14

    Undesirable side effects associated with orthosteric agonists/antagonists of cannabinoid 1 receptor (CB1R), a tractable target for treating several pathologies affecting humans, have greatly limited their translational potential. Recent discovery of CB1R negative allosteric modulators (NAMs) has renewed interest in CB1R by offering a potentially safer therapeutic avenue. To elucidate the CB1R allosteric binding motif and thereby facilitate rational drug discovery, we report the synthesis and biochemical characterization of first covalent ligands designed to bind irreversibly to the CB1R allosteric site. Either an electrophilic or a photoactivatable group was introduced at key positions of two classical CB1R NAMs: Org27569 (1) and PSNCBAM-1 (2). Among these, 20 (GAT100) emerged as the most potent NAM in functional assays, did not exhibit inverse agonism, and behaved as a robust positive allosteric modulator of binding of orthosteric agonist CP55,940. This novel covalent probe can serve as a useful tool for characterizing CB1R allosteric ligand-binding motifs. PMID:26529344

  3. Characterization of a shortened model of diet alternation in female rats: effects of the CB1 receptor antagonist rimonabant on food intake and anxiety-like behavior.

    PubMed

    Blasio, Angelo; Rice, Kenner C; Sabino, Valentina; Cottone, Pietro

    2014-10-01

    The prevalence of eating disorders and obesity in western societies is epidemic and increasing in severity. Preclinical research has focused on the development of animal models that can mimic the maladaptive patterns of food intake observed in certain forms of eating disorders and obesity. This study was aimed at characterizing a recently established model of palatable diet alternation in female rats. For this purpose, females rats were fed either continuously with a regular chow diet (Chow/Chow) or intermittently with a regular chow diet for 2 days and a palatable, high-sucrose diet for 1 day (Chow/Palatable). Following diet cycling, rats were administered rimonabant (0, 0.3, 1, 3 mg/kg intraperitoneally) during access to either palatable diet or chow diet and were assessed for food intake and body weight. Finally, rats were pretreated with rimonabant (0, 3 mg/kg, intraperitoneally) and tested in the elevated plus maze during withdrawal from the palatable diet. Female rats with alternating access to palatable food cycled their intake, overeating during access to the palatable diet and undereating upon returning to the regular chow diet. Rimonabant treatment resulted in increased chow hypophagia and anxiety-like behavior in Chow/Palatable rats. No effect of drug treatment was observed on the compulsive eating of palatable food in the diet-cycled rats. The results of this study suggest that withdrawal from alternating access to the palatable diet makes individuals vulnerable to the anxiogenic effects of rimonabant and provides etiological factors potentially responsible for the emergence of severe psychiatric side-effects following rimonabant treatment in obese patients. PMID:25011007

  4. Structural features of phenoxycarbonylimino neonicotinoids acting at the insect nicotinic receptor.

    PubMed

    Ohno, Ikuya; Tomizawa, Motohiro; Miyazu, Nozomi; Kushibiki, Gohito; Noda, Kumiko; Hasebe, Yasunori; Durkin, Kathleen A; Miyake, Taiji; Kagabu, Shinzo

    2010-10-01

    Substituted-phenoxycarbonylimino neonicotinoid ligands with an electron-donating group showed significantly higher affinity to the insect nicotinic receptor relative to that of the analogue with an electron-withdrawing substituent, thereby establishing in silico binding site interaction model featuring that the phenoxy ring of neonicotinoids and the receptor loop D tryptophan indole plane form a face-to-edge aromatic interaction. PMID:20729079

  5. The 37kDa/67kDa Laminin Receptor acts as a receptor for Aβ42 internalization

    PubMed Central

    Da Costa Dias, Bianca; Jovanovic, Katarina; Gonsalves, Danielle; Moodley, Kiashanee; Reusch, Uwe; Knackmuss, Stefan; Weinberg, Marc S.; Little, Melvyn; Weiss, Stefan F. T.

    2014-01-01

    Neuronal loss is a major neuropathological hallmark of Alzheimer's disease (AD). The associations between soluble Aβ oligomers and cellular components cause this neurotoxicity. The 37 kDa/67 kDa laminin receptor (LRP/LR) has recently been implicated in Aβ pathogenesis. In this study the mechanism underlying the pathological role of LRP/LR was elucidated. Försters Resonance Energy Transfer (FRET) revealed that LRP/LR and Aβ form a biologically relevant interaction. The ability of LRP/LR to form stable associations with endogenously shed Aβ was confirmed by pull down assays and Aβ-ELISAs. Antibody blockade of this association significantly lowered Aβ42 induced apoptosis. Furthermore, antibody blockade and shRNA mediated downregulation of LRP/LR significantly hampered Aβ42 internalization. These results suggest that LRP/LR is a receptor for Aβ42 internalization, mediating its endocytosis and contributing to the cytotoxicity of the neuropeptide by facilitating intra-cellular Aβ42 accumulation. These findings recommend anti-LRP/LR specific antibodies and shRNAs as potential therapeutic tools for AD treatment. PMID:24990253

  6. SGIP1 alters internalization and modulates signaling of activated cannabinoid receptor 1 in a biased manner.

    PubMed

    Hájková, Alena; Techlovská, Šárka; Dvořáková, Michaela; Chambers, Jayne Nicole; Kumpošt, Jiří; Hubálková, Pavla; Prezeau, Laurent; Blahos, Jaroslav

    2016-08-01

    Many diseases of the nervous system are accompanied by alterations in synaptic functions. Synaptic plasticity mediated by the endogenous cannabinoid system involves the activation of the cannabinoid receptor 1 (CB1R). The principles of CB1R signaling must be understood in detail for its therapeutic exploration. We detected the Src homology 3-domain growth factor receptor-bound 2-like (endophilin) interacting protein 1 (SGIP1) as a novel CB1R partner. SGIP1 is functionally linked to clathrin-mediated endocytosis and its overexpression in animals leads to an energy regulation imbalance resulting in obesity. We report that SGIP1 prevents the endocytosis of activated CB1R and that it alters signaling via the CB1R in a biased manner. CB1R mediated G-protein activation is selectively influenced by SGIP1, β-arrestin associated signaling is changed profoundly, most likely as a consequence of the prevention of the receptor's internalization elicited by SGIP1. PMID:26970018

  7. Cannabinoid receptor 1-expressing neurons in the nucleus accumbens.

    PubMed

    Winters, Bradley D; Krüger, Juliane M; Huang, Xiaojie; Gallaher, Zachary R; Ishikawa, Masago; Czaja, Krzysztof; Krueger, James M; Huang, Yanhua H; Schlüter, Oliver M; Dong, Yan

    2012-10-01

    Endocannabinoid signaling critically regulates emotional and motivational states via activation of cannabinoid receptor 1 (CB1) in the brain. The nucleus accumbens (NAc) functions to gate emotional and motivational responses. Although expression of CB1 in the NAc is low, manipulation of CB1 signaling within the NAc triggers robust emotional/motivational alterations related to drug addiction and other psychiatric disorders, and these effects cannot be exclusively attributed to CB1 located at afferents to the NAc. Rather, CB1-expressing neurons in the NAc, although sparse, appear to be critical for emotional and motivational responses. However, the cellular properties of these neurons remain largely unknown. Here, we generated a knock-in mouse line in which CB1-expressing neurons expressed the fluorescent protein td-Tomato (tdT). Using these mice, we demonstrated that tdT-positive neurons within the NAc were exclusively fast-spiking interneurons (FSIs). These FSIs were electrically coupled with each other, and thus may help synchronize populations/ensembles of NAc neurons. CB1-expressing FSIs also form GABAergic synapses on adjacent medium spiny neurons (MSNs), providing feed-forward inhibition of NAc output. Furthermore, the membrane excitability of tdT-positive FSIs in the NAc was up-regulated after withdrawal from cocaine exposure, an effect that might increase FSI-to-MSN inhibition. Taken together with our previous findings that the membrane excitability of NAc MSNs is decreased during cocaine withdrawal, the present findings suggest that the basal functional output of the NAc is inhibited during cocaine withdrawal by multiple mechanisms. As such, CB1-expressing FSIs are targeted by cocaine exposure to influence the overall functional output of the NAc. PMID:23012412

  8. Prostanoids regulate angiogenesis acting primarily on IP and EP4 receptors.

    PubMed

    Hoang, Khuyen Gia; Allison, Sarah; Murray, Michael; Petrovic, Nenad

    2015-09-01

    Angiogenesis is regulated by numerous activators and inhibitors, including prostanoids. Although many studies have identified their roles in inflammation, regulatory functions of prostanoids in angiogenesis are poorly understood. Here, we compared the activation of angiogenesis in vitro by two prostanoids with important vascular roles: prostaglandin E2 (PGE2) - thought to be the most important prostanoid activator of angiogenesis - and prostaglandin I2 (prostacyclin or PGI2), whose receptors are predominantly expressed in endothelial cells. Both of these prostanoids activate G-protein coupled receptors: EP1, EP2, EP3 and EP4 by PGE2 and IP by prostacyclin. Human umbilical vein endothelial cells (HUVECs) were used to characterize two pivotal pro-angiogenic processes in vitro: cell migration (using the matrigel droplet assay developed in our laboratory) and "tube formation" (a widely accepted method of assessing formation of blood vessel precursors). The suppression of cell migration and tube formation by the IP-specific antagonist CAY10441 was more extensive (~80%) than by the EP4-specific antagonist L-161,982 (~20%). AH6809, an antagonist of EP1, EP2 and EP3 receptors did not significantly suppress angiogenesis. Expression of the pro-angiogenic receptors KDR and Tie-2 in HUVECs was preferentially suppressed by antagonism of IP and EP4 receptors, respectively. EP4 and IP receptor agonists elicited biphasic actions on angiogenic processes in which there was activation at low concentration, and rapid desensitization at high concentrations - a characteristic common to many G-protein coupled receptors. Together these findings suggest that the prostacyclin-IP pathway plays a major role in the regulation of pro-angiogenic processes in HUVECs. PMID:26188701

  9. Antiandrogens Act as Selective Androgen Receptor Modulators at the Proteome Level in Prostate Cancer Cells*

    PubMed Central

    Brooke, Greg N.; Gamble, Simon C.; Hough, Michael A.; Begum, Shajna; Dart, D. Alwyn; Odontiadis, Michael; Powell, Sue M.; Fioretti, Flavia M.; Bryan, Rosie A.; Waxman, Jonathan; Wait, Robin; Bevan, Charlotte L.

    2015-01-01

    Current therapies for prostate cancer include antiandrogens, inhibitory ligands of the androgen receptor, which repress androgen-stimulated growth. These include the selective androgen receptor modulators cyproterone acetate and hydroxyflutamide and the complete antagonist bicalutamide. Their activity is partly dictated by the presence of androgen receptor mutations, which are commonly detected in patients who relapse while receiving antiandrogens, i.e. in castrate-resistant prostate cancer. To characterize the early proteomic response to these antiandrogens we used the LNCaP prostate cancer cell line, which harbors the androgen receptor mutation most commonly detected in castrate-resistant tumors (T877A), analyzing alterations in the proteome, and comparing these to the effect of these therapeutics upon androgen receptor activity and cell proliferation. The majority are regulated post-transcriptionally, possibly via nongenomic androgen receptor signaling. Differences detected between the exposure groups demonstrate subtle changes in the biological response to each specific ligand, suggesting a spectrum of agonistic and antagonistic effects dependent on the ligand used. Analysis of the crystal structures of the AR in the presence of cyproterone acetate, hydroxyflutamide, and DHT identified important differences in the orientation of key residues located in the AF-2 and BF-3 protein interaction surfaces. This further implies that although there is commonality in the growth responses between androgens and those antiandrogens that stimulate growth in the presence of a mutation, there may also be influential differences in the growth pathways stimulated by the different ligands. This therefore has implications for prostate cancer treatment because tumors may respond differently dependent upon which mutation is present and which ligand is activating growth, also for the design of selective androgen receptor modulators, which aim to elicit differential proteomic

  10. Different Pathways Act Downstream of the CEP Peptide Receptor CRA2 to Regulate Lateral Root and Nodule Development.

    PubMed

    Mohd-Radzman, Nadiatul A; Laffont, Carole; Ivanovici, Ariel; Patel, Neha; Reid, Dugald; Stougaard, Jens; Frugier, Florian; Imin, Nijat; Djordjevic, Michael A

    2016-08-01

    C-TERMINALLY ENCODED PEPTIDEs (CEPs) control root system architecture in a non-cell-autonomous manner. In Medicago truncatula, MtCEP1 affects root development by increasing nodule formation and inhibiting lateral root emergence by unknown pathways. Here, we show that the MtCEP1 peptide-dependent increase in nodulation requires the symbiotic signaling pathway and ETHYLENE INSENSITIVE2 (EIN2)/SICKLE (SKL), but acts independently of SUPER NUMERIC NODULES. MtCEP1-dependent inhibition of lateral root development acts through an EIN2-independent mechanism. MtCEP1 increases nodulation by promoting rhizobial infections, the developmental competency of roots for nodulation, the formation of fused nodules, and an increase in frequency of nodule development that initiates at proto-phloem poles. These phenotypes are similar to those of the ein2/skl mutant and support that MtCEP1 modulates EIN2-dependent symbiotic responses. Accordingly, MtCEP1 counteracts the reduction in nodulation induced by increasing ethylene precursor concentrations, and an ethylene synthesis inhibitor treatment antagonizes MtCEP1 root phenotypes. MtCEP1 also inhibits the development of EIN2-dependent pseudonodule formation. Finally, mutants affecting the COMPACT ROOT ARCHITECTURE2 (CRA2) receptor, which is closely related to the Arabidopsis CEP Receptor1, are unresponsive to MtCEP1 effects on lateral root and nodule formation, suggesting that CRA2 is a CEP peptide receptor mediating both organogenesis programs. In addition, an ethylene inhibitor treatment counteracts the cra2 nodulation phenotype. These results indicate that MtCEP1 and its likely receptor, CRA2, mediate nodulation and lateral root development through different pathways. PMID:27342310

  11. Different Pathways Act Downstream of the CEP Peptide Receptor CRA2 to Regulate Lateral Root and Nodule Development1[OPEN

    PubMed Central

    Mohd-Radzman, Nadiatul A.; Ivanovici, Ariel; Frugier, Florian; Djordjevic, Michael A.

    2016-01-01

    C-TERMINALLY ENCODED PEPTIDEs (CEPs) control root system architecture in a non-cell-autonomous manner. In Medicago truncatula, MtCEP1 affects root development by increasing nodule formation and inhibiting lateral root emergence by unknown pathways. Here, we show that the MtCEP1 peptide-dependent increase in nodulation requires the symbiotic signaling pathway and ETHYLENE INSENSITIVE2 (EIN2)/SICKLE (SKL), but acts independently of SUPER NUMERIC NODULES. MtCEP1-dependent inhibition of lateral root development acts through an EIN2-independent mechanism. MtCEP1 increases nodulation by promoting rhizobial infections, the developmental competency of roots for nodulation, the formation of fused nodules, and an increase in frequency of nodule development that initiates at proto-phloem poles. These phenotypes are similar to those of the ein2/skl mutant and support that MtCEP1 modulates EIN2-dependent symbiotic responses. Accordingly, MtCEP1 counteracts the reduction in nodulation induced by increasing ethylene precursor concentrations, and an ethylene synthesis inhibitor treatment antagonizes MtCEP1 root phenotypes. MtCEP1 also inhibits the development of EIN2-dependent pseudonodule formation. Finally, mutants affecting the COMPACT ROOT ARCHITECTURE2 (CRA2) receptor, which is closely related to the Arabidopsis CEP Receptor1, are unresponsive to MtCEP1 effects on lateral root and nodule formation, suggesting that CRA2 is a CEP peptide receptor mediating both organogenesis programs. In addition, an ethylene inhibitor treatment counteracts the cra2 nodulation phenotype. These results indicate that MtCEP1 and its likely receptor, CRA2, mediate nodulation and lateral root development through different pathways. PMID:27342310

  12. Aldose Reductase acts as a Selective Derepressor of PPARγ and Retinoic Acid Receptor

    PubMed Central

    Thiagarajan, Devi; Ananthakrishnan, Radha; Zhang, Jinghua; O’Shea, Karen M.; Quadri, Nosirudeen; Li, Qing; Sas, Kelli; Jing, Xiao; Rosario, Rosa; Pennathur, Subramaniam; Schmidt, Ann Marie; Ramasamy, Ravichandran

    2016-01-01

    Summary Histone deacetylase 3 (HDAC3), a chromatin modifying enzyme, requires association with the deacetylase containing domain (DAD) of the nuclear receptor co-repressors NCOR1 and SMRT for its stability and activity. Here we show that aldose reductase (AR), the rate-limiting enzyme of the polyol pathway, competes with HDAC3 to bind the NCOR1/SMRT DAD. Increased AR expression leads to HDAC3 degradation followed by increased PPARγ signaling resulting in lipid accumulation in the heart. AR also downregulates expression of nuclear corepressor complex cofactors including Gps2 and Tblr1, thus affecting activity of the nuclear corepressor complex itself. Though AR reduces HDAC3-corepressor complex formation, it specifically de-represses the retinoic acid receptor (RAR), but not other nuclear receptors such as the thyroid receptor (TR) and liver X receptor (LXR). In summary, this work defines a distinct role for AR in lipid and retinoid metabolism through HDAC3 regulation and consequent de-repression of PPARγ and RAR. PMID:27052179

  13. Abscisic Acid Analogues That Act as Universal or Selective Antagonists of Phytohormone Receptors.

    PubMed

    Rajagopalan, Nandhakishore; Nelson, Ken M; Douglas, Amy F; Jheengut, Vishal; Alarcon, Idralyn Q; McKenna, Sean A; Surpin, Marci; Loewen, Michele C; Abrams, Suzanne R

    2016-09-13

    The plant hormone abscisic acid (ABA) plays many important roles in controlling plant development and physiology, from flowering to senescence. ABA is now known to exert its effects through a family of soluble ABA receptors, which in Arabidopsis thaliana has 13 members divided into three clades. Homologues of these receptors are present in other plants, also in relatively large numbers. Investigation of the roles of each homologue in mediating the diverse physiological roles of ABA is hampered by this genetic redundancy. We report herein the in vitro screening of a targeted ABA-like analogue library and identification of novel antagonist hits, including the analogue PBI686 that had been developed previously as a probe for identifying ABA-binding proteins. Further in vitro characterization of PBI686 and development of second-generation leads yielded both receptor-selective and universal antagonist hits. In planta assays in different species have demonstrated that these antagonist leads can overcome various ABA-induced physiological changes. While the general antagonists open up a hitherto unexplored avenue for controlling plant growth through inhibition of ABA-regulated physiological processes, the receptor-selective antagonist can be developed into chemical probes to explore the physiological roles of individual receptors. PMID:27523384

  14. Cannabinoid receptors in invertebrates.

    PubMed

    McPartland, J M; Agraval, J; Gleeson, D; Heasman, K; Glass, M

    2006-03-01

    Two cannabinoid receptors, CB1 and CB2, are expressed in mammals, birds, reptiles, and fish. The presence of cannabinoid receptors in invertebrates has been controversial, due to conflicting evidence. We conducted a systematic review of the literature, using expanded search parameters. Evidence presented in the literature varied in validity, ranging from crude in vivo behavioural assays to robust in silico ortholog discovery. No research existed for several clades of invertebrates; we therefore tested for cannabinoid receptors in seven representative species, using tritiated ligand binding assays with [3H]CP55,940 displaced by the CB1-selective antagonist SR141716A. Specific binding of [3H]CP55,940 was found in neural membranes of Ciona intestinalis (Deuterstoma, a positive control), Lumbricusterrestris (Lophotrochozoa), and three ecdysozoans: Peripatoides novae-zealandiae (Onychophora), Jasus edwardi (Crustacea) and Panagrellus redivivus (Nematoda); the potency of displacement by SR141716A was comparable to measurements on rat cerebellum. No specific binding was observed in Actinothoe albocincta (Cnidaria) or Tethya aurantium (Porifera). The phylogenetic distribution of cannabinoid receptors may address taxonomic questions; previous studies suggested that the loss of CB1 was a synapomorphy shared by ecdysozoans. Our discovery of cannabinoid receptors in some nematodes, onychophorans, and crustaceans does not contradict the Ecdysozoa hypothesis, but gives it no support. We hypothesize that cannabinoid receptors evolved in the last common ancestor of bilaterians, with secondary loss occurring in insects and other clades. Conflicting data regarding Cnidarians precludes hypotheses regarding the last common ancestor of eumetazoans. No cannabinoid receptors are expressed in sponges, which probably diverged before the origin of the eumetazoan ancestor. PMID:16599912

  15. Evaluation of the In Vivo and Ex Vivo Binding of Novel BC1 Cannabinoid Receptor Radiotracers

    SciTech Connect

    Miller, A.; Gatley, J.; Gifford, A.

    2002-01-01

    The primary active ingredient of marijuana, 9-tetrahydrocannabinol, exerts its psychoactive effects by binding to cannabinoid CB1 receptors. These receptors are found throughout the brain with high concentrations in the hippocampus and cerebellum. The current study was conducted to evaluate the binding of a newly developed putative cannabinoid antagonist, AM630, and a classical cannabinoid 8-tetrahydrocannabinol as potential PET and/or SPECT imaging agents for brain CB1 receptors. For both of these ligands in vivo and ex vivo studies in mice were conducted. AM630 showed good overall brain uptake (as measure by %IA/g) and a moderately rapid clearance from the brain with a half-clearance time of approximately 30 minutes. However, AM630 did not show selective binding to CB1 cannabinoid receptors. Ex vivo autoradiography supported the lack of selective binding seen in the in vivo study. Similar to AM630, 8-tetrahydrocanibol also failed to show selective binding to CB1 receptor rich brain areas. The 8-tetrahydrocanibol showed moderate overall brain uptake and relatively slow brain clearance as compared to AM630. Further studies were done with AM2233, a cannabinoid ligand with a similar structure as AM630. These studies were done to develop an ex vivo binding assay to quantify the displacement of [131I]AM2233 binding by other ligands in Swiss-Webster and CB1 receptor knockout mice. By developing this assay we hoped to determine the identity of an unknown binding site for AM2233 present in the hippocampus of CB1 knockout mice. Using an approach based on incubation of brain slices prepared from mice given intravenous [131I]AM2233 in either the presence or absence of AM2233 (unlabelled) it was possible to demonstrate a significant AM2233-displacable binding in the Swiss-Webster mice. Future studies will determine if this assay is appropriate for identifying the unknown binding site for AM2233 in the CB1 knockout mice.

  16. Transmembrane chemokines act as receptors in a novel mechanism termed inverse signaling

    PubMed Central

    Hattermann, Kirsten; Gebhardt, Henrike; Krossa, Sebastian; Ludwig, Andreas; Lucius, Ralph

    2016-01-01

    The transmembrane chemokines CX3CL1/fractalkine and CXCL16 are widely expressed in different types of tumors, often without an appropriate expression of their classical receptors. We observed that receptor-negative cancer cells could be stimulated by the soluble chemokines. Searching for alternative receptors we detected that all cells expressing or transfected with transmembrane chemokine ligands bound the soluble chemokines with high affinity and responded by phosphorylation of intracellular kinases, enhanced proliferation and anti-apoptosis. This activity requires the intracellular domain and apparently the dimerization of the transmembrane chemokine ligand. Thus, shed soluble chemokines can generate auto- or paracrine signals by binding and activating their transmembrane forms. We term this novel mechanism “inverse signaling”. We suppose that inverse signaling is an autocrine feedback and fine-tuning system in the communication between cells that in tumors supports stabilization and proliferation. DOI: http://dx.doi.org/10.7554/eLife.10820.001 PMID:26796342

  17. ATP appears to act via different receptors in terminals vs. somata of the Hypothalamic Neurohypophysial System

    PubMed Central

    Knott, Thomas K.; Hussy, Nicolas; Cuadra, Adolfo E.; Lee, Ryan H.; Ortiz-Miranda, Sonia; Custer, Edward E.; Lemos, José R.

    2012-01-01

    ATP-induced ionic currents were investigated in isolated terminals and somata of the Hypothalamic Neurohypophysial System (HNS). Both terminals and somata showed inward rectification of the ATP-induced currents and reversal near 0 mV. In terminals, ATP dose-dependently evoked an inactivating, inward current. However, in hypothalamic somata ATP evoked a very slowly inactivating, inward current with a higher density, and different dose dependence; EC50 of 50 μM in somata vs. 9.6 μM in terminals. The ATP induced currents, in both the HNS terminals and somata, were highly and reversibly inhibited by suramin, suggesting the involvement of a P2X receptor. However, the suramin inhibition was significantly different in the two HNS compartments: IC50 of 3.6 μM in somata vs 11.6 μM in terminals. Also, both HNS compartments show significantly different responses to the purinergic receptor agonists ATP-γ-S and Benzoyl-benzoyl-ATP. Finally, there was an initial desensitization to ATP upon successive stimulations in the terminals which was not observed in the somata. These differences in EC50, inactivation, desensitization, and agonist sensitivity in terminals vs. somata indicate that different P2X receptors mediate the responses in these two compartments of HNS neurons. Previous work has revealed mRNA transcripts for multiple purinergic receptors in micropunches of the hypothalamus. In the HNS terminals, the P2X purinergic receptor types P2X2, 3, 4, and 7 but not 6 have been shown to exist in AVP terminals. Immonohistochemistry now indicates that P2X4R is only present in AVP terminals and that the P2X7R is found in both AVP and OT terminals and somata. We speculate that these differences in receptor types reflects the specific function of endogenous ATP in the terminals vs. somata of these CNS neurons. PMID:22340013

  18. l-Isocorypalmine reduces behavioral sensitization and rewarding effects of cocaine in mice by acting on dopamine receptors*

    PubMed Central

    Xu, Wei; Wang, Yujun; Ma, Zhongze; Chiu, Yi-Ting; Huang, Peng; Rasakham, Khampaseuth; Unterwald, Ellen; Lee, David Y.-W.; Liu-Chen, Lee-Yuan

    2013-01-01

    Background We previously reported isolation of l-isocorypalmine (l-ICP), a mono-demethylated analog of l-tetrahydropalmatine (l-THP), from the plant Corydalis yanhusuo. Here we characterized its in vitro pharmacological properties and examined its effects on cocaine-induced behaviors in mice. Methods Receptor binding, cAMP and [35S]GTPγS assays were used to examine pharmacological actions of l-ICP in vitro. Effects of I-ICP on cocaine-induced locomotor hyperactivity and sensitization and conditioned place preference (CPP) in mice were investigated. HPLC was employed to analyze metabolites of I-ICP in mouse serum. Results Among more than 40 targets screened, l-ICP and l-THP bound only to dopamine (DA) receptors. l-ICP was a high-affinity partial agonist of D1 and D5 receptors and a moderate-affinity antagonist of D2, D3 and D4 receptors, whereas l-THP bound to only D1 and D5 receptors, with lower affinities than l-ICP. At 10 mg/kg (i.p.), l-ICP inhibited spontaneous locomotor activity for a shorter time than l-THP. Pretreatment with l-ICP reduced cocaine-induced locomotor hyperactivities. Administration of l-ICP before cocaine once a day for 5 days reduced cocaine-induced locomotor sensitization on days 5 and 13 after 7 days of withdrawal. Pretreatment with l-ICP before cocaine daily for 6 days blocked cocaine-induced CPP, while l-ICP itself did not cause preference or aversion. HPLC analysis showed that l-ICP was the main compound in mouse serum following i.p. injection of l-ICP. Conclusions l-ICP likely acts as a D1 partial agonist and a D2 antagonist to produce its in vivo effects and may be a promising agent for treatment of cocaine addiction. PMID:24080315

  19. Guanidino acids act as rho1 GABA(C) receptor antagonists.

    PubMed

    Chebib, Mary; Gavande, Navnath; Wong, Kit Yee; Park, Anna; Premoli, Isabella; Mewett, Kenneth N; Allan, Robin D; Duke, Rujee K; Johnston, Graham A R; Hanrahan, Jane R

    2009-10-01

    GABA(C) receptors play a role in myopia, memory-related disorders and circadian rhythms signifying a need to develop potent and selective agents for this class of receptors. Guanidino analogs related to glycine, beta-alanine and taurine were evaluated at human rho(1)GABA(C) receptors expressed in Xenopus oocytes using 2-electrode voltage clamp methods. Of the 12 analogs tested, 8 analogs were active as antagonists and the remaining were inactive. (S)-2-guanidinopropionic acid (IC(50) = 2.2 microM) and guanidinoacetic acid (IC(50) = 5.4 microM; K (B) = 7.75 microM [pK (B) = 5.11 +/- 0.06]) were the most potent being competitive antagonists at this receptor. In contrast, the beta-alanine and GABA guanidino analogs showed reduced activity, indicating the distance between the carboxyl carbon and terminal nitrogen of the guanidino group is critical for activity. Substituting the C2-position of guanidinoacetic acid with various alkyl groups reduced activity indicating that steric effects may impact on activity. The results of this study contribute to the structure-activity-relationship profile required in developing novel therapeutic agents. PMID:19387831

  20. Cyclohexanol analogues are positive modulators of GABAA receptor currents and act as general anaesthetics in vivo

    Technology Transfer Automated Retrieval System (TEKTRAN)

    GABAA receptors meet all the pharmacological criteria required to be considered important general anaesthetic targets. In the following study, the modulatory effects of various commercially available and novel cyclohexanol were investigated on recombinant human '-aminobutyric acid (GABAA, a1ß2'2s) r...

  1. Development and Validation of Quantitative Structure-Activity Relationship Models for Compounds Acting on Serotoninergic Receptors

    PubMed Central

    Żydek, Grażyna; Brzezińska, Elżbieta

    2012-01-01

    A quantitative structure-activity relationship (QSAR) study has been made on 20 compounds with serotonin (5-HT) receptor affinity. Thin-layer chromatographic (TLC) data and physicochemical parameters were applied in this study. RP2 TLC 60F254 plates (silanized) impregnated with solutions of propionic acid, ethylbenzene, 4-ethylphenol, and propionamide (used as analogues of the key receptor amino acids) and their mixtures (denoted as S1–S7 biochromatographic models) were used in two developing phases as a model of drug-5-HT receptor interaction. The semiempirical method AM1 (HyperChem v. 7.0 program) and ACD/Labs v. 8.0 program were employed to calculate a set of physicochemical parameters for the investigated compounds. Correlation and multiple linear regression analysis were used to search for the best QSAR equations. The correlations obtained for the compounds studied represent their interactions with the proposed biochromatographic models. The good multivariate relationships (R2 = 0.78–0.84) obtained by means of regression analysis can be used for predicting the quantitative effect of biological activity of different compounds with 5-HT receptor affinity. “Leave-one-out” (LOO) and “leave-N-out” (LNO) cross-validation methods were used to judge the predictive power of final regression equations. PMID:22619602

  2. CTEP: a novel, potent, long-acting, and orally bioavailable metabotropic glutamate receptor 5 inhibitor.

    PubMed

    Lindemann, Lothar; Jaeschke, Georg; Michalon, Aubin; Vieira, Eric; Honer, Michael; Spooren, Will; Porter, Richard; Hartung, Thomas; Kolczewski, Sabine; Büttelmann, Bernd; Flament, Christophe; Diener, Catherine; Fischer, Christophe; Gatti, Silvia; Prinssen, Eric P; Parrott, Neil; Hoffmann, Gerhard; Wettstein, Joseph G

    2011-11-01

    The metabotropic glutamate receptor 5 (mGlu5) is a glutamate-activated class C G protein-coupled receptor widely expressed in the central nervous system and clinically investigated as a drug target for a range of indications, including depression, Parkinson's disease, and fragile X syndrome. Here, we present the novel potent, selective, and orally bioavailable mGlu5 negative allosteric modulator with inverse agonist properties 2-chloro-4-((2,5-dimethyl-1-(4-(trifluoromethoxy)phenyl)-1H-imidazol-4-yl)ethynyl)pyridine (CTEP). CTEP binds mGlu5 with low nanomolar affinity and shows >1000-fold selectivity when tested against 103 targets, including all known mGlu receptors. CTEP penetrates the brain with a brain/plasma ratio of 2.6 and displaces the tracer [(3)H]3-(6-methyl-pyridin-2-ylethynyl)-cyclohex-2-enone-O-methyl-oxime (ABP688) in vivo in mice from brain regions expressing mGlu5 with an average ED(50) equivalent to a drug concentration of 77.5 ng/g in brain tissue. This novel mGlu5 inhibitor is active in the stress-induced hyperthermia procedure in mice and the Vogel conflict drinking test in rats with minimal effective doses of 0.1 and 0.3 mg/kg, respectively, reflecting a 30- to 100-fold higher in vivo potency compared with 2-methyl-6-(phenylethynyl)pyridine (MPEP) and fenobam. CTEP is the first reported mGlu5 inhibitor with both long half-life of approximately 18 h and high oral bioavailability allowing chronic treatment with continuous receptor blockade with one dose every 48 h in adult and newborn animals. By enabling long-term treatment through a wide age range, CTEP allows the exploration of the full therapeutic potential of mGlu5 inhibitors for indications requiring chronic receptor inhibition. PMID:21849627

  3. Two short-acting kappa opioid receptor antagonists (zyklophin and LY2444296) exhibited different behavioral effects from the long-acting antagonist norbinaltorphimine in mouse anxiety tests.

    PubMed

    Huang, Peng; Yakovleva, Tatyana; Aldrich, Jane V; Tunis, Julia; Parry, Christopher; Liu-Chen, Lee-Yuan

    2016-02-26

    Prototypical long-acting kappa opioid receptor (KOPR) antagonists [e.g., norbinaltorphimine (norBNI)] have been reported to exert anxiolytic-like effects in several commonly used anxiety tests in rodents including the novelty-induced hypophagia (NIH) and elevated plus maze (EPM) tests. It remains unknown if the short-acting KOPR antagonists (e.g., zyklophin and LY2444296) have similar effects. In this study effects of zyklophin and LY2444296 (s.c.) were investigated in the NIH and EPM tests in mice 1h post-injection and compared with norBNI (i.p.) 48h post-administration. In the NIH test, zyklophin at 3 and 1mg/kg, but not 0.3mg/kg, or LY2444296 at 30mg/kg decreased the latency of palatable food consumption in novel cages, but had no effect in training cages, similar to norBNI (10mg/kg). Zyklophin at 3 or 1mg/kg increased or had a trend of increasing the amount of palatable food consumption in novel cages, with no effects in training cages, further indicating its anxiolytic-like effect, but norBNI (10mg/kg) and LY2444296 (30mg/kg) did not. In the EPM test, norBNI (10mg/kg) increased open arm time and % open arm entries or time, but zyklophin at all three doses and LY2444296 (30mg/kg) had no effects. In addition, zyklophin at 3mg/kg increased numbers of close and total arm entries on EPM, suggesting increased activity; however, norBNI and LY2444296 had no effects on close and total arm entries. Thus, all three KOPR antagonists had anxiolytic-like effects in the NIH test. However, only the long-acting one (norBNI), but not the short-acting ones (zyklophin and LY2444296), demonstrated anti-anxiety like effects in the EPM test. It remains to be investigated if the differences are due to the differences in their durations of action and/or pharmacodynamic properties. PMID:26780565

  4. LGR4 acts as a key receptor for R-spondin 2 to promote osteogenesis through Wnt signaling pathway.

    PubMed

    Zhu, Chao; Zheng, Xin-Feng; Yang, Yue-Hua; Li, Bo; Wang, Yu-Ren; Jiang, Sheng-Dan; Jiang, Lei-Sheng

    2016-08-01

    R-spondin proteins are identified as secreted agonists of the canonical Wnt/β-catenin signaling pathway, and leucine-rich repeat-containing G-protein-coupled receptors (LGR) are recognized as R-spondin receptors. The potential role of R-spondin 2 (Rspo2) and LGR4 in mediating osteogenesis remains poorly understood. In our in vitro experiments, we found that Rspo2 could promote osteogenesis through activating the Wnt signaling pathway in MC3T3-E1 cells. However, this effect of Rsop2 disappeared in the cells with functional disruption of LGR4. Meanwhile, Rspo2 significantly inhibited osteoclastogenesis and this effect of Rspo2 was dependent on the presence of osteoblasts with normal function of LGR4. In our in vivo experiments, we found that application of exogenous Rspo2 rescued the bone loss and improved the microarchitecture of bone in OVX mice. Rspo2 could be a positive regulator of bone metabolism through activating the canonical Wnt/β-catenin signaling, and LGR4 acted as a key receptor for Rspo2 to promote osteogenesis. PMID:27140682

  5. Cannabinoid Receptor 1 in the Vagus Nerve Is Dispensable for Body Weight Homeostasis But Required for Normal Gastrointestinal Motility

    PubMed Central

    Vianna, Claudia R.; Donato, Jose; Rossi, Jari; Scott, Michael; Economides, Kyriakos; Gautron, Lauren; Pierpont, Stephanie; Elias, Carol F.; Elmquist, Joel K.

    2016-01-01

    The cannabinoid receptor 1 (CB1R) is required for body weight homeostasis and normal gastrointestinal motility. However, the specific cell types expressing CB1R that regulate these physiological functions are unknown. CB1R is widely expressed, including in neurons of the parasympathetic branches of the autonomic nervous system. The vagus nerve has been implicated in the regulation of several aspects of metabolism and energy balance (e.g., food intake and glucose balance), and gastrointestinal functions including motility. To directly test the relevance of CB1R in neurons of the vagus nerve on metabolic homeostasis and gastrointestinal motility, we generated and characterized mice lacking CB1R in afferent and efferent branches of the vagus nerve (Cnr1flox/flox; Phox2b–Cre mice). On a chow or on a high-fat diet, Cnr1flox/flox; Phox2b–Cre mice have similar body weight, food intake, energy expenditure, and glycemia compared with Cnr1flox/flox control mice. Also, fasting-induced hyperphagia and after acute or chronic pharmacological treatment with SR141716 [N-piperidino-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-3-pyrazole carboxamide] (CB1R inverse agonist) paradigms, mutants display normal body weight and food intake. Interestingly, Cnr1flox/flox; Phox2b–Cre mice have increased gastrointestinal motility compared with controls. These results unveil CB1R in the vagus nerve as a key component underlying normal gastrointestinal motility. PMID:22836266

  6. Fasting induces CART down-regulation in the zebrafish nervous system in a cannabinoid receptor 1-dependent manner.

    PubMed

    Nishio, Shin-Ichi; Gibert, Yann; Berekelya, Liubov; Bernard, Laure; Brunet, Frédéric; Guillot, Etienne; Le Bail, Jean-Christophe; Sánchez, Juan Antonio; Galzin, Anne Marie; Triqueneaux, Gerard; Laudet, Vincent

    2012-08-01

    Central and peripheral mechanisms modulate food intake and energy balance in mammals and the precise role of the type 1 cannabinoid receptor (CB1) in these processes is still being explored. Using the zebrafish, Danio rerio, we show that rimonabant, a CB1-specific antagonist with an EC(50) of 5.15 × 10(-8) m, decreases embryonic yolk sac reserve use. We reveal a developmental overlap between CART genes and CB1 expression in the hypothalamus and medulla oblongata, two brain structures that play crucial roles in appetite regulation in mammals. We show that morpholino knockdown of CB1 or fasting decreases cocaine- and amphetamine-related transcript (CART)-3 expression. Strikingly, this down-regulation occurs only in regions coexpressing CB1 and CART3, reinforcing the link between CB1, CART, and appetite regulation. We show that rimonabant treatment impairs the fasting-induced down-regulation of CART expression in specific brain regions, whereas vehicle alone-treated embryos do not display this rescue of CART expression. Our data reveal that CB1 lies upstream of CART and signals the appetite through the down-regulation of CART expression. Thus, our results establish the zebrafish as a promising system to study appetite regulation. PMID:22700585

  7. Structural Basis of Species-Dependent Differential Affinity of 6-Alkoxy-5-Aryl-3-Pyridinecarboxamide Cannabinoid-1 Receptor Antagonists

    PubMed Central

    Iyer, Malliga R.; Cinar, Resat; Liu, Jie; Godlewski, Grzegorz; Szanda, Gergö; Puhl, Henry; Ikeda, Stephen R.; Deschamps, Jeffrey; Lee, Yong-Sok; Steinbach, Peter J.

    2015-01-01

    6-Alkoxy-5-aryl-3-pyridincarboxamides, including the brain-penetrant compound 14g [5-(4-chlorophenyl)-6-(cyclopropylmethoxy)-N-[(1R,2R)-2-hydroxy-cyclohexyl]-3-pyridinecarboxamide] and its peripherally restricted analog 14h [5-(4-chlorophenyl)-N-[(1R,2R)-2-hydroxycyclohexyl]-6-(2-methoxyethoxy)-3-pyridinecarboxamide], have been recently introduced as selective, high-affinity antagonists of the human cannabinoid-1 receptor (hCB1R). Binding analyses revealed two orders of magnitude lower affinity of these compounds for mouse and rat versus human CB1R, whereas the affinity of rimonabant is comparable for all three CB1Rs. Modeling of ligand binding to CB1R and binding assays with native and mutant (Ile105Met) hCB1Rs indicate that the Ile105 to Met mutation in rodent CB1Rs accounts for the species-dependent affinity of 14g and 14h. Our work identifies Ile105 as a new pharmacophore component for developing better hCB1R antagonists and invalidates rodent models for assessing the antiobesity efficacy of 14g and 14h. PMID:26013543

  8. Cannabinoid type-1 receptor signaling in central serotonergic neurons regulates anxiety-like behavior and sociability

    PubMed Central

    Häring, Martin; Enk, Vanessa; Aparisi Rey, Alejandro; Loch, Sebastian; Ruiz de Azua, Inigo; Weber, Tillmann; Bartsch, Dusan; Monory, Krisztina; Lutz, Beat

    2015-01-01

    The endocannabinoid (eCB) system possesses neuromodulatory functions by influencing the release of various neurotransmitters, including γ-aminobutyric acid (GABA) and glutamate. A functional interaction between eCBs and the serotonergic system has already been suggested. Previously, we showed that cannabinoid type-1 (CB1) receptor mRNA and protein are localized in serotonergic neurons of the raphe nuclei, implying that the eCB system can modulate serotonergic functions. In order to substantiate the physiological role of the CB1 receptor in serotonergic neurons of the raphe nuclei, we generated serotonergic 5-hydroxytryptamine (5-HT) neuron-specific CB1 receptor-deficient mice, using the Cre/loxP system with a tamoxifen-inducible Cre recombinase under the control of the regulatory sequences of the tryptophan hydroxylase 2 gene (TPH2-CreERT2), thus, restricting the recombination to 5-HT neurons of the central nervous system (CNS). Applying several different behavioral paradigms, we revealed that mice lacking the CB1 receptor in serotonergic neurons are more anxious and less sociable than control littermates. Thus, we were able to show that functional CB1 receptor signaling in central serotonergic neurons modulates distinct behaviors in mice. PMID:26388750

  9. Epinephrine and norepinephrine act as potent agonists at the recombinant human dopamine D4 receptor.

    PubMed

    Lanau, F; Zenner, M T; Civelli, O; Hartman, D S

    1997-02-01

    The catecholamines dopamine (DA), epinephrine (EP), and norepinephrine (NE) play important roles in learning and memory, emotional states, and control of voluntary movement, as well as cardiovascular and kidney function. They activate distinct but overlapping neuronal pathways through five distinct DA receptors (D1R-D5R) and at least 10 different adrenergic receptors (alpha 1a/b/c, alpha 2a/b/c-1/c-2, and beta 1/beta 2/beta 3). The D4R, which is localized to mesolimbic areas of the brain implicated in affective and emotional behavior, has a deduced amino acid sequence with homology to both adrenergic and dopaminergic receptor subtypes. We report here that DA, EP, and NE all show binding in the nanomolar range to three isoforms of the recombinant human D4R (hD4R): D4.2, D4.4, and D4.7. Submicromolar concentrations of DA, EP, and NE were sufficient to activate hD4R isoforms in two different functional assays: agonist-induced guanosine 5'-O-(3-[35S]thiotriphosphate) binding and modulation of adenylyl cyclase activity. DA was approximately fivefold more potent than EP and NE at the D4R, whereas activation of the human D2R required at least 100-fold higher catecholamine concentrations. Functional activation of the D4R by multiple neurotransmitters may provide a novel mechanism for integration of catecholamine signaling in the brain and periphery. PMID:9003072

  10. Two FGF Receptor Kinase Molecules Act in Concert to Recruit and Transphosphorylate Phospholipase Cγ.

    PubMed

    Huang, Zhifeng; Marsiglia, William M; Basu Roy, Upal; Rahimi, Nader; Ilghari, Dariush; Wang, Huiyan; Chen, Huaibin; Gai, Weiming; Blais, Steven; Neubert, Thomas A; Mansukhani, Alka; Traaseth, Nathaniel J; Li, Xiaokun; Mohammadi, Moosa

    2016-01-01

    The molecular basis by which receptor tyrosine kinases (RTKs) recruit and phosphorylate Src Homology 2 (SH2) domain-containing substrates has remained elusive. We used X-ray crystallography, NMR spectroscopy, and cell-based assays to demonstrate that recruitment and phosphorylation of Phospholipase Cγ (PLCγ), a prototypical SH2 containing substrate, by FGF receptors (FGFR) entails formation of an allosteric 2:1 FGFR-PLCγ complex. We show that the engagement of pTyr-binding pocket of the cSH2 domain of PLCγ by the phosphorylated tail of an FGFR kinase induces a conformational change at the region past the cSH2 core domain encompassing Tyr-771 and Tyr-783 to facilitate the binding/phosphorylation of these tyrosines by another FGFR kinase in trans. Our data overturn the current paradigm that recruitment and phosphorylation of substrates are carried out by the same RTK monomer in cis and disclose an obligatory role for receptor dimerization in substrate phosphorylation in addition to its canonical role in kinase activation. PMID:26687682

  11. Conformationally constrained analogs of BAY 59–3074 as novel cannabinoid receptor ligands

    PubMed Central

    Teng, Heidi; Thakur, Ganesh A.; Makriyannis, Alexandros

    2013-01-01

    To obtain information on the pharmacophoric requirements of the CB1/CB2 partial agonist BAY 59–3074 we have synthesized a series of new conformationally constrained dibenzofuran (4a–d) and dibenzopyran analogs (5). All constrained analogs exhibited reduced binding affinity at both cannabinoid receptor subtypes, suggesting that planar conformations of these ligands are less favored by both receptors. We also found that 4c, 4d, and 5 exhibited 3- to 12-fold selectivity for hCB2 over rCB1 receptors and may serve as new chemotypes for the development of CB2-selective cannabinergics. PMID:21880487

  12. A critical review of both the synthesis approach and the receptor profile of the 8-chloro-1-(2',4'-dichlorophenyl)-N-piperidin-1-yl-1,4,5,6-tetrahydrobenzo[6,7]cyclohepta[1,2-c]pyrazole-3-carboxamide and analogue derivatives.

    PubMed

    Lazzari, Paolo; Distinto, Rita; Manca, Ilaria; Baillie, Gemma; Murineddu, Gabriele; Pira, Marilena; Falzoi, Matteo; Sani, Monica; Morales, Paula; Ross, Ruth; Zanda, Matteo; Jagerovic, Nadine; Pinna, Gérard Aimè

    2016-10-01

    8-Chloro-1-(2',4'-dichlorophenyl)-N-piperidin-1-yl-1,4,5,6-tetrahydrobenzo[6,7]cyclohepta[1,2-c]pyrazole-3-carboxamide 9a was discovered as potent and selective CB1 antagonist by part of our group few years ago. In particular it was reported to have an affinity towards the CB1 cannabinoid receptor (CB1R), expressed as Ki, of 0.00035 nM. Nevertheless significantly divergent data were reported for the same compound from other laboratories. To unequivocally define the receptor profile of 9a, we have critically reviewed both its synthesis approach and binding data. Here we report that, in contrast to our previously reported data, 9a showed a Ki value for CB1R in the order of nanomolar rather than of fentomolar range. The new determined receptor profile of 9a was also ascertained for analogue derivatives 9b-i, as well as for 12. Moreover, the structural features of the synthesized compounds necessary for CB1R were investigated. Amongst the novel series, effects on CB1R intrinsic activity was highlighted due to the substituents at the position 3 of the pyrazole ring of the 1,4,5,6-tetrahydrobenzo[6,7]cyclohepta[1,2-c]pyrazole scaffold. Although the cannabinoid receptor profile of 9a was reviewed in this work, the relevance of this compound in CB1R antagonist based drug discovery is confirmed. PMID:27240274

  13. Peripheral Administration of a Long-Acting Peptide Oxytocin Receptor Agonist Inhibits Fear-Induced Freezing.

    PubMed

    Modi, Meera E; Majchrzak, Mark J; Fonseca, Kari R; Doran, Angela; Osgood, Sarah; Vanase-Frawley, Michelle; Feyfant, Eric; McInnes, Heather; Darvari, Ramin; Buhl, Derek L; Kablaoui, Natasha M

    2016-08-01

    Oxytocin (OT) modulates the expression of social and emotional behaviors and consequently has been proposed as a pharmacologic treatment of psychiatric diseases, including autism spectrum disorders and schizophrenia; however, endogenous OT has a short half-life in plasma and poor permeability across the blood-brain barrier. Recent efforts have focused on the development of novel drug delivery methods to enhance brain penetration, but few efforts have aimed at improving its half-life. To explore the behavioral efficacy of an OT analog with enhanced plasma stability, we developed PF-06655075 (PF1), a novel non-brain-penetrant OT receptor agonist with increased selectivity for the OT receptor and significantly increased pharmacokinetic stability. PF-06478939 was generated with only increased stability to disambiguate changes to selectivity versus stability. The efficacy of these compounds in evoking behavioral effects was tested in a conditioned fear paradigm. Both central and peripheral administration of PF1 inhibited freezing in response to a conditioned fear stimulus. Peripheral administration of PF1 resulted in a sustained level of plasma concentrations for greater than 20 hours but no detectable accumulation in brain tissue, suggesting that plasma or cerebrospinal fluid exposure was sufficient to evoke behavioral effects. Behavioral efficacy of peripherally administered OT receptor agonists on conditioned fear response opens the door to potential peripheral mechanisms in other behavioral paradigms, whether they are mediated by direct peripheral activation or feed-forward responses. Compound PF1 is freely available as a tool compound to further explore the role of peripheral OT in behavioral response. PMID:27217590

  14. Peripheral Administration of a Long-Acting Peptide Oxytocin Receptor Agonist Inhibits Fear-Induced Freezing

    PubMed Central

    Modi, Meera E.; Majchrzak, Mark J.; Fonseca, Kari R.; Doran, Angela; Osgood, Sarah; Vanase-Frawley, Michelle; Feyfant, Eric; McInnes, Heather; Darvari, Ramin; Buhl, Derek L.

    2016-01-01

    Oxytocin (OT) modulates the expression of social and emotional behaviors and consequently has been proposed as a pharmacologic treatment of psychiatric diseases, including autism spectrum disorders and schizophrenia; however, endogenous OT has a short half-life in plasma and poor permeability across the blood-brain barrier. Recent efforts have focused on the development of novel drug delivery methods to enhance brain penetration, but few efforts have aimed at improving its half-life. To explore the behavioral efficacy of an OT analog with enhanced plasma stability, we developed PF-06655075 (PF1), a novel non–brain-penetrant OT receptor agonist with increased selectivity for the OT receptor and significantly increased pharmacokinetic stability. PF-06478939 was generated with only increased stability to disambiguate changes to selectivity versus stability. The efficacy of these compounds in evoking behavioral effects was tested in a conditioned fear paradigm. Both central and peripheral administration of PF1 inhibited freezing in response to a conditioned fear stimulus. Peripheral administration of PF1 resulted in a sustained level of plasma concentrations for greater than 20 hours but no detectable accumulation in brain tissue, suggesting that plasma or cerebrospinal fluid exposure was sufficient to evoke behavioral effects. Behavioral efficacy of peripherally administered OT receptor agonists on conditioned fear response opens the door to potential peripheral mechanisms in other behavioral paradigms, whether they are mediated by direct peripheral activation or feed-forward responses. Compound PF1 is freely available as a tool compound to further explore the role of peripheral OT in behavioral response. PMID:27217590

  15. Orphan nuclear receptor TR3 acts in autophagic cell death via mitochondrial signaling pathway.

    PubMed

    Wang, Wei-jia; Wang, Yuan; Chen, Hang-zi; Xing, Yong-zhen; Li, Feng-wei; Zhang, Qian; Zhou, Bo; Zhang, Hong-kui; Zhang, Jie; Bian, Xue-li; Li, Li; Liu, Yuan; Zhao, Bi-xing; Chen, Yan; Wu, Rong; Li, An-zhong; Yao, Lu-ming; Chen, Ping; Zhang, Yi; Tian, Xu-yang; Beermann, Friedrich; Wu, Mian; Han, Jiahuai; Huang, Pei-qiang; Lin, Tianwei; Wu, Qiao

    2014-02-01

    Autophagy is linked to cell death, yet the associated mechanisms are largely undercharacterized. We discovered that melanoma, which is generally resistant to drug-induced apoptosis, can undergo autophagic cell death with the participation of orphan nuclear receptor TR3. A sequence of molecular events leading to cellular demise is launched by a specific chemical compound, 1-(3,4,5-trihydroxyphenyl)nonan-1-one, newly acquired from screening a library of TR3-targeting compounds. The autophagic cascade comprises TR3 translocation to mitochondria through interaction with the mitochondrial outer membrane protein Nix, crossing into the mitochondrial inner membrane through Tom40 and Tom70 channel proteins, dissipation of mitochondrial membrane potential by the permeability transition pore complex ANT1-VDAC1 and induction of autophagy. This process leads to excessive mitochondria clearance and irreversible cell death. It implicates a new approach to melanoma therapy through activation of a mitochondrial signaling pathway that integrates a nuclear receptor with autophagy for cell death. PMID:24316735

  16. C-type lectins do not act as functional receptors for filovirus entry into cells

    SciTech Connect

    Matsuno, Keita; Nakayama, Eri; Noyori, Osamu; Marzi, Andrea; Ebihara, Hideki; Irimura, Tatsuro; Feldmann, Heinz; Takada, Ayato

    2010-12-03

    Research highlights: {yields} Filovirus glycoprotein (GP) having a deficient receptor binding region were generated. {yields} Mutant GPs mediated virus entry less efficiently than wild-type GP. {yields} Mutant GPs bound to C-type lectins but not mediated entire steps of cellular entry. {yields} C-type lectins do not independently mediate filovirus entry into cells. {yields} Other molecule(s) are required for C-type lectin-mediated entry of filoviruses. -- Abstract: Cellular C-type lectins have been reported to facilitate filovirus infection by binding to glycans on filovirus glycoprotein (GP). However, it is not clearly known whether interaction between C-type lectins and GP mediates all the steps of virus entry (i.e., attachment, internalization, and membrane fusion). In this study, we generated vesicular stomatitis viruses pseudotyped with mutant GPs that have impaired structures of the putative receptor binding regions and thus reduced ability to infect the monkey kidney cells that are routinely used for virus propagation. We found that infectivities of viruses with the mutant GPs dropped in C-type lectin-expressing cells, parallel with those in the monkey kidney cells, whereas binding activities of these GPs to the C-type lectins were not correlated with the reduced infectivities. These results suggest that C-type lectin-mediated entry of filoviruses requires other cellular molecule(s) that may be involved in virion internalization or membrane fusion.

  17. Adenosine A(3) receptor agonist acts as a homeostatic regulator of bone marrow hematopoiesis.

    PubMed

    Hofer, Michal; Pospísil, Milan; Znojil, Vladimír; Holá, Jirina; Vacek, Antonín; Streitová, Denisa

    2007-07-01

    The present study was performed to define the optimum conditions of the stimulatory action of the adenosine A(3) receptor agonist, N(6)-(3-iodobenzyl)adenosine-5'-N-methyluronamide (IB-MECA), on bone marrow hematopoiesis in mice. Effects of 2-day treatment with IB-MECA given at single doses of 200nmol/kg twice daily were investigated in normal mice and in mice whose femoral bone marrow cells were either depleted or regenerating after pretreatment with the cytotoxic drug 5-fluorouracil. Morphological criteria were used to determine the proliferation state of the granulocytic and erythroid cell systems. Significant negative correlation between the control proliferation state and the increase of cell proliferation after IB-MECA treatment irrespective of the cell lineage investigated was found. The results suggest the homeostatic character of the induced stimulatory effects and the need to respect the functional state of the target tissue when investigating effects of adenosine receptor agonists under in vivo conditions. PMID:17383145

  18. GPR55: a new member of the cannabinoid receptor clan?

    PubMed

    Pertwee, R G

    2007-12-01

    In this issue of the British Journal of Pharmacology, Ryberg et al. present convincing in vitro evidence that the orphan GPCR, GPR55, is a cannabinoid receptor. GPR55 was activated by a range of plant, synthetic and endogenous cannabinoids and blocked by the non-psychoactive phytocannabinoid, cannabidiol. Their experiments have revealed several differences between the pharmacology of GPR55 and the established cannabinoid CB1 and CB2 receptors. For example, the CB1 receptor antagonist, AM251, activated GPR55 and the main psychoactive constituent of cannabis, Delta9-tetrahydrocannabinol, displayed greater efficacy at GPR55 than at CB1 or CB2 receptors. They also compared the distribution of GPR55 and CB1 mRNA in mouse and report that GPR55 couples to Galpha13, that it is activated by virodhamine, palmitoylethanolamide and oleoylethanolamide, and that virodhamine displays relatively high efficacy as a GPR55 agonist. Still to be identified are the main roles played by GPR55 in health and disease and any potential therapeutic benefits of activating or blocking this receptor. PMID:17876300

  19. Pharmacological and pharmacokinetic characterization of the cannabinoid receptor 2 agonist, GW405833, utilizing rodent models of acute and chronic pain, anxiety, ataxia and catalepsy.

    PubMed

    Valenzano, Kenneth J; Tafesse, Laykea; Lee, Gary; Harrison, James E; Boulet, Jamie M; Gottshall, Susan L; Mark, Lilly; Pearson, Michelle S; Miller, Wendy; Shan, Shen; Rabadi, Leyana; Rotshteyn, Yakov; Chaffer, Suzanne M; Turchin, Paul I; Elsemore, David A; Toth, Mathew; Koetzner, Lee; Whiteside, Garth T

    2005-04-01

    To date, two cannabinoid receptors have been identified, CB1 and CB2. Activation of these receptors with non-selective cannabinoid receptor agonists reduces pain sensitivity in animals and humans. However, activation of CB1 receptors is also associated with central side effects, including ataxia and catalepsy. More recently, a role for selective CB2 agonists in pain modification has been demonstrated. GW405833, a selective CB2 agonist, was recently reported to partially reverse the inflammation and hyperalgesia in a rat model of acute inflammation. In the current report, we extend the characterization and therapeutic potential of this compound. For the first time, we show that GW405833 selectively binds both rat and human CB2 receptors with high affinity, where it acts as a partial agonist (approximately 50% reduction of forskolin-mediated cAMP production compared to the full cannabinoid agonist, CP55,940). We also report for the first time that intraperitoneal administration of GW405833 (0.3-100 mg/kg) to rats shows linear, dose-dependent increases in plasma levels and substantial penetration into the central nervous system. In addition, GW405833 (up to 30 mg/kg) elicits potent and efficacious antihyperalgesic effects in rodent models of neuropathic, incisional and chronic inflammatory pain, the first description of this compound in these models. In contrast, analgesia, sedation and catalepsy were not observed in this dose range, but were apparent at 100 mg/kg. Additionally, GW405833 was not antihyperalgesic against chronic inflammatory pain in CB2 knockout mice. These data support the tenet that selective CB2 receptor agonists have the potential to treat pain without eliciting the centrally-mediated side effects associated with non-selective cannabinoid agonists, and highlight the utility of GW405833 for the investigation of CB2 physiology. PMID:15814101

  20. Options for intensification of basal insulin in type 2 diabetes: Premeal insulin or short-acting GLP-1 receptor agonists?

    PubMed

    Darmon, P; Raccah, D

    2015-12-01

    Type 2 diabetes is an evolutive disease with a progressive defect of beta-cell insulin secretion. This characteristic points to a need for treatment that takes into account such a natural history. When oral antidiabetic drugs fail to achieve the patient's target HbA1c level, basal insulin treatment is usually initiated and titrated in association with oral drugs to manage fasting hyperglycaemia. Over a period of time, it is enough to simply achieve the HbA1c target. However, when even a good fasting blood glucose level is no longer sufficient to control overall glycaemia, then prandial treatment must be combined with the titrated basal insulin to deal with the postprandial hyperglycaemia responsible for the elevation of HbA1c. Of the different therapeutic options now available for this, rapid-acting insulins and GLP-1 receptor agonists (RAs) can be used. Rapid-acting insulins can be added either at each meal, achieving full insulin supplementation with a basal-bolus regimen, or at the main meal only as a "basal-plus" regimen. Compared with the full basal-bolus, the basal-plus strategy is associated with fewer injections, yet provides similar efficacy in terms of HbA1c improvement, but with less weight gain and lower hypoglycaemic risk. As for GLP-1 RAs, numerous studies, and especially those using short-acting GLP-1 RAs, have demonstrated more pronounced effects on postprandial hyperglycaemia, good complementary effects with basal insulin, and significant improvement of HbA1c with no weight gain and a low risk of hypoglycaemia. Similarly, direct and indirect comparisons of the use of rapid-acting insulins and GLP-1 RAs to intensify basal insulin have shown comparable efficacy in terms of HbA1c control, but with less weight gain and fewer hypoglycaemic episodes with GLP-1 RAs. PMID:26774016

  1. CEACAM6 acts as a receptor for adherent-invasive E. coli, supporting ileal mucosa colonization in Crohn disease.

    PubMed

    Barnich, Nicolas; Carvalho, Frédéric A; Glasser, Anne-Lise; Darcha, Claude; Jantscheff, Peter; Allez, Matthieu; Peeters, Harald; Bommelaer, Gilles; Desreumaux, Pierre; Colombel, Jean-Frédéric; Darfeuille-Michaud, Arlette

    2007-06-01

    The ileal mucosa of Crohn disease (CD) patients is abnormally colonized by adherent-invasive E. coli (AIEC) that are able to adhere to and invade intestinal epithelial cells. Here, we show that CD-associated AIEC strains adhere to the brush border of primary ileal enterocytes isolated from CD patients but not controls without inflammatory bowel disease. AIEC adhesion is dependent on type 1 pili expression on the bacterial surface and on carcinoembryonic antigen-related cell adhesion molecule 6 (CEACAM6) expression on the apical surface of ileal epithelial cells. We report also that CEACAM6 acts as a receptor for AIEC adhesion and is abnormally expressed by ileal epithelial cells in CD patients. In addition, our in vitro studies show that there is increased CEACAM6 expression in cultured intestinal epithelial cells after IFN-gamma or TNF-alpha stimulation and after infection with AIEC bacteria, indicating that AIEC can promote its own colonization in CD patients. PMID:17525800

  2. Receptor tyrosine phosphatase CLR-1 acts in skin cells to promote sensory dendrite outgrowth.

    PubMed

    Liu, Xianzhuang; Wang, Xiangming; Shen, Kang

    2016-05-01

    Sensory dendrite morphogenesis is directed by intrinsic and extrinsic factors. The extracellular environment plays instructive roles in patterning dendrite growth and branching. However, the molecular mechanism is not well understood. In Caenorhabditis elegans, the proprioceptive neuron PVD forms highly branched sensory dendrites adjacent to the hypodermis. We report that receptor tyrosine phosphatase CLR-1 functions in the hypodermis to pattern the PVD dendritic branches. Mutations in clr-1 lead to loss of quaternary branches, reduced secondary branches and increased ectopic branches. CLR-1 is necessary for the dendrite extension but not for the initial filopodia formation. Its role is dependent on the intracellular phosphatase domain but not the extracellular adhesion domain, indicating that it functions through dephosphorylating downstream factors but not through direct adhesion with neurons. Genetic analysis reveals that clr-1 also functions in parallel with SAX-7/DMA-1 pathway to control PVD primary dendrite development. We provide evidence of a new environmental factor for PVD dendrite morphogenesis. PMID:26968353

  3. Differential antagonism of tetramethylenedisulfotetramine-induced seizures by agents acting at NMDA and GABAA receptors

    PubMed Central

    Shakarjian, Michael P.; Velíšková, Jana; Stanton, Patric K.; Velíšek, Libor

    2012-01-01

    Tetramethylenedisulfotetramine (TMDT) is a highly lethal neuroactive rodenticide responsible for many accidental and intentional poisonings in mainland China. Ease of synthesis, water solubility, potency, and difficulty to treat make TMDT a potential weapon for terrorist activity. We characterized TMDT-induced convulsions and mortality in male C57BL/6 mice. TMDT (ip) produced a continuum of twitches, clonic, and tonic-clonic seizures decreasing in onset latency and increasing in severity with increasing dose; 0.4 mg/kg was 100% lethal. The NMDA antagonist, ketamine (35 mg/kg) injected ip immediately after the first TMDT-induced seizure, did not change number of tonic-clonic seizures or lethality, but increased the number of clonic seizures. Doubling the ketamine dose decreased tonic-clonic seizures and eliminated lethality through a 60 min observation period. Treating mice with another NMDA antagonist, MK-801, 0.5 or 1 mg/kg ip, showed similar effects as low and high doses of ketamine, respectively, and prevented lethality, converting status epilepticus EEG activity to isolated interictal discharges. Treatment with these agents 15 min prior to TMDT administration did not increase their effectiveness. Post-treatment with the GABAA receptor allosteric enhancer diazepam (5 mg/kg) greatly reduced seizure manifestations and prevented lethality 60 min post-TMDT, but ictal events were evident in EEG recordings and, hours post-treatment, mice experienced status epilepticus and died. Thus, TMDT is a highly potent and lethal convulsant for which single-dose benzodiazepine treatment is inadequate in managing electrographic seizures or lethality. Repeated benzodiazepine dosing or combined application of benzodiazepines and NMDA receptor antagonists are more likely to be effective in treating TMDT poisoning. PMID:23022509

  4. Identification of naphthoylindoles acting on cannabinoid receptors based on their fragmentation patterns under ESI-QTOFMS.

    PubMed

    Sekuła, Karolina; Zuba, Dariusz; Stanaszek, Roman

    2012-05-01

    'Herbal highs' have been advertised as legal and natural substitutes to cannabis, but a detailed examination of these products has revealed that the herbal matrix is laced with synthetic substances that mimic the effects of marijuana. Producers select the ingredients based on the results of scientific studies on the affinities of different chemicals to cannabinoid receptors. Naphthoylindoles have turned out to be the most popular class of substances identified in the products. Legal actions taken in order to tackle the problem of uncontrolled access to one substance have usually resulted in the marketing of derivatives or analogues. In the study, the mass spectral behavior of twelve synthetic cannabinoids from the naphthoylindole family under electrospray ionization (ESI) was investigated. LC-QTOFMS experiments were performed in three modes (low fragmentor voltage, high fragmentor voltage with/without collision energy), and they enabled the identification of protonated molecules and main ions. A general fragmentation pattern under this ionization method was proposed, and mechanisms of ion formation were discussed. The developed procedure allowed the determination of substituent groups of the core naphthoylindole structure and distinction between positional isomers. The obtained results were used for the prediction of the ESI-MS spectra for many naphthoylindoles with a high affinity to cannabinoid receptors. Similarities and differences between ESI-MS and electron impact-MS spectra of naphthoylindoles were discussed. The developed identification process was presented on an example of an analysis of an unknown herbal material, in which JWH-007 was finally identified. Knowledge of the fragmentation mechanisms of naphthoylindoles could also be used by other researchers for identification of unknown substances in this chemical family. PMID:22576877

  5. The p23 molecular chaperones act at a late step in intracellular receptor action to differentially affect ligand efficacies

    PubMed Central

    Freeman, Brian C.; Felts, Sara J.; Toft, David O.; Yamamoto, Keith R.

    2000-01-01

    Multiple molecular chaperones, including Hsp90 and p23, interact with members of the intracellular receptor (IR) family. To investigate p23 function, we compared the effects of three p23 proteins on IR activities, yeast p23 (sba1p) and the two human p23 homologs, p23 and tsp23. We found that Sba1p was indistinguishable from human p23 in assays of seven IR activities in both animal cells and in yeast; in contrast, certain effects of tsp23 were specific to that homolog. Transcriptional activation by two IRs was increased by expression of any of the p23 species, whereas activation by five other IRs was decreased by Sba1p or p23, and unaffected by tsp23. p23 was expressed in all tissues examined except striated and cardiac muscle, whereas tsp23 accumulated in a complementary pattern; hence, p23 proteins might contribute to tissue-specific differences in IR activities. Unlike Hsp90, which acts on IR aporeceptors to stimulate ligand potency (i.e., hormone-binding affinity), p23 proteins acted on IR holoreceptors to alter ligand efficiencies (i.e., transcriptional activation activity). Moreover, the p23 effects developed slowly, requiring prolonged exposure to hormone. In vitro, p23 interacted preferentially with hormone–receptor–response element ternary complexes, and stimulated receptor–DNA dissociation. The dissociation was reversed by addition of a fragment of the GRIP1 coactivator, suggesting that the two reactions may be in competition in vivo. Our findings suggest that p23 functions at one or more late steps in IR-mediated signal transduction, perhaps including receptor recycling and/or reversal of the response. PMID:10691735

  6. A Cannabinoid Receptor Agonist N-Arachidonoyl Dopamine Inhibits Adipocyte Differentiation in Human Mesenchymal Stem Cells

    PubMed Central

    Ahn, Seyeon; Yi, Sodam; Seo, Won Jong; Lee, Myeong Jung; Song, Young Keun; Baek, Seung Yong; Yu, Jinha; Hong, Soo Hyun; Lee, Jinyoung; Shin, Dong Wook; Jeong, Lak Shin; Noh, Minsoo

    2015-01-01

    Endocannabinoids can affect multiple cellular targets, such as cannabinoid (CB) receptors, transient receptor potential cation channel, subfamily V, member 1 (TRPV1) and peroxisome proliferator-activated receptor γ (PPARγ). The stimuli to induce adipocyte differentiation in hBM-MSCs increase the gene transcription of the CB1 receptor, TRPV1 and PPARγ. In this study, the effects of three endocannabinoids, N-arachidonoyl ethanolamine (AEA), N-arachidonoyl dopamine (NADA) and 2-arachidonoyl glycerol (2-AG), on adipogenesis in hBM-MSCs were evaluated. The adipocyte differentiation was promoted by AEA whereas inhibited by NADA. No change was observed by the treatment of non-cytotoxic concentrations of 2-AG. The difference between AEA and NADA in the regulation of adipogenesis is associated with their effects on PPARγ transactivation. AEA can directly activate PPARγ. The effect of AEA on PPARγ in hBM-MSCs may prevail over that on the CB1 receptor mediated signal transduction, giving rise to the AEA-induced promotion of adipogenesis. In contrast, NADA had no effect on the PPARγ activity in the PPARγ transactivation assay. The inhibitory effect of NADA on adipogenesis in hBM-MSCs was reversed not by capsazepine, a TRPV1 antagonist, but by rimonabant, a CB1 antagonist/inverse agonist. Rimonabant by itself promoted adipogenesis in hBM-MSCs, which may be interpreted as the result of the inverse agonism of the CB1 receptor. This result suggests that the constantly active CB1 receptor may contribute to suppress the adipocyte differentiation of hBM-MSCs. Therefore, the selective CB1 agonists that are unable to affect cellular PPARγ activity inhibit adipogenesis in hBM-MSCs. PMID:25995819

  7. Pharmacokinetics and pharmacodynamics of LCZ696, a novel dual-acting angiotensin receptor-neprilysin inhibitor (ARNi).

    PubMed

    Gu, Jessie; Noe, Adele; Chandra, Priya; Al-Fayoumi, Suliman; Ligueros-Saylan, Monica; Sarangapani, Ramesh; Maahs, Suzanne; Ksander, Gary; Rigel, Dean F; Jeng, Arco Y; Lin, Tsu-Han; Zheng, Weiyi; Dole, William P

    2010-04-01

    Angiotensin receptor blockade and neprilysin (NEP) inhibition together offer potential benefits for the treatment of hypertension and heart failure. LCZ696 is a novel single molecule comprising molecular moieties of valsartan and NEP inhibitor prodrug AHU377 (1:1 ratio). Oral administration of LCZ696 caused dose-dependent increases in atrial natriuretic peptide immunoreactivity (due to NEP inhibition) in Sprague-Dawley rats and provided sustained, dose-dependent blood pressure reductions in hypertensive double-transgenic rats. In healthy participants, a randomized, double-blind, placebo-controlled study (n = 80) of single-dose (200-1200 mg) and multiple-dose (50-900 mg once daily for 14 days) oral administration of LCZ696 showed that peak plasma concentrations were reached rapidly for valsartan (1.6-4.9 hours), AHU377 (0.5-1.1 hours), and its active moiety, LBQ657 (1.8-3.5 hours). LCZ696 treatment was associated with increases in plasma cGMP, renin concentration and activity, and angiotensin II, providing evidence for NEP inhibition and angiotensin receptor blockade. In a randomized, open-label crossover study in healthy participants (n = 56), oral LCZ696 400 mg and valsartan 320 mg were shown to provide similar exposure to valsartan (geometric mean ratio [90% confidence interval]: AUC(0-infinity) 0.90 [0.82-0.99]). LCZ696 was safe and well tolerated. These data support further clinical development of LCZ696, a novel, orally bioavailable, dual-acting angiotensin receptor-NEP inhibitor (ARNi) for hypertension and heart failure. PMID:19934029

  8. Neuromedin U directly stimulates growth of cultured rat calvarial osteoblast-like cells acting via the NMU receptor 2 isoform.

    PubMed

    Rucinski, Marcin; Ziolkowska, Agnieszka; Tyczewska, Marianna; Szyszka, Marta; Malendowicz, Ludwik K

    2008-09-01

    The neuromedin U (NMU) system is composed of NMU, neuromedin S (NMS) and their receptors NMUR1 and NMUR2. This system is involved in the regulation of energy homeostasis, neuroendocrine functions, immune response, circadian rhythm and spermatogenesis. The present study aimed to investigate the possible role of the NMU system in regulating functions of cultured rat calvarial osteoblast-like (ROB) cells. By using QPCR, high expression of NMU mRNA was found in freshly isolated ROB cells while after 7, 14, and 21 days of culture, expression of the studied gene was very low. In contrast, NMUR2 mRNA expression in freshly isolated ROB cells was negligible and very high in cultured cells. The highest NMUR2 mRNA expression was observed at day 7, and was followed by lower levels at days 14 and 21 of culture. Neither NMS nor NMUR1 mRNA was found in studied cells. Exposure of cultured ROB cells to NMU8 at concentrations 10(-6) to 10(-10) M had no effect on expression levels of the genes. During the entire culture period, NMU8 did not affect osteocalcin production, but stimulated proliferative activity of ROB cells at days 14 and 21 of culture. Thus, we demonstrated that cultured rat calvarial osteoblast-like cells are provided with NMUR2, the receptor isoform typical for the central nervous system. Acting via this receptor NMU8 stimulates proliferation of cultured cells and has no effect on their differentiated function (osteocalcin secretion). PMID:18698496

  9. 2-Guanidine-4-methylquinazoline acts as a novel competitive antagonist of A type γ-aminobutyric acid receptors.

    PubMed

    Xiao, Xian; Zhu, Michael X; Xu, Tian-Le

    2013-12-01

    The pentameric A type γ-aminobutyric acid receptors (GABAARs) are the major inhibitory neurotransmitter receptors in the nervous system and have long been considered as important pharmaceutical targets for the treatment of multiple neurological or psychological disorders. Here, we show that 2-guanidine-4-methylquinazoline (GMQ), a recently identified acid-sensing ion channel (ASIC) modulator, strongly and preferentially inhibits GABAAR among the major neurotransmitter-gated ion channels in cultured rat hippocampal neurons. GMQ inhibited GABA (1 μM)-induced currents in a competitive manner, with an IC50 (0.39±0.05 μM) comparable to that of bicuculline. Schild analysis revealed a slope of 1.04±0.06 for GMQ on α1β2 GABAARs expressed in HEK293T cells. Single-channel analysis showed that GMQ decreased open probability of GABAARs without affecting conductance. Moreover, GMQ inhibited GABAergic neurotransmission in hippocampal neurons, while having no significant effect on the basal field excitatory postsynaptic potentials (fEPSPs) and the intrinsic excitability of neurons. Using site-directed mutagenesis, we further demonstrated that mutations at Glu155 of β2 subunit and Phe64 of α1 subunit, both located inside the GABA binding pocket, profoundly decreased the sensitivity of the receptor to both GABA and GMQ. Interestingly, these mutations did not significantly affect the inhibition by amiloride, a diuretic structurally similar to GMQ and a known GABAAR inhibitor. We conclude that GMQ represents a novel chemical structure that acts, possibly, by competing with GABA binding to GABAARs. It is anticipated that GMQ and its analogs will facilitate the development of new chemical probes for GABAARs. PMID:23916476

  10. 2-[4-[(5,6-diphenylpyrazin-2-yl)(isopropyl)amino]butoxy]-N-(methylsulfonyl)acetamide (NS-304), an orally available and long-acting prostacyclin receptor agonist prodrug.

    PubMed

    Kuwano, Keiichi; Hashino, Asami; Asaki, Tetsuo; Hamamoto, Taisuke; Yamada, Tetsuhiro; Okubo, Kaori; Kuwabara, Kenji

    2007-09-01

    Prostacyclin (PGI(2)) and its analogs are useful for the treatment of various vascular disorders, but their half-lives are too short for widespread clinical application. To overcome this drawback, we have synthesized a novel diphenylpyrazine derivative, 2-[4-[(5,6-diphenylpyrazin-2-yl)(isopropyl)amino]butoxy]-N-(methylsulfonyl)acetamide (NS-304), a prodrug of the active form [4-[(5,6-diphenylpyrazin-2-yl)(isopropyl)amino]butoxy]acetic acid (MRE-269). NS-304 is an orally available and potent agonist for the PGI(2) receptor (IP receptor). The inhibition constant (K(i)) of MRE-269 for the human IP receptor was 20 nM; in contrast, the K(i) values for other prostanoid receptors were >2.6 microM. MRE-269 was therefore a highly selective agonist for the IP receptor. The plasma concentrations of MRE-269 remained near peak levels for more than 8 h after oral administration of NS-304 to rats and dogs, and NS-304 increased femoral skin blood flow in rats in a long-lasting manner without affecting the hemodynamics. These findings indicate that NS-304 acts as a long-acting IP receptor agonist in vivo. The continuous vasodilation evoked by NS-304 was not attenuated by repeated treatment, indicating that NS-304 is unlikely to cause severe desensitization of the IP receptor in rats. Moreover, a microdose pharmacokinetic study in which NS-304 was orally administered to healthy male volunteers showed conversion of NS-304 to MRE-269 and a long plasma elimination half-life for MRE-269 (7.9 h). In conclusion, NS-304 is an orally available and long-acting IP receptor agonist prodrug, and its active form, MRE-269, is highly selective for the IP receptor. Therefore, NS-304 is a promising drug candidate for various vascular diseases, especially pulmonary arterial hypertension and arteriosclerosis obliterans. PMID:17545310

  11. Looking for the role of cannabinoid receptor heteromers in striatal function.

    PubMed

    Ferré, Sergi; Goldberg, Steven R; Lluis, Carme; Franco, Rafael

    2009-01-01

    The introduction of two concepts, "local module" and "receptor heteromer", facilitates the understanding of the role of interactions between different neurotransmitters in the brain. In artificial cell systems, cannabinoid CB(1) receptors form receptor heteromers with dopamine D2, adenosine A2A and mu opioid receptors. There is indirect but compelling evidence for the existence of the same CB1 receptor heteromers in striatal local modules centered in the dendritic spines of striatal GABAergic efferent neurons, particularly at a postsynaptic location. Their analysis provides new clues for the role of endocannabinoids in striatal function, which cannot only be considered as retrograde signals that inhibit neurotransmitter release. Recent studies using a new method to detect heteromerization of more than two proteins, which consists of sequential BRET-FRET (SRET) analysis, has demonstrated that CB1, D2 and A2A receptors can form heterotrimers in transfected cells. It is likely that functional CB1-A2A-D2 receptor heteromers can be found where they are highly co-expressed, in the dendritic spines of GABAergic enkephalinergic neurons. The functional properties of these multiple receptor heteromers and their role in striatal function need to be determined. PMID:18691604

  12. Erythrocyte gangliosides act as receptors for Neisseria subflava: identification of the Sia-1 adhesin.

    PubMed Central

    Nyberg, G; Strömberg, N; Jonsson, A; Karlsson, K A; Normark, S

    1990-01-01

    Neisseria gonorrhoeae was recently shown to bind to a subset of lactose-containing glycolipids (N. Strömberg, C. Deal, G. Nyberg, S. Normark, M. So, and K.-A. Karlsson, Proc. Natl. Acad. Sci. USA 85:4902-4906, 1988). A number of commensal Neisseria strains were also shown to be lactose binders. In addition, Neisseria subflava bound to immobilized gangliosides, such as hematoside and sialosyl paragloboside, carrying the NeuAc alpha 2-3Gal beta 1-4Glc sequence. To a lesser extent, N. gonorrhoeae also bound to this receptor in vitro. In N. subflava GN01, this binding property mediated agglutination of human erythrocytes in a neuraminidase-sensitive fashion. Nitrosoguanidine-induced nonhemagglutinative mutants of N. subflava GN01 had lost the ability to bind hematoside and sialosylparagloboside but remained able to bind lactosylceramide and gangliotetraosylceramide. These mutants fell into three classes with respect to their outer membrane protein profiles in sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Class 1 mutants were identical to the parent strain save for the loss of a 27-kilodalton (kDa) protein. Class 2 mutants showed an outer membrane protein profile identical to that of the wild type, whereas mutants belonging to class 3 showed a number of changes, including the apparent absence of the 27-kDa protein. The 27-kDa protein from N. subflava GN01 was purified from the supernatant. A polyclonal antiserum to the purified Sia-1 protein as well as a Sia-1-specific monoclonal antibody inhibited hemagglutination by strain GN01. The purified Sia-1 protein in the presence of diluted anti-Sia-1 antiserum mediated a neuraminidase-sensitive hemagglutination. The purified Sia protein from a class 2 mutant was not able to hemagglutinate when cross-linked with antibodies, suggesting that it is a mutant form of Sia-1 affected in the receptor-binding site. Immunoelectron microscopy with a Sia-1-specific monoclonal antibody revealed that the adhesin was

  13. GABAA receptor-acting neurosteroids: A role in the development and regulation of the stress response

    PubMed Central

    Gunn, Benjamin G.; Cunningham, Linda; Mitchell, Scott G.; Swinny, Jerome D.; Lambert, Jeremy J.; Belelli, Delia

    2015-01-01

    Regulation of hypothalamic–pituitary–adrenocortical (HPA) axis activity by stress is a fundamental survival mechanism and HPA-dysfunction is implicated in psychiatric disorders. Adverse early life experiences, e.g. poor maternal care, negatively influence brain development and programs an abnormal stress response by encoding long-lasting molecular changes, which may extend to the next generation. How HPA-dysfunction leads to the development of affective disorders is complex, but may involve GABAA receptors (GABAARs), as they curtail stress-induced HPA axis activation. Of particular interest are endogenous neurosteroids that potently modulate the function of GABAARs and exhibit stress-protective properties. Importantly, neurosteroid levels rise rapidly during acute stress, are perturbed in chronic stress and are implicated in the behavioural changes associated with early-life adversity. We will appraise how GABAAR-active neurosteroids may impact on HPA axis development and the orchestration of the stress-evoked response. The significance of these actions will be discussed in the context of stress-associated mood disorders. PMID:24929099

  14. Ethanol acts directly on extrasynaptic subtypes of GABAA receptors to increase tonic inhibition

    PubMed Central

    Santhakumar, Vijayalakshmi; Wallner, Martin; Otis, Thomas S.

    2007-01-01

    Based on the similarity of ethanol intoxication to the behavioral effects of drugs known to target GABAA receptors (GABARs) it has been suspected for decades that ethanol facilitates the activity of GABA. Even so, it has been surprisingly difficult to identify molecular targets of ethanol. Research conducted over the past several years suggests that a subclass of GABARs (those containing δ subunits) responds in a relevant concentration range to ethanol. Although δ subunit-containing GABARs are not ubiquitously expressed at inhibitory synapses like their γ subunit-containing, synaptic counterparts, they are found in many neurons in extrasynaptic locations. Here they give rise to a tonic form of inhibition that can potently suppress neuronal excitability. Studies have shown that both recombinant and native δ subunit-containing GABARs: 1) are modulated by behaviorally-relevant (i.e. low millimolar) concentrations of ethanol, 2) directly bind ethanol over the same concentration range, 3) show altered function upon single amino substitutions linked to changes in behavioral responsiveness to ethanol, and 4) are a site of action of Ro15-4513, a competitive antagonist of ethanol binding and a drug which prevents many of the behavioral aspects of ethanol intoxication. Despite such comprehensive evidence, however, the field is not free from controversy. This review evaluates published data for and against a central role of δ subunit-containing GABARs in ethanol actions and suggests future directions that might help settle points of controversy. PMID:17591544

  15. Immunohistochemical distribution of the cannabinoid receptor 1 and fatty acid amide hydrolase in the dog claustrum.

    PubMed

    Pirone, Andrea; Cantile, Carlo; Miragliotta, Vincenzo; Lenzi, Carla; Giannessi, Elisabetta; Cozzi, Bruno

    2016-07-01

    Cannabinoid receptor 1 (CB1R) and fatty acid amide hydrolase (FAAH) are part of the endocannabinoid system (ECB) which exerts a neuromodulatory activity on different brain functions and plays a key role in neurogenesis. Although many studies have reported FAAH and CB1R expression in the brain of different animal species, to the best of our knowledge they have never been described in the canine claustrum. Claustrum samples, obtained from necropsy of four neurologically normal dogs, were formalin fixed for paraffin embedding. Sections were either stained for morpho-histological analysis or immunostained for CB1R and FAAH. Analysis of adjacent sections incubated with the two antisera showed a complementary labeling pattern in the claustrum, with CB1R antibody staining fibers while anti-FAAH antibody stained cell bodies and the proximal portion of dendrites; this particular anatomical relationship suggests a retrograde endocannabinoid action via CB1R. CB1R and FAAH complementary immunostaining and their cellular localization reported here provide the first anatomical evidence for existence of the ECB in the dog claustrum. PMID:26907575

  16. Type 1 cannabinoid receptor ligands display functional selectivity in a cell culture model of striatal medium spiny projection neurons.

    PubMed

    Laprairie, Robert B; Bagher, Amina M; Kelly, Melanie E M; Dupré, Denis J; Denovan-Wright, Eileen M

    2014-09-01

    Modulation of type 1 cannabinoid receptor (CB1) activity has been touted as a potential means of treating addiction, anxiety, depression, and neurodegeneration. Different agonists of CB1 are known to evoke varied responses in vivo. Functional selectivity is the ligand-specific activation of certain signal transduction pathways at a receptor that can signal through multiple pathways. To understand cannabinoid-specific functional selectivity, different groups have examined the effect of individual cannabinoids on various signaling pathways in heterologous expression systems. In the current study, we compared the functional selectivity of six cannabinoids, including two endocannabinoids (2-arachidonyl glycerol (2-AG) and anandamide (AEA)), two synthetic cannabinoids (WIN55,212-2 and CP55,940), and two phytocannabinoids (cannabidiol (CBD) and Δ(9)-tetrahydrocannabinol (THC)) on arrestin2-, Gα(i/o)-, Gβγ-, Gα(s)-, and Gα(q)-mediated intracellular signaling in the mouse STHdh(Q7/Q7) cell culture model of striatal medium spiny projection neurons that endogenously express CB1. In this system, 2-AG, THC, and CP55,940 were more potent mediators of arrestin2 recruitment than other cannabinoids tested. 2-AG, AEA, and WIN55,212-2, enhanced Gα(i/o) and Gβγ signaling, with 2-AG and AEA treatment leading to increased total CB1 levels. 2-AG, AEA, THC, and WIN55,212-2 also activated Gα(q)-dependent pathways. CP55,940 and CBD both signaled through Gα(s). CP55,940, but not CBD, activated downstream Gα(s) pathways via CB1 targets. THC and CP55,940 promoted CB1 internalization and decreased CB1 protein levels over an 18-h period. These data demonstrate that individual cannabinoids display functional selectivity at CB1 leading to activation of distinct signaling pathways. To effectively match cannabinoids with therapeutic goals, these compounds must be screened for their signaling bias. PMID:25037227

  17. Cyclic AMP Receptor Protein Acts as a Transcription Regulator in Response to Stresses in Deinococcus radiodurans

    PubMed Central

    Wang, Jiali; Liu, Chengzhi; Lu, Huizhi; Liu, Mengjia; Zhao, Ye; Tian, Bing; Wang, Liangyan; Hua, Yuejin

    2016-01-01

    The cyclic AMP receptor protein family of transcription factors regulates various metabolic pathways in bacteria, and also play roles in response to environmental changes. Here, we identify four homologs of the CRP family in Deinococcus radiodurans, one of which tolerates extremely high levels of oxidative stress and DNA-damaging reagents. Transcriptional levels of CRP were increased under hydrogen peroxide (H2O2) treatment during the stationary growth phase, indicating that CRPs function in response to oxidative stress. By constructing all CRP single knockout mutants, we found that the dr0997 mutant showed the lowest tolerance toward H2O2, ultraviolet radiation, ionizing radiation, and mitomycin C, while the phenotypes of the dr2362, dr0834, and dr1646 mutants showed slight or no significant differences from those of the wild-type strain. Taking advantage of the conservation of the CRP-binding site in many bacteria, we found that transcription of 18 genes, including genes encoding chromosome-partitioning protein (dr0998), Lon proteases (dr0349 and dr1974), NADH-quinone oxidoreductase (dr1506), thiosulfate sulfurtransferase (dr2531), the DNA repair protein UvsE (dr1819), PprA (dra0346), and RecN (dr1447), are directly regulated by DR0997. Quantitative real-time polymerase chain reaction (qRT-PCR) analyses showed that certain genes involved in anti-oxidative responses, DNA repair, and various cellular pathways are transcriptionally attenuated in the dr0997 mutant. Interestingly, DR0997 also regulate the transcriptional levels of all CRP genes in this bacterium. These data suggest that DR0997 contributes to the extreme stress resistance of D. radiodurans via its regulatory role in multiple cellular pathways, such as anti-oxidation and DNA repair pathways. PMID:27182600

  18. THE FUNGICIDE PROCYMIDONE ALTERS SEXUAL DIFFERENTIATION IN THE MALE RAT BY ACTING AS AN ANDROGEN-RECEPTOR ANTAGONIST IN VIVO AND IN VITRO

    EPA Science Inventory

    The fungicide procymidone alters sexual differentiation in the male rat by acting as an androgen-receptor antagonist in vivo and in vitro.

    Ostby J, Kelce WR, Lambright C, Wolf CJ, Mann P, Gray LE Jr.

    Endocrinology Branch, National Health and Environmental Effects Re...

  19. A runner's high depends on cannabinoid receptors in mice.

    PubMed

    Fuss, Johannes; Steinle, Jörg; Bindila, Laura; Auer, Matthias K; Kirchherr, Hartmut; Lutz, Beat; Gass, Peter

    2015-10-20

    Exercise is rewarding, and long-distance runners have described a runner's high as a sudden pleasant feeling of euphoria, anxiolysis, sedation, and analgesia. A popular belief has been that endogenous endorphins mediate these beneficial effects. However, running exercise increases blood levels of both β-endorphin (an opioid) and anandamide (an endocannabinoid). Using a combination of pharmacologic, molecular genetic, and behavioral studies in mice, we demonstrate that cannabinoid receptors mediate acute anxiolysis and analgesia after running. We show that anxiolysis depends on intact cannabinoid receptor 1 (CB1) receptors on forebrain GABAergic neurons and pain reduction on activation of peripheral CB1 and CB2 receptors. We thus demonstrate that the endocannabinoid system is crucial for two main aspects of a runner's high. Sedation, in contrast, was not influenced by cannabinoid or opioid receptor blockage, and euphoria cannot be studied in mouse models. PMID:26438875

  20. Structures of an ActRIIB:activin A complex reveal a novel binding mode for TGF-beta ligand:receptor interactions

    SciTech Connect

    Thompson, T.B.; Woodruff, T.K.; Jardetzky, T.S.

    2010-03-08

    The TGF-{beta} superfamily of ligands and receptors stimulate cellular events in diverse processes ranging from cell fate specification in development to immune suppression. Activins define a major subgroup of TGF-{beta} ligands that regulate cellular differentiation, proliferation, activation and apoptosis. Activins signal through complexes formed with type I and type II serine/threonine kinase receptors. We have solved the crystal structure of activin A bound to the extracellular domain of a type II receptor, ActRIIB, revealing the details of this interaction. ActRIIB binds to the outer edges of the activin finger regions, with the two receptors juxtaposed in close proximity, in a mode that differs from TGF-{beta}3 binding to type II receptors. The dimeric activin A structure differs from other known TGF-{beta} ligand structures, adopting a compact folded-back conformation. The crystal structure of the complex is consistent with recruitment of two type I receptors into a close packed arrangement at the cell surface and suggests that diversity in the conformational arrangements of TGF-{beta} ligand dimers could influence cellular signaling processes.

  1. CK2 acts as a potent negative regulator of receptor-mediated insulin release in vitro and in vivo.

    PubMed

    Rossi, Mario; Ruiz de Azua, Inigo; Barella, Luiz F; Sakamoto, Wataru; Zhu, Lu; Cui, Yinghong; Lu, Huiyan; Rebholz, Heike; Matschinsky, Franz M; Doliba, Nicolai M; Butcher, Adrian J; Tobin, Andrew B; Wess, Jürgen

    2015-12-01

    G protein-coupled receptors (GPCRs) regulate virtually all physiological functions including the release of insulin from pancreatic β-cells. β-Cell M3 muscarinic receptors (M3Rs) are known to play an essential role in facilitating insulin release and maintaining proper whole-body glucose homeostasis. As is the case with other GPCRs, M3R activity is regulated by phosphorylation by various kinases, including GPCR kinases and casein kinase 2 (CK2). At present, it remains unknown which of these various kinases are physiologically relevant for the regulation of β-cell activity. In the present study, we demonstrate that inhibition of CK2 in pancreatic β-cells, knockdown of CK2α expression, or genetic deletion of CK2α in β-cells of mutant mice selectively augmented M3R-stimulated insulin release in vitro and in vivo. In vitro studies showed that this effect was associated with an M3R-mediated increase in intracellular calcium levels. Treatment of mouse pancreatic islets with CX4945, a highly selective CK2 inhibitor, greatly reduced agonist-induced phosphorylation of β-cell M3Rs, indicative of CK2-mediated M3R phosphorylation. We also showed that inhibition of CK2 greatly enhanced M3R-stimulated insulin secretion in human islets. Finally, CX4945 treatment protected mice against diet-induced hyperglycemia and glucose intolerance in an M3R-dependent fashion. Our data demonstrate, for the first time to our knowledge, the physiological relevance of CK2 phosphorylation of a GPCR and suggest the novel concept that kinases acting on β-cell GPCRs may represent novel therapeutic targets. PMID:26598688

  2. RanBPM Protein Acts as a Negative Regulator of BLT2 Receptor to Attenuate BLT2-mediated Cell Motility*

    PubMed Central

    Wei, Jun-Dong; Kim, Joo-Young; Kim, Ae-Kyoung; Jang, Sung Key; Kim, Jae-Hong

    2013-01-01

    BLT2, a low affinity receptor for leukotriene B4 (LTB4), is a member of the G protein-coupled receptor family and is involved in many signal transduction pathways associated with various cellular phenotypes, including chemotactic motility. However, the regulatory mechanism for BLT2 has not yet been demonstrated. To understand the regulatory mechanism of BLT2, we screened and identified the proteins that bind to BLT2. Using a yeast two-hybrid assay with the BLT2 C-terminal domain as bait, we found that RanBPM, a previously proposed scaffold protein, interacts with BLT2. We demonstrated the specific interaction between BLT2 and RanBPM by GST pulldown assay and co-immunoprecipitation assay. To elucidate the biological function of the RanBPM-BLT2 interaction, we evaluated the effects of RanBPM overexpression or knockdown. We found that BLT2-mediated motility was severely attenuated by RanBPM overexpression and that knockdown of endogenous RanBPM by shRNA strongly promoted BLT2-mediated motility, suggesting a negative regulatory function of RanBPM toward BLT2. Furthermore, we observed that the addition of BLT2 ligands caused the dissociation of BLT2 and RanBPM, thus releasing the negative regulatory effect of RanBPM. Finally, we propose that Akt-induced BLT2 phosphorylation at residue Thr355, which occurs after the addition of BLT2 ligands, is a potential mechanism by which BLT2 dissociates from RanBPM, resulting in stimulation of BLT2 signaling. Taken together, our results suggest that RanBPM acts as a negative regulator of BLT2 signaling to attenuate BLT2-mediated cell motility. PMID:23928309

  3. Facilitation of fear extinction by novelty depends on dopamine acting on D1-subtype dopamine receptors in hippocampus

    PubMed Central

    Menezes, Jefferson; Alves, Niége; Borges, Sidnei; Roehrs, Rafael; de Carvalho Myskiw, Jociane; Furini, Cristiane Regina Guerino; Izquierdo, Ivan; Mello-Carpes, Pâmela B.

    2015-01-01

    Extinction is the learned inhibition of retrieval. Recently it was shown that a brief exposure to a novel environment enhances the extinction of contextual fear in rats, an effect explainable by a synaptic tagging-and-capture process. Here we examine whether this also happens with the extinction of another fear-motivated task, inhibitory avoidance (IA), and whether it depends on dopamine acting on D1 or D5 receptors. Rats were trained first in IA and then in extinction of this task. The retention of extinction was measured 24 h later. A 5-min exposure to a novel environment 30 min before extinction training enhanced its retention. Right after exposure to the novelty, animals were given bilateral intrahippocampal infusions of vehicle (VEH), of the protein synthesis inhibitor anisomycin, of the D1/D5 dopaminergic antagonist SCH23390, of the PKA inhibitor Rp-cAMP or of the PKC inhibitor Gö6976, and of the PKA stimulator Sp-cAMP or of the PKC stimulator PMA. The novelty increased hippocampal dopamine levels and facilitated the extinction, which was inhibited by intrahippocampal protein synthesis inhibitor anisomysin, D1/D5 dopaminerdic antagonist SCH23390, or PKA inhibitor Rp-cAMP and unaffected by PKC inhibitor Gö6976; additionally, the hippocampal infusion of PKA stimulator Sp-cAMP reverts the effect of D1/D5 dopaminergic antagonist SCH 23390, but the infusion of PKC stimulator PMA does not. The results attest to the generality of the novelty effect on fear extinction, suggest that it relies on synaptic tagging and capture, and show that it depends on hippocampal dopamine D1 but not D5 receptors. PMID:25775606

  4. Abscisic Acid Acts as a Blocker of the Bitter Taste G Protein-Coupled Receptor T2R4.

    PubMed

    Pydi, Sai P; Jaggupilli, Appalaraju; Nelson, Ken M; Abrams, Suzanne R; Bhullar, Rajinder P; Loewen, Michele C; Chelikani, Prashen

    2015-04-28

    Bitter taste receptors (T2Rs) belong to the G protein-coupled receptor superfamily. In humans, 25 T2Rs mediate bitter taste sensation. In addition to the oral cavity, T2Rs are expressed in many extraoral tissues, including the central nervous system, respiratory system, and reproductive system. To understand the mechanistic roles of the T2Rs in oral and extraoral tissues, novel blockers or antagonists are urgently needed. Recently, we elucidated the binding pocket of T2R4 for its agonist quinine, and an antagonist and inhibitory neurotransmitter, γ-aminobutyric acid. This structure-function information about T2R4 led us to screen the plant hormone abscisic acid (ABA), its precursor (xanthoxin), and catabolite phaseic acid for their ability to bind and activate or inhibit T2R4. Molecular docking studies followed by functional assays involving calcium imaging confirmed that ABA is an antagonist with an IC50 value of 34.4 ± 1.1 μM. However, ABA precursor xanthoxin acts as an agonist on T2R4. Interestingly, molecular model-guided site-directed mutagenesis suggests that the T2R4 residues involved in quinine binding are also predominantly involved in binding to the novel antagonist, ABA. The antagonist ability of ABA was tested using another T2R4 agonist, yohimbine. Our results suggest that ABA does not inhibit yohimbine-induced T2R4 activity. The discovery of natural bitter blockers has immense nutraceutical and physiological significance and will help in dissecting the T2R molecular pathways in various tissues. PMID:25844797

  5. A novel, long-acting glucagon-like peptide receptor-agonist: dulaglutide

    PubMed Central

    Gurung, Tara; Shyangdan, Deepson S; O’Hare, Joseph Paul; Waugh, Norman

    2015-01-01

    Background Dulaglutide is a new, long-acting glucagon-like peptide analogue in the treatment of type 2 diabetes. It is available in two doses, 0.75 and 1.5 mg, given by injection once weekly. This systematic review reports the effectiveness and safety of dulaglutide in type 2 diabetes in dual and triple therapy. Methods MEDLINE, MEDLINE In-Process and Other Non-Indexed Citations, EMBASE, and conference abstracts were searched from 2005 to August 2014, and updated in January 2015. Company websites and references of included studies were checked for potentially relevant studies. European Medicines Agency and US Food and Drug Administration websites were searched. Results Four trials were included. All were manufacturer-funded randomized controlled trials from the Assessment of Weekly Administration of Dulaglutide in Diabetes (AWARD) program. AWARD-1 compared dulaglutide 1.5 mg against exenatide 10 µg twice daily and placebo, AWARD-2 compared dulaglutide 0.75 and 1.5 mg against insulin glargine, AWARD-5 compared dulaglutide 0.75 and 1.5 mg against sitagliptin 100 mg and placebo, and AWARD-6 compared dulaglutide 1.5 mg against liraglutide 1.8 mg. The duration of follow-up in the trials ranged from 26 to 104 weeks. The primary outcome of all the included trials was change in HbA1c. At 26 weeks, greater HbA1c reductions were seen with dulaglutide than with twice daily exenatide (dulaglutide 1.5/0.75 mg: −1.5%/−1.3%; exe: 0.99%) and sitagliptin (1.5/0.75 mg −1.22%/−1.01%; sitagliptin: −0.6%). HbA1c change was greater with dulaglutide 1.5 mg (−1.08%) than with glargine (−0.63%), but not with dulaglutide 0.75 mg (−0.76%). Dulaglutide 1.5 mg was found to be noninferior to liraglutide 1.8 mg. More patients treated with dulaglutide achieved HbA1c targets of <7% and ≤6.5%. Reduction in weight was greater with dulaglutide than with sitagliptin and exenatide. Hypoglycemia was infrequent. The main adverse events were nausea, diarrhea, and vomiting. Conclusion

  6. PA1 protein, a new competitive decelerator acting at more than one step to impede glucocorticoid receptor-mediated transactivation.

    PubMed

    Zhang, Zhenhuan; Sun, Yunguang; Cho, Young-Wook; Chow, Carson C; Simons, S Stoney

    2013-01-01

    Numerous cofactors modulate the gene regulatory activity of glucocorticoid receptors (GRs) by affecting one or more of the following three major transcriptional properties: the maximal activity of agonists (A(max)), the potency of agonists (EC(50)), and the partial agonist activity of antisteroids (PAA). Here, we report that the recently described nuclear protein, Pax2 transactivation domain interaction protein (PTIP)-associated protein 1 (PA1), is a new inhibitor of GR transactivation. PA1 suppresses A(max), increases the EC(50), and reduces the PAA of an exogenous reporter gene in a manner that is independent of associated PTIP. PA1 is fully active with, and strongly binds to, the C-terminal half of GR. PA1 reverses the effects of the coactivator TIF2 on GR-mediated gene induction but is unable to augment the actions of the corepressor SMRT. Analysis of competition assays between PA1 and TIF2 with an exogenous reporter indicates that the kinetic definition of PA1 action is a competitive decelerator at two sites upstream from where TIF2 acts. With the endogenous genes IGFBP1 and IP6K3, PA1 also represses GR induction, increases the EC(50), and decreases the PAA. ChIP and re-ChIP experiments indicate that PA1 accomplishes this inhibition of the two genes via different mechanisms as follows: PA1 appears to increase GR dissociation from and reduce GR transactivation at the IGFBP1 promoter regions but blocks GR binding to the IP6K3 promoter. We conclude that PA1 is a new competitive decelerator of GR transactivation and can act at more than one molecularly defined step in a manner that depends upon the specific gene. PMID:23161582

  7. Anxiogenic effects of CGRP within the BNST may be mediated by CRF acting at BNST CRFR1 receptors

    PubMed Central

    Sink, KS; Chung, A; Ressler, KJ; Davis, M; Walker, DL

    2013-01-01

    Calcitonin gene-related peptide (CGRP) acting within the bed nucleus of the stria terminalis (BNST) increases anxiety as well as neural activation in anxiety-related structures, and mediates behavioral stress responses. Similar effects have been described following intra-ventricular as well as intra-BNST infusions of the stress-responsive neuropeptide, corticotropin releasing factor (CRF). Interestingly, CGRP-positive terminals within the lateral division of the BNST form perisomatic baskets around neurons that express CRF, suggesting that BNST CGRP could exert its anxiogenic effects by increasing release of CRF from these neurons. With this in mind, the present set of experiments was designed to examine the role of CRFR1 signaling in the anxiogenic effects of CGRP within the BNST and to determine whether CRF from BNST neurons contributes to these effects. Consistent with previous studies, we found that 400 ng CGRP infused bilaterally into the BNST increased the acoustic startle response and induced anxiety-like behavior in the elevated plus maze compared to vehicle. Both of these effects were attenuated by 10 mg/kg PO of the CRFR1 antagonist, GSK876008. GSK876008 alone did not affect startle. An intra-BNST infusion of the CRFR1 antagonist CP376395 (2 μg) also blocked increases in acoustic startle induced by intra-BNST infusion of CGRP, as did virally-mediated siRNA knockdown of CRF expression locally within the BNST. Together, these results suggest that the anxiogenic effects of intra-BNST CGRP may be mediated by CRF from BNST neurons acting at local CRFR1 receptors. PMID:23376701

  8. Cannabinoid 1 and transient receptor potential vanilloid 1 receptors discretely modulate evoked glutamate separately from spontaneous glutamate transmission.

    PubMed

    Fawley, Jessica A; Hofmann, Mackenzie E; Andresen, Michael C

    2014-06-11

    Action potentials trigger synaptic terminals to synchronously release vesicles, but some vesicles release spontaneously. G-protein-coupled receptors (GPCRs) can modulate both of these processes. At cranial primary afferent terminals, the GPCR cannabinoid 1 (CB1) is often coexpressed with transient receptor potential vanilloid 1 (TRPV1), a nonselective cation channel present on most afferents. Here we tested whether CB1 activation modulates synchronous, action potential-evoked (eEPSCs) and/or spontaneous (sEPSCs) EPSCs at solitary tract nucleus neurons. In rat horizontal brainstem slices, activation of solitary tract (ST) primary afferents generated ST-eEPSCs that were rapidly and reversibly inhibited from most afferents by activation of CB1 with arachidonyl-2'-chloroethylamide (ACEA) or WIN 55,212-2 [R-(+)-(2,3-dihydro-5-methyl-3-[(4-morpholinyl)methyl]pyrrolo[1,2,3-de]-1,4-benzoxazin-6-yl)(1-naphthalenyl) methanone monomethanesulfonate]. The CB1 antagonist/inverse agonist AM251 [N-1-(2,4-dichlorophenyl)-5-(4-iodophenyl)-4-methyl-N-1-piperidinyl-1H-pyrazole-3-carboxamide] blocked these responses. Despite profound depression of ST-eEPSCs during CB1 activation, sEPSCs in these same neurons were unaltered. Changes in temperature changed sEPSC frequency only from TRPV1(+) afferents (i.e., thermal sEPSC responses only occurred in TRPV1(+) afferents). CB1 activation failed to alter these thermal sEPSC responses. However, the endogenous arachidonate metabolite N-arachidonyldopamine (NADA) promiscuously activated both CB1 and TRPV1 receptors. NADA inhibited ST-eEPSCs while simultaneously increasing sEPSC frequency, and thermally triggered sEPSC increases in neurons with TRPV1(+) afferents. We found no evidence for CB1/TRPV1 interactions suggesting independent regulation of two separate vesicle pools. Together, these data demonstrate that action potential-evoked synchronous glutamate release is modulated separately from TRPV1-mediated glutamate release despite coexistence

  9. Somatostatin receptor expression, tumour response, and quality of life in patients with advanced hepatocellular carcinoma treated with long-acting octreotide.

    PubMed

    Cebon, J; Findlay, M; Hargreaves, C; Stockler, M; Thompson, P; Boyer, M; Roberts, S; Poon, A; Scott, A M; Kalff, V; Garas, G; Dowling, A; Crawford, D; Ring, J; Basser, R; Strickland, A; Macdonald, G; Green, M; Nowak, A; Dickman, B; Dhillon, H; Gebski, V

    2006-10-01

    Octreotide may extend survival in hepatocellular carcinoma (HCC). Forty-one per cent of HCCs have high-affinity somatostatin receptors. We aimed to determine the feasibility, safety, and activity of long-acting octreotide in advanced HCC; to identify the best method for assessing somatostatin receptor expression; to relate receptor expression to clinical outcomes; and to evaluate toxicity. Sixty-three patients with advanced HCC received intramuscular long-acting octreotide 20 mg monthly until progression or toxicity. Median age was 67 years (range 28-81 years), male 81%, Child-Pugh A 83%, and B 17%. The aetiologies of chronic liver disease were alcohol (22%), viral hepatitis (44%), and haemochromatosis (6%). Prior treatments for HCC included surgery (8%), chemotherapy (2%), local ablation (11%), and chemoembolisation (6%). One patient had an objective partial tumour response (2%, 95% CI 0-9%). Serum alpha-fetoprotein levels decreased more than 50% in four (6%). Median survival was 8 months. Thirty four of 61 patients (56%) had receptor expression detected by scintigraphy; no clear relationship with clinical outcomes was identified. There were few grade 3 or 4 toxicities: hyperglycaemia (8%), hypoglycaemia (2%), diarrhoea (5%), and anorexia (2%). Patients reported improvements in some symptoms, but no major changes in quality of life were detected. Long-acting octreotide is safe in advanced HCC. We found little evidence of anticancer activity. A definitive randomised trial would identify whether patients benefit from this treatment in other ways. PMID:16953241

  10. Cannabinoid receptor 1 induces a biphasic ERK activation via multiprotein signaling complex formation of proximal kinases PKCε, Src, and Fyn in primary neurons.

    PubMed

    Asimaki, Olga; Mangoura, Dimitra

    2011-02-01

    Cannabinoid receptors 1 (CB1Rs) play important roles in the regulation of dendritic branching, synapse density, and synaptic transmission through multiple G-protein-coupled signaling systems, including the activation of the extracellular signal-regulated kinases ERK1/2. The proximal signaling interactions leading to ERK1/2 activation by CB1R in CNS remain, however, unclear. Here, we present evidence that the CB1R agonist methanandamide induced a biphasic and sustained activation of ERK1/2 in primary neurons derived from E7 telencephalon. We show that E7 neurons natively express high levels of CB1R message and protein, the majority of which associates with PKCɛ at basal conditions. We now demonstrate that the first peak of ERK activation by CB1R was mediated by the sequential activation of G(q), PLC, and PKCɛ, selectively, and that the CB1R-activated PKCɛ acutely formed transient signaling modules containing activated Src and Fyn. A second pool of CB1Rs, coupled to PTX-sensitive activation of G(i/o), utilized as effectors additional Src and Fyn molecules to generate a second, additional wave of ERK activation at 15 min. Concurrently to these intermolecular signaling interactions, cytoskeleton-associated proteins MARCKS and p120catenin were drastically modified by phosphorylation of PKC and Src, respectively. These receptor-proximal signaling events correlated well with induction of neuritic outgrowth in the long term. Our data provide evidence for multiprotein signaling complex formation in the coupling of CB1R to activation of ERK in CNS neurons, and may elucidate several of the less understood acute effects of cannabinoid drugs. PMID:21074588

  11. Cannabinoid receptor 1 ligands revisited: Pharmacological assessment in the ACTOne system.

    PubMed

    Presley, Chaela S; Abidi, Ammaar H; Moore, Bob M

    2016-04-01

    In vitro cannabinoid pharmacology has evolved over time from simple receptor binding to include [(35)S]GTPγ, β-arrestin, and cAMP assays. Each assay has benefits and drawbacks; however, no single functional system has been used for high-throughput evaluation of compounds from binding to pharmacological functionality and antagonist assessment in a well-characterized human cell line. In this study, we evaluated and validated one system-ACTOne human embryonic kidney cells transfected with a cyclic nucleotide gated channel and cannabinoid receptor 1 (CB1)-and compared human CB1 affinity, functional, and antagonistic effects on cAMP with previously published results. The study was conducted on a diverse group of CB1 ligands, including endocannabinoids and related compounds, 2-AG, AEA, MAEA, and ACEA, the phytocannabinoid Δ(9) THC, and synthetic cannabinoids CP 55,940, WIN 55,212-2, SR 141716A, CP 945,598, and WIN 55,212-3. Our results were compared with literature values where human CB1 was used for affinity determination and cAMP was used as a functional readout. Here we report the first detailed evaluation of the ACTOne assay for the pharmacological evaluation of CB1 ligands. The results from the study reveal some interesting deviations from previously reported functional activities of the aforementioned ligands. PMID:26772161

  12. Blockade of cannabinoid 1 receptor improves GLP-1R mediated insulin secretion in mice.

    PubMed

    González-Mariscal, Isabel; Krzysik-Walker, Susan M; Kim, Wook; Rouse, Michael; Egan, Josephine M

    2016-03-01

    The cannabinoid 1 receptor (CB1) is an important regulator of energy metabolism. Reports of in vivo and in vitro studies give conflicting results regarding its role in insulin secretion, possibly due to circulatory factors, such as incretins. We hypothesized that this receptor may be a regulator of the entero-insular axis. We found that despite lower food consumption and lower body weight postprandial GLP-1 plasma concentrations were increased in CB1(-/-) mice compared to CB1(+/+) mice administered a standard diet or high fat/sugar diet. Upon exogenous GLP-1 treatment, CB1(-/-) mice had increased glucose-stimulated insulin secretion. In mouse insulinoma cells, cannabinoids reduced GLP-1R-mediated intracellular cAMP accumulation and subsequent insulin secretion. Importantly, such effects were also evident in human islets, and were prevented by pharmacologic blockade of CB1. Collectively, these findings suggest a novel mechanism in which endocannabinoids are negative modulators of incretin-mediated insulin secretion. PMID:26724516

  13. Genetic deletion of monoacylglycerol lipase leads to impaired cannabinoid receptor CB₁R signaling and anxiety-like behavior.

    PubMed

    Imperatore, Roberta; Morello, Giovanna; Luongo, Livio; Taschler, Ulrike; Romano, Rosaria; De Gregorio, Danilo; Belardo, Carmela; Maione, Sabatino; Di Marzo, Vincenzo; Cristino, Luigia

    2015-11-01

    Endocannabinoids (eCB) are key regulators of excitatory/inhibitory neurotransmission at cannabinoid-1-receptor (CB1 R)-expressing axon terminals. The most abundant eCB in the brain, that is 2-arachidonoylglycerol (2-AG), is hydrolyzed by the enzyme monoacylglycerol lipase (MAGL), whose chronic inhibition in the brain was reported to cause CB1 R desensitization. We employed the MAGL knock-out mouse (MAGL-/-), a genetic model of congenital and sustained elevation of 2-AG levels in the brain, to provide morphological and biochemical evidence for β-arrestin2-mediated CB1 R desensitization in brain regions involved in the control of emotional states, that is, the prefrontal cortex (PFC), amygdala, hippocampus and cerebellar cortex. We found a widespread CB1 R/β-arrestin2 co-expression in the mPFC, amygdala and hippocampus accompanied by impairment of extracellular signal-regulated kinase signaling and elevation of vesicular glutamate transporter (VGluT1) at CB1 R-positive excitatory terminals in the mPFC, or vesicular GABA transporter (VGAT) at CB1 R-positive inhibitory terminals in the amygdala and hippocampus. The impairment of CB1 R signaling in MAGL-/- mice was also accompanied by enhanced excitatory drive in the basolateral amygdala (BLA)-mPFC circuit, with subsequent elevation of glutamate release to the mPFC and anxiety-like and obsessive-compulsive behaviors, as assessed by the light/dark box and marble burying tests, respectively. Collectively, these data provide evidence for a β-arrestin2-mediated desensitization of CB1 R in MAGL-/- mice, with impact on the synaptic plasticity of brain circuits involved in emotional functions. In this study, the authors provide evidence that congenitally enhanced endocannabinoid levels in the neuronal circuits underlying anxiety-like behavioral states (mainly medial prefrontal cortex, amygdala and hippocampus) lead to CB1R desenistization and anxiety and depression. MAGL-/- mice, a model of congenital overactivity of the e

  14. The effects of an ActRIIb receptor Fc fusion protein ligand trap in juvenile simian immunodeficiency virus-infected rhesus macaques

    PubMed Central

    O’Connell, Karyn E.; Guo, Wen; Serra, Carlo; Beck, Matthew; Wachtman, Lynn; Hoggatt, Amber; Xia, Dongling; Pearson, Chris; Knight, Heather; O’Connell, Micheal; Miller, Andrew D.; Westmoreland, Susan V.; Bhasin, Shalender

    2015-01-01

    There are no approved therapies for muscle wasting in children infected with human immunodeficiency virus (HIV), which portends poor disease outcomes. To determine whether a soluble ActRIIb receptor Fc fusion protein (ActRIIB.Fc), a ligand trap for TGF-β/activin family members including myostatin, can prevent or restore loss of lean body mass and body weight in simian immunodeficiency virus (SIV)-infected juvenile rhesus macaques (Macaca mulatta). Fourteen pair-housed, juvenile male rhesus macaques were inoculated with SIVmac239 and, 4 wk postinoculation (WPI) treated with intramuscular injections of 10 mg ⋅ kg−1 ⋅ wk−1 ActRIIB.Fc or saline placebo. Body weight, lean body mass, SIV titers, and somatometric measurements were assessed monthly for 16 wk. Age-matched SIV-infected rhesus macaques were injected with saline. Intervention groups did not differ at baseline. Gains in lean mass were significantly greater in the ActRIIB.Fc group than in the placebo group (P < 0.001). Administration of ActRIIB.Fc was associated with greater gains in body weight (P = 0.01) and upper arm circumference than placebo. Serum CD4+ T-lymphocyte counts and SIV copy numbers did not differ between groups. Administration of ActRIIB.Fc was associated with higher muscle expression of myostatin than placebo. ActRIIB.Fc effectively blocked and reversed loss of body weight, lean mass, and fat mass in juvenile SIV-infected rhesus macaques.—O’Connell, K. E., Guo, W., Serra, C., Beck, M., Wachtman, L., Hoggatt, A., Xia, D., Pearson, C., Knight, H., O’Connell, M., Miller, A. D., Westmoreland, S. V., Bhasin, S. The effects of an ActRIIb receptor Fc fusion protein ligand trap in juvenile simian immunodeficiency virus-infected rhesus macaques. PMID:25466897

  15. Nucleoside-derived antagonists to A3 adenosine receptors lower mouse intraocular pressure and act across species.

    PubMed

    Wang, Zhao; Do, Chi Wai; Avila, Marcel Y; Peterson-Yantorno, Kim; Stone, Richard A; Gao, Zhan-Guo; Joshi, Bhalchandra; Besada, Pedro; Jeong, Lak Shin; Jacobson, Kenneth A; Civan, Mortimer M

    2010-01-01

    The purpose of the study was to determine whether novel, selective antagonists of human A3 adenosine receptors (ARs) derived from the A3-selective agonist Cl-IB-MECA lower intraocular pressure (IOP) and act across species. IOP was measured invasively with a micropipette by the Servo-Null Micropipette System (SNMS) and by non-invasive pneumotonometry during topical drug application. Antagonist efficacy was also assayed by measuring inhibition of adenosine-triggered shrinkage of native bovine nonpigmented ciliary epithelial (NPE) cells. Five agonist-based A3AR antagonists lowered mouse IOP measured with SNMS tonometry by 3-5 mm Hg within minutes of topical application. Of the five agonist derivatives, LJ 1251 was the only antagonist to lower IOP measured by pneumotonometry. No effect was detected pneumotonometrically over 30 min following application of the other four compounds, consonant with slower, smaller responses previously measured non-invasively following topical application of A3AR agonists and the dihydropyridine A3AR antagonist MRS 1191. Latanoprost similarly lowered SNMS-measured IOP, but not IOP measured non-invasively over 30 min. Like MRS 1191, agonist-based A3AR antagonists applied to native bovine NPE cells inhibited adenosine-triggered shrinkage. In summary, the results indicate that antagonists of human A3ARs derived from the potent, selective A3 agonist Cl-IB-MECA display efficacy in mouse and bovine cells, as well. When intraocular delivery was enhanced by measuring mouse IOP invasively, five derivatives of the A3AR agonist Cl-IB-MECA lowered IOP but only one rapidly reduced IOP measured non-invasively after topical application. We conclude that derivatives of the highly-selective A3AR agonist Cl-IB-MECA can reduce IOP upon reaching their intraocular target, and that nucleoside-based derivatives are promising A3 antagonists for study in multiple animal models. PMID:19878673

  16. Nucleoside-Derived Antagonists to A3 Adenosine Receptors Lower Mouse Intraocular Pressure and Act across Species

    PubMed Central

    Wang, Zhao; Do, Chi Wai; Avila, Marcel Y.; Peterson-Yantorno, Kim; Stone, Richard A.; Gao, Zhan-Guo; Joshi, Bhalchandra; Besada, Pedro; Jeong, Lak Shin; Jacobson, Kenneth A.; Civan, Mortimer M.

    2009-01-01

    The purpose of the study was to determine whether novel, selective antagonists of human A3 adenosine receptors (ARs) derived from the A3-selective agonist Cl-IB-MECA lower intraocular pressure (IOP) and act across species. IOP was measured invasively with a micropipette by the Servo-Null Micropipette System (SNMS) and by non-invasive pneumotonometry during topical drug application. Antagonist efficacy was also assayed by measuring inhibition of adenosine-triggered shrinkage of native bovine nonpigmented ciliary epithelial (NPE) cells. Five agonist-based A3AR antagonists lowered mouse IOP measured with SNMS tonometry by 3–5 mm Hg within minutes of topical application. Of the five agonist derivatives, LJ 1251 was the only antagonist to lower IOP measured by pneumotonometry. No effect was detected pneumotonometrically over 30 min following application of the other four compounds, consonant with slower, smaller responses previously measured non-invasively following topical application of A3AR agonists and the dihydropyridine A3AR antagonist MRS 1191. Latanoprost similarly lowered SNMS-measured IOP, but not IOP measured non-invasively over 30 minutes. Like MRS 1191, agonist-based A3AR antagonists applied to native bovine NPE cells inhibited adenosine-triggered shrinkage. In summary, the results indicate that antagonists of human A3ARs derived from the potent, selective A3 agonist Cl-IB-MECA display efficacy in mouse and bovine cells, as well. When intraocular delivery was enhanced by measuring mouse IOP invasively, five derivatives of the A3AR agonist Cl-IB-MECA lowered IOP but only one rapidly reduced IOP measured non-invasively after topical application. We conclude that derivatives of the highly selective A3AR agonist Cl-IB-MECA can reduce IOP upon reaching their intraocular target, and that nucleoside-based derivatives are promising A3 antagonists for study in multiple animal models. PMID:19878673

  17. (+)-Cannabidiol analogues which bind cannabinoid receptors but exert peripheral activity only.

    PubMed

    Fride, Ester; Feigin, Cfir; Ponde, Datta E; Breuer, Aviva; Hanus, Lumír; Arshavsky, Nina; Mechoulam, Raphael

    2004-12-15

    Delta9-Tetrahydrocannabinol (Delta9-THC) and (-)-cannabidiol are major constituents of the Cannabis sativa plant with different pharmacological profiles: (-)-Delta9-tetrahydrocannabinol, but not (-)-cannabidiol, activates cannabinoid CB1 and CB2 receptors and induces psychoactive and peripheral effects. We have tested a series of (+)-cannabidiol derivatives, namely, (+)-cannabidiol-DMH (DMH-1,1-dimethylheptyl-), (+)-7-OH-cannabidiol-DMH, (+)-7-OH- cannabidiol, (+)-7-COOH- cannabidiol and (+)-7-COOH-cannabidiol-DMH, for central and peripheral (intestinal, antiinflammatory and peripheral pain) effects in mice. Although all (+)-cannabidiols bind to cannabinoid CB1 and CB2 receptors, only (+)-7-OH-cannabidiol-DMH was centrally active, while all (+)-cannabidiol analogues completely arrested defecation. The effects of (+)-cannabidiol-DMH and (+)-7-OH-cannabidiol-DMH were partially antagonized by the cannabinoid CB1 receptor antagonist N-(piperidiny-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (SR141716), but not by the cannabinoid CB2 receptor antagonist N-[-(1S)-endo-1,3,3-trimethil bicyclo [2.2.1] heptan-2-yl-5-(4-chloro-3-methylphenyl)-1-(4-methylbenzyl)-pyrazole-3-carboxamide (SR144528), and had no effect on CB1(-/-) receptor knockout mice. (+)-Cannabidiol-DMH inhibited the peripheral pain response and arachidonic-acid-induced inflammation of the ear. We conclude that centrally inactive (+)-cannabidiol analogues should be further developed as antidiarrheal, antiinflammatory and analgesic drugs for gastrointestinal and other peripheral conditions. PMID:15588739

  18. The effects of an ActRIIb receptor Fc fusion protein ligand trap in juvenile simian immunodeficiency virus-infected rhesus macaques.

    PubMed

    O'Connell, Karyn E; Guo, Wen; Serra, Carlo; Beck, Matthew; Wachtman, Lynn; Hoggatt, Amber; Xia, Dongling; Pearson, Chris; Knight, Heather; O'Connell, Micheal; Miller, Andrew D; Westmoreland, Susan V; Bhasin, Shalender

    2015-04-01

    There are no approved therapies for muscle wasting in children infected with human immunodeficiency virus (HIV), which portends poor disease outcomes. To determine whether a soluble ActRIIb receptor Fc fusion protein (ActRIIB.Fc), a ligand trap for TGF-β/activin family members including myostatin, can prevent or restore loss of lean body mass and body weight in simian immunodeficiency virus (SIV)-infected juvenile rhesus macaques (Macaca mulatta). Fourteen pair-housed, juvenile male rhesus macaques were inoculated with SIVmac239 and, 4 wk postinoculation (WPI) treated with intramuscular injections of 10 mg ⋅ kg(-1) ⋅ wk(-1) ActRIIB.Fc or saline placebo. Body weight, lean body mass, SIV titers, and somatometric measurements were assessed monthly for 16 wk. Age-matched SIV-infected rhesus macaques were injected with saline. Intervention groups did not differ at baseline. Gains in lean mass were significantly greater in the ActRIIB.Fc group than in the placebo group (P < 0.001). Administration of ActRIIB.Fc was associated with greater gains in body weight (P = 0.01) and upper arm circumference than placebo. Serum CD4(+) T-lymphocyte counts and SIV copy numbers did not differ between groups. Administration of ActRIIB.Fc was associated with higher muscle expression of myostatin than placebo. ActRIIB.Fc effectively blocked and reversed loss of body weight, lean mass, and fat mass in juvenile SIV-infected rhesus macaques. PMID:25466897

  19. Levodopa acts centrally to induce an antinociceptive action against colonic distension through activation of D2 dopamine receptors and the orexinergic system in the brain in conscious rats.

    PubMed

    Okumura, Toshikatsu; Nozu, Tsukasa; Kumei, Shima; Takakusaki, Kaoru; Miyagishi, Saori; Ohhira, Masumi

    2016-02-01

    Levodopa possesses antinociceptive actions against several somatic pain conditions. However, we do not know at this moment whether levodopa is also effective to visceral pain. The present study was therefore performed to clarify whether levodopa is effective to visceral pain and its mechanisms. Visceral sensation was evaluated by colonic distension-induced abdominal withdrawal reflex (AWR) in conscious rats. Subcutaneously (80 mg/rat) or intracisternally (2.5 μg/rat) administered levodopa significantly increased the threshold of colonic distension-induced AWR in conscious rats. The dose difference to induce the antinociceptive action suggests levodopa acts centrally to exert its antinociceptive action against colonic distension. While neither sulpiride, a D2 dopamine receptor antagonist, nor SCH23390, a D1 dopamine receptor antagonist by itself changed the threshold of colonic distension-induced AWR, the intracisternally injected levodopa-induced antinociceptive action was significantly blocked by pretreatment with subcutaneously administered sulpiride but not SCH23390. Treatment with intracisternal SB334867, an orexin 1 receptor antagonist, significantly blocked the subcutaneously administered levodopa-induced antinociceptive action. These results suggest that levodopa acts centrally to induce an antinociceptive action against colonic distension through activation of D2 dopamine receptors and the orexinergic system in the brain. PMID:26883457

  20. Type 1 cannabinoid receptor modulates water deprivation-induced homeostatic responses.

    PubMed

    Ruginsk, Silvia G; Vechiato, Fernanda M V; Uchoa, Ernane T; Elias, Lucila L K; Antunes-Rodrigues, Jose

    2015-12-01

    The present study investigated the type 1 cannabinoid receptor (CB1R) as a potential candidate to mediate the homeostatic responses triggered by 24 h of water deprivation, which constitutes primarily a hydroelectrolytic challenge and also significantly impacts energy homeostasis. The present results demonstrated for the first time that CB1R mRNA expression is increased in the hypothalamus of water-deprived (WD) rats. Furthermore, the administration of ACEA, a CB1R selective agonist, potentiated WD-induced dipsogenic effect, whereas AM251, a CB1R antagonist, attenuated not only water but also salt intake in response to WD. In parallel with the modulation of thirst and salt appetite, we confirmed that CB1Rs are essential for the development of appropriated neuroendocrine responses. Although the administration of ACEA or AM251 did not produce any effects on WD-induced arginine vasopressin (AVP) secretion, oxytocin (OXT) plasma concentrations were significantly decreased in WD rats treated with ACEA. At the genomic level, ACEA significantly decreased AVP and OXT mRNA expression in the hypothalamus of WD rats, whereas AM251 potentiated both basal and WD-induced stimulatory effects on the transcription of AVP and OXT genes. In addition, we showed that water deprivation alone upregulated proopiomelanocortin, Agouti-related peptide, melanin-concentrating hormone, and orexin A mRNA levels in the hypothalamus, and that CB1Rs regulate main central peptidergic pathways controlling food intake, being that most of these effects were also significantly influenced by the hydration status. In conclusion, the present study demonstrated that CB1Rs participate in the homeostatic responses regulating fluid balance and energy homeostasis during water deprivation. PMID:26468265

  1. Cannabinoid agonists stimulate [3H]GABA release in the globus pallidus of the rat when G(i) protein-receptor coupling is restricted: role of dopamine D2 receptors.

    PubMed

    Gonzalez, Brenda; Paz, Francisco; Florán, Leonor; Aceves, Jorge; Erlij, David; Florán, Benjamín

    2009-03-01

    The motor effects of cannabinoids in the globus pallidus appear to be caused by increases in interstitial GABA. To elucidate the mechanism of this response, we investigated the effect of the selective cannabinoid type 1 receptor (CB1) cannabinoid agonist arachidonyl-2-chloroethylamide (ACEA) on [(3)H]GABA release in slices of the rat globus pallidus. ACEA had two effects: concentrations between 10(-8) and 10(-6) M stimulated release, whereas higher concentrations (IC(50) approximately 10(-6) M) inhibited it. Another cannabinoid agonist, WIN-55,212-2, also had bimodal effects on release. Studies of cAMP production indicate that under conditions of low G(i/o), availability the coupling of CB1 receptors with G(i/o) proteins can be changed into CB1:G(s/olf) coupling; therefore, we determined the effects of conditions that limit G(i/o) availability on [(3)H]GABA release. Blockers of G(i/o) protein interactions, pertussis toxin and N-ethylmaleimide, transformed the inhibitory effects of ACEA on GABA release into stimulation. It also has been suggested that stimulation of D2 receptors can reduce G(i/o) availability. Blocking D2 receptors with sulpiride [(S)-5-aminosulfonyl-N-[(1-ethyl-2-pyrrolidinyl)methyl]-2-methoxybenzamidersqb] or depleting dopamine with reserpine inhibited the ACEA-induced stimulation of release. Thus, the D2 dependence of stimulation is consistent with the proposal that D2 receptors reduce G(i/o) proteins available for binding to the CB1 receptor. In summary, CB1 receptor activation has dual effects on GABA release in the globus pallidus. Low concentrations stimulate release through a process that depends on activation of dopamine D2 receptors that may limit G(i/o) protein availability. Higher concentrations of cannabinoid inhibit GABA release through mechanisms that are independent of D2 receptor activation. PMID:19106171

  2. Sulfation of the FLAG epitope is affected by co-expression of G protein-coupled receptors in a mammalian cell model.

    PubMed

    Hunter, Morag Rose; Grimsey, Natasha Lillia; Glass, Michelle

    2016-01-01

    G protein-coupled receptors (GPCRs) are important therapeutic targets and therefore extensively studied. Like most transmembrane proteins, there has been considerable difficulty in developing reliable specific antibodies for them. To overcome this, epitope tags are often used to facilitate antibody recognition in studies on fundamental receptor signalling and trafficking. In our study of cannabinoid CB1/dopamine D2 interactions we sought to generate HEK293 cells expressing FLAG-tagged D2 for use in antibody-based assays of GPCR localisation and trafficking activity, however observed that stable FLAG-hD2 expression was particularly challenging to maintain. In contrast, when expressed in cell lines expressing hCB1 robust and stable FLAG-hD2 expression was observed. We hypothesised that co-expression of CB1 might stabilise surface FLAG-hD2 expression, and therefore investigated this further. Here, we describe the observation that co-expression of either cannabinoid CB1 or CB2 receptors in HEK293 decreases the sulfation of a FLAG epitope appended at the N-terminus of the dopamine D2 receptor. Sulfation alters epitope recognition by some anti-FLAG antibodies, leading to the detection of fewer receptors, even though expression is maintained. This demonstrates that cannabinoid receptor expression modifies posttranslational processing of the FLAG-hD2 receptor, and importantly, has wider implications for the utilisation and interpretation of receptor studies involving epitope tags. PMID:27273047

  3. Sulfation of the FLAG epitope is affected by co-expression of G protein-coupled receptors in a mammalian cell model

    PubMed Central

    Hunter, Morag Rose; Grimsey, Natasha Lillia; Glass, Michelle

    2016-01-01

    G protein-coupled receptors (GPCRs) are important therapeutic targets and therefore extensively studied. Like most transmembrane proteins, there has been considerable difficulty in developing reliable specific antibodies for them. To overcome this, epitope tags are often used to facilitate antibody recognition in studies on fundamental receptor signalling and trafficking. In our study of cannabinoid CB1/dopamine D2 interactions we sought to generate HEK293 cells expressing FLAG-tagged D2 for use in antibody-based assays of GPCR localisation and trafficking activity, however observed that stable FLAG-hD2 expression was particularly challenging to maintain. In contrast, when expressed in cell lines expressing hCB1 robust and stable FLAG-hD2 expression was observed. We hypothesised that co-expression of CB1 might stabilise surface FLAG-hD2 expression, and therefore investigated this further. Here, we describe the observation that co-expression of either cannabinoid CB1 or CB2 receptors in HEK293 decreases the sulfation of a FLAG epitope appended at the N-terminus of the dopamine D2 receptor. Sulfation alters epitope recognition by some anti-FLAG antibodies, leading to the detection of fewer receptors, even though expression is maintained. This demonstrates that cannabinoid receptor expression modifies posttranslational processing of the FLAG-hD2 receptor, and importantly, has wider implications for the utilisation and interpretation of receptor studies involving epitope tags. PMID:27273047

  4. Synthesis and in vitro autoradiographic evaluation of a novel high-affinity radioiodinated ligand for imaging brain cannabinoid subtype-1 receptors.

    PubMed

    Donohue, Sean R; Varnäs, Katarina; Jia, Zhisheng; Gulyás, Balázs; Pike, Victor W; Halldin, Christer

    2009-11-01

    There is strong interest to study the involvement of brain cannabinoid subtype-1 (CB1) receptors in neuropsychiatric disorders with single photon emission computed tomography (SPECT) and a suitable radioligand. Here we report the synthesis of a novel high-affinity radioiodinated CB1 receptor ligand ([125I]8, [125I]1-(2-iodophenyl)-4-cyano-5-(4-methoxyphenyl)-N-(piperidin-1-yl)-1H-pyrazole-3-carboxylate, [125I]SD7015). By autoradiography in vitro, [125I]8 showed selective binding to CB1 receptors on human brain postmortem cryosections and now merits labeling with iodine-123 for further evaluation as a SPECT radioligand in non-human primate. PMID:19767206

  5. Meta-diamide insecticides acting on distinct sites of RDL GABA receptor from those for conventional noncompetitive antagonists.

    PubMed

    Nakao, Toshifumi; Banba, Shinich; Nomura, Michikazu; Hirase, Kangetsu

    2013-04-01

    The RDL GABA receptor is an attractive target of insecticides. Here we demonstrate that meta-diamides [3-benzamido-N-(4-(perfluoropropan-2-yl)phenyl)benzamides] are a distinct class of RDL GABA receptor antagonists showing high insecticidal activity against Spodoptera litura. We also suggest that the mode of action of the meta-diamides is distinct from that of conventional noncompetitive antagonists (NCAs), such as fipronil, picrotoxin, lindane, dieldrin, and α-endosulfan. Using a membrane potential assay, we examined the effects of the meta-diamide 3-benzamido-N-(2-bromo-4-(perfluoropropan-2-yl)-6-(trifluoromethyl)phenyl)-2-fluorobenzamide (meta-diamide 7) and NCAs on mutant Drosophila RDL GABA receptors expressed in Drosophila Mel-2 cells. NCAs had little or no inhibitory activity against at least one of the three mutant receptors (A2'S, A2'G, and A2'N), which were reported to confer resistance to NCAs. In contrast, meta-diamide 7 inhibited all three A2' mutant receptors, at levels comparable to its activity with the wild-type receptor. Furthermore, the A2'S·T6'V mutation almost abolished the inhibitory effects of all NCAs. However, meta-diamide 7 inhibited the A2'S・T6'S mutant receptor at the same level as its activity with the wild-type receptor. In contrast, a G336M mutation in the third transmembrane domain of the RDL GABA receptor abolished the inhibitory activities of meta-diamide 7, although the G336M mutation had little effect on the inhibitory activities of conventional NCAs. Molecular modeling studies also suggested that the binding site of meta-diamides was different from those of NCAs. Meta-diamide insecticides are expected to be prominent insecticides effective against A2' mutant RDL GABA receptors with a different mode of action. PMID:23416568

  6. [18F]MK-9470, a positron emission tomography (PET) tracer for in vivo human PET brain imaging of the cannabinoid-1 receptor

    PubMed Central

    Burns, H. Donald; Van Laere, Koen; Sanabria-Bohórquez, Sandra; Hamill, Terence G.; Bormans, Guy; Eng, Wai-si; Gibson, Ray; Ryan, Christine; Connolly, Brett; Patel, Shil; Krause, Stephen; Vanko, Amy; Van Hecken, Anne; Dupont, Patrick; De Lepeleire, Inge; Rothenberg, Paul; Stoch, S. Aubrey; Cote, Josee; Hagmann, William K.; Jewell, James P.; Lin, Linus S.; Liu, Ping; Goulet, Mark T.; Gottesdiener, Keith; Wagner, John A.; de Hoon, Jan; Mortelmans, Luc; Fong, Tung M.; Hargreaves, Richard J.

    2007-01-01

    [18F]MK-9470 is a selective, high-affinity, inverse agonist (human IC50, 0.7 nM) for the cannabinoid CB1 receptor (CB1R) that has been developed for use in human brain imaging. Autoradiographic studies in rhesus monkey brain showed that [18F]MK-9470 binding is aligned with the reported distribution of CB1 receptors with high specific binding in the cerebral cortex, cerebellum, caudate/putamen, globus pallidus, substantia nigra, and hippocampus. Positron emission tomography (PET) imaging studies in rhesus monkeys showed high brain uptake and a distribution pattern generally consistent with that seen in the autoradiographic studies. Uptake was blocked by pretreatment with a potent CB1 inverse agonist, MK-0364. The ratio of total to nonspecific binding in putamen was 4–5:1, indicative of a strong specific signal that was confirmed to be reversible via displacement studies with MK-0364. Baseline PET imaging studies in human research subject demonstrated behavior of [18F]MK-9470 very similar to that seen in monkeys, with very good test–retest variability (7%). Proof of concept studies in healthy young male human subjects showed that MK-0364, given orally, produced a dose-related reduction in [18F]MK-9470 binding reflecting CB1R receptor occupancy by the drug. Thus, [18F]MK-9470 has the potential to be a valuable, noninvasive research tool for the in vivo study of CB1R biology and pharmacology in a variety of neuropsychiatric disorders in humans. In addition, it allows demonstration of target engagement and noninvasive dose-occupancy studies to aid in dose selection for clinical trials of CB1R inverse agonists. PMID:17535893

  7. Cannabinoid receptor 1 signaling in cardiovascular regulating nuclei in the brainstem: A review

    PubMed Central

    Ibrahim, Badr M.; Abdel-Rahman, Abdel A.

    2013-01-01

    Cannabinoids elicit complex hemodynamic responses in experimental animals that involve both peripheral and central sites. Centrally administered cannabinoids have been shown to predominantly cause pressor response. However, very little is known about the mechanism of the cannabinoid receptor 1 (CB1R)-centrally evoked pressor response. In this review, we provided an overview of the contemporary knowledge regarding the cannabinoids centrally elicited cardiovascular responses and the possible underlying signaling mechanisms. The current review focuses on the rostral ventrolateral medulla (RVLM) as the primary brainstem nucleus implicated in CB1R-evoked pressor response. PMID:25685481

  8. Impaired Excitatory Neurotransmission in the Urinary Bladder from the Obese Zucker Rat: Role of Cannabinoid Receptors

    PubMed Central

    Blaha, Igor; Recio, Paz; Martínez, María Pilar; López-Oliva, María Elvira; Ribeiro, Ana S. F.; Agis-Torres, Ángel; Martínez, Ana Cristina; Benedito, Sara; García-Sacristán, Albino; Fernandes, Vítor S.; Hernández, Medardo

    2016-01-01

    Metabolic syndrome (MS) is a known risk factor for lower urinary tract symptoms. This study investigates whether functional and expression changes of cannabinoid CB1 and CB2 receptors are involved in the bladder dysfunction in an obese rat model with insulin resistance. Bladder samples from obese Zucker rat (OZR) and their respective controls lean Zucker rat (LZR) were processed for immunohistochemistry and western blot for studying the cannabinoid receptors expression. Detrusor smooth muscle (DSM) strips from LZR and OZR were also mounted in myographs for isometric force recordings. Neuronal and smooth muscle CB1 and CB2 receptor expression and the nerve fiber density was diminished in the OZR bladder. Electrical field stimulation (EFS) and acetylcholine (ACh) induced frequency- and concentration-dependent contractions of LZR and OZR DSM. ACh contractile responses were similar in LZR and OZR. EFS-elicited contractions, however, were reduced in OZR bladder. Cannabinoid receptor agonists and antagonists failed to modify the DSM basal tension in LZR and OZR In LZR bladder, EFS responses were inhibited by ACEA and SER-601, CB1 and CB2 receptor agonists, respectively, these effects being reversed by ACEA plus the CB1 antagonist, AM-251 or SER-601 plus the CB2 antagonist, AM-630. In OZR bladder, the inhibitory action of ACEA on nerve-evoked contractions was diminished, whereas that SER-601 did not change EFS responses. These results suggest that a diminished function and expression of neuronal cannabinoid CB1 and CB2 receptors, as well as a lower nerve fiber density is involved in the impaired excitatory neurotransmission of the urinary bladder from the OZR. PMID:27285468

  9. Audiograms, gap detection thresholds, and frequency difference limens in cannabinoid receptor 1 knockout mice.

    PubMed

    Toal, Katrina L; Radziwon, Kelly E; Holfoth, David P; Xu-Friedman, Matthew A; Dent, Micheal L

    2016-02-01

    The cannabinoid receptor 1 (CB1R) is found at several stages in the auditory pathway, but its role in hearing is unknown. Hearing abilities were measured in CB1R knockout mice and compared to those of wild-type mice. Operant conditioning and the psychophysical Method of Constant Stimuli were used to measure audiograms, gap detection thresholds, and frequency difference limens in trained mice using the same methods and stimuli as in previous experiments. CB1R knockout mice showed deficits at frequencies above 8 kHz in their audiograms relative to wild-type mice. CB1R knockouts showed enhancements for detecting gaps in low-pass noisebursts relative to wild-type mice, but were similar for other noise conditions. Finally, the two groups of mice did not differ in their frequency discrimination abilities as measured by the frequency difference limens task. These experiments suggest that the CB1R is involved in auditory processing and lay the groundwork for future physiological experiments. PMID:26427583

  10. Update on the Role of Cannabinoid Receptors after Ischemic Stroke

    PubMed Central

    Capettini, Luciano S. A.; Savergnini, Silvia Q.; da Silva, Rafaela F.; Stergiopulos, Nikos; Santos, Robson A. S.; Mach, François; Montecucco, Fabrizio

    2012-01-01

    Cannabinoids are considered as key mediators in the pathophysiology of inflammatory diseases, including atherosclerosis. In particular, they have been shown to reduce the ischemic injury after acute cardiovascular events, such as acute myocardial infarction and ischemic stroke. These protective and anti-inflammatory properties on peripheral tissues and circulating inflammatory have been demonstrated to involve their binding with both selective cannabinoid type 1 (CB1) and type 2 (CB2) transmembrane receptors. On the other hands, the recent discoveries of novel different classes of cannabinoids and receptors have increased the complexity of this system in atherosclerosis. Although only preliminary data have been reported on the activities of novel cannabinoid receptors, several studies have already investigated the role of CB1 and CB2 receptors in ischemic stroke. While CB1 receptor activation has been shown to directly reduce atherosclerotic plaque inflammation, controversial data have been shown on neurotransmission and neuroprotection after stroke. Given its potent anti-inflammatory activities on circulating leukocytes, the CB2 activation has been proven to produce protective effects against acute poststroke inflammation. In this paper, we will update evidence on different cannabinoid-triggered avenues to reduce inflammation and neuronal injury in acute ischemic stroke. PMID:22577257

  11. A runner’s high depends on cannabinoid receptors in mice

    PubMed Central

    Fuss, Johannes; Steinle, Jörg; Bindila, Laura; Auer, Matthias K.; Kirchherr, Hartmut; Lutz, Beat; Gass, Peter

    2015-01-01

    Exercise is rewarding, and long-distance runners have described a runner’s high as a sudden pleasant feeling of euphoria, anxiolysis, sedation, and analgesia. A popular belief has been that endogenous endorphins mediate these beneficial effects. However, running exercise increases blood levels of both β-endorphin (an opioid) and anandamide (an endocannabinoid). Using a combination of pharmacologic, molecular genetic, and behavioral studies in mice, we demonstrate that cannabinoid receptors mediate acute anxiolysis and analgesia after running. We show that anxiolysis depends on intact cannabinoid receptor 1 (CB1) receptors on forebrain GABAergic neurons and pain reduction on activation of peripheral CB1 and CB2 receptors. We thus demonstrate that the endocannabinoid system is crucial for two main aspects of a runner's high. Sedation, in contrast, was not influenced by cannabinoid or opioid receptor blockage, and euphoria cannot be studied in mouse models. PMID:26438875

  12. Monoamine receptor agonists, acting preferentially at presynaptic autoreceptors and heteroreceptors, downregulate the cell fate adaptor FADD in rat brain cortex.

    PubMed

    García-Fuster, M Julia; García-Sevilla, Jesús A

    2015-02-01

    FADD is a crucial adaptor of death receptors that can engage apoptosis or survival actions (e.g. neuroplasticity) through its phosphorylated form (p-FADD). Although FADD was shown to participate in receptor mechanisms related to drugs of abuse, little is known on its role in the signaling of classic neurotransmitters (dopamine, noradrenaline, and serotonin) in brain. This study assessed the modulation of FADD (and p-FADD/FADD ratio, as an index of neuroplasticity) and FLIP-L (a neuroprotective FADD interacting partner), as well as the role of MEK-ERK signaling, after activation of monoamine auto/heteroreceptors by selective agonists in rat cortex. Acute depletion of monoamines with reserpine, but not with AMPT or PCPA, reduced FADD (28%) and increased p-FADD/FADD ratio (1.34-fold). Activation of presynaptic α2A-adrenoceptors (UK-14304 and clonidine), 5-HT1A receptors (8-OH-DPAT), and D2 dopamine receptor (bromocriptine) dose-dependently decreased FADD (up to 54%) and increased p-FADD (up to 29%) and p-FADD/FADD ratios (up to 2.93-fold), through specific receptor mechanisms. Activation of rat 5-HT1B autoreceptor in axon terminals by CP-94253 did not modulate FADD forms. Activation of postsynaptic D1 dopamine receptor by SKF-81297 also reduced FADD (25%) and increased p-FADD (32%). Disruption of MEK-ERK activation with SL327 did not modify clonidine (α2A-adrenoceptor)-induced FADD inhibition, indicating that agonist effect was not dependent on ERK signaling. The various monoamine receptor agonists and antagonists did not alter FLIP-L content, or the activation of executioner caspase-3 and PARP-1 cleavage, indicating that the agonists attenuated apoptotic signals and promoted neuroplasticity through FADD regulation. These novel results indicate that inhibition of pro-apoptotic FADD adaptor could function as a common signaling step in the initial activation of monoamine receptors in the brain. PMID:25286119

  13. Heat shock protein 60 acts as a receptor for the Listeria adhesion protein in Caco-2 cells.

    PubMed

    Wampler, Jennifer L; Kim, Kwang-Pyo; Jaradat, Ziad; Bhunia, Arun K

    2004-02-01

    The 104-kDa Listeria adhesion protein (LAP) in Listeria monocytogenes is involved in binding to various mammalian cell lines. However, the receptor that interacts with LAP in eukaryotic cells is unknown. In this study, scanning immunoelectron microscopy qualitatively demonstrated greater binding capacity of wild-type (WT) L. monocytogenes strain (F4244) than a LAP-deficient mutant strain (KB208) to Caco-2 cells. The goal of this study was identification of the host cell receptor for LAP. Using a Western blot ligand overlay assay, we identified a protein of 58 kDa to be the putative receptor for LAP from Caco-2 cells. N-terminal sequencing and subsequent database search identified this protein as heat shock protein 60 (Hsp60). Modified immunoseparation with protein A-Sepharose beads bound to the LAP-specific monoclonal antibody H7 (MAb-H7) and a sequential incubation with LAP preparation and Caco-2 lysate confirmed the receptor to be the same 58-kDa protein. Western blot analysis with anti-Hsp60 MAb of whole-cell adhesion between Caco-2 and WT also revealed the receptor protein to be a 58-kDa protein, thus corroborating the identification of Hsp60 as a host cell receptor for LAP. Furthermore, the anti-Hsp60 antibody also caused approximately 74% reduction in binding of L. monocytogenes WT to Caco-2 cells, whereas a control antibody, C11E9, had no effect on binding. The adhesion mechanism of L. monocytogenes to eukaryotic cells is a complex process, and identification of Hsp60 as a receptor for LAP adds to the list of previously discovered ligand-receptor modules that are essential to achieve successful adhesion. PMID:14742538

  14. Differential Expression of Brain Cannabinoid Receptors between Repeatedly Stressed Males and Females may Play a Role in Age and Gender-Related Difference in Traumatic Brain Injury: Implications from Animal Studies

    PubMed Central

    Xing, Guoqiang; Carlton, Janis; Jiang, Xiaolong; Wen, Jillian; Jia, Min; Li, He

    2014-01-01

    Inconsistent gender differences in the outcome of TBI have been reported. The mechanism is unknown. In a recent male animal study, repeated stress followed by TBI had synergistic effects on brain gene expression and caused greater behavioral deficits. Because females are more likely to develop anxiety after stress and because anxiety is mediated by cannabinoid receptors (CBRs) (CB1 and CB2), there is a need to compare CB1 and CB2 expression in stressed males and females. CB1 and CB2 mRNA expression was determined in the amygdala, hippocampus, prefrontal cortex (PFC), and hypothalamus of adolescent male and female rats after 3 days of repeated tail-shock stress using qPCR. PFC CB1 and CB2 protein levels were determined using Western blot techniques. Both gender and stress had significant effects on brain CB1 mRNA expression levels. Overall, females showed significantly higher CB1 and CB2 mRNA levels in all brain regions than males (p < 0.01). Repeated stress reduced CB1 mRNA levels in the amygdala, hippocampus, and PFC (p < 0.01, each). A gender × stress interaction was found in CB1 mRNA level in the hippocampus (p < 0.05), hypothalamus (p < 0.01), and PFC (p < 0.01). Within-sex one-way ANOVA analysis showed decreased CB1 mRNA in the hippocampus, hypothalamus, and PFC of stressed females (p < 0.01, each) but increased CB1 mRNA levels in the hypothalamus of stressed males (p < 01). There was a gender and stress interaction in prefrontal CB1</