Science.gov

Sample records for acting insulin analogues

  1. Short acting insulin analogues in intensive care unit patients

    PubMed Central

    Bilotta, Federico; Guerra, Carolina; Badenes, Rafael; Lolli, Simona; Rosa, Giovanni

    2014-01-01

    Blood glucose control in intensive care unit (ICU) patients, addressed to actively maintain blood glucose concentration within defined thresholds, is based on two major therapeutic interventions: to supply an adequate calories load and, when necessary, to continuously infuse insulin titrated to patients needs: intensive insulin therapy (IIT). Short acting insulin analogues (SAIA) have been synthesized to improve the chronic treatment of patients with diabetes but, because of the pharmacokinetic characteristics that include shorter on-set and off-set, they can be effectively used also in ICU patients and have the potential to be associated with a more limited risk of inducing episodes of iatrogenic hypoglycemia. Medical therapies carry an intrinsic risk for collateral effects; this can be more harmful in patients with unstable clinical conditions like ICU patients. To minimize these risks, the use of short acting drugs in ICU patients have gained a progressively larger room in ICU and now pharmaceutical companies and researchers design drugs dedicated to this subset of medical practice. In this article we report the rationale of using short acting drugs in ICU patients (i.e., sedation and treatment of arterial hypertension) and we also describe SAIA and their therapeutic use in ICU with the potential to minimize iatrogenic hypoglycemia related to IIT. The pharmacodynamic and pharmachokinetic characteristics of SAIA will be also discussed. PMID:24936244

  2. Can a new ultra-long-acting insulin analogue improve patient care? Investigating the potential role of insulin degludec.

    PubMed

    Robinson, Jennifer D; Neumiller, Joshua J; Campbell, R Keith

    2012-12-24

    The basal-bolus concept of delivering insulin to diabetic patients makes physiological sense, as it mimics normal insulin release in people without diabetes. In line with this concept, a major effort put forth by insulin manufacturers has been to develop the ideal exogenous basal insulin product. The perfect basal insulin product would be injected into subcutaneous tissue without causing irritation, release insulin continuously at a constant rate for at least 24 hours, be stable, not contribute to weight gain, have a low risk of allergic reactions and, very importantly, minimize the risk of hypoglycaemia. While the perfect insulin has not yet been discovered, advancements are still being made. Insulin degludec is an ultra-long-acting basal insulin analogue that possesses a flat, stable glucose-lowering effect in patients with type 1 or type 2 diabetes mellitus. Insulin degludec achieves these pharmacokinetic properties by forming soluble multihexamers upon subcutaneous injection, resulting in the formation of a depot in the subcutaneous tissue that is slowly released and absorbed into circulation. Insulin degludec has been associated with slightly less weight gain and fewer nocturnal hypoglycaemic episodes when compared with insulin glargine in some, but not all, clinical studies. This article briefly reviews current evidence for the use of insulin degludec in patients with type 1 or type 2 diabetes mellitus and discusses the potential impact of this new basal insulin on clinical practice. PMID:23145524

  3. Insulin degludec, a long-acting once-daily basal analogue for type 1 and type 2 diabetes mellitus.

    PubMed

    Berard, Lori; MacNeill, Gail

    2015-02-01

    Here, we discuss certain practical issues related to use of insulin degludec, a new long-acting basal insulin analogue. Degludec provides uniform ("peakless") action that extends over more than 24 hours and is highly consistent from dose to dose. Like the 2 previously available basal analogues (detemir and glargine), degludec is expected to simplify dose adjustment and enable patients to reach their glycemic targets with reduced risk of hypoglycemia. Phase 3 clinical trials involving type 1 and type 2 diabetes have demonstrated that degludec was noninferior to glargine in allowing patients to reach a target glycated hemoglobin (A1C) of 7%, and nocturnal hypoglycemia occurred significantly less frequently with degludec. In addition, when dosing intervals vary substantially from day to day, degludec continues to be effective and to maintain a low rate of nocturnal hypoglycemia. Degludec thus has the potential to reduce risk of nocturnal hypoglycemia, to enhance the flexibility of the dosing schedule and to improve patient and caregiver confidence in the stability of glycemic control. A dedicated injector, the FlexTouch prefilled pen, containing degludec 200 units/mL, will be recommended for most patients with type 2 diabetes. Degludec will also be available as 100 units/mL cartridges, to be used in the NovoPen 4 by patients requiring smaller basal insulin doses, including most patients with type 1 diabetes.

  4. Insulin degludec, a long-acting once-daily basal analogue for type 1 and type 2 diabetes mellitus.

    PubMed

    Berard, Lori; MacNeill, Gail

    2015-02-01

    Here, we discuss certain practical issues related to use of insulin degludec, a new long-acting basal insulin analogue. Degludec provides uniform ("peakless") action that extends over more than 24 hours and is highly consistent from dose to dose. Like the 2 previously available basal analogues (detemir and glargine), degludec is expected to simplify dose adjustment and enable patients to reach their glycemic targets with reduced risk of hypoglycemia. Phase 3 clinical trials involving type 1 and type 2 diabetes have demonstrated that degludec was noninferior to glargine in allowing patients to reach a target glycated hemoglobin (A1C) of 7%, and nocturnal hypoglycemia occurred significantly less frequently with degludec. In addition, when dosing intervals vary substantially from day to day, degludec continues to be effective and to maintain a low rate of nocturnal hypoglycemia. Degludec thus has the potential to reduce risk of nocturnal hypoglycemia, to enhance the flexibility of the dosing schedule and to improve patient and caregiver confidence in the stability of glycemic control. A dedicated injector, the FlexTouch prefilled pen, containing degludec 200 units/mL, will be recommended for most patients with type 2 diabetes. Degludec will also be available as 100 units/mL cartridges, to be used in the NovoPen 4 by patients requiring smaller basal insulin doses, including most patients with type 1 diabetes. PMID:25065475

  5. Pregnancy and the long-acting insulin analogue: a case study.

    PubMed

    Caronna, Silvana; Cioni, Federico; Dall'Aglio, Elisabetta; Arsenio, Leone

    2006-04-01

    R.S. is a 22 years old Caucasian woman suffering from obesity, hypertension and Type I Diabetes Mellitus since the age of 6 years. Type I DM treatment includes 3 insulin injections at meal time and one glargine injection at bedtime. The insulin therapy regimen was prolonged during pregnancy and continued after childbirth. Optimal glycemic compensations were monitored throughout the pregnancy using HbA1c variations and other standard controls included in the OBG routine protocols, all within normal values. The pregnancy ended at the 38th week of gestation with a caesarean birth, during which a 3,54 Kg healthy boy with an APGAR of 9 was born. Both the mother and the newborn resulted in perfect health conditions confirming that the possibility of using glargine insulin profiles during pregnancy in selected cases with close monitoring may exist.

  6. Insulin, insulin analogues and diabetic retinopathy.

    PubMed

    Chantelau, Ernst; Kimmerle, Renate; Meyer-Schwickerath, Rolf

    2008-02-01

    Insulin is absolutely vital for living beings. It is not only involved in metabolism, but also in the regulation of growth factors, e.g. IGF-1. In this review we address the role insulin has in the natural evolution of diabetic retinopathy. On the one hand, chronic deficiency of insulin and IGF-1 at the retina is thought to cause capillary degeneration, with subsequent ischaemia. On the other hand, acute abundance of (exogenously administered) insulin and IGF-1 enhances ischaemia-induced VEGF expression. A critical ratio of tissue VEGF-susceptibility: VEGF-availability triggers vascular proliferation (i.e. of micro-aneurysms and/or abnormal vessels). The patent-protected insulin analogues Lispro, Glulisine, Aspart, Glargine and Detemir are artificial insulin derivatives with altered biological responses compared to natural insulin (e.g. divergent insulin and /or IGF-1 receptor-binding characteristics, signalling patterns, and mitogenicity). Their safety profiles concerning diabetic retinopathy remain to be established by randomised controlled trials. Anecdotal reports and circumstantial evidence suggest that Lispro and Glargine might worsen diabetic retinopathy.

  7. Systemically modeling the dynamics of plasma insulin in subcutaneous injection of insulin analogues for type 1 diabetes.

    PubMed

    Li, Jiaxu; Kuang, Yang

    2009-01-01

    Type 1 diabetics must inject exogenous insulin or insulin analogues one or more times daily. The timing and dosage of insulin administration have been a critical research area since the invention of insulin analogues. Several pharmacokinetical models have been proposed, and some are applied clinically in modeling various insulin therapies. However, their plasma insulin concentration must be computed separately from the models' output. Furthermore, minimal analytical study was performed in these existing models. We propose two systemic and simplified ordinary differential equation models to model the subcutaneous injection of rapid-acting insulin analogues and long-acting insulin analogues, respectively. Our models explicitly model the plasma insulin and hence have the advantage of computing the plasma insulin directly. The profiles of plasma insulin concentrations obtained from these two models are in good agreement with the experimental data. We also study the dynamics of insulin analogues, plasma insulin concentrations, and, in particular, the shape of the dynamics of plasma insulin concentrations. PMID:19292507

  8. Review of Insulin and its Analogues in Diabetes Mellitus

    PubMed Central

    Mane, Krishnappa; Chaluvaraju, KC; Niranjan, MS; Zaranappa, TR; Manjuthej, TR

    2012-01-01

    Diabetes is a metabolic disorder where in human body does not produce or properly uses insulin, a hormone that is required to convert sugar, starches and other food into energy. Diabetes finally leads to more complications and to prevent these complications insulin and its analogues are used. After more than half a century of treating diabetics with animal insulin’s, recombinant DNA technologies and advanced protein chemistry made human insulin preparations available in the early 1980s. As the next step, over the last decade, insulin analogues were constructed by changing the structure of the native protein with the goal of improving the therapeutic properties of it, because the pharmacokinetic characteristics of rapid, intermediate and long-acting preparations of human insulin make it almost impossible to achieve sustained normoglycemia. The first clinically available insulin analogue, lispro, confirmed the hopes by showing that improved glycaemic control can be achieved without an increase in hypoglycaemic events. Two new insulin analogues, insulin glargine and insulin aspart, have recently been approved for clinical use in the United States and several other analogues are being intensively tested. PMID:24826038

  9. Current european regulatory perspectives on insulin analogues.

    PubMed

    Enzmann, Harald G; Weise, Martina

    2011-01-01

    Insulin analogues are increasingly considered as an alternative to human insulin in the therapy of diabetes mellitus. Insulin analogues (IAs) are chemically different from human insulin and may have different pharmacokinetic or pharmacodynamic properties. The significance of the modifications of the insulin molecule for the safety profile of IAs must be considered. This review describes the regulatory procedure and the expectations for the scientific content of European marketing authorization applications for innovative IAs submitted to the European Medicines Agency. Particular consideration is given to a potential cancer hazard. Specific regulatory guidance on how to address a possible carcinogenic or tumor promoting effect of innovative IAs in non-clinical studies is available. After marketing authorization, the factual access of patients to the new product will be determined to great extent by health technology assessment bodies, reimbursement decisions and the price. Whereas the marketing authorization is a European decision, pricing and reimbursement are national or regional responsibilities. The assessment of benefit and risk by the European Medicines Agency is expected to influence future decisions on price and reimbursement on a national or regional level. Collaborations between regulatory agencies and health technology assessment bodies have been initiated on European and national level to facilitate the use of the European Medicines Agency's benefit risk assessment as basis on which to build the subsequent health technology assessment. The option for combined or joint scientific advice procedures with regulators and health technology assessment bodies on European level or on a national level in several European Member States may help applicants to optimize their development program and dossier preparation in regard of both European marketing authorization application and reimbursement decisions. PMID:21736748

  10. Differences in bioactivity between human insulin and insulin analogues approved for therapeutic use- compilation of reports from the past 20 years.

    PubMed

    Werner, Haim; Chantelau, Ernst A

    2011-01-01

    In order to provide comprehensive information on the differences in bioactivity between human insulin and insulin analogues, published in vitro comparisons of human insulin and the rapid acting analogues insulin lispro (Humalog®), insulin aspart ( NovoRapid®), insulin glulisine (Apidra®), and the slow acting analogues insulin glargine (Lantus®), and insulin detemir (Levemir®) were gathered from the past 20 years (except for receptor binding studies). A total of 50 reports were retrieved, with great heterogeneity among study methodology. However, various differences in bioactivity compared to human insulin were obvious (e.g. differences in effects on metabolism, mitogenesis, apoptosis, intracellular signalling, thrombocyte function, protein degradation). Whether or not these differences have clinical bearings (and among which patient populations) remains to be determined.

  11. Differences in bioactivity between human insulin and insulin analogues approved for therapeutic use- compilation of reports from the past 20 years

    PubMed Central

    2011-01-01

    In order to provide comprehensive information on the differences in bioactivity between human insulin and insulin analogues, published in vitro comparisons of human insulin and the rapid acting analogues insulin lispro (Humalog®), insulin aspart ( NovoRapid®), insulin glulisine (Apidra®), and the slow acting analogues insulin glargine (Lantus®), and insulin detemir (Levemir®) were gathered from the past 20 years (except for receptor binding studies). A total of 50 reports were retrieved, with great heterogeneity among study methodology. However, various differences in bioactivity compared to human insulin were obvious (e.g. differences in effects on metabolism, mitogenesis, apoptosis, intracellular signalling, thrombocyte function, protein degradation). Whether or not these differences have clinical bearings (and among which patient populations) remains to be determined. PMID:21714872

  12. [Clinical importance of basal insulin analogues and insulin Toujeo® 300 units/ml].

    PubMed

    Adamíková, Alena

    2015-11-01

    Type 2 diabetes mellitus is a heterogeneous disease that requires a personalized approach to treatment with goals tailored to capabilities and abilities of the patient, his other diseases so as to ensure good diabetes control without the risk of hypoglycemic events and the development or progression of late diabetic complications. Recommendations for treatment of diabetes is classified in second-line as a one of the possibilities of treatment of basal insulin immediately after the failure of therapy with metformin and diet. The new generation of basal insulin analogues provides its effect profile and features a completely new quality to the treatment of diabetes. Toujeo® 300 units/ml is a new long-acting basal insulin glargine concentration of 300 units/ ml with a low glycemic variability, which in studies has demonstrated consistent control of diabetes in a significant reduction in the risk of hypoglycemia especially at night compared with insulin glargin of concentration 100 units/ml. PMID:26652788

  13. Cysteine analogues potentiate glucose-induced insulin release in vitro

    SciTech Connect

    Ammon, H.P.; Hehl, K.H.; Enz, G.; Setiadi-Ranti, A.; Verspohl, E.J.

    1986-12-01

    In rat pancreatic islets, cysteine analogues, including glutathione, acetylcysteine, cysteamine, D-penicillamine, L-cysteine ethyl ester, and cysteine-potentiated glucose (11.1 mM) induced insulin secretion in a concentration-dependent manner. Their maximal effects were similar and occurred at approximately 0.05, 0.05, 0.1, 0.5, 1.0, 1.0 mM, respectively. At substimulatory glucose levels (2.8 mM), insulin release was not affected by these compounds. In contrast, thiol compounds, structurally different from cysteine and its analogues, such as mesna, tiopronin, meso-2,3-dimercaptosuccinic acid (DMSA), dimercaprol (BAL), beta-thio-D-glucose, as well as those cysteine analogues that lack a free-thiol group, including L-cystine, cystamine, D-penicillamine disulfide, S-carbocysteine, and S-carbamoyl-L-cysteine, did not enhance insulin release at stimulatory glucose levels (11.1 mM); cystine (5 mM) was inhibitory. These in vitro data indicate that among the thiols tested here, only cysteine and its analogues potentiate glucose-induced insulin secretion, whereas thiols that are structurally not related to cysteine do not. This suggests that a cysteine moiety in the molecule is necessary for the insulinotropic effect. For their synergistic action to glucose, the availability of a sulfhydryl group is also a prerequisite. The maximal synergistic action is similar for all cysteine analogues tested, whereas the potency of action is different, suggesting similarity in the mechanism of action but differences in the affinity to the secretory system.

  14. Iontophoresis of monomeric insulin analogues in vitro: effects of insulin charge and skin pretreatment.

    PubMed

    Langkjaer, L; Brange, J; Grodsky, G M; Guy, R H

    1998-01-23

    The aim of this study was to investigate the influence of association state and net charge of human insulin analogues on the rate of iontophoretic transport across hairless mouse skin, and the effect of different skin pretreatments on said transport. No insulin flux was observed with anodal delivery probably because of degradation at the Ag/AgCl anode. The flux during cathodal iontophoresis through intact skin was insignificant for human hexameric insulin, and only low and variable fluxes were observed for monomeric insulins. Using stripped skin on the other hand, the fluxes of monomeric insulins with two extra negative charges were 50-100 times higher than that of hexameric human insulin. Introducing three additional charges led to a further 2-3-fold increase in flux. Wiping the skin gently with absolute alcohol prior to iontophoresis resulted in a 1000-fold increase in transdermal transport of insulin relative to that across untreated skin, i.e. to almost the same level as stripping the skin. The alcohol pretreatment reduced the electrical resistance of the skin, presumably by lipid extraction. In conclusion, monomeric insulin analogues with at least two extra negative charges can be iontophoretically delivered across hairless mouse skin, whereas insignificant flux is observed with human, hexameric insulin. Wiping the skin with absolute alcohol prior to iontophoresis gave substantially improved transdermal transport of monomeric insulins resulting in clinically relevant delivery rates for basal treatment.

  15. Regulatory Forum Opinion Piece: Review-Toxicological Pathology Profile and Regulatory Expectations for Nonclinical Development of Insulins and Insulin Analogues.

    PubMed

    Bartels, Thomas; Wäse, Kerstin; Heinrichs, Martin; Stolte, Manuela; Roome, Nigel; Scherer, Petra; Lindauer, Klaus

    2016-10-01

    The toxicological profile of insulins is exclusively due to exaggerated pharmacology resulting in hypoglycemic findings. Insulin analogues displaying modifications and aimed at improving pharmacokinetics do not induce different toxicity. The main target is the brain displaying neuronal necrosis. Wallerian degeneration of nerves occurs rarely after severe hypoglycemia. These findings are of potential human relevance; nevertheless, these changes are induced in normoglycemic animals whereas diabetic patients suffer from hyperglycemia. Therefore, it is usually not difficult to achieve a therapeutic window for subsequent use in patients. Based upon this and in the absence of classical toxicity, there has been no scientific need for diabetic animal models. A greater challenge is the mitogenicity already inherent with regular insulin. Thus, the focus for preclinical safety evaluation of analogues is to demonstrate that modifications in regular insulin do not result in enhanced mitogenicity. The approaches used to assess the mitogenic potential of insulin analogues have changed over time driven by scientific progression and changes within the regulatory environment. Therefore, in vitro and in vivo evaluation of cell proliferation has become common practice, and to date there has been no evidence that the mitogenic potential of insulin analogues may be increased compared to regular insulin. PMID:27663844

  16. Looking at the carcinogenicity of human insulin analogues via the intrinsic disorder prism

    PubMed Central

    Redwan, Elrashdy M.; Linjawi, Moustafa H.; Uversky, Vladimir N.

    2016-01-01

    Therapeutic insulin, in its native and biosynthetic forms as well as several currently available insulin analogues, continues to be the protein of most interest to researchers. From the time of its discovery to the development of modern insulin analogues, this important therapeutic protein has passed through several stages and product generations. Beside the well-known link between diabetes and cancer risk, the currently used therapeutic insulin analogues raised serious concerns due to their potential roles in cancer initiation and/or progression. It is possible that structural variations in some of the insulin analogues are responsible for the appearance of new oncogenic species with high binding affinity to the insulin-like growth factor 1 (IGF1) receptor. The question we are trying to answer in this work is: are there any specific features of the distribution of intrinsic disorder propensity within the amino acid sequences of insulin analogues that may provide an explanation for the carcinogenicity of the altered insulin protein? PMID:26983499

  17. Efficacy of insulin analogues in diabetic patients attending primary care centers

    PubMed Central

    Bardisi, Wedad M.; Khorsheed, Manal M.; Magliah, Faisal; Magliah, Ayman F.

    2015-01-01

    Objectives: To measure the efficacy of new insulin analogues compared with the conventional types of insulin, and to compare their effects on patient satisfaction regarding their weight changes and the frequency of hypoglycemic episodes. Methods: In this retrospective cohort observational study, data was collected from the medical records of 122 eligible diabetics on insulin therapy attending government primary care centers in Jeddah, Kingdom of Saudi Arabia from June 2013 to July 2014. The data collected considered the efficacy, safety, and patient satisfaction of the types of insulin therapy used for their treatment. Results: After 12 weeks, there was a reduction in mean glycosylated hemoglobin (HbA1c) of -0.88% for the analogue type versus -0.19% for the conventional type, and at 24 weeks, the mean drop in HbA1c was -2.02% for the analogue type versus -1.12% for the conventional type, but the differences were not statistically significant. More patients (87% versus 38%) on analogue compared with conventional insulin treatment were satisfied with therapy. Conclusion: In the primary health care setting, insulin analogues showed greater efficacy improvements than conventional insulin therapy within 6 months. However, conventional insulin therapy can still be used at primary care centers with limited resources, and when patients refuse to be converted. PMID:26108587

  18. Resolution of lipohypertrophy following change of short-acting insulin to insulin lispro (Humalog).

    PubMed

    Roper, N A; Bilous, R W

    1998-12-01

    Lipohypertrophy as a local complication of insulin therapy is well recognized. Despite improvements in insulin purity and the introduction of recombinant human insulin its prevalence has remained high. Rotation of injection sites can reduce the frequency of the problem but does not abolish it. The importance of this complication is not only cosmetic but also in its impact on insulin absorption, and hence glycaemic control. We report a patient who had intractable lipohypertrophy with human recombinant insulin but experienced no such problem when converted onto the insulin analogue lispro. We suggest that the faster speed of absorption of insulin lispro may lead to less hypertrophic stimulation of subcutaneous adipocytes. This difference may be clinically useful in susceptible individuals.

  19. Undeniable need for ultrafast-acting insulin: the pediatric perspective.

    PubMed

    Cengiz, Eda

    2012-07-01

    Insulin therapy in youth with type 1 diabetes mellitus (T1DM) poses a special challenge because childhood is an unsteady state with increasing weight, height, and caloric needs, leading to varying insulin requirements. The current rapid-acting insulin analogs are not as fast and short-acting as needed to meet these challenges. This review describes the unique characteristics of insulin action in youth with T1DM based on previously published euglycemic clamp studies. It also explains the rationale behind the need for ultrafast-acting insulins to advance open- and closed-loop insulin therapy for the pediatric population with diabetes. Lastly, it briefly summarizes ongoing and future projects to accelerate insulin action in youth with T1DM.

  20. A sensitive chemiluminescent enzyme immunoassay for the bioanalysis of carboxyl-terminal B-chain analogues of human insulin.

    PubMed

    Cao, Y; Smith, W C; Bowsher, R R

    2001-08-01

    Quantification of analogues of human insulin in biological matrices is complicated by differences in their immunoreactivity and the presence of both the analogue and endogenous concentrations of insulin in test samples. To facilitate pharmacokinetic comparisons of carboxyl-terminal B-chain analogues of human insulin, we undertook development of a sensitive ELISA. The ELISA detection method was optimized systematically to permit routine analysis of 10-microl serum samples. Accordingly, a noncompetitive 'sandwich' chemiluminescent ELISA was validated for the quantification of carboxyl-terminal B-chain insulin analogues in human serum over a concentration range from 5 to 3125 pM. The mean bias (RE%) within the validated range varied from -10.3 to 4.3%, with an intermediate precision (inter-assay CV%) from 4.2 to 11.5%. The two-sided 90% expectation tolerance interval for total measurement error was within +/-25% of the nominal concentration for all levels of validation samples. Insulin lispro, human insulin, proinsulin, despentapeptide insulin (DPI) and porcine insulin displayed comparable crossreactivity in the ELISA. Potential utility of the new assay for insulin bioanalysis in nonhuman species was investigated by assessing the pharmacokinetic profile of DPI in rats following administration of a single subcutaneous dose. The sensitive chemiluminescent detection method is simple to perform and should be readily adaptable for ELISAs of other therapeutic proteins.

  1. Effects of Teraphy with Basal Insulin Analogues Combined with GLP 1 Analogues and Metformin in the Treatment of Obese Patients with Poorly Regulated Postprandial Glycemia

    PubMed Central

    Buturovic, Belma Ascic; Ristic, Lejla Burnazovic; Narancic, Alma Mujanovic

    2014-01-01

    ABSTRACT Introduction: Patient-oriented therapy represents a modern approach in the treatment of patients with diabetes, an approach which is supported in the most recent guidelines by the ADA and the European Association for the Study of Diabetes (EASD). The progressive nature of diabetes demands the introduction of insulin therapy much earlier in order to prevent the development of late complications of the disease. Material and methods: The study included 30 patients who had been treated with long-acting insulin analogue and metformin in doses of 3 x 850 mg at least 6 months prior to study entry and in which a good glycaemic control had not been achieved, or with HbA1c > 7%. Patients who had a BMI > 28 kg /m2 were included in the study. Results and discussion: At the beginning of the study the patients were switched to combined therapy with long-acting basal analog, metformin and liraglutide in a dosage of 0.6 mg of 1x1. After 12 weeks of the new therapeutic regimen we recorded a significant reduction in the parameter levels that we monitored in the study. BMI value after the test was 28.2±1.39 kg/m2, p=0.025, HbA1c 7.24±0.47%, p=0.030, fasting blood glucose level 7.04±0.32 mmol/l, p=0.023, postprandial glucose level 7.6±0.46 mmol/l, p=0.012, systolic blood pressure level 123±5.75 mmHg, p=0.015, diastolic blood pressure level 79.1±2.91 mmHg, p=0.03. During research that we have conducted over 12 weeks, a reduction of body weight was achieved while improving the value of parameters significant for the study. Conclusion: There was a significant lowering of HbA1c, fasting blood glucose levels, postprandial glucose levels and better blood pressure control by which we have proved that GLP1 analogues in combination with basal insulin and metformin provide a good glycaemic control with a cardio protective effect, and reduce the risk of late complications. PMID:25568561

  2. Human insulin analogues modified at the B26 site reveal a hormone conformation that is undetected in the receptor complex

    SciTech Connect

    Žáková, Lenka; Kletvíková, Emília; Lepšík, Martin; Collinsová, Michaela; Watson, Christopher J.; Turkenburg, Johan P.; Jiráček, Jiří; Brzozowski, Andrzej M.

    2014-10-01

    [AsnB26]- and [GlyB26]-insulin mutants attain a B26-turn like fold without assistance of chemical modifications. Their structures match the insulin receptor interface and expand the spectrum of insulin conformations. The structural characterization of the insulin–insulin receptor (IR) interaction still lacks the conformation of the crucial B21–B30 insulin region, which must be different from that in its storage forms to ensure effective receptor binding. Here, it is shown that insulin analogues modified by natural amino acids at the TyrB26 site can represent an active form of this hormone. In particular, [AsnB26]-insulin and [GlyB26]-insulin attain a B26-turn-like conformation that differs from that in all known structures of the native hormone. It also matches the receptor interface, avoiding substantial steric clashes. This indicates that insulin may attain a B26-turn-like conformation upon IR binding. Moreover, there is an unexpected, but significant, binding specificity of the AsnB26 mutant for predominantly the metabolic B isoform of the receptor. As it is correlated with the B26 bend of the B-chain of the hormone, the structures of AsnB26 analogues may provide the first structural insight into the structural origins of differential insulin signalling through insulin receptor A and B isoforms.

  3. Antidiabetic activity of 3-hydroxyflavone analogues in high fructose fed insulin resistant rats

    PubMed Central

    Nayak, Yogendra; Venkatachalam, H.; Daroji, Vijay Kumar; Mathew, Geetha; Jayashree, B.S.; Unnikrishnan, M.K.

    2014-01-01

    Synthetic 3-hydroxyflavone analogues (JY-1, JY-2, JY-3, JY-4), were tested for antidiabetic activity in high-fructose-diet-fed (66 %, for 6 weeks) insulin-resistant Wistar rats (FD-fed rats). The fasting blood glucose, insulin, creatinine and AGEs were decreased to near normal upon treatment with test compounds. Insulin resistance markers such as HOMA-IR, K-ITT, plasma triglycerides, lipids, endogenous antioxidant defense and glycogen were restored in FD-fed rats after treatment with 3-hydroxyflavones. It is known that insulin resistance is partly because of oxidative stress and hence antioxidant activity was determined. They exhibited significant in vitro DPPH and ABTS radical scavenging activity (IC50: 10.66-66.63 µM). Test compounds inhibited ROS and NO production in RAW 264.7 cells (IC50: 10.39–42.63 µM) and they were found as potent as quercetin. Further, the test compounds inhibited lipid peroxidation at low concentrations (IC50: 99.61-217.47 µM). All test compounds at concentrations 100-200 µM protected calf thymus DNA-damage by Fenton reaction. In addition, test compounds inhibited protein glycation in different in vitro antiglycation assays. JY-2 showed maximum potency in all the stages of glycation which was comparable to the standard quercetin and aminoguanidine. Test compounds also enhanced the glucose uptake by L6 myotubes at an EC50 much lower than that of quercetin. Thus the synthetic 3-hydroxyflavones were found to have good antidiabetic activity by pleotropic and multimodal suppression of insulin resistance and enhancement of glucose uptake by skeletal muscles. These compounds are non-toxic at the doses tested. Further, the combined antioxidant and antiglycation activities of these molecules have complementary benefits in management of diabetes. PMID:26417321

  4. A framework for the in vitro evaluation of cancer-relevant molecular characteristics and mitogenic potency of insulin analogues.

    PubMed

    Baricevic, Ivona; Jones, David R; Roberts, Darren L; Lutzen, Anne; Lundby, Anders; Worm, Jesper; Hansen, Bo F; Renehan, Andrew G

    2015-09-01

    Epidemiological and laboratory studies raise the possibility of a link between clinically prescribed insulin analogues and increased cancer risk. Accordingly, there is a regulatory mandate for cancer-related pre-clinical safety evaluation during insulin analogue development, but currently, there is no standardized framework for such in vitro evaluation. We tested human insulin; the super-mitogenic insulin, X10 and insulin-like growth factor I, in four cancer cell lines with a range of insulin-like growth factor-I receptor (IGF-IR)/IR (insulin receptor) ratios (HCT 116, HT-29, COLO 205 and MCF7) and related these to IGF-IR and IR expression in 17 human adenocarcinomas. All cell types were IR-A isoform dominant. We determined IGF-IR/IR signalling pathway endpoints in dose- and time-varying experiments, and performed mitogenic dose-response equivalent assays to derive EC50 values, and correlated these with IGF-IR/IR ratios. We superimposed relative EC50 values onto data from the literature in a meta-analysis. The IGF-IR/IR ratios varied from <1 to 12 in the selected cell lines; similar pattern ranges were observed in human adenocarcinomas. The three ligands demonstrated differential IR/IGF-IR and Akt phosphorylation, which correlated with cell-specific IGF-IR/IR ratios. Mitogenic profiles of X10 mimicked those for insulin-like growth factor I (IGF-I) and correlated with IGF-IR/IR ratios. The meta-analysis, adding data from five additional studies, supported the hypothesis that ligand mitogenic potency, relative to human insulin, increases with increasing cell-specific IGF-IR/IR ratio. This study established a framework for the in vitro evaluation of cancer-relevant bioassays for comparisons of insulin analogues, and specifically consolidated earlier studies that determination of the cell-specific IGF-IR/IR ratio is crucial for the interpretation of ranking relative biological activities.

  5. Somatostatin analogue, octreotide, reduces increased glomerular filtration rate and kidney size in insulin-dependent diabetes

    SciTech Connect

    Serri, O.; Beauregard, H.; Brazeau, P.; Abribat, T.; Lambert, J.; Harris, A.; Vachon, L. Sandoz Canada Inc., Dorval, Quebec )

    1991-02-20

    To determine whether treatment with a somatostatin analogue can reduce kidney hyperfiltration and hypertrophy in insulin-dependent diabetes mellitus, the authors studied 11 patients with insulin-dependent diabetes mellitus and glomerular hyperfiltration. The patients were assigned randomly to receive continuous subcutaneous infusion of either octreotide, 300 {mu}g/24 h (five patients) or placebo (six patients) for 12 weeks. At baseline, mean glomerular filtration rate and mean total kidney volume were not significantly different in the two groups. However, after 12 weeks of treatment, the mean glomerular filtration rate was significantly lower in the octreotide group than in the placebo group. Furthermore, the mean total kidney volume was significantly lower after treatment in the octreotide group than in the placebo group. Glycemic control did not change significantly in either group. They conclude that subcutaneous infusion of octreotide for 12 weeks reduces increased glomerular filtration rate and kidney size in patients with insulin-dependent diabetes mellitus despite the fact that glycemic control remains unchanged.

  6. Regular insulin, rather than rapid-acting insulin, is a suitable choice for premeal bolus insulin in lean patients with type 2 diabetes mellitus.

    PubMed

    Kuroda, Akio; Kaneto, Hideaki; Kawashima, Satoshi; Sakamoto, Kenya; Takahara, Mitsuyoshi; Shiraiwa, Toshihiko; Yasuda, Tetsuyuki; Katakami, Naoto; Matsuoka, Taka-Aki; Shimomura, Iichiro; Matsuhisa, Munehide

    2013-01-29

    The aim of the present study was to compare the usefulness of premeal rapid-acting and regular insulin in type 2 diabetes patients. A total of 56 type 2 diabetic patients were investigated during hospitalization. Premeal rapid-acting insulin was applied instead of other medications. Premeal insulin was titrated to adjust premeal and bedtime blood glucose levels to 81-120 mg/dL. Premeal rapid-acting insulin was changed to regular insulin just before a meal at the same dosage if the postmeal blood glucose level was lower than the premeal blood glucose level. A total of 15 patients changed to regular insulin, and 41 patients continued rapid-acting insulin. The blood glucose level was comparable between these two groups. Body mass index was significantly lower in the patients using regular insulin. According to the multivariate logistic regression analysis, low body mass index was an independent variable accounting for the usefulness of regular insulin. Regular insulin, rather than rapid-acting insulin, is a suitable choice for premeal insulin in lean type 2 diabetic patients.

  7. Insulin degludec for diabetes mellitus.

    PubMed

    2013-07-01

    Over the last few years there has been a steady increase in the number of prescriptions dispensed in primary care for intermediate and long-acting insulin analogues and a reduction in prescriptions for biphasic isophane insulin. For example, in England, the volume of intermediate and long-acting insulin analogues in general practice has risen from approximately 650,000 prescriptions per quarter in 2007 to over 850,000 per quarter in 2012.(1) ▾Insulin degludec (Tresiba, Novo Nordisk) is a new long acting basal insulin analogue for the management of diabetes mellitus in adults.(2) Two strengths of insulin degludec (100 units/mL and 200 units/mL) were launched in the UK in February 2013. Here we discuss evidence for the effectiveness and safety of insulin degludec. PMID:23842634

  8. Role of premixed insulin analogues in the treatment of patients with type 2 diabetes mellitus: A narrative review

    PubMed Central

    Elizarova, Svetlana; Galstyan, Gagik R; Wolffenbuttel, Bruce HR

    2014-01-01

    Because of the progressive nature of type 2 diabetes mellitus (T2DM), insulin therapy will eventually become necessary in most patients. Recent evidence suggests that maintaining optimal glycemic control by early insulin therapy can reduce the risk of microvascular and macrovascular complications in patients with T2DM. The present review focuses on relevant clinical evidence supporting the use of premixed insulin analogues in T2DM when intensifying therapy, and as starter insulins in insulin-naïve patients. Our aim is to provide relevant facts and clinical evidence useful in the decision-making process of treatment selection and individualized treatment goal setting to obtain sustained blood glucose control. PMID:24127999

  9. Role of premixed insulin analogues in the treatment of patients with type 2 diabetes mellitus: a narrative review.

    PubMed

    Elizarova, Svetlana; Galstyan, Gagik R; Wolffenbuttel, Bruce H R

    2014-03-01

    Because of the progressive nature of type 2 diabetes mellitus (T2DM), insulin therapy will eventually become necessary in most patients. Recent evidence suggests that maintaining optimal glycemic control by early insulin therapy can reduce the risk of microvascular and macrovascular complications in patients with T2DM. The present review focuses on relevant clinical evidence supporting the use of premixed insulin analogues in T2DM when intensifying therapy, and as starter insulins in insulin-naïve patients. Our aim is to provide relevant facts and clinical evidence useful in the decision-making process of treatment selection and individualized treatment goal setting to obtain sustained blood glucose control. PMID:24127999

  10. Synthesis and biological activities of d-chiro-inositol analogues with insulin-like actions.

    PubMed

    Rendle, P M; Kassibawi, F; Johnston, K A; Hart, J B; Cameron, S A; Falshaw, A; Painter, G F; Loomes, K M

    2016-10-21

    d-chiro-inositol (DCI, 1) evokes therapeutic actions in diabetes and insulin resistance but has sub-optimal pharmacokinetic profiles. To investigate what positions on the DCI cyclohexanol ring may be amenable to modification to improve pharmaceutical formulations, a series of analogues based on DCI were synthesised. These compounds were then evaluated for their ability to stimulate glucose transport using 3T3-L1 adipocytes as a model system. Positional analyses indicate that the hydroxyl group at position 1 is not essential for activity and can be modified without affecting glucose uptake. Removal of the hydroxyl at position 3 also had minimal effect on activity but this group is sensitive to modification. By comparison, the oxygen at position 2 is crucial to the potency of DCI, although this group can withstand modification without fundamentally affecting activity. These data reveal that positions 1 and 2 on the cyclohexanol ring of DCI offer further scope for modification to develop DCI analogues with desirable pharmacokinetic profiles for the potential treatment of metabolic disease. PMID:27410479

  11. Advances in the quantitation of therapeutic insulin analogues by LC-MS/MS.

    PubMed

    Blackburn, Michael

    2013-12-01

    Insulin analogues represent a major and growing class of biotherapeutics, and their quantitation is an important focus of commercial and public effort across a number of different fields. As LC-MS has developed, it has become an increasingly practicable and desirable alternative to ligand-binding-based approaches for quantitation of this class of compounds. The sensitivity challenge of measuring trace levels of this large peptide molecule in a protein-containing matrix is considerable; however, different approaches to detection, extraction and separation are described to overcome this challenge, including immunoaffinity capture, SPE and low-flow HPLC. Considerations such as bioanalytical assay acceptance criteria and antidrug antibody effects during drug development are included, alongside descriptions of recent sports doping and clinical applications. Factors affecting the correlation and agreement of MS with biological ligand-binding methods are discussed, with ways to anticipate and appreciate differences between the values derived from each technique. The 'future perspective' section discusses the likely trend towards MS-based analysis for these compounds and the impact of HRMS. A high degree of scientific creativity, combined with science-defined regulatory approaches that define suitable validation criteria, will be needed to meet the demanding requirements for high-throughput analysis of insulin by LC-MS.

  12. Long-acting insulins alter milk composition and metabolism of lactating dairy cows.

    PubMed

    Winkelman, L A; Overton, T R

    2013-01-01

    This study investigated the effect of 2 different types of long-acting insulin on milk production, milk composition, and metabolism in lactating dairy cows. Multiparous cows (n=30) averaging 88 d in milk were assigned to one of 3 treatments in a completely randomized design. Treatments consisted of control (C), Humulin-N (H; Eli Lilly and Company, Indianapolis, IN), and insulin glargine (L). The H and L treatments were administered twice daily at 12-h intervals via subcutaneous injection for 10d. Cows were milked twice daily, and milk composition was determined every other day. Mammary biopsies were conducted on d 11, and mammary proteins extracted from the biopsies were analyzed by Western blot for components of insulin and mammalian target of rapamycin signaling pathways. Treatment had no effect on dry matter intake or milk yield. Treatment with both forms of long-acting insulin increased milk protein content and tended to increase milk protein yield over the 10-d treatment period. Analysis of milk N fractions from samples collected on d 10 of treatment suggested that cows administered L tended to have higher yields of milk protein fractions than cows administered H. Milk fat content and yield tended to be increased for cows administered long-acting insulins. Lactose content and yields were decreased by treatment with long-acting insulins. Administration of long-acting insulins, particularly L, tended to shift milk fatty acid composition toward increased short- and medium-chain fatty acids and decreased long-chain fatty acids. Plasma concentrations of glucose and urea N were lower for cows administered long-acting insulins; interactions of treatment and sampling time were indicative of more pronounced effects of L than H on these metabolites. Concentrations of nonesterified fatty acids and insulin were increased in cows administered long-acting insulins. Decreased concentrations of urea N in both plasma and milk suggested more efficient use of N in cows

  13. Long-acting insulins alter milk composition and metabolism of lactating dairy cows.

    PubMed

    Winkelman, L A; Overton, T R

    2013-01-01

    This study investigated the effect of 2 different types of long-acting insulin on milk production, milk composition, and metabolism in lactating dairy cows. Multiparous cows (n=30) averaging 88 d in milk were assigned to one of 3 treatments in a completely randomized design. Treatments consisted of control (C), Humulin-N (H; Eli Lilly and Company, Indianapolis, IN), and insulin glargine (L). The H and L treatments were administered twice daily at 12-h intervals via subcutaneous injection for 10d. Cows were milked twice daily, and milk composition was determined every other day. Mammary biopsies were conducted on d 11, and mammary proteins extracted from the biopsies were analyzed by Western blot for components of insulin and mammalian target of rapamycin signaling pathways. Treatment had no effect on dry matter intake or milk yield. Treatment with both forms of long-acting insulin increased milk protein content and tended to increase milk protein yield over the 10-d treatment period. Analysis of milk N fractions from samples collected on d 10 of treatment suggested that cows administered L tended to have higher yields of milk protein fractions than cows administered H. Milk fat content and yield tended to be increased for cows administered long-acting insulins. Lactose content and yields were decreased by treatment with long-acting insulins. Administration of long-acting insulins, particularly L, tended to shift milk fatty acid composition toward increased short- and medium-chain fatty acids and decreased long-chain fatty acids. Plasma concentrations of glucose and urea N were lower for cows administered long-acting insulins; interactions of treatment and sampling time were indicative of more pronounced effects of L than H on these metabolites. Concentrations of nonesterified fatty acids and insulin were increased in cows administered long-acting insulins. Decreased concentrations of urea N in both plasma and milk suggested more efficient use of N in cows

  14. Remission in models of type 1 diabetes by gene therapy using a single-chain insulin analogue

    NASA Astrophysics Data System (ADS)

    Lee, Hyun Chul; Kim, Su-Jin; Kim, Kyung-Sup; Shin, Hang-Cheol; Yoon, Ji-Won

    2000-11-01

    A cure for diabetes has long been sought using several different approaches, including islet transplantation, regeneration of β cells and insulin gene therapy. However, permanent remission of type 1 diabetes has not yet been satisfactorily achieved. The development of type 1 diabetes results from the almost total destruction of insulin-producing pancreatic β cells by autoimmune responses specific to β cells. Standard insulin therapy may not maintain blood glucose concentrations within the relatively narrow range that occurs in the presence of normal pancreatic β cells. We used a recombinant adeno-associated virus (rAAV) that expresses a single-chain insulin analogue (SIA), which possesses biologically active insulin activity without enzymatic conversion, under the control of hepatocyte-specific L-type pyruvate kinase (LPK) promoter, which regulates SIA expression in response to blood glucose levels. Here we show that SIA produced from the gene construct rAAV-LPK-SIA caused remission of diabetes in streptozotocin-induced diabetic rats and autoimmune diabetic mice for a prolonged time without any apparent side effects. This new SIA gene therapy may have potential therapeutic value for the cure of autoimmune diabetes in humans.

  15. The role of GLP-1 mimetics and basal insulin analogues in type 2 diabetes mellitus: guidance from studies of liraglutide

    PubMed Central

    Barnett, A H

    2012-01-01

    In people with type 2 diabetes mellitus (T2DM), the incretin effect is reduced, but the recent advent of dipeptidyl peptidase-4 inhibitors and glucagon-like peptide (GLP)-1 agonists/analogues has enabled restoration of at least some of the function of the incretin system, with accompanying improvements in glycaemic control. Two GLP-1 receptor agonists/analogues are currently approved for the treatment of T2DM—exenatide (Byetta®, Eli Lilly & Co., Indianapolis, IN, US) and liraglutide (Victoza®, Novo Nordisk, Bagsvaerd, Denmark); a once-weekly formulation of exenatide (Bydureon®, Eli Lilly & Co.) has also been approved by the European Medicines Agency. The National Institute for Health and Clinical Excellence (NICE) has recently published guidance on the use of liraglutide in T2DM, based on evidence from the Liraglutide Effect and Action in Diabetes (LEAD) Phase III trial programme, which compared liraglutide with existing glucose-lowering therapies, such as exenatide and insulin glargine. The LEAD programme reported HbA1c reductions from 0.8 to 1.5% with liraglutide (1.2 and 1.8 mg), accompanied by low rates of hypoglycaemia and some weight loss; side effects were primarily gastrointestinal in nature (e.g. nausea and diarrhoea). Based on the findings of the LEAD studies and the NICE recommendation, liraglutide now represents an important therapy widely available in the UK for certain patient groups, including those with a body mass index (BMI) ≥35.0 kg/m2, and patients with a BMI <35 kg/m2 who are considered unsuitable for insulin and are failing to meet targets for glycaemic control with oral agents. NICE guidelines still suggest that most patients without considerable obesity (BMI <35 kg/m2) are probably best managed using insulin therapy. Evidence also suggests a future role for GLP-1 mimetics in combination with basal insulin. PMID:22051096

  16. A Novel Insulin Resistance Index to Monitor Changes in Insulin Sensitivity and Glucose Tolerance: the ACT NOW Study

    PubMed Central

    Tripathy, Devjit; Cobb, Jeff E.; Gall, Walter; Adam, Klaus-Peter; George, Tabitha; Schwenke, Dawn C.; Banerji, MaryAnn; Bray, George A.; Buchanan, Thomas A.; Clement, Stephen C.; Henry, Robert R.; Kitabchi, Abbas E.; Mudaliar, Sunder; Ratner, Robert E.; Stentz, Frankie B.; Reaven, Peter D.; Musi, Nicolas; Ferrannini, Ele

    2015-01-01

    Objective: The objective was to test the clinical utility of Quantose MQ to monitor changes in insulin sensitivity after pioglitazone therapy in prediabetic subjects. Quantose MQ is derived from fasting measurements of insulin, α-hydroxybutyrate, linoleoyl-glycerophosphocholine, and oleate, three nonglucose metabolites shown to correlate with insulin-stimulated glucose disposal. Research Design and Methods: Participants were 428 of the total of 602 ACT NOW impaired glucose tolerance (IGT) subjects randomized to pioglitazone (45 mg/d) or placebo and followed for 2.4 years. At baseline and study end, fasting plasma metabolites required for determination of Quantose, glycated hemoglobin, and oral glucose tolerance test with frequent plasma insulin and glucose measurements to calculate the Matsuda index of insulin sensitivity were obtained. Results: Pioglitazone treatment lowered IGT conversion to diabetes (hazard ratio = 0.25; 95% confidence interval = 0.13–0.50; P < .0001). Although glycated hemoglobin did not track with insulin sensitivity, Quantose MQ increased in pioglitazone-treated subjects (by 1.45 [3.45] mg·min−1·kgwbm−1) (median [interquartile range]) (P < .001 vs placebo), as did the Matsuda index (by 3.05 [4.77] units; P < .0001). Quantose MQ correlated with the Matsuda index at baseline and change in the Matsuda index from baseline (rho, 0.85 and 0.79, respectively; P < .0001) and was progressively higher across closeout glucose tolerance status (diabetes, IGT, normal glucose tolerance). In logistic models including only anthropometric and fasting measurements, Quantose MQ outperformed both Matsuda and fasting insulin in predicting incident diabetes. Conclusions: In IGT subjects, Quantose MQ parallels changes in insulin sensitivity and glucose tolerance with pioglitazone therapy. Due to its strong correlation with improved insulin sensitivity and its ease of use, Quantose MQ may serve as a useful clinical test to identify and monitor therapy in

  17. Liposomes containing cholesterol analogues of botanical origin as drug delivery systems to enhance the oral absorption of insulin.

    PubMed

    Cui, Meng; Wu, Wei; Hovgaard, Lars; Lu, Yi; Chen, Dawei; Qi, Jianping

    2015-07-15

    In fear of animal-associated diseases, there is a trend in searching for non-animal derived substitutes for existing excipients in the pharmaceutical industries. This paper aimed to screen cholesterol analogues as membrane stabilizers of liposomes from botanical sterols, including β-sitosterol, stigmasterol, ergosterol and lanosterol. Liposomes containing four kinds of sterols were prepared and evaluated in vitro and in vivo as oral delivery system of insulin. Liposomes containing β-sitosterol (Si-Lip), stigmasterol (St-Lip) and lanosterol (La-Lip) was found not to protect insulin against degradation. Only 10% of the initial insulin in liposomes was preserved after a 30 min exposure to simulated gastric fluids. However, the protective ability of liposomes containing ergosterol (Er-Lip) was similar to that of liposomes containing sodium glycocholate (Sgc-Lip) and superior to that of liposomes containing cholesterol (Ch-Lip). In addition, the blood glucose level can decrease to about 50% of initial level after oral Er-Lip which was significantly superior to the in vivo performance of Si-Lip and Ch-Lip and similar to Sgc-Lip. Er-Lips of ergosterol/phospholipids ratios of 1:4 or 1:6 exerts more pronounced protective ability of insulin in simulated gastrointestinal fluids and hypoglycemic effects in rats than other formulations. Furthermore, Er-Lips exerted low toxicity to Caco-2 cells through a cell viability study. Meahwhile, insulin permeability was significantly increased across Caco-2 monolayers by encapsulating in Er-Lip. It was concluded that ergosterol could be used as a substitute for cholesterol and bile salt derivatives in liposomes to enhance oral bioavailability of insulin. PMID:25957702

  18. Liposomes containing cholesterol analogues of botanical origin as drug delivery systems to enhance the oral absorption of insulin.

    PubMed

    Cui, Meng; Wu, Wei; Hovgaard, Lars; Lu, Yi; Chen, Dawei; Qi, Jianping

    2015-07-15

    In fear of animal-associated diseases, there is a trend in searching for non-animal derived substitutes for existing excipients in the pharmaceutical industries. This paper aimed to screen cholesterol analogues as membrane stabilizers of liposomes from botanical sterols, including β-sitosterol, stigmasterol, ergosterol and lanosterol. Liposomes containing four kinds of sterols were prepared and evaluated in vitro and in vivo as oral delivery system of insulin. Liposomes containing β-sitosterol (Si-Lip), stigmasterol (St-Lip) and lanosterol (La-Lip) was found not to protect insulin against degradation. Only 10% of the initial insulin in liposomes was preserved after a 30 min exposure to simulated gastric fluids. However, the protective ability of liposomes containing ergosterol (Er-Lip) was similar to that of liposomes containing sodium glycocholate (Sgc-Lip) and superior to that of liposomes containing cholesterol (Ch-Lip). In addition, the blood glucose level can decrease to about 50% of initial level after oral Er-Lip which was significantly superior to the in vivo performance of Si-Lip and Ch-Lip and similar to Sgc-Lip. Er-Lips of ergosterol/phospholipids ratios of 1:4 or 1:6 exerts more pronounced protective ability of insulin in simulated gastrointestinal fluids and hypoglycemic effects in rats than other formulations. Furthermore, Er-Lips exerted low toxicity to Caco-2 cells through a cell viability study. Meahwhile, insulin permeability was significantly increased across Caco-2 monolayers by encapsulating in Er-Lip. It was concluded that ergosterol could be used as a substitute for cholesterol and bile salt derivatives in liposomes to enhance oral bioavailability of insulin.

  19. Metformin versus placebo in combination with insulin analogues in patients with type 2 diabetes mellitus—the randomised, blinded Copenhagen Insulin and Metformin Therapy (CIMT) trial

    PubMed Central

    Lundby-Christensen, Louise; Tarnow, Lise; Boesgaard, Trine W; S Lund, Søren; Wiinberg, Niels; Perrild, Hans; Krarup, Thure; Snorgaard, Ole; Gade-Rasmussen, Birthe; Thorsteinsson, Birger; Røder, Michael; Mathiesen, Elisabeth R; Jensen, Tonny; Vestergaard, Henrik; Hedetoft, Christoffer; Breum, Leif; Duun, Elsebeth; Sneppen, Simone B; Pedersen, Oluf; Hemmingsen, Bianca; Carstensen, Bendix; Madsbad, Sten; Gluud, Christian; Wetterslev, Jørn; Vaag, Allan; Almdal, Thomas P

    2016-01-01

    Objective To assess the effect of metformin versus placebo both in combination with insulin analogue treatment on changes in carotid intima-media thickness (IMT) in patients with type 2 diabetes. Design and setting Investigator-initiated, randomised, placebo-controlled trial with a 2×3 factorial design conducted at eight hospitals in Denmark. Participants and interventions 412 participants with type 2 diabetes (glycated haemoglobin (HbA1c) ≥7.5% (≥58 mmol/mol); body mass index >25 kg/m2) were in addition to open-labelled insulin treatment randomly assigned 1:1 to 18 months blinded metformin (1 g twice daily) versus placebo, aiming at an HbA1c ≤7.0% (≤53 mmol/mol). Outcomes The primary outcome was change in the mean carotid IMT (a marker of subclinical cardiovascular disease). HbA1c, insulin dose, weight and hypoglycaemic and serious adverse events were other prespecified outcomes. Results Change in the mean carotid IMT did not differ significantly between the groups (between-group difference 0.012 mm (95% CI −0.003 to 0.026), p=0.11). HbA1c was more reduced in the metformin group (between-group difference −0.42% (95% CI −0.62% to −0.23%), p<0.001)), despite the significantly lower insulin dose at end of trial in the metformin group (1.04 IU/kg (95% CI 0.94 to 1.15)) compared with placebo (1.36 IU/kg (95% CI 1.23 to 1.51), p<0.001). The metformin group gained less weight (between-group difference −2.6 kg (95% CI −3.3 to −1.8), p<0.001). The groups did not differ with regard to number of patients with severe or non-severe hypoglycaemic or other serious adverse events, but the metformin group had more non-severe hypoglycaemic episodes (4347 vs 3161, p<0.001). Conclusions Metformin in combination with insulin did not reduce carotid IMT despite larger reduction in HbA1c, less weight gain, and smaller insulin dose compared with placebo plus insulin. However, the trial only reached 46% of the planned sample size and lack of power

  20. Nocturnal Hypoglycemia: Answering the Challenge With Long-acting Insulin Analogs

    PubMed Central

    Brunton, Stephen A.

    2007-01-01

    Background Nocturnal hypoglycemia may be the most common type of hypoglycemia in individuals with diabetes using insulin and is particularly worrisome because it often goes undetected and may lead to unconsciousness and even death in severe cases. Objectives The prevalence, causes, and consequences of nocturnal hypoglycemia as well as detection and prevention strategies are reviewed, including the use of long-acting insulin analogs, which offer more physiologic and predictable time-action profiles than traditional human basal insulin. Data Sources A total of 307 publications (151 PubMed; 104 Adis; 52 BIOSIS) were reviewed. Review Methods Relevant trials were found by searching for “(detemir OR glargine) AND nocturnal AND (hypoglycemia OR hypoglycaemia) AND diabetes.” To capture trials that may not have specified “nocturnal” in the title or abstract text but still reported nocturnal hypoglycemia data, a supplemental search of PubMed using “(detemir OR glargine) AND (nocturnal OR hypoglycemia OR hypoglycaemia) AND diabetes” was undertaken. Results A review of these trials found that patients with type 1 and type 2 diabetes mellitus have a lower risk for nocturnal hypoglycemia when receiving long-acting insulin analogs (insulin detemir or insulin glargine), provided that glycemic control is comparable to that provided by traditional human basal insulin. Long-acting insulin analogs may be the best option to provide basal insulin coverage in patients who do not choose or require continuous subcutaneous insulin infusion. Conclusions Randomized clinical trials suggest that the long-acting insulin analogs are associated with a lower risk for nocturnal hypoglycemia than neutral protamine Hagedorn without sacrificing glycemic control. PMID:17955093

  1. Metabolic Actions of Angiotensin II and Insulin: A Microvascular Endothelial Balancing Act

    PubMed Central

    Muniyappa, Ranganath; Yavuz, Shazene

    2012-01-01

    Metabolic actions of insulin to promote glucose disposal are augmented by nitric oxide (NO)-dependent increases in microvascular blood flow to skeletal muscle. The balance between NO-dependent vasodilator actions and endothelin-1-dependent vasoconstrictor actions of insulin is regulated by phosphatidylinositol 3-kinase-dependent (PI3K) - and mitogen-activated protein kinase (MAPK)-dependent signaling in vascular endothelium, respectively. Angiotensin II acting on AT2 receptor increases capillary blood flow to increase insulin-mediated glucose disposal. In contrast, AT1 receptor activation leads to reduced NO bioavailability, impaired insulin signaling, vasoconstriction, and insulin resistance. Insulin-resistant states are characterized by dysregulated local renin-angiotensin-aldosterone system (RAAS). Under insulin-resistant conditions, pathway-specific impairment in PI3K-dependent signaling may cause imbalance between production of NO and secretion of endothelin-1, leading to decreased blood flow, which worsens insulin resistance. Similarly, excess AT1 receptor activity in the microvasculature may selectively impair vasodilation while simultaneously potentiating the vasoconstrictor actions of insulin. Therapeutic interventions that target pathway-selective impairment in insulin signaling and the imbalance in AT1 and AT2 receptor signaling in microvascular endothelium may simultaneously ameliorate endothelial dysfunction and insulin resistance. In the present review, we discuss molecular mechanisms in the endothelium underlying microvascular and metabolic actions of insulin and Angiotensin II, the mechanistic basis for microvascular endothelial dysfunction and insulin resistance in RAAS dysregulated clinical states, and the rationale for therapeutic strategies that restore the balance in vasodilator and constrictor actions of insulin and Angiotensin II in the microvasculature. PMID:22684034

  2. [Inhaled insulin, new perspective for insulin therapy].

    PubMed

    Radermecker, R P; Sélam, J L

    2005-01-01

    Since the discovery of insulin and its use in diabetes care, patients, physicians and nurses dream of another way of insulin administration than the subcutaneous injections actually used. Different types of insulin administration have been evaluated and, particularly, that using the pulmonary route. The use of this alternative method to deliver insulin may result in improved patient compliance, facilitate intensified therapies and avoid the delay of initiating insulin administration because patient's reluctance. The different insulin pulmonary delivering devices actually studied will be presented. Preliminary data comparing this way of administration and the subcutaneous injection of human regular insulin are good, but sufficient data comparing inhaled insulin with the new short-acting insulin analogues are not yet available. Among various difficulties of the pulmonary insulin delivery, the finding of an effective promoter, capable of increasing the bioavailability of insulin, is a crucial issue. The cost of such insulin administration might also be a problem. Finally, careful studies concerning the safety of this kind of administration, particularly potential long-term pulmonary toxicity, are mandatory. Nevertheless, inhaled insulin is an attractive topic in which most important pharmaceutical companies are currently involved.

  3. Interactions of short-acting, intermediate-acting and pre-mixed human insulins with free radicals--Comparative EPR examination.

    PubMed

    Olczyk, Paweł; Komosinska-Vassev, Katarzyna; Ramos, Paweł; Mencner, Łukasz; Olczyk, Krystyna; Pilawa, Barbara

    2015-07-25

    Electron paramagnetic resonance (EPR) spectroscopy was used to examine insulins interactions with free radicals. Human recombinant DNA insulins of three groups were studied: short-acting insulin (Insuman Rapid); intermediate-acting insulins (Humulin N, Insuman Basal), and pre-mixed insulins (Humulin M3, Gensulin M50, Gensulin M40, Gensulin M30). The aim of an X-band (9.3GHz) study was comparative analysis of antioxidative properties of the three groups of human insulins. DPPH was used as a stable free radical model. Amplitudes of EPR lines of DPPH as the paramagnetic free radical reference, and DPPH interacting with the individual tested insulins were compared. For all the examined insulins kinetics of their interactions with free radicals up to 60 min were obtained. The strongest interactions with free radicals were observed for the short-acting insulin - Insuman Rapid. The lowest interactions with free radicals were characteristic for intermediate-acting insulin - Insuman Basal. The pre-mixed insulins i.e. Humulin M3 and Gensulin M50 revealed the fastest interactions with free radicals. The short acting, intermediate acting and premixed insulins have been found to be effective agents in reducing free radical formation in vitro and should be further considered as potential useful tools in attenuation of oxidative stress in diabetic patients.

  4. Interactions of short-acting, intermediate-acting and pre-mixed human insulins with free radicals--Comparative EPR examination.

    PubMed

    Olczyk, Paweł; Komosinska-Vassev, Katarzyna; Ramos, Paweł; Mencner, Łukasz; Olczyk, Krystyna; Pilawa, Barbara

    2015-07-25

    Electron paramagnetic resonance (EPR) spectroscopy was used to examine insulins interactions with free radicals. Human recombinant DNA insulins of three groups were studied: short-acting insulin (Insuman Rapid); intermediate-acting insulins (Humulin N, Insuman Basal), and pre-mixed insulins (Humulin M3, Gensulin M50, Gensulin M40, Gensulin M30). The aim of an X-band (9.3GHz) study was comparative analysis of antioxidative properties of the three groups of human insulins. DPPH was used as a stable free radical model. Amplitudes of EPR lines of DPPH as the paramagnetic free radical reference, and DPPH interacting with the individual tested insulins were compared. For all the examined insulins kinetics of their interactions with free radicals up to 60 min were obtained. The strongest interactions with free radicals were observed for the short-acting insulin - Insuman Rapid. The lowest interactions with free radicals were characteristic for intermediate-acting insulin - Insuman Basal. The pre-mixed insulins i.e. Humulin M3 and Gensulin M50 revealed the fastest interactions with free radicals. The short acting, intermediate acting and premixed insulins have been found to be effective agents in reducing free radical formation in vitro and should be further considered as potential useful tools in attenuation of oxidative stress in diabetic patients. PMID:25975232

  5. Insulin pump therapy in pregnancy.

    PubMed

    Kesavadev, Jothydev

    2016-09-01

    Control of blood glucose during pregnancy is difficult because of wide variations, ongoing hormonal changes and mood swings. The need for multiple injections, pain at the injection site, regular monitoring and skillful handling of the syringes/pen further makes insulin therapy inconvenient. Insulin pump is gaining popularity in pregnancy because it mimics the insulin delivery of a healthy human pancreas. Multiple guidelines have also recommended the use of insulin pump in pregnancy to maintain the glycaemic control. The pump can release small doses of insulin continuously (basal), or a bolus dose close to mealtime to control the spike in blood glucose after a meal and the newer devices can shut down insulin delivery before the occurrence of hypoglycaemia. Pump insulin of choice is rapid acting analogue insulin. This review underscores the role of insulin pump in pregnancy, their usage, advantages and disadvantages in the light of existing literature and clinic experience. PMID:27582150

  6. Modified method using a somatostatin analogue, octreotide acetate (Sandostatin) to assess in vivo insulin sensitivity.

    PubMed

    Ikebuchi, M; Suzuki, M; Kageyama, A; Hirose, J; Yokota, C; Ikeda, K; Shinozaki, K; Todo, R; Harano, Y

    1996-02-01

    In order to evaluate the steady state plasma glucose (SSPG) method by using a new somatostatin derivative, octreotide acetate (Sandostatin) instead of somatostatin that we had used for the insulin sensitivity test, we examined whether octreotide was able to suppress C-peptide (CPR), glucagon (IRG), and GH to a similar degree to that achieved with somatostatin. A total of 52 studies were performed in 45 essential hypertensive subjects and 7 healthy subjects. Octreotide was given subcutaneously in a does of 50 micrograms or 100 micrograms 10 min before the test (sc 50, sc 100 groups) or intravenously infused over 2 h (10 micrograms in bolus followed by a constant infusion, 50, 100, or 150 micrograms/2 h: i.v. 50, i.v. 100, i.v. 150 groups). In all of the groups the plasma immunoreactive insulin (IRI) concentration increased gradually after insulin injection and reached the steady state plasma insulin (SSPI) level between 40 and 60 microU/ml at 60 min through 120 min. Plasma CPR at 120 min was the most suppressed (by 67% of the basal level in i.v. 150 group during the study period), but on the other hand in both the sc 100 and i.v. 100 groups the plasma CPR concentration at 120 min was suppressed by nearly 40%, but not significantly suppressed in either the sc 50 or the i.v. 50 group. Plasma IRG and GH were strongly suppressed after 60 min in all groups during the study period. Plasma glucose had increased significantly at 30 min and reached the steady state at 90 min through 120 min in hypertensive and healthy subjects. The results indicated that the modified SSPG method with continuous intravenous infusion of Octreotide at 150 micrograms/2 h was adequate for the measurement of insulin sensitivity.

  7. Old and new basal insulin formulations: understanding pharmacodynamics is still relevant in clinical practice.

    PubMed

    Rossetti, P; Ampudia-Blasco, F J; Ascaso, J F

    2014-08-01

    Long-acting insulin analogues have been developed to mimic the physiology of basal insulin secretion more closely than human insulin formulations (Neutral Protamine Hagedorn, NPH). However, the clinical evidence in favour of analogues is still controversial. Although their major benefit as compared with NPH is a reduction in the hypoglycaemia risk, some cost/effectiveness analyses have not been favourable to analogues, largely because of their higher price. Nevertheless, these new formulations have conquered the insulin market. Human insulin represents currently no more than 20% of market share. Despite (in fact because of) the widespread use of insulin analogues it remains critical to analyse the pharmacodynamics (PD) of basal insulin formulations appropriately to interpret the results of clinical trials correctly. Importantly, these data may help physicians in tailoring insulin therapy to patients' individual needs and, additionally, when clinical evidence is not available, to optimize insulin treatment. For patients at low risk for/from hypoglycaemia, it might be acceptable and also cost-effective not to use long-acting insulin analogues as basal insulin replacement. Conversely, in patients with a higher degree of insulin deficiency and increased risk for hypoglycaemia, analogues are the best option due to their more physiological profile, as has been shown in PD and clinical studies. From this perspective optimizing basal insulin treatment, especially in type 2 diabetes patients who are less prone to hypoglycaemia, would be suitable making significant resources available for other relevant aspects of diabetes care. PMID:24401118

  8. Pharmacokinetics of the Long‐Acting Basal Insulin LY2605541 in Subjects With Varying Degrees of Renal Function

    PubMed Central

    Linnebjerg, Helle; Choi, Siak Leng; Lam, Eric Chen Quin; Mace, Kenneth F.; Hodgson, Teri S.; Sinha, Vikram P.

    2016-01-01

    Abstract The pharmacokinetics of LY2605541 (basal insulin peglispro), a novel long‐acting basal insulin analogue, was evaluated in 5 groups of subjects with varying degrees of renal function based on creatinine clearance: normal renal function (>80 mL/min), mild renal impairment (51–80 mL/min), moderate renal impairment (30–50 mL/min), severe renal impairment (<30 mL/min), or end‐stage renal disease (ESRD) requiring hemodialysis. Serial blood samples for pharmacokinetic analyses were collected up to 12 days following a single 0.33 U/kg subcutaneous dose of LY2605541. The apparent clearance (CL/F) and half‐life across groups were not affected by renal function. Cmax values were lower in subjects with increasing severity of renal impairment; however, the small decrease in Cmax did not affect the overall exposure. Regression analysis showed that LY2605541 clearance is independent of renal function (slope = 0.000863; P = .885). The mean fraction of LY2605541 eliminated by a single hemodialysis session was 13% in subjects with ESRD. LY2605541 was generally well tolerated in healthy subjects and those with renal impairment following a single 0.33 U/kg subcutaneous dose. Given these data, no dose adjustment of LY2605541 based on pharmacokinetics is recommended in renal impairment or in patients undergoing hemodialysis. PMID:27163501

  9. Degludec, a new ultra-long-acting basal insulin for the treatment of diabetes mellitus type 1 and 2: advances in clinical research.

    PubMed

    Muñoz Torres, Manuel

    2014-03-01

    Degludec is the most recent molecule of the ultra-long-acting basal insulin analogues approved for human use. It forms soluble multihexamers which after subcutaneous injection are converted into monomers, and are thus slowly and continuously absorbed into the bloodstream. This absorption mechanism confers degludec an ultra-long and stable action profile, with no concentration peaks. This paper discusses the most recent studies in patients with type 1 and 2 diabetes mellitus, which showed degludec to be non inferior in decreasing HbA1c, ensuring optimum glycemic control similar to that achieved with insulin glargine or detemir. Degludec also had an improved safety profile, as it was associated to a significantly lower rate of nocturnal hypoglycemia in both types of diabetes and to a potentially lower overall hypoglycemia rate in type 2 DM. Degludec also opens the possibility to use more flexible regimens.

  10. Use of short-acting insulin aspart in managing older people with diabetes.

    PubMed

    Marouf, Eltayeb; Sinclair, Alan J

    2009-01-01

    Type 2 diabetes mellitus affects 5.9% of the world adult population, with older people and some ethnic groups disproportionately affected. Treatment of older people with diabetes differs in many ways from that in younger adults since the majority have type 2 disease and are at particular risk of macrovascular rather than disabling microvascular disease. Insulin therapy, the most effective of diabetes medications, can reduce any level of elevated HBA1c if used in adequate doses. However, some clinicians are often reluctant to initiate insulin therapy in older people with diabetes mainly out of their concerns about adverse reactions to insulin, particularly hypoglycemia. There is evidence suggesting that insulin aspart appears to act similarly to regular human insulin in older people with type 2 diabetes mellitus. Insulin aspart can be used in the treatment of older people with diabetes, but this should be individualized. There is evidence that it improves postprandial glucose control, improves long-term metabolic control, reduces risk of major nocturnal hypoglycemia and increases patient satisfaction compared with soluble insulin.

  11. Dietary Leucine - An Environmental Modifier of Insulin Resistance Acting on Multiple Levels of Metabolism

    PubMed Central

    Macotela, Yazmin; Emanuelli, Brice; Bång, Anneli M.; Espinoza, Daniel O.; Boucher, Jeremie; Beebe, Kirk; Gall, Walter; Kahn, C. Ronald

    2011-01-01

    Environmental factors, such as the macronutrient composition of the diet, can have a profound impact on risk of diabetes and metabolic syndrome. In the present study we demonstrate how a single, simple dietary factor—leucine—can modify insulin resistance by acting on multiple tissues and at multiple levels of metabolism. Mice were placed on a normal or high fat diet (HFD). Dietary leucine was doubled by addition to the drinking water. mRNA, protein and complete metabolomic profiles were assessed in the major insulin sensitive tissues and serum, and correlated with changes in glucose homeostasis and insulin signaling. After 8 weeks on HFD, mice developed obesity, fatty liver, inflammatory changes in adipose tissue and insulin resistance at the level of IRS-1 phosphorylation, as well as alterations in metabolomic profile of amino acid metabolites, TCA cycle intermediates, glucose and cholesterol metabolites, and fatty acids in liver, muscle, fat and serum. Doubling dietary leucine reversed many of the metabolite abnormalities and caused a marked improvement in glucose tolerance and insulin signaling without altering food intake or weight gain. Increased dietary leucine was also associated with a decrease in hepatic steatosis and a decrease in inflammation in adipose tissue. These changes occurred despite an increase in insulin-stimulated phosphorylation of p70S6 kinase indicating enhanced activation of mTOR, a phenomenon normally associated with insulin resistance. These data indicate that modest changes in a single environmental/nutrient factor can modify multiple metabolic and signaling pathways and modify HFD induced metabolic syndrome by acting at a systemic level on multiple tissues. These data also suggest that increasing dietary leucine may provide an adjunct in the management of obesity-related insulin resistance. PMID:21731668

  12. Insulin

    MedlinePlus

    ... pump is connected to your body by a flexible tube that has a tip that sticks under your skin. A cartridge of insulin is put in the pump. The insulin flows through the tube into your body. The pump controls how much insulin goes into your body. The ...

  13. Effect of a β-Hydroxyphosphonate Analogue of ʟ-Carnitine on Insulin-Sensitive and Insulin-Resistant 3T3-L1 Adipocytes.

    PubMed

    Avalos-Soriano, Anaguiven; De la Cruz-Cordero, Ricardo; López-Martínez, Francisco Josue; Rosado, Jorge L; Duarte-Vázquez, Miguel Ángel; Garcia-Gasca, Teresa

    2015-01-01

    This study investigated the effect of a β-x200B;hydroxyphosphonate analog of ʟ-carnitine (L-CA) (CAS number: 1220955-x200B;20-3, Component: 1221068-91-2, C12H29NO4PI), (3-Hexanaminium, 1-(dimethoxyphosphinyl)-2-hydroxy-N,N,N,5-x200B;tetramethy-iodide (1:1), (2R, 3S)) on parameters related with type-2 diabetes in an in vitro model. Nontoxic concentrations of L-CA were assayed and compared to commercial ʟ-carnitine effects. L-CA did not affect adipogenesis in normal cells, but an increment of TG accumulation was observed on insulin-resistant adipocytes (80%) when compared with resistant control. L-CA also stimulated glucose analog 2-NBDG uptakes on insulin-resistant adipocytes in a similar way as insulin when compared to insulin-resistant cells. Our results show that the L-CA promoted insulin-like responses on insulin-resistant adipocytes without appreciable pro-adipogenic effect in sensitive adipocytes. PMID:26160659

  14. Pharmacokinetic Model of the Transport of Fast-Acting Insulin From the Subcutaneous and Intradermal Spaces to Blood.

    PubMed

    Lv, Dayu; Kulkarni, Sandip D; Chan, Alice; Keith, Stephen; Pettis, Ron; Kovatchev, Boris P; Farhi, Leon S; Breton, Marc D

    2015-07-01

    Pharmacokinetic (PK) models describing the transport of insulin from the injection site to blood assist clinical decision making and are part of in silico platforms for developing and testing of insulin delivery strategies for treatment of patients with diabetes. The ability of these models to accurately describe all facets of the in vivo insulin transport is therefore critical for their application. Here, we propose a new model of fast-acting insulin analogs transport from the subcutaneous and intradermal spaces to blood that can accommodate clinically observed biphasic appearance and delayed clearance of injected insulin, 2 phenomena that are not captured by existing PK models. To develop the model we compare 9 insulin transport PK models which describe hypothetical insulin delivery pathways potentially capable of approximating biphasic appearance of exogenous insulin. The models are tested with respect to their ability to describe clinical data from 10 healthy volunteers which received 1 subcutaneous and 2 intradermal insulin injections on 3 different occasions. The optimal model, selected based on information and posterior identifiability criteria, assumes that insulin is delivered at the administrative site and is then transported to the bloodstream via 2 independent routes (1) diffusion-like process to the blood and (2) combination of diffusion-like processes followed by an additional compartment before entering the blood. This optimal model accounts for biphasic appearance and delayed clearance of exogenous insulin. It agrees better with the clinical data as compared to commonly used models and is expected to improve the in silico development and testing of insulin treatment strategies, including artificial pancreas systems. PMID:25759184

  15. Insulin degludec. Uncertainty over cardiovascular harms.

    PubMed

    2014-06-01

    Insulin isophane (NPH) is the standard long-acting human insulin for patients with type 1 and type 2 diabetes. Long-acting human insulin analogues are also available: insulin glargine and insulin detemir. Uncertainties remain concerning their long-term adverse effects. Insulin degludec (Tresiba, Novo Nordisk) is another long-acting human insulin analogue, also approved in the EU for patients with type 1 and type 2 diabetes. It was authorised at a concentration of 100 units per ml, like other insulins, and also at a concentration of 200 units per ml. There are no comparative data on insulin degludec 200 units per ml in patients using high doses of insulin. Insulin degludec has mainly been evaluated in ten randomised, unblinded, "non-inferiority" trials lasting 26 to 52 weeks, nine versus insulin glargine and one versus insulin detemir. Insulin degludec was administered at a fixed time each evening, or in either the morning or evening on alternate days, at varying intervals of 8 to 40 hours between doses. Efficacy in terms of HbA1c control was similar to that of the other insulin analogues administered once a day. The frequency of severe hypoglycaemia was similar in the groups treated with insulin degludec and those treated with the other insulins (10% to 12% among patients with type 1 diabetes and less than 5% in patients with type 2 diabetes). Deaths and other serious adverse events were similarly frequent in the different groups. A meta-analysis of clinical trials, carried out by the US Food and Drug Administration, suggested an increase of about 60% in the incidence of cardiovascular complications, based on a composite endpoint combining myocardial infarction, stroke and cardiovascular death. Other adverse effects observed in these trials were already known to occur with human insulin and its analogues, including weight gain, hypersensitivity reactions, reactions at the injection site, etc. The trials were too short in duration to assess long-term harms

  16. Abscisic Acid Analogues That Act as Universal or Selective Antagonists of Phytohormone Receptors.

    PubMed

    Rajagopalan, Nandhakishore; Nelson, Ken M; Douglas, Amy F; Jheengut, Vishal; Alarcon, Idralyn Q; McKenna, Sean A; Surpin, Marci; Loewen, Michele C; Abrams, Suzanne R

    2016-09-13

    The plant hormone abscisic acid (ABA) plays many important roles in controlling plant development and physiology, from flowering to senescence. ABA is now known to exert its effects through a family of soluble ABA receptors, which in Arabidopsis thaliana has 13 members divided into three clades. Homologues of these receptors are present in other plants, also in relatively large numbers. Investigation of the roles of each homologue in mediating the diverse physiological roles of ABA is hampered by this genetic redundancy. We report herein the in vitro screening of a targeted ABA-like analogue library and identification of novel antagonist hits, including the analogue PBI686 that had been developed previously as a probe for identifying ABA-binding proteins. Further in vitro characterization of PBI686 and development of second-generation leads yielded both receptor-selective and universal antagonist hits. In planta assays in different species have demonstrated that these antagonist leads can overcome various ABA-induced physiological changes. While the general antagonists open up a hitherto unexplored avenue for controlling plant growth through inhibition of ABA-regulated physiological processes, the receptor-selective antagonist can be developed into chemical probes to explore the physiological roles of individual receptors.

  17. Abscisic Acid Analogues That Act as Universal or Selective Antagonists of Phytohormone Receptors.

    PubMed

    Rajagopalan, Nandhakishore; Nelson, Ken M; Douglas, Amy F; Jheengut, Vishal; Alarcon, Idralyn Q; McKenna, Sean A; Surpin, Marci; Loewen, Michele C; Abrams, Suzanne R

    2016-09-13

    The plant hormone abscisic acid (ABA) plays many important roles in controlling plant development and physiology, from flowering to senescence. ABA is now known to exert its effects through a family of soluble ABA receptors, which in Arabidopsis thaliana has 13 members divided into three clades. Homologues of these receptors are present in other plants, also in relatively large numbers. Investigation of the roles of each homologue in mediating the diverse physiological roles of ABA is hampered by this genetic redundancy. We report herein the in vitro screening of a targeted ABA-like analogue library and identification of novel antagonist hits, including the analogue PBI686 that had been developed previously as a probe for identifying ABA-binding proteins. Further in vitro characterization of PBI686 and development of second-generation leads yielded both receptor-selective and universal antagonist hits. In planta assays in different species have demonstrated that these antagonist leads can overcome various ABA-induced physiological changes. While the general antagonists open up a hitherto unexplored avenue for controlling plant growth through inhibition of ABA-regulated physiological processes, the receptor-selective antagonist can be developed into chemical probes to explore the physiological roles of individual receptors. PMID:27523384

  18. Insulin

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The manipulation of organic materials--cells, tissues, and even living organisms--offers many exciting possibilities for the future from organic computers to improved aquaculture. Commercial researchers are using the microgravity environment to produce large near perfect protein crystals Research on insulin has yielded crystals that far surpass the quality of insulin crystals grown on the ground. Using these crystals industry partners are working to develop new and improved treatments for diabetes. Other researchers are exploring the possibility of producing antibiotics using plant cell cultures which could lead to both orbital production and the improvement of ground-based antibiotic production.

  19. Long-term treatment of acromegaly with a long-acting analogue of somatostatin, octreotide.

    PubMed

    Page, M D; Millward, M E; Taylor, A; Preece, M; Hourihan, M; Hall, R; Scanlon, M F

    1990-02-01

    We have treated 16 acromegalic patients for up to 44 months with octreotide in varying doses. Growth hormone levels were suppressed in 14 patients with associated clinical improvement. IGF-1 levels were measured in 12 and fell into the normal range in 10. Prolactin was suppressed in six hyperprolactinaemic patients but was unaltered in normoprolactinaemic acromegalic patients. Post-prandial hyperglycaemia with impaired insulin secretion was noted in all patients, and one patient required oral hypoglycaemic agents. Octreotide did not affect thyroid function. CT scans from before and after six months of treatment demonstrated minimal tumour shrinkage in only two patients. Octreotide was well tolerated with no serious haematological or biochemical disturbance and no evidence of malabsorption. Two patients developed gallstones. Octreotide is effective in acromegaly. The development of gallstones is the only serious adverse event we have encountered.

  20. Insulin resistance is a two-sided mechanism acting under opposite catabolic and anabolic conditions.

    PubMed

    Schwartsburd, Polina

    2016-04-01

    The survival of multi-cellular organisms depends on the organism ability to maintain glucose homeostasis for time of low/high nutrient availability or high energy needs, and the ability to fight infections or stress. These effects are realized through the insulin controlled transport of blood glucose into the insulin-responsive cells such as muscle, fat and liver cells. Reduction in the ability of these cells to take glucose from the blood in response to normal circulating levels of insulin is known as insulin resistance (IR). Chronic IR is a key pathological feature of obesity, type 2 diabetes, sepsis and cancer cachexia, however temporal IR are widely met in fasting/ hibernation, pregnancy, anti-bacterial immunity, exercise and stress. Paradoxically, a certain part of the IR-cases is associated with catabolic metabolism, whereas the other is related to anabolic pathways. How can this paradoxical IR-response be explained? What is the metabolic basis of this IR variability and its physiological and pathological impacts? An answer to these questions might be achieved through the hypothesis in which IR is considered as a two-sided mechanism acting under opposite metabolic conditions (catabolism and anabolism) but with the common aim to sustain glucose homeostasis in a wide metabolic range. To test this hypothesis, I examined the main metabolic distinctions between the varied IR-cases and their dependence on the blood glucose concentration, level of the IR-threshold, and catabolic/anabolic activation. On the basis of the established interrelations, a simple model of IR-distribution has been developed. The model revealed the «U-type distribution» form with separation into two main IR-groups, each determined in the catabolic or anabolic conditions with one exception - type 2 diabetes and its paradoxical catabolic activation in anabolic conditions. The dual opposing (or complementary) role for the IR opens a new possibility for better understanding the cause and

  1. Insulin resistance is a two-sided mechanism acting under opposite catabolic and anabolic conditions.

    PubMed

    Schwartsburd, Polina

    2016-04-01

    The survival of multi-cellular organisms depends on the organism ability to maintain glucose homeostasis for time of low/high nutrient availability or high energy needs, and the ability to fight infections or stress. These effects are realized through the insulin controlled transport of blood glucose into the insulin-responsive cells such as muscle, fat and liver cells. Reduction in the ability of these cells to take glucose from the blood in response to normal circulating levels of insulin is known as insulin resistance (IR). Chronic IR is a key pathological feature of obesity, type 2 diabetes, sepsis and cancer cachexia, however temporal IR are widely met in fasting/ hibernation, pregnancy, anti-bacterial immunity, exercise and stress. Paradoxically, a certain part of the IR-cases is associated with catabolic metabolism, whereas the other is related to anabolic pathways. How can this paradoxical IR-response be explained? What is the metabolic basis of this IR variability and its physiological and pathological impacts? An answer to these questions might be achieved through the hypothesis in which IR is considered as a two-sided mechanism acting under opposite metabolic conditions (catabolism and anabolism) but with the common aim to sustain glucose homeostasis in a wide metabolic range. To test this hypothesis, I examined the main metabolic distinctions between the varied IR-cases and their dependence on the blood glucose concentration, level of the IR-threshold, and catabolic/anabolic activation. On the basis of the established interrelations, a simple model of IR-distribution has been developed. The model revealed the «U-type distribution» form with separation into two main IR-groups, each determined in the catabolic or anabolic conditions with one exception - type 2 diabetes and its paradoxical catabolic activation in anabolic conditions. The dual opposing (or complementary) role for the IR opens a new possibility for better understanding the cause and

  2. Effect of combined application insulin and insulin detemir on continous glucose monitor in children with type 1 diabetes mellitus

    PubMed Central

    Chen, Xiao-Yun; Dong, Qing; Li, Gui-Mei

    2015-01-01

    Insulin detemir is a soluble long-acting human insulin analogue at neutral pH with a unique mechanism of action, which could strengthen the effects of insulin. This study aims to explore the effects of insulin combined with insulin detemir on the continous glucose in children with type 1 diabetes mellitus. In this study, 150 patients with type 1 diabetes enrolled were included and randomly divided into 3 groups: insulin group (group A), insulin detemir group (group B) and insulin combined with insulin detemir group (group C). Each subject underwent 72 h of continuous glucose monitoring (CGM). MAGE, HbA1c and Noctumal Hypoglycemia levels were examined by using the ELISA kits. The body weight changes were also detected in this study. The results indicated that the information including age, body weight, disease duration and glucose level and HbA1c percentage on the start time point among three groups indicated no statistical differences. Insulin combined with insulin detemir decrease MAGE and HbA1c level in Group C compared to Group A and Group A (P < 0.05). Insulin combined with insulin detemir decreas noctumal hypoglycemia levels and body weight changes (P < 0.05). In conclusion, this study confirmed efficacy of insulin detemir by demonstrating non-inferiority of insulin detemir compared with insulin with respect to HbA1c, with an improved safety profile including significantly fewer hypoglycaemic episodes and less undesirable weight gain in children. PMID:26064343

  3. Diabetes and Insulin

    MedlinePlus

    ... years, but may eventually need insulin to maintain glucose control. What are the different types of insulin? Different ... glulisine • Short-acting: regular human insulin Basal insulin. Controls blood glucose levels between meals and throughout the night. This ...

  4. Safety, effectiveness, and cost effectiveness of long acting versus intermediate acting insulin for patients with type 1 diabetes: systematic review and network meta-analysis

    PubMed Central

    Tricco, Andrea C; Ashoor, Huda M; Antony, Jesmin; Beyene, Joseph; Veroniki, Areti Angeliki; Isaranuwatchai, Wanrudee; Harrington, Alana; Wilson, Charlotte; Tsouros, Sophia; Soobiah, Charlene; Yu, Catherine H; Hutton, Brian; Hoch, Jeffrey S; Hemmelgarn, Brenda R; Moher, David; Majumdar, Sumit R

    2014-01-01

    Objective To examine the safety, effectiveness, and cost effectiveness of long acting insulin for type 1 diabetes. Design Systematic review and network meta-analysis. Data sources Medline, Cochrane Central Register of Controlled Trials, Embase, and grey literature were searched through January 2013. Study selection Randomized controlled trials or non-randomized studies of long acting (glargine, detemir) and intermediate acting (neutral protamine Hagedorn (NPH), lente) insulin for adults with type 1 diabetes were included. Results 39 studies (27 randomized controlled trials including 7496 patients) were included after screening of 6501 titles/abstracts and 190 full text articles. Glargine once daily, detemir once daily, and detemir once/twice daily significantly reduced hemoglobin A1c compared with NPH once daily in network meta-analysis (26 randomized controlled trials, mean difference −0.39%, 95% confidence interval −0.59% to −0.19%; −0.26%, −0.48% to −0.03%; and −0.36%, −0.65% to −0.08%; respectively). Differences in network meta-analysis were observed between long acting and intermediate acting insulin for severe hypoglycemia (16 randomized controlled trials; detemir once/twice daily versus NPH once/twice daily: odds ratio 0.62, 95% confidence interval 0.42 to 0.91) and weight gain (13 randomized controlled trials; detemir once daily versus NPH once/twice daily: mean difference 4.04 kg, 3.06 to 5.02 kg; detemir once/twice daily versus NPH once daily: −5.51 kg, −6.56 to −4.46 kg; glargine once daily versus NPH once daily: −5.14 kg, −6.07 to −4.21). Compared with NPH, detemir was less costly and more effective in 3/14 cost effectiveness analyses and glargine was less costly and more effective in 2/8 cost effectiveness analyses. The remaining cost effectiveness analyses found that detemir and glargine were more costly but more effective than NPH. Glargine was not cost effective compared with detemir in 2/2 cost effectiveness analyses

  5. Crystal Structure of Insulin-Regulated Aminopeptidase with Bound Substrate Analogue Provides Insight on Antigenic Epitope Precursor Recognition and Processing.

    PubMed

    Mpakali, Anastasia; Saridakis, Emmanuel; Harlos, Karl; Zhao, Yuguang; Papakyriakou, Athanasios; Kokkala, Paraskevi; Georgiadis, Dimitris; Stratikos, Efstratios

    2015-09-15

    Aminopeptidases that generate antigenic peptides influence immunodominance and adaptive cytotoxic immune responses. The mechanisms that allow these enzymes to efficiently process a vast number of different long peptide substrates are poorly understood. In this work, we report the structure of insulin-regulated aminopeptidase, an enzyme that prepares antigenic epitopes for cross-presentation in dendritic cells, in complex with an antigenic peptide precursor analog. Insulin-regulated aminopeptidase is found in a semiclosed conformation with an extended internal cavity with limited access to the solvent. The N-terminal moiety of the peptide is located at the active site, positioned optimally for catalysis, whereas the C-terminal moiety of the peptide is stabilized along the extended internal cavity lodged between domains II and IV. Hydrophobic interactions and shape complementarity enhance peptide affinity beyond the catalytic site and support a limited selectivity model for antigenic peptide selection that may underlie the generation of complex immunopeptidomes.

  6. Comparison of Insulin Lispro Protamine Suspension with NPH Insulin in Pregnant Women with Type 2 and Gestational Diabetes Mellitus: Maternal and Perinatal Outcomes

    PubMed Central

    Visalli, Natalia; Abbruzzese, Santina; Bongiovanni, Marzia; Napoli, Angela

    2013-01-01

    Insulin therapy is still the gold standard in diabetic pregnancy. Insulin lispro protamine suspension is an available basal insulin analogue. Aim. To study pregnancy outcomes of women with type 2 and gestational diabetes mellitus when insulin lispro protamine suspension or human NPH insulin was added to medical nutrition therapy and/or short-acting insulin. Methods. In this retrospective study, for maternal outcome we recorded time and mode of delivery, hypertension, glycaemic control (fasting blood glucose and HbA1c), hypoglycemias, weight increase, and insulin need. For neonatal outcome birth weight and weight class, congenital malformations was recorded and main neonatal complications. Two-tail Student's t-test and chi-square test were performed when applicable; significant P < 0.05. Results. Eighty-nine pregnant women (25 with type 2 diabetes and 64 with gestational diabetes mellitus; 53 under insulin lispro protamine suspension and 36 under human NPH insulin) were recruited. Maternal and neonatal outcomes were quite similar between the two therapeutic approaches; however, insulin need was higher in NPH. At the end of pregnancy, eight women with gestational diabetes continued to use only basal insulin analogue. Conclusions. Pregnancy outcome in type 2 and gestational diabetes mellitus with insulin lispro protamine suspension was similar to that with NPH insulin, except for a lower insulin requirement. PMID:23840206

  7. Comparison of Insulin Lispro Protamine Suspension with NPH Insulin in Pregnant Women with Type 2 and Gestational Diabetes Mellitus: Maternal and Perinatal Outcomes.

    PubMed

    Colatrella, Antonietta; Visalli, Natalia; Abbruzzese, Santina; Leotta, Sergio; Bongiovanni, Marzia; Napoli, Angela

    2013-01-01

    Insulin therapy is still the gold standard in diabetic pregnancy. Insulin lispro protamine suspension is an available basal insulin analogue. Aim. To study pregnancy outcomes of women with type 2 and gestational diabetes mellitus when insulin lispro protamine suspension or human NPH insulin was added to medical nutrition therapy and/or short-acting insulin. Methods. In this retrospective study, for maternal outcome we recorded time and mode of delivery, hypertension, glycaemic control (fasting blood glucose and HbA1c), hypoglycemias, weight increase, and insulin need. For neonatal outcome birth weight and weight class, congenital malformations was recorded and main neonatal complications. Two-tail Student's t-test and chi-square test were performed when applicable; significant P < 0.05. Results. Eighty-nine pregnant women (25 with type 2 diabetes and 64 with gestational diabetes mellitus; 53 under insulin lispro protamine suspension and 36 under human NPH insulin) were recruited. Maternal and neonatal outcomes were quite similar between the two therapeutic approaches; however, insulin need was higher in NPH. At the end of pregnancy, eight women with gestational diabetes continued to use only basal insulin analogue. Conclusions. Pregnancy outcome in type 2 and gestational diabetes mellitus with insulin lispro protamine suspension was similar to that with NPH insulin, except for a lower insulin requirement. PMID:23840206

  8. Dose-finding study for the use of long-acting gonadotrophin-releasing hormone analogues prior to ovarian stimulation for IVF.

    PubMed

    Yim, S F; Lok, I H; Cheung, L P; Briton-Jones, C M; Chiu, T T; Haines, C J

    2001-03-01

    Gonadotrophin-releasing hormone (GnRH) analogues improve the outcome of treatment with IVF by increasing the number and quality of oocytes retrieved and by reducing cycle cancellation rates. Whilst short-acting GnRH analogues are most commonly used, depot preparations are now available that are more convenient for patient use. Some studies have reported that pregnancy rates with depot GnRH analogues are similar to those of short-acting preparations, but others have suggested that the more profound down-regulation seen with depot GnRH analogues results in inferior embryo quality. The purpose of this study was to determine whether a lower than conventional dose of a depot GnRH analogue may be more appropriate for use in ovarian stimulation prior to IVF. Sixty patients were randomized to receive either 3.75 mg (conventional dose) or 1.87 mg (low dose) triptorelin prior to ovarian stimulation for IVF. Suppression was measured using serum concentrations of LH measured 2 and 3 weeks after the administration of the GnRH analogues, the dose of gonadotrophin used and the time to resumption of menses. Mean concentrations of LH were 2.2 +/- 1.0 and 1.1 +/- 0.6 IU/l in the conventional dose group and 3.5 +/- 5.5 and 2.7 +/- 1.9 IU/l in the low dose group (P < 0.05 at 2 and 3 weeks). There were no significant differences between the doses of gonadotrophins used, the number of oocytes and embryos available and the time to resumption of menses, nor in the pregnancy rates. Although the degree of suppression as measured biochemically was more profound with the conventional dose, this did not affect the IVF outcome. The use of a lower dose therefore appears to be equally effective and could contribute to a reduction in the cost of treatment.

  9. Rapid Acting Insulin Use and Persistence among Elderly Type 2 Diabetes Patients Adding RAI to Oral Antidiabetes Drug Regimens

    PubMed Central

    Zhou, Steve; Fan, Tao

    2016-01-01

    We examined the real-world utilization and persistence of rapid acting insulin (RAI) in elderly patients with type 2 diabetes who added RAI to their drug (OAD) regimen. Insulin-naïve patients aged ≥65 years, with ≥1 OAD prescription during the baseline period, who were continuously enrolled in the US Humana Medicare Advantage insurance plan for 18 months and initiated RAI were included. Among patients with ≥2 RAI prescriptions (RAIp), persistence during the 12-month follow-up was assessed. Multivariate logistic regression analyses identified factors affecting RAI use and persistence. Of 3734 patients adding RAI to their OAD regimen, 2334 (62.5%) had a RAIp during follow-up. Factors associated with RAIp included using ≤2 OADs; cognitive impairment, basal insulin use during follow-up; and higher RAI out-of-pocket costs ($36 to <$56 versus $0 to $6.30). Patients were less likely to persist with RAI when on ≤2 OADs versus ≥3 OADs and when having higher RAI out-of-pocket costs ($36 to <$56 versus $0 to $6.30) and more likely to persist when they had cognitive impairment and basal insulin use during follow-up. Real-world persistence of RAI in insulin-naïve elderly patients with type 2 diabetes was very poor when RAI was added to an OAD regimen. PMID:27761472

  10. Long-acting somatostatin analogues provide significant beneficial effect in patients with refractory small bowel angiodysplasia: Results from a proof of concept open label mono-centre trial

    PubMed Central

    Hall, Barry; Breslin, Niall; McNamara, Deirdre

    2015-01-01

    Introduction Small bowel angiodysplasias account for over 50% of causes of small bowel bleeding and carry a worse prognosis than lesions located elsewhere in the gastrointestinal tract. Re-bleeding rates are high even after first-line endoscopic therapy and are associated with high levels of morbidity for affected patients. Small trials of long-acting somatostatin analogues have shown promising results but have not yet been assessed in patients with refractory small bowel disease. Aim The purpose of this study was to assess the effect of long-acting somatostatin analogues in reducing re-bleeding rates and transfusion requirements, and improving haemoglobin levels in patients with refractory small bowel angiodysplasia. Methods Patients with refractory small bowel angiodysplasia were treated with 20 mg of long-acting octreotide for a minimum of three months. Response was assessed according to: rates of re-bleeding, haemoglobin levels, transfusion requirements, and side effects. Results A total of 24 patients were initially treated and 20 received at least three doses. Rates of complete, partial and non-response were 70%, 20% and 10% respectively. Average haemoglobin rates increased from 9.19 g/dl to 11.35 g/dl (p = 0.0027, 95% confidence interval (CI) −3.5 to −1.1) in the group overall and 70% remained transfusion-free after a mean treatment duration of 8.8 months. The rate of adverse events was higher than previously reported at 30%. Conclusion Long-acting somatostatin analogues offer a therapeutic advantage in a significant proportion of patients with small bowel angiodysplasia. With careful patient selection and close observation, a long-acting somatostatin analogue should be considered in all patients with persistent anaemia attributable to refractory disease in conjunction with other standard treatments. PMID:26966525

  11. Continuous subcutaneous insulin infusion in diabetes: patient populations, safety, efficacy, and pharmacoeconomics

    PubMed Central

    Battelino, Tadej; Danne, Thomas; Hovorka, Roman; Jarosz‐Chobot, Przemyslawa; Renard, Eric

    2015-01-01

    Summary The level of glycaemic control necessary to achieve optimal short‐term and long‐term outcomes in subjects with type 1 diabetes mellitus (T1DM) typically requires intensified insulin therapy using multiple daily injections or continuous subcutaneous insulin infusion. For continuous subcutaneous insulin infusion, the insulins of choice are the rapid‐acting insulin analogues, insulin aspart, insulin lispro and insulin glulisine. The advantages of continuous subcutaneous insulin infusion over multiple daily injections in adult and paediatric populations with T1DM include superior glycaemic control, lower insulin requirements and better health‐related quality of life/patient satisfaction. An association between continuous subcutaneous insulin infusion and reduced hypoglycaemic risk is more consistent in children/adolescents than in adults. The use of continuous subcutaneous insulin infusion is widely recommended in both adult and paediatric T1DM populations but is limited in pregnant patients and those with type 2 diabetes mellitus. All available rapid‐acting insulin analogues are approved for use in adult, paediatric and pregnant populations. However, minimum patient age varies (insulin lispro: no minimum; insulin aspart: ≥2 years; insulin glulisine: ≥6 years) and experience in pregnancy ranges from extensive (insulin aspart, insulin lispro) to limited (insulin glulisine). Although more expensive than multiple daily injections, continuous subcutaneous insulin infusion is cost‐effective in selected patient groups. This comprehensive review focuses on the European situation and summarises evidence for the efficacy and safety of continuous subcutaneous insulin infusion, particularly when used with rapid‐acting insulin analogues, in adult, paediatric and pregnant populations. The review also discusses relevant European guidelines; reviews issues that surround use of this technology; summarises the effects of continuous subcutaneous insulin

  12. Giving an insulin injection

    MedlinePlus

    ... want. Put the needle into and through the rubber top of the insulin bottle. Push the plunger ... longer-acting insulin. Put the needle into the rubber top of that insulin bottle. Push the plunger ...

  13. Structure-based de novo design, molecular docking and molecular dynamics of primaquine analogues acting as quinone reductase II inhibitors.

    PubMed

    Murce, Erika; Cuya-Guizado, Teobaldo Ricardo; Padilla-Chavarria, Helmut Isaac; França, Tanos Celmar Costa; Pimentel, Andre Silva

    2015-11-01

    Primaquine is a traditional antimalarial drug with low parasitic resistance and generally good acceptance at higher doses, which has been used for over 60 years in malaria treatment. However, several limitations related to its hematotoxicity have been reported. It is believed that this toxicity comes from the hydroxylation of the C-5 and C-6 positions of its 8-aminoquinoline ring before binding to the molecular target: the quinone reductase II (NQO2) human protein. In this study we propose primaquine derivatives, with substitution at position C-6 of the 8-aminoquinoline ring, planned to have better binding to NQO2, compared to primaquine, but with a reduced toxicity related to the C-5 position being possible to be oxidized. On this sense the proposed analogues were suggested in order to reduce or inhibit hydroxylation and further oxidation to hemotoxic metabolites. Five C-6 substituted primaquine analogues were selected by de novo design and further submitted to docking and molecular dynamics simulations. Our results suggest that all analogues bind better to NQO2 than primaquine and may become better antimalarials. However, the analogues 3 and 4 are predicted to have a better activity/toxicity balance.

  14. [Novel insulins].

    PubMed

    Eriksson, Johan G; Laine, Merja K

    2016-01-01

    Novel insulins have entered the market during recent years. The ultra-long acting insulins, insulin degludek and insulin glargine, the latter having a strength of 300 U/ml, exhibit a steady and predictable action curve. Studies have indicated that significantly fewer hypoglycemiae occur when using degludek in patients with either type 1 or type 2 diabetes, whereas similar evidence about glargine (300 U/mI) has been obtained in the treatment of type 2 diabetes. The long duration of action of both insulins brings long-needed flexibility to.their dosing. PMID:27089618

  15. Laminin 411 acts as a potent inducer of umbilical cord mesenchymal stem cell differentiation into insulin-producing cells

    PubMed Central

    2014-01-01

    Background Diabetes mellitus (DM) is an incurable metabolic disease constituting a major threat to human health. Insulin-producing cells (IPCs) differentiated from mesenchymal stem cells (MSCs) hold great promise in the treatment of DM. The development of an efficient IPC induction system is a crucial step for the clinical application of IPCs for DM. Laminin 411 is a key component of the basement membrane and is involved in the regulation of cell differentiation; however, little is known about a role of laminin 411 in the regulation of IPC differentiation from human MSCs. Methods MSCs were isolated from human umbilical cord (UC-MSCs) and expanded in an in vitro culture system. UC-MSCs were then cultured in the IPC induction and differentiation medium in the presence of laminin 411. Flow cytometry, Quantitative realtime PCR, immunofluorescence staining, ELISA, Western blotting and other techniques were applied to determine IPC generation, insulin expression and related mechanisms. To evaluate potential therapeutic efficacy of IPCs induced from UC-MSCs, a type-1 diabetes (T1DM) rat model was generated using streptozotocin. Blood glucose, insulin levels, and survival of rats were monitored periodically following intravenous injection of the tested cells. Results Laminin 411 markedly induced the expression of the genes Foxa2 and Sox17, markers for pancreatic precursor cells, efficiently induced IPC differentiation from MSCs, and up-regulated insulin expression at both mRNA and protein levels. Furthermore, the expression of the genes known to govern insulin expression including Pdx1 and Ngn3 was markedly induced by laminin 411, which suggests that Pdx1 and Ngn3 signaling pathways are involved in laminin 411 induced-insulin expression machinery. More importantly, administration of laminin 411-induced IPCs rapidly and significantly down-regulated fasting blood glucose levels, significantly reduced the HbA1c concentration and markedly improved the symptoms and survival of

  16. Cyclohexanol analogues are positive modulators of GABA(A) receptor currents and act as general anaesthetics in vivo.

    PubMed

    Hall, Adam C; Griffith, Theanne N; Tsikolia, Maia; Kotey, Francesca O; Gill, Nikhila; Humbert, Danielle J; Watt, Erin E; Yermolina, Yuliya A; Goel, Shikha; El-Ghendy, Bahaa; Hall, C Dennis

    2011-09-30

    GABA(A) receptors meet all the pharmacological criteria required to be considered important general anaesthetic targets. In the following study, the modulatory effects of various commercially available and novel cyclohexanols were investigated on recombinant human γ-aminobutyric acid (GABA(A), α(1)β(2)γ(2s)) receptors expressed in Xenopus oocytes, and compared to the modulatory effects on GABA currents observed with exposures to the intravenous anaesthetic agent, propofol. Submaximal EC(20) GABA currents were typically enhanced by co-applications of 3-300 μM cyclohexanols. For instance, at 30 μM 2,6-diisopropylcyclohexanol (a novel compound) GABA responses were increased ~3-fold (although similar enhancements were achieved at 3 μM propofol). As regards rank order for modulation by the cyclohexanol analogues at 30 μM, the % enhancements for 2,6-dimethylcyclohexanol~2,6-diethylcyclohexanol~2,6-diisopropylcyclohexanol~2,6-di-sec-butylcyclohexanol ≫2,6-di-tert-butylcyclohexanol~4-tert-butylcyclohexanol>cyclohexanol~cyclopentanol~2-methylcyclohexanol. We further tested the potencies of the cyclohexanol analogues as general anaesthetics using a tadpole in vivo assay. Both 2,6-diisopropylcyclohexanol and 2,6-dimethylcyclohexanol were effective as anaesthetics with EC(50)s of 14.0 μM and 13.1 μM respectively, while other cyclohexanols with bulkier side chains were less potent. In conclusion, our data indicate that cyclohexanols are both positive modulators of GABA(A) receptors currents and anaesthetics. The positioning and size of the alkyl groups at the 2 and 6 positions on the cyclohexanol ring were critical determinants of activity.

  17. Insulin Glargine 300 U/mL: A Review in Diabetes Mellitus.

    PubMed

    Blair, Hannah A; Keating, Gillian M

    2016-03-01

    Insulin glargine 300 U/mL (Toujeo(®)) is a long-acting basal insulin analogue approved for the treatment of diabetes mellitus. Insulin glargine 300 U/mL has a more stable and prolonged pharmacokinetic/pharmacodynamic profile than insulin glargine 100 U/mL (Lantus(®)), with a duration of glucose-lowering activity exceeding 24 h. In several 6-month phase III trials, insulin glargine 300 U/mL achieved comparable glycaemic control to that seen with insulin glargine 100 U/mL in patients with type 1 or type 2 diabetes, albeit with consistently higher daily basal insulin requirements. These improvements in glycaemic control were maintained during longer-term (12 months) treatment. Insulin glargine 300 U/mL was generally associated with a lower risk of nocturnal hypoglycaemia than insulin glargine 100 U/mL in insulin-experienced patients with type 2 diabetes, while the risk of nocturnal hypoglycaemia did not significantly differ between treatment groups in insulin-naïve patients with type 2 diabetes or in patients with type 1 diabetes. To conclude, once-daily subcutaneous insulin glargine 300 U/mL is an effective and generally well tolerated basal insulin therapy option for patients with type 1 or type 2 diabetes. PMID:26821280

  18. Determinants of intensive insulin therapeutic regimens in patients with type 1 diabetes: data from a nationwide multicenter survey in Brazil

    PubMed Central

    2014-01-01

    Background To evaluate the determinants of intensive insulin regimens (ITs) in patients with type 1 diabetes (T1D). Methods This multicenter study was conducted between December 2008 and December 2010 in 28 public clinics in 20 Brazilian cities. Data were obtained from 3,591 patients (56.0% female, 57.1% Caucasian). Insulin regimens were classified as follows: group 1, conventional therapy (CT) (intermediate human insulin, one to two injections daily); group 2 (three or more insulin injections of intermediate plus regular human insulin); group 3 (three or more insulin injections of intermediate human insulin plus short-acting insulin analogues); group 4, basal-bolus (one or two insulin injections of long-acting plus short-acting insulin analogues or regular insulin); and group 5, basal-bolus with continuous subcutaneous insulin infusion (CSII). Groups 2 to 5 were considered IT groups. Results We obtained complete data from 2,961 patients. Combined intermediate plus regular human insulin was the most used therapeutic regimen. CSII was used by 37 (1.2%) patients and IT by 2,669 (90.2%) patients. More patients on IT performed self-monitoring of blood glucose and were treated at the tertiary care level compared to CT patients (p < 0.001). The majority of patients from all groups had HbA1c levels above the target. Overweight or obesity was not associated with insulin regimen. Logistic regression analysis showed that economic status, age, ethnicity, and level of care were associated with IT (p < 0.001). Conclusions Given the prevalence of intensive treatment for T1D in Brazil, more effective therapeutic strategies are needed for long term-health benefits. PMID:24920963

  19. New ways of insulin delivery.

    PubMed

    Heinemann, L

    2011-02-01

    The predominant number of papers published from the middle of 2009 to the middle of 2010 about alternative routes of insulin administration (ARIA) were still about inhaled insulin. Long-term experience with Exubera was the topic of a number of publications that are also of relevance for inhaled insulin in general. The clinical trials performed with AIR insulin by Eli Lilly were published in a supplement issue of one diabetes technology journal and most of these will be presented. A number of other publications (also one in a high ranked journal) about their inhaled insulin were from another company: MannKind. The driving force behind Technosphere insulin (TI) - which is the only one still in clinical development - is Al Mann; he has put a lot of his personal fortune in this development. We will know the opinion of the regulatory authorities about TI in the near future; however, I am personally relatively confident that the Food and Drug Administration will provide TI with market approval. The more critical question for me is: will diabetologists and patients jump on this product once it becomes commercially available? Will it become a commercial success? In view of many negative feelings in the scientific community about inhaled insulin, it might be of help that MannKind publish their studies with TI systematically. Acknowledging being a believer in this route of insulin administration myself, one has to state that Exubera and AIR insulin had not offered profound advantages in terms of pharmacokinetic (PK) and pharmacodynamic (PD) properties in comparison with subcutaneously (SC) applied regular human insulin (RHI) and rapid-acting insulin analogues. The time-action profiles of these inhaled insulins were more or less comparable with that of rapid-acting insulin analogues. This is clearly different with TI which exhibits a strong metabolic effect shortly after application and a rapid decline in the metabolic effect thereafter; probably the duration of action is

  20. New ways of insulin delivery.

    PubMed

    Heinemann, L

    2011-02-01

    The predominant number of papers published from the middle of 2009 to the middle of 2010 about alternative routes of insulin administration (ARIA) were still about inhaled insulin. Long-term experience with Exubera was the topic of a number of publications that are also of relevance for inhaled insulin in general. The clinical trials performed with AIR insulin by Eli Lilly were published in a supplement issue of one diabetes technology journal and most of these will be presented. A number of other publications (also one in a high ranked journal) about their inhaled insulin were from another company: MannKind. The driving force behind Technosphere insulin (TI) - which is the only one still in clinical development - is Al Mann; he has put a lot of his personal fortune in this development. We will know the opinion of the regulatory authorities about TI in the near future; however, I am personally relatively confident that the Food and Drug Administration will provide TI with market approval. The more critical question for me is: will diabetologists and patients jump on this product once it becomes commercially available? Will it become a commercial success? In view of many negative feelings in the scientific community about inhaled insulin, it might be of help that MannKind publish their studies with TI systematically. Acknowledging being a believer in this route of insulin administration myself, one has to state that Exubera and AIR insulin had not offered profound advantages in terms of pharmacokinetic (PK) and pharmacodynamic (PD) properties in comparison with subcutaneously (SC) applied regular human insulin (RHI) and rapid-acting insulin analogues. The time-action profiles of these inhaled insulins were more or less comparable with that of rapid-acting insulin analogues. This is clearly different with TI which exhibits a strong metabolic effect shortly after application and a rapid decline in the metabolic effect thereafter; probably the duration of action is

  1. Insulin-like growth factor-1 receptor acts as a growth regulator in synovial sarcoma.

    PubMed

    Friedrichs, N; Küchler, J; Endl, E; Koch, A; Czerwitzki, J; Wurst, P; Metzger, D; Schulte, J H; Holst, M I; Heukamp, L C; Larsson, O; Tanaka, S; Kawai, A; Wardelmann, E; Buettner, R; Pietsch, T; Hartmann, W

    2008-12-01

    Synovial sarcomas account for 5-10% of all soft tissue sarcomas and the majority of synovial sarcomas display characteristic t(X;18) translocations that result in enhanced transcription of the insulin-like growth factor-2 (IGF-2) gene. IGF-2 is an essential fetal mitogen involved in the pathogenesis of different tumours, leading to cellular proliferation and inhibition of apoptosis. Here we asked whether activation of IGF signalling is of functional importance in synovial sarcomas. We screened human synovial sarcomas for expression of IGF-2 and the phosphorylated IGF-1 receptor (IGF-1R), which mainly mediates the proliferative and anti-apoptotic effects of IGF-2. Since both the phosphatidylinositol 3'-kinase (PI3K)-AKT pathway and the MAPK signalling cascade are known to be involved in the transmission of IGF-1R signals, expression of phosphorylated (p)-AKT and p-p44/42 MAPK was additionally assessed. All tumours expressed IGF-2 and 78% showed an activated IGF-1R. All tumours were found to express p-AKT and 92% showed expression of activated p44/42 MAPK. To analyse the functional and potential therapeutic relevance of IGF-1R signalling, synovial sarcoma cell lines were treated with the IGF-1R inhibitor NVP-AEW541. Growth was impaired by the IGF-1R antagonist, which was consistently accompanied by a dose-dependent reduction of phosphorylation of AKT and p44/42 MAPK. Functionally, inhibition of the receptor led to increased apoptosis and diminished mitotic activity. Concurrent exposure of selected cells to NVP-AEW541 and conventional chemotherapeutic agents resulted in positive interactions. Finally, synovial sarcoma cell migration was found to be dependent on signals transmitted by the IGF-1R. In summary, our data show that the IGF-1R might represent a promising therapeutic target in synovial sarcomas.

  2. High-mix insulins

    PubMed Central

    Kalra, Sanjay; Farooqi, Mohammad Hamed; El-Houni, Ali E.

    2015-01-01

    Premix insulins are commonly used insulin preparations, which are available in varying ratios of different molecules. These drugs contain one short- or rapid-acting, and one intermediate- or long-acting insulin. High-mix insulins are mixtures of insulins that contain 50% or more than 50% of short-acting insulin. This review describes the clinical pharmacology of high-mix insulins, including data from randomized controlled trials. It suggests various ways, in which high-mix insulin can be used, including once daily, twice daily, thrice daily, hetero-mix, and reverse regimes. The authors provide a rational framework to help diabetes care professionals, identify indications for pragmatic high-mix use. PMID:26425485

  3. PF-05231023, a long-acting FGF21 analogue, decreases body weight by reduction of food intake in non-human primates.

    PubMed

    Thompson, W Clayton; Zhou, Yingjiang; Talukdar, Saswata; Musante, Cynthia J

    2016-08-01

    PF-05231023, a long-acting FGF21 analogue, is a promising potential pharmacotherapy for the treatment of obesity and associated comorbidities. Previous studies have shown the potential of FGF21 and FGF21-like compounds to decrease body weight in mice, non-human primates, and humans; the precise mechanisms of action remain unclear. In particular, there have been conflicting reports on the degree to which FGF21-induced weight loss in non-human primates is attributable to a decrease in food intake versus an increase in energy expenditure. Here, we present a semi-mechanistic mathematical model of energy balance and body composition developed from similar work in mice. This model links PF-05231023 administration and washout to changes in food intake, which in turn drives changes in body weight. The model is calibrated to and compared with recently published data from cynomolgus macaques treated with PF-05231023, demonstrating its accuracy in describing pharmacotherapy-induced weight loss in these animals. The results are consistent with the hypothesis that PF-05231023 decreases body weight in cynomolgus macaques solely by a reduction in food intake, with no direct effect on energy expenditure. PMID:27405817

  4. Inhibition of insulin amyloid fibril formation by cyclodextrins.

    PubMed

    Kitagawa, Keisuke; Misumi, Yohei; Ueda, Mitsuharu; Hayashi, Yuya; Tasaki, Masayoshi; Obayashi, Konen; Yamashita, Taro; Jono, Hirofumi; Arima, Hidetoshi; Ando, Yukio

    2015-01-01

    Localized insulin-derived amyloid masses occasionally form at the site of repeated insulin injections in patients with insulin-dependent diabetes and cause subcutaneous insulin resistance. Various kinds of insulin including porcine insulin, human insulin, and insulin analogues reportedly formed amyloid fibrils in vitro and in vivo, but the impact of the amino acid replacement in insulin molecules on amyloidogenicity is largely unknown. In the present study, we demonstrated the difference in amyloid fibril formation kinetics of human insulin and insulin analogues, which suggests an important role of the C-terminal domain of the insulin B chain in nuclear formation of amyloid fibrils. Furthermore, we determined that cyclodextrins, which are widely used as drug carriers in the pharmaceutical field, had an inhibitory effect on the nuclear formation of insulin amyloid fibrils. These findings have significant implications for the mechanism underlying insulin amyloid fibril formation and for developing optimal additives to prevent this subcutaneous adverse effect.

  5. Grape seed proanthocyanidins and metformin act by different mechanisms to promote insulin signaling in rats fed high calorie diet.

    PubMed

    Yogalakshmi, Baskaran; Bhuvaneswari, Saravanan; Sreeja, S; Anuradha, Carani Venkatraman

    2014-03-01

    Key pathways like insulin signaling, AMP activated kinase (AMPK) activation and inflammatory signaling are involved in the complex pathological network of hepatic insulin resistance. Our aim is to investigate whether grape seed proanthocyanidins (GSP) and metformin (MET) target any of these pathways in insulin resistant rat liver. Albino Wistar rats were rendered insulin resistant by feeding a high fat-fructose diet (HFFD). Either GSP (100 mg/kg b.w), MET(50 mg/kg b.w) or both were administered to insulin resistant rats as therapeutic options. HFFD-feeding caused hyperglycemia, hyperinsulinemia, increased gluconeogenesis, decreased tyrosine phosphorylation of insulin receptor-β(IR-β) and insulin receptor substrate-1 (IRS-1) and increased serine phosphorylation of IRS-1. The association of p85α subunit of phosphotidyl inositol 3 kinase(PI3K) with IRS-1 and subsequent Akt phosphorylation were reduced while the expression of mitogen activated protein kinases (MAPK) were increased in HFFD rats. Both MET and GSP reduced hyperglycemia and hyperinsulinemia and improved glycolysis, tyrosine phosphorylation of IR-β and IRS-1, IRS-1-PI3K association and Akt activation. However, activation of tumor necrosis factor-α, interleukin-6, leptin and suppressor of cytokine signaling-3 and reduction in adiponectin caused by chronic HFFD feeding were reversed by GSP better than by MET. Activation of AMPK by GSP was much less compared to that by MET. These findings suggest that GSP might activate PI3K pathway and promote insulin action by reducing serine kinase activation and cytokine signaling and MET by targeting AMPK. The beneficial effects were enhanced during combination therapy. Thus, combination therapy with MET and GSP may be considered for the management of metabolic syndrome. PMID:24026800

  6. Clinical utility of insulin and insulin analogs

    PubMed Central

    Sanlioglu, Ahter D.; Altunbas, Hasan Ali; Balci, Mustafa Kemal; Griffith, Thomas S.; Sanlioglu, Salih

    2013-01-01

    Diabetes is a pandemic disease characterized by autoimmune, genetic and metabolic abnormalities. While insulin deficiency manifested as hyperglycemia is a common sequel of both Type-1 and Type-2 diabetes (T1DM and T2DM), it does not result from a single genetic defect—rather insulin deficiency results from the functional loss of pancreatic β cells due to multifactorial mechanisms. Since pancreatic β cells of patients with T1DM are destroyed by autoimmune reaction, these patients require daily insulin injections. Insulin resistance followed by β cell dysfunction and β cell loss is the characteristics of T2DM. Therefore, most patients with T2DM will require insulin treatment due to eventual loss of insulin secretion. Despite the evidence of early insulin treatment lowering macrovascular (coronary artery disease, peripheral arterial disease and stroke) and microvascular (diabetic nephropathy, neuropathy and retinopathy) complications of T2DM, controversy exists among physicians on how to initiate and intensify insulin therapy. The slow acting nature of regular human insulin makes its use ineffective in counteracting postprandial hyperglycemia. Instead, recombinant insulin analogs have been generated with a variable degree of specificity and action. Due to the metabolic variability among individuals, optimum blood glucose management is a formidable task to accomplish despite the presence of novel insulin analogs. In this article, we present a recent update on insulin analog structure and function with an overview of the evidence on the various insulin regimens clinically used to treat diabetes. PMID:23584214

  7. Insulin-like growth factor-I (IGF-I) analogue, LR(3)IGF-I, ameliorates the loss of body weight but not of skeletal muscle during food restriction.

    PubMed

    Tomas, F M

    2001-04-01

    Insulin-like growth factor-I (IGF-I) is known to have anabolic effects in freely fed rats. We have investigated the ability of infused LR(3)IGF-I, an analogue of IGF-I, to attenuate the loss of lean tissue due to food restriction in young (5 weeks) and adult (12 weeks) rats. Groups of rats received food at 100%, 78%, 56% or 33% of ad libitum levels. Within each nutrition group the rats were continuously infused with LR(3)IGF-I at (98 nmol/day)/kg body weight or vehicle for 7 days. At each level of food intake, rats infused with LR(3)IGF-I maintained higher body weight (around 3-8%;P< 0.001) and nitrogen retention (P< 0.001) than those infused with vehicle alone but muscle protein was not conserved. LR(3)IGF-I infusion increased fat loss only in young rats (P< 0.05) despite a reduction in plasma insulin levels in both age groups (P< 0.01). Muscle protein turnover rates were unaffected by LR(3)IGF-I in young rats. In adult rats LR(3)IGF-I exacerbated the effects of food restriction through increased rates of protein breakdown, reduced RNA content and reduced rates of protein synthesis (P< 0.05) despite their larger fat reserves. Although young and adult rats show differing metabolic responses, we conclude that infusion of LR(3)IGF-I to either group during short-term food restriction does not ameliorate the loss of lean tissue by allowing more efficient utilization and/or partitioning of nutrients. PMID:11472075

  8. Identification and characterization of cis-acting elements conferring insulin responsiveness on hamster cholesterol 7alpha-hydroxylase gene promoter.

    PubMed Central

    De Fabiani, E; Crestani, M; Marrapodi, M; Pinelli, A; Golfieri, V; Galli, G

    2000-01-01

    Bile acid biosynthesis occurs primarily through a pathway initiated by the 7alpha-hydroxylation of cholesterol, catalysed by cholesterol 7alpha-hydroxylase (encoded by CYP7A1). Insulin down-regulates CYP7A1 transcription. The aim of our study was to characterize the sequences of hamster CYP7A1 promoter, mediating the response to insulin. We therefore performed transient transfection assays with CYP7A1 promoter/luciferase chimaeras mutated at putative response elements and studied protein-DNA interactions by means of gel electrophoresis mobility-shift assay. Here we show that two sequences confer insulin responsiveness on hamster CYP7A1 promoter: a canonical insulin response sequence TGTTTTG overlapping a binding site for hepatocyte nuclear factor 3 (HNF-3) (at nt -235 to -224) and a binding site for HNF-4 at nt -203 to -191. In particular we show that the hamster CYP7A1 insulin response sequence is part of a complex unit involved in specific interactions with multiple transcription factors such as members of the HNF-3 family; this region does not bind very strongly to HNF-3 and as a consequence partly contributes to the transactivation of the gene. Another sequence located at nt -138 to -128 binds to HNF-3 and is involved in the tissue-specific regulation of hamster CYP7A1. The sequence at nt -203 to -191 is not only essential for insulin effect but also has a major role in the liver-specific expression of CYP7A1; it is the target of HNF-4. Therefore the binding sites for liver-enriched factors, present in the hamster CYP7A1 proximal promoter in close vicinity and conserved between species, constitute a regulatory unit important for basal hepatic expression and tissue restriction of the action of hormones such as insulin. PMID:10727413

  9. Insulin and the law.

    PubMed

    Marks, Vincent

    2015-11-01

    Hypoglycaemia, if it can be proved, may be used as a defence against almost any criminal charge provided it can be established that the perpetrator was in a state of neuroglycopenic (hypoglycaemic) automatism at the time of the offence. Hypoglycaemia produced by exogenous insulin can also be used as a suicidal or homicidal weapon. This paper discusses some of the pitfalls confronting the investigator of suspected insulin misuse including problems arising from the increasing prevalence of insulin analogues and the unreliability of immunoassays for their detection and measurement in the forensic context. PMID:26092979

  10. New ways of insulin delivery.

    PubMed

    Heinemann, L

    2010-02-01

    foresee that with most new ways of insulin delivery the bioavailability/biopotency will be lower than with subcutaneous (SC) insulin administration. This in turn requires that more insulin has to be applied to induce the same metabolic (blood glucose lowering) effect in patients with diabetes. If the costs of insulin are of relevance for the price (this clearly depends on the source of insulin the individual company has to use) the price of the product will be higher relative to standard SC insulin therapy. The question is, clearly, what are the advantages of the new product? In times when SC insulin administration was painful and cumbersome it was clear that the ease of swallowing an insulin tablet was a good argument for many patients. With the invention of thin insulin needles that make the SC injection practically pain free in most cases, this argument of being 'convenient' becomes of limited relevance. However, for many patients (especially the public) the avoidance of 'injection' is an argument. The question is, how much is the patient (society) willing to pay for such a psychological 'advantage'? Most probably additional clear-cut clinical advantages must be demonstrable to convince the payers to reimburse a new product, especially when the price is higher than that of SC insulin. If, for example, postprandial glycaemic excursions are considerably better controlled because the pharmacodynamic (PD) effects are better than with SC injection of rapid-acting insulin analogues (this might be possible with inhaled Technosphere insulin), this would be a clinically relevant argument. Without such advantages, new products will have no market success. Most probably it will not be until one of the various ARIA developments (e.g. nasal insulin) makes it into a financially attractive product (sufficient return on investment) that more money will flow again in this area of research. The search for relevant articles about new ways to deliver insulin did not reveal very many

  11. New ways of insulin delivery.

    PubMed

    Heinemann, L

    2010-02-01

    foresee that with most new ways of insulin delivery the bioavailability/biopotency will be lower than with subcutaneous (SC) insulin administration. This in turn requires that more insulin has to be applied to induce the same metabolic (blood glucose lowering) effect in patients with diabetes. If the costs of insulin are of relevance for the price (this clearly depends on the source of insulin the individual company has to use) the price of the product will be higher relative to standard SC insulin therapy. The question is, clearly, what are the advantages of the new product? In times when SC insulin administration was painful and cumbersome it was clear that the ease of swallowing an insulin tablet was a good argument for many patients. With the invention of thin insulin needles that make the SC injection practically pain free in most cases, this argument of being 'convenient' becomes of limited relevance. However, for many patients (especially the public) the avoidance of 'injection' is an argument. The question is, how much is the patient (society) willing to pay for such a psychological 'advantage'? Most probably additional clear-cut clinical advantages must be demonstrable to convince the payers to reimburse a new product, especially when the price is higher than that of SC insulin. If, for example, postprandial glycaemic excursions are considerably better controlled because the pharmacodynamic (PD) effects are better than with SC injection of rapid-acting insulin analogues (this might be possible with inhaled Technosphere insulin), this would be a clinically relevant argument. Without such advantages, new products will have no market success. Most probably it will not be until one of the various ARIA developments (e.g. nasal insulin) makes it into a financially attractive product (sufficient return on investment) that more money will flow again in this area of research. The search for relevant articles about new ways to deliver insulin did not reveal very many

  12. Insulin Glulisine (rDNA origin) Injection

    MedlinePlus

    ... is a short-acting, man-made version of human insulin. Insulin glulisine works by replacing the insulin ... medications for asthma and colds; certain medications for human immunodeficiency virus (HIV) including amprenavir (Agenerase), atazanavir (Reyataz), ...

  13. Plerocercoid growth factor (PGF), a human growth hormone (hGH) analogue produced by the tapeworm Spirometra mansonoides, has direct insulin-like action in adipose tissue of normal rats in vitro

    SciTech Connect

    Salem, M.A.M.; Phares, C.K.

    1986-03-01

    The metabolic actions of GH can be divided into acute (insulin-like) and chronic (lipolytic/anti-insulin). The insulin-like actions of GH are most readily elicited in GH-deficient animals as GH induces resistance to its own insulin-like action. Like GH, PGF stimulates growth and cross-reacts with anti-hGH antibodies. Independent experiments were conducted comparing the direct actions of PGF to insulin or hGH in vitro. Insulin-like effects were determined by the ability of PGF, insulin or hGH to stimulate (U-/sup 14/C)glucose metabolism in epidydimal fat pads from normal rats and by inhibition of epinephrine-stimulated lipolysis. Direct stimulation of lipolysis was used as anti-insulin activity. To determine if PGF competes for insulin or GH receptors, adipocytes (3 x 10/sup 5/ cells/ml) were incubated with either (/sup 125/I)insulin or (/sup 125/I)hGH +/- PGF, +/- insulin or +/- hGH. PGF stimulated glucose oxidation and /sup 14/C-incorporation into lipids. Insulin, hGH and PGF inhibited lipolysis (33%, 29% and 34%, respectively). Adipose tissue was very sensitive to the lipolytic effect of hGH but PGF was neither lipolytic nor did it confer refractoriness to its insulin-like action. PGF bound to GH but not to insulin receptors. Therefore, PGF had direct insulin-like effects but did not stimulate lipolysis in tissue from normal rats in vitro.

  14. A Comparison of the Effects of the GLP-1 Analogue Liraglutide and Insulin Glargine on Endothelial Function and Metabolic Parameters: A Randomized, Controlled Trial Sapporo Athero-Incretin Study 2 (SAIS2)

    PubMed Central

    Nomoto, Hiroshi; Miyoshi, Hideaki; Furumoto, Tomoo; Oba, Koji; Tsutsui, Hiroyuki; Miyoshi, Arina; Kondo, Takuma; Tsuchida, Kenichi; Atsumi, Tatsuya; Manda, Naoki; Kurihara, Yoshio; Aoki, Shin

    2015-01-01

    Objectives GLP-1 improves hyperglycemia, and it has been reported to have favorable effects on atherosclerosis. However, it has not been fully elucidated whether GLP-1 is able to improve endothelial function in patients with type 2 diabetes. Therefore, we investigated the efficacy of the GLP-1 analogue, liraglutide on endothelial function and glycemic metabolism compared with insulin glargine therapy. Materials and Methods In this multicenter, prospective randomized parallel-group comparison study, 31 diabetic outpatients (aged 60.3 ± 10.3 years with HbA1c levels of 8.6 ± 0.8%) with current metformin and/or sulfonylurea treatment were enrolled and randomly assigned to receive liraglutide or glargine therapy once daily for 14 weeks. Flow mediated dilation (FMD), a comprehensive panel of hemodynamic parameters (Task Force Monitor), and serum metabolic markers were assessed before and after the treatment period. Results A greater reduction (worsening) in %FMD was observed in the glargine group, although this change was not statistically different from the liraglutide group (liraglutide; 5.7 to 5.4%, glargine 6.7 to 5.7%). The augmentation index, C-peptide index, derivatives of reactive oxygen metabolites and BMI were significantly improved in the liraglutide group. Central systolic blood pressure and NT-proBNP also tended to be improved in the liraglutide-treated group, while improvements in HbA1c levels were similar between groups. Cardiac index, blood pressure and most other metabolic parameters were not different. Conclusions Regardless of glycemic improvement, early liraglutide therapy did not affect endothelial function but may provide favorable effects on beta-cell function and cardioprotection in type 2 diabetics without advanced atherosclerosis. Trial Registration UMIN Clinical Trials Registry System as trial ID UMIN000005331. PMID:26284918

  15. Insulin and Insulin Resistance

    PubMed Central

    2005-01-01

    As obesity and diabetes reach epidemic proportions in the developed world, the role of insulin resistance and its consequences are gaining prominence. Understanding the role of insulin in wide-ranging physiological processes and the influences on its synthesis and secretion, alongside its actions from the molecular to the whole body level, has significant implications for much chronic disease seen in Westernised populations today. This review provides an overview of insulin, its history, structure, synthesis, secretion, actions and interactions followed by a discussion of insulin resistance and its associated clinical manifestations. Specific areas of focus include the actions of insulin and manifestations of insulin resistance in specific organs and tissues, physiological, environmental and pharmacological influences on insulin action and insulin resistance as well as clinical syndromes associated with insulin resistance. Clinical and functional measures of insulin resistance are also covered. Despite our incomplete understanding of the complex biological mechanisms of insulin action and insulin resistance, we need to consider the dramatic social changes of the past century with respect to physical activity, diet, work, socialisation and sleep patterns. Rapid globalisation, urbanisation and industrialisation have spawned epidemics of obesity, diabetes and their attendant co-morbidities, as physical inactivity and dietary imbalance unmask latent predisposing genetic traits. PMID:16278749

  16. Moving toward the ideal insulin for insulin pumps.

    PubMed

    Cengiz, Eda; Bode, Bruce; Van Name, Michelle; Tamborlane, William V

    2016-01-01

    Advances in insulin formulations have been important for diabetes management and achieving optimal glycemic control. Rapid-acting insulin analogs provide a faster time-action profile than regular insulin and are approved for use in pumps. However, the need remains for therapy to deliver a more physiologic insulin profile. New insulin formulations and delivery methods are in development, with the aim of accelerating insulin absorption to accomplish ultra-fast-acting insulin time-action profiles. Furthermore, the integration of continuous glucose monitoring with insulin pump therapy enables on-going adjustment of insulin delivery to optimize glycemic control throughout the day and night. These technological and pharmacological advances are likely to facilitate the development of closed-loop pump systems (i.e., artificial pancreas), and improve glycemic control and quality of life for patients with diabetes. PMID:26560137

  17. Sir2 Acts through Hepatocyte Nuclear Factor 4 to maintain insulin Signaling and Metabolic Homeostasis in Drosophila.

    PubMed

    Palu, Rebecca A S; Thummel, Carl S

    2016-04-01

    SIRT1 is a member of the sirtuin family of NAD+-dependent deacetylases, which couple cellular metabolism to systemic physiology. Although studies in mouse models have defined a central role for SIRT1 in maintaining metabolic health, the molecular mechanisms remain unclear. Here we show that loss of the Drosophila SIRT1 homolog sir2 leads to the age-progressive onset of hyperglycemia, obesity, glucose intolerance, and insulin resistance. Tissue-specific functional studies show that Sir2 is both necessary and sufficient in the fat body (analogous to the mammalian liver) to maintain glucose homeostasis and peripheral insulin sensitivity. Transcriptional profiling of sir2 mutants by RNA-seq revealed a major overlap with genes regulated by the nuclear receptor Hepatocyte Nuclear Factor 4 (HNF4). Consistent with this, Drosophila HNF4 mutants display diabetic phenotypes similar to those of sir2 mutants, and protein levels for dHNF4 are reduced in sir2 mutant animals. We show that Sir2 exerts these effects by deacetylating and stabilizing dHNF4 through protein interactions. Increasing dHNF4 expression in sir2 mutants is sufficient to rescue their insulin signaling defects, defining this nuclear receptor as an important downstream effector of Sir2 signaling. This study demonstrates that the key metabolic activities of SIRT1 have been conserved through evolution, provides a genetic model for functional studies of phenotypes related to type 2 diabetes, and establishes HNF4 as a critical downstream target by which Sir2 maintains metabolic health.

  18. Sir2 Acts through Hepatocyte Nuclear Factor 4 to maintain insulin Signaling and Metabolic Homeostasis in Drosophila

    PubMed Central

    Palu, Rebecca A. S.; Thummel, Carl S.

    2016-01-01

    SIRT1 is a member of the sirtuin family of NAD+-dependent deacetylases, which couple cellular metabolism to systemic physiology. Although studies in mouse models have defined a central role for SIRT1 in maintaining metabolic health, the molecular mechanisms remain unclear. Here we show that loss of the Drosophila SIRT1 homolog sir2 leads to the age-progressive onset of hyperglycemia, obesity, glucose intolerance, and insulin resistance. Tissue-specific functional studies show that Sir2 is both necessary and sufficient in the fat body (analogous to the mammalian liver) to maintain glucose homeostasis and peripheral insulin sensitivity. Transcriptional profiling of sir2 mutants by RNA-seq revealed a major overlap with genes regulated by the nuclear receptor Hepatocyte Nuclear Factor 4 (HNF4). Consistent with this, Drosophila HNF4 mutants display diabetic phenotypes similar to those of sir2 mutants, and protein levels for dHNF4 are reduced in sir2 mutant animals. We show that Sir2 exerts these effects by deacetylating and stabilizing dHNF4 through protein interactions. Increasing dHNF4 expression in sir2 mutants is sufficient to rescue their insulin signaling defects, defining this nuclear receptor as an important downstream effector of Sir2 signaling. This study demonstrates that the key metabolic activities of SIRT1 have been conserved through evolution, provides a genetic model for functional studies of phenotypes related to type 2 diabetes, and establishes HNF4 as a critical downstream target by which Sir2 maintains metabolic health. PMID:27058248

  19. Sir2 Acts through Hepatocyte Nuclear Factor 4 to maintain insulin Signaling and Metabolic Homeostasis in Drosophila.

    PubMed

    Palu, Rebecca A S; Thummel, Carl S

    2016-04-01

    SIRT1 is a member of the sirtuin family of NAD+-dependent deacetylases, which couple cellular metabolism to systemic physiology. Although studies in mouse models have defined a central role for SIRT1 in maintaining metabolic health, the molecular mechanisms remain unclear. Here we show that loss of the Drosophila SIRT1 homolog sir2 leads to the age-progressive onset of hyperglycemia, obesity, glucose intolerance, and insulin resistance. Tissue-specific functional studies show that Sir2 is both necessary and sufficient in the fat body (analogous to the mammalian liver) to maintain glucose homeostasis and peripheral insulin sensitivity. Transcriptional profiling of sir2 mutants by RNA-seq revealed a major overlap with genes regulated by the nuclear receptor Hepatocyte Nuclear Factor 4 (HNF4). Consistent with this, Drosophila HNF4 mutants display diabetic phenotypes similar to those of sir2 mutants, and protein levels for dHNF4 are reduced in sir2 mutant animals. We show that Sir2 exerts these effects by deacetylating and stabilizing dHNF4 through protein interactions. Increasing dHNF4 expression in sir2 mutants is sufficient to rescue their insulin signaling defects, defining this nuclear receptor as an important downstream effector of Sir2 signaling. This study demonstrates that the key metabolic activities of SIRT1 have been conserved through evolution, provides a genetic model for functional studies of phenotypes related to type 2 diabetes, and establishes HNF4 as a critical downstream target by which Sir2 maintains metabolic health. PMID:27058248

  20. Enhanced Absorption of Nasulin™, an Ultrarapid-Acting Intranasal Insulin Formulation, Using Single Nostril Administration in Normal Subjects

    PubMed Central

    Stote, Robert; Miller, Michael; Marbury, Thomas; Shi, Leon; Strange, Poul

    2011-01-01

    Background This pharmacokinetic (PK) study was designed to investigate the maximum intranasal insulin dose that could be achieved by repeated doses in a single nostril of a nasal spray of recombinant regular human insulin 1% in combination with cyclopentadecalactone (CPE-215) 2%, a compound that enhances absorption of molecules across mucous membranes (Nasulin™, CPEX Pharmaceuticals, Inc.). Method A nine-period crossover study of 8 healthy, nonsmoking subjects (ages 18–50, body mass index <33 kg/m2, weight >70 kg) were studied. In a fasted state, subjects were randomly given 25, 50, and 75 U in a single nostril on the first day and randomly given 50, 75, and 100 U doses utilizing both nostrils on two subsequent days. After a 45-minute PK assessment, subjects were given a meal. To determine the mechanism of enhanced absorption in a single nostril, a second study utilizing 24 subjects under similar conditions received 25 U, placebo (P) that included CPE-215 plus 25 U, and 50 U in a single nostril. Results Single nostril administration revealed enhanced absorption with maximum concentrations (Cmax) of 13, 65, and 96 µU/ml for the 25, 50, and 75 U doses, respectively. Dual nostril administration in two cohorts resulted in Cmax of 31/42, 65/52, and 88/79 µU/ml for the 50, 75, and 100 U, respectively. In the second cohort, Cmax was 23, 19, 56 µU/ml for the 25, P + 25, and 50 U doses, respectively. Conclusions Repeated dosing in a single nostril resulted in enhanced absorption; this was not due to the increased CPE-215 but to the increased insulin administered. PMID:21303633

  1. Treatment intensification in patients with inadequate glycemic control on basal insulin: rationale and clinical evidence for the use of short‐acting and other glucagon‐like peptide‐1 receptor agonists

    PubMed Central

    Bonadonna, Riccardo C.; Gentile, Sandro; Vettor, Roberto; Pozzilli, Paolo

    2016-01-01

    Summary A substantial proportion of patients with type 2 diabetes mellitus do not reach glycemic targets, despite treatment with oral anti‐diabetic drugs and basal insulin therapy. Several options exist for treatment intensification beyond basal insulin, and the treatment paradigm is complex. In this review, the options for treatment intensification will be explored, focusing on drug classes that act via the incretin system and paying particular attention to the short‐acting glucagon‐like peptide‐1 receptor agonists exenatide and lixisenatide. Current treatment guidelines will be summarized and discussed. © 2016 The Authors. Diabetes/Metabolism Research and Reviews Published by John Wiley & Sons Ltd. PMID:26787264

  2. Treating Diabetes Mellitus: Pharmacophore Based Designing of Potential Drugs from Gymnema sylvestre against Insulin Receptor Protein

    PubMed Central

    Hossain, Mohammad Uzzal; Khan, Md. Arif; Rakib-Uz-Zaman, S. M.; Ali, Mohammad Tuhin; Islam, Md. Saidul; Keya, Chaman Ara; Salimullah, Md.

    2016-01-01

    Diabetes mellitus (DM) is one of the most prevalent metabolic disorders which can affect the quality of life severely. Injectable insulin is currently being used to treat DM which is mainly associated with patient inconvenience. Small molecules that can act as insulin receptor (IR) agonist would be better alternatives to insulin injection. Herein, ten bioactive small compounds derived from Gymnema sylvestre (G. sylvestre) were chosen to determine their IR binding affinity and ADMET properties using a combined approach of molecular docking study and computational pharmacokinetic elucidation. Designing structural analogues were also performed for the compounds associated with toxicity and less IR affinity. Among the ten parent compounds, six were found to have significant pharmacokinetic properties with considerable binding affinity towards IR while four compounds were associated with toxicity and less IR affinity. Among the forty structural analogues, four compounds demonstrated considerably increased binding affinity towards IR and less toxicity compared with parent compounds. Finally, molecular interaction analysis revealed that six parent compounds and four analogues interact with the active site amino acids of IR. So this study would be a way to identify new therapeutics and alternatives to insulin for diabetic patients. PMID:27034931

  3. Natural and biomimetic materials for the detection of insulin.

    PubMed

    Schirhagl, Romana; Latif, Usman; Podlipna, Dagmar; Blumenstock, Hans; Dickert, Franz L

    2012-05-01

    Microgravimetric sensors have been developed for detection of insulin by using quartz crystal microbalances as transducers, in combination with sensitive layers. Natural antibodies as coatings were compared with biomimetic materials to fabricate mass-sensitive sensors. For this purpose polyurethane was surface imprinted by insulin, which acts as a synthetic receptor for reversible analyte inclusion. The sensor responses for insulin give a pronounced concentration dependence, with a detection limit down to 1 μg/mL and below. Selectivity studies reveal that these structured polymers lead to differentiation between insulin and glargine. Moreover, antibody replicae were generated by a double imprinting process. Thus, biological recognition capabilities of immunoglobulins are transferred to synthetic polymers. In the first step, natural-immunoglobulin-imprinted nanoparticles were synthesized. Subsequently, these templated particles were utilized for creating positive images of natural antibodies on polymer layers. These synthetic coatings, which are more robust than natural analogues, can be produced in large amount. These biomimetic sensors are useful in the biotechnology of insulin monitoring. PMID:22468696

  4. Short- and Longterm Glycemic Control of Streptozotocin-Induced Diabetic Rats Using Different Insulin Preparations.

    PubMed

    Luippold, Gerd; Bedenik, Jessica; Voigt, Anke; Grempler, Rolf

    2016-01-01

    The chemical induction of diabetes with STZ has gained popularity because of the relative ease of rendering normal animals diabetic. Insulin substitution is required in STZ-rats in long-term studies to avoid ketoacidosis and consequently loss of animals. Aim of the present studies was to test different insulin preparations and different ways of administration in their ability to reduce blood glucose in STZ-induced diabetic rats. Single dosing of the long-acting insulin analogue glargine was able to dose-dependently reduce blood glucose over 4 h towards normoglycemia in STZ-treated rats. However, this effect was not sustained until 8 h post injection. A more sustained glucose-lowering effect was achieved using insulin-releasing implants. In STZ-rats, 1 insulin implant moderately lowered blood glucose levels 10 days after implantation, while 2 implants induced normoglycemia over the whole day. According to the glucose-lowering effect 1 as well as 2 insulin implants significantly reduced HbA1c measured after 26 days of implantation. In line with the improved glucose homeostasis due to the implants, urinary glucose excretion was also blunted in STZ-treated rats with 2 implants. Since diabetic nephropathy is one of the complications of longterm diabetes, renal function was characterized in the STZ-rat model. Increases in creatinine clearance and urinary albumin excretion resemble early signs of diabetic nephropathy. These functional abnormalities of the kidney could clearly be corrected with insulin-releasing implants 27 days after implantation. The data show that diabetic STZ-rats respond to exogenous insulin with regard to glucose levels as well as kidney parameters and a suitable dose of insulin implants for glucose control was established. This animal model together with the insulin dosing regimen is suitable to address diabetes-induced early diabetic nephropathy and also to study combination therapies with insulin for the treatment of type 1 diabetes. PMID:27253523

  5. Conformational Properties of Seven Toac-Labeled Angiotensin I Analogues Correlate with Their Muscle Contraction Activity and Their Ability to Act as ACE Substrates

    PubMed Central

    Teixeira, Luis Gustavo D.; Malavolta, Luciana; Bersanetti, Patrícia A.; Schreier, Shirley; Carmona, Adriana K.; Nakaie, Clovis R.

    2015-01-01

    Conformational properties of the angiotensin II precursor, angiotensin I (AngI) and analogues containing the paramagnetic amino acid TOAC (2,2,6,6-tetramethylpiperidine-1-oxyl-4-amino-4-carboxylic acid) at positions 0, 1, 3, 5, 8, 9, and 10, were examined by EPR, CD, and fluorescence. The conformational data were correlated to their activity in muscle contraction experiments and to their properties as substrates of the angiotensin I-converting enzyme (ACE). Biological activity studies indicated that TOAC0-AngI and TOAC1-AngI maintained partial potency in guinea pig ileum and rat uterus. Kinetic parameters revealed that only derivatives labeled closer to the N-terminus (positions 0, 1, 3, and 5) were hydrolyzed by ACE, indicating that peptides bearing the TOAC moiety far from the ACE cleavage site (Phe8-His9 peptide bond) were susceptible to hydrolysis, albeit less effectively than the parent compound. CD spectra indicated that AngI exhibited a flexible structure resulting from equilibrium between different conformers. While the conformation of N-terminally-labeled derivatives was similar to that of the native peptide, a greater propensity to acquire folded structures was observed for internally-labeled, as well as C-terminally labeled, analogues. These structures were stabilized in secondary structure-inducing agent, TFE. Different analogues gave rise to different β-turns. EPR spectra in aqueous solution also distinguished between N-terminally, internally-, and C-terminally labeled peptides, yielding narrower lines, indicative of greater mobility for the former. Interestingly, the spectra of peptides labeled at, or close, to the C-terminus, showed that the motion in this part of the peptides was intermediate between that of N-terminally and internally-labeled peptides, in agreement with the suggestion of turn formation provided by the CD spectra. Quenching of the Tyr4 fluorescence by the differently positioned TOAC residues corroborated the data obtained by the

  6. Pharmacology and anti-addiction effects of the novel κ opioid receptor agonist Mesyl Sal B, a potent and long-acting analogue of salvinorin A

    PubMed Central

    Simonson, B; Morani, A S; Ewald, A W M; Walker, L; Kumar, N; Simpson, D; Miller, J H; Prisinzano, T E; Kivell, B M

    2015-01-01

    BACKGROUND AND PURPOSE Acute activation of κ opioid (KOP) receptors results in anticocaine-like effects, but adverse effects, such as dysphoria, aversion, sedation and depression, limit their clinical development. Salvinorin A, isolated from the plant Salvia divinorum, and its semi-synthetic analogues have been shown to have potent KOP receptor agonist activity and may induce a unique response with similar anticocaine addiction effects as the classic KOP receptor agonists, but with a different side effect profile. EXPERIMENTAL APPROACH We evaluated the duration of effects of Mesyl Sal B in vivo utilizing antinociception assays and screened for cocaine-prime induced cocaine-seeking behaviour in self-administering rats to predict anti-addiction effects. Cellular transporter uptake assays and in vitro voltammetry were used to assess modulation of dopamine transporter (DAT) function and to investigate transporter trafficking and kinase signalling pathways modulated by KOP receptor agonists. KEY RESULTS Mesyl Sal B had a longer duration of action than SalA, had anti-addiction properties and increased DAT function in vitro in a KOP receptor-dependent and Pertussis toxin-sensitive manner. These effects on DAT function required ERK1/2 activation. We identified differences between Mesyl Sal B and SalA, with Mesyl Sal B increasing the Vmax of dopamine uptake without altering cell-surface expression of DAT. CONCLUSIONS AND IMPLICATIONS SalA analogues, such as Mesyl Sal B, have potential for development as anticocaine agents. Further tests are warranted to elucidate the mechanisms by which the novel salvinorin-based neoclerodane diterpene KOP receptor ligands produce both anti-addiction and adverse side effects. LINKED ARTICLES This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2 PMID:24641310

  7. [B17-D-leucine]insulin and [B17-norleucine]insulin: synthesis and biological properties.

    PubMed

    Knorr, R; Danho, W; Büllesbach, E E; Gattner, H G; Zahn, H; King, G L; Kahn, C R

    1983-11-01

    The chemical synthesis of two porcine insulin analogues is described. Leucine in position B17 of the native molecule was substituted by its D-enantiomer and by L-norleucine, respectively. Both B-chain derivatives were synthesized by fragment condensation and purified as di-S-sulphonates by gel filtration followed by ion exchange chromatography on SP-Sephadex at pH3. Combination with native sulphhydryl A-chain yielded [DLeuB17]insulin and [NleB17]insulin. Both insulin analogues were isolated by gel filtration followed by ion exchange chromatography on CM-cellulose at pH 4.0. Biological activities of the analogues were determined relative to native pork insulin: 1) glucose oxidation in rat epididymal adipocytes was 6% for [DLeuB17]insulin and 16% for [NleB17]insulin, 2) receptor-binding affinity tested with cultured human fibroblasts and with rat adipocytes was 3% for [DLeuB17]insulin and 26% for [NleB17]insulin, and 3) thymidine incorporation into DNA of human fibroblasts was 35% for [DLeuB17]insulin and 100% for [NleB17]insulin.

  8. New insulins and newer insulin regimens: a review of their role in improving glycaemic control in patients with diabetes.

    PubMed

    Gururaj Setty, S; Crasto, W; Jarvis, J; Khunti, K; Davies, M J

    2016-03-01

    The legacy effect of early good glycaemic control in people with diabetes shows it is associated with reduction of microvascular and macrovascular complications. Insulin therapy is essential and lifesaving in individuals with type 1 diabetes and beneficial for those with type 2 diabetes who fail to achieve optimal glycaemic targets with other classes of glucose-lowering therapies. Since the introduction of insulin analogues, insulin management has changed. This follow-up review attempts to update our earlier publication from 2009 and discusses the role of new insulin analogues and newer insulin regimens. Recognising the advent of new quality and economic initiatives both in the UK and worldwide, this paper reviews current insulin prescribing and the pros and cons of prescribing analogues in comparison to the human insulins that are now gaining more acceptance in everyday clinical practice.

  9. Effect of subcutaneous injection of a long-acting analogue of somatostatin (SMS 201-995) on plasma thyroid-stimulating hormone in normal human subjects

    SciTech Connect

    Itoh, S.; Tanaka, K.; Kumagae, M.; Takeda, F.; Morio, K.; Kogure, M.; Hasegawa, M.; Horiuchi, T.; Watabe, T.; Miyabe, S.

    1988-01-01

    SMS 201-995 (SMS), a synthetic analogue of somatostatin (SRIF) has been shown to be effective in the treatment of the hypersecretion of hormones such as in acromegaly. However, little is known about the effects of SMS on the secretion of thyroid-stimulating hormone (TSH) in normal subjects. In this study, plasma TSH was determined with a highly sensitive immunoradiometric assay, in addition to the concentration of SMS in plasma and urine with a radioimmunoassay, following subcutaneous injection of 25, 50, 100 ..mu..g of SMS or a placebo to normal male subjects, at 0900 h after an overnight fast. The plasma concentrations of SMS were dose-responsive and the peak levels were 1.61 +/- 0.09, 4.91 +/- 0.30 and 8.52 +/- 1.18 ng/ml, which were observed at 30, 15 and 45 min after the injection of 25, 50, and 100 ..mu..g of SMS, respectively. Mean plasma disappearance half-time of SMS was estimated to be 110 +/- 3 min. Plasma TSH was suppressed in a dose dependent manner and the suppression lasted for at least 8 hours. At 8 hours after the injection of 25, 50, and 100 ..mu..g of SMS, the plasma TSH levels were 43.8 +/- 19.4, 33.9 +/- 9.4 and 24.9 +/- 3.2%, respectively, of the basal values.

  10. New Insulins and New Aspects in Insulin Delivery.

    PubMed

    Woo, Vincent C

    2015-08-01

    The major abnormality in both type 1 and type 2 diabetes is insulin deficiency. The methods of replacing insulin have improved throughout the decades, but hypoglycemia is still the limiting factor for many individuals with diabetes, and it prevents them from achieving ideal glycemic targets. New insulin and newer delivery systems are being developed that can improve some of the limitations of current insulins or make the delivery of insulins more acceptable for some patients. Extending the duration of action of basal insulins and shortening the peak of fast-acting insulins may have advantages for individuals with diabetes. Different delivery systems may make insulin more acceptable to patients and may have other advantages, which may aid in attaining better glycemic control.

  11. New Insulins and New Aspects in Insulin Delivery.

    PubMed

    Woo, Vincent C

    2015-08-01

    The major abnormality in both type 1 and type 2 diabetes is insulin deficiency. The methods of replacing insulin have improved throughout the decades, but hypoglycemia is still the limiting factor for many individuals with diabetes, and it prevents them from achieving ideal glycemic targets. New insulin and newer delivery systems are being developed that can improve some of the limitations of current insulins or make the delivery of insulins more acceptable for some patients. Extending the duration of action of basal insulins and shortening the peak of fast-acting insulins may have advantages for individuals with diabetes. Different delivery systems may make insulin more acceptable to patients and may have other advantages, which may aid in attaining better glycemic control. PMID:26233724

  12. Clinical experience with insulin detemir, biphasic insulin aspart and insulin aspart in people with type 2 diabetes: Results from the Hyderabad cohort of the A1chieve study

    PubMed Central

    Santosh, R.; Mehrotra, Ravi; Sastry, N. G.

    2013-01-01

    Background: The A1chieve, a multicentric (28 countries), 24-week, non-interventional study evaluated the safety and effectiveness of insulin detemir, biphasic insulin aspart and insulin aspart in people with T2DM (n = 66,726) in routine clinical care across four continents. Materials and Methods: Data was collected at baseline, at 12 weeks and at 24 weeks. This short communication presents the results for patients enrolled from Hyderabad, India. Results: A total of 1249 patients were enrolled in the study. Four different insulin analogue regimens were used in the study. Patients had started on or were switched to biphasic insulin aspart (n = 893), insulin detemir (n = 158), insulin aspart (n = 124), basal insulin plus insulin aspart (n = 19) and other insulin combinations (n = 54). At baseline glycaemic control was poor for both insulin naïve (mean HbA1c: 9.0%) and insulin user (mean HbA1c: 9.5%) groups. After 24 weeks of treatment, both the groups showed improvement in HbA1c (insulin naïve: −0.9%, insulin users: −1.1%). SADRs including major hypoglycaemic events or episodes did not occur in any of the study patients. Conclusion: Starting or switching to insulin analogues was associated with improvement in glycaemic control with a low rate of hypoglycaemia. PMID:24404501

  13. [Comparison of biosynthetic human insulin and purified pork insulin. Studies in insulin-resistant obese patients using the insulin suppression test].

    PubMed

    Richard, J L; Rodier, M; Cavalie, G; Lachkar, H; Orsetti, A; Monnier, L; Mirouze, J

    1986-02-01

    An insulin suppression test performed in random order with either biosynthetic human insulin or purified pork insulin was used to compare biological activity of these two insulins in obese patients suffering from varying degrees of glucose intolerance. Blood glucose curve, steady-state blood glucose levels, insulin sensitivity indices and steady-state plasma insulin levels were identical during the two sets of tests. Furthermore endogenous insulin and glucagon secretion were similarly suppressed. The insulin suppression test is a simple and rapid procedure to compare the biological activity of fast-acting insulins. Our results confirm the insulin-resistance in obesity and clearly show that biosynthetic human and porcine insulins have similar biological potency.

  14. Identification of Host Insulin Binding Sites on Schistosoma japonicum Insulin Receptors

    PubMed Central

    Stephenson, Rachel J.; Toth, Istvan; Liang, Jiening; Mangat, Amanjot; McManus, Donald P.; You, Hong

    2016-01-01

    Schistosoma japonicum insulin receptors (SjIRs) have been identified as encouraging vaccine candidates. Interrupting or blocking the binding between host insulin and the schistosome insulin receptors (IRs) may result in reduced glucose uptake leading to starvation and stunting of worms with a reduction in egg output. To further understand how schistosomes are able to exploit host insulin for development and growth, and whether these parasites and their mammalian hosts compete for the same insulin source, we identified insulin binding sites on the SjIRs. Based on sequence analysis and the predicted antigenic structure of the primary sequences of the SjIRs, we designed nine and eleven peptide analogues from SjIR-1 and SjIR-2, respectively. Using the Octet RED system, we identified analogues derived from SjIR-1 (10) and SjIR-2 (20, 21 and 22) with insulin-binding sequences specific for S. japonicum. Nevertheless, the human insulin receptor (HIR) may compete with the SjIRs in binding human insulin in other positions which are important for HIR binding to insulin. However, no binding occurred between insulin and parasite analogues derived from SjIR-1 (2, 7 and 8) and SjIR-2 (14, 16 and 18) at the same locations as HIR sequences which have been shown to have strong insulin binding affinities. Importantly, we found two analogues (1 and 3), derived from SjIR-1, and two analogues (13 and 15) derived from SjIR-2, were responsible for the major insulin binding affinity in S. japonicum. These peptide analogues were shown to have more than 10 times (in KD value) stronger binding capacity for human insulin compared with peptides derived from the HIR in the same sequence positions. Paradoxically, analogues 1, 3, 13 and 15 do not appear to contain major antigenic determinants which resulted in poor antibody responses to native S. japonicum protein. This argues against their future development as peptide-vaccine candidates. PMID:27441998

  15. Prkar1a in the regulation of insulin secretion.

    PubMed

    Hussain, M A; Stratakis, C; Kirschner, L

    2012-09-01

    The incidence of type 2 diabetes mellitus (T2DM) is rapidly increasing worldwide with significant consequences on individual quality of life as well as economic burden on states' healthcare costs. While origins of the pathogenesis of T2DM are poorly understood, an early defect in glucose-stimulated insulin secretion (GSIS) from pancreatic β-cells is considered a hallmark of T2DM. Upon a glucose stimulus, insulin is secreted in a biphasic manner with an early first-phase burst of insulin, which is followed by a second, more sustained phase of insulin output. First phase insulin secretion is diminished early in T2DM as well is in subjects who are at risk of developing T2DM. An effective treatment of T2DM with incretin hormone glucagon-like peptide-1 (GLP-1) or its long acting peptide analogue exendin-4 (E4), restores first-phase and augments second-phase glucose stimulated insulin secretion. This effect of incretin action occurs within minutes of GLP-1/E4 infusion in T2DM humans. An additional important consideration is that incretin hormones augment GSIS only above a certain glucose threshold, which is slightly above the normal glucose range. This ensures that incretin hormones stimulate GSIS only when glucose levels are high, while they are ineffective when insulin levels are below a certain threshold. Activation of the GLP-1 receptor, which is highly expressed on pancreatic β-cells, stimulates 2 -distinct intracellular signaling pathways: a) the cAMP-protein kinase A branch and b) the cAMP-EPAC2 (EPAC=exchange protein activated by cAMP) branch. While the EPAC2 branch is considered to mediate GLP-1 effects on first-phase GSIS, the PKA branch is necessary for the former branch to be active. However, how these 2 branches interplay and converge and how their effects on insulin secretion and insulin vesicle exocytosis are coordinated is poorly understood.Thus, at the outset of our studies we have a poorly understood intracellular interplay of cAMP-dependent signaling

  16. Insulin-responsiveness of tumor growth.

    PubMed

    Chantelau, Ernst

    2009-05-01

    In October 2008, the 2nd International Insulin & Cancer Workshop convened roughly 30 researchers from eight countries in Düsseldorf/Germany. At this meeting, which was industry-independent like the preceding one in 2007, the following issues were discussed a) association between certain cancers and endogenous insulin production in humans, b) growth-promoting effects of insulin in animal experiments, c) mitogenic and anti-apoptotic activity of pharmaceutic insulin and insulin analogues in in vitro experiments, d) potential mechanisms of insulin action on cell growth, mediated by IGF-1 receptor and insulin receptor signaling, and e) IGF-1 receptor targeting for inhibition of tumor growth. It was concluded that further research is necessary to elucidate the clinical effects of these observations, and their potential for human neoplastic disease and treatment.

  17. Insulin Signaling And Insulin Resistance

    PubMed Central

    Beale, Elmus G.

    2013-01-01

    Insulin resistance or its sequelae may be the common etiology of maladies associated with metabolic syndrome (e.g., hypertension, type 2 diabetes, atherosclerosis, heart attack, stroke and kidney failure). It is thus important to understand those factors that affect insulin sensitivity. This review stems from the surprising discovery that interference with angiotensin signaling improves insulin sensitivity and it provides a general overview of insulin action and factors that control insulin sensitivity. PMID:23111650

  18. [Intensified insulin therapy and insulin micro-pumps during pregnancy].

    PubMed

    Galuppi, V

    1994-06-01

    Before conception and during pregnancy in diabetic patients, every possible effort should be made in order to obtain a good, if not perfect, metabolic control and to warrant maternal and fetal health. Multiple daily injections are required to achieve a very strict glucose regulation in pregnant patients with insulin-dependent diabetes mellitus. The most usual intensive insulin administration patterns require 3 premeal doses of short-acting insulin and 1 (at bedtime) or 2 (one in the morning and one at bedtime) injections of intermediate or slow-acting insulin. As an alternative choice, insulin pumps allow a continuous subcutaneous infusion with short-acting insulin according to a basal rate which cover the insulin need during the night and between meals. Premeal and presnack surges of insulin are administrated by the patient herself. Home glucose monitoring must be used to adjust insulin doses. Target glucose levels every diabetic pregnant woman should try to achieve are lower than in non-pregnant women: fasting glycaemia should be below 100 mg/dl, 1 hour post-prandial value below 140 mg/dl and 2 hour post-prandial level below 120 mg/dl. The stricter the control and treatment goals are, the more frequently hypoglycaemia may occur. Hypoglycaemia may be harmful especially for patients with severe diabetic complications and may affect the fetus. Therefore, every pregnant diabetic woman should receive individualized treatment and glycaemic goals according to her clinical features, her compliance and her social and cultural background.

  19. Consensus evidence-based guidelines for use of insulin pump therapy in the management of diabetes as per Indian clinical practice.

    PubMed

    Kesavadev, Jothydev; Jain, Sunil M; Muruganathan, A; Das, Ashok Kumar

    2014-07-01

    The use of insulin pump in diabetes is likely to increase with recent advances in technology. Although the evidence for the superiority of pumps over multiple daily injections (MDI) is inconsistent, data from accumulating uncontrolled studies indicate greater reductions in glycated haemoglobin in patients switching to continuous subcutaneous insulin infusion (CSII) from MDI therapy. Due to the variability in insulin requirements and sensitivity to CSII pumps, hyperglycaemia in these patients is managed by endocrinologists using individualised therapy. A panel of experts reviewed the existing guidelines and framed recommendations specific to the clinical practice in Indian conditions for use of CSII pumps in the management of hyperglycaemia. Selection of right patient with basic education, motivation and learning skills are essential for successful implementation of CSII therapy with sophisticated programmes. Rapid acting insulin analogues with better pharmacokinetic and pharmacodynamic profile, physical and chemical stability and compatibility with most commercially available insulin pumps are preferred over regular insulin to achieve safe and stable glycaemic control. Further, educating pump users on proper use of CSII pumps, insulin dose adjustments, and handling of accessories are recommended in the current consensus guidelines. Practice of self-monitoring of blood glucose and glycated haemoglobin levels are essential to adjust insulin dosage for the management of diabetes. Use of CSII pumps in special patient populations should be carefully assessed and initiated by endocrinologist. The proposed guidelines can form a basis for use of CSII pumps in the management of hyperglycaemia in the Indian scenario. PMID:25668935

  20. Differentiation of rapid and slower-acting effects of insulin on mitochondrial processes in brown adipose tissue from streptozotocin-diabetic rats.

    PubMed Central

    Gualberto, A; Saggerson, E D

    1989-01-01

    Insulin treatment of streptozotocin-diabetic rats restores the depressed palmitoyl-group oxidation observed in brown-adipose-tissue mitochondria from diabetic rats. A relatively rapid effect of insulin (5 h) to increase carnitine-dependent oxidation of palmitoyl-CoA and to increase overt carnitine palmitoyltransferase activity is differentiated from a slower effect of the hormone (1 day) to increase palmitoylcarnitine oxidation. PMID:2649091

  1. Insulin Degludec, The New Generation Basal Insulin or Just another Basal Insulin?

    PubMed Central

    Nasrallah, Sami N.; Reynolds, L. Raymond

    2012-01-01

    The advances in recombinant DNA technology have led to an improvement in the properties of currently available long-acting insulin analogs. Insulin degludec, a new generation ultra-long-acting basal insulin, currently in phase 3 clinical trials, has a promising future in clinical use. When compared to its rival basal insulin analogs, a longer duration of action and lower incidence of hypoglycemic events in both type 1 and type 2 diabetic patients has been demonstrated.1,2 Its unique mechanism of action is based on multihexamer formation after subcutaneous injection. This reportedly allows for less pharmacodynamic variability and within-subject variability than currently available insulin analogs, and a duration of action that is over 24 hours.3 The lack of proof of carcinogenicity with insulin degludec is yet another factor that would be taken into consideration when choosing the optimal basal insulin for a diabetic individual.4 A formulation of insulin degludec with insulin aspart, Insulin degludec 70%/aspart 30%, may permit improved flexibly of dosing without compromising glycemic control or safety.5 PMID:22879797

  2. Sclerocarya birrea (Anacardiaceae) stem-bark extract corrects glycaemia in diabetic rats and acts on beta-cells by enhancing glucose-stimulated insulin secretion.

    PubMed

    Makom Ndifossap, Ivonne Gisèle; Frigerio, Francesca; Casimir, Marina; Ngueguim Tsofack, Florence; Dongo, Etienne; Kamtchouing, Pierre; Dimo, Théophile; Maechler, Pierre

    2010-04-01

    Sclerocarya birrea is a plant widely used as traditional medication for the treatment of diabetes in sub-Saharan regions. However, the mechanism of action is unknown and only hypoglycaemic effects of S. birrea extract (SBE) in diabetic rats have been reported to date. Here, we tested aqueous extracts of S. birrea on insulin-secreting INS-1E cells and isolated rat islets. Following 24 h of treatment at 5 microg/ml, the extract markedly potentiated glucose-stimulated insulin secretion. Neither basal insulin release nor non-nutrient stimulation was affected. The potentiation of the secretory response at stimulatory glucose appeared after 12 h of treatment. No acute effects were observed and, at the effective concentration, SBE was safe regarding cell integrity and differentiation. The mechanism of action of the SBE was related to glucose metabolism as both ATP generation and glucose oxidation were enhanced following the 24-h treatment. In streptozotocin-induced diabetic rats, SBE administration corrected glycaemia and restored plasma insulin levels after 2 weeks of treatment. These data show direct action of S. birrea on insulin-secreting cells and favour further delineation for use of the plant in the management of diabetes.

  3. The past, present, and future of basal insulins.

    PubMed

    Pettus, Jeremy; Santos Cavaiola, Tricia; Tamborlane, William V; Edelman, Steven

    2016-09-01

    Insulin production by the pancreas follows a basic pattern where basal levels of insulin are secreted during fasting periods, with prandial increases in insulin associated with food ingestion. The aim of insulin therapy in patients with diabetes is to match the endogenous pattern of insulin secretion as closely as possible without causing hypoglycaemia. There are several optimal pharmacokinetic and pharmacodynamic properties of long-acting basal insulins that can help to achieve this aim, namely, as follows: activity that is flat and as free of peaks as possible, a duration of action of ≥24-h, and as little day-to-day variation as possible. The long-acting basal insulins are a fundamental therapy for patients with type 1 and type 2 diabetes, and those that are currently available have many benefits; however, the development of even longer-acting insulins and improved insulin delivery techniques may lead to better glycemic control for patients in the future. Established long-acting basal insulins available in the United States and Europe include insulin glargine 100 units/mL and insulin detemir, both of which exhibit similar glycemic control to that of the intermediate-acting neutral protamine Hagedorn insulin, but with a reduction in hypoglycaemia. Newer insulin products available include new insulin glargine 300 units/mL (United States and Europe) and the ultra-long-acting insulin degludec (Europe) with basal insulin peglispro currently in development. These new insulins demonstrate different pharmacokinetic/pharmacodynamic profiles and longer durations of action (>24 h) compared with insulin glargine 100 units/mL, which may lead to potential benefits. The introduction of biosimilar insulins may also broaden access to insulins by reducing treatment costs. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26509843

  4. Influence of Unweighting on Insulin Signal Transduction in Muscle

    NASA Technical Reports Server (NTRS)

    Tischler, Marc E.

    2002-01-01

    Unweighting of the juvenile soleus muscle is characterized by an increased binding capacity for insulin relative to muscle mass due to sparing of the receptors during atrophy. Although carbohydrate metabolism and protein degradation in the unweighted muscle develop increased sensitivity to insulin in vivo, protein synthesis in vivo and system A amino acid transport in vitro do not appear to develop such an enhanced response. The long-term goal is to identify the precise nature of this apparent resistance in the insulin signal transduction pathway and to consider how reduced weight-bearing may elicit this effect, by evaluating specific components of the insulin signalling pathway. Because the insulin-signalling pathway has components in common with the signal transduction pathway for insulin-like growth factor (IGF-1) and potentially other growth factors, the study could have important implications in the role of weight-bearing function on muscle growth and development. Since the insulin signalling pathway diverges following activation of insulin receptor tyrosine kinase, the immediate specific aims will be to study the receptor tyrosine kinase (IRTK) and those branches, which lead to phosphorylation of insulin receptor substrate-1 (IRS-1) and of Shc protein. To achieve these broader objectives, we will test in situ, by intramuscular injection, the responses of glucose transport, system A amino acid transport and protein synthesis to insulin analogues for which the receptor has either a weaker or much stronger binding affinity compared to insulin. Studies will include: (1) estimation of the ED(sub 50) for each analogue for these three processes; (2) the effect of duration (one to four days) of unweighting on the response of each process to all analogues tested; (3) the effect of unweighting and the analogues on IRTK activity; and (4) the comparative effects of unweighting and analogue binding on the tyrosine phosphorylation of IRTK, IRS-1, and Shc protein.

  5. Long-term treatment of central precocious puberty with a long-acting analogue of luteinizing hormone release hormone (D-Tryp6-GnRH) in monthly injections. Its possible use in normal puberty.

    PubMed

    Marcondes, J A; Abujamra, A C; Minanni, S L; Mendonca, B B; Nery, M; Lerario, A C; Pereira, M A; Abelin, N; Wajchenberg, B L

    1993-02-01

    The gonadotropin-releasing-hormone-like agonist D-Tryp6-GnRH (GnRHa) has been shown to induce reversible suppression of gonadotropins and gonadal steroids in patients with central precocious puberty. We examined the effect of a long-acting preparation of GnRHa in biodegradable microcapsules. D-Tryptophane6-GnRH, administered intramuscularly at 1 month intervals, for 12 consecutive months, on growth and skeletal maturation in 3 girls and 4 boys with neurogenic or idiopathic precocious puberty. Suppression of gonadotropin release after GnRH stimulation and gonadal steroids was maintained in all subjects. Growth velocity fell from a mean rate (+/- SEM) or 8.60 +/- 0.75 cm/year before treatment to 5.81 +/- 0.60 cm/year (p < 0.005) after 1 year. Bone age advanced a mean of 8.0 +/- 0.45 months during treatment, suggesting an increase in predicted height from the ratio delta bone age/delta chronological age. Two subjects, one of them with compensated Bartter's syndrome with normal hypothalamic pituitary-gonadal-axis, received the analogue to delay pubertal growth with the hope to improve final height. In the first one, the growth velocity fell from 9.9 cm/year to 8 cm/year and delta bone age/delta chronological age decreased from 1.28 to 1.0 and in the other subject, the growth velocity fell from 12 cm/year to 6.0 cm/year in the last year of treatment and delta bone age/delta chronological age fell from 3.2 to 0.75, indicating an improvement in predicted height.

  6. Biosimilar Insulins

    PubMed Central

    Hompesch, Marcus

    2014-01-01

    Until now most of the insulin used in developed countries has been manufactured and distributed by a small number of multinational companies. Beyond the established insulin manufacturers, a number of new players have developed insulin manufacturing capacities based on modern biotechnological methods. Because the patents for many of the approved insulin formulations have expired or are going to expire soon, these not yet established companies are increasingly interested in seeking market approval for their insulin products as biosimilar insulins (BI) in highly regulated markets like the EU and the United States. Differences in the manufacturing process (none of the insulin manufacturing procedures are 100% identical) can lead to insulins that to some extent may differ from the originator insulin. The key questions are if subtle differences in the structure of the insulins, purity, and so on are clinically relevant and may result in different biological effects. The aim of this article is to introduce and discuss basic aspects that may be of relevance with regard to BI. PMID:24876530

  7. All-Cause and Cause-Specific Mortality among Users of Basal Insulins NPH, Detemir, and Glargine

    PubMed Central

    Strandberg, Timo E.; Christopher, Solomon; Haukka, Jari; Korhonen, Pasi

    2016-01-01

    Background Insulin therapy in type 2 diabetes may increase mortality and cancer incidence, but the impact of different types of basal insulins on these endpoints is unclear. Compared to the traditional NPH insulin, the newer, longer-acting insulin analogues detemir and glargine have shown benefits in randomized controlled trials. Whether these advantages translate into lower mortality among users in real life is unknown. Objective To estimate the differences in all-cause and cause-specific mortality rates between new users of basal insulins in a population-based study in Finland. Methods 23 751 individuals aged ≥40 with type 2 diabetes, who initiated basal insulin therapy in 2006–2009 were identified from national registers, with comprehensive data for mortality, causes of death, and background variables. Propensity score matching was performed on characteristics. Follow-up time was up to 4 years (median 1.7 years). Results 2078 deaths incurred. With NPH as reference, the adjusted HRs for all-cause mortality were 0.39 (95% CI, 0.30–0.50) for detemir, and 0.55 (95% CI, 0.44–0.69) for glargine. As compared to glargine, the HR was 0.71 (95% CI, 0.54–0.93) among detemir users. Compared to NPH, the mortality risk for both cardiovascular causes as well as cancer were also significantly lower for glargine, and especially for detemir in adjusted analysis. Furthermore, the results were robust in various sensitivity analyses. Conclusion In real clinical practice, mortality was substantially higher among users of NPH insulin as compared to insulins detemir or glargine. Considering the large number of patients who require insulin therapy, this difference in risk may have major clinical and public health implications. Due to limitations of the observational study design, further investigation using an interventional study design is warranted. PMID:27031113

  8. Low dose of insulin detemir controls glycaemia, insulinemia and prevents diabetes mellitus progression in the dog with pituitary-dependent hyperadrenocorticism.

    PubMed

    Miceli, D D; Gallelli, M F; Cabrera Blatter, M F; Martiarena, B; Brañas, M M; Ortemberg, L R; Gómez, N V; Castillo, V A

    2012-08-01

    Diabetes is often associated with pituitary-dependent hyperadrenocorticism (PDH). Hypercortisolism causes insulin resistance and affects β-cell function. The purpose of this study was to test if daily administration of a long-acting insulin analogue during the first month of anti-PDH treatment can prevent progress to diabetes in these animals. Twenty-six PDH dogs were divided into three groups: one group with glycaemia <5.83 mmol/L and two groups with glycaemia >5.83 mmol/L and <9.35 mmol/L, one of which received insulin detemir during 4 months. Dogs with glycaemia <5.83 mmol/L and those with glycaemia >5.83 mmol/L which received insulin did not develop diabetes. In the non-insulin group, 6/7 dogs developed diabetes after the third month. There is a 13-fold higher risk of diabetes in dogs with glycaemia >5.83 mmol/L and no insulin treatment. Administering insulin detemir to dogs with PDH and glycaemia >5.83 mmol/L could prevent progression to diabetes.

  9. Successful Pregnancy after Improving Insulin Resistance with the Glucagon-Like Peptide-1 Analogue in a Woman with Polycystic Ovary Syndrome: A Case Report and Review of the Literature.

    PubMed

    Yang, Qianying; Wang, Fang

    2016-01-01

    The polycystic ovary syndrome (PCOS) is a common cause of anovulatory infertility. It is diagnosed by the presence of hyperandrogenemia, insulin resistance (IR), obesity and other endocrine or metabolic disorders. Exenatide (EX) is a kind of glucagon-like peptide, which is a new option for patients with diabetes mellitus. We present a patient with infertility for PCOS. She was overweight and her medical history included IR, right-sided ovarian mucinous cystadenomas, and left-sided teratoma. Although she had been treated with ovarian surgery, clomiphene citrate and gonadotropins, weight loss and metformin, which have been effective for dominant follicle development, she still failed to conceive. Then EX was initiated to intervene for 2 months. EX treatment was successful to improve IR; after that the infertile woman with PCOS became pregnant. EX improves IR and reproduction capacity in PCOS patients, reducing insulin level and ameliorating endocrine disorders, thereby improving ovarian function, promoting follicle development, and providing new avenues for the treatment of infertility with PCOS. PMID:27300746

  10. Effects of LY117018 and the estrogen analogue, 17alpha-ethinylestradiol, on vascular reactivity, platelet aggregation, and lipid metabolism in the insulin-resistant JCR:LA-cp male rat: role of nitric oxide.

    PubMed

    Russell, J C; McKendrick, J D; Dubé, P J; Dolphin, P J; Radomski, M W

    2001-01-01

    The JCR:LA-cp rat is obese and insulin resistant and develops a major vasculopathy, with associated ischemic damage to the heart. Male rats were treated with 17alpha-ethinylestradiol (EE), LY117018, and/or the nitric oxide synthase inhibitor, N(G)-nitro-L-arginine methyl ester (L-NAME). LY117018 decreased plasma cholesterol esters, with a 40% reduction in total cholesterol. EE increased triglyceride levels and modestly decreased cholesterol esters. L-NAME increased blood pressure and aortic contractile sensitivity to phenylephrine and inhibited acetylcholine-induced relaxation. LY117018 decreased the force of contraction. The L-NAME-mediated increase in force of contraction and decrease in response to acetylcholine was inhibited by LY117018. L-NAME-induced hypertension was prevented by LY117018. Platelet aggregation was not different between obese and lean rats and was unaffected by L-NAME. LY117018, both in the absence and presence of L-NAME, inhibited platelet aggregation. The effects of LY117018 are apparently mediated through both NO-dependent and -independent mechanisms. The changes induced by EE and LY117018 may reflect the activation of multiple mechanisms, both estrogen receptor-dependent and -independent. The changes induced by LY117018 are significant and may prove to be cardioprotective in the presence of the insulin resistance syndrome.

  11. Survey of Analogue Spacetimes

    NASA Astrophysics Data System (ADS)

    Visser, Matt

    Analogue spacetimes (and more boldly, analogue models both of and for gravity), have attracted significant and increasing attention over the last decade and a half. Perhaps the most straightforward physical example, which serves as a template for most of the others, is Bill Unruh's model for a dumb hole,(mute black hole, acoustic black hole), wherein sound is dragged along by a moving fluid—and can even be trapped behind an acoustic horizon. This and related analogue models for curved spacetimes are useful in many ways: analogue spacetimes provide general relativists with extremely concrete physical models to help focus their thinking, and conversely the techniques of curved spacetime can sometimes help improve our understanding of condensed matter and/or optical systems by providing an unexpected and countervailing viewpoint. In this chapter, I shall provide a few simple examples of analogue spacetimes as general background for the rest of the contributions.

  12. Clinical experience with insulin detemir, biphasic insulin aspart and insulin aspart in people with type 2 diabetes: Results from the West India cohort of the A1chieve study

    PubMed Central

    Jain, Sunil M.; Jindal, Sushil; Malve, Harshad; Shetty, Raman; Bhoraskar, Anil

    2013-01-01

    Background: The A1chieve, a multicentric (28 countries), 24-week, non-interventional study evaluated the safety and effectiveness of insulin detemir, biphasic insulin aspart and insulin aspart in people with T2DM (n = 66,726) in routine clinical care across four continents. Materials and Methods: Data was collected at baseline, at 12 weeks and at 24 weeks. This short communication presents the results for patients enrolled from West India. Results: A total of 4192 patients were enrolled in the study. Four different insulin analogue regimens were used in the study. Patients had started on or were switched to biphasic insulin aspart (n = 2846), insulin detemir (n = 596), insulin aspart (n = 517), basal insulin plus insulin aspart (n = 140) and other insulin combinations (n = 83). At baseline glycaemic control was poor for both insulin naïve (mean HbA1c: 8.8%) and insulin user (mean HbA1c: 9.1%) groups. After 24 weeks of treatment, both the groups showed improvement in HbA1c (insulin naïve: −1.6%, insulin users: −1.7%). SADRs including major hypoglycaemic events or episodes did not occur in any of the study patients. Conclusion: Starting or switching to insulin analogues was associated with improvement in glycaemic control with a low rate of hypoglycaemia. PMID:24404488

  13. Insulin oedema.

    PubMed Central

    Evans, D. J.; Pritchard-Jones, K.; Trotman-Dickenson, B.

    1986-01-01

    A 35 year old markedly underweight woman presented with uncontrolled diabetes. Following insulin therapy she developed gross fluid retention with extensive peripheral oedema, bilateral pleural effusions and weight gain of 18.8 kg in 22 days, accompanied by a fall in plasma albumin. She responded well to treatment with diuretics and salt-poor albumin, losing 10.3 kg in 6 days without recurrence of oedema. Severe insulin oedema is an uncommon complication of insulin therapy and may be due to effects of insulin on both vascular permeability and the renal tubule. Images Figure 2 PMID:3529068

  14. What is the role of concentrated insulin in diabetes management?

    PubMed

    Mospan, Cortney M

    2016-06-01

    Two concentrated analog insulins, long-acting insulin glargine U-300 (Toujeo) and rapid-acting insulin lispro (Humalog U-200), were recently approved by the FDA. Providers must be aware of clinical differences in these new product formulations compared with their nonconcentrated formulations, so that they can select appropriate patients for these products and minimize drug errors. PMID:27228041

  15. Importance of Insulin Immunoassays in the Diagnosis of Factitious Hypoglycemia

    PubMed Central

    Nalbantoğlu Elmas, Özlem; Demir, Korcan; Soylu, Nusret; Çelik, Nilüfer; Özkan, Behzat

    2014-01-01

    We report two cases emphasizing the importance of insulin assays for evaluation of hypoglycemia in diabetic patients. Case 1 was a 96/12-year-old female patient with type 1 diabetes mellitus and case 2 was a 1010/12-year-old male patient with DIDMOAD. Both patients were on a basal-bolus insulin regimen. Both were admitted because of persistent hypoglycemia. Analyses of serum samples obtained at the time of hypoglycemia initially showed low insulin and C-peptide levels. Recurrent episodes of unexplained hypoglycemia necessitated measurement of insulin levels by using different insulin assays, which revealed hyperinsulinemic hypoglycemia with low C-peptide levels, findings which confirmed a diagnosis of factitious hypoglycemia. Surreptitious administration of insulin should not be excluded in diabetic patients with hypoglycemia without taking into account the rate of cross-reactivity of insulin analogues with the insulin assay used. PMID:25541899

  16. Nonstationary analogue black holes

    NASA Astrophysics Data System (ADS)

    Eskin, Gregory

    2014-12-01

    We study the existence of analogue nonstationary spherically symmetric black holes. The prime example is the acoustic model see Unruh (1981 Phys. Rev. Lett. 46 1351). We consider also a more general class of metrics that could be useful in other physical models of analogue black and white holes. We give examples of the appearance of black holes and of disappearance of white holes. We also discuss the relation between the apparent and the event horizons for the case of analogue black holes. In the end we study the inverse problem of determination of black or white holes by boundary measurements for the spherically symmetric nonstationary metrics.

  17. Safety and effectiveness of dipeptidyl peptidase-4 inhibitors versus intermediate-acting insulin or placebo for patients with type 2 diabetes failing two oral antihyperglycaemic agents: a systematic review and network meta-analysis

    PubMed Central

    Tricco, Andrea C; Antony, Jesmin; Khan, Paul A; Ghassemi, Marco; Hamid, Jemila S; Ashoor, Huda; Blondal, Erik; Soobiah, Charlene; Yu, Catherine H; Hutton, Brian; Hemmelgarn, Brenda R; Moher, David; Majumdar, Sumit R; Straus, Sharon E

    2014-01-01

    Objective To evaluate the effectiveness and safety of dipeptidyl peptidase-4 (DPP-4) inhibitors versus intermediate-acting insulin for adults with type 2 diabetes mellitus (T2DM) and poor glycaemic control despite treatment with two oral agents. Setting Studies were multicentre and multinational. Participants Ten studies including 2967 patients with T2DM. Interventions Studies that examined DPP-4 inhibitors compared with each other, intermediate-acting insulin, no treatment or placebo in patients with T2DM. Primary and secondary outcome measures Primary outcome was glycosylated haemoglobin (HbA1c). Secondary outcomes were healthcare utilisation, body weight, fractures, quality of life, microvascular complications, macrovascular complications, all-cause mortality, harms, cost and cost-effectiveness. Results 10 randomised clinical trials with 2967 patients were included after screening 5831 titles and abstracts, and 180 full-text articles. DPP-4 inhibitors significantly reduced HbA1c versus placebo in network meta-analysis (NMA; mean difference (MD) −0.62%, 95% CI −0.93% to −0.33%) and meta-analysis (MD −0.61%, 95% CI −0.81% to −0.41%), respectively. Significant differences in HbA1c were not observed for neutral protamine Hagedorn (NPH) insulin versus placebo and DPP-4 inhibitors versus NPH insulin in NMA. In meta-analysis, no significant differences were observed between DPP-4 inhibitors and placebo for severe hypoglycaemia, weight gain, cardiovascular disease, overall harms, treatment-related harms and mortality, although patients receiving DPP-4 inhibitors experienced less infections (relative risk 0.72, 95% CI 0.57 to 0.91). Conclusions DPP-4 inhibitors were superior to placebo in reducing HbA1c levels in adults with T2DM taking at least two oral agents. Compared with placebo, no safety signals were detected with DPP-4 inhibitors and there was a reduced risk of infection. There was no significant difference in HbA1c observed between NPH and placebo or

  18. A practical guide to basal and prandial insulin therapy.

    PubMed

    Holman, R R; Turner, R C

    1985-01-01

    Separating basal and meal-related insulin requirements allows a systematic approach to subcutaneous insulin therapy. Simple guidelines for both the doctor and patient can cater for the spectrum of severity of diabetes. A non-insulin-dependent diabetic who, despite dieting, continues to have moderate fasting hyperglycaemia (6-10 mmol/l) may need only a basal insulin supplement, whereas a totally insulin-dependent diabetic usually needs similar amounts of basal and meal-related insulin. The likely insulin requirements of individual diabetics can be predicted, including the increased amounts required by obese patients. The algorithms have been developed using ultralente to provide the basal insulin requirement, but the principles and doses probably apply to other similarly long-acting insulins or an insulin pump. The insulin doses can be easily altered for varying lifestyles, including night work, religious fasts or long distance aeroplane travel, and for temporary disturbances such as operations or intercurrent infections.

  19. Cerebral insulin, insulin signaling pathway, and brain angiogenesis.

    PubMed

    Zeng, Yi; Zhang, Le; Hu, Zhiping

    2016-01-01

    Insulin performs unique non-metabolic functions within the brain. Broadly speaking, two major areas of these functions are those related to brain endothelial cells and the blood-brain barrier (BBB) function, and those related to behavioral effects, like cognition in disease states (Alzheimer's disease, AD) and in health. Recent studies showed that both these functions are associated with brain angiogenesis. These findings raise interesting questions such as how they are linked to each other and whether modifying brain angiogenesis by targeting certain insulin signaling pathways could be an effective strategy to treat dementia as in AD, or even to help secure healthy longevity. The two canonical downstream pathways involved in mediating the insulin signaling pathway, the phosphoinositide-3 kinase (PI3K), and mitogen-activated protein kinase (MAPK) cascades, in the brain are supposed to be similar to those in the periphery. PI3K and MAPK pathways play important roles in angiogenesis. Both are involved in stimulating hypoxia inducible factor (HIF) in angiogenesis and could be activated by the insulin signaling pathway. This suggests that PI3K and MAPK pathways might act as cross-talk between the insulin signaling pathway and the angiogenesis pathway in brain. But the cerebral insulin, insulin signaling pathway, and the detailed mechanism in the connection of insulin signaling pathway, brain angiogenesis pathway, and healthy aging or dementias are still mostly not clear and need further studies.

  20. Modern insulins, old paradigms and pragmatism: choosing wisely when deciding how to treat type 1 diabetes.

    PubMed

    Schaan, Beatriz D; Scheffel, Rafael Selbach

    2015-01-01

    There is a clinical imperative to improve metabolic control in the treatment of patients with type 1 diabetes, but in doing so, hypoglycemia should be avoided at all costs. Insulin analogues and the assumption they would better mimic the pharmacokinetic profile of endogenous insulin secretion emerged as a magic bullet in the treatment of patients with type 1 diabetes. However, although insulin analogues have pharmaceutical properties, such as pharmacodynamic stability, reproducibility of action, and a more physiological timing of action, which could possibly facilitate insulin use, the results obtained in clinical practice have not been as good as expected. Like all clinical decisions, the decision regarding which insulin would be better for the patient should be, if possible, evidence based. Here, we briefly discuss evidence for the use of insulin analogues and the different views with respect to the available evidence that lead to different interpretations and decisions regarding the use of this new technology.

  1. O-Linked β-N-acetylglucosamine (O-GlcNAc) Acts as a Glucose Sensor to Epigenetically Regulate the Insulin Gene in Pancreatic Beta Cells.

    PubMed

    Durning, Sean P; Flanagan-Steet, Heather; Prasad, Nripesh; Wells, Lance

    2016-01-29

    The post-translational protein modification O-linked β-N-acetylglucosamine (O-GlcNAc) is a proposed nutrient sensor that has been shown to regulate multiple biological pathways. This dynamic and inducible enzymatic modification to intracellular proteins utilizes the end product of the nutrient sensing hexosamine biosynthetic pathway, UDP-GlcNAc, as its substrate donor. Type II diabetic patients have elevated O-GlcNAc-modified proteins within pancreatic beta cells due to chronic hyperglycemia-induced glucose overload, but a molecular role for O-GlcNAc within beta cells remains unclear. Using directed pharmacological approaches in the mouse insulinoma-6 (Min6) cell line, we demonstrate that elevating nuclear O-GlcNAc increases intracellular insulin levels and preserves glucose-stimulated insulin secretion during chronic hyperglycemia. The molecular mechanism for these observed changes appears to be, at least in part, due to elevated O-GlcNAc-dependent increases in Ins1 and Ins2 mRNA levels via elevations in histone H3 transcriptional activation marks. Furthermore, RNA deep sequencing reveals that this mechanism of altered gene transcription is restricted and that the majority of genes regulated by elevated O-GlcNAc levels are similarly regulated by a shift from euglycemic to hyperglycemic conditions. These findings implicate the O-GlcNAc modification as a potential mechanism for hyperglycemic-regulated gene expression in the beta cell.

  2. Metabolic, anabolic, and mitogenic insulin responses: A tissue-specific perspective for insulin receptor activators

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Insulin acts as the major regulator of the fasting-to-fed metabolic transition by altering substrate metabolism, promoting energy storage, and helping activate protein synthesis. In addition to its glucoregulatory and other metabolic properties, insulin can also act as a growth factor. The metabolic...

  3. Insulin Test

    MedlinePlus

    ... people with type 2 diabetes , polycystic ovarian syndrome (PCOS) , prediabetes or heart disease , or metabolic syndrome . A ... resistance), especially in obese individuals and those with PCOS . This test involves an IV-infusion of insulin, ...

  4. Insulin and insulin like growth factor II endocytosis and signaling via insulin receptor B

    PubMed Central

    2013-01-01

    Background Insulin and insulin-like growth factors (IGFs) act on tetrameric tyrosine kinase receptors controlling essential functions including growth, metabolism, reproduction and longevity. The insulin receptor (IR) binds insulin and IGFs with different affinities triggering different cell responses. Results We showed that IGF-II induces cell proliferation and gene transcription when IR-B is over-expressed. We combined biotinylated ligands with streptavidin conjugated quantum dots and visible fluorescent proteins to visualize the binding of IGF-II and insulin to IR-B and their ensuing internalization. By confocal microscopy and flow cytometry in living cells, we studied the internalization kinetic through the IR-B of both IGF-II, known to elicit proliferative responses, and insulin, a regulator of metabolism. Conclusions IGF-II promotes a faster internalization of IR-B than insulin. We propose that IGF-II differentially activates mitogenic responses through endosomes, while insulin-activated IR-B remains at the plasma membrane. This fact could facilitate the interaction with key effector molecules involved in metabolism regulation. PMID:23497114

  5. Biodegradable analogues of DDT*

    PubMed Central

    Metcalf, Robert L.; Kapoor, Inder P.; Hirwe, Asha S.

    1971-01-01

    Despite the immense utility of DDT for vector control its usefulness is prejudiced by its stability in the environment and by the low rate at which it can be degraded biologically. Metabolic studies in insects, in mice, and in a model ecosystem with several food chains have shown that DDT analogues with substituent groups readily attacked by multifunction oxidases undergo a substantial degree of biological degradation and do not appear to be stored readily in animal tissues or concentrated in food chains. Detailed metabolic pathways have been worked out and it is clear that comparative biochemistry can be used to develop DDT analogues that are adequately persistent yet biodegradable. A number of new DDT analogues have been evaluated for insecticidal activity against flies and mosquitos and for their potential usefulness as safe, persistent, and biodegradable insecticides. PMID:5315354

  6. Insulin Resistance Induced by Hyperinsulinemia Coincides with a Persistent Alteration at the Insulin Receptor Tyrosine Kinase Domain

    PubMed Central

    Catalano, Karyn J.; Maddux, Betty A.; Szary, Jaroslaw; Youngren, Jack F.; Goldfine, Ira D.; Schaufele, Fred

    2014-01-01

    Insulin resistance, the diminished response of target tissues to insulin, is associated with the metabolic syndrome and a predisposition towards diabetes in a growing proportion of the worldwide population. Under insulin resistant states, the cellular response of the insulin signaling pathway is diminished and the body typically responds by increasing serum insulin concentrations to maintain insulin signaling. Some evidence indicates that the increased insulin concentration may itself further dampen insulin response. If so, insulin resistance would worsen as the level of circulating insulin increases during compensation, which could contribute to the transition of insulin resistance to more severe disease. Here, we investigated the consequences of excess insulin exposure to insulin receptor (IR) activity. Cells chronically exposed to insulin show a diminished the level of IR tyrosine and serine autophosphorylation below that observed after short-term insulin exposure. The diminished IR response did not originate with IR internalization since IR amounts at the cell membrane were similar after short- and long-term insulin incubation. Förster resonance energy transfer between fluorophores attached to the IR tyrosine kinase (TK) domain showed that a change in the TK domain occurred upon prolonged, but not short-term, insulin exposure. Even though the altered ‘insulin refractory’ IR TK FRET and IR autophosphorylation levels returned to baseline (non-stimulated) levels after wash-out of the original insulin stimulus, subsequent short-term exposure to insulin caused immediate re-establishment of the insulin-refractory levels. This suggests that some cell-based ‘memory’ of chronic hyperinsulinemic exposure acts directly at the IR. An improved understanding of that memory may help define interventions to reset the IR to full insulin responsiveness and impede the progression of insulin resistance to more severe disease states. PMID:25259572

  7. New Insulin Delivery Recommendations.

    PubMed

    Frid, Anders H; Kreugel, Gillian; Grassi, Giorgio; Halimi, Serge; Hicks, Debbie; Hirsch, Laurence J; Smith, Mike J; Wellhoener, Regine; Bode, Bruce W; Hirsch, Irl B; Kalra, Sanjay; Ji, Linong; Strauss, Kenneth W

    2016-09-01

    Many primary care professionals manage injection or infusion therapies in patients with diabetes. Few published guidelines have been available to help such professionals and their patients manage these therapies. Herein, we present new, practical, and comprehensive recommendations for diabetes injections and infusions. These recommendations were informed by a large international survey of current practice and were written and vetted by 183 diabetes experts from 54 countries at the Forum for Injection Technique and Therapy: Expert Recommendations (FITTER) workshop held in Rome, Italy, in 2015. Recommendations are organized around the themes of anatomy, physiology, pathology, psychology, and technology. Key among the recommendations are that the shortest needles (currently the 4-mm pen and 6-mm syringe needles) are safe, effective, and less painful and should be the first-line choice in all patient categories; intramuscular injections should be avoided, especially with long-acting insulins, because severe hypoglycemia may result; lipohypertrophy is a frequent complication of therapy that distorts insulin absorption, and, therefore, injections and infusions should not be given into these lesions and correct site rotation will help prevent them; effective long-term therapy with insulin is critically dependent on addressing psychological hurdles upstream, even before insulin has been started; inappropriate disposal of used sharps poses a risk of infection with blood-borne pathogens; and mitigation is possible with proper training, effective disposal strategies, and the use of safety devices. Adherence to these new recommendations should lead to more effective therapies, improved outcomes, and lower costs for patients with diabetes. PMID:27594187

  8. New Insulin Delivery Recommendations.

    PubMed

    Frid, Anders H; Kreugel, Gillian; Grassi, Giorgio; Halimi, Serge; Hicks, Debbie; Hirsch, Laurence J; Smith, Mike J; Wellhoener, Regine; Bode, Bruce W; Hirsch, Irl B; Kalra, Sanjay; Ji, Linong; Strauss, Kenneth W

    2016-09-01

    Many primary care professionals manage injection or infusion therapies in patients with diabetes. Few published guidelines have been available to help such professionals and their patients manage these therapies. Herein, we present new, practical, and comprehensive recommendations for diabetes injections and infusions. These recommendations were informed by a large international survey of current practice and were written and vetted by 183 diabetes experts from 54 countries at the Forum for Injection Technique and Therapy: Expert Recommendations (FITTER) workshop held in Rome, Italy, in 2015. Recommendations are organized around the themes of anatomy, physiology, pathology, psychology, and technology. Key among the recommendations are that the shortest needles (currently the 4-mm pen and 6-mm syringe needles) are safe, effective, and less painful and should be the first-line choice in all patient categories; intramuscular injections should be avoided, especially with long-acting insulins, because severe hypoglycemia may result; lipohypertrophy is a frequent complication of therapy that distorts insulin absorption, and, therefore, injections and infusions should not be given into these lesions and correct site rotation will help prevent them; effective long-term therapy with insulin is critically dependent on addressing psychological hurdles upstream, even before insulin has been started; inappropriate disposal of used sharps poses a risk of infection with blood-borne pathogens; and mitigation is possible with proper training, effective disposal strategies, and the use of safety devices. Adherence to these new recommendations should lead to more effective therapies, improved outcomes, and lower costs for patients with diabetes.

  9. Insulin-dependent (type I) diabetes mellitus.

    PubMed Central

    Rodger, W

    1991-01-01

    Insulin-dependent (type I) diabetes mellitus is a chronic disease characterized by hyperglycemia, impaired metabolism and storage of important nutrients, evidence of autoimmunity, and long-term vascular and neurologic complications. Insulin secretory function is limited. Cell membrane binding is not primarily involved. The goal of treatment is to relieve symptoms and to achieve blood glucose levels as close to normal as possible without severe hypoglycemia. However, even with education and self-monitoring of the blood glucose level, attaining recommended target values (plasma glucose level less than 8.0 mmol/L before main meals for adults) remains difficult. Human insulin offers no advantage in glycemic control but is important in the management and prevention of immune-related clinical problems (e.g., injection-site lipoatrophy, insulin resistance and allergy) associated with the use of beef or pork insulin. Therapy with one or two injections per day of mixed short-acting or intermediate-acting insulin preparations is a compromise between convenience and the potential for achieving target plasma glucose levels. Intensive insulin therapy with multiple daily injections or continuous infusion with an insulin pump improves mean glycated hemoglobin levels; however, it increases rates of severe hypoglycemia and has not been shown to decrease the incidence of clinically significant renal, retinal or neurologic dysfunction. Future prospects include automated techniques of insulin delivery, immunosuppression to preserve endogenous insulin secretion and islet transplantation. PMID:1933705

  10. [Insulin treatment in elder patients with diabetes].

    PubMed

    Hamaguchi, Tomoya; Namba, Mitsuyoshi

    2006-01-01

    Diabetes is a highly expanding health problem in Japan, especially for older people. The prevalence of glucose intolerance and diabetes increases with age. A postprandial hyperglycemia is the primary clinical manifestation. In older diabetic patients, atherosclerotic complications (macroangiopathies), as well as microangiopathies, are significant problems, threatening their quality of life. Though insulin therapy requires some special considerations, insulin is indicated for any patients with a poor glycemic control with oral agents. Single or multiple dose (s) of insulin injection therapy is selected for each patient to prevent symptomatic hyperglycemia, or to achieve near-normal glycemic control. Also, to maintain the quality of life for these older patients, hypoglycemia, as well as hyperglycemia, should be avoided. Newly developed insulin analogue (s) may be more appropriate for preventing hypoglycemia. Another method of prevention and treatment of hypoglycemia are discussed in this article.

  11. Analysis of alternatives for insulinizing patients to achieve glycemic control and avoid accompanying risks of hypoglycemia

    PubMed Central

    GAO, JIALIN; XIONG, QIANYIN; MIAO, JUN; ZHANG, YAO; XIA, LIBING; LU, MEIQIN; ZHANG, BINHUA; CHEN, YUEPING; ZHANG, ANSU; YU, CUI; WANG, LI-ZHUO

    2015-01-01

    The aims of the present study were to explore the efficacy of glycemic control and the risks of hypoglycemia with different methods of insulin therapy, and to provide reference data for the clinical treatment of diabetes. In this retrospective study, hospitalized patients diagnosed with type 2 diabetes between March and December 2014, in the Department of Endocrinology in the First Affiliated Hospital of Wannan Medical College, were divided into three groups, including an intensive insulin analogue therapy group, a premixed insulin analogue treatment group and a premixed human insulin therapy group. The efficacy of glycemic control and the incidence of hypoglycemia were determined in each of the insulin treatment groups. Compared with the other treatment groups, the intensive insulin analogue therapy group was associated with superior blood glucose control, shorter time to reach standard insulin regimen, shorter hospitalization time, fewer fluctuations in blood glucose levels and lower insulin dosage on discharge from hospital. However, this treatment was also associated with a high risk of hypoglycemia. In conclusion, when combined with the effective prevention of hypoglycemia and appropriate nursing care (especially in hospital care), intensive insulin analogue therapy may provide the greatest benefit to patients. PMID:26137223

  12. Natural Analogue Synthesis Report

    SciTech Connect

    A. M. Simmons

    2002-05-01

    The purpose of this report is to present analogue studies and literature reviews designed to provide qualitative and quantitative information to test and provide added confidence in process models abstracted for performance assessment (PA) and model predictions pertinent to PA. This report provides updates to studies presented in the ''Yucca Mountain Site Description'' (CRWMS M and O 2000 [151945], Section 13) and new examples gleaned from the literature, along with results of quantitative studies conducted specifically for the Yucca Mountain Site Characterization Project (YMP). The intent of the natural analogue studies was to collect corroborative evidence from analogues to demonstrate additional understanding of processes expected to occur during postclosure at a potential Yucca Mountain repository. The report focuses on key processes by providing observations and analyses of natural and anthropogenic (human-induced) systems to improve understanding and confidence in the operation of these processes under conditions similar to those that could occur in a nuclear waste repository. The process models include those that represent both engineered and natural barrier processes. A second purpose of this report is to document the various applications of natural analogues to geologic repository programs, focusing primarily on the way analogues have been used by the YMP. This report is limited to providing support for PA in a confirmatory manner and to providing corroborative inputs for process modeling activities. Section 1.7 discusses additional limitations of this report. Key topics for this report are analogues to emplacement drift degradation, waste form degradation, waste package degradation, degradation of other materials proposed for the engineered barrier, seepage into drifts, radionuclide flow and transport in the unsaturated zone (UZ), analogues to coupled thermal-hydrologic-mechanical-chemical processes, saturated zone (SZ) transport, impact of radionuclide

  13. Antihypertensive, insulin-sensitising and renoprotective effects of a novel, potent and long-acting angiotensin II type 1 receptor blocker, azilsartan medoxomil, in rat and dog models.

    PubMed

    Kusumoto, Keiji; Igata, Hideki; Ojima, Mami; Tsuboi, Ayako; Imanishi, Mitsuaki; Yamaguchi, Fuminari; Sakamoto, Hiroki; Kuroita, Takanobu; Kawaguchi, Naohiro; Nishigaki, Nobuhiro; Nagaya, Hideaki

    2011-11-01

    The pharmacological profile of a novel angiotensin II type 1 receptor blocker, azilsartan medoxomil, was compared with that of the potent angiotensin II receptor blocker olmesartan medoxomil. Azilsartan, the active metabolite of azilsartan medoxomil, inhibited the binding of [(125)I]-Sar(1)-I1e(8)-angiotensin II to angiotensin II type 1 receptors. Azilsartan medoxomil inhibited angiotensin II-induced pressor responses in rats, and its inhibitory effects lasted 24h after oral administration. The inhibitory effects of olmesartan medoxomil disappeared within 24h. ID(50) values were 0.12 and 0.55 mg/kg for azilsartan medoxomil and olmesartan medoxomil, respectively. In conscious spontaneously hypertensive rats (SHRs), oral administration of 0.1-1mg/kg azilsartan medoxomil significantly reduced blood pressure at all doses even 24h after dosing. Oral administration of 0.1-3mg/kg olmesartan medoxomil also reduced blood pressure; however, only the two highest doses significantly reduced blood pressure 24h after dosing. ED(25) values were 0.41 and 1.3mg/kg for azilsartan medoxomil and olmesartan medoxomil, respectively. In renal hypertensive dogs, oral administration of 0.1-1mg/kg azilsartan medoxomil reduced blood pressure more potently and persistently than that of 0.3-3mg/kg olmesartan medoxomil. In a 2-week study in SHRs, azilsartan medoxomil showed more stable antihypertensive effects than olmesartan medoxomil and improved the glucose infusion rate, an indicator of insulin sensitivity, more potently (≥ 10 times) than olmesartan medoxomil. Azilsartan medoxomil also exerted more potent antiproteinuric effects than olmesartan medoxomil in Wistar fatty rats. These results suggest that azilsartan medoxomil is a potent angiotensin II receptor blocker that has an attractive pharmacological profile as an antihypertensive agent.

  14. Comparison Pharmacokinetics of Two Concentrations (0.7% and 1.0%) of Nasulin™, an Ultra-Rapid-Acting Intranasal Insulin Formulation

    PubMed Central

    Stote, Robert; Marbury, Thomas; Shi, Leon; Miller, Michael; Strange, Poul

    2010-01-01

    Background This pharmacokinetic (PK) study was designed to characterize the dose response of two concentrations (0.7% and 1%) of a nasal spray of recombinant regular human insulin in combination with cyclopentadecalactone (CPE-215), a compound that enhances absorption of molecules across mucous membranes (Nasulin™, CPEX Pharmaceuticals). Nasulin has been effective in lowering blood glucose in both normal subjects and diabetes patients, and additional dosing options would allow greater titration flexibility. Method A five-period crossover study of 24 healthy, nonsmoking subjects (ages 18-50, basal metabolic index <33 kg/m2, weight >70 kg) were studied. Subjects were in a fasted state for 5 h before and 45 min after administration for PK assessment and were then given a meal. Each spray contained 100 μl. Doses tested were 25, 35, 50, 70, and 100 U. Maximum concentration (Cmax) and area under the curve (AUC) were estimated for each dose group. Glucose measurements were also performed. Results A dose response (slope of the natural log response versus dose) was demonstrated by baseline-adjusted Cmax of 22, 27, 56, 62, and 84 μU/ml for the 25, 35, 50, 70, and 100 U doses (p < .0001), respectively, and by baseline-adjusted AUC(0–45 min) values of 491, 592, 1231, 1310, and 1894 μU/ml/min (p < .0001). Glucose AUC(0–45 min) determinations also demonstrated a pharmacodynamic (PD) dose response. Conclusions Proportional and linear dose responses for both PK and PD parameters were demonstrated for the two concentrations, making multiple doses available for clinical development. PMID:20513326

  15. Additional disulfide bonds in insulin: Prediction, recombinant expression, receptor binding affinity, and stability

    PubMed Central

    Vinther, Tine N; Pettersson, Ingrid; Huus, Kasper; Schlein, Morten; Steensgaard, Dorte B; Sørensen, Anders; Jensen, Knud J; Kjeldsen, Thomas; Hubalek, František

    2015-01-01

    The structure of insulin, a glucose homeostasis-controlling hormone, is highly conserved in all vertebrates and stabilized by three disulfide bonds. Recently, we designed a novel insulin analogue containing a fourth disulfide bond located between positions A10-B4. The N-terminus of insulin's B-chain is flexible and can adapt multiple conformations. We examined how well disulfide bond predictions algorithms could identify disulfide bonds in this region of insulin. In order to identify stable insulin analogues with additional disulfide bonds, which could be expressed, the Cβ cut-off distance had to be increased in many instances and single X-ray structures as well as structures from MD simulations had to be used. The analogues that were identified by the algorithm without extensive adjustments of the prediction parameters were more thermally stable as assessed by DSC and CD and expressed in higher yields in comparison to analogues with additional disulfide bonds that were more difficult to predict. In contrast, addition of the fourth disulfide bond rendered all analogues resistant to fibrillation under stress conditions and all stable analogues bound to the insulin receptor with picomolar affinities. Thus activity and fibrillation propensity did not correlate with the results from the prediction algorithm. PMID:25627966

  16. Insulin Injection

    MedlinePlus

    ... to control blood sugar in people who have type 1 diabetes (condition in which the body does not make insulin and therefore cannot control the amount of sugar in the blood) or in people who have type 2 diabetes (condition in which the blood sugar ...

  17. Insulin action in brain regulates systemic metabolism and brain function.

    PubMed

    Kleinridders, André; Ferris, Heather A; Cai, Weikang; Kahn, C Ronald

    2014-07-01

    Insulin receptors, as well as IGF-1 receptors and their postreceptor signaling partners, are distributed throughout the brain. Insulin acts on these receptors to modulate peripheral metabolism, including regulation of appetite, reproductive function, body temperature, white fat mass, hepatic glucose output, and response to hypoglycemia. Insulin signaling also modulates neurotransmitter channel activity, brain cholesterol synthesis, and mitochondrial function. Disruption of insulin action in the brain leads to impairment of neuronal function and synaptogenesis. In addition, insulin signaling modulates phosphorylation of tau protein, an early component in the development of Alzheimer disease. Thus, alterations in insulin action in the brain can contribute to metabolic syndrome, and the development of mood disorders and neurodegenerative diseases.

  18. Anti-insulin antibody test

    MedlinePlus

    Insulin antibodies - serum; Insulin Ab test; Insulin resistance - insulin antibodies; Diabetes - insulin antibodies ... Normally, there are no antibodies against insulin in your blood. ... different laboratories. Some labs use different measurements or ...

  19. Pragmatic use of insulin degludec/insulin aspart co-formulation: A multinational consensus statement

    PubMed Central

    Kalra, Sanjay; Latif, Zafar A.; Comlekci, Abdurrahman; Galvez, Guillermo Gonzalez; Malik, Rached; Pathan, Md Faruque; Kumar, Ajay

    2016-01-01

    Insulin degludec/insulin aspart (IDegAsp) is a modern coformulation of ultra-long-acting basal insulin degludec, with rapid-acting insulin aspart. IDegAsp provides effective, safe, well-tolerated glycemic control, with a low risk of hypoglycemia while allowing flexibility in meal patterns and timing of administration. This consensus statement describes a pragmatic framework to identify patients who may benefit from IDegAsp therapy. It highlights the utility of IDegAsp in type 2 diabetic patients who are insulin-naive, suboptimally controlled on basal or premixed insulin, or dissatisfied with basal–bolus regimens. It also describes potential IDegAsp usage in type 1 diabetic patients. PMID:27366723

  20. Pragmatic use of insulin degludec/insulin aspart co-formulation: A multinational consensus statement.

    PubMed

    Kalra, Sanjay; Latif, Zafar A; Comlekci, Abdurrahman; Galvez, Guillermo Gonzalez; Malik, Rached; Pathan, Md Faruque; Kumar, Ajay

    2016-01-01

    Insulin degludec/insulin aspart (IDegAsp) is a modern coformulation of ultra-long-acting basal insulin degludec, with rapid-acting insulin aspart. IDegAsp provides effective, safe, well-tolerated glycemic control, with a low risk of hypoglycemia while allowing flexibility in meal patterns and timing of administration. This consensus statement describes a pragmatic framework to identify patients who may benefit from IDegAsp therapy. It highlights the utility of IDegAsp in type 2 diabetic patients who are insulin-naive, suboptimally controlled on basal or premixed insulin, or dissatisfied with basal-bolus regimens. It also describes potential IDegAsp usage in type 1 diabetic patients. PMID:27366723

  1. [Insulinization in type 2 diabetes mellitus. Intensification options].

    PubMed

    Fuente, Graciela V; Sinay, Isaac; Costa Gil, José E; Puchulu, Félix; Dieuzeide, Guillermo; Rodríguez, Martín; Faingold, María C; Litwak, León E

    2016-01-01

    Diabetes mellitus is associated with vascular complications and high rates of morbidity and mortality. Timely insulin therapy, intensified when necessary, represent appropriate measures to prevent or delay the onset of complications. However, the incidence of hypoglycemia and difficulties in treatment adherence represent barriers to achieve therapeutic success. Premixes analogs and, specially, combinations of insulin analogues are associated with pharmacokinetic and pharmacodynamic advantages, that translate into clinical benefits such as improved metabolic control, decreased hypoglycemic events and, for their simplicity, potentially greater adherence.

  2. [Perspectives in the treatment of type 2 diabetes. Role of insulin therapy?].

    PubMed

    Bringer, J; Renard, E; Galtier Dereure, F; Jaffiol, C

    1994-01-01

    Independently of its initial mechanism, Type 2 diabetes associates in various degrees disorders in insulin sensibility and secretion. The dissociated insulin resistance among tissues explains the predictable imperfection of insulin therapy in this disease due to frequent weight increase and the potential risks of insulin on atherogenesis raised on the basis of experimental studies. All diabetic subjects are not equally insulin resistant and do not have the same insulin secretory capacity evaluated in practice by means of the response of insulin or C peptide plasma levels to various secreting agents. Intensity and duration of hyperglycaemia, muscular mass, physical activity and way of life, age, weight and fat patterning, the presence of complications, acceptance, education feasibility and compliance are essential in selecting towards insulin therapy. Meanwhile, as the results of the prospective studies in progress become available, it seems that insulin should be restricted to the smallest useful dosage possible and that weight change should be carefully checked within the weeks following initiation of insulin. The future of insulin therapy in Type 2 diabetes requires (1) better selection of patients showing a demonstrated beneficial effect of insulin, (2) the association of insulin with new molecules capable of reducing its dosage and preventing its deleterious effects, (3) a change in the mode of insulin administration, with an appropriate balance between comfort and efficacy, (4) change in the insulin structure towards analogues or compounds related to insulin but with less perverted effects.

  3. Aspartame and Its Analogues

    NASA Astrophysics Data System (ADS)

    Pavlova, L. A.; Komarova, T. V.; Davidovich, Yurii A.; Rogozhin, S. V.

    1981-04-01

    The results of studies on the biochemistry of the sweet taste are briefly reviewed. The methods of synthesis of "aspartame" — a sweet dipeptide — are considered, its structural analogues are described, and quantitative estimates are made of the degree of sweetness relative to sucrose. Attention is concentrated mainly on problems of the relation between the structure of the substance and its taste in the series of aspartyl derivatives. The bibliography includes 118 references.

  4. Quantum analogue computing.

    PubMed

    Kendon, Vivien M; Nemoto, Kae; Munro, William J

    2010-08-13

    We briefly review what a quantum computer is, what it promises to do for us and why it is so hard to build one. Among the first applications anticipated to bear fruit is the quantum simulation of quantum systems. While most quantum computation is an extension of classical digital computation, quantum simulation differs fundamentally in how the data are encoded in the quantum computer. To perform a quantum simulation, the Hilbert space of the system to be simulated is mapped directly onto the Hilbert space of the (logical) qubits in the quantum computer. This type of direct correspondence is how data are encoded in a classical analogue computer. There is no binary encoding, and increasing precision becomes exponentially costly: an extra bit of precision doubles the size of the computer. This has important consequences for both the precision and error-correction requirements of quantum simulation, and significant open questions remain about its practicality. It also means that the quantum version of analogue computers, continuous-variable quantum computers, becomes an equally efficient architecture for quantum simulation. Lessons from past use of classical analogue computers can help us to build better quantum simulators in future.

  5. Non-equivalent Role of Inter- and Intramolecular Hydrogen Bonds in the Insulin Dimer Interface*

    PubMed Central

    Antolíková, Emília; Žáková, Lenka; Turkenburg, Johan P.; Watson, Christopher J.; Hančlová, Ivona; Šanda, Miloslav; Cooper, Alan; Kraus, Tomáš; Brzozowski, A. Marek; Jiráček, Jiří

    2011-01-01

    Apart from its role in insulin receptor (IR) activation, the C terminus of the B-chain of insulin is also responsible for the formation of insulin dimers. The dimerization of insulin plays an important role in the endogenous delivery of the hormone and in the administration of insulin to patients. Here, we investigated insulin analogues with selective N-methylations of peptide bond amides at positions B24, B25, or B26 to delineate their structural and functional contribution to the dimer interface. All N-methylated analogues showed impaired binding affinities to IR, which suggests a direct IR-interacting role for the respective amide hydrogens. The dimerization capabilities of analogues were investigated by isothermal microcalorimetry. Selective N-methylations of B24, B25, or B26 amides resulted in reduced dimerization abilities compared with native insulin (Kd = 8.8 μm). Interestingly, although the N-methylation in [NMeTyrB26]-insulin or [NMePheB24]-insulin resulted in Kd values of 142 and 587 μm, respectively, the [NMePheB25]-insulin did not form dimers even at high concentrations. This effect may be attributed to the loss of intramolecular hydrogen bonding between NHB25 and COA19, which connects the B-chain β-strand to the core of the molecule. The release of the B-chain β-strand from this hydrogen bond lock may result in its higher mobility, thereby shifting solution equilibrium toward the monomeric state of the hormone. The study was complemented by analyses of two novel analogue crystal structures. All examined analogues crystallized only in the most stable R6 form of insulin oligomers (even if the dimer interface was totally disrupted), confirming the role of R6-specific intra/intermolecular interactions for hexamer stability. PMID:21880708

  6. Insulin therapy and exercise.

    PubMed

    Kourtoglou, Georgios I

    2011-08-01

    Monitoring System (CGMS) must be made before, during and most importantly after the end of the exercise session. It is recommended either to reduce or suspend the previous insulin dose depending on the insulin regime or to receive extra carbohydrates before, during or after the exercise session or both. Subjects with type 1 DM may participate at almost all the competitive sports if precautions are taken. These measures must be individualized and readjusted, even empirically. In very high intensity exercise (about 80% of VO(2 max)) or when high intensity exercise follows a low intensity one, there is a tendency of the BG to increase due to excessive circulating catecholamines necessitating postexercise short acting insulin. In anaerobic or resistance exercise lactic acid is produced. This exercise type is recommended for people in whom aerobic exercise is contraindicated. These two exercise types can be combined. The incidence of hypoglycemia or hyperglycemia in specific forms of resistance exercise as well as the appropriate insulin dose adjustment are not well studied. In conclusion all exercise types are beneficial for both types of diabetes.

  7. Overview of Clinical Trial Program and Applicability of Insulin Degludec/Insulin Aspart in Diabetes Management.

    PubMed

    Bantwal, Ganapathi; Wangnoo, Subhash K; Shunmugavelu, M; Nallaperumal, S; Harsha, K P; Bhattacharyya, Arpandev

    2015-05-01

    Insulin degludec/insulin aspart (IDegAsp) is the first soluble coformulation combining a long-acting insulin degludec (IDeg) and rapid-acting insulin aspart (IAsp). In patients with uncontrolled type 2 diabetes (T2DM) previously treated with insulins, IDegAsp twice daily effectively improves glycated haemoglobin (HbA1c) and fasting plasma glucose (FPG) levels with fewer hypoglycaemic episodes versus premix insulins. Further, insulin initiation with IDegAsp once daily provides superior long-term glycaemic control compared to insulin glargine with similar FPG and insulin doses, and numerically lower rates of overall and nocturnal hypoglycaemia. In patients with type 1 diabetes mellitus (T1DM), IDegAsp once daily and IAsp at remaining meals provides more convenient three injection regimen per day over conventional 4-5 injections based basal-bolus therapy. IDegAsp is an appropriate and reasonable option for intensifying insulin therapy in patients with T2DM and a relatively less complex treatment option for the management of T1DM. PMID:26548031

  8. Insulin pumps.

    PubMed

    Pickup, J

    2010-02-01

    Insulin pump therapy is now more than 30 years old, and is an established part of the routine care of selected people with type 1 diabetes. Nevertheless, there are still significant areas of concern, particularly how pumps compare with modern injection therapy, whether the increasingly sophisticated pump technologies like onboard calculators and facility for computer download offer any real benefit, and whether we have a consensus on the clinical indications. The following papers offer some insight into these and other current questions.

  9. From somatostatin to octreotide LAR: evolution of a somatostatin analogue

    PubMed Central

    Anthony, Lowell; Freda, Pamela U.

    2013-01-01

    Background Acromegaly is characterized by overproduction of growth hormone (GH) by the pituitary gland. GH stimulates the synthesis of insulin-like growth factor-I (IGF-I), and the somatic growth and metabolic dysfunction that characterize acromegaly are a consequence of elevated GH and IGF-I levels. Gastroenteropancreatic neuroendocrine tumors (GEP-NETs) are rare, slow-growing neoplasms that have usually metastasized by the time of diagnosis. The majority of GEP-NETs are carcinoid tumors whose syndrome is caused by the hypersecretion of biogenic amines, peptides and polypeptides responsible for the principal symptoms of diarrhea and flushing. Methods The MEDLINE and EMBASE databases were searched for preclinical and clinical studies of octreotide (Sandostatin*), a potent synthetic somatostatin analogue, in patients with acromegaly or GEP-NETs. Objective This article reviews the 20 years of clinical experience with octreotide and the impact it has made in patients with acromegaly or GEP-NETs. Results Octreotide has proven to be an essential component in the management strategy of acromegaly and GEP-NETs over the past 20 years. The multiple beneficial effects of octreotide throughout the body, combined with its established safety profile (the most common adverse effects are injection-site pain and gastrointestinal events), have made it an appealing option for clinicians. The advent of the long-acting release (LAR) formulation of octreotide provided additional benefits to patients through monthly administration, while maintaining the efficacy and tolerability profile of the daily subcutaneous formulation. Conclusions Octreotide is a potent synthetic somatostatin analogue that has become the mainstay of medical therapy for tumor control in neuroendocrine disorders such as acromegaly and GEP-NETs. The development of octreotide LAR offered a further advancement; less frequent dosing provided valuable benefits in quality of life to patients, with equivalent efficacy and

  10. Acute Glucagon Induces Postprandial Peripheral Insulin Resistance

    PubMed Central

    Patarrão, Rita S.; Lautt, W. Wayne; Macedo, M. Paula

    2015-01-01

    Glucagon levels are often moderately elevated in diabetes. It is known that glucagon leads to a decrease in hepatic glutathione (GSH) synthesis that in turn is associated with decreased postprandial insulin sensitivity. Given that cAMP pathway controls GSH levels we tested whether insulin sensitivity decreases after intraportal (ipv) administration of a cAMP analog (DBcAMP), and investigated whether glucagon promotes insulin resistance through decreasing hepatic GSH levels.Insulin sensitivity was determined in fed male Sprague-Dawley rats using a modified euglycemic hyperinsulinemic clamp in the postprandial state upon ipv administration of DBcAMP as well as glucagon infusion. Glucagon effects on insulin sensitivity was assessed in the presence or absence of postprandial insulin sensitivity inhibition by administration of L-NMMA. Hepatic GSH and NO content and plasma levels of NO were measured after acute ipv glucagon infusion. Insulin sensitivity was assessed in the fed state and after ipv glucagon infusion in the presence of GSH-E. We founf that DBcAMP and glucagon produce a decrease of insulin sensitivity, in a dose-dependent manner. Glucagon-induced decrease of postprandial insulin sensitivity correlated with decreased hepatic GSH content and was restored by administration of GSH-E. Furthermore, inhibition of postprandial decrease of insulin sensitivity L-NMMA was not overcome by glucagon, but glucagon did not affect hepatic and plasma levels of NO. These results show that glucagon decreases postprandial insulin sensitivity through reducing hepatic GSH levels, an effect that is mimicked by increasing cAMP hepatic levels and requires physiological NO levels. These observations support the hypothesis that glucagon acts via adenylate cyclase to decrease hepatic GSH levels and induce insulin resistance. We suggest that the glucagon-cAMP-GSH axis is a potential therapeutic target to address insulin resistance in pathological conditions. PMID:25961284

  11. Using and interpreting analogue designs.

    PubMed

    Cook, Bryan G; Rumrill, Phillip D

    2005-01-01

    Researchers in rehabilitation counseling and disability studies sometimes use analogue research, which involves materials that approximate or describe reality (e.g., written vignettes, videotaped exemplars) rather than investigating phenomena in real-world settings. Analogue research often utilizes experimental designs, and it thereby frequently possesses a high degree of internal validity. Analogue research allows investigators to exercise tight control over the implementation of the independent or treatment variable and over potentially confounding variables, which enables them to isolate the effects of those treatment variables on selected outcome measures. However, the simulated nature of analogue research presents an important threat to external validity. As such, the generalizability of analogue research to real-life settings and situations may be problematic. These and other issues germane to analogue research in vocational rehabilitation are discussed in this article, illustrated with examples from the contemporary literature.

  12. Misadventures in insulin therapy: are you at risk?

    PubMed Central

    Grissinger, Matthew; Lease, Michael

    2003-01-01

    About dollar 1 out of every dollar 7 spent on health care is related to diabetes mellitus, a leading cause of blindness and kidney failure and a strong risk factor for heart disease. Prevalence of the disease has increased by a third among adults in general in the last decade, but intensive therapy has been shown to delay the onset and slow the progression of diabetes-related complications. While insulin therapy remains key in the management of type 1 diabetes, many patients with type 2, or insulin-resistant, diabetes encounter insulin administration errors that compromise the quality of insulin delivery. Insulin errors are a major, but modifiable, barrier to dosing accuracy and optimal diabetes control for many patients. Future trends to combat the problem include increased use of insulin inhalers and smaller doses of rapid- or short-acting insulin to supplement longer-acting injections. PMID:12653373

  13. Drug Development and Potential Regulatory Paths for Insulin Biosimilars.

    PubMed

    Minocha, Mukul; Gobburu, Jogarao

    2014-01-01

    Under the Biologics Price Competition and Innovation Act (BPCI Act), a biological product may be demonstrated to be "biosimilar" if data show that, among other things, the product is "highly similar" to an already-approved biological product. Biosimilar insulins have the potential to reduce ever growing costs associated with insulin treatment by allowing competition. In this article, we describe the current drug development and regulatory paths for biosimilar insulins. Most likely basis of market approval for biosimilar insulins by the US Food and Drug Administration (FDA) and guidance for developing insulin biosimilars by European Medicines Agency (EMA) are discussed in detail. Currently, no product specific biosimilar FDA guidance for insulin biosimilarity assessment exists. We propose efficient and cost-effective drug development and potential regulatory paths based on scientific justification. In addition, novel trial designs for demonstrating interchangeability between the biosimilar and the reference insulin products are presented. PMID:24876531

  14. Misadventures in insulin therapy: are you at risk?

    PubMed

    Grissinger, Matthew; Lease, Michael

    2003-02-01

    About dollar 1 out of every dollar 7 spent on health care is related to diabetes mellitus, a leading cause of blindness and kidney failure and a strong risk factor for heart disease. Prevalence of the disease has increased by a third among adults in general in the last decade, but intensive therapy has been shown to delay the onset and slow the progression of diabetes-related complications. While insulin therapy remains key in the management of type 1 diabetes, many patients with type 2, or insulin-resistant, diabetes encounter insulin administration errors that compromise the quality of insulin delivery. Insulin errors are a major, but modifiable, barrier to dosing accuracy and optimal diabetes control for many patients. Future trends to combat the problem include increased use of insulin inhalers and smaller doses of rapid- or short-acting insulin to supplement longer-acting injections. PMID:12653373

  15. Modern basal insulin analogs: An incomplete story

    PubMed Central

    Singh, Awadhesh Kumar; Gangopadhyay, Kalyan Kumar

    2014-01-01

    The currently available basal insulin does not completely mimic the endogenous insulin secretion. This has continued to promote the search for ideal basal insulin. The newer basal insulin have primarily focused on increasing the duration of action, reducing variability, and reducing the incidence of hypoglycemia, particularly nocturnal. However, the changing criteria of hypoglycemia within a short span of a few years along with the surprising introduction of major cardiac events as another outcome measure has not only clouded the assessment of basal insulin but has also polarized opinion worldwide about the utility of the newer basal insulin. A critical review of both the pre and post FDA analysis of all the basal insulin in this article attempts to clear some of the confusion surrounding the issues of hypoglycemia and glycemic control. This article also discusses all the trials and meta-analysis done on all the current basal insulin available along with their head-to-head comparison with particular attention to glycemic control and hypoglycemic events including severe and nocturnal hypoglycemia. This in-depth analysis hopes to provide a clear interpretation of the various analyses available in literature at this point of time thereby acting as an excellent guide to the readers in choosing the most appropriate basal insulin for their patient. PMID:25364672

  16. Analogue-to-Digital and Digital-to-Analogue Conversion.

    ERIC Educational Resources Information Center

    Gregory, Martin

    1997-01-01

    Discusses circuits for three-bit and four-bit analogue digital converters and digital analogue converters. These circuits feature slow operating speeds that enable the circuitry to be used to demonstrate the mode of operation using oscilloscopes and signal generators. (DDR)

  17. Mechanisms of insulin action on sympathetic nerve activity

    NASA Technical Reports Server (NTRS)

    Muntzel, Martin S.; Anderson, Erling A.; Johnson, Alan Kim; Mark, Allyn L.

    1996-01-01

    Insulin resistance and hyperinsulinemia may contribute to the development of arterial hypertension. Although insulin may elevate arterial pressure, in part, through activation of the sympathetic nervous system, the sites and mechanisms of insulin-induced sympathetic excitation remain uncertain. While sympathoexcitation during insulin may be mediated by the baroreflex, or by modulation of norepinephrine release from sympathetic nerve endings, it has been shown repeatedly that insulin increases sympathetic outflow by actions on the central nervous system. Previous studies employing norepinephrine turnover have suggested that insulin causes sympathoexcitation by acting in the hypothalamus. Recent experiments from our laboratory involving direct measurements of regional sympathetic nerve activity have provided further evidence that insulin acts in the central nervous system. For example, administration of insulin into the third cerebralventricle increased lumbar but not renal or adrenal sympathetic nerve activity in normotensive rats. Interestingly, this pattern of regional sympathetic nerve responses to central neural administration of insulin is similar to that seen with systemic administration of insulin. Further, lesions of the anteroventral third ventricle hypothalamic (AV3V) region abolished increases in sympathetic activity to systemic administration of insulin with euglycemic clamp, suggesting that AV3V-related structures are critical for insulin-induced elevations in sympathetic outflow.

  18. New rubrolide analogues as inhibitors of photosynthesis light reactions.

    PubMed

    Varejão, Jodieh O S; Barbosa, Luiz C A; Ramos, Gabriela Álvarez; Varejão, Eduardo V V; King-Díaz, Beatriz; Lotina-Hennsen, Blas

    2015-04-01

    Natural products called rubrolides have been investigated as a model for the development of new herbicides that act on the photosynthesis apparatus. This study comprises a comprehensive analysis of the photosynthesis inhibitory ability of 27 new structurally diverse rubrolide analogues. In general, the results revealed that the compounds exhibited efficient inhibition of the photosynthetic process, but in some cases low water solubility may be a limiting factor. To elucidate their mode of action, the effects of the compounds on PSII and PSI, as well as their partial reaction on chloroplasts and the chlorophyll a fluorescence transients were measured. Our results showed that some of the most active rubrolide analogues act as a Hill reaction inhibitors at the QB level by interacting with the D1 protein at the reducing side of PSII. All of the active analogues follow Tice's rule of 5, which indicates that these compounds present physicochemical properties suitable for herbicides.

  19. Insulin signaling pathways in lepidopteran ecdysone secretion

    PubMed Central

    Smith, Wendy A.; Lamattina, Anthony; Collins, McKensie

    2014-01-01

    Molting and metamorphosis are stimulated by the secretion of ecdysteroid hormones from the prothoracic glands. Insulin-like hormones have been found to enhance prothoracic gland activity, providing a mechanism to link molting to nutritional state. In silk moths (Bombyx mori), the prothoracic glands are directly stimulated by insulin and the insulin-like hormone bombyxin. Further, in Bombyx, the neuropeptide prothoracicotropic hormone (PTTH) appears to act at least in part through the insulin-signaling pathway. In the prothoracic glands of Manduca sexta, while insulin stimulates the phosphorylation of the insulin receptor and Akt, neither insulin nor bombyxin II stimulate ecdysone secretion. Involvement of the insulin-signaling pathway in Manduca prothoracic glands was explored using two inhibitors of phosphatidylinositol-3-kinase (PI3K), LY294002 and wortmannin. PI3K inhibitors block the phosphorylation of Akt and 4EBP but have no effect on ecdysone secretion, or on the phosphorylation of the MAPkinase, ERK. Inhibitors that block phosphorylation of ERK, including the MEK inhibitor U0126, and high doses of the RSK inhibitor SL0101, effectively inhibit ecdysone secretion. The results highlight differences between the two lepidopteran insects most commonly used to directly study ecdysteroid secretion. In Bombyx, the PTTH and insulin-signaling pathways intersect; both insulin and PTTH enhance the phosphorylation of Akt and stimulate ecdysteroid secretion, and inhibition of PI3K reduces ecdysteroid secretion. By contrast, in Manduca, the action of PTTH is distinct from insulin. The results highlight species differences in the roles of translational regulators such as 4EBP, and members of the MAPkinase pathway such as ERK and RSK, in the regulation of insect ecdysone secretion, and in the impact of nutritionally-sensitive hormones such as insulin in the control of ecdysone secretion and molting. PMID:24550835

  20. Concentrated insulins: the new basal insulins

    PubMed Central

    Lamos, Elizabeth M; Younk, Lisa M; Davis, Stephen N

    2016-01-01

    Introduction Insulin therapy plays a critical role in the treatment of type 1 and type 2 diabetes mellitus. However, there is still a need to find basal insulins with 24-hour coverage and reduced risk of hypoglycemia. Additionally, with increasing obesity and insulin resistance, the ability to provide clinically necessary high doses of insulin at low volume is also needed. Areas covered This review highlights the published reports of the pharmacokinetic (PK) and glucodynamic properties of concentrated insulins: Humulin-R U500, insulin degludec U200, and insulin glargine U300, describes the clinical efficacy, risk of hypoglycemic, and metabolic changes observed, and finally, discusses observations about the complexity of introducing a new generation of concentrated insulins to the therapeutic market. Conclusion Humulin-R U500 has a similar onset but longer duration of action compared with U100 regular insulin. Insulin glargine U300 has differential PK/pharmacodynamic effects when compared with insulin glargine U100. In noninferiority studies, glycemic control with degludec U200 and glargine U300 is similar to insulin glargine U100 and nocturnal hypoglycemia is reduced. Concentrated formulations appear to behave as separate molecular entities when compared with earlier U100 insulin analog compounds. In the review of available published data, newer concentrated basal insulins may offer an advantage in terms of reduced intraindividual variability as well as reducing the injection burden in individuals requiring high-dose and large volume insulin therapy. Understanding the PK and pharmacodynamic properties of this new generation of insulins is critical to safe dosing, dispensing, and administration. PMID:27022271

  1. The fluctuation of blood glucose, insulin and glucagon concentrations before and after insulin therapy in type 1 diabetes

    NASA Astrophysics Data System (ADS)

    Arif, Idam; Nasir, Zulfa

    2015-09-01

    A dynamical-systems model of plasma glucose, insulin and glucagon concentrations has been developed to investigate the effects of insulin therapy on blood glucose, insulin and glucagon regulations in type 1 diabetic patients. Simulation results show that the normal regulation of blood glucose concentration depends on insulin and glucagon concentrations. On type 1 diabetic case, the role of insulin on regulating blood glucose is not optimal because of the destruction of β cells in pancreas. These β cells destructions cause hyperglycemic episode affecting the whole body metabolism. To get over this, type 1 diabetic patients need insulin therapy to control the blood glucose level. This research has been done by using rapid acting insulin (lispro), long-acting insulin (glargine) and the combination between them to know the effects of insulin therapy on blood glucose, insulin and glucagon concentrations. Simulation results show that these different types of insulin have different effects on blood glucose concentration. Insulin therapy using lispro shows better blood glucose control after consumption of meals. Glargin gives better blood glucose control between meals and during sleep. Combination between lispro and glargine shows better glycemic control for whole day blood glucose level.

  2. Oral insulin--a perspective.

    PubMed

    Raj, N K Kavitha; Sharma, Chandra P

    2003-01-01

    Diabetes mellitus is generally controlled quite well with the administration of oral medications or by the use of insulin injections. The current practice is the use of one or more doses, intermediate or long acting insulin per day. Oral insulin is a promising yet experimental method providing tight glycemic control for patients with diabetes. A biologically adhesive delivery systems offer important advantage over conventional drug delivery systems. The engineered polymer microspheres made of erodable polymer display strong adhesive interactions with gastrointestinal mucus and cellular lining can traverse both the mucosal epithelium and the follicle associated epithelium covering the lymphoid tissue of Peyer's patches. Alginate, a natural polymer recovered from seaweed is being developed as a nanoparticle for the delivery of insulin without being destroyed in the stomach. Alginate is in fact finding application in biotechnology industry as thickening agent, a gelling agent and a colloid stabilizer. Alginate has in addition, several other properties that have enabled it to be used as a matrix for entrapment and for the delivery of a variety of proteins such as insulin and cells. These properties include: a relatively inert aqueous environment within the matrix; a mild room temperature encapsulation process free of organic solvents; a high gel porosity which allows for high diffusion rates of macromolecules; the ability to control this porosity with simple coating procedures and dissolution and biodegradation of the system under normal physiological conditions.

  3. Insulin-like substance and insulin-degrading complex of hemolysate of human erythrocytes

    SciTech Connect

    Matulyavichyus, V.A.; Vareikis, E.I.; Lashas, L.V.

    1986-08-20

    A lysate of human erythrocytes was fractionated on gel-filtration resins of different types and immunoreactive insulin, the insulinase activity and the effect of individual fractions on the insulinase activity was determined in the fractions obtained. It was established that the hemolysate contains a complex of insulin-metabolizing compounds, including an insulin-like substance, insulinase, and an inhibitor and activator of the insulinase activity. The insulin-like substance coincided with native insulin in site of elution from a column of Sephadex G-50 and its concentration in the lysate exceeded that of insulin in the blood plasma. Insulinase, which has a molecular weight of about 100,000, cleaved (/sup 125/I) insulin to fragments soluble in trichloroacetic acid, but had no effect on hypophyseal proteins and glycoprotein hormones. The insulinase activity was inhibited by low temperatures, atropine, and a newly discovered intraerythrocytic proteinase inhibitor, which also inhibits the serine proteinases trypsin and chymotrypsin. A substance eluted from a column of Sephadex G-100 in the region of low-molecular-weight substances increased the insulinase activity. The elution curve of substances with proteinase-inhibiting and insulinase-activating activities indicates that there is more than one inhibitory and activating factor. The results of the studies suggest that the insulin-degrading complex in human erythrocytes acts as a regulator of the insulin level in the blood plasma. It is also possible that the insulin-like substance is produced in the cytosol of the erythrocytes.

  4. Hippocampal memory processes are modulated by insulin and high-fat-induced insulin resistance.

    PubMed

    McNay, Ewan C; Ong, Cecilia T; McCrimmon, Rory J; Cresswell, James; Bogan, Jonathan S; Sherwin, Robert S

    2010-05-01

    Insulin regulates glucose uptake and storage in peripheral tissues, and has been shown to act within the hypothalamus to acutely regulate food intake and metabolism. The machinery for transduction of insulin signaling is also present in other brain areas, particularly in the hippocampus, but a physiological role for brain insulin outside the hypothalamus has not been established. Recent studies suggest that insulin may be able to modulate cognitive functions including memory. Here we report that local delivery of insulin to the rat hippocampus enhances spatial memory, in a PI-3-kinase dependent manner, and that intrahippocampal insulin also increases local glycolytic metabolism. Selective blockade of endogenous intrahippocampal insulin signaling impairs memory performance. Further, a rodent model of type 2 diabetes mellitus produced by a high-fat diet impairs basal cognitive function and attenuates both cognitive and metabolic responses to hippocampal insulin administration. Our data demonstrate that insulin is required for optimal hippocampal memory processing. Insulin resistance within the telencephalon may underlie the cognitive deficits commonly reported to accompany type 2 diabetes.

  5. Mammary Analogue Secretory Carcinoma.

    PubMed

    Stevens, Todd M; Parekh, Vishwas

    2016-09-01

    Mammary analogue secretory carcinoma (MASC) is a recently described salivary gland tumor that shares the same histologic appearance and ETV6 gene (12p13) rearrangement as secretory carcinoma of the breast. Prior to its recognition, MASC cases were commonly labeled acinic cell carcinoma and adenocarcinoma, not otherwise specified. Despite distinctive histologic features, MASC may be difficult to distinguish from other salivary gland tumors, in particular zymogen-poor acinic cell carcinoma and low-grade salivary duct carcinoma. Although characteristic morphologic and immunohistochemical features form the basis of a diagnosis of MASC, the presence of an ETV6-NTRK3 gene fusion is confirmatory. Given its recent recognition the true prognostic import of MASC is not yet clearly defined. PMID:27575269

  6. Cellular Cations Control Conformational Switching of Inositol Pyrophosphate Analogues.

    PubMed

    Hager, Anastasia; Wu, Mingxuan; Wang, Huanchen; Brown, Nathaniel W; Shears, Stephen B; Veiga, Nicolás; Fiedler, Dorothea

    2016-08-22

    The inositol pyrophosphate messengers (PP-InsPs) are emerging as an important class of cellular regulators. These molecules have been linked to numerous biological processes, including insulin secretion and cancer cell migration, but how they trigger such a wide range of cellular responses has remained unanswered in many cases. Here, we show that the PP-InsPs exhibit complex speciation behaviour and propose that a unique conformational switching mechanism could contribute to their multifunctional effects. We synthesised non-hydrolysable bisphosphonate analogues and crystallised the analogues in complex with mammalian PPIP5K2 kinase. Subsequently, the bisphosphonate analogues were used to investigate the protonation sequence, metal-coordination properties, and conformation in solution. Remarkably, the presence of potassium and magnesium ions enabled the analogues to adopt two different conformations near physiological pH. Understanding how the intrinsic chemical properties of the PP-InsPs can contribute to their complex signalling outputs will be essential to elucidate their regulatory functions. PMID:27460418

  7. NASA/ESMD Analogue Mission Plans

    NASA Technical Reports Server (NTRS)

    Hoffman, Stephen J.

    2007-01-01

    A viewgraph presentation exploring Earth and its analogues is shown. The topics include: 1) ESMD Goals for the Use of Earth Analogues; 2) Stakeholders Summary; 3) Issues with Current Analogue Situation; 4) Current state of Analogues; 5) External Implementation Plan (Second Step); 6) Recent Progress in Utilizing Analogues; 7) Website Layout Example-Home Page; 8) Website Layout Example-Analogue Site; 9) Website Layout Example-Analogue Mission; 10) Objectives of ARDIG Analog Initiatives; 11) Future Plans; 12) Example: Cold-Trap Sample Return; 13) Example: Site Characterization Matrix; 14) Integrated Analogue Studies-Prerequisites for Human Exploration; and 15) Rating Scale Definitions.

  8. Host insulin stimulates Echinococcus multilocularis insulin signalling pathways and larval development

    PubMed Central

    2014-01-01

    Background The metacestode of the tapeworm Echinococcus multilocularis is the causative agent of alveolar echinococcosis, a lethal zoonosis. Infections are initiated through establishment of parasite larvae within the intermediate host’s liver, where high concentrations of insulin are present, followed by tumour-like growth of the metacestode in host organs. The molecular mechanisms determining the organ tropism of E. multilocularis or the influences of host hormones on parasite proliferation are poorly understood. Results Using in vitro cultivation systems for parasite larvae we show that physiological concentrations (10 nM) of human insulin significantly stimulate the formation of metacestode larvae from parasite stem cells and promote asexual growth of the metacestode. Addition of human insulin to parasite larvae led to increased glucose uptake and enhanced phosphorylation of Echinococcus insulin signalling components, including an insulin receptor-like kinase, EmIR1, for which we demonstrate predominant expression in the parasite’s glycogen storage cells. We also characterized a second insulin receptor family member, EmIR2, and demonstrated interaction of its ligand binding domain with human insulin in the yeast two-hybrid system. Addition of an insulin receptor inhibitor resulted in metacestode killing, prevented metacestode development from parasite stem cells, and impaired the activation of insulin signalling pathways through host insulin. Conclusions Our data indicate that host insulin acts as a stimulant for parasite development within the host liver and that E. multilocularis senses the host hormone through an evolutionarily conserved insulin signalling pathway. Hormonal host-parasite cross-communication, facilitated by the relatively close phylogenetic relationship between E. multilocularis and its mammalian hosts, thus appears to be important in the pathology of alveolar echinococcosis. This contributes to a closer understanding of organ tropism and

  9. Selective insulin resistance in hepatocyte senescence

    SciTech Connect

    Aravinthan, Aloysious; Challis, Benjamin; Shannon, Nicholas; Hoare, Matthew; Heaney, Judith; Alexander, Graeme J.M.

    2015-02-01

    Insulin resistance has been described in association with chronic liver disease for decades. Hepatocyte senescence has been demonstrated in chronic liver disease and as many as 80% of hepatocytes show a senescent phenotype in advanced liver disease. The aim of this study was to understand the role of hepatocyte senescence in the development of insulin resistance. Senescence was induced in HepG2 cells via oxidative stress. The insulin metabolic pathway was studied in control and senescent cells following insulin stimulation. GLUT2 and GLUT4 expressions were studied in HepG2 cells and human liver tissue. Further, GLUT2 and GLUT4 expressions were studied in three independent chronic liver disease cohorts. Signalling impairment distal to Akt in phosphorylation of AS160 and FoxO1 was evident in senescent HepG2 cells. Persistent nuclear localisation of FoxO1 was demonstrated in senescent cells despite insulin stimulation. Increased GLUT4 and decreased GLUT2 expressions were evident in senescent cells, human cirrhotic liver tissue and publically available liver disease datasets. Changes in GLUT expressions were associated with a poor clinical prognosis. In conclusion, selective insulin resistance is evident in senescent HepG2 cells and changes in GLUT expressions can be used as surrogate markers of hepatocyte senescence. - Highlights: • Senescent hepatocytes demonstrate selective insulin resistance. • GLUT changes act as markers of hepatocyte senescence and have prognostic value. • Study offers insight into long noticed intimacy of cirrhosis and insulin resistance.

  10. Agonism and Antagonism at the Insulin Receptor

    PubMed Central

    Knudsen, Louise; Hansen, Bo Falck; Jensen, Pia; Pedersen, Thomas Åskov; Vestergaard, Kirsten; Schäffer, Lauge; Blagoev, Blagoy; Oleksiewicz, Martin B.; Kiselyov, Vladislav V.; De Meyts, Pierre

    2012-01-01

    Insulin can trigger metabolic as well as mitogenic effects, the latter being pharmaceutically undesirable. An understanding of the structure/function relationships between insulin receptor (IR) binding and mitogenic/metabolic signalling would greatly facilitate the preclinical development of new insulin analogues. The occurrence of ligand agonism and antagonism is well described for G protein-coupled receptors (GPCRs) and other receptors but in general, with the exception of antibodies, not for receptor tyrosine kinases (RTKs). In the case of the IR, no natural ligand or insulin analogue has been shown to exhibit antagonistic properties, with the exception of a crosslinked insulin dimer (B29-B’29). However, synthetic monomeric or dimeric peptides targeting sites 1 or 2 of the IR were shown to be either agonists or antagonists. We found here that the S961 peptide, previously described to be an IR antagonist, exhibited partial agonistic effects in the 1–10 nM range, showing altogether a bell-shaped dose-response curve. Intriguingly, the agonistic effects of S961 were seen only on mitogenic endpoints (3H-thymidine incorporation), and not on metabolic endpoints (14C-glucose incorporation in adipocytes and muscle cells). The agonistic effects of S961 were observed in 3 independent cell lines, with complete concordance between mitogenicity (3H-thymidine incorporation) and phosphorylation of the IR and Akt. Together with the B29-B’29 crosslinked dimer, S961 is a rare example of a mixed agonist/antagonist for the human IR. A plausible mechanistic explanation based on the bivalent crosslinking model of IR activation is proposed. PMID:23300584

  11. Insulin Detemir Is Transported From Blood to Cerebrospinal Fluid and Has Prolonged Central Anorectic Action Relative to NPH Insulin.

    PubMed

    Begg, Denovan P; May, Aaron A; Mul, Joram D; Liu, Min; D'Alessio, David A; Seeley, Randy J; Woods, Stephen C

    2015-07-01

    Insulin detemir (DET) reduces glycemia comparably to other long-acting insulin formulations but causes less weight gain. Insulin signaling in the brain is catabolic, reducing food intake. We hypothesized that DET reduces weight gain, relative to other insulins, owing to increased transport into the central nervous system and/or increased catabolic action within the brain. Transport of DET and NPH insulin into the cerebrospinal fluid (CSF) was compared over several hours and after the administration of different doses peripherally in rats. DET and NPH had comparable saturable, receptor-mediated transport into the CSF. CSF insulin remained elevated significantly longer after intraperitoneal DET than after NPH. When administered acutely into the 3rd cerebral ventricle, both DET and NPH insulin reduced food intake and body weight at 24 h, and both food intake and body weight remained lower after DET than after NPH after 48 h. In direct comparison with another long-acting insulin, insulin glargine (GLAR), DET led to more prolonged increases in CSF insulin despite a shorter plasma half-life in both rats and mice. Additionally, peripheral DET administration reduced weight gain and increased CSF insulin compared with saline or GLAR in mice. Overall, these data support the hypothesis that DET has distinct effects on energy balance through enhanced and prolonged centrally mediated reduction of food intake. PMID:25667307

  12. Insulin Detemir Is Transported From Blood to Cerebrospinal Fluid and Has Prolonged Central Anorectic Action Relative to NPH Insulin

    PubMed Central

    Begg, Denovan P.; May, Aaron A.; Mul, Joram D.; Liu, Min; D’Alessio, David A.; Seeley, Randy J.

    2015-01-01

    Insulin detemir (DET) reduces glycemia comparably to other long-acting insulin formulations but causes less weight gain. Insulin signaling in the brain is catabolic, reducing food intake. We hypothesized that DET reduces weight gain, relative to other insulins, owing to increased transport into the central nervous system and/or increased catabolic action within the brain. Transport of DET and NPH insulin into the cerebrospinal fluid (CSF) was compared over several hours and after the administration of different doses peripherally in rats. DET and NPH had comparable saturable, receptor-mediated transport into the CSF. CSF insulin remained elevated significantly longer after intraperitoneal DET than after NPH. When administered acutely into the 3rd cerebral ventricle, both DET and NPH insulin reduced food intake and body weight at 24 h, and both food intake and body weight remained lower after DET than after NPH after 48 h. In direct comparison with another long-acting insulin, insulin glargine (GLAR), DET led to more prolonged increases in CSF insulin despite a shorter plasma half-life in both rats and mice. Additionally, peripheral DET administration reduced weight gain and increased CSF insulin compared with saline or GLAR in mice. Overall, these data support the hypothesis that DET has distinct effects on energy balance through enhanced and prolonged centrally mediated reduction of food intake. PMID:25667307

  13. Insulin resistance in cirrhosis: prolonged reduction of hyperinsulinemia normalizes insulin sensitivity.

    PubMed

    Petrides, A S; Stanley, T; Matthews, D E; Vogt, C; Bush, A J; Lambeth, H

    1998-07-01

    Insulin resistance is present in nearly all patients with cirrhosis, but its etiology remains unknown. Chronic hyperinsulinemia has been suspected as a potential candidate, and we therefore tested the hypothesis that, in cirrhosis, prolonged reduction of the hyperinsulinemia restores insulin sensitivity. Whole-body insulin sensitivity (euglycemic insulin-clamp technique), glucose turnover (6,6-2H2-glucose isotope dilution), glucose oxidation (indirect calorimetry), non-oxidative glucose disposal, and fractional glycogen synthase activity in muscle (biopsies) were measured in eight clinically stable patients with cirrhosis before and at the end of a 4-day continuous subcutaneous infusion of the somatostatin-analogue octreotide (200 microg/24 h) designed to continuously reduce plasma insulin levels. Baseline data were compared with results obtained in healthy individuals matched for sex, age, and weight (n = 8). During the baseline (pre-octreotide) study, patients demonstrated a significant decrease in insulin-mediated glucose uptake compared with controls (5.75 +/- 0.21 vs. 7.98 +/- 0.84 mg/kg/min; P < .03), which was entirely accounted for by an impairment in non-oxidative glucose disposal (P < .04). Four-day infusion of octreotide to cirrhotic patients: 1) reduced postabsorptive and meal-stimulated plasma insulin levels by approximately 35% to 45% without significantly affecting glucose tolerance; 2) did not significantly alter plasma free fatty acids (FFA), growth hormone, and glucagon levels in the postabsorptive state and during the meal test; 3) normalized insulin-mediated whole-body glucose disposal (7.63 +/- 0.72 mg/kg/min post-octreotide; P = not significant vs. control). Restoration of insulin-mediated glucose utilization was entirely caused by normalization of non-oxidative glucose disposal; 4) was associated with a considerably more pronounced stimulation by insulin of the fractional glycogen synthase in muscle compared with pre-octreotide results

  14. Rational steering of insulin binding specificity by intra-chain chemical crosslinking

    PubMed Central

    Viková, Jitka; Collinsová, Michaela; Kletvíková, Emília; Buděšínský, Miloš; Kaplan, Vojtěch; Žáková, Lenka; Veverka, Václav; Hexnerová, Rozálie; Aviñó, Roberto J. Tarazona; Straková, Jana; Selicharová, Irena; Vaněk, Václav; Wright, Daniel W.; Watson, Christopher J.; Turkenburg, Johan P.; Brzozowski, Andrzej M.; Jiráček, Jiří

    2016-01-01

    Insulin is a key hormone of human metabolism with major therapeutic importance for both types of diabetes. New insulin analogues with more physiological profiles and better glycemic control are needed, especially analogues that preferentially bind to the metabolic B-isoform of insulin receptor (IR-B). Here, we aimed to stabilize and modulate the receptor-compatible conformation of insulin by covalent intra-chain crosslinking within its B22–B30 segment, using the CuI-catalyzed Huisgen 1,3-dipolar cycloaddition reaction of azides and alkynes. This approach resulted in 14 new, systematically crosslinked insulin analogues whose structures and functions were extensively characterized and correlated. One of the analogues, containing a B26–B29 triazole bridge, was highly active in binding to both IR isoforms, with a significant preference for IR-B. Our results demonstrate the potential of chemistry-driven modulation of insulin function, also shedding new light on the functional importance of hormone’s B-chain C-terminus for its IR-B specificity. PMID:26792393

  15. Rational steering of insulin binding specificity by intra-chain chemical crosslinking.

    PubMed

    Viková, Jitka; Collinsová, Michaela; Kletvíková, Emília; Buděšínský, Miloš; Kaplan, Vojtěch; Žáková, Lenka; Veverka, Václav; Hexnerová, Rozálie; Tarazona Aviñó, Roberto J; Straková, Jana; Selicharová, Irena; Vaněk, Václav; Wright, Daniel W; Watson, Christopher J; Turkenburg, Johan P; Brzozowski, Andrzej M; Jiráček, Jiří

    2016-01-21

    Insulin is a key hormone of human metabolism with major therapeutic importance for both types of diabetes. New insulin analogues with more physiological profiles and better glycemic control are needed, especially analogues that preferentially bind to the metabolic B-isoform of insulin receptor (IR-B). Here, we aimed to stabilize and modulate the receptor-compatible conformation of insulin by covalent intra-chain crosslinking within its B22-B30 segment, using the Cu(I)-catalyzed Huisgen 1,3-dipolar cycloaddition reaction of azides and alkynes. This approach resulted in 14 new, systematically crosslinked insulin analogues whose structures and functions were extensively characterized and correlated. One of the analogues, containing a B26-B29 triazole bridge, was highly active in binding to both IR isoforms, with a significant preference for IR-B. Our results demonstrate the potential of chemistry-driven modulation of insulin function, also shedding new light on the functional importance of hormone's B-chain C-terminus for its IR-B specificity.

  16. Rational steering of insulin binding specificity by intra-chain chemical crosslinking

    NASA Astrophysics Data System (ADS)

    Viková, Jitka; Collinsová, Michaela; Kletvíková, Emília; Buděšínský, Miloš; Kaplan, Vojtěch; Žáková, Lenka; Veverka, Václav; Hexnerová, Rozálie; Aviñó, Roberto J. Tarazona; Straková, Jana; Selicharová, Irena; Vaněk, Václav; Wright, Daniel W.; Watson, Christopher J.; Turkenburg, Johan P.; Brzozowski, Andrzej M.; Jiráček, Jiří

    2016-01-01

    Insulin is a key hormone of human metabolism with major therapeutic importance for both types of diabetes. New insulin analogues with more physiological profiles and better glycemic control are needed, especially analogues that preferentially bind to the metabolic B-isoform of insulin receptor (IR-B). Here, we aimed to stabilize and modulate the receptor-compatible conformation of insulin by covalent intra-chain crosslinking within its B22-B30 segment, using the CuI-catalyzed Huisgen 1,3-dipolar cycloaddition reaction of azides and alkynes. This approach resulted in 14 new, systematically crosslinked insulin analogues whose structures and functions were extensively characterized and correlated. One of the analogues, containing a B26-B29 triazole bridge, was highly active in binding to both IR isoforms, with a significant preference for IR-B. Our results demonstrate the potential of chemistry-driven modulation of insulin function, also shedding new light on the functional importance of hormone’s B-chain C-terminus for its IR-B specificity.

  17. Rational steering of insulin binding specificity by intra-chain chemical crosslinking

    NASA Astrophysics Data System (ADS)

    Viková, Jitka; Collinsová, Michaela; Kletvíková, Emília; Buděšínský, Miloš; Kaplan, Vojtěch; Žáková, Lenka; Veverka, Václav; Hexnerová, Rozálie; Aviñó, Roberto J. Tarazona; Straková, Jana; Selicharová, Irena; Vaněk, Václav; Wright, Daniel W.; Watson, Christopher J.; Turkenburg, Johan P.; Brzozowski, Andrzej M.; Jiráček, Jiří

    2016-01-01

    Insulin is a key hormone of human metabolism with major therapeutic importance for both types of diabetes. New insulin analogues with more physiological profiles and better glycemic control are needed, especially analogues that preferentially bind to the metabolic B-isoform of insulin receptor (IR-B). Here, we aimed to stabilize and modulate the receptor-compatible conformation of insulin by covalent intra-chain crosslinking within its B22–B30 segment, using the CuI-catalyzed Huisgen 1,3-dipolar cycloaddition reaction of azides and alkynes. This approach resulted in 14 new, systematically crosslinked insulin analogues whose structures and functions were extensively characterized and correlated. One of the analogues, containing a B26–B29 triazole bridge, was highly active in binding to both IR isoforms, with a significant preference for IR-B. Our results demonstrate the potential of chemistry-driven modulation of insulin function, also shedding new light on the functional importance of hormone’s B-chain C-terminus for its IR-B specificity.

  18. Hypertension Management and Microvascular Insulin Resistance in Diabetes

    PubMed Central

    Ko, Seung-Hyun; Cao, Wenhong; Liu, Zhenqi

    2011-01-01

    Type 2 diabetes is in essence a vascular disease and is frequently associated with hypertension, macrovascular events, and microvascular complications. Microvascular dysfunction, including impaired recruitment and capillary rarefaction, has been implicated in the pathogenesis of diabetic complications. Microvascular insulin resistance and renin-angiotensin system upregulation are present in diabetes, and each contributes to the development of hypertension and microvascular dysfunction. In the insulin-sensitive state, insulin increases microvascular perfusion by increasing endothelial nitric oxide production, but this effect is abolished by insulin resistance. Angiotensin II, acting via the type 1 receptors, induces inflammation and oxidative stress, leading to impaired insulin signaling, reduced nitric oxide availability, and vasoconstriction. Conversely, it acts on the type 2 receptors to cause vasodilatation. Because substrate and hormonal exchanges occur in the microvasculature, antihypertensive agents targeted to improve microvascular insulin sensitivity and function may have beneficial effects beyond their capacity to lower blood pressure in patients with diabetes. PMID:20582734

  19. Insulin and rabbit anti-insulin receptor antibodies stimulate additively the intrinsic receptor kinase activity.

    PubMed Central

    Ponzio, G; Dolais-Kitabgi, J; Louvard, D; Gautier, N; Rossi, B

    1987-01-01

    This paper describes the properties of rabbit polyclonal antibodies directed against purified human insulin receptor which strongly stimulate the intrinsic tyrosine kinase activity. The stimulatory effect of the antibodies on the kinase activity was obtained on the insulin receptor autophosphorylation as well as on the kinase activity towards a synthetic substrate. This stimulation is additive to that induced by insulin. Moreover, rabbit antibodies do not impair insulin binding. These data strongly suggest that antibodies and insulin act through separate pathways. This conclusion is reinforced by the differences observed on the phosphopeptide maps of the receptor's beta subunit whose phosphorylation was performed either in the presence of insulin or rabbit antibodies. Interestingly, these polyclonal antibodies can also induce an activation of the receptor autophosphorylation by interacting only with extracellular determinants. The anti-insulin receptor antibodies mimic insulin in their stimulatory effect on amino acid (AIB) uptake, but they have a different effect to that found on the kinase activity; the simultaneous addition of the antiserum and insulin failed to stimulate this amino acid transport over the level induced by a saturating concentration of hormone. Images Fig. 1. Fig. 3. Fig. 4. Fig. 6. Fig. 7. PMID:3034584

  20. Comparison of daily glucose excursion by continuous glucose monitoring between type 2 diabetic patients receiving preprandial insulin aspart or postprandial insulin glulisine.

    PubMed

    Ohta, Akio; Arai, Kaori; Nishine, Ami; Sada, Yoshiyuki; Kato, Hiroyuki; Fukuda, Hisashi; Asai, Shiko; Nagai, Yoshio; Katabami, Takuyuki; Tanaka, Yasushi

    2013-01-01

    Insulin glulisine (Glu) is a rapidly-acting insulin analog with a faster onset of action than the other insulin analogs of its class, which are insulin aspart (Asp) and insulin lispro (Lisp). While insulin Glu is usually injected just before meals, postprandial injection may help to avoid unexpected postprandial hypoglycemia or hyperglycemia by adjusting the insulin dosage according to food intake. However, the effect of postprandial insulin Glu on the glucose profile has not been evaluated. The aim of this study was to compare daily glucose excursion by continuous glucose monitoring (CGM) between multiple daily doses of preprandial insulin Asp or postprandial insulin Glu. In a randomized cross-over trial, we performed CGM to evaluate the 48-hour glucose profile during treatment with the same dosage of insulin Asp just before each meal in 12 hospitalized patients with type 2 diabetes. Patients also received the same dosage of long-acting insulin glargine at bedtime. The average glucose level, standard deviation of the glucose level, mean amplitude of glucose excursion, and daily glucose profile did not differ between preprandial Asp and postprandial Glu. The incidence of hypoglycemic episodes (glucose level<70 mg/dL with or without symptoms) and the area under the curve of glucose<70 mg/dL also did not differ between the two insulin regimens. Multiple daily injections of preprandial Asp and postprandial Glu achieved the same daily glucose excursion profile. Postprandial injection of Glu may provide greater flexibility for patients who require insulin therapy. PMID:23047542

  1. Plasma insulin profiles after subcutaneous injection: how close can we get to physiology in people with diabetes?

    PubMed

    Home, P D

    2015-11-01

    Many people with diabetes rely on insulin therapy to achieve optimal blood glucose control. A fundamental aim of such therapy is to mimic the pattern of 'normal' physiological insulin secretion, thereby controlling basal and meal-time plasma glucose and fatty acid turnover. In people without diabetes, insulin release is modulated on a time base of 3-10 min, something that is impossible to replicate without intravascular glucose sensing and insulin delivery. Overnight physiological insulin delivery by islet β cells is unchanging, in contrast to requirements once any degree of hyperglycaemia occurs, when diurnal influences are evident. Subcutaneous pumped insulin or injected insulin analogues can approach the physiological profile, but there remains the challenge of responding to day-to-day changes in insulin sensitivity. Physiologically, meal-time insulin release begins rapidly in response to reflex activity and incretins, continuing with the rise in glucose and amino acid concentrations. This rapid response reflects the need to fill the insulin space with maximum concentration as early as 30 min after starting the meal. Current meal-time insulins, by contrast, are associated with a delay after injection before absorption begins, and a delay to peak because of tissue diffusion. While decay from peak for monomeric analogues is not dissimilar to average physiological needs, changes in meal type and, again, in day-to-day insulin sensitivity, are difficult to match. Recent and current developments in insulin depot technology are moving towards establishing flatter basal and closer-to-average physiological meal-time plasma insulin profiles. The present article discusses the ideal physiological insulin profile, how this can be met by available and future insulin therapies and devices, and the challenges faced by healthcare professionals and people with diabetes in trying to achieve an optimum plasma insulin profile. PMID:26041603

  2. Effects of Insulin Detemir and NPH Insulin on Body Weight and Appetite-Regulating Brain Regions in Human Type 1 Diabetes: A Randomized Controlled Trial

    PubMed Central

    van Golen, Larissa W.; Veltman, Dick J.; IJzerman, Richard G.; Deijen, Jan Berend; Heijboer, Annemieke C.; Barkhof, Frederik; Drent, Madeleine L.; Diamant, Michaela

    2014-01-01

    Studies in rodents have demonstrated that insulin in the central nervous system induces satiety. In humans, these effects are less well established. Insulin detemir is a basal insulin analog that causes less weight gain than other basal insulin formulations, including the current standard intermediate-long acting Neutral Protamine Hagedorn (NPH) insulin. Due to its structural modifications, which render the molecule more lipophilic, it was proposed that insulin detemir enters the brain more readily than other insulins. The aim of this study was to investigate whether insulin detemir treatment differentially modifies brain activation in response to food stimuli as compared to NPH insulin. In addition, cerebral spinal fluid (CSF) insulin levels were measured after both treatments. Brain responses to viewing food and non-food pictures were measured using functional Magnetic Resonance Imaging in 32 type 1 diabetic patients, after each of two 12-week treatment periods with insulin detemir and NPH insulin, respectively, both combined with prandial insulin aspart. CSF insulin levels were determined in a subgroup. Insulin detemir decreased body weight by 0.8 kg and NPH insulin increased weight by 0.5 kg (p = 0.02 for difference), while both treatments resulted in similar glycemic control. After treatment with insulin detemir, as compared to NPH insulin, brain activation was significantly lower in bilateral insula in response to visual food stimuli, compared to NPH (p = 0.02 for right and p = 0.05 for left insula). Also, CSF insulin levels were higher compared to those with NPH insulin treatment (p = 0.003). Our findings support the hypothesis that in type 1 diabetic patients, the weight sparing effect of insulin detemir may be mediated by its enhanced action on the central nervous system, resulting in blunted activation in bilateral insula, an appetite-regulating brain region, in response to food stimuli. Trial Registration ClinicalTrials.gov NCT00626080

  3. Experimental and clinical studies with somatostatin analogue octreotide in small cell lung cancer.

    PubMed Central

    Macaulay, V. M.; Smith, I. E.; Everard, M. J.; Teale, J. D.; Reubi, J. C.; Millar, J. L.

    1991-01-01

    We have detected somatostatin receptors (SSR) by autoradiography in 3/4 established small cell lung cancer (SCLC) cell lines but not in two non-SCLC cell lines. The growth of 1/3 SSR positive SCLC cell lines was significantly inhibited by the long-acting somatostatin analogue octreotide (SMS 201-995, Sandostatin) 10(-9) M. We treated 20 SCLC patients with octreotide 250 micrograms three times daily for 1 week prechemotherapy (six patients) or at relapse after chemotherapy (14). Octreotide was well tolerated, and serum insulin-like growth factor-I levels were suppressed to 62 +/- 7% of pre-treatment levels. However there was no evidence of anti-tumour activity measured by tumour bulk or serum levels of neuron-specific enolase. In one patient metastatic skin nodules were shown to be SSR positive before and at the end of 2 weeks octreotide. Despite this the patient had progressive disease, and tumour cells obtained by fine needle aspirate before and after treatment showed no growth inhibition when cultured with octreotide immediately or following establishment as a cell line. In summary we saw little correlation between SSR expression and growth inhibition by octreotide, either in vitro or clinically. Images Figure 4 PMID:1654981

  4. Is Dynamic Autocrine Insulin Signaling Possible? A Mathematical Model Predicts Picomolar Concentrations of Extracellular Monomeric Insulin within Human Pancreatic Islets

    PubMed Central

    Wang, Minghu; Li, Jiaxu; Lim, Gareth E.; Johnson, James D.

    2013-01-01

    Insulin signaling is essential for -cell survival and proliferation in vivo. Insulin also has potent mitogenic and anti-apoptotic actions on cultured -cells, with maximum effect in the high picomolar range and diminishing effect at high nanomolar doses. In order to understand whether these effects of insulin are constitutive or can be subjected to physiological modulation, it is essential to estimate the extracellular concentration of monomeric insulin within an intact islet. Unfortunately, the in vivo concentration of insulin monomers within the islet cannot be measured directly with current technology. Here, we present the first mathematical model designed to estimate the levels of monomeric insulin within the islet extracellular space. Insulin is released as insoluble crystals that exhibit a delayed dissociation into hexamers, dimers, and eventually monomers, which only then can act as signaling ligands. The rates at which different forms of insulin dissolve in vivo have been estimated from studies of peripheral insulin injection sites. We used this and other information to formulate a mathematical model to estimate the local insulin concentration within a single islet as a function of glucose. Model parameters were estimated from existing literature. Components of the model were validated using experimental data, if available. Model analysis predicted that the majority of monomeric insulin in the islet is that which has been returned from the periphery, and the concentration of intra-islet monomeric insulin varies from 50–300 pM when glucose is in the physiological range. Thus, our results suggest that the local concentration of monomeric insulin within the islet is in the picomolar ‘sweet spot’ range of insulin doses that activate the insulin receptor and have the most potent effects on -cells in vitro. Together with experimental data, these estimations support the concept that autocrine/paracrine insulin signalling within the islet is dynamic, rather

  5. Insulin inhalation--Pfizer/Nektar Therapeutics: HMR 4006, inhaled PEG-insulin--Nektar, PEGylated insulin--Nektar.

    PubMed

    2004-01-01

    type 1 and type 2 diabetes mellitus in 120 centres worldwide, and will use a fourth prototype inhaler device that is half the size of the first prototype, and has reduced manufacturing costs. Pfizer and its partner, Aventis Pharma, are conducting additional long-term pulmonary safety data studies in patients with type 1 and type 2 diabetes. Pfizer is also conducting phase III clinical trials with inhaled insulin in paediatric patients aged 6-17 years. Nektar Therapeutics is using its Advanced PEGylation technology to develop a dry powder-inhaled polyethylene glycol (PEG) formulation for delivering peptides efficiently across the lungs and to promote prolonged serum concentration of the peptide. PEG is a neutral, water-soluble, nontoxic polymer comprising any number of repeating units of ethylene oxide. PEGylation is designed to increase the size of the active molecule and ultimately improve drug performance by optimising pharmacokinetics, increasing bioavailability, and decreasing immunogenicity and dosing frequency. The investigation has begun with inhaled, long-acting (PEGylated) insulin [inhaled PEG-insulin, PEGylated insulin--Nektar], and is funded by Pfizer. Preclinical results of a dry powder formulation of inhaled PEG-insulin presented at the 63rd Scientific Sessions of the American Diabetes Association (ADA-2003) [June 2003, New Orleans, LA, USA] demonstrated prolonged systemic activity of insulin in dogs. Nektar Therapeutics was granted US patent 5,997,848 on a method for delivering inhalable insulin. The patent covers a method for delivering of 0.5-15 mg of aerosol dry powder insulin per dosing session in 1-4 individual dosages into the deep lung for systemic absorption. The patent does not specify the formulation of insulin or aerosol delivery device. Nektar Therapeutics estimated in June 2002 that Exubera could earn the company potential revenues of >200 million US dollars. PMID:15139780

  6. Insulin Human Inhalation

    MedlinePlus

    ... insulin and therefore cannot control the amount of sugar in the blood). It is also used in ... normally and, therefore, cannot control the amount of sugar in the blood) who need insulin to control ...

  7. Insulin Lispro Injection

    MedlinePlus

    ... insulin and therefore cannot control the amount of sugar in the blood). It is also used to ... normally and therefore cannot control the amount of sugar in the blood) who need insulin to control ...

  8. Insulin pump (image)

    MedlinePlus

    The catheter at the end of the insulin pump is inserted through a needle into the abdominal ... with diabetes. Dosage instructions are entered into the pump's small computer and the appropriate amount of insulin ...

  9. Adherence to Insulin Therapy.

    PubMed

    Sarbacker, G Blair; Urteaga, Elizabeth M

    2016-08-01

    IN BRIEF Six million people with diabetes use insulin either alone or in combination with an oral medication. Many barriers exist that lead to poor adherence with insulin. However, there is an underwhelming amount of data on interventions to address these barriers and improve insulin adherence. Until pharmacological advancements create easier, more acceptable insulin regimens, it is imperative to involve patients in shared decision-making. PMID:27574371

  10. Insulin therapy in pregnancy.

    PubMed

    Kalra, Sanjay; Jawad, Fatema

    2016-09-01

    Insulin is the mainstay of pharmacotherapy in pregnancy complicated by diabetes. This review covers the various insulin regimes and preparations, explaining how to use them, and decide appropriate doses in pregnancy. It approaches insulin treatment from a patient - centred, as well as physician and obstetrician friendly viewpoint, providing pragmatic guidance for management of diabetes in pregnancy. PMID:27582152

  11. Insulin and Insulin-Sensitizing Drugs in Neurodegeneration: Mitochondria as Therapeutic Targets

    PubMed Central

    Cardoso, Susana; Santos, Renato; Correia, Sonia; Carvalho, Cristina; Zhu, Xiongwei; Lee, Hyoung-Gon; Casadesus, Gemma; Smith, Mark A.; Perry, George; Moreira, Paula I.

    2009-01-01

    Insulin, besides its glucose lowering effects, is involved in the modulation of lifespan, aging and memory and learning processes. As the population ages, neurodegenerative disorders become epidemic and a connection between insulin signaling dysregulation, cognitive decline and dementia has been established. Mitochondria are intracellular organelles that despite playing a critical role in cellular metabolism are also one of the major sources of reactive oxygen species. Mitochondrial dysfunction, oxidative stress and neuroinflammation, hallmarks of neurodegeneration, can result from impaired insulin signaling. Insulin-sensitizing drugs such as the thiazolidinediones are a new class of synthetic compounds that potentiate insulin action in the target tissues and act as specific agonists of the peroxisome proliferator-activated receptor gamma (PPAR-γ). Recently, several PPAR agonists have been proposed as novel and possible therapeutic agents for neurodegenerative disorders. Indeed, the literature shows that these agents are able to protect against mitochondrial dysfunction, oxidative damage, inflammation and apoptosis. This review discusses the role of mitochondria and insulin signaling in normal brain function and in neurodegeneration. Furthermore, the potential protective role of insulin and insulin sensitizers in Alzheimer´s, Parkinson´s and Huntington´s diseases and amyotrophic lateral sclerosis will be also discussed.

  12. Insulin and Insulin-Sensitizing Drugs in Neurodegeneration: Mitochondria as Therapeutic Targets

    PubMed Central

    Cardoso, Susana; Santos, Renato; Correia, Sonia; Carvalho, Cristina; Zhu, Xiongwei; Lee, Hyoung-Gon; Casadesus, Gemma; Smith, Mark A.; Perry, George; Moreira, Paula I.

    2009-01-01

    Insulin, besides its glucose lowering effects, is involved in the modulation of lifespan, aging and memory and learning processes. As the population ages, neurodegenerative disorders become epidemic and a connection between insulin signaling dysregulation, cognitive decline and dementia has been established. Mitochondria are intracellular organelles that despite playing a critical role in cellular metabolism are also one of the major sources of reactive oxygen species. Mitochondrial dysfunction, oxidative stress and neuroinflammation, hallmarks of neurodegeneration, can result from impaired insulin signaling. Insulin-sensitizing drugs such as the thiazolidinediones are a new class of synthetic compounds that potentiate insulin action in the target tissues and act as specific agonists of the peroxisome proliferator-activated receptor gamma (PPAR-γ). Recently, several PPAR agonists have been proposed as novel and possible therapeutic agents for neurodegenerative disorders. Indeed, the literature shows that these agents are able to protect against mitochondrial dysfunction, oxidative damage, inflammation and apoptosis. This review discusses the role of mitochondria and insulin signaling in normal brain function and in neurodegeneration. Furthermore, the potential protective role of insulin and insulin sensitizers in Alzheimer´s, Parkinson´s and Huntington´s diseases and amyotrophic lateral sclerosis will be also discussed. PMID:27713238

  13. Phenobarbital and Insulin Reciprocate Activation of the Nuclear Receptor Constitutive Androstane Receptor through the Insulin Receptor

    PubMed Central

    Yasujima, Tomoya; Saito, Kosuke; Moore, Rick

    2016-01-01

    Phenobarbital (PB) antagonized insulin to inactivate the insulin receptor and attenuated the insulin receptor downstream protein kinase B (AKT)–forkhead box protein O1 and extracellular signal-regulated kinase 1/2 signals in mouse primary hepatocytes and HepG2 cells. Hepatic AKT began dephosphorylation in an early stage of PB treatment, and blood glucose levels transiently increased in both wild-type and constitutive androstane receptor (CAR) knockout (KO) mice. On the other hand, blood glucose levels increased in wild-type mice, but not KO mice, in later stages of PB treatment. As a result, PB, acting as an insulin receptor antagonist, elicited CAR-independent increases and CAR-dependent decreases of blood glucose levels at these different stages of treatment, respectively. Reciprocally, insulin activation of the insulin receptor repressed CAR activation and induction of its target CYP2B6 gene in HepG2 cells. Thus, PB and insulin cross-talk through the insulin receptor to regulate glucose and drug metabolism reciprocally. PMID:26994072

  14. Phenobarbital and Insulin Reciprocate Activation of the Nuclear Receptor Constitutive Androstane Receptor through the Insulin Receptor.

    PubMed

    Yasujima, Tomoya; Saito, Kosuke; Moore, Rick; Negishi, Masahiko

    2016-05-01

    Phenobarbital (PB) antagonized insulin to inactivate the insulin receptor and attenuated the insulin receptor downstream protein kinase B (AKT)-forkhead box protein O1 and extracellular signal-regulated kinase 1/2 signals in mouse primary hepatocytes and HepG2 cells. Hepatic AKT began dephosphorylation in an early stage of PB treatment, and blood glucose levels transiently increased in both wild-type and constitutive androstane receptor (CAR) knockout (KO) mice. On the other hand, blood glucose levels increased in wild-type mice, but not KO mice, in later stages of PB treatment. As a result, PB, acting as an insulin receptor antagonist, elicited CAR-independent increases and CAR-dependent decreases of blood glucose levels at these different stages of treatment, respectively. Reciprocally, insulin activation of the insulin receptor repressed CAR activation and induction of its target CYP2B6 gene in HepG2 cells. Thus, PB and insulin cross-talk through the insulin receptor to regulate glucose and drug metabolism reciprocally.

  15. Similarity in drugs: reflections on analogue design.

    PubMed

    Wermuth, Camille G

    2006-04-01

    A survey of novel small-molecule therapeutics reveals that the majority of them result from analogue design and that their market value represents two-thirds of all small-molecule sales. In natural science, the term analogue, derived from the Latin and Greek analogia, has always been used to describe structural and functional similarity. Extended to drugs, this definition implies that the analogue of an existing drug molecule shares structural and pharmacological similarities with the original compound. Formally, this definition allows the establishment of three categories of drug analogues: analogues possessing chemical and pharmacological similarities (direct analogues); analogues possessing structural similarities only (structural analogues); and chemically different compounds displaying similar pharmacological properties (functional analogues). PMID:16580977

  16. [Insulinization in type 2 diabetes mellitus. Intensification options].

    PubMed

    Fuente, Graciela V; Sinay, Isaac; Costa Gil, José E; Puchulu, Félix; Dieuzeide, Guillermo; Rodríguez, Martín; Faingold, María C; Litwak, León E

    2016-01-01

    Diabetes mellitus is associated with vascular complications and high rates of morbidity and mortality. Timely insulin therapy, intensified when necessary, represent appropriate measures to prevent or delay the onset of complications. However, the incidence of hypoglycemia and difficulties in treatment adherence represent barriers to achieve therapeutic success. Premixes analogs and, specially, combinations of insulin analogues are associated with pharmacokinetic and pharmacodynamic advantages, that translate into clinical benefits such as improved metabolic control, decreased hypoglycemic events and, for their simplicity, potentially greater adherence. PMID:27295707

  17. Forum for Injection Techniques, India: The First Indian Recommendations for Best Practice in Insulin Injection Technique

    PubMed Central

    Kalra, Sanjay; Balhara, Yatan Pal Singh; Baruah, Manash P.; Chadha, Manoj; Chandalia, Hemraj B.; Chowdhury, Subhankar; Kumar, K. M. Prasanna; Modi, Sonal; Pitale, Shailesh; Shukla, Rishi; Sahay, Rakesh; Sundaram, Annamalai; Unnikrishnan, Ambika G.; Wangnoo, Subhash K.

    2012-01-01

    Advances in the treatment of diabetes have led to an increase in the number of injectable therapies, such as human insulin, insulin analogues, and glucagon-like peptide-1 analogues. The efficacy of injection therapy in diabetes depends on correct injection technique, among many other factors. Good injection technique is vital in achieving glycemic control and thus preventing complications of diabetes. From the patients’ and health-care providers’ perspective, it is essential to have guidelines to understand injections and injection techniques. The abridged version of the First Indian Insulin Injection technique guidelines developed by the Forum for Injection Technique (FIT) India presented here acknowledge good insulin injection techniques and provide evidence-based recommendations to assist diabetes care providers in improving their clinical practice. PMID:23226630

  18. Meeting Report: 3rd International Workshop on Insulin & Cancer Heidelberg, Germany, October 30-31, 2010

    PubMed Central

    2010-01-01

    The 3rd International Workshop on Insulin & Cancer was held on October 30-31, 2010 at the German Cancer Research Centre in Heidelberg/Germany. The topics followed-up the discussions of the previous workshops: possible differences in mitogenicity between natural insulin and genetically engineered insulin derivatives (insulin analogues), as shown by laboratory studies and epidemiologic studies alike; molecular studies on the links between metabolic and mitogenic effects of insulin, and of hyperinsulinaemia in particular; epidemiologic evidence of interferences between insulin and other hormones, particularly sex hormones, and obesity-associated cancer; the involvement of inflammatory cytokines produced by fat tissue in obesity-associated cancer; aspects of drug-design (binding drugs to albumin) and, last but not least, detection and investigation of circulating cancer cells. PMID:21176129

  19. Meeting report: 3rd international workshop on insulin & cancer heidelberg, Germany, october 30-31, 2010.

    PubMed

    Chantelau, Ernst; Mayer, Doris

    2010-01-01

    The 3rd International Workshop on Insulin & Cancer was held on October 30-31, 2010 at the German Cancer Research Centre in Heidelberg/Germany. The topics followed-up the discussions of the previous workshops: possible differences in mitogenicity between natural insulin and genetically engineered insulin derivatives (insulin analogues), as shown by laboratory studies and epidemiologic studies alike; molecular studies on the links between metabolic and mitogenic effects of insulin, and of hyperinsulinaemia in particular; epidemiologic evidence of interferences between insulin and other hormones, particularly sex hormones, and obesity-associated cancer; the involvement of inflammatory cytokines produced by fat tissue in obesity-associated cancer; aspects of drug-design (binding drugs to albumin) and, last but not least, detection and investigation of circulating cancer cells.

  20. Hypothesis: Musculin is a hormone secreted by skeletal muscle, the body's largest endocrine organ. Evidence for actions on the endocrine pancreas to restrain the beta-cell mass and to inhibit insulin secretion and on the hypothalamus to co-ordinate the neuroendocrine and appetite responses to exercise.

    PubMed

    Engler, Dennis

    2007-01-01

    Recent studies indicate that skeletal muscle may act as an endocrine organ by secreting interleukin-6 (IL-6) into the systemic circulation. From an analysis of the actions of IL-6 and of additional literature, we postulate that skeletal muscle also secretes an unidentified hormone, which we have named Musculin (Latin: musculus = muscle), which acts on the pancreatic beta-cell to restrain the size of the (beta-cell mass and to tonically inhibit insulin secretion and biosynthesis. It is suggested that the amount of Musculin secreted is determined by, and is positively correlated with, the prevailing insulin sensitivity of skeletal muscle, thereby accounting for the hyperinsulinemia that occurs in insulin resistant disorders such as type 2 diabetes mellitus, obesity, and the polycystic ovary syndrome. In addition, it is postulated that Musculin acts on the hypothalamus (arcuate nucleus, dorsomedial hypothalamic nucleus) to co-ordinate the neuroendocrine and appetite responses to exercise. However, the possibilities that Musculin may act on additional central nervous system sites and that an additional hormone(s) may be responsible for these actions are not excluded. It is suggested that a search be made for Musculin, since analogues of such a substance may be of therapeutic benefit in the treatment of the current global diabetes and obesity epidemic.

  1. Oral Insulin Reloaded

    PubMed Central

    Heinemann, Lutz; Plum-Mörschel, Leona

    2014-01-01

    Optimal coverage of insulin needs is the paramount aim of insulin replacement therapy in patients with diabetes mellitus. To apply insulin without breaking the skin barrier by a needle and/or to allow a more physiological provision of insulin are the main reasons triggering the continuous search for alternative routes of insulin administration. Despite numerous attempts over the past 9 decades to develop an insulin pill, no insulin for oral dosing is commercially available. By way of a structured approach, we aim to provide a systematic update on the most recent developments toward an orally available insulin formulation with a clear focus on data from clinical-experimental and clinical studies. Thirteen companies that claim to be working on oral insulin formulations were identified. However, only 6 of these companies published new clinical trial results within the past 5 years. Interestingly, these clinical data reports make up a mere 4% of the considerably high total number of publications on the development of oral insulin formulations within this time period. While this picture clearly reflects the rising research interest in orally bioavailable insulin formulations, it also highlights the fact that the lion’s share of research efforts is still allocated to the preclinical stages. PMID:24876606

  2. Insulin-derived amyloidosis

    PubMed Central

    Gupta, Yashdeep; Singla, Gaurav; Singla, Rajiv

    2015-01-01

    Amyloidosis is the term for diseases caused by the extracellular deposition of insoluble polymeric protein fibrils in tissues and organs. Insulin-derived amyloidosis is a rare, yet significant complication of insulin therapy. Insulin-derived amyloidosis at injection site can cause poor glycemic control and increased insulin dose requirements because of the impairment in insulin absorption, which reverse on change of injection site and/or excision of the mass. This entity should be considered and assessed by histopathology and immunohistochemistry, in patients with firm/hard local site reactions, which do not regress after cessation of insulin injection at the affected site. Search strategy: PubMed was searched with terms “insulin amyloidosis”. Full text of articles available in English was reviewed. Relevant cross references were also reviewed. Last search was made on October 15, 2014. PMID:25593849

  3. Insulin Action in Brain Regulates Systemic Metabolism and Brain Function

    PubMed Central

    Kleinridders, André; Ferris, Heather A.; Cai, Weikang

    2014-01-01

    Insulin receptors, as well as IGF-1 receptors and their postreceptor signaling partners, are distributed throughout the brain. Insulin acts on these receptors to modulate peripheral metabolism, including regulation of appetite, reproductive function, body temperature, white fat mass, hepatic glucose output, and response to hypoglycemia. Insulin signaling also modulates neurotransmitter channel activity, brain cholesterol synthesis, and mitochondrial function. Disruption of insulin action in the brain leads to impairment of neuronal function and synaptogenesis. In addition, insulin signaling modulates phosphorylation of tau protein, an early component in the development of Alzheimer disease. Thus, alterations in insulin action in the brain can contribute to metabolic syndrome, and the development of mood disorders and neurodegenerative diseases. PMID:24931034

  4. Genetic variation in insulin-induced kinase signaling

    PubMed Central

    Wang, Isabel Xiaorong; Ramrattan, Girish; Cheung, Vivian G

    2015-01-01

    Individual differences in sensitivity to insulin contribute to disease susceptibility including diabetes and metabolic syndrome. Cellular responses to insulin are well studied. However, which steps in these response pathways differ across individuals remains largely unknown. Such knowledge is needed to guide more precise therapeutic interventions. Here, we studied insulin response and found extensive individual variation in the activation of key signaling factors, including ERK whose induction differs by more than 20-fold among our subjects. This variation in kinase activity is propagated to differences in downstream gene expression response to insulin. By genetic analysis, we identified cis-acting DNA variants that influence signaling response, which in turn affects downstream changes in gene expression and cellular phenotypes, such as protein translation and cell proliferation. These findings show that polymorphic differences in signal transduction contribute to individual variation in insulin response, and suggest kinase modulators as promising therapeutics for diseases characterized by insulin resistance. PMID:26202599

  5. D-chiro-inositol--its functional role in insulin action and its deficit in insulin resistance.

    PubMed

    Larner, Joseph

    2002-01-01

    In this review we discuss the biological significance of D-chiro-inositol, originally discovered as a component of a putative mediator of intracellular insulin action, where as a putative mediator, it accelerates the dephosphorylation of glycogen synthase and pyruvate dehydrogenase, rate limiting enzymes of non-oxidative and oxidative glucose disposal. Early studies demonstrated a linear relationship between its decreased urinary excretion and the degree of insulin resistance present. When tissue contents, including muscle, of type 2 diabetic subjects were assayed, they demonstrated a more general body deficiency. Administration of D-chiro-inositol to diabetic rats, Rhesus monkeys and now to humans accelerated glucose disposal and sensitized insulin action. A defect in vivo in the epimerization of myo-inositol to chiro-inositol in insulin sensitive tissues of the GK type 2 diabetic rat has been elucidated. Thus, administered D-chiro-inositol may act to bypass a defective normal epimerization of myo-inositol to D-chiro-inositol associated with insulin resistance and act to at least partially restore insulin sensitivity and glucose disposal. PMID:11900279

  6. MARCH1 regulates insulin sensitivity by controlling cell surface insulin receptor levels.

    PubMed

    Nagarajan, Arvindhan; Petersen, Max C; Nasiri, Ali R; Butrico, Gina; Fung, Annie; Ruan, Hai-Bin; Kursawe, Romy; Caprio, Sonia; Thibodeau, Jacques; Bourgeois-Daigneault, Marie-Claude; Sun, Lisha; Gao, Guangping; Bhanot, Sanjay; Jurczak, Michael J; Green, Michael R; Shulman, Gerald I; Wajapeyee, Narendra

    2016-01-01

    Insulin resistance is a key driver of type 2 diabetes (T2D) and is characterized by defective insulin receptor (INSR) signalling. Although surface INSR downregulation is a well-established contributor to insulin resistance, the underlying molecular mechanisms remain obscure. Here we show that the E3 ubiquitin ligase MARCH1 impairs cellular insulin action by degrading cell surface INSR. Using a large-scale RNA interference screen, we identify MARCH1 as a negative regulator of INSR signalling. March1 loss-of-function enhances, and March1 overexpression impairs, hepatic insulin sensitivity in mice. MARCH1 ubiquitinates INSR to decrease cell surface INSR levels, but unlike other INSR ubiquitin ligases, MARCH1 acts in the basal state rather than after insulin stimulation. Thus, MARCH1 may help set the basal gain of insulin signalling. MARCH1 expression is increased in white adipose tissue of obese humans, suggesting that MARCH1 contributes to the pathophysiology of T2D and could be a new therapeutic target. PMID:27577745

  7. MARCH1 regulates insulin sensitivity by controlling cell surface insulin receptor levels

    PubMed Central

    Nagarajan, Arvindhan; Petersen, Max C.; Nasiri, Ali R.; Butrico, Gina; Fung, Annie; Ruan, Hai-Bin; Kursawe, Romy; Caprio, Sonia; Thibodeau, Jacques; Bourgeois-Daigneault, Marie-Claude; Sun, Lisha; Gao, Guangping; Bhanot, Sanjay; Jurczak, Michael J.; Green, Michael R.; Shulman, Gerald I.; Wajapeyee, Narendra

    2016-01-01

    Insulin resistance is a key driver of type 2 diabetes (T2D) and is characterized by defective insulin receptor (INSR) signalling. Although surface INSR downregulation is a well-established contributor to insulin resistance, the underlying molecular mechanisms remain obscure. Here we show that the E3 ubiquitin ligase MARCH1 impairs cellular insulin action by degrading cell surface INSR. Using a large-scale RNA interference screen, we identify MARCH1 as a negative regulator of INSR signalling. March1 loss-of-function enhances, and March1 overexpression impairs, hepatic insulin sensitivity in mice. MARCH1 ubiquitinates INSR to decrease cell surface INSR levels, but unlike other INSR ubiquitin ligases, MARCH1 acts in the basal state rather than after insulin stimulation. Thus, MARCH1 may help set the basal gain of insulin signalling. MARCH1 expression is increased in white adipose tissue of obese humans, suggesting that MARCH1 contributes to the pathophysiology of T2D and could be a new therapeutic target. PMID:27577745

  8. Biosimilar Insulin and Costs

    PubMed Central

    Heinemann, Lutz

    2015-01-01

    The costs for insulin treatment are high, and the steady increase in the number of patients with diabetes on insulin presents a true challenge to health care systems. Therefore, all measures to lower these costs are welcomed by patients, physicians, and health care providers. The market introduction of biosimilar insulins presents an option to lower treatment costs as biosimilars are usually offered at a lower price than the originator product. However, the assumption that a drastic reduction in insulin prices will take place, as was observed with many generic drugs, is most probably not realistic. As the first biosimilar insulin has now been approved in the EU, this commentary discusses a number of aspects that are relevant when it comes to the potential cost reduction we will see with the use of biosimilar insulins. PMID:26350722

  9. Use of insulin degludec, a new basal insulin with an ultra-long duration of action, in basal-bolus therapy in type 1 and type 2 diabetes.

    PubMed

    Kerlan, Véronique; Gouet, Didier; Marre, Michel; Renard, Éric

    2013-12-01

    Insulin degludec is a new basal insulin analogue with an ultra-long duration of action that provides a flat and stable action profile with a duration of action greater than 42 hours. Two clinical trials comparing insulin degludec and insulin glargine in basal-bolus therapy have recently been published. Both were 52-week, multicentre, randomised (3:1), treat-to-target trials in patients already using insulin. In both type 1 (n=629) and type 2 diabetes (n=1006), insulin degludec was non-inferior to insulin glargine with respect to reduction in HbA1c at 52 weeks. There were also no significant differences between treatment groups with respect to fasting plasma glucose. At similar levels of glycaemic control, however, insulin degludec was associated with lower rates of hypoglycaemia than insulin glargine. In type 1 diabetes, overall confirmed hypoglycaemia (plasma glucose concentration<3.1 mmol/L or severe episodes requiring assistance) was similar in the two treatment groups, but nocturnal confirmed hypoglycaemia (occurring from 00h01 to 05h59) was 25% lower with insulin degludec (P=0.021). In type 2 diabetes, overall confirmed hypoglycaemia was 18% lower (P=0.0359) and nocturnal confirmed hypoglycaemia was 25% lower (P=0.0399) with insulin degludec. Reductions in hypoglycaemia could reduce physicians' and patients' fears and encourage them to titrate insulin more aggressively, and to adhere more closely to treatment, with consequent better glycaemic control. The results of these trials suggest that insulin degludec has a place in the French clinical setting in basal-bolus therapy in type 1 and type 2 diabetes.

  10. Tea enhances insulin activity.

    PubMed

    Anderson, Richard A; Polansky, Marilyn M

    2002-11-20

    The most widely known health benefits of tea relate to the polyphenols as the principal active ingredients in protection against oxidative damage and in antibacterial, antiviral, anticarcinogenic, and antimutagenic activities, but polyphenols in tea may also increase insulin activity. The objective of this study was to determine the insulin-enhancing properties of tea and its components. Tea, as normally consumed, was shown to increase insulin activity >15-fold in vitro in an epididymal fat cell assay. Black, green, and oolong teas but not herbal teas, which are not teas in the traditional sense because they do not contain leaves of Camellia senensis, were all shown to increase insulin activity. High-performance liquid chromatography fractionation of tea extracts utilizing a Waters SymmetryPrep C18 column showed that the majority of the insulin-potentiating activity for green and oolong teas was due to epigallocatechin gallate. For black tea, the activity was present in several regions of the chromatogram corresponding to, in addition to epigallocatechin gallate, tannins, theaflavins, and other undefined compounds. Several known compounds found in tea were shown to enhance insulin with the greatest activity due to epigallocatechin gallate followed by epicatechin gallate, tannins, and theaflavins. Caffeine, catechin, and epicatechin displayed insignificant insulin-enhancing activities. Addition of lemon to the tea did not affect the insulin-potentiating activity. Addition of 5 g of 2% milk per cup decreased the insulin-potentiating activity one-third, and addition of 50 g of milk per cup decreased the insulin-potentiating activity approximately 90%. Nondairy creamers and soy milk also decreased the insulin-enhancing activity. These data demonstrate that tea contains in vitro insulin-enhancing activity and the predominant active ingredient is epigallocatechin gallate. PMID:12428980

  11. Insulin therapy in children and adolescents with type 1 diabetes.

    PubMed

    Malik, Faisal S; Taplin, Craig E

    2014-04-01

    Treatment of type 1 diabetes mellitus (T1DM) requires lifelong administration of exogenous insulin. The primary goal of treatment of T1DM in children and adolescents is to maintain near-normoglycemia through intensive insulin therapy, avoid acute complications, and prevent long-term microvascular and macrovascular complications, while facilitating as close to a normal life as possible. Effective insulin therapy must, therefore, be provided on the basis of the needs, preferences, and resources of the individual and the family for optimal management of T1DM. To achieve target glycemic control, the best therapeutic option for patients with T1DM is basal-bolus therapy either with multiple daily injections (MDI) or continuous subcutaneous insulin infusion (CSII). Many formulations of insulin are available to help simulate endogenous insulin secretion as closely as possible in an effort to eliminate the symptoms and complications of hyperglycemia, while minimizing the risk of hypoglycemia secondary to therapy. When using MDI, basal insulin requirements are given as an injection of long- or intermediate-acting insulin analogs, while meal-related glucose excursions are controlled with bolus injections of rapid-acting insulin analogs. Alternatively, CSII can be used, which provides a 24-h preselected but adjustable basal rate of rapid-acting insulin, along with patient-activated mealtime bolus doses, eliminating the need for periodic injections. Both MDI treatment and CSII therapy must be supported by comprehensive education that is appropriate for the individual needs of the patient and family before and after initiation. Current therapies still do not match the endogenous insulin profile of pancreatic β-cells, and all still pose risks of suboptimal control, hypoglycemia, and ketosis in children and adolescents. The safety and success of a prescribed insulin regimen is, therefore, dependent on self-monitoring of blood glucose and/or a continuous glucose monitoring system

  12. Bradykinin antagonists with dehydrophenylalanine analogues at position 5.

    PubMed

    Greiner, G; Dornberger, U; Paegelow, I; Schölkens, B A; Liebmann, C; Reissmann, S

    1998-04-01

    Continuing the studies on structural requirements of bradykinin antagonists, it has been found that analogues with dehydrophenylalanine (deltaPhe) or its ring-substituted analogues (deltaPhe(X)) at position 5 act as antagonists on guinea pig pulmonary artery, and on guinea pig ileum. Because both organs are considered to be bradykinin B2 receptor tissues, the analogues with deltaPhe or deltaPhe(X) at position 5, but without any replacement at position 7, seem to represent a new structural type of B2 receptor antagonist. All the analogues investigated act as partial antagonists; they inhibit the bradykinin-induced contraction at low concentrations and act as agonists at higher concentrations. Ring substitutions by methyl groups or iodine reduce both the agonistic and antagonistic activity. Only substitution by fluorine gives a high potency. Incorporation of deltaPhe into different representative antagonists with key modifications at position 7 does not enhance the antagonist activity of the basic structures, with one exception. Only the combination of deltaPhe at position 5 with DPhe at position 7 increases the antagonistic potency on guinea pig ileum by about one order of magnitude. Radioligand binding studies indicate the importance of position 5 for the discrimination of B2 receptor subtypes. The binding affinity to the low-affinity binding site (KL) was not significantly changed by replacement of Phe by deltaPhe. In contrast, ring-methylation of deltaPhe results in clearly reduced binding to KL. The affinity to the high-affinity binding site (KH) was almost unchanged by the replacement of Phe in position 5 by deltaPhe, whereas the analogue with 2-methyl-dehydrophenylalanine completely failed to detect the KH-site. The peptides were synthesized on the Wang-resin according to the Fmoc/Bu(t) strategy using Mtr protection for the side chain of Arg. The dehydrophenylalanine analogues were prepared by a strategy involving PyBop couplings of the dipeptide unit Fmoc

  13. Insulin Degludec Versus Insulin Glargine in Insulin-Naive Patients With Type 2 Diabetes

    PubMed Central

    Zinman, Bernard; Philis-Tsimikas, Athena; Cariou, Bertrand; Handelsman, Yehuda; Rodbard, Helena W.; Johansen, Thue; Endahl, Lars; Mathieu, Chantal

    2012-01-01

    OBJECTIVE To compare ultra-long-acting insulin degludec with glargine for efficacy and safety in insulin-naive patients with type 2 diabetes inadequately controlled with oral antidiabetic drugs (OADs). RESEARCH DESIGN AND METHODS In this 1-year, parallel-group, randomized, open-label, treat-to-target trial, adults with type 2 diabetes with A1C of 7−10% taking OADs were randomized 3:1 to receive once daily degludec or glargine, both with metformin. Insulin was titrated to achieve prebreakfast plasma glucose (PG) of 3.9−4.9 mmol/L. The primary end point was confirmation of noninferiority of degludec to glargine in A1C reduction after 52 weeks in an intent-to-treat analysis. RESULTS In all, 1,030 participants (mean age 59 years; baseline A1C 8.2%) were randomized (degludec 773, glargine 257). Reduction in A1C with degludec was similar (noninferior) to that with glargine (1.06 vs. 1.19%), with an estimated treatment difference of degludec to glargine of 0.09% (95% CI −0.04 to 0.22). Overall rates of confirmed hypoglycemia (PG <3.1 mmol/L or severe episodes requiring assistance) were similar, with degludec and glargine at 1.52 versus 1.85 episodes/patient-year of exposure (PYE). There were few episodes of nocturnal confirmed hypoglycemia in the overall population, and these occurred at a lower rate with degludec versus glargine (0.25 vs. 0.39 episodes/PYE; P = 0.038). Similar percentages of patients in both groups achieved A1C levels <7% without hypoglycemia. End-of-trial mean daily insulin doses were 0.59 and 0.60 units/kg for degludec and glargine, respectively. Adverse event rates were similar. CONCLUSIONS Insulins degludec and glargine administered once daily in combination with OADs provided similar long-term glycemic control in insulin-naive patients with type 2 diabetes, with lower rates of nocturnal hypoglycemia with degludec. PMID:23043166

  14. CCK increases the transport of insulin into the brain.

    PubMed

    May, Aaron A; Liu, Min; Woods, Stephen C; Begg, Denovan P

    2016-10-15

    Food intake occurs in bouts or meals, and numerous meal-generated signals have been identified that act to limit the size of ongoing meals. Hormones such as cholecystokinin (CCK) are secreted from the intestine as ingested food is being processed, and in addition to aiding the digestive process, they provide a signal to the brain that contributes to satiation, limiting the size of the meal. The potency of CCK to elicit satiation is enhanced by elevated levels of adiposity signals such as insulin. In the present experiments we asked whether CCK and insulin interact at the level of the blood-brain barrier (BBB). We first isolated rat brain capillary endothelial cells that comprise the BBB and found that they express the mRNA for both the CCK1R and the insulin receptor, providing a basis for a possible interaction. We then administered insulin intraperitoneally to another group of rats and 15min later administered CCK-8 intraperitoneally to half of those rats. After another 15min, CSF and blood samples were obtained and assayed for immunoreactive insulin. Plasma insulin was comparably elevated above baseline in both the CCK-8 and control groups, indicating that the CCK had no effect on circulating insulin levels given these parameters. In contrast, rats administered CCK had CSF-insulin levels that were more than twice as high as those of control rats. We conclude that circulating CCK greatly facilitates the transport of insulin into the brain, likely by acting directly at the BBB. These findings imply that in circumstances in which the plasma levels of both CCK and insulin are elevated, such as during and soon after meals, satiation is likely to be due, in part, to this newly-discovered synergy between CCK and insulin. PMID:27570192

  15. Atorvastatin ameliorates endothelium-specific insulin resistance induced by high glucose combined with high insulin.

    PubMed

    Yang, Ou; Li, Jinliang; Chen, Haiyan; Li, Jie; Kong, Jian

    2016-09-01

    The aim of the present study was to establish an endothelial cell model of endothelium-specific insulin resistance to evaluate the effect of atorvastatin on insulin resistance-associated endothelial dysfunction and to identify the potential pathway responsible for its action. Cultured human umbilical vein endothelial cells (HUVECs) were pretreated with different concentrations of glucose with, or without, 10‑5 M insulin for 24 h, following which the cells were treated with atorvastatin. The tyrosine phosphorylation of insulin receptor (IR) and insulin receptor substrate-1 (IRS‑1), the production of nitric oxide (NO), the activity and phosphorylation level of endothelial NO synthase (eNOS) on serine1177, and the mRNA levels of endothelin‑1 (ET‑1) were assessed during the experimental procedure. Treatment of the HUVECs with 30 mM glucose and 10‑5 M insulin for 24 h impaired insulin signaling, with reductions in the tyrosine phosphorylation of IR and protein expression of IRS‑1 by almost 75 and 65%, respectively. This, in turn, decreased the activity and phosphorylation of eNOS on serine1177, and reduced the production of NO by almost 80%. By contrast, the mRNA levels of ET‑1 were upregulated. All these changes were ameliorated by atorvastatin. Taken together, these results demonstrated that high concentrations of glucose and insulin impaired insulin signaling leading to endothelial dysfunction, and that atorvastatin ameliorated these changes, acting primarily through the phosphatidylinositol 3-kinase/Akt/eNOS signaling pathway. PMID:27484094

  16. Pathophysiology of insulin secretion.

    PubMed

    Scheen, A J

    2004-02-01

    Defects in pancreatic islet beta-cell function play a major role in the development of diabetes mellitus. Type 1 diabetes is caused by a more or less rapid destruction of pancreatic beta cells, and the autoimmune process begins years before the beta-cell destruction becomes complete, thereby providing a window of opportunity for intervention. During the preclinical period and early after diagnosis, much of the insulin deficiency may be the result of functional inhibition of insulin secretion that may be at least partially and transiently reversible. Type 2 diabetes is characterized by a progressive loss of beta-cell function throughout the course of the disease. The pattern of loss is an initial (probably of genetic origin) defect in acute or first-phase insulin secretion, followed by a decreasing maximal capacity of insulin secretion. Last, a defective steady-state and basal insulin secretion develops, leading to almost complete beta-cell failure requiring insulin treatment. Because of the reciprocal relation between insulin secretion and insulin sensitivity, valid representation of beta-cell function requires interpretation of insulin responses in the context of the prevailing degree of insulin sensitivity. This appropriate approach highlights defects in insulin secretion at the various stages of the natural history of type 2 diabetes and already present in individuals at risk to develop the disease. To date none of the available therapies can stop the progressive beta-cell defect and the progression of the metabolic disorder. The better understanding of the pathophysiology of the disease should lead to the development of new strategies to preserve beta-cell function in both type 1 and type 2 diabetes mellitus.

  17. Phosphonate analogue substrates for enolase.

    PubMed

    Anderson, V E; Cleland, W W

    1990-11-20

    Phosphonate analogues in which the bridge between C-2 and phosphorus is a CH2 group are slow substrates for yeast enolase. The pH variation of the kinetic parameters for the methylene analogue of 2-phosphoglycerate suggests that the substrate binds as a dianion and that Mg2+ can bind subsequently only if a metal ligand and the catalytic base are unprotonated. Primary deuterium isotope effects of 4-8 on V/KMg, but ones of only 1.15-1.32 on V for dehydration, show that proton removal to give the carbanion intermediate largely limits V/KMg and that a slow step follows which largely limits V (presumably carbanion breakdown). Since there is a D2O solvent isotope effect on V for the reverse reaction of 5, but not an appreciable one on the forward reaction, it appears that the slow rates with phosphonate analogues result from the fact that the carbanion intermediate is more stable than that formed from the normal substrates, and its reaction in both directions limits V. Increased stability as a result of replacement of oxygen by carbon at C-2 of the carbanion is the expected chemical behavior. PMID:2271661

  18. Substrate analogues for isoprenoid enzymes

    SciTech Connect

    Stremler, K.E.

    1987-01-01

    Diphosphonate analogues of geranyl diphosphate, resistant to degradation by phosphatases, were found to be alternate substrates for the reaction with farnesyl diphosphate synthetase isolated from avian liver. The difluoromethane analogue was shown to be the better alternate substrate, in agreement with solvolysis results which indicate that the electronegativity of the difluoromethylene unit more closely approximates that of the normal bridging oxygen. The usefulness of the C/sub 10/ difluoro analogue, for detecting low levels of isoprenoid enzymes in the presence of high levels of phosphatase activity, was demonstrated with a cell-free preparation from lemon peel. A series of C/sub 5/ through C/sub 15/ homoallylic and allylic diphosphonates, as well as two 5'-nucleotide diphosphonates, was prepared in high overall yield using the activation-displacement sequence. Radiolabeled samples of several of the allylic diphosphonates were prepared with tritium located at C1. A series of geraniols, stereospecifically deuterated at C1, was prepared. The enantiomeric purities and absolute configurations were determined by derivatization as the mandelate esters for analysis by /sup 1/H NMR. The stereochemistry of the activation-displacement sequence was examined using C1-deuterated substrates.

  19. Policy issues in space analogues

    NASA Astrophysics Data System (ADS)

    Auger, Robin N.; Facktor, Debra D.

    Space mission planning is increasingly focusing on destinations beyond Earth orbit. Advancements in technology will inevitably be required to enable long-duration human spaceflight missions, and breakthroughs in the policy arena will also be needed to achieve success in such missions. By exploring how policy issues have been addressed in analogous extreme environments, policymakers can develop a framework for addressing these issues as they apply to long-term human spaceflight. Policy issues that need to be addressed include: crew selection, training, organization, and activities, medical testing, illness, injury, and death; communication; legal accountability and liability; mission safety and risk management; and environmental contamination. This paper outlines the approach of a study underway by The George Washington University and ANSER to examine how these policy issues have been addressed in several analogues and how the experiences of these analogues can help formulate policies for long-duration human spaceflight missions. Analogues being studied include Antarctic bases, submarine voyages, undersea stations, Biosphere 2, and the U.S. Skylab and Russian Mir space stations.

  20. Importance of transcapillary insulin transport on insulin action in vivo

    SciTech Connect

    Yang, Y.J.

    1989-01-01

    The relationship between transcapillary insulin transport and insulin action was examined in normal conscious dogs. Plasma and thoracic duct lymph insulin, and insulin action were simultaneously measured during euglycemic clamps and intravenous glucose tolerance tests. During the clamps, while {sup 14}C-inulin reached an equilibrium, steady-state (ss) plasma insulin was higher than lymph and the ratio of 3:2 was maintained during basal, activation and deactivation phases: 18 {+-} 2 vs. 12 {+-} 1, 51 {+-} 2 vs. 32 {+-} 1, and 18 {+-} 3 vs. 13 {+-} 1 {mu}U/ml. In addition, it took longer for lymph insulin to reach ss than plasma insulin during activation and deactivation: 11 {+-} 2 vs. 31 {+-} 5 and 8 {+-} 2 vs. 32 {+-} 6 min. During IVGTT, plasma insulin peaked within 5 {+-} 2 min; lymph insulin rose slowly to a lower peak. The significant gradient and delay between plasma and lymph insulin concentrations suggest a restricted transcapillary insulin transport.

  1. Selective targeting of nuclear receptor FXR by avermectin analogues with therapeutic effects on nonalcoholic fatty liver disease

    PubMed Central

    Jin, Lihua; Wang, Rui; Zhu, Yanlin; Zheng, Weili; Han, Yaping; Guo, Fusheng; Ye, Frank Bin; Li, Yong

    2015-01-01

    Non-alcoholic fatty liver disease (NAFLD) has become a predictive factor of death from many diseases. Farnesoid X receptor (FXR) is an ideal target for NAFLD drug development due to its crucial roles in lipid metabolism. The aim of this work is to examine the molecular mechanisms and functional roles of FXR modulation by avermectin analogues in regulating metabolic syndromes like NAFLD. We found that among avermectin analogues studied, the analogues that can bind and activate FXR are effective in regulating metabolic parameters tested, including reducing hepatic lipid accumulation, lowering serum cholesterol and glucose levels, and improving insulin sensitivity, in a FXR dependent manner. Mechanistically, the avermectin analogues that interact with FXR exhibited features as partial agonists, with distinctive properties in modulating coregulator recruitment. Structural features critical for avermectin analogues to selectively bind to FXR were also revealed. This study indicated that in addition to antiparasitic activity, avermectin analogues are promising drug candidates to treat metabolism syndrome including NAFLD by directly targeting FXR. Additionally, the structural features that discriminate the selective binding of FXR by avermectin analogues may provide a unique safe approach to design drugs targeting FXR signaling. PMID:26620317

  2. Protein Crystal Bovine Insulin

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The comparison of protein crystal, Bovine Insulin space-grown (left) and earth-grown (right). Facilitates the incorporation of glucose into cells. In diabetics, there is either a decrease in or complete lack of insulin, thereby leading to several harmful complications. Principal Investigator is Larry DeLucas.

  3. Insulin enhances striatal dopamine release by activating cholinergic interneurons and thereby signals reward

    PubMed Central

    Stouffer, Melissa A.; Woods, Catherine A.; Patel, Jyoti C.; Lee, Christian R.; Witkovsky, Paul; Bao, Li; Machold, Robert P.; Jones, Kymry T.; de Vaca, Soledad Cabeza; Reith, Maarten E. A.; Carr, Kenneth D.; Rice, Margaret E.

    2015-01-01

    Insulin activates insulin receptors (InsRs) in the hypothalamus to signal satiety after a meal. However, the rising incidence of obesity, which results in chronically elevated insulin levels, implies that insulin may also act in brain centres that regulate motivation and reward. We report here that insulin can amplify action potential-dependent dopamine (DA) release in the nucleus accumbens (NAc) and caudate–putamen through an indirect mechanism that involves striatal cholinergic interneurons that express InsRs. Furthermore, two different chronic diet manipulations in rats, food restriction (FR) and an obesogenic (OB) diet, oppositely alter the sensitivity of striatal DA release to insulin, with enhanced responsiveness in FR, but loss of responsiveness in OB. Behavioural studies show that intact insulin levels in the NAc shell are necessary for acquisition of preference for the flavour of a paired glucose solution. Together, these data imply that striatal insulin signalling enhances DA release to influence food choices. PMID:26503322

  4. Insulin enhances striatal dopamine release by activating cholinergic interneurons and thereby signals reward.

    PubMed

    Stouffer, Melissa A; Woods, Catherine A; Patel, Jyoti C; Lee, Christian R; Witkovsky, Paul; Bao, Li; Machold, Robert P; Jones, Kymry T; de Vaca, Soledad Cabeza; Reith, Maarten E A; Carr, Kenneth D; Rice, Margaret E

    2015-01-01

    Insulin activates insulin receptors (InsRs) in the hypothalamus to signal satiety after a meal. However, the rising incidence of obesity, which results in chronically elevated insulin levels, implies that insulin may also act in brain centres that regulate motivation and reward. We report here that insulin can amplify action potential-dependent dopamine (DA) release in the nucleus accumbens (NAc) and caudate-putamen through an indirect mechanism that involves striatal cholinergic interneurons that express InsRs. Furthermore, two different chronic diet manipulations in rats, food restriction (FR) and an obesogenic (OB) diet, oppositely alter the sensitivity of striatal DA release to insulin, with enhanced responsiveness in FR, but loss of responsiveness in OB. Behavioural studies show that intact insulin levels in the NAc shell are necessary for acquisition of preference for the flavour of a paired glucose solution. Together, these data imply that striatal insulin signalling enhances DA release to influence food choices. PMID:26503322

  5. Insulin enhances striatal dopamine release by activating cholinergic interneurons and thereby signals reward.

    PubMed

    Stouffer, Melissa A; Woods, Catherine A; Patel, Jyoti C; Lee, Christian R; Witkovsky, Paul; Bao, Li; Machold, Robert P; Jones, Kymry T; de Vaca, Soledad Cabeza; Reith, Maarten E A; Carr, Kenneth D; Rice, Margaret E

    2015-10-27

    Insulin activates insulin receptors (InsRs) in the hypothalamus to signal satiety after a meal. However, the rising incidence of obesity, which results in chronically elevated insulin levels, implies that insulin may also act in brain centres that regulate motivation and reward. We report here that insulin can amplify action potential-dependent dopamine (DA) release in the nucleus accumbens (NAc) and caudate-putamen through an indirect mechanism that involves striatal cholinergic interneurons that express InsRs. Furthermore, two different chronic diet manipulations in rats, food restriction (FR) and an obesogenic (OB) diet, oppositely alter the sensitivity of striatal DA release to insulin, with enhanced responsiveness in FR, but loss of responsiveness in OB. Behavioural studies show that intact insulin levels in the NAc shell are necessary for acquisition of preference for the flavour of a paired glucose solution. Together, these data imply that striatal insulin signalling enhances DA release to influence food choices.

  6. Insulin Resistance of Puberty.

    PubMed

    Kelsey, Megan M; Zeitler, Philip S

    2016-07-01

    Puberty is a time of considerable metabolic and hormonal change. Notably, puberty is associated with a marked decrease in insulin sensitivity, on par with that seen during pregnancy. In otherwise healthy youth, there is a nadir in insulin sensitivity in mid-puberty, and then it recovers at puberty completion. However, there is evidence that insulin resistance (IR) does not resolve in youth who are obese going into puberty and may result in increased cardiometabolic risk. Little is known about the underlying pathophysiology of IR in puberty, and how it might contribute to increased disease risk (e.g., type 2 diabetes). In this review, we have outlined what is known about the IR in puberty in terms of pattern, potential underlying mechanisms and other mediating factors. We also outline other potentially related metabolic changes that occur during puberty, and effects of underlying insulin resistant states (e.g., obesity) on pubertal changes in insulin sensitivity. PMID:27179965

  7. Insulin and glucose regulation.

    PubMed

    Ralston, Sarah L

    2002-08-01

    Abnormally high or low blood glucose and insulin concentrations after standardized glucose tolerance tests can reflect disorders such as pituitary dysfunction, polysaccharide storage myopathies, and other clinical disorders. Glucose and insulin responses, however, are modified by the diet to which the animal has adapted, time since it was last fed, and what it was fed. Body fat (obesity), fitness level, physiologic status, and stress also alter glucose and insulin metabolism. Therefore, it is important to consider these factors when evaluating glucose and insulin tests, especially if only one sample it taken. This article describes the factors affecting glucose and insulin metabolism in horses and how they might influence the interpretation of standardized tests of glucose tolerance.

  8. Glucose tolerance factor extracted from yeast: oral insulin-mimetic and insulin-potentiating agent: in vivo and in vitro studies.

    PubMed

    Weksler-Zangen, Sarah; Mizrahi, Tal; Raz, Itamar; Mirsky, Nitsa

    2012-09-01

    In search for an effective oral treatment for diabetes, we examined the capacity of glucose tolerance factor (GTF) extracted from yeast and administered orally to reduce hyperglycaemia in rat models exhibiting insulin deficiency. The cellular effect of GTF on the insulin signalling pathway was investigated in vitro. GTF (oral bolus), insulin (intraperitoneal) or their combination was administered to streptozotocin-diabetic (STZ) or hyperglycaemic Cohen diabetic-sensitive (hyp-CDs) rats. Blood glucose (BG) and insulin levels were measured in the postprandial (PP) state and during an oral glucose tolerance test. Deoxy-glucose transport and insulin signal transduction were assessed in 3T3-L1 adipocytes and myoblasts incubated with the GTF. Low dose of insulin produced a 34 and 12·5 % reduction in the PP-BG levels of hyp-CDs and STZ rats, respectively. GTF induced a 33 and 17 % reduction in the PP-BG levels of hyp-CDs and STZ rats, respectively. When combined with insulin, a respective decrease (58 and 42 %) in BG levels was observed, suggesting a partially additive (hyp-CDs) or synergistic (STZ rats) effect of the GTF and insulin. GTF did not induce insulin secretion in hyp-CDs rats, yet it lowered their BG levels, proposing an effect on glucose clearance by peripheral tissues. GTF induced a dose-dependent increase in deoxy-glucose transport into myoblasts and fat cells similar to insulin, while the combined treatment resulted in augmented transport rate. GTF induced a dose- and time-dependent phosphorylation of insulin receptor substrate 1, Akt and mitogen-activated protein kinase independent of insulin receptor phosphorylation. GTF exerts remarkable insulin-mimetic and insulin-potentiating effects, both in vivo and in vitro. It produces an insulin-like effect by acting on cellular signals downstream of the insulin receptor. These results demonstrate a potential source for a novel oral medication for diabetes.

  9. Molecular Dynamics Simulations of Insulin: Elucidating the Conformational Changes that Enable Its Binding

    PubMed Central

    Papaioannou, Anastasios; Kuyucak, Serdar; Kuncic, Zdenka

    2015-01-01

    A sequence of complex conformational changes is required for insulin to bind to the insulin receptor. Recent experimental evidence points to the B chain C-terminal (BC-CT) as the location of these changes in insulin. Here, we present molecular dynamics simulations of insulin that reveal new insights into the structural changes occurring in the BC-CT. We find three key results: 1) The opening of the BC-CT is inherently stochastic and progresses through an open and then a “wide-open” conformation—the wide-open conformation is essential for receptor binding, but occurs only rarely. 2) The BC-CT opens with a zipper-like mechanism, with a hinge at the Phe24 residue, and is maintained in the dominant closed/inactive state by hydrophobic interactions of the neighboring Tyr26, the critical residue where opening of the BC-CT (activation of insulin) is initiated. 3) The mutation Y26N is a potential candidate as a therapeutic insulin analogue. Overall, our results suggest that the binding of insulin to its receptor is a highly dynamic and stochastic process, where initial docking occurs in an open conformation and full binding is facilitated through interactions of insulin receptor residues with insulin in its wide-open conformation. PMID:26629689

  10. [Insulin and physical exercise].

    PubMed

    Louis-Sylvestre, J

    1987-04-01

    Secretion of some pituitary hormones and sympatho-adrenal activity increase very early during exercise. Sympathetic activation is of major importance in cardiovascular adaptation, thermoregulation, etc. Furthermore among the hormonal consequences of such activation those related to insulin are capital. In animal and human subjects basal insulin level decrease during prolonged and progressive exercise. With habitual exercise, both basal and stimulated insulin levels are reduced. It seems that the reduced basal level could be due to alpha-adrenergic inhibition of the islets of Langerhans, while the reduced stimulated response could be the consequence of increased clearance. In trained subjects, in spite of reduced insulin secretion tolerance to glucose is normal due to increased sensitivity to insulin. Sensitivity to insulin is particularly enhanced at the muscular tissue level; it is accompanied by increased hexokinase and glycogen synthetase activity. As a consequence glucose uptake remains optimal at the muscular level. In the liver, both insulin sensitivity and glucokinase activity are reduced, so that glucose is spared and the muscular glycogen store can be restored. At the adipocyte level, metabolic adaptations are such that triglyceride turnover is greatly increased, favouring fuel supply and resaturation of stores.

  11. [Alleged suicide by insulin].

    PubMed

    Birngruber, Christoph G; Krüll, Ralf; Dettmeyer, Reinhard; Verhoff, Marcel A

    2015-01-01

    A 26-year-old man, who was on probation, was found dead in his home by his mother. Insulin vials and 2 insulin pens, which the man's stepfather (an insulin-dependent diabetic) had been missing for over a week, were found next to the deceased. The circumstances suggested suicide by an injected insulin overdose. At the time of the autopsy, the corpse showed already marked signs of autolysis. Clinical chemical tests confirmed the injection of insulin, but indicated hyperglycemia at the time of death. Toxicological analyses revealed that the man had consumed amphetamine, cannabinoids, and tramadol in the recent past. Histological examination finally revealed extensive bronchopneumonia as the cause of death. The most plausible explanation for the results of the autopsy and the additional examinations was an injection of insulin as a failed attempt of self-treatment. It is conceivable that the man had discovered by a rapid test that he was a diabetic, but had decided not to go to a doctor to avoid disclosure of parole violation due to continued drug abuse. He may have misinterpreted the symptoms caused by his worsening bronchitis and the developing bronchopneumonia as symptoms of a diabetic metabolic status and may have felt compelled to treat himself with insulin. PMID:26419091

  12. Tagging insulin in microgravity

    NASA Technical Reports Server (NTRS)

    Dobeck, Michael; Nelson, Ronald S.

    1992-01-01

    Knowing the exact subcellular sites of action of insulin in the body has the potential to give basic science investigators a basis from which a cause and cure for this disease can be approached. The goal of this project is to create a test reagent that can be used to visualize these subcellular sites. The unique microgravity environment of the Shuttle will allow the creation of a reagent that has the possibility of elucidating the subcellular sites of action of insulin. Several techniques have been used in an attempt to isolate the sites of action of items such as insulin. One of these is autoradiography in which the test item is obtained from animals fed radioactive materials. What is clearly needed is to visualize individual insulin molecules at their sites of action. The insulin tagging process to be used on G-399 involves the conjugation of insulin molecules with ferritin molecules to create a reagent that will be used back on Earth in an attempt to elucidate the sites of action of insulin.

  13. FUNCTION GENERATOR FOR ANALOGUE COMPUTERS

    DOEpatents

    Skramstad, H.K.; Wright, J.H.; Taback, L.

    1961-12-12

    An improved analogue computer is designed which can be used to determine the final ground position of radioactive fallout particles in an atomic cloud. The computer determines the fallout pattern on the basis of known wind velocity and direction at various altitudes, and intensity of radioactivity in the mushroom cloud as a function of particle size and initial height in the cloud. The output is then displayed on a cathode-ray tube so that the average or total luminance of the tube screen at any point represents the intensity of radioactive fallout at the geographical location represented by that point. (AEC)

  14. The Canadian Analogue Research Network (CARN): Opportunities for Terrestrial Analogue Studies in Canada and Abroad

    NASA Astrophysics Data System (ADS)

    Hipkin, V.; Osinski, G. R.; Berinstain, A.; Léveillé, R.

    2007-03-01

    We will present an overview of the Canadian Analogue Research Network (CARN), including a description of the various analogue sites in CARN, potential new sites, and a discussion regarding how CARN is applicable to the global exploration strategy.

  15. Insulin/IGF signaling and its regulation in Drosophila.

    PubMed

    Nässel, Dick R; Liu, Yiting; Luo, Jiangnan

    2015-09-15

    Taking advantage of Drosophila as a genetically tractable experimental animal much progress has been made in our understanding of how the insulin/IGF signaling (IIS) pathway regulates development, growth, metabolism, stress responses and lifespan. The role of IIS in regulation of neuronal activity and behavior has also become apparent from experiments in Drosophila. This review briefly summarizes these functional roles of IIS, and also how the insulin producing cells (IPCs) are regulated in the fly. Furthermore, we discuss functional aspects of the spatio-temporal production of eight different insulin-like peptides (DILP1-8) that are thought to act on one known receptor (dInR) in Drosophila.

  16. Insulin inhalation: NN 1998.

    PubMed

    2004-01-01

    Aradigm Corporation has developed an inhaled form of insulin using its proprietary AERx drug delivery system. The system uses liquid insulin that is converted into an aerosol containing very small particles (1-3 micro in diameter), and an electronic device suitable for either the rapid transfer of molecules of insulin into the bloodstream or localised delivery within the lung. The AERx insulin Diabetes Management System (iDMS), AERx iDMS, instructs the user on breathing technique to achieve the best results. Aradigm Corporation and Novo Nordisk have signed an agreement to jointly develop a pulmonary delivery system for insulin [AERx iDMS, NN 1998]. Under the terms of the agreement, Novo Nordisk has exclusive rights for worldwide marketing of any products resulting from the development programme. Aradigm Corporation will initially manufacture the product covered by the agreement, and in return will receive a share of the overall gross profits from Novo Nordisk's sales. Novo Nordisk will cover all development costs incurred by Aradigm Corporation while both parties will co-fund final development of the AERx device. Both companies will explore the possibilities of the AERx platform to deliver other compounds for the regulation of blood glucose levels. Additionally, the agreement gives Novo Nordisk an option to develop the technology for delivery of agents outside the diabetes area. In April 2001, Aradigm Corporation received a milestone payment from Novo Nordisk related to the completion of certain clinical and product development stages of the AERx drug delivery system. Profil, a CRO in Germany, is cooperating with Aradigm and Novo Nordisk in the development of inhaled insulin. Aradigm and Novo Nordisk initiated a pivotal phase III study with inhaled insulin formulation in September 2002. This 24-month, 300-patient trial is evaluating inhaled insulin in comparison with insulin aspart. Both medications will be given three times daily before meals in addition to basal

  17. The Valles natural analogue project

    SciTech Connect

    Stockman, H.; Krumhansl, J.; Ho, C.; McConnell, V.

    1994-12-01

    The contact between an obsidian flow and a steep-walled tuff canyon was examined as an analogue for a highlevel waste repository. The analogue site is located in the Valles Caldera in New Mexico, where a massive obsidian flow filled a paleocanyon in the Battleship Rock tuff. The obsidian flow provided a heat source, analogous to waste panels or an igneous intrusion in a repository, and caused evaporation and migration of water. The tuff and obsidian samples were analyzed for major and trace elements and mineralogy by INAA, XRF, X-ray diffraction; and scanning electron microscopy and electron microprobe. Samples were also analyzed for D/H and {sup 39}Ar/{sup 4O} isotopic composition. Overall,the effects of the heating event seem to have been slight and limited to the tuff nearest the contact. There is some evidence of devitrification and migration of volatiles in the tuff within 10 meters of the contact, but variations in major and trace element chemistry are small and difficult to distinguish from the natural (pre-heating) variability of the rocks.

  18. Use of Insulin Lispro Protamine Suspension in Pregnancy.

    PubMed

    Lapolla, Annunziata; Dalfrà, Maria Grazia; Romoli, Ester; Bonomo, Matteo; Moghetti, Paolo

    2015-10-01

    Maternal metabolism changes substantially during pregnancy, which poses numerous challenges to physicians managing pregnancy in women with diabetes. Insulin is the agent of choice for glycemic control in pregnant women with diabetes, and the insulin analogs are particularly interesting for use in pregnancy. These agents may reduce the risk of hypoglycemia and promote a more physiological glycemic profile than regular human insulin in pregnant women with type 1 (T1D), type 2 (T2D), or gestational (GDM) diabetes. However, there have been concerns regarding potential risk for crossing the placental barrier, mitogenic stimulation, teratogenicity, and embryotoxicity. Insulin lispro protamine suspension (ILPS), an intermediate- to long-acting insulin, has a stable and predictable pharmacological profile, and appears to have a favorable time-action profile and produce desirable basal and postprandial glycemic control. As the binding of insulin lispro is unaffected by the protamine molecule, ILPS is likely to have the same mitogenic and immunogenic potential as insulin lispro. Insulin lispro produces similar outcomes to regular insulin in pregnant women with T1D, T2D, or GDM, does not cross the placental barrier, and is considered a useful treatment option for pregnant women with diabetes. Clinical data support the usefulness of ILPS for basal insulin coverage in non-pregnant patients with T1D or T2D, and suggest that the optimal regimen, in terms of balance between efficacy and hypoglycemic risk, is a once-daily injection, especially in patients with T2D. Available data concerning use of ILPS in pregnant women are currently derived from retrospective analyses that involved, in total, >1200 pregnant women. These analyses suggest that ILPS is at least as safe and effective as neutral protamine Hagedorn insulin. Thus, available experimental and clinical data suggest that ILPS once daily is a safe and effective option for the management of diabetes in pregnant women. PMID

  19. [Cardiovascular effects of insulin therapy: from pharmacology to clinical trials].

    PubMed

    Mannucci, Edoardo

    2016-03-01

    Insulin has direct effects on vascular walls which, depending on experimental models, can be either predominantly antiatherogenic or proatherogenic. In observational studies, insulin therapy is usually associated with an increase in the incidence of major cardiovascular events. However, this result is probably determined by the effect of confounders. In clinical trials performed in the acute phase of coronary syndromes, the benefits observed with insulin therapy are probably due to the improvement of glycemic control, rather than to direct effects of insulin on the cardiovascular system. In long-term trials for primary or secondary prevention such as UKPDS and ORIGIN insulin has no relevant effects on major cardiovascular events beyond those determined by the improvement of metabolic control. On the other hand, severe hypoglycemia, which is a possible side effect of insulin therapy, is associated with a worse prognosis of cardiovascular disease. The availability of new long-acting insulin analogs, which reduce the incidence of hypoglycemia for similar levels of glycemic control, makes insulin therapy easier and potentially safer for the cardiovascular system.

  20. Radiolabeled Somatostatin Analogue Therapy Of Gastroenteropancreatic Cancer.

    PubMed

    Bodei, Lisa; Kwekkeboom, Dik J; Kidd, Mark; Modlin, Irvin M; Krenning, Eric P

    2016-05-01

    Peptide receptor radionuclide therapy (PRRT) has been utilized for more than two decades and has been accepted as an effective therapeutic modality in the treatment of inoperable or metastatic gastroenteropancreatic neuroendocrine neoplasms (NENs) or neuroendocrine tumors (NETs). The two most commonly used radiopeptides for PRRT, (90)Y-octreotide and (177)Lu-octreotate, produce disease-control rates of 68%-94%, with progression-free survival rates that compare favorably with chemotherapy, somatostatin analogues, and newer targeted therapies. In addition, biochemical and symptomatic responses are commonly observed. In general, PRRT is well tolerated with only low to moderate toxicity in most individuals. In line with the need to place PRRT in the therapeutic sequence of gastroenteropancreatic NENs, a recently sponsored phase III randomized trial in small intestine NENs treated with (177)Lu-octreotate vs high-dose octreotide long-acting release demonstrated that (177)Lu-octreotate significantly improved progression-free survival. Other strategies that are presently being developed include combinations with targeted therapies or chemotherapy, intra-arterial PRRT, and salvage treatments. Sophisticated molecular tools need to be incorporated into the management strategy to more effectively define therapeutic efficacy and for an early identification of adverse events. The strategy of randomized controlled trials is a key issue to standardize the treatment and establish the position of PRRT in the therapeutic algorithm of NENs. PMID:27067503

  1. Insulin Delivery System

    NASA Technical Reports Server (NTRS)

    1988-01-01

    When Programmable Implantable Medication System (PIMS) is implanted in human body, it delivers precise programmed amounts of insulin over long periods of time. Mini-Med Technologies has been refining the Technologies since initial development at APL. The size of a hockey puck, and encased in titanium shell, PIMS holds about 2 1/2 teaspoons of insulin at a programmed basal rate. If a change in measured blood sugar level dictates a different dose, the patient can vary the amount of insulin delivered by holding a small radio transceiver over the implanted system and dialing in a specific program held in the PIMS computer memory. Insulin refills are accomplished approximately 4 times a year by hypodermic needle.

  2. All about Insulin Resistance

    MedlinePlus

    ... news is that cutting calories, being active, and losing weight can reverse insulin resistance and lower your ... you’ll lose weight. Studies have shown that losing even 7% of your weight, may help. For ...

  3. Insulin signaling and addiction

    PubMed Central

    Daws, Lynette C.; Avison, Malcolm J.; Robertson, Sabrina D.; Niswender, Kevin D.; Galli, Aurelio; Saunders, Christine

    2012-01-01

    Across species, the brain evolved to respond to natural rewards such as food and sex. These physiological responses are important for survival, reproduction and evolutionary processes. It is no surprise, therefore, that many of the neural circuits and signaling pathways supporting reward processes are conserved from Caenorhabditis elegans to Drosophilae, to rats, monkeys and humans. The central role of dopamine (DA) in encoding reward and in attaching salience to external environmental cues is well recognized. Less widely recognized is the role of reporters of the “internal environment”, particularly insulin, in the modulation of reward. Insulin has traditionally been considered an important signaling molecule in regulating energy homeostasis and feeding behavior rather than a major component of neural reward circuits. However, research over recent decades has revealed that DA and insulin systems do not operate in isolation from each other, but instead, work together to orchestrate both the motivation to engage in consummatory behavior and to calibrate the associated level of reward. Insulin signaling has been found to regulate DA neurotransmission and to affect the ability of drugs that target the DA system to exert their neurochemical and behavioral effects. Given that many abused drugs target the DA system, the elucidation of how dopaminergic, as well as other brain reward systems, are regulated by insulin will create opportunities to develop therapies for drug and potentially food addiction. Moreover, a more complete understanding of the relationship between DA neurotransmission and insulin may help to uncover etiological bases for “food addiction” and the growing epidemic of obesity. This review focuses on the role of insulin signaling in regulating DA homeostasis and DA signaling, and the potential impact of impaired insulin signaling in obesity and psychostimulant abuse. PMID:21420985

  4. Rapid model exploration for complex hierarchical data: application to pharmacokinetics of insulin aspart.

    PubMed

    Goudie, Robert J B; Hovorka, Roman; Murphy, Helen R; Lunn, David

    2015-10-15

    We consider situations, which are common in medical statistics, where we have a number of sets of response data, from different individuals, say, potentially under different conditions. A parametric model is defined for each set of data, giving rise to a set of random effects. Our goal here is to efficiently explore a range of possible 'population' models for the random effects, to select the most appropriate model. The range of possible models is potentially vast, because the random effects may depend on observed covariates, and there may be multiple credible ways of partitioning their variability. Here, we consider pharmacokinetic (PK) data on insulin aspart, a fast acting insulin analogue used in the treatment of diabetes. PK models are typically nonlinear (in their parameters), often complex and sometimes only available as a set of differential equations, with no closed-form solution. Fitting such a model for just a single individual can be a challenging task. Fitting a joint model for all individuals can be even harder, even without the complication of an overarching model selection objective. We describe a two-stage approach that decouples the population model for the random effects from the PK model applied to the response data but nevertheless fits the full, joint, hierarchical model, accounting fully for uncertainty. This allows us to repeatedly reuse results from a single analysis of the response data to explore various population models for the random effects. This greatly expedites not only model exploration but also cross-validation for the purposes of model criticism. © 2015 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. PMID:26013427

  5. Anisotropic metamaterial as an analogue of a black hole

    NASA Astrophysics Data System (ADS)

    Fernández-Núñez, Isabel; Bulashenko, Oleg

    2016-01-01

    Propagation of light in a metamaterial medium which mimics curved spacetime and acts like a black hole is studied. We show that for a particular type of spacetimes and wave polarization, the time dilation appears as dielectric permittivity, while the spatial curvature manifests as magnetic permeability. The optical analogue to the relativistic Hamiltonian which determines the ray paths (null geodesics) in the anisotropic metamaterial is obtained. By applying the formalism to the Schwarzschild metric, we compare the ray paths with full-wave simulations in the equivalent optical medium.

  6. Mammalian folylpoly-. gamma. -glutamate synthetase. 3. Specificity for folate analogues

    SciTech Connect

    George, S.; Cichowicz, D.J.; Shane, B.

    1987-01-27

    A variety of folate analogues were synthesized to explore the specificity of the folate binding site of hog liver folypolyglutamate synthetase and the requirements for catalysis. Modifications of the internal and terminal glutamate moieties of folate cause large drops in on rates and/or affinity for the protein. The only exceptions are glutamine, homocysteate, and ornithine analogues, indicating a less stringent specificity around the delta-carbon of glutamate. It is proposed that initial folate binding to the enzyme involves low-affinity interactions at a pterin and a glutamate site and that the first glutamate bound is the internal residue adjacent to the benzoyl group. Processive movement of the polyglutamate chain through the glutamate site and a possible conformational change in the protein when the terminal residue is bound would result in tight binding and would position the ..gamma..-carboxyl of the terminal glutamate in the correct position for catalysis. The 4-amino substitution of folate increases the on rate for monoglutamate derivatives but severely impairs catalysis with diglutamate derivatives. Pteroylornithine derivatives are the first potent and specific inhibitors of folylpolyglutamate synthetase to be identified and may act as analogues of reaction intermediates. Other folate derivatives with tetrahedral chemistry replacing the peptide bond, such as pteroyl-..gamma..-glutamyl-(psi,CH/sub 2/-NH)-glutamate, retain affinity for the protein but are considerably less effective inhibitors than the ornithine derivatives. Enzyme activity was assayed using (/sup 14/C)glutamate.

  7. CO2 Capture with Enzyme Synthetic Analogue

    SciTech Connect

    Cordatos, Harry

    2010-11-08

    Overview of an ongoing, 2 year research project partially funded by APRA-E to create a novel, synthetic analogue of carbonic anhydrase and incorporate it into a membrane for removal of CO2 from flue gas in coal power plants. Mechanism background, preliminary feasibility study results, molecular modeling of analogue-CO2 interaction, and program timeline are provided.

  8. Continuous analogues of matrix factorizations

    PubMed Central

    Townsend, Alex; Trefethen, Lloyd N.

    2015-01-01

    Analogues of singular value decomposition (SVD), QR, LU and Cholesky factorizations are presented for problems in which the usual discrete matrix is replaced by a ‘quasimatrix’, continuous in one dimension, or a ‘cmatrix’, continuous in both dimensions. Two challenges arise: the generalization of the notions of triangular structure and row and column pivoting to continuous variables (required in all cases except the SVD, and far from obvious), and the convergence of the infinite series that define the cmatrix factorizations. Our generalizations of triangularity and pivoting are based on a new notion of a ‘triangular quasimatrix’. Concerning convergence of the series, we prove theorems asserting convergence provided the functions involved are sufficiently smooth. PMID:25568618

  9. Fully analogue photonic reservoir computer.

    PubMed

    Duport, François; Smerieri, Anteo; Akrout, Akram; Haelterman, Marc; Massar, Serge

    2016-03-03

    Introduced a decade ago, reservoir computing is an efficient approach for signal processing. State of the art capabilities have already been demonstrated with both computer simulations and physical implementations. If photonic reservoir computing appears to be promising a solution for ultrafast nontrivial computing, all the implementations presented up to now require digital pre or post processing, which prevents them from exploiting their full potential, in particular in terms of processing speed. We address here the possibility to get rid simultaneously of both digital pre and post processing. The standalone fully analogue reservoir computer resulting from our endeavour is compared to previous experiments and only exhibits rather limited degradation of performances. Our experiment constitutes a proof of concept for standalone physical reservoir computers.

  10. Fully analogue photonic reservoir computer

    PubMed Central

    Duport, François; Smerieri, Anteo; Akrout, Akram; Haelterman, Marc; Massar, Serge

    2016-01-01

    Introduced a decade ago, reservoir computing is an efficient approach for signal processing. State of the art capabilities have already been demonstrated with both computer simulations and physical implementations. If photonic reservoir computing appears to be promising a solution for ultrafast nontrivial computing, all the implementations presented up to now require digital pre or post processing, which prevents them from exploiting their full potential, in particular in terms of processing speed. We address here the possibility to get rid simultaneously of both digital pre and post processing. The standalone fully analogue reservoir computer resulting from our endeavour is compared to previous experiments and only exhibits rather limited degradation of performances. Our experiment constitutes a proof of concept for standalone physical reservoir computers. PMID:26935166

  11. Sustained-release self-dissolving micropiles for percutaneous absorption of insulin in mice.

    PubMed

    Ito, Yukako; Hagiwara, Eiji; Saeki, Atsushi; Sugioka, Nobuyuki; Takada, Kanji

    2007-06-01

    Microparticles-adsorbed insulin and zinc insulin (PenfilN) were molded to self-dissolving micropiles (SDMPs) with chondroitin sulfate as the base for the percutaneous administration of insulin. Porous silicon dioxide (Sylysia 320, 440 and 730) and porous calcium silicate (FloriteRE) were used as microparticles. As a reference, insulin loaded SDMPs were prepared. SDMPs were percutaneously administered to mice at the insulin dose level of 2.5 IU/kg. After the insertion of SDMPs to mouse skin, blood samples were collected for 8 h and plasma glucose levels were measured. There were not significant differences on minimum plasma glucose levels between the test preparations. However, T(mins), the time when the minimum glucose level appeared were 1.5 +/- 0.2 h (Sylysia 320), 1.3 +/- 0.2 h (Sylysia 440), 1.6 +/- 0.4 h (Sylysia 730), 2.1 +/- 0.3 h (Florite) and 1.7 +/- 0.3 h (zinc insulin) which were greater than insulin SDMP, 0.8 +/- 0.1 h. In addition, greater hypoglycemic effects were observed with SDMPs containing adsorbent-insulin and/or zinc insulin than insulin SDMP. The mean AACs (area above the plasma glucose level vs. time curve) of SDMPs containing adsorbent-insulin and zinc insulin were 357.8% h for FloriteRE, 333.1% h for Sylysia 320, 308.1% h for Sylysia 440, 328.1% h for Sylysia 730, and 374.7% h for zinc insulin, respectively, which were about two folds higher than that of insulin SDMN, 161.2% h. Those results suggest the usefulness of SDMPs composed of adsorbent-insulin as a long-acting percutaneous insulin preparation.

  12. Short Term Palmitate Supply Impairs Intestinal Insulin Signaling via Ceramide Production.

    PubMed

    Tran, Thi Thu Trang; Postal, Bárbara Graziela; Demignot, Sylvie; Ribeiro, Agnès; Osinski, Céline; Pais de Barros, Jean-Paul; Blachnio-Zabielska, Agnieszka; Leturque, Armelle; Rousset, Monique; Ferré, Pascal; Hajduch, Eric; Carrière, Véronique

    2016-07-29

    The worldwide prevalence of metabolic diseases is increasing, and there are global recommendations to limit consumption of certain nutrients, especially saturated lipids. Insulin resistance, a common trait occurring in obesity and type 2 diabetes, is associated with intestinal lipoprotein overproduction. However, the mechanisms by which the intestine develops insulin resistance in response to lipid overload remain unknown. Here, we show that insulin inhibits triglyceride secretion and intestinal microsomal triglyceride transfer protein expression in vivo in healthy mice force-fed monounsaturated fatty acid-rich olive oil but not in mice force-fed saturated fatty acid-rich palm oil. Moreover, when mouse intestine and human Caco-2/TC7 enterocytes were treated with the saturated fatty acid, palmitic acid, the insulin-signaling pathway was impaired. We show that palmitic acid or palm oil increases ceramide production in intestinal cells and that treatment with a ceramide analogue partially reproduces the effects of palmitic acid on insulin signaling. In Caco-2/TC7 enterocytes, ceramide effects on insulin-dependent AKT phosphorylation are mediated by protein kinase C but not by protein phosphatase 2A. Finally, inhibiting de novo ceramide synthesis improves the response of palmitic acid-treated Caco-2/TC7 enterocytes to insulin. These results demonstrate that a palmitic acid-ceramide pathway accounts for impaired intestinal insulin sensitivity, which occurs within several hours following initial lipid exposure. PMID:27255710

  13. Influence of anti-insulin antibodies on insulin immunoassays in the autoimmune insulin syndrome.

    PubMed

    Casesnoves, A; Mauri, M; Dominguez, J R; Alfayate, R; Picó, A M

    1998-11-01

    The autoimmune insulin syndrome (AIS) is a rare, benign syndrome characterized by hyperinsulinaemia and hypoglycaemia associated with the presence of autoantibodies to insulin in patients who have not been treated with insulin. We report here the case of a 52-year-old patient with recurrent attacks of severe postprandial hypoglycaemia and we also present the effect of anti-insulin antibodies on insulin immunoassays. The patient was submitted to the following diagnostic tests: 5-h oral glucose tolerance test (OGTT), a prolonged 72-h fast and an insulin tolerance test (ITT). Serum glucose, total and free insulin, C-peptide, proinsulin, insulin antibodies and other autoantibodies were measured. Insulin concentrations were measured by two methods: a double antibody radioimmunoassay (RIA) and an immunoradiometric assay (IRMA). Insulin concentration measured by RIA was extremely high in the OGTT and 72-h fast. In contrast, insulin concentrations measured by IRMA were between 120 and 888 pmol/L in the OGTT and between 37 and 133 pmol/L during the 72-h fast. Fasting free-insulin concentrations measured by RIA were between 2224 and 2669 pmol/L, whereas free-insulin concentrations measured by IRMA ranged between 93 and 237 pmol/L. Total insulin concentrations measured by RIA and IRMA were 57,615 and 94,021 pmol/L, respectively. The C-peptide concentrations were moderately high in the three tests. Serum insulin antibody concentrations were extremely high (62-71%), compared with less than 3% in normal serum samples. In conclusion, the high insulin concentrations measured by RIA were caused by insulin autoantibodies. However, insulin concentrations measured by IRMA were not influenced by them. We conclude that IRMA is the more accurate method for measuring insulin concentrations in such cases.

  14. Insulin-producing cells.

    PubMed

    Schroeder, Insa S; Kania, Gabriela; Blyszczuk, Przemyslaw; Wobus, Anna M

    2006-01-01

    Embryonic stem (ES) cells offer great potential for cell replacement and tissue engineering therapies because of their almost unlimited proliferation capacity and the potential to differentiate into cellular derivatives of all three primary germ layers. This chapter describes a strategy for the in vitro differentiation of mouse ES cells into insulin-producing cells. The three-step protocol does not select for nestin-expressing cells as performed in previous differentiation systems. It includes (1) the spontaneous differentiation of ES cells via embryoid bodies and (2) the formation of progenitor cells of all three primary germ layers (multilineage progenitors) followed by (3) directed differentiation into the pancreatic lineage. The application of growth and extracellular matrix factors, including laminin, nicotinamide, and insulin, leads to the development of committed pancreatic progenitors, which subsequently differentiate into islet-like clusters that release insulin in response to glucose. During differentiation, transcript levels of pancreas-specific transcription factors (i.e., Pdx1, Pax4) and of genes specific for early and mature beta cells, including insulin, islet amyloid pancreatic peptide, somatostatin, and glucagon, are upregulated. C-peptide/insulin-positive islet-like clusters are formed, which release insulin in response to high glucose concentrations at terminal stages. The differentiated cells reveal functional properties with respect to voltage-activated Na+ and ATP-modulated K+ channels and normalize blood glucose levels in streptozotocin-treated diabetic mice. In conclusion, we demonstrate the efficient differentiation of murine ES cells into insulin-producing cells, which may help in the future to establish ES cell-based therapies in diabetes mellitus.

  15. Retention and degradation of 125I-insulin by perfused livers from diabetic rats.

    PubMed

    Terris, S; Steiner, D F

    1976-04-01

    The retention of degradation of insulin by isolated perfused liver have been examined. Noncyclically perfused livers from streptozotocin-diabetic rats retained 25% and degraded 10% of 125I-insulin administered as a 1-min pulse. On gel filtration (Sephadex G50F), the degradation products released into the vascular effluent eluted in the salt peak. During the 45-min interval after the end of the 125I-insulin infusion, 0.19% of the total dose was excreted in the bile. 60-90% of this material consisted of iodinated, low-molecular-weight degradation products. Inclusion of native insulin with the 125I-insulin in the pulse depressed both the retention and degradation of iodinated material; however, this reflected increased retention and degradation of the total insulin dose (125I-insulin plus native hormone). The log of the total amounts of insulin retained and degraded were linearly related to the log of the total amount of insulin infused at concentrations between 12.7 nM and 2.84 muM. Increasing the amount of native insulin in the infused pulse also depressed the total amount of iodinated material found in the bile and led to the appearance in the bile of intermediate-sized degradation products that did not simultaneously appear in the vascular effluent. Addition of high concentrations of glucagon to the infused 125I-insulin had no effect on the retention or degradation of the labeled hormone, or on the apparent size and amount of iodinated degradation products found in the vascular effluent or in the bile. Preinfusion of concanavalin A inhibited both 125I-insulin retention and degradation. A greater depression by concanavalin A of degradation than binding was also observed with isolated hepatocytes. In contrast to 125I-insulin, the retention and degradation of two iodinated insulin analogues of relative low biological potency, proinsulin and desalanyl-desasparaginyl insulin, were small. The amount of radioactivity appearing in the bile after infusion of these

  16. New Atglistatin closely related analogues: Synthesis and structure-activity relationship towards adipose triglyceride lipase inhibition.

    PubMed

    Roy, Pierre-Philippe; D'Souza, Kenneth; Cuperlovic-Culf, Miroslava; Kienesberger, Petra C; Touaibia, Mohamed

    2016-08-01

    Adipose Triglyceride Lipase (ATGL) performs the first and rate-limiting step in lipolysis by hydrolyzing triacylglycerols stored in lipid droplets to diacylglycerols. By mediating lipolysis in adipose and non-adipose tissues, ATGL is a major regulator of overall energy metabolism and plasma lipid levels. Since chronically high levels of plasma lipids are linked to metabolic disorders including insulin resistance and type 2 diabetes, ATGL is an interesting therapeutic target. In the present study, fourteen closely related analogues of Atglistatin (1), a newly discovered ATGL inhibitor, were synthesized, and their ATGL inhibitory activity was evaluated. The effect of these analogues on lipolysis in 3T3-L1 adipocytes clearly shows that inhibition of the enzyme by Atglistatin (1) is due to the presence of the carbamate and N,N-dimethyl moieties on the biaryl central core at meta and para position, respectively. Mono carbamate-substituted analogue C2, in which the carbamate group was in the meta position as in Atglistatin (1), showed slight inhibition. Low dipole moment of Atglistatin (1) compared to the synthesized analogues possibly explains the lower inhibitory activities.

  17. Novel Grb14-Mediated Cross Talk between Insulin and p62/Nrf2 Pathways Regulates Liver Lipogenesis and Selective Insulin Resistance.

    PubMed

    Popineau, Lucie; Morzyglod, Lucille; Carré, Nadège; Caüzac, Michèle; Bossard, Pascale; Prip-Buus, Carina; Lenoir, Véronique; Ragazzon, Bruno; Fauveau, Véronique; Robert, Lorenne; Guilmeau, Sandra; Postic, Catherine; Komatsu, Masaaki; Canonne-Hergaux, François; Guillou, Hervé; Burnol, Anne-Françoise

    2016-08-15

    A long-standing paradox in the pathophysiology of metabolic diseases is the selective insulin resistance of the liver. It is characterized by a blunted action of insulin to reduce glucose production, contributing to hyperglycemia, while de novo lipogenesis remains insulin sensitive, participating in turn to hepatic steatosis onset. The underlying molecular bases of this conundrum are not yet fully understood. Here, we established a model of selective insulin resistance in mice by silencing an inhibitor of insulin receptor catalytic activity, the growth factor receptor binding protein 14 (Grb14) in liver. Indeed, Grb14 knockdown enhanced hepatic insulin signaling but also dramatically inhibited de novo fatty acid synthesis. In the liver of obese and insulin-resistant mice, downregulation of Grb14 markedly decreased blood glucose and improved liver steatosis. Mechanistic analyses showed that upon Grb14 knockdown, the release of p62/sqstm1, a partner of Grb14, activated the transcription factor nuclear factor erythroid-2-related factor 2 (Nrf2), which in turn repressed the lipogenic nuclear liver X receptor (LXR). Our study reveals that Grb14 acts as a new signaling node that regulates lipogenesis and modulates insulin sensitivity in the liver by acting at a crossroad between the insulin receptor and the p62-Nrf2-LXR signaling pathways. PMID:27215388

  18. Molecular Mechanisms of Insulin Secretion and Insulin Action.

    ERIC Educational Resources Information Center

    Flatt, Peter R.; Bailey, Clifford J.

    1991-01-01

    Information and current ideas on the factors regulating insulin secretion, the mechanisms underlying the secretion and biological actions of insulin, and the main characteristics of diabetes mellitus are presented. (Author)

  19. Penetratin-Mediated Transepithelial Insulin Permeation: Importance of Cationic Residues and pH for Complexation and Permeation.

    PubMed

    Kristensen, Mie; Franzyk, Henrik; Klausen, Mia Thorne; Iversen, Anne; Bahnsen, Jesper Søborg; Skyggebjerg, Rikke Bjerring; Foderà, Vito; Nielsen, Hanne Mørck

    2015-09-01

    Penetratin is a widely used carrier peptide showing promising potential for mucosal delivery of therapeutic proteins. In the present study, the importance of specific penetratin residues and pH was investigated with respect to complexation with insulin and subsequent transepithelial insulin permeation. Besides penetratin, three analogues were studied. The carrier peptide-insulin complexes were characterized in terms of size and morphology at pH 5, 6.5, and 7.4 by dynamic light scattering (DLS) and transmission electron microscopy (TEM), respectively. At pH 7.4 mainly very large complexes were present, while much smaller complexes dominated at pH 5. Presence of arginine residues in the carrier peptide proved to be a prerequisite for complexation with insulin as well as for enhanced transepithelial insulin permeation in vitro. Rearrangement of tryptophan residues resulted in significantly increased insulin permeation as compared to that of the parent penetratin. In general, pre-complexation with penetratin and its analogues at pH 5 gave rise to increased insulin permeation as compared to that observed at pH 7.4; this finding was further supported by a preliminary in vivo study using the parent penetratin.

  20. Control of rat mammary-gland pyruvate dehydrogenase by insulin and prolactin.

    PubMed Central

    Field, B; Coore, H G

    1976-01-01

    Withdrawal of prolactin or of insulin from the circulation of lactating rats leads, within 3h, to increased inactivation by phosphorylation of mammary-gland pyruvate dehydrogenase. Prolactin may act by priming the tissue to respond directly to normal concentrations of circulating insulin and by this means be responsible for the increased activation of the enzyme during the course of normal lactation. PMID:133680

  1. Diabetes-associated mutations in human insulin: crystal structure and photo-cross-linking studies of a-chain variant insulin Wakayama.

    PubMed

    Wan, Zhu-li; Huang, Kun; Xu, Bin; Hu, Shi-Quan; Wang, Shuhua; Chu, Ying-Chi; Katsoyannis, Panayotis G; Weiss, Michael A

    2005-04-01

    Naturally occurring mutations in insulin associated with diabetes mellitus identify critical determinants of its biological activity. Here, we describe the crystal structure of insulin Wakayama, a clinical variant in which a conserved valine in the A chain (residue A3) is substituted by leucine. The substitution occurs within a crevice adjoining the classical receptor-binding surface and impairs receptor binding by 500-fold, an unusually severe decrement among mutant insulins. To resolve whether such decreased activity is directly or indirectly mediated by the variant side chain, we have determined the crystal structure of Leu(A3)-insulin and investigated the photo-cross-linking properties of an A3 analogue containing p-azidophenylalanine. The structure, characterized in a novel crystal form as an R(6) zinc hexamer at 2.3 A resolution, is essentially identical to that of the wild-type R(6) hexamer. The variant side chain remains buried in a nativelike crevice with small adjustments in surrounding side chains. The corresponding photoactivatable analogue, although of low affinity, exhibits efficient cross-linking to the insulin receptor. The site of photo-cross-linking lies within a 14 kDa C-terminal domain of the alpha-subunit. This domain, unrelated in sequence to the major insulin-binding region in the N-terminal L1 beta-helix, is also contacted by photoactivatable probes at positions A8 and B25. Packing of Val(A3) at this interface may require a conformational change in the B chain to expose the A3-related crevice. The structure of insulin Wakayama thus evokes the reasoning of Sherlock Holmes in "the curious incident of the dog in the night": the apparent absence of structural perturbations (like the dog that did not bark) provides a critical clue to the function of a hidden receptor-binding surface.

  2. Plant Volatile Analogues Strengthen Attractiveness to Insect

    PubMed Central

    Sun, Yufeng; Yu, Hao; Zhou, Jing-Jiang; Pickett, John A.; Wu, Kongming

    2014-01-01

    Green leaf bug Apolygus lucorum (Meyer-Dür) is one of the major pests in agriculture. Management of A. lucorum was largely achieved by using pesticides. However, the increasing population of A. lucorum since growing Bt cotton widely and the increased awareness of ecoenvironment and agricultural product safety makes their population-control very challenging. Therefore this study was conducted to explore a novel ecological approach, synthetic plant volatile analogues, to manage the pest. Here, plant volatile analogues were first designed and synthesized by combining the bioactive components of β-ionone and benzaldehyde. The stabilities of β-ionone, benzaldehyde and analogue 3 g were tested. The electroantennogram (EAG) responses of A. lucorum adult antennae to the analogues were recorded. And the behavior assay and filed experiment were also conducted. In this study, thirteen analogues were acquired. The analogue 3 g was demonstrated to be more stable than β-ionone and benzaldehyde in the environment. Many of the analogues elicited EAG responses, and the EAG response values to 3 g remained unchanged during seven-day period. 3 g was also demonstrated to be attractive to A. lucorum adults in the laboratory behavior experiment and in the field. Its attractiveness persisted longer than β-ionone and benzaldehyde. This indicated that 3 g can strengthen attractiveness to insect and has potential as an attractant. Our results suggest that synthetic plant volatile analogues can strengthen attractiveness to insect. This is the first published study about synthetic plant volatile analogues that have the potential to be used in pest control. Our results will support a new ecological approach to pest control and it will be helpful to ecoenvironment and agricultural product safety. PMID:24911460

  3. Insulin C-peptide test

    MedlinePlus

    C-peptide ... the test depends on the reason for the C-peptide measurement. Ask your health care provider if ... C-peptide is measured to tell the difference between insulin the body produces and insulin someone injects ...

  4. Synthesis and biological evaluation of febrifugine analogues.

    PubMed

    Mai, Huong Doan Thi; Thanh, Giang Vo; Tran, Van Hieu; Vu, Van Nam; Vu, Van Loi; Le, Cong Vinh; Nguyen, Thuy Linh; Phi, Thi Dao; Truong, Bich Ngan; Chau, Van Minh; Pham, Van Cuong

    2014-12-01

    A series of febrifugine analogues were designed and synthesized. Antimalarial activity evaluation of the synthetic compounds indicated that these derivatives had a strong inhibition against both chloroquine-sensitive and -resistant Plasmodium falciparum parasites. Many of them were found to be more active than febrifugine hydrochloride. The tested analogues had also a significant cytotoxicity against four cancer cell lines (KB, MCF7, LU1 and HepG2). Among the synthetic analogues, two compounds 17b and 17h displayed a moderate cytotoxicity while they exhibited a remarkable antimalarial activity. PMID:25632466

  5. Insulin tolerance in laminitic ponies.

    PubMed Central

    Coffman, J R; Colles, C M

    1983-01-01

    Sensitivity to insulin was assessed in ponies episodically affected with chronic laminitis by measurement of blood glucose and arterial blood pressure during insulin tolerance tests. In terms of blood glucose values, laminitic ponies were significantly less sensitive to insulin than controls. Conversely, a post-insulin decline in diastolic, systolic and mean blood pressure values was significantly greater in laminitic ponies than in controls. PMID:6357412

  6. Phosphoinositide 3-kinase: the key switch mechanism in insulin signalling.

    PubMed Central

    Shepherd, P R; Withers, D J; Siddle, K

    1998-01-01

    Insulin plays a key role in regulating a wide range of cellular processes. However, until recently little was known about the signalling pathways that are involved in linking the insulin receptor with downstream responses. It is now apparent that the activation of class 1a phosphoinositide 3-kinase (PI 3-kinase) is necessary and in some cases sufficient to elicit many of insulin's effects on glucose and lipid metabolism. The lipid products of PI 3-kinase act as both membrane anchors and allosteric regulators, serving to localize and activate downstream enzymes and their protein substrates. One of the major ways these lipid products of PI 3-kinase act in insulin signalling is by binding to pleckstrin homology (PH) domains of phosphoinositide-dependent protein kinase (PDK) and protein kinase B (PKB) and in the process regulating the phosphorylation of PKB by PDK. Using mechanisms such as this, PI 3-kinase is able to act as a molecular switch to regulate the activity of serine/threonine-specific kinase cascades important in mediating insulin's effects on endpoint responses. PMID:9677303

  7. [Molecular action of insulin-sensitizing agents].

    PubMed

    Kacalska, Olga; Krzyczkowska-Sendrakowska, Magdalena; Milewicz, Tomasz; Zabińska-Popiela, Marta; Bereza, Tomasz; Krzysiek-Maczka, Gracjana; Krzysiek, Józef

    2005-01-01

    Atypical endometrial hyperplasia has been associated with progression to endometrial cancer, the most common genital malignancy. There are multiple risk factors for endometrial cancer, such as early menarche, exogenous estrogen exposure, obesity and diabetes. Diabetics have a 3-4 fold relative risk of endometrial cancer. Also, several studies have demonstrated an association between insulin resistance and endometrial cancer. There is known the first description of atypical endometrial hyperplasia resistant to progestogen therapy, which was subsequently treated with an insulin-sensitizng agent, metformin. Metformin is a biguanide antihyperglycemic agent used in the treatment of adult-onset diabetes. Unlike the sulfonylureas, metformin does not act primarily by increasing insulin secretion. In contrast, metformin lowers the rate of gluconeogenesis in the presence of insulin. Therefore, it is considered an insulin-sensitizer. Increased insulin sensitivity may improve the metabolic effect of insulin and decrease its mitogenic effect by tissue-specific mechanisms. One explanation for tissue specific differences in insulin binding and action may be through the relative expression of the insulin receptor (IR) isoforms. The IR isoforms IR-A and IR-D differ by 12 amino acid residues, owing to the alternative splicing of exon. The IR-A is predominantly expressed in malignant tissues and may lead to mitogenic effects within the cell. The relative expressions of IR-A and IR-B in normal and malignant endometrial tissue is not known. Besides direct effects on the IR, several additional mechanisms have been proposed for the mitogenic effect of insulin in endometrial cancer. In addition to the possible direct mitogenic effects of insulin through the IR-A, insulin resistance may be associated with alterations in expression of insulin-like growth factors (IGFs) and the IGF binding proteins (IGFBPs) or may inhibit the protective effect of progestagens. Binding sites for IGF-1 and IGF

  8. Oral Insulin and Buccal Insulin: A Critical Reappraisal

    PubMed Central

    Heinemann, Lutz; Jacques, Yves

    2009-01-01

    Despite the availability of modern insulin injection devices with needles that are so sharp and thin that practically no injection pain takes place, it is still the dream of patients with diabetes to, for example, swallow a tablet with insulin. This is not associated with any pain and would allow more discretion. Therefore, availability of oral insulin would not only ease insulin therapy, it would certainly increase compliance. However, despite numerous attempts to develop such a “tablet” in the past 85 years, still no oral insulin is commercially available. Buccal insulin is currently in the last stages of clinical development by one company and might become available in the United States and Europe in the coming years (it is already on the market in some other countries). The aim of this review is to critically describe the different approaches that are currently under development. Optimal coverage of prandial insulin requirements is the aim with both routes of insulin administration (at least with most approaches). The speed of onset of metabolic effect seen with some oral insulin approaches is rapid, but absorption appears to be lower when the tablet is taken immediately prior to a meal. With all approaches, considerable amounts of insulin have to be applied in order to induce therapeutically relevant increases in the metabolic effect because of the low relative biopotency of buccal insulin. Unfortunately, the number of publications about clinical–experimental and clinical studies is surprisingly low. In addition, there is no study published in which the variability of the metabolic effect induced (with and without a meal) was studied adequately. In summary, after the failure of inhaled insulin, oral insulin and buccal insulin are hot candidates to come to the market as the next alternative routes of insulin administration. PMID:20144297

  9. Direct Demonstration of Separate Receptors for Growth and Metabolic Activities of Insulin and Multiplication-stimulating Activity (an Insulinlike Growth Factor) Using Antibodies to the Insulin Receptor

    PubMed Central

    King, George L.; Kahn, C. Ronald; Rechler, Matthew M.; Nissley, S. Peter

    1980-01-01

    Insulin and such insulinlike growth factors as multiplication stimulating activity (MSA) are related polypeptides that have common biological activities. Both insulin and MSA produce acute metabolic responses (stimulation of glucose oxidation in isolated fat cells) as well as growth effects (stimulation of [3H]thymidine incorporation into DNA in cultured fibroblasts). In addition, most cells have separate receptors for insulin and insulinlike growth factors, and both peptides have weaker affinity for each other's specific receptors than for their own. To determine, therefore, whether these effects are mediated by receptors for insulin, insulinlike growth factors, or both, we have selectively blocked insulin receptors with a specific antagonist, namely Fab fragments derived from naturally occurring antibodies to the insulin receptor. In rat adipocytes, 10 μg/ml of antireceptor Fab inhibited insulin binding by 90%, whereas it inhibited MSA binding <5%. The anti-insulin receptor Fab is without intrinsic biological activity, but acts as a competitive inhibitor of insulin receptors. Blockade of insulin receptors with Fab fragments produced a 30-fold rightward shift in the dose response for stimulation of glucose oxidation by both insulin and MSA. The dose-response curves for stimulation of oxidation by vitamin K5 and spermine, agents that stimulate glucose oxidation through noninsulin receptor pathways, were not affected by the blockade of insulin receptors with Fab antibody fragments. These data suggest that this acute metabolic effect of both insulin and MSA is mediated via the insulin receptor. In cultured human fibroblasts, 10 μg/ml of Fab inhibited insulin binding by 90% and MSA binding by 15%. In fibroblasts, however, blockade of the insulin receptor did not alter the dose response for stimulation of thymidine incorporation into DNA by either insulin or MSA. Furthermore, intact antireceptor antibody immunoglobulin (Ig)G, which produces multiple other insulinlike

  10. Antimicrobial activity of resveratrol analogues.

    PubMed

    Chalal, Malik; Klinguer, Agnès; Echairi, Abdelwahad; Meunier, Philippe; Vervandier-Fasseur, Dominique; Adrian, Marielle

    2014-01-01

    Stilbenes, especially resveratrol and its derivatives, have become famous for their positive effects on a wide range of medical disorders, as indicated by a huge number of published studies. A less investigated area of research is their antimicrobial properties. A series of 13 trans-resveratrol analogues was synthesized via Wittig or Heck reactions, and their antimicrobial activity assessed on two different grapevine pathogens responsible for severe diseases in the vineyard. The entire series, together with resveratrol, was first evaluated on the zoospore mobility and sporulation level of Plasmopara viticola (the oomycete responsible for downy mildew). Stilbenes displayed a spectrum of activity ranging from low to high. Six of them, including the most active ones, were subsequently tested on the development of Botrytis cinerea (fungus responsible for grey mold). The results obtained allowed us to identify the most active stilbenes against both grapevine pathogens, to compare the antimicrobial activity of the evaluated series of stilbenes, and to discuss the relationship between their chemical structure (number and position of methoxy and hydroxy groups) and antimicrobial activity. PMID:24918540

  11. Space analogue studies in Antarctica.

    PubMed

    Lugg, D; Shepanek, M

    1999-01-01

    Medical research has been carried out on the Australian National Antarctic Research Expeditions (ANARE) for 50 years. As an extension of this program collaborative Australian/United States research on immunology, microbiology, psychology and remote medicine has produced important data and insight on how humans adapt to the stress of extreme isolation, confinement and the harsh environment of Antarctica. An outstanding analogue for the isolation and confinement of space missions (especially planetary outposts), ANARE has been used as an international research platform by Australia and the United States since 1993. Collaborative research has demonstrated a lowered responsiveness of the immune system under the isolation and confinement of Antarctic winter-over; a reduction of almost 50% in T cell proliferation to mitogen phytohaemogglutinin, as well as changes in latent herpesvirus states and the expansion of the polyclonal latent Epstein-Barr virus infected B cell populations. Although no clinically significant disease has been found to result from these immune changes, research is currently assessing the effects of psychological factors on the immune system. This and associated research performed to date and its relevance to both organisations is discussed, and comment made on possible extensions to the program in both medical and other fields.

  12. Antimicrobial activity of resveratrol analogues.

    PubMed

    Chalal, Malik; Klinguer, Agnès; Echairi, Abdelwahad; Meunier, Philippe; Vervandier-Fasseur, Dominique; Adrian, Marielle

    2014-06-10

    Stilbenes, especially resveratrol and its derivatives, have become famous for their positive effects on a wide range of medical disorders, as indicated by a huge number of published studies. A less investigated area of research is their antimicrobial properties. A series of 13 trans-resveratrol analogues was synthesized via Wittig or Heck reactions, and their antimicrobial activity assessed on two different grapevine pathogens responsible for severe diseases in the vineyard. The entire series, together with resveratrol, was first evaluated on the zoospore mobility and sporulation level of Plasmopara viticola (the oomycete responsible for downy mildew). Stilbenes displayed a spectrum of activity ranging from low to high. Six of them, including the most active ones, were subsequently tested on the development of Botrytis cinerea (fungus responsible for grey mold). The results obtained allowed us to identify the most active stilbenes against both grapevine pathogens, to compare the antimicrobial activity of the evaluated series of stilbenes, and to discuss the relationship between their chemical structure (number and position of methoxy and hydroxy groups) and antimicrobial activity.

  13. Space analogue studies in Antarctica

    NASA Technical Reports Server (NTRS)

    Lugg, D.; Shepanek, M.

    1999-01-01

    Medical research has been carried out on the Australian National Antarctic Research Expeditions (ANARE) for 50 years. As an extension of this program collaborative Australian/United States research on immunology, microbiology, psychology and remote medicine has produced important data and insight on how humans adapt to the stress of extreme isolation, confinement and the harsh environment of Antarctica. An outstanding analogue for the isolation and confinement of space missions (especially planetary outposts), ANARE has been used as an international research platform by Australia and the United States since 1993. Collaborative research has demonstrated a lowered responsiveness of the immune system under the isolation and confinement of Antarctic winter-over; a reduction of almost 50% in T cell proliferation to mitogen phytohaemogglutinin, as well as changes in latent herpesvirus states and the expansion of the polyclonal latent Epstein-Barr virus infected B cell populations. Although no clinically significant disease has been found to result from these immune changes, research is currently assessing the effects of psychological factors on the immune system. This and associated research performed to date and its relevance to both organisations is discussed, and comment made on possible extensions to the program in both medical and other fields.

  14. Space analogue studies in Antarctica

    NASA Astrophysics Data System (ADS)

    Lugg, D.; Shepanek, M.

    1999-09-01

    Medical research has been carried out on the Australian National Antarctic Research Expeditions (ANARE) for 50 years. As an extension of this program collaborative Australian/United States research on immunology, microbiology, psychology and remote medicine has produced important data and insight on how humans adapt to the stress of extreme isolation, confinement and the harsh environment of Antarctica. An outstanding analogue for the isolation and confinement of space missions (especially planetary outposts), ANARE has been used as an international research platform by Australia and the United States since 1993. Collaborative research has demonstrated a lowered responsiveness of the immune system under the isolation and confinement of Antarctic winter-over; a reduction of almost 50% in T cell proliferation to mltogen phytohaemogglutinin, as well as changes in latent herpesvirus states and the expansion of the polyclonal latent Epstein-Barr virus infected B cell populations. Although no clinically significant disease has been found to result from these immune changes, research is currently assessing the effects of psychological factors on the immune system. This and associated research performed to date and its relevance to both organisations is discussed, and comment made on possible extensions to the program in both medical and other fields.

  15. Condensed matter analogues of cosmology

    NASA Astrophysics Data System (ADS)

    Kibble, Tom; Srivastava, Ajit

    2013-10-01

    It is always exciting when developments in one branch of physics turn out to have relevance in a quite different branch. It would be hard to find two branches farther apart in terms of energy scales than early-universe cosmology and low-temperature condensed matter physics. Nevertheless ideas about the formation of topological defects during rapid phase transitions that originated in the context of the very early universe have proved remarkably fruitful when applied to a variety of condensed matter systems. The mathematical frameworks for describing these systems can be very similar. This interconnection has led to a deeper understanding of the phenomena in condensed matter systems utilizing ideas from cosmology. At the same time, one can view these condensed matter analogues as providing, at least in a limited sense, experimental access to the phenomena of the early universe for which no direct probe is possible. As this special issue well illustrates, this remains a dynamic and exciting field. The basic idea is that when a system goes through a rapid symmetry-breaking phase transition from a symmetric phase into one with spontaneously broken symmetry, the order parameter may make different choices in different regions, creating domains that when they meet can trap defects. The scale of those domains, and hence the density of defects, is constrained by the rate at which the system goes through the transition and the speed with which order parameter information propagates. This is what has come to be known as the Kibble-Zurek mechanism. The resultant scaling laws have now been tested in a considerable variety of different systems. The earliest experiments illustrating the analogy between cosmology and condensed matter were in liquid crystals, in particular on the isotropic-to-nematic transition, primarily because it is very easy to induce the phase transition (typically at room temperature) and to image precisely what is going on. This field remains one of the

  16. Insulin Resistance in Alzheimer's Disease

    PubMed Central

    Dineley, Kelly T; Jahrling, Jordan B; Denner, Larry

    2014-01-01

    Insulin is a key hormone regulating metabolism. Insulin binding to cell surface insulin receptors engages many signaling intermediates operating in parallel and in series to control glucose, energy, and lipids while also regulating mitogenesis and development. Perturbations in the function of any of these intermediates, which occur in a variety of diseases, cause reduced sensitivity to insulin and insulin resistance with consequent metabolic dysfunction. Chronic inflammation ensues which exacerbates compromised metabolic homeostasis. Since insulin has a key role in learning and memory as well as directly regulating ERK, a kinase required for the type of learning and memory compromised in early Alzheimer's disease (AD), insulin resistance has been identified as a major risk factor for the onset of AD. Animal models of AD or insulin resistance or both demonstrate that AD pathology and impaired insulin signaling form a reciprocal relationship. Of note are human and animal model studies geared toward improving insulin resistance that have led to the identification of the nuclear receptor and transcription factor, peroxisome proliferator-activated receptor gamma (PPARγ) as an intervention tool for early AD. Strategic targeting of alternate nodes within the insulin signaling network has revealed disease-stage therapeutic windows in animal models that coalesce with previous and ongoing clinical trial approaches. Thus, exploiting the connection between insulin resistance and AD provides powerful opportunities to delineate therapeutic interventions that slow or block the pathogenesis of AD. PMID:25237037

  17. Sulfur analogues of psychotomimetic agents. Monothio analogues of mescaline and isomescaline.

    PubMed

    Jacob, P; Shulgin, A T

    1981-11-01

    Two monothio analogues of mescaline and three monothio analogues of 2,3,4-trimethoxyphenethylamine (isomescaline) have been synthesized and characterized. Only the two mescaline analogues (3-and 4-thiomescaline) were found to be psychotomimetics in man, being 6 and 12 times more potent than mescaline, respectively. All five compounds can serve as substrates for bovine plasma monoamine oxidase in vitro, but no positive correlation is apparent between the extent of enzymatic degradation and human psychotomimetic potency.

  18. Naltrexone effects on insulin sensitivity and insulin secretion in hyperandrogenic women.

    PubMed

    Sir-Petermann, T; López, G; Castillo, T; Calvillán, M; Rabenbauer, B; Wildt, L

    1998-01-01

    A total of 12 women (24.2 +/- 1.6 years old, BMI 36.7 +/- 1.5 Kg/m2) with hyperandrogenism (HA) and with normal glucose tolerance test were studied to evaluate the involvement of endogenous opioids in the pathophysiology of insulin secretion and insulin sensitivity in HA by administering naltrexone, an oral opioid receptor antagonist. Six patients received naltrexone orally (75 mg daily) and another six received placebo for 12 weeks (double-blind study). Before and after therapy a frequently sampled intravenous glucose tolerance test (FSIVGTT) was performed. The insulin sensitivity index (SI) was determined by Bergman's program. SHBG, DHEAS, testosterone, free androgen index (FAI) and plasma concentrations of IGF-I and IGFBP-1 were determined in 3 basal samples, before and after therapy. Treatment with naltrexone in hyperandrogenic patients resulted in a decrease in fasting insulin concentrations of 40% and C-peptide concentrations of 50% (p < 0.05). Insulin and C-peptide from the FSIVGTT displayed a similar pattern with a fall in the area under the curve under naltrexone treatment of 34% for insulin and 35% for C-peptide. Insulin sensitivity did not change under naltrexone (1.26 +/- 0.19 vs 1.32 +/- 0.32 10(-4) x min(-1)/(uU/ml)) or placebo (0.95 +/- 0.19 vs 1.12 +/- 0.28 10(-4) x min(-1)/(uU/ml)) administration. However, glucose effectiveness increased significantly with naltrexone (2.231 +/- 0.002 vs 3.354 +/- 0.006 x 10(-2) min(-1)). Glucose (fasting and area under the curve) was not modified significantly after naltrexone administration. Baseline hormone levels were similar in the two groups, and they did not change after long-term treatment with naltrexone or placebo. In conclusion, these results support the hypothesis of elevated opioid tonus and increased insulin secretion as a possible mechanism of hyperinsulinism in a group of hyperandrogenic women of ovarian origin. This alteration could act as an additional factor in the pathogenesis of insulin

  19. Insulin resistance in the liver: Deficiency or excess of insulin?

    PubMed Central

    Bazotte, Roberto B; Silva, Lorena G; Schiavon, Fabiana PM

    2014-01-01

    In insulin-resistant states (obesity, pre-diabetes, and type 2 diabetes), hepatic production of glucose and lipid synthesis are heightened in concert, implying that insulin deficiency and insulin excess coexists in this setting. The fact that insulin may be inadequate or excessive at any one point in differing organs and tissues has many biologic ramifications. In this context the concept of metabolic compartmentalization in the liver is offered herein as one perspective of this paradox. In particular, we focus on the hypothesis that insulin resistance accentuates differences in periportal and perivenous hepatocytes, namely periportal glucose production and perivenous lipid synthesis. Subsequently, excessive production of glucose and accumulation of lipids could be expected in the livers of patients with obesity and insulin resistance. Overall, in this review, we provide our integrative perspective regarding how excessive production of glucose in periportal hepatocytes and accumulation of lipids in perivenous hepatocytes interact in insulin resistant states. PMID:25486190

  20. The structure activity relationship of discodermolide analogues.

    PubMed

    Shaw, Simon J

    2008-03-01

    The marine polyketide discodermolide is a member of a class of natural products that stabilize microtubules. Many analogues have been synthesized suggesting that few changes can be made to the internal carbon backbone. Both ends of the molecule, however, can be modified. The majority of analogues have been generated via modification of the lactone region. This suggests that significant simplifications can be made in this region provided that the lactone moiety is maintained.

  1. Phosphorous-containing analogues of aspartame.

    PubMed

    Nelson, V; Mastalerz, P

    1984-12-01

    Four analogues of aspartame (aspartylphenylalanine methyl ester) were prepared in which one of the carboxylate groups was replaced by a phosphonate group. None of the peptides so obtained was sweet, in contrast with the parent compound which is over 100 times sweeter than sucrose. These results contrast with several published reports of phosphonate analogues of amino acids and peptides which are potent inhibitors of enzymes containing acceptor sites for the parent compound.

  2. [Insulin therapy of diabetes].

    PubMed

    Lechleitner, Monika; Roden, Michael; Weitgasser, Raimund; Ludvik, Bernhard; Fasching, Peter; Hoppichler, Friedrich; Kautzky-Willer, Alexandra; Schernthaner, Guntram; Prager, Rudolf; Wascher, Thomas C

    2016-04-01

    Hyperglycemia contributes to morbidity and mortality in patients with diabetes. Thus, reaching treatment targets with regard to control of glycemia is a central goal in the therapy of diabetic patients. The present article represents the recommendations of the Austrian Diabetes Association for the practical use of insulin according to current scientific evidence and clinical studies. PMID:27052221

  3. Insulin Resistance and Prediabetes

    MedlinePlus

    ... to be used in most health care providers' offices. The clamp is a research tool used by scientists to learn more about glucose metabolism. Research has shown that if blood tests indicate prediabetes, insulin ... care provider's office or commercial facility and sending the sample to ...

  4. Dopamine, by Acting through Its D2 Receptor, Inhibits Insulin-Like Growth Factor-I (IGF-I)-Induced Gastric Cancer Cell Proliferation via Up-Regulation of Krüppel-Like Factor 4 through Down-Regulation of IGF-IR and AKT Phosphorylation

    PubMed Central

    Ganguly, Subhalakshmi; Basu, Biswarup; Shome, Saurav; Jadhav, Tushar; Roy, Sudipta; Majumdar, Jahar; Dasgupta, Partha Sarathi; Basu, Sujit

    2010-01-01

    The overexpression of insulin-like growth factor receptor-I (IGF-IR) and the activation of its signaling pathways both play critical roles in the development and progression of gastric cancer. Dopamine (DA), a major enteric neurotransmitter, has been reported to have a wide variety of physiological functions in the gastrointestinal tract, including the stomach. We have previously reported that both DA and tyrosine hydroxylase, the rate-limiting enzyme required for the synthesis of DA, are lost in malignant gastric tissues. The effect of this loss of DA on IGF-IR-induced growth of gastric cancer has not yet been elucidated; we therefore investigated the role of DA, if any, on IGF-IR-induced proliferation of malignant gastric cells. There was a significant increase in the expression of phosphorylated IGF-IR and its downstream signaling molecule AKT in human malignant gastric tissues compared with normal nonmalignant tissues. Furthermore, to determine whether this loss of DA has any effect on the activation of IGF-IR signaling pathways in malignant gastric tumors, in vitro experiments were undertaken, using AGS gastric cancer cells. Our results demonstrated that DA acting through its D2 receptor, inhibits IGF-I-induced proliferation of AGS cells by up-regulating KLF4, a negative regulator of the cell cycle through down regulation of IGF-IR and AKT phosphorylation. Our results suggest that DA is an important regulator of IGF-IR function in malignant gastric cancer cells. PMID:21075859

  5. Relapsing insulin-induced lipoatrophy, cured by prolonged low-dose oral prednisone: a case report

    PubMed Central

    2011-01-01

    Introduction Circumscript, progressing lipoatrophy at the insulin injection sites is an unexplained, however rare condition in diabetes mellitus. Case presentation We report a case of severe localised lipoatrophy developing during insulin pump-treatment (continuous subcutaneous insulin infusion) with the insulin analogue lispro (Humalog®) in a woman with type-1 diabetes mellitus. After 11 months of progressing lipoatrophy at two spots on the abdomen, low-dose prednisone (5-10 mg) p.o. was given at breakfast for 8 months, whereby the atrophic lesions centripetally re-filled with subcutaneous fat tissue (confirmed by MRI) despite ongoing use of insulin lispro. However, 4 weeks after cessation of prednisone, lipoatrophy relapsed, but resolved after another 2 months of low-dose prednisone. No further relapse was noted during 12 months of follow-up on insulin-pump therapy with Humalog®. Conclusion Consistent with an assumed inflammatory nature of the condition, low-dose oral prednisone appeared to have cured the lipoatrophic reaction in our patient. Our observation suggests a temporary intolerance of the subcutaneous fat tissue to insulin lispro (Humalog®), triggered by an unknown endogenous mechanism. PMID:22145998

  6. The insulin dilemma in resource-limited countries. A way forward?

    PubMed

    Gill, G V; Yudkin, J S; Keen, H; Beran, D

    2011-01-01

    The International Insulin Foundation (IIF) has developed and validated a needs-assessment instrument called the Rapid Assessment Protocol for Insulin Access (RAPIA) which has been used in seven countries in four continents to analyse the constraints to delivering effective continuing care for people with diabetes. One major contributor to the difficulties in availability of insulin is a failure to use the least costly sources and types of insulin and other effective drugs for diabetes. The purchase of insulins can consume as much as 10% of government expenditure on drugs, this being highly sensitive to the selection of newer analogue insulins as first-choice options, which cost between three and 13 times more than biosynthetic human insulin. Insulin cartridges for use with injection pens further add to costs. Similar considerations apply to most of the newer treatments for people with type 2 diabetes, which may cost up to 40 times more than metformin and sulfonylureas, still considered first-line drugs by European and US guidelines. Both biosynthetic human insulin and the first-line oral hypoglycaemic drugs are available from generic manufacturers. With the present price differentials, there is thus a growing need for countries involved in tendering for sourcing insulin to be provided with the guarantees of Good Manufacturing Practice, quality and bioequivalence, which would come from a WHO Pre-Qualification Scheme as currently exists for a variety of drugs for chronic diseases, both communicable and non-communicable. The IIF has developed a position statement on the provision and choice of diabetes treatments in resource-limited settings which should be applicable wherever consideration of resources is a component of therapeutic decision making. PMID:20835860

  7. Potentiation of specific association of insulin with HepG2 cells by phorbol esters.

    PubMed Central

    Blake, A D; Strader, C D

    1986-01-01

    The effects of tumour-promoting phorbol esters on the receptor-mediated endocytosis of insulin were investigated in the human hepatoma cell line HepG2. Treatment of these cells with the biologically active phorbol 12-O-tetradecanoylphorbol 13-acetate (TPA), but not with the non-tumour-promoting analogue 4 alpha-phorbol 12,13-didecanoate, resulted in dramatic morphological changes, which were accompanied by a 1.5-2.5-fold increase in specific 125I-insulin association with the cells at 37 degrees C. This increase in insulin binding was not observed when the binding reaction was performed at 4 degrees C. The potentiation of 125I-insulin association with TPA-treated cells at 37 degrees C could be completely accounted for by an increase in the intracellular pool of internalized insulin; there was no concomitant increase in cell-surface insulin binding. Dissociation studies showed that the enhanced internalization of insulin by cells after treatment with TPA resulted from a decrease in the rate of intracellular processing of the insulin after receptor-mediated endocytosis. The phorbol-ester-induced enhancement of internalized insulin in HepG2 cells was additive with the potentiation of endocytosed insulin induced by both the lysosomotropic reagent chloroquine and the ionophore monensin; this indicates that TPA affects the intracellular processing of the insulin receptor at a point other than those disrupted by either of these two reagents. The potentiation of insulin receptor internalization by tumour-promoting phorbol esters could be completely mimicked by treatment with phospholipase C, but not with phospholipase A, and partially mimicked by treatment with the synthetic diacylglycerol 1-oleoyl-2-acetylglycerol. By these criteria, the effects of phorbol esters on the insulin receptor in HepG2 cells appear to be mediated through protein kinase C. These results support the concept that the activation of protein kinase C by treatment with phorbol esters causes a

  8. Evidence against extrapancreatic insulin synthesis.

    PubMed Central

    Eng, J; Yalow, R S

    1981-01-01

    Labeled and unlabeled insulin in acid/ethanol tissue extracts can be concentrated up to 100-fold by using a hydrophobic adsorption technique. After adsorption to and elution from an octadecylsilyl silica column, insulin is recovered in yields greater than 75%. By using this method of concentration, insulin in brain tissues of three of four fed rats and one rabbit was found to be less than 20% of plasma concentration. The kidney is the only extrapancreatic organ in which insulin is observed to be markedly above plasma levels. Porcine-insulin-like material was not detectable in guinea pig tissues (less than 0.02 ng/g). It is concluded that insulin is not synthesized in brain or other extrapancreatic tissues and that other mammalian insulins are not found in guinea pig tissues. PMID:6270683

  9. Planetary habitability: lessons learned from terrestrial analogues

    NASA Astrophysics Data System (ADS)

    Preston, Louisa J.; Dartnell, Lewis R.

    2014-01-01

    Terrestrial analogue studies underpin almost all planetary missions and their use is essential in the exploration of our Solar system and in assessing the habitability of other worlds. Their value relies on the similarity of the analogue to its target, either in terms of their mineralogical or geochemical context, or current physical or chemical environmental conditions. Such analogue sites offer critical ground-truthing for astrobiological studies on the habitability of different environmental parameter sets, the biological mechanisms for survival in extreme environments and the preservation potential and detectability of biosignatures. The 33 analogue sites discussed in this review have been selected on the basis of their congruence to particular extraterrestrial locations. Terrestrial field sites that have been used most often in the literature, as well as some lesser known ones which require greater study, are incorporated to inform on the astrobiological potential of Venus, Mars, Europa, Enceladus and Titan. For example, the possibility of an aerial habitable zone on Venus has been hypothesized based on studies of life at high-altitudes in the terrestrial atmosphere. We also demonstrate why many different terrestrial analogue sites are required to satisfactorily assess the habitability of the changing environmental conditions throughout Martian history, and recommend particular sites for different epochs or potential niches. Finally, habitable zones within the aqueous environments of the icy moons of Europa and Enceladus and potentially in the hydrocarbon lakes of Titan are discussed and suitable analogue sites proposed. It is clear from this review that a number of terrestrial analogue sites can be applied to multiple planetary bodies, thereby increasing their value for astrobiological exploration. For each analogue site considered here, we summarize the pertinent physiochemical environmental features they offer and critically assess the fidelity with which

  10. [Effect of insulin on germination and ionic exchange in Raphanus sativus (author's transl)].

    PubMed

    Frasquet, M I; Viña, J; Frasquet, M; Ferriol, A; Alvarez de Laviada, T; Antón, V

    1978-06-01

    Hypoglycemic sulfamide BZ-55 activates or inhibits germination of Raphanus sativus, depending upon the dosis. Since this drug acts upon the glycemia by increasing the secretion and action of insulin, the influence of this hormone on germination and ionic changes (Na+-K+) between seeds and culture medium, were studied. Seeds were incubated during 72 h with different concentrations of insulin in 10 ml deionized water or in 10 ml 18 mM K+ (KCl) solutions at 37 degrees C in vapor saturated atmosphere. A solution of 0.125 IU insulin/ml in water increases the germination to 110% whereas 0.175 IU insulin/ml inhibits it to 40% against controls. Further increases in insulin concentration always inhibit germination. Similar results have been obtained with K+ containing media. Germination rate changes in a small concentration range suggest that insulin might affect an enzymatic activity in the seed.

  11. Insulin Is Required to Maintain Albumin Expression by Inhibiting Forkhead Box O1 Protein.

    PubMed

    Chen, Qing; Lu, Mingjian; Monks, Bobby R; Birnbaum, Morris J

    2016-01-29

    Diabetes is accompanied by dysregulation of glucose, lipid, and protein metabolism. In recent years, much effort has been spent on understanding how insulin regulates glucose and lipid metabolism, whereas the effect of insulin on protein metabolism has received less attention. In diabetes, hepatic production of serum albumin decreases, and it has been long established that insulin positively controls albumin gene expression. In this study, we used a genetic approach in mice to identify the mechanism by which insulin regulates albumin gene transcription. Albumin expression was decreased significantly in livers with insulin signaling disrupted by ablation of the insulin receptor or Akt. Concomitant deletion of Forkhead Box O1 (Foxo1) in these livers rescued the decreased albumin secretion. Furthermore, activation of Foxo1 in the liver is sufficient to suppress albumin expression. These results suggest that Foxo1 acts as a repressor of albumin expression.

  12. Insulin signaling genes modulate nicotine-induced behavioral responses in Caenorhabditis elegans.

    PubMed

    Wescott, Seth A; Ronan, Elizabeth A; Xu, X Z Shawn

    2016-02-01

    Insulin signaling has been suggested to modulate nicotine dependence, but the underlying genetic evidence has been lacking. Here, we used the nematode, Caenorhabditis elegans, to investigate whether genetic alterations in the insulin signaling pathway affect behavioral responses to nicotine. For this, we challenged drug-naive C. elegans with an acute dose of nicotine (100 μmol/l) while recording changes in their locomotion speed. Although nicotine treatment stimulated locomotion speed in wild-type C. elegans, the same treatment reduced locomotion speed in mutants defective in insulin signaling. This phenotype could be suppressed by mutations in daf-16, a gene encoding a FOXO transcription factor that acts downstream of insulin signaling. Our data suggest that insulin signaling genes, daf-2, age-1, pdk-1, akt-1, and akt-2, modulate behavioral responses to nicotine in C. elegans, indicating a genetic link between nicotine behavior and insulin signaling.

  13. Insulin Is Required to Maintain Albumin Expression by Inhibiting Forkhead Box O1 Protein.

    PubMed

    Chen, Qing; Lu, Mingjian; Monks, Bobby R; Birnbaum, Morris J

    2016-01-29

    Diabetes is accompanied by dysregulation of glucose, lipid, and protein metabolism. In recent years, much effort has been spent on understanding how insulin regulates glucose and lipid metabolism, whereas the effect of insulin on protein metabolism has received less attention. In diabetes, hepatic production of serum albumin decreases, and it has been long established that insulin positively controls albumin gene expression. In this study, we used a genetic approach in mice to identify the mechanism by which insulin regulates albumin gene transcription. Albumin expression was decreased significantly in livers with insulin signaling disrupted by ablation of the insulin receptor or Akt. Concomitant deletion of Forkhead Box O1 (Foxo1) in these livers rescued the decreased albumin secretion. Furthermore, activation of Foxo1 in the liver is sufficient to suppress albumin expression. These results suggest that Foxo1 acts as a repressor of albumin expression. PMID:26668316

  14. Presence of cobalamin analogues in animal tissues

    PubMed Central

    Kondo, Haruki; Kolhouse, Fred; Allen, Robert H.

    1980-01-01

    Cobalamin (Cbl, vitamin B-12) has been extracted and isolated from a number of animal tissues by using (i) reverse-affinity chromatography on R protein-Sepharose followed by adsorption to and elution from charcoal-coated agarose and (ii) paper chromatography. Radioisotope dilution assays showed that only 75-97% of the Cbl chromatographed in the position of crystalline Cbl. The remaining 3-25% was present in a number of slower and faster moving fractions. This suggested that Cbl analogues are present in animal tissues because appropriate controls ruled out the possibility that this material was artifactually derived from Cbl during the extraction and purification procedures. With a large-scale isolation from rabbit kidney, the material in five such fractions contained cobalt and had absorption spectra that were similar to but different from the spectrum of Cbl, indicating that they were Cbl analogues. Compared to Cbl, these Cbl analogues had decreased but definite affinities for Cbl-binding proteins with the following order of strength of binding: R protein > transcobalamin II > intrinsic factor. Compared to Cbl, they also had decreased but definite growth-promoting activity for two microorganisms, Euglena gracilis and Lactobacillus leichmannii, which require Cbl for growth. These Cbl analogues differed from each other and from 18 synthetic Cbl analogues, including the most common Cbl analogues synthesized by microorganisms, in at least one of the above features. These studies indicate that animal tissues contain a number of Cbl analogues whose origins, structures, and biologic activities remain to be determined. PMID:6928681

  15. Glucose enhances insulin promoter activity in MIN6 beta-cells independently of changes in intracellular Ca2+ concentration and insulin secretion.

    PubMed Central

    Kennedy, H J; Rafiq, I; Pouli, A E; Rutter, G A

    1999-01-01

    Recent studies have suggested that glucose may activate insulin gene transcription through increases in intracellular Ca(2+) concentration, possibly acting via the release of stored insulin. We have investigated this question by dynamic photon-counting imaging of insulin- and c-fos-promoter-firefly luciferase reporter construct activity. Normalized to constitutive viral promoter activity, insulin promoter activity in MIN6 beta-cells was increased 1.6-fold after incubation at 30 mM compared with 3 mM glucose, but was unaltered at either glucose concentration by the presence of insulin (100 nM) or the Ca(2+) channel inhibitor, verapamil (100 microM). Increases in intracellular [Ca(2+)] achieved by plasma membrane depolarization with KCl failed to enhance either insulin or c-fos promoter activity in MIN6 cells, but increased c-fos promoter activity 5-fold in AtT20 cells. Together, these results demonstrate that glucose can exert a direct effect on insulin promoter activity in islet beta-cells, via a signalling pathway which does not require increases in intracellular [Ca(2+)] nor insulin release and insulin receptor activation. PMID:10455011

  16. ACT: Acting Out Central Theme.

    ERIC Educational Resources Information Center

    Kise, Joan Duff

    1982-01-01

    The author describes ACT (Acting Out Central Theme), a method for dealing with psychomotor, cognitive, and affective domains in slow readers. The ACT approach involves three sessions which focus on discussion of a theme such as friendship, presentaton of the theme as a skit, and assignment of topics to individual students. (SW)

  17. The Canadian Analogue Research Network (CARN): Opportunities for Mars Analogue Studies in the Canadian Arctic

    NASA Astrophysics Data System (ADS)

    Osinski, G. R.; Berinstain, A.; Lebeuf, M.; Léveillé, R.

    2006-10-01

    The Canadian Analogue Research Network has been established by the Canadian Space Agency. This network of analogue sites, many of which are in the Arctic, provides a unique opportunity to further our understanding of the polar regions of Earth and Mars.

  18. [Adipogenic function and other biologic effects of insulin].

    PubMed

    Pankov, Y A

    2016-01-01

    Studies on experimental animals with knockout of the insulin receptor gene Insr (in the whole body or in certain tissues) and/or related genes encoding proteins involved in realization of insulin signal transduction in target cells, have made an important contribution to the elucidation of insulin regulation of metabolism, particularly fat metabolism. Since the whole insulin secreted by b-cells, together with the products of gastrointestinal tract digestion of proteins, fats, and carbohydrates reach the liver, the latter is the first organ on which this hormone acts. The liver employs released amino acids for synthesis of proteins, including apoproteins for various lipoproteins. Glucose is used for synthesis of glycogen, fatty acids, and triglycerides, which enter all the organs in very low density lipoproteins (VLDL). The LIRKO mice with knockout of the Insr gene in the liver demonstrated inhibition of synthesis of macromolecular compounds from amino acids, glucose, and fatty acids. Low molecular weight substances demonstrated increased entry to circulation, and together with other disorders induced hyperglycemia. In LIRKO mice blood glucose levels and glucose tolerance demonstrated time-dependent normalization and at later stages the increase in glucose levels was replaced by hypoglycemia. These changes can be well explained if we take into consideration that one of the main functions of insulin consists in stimulation of energy accumulation by means of activation of triglyceride deposition in adipose tissue. FIRKO mice with selective knockout of adipose tissue Insr were characterized by decreased uptake of glucose in adipocytes, and its transformation into lipids. However, the level of body fat in animals remained normal, possibly due to preserved insulin receptor in the liver and insulin-induced activation of triglyceride production which maintained normal levels of body fat stores, the effective functioning of adipose tissue and secretion of leptin by

  19. [Adipogenic function and other biologic effects of insulin].

    PubMed

    Pankov, Y A

    2016-01-01

    Studies on experimental animals with knockout of the insulin receptor gene Insr (in the whole body or in certain tissues) and/or related genes encoding proteins involved in realization of insulin signal transduction in target cells, have made an important contribution to the elucidation of insulin regulation of metabolism, particularly fat metabolism. Since the whole insulin secreted by b-cells, together with the products of gastrointestinal tract digestion of proteins, fats, and carbohydrates reach the liver, the latter is the first organ on which this hormone acts. The liver employs released amino acids for synthesis of proteins, including apoproteins for various lipoproteins. Glucose is used for synthesis of glycogen, fatty acids, and triglycerides, which enter all the organs in very low density lipoproteins (VLDL). The LIRKO mice with knockout of the Insr gene in the liver demonstrated inhibition of synthesis of macromolecular compounds from amino acids, glucose, and fatty acids. Low molecular weight substances demonstrated increased entry to circulation, and together with other disorders induced hyperglycemia. In LIRKO mice blood glucose levels and glucose tolerance demonstrated time-dependent normalization and at later stages the increase in glucose levels was replaced by hypoglycemia. These changes can be well explained if we take into consideration that one of the main functions of insulin consists in stimulation of energy accumulation by means of activation of triglyceride deposition in adipose tissue. FIRKO mice with selective knockout of adipose tissue Insr were characterized by decreased uptake of glucose in adipocytes, and its transformation into lipids. However, the level of body fat in animals remained normal, possibly due to preserved insulin receptor in the liver and insulin-induced activation of triglyceride production which maintained normal levels of body fat stores, the effective functioning of adipose tissue and secretion of leptin by

  20. Prevalence of morning hyperglycaemia: determinants of fasting blood glucose concentrations in insulin-treated diabetics.

    PubMed

    Francis, A J; Home, P D; Walford, S; Alberti, K G; Mann, N; Reeves, W G

    1985-03-01

    A rise in blood glucose concentration at the end of the night, and consequent morning hyperglycaemia, are well recognized events in some diabetic patients. In 94 patients on twice daily insulin injections we have examined the prevalence and extent of morning hyperglycaemia, and its relation to control, insulin therapy, and insulin antibody levels. Blood glucose reached the highest level of the day before or after breakfast in 83% of patients, and in 50% this value was 2 mmol/l greater than any other time of day. Patients with higher fasting concentrations did not have worse blood glucose control over the rest of the day. No correlation was found between fasting blood glucose concentrations and the evening dose of intermediate acting insulin or the level of insulin antibodies. No consistent change in fasting blood glucose concentrations occurred with changes in antibody levels in patients switched between pork and beef insulin. Morning hyperglycaemia was as common with both insulin species. Pre- and post-breakfast hyperglycaemia is common and significant in insulin-treated diabetic patients. It is not directly related to diabetic control at other times of the day, and is independent of insulin species and insulin antibody levels.

  1. Insulin-stimulated intracellular hydrogen peroxide production in rat epididymal fat cells.

    PubMed

    May, J M; de Haën, C

    1979-04-10

    Insulin stimulation of hydrogen peroxide production by rat epididymal fat cells was investigated by studying the oxidation of formate to CO2 by endogenous catalase. Under optimal concentrations of formate (0.1 to 1 mM) and glucose (0.275 mM), insulin stimulated formate oxidation 1.5- to 2.0-fold. Inhibitors of catalase activity, including nitrite and azide, inhibited both basal and insulin-stimulated formate oxidation at concentrations that did not interfere with insulin effects on glucose C-1 oxidation or glucose H-3 incorporation into lipids. The addition of exogenous catalase increased formate oxidation only slightly, while exogenous H2O2 (0.5 mM) stimulated formate oxidation by endogenous catalase strongly. These data indicate that the insulin-stimulated H2O2 production was intracellular. Insulin dose-response curves for formate oxidation were identical with those for glucose H-3 incorporation into lipids. The dependence of relative insulin effects on the logarithm of the glucose concentration was bell-shaped for formate oxidation and correlated highly with the coresponding dependences of glucose C-1 oxidation and glucose H-3 incorporation into lipids. This suggests that insulin stimulation of intracellular H2O2 production is linked to glucose metabolism. Since it is known that extracellular H2O2 can mimic insulin in several respects, these observations suggest that H2O2 may act as a "second messenger" for the observed effects of insulin.

  2. Cellular location of insulin-triggered signals and implications for glucose uptake.

    PubMed

    Patel, Nish; Huang, Carol; Klip, Amira

    2006-01-01

    Insulin stimulation of glucose uptake into muscle and fat cells requires movement of GLUT4-containing vesicles from intracellular compartments to the plasma membrane. Accordingly, insulin-derived signals must arrive at and be recognized by the appropriate intracellular GLUT4 pools. We describe the insulin signals participating in GLUT4 translocation, and review evidence that they are recruited to intracellular membranes in conjunction with cytoskeletal elements. Such segregation may facilitate the encounter between signals and target vesicles. In most animal and cellular models of insulin resistance, insulin-stimulated GLUT4 translocation to the plasma membrane is reduced. Insulin resistance caused by oxidative stress does not affect early insulin signals, rather their intracellular localization is altered. In this and several other insulin-resistant states, insulin-induced actin remodelling is concomitantly diminished. We summarize evidence suggesting that spatial localization of signals is critical for efficient insulin action, and that the cytoskeleton may act as a scaffold to promote efficient translocation of GLUT4 to the cell surface.

  3. Does salmon brain produce insulin?

    PubMed

    Plisetskaya, E M; Bondareva, V M; Duan, C; Duguay, S J

    1993-07-01

    To address the question whether fish brain can produce insulin, pink salmon (Oncorhynchus gorbusha) brains were extracted and processed according to the procedure developed for purification of pancreatic insulin (Rusakov and Bondareva, 1979). Biological and immunological activity of the resulting material was evaluated respectively by a cartilage sulfation assay and by radioimmunoassay homologous for salmon insulin. Preparations from salmon brain stimulated the [35S]sulfate uptake into salmon branchial cartilage with a potency comparable to pure mammalian or salmon insulins but lower than that of mammalian insulin-like growth factor (IGF-I). In contrast, only trace amounts of radioimmunoreactive insulin could be detected by homologous radioimmunoassay. To determine whether insulin mRNA was present in salmon brain, primers specific for salmon proinsulin and salmon prepro-IGF-I were designed to amplify corresponding cDNA regions by reverse transcriptase-PCR. Insulin mRNA was found only in the endocrine pancreas (Brockmann body) while IGF-I mRNA was detected in the brain, liver, and the Brockmann body. Our results suggest that in fish pancreatic-type insulin is most likely produced only in the endocrine pancreas and then transported to the brain through blood/cerebrospinal fluid system. However, it does not exclude a possibility that some yet unknown insulin-like substances may be expressed in the neural system of ectotherm vertebrates.

  4. Insulin receptor in Drosophila melanogaster

    SciTech Connect

    Petruzzelli, L.; Herrera, R.; Rosen, O.

    1986-05-01

    A specific, high affinity insulin receptor is present in both adult Drosophila and in Drosophila embryos. Wheat germ lectin-enriched extracts of detergent-solubilized membranes from embryos and adults bind insulin with a K/sub d/ of 15 nM. Binding is specific for insulin; micromolar concentrations of proinsulin, IGFI, and IGFII are required to displace bound /sup 125/I-insulin. Insulin-dependent protein tyrosine kinase activity appears during embryogenesis. It is evident between 6 and 12 hours of development, peaks between 12 and 18 hours and falls in the adult. During 0-6 hours of embryogenesis, and in the adult, a specific protein band (Mr = 135,000) is crosslinked to /sup 125/I-insulin. During 6-12 and 12-18 hours of embryogenesis stages in which insulin-dependent protein tyrosine kinase is high, an additional band (Mr = 100,000) becomes crosslinked to /sup 125/I-insulin. Isolation and DNA sequence analysis of genomic clones encoding the Drosophila insulin receptor will be presented as will the characterization of insulin receptor mRNA's during development.

  5. Treating insulin resistance: future prospects.

    PubMed

    Bailey, Clifford J

    2007-03-01

    Insulin resistance typically reflects multiple defects of insulin receptor and post-receptor signalling that impair a diverse range of metabolic and vascular actions. Many potential intervention targets and compounds with therapeutic activity have been described. Proof of principle for a non-peptide insulin mimetic has been demonstrated by specific activation of the intracellular B-subunit of the insulin receptor. Potentiation of insulin action has been achieved with agents that enhance phosphorylation and prolong the tyrosine kinase activity of the insulin receptor and its protein substrates after activation by insulin. These include inhibitors of phosphatases and serine kinases that normally prevent or terminate tyrosine kinase signalling. Additional approaches involve increasing the activity of phosphatidylinositol 3-kinase and other downstream components of the insulin signalling pathways. Experimental interventions to remove signalling defects caused by cytokines, certain adipocyte hormones, excess fatty acids, glucotoxicity and negative feedback by distal signalling steps have also indicated therapeutic possibilities. Several hormones, metabolic enzymes, minerals, co-factors and transcription co-activators have shown insulin-sensitising potential. Since insulin resistance affects many metabolic and cardiovascular diseases, it provides an opportunity for simultaneous therapeutic attack on a broad front.

  6. Myostatin inhibition therapy for insulin-deficient type 1 diabetes.

    PubMed

    Coleman, Samantha K; Rebalka, Irena A; D'Souza, Donna M; Deodhare, Namita; Desjardins, Eric M; Hawke, Thomas J

    2016-01-01

    While Type 1 Diabetes Mellitus (T1DM) is characterized by hypoinsulinemia and hyperglycemia, persons with T1DM also develop insulin resistance. Recent studies have demonstrated that insulin resistance in T1DM is a primary mediator of the micro and macrovascular complications that invariably develop in this chronic disease. Myostatin acts to attenuate muscle growth and has been demonstrated to be elevated in streptozotocin-induced diabetic models. We hypothesized that a reduction in mRNA expression of myostatin within a genetic T1DM mouse model would improve skeletal muscle health, resulting in a larger, more insulin sensitive muscle mass. To that end, Akita diabetic mice were crossed with Myostatin(Ln/Ln) mice to ultimately generate a novel mouse line. Our data support the hypothesis that decreased skeletal muscle expression of myostatin mRNA prevented the loss of muscle mass observed in T1DM. Furthermore, reductions in myostatin mRNA increased Glut1 and Glut4 protein expression and glucose uptake in response to an insulin tolerance test (ITT). These positive changes lead to significant reductions in resting blood glucose levels as well as pronounced reductions in associated diabetic symptoms, even in the absence of exogenous insulin. Taken together, this study provides a foundation for considering myostatin inhibition as an adjuvant therapy in T1DM as a means to improve insulin sensitivity and blood glucose management. PMID:27581061

  7. Myostatin inhibition therapy for insulin-deficient type 1 diabetes

    PubMed Central

    Coleman, Samantha K.; Rebalka, Irena A.; D’Souza, Donna M.; Deodhare, Namita; Desjardins, Eric M.; Hawke, Thomas J.

    2016-01-01

    While Type 1 Diabetes Mellitus (T1DM) is characterized by hypoinsulinemia and hyperglycemia, persons with T1DM also develop insulin resistance. Recent studies have demonstrated that insulin resistance in T1DM is a primary mediator of the micro and macrovascular complications that invariably develop in this chronic disease. Myostatin acts to attenuate muscle growth and has been demonstrated to be elevated in streptozotocin-induced diabetic models. We hypothesized that a reduction in mRNA expression of myostatin within a genetic T1DM mouse model would improve skeletal muscle health, resulting in a larger, more insulin sensitive muscle mass. To that end, Akita diabetic mice were crossed with MyostatinLn/Ln mice to ultimately generate a novel mouse line. Our data support the hypothesis that decreased skeletal muscle expression of myostatin mRNA prevented the loss of muscle mass observed in T1DM. Furthermore, reductions in myostatin mRNA increased Glut1 and Glut4 protein expression and glucose uptake in response to an insulin tolerance test (ITT). These positive changes lead to significant reductions in resting blood glucose levels as well as pronounced reductions in associated diabetic symptoms, even in the absence of exogenous insulin. Taken together, this study provides a foundation for considering myostatin inhibition as an adjuvant therapy in T1DM as a means to improve insulin sensitivity and blood glucose management. PMID:27581061

  8. Insulin NO-dependent action on airways smooth muscles.

    PubMed

    Papayianni, M; Gourgoulianis, K I; Molyvdas, P A

    2001-02-01

    In order to find out how insulin acts on airway smooth muscle and which mechanisms could be involved, we studied the effect of insulin on contraction induced, first, by KCl and, second, by Acetylcholine (Ach), before and after epithelium removal, and finally in the presence of N(omega)-nitro-L-arginine methyl ester (L-NAME), a nitric oxide synthase (NOS) inhibitor. Tracheal smooth muscle strips from 24 rabbits, 6 being used for each experiment. Each muscle strip was pretreated with a solution containing either 80 mM KCl or 10(-5) Ach and increasing doses of insulin (range 10(-10)--10(-5) M) in the presence or absence of 10(-4) M L-NAME. A reference curve for contraction evoked by 80 mM KCl or 10(-5) M Ach in the presence or absence of 10(-4) M L-NAME was recorded each time before the pretreatment mentioned above. Insulin evoked a concentration-dependent inhibition of tracheal smooth muscle contraction, induced by 80 mM KCl or 10(-5) M Ach. After epithelium removal, insulin (10(-8), 10(-7) M) evoked statistically significant increases to the contractions induced by 10(-5) M Ach compared to the contractions induced by 10(-5) M Ach and insulin in the presence of epithelium (P < 0.05). These increases were higher when 10(-4) M l-NAME was added to the bath (P < 0.05). In conclusion, these results indicate that insulin inhibits tracheal smooth muscle contraction by acting on epithelium and releasing NO.

  9. High-resolution mass spectrometry analysis of tetrodotoxin (TTX) and its analogues in puffer fish and shellfish.

    PubMed

    Bane, Vaishali; Brosnan, Brid; Barnes, Paul; Lehane, Mary; Furey, Ambrose

    2016-09-01

    Tetrodotoxin (TTX) is an emerging toxin in the European marine environment. It has various known structural analogues. It acts as a sodium channel blocker; the ability of each analogue to bind to the sodium channel varies with the particular structure of each analogue. Thus, each analogue will vary in its toxic potential. TTX analogues co-occur in food samples at variable concentrations. An LC-MS method was developed for the identification and quantitation of several analogues of TTX using an LTQ-Orbitrap XL mass spectrometer. The LTQ-Orbitrap XL mass spectrometer facilitates high mass accuracy measurement up to 100,000 full width at half maximum (FWHM). Using high resolution at 100,000 FWHM allows for the identification of TTX and its analogues in various matrices, including puffer fish and molluscan shellfish samples (Δ ppm = 0.28-3.38). The confirmation of characteristic fragment ions of TTX and its analogues was achieved by determining their elemental formulae via high mass accuracy. A quantitative method was then developed and optimised using these characteristic fragment ions. The limit of quantitation (LOQ) of the method was 0.136 µg g(-1) (S/N = 10) and the limit of detection (LOD) was 0.041 µg g(-1) (S/N = 3) spiking TTX standard into TTX-free mackerel fish extracts. The method was applied to naturally contaminated puffer fish and molluscan shellfish samples to confirm the presence of TTX and its analogues. PMID:27662433

  10. Clinical Use and Evaluation of Insulin Pens

    PubMed Central

    Ginsberg, Barry H.

    2015-01-01

    Insulin pens are more accurate and easier to teach than other methods of insulin delivery. They also do not suffer from the risk of mismatch of insulin concentration and type of insulin syringe. The ISO standard used to test insulin pens, however, needs to be updated to reflect their clinical use. PMID:26323484

  11. Induction of insulin resistance by high-sucrose feeding does not raise mean arterial blood pressure but impairs haemodynamic responses to insulin in rats.

    PubMed

    Santuré, Marta; Pitre, Maryse; Marette, André; Deshaies, Yves; Lemieux, Christian; Larivière, Richard; Nadeau, André; Bachelard, Hélène

    2002-09-01

    1. This study was undertaken to further investigate the effects of a sucrose-enriched diet on vascular function and insulin sensitivity in rats. 2. Male Sprague-Dawley rats were randomized to receive a sucrose- or regular rat chow-diet for 4 weeks. A first group of sucrose- and chow-fed rats was instrumented with pulsed Doppler flow probes and intravascular catheters to determine blood pressure, heart rate, regional blood flows and insulin sensitivity in conscious rats. Insulin sensitivity was assessed by the euglycemic hyperinsulinemic clamp technique. Glucose transport activity was examined in isolated muscles by using the glucose analogue [(3)H]-2-deoxy-D-glucose. A second group of sucrose- and chow-fed rats was used to obtain information regarding nitric oxide synthase (NOS) isozymes protein expression in muscles, and determine endothelin content in vascular tissues isolated from both dietary groups. 3. Sucrose feeding was found to induce insulin resistance, but had no effect on resting blood pressure, heart rate, or regional haemodynamics. This insulin resistance was accompanied by alteration in the vascular responses to insulin. Insulin-mediated skeletal muscle vasodilation was impaired, whereas the mesenteric vasoconstrictor response was potentiated in sucrose-fed rats. A reduction in eNOS protein content in muscle and an increase in vascular endothelin peptide were noted in these animals. Moreover, a reduction in insulin-simulated glucose transport activity was also noted in muscles isolated from sucrose-fed rats. 4. Together these data suggest that a cluster of metabolic and haemodynamic abnormalities occur in response to the intake of simple sugars in rats.

  12. Induction of insulin resistance by high-sucrose feeding does not raise mean arterial blood pressure but impairs haemodynamic responses to insulin in rats

    PubMed Central

    Santuré, Marta; Pitre, Maryse; Marette, André; Deshaies, Yves; Lemieux, Christian; Lariviére, Richard; Nadeau, André; Bachelard, Hélène

    2002-01-01

    This study was undertaken to further investigate the effects of a sucrose-enriched diet on vascular function and insulin sensitivity in rats. Male Sprague-Dawley rats were randomized to receive a sucrose- or regular rat chow-diet for 4 weeks. A first group of sucrose- and chow-fed rats was instrumented with pulsed Doppler flow probes and intravascular catheters to determine blood pressure, heart rate, regional blood flows and insulin sensitivity in conscious rats. Insulin sensitivity was assessed by the euglycemic hyperinsulinemic clamp technique. Glucose transport activity was examined in isolated muscles by using the glucose analogue [3H]-2-deoxy-D-glucose. A second group of sucrose- and chow-fed rats was used to obtain information regarding nitric oxide synthase (NOS) isozymes protein expression in muscles, and determine endothelin content in vascular tissues isolated from both dietary groups. Sucrose feeding was found to induce insulin resistance, but had no effect on resting blood pressure, heart rate, or regional haemodynamics. This insulin resistance was accompanied by alteration in the vascular responses to insulin. Insulin-mediated skeletal muscle vasodilation was impaired, whereas the mesenteric vasoconstrictor response was potentiated in sucrose-fed rats. A reduction in eNOS protein content in muscle and an increase in vascular endothelin peptide were noted in these animals. Moreover, a reduction in insulin-simulated glucose transport activity was also noted in muscles isolated from sucrose-fed rats. Together these data suggest that a cluster of metabolic and haemodynamic abnormalities occur in response to the intake of simple sugars in rats. PMID:12208775

  13. Extrapancreatic insulin effect of glibenclamide.

    PubMed

    Mulder, H; Schopman, W; van der Lely, A J

    1991-01-01

    In eight patients with uncomplicated non insulin dependent diabetes mellitus, serum insulin levels, serum C-peptide levels and blood glucose levels were measured before and after oral administration of glibenclamide 0.1 mg/kg body weight and a test meal, or after a test meal alone. The rise in serum insulin levels persisted longer after glibenclamide. The initial rise in serum insulin was of the same magnitude in both situations, as was the rise in serum C-peptide levels during the entire 5 h study. It is concluded that glibenclamide is able to maintain a more prolonged increase in serum insulin levels by inhibiting the degradation of insulin in the vascular endothelial cells of the liver. The inhibition contributes to the blood glucose lowering effect of glibenclamide. PMID:1904820

  14. Insulin Causes Hyperthermia by Direct Inhibition of Warm-Sensitive Neurons

    PubMed Central

    Sanchez-Alavez, Manuel; Tabarean, Iustin V.; Osborn, Olivia; Mitsukawa, Kayo; Schaefer, Jean; Dubins, Jeffrey; Holmberg, Kristina H.; Klein, Izabella; Klaus, Joe; Gomez, Luis F.; Kolb, Hartmuth; Secrest, James; Jochems, Jeanine; Myashiro, Kevin; Buckley, Peter; Hadcock, John R.; Eberwine, James; Conti, Bruno; Bartfai, Tamas

    2010-01-01

    OBJECTIVE Temperature and nutrient homeostasis are two interdependent components of energy balance regulated by distinct sets of hypothalamic neurons. The objective is to examine the role of the metabolic signal insulin in the control of core body temperature (CBT). RESEARCH DESIGN AND METHODS The effect of preoptic area administration of insulin on CBT in mice was measured by radiotelemetry and respiratory exchange ratio. In vivo 2-[18F]fluoro-2-deoxyglucose uptake into brown adipose tissue (BAT) was measured in rats after insulin treatment by positron emission tomography combined with X-ray computed tomography imaging. Insulin receptor–positive neurons were identified by retrograde tracing from the raphe pallidus. Insulin was locally applied on hypothalamic slices to determine the direct effects of insulin on intrinsically warm-sensitive neurons by inducing hyperpolarization and reducing firing rates. RESULTS Injection of insulin into the preoptic area of the hypothalamus induced a specific and dose-dependent elevation of CBT mediated by stimulation of BAT thermogenesis as shown by imaging and respiratory ratio measurements. Retrograde tracing indicates that insulin receptor–expressing warm-sensitive neurons activate BAT through projection via the raphe pallidus. Insulin applied on hypothalamic slices acted directly on intrinsically warm-sensitive neurons by inducing hyperpolarization and reducing firing rates. The hyperthermic effects of insulin were blocked by pretreatment with antibodies to insulin or with a phosphatidylinositol 3–kinase inhibitor. CONCLUSIONS Our findings demonstrate that insulin can directly modulate hypothalamic neurons that regulate thermogenesis and CBT and indicate that insulin plays an important role in coupling metabolism and thermoregulation at the level of anterior hypothalamus. PMID:19846801

  15. Synthesis and anticancer evaluation of spermatinamine analogues.

    PubMed

    Moosa, Basem A; Sagar, Sunil; Li, Song; Esau, Luke; Kaur, Mandeep; Khashab, Niveen M

    2016-03-15

    Spermatinamine was isolated from an Australian marine sponge, Pseudoceratina sp. as an inhibitor of isoprenylcysteine carboxyl methyltransferase (Icmt), an attractive and novel anticancer target. Herein, we report the synthesis of spermatinamine analogues and their cytotoxic evaluation against three human cancer cell lines, that is, cervix adenocarcinoma (HeLa), breast adenocarcinoma (MCF-7), and prostate carcinoma (DU145). Analogues 12, 14 and 15 were found to be the most potent against one or more cell lines with the IC50 values in the range of 5-10 μM. The obtained results suggested that longer polyamine linker along with aromatic oxime substitution provided the most potent analogue compounds against cancer cell lines. PMID:26874403

  16. Dolastatin 11 conformations, analogues and pharmacophore.

    PubMed

    Ali, Md Ahad; Bates, Robert B; Crane, Zackary D; Dicus, Christopher W; Gramme, Michelle R; Hamel, Ernest; Marcischak, Jacob; Martinez, David S; McClure, Kelly J; Nakkiew, Pichaya; Pettit, George R; Stessman, Chad C; Sufi, Bilal A; Yarick, Gayle V

    2005-07-01

    Twenty analogues of the natural antitumor agent dolastatin 11, including majusculamide C, were synthesized and tested for cytotoxicity against human cancer cells and stimulation of actin polymerization. Only analogues containing the 30-membered ring were active. Molecular modeling and NMR evidence showed the low-energy conformations. The amide bonds are all trans except for the one between the Tyr and Val units, which is cis. Since an analogue restricted to negative 2-3-4-5 angles stimulated actin polymerization but was inactive in cells, the binding conformation (most likely the lowest-energy conformation in water) has a negative 2-3-4-5 angle, whereas a conformation with a positive 2-3-4-5 angle (most likely the lowest energy conformation in chloroform) goes through cell walls. The highly active R alcohol from borohydride reduction of dolastatin 11 is a candidate for conversion to prodrugs.

  17. Protein Crystal Recombinant Human Insulin

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The comparison of protein crystal, Recombiant Human Insulin; space-grown (left) and earth-grown (right). On STS-60, Spacehab II indicated that space-grown crystals are larger and of greater optical clarity than their earth-grown counterparts. Recombiant Human Insulin facilitates the incorporation of glucose into cells. In diabetics, there is either a decrease in or complete lack of insulin, thereby leading to several harmful complications. Principal Investigator is Larry DeLucas.

  18. Diabetic lipohypertrophy delays insulin absorption.

    PubMed

    Young, R J; Hannan, W J; Frier, B M; Steel, J M; Duncan, L J

    1984-01-01

    The effect of lipohypertrophy at injection sites on insulin absorption has been studied in 12 insulin-dependent diabetic patients. The clearance of 125I-insulin from sites with lipohypertrophy was significantly slower than from complementary nonhypertrophied sites (% clearance in 3 h, 43.8 +/- 3.5 +/- SEM) control; 35.3 +/- 3.9 lipohypertrophy, P less than 0.05). The degree of the effect was variable but sufficient in several patients to be of clinical importance. Injection-site lipohypertrophy is another factor that modifies the absorption of subcutaneously injected insulin.

  19. Classical Simulated Annealing Using Quantum Analogues

    NASA Astrophysics Data System (ADS)

    La Cour, Brian R.; Troupe, James E.; Mark, Hans M.

    2016-08-01

    In this paper we consider the use of certain classical analogues to quantum tunneling behavior to improve the performance of simulated annealing on a discrete spin system of the general Ising form. Specifically, we consider the use of multiple simultaneous spin flips at each annealing step as an analogue to quantum spin coherence as well as modifications of the Boltzmann acceptance probability to mimic quantum tunneling. We find that the use of multiple spin flips can indeed be advantageous under certain annealing schedules, but only for long anneal times.

  20. Capsaicin and its analogues: structure-activity relationship study.

    PubMed

    Huang, X-F; Xue, J-Y; Jiang, A-Q; Zhu, H-L

    2013-01-01

    Capsaicin, the main ingredient responsible for the hot pungent taste of chilli peppers, is an alkaloid found in the Capsicum family. Capsaicin was traditionally used for muscular pain, headaches, to improve circulation and for its gastrointestinal protective effects. It was also commonly added to herbal formulations because it acts as a catalyst for other herbs and aids in their absorption. In addition, capsaicin and other capsaicinoid compounds showed strong evidence of having promising potential in the fight against many types of cancer. The mechanism of action of capsaicin has been extensively studied over the past decade. It has been established that capsaicin binds to the transient receptor potential vanilloid 1 receptor which was expressed predominantly by sensory neurons. And many analogues of capsaicin have been synthesized and evaluated for diverse bioactivities. In this review, we will attempt to summarize the biology and structure-activity relationship of capsaicinoids.

  1. Global analogue of the Aharonov-Bohm effect

    SciTech Connect

    Navin, R.L.

    1993-12-31

    This thesis deals with a global analogue of the Aharonov-Bohm effect previously pointed out by other authors. The effect was not well understood because the pure Aharonov-Bohm cross section was thought to be merely an approximate low energy limit. This thesis provides a detailed analysis and reveals that in the particular model considered, there is an exact Aharonov-Bohm cross section over the energy range that a mass splitting occurs. At energies slightly above the mass splitting, the effect has completely disappeared and there is effectively no scattering at large distances. This is a curious observation as it was previously thought that a global theory would not act exactly like a local one over an extended range of energies. It begs the heretical speculation that experimentally observed forces modelled with Lagrangians possessing local symmetries may have an underlying global theory.

  2. Juggling Act

    ERIC Educational Resources Information Center

    Rudalevige, Andrew

    2009-01-01

    Two education bills from George W. Bush's first term are long overdue for reauthorization. One, of course, is the No Child Left Behind Act (NCLB), passed in late 2001. The other is the Education Sciences Reform Act (ESRA), which in November 2002 replaced the Office of Educational Research and Improvement (OERI) with a new Institute of Education…

  3. Combined therapy of insulin-producing cells and haematopoietic stem cells offers better diabetic control than only haematopoietic stem cells' infusion for patients with insulin-dependent diabetes.

    PubMed

    Dave, Shruti D; Trivedi, Hargovind L; Gopal, Saroj C; Chandra, Tulika

    2014-09-08

    Insulin-dependent diabetes mellitus (IDDM) is a chronic condition characterised by impaired blood sugar metabolism and autoimmunity. We report two children: a 5-year-old girl on exogenous insulin therapy of 30 IU/day and a 9-year-old boy on short-acting insulin 30 IU/day, long-acting insulin 70 IU/day, with IDDM since 4 and 7 years, respectively. We infused in vitro-generated donor bone marrow (BM)-derived haematopoietic stem cells (HSC) in patient 1 and insulin-secreting cells trans-differentiated from autologous adipose tissue-derived mesenchymal stem cells along with BM-HSC in patient 2 under non-myeloablative conditioning. Patient 1 improved during the initial 6 months, but then again lost metabolic control with increased blood sugar levels and insulin requirement of 32 IU/day; we lost her to follow-up after 18 months. Patient 2, over follow-up of 24.87 months, has stable blood sugar levels with glycosylated haemoglobin of 6.4% and present insulin requirement of 15 IU/day.

  4. Combined therapy of insulin-producing cells and haematopoietic stem cells offers better diabetic control than only haematopoietic stem cells’ infusion for patients with insulin-dependent diabetes

    PubMed Central

    Dave, Shruti D; Trivedi, Hargovind L; Gopal, Saroj C; Chandra, Tulika

    2014-01-01

    Insulin-dependent diabetes mellitus (IDDM) is a chronic condition characterised by impaired blood sugar metabolism and autoimmunity. We report two children: a 5-year-old girl on exogenous insulin therapy of 30 IU/day and a 9-year-old boy on short-acting insulin 30 IU/day, long-acting insulin 70 IU/day, with IDDM since 4 and 7 years, respectively. We infused in vitro-generated donor bone marrow (BM)-derived haematopoietic stem cells (HSC) in patient 1 and insulin-secreting cells trans-differentiated from autologous adipose tissue-derived mesenchymal stem cells along with BM-HSC in patient 2 under non-myeloablative conditioning. Patient 1 improved during the initial 6 months, but then again lost metabolic control with increased blood sugar levels and insulin requirement of 32 IU/day; we lost her to follow-up after 18 months. Patient 2, over follow-up of 24.87 months, has stable blood sugar levels with glycosylated haemoglobin of 6.4% and present insulin requirement of 15 IU/day. PMID:25199184

  5. Why homogeneous boundary conditions lead to heterogeneous internal strain in analogue simple shear experiments - explained by numerical modeling

    NASA Astrophysics Data System (ADS)

    Exner, Ulrike; Frehner, Marcel; Mancktelow, Neil S.; Grujic, Djordje

    2010-05-01

    deformed during an experiment and represent boundary conditions in the third dimension (i.e the z-direction). In the two-dimensional numerical simulation, this viscous shear boundary condition is represented by a velocity-dependent traction force that acts on the analogue material. The numerical simple shear experiments including this traction force precisely reproduce the heterogeneous strain observed in analogue experiments. Therefore, we conclude that boundary effects in the third dimension of simple shear rigs (i.e. weak viscous layers) are the primary reason for the observed heterogeneous strain field. As the viscous stresses arising from deforming the weak boundary layers are velocity dependent, the deviation from a homogeneous strain pattern in the analogue material depends on the applied shear strain rate. We thus recommend to run analogue models in shear boxes at preferably low strain rates.

  6. Paediatrics, insulin resistance and the kidney.

    PubMed

    Marlais, Matko; Coward, Richard J

    2015-08-01

    Systemic insulin resistance is becoming more prevalent in the young due to modern lifestyles predisposing to the metabolic syndrome and obesity. There is also evidence that there are critical insulin-resistant phases for the developing child, including puberty, and that renal disease per se causes systemic insulin resistance. This review considers the factors that render children insulin resistant, as well as the accumulating evidence that the kidney is an insulin-responsive organ and could be affected by insulin resistance.

  7. Development of highly potent and selective dynorphin A analogues as new medicines.

    PubMed

    Lung, F-D T; Chen, C-H; Liu, J-H

    2005-11-01

    Dynorphin A (Dyn A), a 17 amino acid peptide H-Tyr-Gly-Gly-Phe-Leu-Arg-Arg-Ile-Arg-Pro-Lys-Leu-Lys-Trp-Asp-Asn-Gln-OH, is a potent opioid peptide which interacts preferentially with kappa-opioid receptors. Research in the development of selective and potent opioid peptide ligands for the kappa-receptor is important in mediating analgesia. Several cyclic disulphide bridge-containing peptide analogues of Dyn A, which were conformationally constrained in the putative message or address segment of the opioid ligand, were designed, synthesized and assayed. To further investigate the conformational and topographical requirements for the residues in positions 5 and 11 of these analogues, a systematic series of Dyn A(1-11)-NH2 cyclic analogues incorporating the sulphydryl-containing amino acids L- and D-Cys and L- and D-Pen in positions 5 and 11 were synthesized and assayed. Cyclic lactam peptide analogues were also synthesized and assayed. Several of these cyclic analogues, retained the same affinity and selectivity (vs. the mu- and delta-receptors) as the parent Dyn A(1-11)-NH2 peptide in the guinea-pig brain (GPB), but exhibited a much lower activity in the guinea-pig ileum (GPI), thus leading to centrally vs. peripherally selective peptides. Studies of the structure-activity relationship of Dyn A peptide provide new insights into the importance of each amino acid residue (and their configurations) in Dyn A analogues for high potency and good selectivity at kappa-opioid receptors. We report herein the progress towards the development of Dyn A peptide ligands, which can act as agonists or antagonists at cell surface receptors that modulate cell function and animal behaviour using various approaches to rational peptide ligand-based drug design.

  8. Polyamine metabolism in a member of the phylum Microspora (Encephalitozoon cuniculi): effects of polyamine analogues

    PubMed Central

    Bacchi, Cyrus J.; Rattendi, Donna; Faciane, Evangeline; Yarlett, Nigel; Weiss, Louis M.; Frydman, Benjamin; Woster, Patrick; Wei, Benjamin; Marton, Laurence J.; Wittner, Murray

    2011-01-01

    The uptake, biosynthesis and catabolism of polyamines in the microsporidian parasite Encephalitozoon cuniculi are detailed with reference to the effects of oligoamine and arylamine analogues of polyamines. Enc. cuniculi, an intracellular parasite of mammalian cells, has both biosynthetic and catabolic enzymes of polyamine metabolism, as demonstrated in cell-free extracts of mature spores. The uptake of polyamines was measured in immature, pre-emergent spores isolated from host cells by Percoll gradient. Spermine was rapidly taken up and metabolized to spermidine and an unknown, possibly acetamidopropanal, by spermidine/spermine N1-acetyltransferase (SSAT) and polyamine oxidase (PAO). Most of the spermidine and the unknown product were found in the cell incubation medium, indicating they were released from the cell. bis(Ethyl) oligoamine analogues of polyamines, such as SL-11144 and SL-11158, as well as arylamine analogues [BW-1, a bis(phenylbenzyl) 3-7-3 analogue] blocked uptake and interconversion of spermine at micromolar levels and, in the case of BW-1, acted as substrate for PAO. The Enc. cuniculi PAO activity differed from that found in mammalian cells with respect to pH optimum, substrate specificity and sensitivity to known PAO inhibitors. SL-11158 inhibited SSAT activity with a mixed type of inhibition in which the analogue had a 70-fold higher affinity for the enzyme than the natural substrate, spermine. The interest in Enc. cuniculi polyamine metabolism and the biochemical effects of these polyamine analogues is warranted since they cure model infections of Enc. cuniculi in mice and are potential candidates for human clinical trials. PMID:15133083

  9. Mechanisms of insulin secretion in malnutrition: modulation by amino acids in rodent models.

    PubMed

    de Oliveira, Camila Aparecida Machado; Latorraca, Márcia Queiroz; de Mello, Maria Alice Rostom; Carneiro, Everardo Magalhães

    2011-04-01

    Protein restriction at early stages of life reduces β-cell volume, number of insulin-containing granules, insulin content and release by pancreatic islets in response to glucose and other secretagogues, abnormalities similar to those seen in type 2 diabetes. Amino acids are capable to directly modulate insulin secretion and/or contribute to the maintenance of β-cell function, resulting in an improvement of insulin release. Animal models of protein malnutrition have provided important insights into the adaptive mechanisms involved in insulin secretion in malnutrition. In this review, we discuss studies focusing on the modulation of insulin secretion by amino acids, specially leucine and taurine, in rodent models of protein malnutrition. Leucine supplementation increases insulin secretion by pancreatic islets in malnourished mice. This effect is at least in part due to increase in the expression of proteins involved in the secretion process, and the activation of the PI3K/PKB/mTOR pathway seems also to contribute. Mice supplemented with taurine have increased insulin content and secretion as well as increased expression of genes essential for β-cell functionality. The knowledge of the mechanisms through which amino acids act on pancreatic β-cells to stimulate insulin secretion is of interest for clinical medicine. It can reveal new targets for the development of drugs toward the treatment of endocrine diseases, in special type 2 diabetes. PMID:20711845

  10. Postprandial Administration of Intranasal Insulin Intensifies Satiety and Reduces Intake of Palatable Snacks in Women

    PubMed Central

    Hallschmid, Manfred; Higgs, Suzanne; Thienel, Matthias; Ott, Volker; Lehnert, Hendrik

    2012-01-01

    The role of brain insulin signaling in the control of food intake in humans has not been thoroughly defined. We hypothesized that the hormone contributes to the postprandial regulation of appetite for palatable food, and assessed the effects on appetite and snack intake of postprandial versus fasted intranasal insulin administration to the brain in healthy women. Two groups of subjects were intranasally administered 160 IU insulin or vehicle after lunch. Two hours later, consumption of cookies of varying palatability was measured under the pretext of a taste test. In a control study, the effects of intranasal insulin administered to fasted female subjects were assessed. Compared with placebo, insulin administration in the postprandial but not in the fasted state decreased appetite as well as intake and rated palatability of chocolate chip cookies (the most palatable snack offered). In both experiments, intranasal insulin induced a slight decrease in plasma glucose but did not affect serum insulin concentrations. Data indicate that brain insulin acts as a relevant satiety signal during the postprandial period, in particular reducing the intake of highly palatable food, and impacts peripheral glucose homeostasis. Postprandial intranasal insulin administration might be useful in curtailing overconsumption of snacks with accentuated rewarding value. PMID:22344561

  11. Postprandial administration of intranasal insulin intensifies satiety and reduces intake of palatable snacks in women.

    PubMed

    Hallschmid, Manfred; Higgs, Suzanne; Thienel, Matthias; Ott, Volker; Lehnert, Hendrik

    2012-04-01

    The role of brain insulin signaling in the control of food intake in humans has not been thoroughly defined. We hypothesized that the hormone contributes to the postprandial regulation of appetite for palatable food, and assessed the effects on appetite and snack intake of postprandial versus fasted intranasal insulin administration to the brain in healthy women. Two groups of subjects were intranasally administered 160 IU insulin or vehicle after lunch. Two hours later, consumption of cookies of varying palatability was measured under the pretext of a taste test. In a control study, the effects of intranasal insulin administered to fasted female subjects were assessed. Compared with placebo, insulin administration in the postprandial but not in the fasted state decreased appetite as well as intake and rated palatability of chocolate chip cookies (the most palatable snack offered). In both experiments, intranasal insulin induced a slight decrease in plasma glucose but did not affect serum insulin concentrations. Data indicate that brain insulin acts as a relevant satiety signal during the postprandial period, in particular reducing the intake of highly palatable food, and impacts peripheral glucose homeostasis. Postprandial intranasal insulin administration might be useful in curtailing overconsumption of snacks with accentuated rewarding value.

  12. Posology of insulins: A review of standard textbooks and product inserts

    PubMed Central

    Bhutani, Garima; Kalra, Sanjay

    2015-01-01

    Objectives: The study is aimed to assess whether the information contained in standard pharmacology, endocrinology, and diabetology textbooks regarding timings of administration, frequency and dose of various insulins is adequate and also to see whether the information contained in these texts is concordant with product inserts. Materials and Methods: Four standard textbooks of pharmacology, two of diabetology and three of endocrinology were assessed for the published information regarding dose, timing, and frequency of insulin administration. The product inserts of commonly available insulins in India were also studied for the same. Results: Various omissions and disparities could be seen in the coverage of insulins in standard textbooks. Posology information about premixed insulins and basal insulins have been omitted by the majority of the textbooks. Details about dose, frequency and timings of ultra-short acting insulins have also not been covered by all textbooks. Some discrepancies regarding prescribing information was also noted in product inserts, especially in case of newer insulins. Conclusions: Thus, this article stresses upon the need of a uniform source of information for providing adequate and standardized knowledge regarding timing, frequency, and dose of insulins. PMID:26425471

  13. miRNAs control insulin content in pancreatic β-cells via downregulation of transcriptional repressors

    PubMed Central

    Melkman-Zehavi, Tal; Oren, Roni; Kredo-Russo, Sharon; Shapira, Tirosh; Mandelbaum, Amitai D; Rivkin, Natalia; Nir, Tomer; Lennox, Kim A; Behlke, Mark A; Dor, Yuval; Hornstein, Eran

    2011-01-01

    MicroRNAs (miRNAs) were shown to be important for pancreas development, yet their roles in differentiated β-cells remain unclear. Here, we show that miRNA inactivation in β-cells of adult mice results in a striking diabetic phenotype. While islet architecture is intact and differentiation markers are maintained, Dicer1-deficient β-cells show a dramatic decrease in insulin content and insulin mRNA. As a consequence of the change in insulin content, the animals become diabetic. We provide evidence for involvement of a set of miRNAs in regulating insulin synthesis. The specific knockdown of miR-24, miR-26, miR-182 or miR-148 in cultured β-cells or in isolated primary islets downregulates insulin promoter activity and insulin mRNA levels. Further, miRNA-dependent regulation of insulin expression is associated with upregulation of transcriptional repressors, including Bhlhe22 and Sox6. Thus, miRNAs in the adult pancreas act in a new network that reinforces insulin expression by reducing the expression of insulin transcriptional repressors. PMID:21285947

  14. Insulin resistance and muscle insulin receptor substrate‐1 serine hyperphosphorylation

    PubMed Central

    Stuart, Charles A.; Howell, Mary E. A.; Cartwright, Brian M.; McCurry, Melanie P.; Lee, Michelle L.; Ramsey, Michael W.; Stone, Michael H.

    2014-01-01

    Abstract Insulin resistance in metabolic syndrome subjects is profound in spite of muscle insulin receptor and insulin‐responsive glucose transporter (GLUT4) expression being nearly normal. Insulin receptor tyrosine kinase phosphorylation of insulin receptor substrate‐1 (IRS‐1) at Tyr896 is a necessary step in insulin stimulation of translocation of GLUT4 to the cell surface. Serine phosphorylation of IRS‐1 by some kinases diminishes insulin action in mice. We evaluated the phosphorylation status of muscle IRS‐1 in 33 subjects with the metabolic syndrome and seventeen lean controls. Each underwent euglycemic insulin clamps and a thigh muscle biopsy before and after 8 weeks of either strength or endurance training. Muscle IRS‐1 phosphorylation at six sites was quantified by immunoblots. Metabolic syndrome muscle IRS‐1 had excess phosphorylation at Ser337 and Ser636 but not at Ser307, Ser789, or Ser1101. Ser337 is a target for phosphorylation by glycogen synthase kinase 3 (GSK3) and Ser636 is phosphorylated by c‐Jun N‐terminal kinase 1 (JNK1). Exercise training without weight loss did not change the IRS‐1 serine phosphorylation. These data suggest that baseline hyperphosphorylation of at least two key serines within muscle IRS‐1 diminishes the transmission of the insulin signal and thereby decreases the insulin‐stimulated translocation of GLUT4. Excess fasting phosphorylation of muscle IRS‐1 at Ser636 may be a major cause of the insulin resistance seen in obesity and might prevent improvement in insulin responsiveness when exercise training is not accompanied by weight loss. PMID:25472611

  15. Insulin receptor binding motif tagged with IgG4 Fc (Yiminsu) works as an insulin sensitizer to activate Akt signaling in hepatocytes.

    PubMed

    Wang, J; Zou, T; Yang, H X; Gong, Y Z; Xie, X J; Liu, H Y; Liao, D F

    2015-01-01

    Insulin resistance is a key feature of obesity and type 2 diabetes mellitus (T2DM). Interaction of insulin with the insulin receptor (IR) leads to both its auto-phosphorylation and phosphorylation of tyrosine residues on the IR substrate (IRS) proteins, initiating the activation of intracellular signaling cascades. The metabolic effects of IRS are known to be mediated through pathways involving phosphatidyl-inositol 3-kinase (PI-3K), which result in the activation of Akt signaling. The C-terminal region of the IR ectodomain is required to facilitate the conformational changes that are required for high-affinity binding to insulin. Furthermore, the CH2 and CH3 domains in the Fc fragments of immunoglobulins are responsible for their binding to the Fc receptor, which triggers transcytosis. In this study, we created a fusion peptide of the C-terminal end of the human IR ectodomain with the IgG4 Fc fragment, including an intervening polyG fragment to ensure enough space for insulin binding. We named this new peptide "Yiminsu", meaning an insulin sensitizer. The results of our analyses show that Yiminsu significantly facilitates insulin signaling via the activation of Akt in hepatocytes in a dose- and time-dependent manner. Further studies are required to determine whether Yiminsu can act as an insulin sensitizer. PMID:26345813

  16. Pyridopyrimidine analogues as novel adenosine kinase inhibitors.

    PubMed

    Zheng, G Z; Lee, C; Pratt, J K; Perner, R J; Jiang, M Q; Gomtsyan, A; Matulenko, M A; Mao, Y; Koenig, J R; Kim, K H; Muchmore, S; Yu, H; Kohlhaas, K; Alexander, K M; McGaraughty, S; Chu, K L; Wismer, C T; Mikusa, J; Jarvis, M F; Marsh, K; Kowaluk, E A; Bhagwat, S S; Stewart, A O

    2001-08-20

    A novel series of pyridopyrimidine analogues 9 was identified as potent adenosine kinase inhibitors based on the SAR and computational studies. Substitution of the C7 position of the pyridopyrimidino core with C2' substituted pyridino moiety increased the in vivo potency and enhanced oral bioavailability of these adenosine kinase inhibitors.

  17. Analogues of thiolactomycin as potential antimalarial agents.

    PubMed

    Jones, Simon M; Urch, Jonathan E; Kaiser, Marcel; Brun, Reto; Harwood, John L; Berry, Colin; Gilbert, Ian H

    2005-09-22

    Analogues of the natural antibiotic thiolactomycin (TLM), an inhibitor of the condensing reactions of type II fatty acid synthase, were synthesized and evaluated for their ability to inhibit the growth of the malaria parasite Plasmodium falciparum. Alkylation of the C4 hydroxyl group led to the most significant increase in growth inhibition (over a 100-fold increase in activity compared to TLM). To investigate the mode of action, the P. falciparum KASIII enzyme was produced for inhibitor assay. A number of TLM derivatives were identified that showed improved inhibition of this enzyme compared to TLM. Structure-activity relationships for enzyme inhibition were identified for some series of TLM analogues, and these also showed weak correlation with inhibition of parasite growth, but this did not hold for other series. On the basis of the lack of a clear correlation between inhibition of pfKASIII activity and parasite growth, we conclude that pfKASIII is not the primary target of TLM analogues. Some of the analogues also inhibited the growth of the parasitic protozoa Trypanosoma cruzi, T. brucei, and Leishmania donovani.

  18. Dumb holes: analogues for black holes.

    PubMed

    Unruh, W G

    2008-08-28

    The use of sonic analogues to black and white holes, called dumb or deaf holes, to understand the particle production by black holes is reviewed. The results suggest that the black hole particle production is a low-frequency and low-wavenumber process.

  19. Stilbenophane analogues of deoxycombretastatin A-4.

    PubMed

    Mateo, Carmen; Pérez-Melero, Concepción; Peláez, Rafael; Medarde, Manuel

    2005-08-01

    A new family of polyoxygenated stilbenophanes has been synthesized as conformationally restricted analogues of antimitotic combretastatins. By means of the McMurry olefination process, compounds derived from diethyleneglycol and 1,6-hexanediol were obtained, whereas Grubbs' catalyst failed in producing the ring-closing metathesis to this kind of macrocyclic products.

  20. Analogue Representations of Spatial Objects and Tranformations.

    ERIC Educational Resources Information Center

    Cooper, Lynn A.

    Considerable discussion and debate have been devoted to the extent and nature of structural or functional correspondence between internal representations and their external visual counterparts. An analogue representation or process is one in which the relational structure of external events is preserved in the corresponding internal…

  1. CO2 Capture with Enzyme Synthetic Analogue

    SciTech Connect

    Cordatos, Harry

    2010-03-01

    Project overview provides background on carbonic anhydrase transport mechanism for CO2 in the human body and proposed approach for ARPA-E project to create a synthetic enzyme analogue and utilize it in a membrane for CO2 capture from flue gas.

  2. Synthesis and antimicrobial activity of squalamine analogue.

    PubMed

    Kim, H S; Choi, B S; Kwon, K C; Lee, S O; Kwak, H J; Lee, C H

    2000-08-01

    Synthesis and antimicrobial activity of squalamine analogue 2 are reported. The synthesis of 2 was accomplished from bisnoralcohol 3. The spermidine moiety was introduced via reductive amination of an appropriately functionalized 3beta-aminosterol with spermidinyl aldehyde 17 utilizing sodium triacetoxyborohydride as the reducing agent. Compound 2 shows weaker antimicrobial activity than squalamine. PMID:11003150

  3. Glucose and insulin metabolism in cirrhosis.

    PubMed

    Petrides, A S; DeFronzo, R A

    1989-01-01

    Glucose intolerance, overt diabetes mellitus, and insulin resistance are characteristic features of patients with cirrhosis. Insulin secretion, although increased in absolute terms, is insufficient to offset the presence of insulin resistance. The defect in insulin-mediated glucose disposal involves peripheral tissues, primarily muscle, and most likely reflects a disturbance in glycogen synthesis. Hepatic glucose production is normally sensitive to insulin; at present, it is unknown whether hepatic glucose uptake is impaired in cirrhosis. One of the more likely candidates responsible for the insulin-resistant state is insulin itself. The hyperinsulinemia results from three abnormalities: diminished hepatic extraction, portosystemic/intrahepatic shunting, and enhanced insulin secretion. PMID:2646365

  4. [Effects of sperminated pullulans on the pulmonary absorption of insulin].

    PubMed

    Seki, Toshinobu; Fukushi, Nanako; Maru, Hiroto; Kimura, Soichiro; Chono, Sumio; Egawa, Yuya; Morimoto, Kazuhiro; Ueda, Hideo; Morimoto, Yasunori

    2011-02-01

    Sperminated pullulans (SP) having different molecular weights (MWs) were prepared, and the enhancing effect on the pulmonary absorption of insulin in rats was examined. SP acted as enhancers of insulin absorption when a 0.1% solution was applied with insulin simultaneously and their enhancing effects depended on the MW of the SP; the same solutions exhibited low toxicity in the in vivo LDH leaching test. In the in vitro experiments using Calu-3 cells, tight junction-opening effects and a toxic effect of SP in the MTT assay were observed at lower concentrations compared with the in vivo experiments. A mucus layer might interfere with the interaction between SP and the cell surface and might suppress both these effects and toxicity. SP having a high MW will be useful for preparing safe and efficient formulations of peptide and protein drugs. The change in the localization of the tight junction proteins may be related to the permeation-enhancing mechanism of SP.

  5. [Dmt(1)]DALDA analogues modified with tyrosine analogues at position 1.

    PubMed

    Cai, Yunxin; Lu, Dandan; Chen, Zhen; Ding, Yi; Chung, Nga N; Li, Tingyou; Schiller, Peter W

    2016-08-01

    Analogues of [Dmt(1)]DALDA (H-Dmt-d-Arg-Phe-Lys-NH2; Dmt=2',6'-dimethyltyrosine), a potent μ opioid agonist peptide with mitochondria-targeted antioxidant activity were prepared by replacing Dmt with various 2',6'-dialkylated Tyr analogues, including 2',4',6'-trimethyltyrosine (Tmt), 2'-ethyl-6'-methyltyrosine (Emt), 2'-isopropyl-6'-methyltyrosine (Imt) and 2',6'-diethyltyrosine (Det). All compounds were selective μ opioid agonists and the Tmt(1)-, Emt(1) and Det(1)-analogues showed subnanomolar μ opioid receptor binding affinities. The Tmt(1)- and Emt(1)-analogues showed improved antioxidant activity compared to the Dmt(1)-parent peptide in the DPPH radical-scavenging capacity assay, and thus are of interest as drug candidates for neuropathic pain treatment.

  6. [Dmt(1)]DALDA analogues modified with tyrosine analogues at position 1.

    PubMed

    Cai, Yunxin; Lu, Dandan; Chen, Zhen; Ding, Yi; Chung, Nga N; Li, Tingyou; Schiller, Peter W

    2016-08-01

    Analogues of [Dmt(1)]DALDA (H-Dmt-d-Arg-Phe-Lys-NH2; Dmt=2',6'-dimethyltyrosine), a potent μ opioid agonist peptide with mitochondria-targeted antioxidant activity were prepared by replacing Dmt with various 2',6'-dialkylated Tyr analogues, including 2',4',6'-trimethyltyrosine (Tmt), 2'-ethyl-6'-methyltyrosine (Emt), 2'-isopropyl-6'-methyltyrosine (Imt) and 2',6'-diethyltyrosine (Det). All compounds were selective μ opioid agonists and the Tmt(1)-, Emt(1) and Det(1)-analogues showed subnanomolar μ opioid receptor binding affinities. The Tmt(1)- and Emt(1)-analogues showed improved antioxidant activity compared to the Dmt(1)-parent peptide in the DPPH radical-scavenging capacity assay, and thus are of interest as drug candidates for neuropathic pain treatment. PMID:27301366

  7. Insulin Signaling and Heart Failure.

    PubMed

    Riehle, Christian; Abel, E Dale

    2016-04-01

    Heart failure is associated with generalized insulin resistance. Moreover, insulin-resistant states such as type 2 diabetes mellitus and obesity increases the risk of heart failure even after adjusting for traditional risk factors. Insulin resistance or type 2 diabetes mellitus alters the systemic and neurohumoral milieu, leading to changes in metabolism and signaling pathways in the heart that may contribute to myocardial dysfunction. In addition, changes in insulin signaling within cardiomyocytes develop in the failing heart. The changes range from activation of proximal insulin signaling pathways that may contribute to adverse left ventricular remodeling and mitochondrial dysfunction to repression of distal elements of insulin signaling pathways such as forkhead box O transcriptional signaling or glucose transport, which may also impair cardiac metabolism, structure, and function. This article will review the complexities of insulin signaling within the myocardium and ways in which these pathways are altered in heart failure or in conditions associated with generalized insulin resistance. The implications of these changes for therapeutic approaches to treating or preventing heart failure will be discussed. PMID:27034277

  8. [Local lipohypertrophy in insulin treatment].

    PubMed

    Herold, D A; Albrecht, G

    1993-01-01

    Local lipoatrophy and lipohypertrophy at injection sites are well known side effects of treatment with insulin. Conditions favouring these local complications are created when repeated or continuous injections are given into the same areas. We report on a 27-year-old female patient who suffered from persistent local swellings after use of an external pump which continuously injected human insulin via indwelling cannulas.

  9. Insulin Signaling and Heart Failure.

    PubMed

    Riehle, Christian; Abel, E Dale

    2016-04-01

    Heart failure is associated with generalized insulin resistance. Moreover, insulin-resistant states such as type 2 diabetes mellitus and obesity increases the risk of heart failure even after adjusting for traditional risk factors. Insulin resistance or type 2 diabetes mellitus alters the systemic and neurohumoral milieu, leading to changes in metabolism and signaling pathways in the heart that may contribute to myocardial dysfunction. In addition, changes in insulin signaling within cardiomyocytes develop in the failing heart. The changes range from activation of proximal insulin signaling pathways that may contribute to adverse left ventricular remodeling and mitochondrial dysfunction to repression of distal elements of insulin signaling pathways such as forkhead box O transcriptional signaling or glucose transport, which may also impair cardiac metabolism, structure, and function. This article will review the complexities of insulin signaling within the myocardium and ways in which these pathways are altered in heart failure or in conditions associated with generalized insulin resistance. The implications of these changes for therapeutic approaches to treating or preventing heart failure will be discussed.

  10. ACT Test

    MedlinePlus

    ... this page helpful? Also known as: ACT; Activated Coagulation Time Formal name: Activated Clotting Time Related tests: ... in the blood called platelets and proteins called coagulation factors are activated in a sequence of steps ...

  11. Acting Atoms.

    ERIC Educational Resources Information Center

    Farin, Susan Archie

    1997-01-01

    Describes a fun game in which students act as electrons, protons, and neutrons. This activity is designed to help students develop a concrete understanding of the abstract concept of atomic structure. (DKM)

  12. Urinary arsenic and insulin resistance in US adolescents.

    PubMed

    Peng, Qing; Harlow, Siobán D; Park, Sung Kyun

    2015-06-01

    Chronic arsenic exposure has been associated with increased diabetes risk in adults. Insulin resistance (IR) has been proposed as a mechanism of arsenic-related diabetes. Although limited evidence in adults found no association between arsenic and IR, the association in adolescents is largely unknown. We examined the association between urinary arsenic and insulin resistance in US adolescents. Eight hundred thirty five adolescents aged 12-19 years, with complete data on urinary arsenic (total arsenic, inorganic arsenic and dimethylarsenic acid (DMA)), fasting glucose, insulin and key covariates were identified from the National Health and Nutrition Examination Survey (NHANES) cycles 2003/2004 through 2009/2010. Generalized additive mixed models accounting for intra-cluster correlation arising from the complex survey design were used to estimate the association between the updated Homeostasis Model Assessment (HOMA2)-IR and each type of arsenic. After adjusting for potential confounders, including urinary creatinine, sociodemographic factors, BMI, waist circumference, and arsenobetaine, arsenic exposure was not associated with HOMA2-IR. Interquartile range increases in total arsenic, inorganic arsenic and DMA were associated with 1.5% (95% CI: -2.0, 5.2), 1.1% (95% CI: -1.5, 3.8) and 0.25% (95% CI: -2.3, 2.9) increases in HOMA2-IR, respectively. In conclusion, despite arsenic's association with diabetes in adults and potential role in insulin resistance, our findings do not support the hypothesis that arsenic exposure at levels common in the US contributes to insulin resistance in adolescents. Whether higher doses and longer exposure duration are required for appreciable influence on insulin resistance, or that arsenic does not act through insulin resistance to induce diabetes needs further investigation.

  13. Comparative 2D NMR studies of human insulin and des-pentapeptide insulin: Sequential resonance assignment and implications for protein dynamics and receptor recognition

    SciTech Connect

    Hua, Qingxin ); Weiss, M.A. Massachusetts General Hospital, Boston, MA )

    1991-06-04

    The solution structure and dynamics of human insulin are ivestigated by 2D {sup 1}H NMR spectroscopy in reference to a previously analyzed analogue, des-pentapeptide (B26-B30) insulin. This spectroscopic comparison is of interest since (i) the structure of the C-terminal region of the B-chain has not been determined in the monomeric state and (ii) the role of this region in binding to the insulin receptor has been the subject of long-standing speculation. The present NMR studies are conducted in the presence of an organic cosolvent (20% acetic acid), under which conditions both proteins are monomeric and stably folded. Complete sequential assignment of human insulin is obtained and leads to the following conclusions. (1) The secondary structure of the insulin monomer (three {alpha}-helices and B-chain {beta}-turn) is similar to that observed in the 2-Zn crustal state. (2) The folding of DPI is essentially the same as the corresponding portion of intact insulin, in accord with the similarities between their respective crystal structues. (3) residues B24-B28 adopt an extended configuration in the monomer and pack against the hydrophobic core as in crystallographic dimers; residues B29 and B30 are largely disordered. (4) The insulin fold is shown to provide a model for collective motions in a protein with implications for the mechanism of protein-protein recognition. To their knowledge, this paper describes the first detailed analysis of a protein NMR spectrum under conditions of extensive conformational broadening.

  14. Intracellular site of insulin action - the mitochondrial Krebs cycle

    SciTech Connect

    Mohan, C.; Bessman, S.P.

    1986-05-01

    Effect of insulin on the oxidation of carbons 1,4 and 2,3 of succinate and their incorporation into protein were studied in isolated hepatocytes of rat. Oxidation of carbons 2,3 (aliphatic carbons) of succinate and their incorporation into protein were significantly stimulated by insulin. Insulin had only a trivial effect on the formation of /sup 14/CO/sub 2/ from carbons 1,4 of succinate. Insulin effect on the oxidation of carbons 2,3 of succinate was a rapid one. Within 2 minutes following the isotope addition most of the radioactivity was recovered in the amino acid fraction. Stimulation of /sup 14/CO/sub 2/ formation from the aliphatic carbons of succinate was about three times as much as from the carboxyl carbons, but much more net /sup 14/CO/sub 2/ formation occurred from the carboxyl groups which are oxidized either outside the mitochondrial Krebs cycle or do not complete one full pass in the Krebs cycle. These results show that insulin acts on a small compartment, the mitochondrial Krebs cycle, which is directly coupled to the anabolic utilization of energy.

  15. Tequila Regulates Insulin-Like Signaling and Extends Life Span in Drosophila melanogaster.

    PubMed

    Huang, Cheng-Wen; Wang, Horng-Dar; Bai, Hua; Wu, Ming-Shiang; Yen, Jui-Hung; Tatar, Marc; Fu, Tsai-Feng; Wang, Pei-Yu

    2015-12-01

    The aging process is a universal phenomenon shared by all living organisms. The identification of longevity genes is important in that the study of these genes is likely to yield significant insights into human senescence. In this study, we have identified Tequila as a novel candidate gene involved in the regulation of longevity in Drosophila melanogaster. We have found that a hypomorphic mutation of Tequila (Teq(f01792)), as well as cell-specific downregulation of Tequila in insulin-producing neurons of the fly, significantly extends life span. Tequila deficiency-induced life-span extension is likely to be associated with reduced insulin-like signaling, because Tequila mutant flies display several common phenotypes of insulin dysregulation, including reduced circulating Drosophila insulin-like peptide 2 (Dilp2), reduced Akt phosphorylation, reduced body size, and altered glucose homeostasis. These observations suggest that Tequila may confer life-span extension by acting as a modulator of Drosophila insulin-like signaling.

  16. FOXO1 is Regulated by Insulin and IGF1 in Pituitary Gonadotropes

    PubMed Central

    Skarra, Danalea V.; Thackray, Varykina G.

    2015-01-01

    The FOXO1 transcription factor is important for multiple aspects of reproductive function. We previously reported that FOXO1 functions as a repressor of gonadotropin hormone synthesis, but how FOXO1 is regulated in pituitary gonadotropes is unknown. The growth factors, insulin and insulin-like growth factor I (IGF1) function as key regulators of cell proliferation, metabolism and apoptosis in multiple cell types through the PI3K/AKT signaling pathway. In this study, we found that insulin and IGF1 signaling in gonadotropes induced FOXO1 phosphorylation through the PI3K/AKT pathway in immortalized and primary cells, resulting in FOXO1 relocation from the nucleus to the cytoplasm. Furthermore, insulin administration in vivo induced phosphorylation of FOXO1 and AKT in the pituitary. Thus, insulin and IGF1 act as negative regulators of FOXO1 activity and may serve to fine-tune gonadotropin expression. PMID:25676570

  17. Insulin alters heterogeneous nuclear ribonucleoprotein K protein binding to DNA and RNA

    PubMed Central

    Ostrowski, J.; Kawata, Y.; Schullery, D. S.; Denisenko, O. N.; Higaki, Y.; Abrass, C. K.; Bomsztyk, K.

    2001-01-01

    The interaction of the multimodular heterogeneous nuclear ribonucleoprotein (hnRNP) K protein with many of its protein and nucleic acid partners is regulated by extracellular signals. Acting as a docking platform, K protein could link signal-transduction pathways to DNA- and RNA-directed processes such as transcription, mRNA processing, transport, and translation. Treatment of hepatocyte culture with insulin increased K protein tyrosine phosphorylation. Insulin altered K protein interaction with RNA and DNA in vitro. Administration of insulin into mice had similar effects on K protein in liver. Coimmunoprecipitations of RNA with K protein revealed preferential in vivo K protein binding of a subset of transcripts, including the insulin-inducible c-fos mRNA. These results suggest a class of insulin pathways that signal nucleic acid-directed processes that involve K protein. PMID:11470915

  18. New insights into insulin: The anti-inflammatory effect and its clinical relevance.

    PubMed

    Sun, Qiang; Li, Jia; Gao, Feng

    2014-04-15

    Hyperglycemia, a commonly exhibited metabolic disorder in critically ill patients, activates the body's inflammatory defense mechanism, causing the waterfall release of numerous inflammatory mediators and cytokines, and eventually leads to organ damage. As the only glucose-lowering hormone in the body, insulin not only alleviates the detrimental effects of hyperglycemia through its metabolic regulation, but also directly modulates inflammatory mediators and acts upon immune cells to enhance immunocompetence. In this sense, hyperglycemia is pro-inflammatory whereas insulin is anti-inflammatory. Therefore, during the past 50 years, insulin has not only been used in the treatment of diabetes, but has also been put into practical use in dealing with cardiovascular diseases and critical illnesses. This review summarizes the recent advances regarding the anti-inflammatory effects of insulin in both basic research and clinical trials, with the hope of aiding in the design of further experimental research and promoting effective insulin administration in clinical practice. PMID:24765237

  19. The Efficacy and Safety of Insulin Degludec Given in Variable Once-Daily Dosing Intervals Compared With Insulin Glargine and Insulin Degludec Dosed at the Same Time Daily

    PubMed Central

    Meneghini, Luigi; Atkin, Stephen L.; Gough, Stephen C.L.; Raz, Itamar; Blonde, Lawrence; Shestakova, Marina; Bain, Stephen; Johansen, Thue; Begtrup, Kamilla; Birkeland, Kåre I.

    2013-01-01

    OBJECTIVE The requirement to inject current basal insulin analogs at a fixed time each day may complicate adherence and compromise glycemic control. This trial evaluated the efficacy and safety of varying the daily injection time of insulin degludec (IDeg), an ultra-long-acting basal insulin. RESEARCH DESIGN AND METHODS This 26-week, open-label, treat-to-target trial enrolled adults (≥18 years) with type 2 diabetes who were either insulin naïve and receiving oral antidiabetic drugs (OADs) (HbA1c = 7–11%) or previously on basal insulin ± OAD(s) (HbA1c = 7–10%). Participants were randomized to 1) once-daily (OD) IDeg in a prespecified dosing schedule, creating 8–40-h intervals between injections (IDeg OD Flex; n = 229); 2) once-daily IDeg at the main evening meal (IDeg OD; n = 228); or 3) once-daily insulin glargine at the same time each day (IGlar OD; n = 230). The primary outcome was noninferiority of IDeg OD Flex to IGlar OD in HbA1c reduction after 26 weeks. RESULTS After 26 weeks, IDeg OD Flex, IDeg OD, and IGlar OD improved HbA1c by 1.28, 1.07, and 1.26% points, respectively (estimated treatment difference [IDeg OD Flex − IGlar OD]: 0.04% points [–0.12 to 0.20], confirming noninferiority). No statistically significant differences in overall or nocturnal hypoglycemia were found between IDeg OD Flex and IGlar OD. Comparable glycemic control and rates of hypoglycemia were seen with IDeg OD Flex and IDeg OD. Adverse event profiles were similar across groups. CONCLUSIONS The use of extreme dosing intervals of 8–40 h demonstrates that the daily injection time of IDeg can be varied without compromising glycemic control or safety. PMID:23340894

  20. Molecular design, synthesis and anticoagulant activity evaluation of fluorinated dabigatran analogues.

    PubMed

    Wang, Fei; Ren, Yu-Jie; Dong, Ming-Hui

    2016-06-15

    In the present study, a series of unreported fluorinated dabigatran analogues, which were based on the structural scaffold of dabigatran, were designed by computer-aided simulation. Fifteen fluorinated dabigatran analogues were screened and synthesized. All target compounds were characterized by (1)H NMR, (13)C NMR, (19)F NMR and HRMS. According to the preliminary screening results of inhibition ratio, eleven analogues (inhibition ratio >90%) were evaluated for antithrombin activity in vitro (IC50). The test results expressed that all the analogues showed effective inhibitory activities against thrombin. Especially, compounds 8f, 8k and 8o, with IC50 values of 1.81, 3.21 and 2.16nM, respectively, showed remarkable anticoagulant activities which were in the range of reference drug dabigatran (IC50=1.23nM). Moreover, compounds 8k and 8o were developed to investigate their anticoagulant activities in vivo. In those part, compound 8o exhibited a fairly strong inhibitory action for arteriovenous thrombosis with inhibition ratio of 84.66%, which was comparable with that of dabigatran (85.07%). Docking simulations demonstrated that these compounds could act as candidates for further development of novel anticoagulant drugs. PMID:27166573

  1. Molecular design, synthesis and anticoagulant activity evaluation of fluorinated dabigatran analogues.

    PubMed

    Wang, Fei; Ren, Yu-Jie; Dong, Ming-Hui

    2016-06-15

    In the present study, a series of unreported fluorinated dabigatran analogues, which were based on the structural scaffold of dabigatran, were designed by computer-aided simulation. Fifteen fluorinated dabigatran analogues were screened and synthesized. All target compounds were characterized by (1)H NMR, (13)C NMR, (19)F NMR and HRMS. According to the preliminary screening results of inhibition ratio, eleven analogues (inhibition ratio >90%) were evaluated for antithrombin activity in vitro (IC50). The test results expressed that all the analogues showed effective inhibitory activities against thrombin. Especially, compounds 8f, 8k and 8o, with IC50 values of 1.81, 3.21 and 2.16nM, respectively, showed remarkable anticoagulant activities which were in the range of reference drug dabigatran (IC50=1.23nM). Moreover, compounds 8k and 8o were developed to investigate their anticoagulant activities in vivo. In those part, compound 8o exhibited a fairly strong inhibitory action for arteriovenous thrombosis with inhibition ratio of 84.66%, which was comparable with that of dabigatran (85.07%). Docking simulations demonstrated that these compounds could act as candidates for further development of novel anticoagulant drugs.

  2. Crystal Structure of a “Nonfoldable” Insulin

    PubMed Central

    Liu, Ming; Wan, Zhu-li; Chu, Ying-Chi; Aladdin, Hassan; Klaproth, Birgit; Choquette, Meredith; Hua, Qing-xin; Mackin, Robert B.; Rao, J. Sunil; De Meyts, Pierre; Katsoyannis, Panayotis G.; Arvan, Peter; Weiss, Michael A.

    2009-01-01

    Protein evolution is constrained by folding efficiency (“foldability”) and the implicit threat of toxic misfolding. A model is provided by proinsulin, whose misfolding is associated with β-cell dysfunction and diabetes mellitus. An insulin analogue containing a subtle core substitution (LeuA16 → Val) is biologically active, and its crystal structure recapitulates that of the wild-type protein. As a seeming paradox, however, ValA16 blocks both insulin chain combination and the in vitro refolding of proinsulin. Disulfide pairing in mammalian cell culture is likewise inefficient, leading to misfolding, endoplasmic reticular stress, and proteosome-mediated degradation. ValA16 destabilizes the native state and so presumably perturbs a partial fold that directs initial disulfide pairing. Substitutions elsewhere in the core similarly destabilize the native state but, unlike ValA16, preserve folding efficiency. We propose that LeuA16 stabilizes nonlocal interactions between nascent α-helices in the A- and B-domains to facilitate initial pairing of CysA20 and CysB19, thus surmounting their wide separation in sequence. Although ValA16 is likely to destabilize this proto-core, its structural effects are mitigated once folding is achieved. Classical studies of insulin chain combination in vitro have illuminated the impact of off-pathway reactions on the efficiency of native disulfide pairing. The capability of a polypeptide sequence to fold within the endoplasmic reticulum may likewise be influenced by kinetic or thermodynamic partitioning among on- and off-pathway disulfide intermediates. The properties of [ValA16]insulin and [ValA16]proinsulin demonstrate that essential contributions of conserved residues to folding may be inapparent once the native state is achieved. PMID:19850922

  3. Use of an artificial pancreas as a tool to determine subcutaneous insulin doses in juvenile diabetes.

    PubMed

    Lambert, A E; Buysschaert, M; Lambotte, L

    1979-01-01

    The present study was undertaken to examine the feasibility of determining the most appropriate subcutaneous insulin treatment in unstable diabetes on the basis of the circadian hormonal profile delivered by an artificial pancreas. The metabolic control of 11 brittle diabetic subjects, as assessed by the M value and the MAGE index (used as indexes of blood glucose control and of glycemic fluctuations, respectively), was compared during a 5-day period before and after a 24-h connection to the artificial pancreas. The usual insulin treatment was continued to that day. Examination of the insulin pattern revealed by the artificial pancreas suggested that a valid scheme for subsequent treatment should consist of two daily injections of a mixture of short-acting and intermediate-acting insulins, which was administered to the patients beginning with the injection given after the artificial pancreas onwards. The new insulin regimen was characterized by a total daily dose that increased from 0.93 +/- 0.10 to 1.20 +/- 0.10 U/kg body weight (mean +/- SEM; P less than 0.005) as well as by a higher proportion of the dose given as regular insulin (37.1 +/- 6.9% before vs. 56.0 +/- 2.1% after; P less than 0.05). These changes led to a better control of blood glucose in 10 patients, as evidenced by a decrease of both the M value and the mean of all blood glucose levels. The mean MAGE index was not decreased, however, by the new insulin program, thereby suggesting that the lability of the disease remained unabated. These results indicate that subcutaneous treatment consisting of two daily injections of regular and intermediate-acting insulins and comprising 50 to 60% of the former could improve the metabolic control in unstable diabetes. The artifical pancreas provided a rapid and simple means to determine the appropriate doses for each type of insulin.

  4. Combination therapy with GLP-1 receptor agonists and basal insulin: a systematic review of the literature

    PubMed Central

    Balena, R; Hensley, I E; Miller, S; Barnett, A H

    2013-01-01

    Treatment algorithms for type 2 diabetes call for intensification of therapy over time as the disease progresses and glycaemic control worsens. If diet, exercise and oral antihyperglycaemic medications (OAMs) fail to maintain glycaemic control then basal insulin is added and ultimately prandial insulin may be required. However, such an intensification strategy carries risk of increased hypoglycaemia and weight gain, both of which are associated with worse long-term outcomes. An alternative strategy is to intensify therapy by the addition of a short-acting glucagon-like peptide-1 receptor agonist (GLP-1 RA) rather than prandial insulin. Short-acting GLP-1 RAs such as exenatide twice daily are particularly effective at reducing postprandial glucose while basal insulin has a greater effect on fasting glucose, providing a physiological rationale for this complementary approach. This review analyzes the latest randomized controlled clinical trials of insulin/GLP-1 RA combination therapy and examines results from ‘real-world’ use of the combinations as reported through observational and clinical practice studies. The most common finding across all types of studies was that combination therapy improved glycaemic control without weight gain or an increased risk of hypoglycaemia. Many studies reported weight loss and a reduction in insulin use when a GLP-1 RA was added to existing insulin therapy. Overall, the relative degree of benefit to glycaemic control and weight was influenced by the insulin titration employed in conjunction with the GLP-1 RA. The greatest glycaemic benefits were observed in studies with structured titration of insulin to glycaemic targets while the greatest weight benefits were observed in studies with a protocol-specified focus on insulin sparing. The adverse event profile of GLP-1 RAs in the reviewed trials was similar to that reported with GLP-1 RAs as monotherapy or in combination with OAMs with gastrointestinal events being the most commonly

  5. S-Ribosylhomocysteine analogues with the carbon-5 and sulfur atoms replaced by a vinyl or (fluoro)vinyl unit

    PubMed Central

    Wnuk, Stanislaw F.; Lalama, Jennifer; Garmendia, Craig A.; Robert, Jenay; Zhu, Jinge; Pei, Dehua

    2008-01-01

    Treatment of the protected ribose or xylose 5-aldehyde with sulfonyl-stabilized fluorophosphonate gave (fluoro)vinyl sulfones. Stannyldesulfonylation followed by iododestannylation afforded 5,6-dideoxy-6-fluoro-6-iodo-d-ribo or xylo-hex-5-enofuranoses. Coupling of the hexenofuranoses with alkylzinc bromides gave ten-carbon ribosyl- and xylosylhomocysteine analogues incorporating a fluoroalkene. The fluoroalkenyl and alkenyl analogues were evaluated for inhibition of Bacillus subtilis S-ribosylhomocysteinase (LuxS). One of the compounds, 3,5,6-trideoxy-6-fluoro-d-erythro-hex-5-enofuranose, acted as a competitive inhibitor of moderate potency (KI = 96 µM). PMID:18375129

  6. Triazolo-β-aza-ε-amino acid and its aromatic analogue as novel scaffolds for β-turn peptidomimetics.

    PubMed

    Bag, Subhendu Sekhar; Jana, Subhashis; Yashmeen, Afsana; De, Suranjan

    2015-03-28

    Triazolo-β-aza-ε-amino acid and its aromatic analogue ((Al)TAA/(Ar)TAA) in the peptide backbone mark a novel class of conformationally constrained molecular scaffolds to induce β-turn conformations. This was demonstrated for (Al)TAA in a Leu-enkephalin analogue and in a designed pentapeptide wherein the FRET process was established. Restricted rotation induced chirality and turn conformation into the achiral aromatic amino acid scaffold, (Ar)TAA, which in a short tripeptide backbone acted as a β-turn mimic as a β-sheet folding nucleator.

  7. Reduced insulin-receptor mediated modulation of striatal dopamine release by basal insulin as a possible contributing factor to hyperdopaminergia in schizophrenia.

    PubMed

    Caravaggio, Fernando; Hahn, Margaret; Nakajima, Shinichiro; Gerretsen, Philip; Remington, Gary; Graff-Guerrero, Ariel

    2015-10-01

    Schizophrenia is a severe and chronic neuropsychiatric disorder which affects 1% of the world population. Using the brain imaging technique positron emission tomography (PET) it has been demonstrated that persons with schizophrenia have greater dopamine transmission in the striatum compared to healthy controls. However, little progress has been made as to elucidating other biological mechanisms which may account for this hyperdopaminergic state in this disease. Studies in animals have demonstrated that insulin receptors are expressed on midbrain dopamine neurons, and that insulin from the periphery acts on these receptors to modify dopamine transmission in the striatum. This is pertinent given that several lines of evidence suggest that insulin receptor functioning may be abnormal in the brains of persons with schizophrenia. Post-mortem studies have shown that persons with schizophrenia have less than half the number of cortical insulin receptors compared to healthy persons. Moreover, these post-mortem findings are unlikely due to the effects of antipsychotic treatment; studies in cell lines and animals suggest antipsychotics enhance insulin receptor functioning. Further, hyperinsulinemia - even prior to antipsychotic use - seems to be related to less psychotic symptoms in patients with schizophrenia. Collectively, these data suggest that midbrain insulin receptor functioning may be abnormal in persons with schizophrenia, resulting in reduced insulin-mediated regulation of dopamine transmission in the striatum. Such a deficit may account for the hyperdopaminergic state observed in these patients and would help guide the development of novel treatment strategies. We hypothesize that, (i) insulin receptor expression and/or function is reduced in midbrain dopamine neurons in persons with schizophrenia, (ii) basal insulin should reduce dopaminergic transmission in the striatum via these receptors, and (iii) this modulation of dopaminergic transmission by basal insulin

  8. DNA information: from digital code to analogue structure.

    PubMed

    Travers, A A; Muskhelishvili, G; Thompson, J M T

    2012-06-28

    The digital linear coding carried by the base pairs in the DNA double helix is now known to have an important component that acts by altering, along its length, the natural shape and stiffness of the molecule. In this way, one region of DNA is structurally distinguished from another, constituting an additional form of encoded information manifest in three-dimensional space. These shape and stiffness variations help in guiding and facilitating the DNA during its three-dimensional spatial interactions. Such interactions with itself allow communication between genes and enhanced wrapping and histone-octamer binding within the nucleosome core particle. Meanwhile, interactions with proteins can have a reduced entropic binding penalty owing to advantageous sequence-dependent bending anisotropy. Sequence periodicity within the DNA, giving a corresponding structural periodicity of shape and stiffness, also influences the supercoiling of the molecule, which, in turn, plays an important facilitating role. In effect, the super-helical density acts as an analogue regulatory mode in contrast to the more commonly acknowledged purely digital mode. Many of these ideas are still poorly understood, and represent a fundamental and outstanding biological question. This review gives an overview of very recent developments, and hopefully identifies promising future lines of enquiry. PMID:22615471

  9. Synthesis and biological evaluation of hydrazidomycin analogues.

    PubMed

    Meyer, Florian; Ueberschaar, Nico; Dahse, Hans-Martin; Hertweck, Christian

    2013-11-15

    Hydrazidomycin A is an unusual secondary metabolite of Streptomyces atratus that features a rare enehydrazide core. To learn more about structure-activity relationships of the reported cytotoxic and antiproliferative agent several synthetic routes were explored to synthesize a variety of hydrazidomycin derivatives. Specifically, the size of the side chains, the nature of the double bond and the polar head group were altered. Overall, fourteen analogues were tested for their cytotoxic and antiproliferative effects. Re-examination of synthetic hydrazidomycin A suggests that the antiproliferative activity is attributed to a yet unknown compound that results from degradation or rearrangement. Several of the less complex analogues, however, show antiproliferative activities against individual cancer cell lines and turned out to be more potent than hydrazidomycin A.

  10. Exploring the Evolutionary Relationship of Insulin Receptor Substrate Family Using Computational Biology

    PubMed Central

    Chakraborty, Chiranjib; Agoramoorthy, Govindasamy; Hsu, Minna J.

    2011-01-01

    Insulin receptor substrate (IRS) harbors proteins such as IRS1, IRS2, IRS3, IRS4, IRS5 and IRS6. These key proteins act as vital downstream regulators in the insulin signaling pathway. However, little is known about the evolutionary relationship among the IRS family members. This study explores the potential to depict the evolutionary relationship among the IRS family using bioinformatics, algorithm analysis and mathematical models. PMID:21364910

  11. Lipid signals and insulin resistance.

    PubMed

    Zhang, Chongben; Klett, Eric L; Coleman, Rosalind A

    2013-12-01

    The metabolic syndrome, a cluster of metabolic derangements that include obesity, glucose intolerance, dyslipidemia and hypertension, is a major risk factor for cardiovascular disease. Insulin resistance has been proposed to be the common feature that links obesity to the metabolic syndrome, but the mechanism remains obscure. Although the excess content of triacylglycerol in muscle and liver is highly associated with insulin resistance in these tissues, triacylglycerol itself is not causal but merely a marker. Thus, attention has turned to the accumulation of cellular lipids known to have signaling roles. This review will discuss recent progress in understanding how glycerolipids and related lipid intermediates may impair insulin signaling. PMID:24533033

  12. Lipid signals and insulin resistance.

    PubMed

    Zhang, Chongben; Klett, Eric L; Coleman, Rosalind A

    2013-12-01

    The metabolic syndrome, a cluster of metabolic derangements that include obesity, glucose intolerance, dyslipidemia and hypertension, is a major risk factor for cardiovascular disease. Insulin resistance has been proposed to be the common feature that links obesity to the metabolic syndrome, but the mechanism remains obscure. Although the excess content of triacylglycerol in muscle and liver is highly associated with insulin resistance in these tissues, triacylglycerol itself is not causal but merely a marker. Thus, attention has turned to the accumulation of cellular lipids known to have signaling roles. This review will discuss recent progress in understanding how glycerolipids and related lipid intermediates may impair insulin signaling.

  13. Impact of the Type of Continuous Insulin Administration on Metabolism in a Diabetic Rat Model.

    PubMed

    Schaschkow, A; Mura, C; Dal, S; Langlois, A; Seyfritz, E; Sookhareea, C; Bietiger, W; Peronet, C; Jeandidier, N; Pinget, M; Sigrist, S; Maillard, E

    2016-01-01

    Exogenous insulin is the only treatment available for type 1 diabetic patients and is mostly administered by subcutaneous (SC) injection in a basal and bolus scheme using insulin pens (injection) or pumps (preimplanted SC catheter). Some divergence exists between these two modes of administration, since pumps provide better glycaemic control compared to injections in humans. The aim of this study was to compare the impacts of two modes of insulin administration (single injections of long-acting insulin or pump delivery of rapid-acting insulin) at the same dosage (4 IU/200 g/day) on rat metabolism and tissues. The rat weight and blood glucose levels were measured periodically after treatment. Immunostaining for signs of oxidative stress and for macrophages was performed on the liver and omental tissues. The continuous insulin delivery by pumps restored normoglycaemia, which induced the reduction of both reactive oxygen species and macrophage infiltration into the liver and omentum. Injections controlled the glucose levels for only a short period of time and therefore tissue stress and inflammation were elevated. In conclusion, the insulin administration mode has a crucial impact on rat metabolic parameters, which has to be taken into account when studies are designed. PMID:27504460

  14. Impact of the Type of Continuous Insulin Administration on Metabolism in a Diabetic Rat Model

    PubMed Central

    Schaschkow, A.; Dal, S.; Langlois, A.; Seyfritz, E.; Sookhareea, C.; Bietiger, W.; Peronet, C.; Jeandidier, N.; Pinget, M.; Sigrist, S.

    2016-01-01

    Exogenous insulin is the only treatment available for type 1 diabetic patients and is mostly administered by subcutaneous (SC) injection in a basal and bolus scheme using insulin pens (injection) or pumps (preimplanted SC catheter). Some divergence exists between these two modes of administration, since pumps provide better glycaemic control compared to injections in humans. The aim of this study was to compare the impacts of two modes of insulin administration (single injections of long-acting insulin or pump delivery of rapid-acting insulin) at the same dosage (4 IU/200 g/day) on rat metabolism and tissues. The rat weight and blood glucose levels were measured periodically after treatment. Immunostaining for signs of oxidative stress and for macrophages was performed on the liver and omental tissues. The continuous insulin delivery by pumps restored normoglycaemia, which induced the reduction of both reactive oxygen species and macrophage infiltration into the liver and omentum. Injections controlled the glucose levels for only a short period of time and therefore tissue stress and inflammation were elevated. In conclusion, the insulin administration mode has a crucial impact on rat metabolic parameters, which has to be taken into account when studies are designed. PMID:27504460

  15. The emerging role of insulin-like growth factors in testis development and function.

    PubMed

    Griffeth, Richard J; Bianda, Vanessa; Nef, Serge

    2014-01-01

    The insulin-like family of growth factors (IGFs) - composed of insulin, and insulin-like growth factors I (IGF1) and II (IGF2) - provides essential signals for the control of testis development and function. In the testis, IGFs act in an autocrine-paracrine manner but the extent of their actions has been underestimated due to redundancies at both the ligand and receptor levels, and the perinatal lethality of constitutive knockout mice. This review synthesizes the current understanding of how the IGF system regulates biological processes such as primary sex determination, testis development, spermatogenesis and steroidogenesis, and highlights the questions that remain to be explored.

  16. Synthesis of constrained analogues of tryptophan

    PubMed Central

    Negrato, Marco; Abbiati, Giorgio; Dell’Acqua, Monica

    2015-01-01

    Summary A Lewis acid-catalysed diastereoselective [4 + 2] cycloaddition of vinylindoles and methyl 2-acetamidoacrylate, leading to methyl 3-acetamido-1,2,3,4-tetrahydrocarbazole-3-carboxylate derivatives, is described. Treatment of the obtained cycloadducts under hydrolytic conditions results in the preparation of a small library of compounds bearing the free amino acid function at C-3 and pertaining to the class of constrained tryptophan analogues. PMID:26664620

  17. Platinum analogues in preclinical and clinical development.

    PubMed

    Hamilton, T C; O'Dwyer, P J; Ozols, R F

    1993-11-01

    The impact of cisplatin on chemotherapy for solid tumors has led to the synthesis of many molecules with platinum as their central building block. These so-called platinum analogues have been developed with the obvious goals of improving the antitumor activity of cisplatin and hopefully, at the same time, altering the dose-limiting side effects of the prototype drug. At least 10 such molecules are in clinical development, whereas several others are at various stages of preclinical testing. PMID:8305533

  18. The Brookhaven electron analogue, 1953--1957

    SciTech Connect

    Plotkin, M.

    1991-12-18

    The following topics are discussed on the Brookhaven electron analogue: L.J. Haworth and E.L. VanHorn letters; Original G.K. Green outline for report; General description; Parameter list; Mechanical Assembly; Alignment; Degaussing; Vacuum System; Injection System; The pulsed inflector; RF System; Ferrite Cavity; Pick-up electrodes and preamplifiers; Radio Frequency power amplifier; Lens supply; Controls and Power; and RF acceleration summary.

  19. Blood Loss Estimation Using Gauze Visual Analogue

    PubMed Central

    Ali Algadiem, Emran; Aleisa, Abdulmohsen Ali; Alsubaie, Huda Ibrahim; Buhlaiqah, Noora Radhi; Algadeeb, Jihad Bagir; Alsneini, Hussain Ali

    2016-01-01

    Background Estimating intraoperative blood loss can be a difficult task, especially when blood is mostly absorbed by gauze. In this study, we have provided an improved method for estimating blood absorbed by gauze. Objectives To develop a guide to estimate blood absorbed by surgical gauze. Materials and Methods A clinical experiment was conducted using aspirated blood and common surgical gauze to create a realistic amount of absorbed blood in the gauze. Different percentages of staining were photographed to create an analogue for the amount of blood absorbed by the gauze. Results A visual analogue scale was created to aid the estimation of blood absorbed by the gauze. The absorptive capacity of different gauze sizes was determined when the gauze was dripping with blood. The amount of reduction in absorption was also determined when the gauze was wetted with normal saline before use. Conclusions The use of a visual analogue may increase the accuracy of blood loss estimation and decrease the consequences related to over or underestimation of blood loss. PMID:27626017

  20. Blood Loss Estimation Using Gauze Visual Analogue

    PubMed Central

    Ali Algadiem, Emran; Aleisa, Abdulmohsen Ali; Alsubaie, Huda Ibrahim; Buhlaiqah, Noora Radhi; Algadeeb, Jihad Bagir; Alsneini, Hussain Ali

    2016-01-01

    Background Estimating intraoperative blood loss can be a difficult task, especially when blood is mostly absorbed by gauze. In this study, we have provided an improved method for estimating blood absorbed by gauze. Objectives To develop a guide to estimate blood absorbed by surgical gauze. Materials and Methods A clinical experiment was conducted using aspirated blood and common surgical gauze to create a realistic amount of absorbed blood in the gauze. Different percentages of staining were photographed to create an analogue for the amount of blood absorbed by the gauze. Results A visual analogue scale was created to aid the estimation of blood absorbed by the gauze. The absorptive capacity of different gauze sizes was determined when the gauze was dripping with blood. The amount of reduction in absorption was also determined when the gauze was wetted with normal saline before use. Conclusions The use of a visual analogue may increase the accuracy of blood loss estimation and decrease the consequences related to over or underestimation of blood loss.

  1. Insulin resistance uncoupled from dyslipidemia due to C-terminal PIK3R1 mutations

    PubMed Central

    Huang-Doran, Isabel; Tomlinson, Patsy; Payne, Felicity; Gast, Alexandra; Sleigh, Alison; Bottomley, William; Harris, Julie; Daly, Allan; Rocha, Nuno; Rudge, Simon; Clark, Jonathan; Kwok, Albert; Romeo, Stefano; McCann, Emma; Müksch, Barbara; Dattani, Mehul; Zucchini, Stefano; Wakelam, Michael; Foukas, Lazaros C.; Savage, David B.; Murphy, Rinki; O’Rahilly, Stephen; Semple, Robert K.

    2016-01-01

    Obesity-related insulin resistance is associated with fatty liver, dyslipidemia, and low plasma adiponectin. Insulin resistance due to insulin receptor (INSR) dysfunction is associated with none of these, but when due to dysfunction of the downstream kinase AKT2 phenocopies obesity-related insulin resistance. We report 5 patients with SHORT syndrome and C-terminal mutations in PIK3R1, encoding the p85α/p55α/p50α subunits of PI3K, which act between INSR and AKT in insulin signaling. Four of 5 patients had extreme insulin resistance without dyslipidemia or hepatic steatosis. In 3 of these 4, plasma adiponectin was preserved, as in insulin receptor dysfunction. The fourth patient and her healthy mother had low plasma adiponectin associated with a potentially novel mutation, p.Asp231Ala, in adiponectin itself. Cells studied from one patient with the p.Tyr657X PIK3R1 mutation expressed abundant truncated PIK3R1 products and showed severely reduced insulin-stimulated association of mutant but not WT p85α with IRS1, but normal downstream signaling. In 3T3-L1 preadipocytes, mutant p85α overexpression attenuated insulin-induced AKT phosphorylation and adipocyte differentiation. Thus, PIK3R1 C-terminal mutations impair insulin signaling only in some cellular contexts and produce a subphenotype of insulin resistance resembling INSR dysfunction but unlike AKT2 dysfunction, implicating PI3K in the pathogenesis of key components of the metabolic syndrome. PMID:27766312

  2. Structure-function relationships of des-(B26-B30)-insulin.

    PubMed

    Spoden, M; Gattner, H G; Zahn, H; Brandenburg, D

    1995-01-01

    In order to study the role of the amino acid in position B25 and its environment in shortened insulins, a series of analogues was prepared with the following modifications: 1, Stepwise shortening of the B-chain including replacements of TyrB26 and ThrB27 by glycine; 2, substitutions at the carboxamide nitrogen of des-(B26-B30)-insulin-B25-amide by apolar, polar or charged residues of various chain lengths; 3, replacement of PheB25 by asparagine-amide, phenylalaninol or a series of alkyl and aralkyl residues. Trypsin-catalyzed semisyntheses were performed with Boc-protected or unprotected des-octapeptide-(B23-B30)-insulin and synthetic peptides. Relative receptor binding and in vitro bioactivity of [AsnB25]-des-(B26-B30)-insulin-B25-amide was 227 and 292% (on insulin), other activities ranged between 1 and ca. 200%. We make the following conclusions. An L-amino acid is essential in position B25. The B25-carbonyl and NH groups favour high binding and "superpotency", but are not indispensible for receptor contacts. For high affinity receptor interaction, the planarity at the C gamma-atom and the distance of B25-side-chain branching in position B25 are important, but an aromatic ring is not necessary. PMID:8537175

  3. Central Nervous Insulin Signaling in Sleep-Associated Memory Formation and Neuroendocrine Regulation

    PubMed Central

    Feld, Gordon B; Wilhem, Ines; Benedict, Christian; Rüdel, Benjamin; Klameth, Corinna; Born, Jan; Hallschmid, Manfred

    2016-01-01

    The neurochemical underpinnings of sleep's contribution to the establishment and maintenance of memory traces are largely unexplored. Considering that intranasal insulin administration to the CNS improves memory functions in healthy and memory-impaired humans, we tested whether brain insulin signaling and sleep interact to enhance memory consolidation in healthy participants. We investigated the effect of intranasal insulin on sleep-associated neurophysiological and neuroendocrine parameters and memory consolidation in 16 men and 16 women (aged 18–30 years), who learned a declarative word-pair task and a procedural finger sequence tapping task in the evening before intranasal insulin (160 IU) or placebo administration and 8 h of nocturnal sleep. On the subsequent evening, they learned interfering word-pairs and a new finger sequence before retrieving the original memories. Insulin increased growth hormone concentrations in the first night-half and EEG delta power during the second 90 min of non-rapid-eye-movement sleep. Insulin treatment impaired the acquisition of new contents in both the declarative and procedural memory systems on the next day, whereas retrieval of original memories was unchanged. Results indicate that sleep-associated memory consolidation is not a primary mediator of insulin's acute memory-improving effect, but that the peptide acts on mechanisms that diminish the subsequent encoding of novel information. Thus, by inhibiting processes of active forgetting during sleep, central nervous insulin might reduce the interfering influence of encoding new information. PMID:26448203

  4. Reversal of diet-induced obesity and insulin resistance by inducible genetic ablation of GRK2

    PubMed Central

    Vila-Bedmar, Rocio; Cruces-Sande, Marta; Lucas, Elisa; Willemen, Hanneke L.D.M.; Heijnen, Cobi J.; Kavelaars, Annemieke; Mayor, Federico; Murga, Cristina

    2015-01-01

    Insulin resistance is a common feature of obesity and predisposes individuals to various prevalent pathological conditions. G protein-coupled receptor kinase 2 (GRK2) integrates several signal transduction pathways and is emerging as a physiologically relevant inhibitor of insulin signaling. GRK2 abundanceis increased in humans with metabolic syndrome and in different murine models of insulin resistance. To support GRK2 as a potential drug target in type 2 diabetes and obesity, we investigated whether lowering GRK2 abundance reversed an ongoing systemic insulin-resistant phenotype, using a mouse model of tamoxifen-induced GRK2 ablation after high fat diet-dependent obesity and insulin resistance. Tamoxifen-triggered GRK2 deletion impeded further body weight gain, normalized fa sting glycemia, improved glucose tolerance and was associated with preserved insulin sensitivity in skeletal muscle and liver, thereby maintaining whole body glucose homeostasis. Moreover, when continued to be fed a high fat diet, these animals displayed reduced fat mass and smaller adipocytes, were resistant to the development of liver steatosis, and showed reduced expression of pro-inflammatory markers in the liver. Our results indicate that GRK2 acts as a hub to control metabolic functions in different tissues, which is key to controlling insulin resistance development in vivo. These data suggest that inhibiting GRK2 could reverse an established insulin-resistant and obese phenotype, thereby putting forward this enzyme as a potential therapeutic target linking glucose homeostasis and regulation of adiposity. PMID:26198359

  5. Comparison of insulin degludec with insulin glargine in insulin-naive subjects with Type 2 diabetes: a 2-year randomized, treat-to-target trial

    PubMed Central

    Rodbard, H W; Cariou, B; Zinman, B; Handelsman, Y; Philis-Tsimikas, A; Skjøth, T V; Rana, A; Mathieu, C

    2013-01-01

    Aims The aim of this study was to compare long-term safety and efficacy of the basal insulin analogue degludec with glargine in insulin-naive subjects with Type 2 diabetes. Methods This open-label trial included a 52-week core period followed by a 52-week extension. Participants were randomized 3:1 to once-daily degludec or glargine, administered with metformin ± dipeptidyl peptidase-4 inhibitors. Basal insulin was titrated to target pre-breakfast plasma glucose 3.9–4.9 mmol/l. Results At end of treatment (104 weeks), mean HbA1c reductions were similar for degludec and glargine; estimated treatment difference between degludec and glargine was 1 mmol/mol (95% CI −1 to 3) [0.07% (95% CI −0.07 to 0.22)], P = 0.339 in the extension trial set (degludec 551, glargine 174), comprising subjects who completed core trial and continued into the extension trial. Overall confirmed hypoglycaemia rates (1.72 vs. 2.05 episodes/patient-year), rates of adverse events possibly or probably related to trial product (0.19 events/patient-year), weight gain (2.7 vs. 2.4 kg) and mean daily insulin doses (0.63 U/kg) were similar between treatments in the safety analysis set (degludec 766, glargine 257) comprising all treated subjects. Rates of nocturnal confirmed hypoglycaemia (0.27 vs. 0.46 episodes/patient-year; P = 0.002) and severe hypoglycaemia (0.006 vs. 0.021 episodes/patient-year, P = 0.023) were significantly lower with degludec for the safety analysis set (analysis based on intention-to-treat full analysis set comprising all randomized subjects). Conclusions In Type 2 diabetes, insulin degludec in combination with oral anti-diabetic drugs, safely and effectively improves long-term glycaemic control, with a significantly lower risk of nocturnal hypoglycaemia as compared with glargine. PMID:23952326

  6. Alternative Devices for Taking Insulin

    MedlinePlus

    ... the day. Pumps can also give "bolus" doses—one-time larger doses—of insulin at meals and at times when blood glucose is too high based on the programming set by the user. Frequent blood glucose monitoring ...

  7. The role of exogenous insulin in the complex of hepatic lipidosis and ketosis associated with insulin resistance phenomenon in postpartum dairy cattle.

    PubMed

    Hayirli, A

    2006-10-01

    As a result of a marked decline in dry matter intake (DMI) prior to parturition and a slow rate of increase in DMI relative to milk production after parturition, dairy cattle experience a negative energy balance. Changes in nutritional and metabolic status during the periparturient period predispose dairy cattle to develop hepatic lipidosis and ketosis. The metabolic profile during early lactation includes low concentrations of serum insulin, plasma glucose, and liver glycogen and high concentrations of serum glucagon, adrenaline, growth hormone, plasma beta-hydroxybutyrate and non-esterified fatty acids, and liver triglyceride. Moreover, during late gestation and early lactation, flow of nutrients to fetus and mammary tissues are accorded a high degree of metabolic priority. This priority coincides with lowered responsiveness and sensitivity of extrahepatic tissues to insulin, which presumably plays a key role in development of hepatic lipidosis and ketosis. Hepatic lipidosis and ketosis compromise production, immune function, and fertility. Cows with hepatic lipidosis and ketosis have low tissue responsiveness to insulin owing to ketoacidosis. Insulin has numerous roles in metabolism of carbohydrates, lipids and proteins. Insulin is an anabolic hormone and acts to preserve nutrients as well as being a potent feed intake regulator. In addition to the major replacement therapy to alleviate severity of negative energy balance, administration of insulin with concomitant delivery of dextrose increases efficiency of treatment for hepatic lipidosis and ketosis. However, data on use of insulin to prevent these lipid-related metabolic disorders are limited and it should be investigated.

  8. [Low molecular weight regulators of the intracellular insulin signal transduction as a correction method of the insulin resistance in the treatment of type 2 diabetes].

    PubMed

    Galenova, T I; Kyznetsova, M Y; Savchuk, O N; Ostapchenco, L I

    2016-01-01

    Insulin resistance is the characteristic feature of type 2 diabetes. This condition is manifested in the reduction of peripheral tissues sensitivity to the biological action of insulin and is expressed in the inhibition of cellular glucose absorption and metabolism in response to hormonal stimulation. At the cellular level, disorders which are realized both at the receptor and the postreceptor levels can serve a prerequisite to the formation of insulin resistance and are associated with a change in the amount or dysfunction of major molecular signaling cascade. Thus, the insulin receptor, as well as the other related signaling molecules can be considered as ideal therapeutic targets for the correction of insulin resistance and thus low molecular weight effectors which act on the individual links of insulin signaling cascade may be positioned as a new generation of anti-diabetic agents. This report provides information on the regulators of insulin receptor cascade, main advantages and disadvantages of their impact on biological targets and prospects for their therapeutic use as anti-diabetic drugs. PMID:26973184

  9. Small molecule activators of the insulin receptor: potential new therapeutic agents for the treatment of diabetes mellitus.

    PubMed

    Laborde, Edgardo; Manchem, Vara Prasad

    2002-12-01

    Diabetes mellitus refers to a spectrum of syndromes characterized by abnormally high levels of glucose in blood. These syndromes are associated with an absolute (Type 1 diabetes) or relative (Type 2 diabetes) deficiency of insulin, coupled with varying degrees of peripheral resistance to the actions of insulin. Clinical studies have shown that controlling hyperglycemia significantly reduces the appearance and progression of the vascular complications associated with diabetes. Insulin's regulation of glucose homeostasis is mediated by a cascade of signaling events that take place upon insulin binding to its cell surface receptor. Autophosphorylation of the receptor and activation of its intrinsic tyrosine kinase are critical processes for transmitting these intracellular signals. Type 1 diabetes patients depend on exogenous insulin to achieve these effects, whereas Type 2 diabetes patients can accomplish a similar response through oral medications that increase the production of endogenous insulin or enhance its actions on the target tissues. Current biochemical and clinical evidence suggests that defects within the insulin receptor itself may be a cause of insulin resistance leading to Type 2 diabetes. This review focuses on the insulin receptor as a target for therapeutic intervention, and describes the recent discovery of small molecules that act on the receptor and either enhance or directly emulate the actions of insulin both in vitro and in vivo.

  10. Effect of Insulin on Potassium Flux and Water and Electrolyte Content of Muscles from Normal and from Hypophysectomized Rats

    PubMed Central

    Zierler, Kenneth L.; Rogus, Ellen; Hazlewood, Carlton F.

    1966-01-01

    It was reported previously that insulin hyperpolarized rat skeletal muscle and decreased K+ flux in both directions. The observations on K+ flux are now extended to take advantage of the greater sensitivity to insulin of hyperphysectomized rats. Insulin caused a shift of water from extracellular to intracellular space if glucose was present, but not in its absence. Insulin caused net gain of muscle fiber K+, though not necessarily an increase in K+ concentration in fiber water. It probably also decreased intrafiber Na+ and Cl-. Insulin decreased K+ efflux. The effect was dose-dependent. Muscles from hypophysectomized rats were more sensitive to the action of insulin on K+ flux than were those from normal rats. The effect was demonstrable within the time resolution of the system, suggesting that insulin's action is on cell surfaces. K+ influx was also decreased by insulin. Bookkeeping suggests that some K+ influx be called active. Insulin seemed to decrease active K+ influx and passive K+ efflux. It is not resolved whether insulin has a true dual effect or whether it acts only on passive fluxes in both directions (the apparent action on active K+ influx being an artefact of incomplete definition of passive flux) or whether a single alteration in the membrane may affect both active and passive fluxes. PMID:5938822

  11. Cardiovascular effects of basal insulins.

    PubMed

    Mannucci, Edoardo; Giannini, Stefano; Dicembrini, Ilaria

    2015-01-01

    Basal insulin is an important component of treatment for both type 1 and type 2 diabetes. One of the principal aims of treatment in patients with diabetes is the prevention of diabetic complications, including cardiovascular disease. There is some evidence, although controversial, that attainment of good glycemic control reduces long-term cardiovascular risk in both type 1 and type 2 diabetes. The aim of this review is to provide an overview of the potential cardiovascular safety of the different available preparations of basal insulin. Current basal insulin (neutral protamine Hagedorn [NPH], or isophane) and basal insulin analogs (glargine, detemir, and the more recent degludec) differ essentially by various measures of pharmacokinetic and pharmacodynamic effects in the bloodstream, presence and persistence of peak action, and within-subject variability in the glucose-lowering response. The currently available data show that basal insulin analogs have a lower risk of hypoglycemia than NPH human insulin, in both type 1 and type 2 diabetes, then excluding additional harmful effects on the cardiovascular system mediated by activation of the adrenergic system. Given that no biological rationale for a possible difference in cardiovascular effect of basal insulins has been proposed so far, available meta-analyses of publicly disclosed randomized controlled trials do not show any signal of increased risk of major cardiovascular events between the different basal insulin analogs. However, the number of available cardiovascular events in these trials is very small, preventing any clear-cut conclusion. The results of an ongoing clinical trial comparing glargine and degludec with regard to cardiovascular safety will provide definitive evidence. PMID:26203281

  12. Cardiovascular effects of basal insulins

    PubMed Central

    Mannucci, Edoardo; Giannini, Stefano; Dicembrini, Ilaria

    2015-01-01

    Basal insulin is an important component of treatment for both type 1 and type 2 diabetes. One of the principal aims of treatment in patients with diabetes is the prevention of diabetic complications, including cardiovascular disease. There is some evidence, although controversial, that attainment of good glycemic control reduces long-term cardiovascular risk in both type 1 and type 2 diabetes. The aim of this review is to provide an overview of the potential cardiovascular safety of the different available preparations of basal insulin. Current basal insulin (neutral protamine Hagedorn [NPH], or isophane) and basal insulin analogs (glargine, detemir, and the more recent degludec) differ essentially by various measures of pharmacokinetic and pharmacodynamic effects in the bloodstream, presence and persistence of peak action, and within-subject variability in the glucose-lowering response. The currently available data show that basal insulin analogs have a lower risk of hypoglycemia than NPH human insulin, in both type 1 and type 2 diabetes, then excluding additional harmful effects on the cardiovascular system mediated by activation of the adrenergic system. Given that no biological rationale for a possible difference in cardiovascular effect of basal insulins has been proposed so far, available meta-analyses of publicly disclosed randomized controlled trials do not show any signal of increased risk of major cardiovascular events between the different basal insulin analogs. However, the number of available cardiovascular events in these trials is very small, preventing any clear-cut conclusion. The results of an ongoing clinical trial comparing glargine and degludec with regard to cardiovascular safety will provide definitive evidence. PMID:26203281

  13. Biosimilar insulins: a European perspective

    PubMed Central

    DeVries, J H; Gough, S C L; Kiljanski, J; Heinemann, L

    2015-01-01

    Biosimilar insulins are likely to enter clinical practice in Europe in the near future. It is important that clinicians are familiar with and understand the concept of biosimilarity and how a biosimilar drug may differ from its reference product. The present article provides an overview of biosimilars, the European regulatory requirements for biosimilars and safety issues. It also summarizes the current biosimilars approved in Europe and the key clinical issues associated with the use of biosimilar insulins. PMID:25376600

  14. Massive insulin overdose managed by monitoring daily insulin levels.

    PubMed

    Mork, Tyler A; Killeen, Colin T; Patel, Neel K; Dohnal, James M; Karydes, Harry C; Leikin, Jerrold B

    2011-09-01

    We present a case of a significant insulin overdose that was managed by monitoring daily plasma insulin levels. A 39-year-old male with poorly controlled diabetes mellitus presented to the Emergency Department via emergency medical services after an attempted suicide by insulin overdose. In the attempted suicide, he injected 800 U of insulin lispro and 3800 U of insulin glargine subcutaneously over several parts of his abdomen. The patient was conscious upon arrival to the emergency department. His vital parameters were within normal range. The abdominal examination, in particular, was nonfocal and showed no evidence of hematomas. He was awake, alert, conversant, tearful, and without any focal deficits. An infusion of 10% dextrose was begun at 100 mL/h with hourly blood glucose (BG) checks. The patient was transferred to the intensive care unit where his BG began to decrease and fluctuate between 50 and 80 mg/dL, and the rate of 10% dextrose was increased to 200 mL/h where it was maintained for the next 48 hours. The initial plasma insulin level was found to be 3712.6 uU/mL (reference range 2.6-31.1 uU/mL). At 10 hours, this had decreased to 1582.1 uU/ml. On five occasions, supplemental dextrose was needed when the BG was <70 mg/dL. Thirty-four hours after admission, the plasma insulin level was 724.8 uU/mL. Fifty-eight hours after admission, the plasma insulin level was 321.2 uU/mL, and the 10% dextrose infusion was changed to 5% dextrose solution at 200 mL/h. The plasma insulin levels continued to fall daily to 112.7 uU/mL at 80 hours and to 30.4 uU/mL at 108 hours. He was transferred to an inpatient psychiatric facility 109 hours after initial presentation. Monitoring daily plasma insulin levels and adjusting treatment on a day-to-day basis in terms of basal glucose infusions provides fewer opportunities for episodic hypoglycemia. Furthermore, it was easier to predict daily glucose requirements and eventual medical clearance based on the plasma levels.

  15. Phosphonate analogues of dinucleotides as substrates for DNA-dependent RNA polymerase from Escherichia coli in primed abortive initiation reaction.

    PubMed

    Cvekl, A; Horská, K; Sebesta, K; Rosenberg, I; Holý, A

    1989-02-01

    Dinucleotides (3'-5')-ApU and UpA and their 3'-O-phosphonylmethyl and 5'-O-phosphonylmethyl analogues were studied as substrates in the primed abortive synthesis catalysed by Escherichia coli DNA-dependent RNA polymerase on poly[d(A-T)] template. All phosphonate analogues of dinucleotides containing the anomalous sugar-phosphate backbone are substrates for the holoenzyme as verified by RNase A and RNase T2 digestion of the trinucleotide analogues obtained. The finding that phosphonate dinucleotides act as primers for transcription indicates that steric requirements at the initiation site are not as specific as previously supposed. Analysis of kinetic constants of ordered bibi reaction Kia, KmA, KmB and Vmax suggests that the instability of short RNA-DNA hybrids contributes to the abortive release of trinucleotides formed.

  16. Synthetic analogues of the natural compound cryphonectric acid interfere with photosynthetic machinery through two different mechanisms.

    PubMed

    Teixeira, Róbson Ricardo; Pereira, Wagner Luiz; Tomaz, Deborah Campos; de Oliveira, Fabrício Marques; Giberti, Samuele; Forlani, Giuseppe

    2013-06-12

    A series of isobenzofuran-1(3H)-ones (phthalides), analogues of the naturally occurring phytotoxin cryphonectric acid, were designed, synthesized, and fully characterized by NMR, IR, and MS analyses. Their synthesis was achieved via condensation, aromatization, and acetylation reactions. The measurement of the electron transport chain in spinach chloroplasts showed that several derivatives are capable of interfering with the photosynthetic apparatus. Few of them were found to inhibit the basal rate, but a significant inhibition was brought about only at concentrations exceeding 50 μM. Some other analogues acted as uncouplers or energy transfer inhibitors, with a remarkably higher effectiveness. Isobenzofuranone addition to the culture medium inhibited the growth of the cyanobacterium Synechococcus elongatus , with patterns consistent with the effects measured in vitro upon isolated chloroplasts. The most active derivatives, being able to completely suppress algal growth at 20 μM, may represent structures to be exploited for the design of new active ingredients for weed control.

  17. Toona Sinensis ameliorates insulin resistance via AMPK and PPARγ pathways.

    PubMed

    Liu, Hung-Wen; Huang, Wen-Cheng; Yu, Wen-Jen; Chang, Sue-Joan

    2015-06-01

    Toona Sinensis leaf (TSL) extract with a beneficial effect for managing hyperglycemia has been reported, however the underlying mechanism by which TSL extract acts as an insulin sensitizer remains uncertain, especially in peripheral tissues. TSL 95% ethanol extract exhibited the highest transactivity of PPARγ and contained the highest amounts of natural PPARγ ligands including palmitic acid, linoleic acid, and α-linolenic acid among different TSL ethanol extracts (0, 10, 50, 70, and 95%). The efficacy and the mechanism of TSL ethanol extract (95%) mediated anti-diabetic effects were examined by both in vivo and in vitro models in this study. An improved whole-body insulin sensitivity was observed in high-fat diet-fed (HFD) mice after 14 weeks of TSL treatment, as evidenced by a faster rate of plasma glucose clearing. The improved insulin sensitivity was through direct stimulation of PPARγ and adiponectin expression in adipose tissues of HFD mice. In addition to the PPARγ pathway, TSL stimulated glucose uptake via directly inducing AMPKα but not AS160 activation in C2C12 myotubes under palmitate-induced insulin resistance. TSL successfully induced sirtuin 1 and restored PGC1α, but failed to restore mitochondrial electron transport complexes I, III, IV and V in mRNA levels. Loss of the mitochondrial membrane potential coupled with AMPK activation suggests that TSL acts as a mitochondrial inhibitor to stimulate AMPK-mediated glucose uptake. This study demonstrated that TSL stimulated glucose uptake via AMPK activation in skeletal muscles and promoted PPARγ and normalized adiponectin expression in adipose tissues, thereby ameliorating insulin resistance.

  18. Insulin self-association and the relationship to pharmacokinetics and pharmacodynamics.

    PubMed

    DeFelippis, M R; Chance, R E; Frank, B H

    2001-01-01

    The treatment of type 1 diabetes requires multiple, daily injections of insulin. While many improvements involving formulation adjustments have been made in an attempt to optimize therapy, clinical experience indicates that the commercially available insulin preparations used for treatment have significant limitations. One principal deficiency relates to poor simulation of the physiological insulin secretion pattern, making achieving normalization of blood glucose concentrations difficult. Endogenous insulin secretion in nondiabetic subjects is characterized by a pulsatile profile that displays multiple, meal-stimulated phases and low basal concentrations between meals and overnight. Optimal diabetes therapy, therefore, requires insulin preparations that display a rapid onset of action with corresponding rapid clearance to provide for meal ingestion as well as preparations that can maintain a sustained, peakless profile for basal requirements. Recent efforts in pharmaceutical research have used the concept of rational-based design of the insulin molecule in an attempt to produce preparations that display more ideal pharmacological profiles. Using detailed structural information obtained from X-ray crystallographic studies to guide design strategies and exploit the nonrestrictive synthetic capabilities of recombinant DNA technology, researchers have prepared a number of insulin analogs that display a reduced propensity towards self-association. Clinical evaluations have shown that these so called "monomeric" analogs better mimic the meal-stimulated pharmacokinetics of insulin secretion observed in nondiabetics. Two monomeric insulin analog preparations have successfully obtained regulatory approval and are now commercially available. Efforts to produce optimized basal-acting insulin analogs have lagged behind. While some of these analogs have been engineered using recombinant DNA technology, design strategies in many cases exploit physicochemical properties of

  19. Insulin secretion as a determinant of pancreatic cancer risk.

    PubMed

    McCarty, M F

    2001-08-01

    New epidemiology confirms that glucose intolerance is a risk factor for pancreatic cancer, and that this association cannot be accounted for by an adverse impact of early pancreatic cancer on beta cell function. Previous reports indicate that risk for pancreatic cancer is increased in adult-onset diabetics. Since streptozotocin diabetes inhibits carcinogen-mediated induction of pancreatic cancer in hamsters, the most reasonable interpretation of these findings is that insulin (or some other beta cell product) acts as a promoter for pancreatic carcinogenesis. This view is consistent with a report that human pancreatic adenocarcinomas express insulin receptors that can stimulate mitosis; an additional possibility is that high insulin levels indirectly promote pancreatic carcinogenesis by boosting effective IGF-I activity via hepatic actions. In international ecologic epidemiology, pancreatic cancer rates correlate tightly with dietary intake of animal products; this may reflect the fact that vegan diets are associated with low diurnal insulin secretion. There is also suggestive evidence that macrobiotic vegan diets, which are low in glycemic index, may increase mean survival time in pancreatic cancer. However, other types of diets associated with decreased postprandial insulin response, such as high-protein diets or 'Mediterranean' diets high in oleic acid, may also have the potential for pancreatic cancer prevention. The huge increases of age-adjusted pancreatic cancer mortality in Japan and among African-Americans during the last century imply that pancreatic cancer is substantially preventable; a low-insulin-response diet coupled with exercise training, weight control, and smoking avoidance, commendable for a great many other reasons, may slash pancreatic cancer mortality dramatically. PMID:11461162

  20. SLC29A3 gene is mutated in pigmented hypertrichosis with insulin-dependent diabetes mellitus syndrome and interacts with the insulin signaling pathway.

    PubMed

    Cliffe, Simon T; Kramer, Jamie M; Hussain, Khalid; Robben, Joris H; de Jong, Eiko K; de Brouwer, Arjan P; Nibbeling, Esther; Kamsteeg, Erik-Jan; Wong, Melanie; Prendiville, Julie; James, Chela; Padidela, Raja; Becknell, Charlie; van Bokhoven, Hans; Deen, Peter M T; Hennekam, Raoul C M; Lindeman, Robert; Schenck, Annette; Roscioli, Tony; Buckley, Michael F

    2009-06-15

    Pigmented hypertrichotic dermatosis with insulin-dependent diabetes (PHID) syndrome is a recently described autosomal recessive disorder associated with predominantly antibody negative, insulin-dependent diabetes mellitus. In order to identify the genetic basis of PHID and study its relationship with glucose metabolism, we performed homozygosity mapping in five unrelated families followed by candidate gene sequencing. Five loss-of-function mutations were identified in the SLC29A3 gene which encodes a member of a highly conserved protein family that transports nucleosides, nucleobases and nucleoside analogue drugs, hENT3. We show that PHID is allelic with a related syndrome without diabetes mellitus, H syndrome. The interaction of SLC29A3 with insulin signaling pathways was then studied using an established model in Drosophila melanogaster. Ubiquitous knockdown of the Drosophila ortholog of hENT3, dENT1 is lethal under stringent conditions; whereas milder knockdown induced scutellar bristle phenotypes similar to those previously reported in the knockdown of the Drosophila ortholog of the Islet gene. A cellular growth assay showed a reduction of cell size/number which could be rescued or enhanced by manipulation of the Drosophila insulin receptor and its downstream signaling effectors, dPI3K and dAkt. In summary, inactivating mutations in SLC29A3 cause a syndromic form of insulin-dependent diabetes in humans and in Drosophila profoundly affect cell size/number through interactions with the insulin signaling pathway. These data suggest that further investigation of the role of SLC29A3 in glucose metabolism is a priority for diabetes research.

  1. Characterization of the intrinsic activity for a novel class of cannabinoid receptor ligands: Indole Quinuclidine analogues

    PubMed Central

    Franks, Lirit N.; Ford, Benjamin M.; Madadi, Nikhil R.; Penthala, Narsimha R.; Crooks, Peter A.; Prather, Paul L.

    2014-01-01

    Our laboratory recently reported that a group of novel indole quinuclidine analogues bind with nanomolar affinity to cannabinoid type-1 and type-2 receptors. This study characterized the intrinsic activity of these compounds by determining whether they exhibit agonist, antagonist, or inverse agonist activity at cannabinoid type-1 and/or type-2 receptors. Cannabinoid receptors activate Gi/Go-proteins that then proceed to inhibit activity of the downstream intracellular effector adenylyl cyclase. Therefore, intrinsic activity was quantified by measuring the ability of compounds to modulate levels of intracellular cAMP in intact cells. Concerning cannabinoid type-1 receptors endogenously expressed in Neuro2A cells, a single analogue exhibited agonist activity, while eight acted as neutral antagonists and two possessed inverse agonist activity. For cannabinoid type-2 receptors stably expressed in CHO cells, all but two analogues acted as agonists; these two exceptions exhibited inverse agonist activity. Confirming specificity at cannabinoid type-1 receptors, modulation of adenylyl cyclase activity by all proposed agonists and inverse agonists was blocked by co-incubation with the neutral cannabinoid type-1 antagonist O-2050. All proposed cannabinoid type-1 receptor antagonists attenuated adenylyl cyclase modulation by cannabinoid agonist CP-55,940. Specificity at cannabinoid type-2 receptors was confirmed by failure of all compounds to modulate adenylyl cyclase activity in CHO cells devoid of cannabinoid type-2 receptors. Further characterization of select analogues demonstrated concentration-dependent modulation of adenylyl cyclase activity with potencies similar to their respective affinities for cannabinoid receptors. Therefore, indole quinuclidines are a novel structural class of compounds exhibiting high affinity and a range of intrinsic activity at cannabinoid type-1 and type-2 receptors. PMID:24858620

  2. Insulin modulates network activity in olfactory bulb slices: impact on odour processing.

    PubMed

    Kuczewski, Nicola; Fourcaud-Trocmé, Nicolas; Savigner, Agnès; Thevenet, Marc; Aimé, Pascaline; Garcia, Samuel; Duchamp-Viret, Patricia; Palouzier-Paulignan, Brigitte

    2014-07-01

    Odour perception depends closely on nutritional status, in animals as in humans. Insulin, the principal anorectic hormone, appears to be one of the major candidates for ensuring the link between olfactory abilities and nutritional status, by modifying processing in the olfactory bulb (OB), one of its main central targets. The present study investigates whether and how insulin can act in OB, by evaluating its action on the main output neurons activities, mitral cells (MCs), in acute rat OB slices. Insulin was found to act at two OB network levels: (1) on MCs, by increasing their excitability, probably by inhibiting two voltage-gated potassium (K(+)) channels; (2) on interneurons by modifying the GABAergic and on glutamatergic synaptic activity impinging on MCs, mainly reducing them. Insulin also altered the olfactory nerve (ON)-evoked excitatory postsynaptic currents in 60% of MCs. Insulin decreased or increased the ON-evoked responses in equal proportion and the direction of its effect depended on the initial neuron ON-evoked firing rate. Indeed, insulin tended to decrease the high and to increase the low ON-evoked firing rates, thereby reducing inter-MC response firing variability. Therefore, the effects of insulin on the evoked firing rates were not carried out indiscriminately in the MC population. By constructing a mathematical model, the impact of insulin complex effects on OB was assessed at the population activity level. The model shows that the reduction of variability across cells could affect MC detection and discrimination abilities, mainly by decreasing and, less frequently, increasing them, depending on odour quality. Thus, as previously proposed, this differential action of insulin on MCs across odours would allow this hormone to put the olfactory function under feeding signal control, given the discerning valence of an odour as a function of nutritional status. PMID:24710056

  3. Region-Dependent Role of Cell-Penetrating Peptides in Insulin Absorption Across the Rat Small Intestinal Membrane.

    PubMed

    Khafagy, El-Sayed; Iwamae, Ruisha; Kamei, Noriyasu; Takeda-Morishita, Mariko

    2015-11-01

    We have reported that the cell-penetrating peptide (CPP) penetratin acts as a potential absorption enhancer in oral insulin delivery systems and that this action occurs through noncovalent intermolecular interactions. However, the region-dependent role of CPPs in intestinal insulin absorption has not been clarified. To identify the intestinal region where CPPs have the most effect in increasing insulin absorption, the region-dependent action of penetratin was investigated using in situ closed intestinal loops in rats. The order of the insulin area under the insulin concentration-time curve (AUC) increase effect by L-penetratin was ileum > jejunum > duodenum > colon. By contrast, the AUC order after coadministration of insulin with D-penetratin was colon > duodenum ≥ jejunum and ileum. We also compared the effects of the L- and D-forms of penetratin, R8, and PenetraMax on ileal insulin absorption. Along with the CPPs used in this study, L- and D-PenetraMax produced the largest insulin AUCs. An absorption study using ilea pretreated with CPPs showed that PenetraMax had no irreversible effect on the intestinal epithelial membrane. The degradation of insulin in the presence of CPPs was assessed in rat intestinal enzymatic fluid. The half-life (t 1/2) of insulin increased from 14.5 to 23.7 and 184.7 min in the presence of L- and D-PenetraMax, respectively. These enzymatic degradation-resistant effects might contribute partly to the increased ileal absorption of insulin induced by D-PenetraMax. In conclusion, this study demonstrated that the ability of the L- and D-forms of penetratin to increase intestinal insulin absorption was maximal in the ileum and the colon, respectively, and that D-PenetraMax is a powerful but transient enhancer of oral insulin absorption.

  4. Plasminogen activator inhibitor-1 synthesis in the human hepatoma cell line Hep G2. Metformin inhibits the stimulating effect of insulin.

    PubMed Central

    Anfosso, F; Chomiki, N; Alessi, M C; Vague, P; Juhan-Vague, I

    1993-01-01

    High plasma plasminogen activator inhibitor-1 (PAI-1) activity is associated with insulin resistance and is correlated with hyperinsulinemia. The cellular origin of plasma PAI-1 in insulin resistance is not known. The hepatoma cell line Hep G2 has been shown to synthesize PAI-1 in response to insulin. The aim of this study was to analyze the insulin-mediated response of PAI-1 and lipid synthesis in Hep G2 cells after producing an insulin-resistant state by decreasing insulin receptor numbers. The effect of metformin, a dimethyl-substituted biguanide, known to lower plasma insulin and PAI-1 levels in vivo was concomitantly evaluated. Preincubation by an 18-h exposure of Hep G2 cells to 10(-7) M insulin aimed at reducing the number of insulin receptors, was followed by a subsequent 24-h stimulation with 10(-9) M insulin. The decrease in insulin receptors was accompanied as expected, by a reduction in [14C]acetate incorporation, an index of lipid synthesis, whereas PAI-1 secretion and PAI-1 mRNA expression were enhanced. The addition of metformin did not modify the effect of insulin on insulin receptors or [14C]acetate incorporation. In contrast, the drug (10(-4) M) inhibited insulin-mediated PAI-1 synthesis. The results indicate that PAI-1 synthesis in presence of insulin is markedly increased in down-regulated cells, and that metformin inhibits this effect by acting at the cellular level. These in vitro data are relevant with those found in vivo in insulin-resistant patients. Hep G2 cells may be a suitable model to study PAI-1 regulation in response to hyperinsulinemia. Images PMID:8387542

  5. Differential Effects of Camel Milk on Insulin Receptor Signaling – Toward Understanding the Insulin-Like Properties of Camel Milk

    PubMed Central

    Abdulrahman, Abdulrasheed O.; Ismael, Mohammad A.; Al-Hosaini, Khaled; Rame, Christelle; Al-Senaidy, Abdulrahman M.; Dupont, Joëlle; Ayoub, Mohammed Akli

    2016-01-01

    Previous studies on the Arabian camel (Camelus dromedarius) showed beneficial effects of its milk reported in diverse models of human diseases, including a substantial hypoglycemic activity. However, the cellular and molecular mechanisms involved in such effects remain completely unknown. In this study, we hypothesized that camel milk may act at the level of human insulin receptor (hIR) and its related intracellular signaling pathways. Therefore, we examined the effect of camel milk on the activation of hIR transiently expressed in human embryonic kidney 293 (HEK293) cells using bioluminescence resonance energy transfer (BRET) technology. BRET was used to assess, in live cells and real-time, the physical interaction between hIR and insulin receptor signaling proteins (IRS1) and the growth factor receptor-bound protein 2 (Grb2). Our data showed that camel milk did not promote any increase in the BRET signal between hIR and IRS1 or Grb2 in the absence of insulin stimulation. However, it significantly potentiated the maximal insulin-promoted BRET signal between hIR and Grb2 but not IRS1. Interestingly, camel milk appears to differentially impact the downstream signaling since it significantly activated ERK1/2 and potentiated the insulin-induced ERK1/2 but not Akt activation. These observations are to some extent consistent with the BRET data since ERK1/2 and Akt activation are known to reflect the engagement of Grb2 and IRS1 pathways, respectively. The preliminary fractionation of camel milk suggests the peptide/protein nature of the active component in camel milk. Together, our study demonstrates for the first time an allosteric effect of camel milk on insulin receptor conformation and activation with differential effects on its intracellular signaling. These findings should help to shed more light on the hypoglycemic activity of camel milk with potential therapeutic applications. PMID:26858689

  6. Differential Effects of Camel Milk on Insulin Receptor Signaling - Toward Understanding the Insulin-Like Properties of Camel Milk.

    PubMed

    Abdulrahman, Abdulrasheed O; Ismael, Mohammad A; Al-Hosaini, Khaled; Rame, Christelle; Al-Senaidy, Abdulrahman M; Dupont, Joëlle; Ayoub, Mohammed Akli

    2016-01-01

    Previous studies on the Arabian camel (Camelus dromedarius) showed beneficial effects of its milk reported in diverse models of human diseases, including a substantial hypoglycemic activity. However, the cellular and molecular mechanisms involved in such effects remain completely unknown. In this study, we hypothesized that camel milk may act at the level of human insulin receptor (hIR) and its related intracellular signaling pathways. Therefore, we examined the effect of camel milk on the activation of hIR transiently expressed in human embryonic kidney 293 (HEK293) cells using bioluminescence resonance energy transfer (BRET) technology. BRET was used to assess, in live cells and real-time, the physical interaction between hIR and insulin receptor signaling proteins (IRS1) and the growth factor receptor-bound protein 2 (Grb2). Our data showed that camel milk did not promote any increase in the BRET signal between hIR and IRS1 or Grb2 in the absence of insulin stimulation. However, it significantly potentiated the maximal insulin-promoted BRET signal between hIR and Grb2 but not IRS1. Interestingly, camel milk appears to differentially impact the downstream signaling since it significantly activated ERK1/2 and potentiated the insulin-induced ERK1/2 but not Akt activation. These observations are to some extent consistent with the BRET data since ERK1/2 and Akt activation are known to reflect the engagement of Grb2 and IRS1 pathways, respectively. The preliminary fractionation of camel milk suggests the peptide/protein nature of the active component in camel milk. Together, our study demonstrates for the first time an allosteric effect of camel milk on insulin receptor conformation and activation with differential effects on its intracellular signaling. These findings should help to shed more light on the hypoglycemic activity of camel milk with potential therapeutic applications. PMID:26858689

  7. Metabolic flexibility and insulin resistance.

    PubMed

    Galgani, Jose E; Moro, Cedric; Ravussin, Eric

    2008-11-01

    Metabolic flexibility is the capacity for the organism to adapt fuel oxidation to fuel availability. The inability to modify fuel oxidation in response to changes in nutrient availability has been implicated in the accumulation of intramyocellular lipid and insulin resistance. The metabolic flexibility assessed by the ability to switch from fat to carbohydrate oxidation is usually impaired during a hyperinsulinemic clamp in insulin-resistant subjects; however, this "metabolic inflexibility" is mostly the consequence of impaired cellular glucose uptake. Indeed, after controlling for insulin-stimulated glucose disposal rate (amount of glucose available for oxidation), metabolic flexibility is not altered in obesity regardless of the presence of type 2 diabetes. To understand how intramyocellular lipids accumulate and cause insulin resistance, the assessment of metabolic flexibility to high-fat diets is more relevant than metabolic flexibility during a hyperinsulinemic clamp. An impaired capacity to upregulate muscle lipid oxidation in the face of high lipid supply may lead to increased muscle fat accumulation and insulin resistance. Surprisingly, very few studies have investigated the response to high-fat diets. In this review, we discuss the role of glucose disposal rate, adipose tissue lipid storage, and mitochondrial function on metabolic flexibility. Additionally, we emphasize the bias of using the change in respiratory quotient to calculate metabolic flexibility and propose novel approaches to assess metabolic flexibility. On the basis of current evidence, one cannot conclude that impaired metabolic flexibility is responsible for the accumulation of intramyocellular lipid and insulin resistance. We propose to study metabolic flexibility in response to high-fat diets in individuals having contrasting degree of insulin sensitivity and/or mitochondrial characteristics. PMID:18765680

  8. Digitoxin Analogues with Improved Anticytomegalovirus Activity

    PubMed Central

    2014-01-01

    Cardiac glycosides are potent inhibitors of cancer cell growth and possess antiviral activities at nanomolar concentrations. In this study we evaluated the anticytomegalovirus (CMV) activity of digitoxin and several of its analogues. We show that sugar type and sugar length attached to the steroid core structure affects its anticytomegalovirus activity. Structure–activity relationship (SAR) studies identified the l-sugar containing cardiac glycosides as having improved anti-CMV activity and may lead to better understanding of how these compounds inhibit CMV replication. PMID:24900847

  9. Materials analogue of zero-stiffness structures

    NASA Astrophysics Data System (ADS)

    Kumar, Arun; Subramaniam, Anandh

    2011-04-01

    Anglepoise lamps and certain tensegrities are examples of zero-stiffness structures. These structures are in a state of neutral equilibrium with respect to changes in configuration of the system. Using Eshelby's example of an edge dislocation in a thin plate that can bend, we report the discovery of a non-trivial new class of material structures as an analogue to zero-stiffness structures. For extended positions of the edge dislocation in these structures, the dislocation experiences a zero image force. Salient features of these material structures along with the key differences from conventional zero-stiffness structures are pointed out.

  10. Spectroscopic study of solar twins and analogues

    NASA Astrophysics Data System (ADS)

    Datson, Juliet; Flynn, Chris; Portinari, Laura

    2015-02-01

    Context. Many large stellar surveys have been and are still being carried out, providing huge amounts of data, for which stellar physical parameters will be derived. Solar twins and analogues provide a means to test the calibration of these stellar catalogues because the Sun is the best-studied star and provides precise fundamental parameters. Solar twins should be centred on the solar values. Aims: This spectroscopic study of solar analogues selected from the Geneva-Copenhagen Survey (GCS) at a resolution of 48 000 provides effective temperatures and metallicities for these stars. We test whether our spectroscopic parameters, as well as the previous photometric calibrations, are properly centred on the Sun. In addition, we search for more solar twins in our sample. Methods: The methods used in this work are based on literature methods for solar twin searches and on methods we developed in previous work to distinguish the metallicity-temperature degeneracies in the differential comparison of spectra of solar analogues versus a reference solar reflection spectrum. Results: We derive spectroscopic parameters for 148 solar analogues (about 70 are new entries to the literature) and verify with a-posteriori differential tests that our values are well-centred on the solar values. We use our dataset to assess the two alternative calibrations of the GCS parameters; our methods favour the latest revision. We show that the choice of spectral line list or the choice of asteroid or time of observation does not affect the results. We also identify seven solar twins in our sample, three of which are published here for the first time. Conclusions: Our methods provide an independent means to differentially test the calibration of stellar catalogues around the values of a well-known benchmark star, which makes our work interesting for calibration tests of upcoming Galactic surveys. Based on observations made with ESO Telescopes at the La Silla Observatory under programme ID 077.D

  11. Analogue models of pull-apart basins

    NASA Astrophysics Data System (ADS)

    McClay, Ken; Dooley, Tim

    1995-08-01

    Sandbox analogue models of pull-apart basins that developed in sedimentary strata above releasing steps in underlying basement faults are characterized by rhombic basins that are flat-bottomed box grabens with a subhorizontal synkinematic basin infill. Steep to nearly vertical, sigmoidal oblique-slip and segmented oblique-extensional faults are the dominant bounding structures of the pull-apart basins. Cross-basin, short-cut faults link the offset principal displacement zones that are characterized by flower structure development. The structural architectures of the physical models compare directly in form and dimensions to natural examples of strike-slip pull-apart basins.

  12. A Novel Approach to Identify Two Distinct Receptor Binding Surfaces of Insulin-like Growth Factor II*S⃞

    PubMed Central

    Alvino, Clair L.; McNeil, Kerrie A.; Ong, Shee Chee; Delaine, Carlie; Booker, Grant W.; Wallace, John C.; Whittaker, Jonathan; Forbes, Briony E.

    2009-01-01

    Very little is known about the residues important for the interaction of insulin-like growth factor II (IGF-II) with the type 1 IGF receptor (IGF-1R) and the insulin receptor (IR). Insulin, to which IGF-II is homologous, is proposed to cross-link opposite halves of the IR dimer through two receptor binding surfaces, site 1 and site 2. In the present study we have analyzed the contribution of IGF-II residues equivalent to insulin's two binding surfaces toward the interaction of IGF-II with the IGF-1R and IR. Four “site 1” and six “site 2” analogues were produced and analyzed in terms of IGF-1R and IR binding and activation. The results show that Val43, Phe28, and Val14 (equivalent to site 1) are critical to IGF-1R and IR binding, whereas mutation to alanine of Gln18 affects only IGF-1R and not IR binding. Alanine substitutions at Glu12, Asp15, Phe19, Leu53, and Glu57 analogues resulted in significant (>2-fold) decreases in affinity for both the IGF-1R and IR. Furthermore, taking a novel approach using a monomeric, single-chain minimized IGF-1R we have defined a distinct second binding surface formed by Glu12, Phe19, Leu53, and Glu57 that potentially engages the IGF-1R at one or more of the FnIII domains. PMID:19139090

  13. Optimal Dose and Method of Administration of Intravenous Insulin in the Management of Emergency Hyperkalemia: A Systematic Review

    PubMed Central

    Harel, Ziv; Kamel, Kamel S.

    2016-01-01

    Background and Objectives Hyperkalemia is a common electrolyte disorder that can result in fatal cardiac arrhythmias. Despite the importance of insulin as a lifesaving intervention in the treatment of hyperkalemia in an emergency setting, there is no consensus on the dose or the method (bolus or infusion) of its administration. Our aim was to review data in the literature to determine the optimal dose and route of administration of insulin in the management of emergency hyperkalemia. Design, Setting, Participants, & Measurements We searched several databases from their date of inception through February 2015 for eligible articles published in any language. We included any study that reported on the use of insulin in the management of hyperkalemia. Results We identified eleven studies. In seven studies, 10 units of regular insulin was administered (bolus in five studies, infusion in two studies), in one study 12 units of regular insulin was infused over 30 minutes, and in three studies 20 units of regular insulin was infused over 60 minutes. The majority of included studies were biased. There was no statistically significant difference in mean decrease in serum potassium (K+) concentration at 60 minutes between studies in which insulin was administered as an infusion of 20 units over 60 minutes and studies in which 10 units of insulin was administered as a bolus (0.79±0.25 mmol/L versus 0.78±0.25 mmol/L, P = 0.98) or studies in which 10 units of insulin was administered as an infusion (0.79±0.25 mmol/L versus 0.39±0.09 mmol/L, P = 0.1). Almost one fifth of the study population experienced an episode of hypoglycemia. Conclusion The limited data available in the literature shows no statistically significant difference between the different regimens of insulin used to acutely lower serum K+ concentration. Accordingly, 10 units of short acting insulin given intravenously may be used in cases of hyperkalemia. Alternatively, 20 units of short acting insulin may be

  14. U.S. Nuclear Regulatory Commission natural analogue research program

    SciTech Connect

    Kovach, L.A.; Ott, W.R.

    1995-09-01

    This article describes the natural analogue research program of the U.S. Nuclear Regulatory Commission (US NRC). It contains information on the regulatory context and organizational structure of the high-level radioactive waste research program plan. It also includes information on the conditions and processes constraining selection of natural analogues, describes initiatives of the US NRC, and describes the role of analogues in the licensing process.

  15. CO2 Removal using a Synthetic Analogue of Carbonic Anhydrase

    SciTech Connect

    Cordatos, Harry

    2010-09-14

    Project attempts to develop a synthetic analogue for carbonic anhydrase and incorporate it in a membrane for separation of CO2 from coal power plant flue gas. Conference poster presents result of first 9 months of project progress including concept, basic system architecture and membrane properties target, results of molecular modeling for analogue - CO2 interaction, and next steps of testing analogue resistance to flue gas contaminants.

  16. Insulin glargine 300 U/mL in the management of diabetes: clinical utility and patient perspectives

    PubMed Central

    de Galan, Bastiaan E

    2016-01-01

    There is ongoing interest in optimizing basal insulin treatment by developing insulins with a flat pharmacological profile, a long duration of action (typically beyond 24 hours) and minimum day-to-day variation. Glargine-300 is a modified form of the long-acting insulin analog glargine in that it has been concentrated at 300 units/mL rather than the conventional 100 units/mL. Glargine-300 has a longer duration of action and a flatter pharmacological profile than original glargine-100. This property allows for more flexibility around the timing of administration, when injected once per day. Open-label studies in patients with diabetes have shown that treatment with glargine-300 achieves comparable glycemic control compared to treatment with glargine-100, albeit with consistently higher insulin requirements. These studies also showed that treatment with glargine-300 was associated with lower risks of nocturnal hypoglycemia in patients with type 2 diabetes, particularly those already on insulin, whereas data are mixed in insulin-naïve patients with type 2 diabetes or in patients with type 1 diabetes. Treatment with glargine-300 did not appear to affect the risk of overall hypoglycemia, whereas studies lacked sufficient power to investigate the effect on the risk of severe hypoglycemia. Future studies need to establish the role of glargine-300 in the treatment of diabetes alongside the other new long-acting insulin analog, insulin degludec, which was recently introduced to the market. PMID:27799746

  17. Novel repressor regulates insulin sensitivity through interaction with Foxo1

    PubMed Central

    Nakae, Jun; Cao, Yongheng; Hakuno, Fumihiko; Takemori, Hiroshi; Kawano, Yoshinaga; Sekioka, Risa; Abe, Takaya; Kiyonari, Hiroshi; Tanaka, Toshiya; Sakai, Juro; Takahashi, Shin-Ichiro; Itoh, Hiroshi

    2012-01-01

    Forkhead box-containing protein o (Foxo) 1 is a key transcription factor in insulin and glucose metabolism. We identified a Foxo1-CoRepressor (FCoR) protein in mouse adipose tissue that inhibits Foxo1's activity by enhancing acetylation via impairment of the interaction between Foxo1 and the deacetylase Sirt1 and via direct acetylation. FCoR is phosphorylated at Threonine 93 by catalytic subunit of protein kinase A and is translocated into nucleus, making it possible to bind to Foxo1 in both cytosol and nucleus. Knockdown of FCoR in 3T3-F442A cells enhanced expression of Foxo target and inhibited adipocyte differentiation. Overexpression of FCoR in white adipose tissue decreased expression of Foxo-target genes and adipocyte size and increased insulin sensitivity in Leprdb/db mice and in mice fed a high-fat diet. In contrast, Fcor knockout mice were lean, glucose intolerant, and had decreased insulin sensitivity that was accompanied by increased expression levels of Foxo-target genes and enlarged adipocytes. Taken together, these data suggest that FCoR is a novel repressor that regulates insulin sensitivity and energy metabolism in adipose tissue by acting to fine-tune Foxo1 activity. PMID:22510882

  18. Insulin-Sensitizers, Polycystic Ovary Syndrome and Gynaecological Cancer Risk

    PubMed Central

    Lauretta, Rosa; Lanzolla, Giulia; Vici, Patrizia; Mariani, Luciano; Moretti, Costanzo

    2016-01-01

    Preclinical, early phase clinical trials and epidemiological evidence support the potential role of insulin-sensitizers in cancer prevention and treatment. Insulin-sensitizers improve the metabolic and hormonal profile in PCOS patients and may also act as anticancer agents, especially in cancers associated with hyperinsulinemia and oestrogen dependent cancers. Several lines of evidence support the protection against cancer exerted by dietary inositol, in particular inositol hexaphosphate. Metformin, thiazolidinediones, and myoinositol postreceptor signaling may exhibit direct inhibitory effects on cancer cell growth. AMPK, the main molecular target of metformin, is emerging as a target for cancer prevention and treatment. PCOS may be correlated to an increased risk for developing ovarian and endometrial cancer (up to threefold). Several studies have demonstrated an increase in mortality rate from ovarian cancer among overweight/obese PCOS women compared with normal weight women. Long-term use of metformin has been associated with lower rates of ovarian cancer. Considering the evidence supporting a higher risk of gynaecological cancer in PCOS women, we discuss the potential use of insulin-sensitizers as a potential tool for chemoprevention, hypothesizing a possible rationale through which insulin-sensitizers may inhibit tumourigenesis. PMID:27725832

  19. The story of insulin discovery.

    PubMed

    Karamitsos, Dimitrios T

    2011-08-01

    Many researchers had tried to isolate insulin from animal pancreas, but Frederick Banting, a young surgeon, and Charles Best, a medical student, were the ones that succeeded. They both worked hard in very difficult conditions in the late 1921 and early 1922 until final success. They encountered problems with the impurities of their extract that was causing inflammations, but J. Collip, their late biochemist collaborator, worked many hours and was soon able to prepare cleaner insulin, free from impurities. This extract was administered successfully to L. Thomson, a ketotic young diabetic patient, on 23 January 1922. Following this, Eli Lilly & Co of USA started the commercial production of insulin, soon followed by the Danish factories Nordisc and NOVO as well as the British Wellcome. Nicolae Paulescu who was professor of Physiology in Bucharest, was also quite close to the discovery of insulin but the researchers in Toronto were faster and more efficient. Banting and Macleod won the Nobel price, which Banting shared with Best and Macleod with J. Collip. The contribution of Paulescu in insulin discovery was recognized after his death. PMID:21864746

  20. Patient Perspectives on Biosimilar Insulin.

    PubMed

    Wilkins, Alasdair R; Venkat, Manu V; Brown, Adam S; Dong, Jessica P; Ran, Nina A; Hirsch, James S; Close, Kelly L

    2014-01-01

    Given that a new wave of biosimilar insulins will likely enter the market in coming years, it is important to understand patient perspectives on these biosimilars. A survey (N = 3214) conducted by the market research company dQ&A, which maintains a 10 000-patient panel of people with type 1 or type 2 diabetes in roughly equal measure, investigated these perspectives. The survey asked whether patients would switch to a hypothetical less expensive biosimilar insulin that was approved by their provider. Approximately 66% of respondents reported that they would "definitely" or "likely" use a biosimilar insulin, while 17% reported that they were "unlikely" to use or would "definitely not use" such a product. Type 2 diabetes patients demonstrated slightly more willingness to use biosimilars than type 1 diabetes patients. Common patient concerns included whether biosimilars would be as effective as reference products (~650 respondents), whether side effect profiles would deviate from those of reference products (~220 respondents), and the design of the delivery device (~50 respondents). While cost savings associated with biosimilar insulins could increase patient uptake, especially among patients without health insurance (some recent estimates suggest that biosimilars will come at a substantial discount), patients may still need assurance that a cheaper price tag is not necessarily associated with substandard quality. Overall, the dQ&A survey indicates that the majority of patients are willing to consider biosimilar insulins, but manufacturers will need to work proactively to address and assuage patient concerns regarding efficacy, safety, drug administration, and other factors. PMID:24876533

  1. Transplacental passage of insulin complexed to antibody.

    PubMed Central

    Bauman, W A; Yalow, R S

    1981-01-01

    The passage of plasma proteins across the placental barrier in humans is known to be highly selective. Thus, free maternal insulin has been reported not to cross the normal maternofetal barrier, although insulin-binding antibodies have been detected in newborn infants whose diabetic mothers received insulin therapy. In this report we demonstrate, with the use of a human antiserum that permits distinction between human and animal insulins, that insulin in the cord blood of each of two neonates of insulin-treated diabetic mothers was, in part, animal insulin. The higher the antibody titer of the mother the greater was the total insulin in the cord plasma and the greater was the fraction that was animal insulin. In case 1 cord plasma insulin was 0.7 unit/liter, of which 10% was animal insulin; in case 2 cord plasma insulin was 3.5 units/liter, of which 25% was animal insulin. The demonstration that antigen restricted from transplacental passage can be transferred while complexed to antibody raises the question whether such fetal exposure would induce partial or total immunologic unresponsiveness subsequently if the fetus were rechallenged with the same antigen. PMID:7027265

  2. Insulin receptors in the mammary gland

    SciTech Connect

    Smith, D.H.

    1986-01-01

    Insulin binding studies were conducted using mammary membrane preparations to further the authors understanding of insulin's role in regulating mammary metabolism, particularly ruminant mammary metabolism. Specific objectives were to: (1) characterize insulin binding to bovine mammary microsomes and determine if the specificity and kinetics of binding indicate the presence of insulin receptors in bovine mammary gland; (2) examine and compare insulin binding by liver and mammary microsomes of the pig and dairy cow; (3) examine insulin binding to bovine milk fat globule membranes (MFGM) and evaluate this model's usefulness in assessing insulin receptor regulation in the mammary gland of the cow; (4) examine the effect of dietary fat in insulin binding by rat mammary and liver microsomes. The specificity and kinetics of /sup 125/I-insulin binding of bovine mammary microsomes indicated the presence of insulin receptors in bovine mammary gland. Bovine liver and mammary microsomes specifically bound less /sup 125/I-insulin than did the corresponding porcine microsomes, and mammary microsomes, regardless of species, specifically bound less /sup 125/I-insulin than did liver microsomes. These differences in binding suggest differences in insulin responsiveness between pigs and cattle, as well as between the liver and mammary glands.

  3. Insulin-glycerolipid mediators and gene expression

    SciTech Connect

    Standaert, M.L.; Pollet, R.J. )

    1988-06-01

    Insulin is an anabolic polypeptide hormone with pleiotrophic effects. During the decades since the initial description by Banting and Best, the acute effects of insulin have been widely studied with particular focus on the mechanism or mechanisms of insulin activation of hexose transport and regulation of metabolic enzyme activity. However, recently there has been a major expansion of investigation to include insulin regulation of gene expression with multiple insulin-sensitive specific mRNAs now reported. In this review, we explore the involvement of insulin-induced changes in plasma membrane glycerolipid metabolism in the transmembrane signaling process required for insulin regulation of mRNA levels. Insulin increase diacylglycerol levels in insulin-responsive cells, and synthetic diacylglycerols or their phorbol ester diacylglycerol analogs, such as 4{beta}, 9{alpha}, 12{beta}, 13{alpha}, 20-pentahydroxytiglia-1,6-dien-3-one 12{beta}-myristate 13-acetate (TPA), mimic insulin regulation of ornithine decarboxylase mRNA, c-fos mRNA, and phosphoenolpyruvate carboxykinase mRNA levels. This suggests that insulin regulation of specific mRNA levels may be mediated by insulin-induced changes in phospholipid metabolism and that diacylglycerol may play a pivotal role in insulin regulation of gene expression.

  4. Self-Powered Analogue Smart Skin.

    PubMed

    Shi, Mayue; Zhang, Jinxin; Chen, Haotian; Han, Mengdi; Shankaregowda, Smitha A; Su, Zongming; Meng, Bo; Cheng, Xiaoliang; Zhang, Haixia

    2016-04-26

    The progress of smart skin technology presents unprecedented opportunities for artificial intelligence. Resolution enhancement and energy conservation are critical to improve the perception and standby time of robots. Here, we present a self-powered analogue smart skin for detecting contact location and velocity of the object, based on a single-electrode contact electrification effect and planar electrostatic induction. Using an analogue localizing method, the resolution of this two-dimensional smart skin can be achieved at 1.9 mm with only four terminals, which notably decreases the terminal number of smart skins. The sensitivity of this smart skin is remarkable, which can even perceive the perturbation of a honey bee. Meanwhile, benefiting from the triboelectric mechanism, extra power supply is unnecessary for this smart skin. Therefore, it solves the problems of batteries and connecting wires for smart skins. With microstructured poly(dimethylsiloxane) films and silver nanowire electrodes, it can be covered on the skin with transparency, flexibility, and high sensitivity. PMID:27010713

  5. Long-term predictions using natural analogues

    SciTech Connect

    Ewing, R.C.

    1995-09-01

    One of the unique and scientifically most challenging aspects of nuclear waste isolation is the extrapolation of short-term laboratory data (hours to years) to the long time periods (10{sup 3}-10{sup 5} years) required by regulatory agencies for performance assessment. The direct validation of these extrapolations is not possible, but methods must be developed to demonstrate compliance with government regulations and to satisfy the lay public that there is a demonstrable and reasonable basis for accepting the long-term extrapolations. Natural systems (e.g., {open_quotes}natural analogues{close_quotes}) provide perhaps the only means of partial {open_quotes}validation,{close_quotes} as well as data that may be used directly in the models that are used in the extrapolation. Natural systems provide data on very large spatial (nm to km) and temporal (10{sup 3}-10{sup 8} years) scales and in highly complex terranes in which unknown synergisms may affect radionuclide migration. This paper reviews the application (and most importantly, the limitations) of data from natural analogue systems to the {open_quotes}validation{close_quotes} of performance assessments.

  6. Magnetohydrodynamical Analogue of a Black Hole

    NASA Astrophysics Data System (ADS)

    Zamorano, Nelson; Asenjo, Felipe

    2014-03-01

    We study the conditions that a plasma fluid and its container should meet to generate a magneto-acoustic horizon. This effect becomes an alternative to the analogue black hole found in a transonic fluid flow setting. In this context we use the magnetohydrodynamic formalism (MHD) to analyze the evolution of an irrotational plasma fluid interacting with an external constant magnetic field. Under certain plausible approximations, the dynamic of the field perturbations is described by a scalar field potential that follows a second order differential equation. As we prove here, this equation corresponds to the wave equation associated to a scalar field in a curved space-time. This horizon emerges when the local speed of the medium grows larger than the sound velocity. The magnetic field generates an effective pressure which contributes to the magneto-acoustic speed. We compare these results with the known physics of analogue black holes. We will also refer to our ongoing experiment that, in its first stage, attempts to reproduce the wave horizons found in an open channel with an obstacle: PRL 106, 021302 (2011).

  7. Adaptive Evolution of the Insulin Two-Gene System in Mouse

    PubMed Central

    Shiao, Meng-Shin; Liao, Ben-Yang; Long, Manyuan; Yu, Hon-Tsen

    2008-01-01

    Insulin genes in mouse and rat compose a two-gene system in which Ins1 was retroposed from the partially processed mRNA of Ins2. When Ins1 originated and how it was retained in genomes still remain interesting problems. In this study, we used genomic approaches to detect insulin gene copy number variation in rodent species and investigated evolutionary forces acting on both Ins1 and Ins2. We characterized the phylogenetic distribution of the new insulin gene (Ins1) by Southern analyses and confirmed by sequencing insulin genes in the rodent genomes. The results demonstrate that Ins1 originated right before the mouse–rat split (∼20 MYA), and both Ins1 and Ins2 are under strong functional constraints in these murine species. Interestingly, by examining a range of nucleotide polymorphisms, we detected positive selection acting on both Ins2 and Ins1 gene regions in the Mus musculus domesticus populations. Furthermore, three amino acid sites were also identified as having evolved under positive selection in two insulin peptides: two are in the signal peptide and one is in the C-peptide. Our data suggest an adaptive divergence in the mouse insulin two-gene system, which may result from the response to environmental change caused by the rise of agricultural civilization, as proposed by the thrifty-genotype hypothesis. PMID:18245324

  8. Glucagon-like peptide analogues for type 2 diabetes mellitus: systematic review and meta-analysis

    PubMed Central

    2010-01-01

    Background Glucagon-like peptide (GLP-1) analogues are a new class of drugs used in the treatment of type 2 diabetes. They are given by injection, and regulate glucose levels by stimulating glucose-dependent insulin secretion and biosynthesis, suppressing glucagon secretion, and delaying gastric emptying and promoting satiety. This systematic review aims to provide evidence on the clinical effectiveness of the GLP-1 agonists in patients not achieving satisfactory glycaemic control with one or more oral glucose lowering drugs. Methods MEDLINE, EMBASE, the Cochrane Library and Web of Science were searched to find the relevant papers. We identified 28 randomised controlled trials comparing GLP-1 analogues with placebo, other glucose-lowering agents, or another GLP-1 analogue, in patients with type 2 diabetes with inadequate control on a single oral agent, or on dual therapy. Primary outcomes included HbA1c, weight change and adverse events. Results Studies were mostly of short duration, usually 26 weeks. All GLP-1 agonists reduced HbA1c by about 1% compared to placebo. Exenatide twice daily and insulin gave similar reductions in HbA1c, but exenatide 2 mg once weekly and liraglutide 1.8 mg daily reduced it by 0.20% and 0.30% respectively more than glargine. Liraglutide 1.2 mg daily reduced HbA1c by 0.34% more than sitagliptin 100 mg daily. Exenatide and liraglutide gave similar improvements in HbA1c to sulphonylureas. Exenatide 2 mg weekly and liraglutide 1.8 mg daily reduced HbA1c by more than exenatide 10 μg twice daily and sitagliptin 100 mg daily. Exenatide 2 mg weekly reduced HbA1c by 0.3% more than pioglitazone 45 mg daily. Exenatide and liraglutide resulted in greater weight loss (from 2.3 to 5.5 kg) than active comparators. This was not due simply to nausea. Hypoglycaemia was uncommon, except when combined with a sulphonylurea. The commonest adverse events with all GLP-1 agonists were initial nausea and vomiting. The GLP-1 agonists have some effect on beta

  9. Bead-Based Microfluidic Sediment Analogues: Fabrication and Colloid Transport.

    PubMed

    Guo, Yang; Huang, Jingwei; Xiao, Feng; Yin, Xiaolong; Chun, Jaehun; Um, Wooyong; Neeves, Keith B; Wu, Ning

    2016-09-13

    Mobile colloids can act as carriers for low-solubility contaminants in the environment. However, the dominant mechanism for this colloid-facilitated transport of chemicals is unclear. Therefore, we developed a bead-based microfluidic platform of sediment analogues and measured both single and population transport of model colloids. The porous medium is assembled through a bead-by-bead injection method. This approach has the versatility to build both electrostatically homogeneous and heterogeneous media at the pore scale. A T-junction at the exit also allowed for encapsulation and enumeration of colloids effluent at single particle resolution to give population dynamics. Tortuosity calculated from pore-scale trajectory analysis and its comparison with lattice Boltzmann simulations revealed that transport of colloids was influenced by the size exclusion effect. The porous media packed by positively and negatively charged beads into two layers showed distinctive colloidal particle retention and significant remobilization and re-adsorption of particles during water flushing. We demonstrated the potential of our method to fabricate porous media with surface heterogeneities at the pore scale. With both single and population dynamics measurement, our platform has the potential to connect pore-scale and macroscale colloid transport on a lab scale and to quantify the impact of grain surface heterogeneities that are natural in the subsurface environment. PMID:27548505

  10. Molecular mechanisms underlying a cellular analogue of operant reward learning

    PubMed Central

    Lorenzetti, Fred D.; Baxter, Douglas A.; Byrne, John H.

    2008-01-01

    SUMMARY Operant conditioning is a ubiquitous but mechanistically poorly understood form of associative learning in which an animal learns the consequences of its behavior. Using a single-cell analogue of operant conditioning in neuron B51 of Aplysia, we examined second-messenger pathways engaged by activity and reward and how they may provide a biochemical association underlying operant learning. Conditioning was blocked by Rp-cAMP, a peptide inhibitor of PKA, a PKC inhibitor and by expressing a dominant negative isoform of Ca2+-dependent PKC (apl-I). Thus, both PKA and PKC were necessary for operant conditioning. Injection of cAMP into B51 mimicked the effects of operant conditioning. Activation of PKC also mimicked conditioning, but was dependent on both cAMP and PKA, suggesting that PKC acted at some point upstream of PKA activation. Our results demonstrate how these molecules can interact to mediate operant conditioning in an individual neuron important for the expression of the conditioned behavior. PMID:18786364

  11. DLK1 Regulates Whole-Body Glucose Metabolism: A Negative Feedback Regulation of the Osteocalcin-Insulin Loop.

    PubMed

    Abdallah, Basem M; Ditzel, Nicholas; Laborda, Jorge; Karsenty, Gerard; Kassem, Moustapha

    2015-09-01

    The endocrine role of the skeleton in regulating energy metabolism is supported by a feed-forward loop between circulating osteoblast (OB)-derived undercarboxylated osteocalcin (Glu-OCN) and pancreatic β-cell insulin; in turn, insulin favors osteocalcin (OCN) bioactivity. These data suggest the existence of a negative regulation of this cross talk between OCN and insulin. Recently, we identified delta like-1 (DLK1) as an endocrine regulator of bone turnover. Because DLK1 is colocalized with insulin in pancreatic β-cells, we examined the role of DLK1 in insulin signaling in OBs and energy metabolism. We show that Glu-OCN specifically stimulates Dlk1 expression by the pancreas. Conversely, Dlk1-deficient (Dlk1(-/-) ) mice exhibited increased circulating Glu-OCN levels and increased insulin sensitivity, whereas mice overexpressing Dlk1 in OB displayed reduced insulin secretion and sensitivity due to impaired insulin signaling in OB and lowered Glu-OCN serum levels. Furthermore, Dlk1(-/-) mice treated with Glu-OC experienced significantly lower blood glucose levels than Glu-OCN-treated wild-type mice. The data suggest that Glu-OCN-controlled production of DLK1 by pancreatic β-cells acts as a negative feedback mechanism to counteract the stimulatory effects of insulin on OB production of Glu-OCN, a potential mechanism preventing OCN-induced hypoglycemia.

  12. Enhanced insulin binding to blood-brain barrier in vivo and to brain microvessels in vitro in newborn rabbits

    SciTech Connect

    Frank, H.J.; Jankovic-Vokes, T.; Pardridge, W.M.; Morris, W.L.

    1985-08-01

    Insulin is a known growth factor in nonneural tissue, and recent studies have shown that there are insulin receptors throughout the adult and fetal central nervous system. Since insulin has only limited access to the adult brain, this study was undertaken to determine if insulin has increased availability to the newborn brain where it may act as a neonatal brain growth promoter. In vivo brain uptake of SVI-insulin after a single-pass carotid injection was measured in newborn, 3-wk-old and 11-wk-old (adult) rabbits. The brain uptake index (BUI) relative to a THOH reference was 22.0 +/- 1.1% (mean +/- SEM) for newborn, 12.8 +/- 0.6% for 3-wk-old, and 6.5 +/- 0.1% for adults. Specific SVI-insulin binding to isolated cerebral microvessels was similarly increased in the newborn compared with the 3-wk-old and adult animals. Scatchard analysis revealed that the difference was due to an increase in receptor number with only minimal changes in the affinity. The increased availability of circulating insulin to the newborn brain was further corroborated by elevated CSF/serum and brain/serum insulin ratios in the newborn versus adult. These results suggest that insulin has increased access to the newborn brain where it may function as a growth factor.

  13. Exposure to excess insulin (glargine) induces type 2 diabetes mellitus in mice fed on a chow diet.

    PubMed

    Yang, Xuefeng; Mei, Shuang; Gu, Haihua; Guo, Huailan; Zha, Longying; Cai, Junwei; Li, Xuefeng; Liu, Zhenqi; Cao, Wenhong

    2014-06-01

    We have previously shown that insulin plays an important role in the nutrient-induced insulin resistance. In this study, we tested the hypothesis that chronic exposure to excess long-acting insulin (glargine) can cause typical type 2 diabetes mellitus (T2DM) in normal mice fed on a chow diet. C57BL/6 mice were treated with glargine once a day for 8 weeks, followed by evaluations of food intake, body weight, blood levels of glucose, insulin, lipids, and cytokines, insulin signaling, histology of pancreas, ectopic fat accumulation, oxidative stress level, and cholesterol content in mitochondria in tissues. Cholesterol content in mitochondria and its association with oxidative stress in cultured hepatocytes and β-cells were also examined. Results show that chronic exposure to glargine caused insulin resistance, hyperinsulinemia, and relative insulin deficiency (T2DM). Treatment with excess glargine led to loss of pancreatic islets, ectopic fat accumulation in liver, oxidative stress in liver and pancreas, and increased cholesterol content in mitochondria of liver and pancreas. Prolonged exposure of cultured primary hepatocytes and HIT-TI5 β-cells to insulin induced oxidative stress in a cholesterol synthesis-dependent manner. Together, our results show that chronic exposure to excess insulin can induce typical T2DM in normal mice fed on a chow diet.

  14. Exposure to excess insulin (glargine) induces type 2 diabetes mellitus in mice fed on a chow diet.

    PubMed

    Yang, Xuefeng; Mei, Shuang; Gu, Haihua; Guo, Huailan; Zha, Longying; Cai, Junwei; Li, Xuefeng; Liu, Zhenqi; Cao, Wenhong

    2014-06-01

    We have previously shown that insulin plays an important role in the nutrient-induced insulin resistance. In this study, we tested the hypothesis that chronic exposure to excess long-acting insulin (glargine) can cause typical type 2 diabetes mellitus (T2DM) in normal mice fed on a chow diet. C57BL/6 mice were treated with glargine once a day for 8 weeks, followed by evaluations of food intake, body weight, blood levels of glucose, insulin, lipids, and cytokines, insulin signaling, histology of pancreas, ectopic fat accumulation, oxidative stress level, and cholesterol content in mitochondria in tissues. Cholesterol content in mitochondria and its association with oxidative stress in cultured hepatocytes and β-cells were also examined. Results show that chronic exposure to glargine caused insulin resistance, hyperinsulinemia, and relative insulin deficiency (T2DM). Treatment with excess glargine led to loss of pancreatic islets, ectopic fat accumulation in liver, oxidative stress in liver and pancreas, and increased cholesterol content in mitochondria of liver and pancreas. Prolonged exposure of cultured primary hepatocytes and HIT-TI5 β-cells to insulin induced oxidative stress in a cholesterol synthesis-dependent manner. Together, our results show that chronic exposure to excess insulin can induce typical T2DM in normal mice fed on a chow diet. PMID:24741073

  15. Effect of glycerol on sustained insulin release from PVA hydrogels and its application in diabetes therapy

    PubMed Central

    Cai, Yunpeng; Che, Junyi; Yuan, Minglu; Shi, Xiaohong; Chen, Wei; Yuan, Wei-En

    2016-01-01

    The present study aimed to investigate the effects of glycerol on the physical properties and release of an insulin-loaded polyvinyl alcohol (PVA) hydrogel film. The insulin-loaded hydrogel composite film was produced using the freeze-thawing method, after which the in vitro swelling ratio, transmittance and insulin release, and the in vivo pharmacodynamics, of hydrogels containing various volumes of glycerol were investigated. The results demonstrated that the addition of glycerol reduced the swelling ratio and increased the softness of the PVA hydrogel film. An analysis of insulin release in vitro and of the hypoglycemic effects in rats demonstrated that the PVA hydrogel film had a sustained release of insulin and long-acting effect over 10 days. The results of the present study suggested that, as a hydrophilic plasticizer, glycerol was able to enhance the release of insulin in the early stage of release profile by enhancing the formation of water channels, although the total swelling ratio was decreased. Therefore, the insulin-loaded glycerol/PVA hydrogel film may be a promising sustained-release preparation for the treatment of diabetes. PMID:27698690

  16. SORCS1 is necessary for normal insulin secretory granule biogenesis in metabolically stressed β cells.

    PubMed

    Kebede, Melkam A; Oler, Angie T; Gregg, Trillian; Balloon, Allison J; Johnson, Adam; Mitok, Kelly; Rabaglia, Mary; Schueler, Kathryn; Stapleton, Donald; Thorstenson, Candice; Wrighton, Lindsay; Floyd, Brendan J; Richards, Oliver; Raines, Summer; Eliceiri, Kevin; Seidah, Nabil G; Rhodes, Christopher; Keller, Mark P; Coon, Joshua L; Audhya, Anjon; Attie, Alan D

    2014-10-01

    We previously positionally cloned Sorcs1 as a diabetes quantitative trait locus. Sorcs1 belongs to the Vacuolar protein sorting-10 (Vps10) gene family. In yeast, Vps10 transports enzymes from the trans-Golgi network (TGN) to the vacuole. Whole-body Sorcs1 KO mice, when made obese with the leptin(ob) mutation (ob/ob), developed diabetes. β Cells from these mice had a severe deficiency of secretory granules (SGs) and insulin. Interestingly, a single secretagogue challenge failed to consistently elicit an insulin secretory dysfunction. However, multiple challenges of the Sorcs1 KO ob/ob islets consistently revealed an insulin secretion defect. The luminal domain of SORCS1 (Lum-Sorcs1), when expressed in a β cell line, acted as a dominant-negative, leading to SG and insulin deficiency. Using syncollin-dsRed5TIMER adenovirus, we found that the loss of Sorcs1 function greatly impairs the rapid replenishment of SGs following secretagogue challenge. Chronic exposure of islets from lean Sorcs1 KO mice to high glucose and palmitate depleted insulin content and evoked an insulin secretion defect. Thus, in metabolically stressed mice, Sorcs1 is important for SG replenishment, and under chronic challenge by insulin secretagogues, loss of Sorcs1 leads to diabetes. Overexpression of full-length SORCS1 led to a 2-fold increase in SG content, suggesting that SORCS1 is sufficient to promote SG biogenesis. PMID:25157818

  17. Nicotinamide induces differentiation of embryonic stem cells into insulin-secreting cells

    SciTech Connect

    Vaca, Pilar; Berna, Genoveva; Araujo, Raquel; Carneiro, Everardo M.; Bedoya, Francisco J.; Soria, Bernat; Martin, Franz

    2008-03-10

    The poly(ADP-ribose) polymerase (PARP) inhibitor, nicotinamide, induces differentiation and maturation of fetal pancreatic cells. In addition, we have previously reported evidence that nicotinamide increases the insulin content of cells differentiated from embryonic stem (ES) cells, but the possibility of nicotinamide acting as a differentiating agent on its own has never been completely explored. Islet cell differentiation was studied by: (i) X-gal staining after neomycin selection; (ii) BrdU studies; (iii) single and double immunohistochemistry for insulin, C-peptide and Glut-2; (iv) insulin and C-peptide content and secretion assays; and (v) transplantation of differentiated cells, under the kidney capsule, into streptozotocin (STZ)-diabetic mice. Here we show that undifferentiated mouse ES cells treated with nicotinamide: (i) showed an 80% decrease in cell proliferation; (ii) co-expressed insulin, C-peptide and Glut-2; (iii) had values of insulin and C-peptide corresponding to 10% of normal mouse islets; (iv) released insulin and C-peptide in response to stimulatory glucose concentrations; and (v) after transplantation into diabetic mice, normalized blood glucose levels over 7 weeks. Our data indicate that nicotinamide decreases ES cell proliferation and induces differentiation into insulin-secreting cells. Both aspects are very important when thinking about cell therapy for the treatment of diabetes based on ES cells.

  18. SORCS1 is necessary for normal insulin secretory granule biogenesis in metabolically stressed β cells

    PubMed Central

    Kebede, Melkam A.; Oler, Angie T.; Gregg, Trillian; Balloon, Allison J.; Johnson, Adam; Mitok, Kelly; Rabaglia, Mary; Schueler, Kathryn; Stapleton, Donald; Thorstenson, Candice; Wrighton, Lindsay; Floyd, Brendan J.; Richards, Oliver; Raines, Summer; Eliceiri, Kevin; Seidah, Nabil G.; Rhodes, Christopher; Keller, Mark P.; Coon, Joshua L.; Audhya, Anjon; Attie, Alan D.

    2014-01-01

    We previously positionally cloned Sorcs1 as a diabetes quantitative trait locus. Sorcs1 belongs to the Vacuolar protein sorting-10 (Vps10) gene family. In yeast, Vps10 transports enzymes from the trans-Golgi network (TGN) to the vacuole. Whole-body Sorcs1 KO mice, when made obese with the leptinob mutation (ob/ob), developed diabetes. β Cells from these mice had a severe deficiency of secretory granules (SGs) and insulin. Interestingly, a single secretagogue challenge failed to consistently elicit an insulin secretory dysfunction. However, multiple challenges of the Sorcs1 KO ob/ob islets consistently revealed an insulin secretion defect. The luminal domain of SORCS1 (Lum-Sorcs1), when expressed in a β cell line, acted as a dominant-negative, leading to SG and insulin deficiency. Using syncollin-dsRed5TIMER adenovirus, we found that the loss of Sorcs1 function greatly impairs the rapid replenishment of SGs following secretagogue challenge. Chronic exposure of islets from lean Sorcs1 KO mice to high glucose and palmitate depleted insulin content and evoked an insulin secretion defect. Thus, in metabolically stressed mice, Sorcs1 is important for SG replenishment, and under chronic challenge by insulin secretagogues, loss of Sorcs1 leads to diabetes. Overexpression of full-length SORCS1 led to a 2-fold increase in SG content, suggesting that SORCS1 is sufficient to promote SG biogenesis. PMID:25157818

  19. Effect of glycerol on sustained insulin release from PVA hydrogels and its application in diabetes therapy

    PubMed Central

    Cai, Yunpeng; Che, Junyi; Yuan, Minglu; Shi, Xiaohong; Chen, Wei; Yuan, Wei-En

    2016-01-01

    The present study aimed to investigate the effects of glycerol on the physical properties and release of an insulin-loaded polyvinyl alcohol (PVA) hydrogel film. The insulin-loaded hydrogel composite film was produced using the freeze-thawing method, after which the in vitro swelling ratio, transmittance and insulin release, and the in vivo pharmacodynamics, of hydrogels containing various volumes of glycerol were investigated. The results demonstrated that the addition of glycerol reduced the swelling ratio and increased the softness of the PVA hydrogel film. An analysis of insulin release in vitro and of the hypoglycemic effects in rats demonstrated that the PVA hydrogel film had a sustained release of insulin and long-acting effect over 10 days. The results of the present study suggested that, as a hydrophilic plasticizer, glycerol was able to enhance the release of insulin in the early stage of release profile by enhancing the formation of water channels, although the total swelling ratio was decreased. Therefore, the insulin-loaded glycerol/PVA hydrogel film may be a promising sustained-release preparation for the treatment of diabetes.

  20. Long-term insulin glargine therapy in type 2 diabetes mellitus: a focus on cardiovascular outcomes.

    PubMed

    Joseph, Joshua J; Donner, Thomas W

    2015-01-01

    Cardiovascular disease is the leading cause of mortality in type 2 diabetes mellitus. Hyperinsulinemia is associated with increased cardiovascular risk, but the effects of exogenous insulin on cardiovascular disease progression have been less well studied. Insulin has been shown to have both cardioprotective and atherosclerosis-promoting effects in laboratory animal studies. Long-term clinical trials using insulin to attain improved diabetes control in younger type 1 and type 2 diabetes patients have shown improved cardiovascular outcomes. Shorter trials of intensive diabetes control with high insulin use in higher risk patients with type 2 diabetes have shown either no cardiovascular benefit or increased all cause and cardiovascular mortality. Glargine insulin is a basal insulin analog widely used to treat patients with type 1 and type 2 diabetes. This review focuses on the effects of glargine on cardiovascular outcomes. Glargine lowers triglycerides, leads to a modest weight gain, causes less hypoglycemia when compared with intermediate-acting insulin, and has a neutral effect on blood pressure. The Outcome Reduction With Initial Glargine Intervention (ORIGIN trial), a 6.2 year dedicated cardiovascular outcomes trial of glargine demonstrated no increased cardiovascular risk.

  1. Insulin-induced phospho-oligosaccharide stimulates amino acid transport in isolated rat hepatocytes.

    PubMed Central

    Varela, I; Avila, M; Mato, J M; Hue, L

    1990-01-01

    The ability of the insulin-induced phospho-oligosaccharide to stimulate amino acid transport was studied in isolated rat hepatocytes. At low alpha-aminoisobutyric acid concentrations (0.1 mM), both 100 nM-insulin and 10 microM-phospho-oligosaccharide doubled amino acid uptake after 2 h of incubation. This stimulation was prevented by 0.1 mM-cycloheximide or 5 micrograms of actinomycin D/ml, indicating that the phospho-oligosaccharide, like insulin, was acting via the synthesis of a high-affinity transport component. The effects of the phospho-oligosaccharide and of insulin were blocked by Ins2P (2.5 mM), but not by myo-inositol, inositol hexaphosphoric acid or several monosaccharides such as mannose, glucosamine and galactose. Both the temporal effect on amino acid entry and the extent of stimulation of this process by the phospho-oligosaccharide indicate that this molecule mimics, and may mediate, some of the long-term actions of insulin. However, the effects of phospho-oligosaccharide and insulin were not exactly the same, since the effect of insulin, but not of the phospho-oligosaccharide, was additive with that of glucagon. PMID:2185744

  2. Insulin Is a Key Modulator of Fetoplacental Endothelium Metabolic Disturbances in Gestational Diabetes Mellitus

    PubMed Central

    Sobrevia, Luis; Salsoso, Rocío; Fuenzalida, Bárbara; Barros, Eric; Toledo, Lilian; Silva, Luis; Pizarro, Carolina; Subiabre, Mario; Villalobos, Roberto; Araos, Joaquín; Toledo, Fernando; González, Marcelo; Gutiérrez, Jaime; Farías, Marcelo; Chiarello, Delia I.; Pardo, Fabián; Leiva, Andrea

    2016-01-01

    Gestational diabetes mellitus (GDM) is a disease of the mother that associates with altered fetoplacental vascular function. GDM-associated maternal hyperglycaemia result in fetal hyperglycaemia, a condition that leads to fetal hyperinsulinemia and altered L-arginine transport and synthesis of nitric oxide, i.e., endothelial dysfunction. These alterations in the fetoplacental endothelial function are present in women with GDM that were under diet or insulin therapy. Since these women and their newborn show normal glycaemia at term, other factors or conditions could be altered and/or not resolved by restoring normal level of circulating D-glucose. GDM associates with metabolic disturbances, such as abnormal handling of the locally released vasodilator adenosine, and biosynthesis and metabolism of cholesterol lipoproteins, or metabolic diseases resulting in endoplasmic reticulum stress and altered angiogenesis. Insulin acts as a potent modulator of all these phenomena under normal conditions as reported in primary cultures of cells obtained from the human placenta; however, GDM and the role of insulin regarding these alterations in this disease are poorly understood. This review focuses on the potential link between insulin and endoplasmic reticulum stress, hypercholesterolemia, and angiogenesis in GDM in the human fetoplacental vasculature. Based in reports in primary culture placental endothelium we propose that insulin is a factor restoring endothelial function in GDM by reversing ERS, hypercholesterolaemia and angiogenesis to a physiological state involving insulin activation of insulin receptor isoforms and adenosine receptors and metabolism in the human placenta from GDM pregnancies. PMID:27065887

  3. Dual-mode of insulin action controls GLUT4 vesicle exocytosis

    PubMed Central

    Xu, Yingke; Rubin, Bradley R.; Orme, Charisse M.; Karpikov, Alexander; Yu, Chenfei

    2011-01-01

    Insulin stimulates translocation of GLUT4 storage vesicles (GSVs) to the surface of adipocytes, but precisely where insulin acts is controversial. Here we quantify the size, dynamics, and frequency of single vesicle exocytosis in 3T3-L1 adipocytes. We use a new GSV reporter, VAMP2-pHluorin, and bypass insulin signaling by disrupting the GLUT4-retention protein TUG. Remarkably, in unstimulated TUG-depleted cells, the exocytic rate is similar to that in insulin-stimulated control cells. In TUG-depleted cells, insulin triggers a transient, twofold burst of exocytosis. Surprisingly, insulin promotes fusion pore expansion, blocked by acute perturbation of phospholipase D, which reflects both properties intrinsic to the mobilized vesicles and a novel regulatory site at the fusion pore itself. Prolonged stimulation causes cargo to switch from ∼60 nm GSVs to larger exocytic vesicles characteristic of endosomes. Our results support a model whereby insulin promotes exocytic flux primarily by releasing an intracellular brake, but also by accelerating plasma membrane fusion and switching vesicle traffic between two distinct circuits. PMID:21555461

  4. Insulin Glargine (rDNA origin) Injection

    MedlinePlus

    ... insulin and therefore cannot control the amount of sugar in the blood). It is also used to ... normally and, therefore, cannot control the amount of sugar in the blood) who need insulin to control ...

  5. Insulin Aspart (rDNA Origin) Injection

    MedlinePlus

    ... insulin and therefore cannot control the amount of sugar in the blood). It is also used to ... normally and therefore cannot control the amount of sugar in the blood) who need insulin to control ...

  6. Insulin Detemir (rDNA Origin) Injection

    MedlinePlus

    ... insulin and therefore cannot control the amount of sugar in the blood). It is also used to ... normally and, therefore, cannot control the amount of sugar in the blood) who need insulin to control ...

  7. Insulin Degludec (rDNA Origin) Injection

    MedlinePlus

    ... insulin and therefore cannot control the amount of sugar in the blood). It is also used to ... normally and, therefore, cannot control the amount of sugar in the blood) who need insulin to control ...

  8. Metabolism A higher power for insulin

    NASA Astrophysics Data System (ADS)

    Gribble, Fiona M.

    2005-04-01

    Glucose output from the liver is tightly regulated by insulin. But insulin holds sway over more than the liver - an unappreciated circuit in glucose control involves the opening of ion channels in the brain.

  9. Quantification of adipose tissue insulin sensitivity.

    PubMed

    Søndergaard, Esben; Jensen, Michael D

    2016-06-01

    In metabolically healthy humans, adipose tissue is exquisitely sensitive to insulin. Similar to muscle and liver, adipose tissue lipolysis is insulin resistant in adults with central obesity and type 2 diabetes. Perhaps uniquely, however, insulin resistance in adipose tissue may directly contribute to development of insulin resistance in muscle and liver because of the increased delivery of free fatty acids to those tissues. It has been hypothesized that insulin adipose tissue resistance may precede other metabolic defects in obesity and type 2 diabetes. Therefore, precise and reproducible quantification of adipose tissue insulin sensitivity, in vivo, in humans, is an important measure. Unfortunately, no consensus exists on how to determine adipose tissue insulin sensitivity. We review the methods available to quantitate adipose tissue insulin sensitivity and will discuss their strengths and weaknesses.

  10. Emerging Trends in Noninvasive Insulin Delivery

    PubMed Central

    Verma, Arun; Kumar, Nitin; Malviya, Rishabha; Sharma, Pramod Kumar

    2014-01-01

    This paper deals with various aspects of oral insulin delivery system. Insulin is used for the treatment of diabetes mellitus, which is characterized by the elevated glucose level (above the normal range) in the blood stream, that is, hyperglycemia. Oral route of administration of any drug is the most convenient route. Development of oral insulin is still under research. Oral insulin will cause the avoidance of pain during the injection (in subcutaneous administration), anxiety due to needle, and infections which can be developed. Different types of enzyme inhibitors, like sodium cholate, camostat, mesilate, bacitracin, leupeptin, and so forth, have been used to prevent insulin from enzymatic degradation. Subcutaneous route has been used for administration of insulin, but pain and itching at the site of administration can occur. That is why various alternative routes of insulin administration like oral route are under investigation. In this paper authors summarized advancement in insulin delivery with their formulation aspects. PMID:26556194

  11. Study on interaction of mangiferin to insulin and glucagon in ternary system

    NASA Astrophysics Data System (ADS)

    Lin, Hui; Chen, Rui; Liu, Xiaoyan; Sheng, Fenling; Zhang, Haixia

    2010-05-01

    The binding of mangiferin to insulin and glucagon was investigated in the presence and absence of another Peptide by optical spectroscopy. Fluorescence titration experiments revealed that mangiferin quenched the intrinsic fluorescence of insulin and glucagon by static quenching. The ratios of binding constants of glucagon-mangiferin to insulin-mangiferin at different temperatures were calculated in "pure" and ternary system, respectively. The results indicated that the Peptides were competitive with each other to act on mangiferin. Values of the thermodynamic parameters and the experiments of pH effect proved that the key interacting forces between mangiferin and the Peptides were hydrophobic interaction. In addition, UV-vis absorption, synchronous fluorescence and Fourier transform infrared measurements showed that the conformation of insulin and glucagon were changed after adding mangiferin.

  12. Protein kinase C activators selectively inhibit insulin-stimulated system A transport activity in skeletal muscle at a post-receptor level.

    PubMed Central

    Gumà, A; Camps, M; Palacín, M; Testar, X; Zorzano, A

    1990-01-01

    We have investigated the role of phorbol esters on different biological effects induced by insulin in muscle, such as activation of system A transport activity, glucose utilization and insulin receptor function. System A transport activity was measured by monitoring the uptake of the system A-specific analogue alpha-(methyl)aminoisobutyric acid (MeAIB), by intact rat extensor digitorum longus muscle. The addition of 12-O-tetradecanoylphorbol 13-acetate (TPA, 0.5 microM) for 60 or 180 min did not modify basal MeAIB uptake by muscle, suggesting that insulin signalling required to stimulate MeAIB transport does not involve protein kinase C activation. However, TPA added 30 min before insulin (100 nM) markedly inhibited insulin-stimulated MeAIB uptake. The addition of polymyxin B (0.1 mM) or H-7 (1 mM), protein kinase C inhibitors, alone or in combination with TPA leads to impairment of insulin-stimulated MeAIB uptake. This paradoxical pattern is incompatible with a unique action of Polymyxin B or H-7 on protein kinase C activity. Therefore these agents are not suitable tools with which to investigate whether a certain insulin effect is mediated by protein kinase C. TPA did not cause a generalized inhibition of insulin action. Thus both TPA and insulin increased 3-O-methylglucose uptake by muscle, and their effects were not additive. Furthermore, TPA did not modify insulin-stimulated lactate production by muscle. In keeping with this selective modification of insulin action, treatment of muscles with TPA did not modify insulin receptor binding or kinase activities. In conclusion, phorbol esters do not mimic insulin action on system A transport activity; however, they markedly inhibit insulin-stimulated amino acid transport, with no modification of insulin receptor function in rat skeletal muscle. It is suggested that protein kinase C activation causes a selective post-receptor modification on the biochemical pathway by which insulin activates system A amino acid

  13. An Overview of Concentrated Insulin Products.

    PubMed

    Painter, Nathan A; Sisson, Evan

    2016-08-01

    IN BRIEF This article provides a summary of the use of available concentrated insulins in the outpatient treatment of patients with diabetes. Concentrated insulins work through the same mechanisms as other insulin products. They vary from each other in concentrations and pharmacokinetic/pharmacodynamics profiles but are each similar to their U-100 concentration counterparts. Patient education is important to minimize errors and the risk of hypoglycemia when using these insulin formulations.

  14. Insulin action on the liver in vivo.

    PubMed

    Cherrington, A D; Moore, M C; Sindelar, D K; Edgerton, D S

    2007-11-01

    Insulin has a potent inhibitory effect on hepatic glucose production by direct action at hepatic receptors. The hormone also inhibits glucose production by suppressing both lipolysis in the fat cell and secretion of glucagon by the alpha-cell. Neural sensing of insulin levels appears to participate in control of hepatic glucose production in rodents, but a role for brain insulin sensing has not been documented in dogs or humans. The primary effect of insulin on the liver is its direct action.

  15. A case of hypersensitivity to soluble and isophane insulins but not to insulin glargine

    PubMed Central

    Belhekar, Mahesh N.; Pai, Sarayu; Tayade, Parimal; Dalwadi, Pradip; Munshi, Renuka; Varthakavi, Prema

    2015-01-01

    Insulin is an important agent for the treatment of diabetes mellitus (DM). Allergic reactions to insulin therapy, although rare, have been evident since animal insulin became available for the treatment of DM in 1922. Hypersensitivity to insulin has considerably been reduced with the introduction of human insulin produced by recombinant deoxyribonucleic acid technology. Here, we present a case of Type 2 DM who demonstrated immediate (Type 1) hypersensitivity reaction on the sites of subcutaneous injection of soluble and isophane insulin but insulin glargine was tolerated well and provided good glycemic control. PMID:25878390

  16. A case of hypersensitivity to soluble and isophane insulins but not to insulin glargine.

    PubMed

    Belhekar, Mahesh N; Pai, Sarayu; Tayade, Parimal; Dalwadi, Pradip; Munshi, Renuka; Varthakavi, Prema

    2015-01-01

    Insulin is an important agent for the treatment of diabetes mellitus (DM). Allergic reactions to insulin therapy, although rare, have been evident since animal insulin became available for the treatment of DM in 1922. Hypersensitivity to insulin has considerably been reduced with the introduction of human insulin produced by recombinant deoxyribonucleic acid technology. Here, we present a case of Type 2 DM who demonstrated immediate (Type 1) hypersensitivity reaction on the sites of subcutaneous injection of soluble and isophane insulin but insulin glargine was tolerated well and provided good glycemic control. PMID:25878390

  17. Effects of insulin-like growth factor-I on glucose tolerance, insulin levels, and insulin secretion.

    PubMed Central

    Zenobi, P D; Graf, S; Ursprung, H; Froesch, E R

    1992-01-01

    Insulin-like growth factor-I (IGF-I) and insulin interact with related receptors to lower plasma glucose and to exert mitogenic effects. Recombinant human IGF-I (rhIGF-I) was recently shown to decrease serum levels of insulin and C-peptide in fasted normal subjects without affecting plasma glucose levels. In this study we have investigated in six healthy volunteers the responses of glucose, insulin, and C-peptide levels to intravenous rhIGF-I infusions (7 and 14 micrograms/kg.h) during standard oral glucose tolerance tests (oGTT) and meal tolerance tests (MTT), respectively. Glucose tolerance remained unchanged during the rhIGF-I infusions in the face of lowered insulin and C-peptide levels. The decreased insulin/glucose-ratio presumably is caused by an enhanced tissue sensitivity to insulin. The lowered area under the insulin curve during oGTT and MTT as a result of the administration of rhIGF-I were related to the fasting insulin levels during saline infusion (oGTT: r = 0.825, P less than 0.05; MTT: r = 0.895, P less than 0.02). RhIGF-I, however, did not alter the ratio between C-peptide and insulin, suggesting that the metabolic clearance of endogenous insulin remained unchanged. In conclusion, rhIGF-I increased glucose disposal and directly suppressed insulin secretion. RhIGF-I probably increased insulin sensitivity as a result of decreased insulin levels and suppressed growth hormone secretion. RhIGF-I, therefore, may be therapeutically useful in insulin resistance of type 2 diabetes, obesity, and hyperlipidemia. PMID:1601998

  18. Space Analogue Environments: Are the Populations Comparable?

    NASA Astrophysics Data System (ADS)

    Sandal, G. M.

    Background: Much of our present understanding about psychology in space is based on studies of groups operating in so-called analogue environments where personnel are exposed to many of the same stressors as those experienced by astronauts in space. One possible problem with extrapolating results is that personnel operating in various hazardous and confined environments might differ in characteristics influencing coping, interaction, and performance. The object of this study was to compare the psychological similarity of these populations in order to get a better understanding of whether this extrapolation is justifiable. The samples investigated include polar crossings (N= 22), personnel on Antarctic research stations (N= 183), several military occupations (N= 187), and participants in space simulation studies (N=20). Methods: Personnel in each of these environments were assessed using the Personality Characteristic Inventory (PCI) and Utrecht Coping List (UCL). The PCI is a multidimensional trait assessment battery that measures various aspects of achievement orientation and social competence. The UCL is a questionnaire designed to assess habitual coping strategies when encountering stressful or demanding situations. Results: Only minor differences in use of habitual coping strategies were evident across the different samples. In relation to personality scores, the military subjects and participants in space simulation studies indicated higher competitiveness and negative instrumentality compared to both the personnel on Antarctic research stations and participants in polar expedition. Among the personnel on Antarctic research stations, significant gender differences were found with women scoring lower on competitiveness, negative instrumentality and impatience/irritability. Compared to the other samples, the participants in polar expeditions were found to be more homogeneous in personality and no significant gender differences were evident on the traits that

  19. Effect of insulin on renal calcium transport

    SciTech Connect

    Gollaher, C.J.

    1985-01-01

    The author has investigated both the indirect effect of insulin parathyroid hormone (PTH) activity, and the direct effect of insulin on renal calcium transport. The indirect study was performed by comparing calcium excretion in sham-operated and parathyroidectomized rats infused with the insulin secretagogue, arginine. Arginine infusion increased urinary calcium excretion in both groups. Therefore, it is concluded that neither PTH activity nor secretion is involved in this response. The direct effects of insulin were investigated by exposing rat kidney slices in vitro to varying concentrations of insulin and performing a kinetic analysis to interpret insulin's effect on calcium transport through cellular compartments. Steady state calcium transport through the plasma membrane, cytosol and mitochondria were compared in the presence and absence of insulin. Insulin had no effect on any calcium pool size or exchange rate. The direct effect of insulin was also studied in an acute experiment, which simulates conditions where insulin levels are raised rapidly as in the case with protein or glucose consumption. Under these conditions insulin treatment caused a rapid, but transient increase in /sup 45/Ca efflux from rat kidney slices. This pattern is usually indicative of a stimulation of calcium efflux across the plasma membrane. Finally, insulin caused a slight decrease in slice chemical calcium concentration.

  20. Oral Insulin Delivery: How Far Are We?

    PubMed Central

    Fonte, Pedro; Araújo, Francisca; Reis, Salette; Sarmento, Bruno

    2013-01-01

    Oral delivery of insulin may significantly improve the quality of life of diabetes patients who routinely receive insulin by the subcutaneous route. In fact, compared with this administration route, oral delivery of insulin in diabetes treatment offers many advantages: higher patient compliance, rapid hepatic insulinization, and avoidance of peripheral hyperinsulinemia and other adverse effects such as possible hypoglycemia and weight gain. However, the oral delivery of insulin remains a challenge because its oral absorption is limited. The main barriers faced by insulin in the gastrointestinal tract are degradation by proteolytic enzymes and lack of transport across the intestinal epithelium. Several strategies to deliver insulin orally have been proposed, but without much clinical or commercial success. Protein encapsulation into nanoparticles is regarded as a promising alternative to administer insulin orally because they have the ability to promote insulin paracellular or transcellular transport across the intestinal mucosa. In this review, different delivery systems intended to increase the oral bioavailability of insulin will be discussed, with a special focus on nanoparticulate carrier systems, as well as the efforts that pharmaceutical companies are making to bring to the market the first oral delivery system of insulin. The toxicological and safety data of delivery systems, the clinical value and progress of oral insulin delivery, and the future prospects in this research field will be also scrutinized. PMID:23567010

  1. Insulin: pancreatic secretion and adipocyte regulation.

    PubMed

    Baumgard, L H; Hausman, G J; Sanz Fernandez, M V

    2016-01-01

    Insulin is the primary acute anabolic coordinator of nutrient partitioning. Hyperglycemia is the main stimulant of insulin secretion, but other nutrients such as specific amino acids, fatty acids, and ketoacids can potentiate pancreatic insulin release. Incretins are intestinal hormones with insulinotropic activity and are secreted in response to food ingestion, thus integrating diet chemical composition with the regulation of insulin release. In addition, prolactin is required for proper islet development, and it stimulates β-cell proliferation. Counterintuitively, bacterial components appear to signal insulin secretion. In vivo lipopolysaccharide infusion acutely increases circulating insulin, which is paradoxical as endotoxemia is a potent catabolic condition. Insulin is a potent anabolic orchestrator of nutrient partitioning, and this is particularly true in adipocytes. Insulin dictates lipid accretion in a dose-dependent manner during preadipocyte development in adipose tissue-derived stromal vascular cell culture. However, in vivo studies focused on insulin's role in regulating adipose tissue metabolism from growing, and market weight pigs are sometimes inconsistent, and this variability appears to be animal, age and depot dependent. Additionally, porcine adipose tissue synthesizes and secretes a number of adipokines (leptin, adiponectin, and so forth) that directly or indirectly influence insulin action. Therefore, because insulin has an enormous impact on agriculturally important phenotypes, it is critical to have a better understanding of how insulin homeostasis is governed.

  2. 21 CFR 522.1160 - Insulin.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS...) of insulin. (2) Each mL of protamine zinc recombinant human insulin suspension contains 40 IU of... or on the order of a licensed veterinarian. (2) Cats—(i) Amount—(A) Porcine insulin zinc....

  3. Growth hormone, IGF-I and insulin and their abuse in sport

    PubMed Central

    Holt, R I G; Sönksen, P H

    2008-01-01

    There is widespread anecdotal evidence that growth hormone (GH) is used by athletes for its anabolic and lipolytic properties. Although there is little evidence that GH improves performance in young healthy adults, randomized controlled studies carried out so far are inadequately designed to demonstrate this, not least because GH is often abused in combination with anabolic steroids and insulin. Some of the anabolic actions of GH are mediated through the generation of insulin-like growth factor-I (IGF-I), and it is believed that this is also being abused. Athletes are exposing themselves to potential harm by self-administering large doses of GH, IGF-I and insulin. The effects of excess GH are exemplified by acromegaly. IGF-I may mediate and cause some of these changes, but in addition, IGF-I may lead to profound hypoglycaemia, as indeed can insulin. Although GH is on the World Anti-doping Agency list of banned substances, the detection of abuse with GH is challenging. Two approaches have been developed to detect GH abuse. The first is based on an assessment of the effect of exogenous recombinant human GH on pituitary GH isoforms and the second is based on the measurement of markers of GH action. As a result, GH abuse can be detected with reasonable sensitivity and specificity. Testing for IGF-I and insulin is in its infancy, but the measurement of markers of GH action may also detect IGF-I usage, while urine mass spectroscopy has begun to identify the use of insulin analogues. PMID:18376417

  4. Insulin receptor membrane retention by a traceable chimeric mutant

    PubMed Central

    2013-01-01

    Background The insulin receptor (IR) regulates glucose homeostasis, cell growth and differentiation. It has been hypothesized that the specific signaling characteristics of IR are in part determined by ligand-receptor complexes localization. Downstream signaling could be triggered from the plasma membrane or from endosomes. Regulation of activated receptor's internalization has been proposed as the mechanism responsible for the differential isoform and ligand-specific signaling. Results We generated a traceable IR chimera that allows the labeling of the receptor at the cell surface. This mutant binds insulin but fails to get activated and internalized. However, the mutant heterodimerizes with wild type IR inhibiting its auto-phosphorylation and blocking its internalization. IR membrane retention attenuates AP-1 transcriptional activation favoring Akt activation. Conclusions These results suggest that the mutant acts as a selective dominant negative blocking IR internalization-mediated signaling. PMID:23805988

  5. [A21-Asparaginimide] insulin. Saponification of insulin hexamethyl ester, I.

    PubMed

    Gattner, H G; Schmitt, E W

    1977-01-01

    [Asn A21]Insulin is formed as the main product during alkaline saponification of insulin hexamethyl ester. Purification was achieved by gel chromatography followed by ion-exchange chromatography on carboxymethyl cellulose at pH 4 or by preparative isoelectric focusing in a granulated gel over a narrow pH range. Two main products could be isolated. One of them showed the electrophoretic behaviour of insulin (A), whilst the other corresponded to insulin with a blocked carboxyl function (B). Incubation of this product B with carboxypeptidase A liberated only the C-terminal alanine of the B-chain, but not the asparagine of the C-terminus of the A-chain. Chymotryptic digestion of the isolated S-sulfonate A-chain derivative (C) followed by high-voltage electrophoresis confirmed that the carboxyl function of asparagine A21 was blocked. In order to determine the free carboxyl functions of the A-chain derivative C, it was coupled with glycine methyl ester yielding D. Amino acid analysis of the chymotryptic peptides of D showed that the carboxyl functions of glutamic acid A4 and A17 had been free prior to coupling. The amino acid analysis of the enzymatic hydrolysate (subtilisin, aminopeptidase M) of the A-chain derivative C showed an additional peak with an elution position identical to the model compound aminosuccinimide. The biological activity of the [Asm A21[insulin was found to be about 40% in the fat cell test and 13.2 units/mg measured by the mouse convulsion method.

  6. Leucine Supplementation Protects from Insulin Resistance by Regulating Adiposity Levels

    PubMed Central

    Binder, Elke; Bermúdez-Silva, Francisco J.; André, Caroline; Elie, Melissa; Romero-Zerbo, Silvana Y.; Leste-Lasserre, Thierry; Belluomo, llaria; Duchampt, Adeline; Clark, Samantha; Aubert, Agnes; Mezzullo, Marco; Fanelli, Flaminia; Pagotto, Uberto; Layé, Sophie; Mithieux, Gilles; Cota, Daniela

    2013-01-01

    Background Leucine supplementation might have therapeutic potential in preventing diet-induced obesity and improving insulin sensitivity. However, the underlying mechanisms are at present unclear. Additionally, it is unclear whether leucine supplementation might be equally efficacious once obesity has developed. Methodology/Principal Findings Male C57BL/6J mice were fed chow or a high-fat diet (HFD), supplemented or not with leucine for 17 weeks. Another group of HFD-fed mice (HFD-pairfat group) was food restricted in order to reach an adiposity level comparable to that of HFD-Leu mice. Finally, a third group of mice was exposed to HFD for 12 weeks before being chronically supplemented with leucine. Leucine supplementation in HFD-fed mice decreased body weight and fat mass by increasing energy expenditure, fatty acid oxidation and locomotor activity in vivo. The decreased adiposity in HFD-Leu mice was associated with increased expression of uncoupling protein 3 (UCP-3) in the brown adipose tissue, better insulin sensitivity, increased intestinal gluconeogenesis and preservation of islets of Langerhans histomorphology and function. HFD-pairfat mice had a comparable improvement in insulin sensitivity, without changes in islets physiology or intestinal gluconeogenesis. Remarkably, both HFD-Leu and HFD-pairfat mice had decreased hepatic lipid content, which likely helped improve insulin sensitivity. In contrast, when leucine was supplemented to already obese animals, no changes in body weight, body composition or glucose metabolism were observed. Conclusions/Significance These findings suggest that leucine improves insulin sensitivity in HFD-fed mice by primarily decreasing adiposity, rather than directly