Science.gov

Sample records for actinide burning experiment

  1. The EBR-II X501 Minor Actinide Burning Experiment

    SciTech Connect

    Jon Carmack; S. L. Hayes; M. K. Meyer; H. Tsai

    2008-06-01

    The X501 experiment was conducted in EBR-II as part of the IFR (Integral Fast Reactor) program to demonstrate minor actinide burning through the use of a homogeneous recycle scheme. The X501 subassembly contained two metallic fuel elements loaded with relatively small quantities of americium and neptunium. Interest in the behavior of minor actinides (MA) during fuel irradiation has prompted further examination of existing X501 data, and generation of new data where needed in support of the U.S. waste transmutation effort. The X501 experiment is one of the few minor actinide-bearing fuel irradiation tests conducted worldwide and knowledge can be gained by understanding the changes in fuel behavior due to addition of MA’s. Of primary interest are the affect of the MA’s on fuel-cladding-chemical-interaction, and the redistribution behavior of americium. The quantity of helium gas release from the fuel and any effects of helium on fuel performance are also of interest. It must be stressed that information presented at this time is based on the limited PIE conducted in 1995-1996, and currently represents a set of observations rather than a complete understanding of fuel behavior.

  2. The EBR-II X501 Minor Actinide Burning Experiment

    SciTech Connect

    M. K. Meyer; S. L. Hayes; W. J. Carmack; H. Tsai

    2009-07-01

    The X501 experiment was conducted in EBR-II as part of the IFR (Integral Fast Reactor) program to demonstrate minor actinide burning through the use of a homogeneous recycle scheme. The X501 subassembly contained two metallic fuel elements loaded with relatively small quantities of americium and neptunium. Interest in the behavior of minor actinides (MA) during fuel irradiation has prompted further examination of existing X501 data, and generation of new data where needed in support of the U.S. waste transmutation effort. The X501 experiment is one of the few minor actinide-bearing fuel irradiation tests conducted worldwide and knowledge can be gained by understanding the changes in fuel behavior due to addition of MA’s. Of primary interest are the affect of the MA’s on fuel-cladding-chemical-interaction, and the redistribution behavior of americium. The quantity of helium gas release from the fuel and any effects of helium on fuel performance are also of interest. It must be stressed that information presented at this time is based on the limited PIE conducted in 1995-1996, and currently represents a set of observations rather than a complete understanding of fuel behavior. This paper provides a summary of the X501 fabrication, characterization, irradiation, and post irradiation examination.

  3. The EBR-II X501 Minor Actinide Burning Experiment

    SciTech Connect

    W. J. Carmack; M. K. Meyer; S. L. Hayes; H. Tsai

    2008-01-01

    The X501 experiment was conducted in EBR II as part of the Integral Fast Reactor program to demonstrate minor actinide burning through the use of a homogeneous recycle scheme. The X501 subassembly contained two metallic fuel elements loaded with relatively small quantities of americium and neptunium. Interest in the behavior of minor actinides (MA) during fuel irradiation has prompted further examination of existing X501 data and generation of new data where needed in support of the U.S. waste transmutation effort. The X501 experiment is one of the few MA bearing fuel irradiation tests conducted worldwide, and knowledge can be gained by understanding the changes in fuel behavior due to addition of MAs. Of primary interest are the effect of the MAs on fuel cladding chemical interaction and the redistribution behavior of americium. The quantity of helium gas release from the fuel and any effects of helium on fuel performance are also of interest. It must be stressed that information presented at this time is based on the limited PIE conducted in 1995–1996 and, currently, represents a set of observations rather than a complete understanding of fuel behavior. This report provides a summary of the X501 fabrication, characterization, irradiation, and post irradiation examination.

  4. Actinide Burning in CANDU Reactors

    SciTech Connect

    Hyland, B.; Dyck, G.R.

    2007-07-01

    Actinide burning in CANDU reactors has been studied as a method of reducing the actinide content of spent nuclear fuel from light water reactors, and thereby decreasing the associated long term decay heat load. In this work simulations were performed of actinides mixed with natural uranium to form a mixed oxide (MOX) fuel, and also mixed with silicon carbide to form an inert matrix (IMF) fuel. Both of these fuels were taken to a higher burnup than has previously been studied. The total transuranic element destruction calculated was 40% for the MOX fuel and 71% for the IMF. (authors)

  5. Performance Characteristics of Actinide-Burning Fusion Power Plants

    SciTech Connect

    Cheng, E.T

    2005-05-15

    Performance characteristics were summarized of two molten salt based fusion power plants. One of them is to burn spent fuel actinides, the other is to burn U{sup 238}. Both power plants produce output energy larger than a fusion power plant would normally produce without including actinides. Additional features, obtainable by design for these actinide burning power plants, are adequate tritium breeding, sub-critical condition, and stable power output.

  6. Effects of actinide burning on waste disposal at Yucca Mountain

    SciTech Connect

    Hirschfelder, J.

    1992-07-01

    Release rates of 15 radionuclides from waste packages expected to result from partitioning and transmutation of Light-Water Reactor (LWR) and Actinide-Burning Liquid-Metal Reactor (ALMR) spent fuel are calculated and compared to release rates from standard LWR spent fuel packages. The release rates are input to a model for radionuclide transport from the proposed geologic repository at Yucca Mountain to the water table. Discharge rates at the water table are calculated and used in a model for transport to the accessible environment, defined to be five kilometers from the repository edge. Concentrations and dose rates at the accessible environment from spent fuel and wastes from reprocessing, with partitioning and transmutation, are calculated. Partitioning and transmutation of LWR and ALMR spent fuel reduces the inventories of uranium, neptunium, plutonium, americium and curium in the high-level waste by factors of 40 to 500. However, because release rates of all of the actinides except curium are limited by solubility and are independent of package inventory, they are not reduced correspondingly. Only for curium is the repository release rate much lower for reprocessing wastes.

  7. The role of actinide burning and the Integral Fast Reactor in the future of nuclear power

    SciTech Connect

    Hollaway, W.R.; Lidsky, L.M.; Miller, M.M.

    1990-12-01

    A preliminary assessment is made of the potential role of actinide burning and the Integral Fast Reactor (IFR) in the future of nuclear power. The development of a usable actinide burning strategy could be an important factor in the acceptance and implementation of a next generation of nuclear power. First, the need for nuclear generating capacity is established through the analysis of energy and electricity demand forecasting models which cover the spectrum of bias from anti-nuclear to pro-nuclear. The analyses take into account the issues of global warming and the potential for technological advances in energy efficiency. We conclude, as do many others, that there will almost certainly be a need for substantial nuclear power capacity in the 2000--2030 time frame. We point out also that any reprocessing scheme will open up proliferation-related questions which can only be assessed in very specific contexts. The focus of this report is on the fuel cycle impacts of actinide burning. Scenarios are developed for the deployment of future nuclear generating capacity which exploit the advantages of actinide partitioning and actinide burning. Three alternative reactor designs are utilized in these future scenarios: The Light Water Reactor (LWR); the Modular Gas-Cooled Reactor (MGR); and the Integral Fast Reactor (FR). Each of these alternative reactor designs is described in some detail, with specific emphasis on their spent fuel streams and the back-end of the nuclear fuel cycle. Four separation and partitioning processes are utilized in building the future nuclear power scenarios: Thermal reactor spent fuel preprocessing to reduce the ceramic oxide spent fuel to metallic form, the conventional PUREX process, the TRUEX process, and pyrometallurgical reprocessing.

  8. Performance Comparison of Metallic, Actinide Burning Fuel in Lead-Bismuth and Sodium Cooled Fast Reactors

    SciTech Connect

    Weaver, Kevan Dean; Herring, James Stephen; Mac Donald, Philip Elsworth

    2001-04-01

    Various methods have been proposed to “incinerate” or “transmutate” the current inventory of trans-uranic waste (TRU) that exits in spent light-water-reactor (LWR) fuel, and weapons plutonium. These methods include both critical (e.g., fast reactors) and non-critical (e.g., accelerator transmutation) systems. The work discussed here is part of a larger effort at the Idaho National Engineering and Environmental Laboratory (INEEL) and at the Massachusetts Institute of Technology (MIT) to investigate the suitability of lead and lead-alloy cooled fast reactors for producing low-cost electricity as well as for actinide burning. The neutronics of non-fertile fuel loaded with 20 or 30-wt% light water reactor (LWR) plutonium plus minor actinides for use in a lead-bismuth cooled fast reactor are discussed in this paper, with an emphasis on the fuel cycle life and isotopic content. Calculations show that the average actinide burn rate is similar for both the sodium and lead-bismuth cooled cases ranging from -1.02 to -1.16 g/MWd, compared to a typical LWR actinide generation rate of 0.303 g/MWd. However, when using the same parameters, the sodium-cooled case went subcritical after 0.2 to 0.8 effective full power years, and the lead-bismuth cooled case ranged from 1.5 to 4.5 effective full power years.

  9. Design of an Actinide Burning, Lead-Bismuth Cooled Reactor That Produces Low Cost Electricity

    SciTech Connect

    C. Davis; S. Herring; P. MacDonald; K. McCarthy; V. Shah; K. Weaver; J. Buongiorno; R. Ballinger; K. Doyoung; M. Driscoll; P. Hejzler; M. Kazimi; N. Todreas

    1999-07-01

    The purpose of this project is to investigate the suitability of lead-bismuth cooled fast reactors for producing low-cost electricity as well as for actinide burning. The goal is to identify and analyze the key technical issues in core neutronics, materials, thermal-hydraulics, fuels, and economics associated with the development of this reactor concept. The choice of lead-bismuth for the reactor coolant is an actinide burning fast reactor offers enhanced safety and reliability. The advantages of lead-bismuth over sodium as a coolant are related to the following material characteristics: chemical inertness with air and water; higher atomic number; lower vapor pressure at operating temperatures; and higher boiling temperature. Given the status of the field, it was agreed that the focus of this investigation in the first two years will be on the assessment of approaches to optimize core and plant arrangements in order to provide maximum safety and economic potential in this type of reactor.

  10. Performance of the Lead-Alloy Cooled Concept Balanced for Actinide Burning and Electricity Production

    SciTech Connect

    Pavel Hejzlar; Cliff Davis

    2004-09-01

    A lead-bismuth-cooled fast reactor concept targeted for a balanced mission of actinide burning and low-cost electricity production is proposed and its performance analyzed. The design explores the potential benefits of thorium-based fuel in actinide-burning cores, in particular in terms of the reduction of the large reactivity swing and enhancement of the small Doppler coefficient typical of fertile-free actinide burners. Reduced electricity production cost is pursued through a longer cycle length than that used for fertile-free burners and thus a higher capacity factor. It is shown that the concept can achieve a high transuranics destruction rate, which is only 20% lower than that of an accelerator-driven system with fertile-free fuel. The small negative fuel temperature reactivity coefficient, small positive coolant temperature reactivity coefficient, and negative core radial expansion coefficient provide self-regulating characteristics so that the reactor is capable of inherent shutdown during major transients without scram, as in the Integral Fast Reactor. This is confirmed by thermal-hydraulic analysis of several transients without scram, including primary coolant pump trip, station blackout, and reactivity step insertion, which showed that the reactor was able to meet all identified thermal limits. However, the benefits of high actinide consumption and small reactivity swing can be attained only if the uranium from the discharged fuel is separated and not recycled. This additional uranium separation step and thorium reprocessing significantly increase the fuel cycle costs. Because the higher fuel cycle cost has a larger impact on the overall cost of electricity than the savings from the higher capacity factor afforded through use of thorium, this concept appears less promising than the fertile-free actinide burners.

  11. Performance of the Lead-Alloy-Cooled Reactor Concept Balanced for Actinide Burning and Electricity Production

    SciTech Connect

    Hejzlar, Pavel; Davis, Cliff B.

    2004-09-15

    A lead-bismuth-cooled fast reactor concept targeted for a balanced mission of actinide burning and low-cost electricity production is proposed and its performance analyzed. The design explores the potential benefits of thorium-based fuel in actinide-burning cores, in particular in terms of the reduction of the large reactivity swing and enhancement of the small Doppler coefficient typical of fertile-free actinide burners. Reduced electricity production cost is pursued through a longer cycle length than that used for fertile-free burners and thus a higher capacity factor. It is shown that the concept can achieve a high transuranics destruction rate, which is only 20% lower than that of an accelerator-driven system with fertile-free fuel. The small negative fuel temperature reactivity coefficient, small positive coolant temperature reactivity coefficient, and negative core radial expansion coefficient provide self-regulating characteristics so that the reactor is capable of inherent shutdown during major transients without scram, as in the Integral Fast Reactor. This is confirmed by thermal-hydraulic analysis of several transients without scram, including primary coolant pump trip, station blackout, and reactivity step insertion, which showed that the reactor was able to meet all identified thermal limits. However, the benefits of high actinide consumption and small reactivity swing can be attained only if the uranium from the discharged fuel is separated and not recycled. This additional uranium separation step and thorium reprocessing significantly increase the fuel cycle costs. Because the higher fuel cycle cost has a larger impact on the overall cost of electricity than the savings from the higher capacity factor afforded through use of thorium, this concept appears less promising than the fertile-free actinide burners.

  12. Feasibility Study of Supercritical Light Water Cooled Fast Reactors for Actinide Burning and Electric Power Production

    SciTech Connect

    Mac Donald, Philip Elsworth; Buongiorno, Jacopo; Davis, Cliff Bybee; Weaver, Kevan Dean

    2002-01-01

    The use of supercritical temperature and pressure light water as the coolant in a direct-cycle nuclear reactor offers potential for considerable plant simplification and consequent capital and O&M cost reduction compared with current light water reactor (LWR) designs. Also, given the thermodynamic conditions of the coolant at the core outlet (i.e. temperature and pressure beyond the water critical point), very high thermal efficiencies of the power conversion cycle are possible (i.e. up to 46%). Because no change of phase occurs in the core, the need for steam separators and dryers as well as for BWR-type recirculation pumps is eliminated, which, for a given reactor power, results in a substantially shorter reactor vessel than the current BWRs. Furthermore, in a direct cycle the steam generators are not needed. If a tight fuel rod lattice is adopted, it is possible to significantly reduce the neutron moderation and attain fast neutron energy spectrum conditions. In this project a supercritical water reactor concept with a simple, blanket-free, pancake-shaped core will be developed. This type of core can make use of either fertile or fertile-free fuel and retain the hard spectrum to effectively burn plutonium and minor actinides from LWR spent fuel while efficiently generating electricity.

  13. Hydrofluoric acid burns: a 15-year experience.

    PubMed

    Stuke, Lance E; Arnoldo, Brett D; Hunt, John L; Purdue, Gary F

    2008-01-01

    Hydrofluoric acid (HF) is a strong inorganic acid commonly used in many domestic and industrial settings. It is one of the most common chemical burns encountered in a burn center and frequently engenders controversy in its management. We report our 15 year experience with management of HF burns. We reviewed our experience from 1990 to 2005 for patients admitted with HF burns. Primary treatment was with calcium gluconate gel. Arterial infusion of calcium and fingernail removal were reserved for unrelenting symptoms. There were 7944 acute burn admissions to our center during this study period, 204 of which were chemical burns. HF burns comprised 17% of these chemical burn admissions (35 patients). All were men, with a mean burn size of 2.1 +/- 1.5% (range, 1-6%) and hospital stay of 1.6 +/- 0.7 days (range, 0-3 days). The most common seasonal time of injury was in the summer. Twelve patients (34%) were admitted to the intensive care unit for a total of 14 intensive care unit days, primarily for arterial infusions. Ventilator support was not required in any patient. No electrolyte abnormalities occurred. All burns were either partial thickness or small full thickness with no operative intervention required and no deaths. The upper extremity was most commonly involved (29 patients, 83%). The most common cause was air conditioner cleaner (8 patients, 23%). HF is a common cause of chemical burns. Although hospital admission is usually required for vigorous treatment and pain control, burn size is usually small and does not cause electrolyte abnormalities, significant morbidity, or death. PMID:18849854

  14. Simulated Rainfall experiments on burned areas

    NASA Astrophysics Data System (ADS)

    Rulli, Maria Cristina

    2010-05-01

    Simulated Rainfall experiments were carried out in a Mediterranean area located in Italy, immediately after a forest fire occurrence, to evaluate the effects of forest fire on soil hydraulic properties, runoff and erosion. The selected study area was frequently affected by fire in the last years. Two adjacent 30 mq plots were set up with common physiographic features, and the same fire history, except for the last fire, which burned only one of them. Since both plots were previously subject to the passage of fire 6 years before the last one, one compares the hydrologic response and erosion of an area recently burned (B00) with that of an area burnt 6 years before (B06). Several rainfall simulations were carried out considering different pre-event soil moisture conditions where each rainfall simulation consisted of a single 60 minute application of rainfall with constant intensity of about 76 mm/h. The results show runoff ratio, evaluated for different pre-event soil moisture conditions, ranging from 0 to 2% for B06 plot, and from 21 to 41% for B00. Runoff ratio for the recently burned plot was 60 times higher than for the plot burned six years before, under wet conditions, and 20 times higher, under very wet conditions. A large increase in sediment production also was measured in B00 plot, as compared with that in B06 plot. Suspended sediment yield from B00 plot was more than two orders of magnitude higher than that from B06 plot in all the simulated events. The high runoff and soil losses measured immediately after burning indicate that effective post-fire rehabilitation programs must be carried out to reduce flood risk and soil erosion in recently burned areas. However, the results for the plot burned six year prior show that recovery of the hydrological properties of the soil occurs after the transient post fire modification.

  15. Fuel Droplet Burning During Droplet Combustion Experiment

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Fuel ignites and burns in the Droplet Combustion Experiment (DCE) on STS-94 on July 4 1997, MET:2/05:40 (approximate). The DCE was designed to investigate the fundamental combustion aspects of single, isolated droplets under different pressures and ambient oxygen concentrations for a range of droplet sizes varying between 2 and 5 mm. DCE used various fuels -- in drops ranging from 1 mm (0.04 inches) to 5 mm (0.2 inches) -- and mixtures of oxidizers and inert gases to learn more about the physics of combustion in the simplest burning configuration, a sphere. The experiment elapsed time is shown at the bottom of the composite image. The DCE principal investigator was Forman Williams, University of California, San Diego. The experiment was part of the space research investigations conducted during the Microgravity Science Laboratory-1R mission (STS-94, July 1-17 1997). Advanced combustion experiments will be a part of investigations plarned for the International Space Station. (1.4MB, 13-second MPEG, screen 320 x 240 pixels; downlinked video, higher quality not available)A still JPG composite of this movie is available at http://mix.msfc.nasa.gov/ABSTRACTS/MSFC-0300168.html.

  16. Swedish-German actinide migration experiment at ASPO hard rock laboratory.

    PubMed

    Kienzler, B; Vejmelka, P; Römer, J; Fanghänel, E; Jansson, M; Eriksen, T E; Wikberg, P

    2003-03-01

    Within the scope of a bilateral cooperation between Svensk Kärnbränslehantering (SKB) and Forschungszentrum Karlsruhe, Institut für Nukleare Entsorgung (FZK-INE), an actinide migration experiment is currently being performed at the Aspö Hard Rock Laboratory (HRL) in Sweden. This paper covers laboratory and in situ investigations on actinide migration in single-fractured granite core samples. For the in situ experiment, the CHEMLAB 2 probe developed by SKB was used. The experimental setup as well as the breakthrough of inert tracers and of the actinides Am, Np and Pu are presented. The breakthrough curves of inert tracers were analyzed to determine hydraulic properties of the fractured samples. Postmortem analyses of the solid samples were performed to characterize the flow path and the sorbed actinides. After cutting the cores, the abraded material was analyzed with respect to sorbed actinides. The slices were scanned optically to visualize the flow path. Effective volumes and inner surface areas were measured. In the experiments, only breakthrough of Np(V) was observed. In each experiment, the recovery of Np(V) was < or = 40%. Breakthrough of Am(III) and Pu(IV) as well as of Np(IV) was not observed.

  17. Management of acid burns: experience from Bangladesh.

    PubMed

    Das, Kishore Kumar; Olga, Loren; Peck, Michael; Morselli, Paolo G; Salek, A J M

    2015-05-01

    Acid burn injuries in Bangladesh primarily occur as a result of intentional attacks although there are incidences of accidental acid burns in industry, on the street, and at home. A total of 126 patients with acid burns, 95 from attacks and 31 from accidents, were studied from July 2004 to December 2012. A diagnosis of acid burn was made from history, physical examination and in some cases from chemical analysis of the patients' clothing. Alkali burns were excluded from the study. In the burn unit of Dhaka Medical College Hospital, we applied a slightly different protocol for management of acid burns, beginning with plain water irrigation of the wound, which effectively reduced burn depth and the requirement of surgical treatment. Application of hydrocolloid dressing for 48-72 h helped with the assessment of depth and the course of treatment. Early excision and grafting gives good results but resultant acid trickling creates a marble cake-like appearance of the wound separated by the vital skin. Excision with a scalpel and direct stitching of the wounds are often a good option. Observation of patients on follow-up revealed that wounds showed a tendency for hypertrophy. Application of pressure garments and other scar treatments were given in all cases unless the burn was highly superficial.

  18. Management of acid burns: experience from Bangladesh.

    PubMed

    Das, Kishore Kumar; Olga, Loren; Peck, Michael; Morselli, Paolo G; Salek, A J M

    2015-05-01

    Acid burn injuries in Bangladesh primarily occur as a result of intentional attacks although there are incidences of accidental acid burns in industry, on the street, and at home. A total of 126 patients with acid burns, 95 from attacks and 31 from accidents, were studied from July 2004 to December 2012. A diagnosis of acid burn was made from history, physical examination and in some cases from chemical analysis of the patients' clothing. Alkali burns were excluded from the study. In the burn unit of Dhaka Medical College Hospital, we applied a slightly different protocol for management of acid burns, beginning with plain water irrigation of the wound, which effectively reduced burn depth and the requirement of surgical treatment. Application of hydrocolloid dressing for 48-72 h helped with the assessment of depth and the course of treatment. Early excision and grafting gives good results but resultant acid trickling creates a marble cake-like appearance of the wound separated by the vital skin. Excision with a scalpel and direct stitching of the wounds are often a good option. Observation of patients on follow-up revealed that wounds showed a tendency for hypertrophy. Application of pressure garments and other scar treatments were given in all cases unless the burn was highly superficial. PMID:25440856

  19. Burn patients' experience of pain management: a qualitative study.

    PubMed

    Yuxiang, Li; Lingjun, Zhou; Lu, Tang; Mengjie, Liu; Xing, Ming; Fengping, Shen; Jing, Cui; Xianli, Meng; Jijun, Zhao

    2012-03-01

    Pain is a major problem after burns and researchers continue to report that pain from burns remains undertreated. The inadequate pain control results in adverse sequalae physically and psychologically in the burn victims. A better understanding of a burn patient's experience is important in identifying the factors responsible for undertreated pain and establishing effective pain management guidelines or recommendation in the practice of pain relief for burn injuries. This study sought to explore and describe the experience that patients have about pain related to burn-injury during hospitalization. Semi-structured interviews were conducted on eight patients with moderate to severe pain from burn injuries recruited from a Burn Centre in Northwest China. Data was collected by in-depth interviews and qualitative description after full transcription of each interview. Analysis involved the identification of themes and the development of a taxonomy of patients' experience of burn pain and its management. Three themes were indentified: (1) patients' experience of pain control, (2) patients' perception on burn pain management, and (3) patients' expectation of burn pain management. Findings from this study suggested that patients experience uncontrolled pain both physically and psychologically which may serve as an alert for awareness of health professionals to recognize and establish a multidisciplinary pain management team for burn victims, including surgeons, critical care specialists, anesthesiologists, nurses, psychologists, and social workers to accomplish safe and effective strategies for pain control to reach an optimal level of pain management in burn patients. It also provides insights and suggestions for future research directions to address this significant clinical problem.

  20. Design of an Actinide-Burning, Lead or Lead-Bismuth Cooled Reactor that Produces Low-Cost Electricity

    SciTech Connect

    Mac Donald, Philip Elsworth; Weaver, Kevan Dean; Davis, Cliff Bybee; MIT folks

    2000-07-01

    The purpose of this Idaho National Engineering and Environmental Laboratory (INEEL) and Massachusetts Institute of Technology (MIT) University Research Consortium (URC) project is to investigate the suitability of lead or lead-bismuth cooled fast reactors for producing low-cost electricity as well as for actinide burning. The goal is to identify and analyze the key technical issues in core neutronics, materials, thermal-hydraulics, fuels, and economics associated with the development of this reactor concept. Work has been accomplished in four major areas of research: core neutronic design, material compatibility, plant engineering, and coolant activation. In the area of core neutronic design, the reactivity vs. burnup and discharge isotopics of both non-fertile and fertile fuels were evaluated. An innovative core for pure actinide burning that uses streaming, fertile-free fuel assemblies was studied in depth. This particular core exhibits excellent reactivity performance upon coolant voiding, even for voids that occur in the core center, and has a transuranic (TRU) destruction rate that is comparable to the proposed accelerator transmutation of waste (ATW) facility. These studies suggest that a core can be designed to achieve a long life while maintaining safety and minimizing waste. In the area of material compatibility studies, an experimental apparatus for the investigation of the flow-assisted dissolution and precipitation (corrosion) of potential fuel cladding and structural materials has been designed and built at the INEEL. The INEEL forced-convection corrosion cell consists of a small heated vessel with a shroud and gas flow system. The corrosion cell is being used to test steel that is commercially available in the United States to temperatures above 650°C. Progress in plant engineering was made for two reactor concepts, one utilizing an indirect cycle with heat exchangers and the other utilizing a direct-contact steam cycle. The evaluation of the

  1. The Burning Plasma Experiment conventional facilities

    SciTech Connect

    Commander, J.C.

    1991-01-01

    The Burning Program Plasma Experiment (BPX) is phased to start construction of conventional facilities in July 1994, in conjunction with the conclusion of the Tokamak Fusion Test Reactor (TFTR) project. This paper deals with the conceptual design of the BPX Conventional Facilities, for which Functional and Operational Requirements (F ORs) were developed. Existing TFTR buildings and utilities will be adapted and used to satisfy the BPX Project F ORs to the maximum extent possible. However, new conventional facilities will be required to support the BPX project. These facilities include: The BPX building; Site improvements and utilities; the Field Coil Power Conversion (FCPC) building; the TFTR modifications; the Motor Generation (MG) building; Liquid Nitrogen (LN{sub 2}) building; and the associated Instrumentation and Control (I C) systems. The BPX building will provide for safe and efficient shielding, housing, operation, handling, maintenance and decontamination of the BPX and its support systems. Site improvements and utilities will feature a utility tunnel which will provide a space for utility services--including pulse power duct banks and liquid nitrogen coolant lines. The FCPC building will house eight additional power supplied for the Toroidal Field (TF) coils. The MG building will house the two MG sets larger than the existing TFTR MG sets. This paper also addresses the conventional facility cost estimating methodology and the rationale for the construction schedule developed. 6 figs., 1 tab.

  2. The Burning Plasma Experiment conventional facilities

    SciTech Connect

    Commander, J.C.

    1991-12-01

    The Burning Program Plasma Experiment (BPX) is phased to start construction of conventional facilities in July 1994, in conjunction with the conclusion of the Tokamak Fusion Test Reactor (TFTR) project. This paper deals with the conceptual design of the BPX Conventional Facilities, for which Functional and Operational Requirements (F&ORs) were developed. Existing TFTR buildings and utilities will be adapted and used to satisfy the BPX Project F&ORs to the maximum extent possible. However, new conventional facilities will be required to support the BPX project. These facilities include: The BPX building; Site improvements and utilities; the Field Coil Power Conversion (FCPC) building; the TFTR modifications; the Motor Generation (MG) building; Liquid Nitrogen (LN{sub 2}) building; and the associated Instrumentation and Control (I&C) systems. The BPX building will provide for safe and efficient shielding, housing, operation, handling, maintenance and decontamination of the BPX and its support systems. Site improvements and utilities will feature a utility tunnel which will provide a space for utility services--including pulse power duct banks and liquid nitrogen coolant lines. The FCPC building will house eight additional power supplied for the Toroidal Field (TF) coils. The MG building will house the two MG sets larger than the existing TFTR MG sets. This paper also addresses the conventional facility cost estimating methodology and the rationale for the construction schedule developed. 6 figs., 1 tab.

  3. Adulterated Kerosene Burn Disaster: the Nigeria Experience

    PubMed Central

    Olugbenga, S.A.

    2005-01-01

    Summary A major kerosene explosion disaster occurred in oil-producing Nigeria in October 2001. One hundred and twenty-five burn patients were treated at the Lagos State University Teaching Hospital in a 25-day period of 12/10/01 to 6/11/01. All but two of the patients sustained fire/flame burns resulting from hurricane lantern and cooking stove explosions in home or enclosed environments. In a scene reminiscent of petrol bomb explosions, most burns were extensive, covering the face, chest, and abdomen. Burns were relatively deep because the clothing was usually perfused with the splashed fuel. Severity was greater in females than males, as they were more in contact with lamps and cooking stoves in the household. Almost 50% of the patients required hospitalization upwards of 3 weeks. PMID:21990977

  4. The trial burn experience - planning, preparation, and pitfalls

    SciTech Connect

    Kellett, C.D.

    1997-12-31

    For RCRA Part B permitting, Boilers and Industrial Furnaces permits are required to submit a plan, obtain agency approval, and conduct a trial burn. Cement kilns undergoing this process have particular difficulties with the vagaries of trial burn requirements. To demonstrate compliance with BIF standards, a cement kiln is challenged to develop a safe, yet productive operating envelope which will prevail for the term of the Part B permit. In developing this operating envelope, the kiln must be operated in a number of scenarios to show compliance with the performance standards. The requirement of a number of scenarios is necessitated by conflicting operating parameters. In addition to traditional trial burn goals, cement kilns have also been requested to provide supplementary trial burn emissions data for an indirect risk assessment. Based upon the author`s recent experiences with trial burns and BIF compliance testing, the important aspects of planning, preparation for, and conducting a trial burn at a cement kiln will be presented. This paper will provide insight into how to design a trial burn considering conflicting parameters, effectively prepare the kiln process and people involved with a trial burn, and, conducting a successful trial burn. 3 refs., 1 fig., 2 tabs.

  5. Burns

    MedlinePlus

    ... doing so puts you in danger as well. Chemical and Electrical Burns For chemical and electrical burns, call 911 or your local ... the power source has been turned off. For chemical burns: Dry chemicals should be brushed off the ...

  6. Adult burn survivors' personal experiences of rehabilitation: an integrative review.

    PubMed

    Kornhaber, R; Wilson, A; Abu-Qamar, M Z; McLean, L

    2014-02-01

    Burn rehabilitation is a lengthy process associated with physical and psychosocial problems. As a critical area in burn care, the aim was to systematically synthesise the literature focussing on personal perceptions and experiences of adult burn survivors' rehabilitation and to identify factors that influence their rehabilitation. Studies were identified through an electronic search using the databases: PubMed, CINAHL, EMBASE, Scopus, PsycINFO and Trove of peer reviewed research published between 2002 and 2012 limited to English-language research with search terms developed to reflect burn rehabilitation. From the 378 papers identified, 14 research papers met the inclusion criteria. Across all studies, there were 184 participants conducted in eight different countries. The reported mean age was 41 years with a mean total body surface area (TBSA) burn of 34% and the length of stay ranging from one day to 68 months. Significant factors identified as influential in burn rehabilitation were the impact of support, coping and acceptance, the importance of work, physical changes and limitations. This review suggests there is a necessity for appropriate knowledge and education based programmes for burn survivors with consideration given to the timing and delivery of education to facilitate the rehabilitation journey. PMID:24050979

  7. Adult burn survivors' personal experiences of rehabilitation: an integrative review.

    PubMed

    Kornhaber, R; Wilson, A; Abu-Qamar, M Z; McLean, L

    2014-02-01

    Burn rehabilitation is a lengthy process associated with physical and psychosocial problems. As a critical area in burn care, the aim was to systematically synthesise the literature focussing on personal perceptions and experiences of adult burn survivors' rehabilitation and to identify factors that influence their rehabilitation. Studies were identified through an electronic search using the databases: PubMed, CINAHL, EMBASE, Scopus, PsycINFO and Trove of peer reviewed research published between 2002 and 2012 limited to English-language research with search terms developed to reflect burn rehabilitation. From the 378 papers identified, 14 research papers met the inclusion criteria. Across all studies, there were 184 participants conducted in eight different countries. The reported mean age was 41 years with a mean total body surface area (TBSA) burn of 34% and the length of stay ranging from one day to 68 months. Significant factors identified as influential in burn rehabilitation were the impact of support, coping and acceptance, the importance of work, physical changes and limitations. This review suggests there is a necessity for appropriate knowledge and education based programmes for burn survivors with consideration given to the timing and delivery of education to facilitate the rehabilitation journey.

  8. Principle and Uncertainty Quantification of an Experiment Designed to Infer Actinide Neutron Capture Cross-Sections

    SciTech Connect

    G. Youinou; G. Palmiotti; M. Salvatorre; G. Imel; R. Pardo; F. Kondev; M. Paul

    2010-01-01

    An integral reactor physics experiment devoted to infer higher actinide (Am, Cm, Bk, Cf) neutron cross sections will take place in the US. This report presents the principle of the planned experiment as well as a first exercise aiming at quantifying the uncertainties related to the inferred quantities. It has been funded in part by the DOE Office of Science in the framework of the Recovery Act and has been given the name MANTRA for Measurement of Actinides Neutron TRAnsmutation. The principle is to irradiate different pure actinide samples in a test reactor like INL’s Advanced Test Reactor, and, after a given time, determine the amount of the different transmutation products. The precise characterization of the nuclide densities before and after neutron irradiation allows the energy integrated neutron cross-sections to be inferred since the relation between the two are the well-known neutron-induced transmutation equations. This approach has been used in the past and the principal novelty of this experiment is that the atom densities of the different transmutation products will be determined with the Accelerator Mass Spectroscopy (AMS) facility located at ANL. While AMS facilities traditionally have been limited to the assay of low-to-medium atomic mass materials, i.e., A < 100, there has been recent progress in extending AMS to heavier isotopes – even to A > 200. The detection limit of AMS being orders of magnitude lower than that of standard mass spectroscopy techniques, more transmutation products could be measured and, potentially, more cross-sections could be inferred from the irradiation of a single sample. Furthermore, measurements will be carried out at the INL using more standard methods in order to have another set of totally uncorrelated information.

  9. Vapor burn analysis for the Coyote series LNG spill experiments

    SciTech Connect

    Rodean, H.C.; Hogan, W.J.; Urtiew, P.A.; Goldwire, H.C. Jr.; McRae, T.G.; Morgan, D.L. Jr.

    1984-04-01

    A major purpose of the Coyote series of field experiments at China Lake, California, in 1981 was to study the burning of vapor clouds from spills of liquefied natural gas (LNG) on water. Extensive arrays of instrumentation were deployed to obtain micrometeorological, gas concentration, and fire-related data. The instrumentation included in situ sensors of various types, high-speed motion picture cameras, and infrared (IR) imagers. Five of the total of ten Coyote spill experiments investigated vapor burns. The first vapor-burn experiment, Coyote 2, was done with a small spill of LNG to assess instrument capability and survivability in vapor cloud fires. The emphasis in this report is on the other four vapor-burn experiments: Coyotes 3, 5, 6, and 7. The data are analyzed to determine fire spread, flame propagation, and heat flux - quantities that are related to the determination of the damage zone for vapor burns. The results of the analyses are given here. 20 references, 57 figures, 7 tables.

  10. Comparing Burned and Unburned Forest Conditions Using Simulated Rill Experiments

    NASA Astrophysics Data System (ADS)

    Robichaud, P. R.; Brown, R. E.; Wagenbrenner, J. W.

    2007-12-01

    Despite the dominance of concentrated flow or rill erosion in the erosion processes in disturbed forests, few studies have quantified the effects of different types of forest disturbance on rill erosion. This study quantified the effects of four forest conditions--natural (recently undisturbed), low soil burn severity, high soil burn severity, and skid trails--on rill runoff quantity, runoff velocity, and rill erosion. Simulated rill experiments were conducted at sites in eastern Oregon (Tower Fire) and in northern Washington (North 25 Fire) on forested slopes with granitic and volcanic soils, respectively. The natural and skid trail conditions were established near each burned area in unburned forest. For each rill experiment, concentrated flow was applied at the top of the plot through an energy dissipater at five inflow rates for 12 min each. Runoff was sampled every 2 min and runoff volume and sediment concentration were determined for each sample. The runoff velocity was measured using a dyed calcium chloride solution and two conductivity probes placed a known distance apart. Runoff volume, runoff velocities, and sediment concentrations increased with increasing levels of disturbance. The natural plots had very low runoff rates and sediment concentrations at both the Tower and North 25 sites. The low soil burn severity plots had greater responses than the natural plots, but the responses in the two sites were different as a result of variability in effect of burning and differences in time between burning and the rill experiments. The high soil burn severity and the skid trail plots had the highest runoff ratios, runoff velocities, and sediment concentrations and the responses were similar at both sites. These results suggest that any differences in responses related to soil type or other site factors were masked by the increase in response resulting from the high levels of disturbance.

  11. Design of an Actinide Burning, Lead or Lead-Bismuth Cooled Reactor That Produces Low Cost Electricty - FY-02 Annual Report

    SciTech Connect

    Mac Donald, Philip Elsworth; Buongiorno, Jacopo

    2002-10-01

    The purpose of this collaborative Idaho National Engineering and Environmental Laboratory (INEEL) and Massachusetts Institute of Technology (MIT) Laboratory Directed Research and Development (LDRD) project is to investigate the suitability of lead or lead-bismuth cooled fast reactors for producing low-cost electricity as well as for actinide burning. The goal is to identify and analyze the key technical issues in core neutronics, materials, thermal-hydraulics, fuels, and economics associated with the development of this reactor concept. Work has been accomplished in four major areas of research: core neutronic design, plant engineering, material compatibility studies, and coolant activation. The publications derived from work on this project (since project inception) are listed in Appendix A. This is the third in a series of Annual Reports for this project, the others are also listed in Appendix A as FY-00 and FY-01 Annual Reports.

  12. Design of an Actinide Burning, Lead or Lead-Bismuth Cooled Reactor that Produces Low Cost Electricity FY-01 Annual Report, October 2001

    SciTech Connect

    Mac Donald, Philip Elsworth; Buongiorno, Jacopo; Davis, Cliff Bybee; Herring, James Stephen; Loewen, Eric Paul; Smolik, Galen Richard; Weaver, Kevan Dean; Todreas, N.

    2001-10-01

    The purpose of this collaborative Idaho National Engineering and Environmental Laboratory (INEEL) and Massachusetts Institute of Technology (MIT) Laboratory Directed Research and Development (LDRD) project is to investigate the suitability of lead or lead-bismuth cooled fast reactors for producing low-cost electricity as well as for actinide burning. The goal is to identify and analyze the key technical issues in core neutronics, materials, thermal-hydraulics, fuels, and economics associated with the development of this reactor concept. Work has been accomplished in four major areas of research: core neutronic design, plant engineering, material compatibility studies, and coolant activation. The publications derived from work on this project (since project inception) are listed in Appendix A.

  13. Impact of a pediatric residential burn camp experience on burn survivors' perceptions of self and attitudes regarding the camp community.

    PubMed

    Rimmer, Ruth B; Fornaciari, Gilbert M; Foster, Kevin N; Bay, Curtis R; Wadsworth, Michelle M; Wood, Macdonald; Caruso, Daniel M

    2007-01-01

    Summer camp is reported to be a positive and valuable experience for burn and nonburned children. Objective studies comparing the effectiveness, similarities, and differences of rehabilitative vs recreational camps are limited. The aim of this study, year 1, was to assess the effect of burn camp on self-esteem and integration as reported by burn children via the Rosenberg Self-Esteem Scale and a community integration survey. During year 2, burn campers completed these measures again and their self-esteem and integration scores were compared with a group of nonburn campers. The first year results showed significant improvement in burn camper's self-esteem from the beginning to end of camp and successful integration into the camp community. During year 2, burn surviving children reported significantly lower self-esteem before camp than the comparison group, but after camp, burn children's self-esteem was comparable with that of nonburn campers. White non-Hispanic campers reported more sustained improvement in self-esteem than other ethnic groups. Burn campers reported a high level of integration into the camp across sex, years since burn, years at camp, or ethnicity, scoring slightly higher than the comparison group. Age was positively correlated with integration among the burn, but not the nonburn campers. Helping children deal with their burn injuries through a rehabilitative program such as burn camp appears to provide benefit for child burn survivors.

  14. Burns

    MedlinePlus

    ... occur by direct or indirect contact with heat, electric current, radiation, or chemical agents. Burns can lead to ... is. The burn is caused by chemicals or electricity. The person shows signs of shock . The person ...

  15. Droplet Burns in the Fiber-Supported Droplet Combustion Experiment

    NASA Technical Reports Server (NTRS)

    2003-01-01

    A fuel droplet burns in the Fiber-Supported Droplet Combustion (FSDC) Experiment on STS-94, July 4 1997, MET:02/19:20 (approximate). This experiment, performed in the Middeck Glovebox, allows us to study the burning of fuels such as n-heptane, n-decane, methanol, ethanol, methanol/water mixtures, and heptane/hexadecane mixtures in droplets as large as 6 mm (nearly 1/4 inch). In this sequence, you see the burn of a 5mm droplet of n-heptane, in a 30% O2/He environment at 1 atmosphere pressure. The droplet (looking bright pink because of reflected light) hangs suspended from the supporting fiber. FSDC-2 studied fundamental phenomena related to liquid fuel droplet combustion in air. Pure fuels and mixtures of fuels were burned as isolated single and dual droplets with and without forced air convection. The FSDC guest investigator was Forman Williams, University of California, San Diego. The experiment was part of the space research investigations conducted during the Microgravity Science Laboratory-1R mission (STS-94, July 1-17 1997). Advanced combustion experiments will be a part of investigations plarned for the International Space Station. (279KB JPEG, 1350 x 2026 pixels; downlinked video, higher quality not available) The MPG from which this composite was made is available at http://mix.msfc.nasa.gov/ABSTRACTS/MSFC-0300175.html.

  16. Studies of experiments on droplet burning at reduced gravity

    SciTech Connect

    Williams, F.A.

    1983-06-01

    The advantages of reduced gravity investigation of droplet burning are discussed. Drop tower tests of droplet combustion are summarized. A design for droplet burning experiments in space shuttles is presented. A preloaded syringe dispenses the droplet which is dislodged mechanically or electrostatically. The positioning is electrostatic, with six electrodes operated individually or in pairs, manually or with servocontrol. After the droplet is at rest and the fields turned off, the retractable ignition electrodes are energized. The combustion is recorded by camera with backlight designed to give accurate droplet size. (ESA)

  17. Safe actinide disposition in molten salt reactors

    SciTech Connect

    Gat, U.

    1997-03-01

    Safe molten salt reactors (MSR) can readily accommodate the burning of all fissile actinides. Only minor compromises associated with plutonium are required. The MSRs can dispose safely of actinides and long lived isotopes to result in safer and simpler waste. Disposing of actinides in MSRs does increase the source term of a safety optimized MSR. It is concluded that the burning and transmutation of actinides in MSRs can be done in a safe manner. Development is needed for the processing to handle and separate the actinides. Calculations are needed to establish the neutron economy and the fuel management. 9 refs.

  18. [The use of subatmospheric pressure to prevent burn wound progression: first experiences in burn wound treatment].

    PubMed

    Haslik, W; Kamolz, L-P; Andel, H; Meissl, G; Frey, M

    2004-05-01

    Thermal injury applied to living tissue results in zones of injury. Cell death is complete in the zone of coagulation. Beneath this area, there is the zone of lesser injury, where most of the cells are initially viable. If this zone of stasis is not reversed, the burn wound will progress. One of the major aspects to prevent progression is to reduce the edema formation and to preserve microcirculation. We present our first experiences to prevent the progression by use of topical negative pressure. Within the last months, all patients with bilateral partial thickness hand burns were included into this treatment protocol. Within one patient, one hand was treated with the V.A.C. (KCI, Austria), the contra lateral one by use of Flammazine (Smith and Nephew, Germany). Our first observations and data indicate, that both important factors (edema and microcirculation) could be influenced positively by use of the V.A.C.

  19. TRIGA Mark II Criticality Benchmark Experiment with Burned Fuel

    SciTech Connect

    Persic, Andreja; Ravnik, Matjaz; Zagar, Tomaz

    2000-12-15

    The experimental results of criticality benchmark experiments performed at the Jozef Stefan Institute TRIGA Mark II reactor are presented. The experiments were performed with partly burned fuel in two compact and uniform core configurations in the same arrangements as were used in the fresh fuel criticality benchmark experiment performed in 1991. In the experiments, both core configurations contained only 12 wt% U-ZrH fuel with 20% enriched uranium. The first experimental core contained 43 fuel elements with average burnup of 1.22 MWd or 2.8% {sup 235}U burned. The last experimental core configuration was composed of 48 fuel elements with average burnup of 1.15 MWd or 2.6% {sup 235}U burned. The experimental determination of k{sub eff} for both core configurations, one subcritical and one critical, are presented. Burnup for all fuel elements was calculated in two-dimensional four-group diffusion approximation using the TRIGLAV code. The burnup of several fuel elements was measured also by the reactivity method.

  20. Metallic inert matrix fuel concept for minor actinides incineration to achieve ultra-high burn-up

    NASA Astrophysics Data System (ADS)

    Lipkina, K.; Savchenko, A.; Skupov, M.; Glushenkov, A.; Vatulin, A.; Uferov, O.; Ivanov, Y.; Kulakov, G.; Ershov, S.; Maranchak, S.; Kozlov, A.; Maynikov, E.; Konova, K.

    2014-09-01

    The advantages of using Inert Matrix Fuel (IMF) in a design of an isolated arrangement of fuel are considered, with emphasis on, low temperatures in the fuel center, achievement of high burn-ups, and an environment friendly process for the fuel element fabrication. Changes in the currently existing concept of IMF usage are suggested, involving novel IMF design in the nuclear fuel cycle.

  1. Burns

    MedlinePlus

    ... are burns treated? In many cases, topical antibiotics (skin creams or ointments) are used to prevent infection. For third-degree burns and some second-degree ones, immediate blood transfusion and/or extra fluids ... is skin grafting? There are two types of skin grafts. ...

  2. Initial results from the Omega Asymmetric Burn Experiment -- ABEX

    NASA Astrophysics Data System (ADS)

    Dodd, Evan; Wysocki, Frederick; Benage, John; Thomas, Vincent; Kares, Robert; Obrey, Kimberly; Schmidt, Derek

    2011-10-01

    A new experiment has been designed to explore fusion burn degradation mechanisms in asymmetric laser-driven implosions. This presentation will present experimental design considerations, goals for the first series of tests, and a summary of the results from that series conducted at the Omega laser facility on April 5, 2011. The manufacturing technique will be summarized and issues to be addressed with several control capsules will be presented. Example data from time-integrated and time-resolved x-ray self-emission imaging along with time-resolved fusion burn rates and total neutron yield as a function of asymmetry will be presented. The scaling of measured yield degradation with calculated enstrophy derived from hydro-code simulations will be examined. This work is supported by US DOE/NNSA, performed at LANL, operated by LANS LLC under contract DE-AC52-06NA25396.

  3. Managing burn patients in a fire disaster: Experience from a burn unit in Bangladesh.

    PubMed

    Mashreky, S R; Bari, S; Sen, S L; Rahman, A; Khan, T F; Rahman, F

    2010-09-01

    Although burn disaster is not a frequent event, with urbanisation and industrialisation, burn disaster is becoming an emerging problem in Bangladesh. On 3 June 2010, a fire disaster killed 124 people in Neemtali, Dhaka, Bangladesh. This paper narrates the management of burn patients of this disaster in the burn unit of Dhaka Medical College Hospital. The burn unit managed 192 burn victims of the disaster. Forty-two victims were admitted and 150 of them received primary care at the emergency room and were sent back home. Ten patients among 42 in-patients died. The in-patient mortality was 23.8%. Burn unit in Dhaka Medical College Hospital is the only burn management centre in Bangladesh. Proper planning and coordinated effort by all sectors and persons concerned were the key elements in this successful management.

  4. Managing burn patients in a fire disaster: Experience from a burn unit in Bangladesh.

    PubMed

    Mashreky, S R; Bari, S; Sen, S L; Rahman, A; Khan, T F; Rahman, F

    2010-09-01

    Although burn disaster is not a frequent event, with urbanisation and industrialisation, burn disaster is becoming an emerging problem in Bangladesh. On 3 June 2010, a fire disaster killed 124 people in Neemtali, Dhaka, Bangladesh. This paper narrates the management of burn patients of this disaster in the burn unit of Dhaka Medical College Hospital. The burn unit managed 192 burn victims of the disaster. Forty-two victims were admitted and 150 of them received primary care at the emergency room and were sent back home. Ten patients among 42 in-patients died. The in-patient mortality was 23.8%. Burn unit in Dhaka Medical College Hospital is the only burn management centre in Bangladesh. Proper planning and coordinated effort by all sectors and persons concerned were the key elements in this successful management. PMID:21321648

  5. Alpha-particle Measurements Needed for Burning Plasma Experiments

    SciTech Connect

    Kenneth M. Young

    2001-09-26

    The next major step in magnetic fusion studies will be the construction of a burning plasma (BP) experiment where the goals will be to achieve and understand the plasma behavior with the internal heating provided by fusion-generated alpha particles. Two devices with these physics goals have been proposed: the International Thermonuclear Experimental Reactor (ITER) and the Fusion Ignition Research Experiment (FIRE). Extensive conceptual design work for the instrumentation to try to meet the physics demands has been done for these devices, especially ITER. This article provides a new look at the measurements specifically important for understanding the physics aspects of the alpha particles taking into account two significant events. The first is the completion of physics experiments on the Joint European Torus (JET) and the Tokamak Fusion Test Reactor (TFTR) with deuterium-tritium fueling with the first chances to study alpha physics and the second is the realization that relatively compact plasmas, making use of advanced tokamak plasma concepts, are the most probable route to burning plasmas and ultimately a fusion reactor.

  6. Irradiation experiment on fast reactor metal fuels containing minor actinides up to 7 at.% burnup

    SciTech Connect

    Ohta, H.; Yokoo, T.; Ogata, T.; Inoue, T.; Ougier, M.; Glatz, J.P.; Fontaine, B.; Breton, L.

    2007-07-01

    Fast reactor metal fuels containing minor actinides (MAs: Np, Am, Cm) and rare earths (REs) have been irradiated in the fast reactor PHENIX. In this experiment, four types of fuel alloys, U-19Pu-10Zr, U-19Pu-10Zr-2MA-2RE, U-19Pu-10Zr-5MA-5RE and U-19Pu-10Zr-5MA (wt.%), are loaded into part of standard metal fuel stacks. The postirradiation examinations will be conducted at {approx}2.4, {approx}7 and {approx}11 at.% burnup. As for the low-burnup fuel pins, nondestructive postirradiation tests have already been performed and the fuel integrity was confirmed. Furthermore, the irradiation experiment for the intermediate burnup goal of {approx}7 at.% was completed in July 2006. For the irradiation period of 356.63 equivalent full-power days, the neutron flux level remained in the range of 3.5-3.6 x 10{sup 15} n/cm{sup 2}/s at the axial peak position. On the other hand, the maximum linear power of fuel alloys decreased gradually from 305-315 W/cm (beginning of irradiation) to 250-260 W/cm (end of irradiation). The discharged peak burnup was estimated to be 6.59-7.23 at.%. The irradiation behavior of MA-containing metal fuels up to 7 at.% burnup was predicted using the ALFUS code, which was developed for U-Pu-Zr ternary fuel performance analysis. As a result, it was evaluated that the fuel temperature is distributed between {approx}410 deg. C and {approx}645 deg. C at the end of the irradiation experiment. From the stress-strain analysis based on the preliminarily employed cladding irradiation properties and the FCMI stress distribution history, it was predicted that a cladding strain of not more than 0.9% would appear. (authors)

  7. Confinement projections for the Burning Plasma Experiment (BPX)

    SciTech Connect

    Goldston, R.J.; Bateman, G.; Kaye, S.M.; Perkins, F.W.; Pomphrey, N.; Stotler, D.P.; Zarnstorff, M.C. . Plasma Physics Lab.); Houlberg, W.A.; Neilson, G.H. ); Porkolab, M. ); Reidel, K.S. ); Stambaugh, R.D.; Waltz, R.E. )

    1991-01-01

    The mission of the Burning Plasma Experiment (BPX, formerly CIT) is to study the physics of self-heated fusion plasmas (Q = 5 to ignition), and to demonstrate the production of substantial amounts of fusion power (P{sub fus} = 100 to 500 MW). Confinement projections for BPX have been made on the basis of (1) dimensional extrapolation (2) theory-based modeling calibrated to experiment, and (3) statistical scaling from the available empirical data base. The results of all three approaches, discussed in this paper, roughly coincide. We presently view the third approach, statistical scaling, as the most reliable means for projecting the confinement performance of BPX, and especially for assessing the uncertainty in the projection. 11 refs., 2 figs., 1 tab.

  8. Feasibility Study of Supercritical Light Water Cooled Fast Reactors for Actinide Burning and Electric Power Production, Progress Report for Work Through September 2002, 4th Quarterly Report

    SciTech Connect

    Mac Donald, Philip Elsworth

    2002-09-01

    The use of light water at supercritical pressures as the coolant in a nuclear reactor offers the potential for considerable plant simplification and consequent capital and O&M cost reduction compared with current light water reactor (LWR) designs. Also, given the thermodynamic conditions of the coolant at the core outlet (i.e. temperature and pressure beyond the water critical point), very high thermal efficiencies of the power conversion cycle are possible (i.e. up to about 45%). Because no change of phase occurs in the core, the need for steam separators and dryers as well as for BWR-type re-circulation pumps is eliminated, which, for a given reactor power, results in a substantially shorter reactor vessel and smaller containment building than the current BWRs. Furthermore, in a direct cycle the steam generators are not needed. If no additional moderator is added to the fuel rod lattice, it is possible to attain fast neutron energy spectrum conditions in a supercritical water-cooled reactor (SCWR). This type of core can make use of either fertile or fertile-free fuel and retain a hard spectrum to effectively burn plutonium and minor actinides from LWR spent fuel while efficiently generating electricity. One can also add moderation and design a thermal spectrum SCWR. The Generation IV Roadmap effort has identified the thermal spectrum SCWR (followed by the fast spectrum SCWR) as one of the advanced concepts that should be developed for future use. Therefore, the work in this NERI project is addressing both types of SCWRs.

  9. Cost analysis of acute burn patients treated in a burn centre: the Gulhane experience

    PubMed Central

    Sahin, I.; Ozturk, S.; Alhan, D.; Açikel, C.; Isik, S.

    2011-01-01

    Summary Even if calculating the exact cost of burn treatment is a very hard task, the study of cost analysis provides financial perspective. We performed a cost analysis study in our burn centre to respond to questions about total patient treatment cost and the length of hospital stay. We reviewed all patients admitted to the Gulhane Military Medical Academy Burn Centre in Ankara, Turkey, between March 2005 and August 2008. Forty-three patients with major burns were identified on the basis of the study criteria. The data regarding total treatment cost and the length of hospital stay for each type of burn (flame, scald, electric) were collected at the end of the study. The average total body surface area burned was 36 ± 7%.. The average duration of hospital stay was 73 ± 33 days. Patients with electrical burns stayed longer in hospital than patients with other types of burn injuries. Each one per cent of burn corresponded to a mean hospital stay of two days. The overall mean total cost was $US 15,250. The mean total cost of electrical burns was the highest, with $US 22,501 ± 24,039. Even if the costs associated with burn injury are higher than some other well-known health-related problems, they have not been much studied. Reports have produced different results, but it should be kept in mind that although the results of cost analysis studies may vary they must be performed in all newly established burn centres in order to form a financial overview. PMID:21991233

  10. High pressure droplet burning experiments in reduced gravity

    NASA Technical Reports Server (NTRS)

    Chauveau, Christian; Goekalp, Iskender

    1995-01-01

    A parametric investigation of single droplet gasification regimes is helpful in providing the necessary physical ideas for sub-grid models used in spray combustion numerical prediction codes. A research program has been initiated at the LCSR to explore the vaporization regimes of single and interacting hydrocarbon and liquid oxygen droplets under high pressure conditions. This paper summarizes the status of the LCSR program on the high pressure burning of single fuel droplets; recent results obtained under normal and reduced gravity conditions with suspended droplets are presented. In the work described here, parabolic flights of the CNES Caravelle is used to create a reduced gravity environment of the order of 10(exp -2) g(sub O). For all the droplet burning experiments reported here, the suspended droplet initial diameters are scattered around 1.5 mm; and the ambient air temperature is 300 K. The ambient pressure is varied between 0.1 MPa and 12 MPa. Four fuels are investigated: methanol (Pc = 7.9 MPa), n-heptane (Pc = 2.74 MPa), n-hexane (Pc = 3.01 MPa) and n-octane (Pc = 2.48 MPa).

  11. Epidemiology and outcome of burns: early experience at the country's first national burns centre.

    PubMed

    Iqbal, Tariq; Saaiq, Muhammad; Ali, Zahid

    2013-03-01

    This study aims to document the epidemiologic pattern and outcome of burn injuries in the country's first national burn centre. This case series study was conducted over a 2-year period at Burns Care Centre (BCC), Pakistan Institute of Medical Sciences (PIMS), Islamabad. The study included all burn injury patients who primarily presented to and were managed at the centre. Those patients who presented more than 24 h after injury or those who were initially managed at some other hospital were excluded from the study. Initial assessment and diagnosis was made by thorough history, physical examination and necessary investigations. Patients with major burns, high voltage electric burns and those needing any surgical interventions were admitted for indoor management. Patients with minor burns were discharged home after necessary emergency management, home medication and follow-up advice. The sociodemographic profile of the patients, site of sustaining burn injury, type and extent (total body surface area (TBSA), skin thickness involved and associated inhalational injury) of burn and outcome in terms of survival or mortality, etc., were all recorded on a proforma. The data were subjected to statistical analysis. Out of a total of 13,295 patients, there were 7503 (56.43%) males and 5792 (43.56%) females. The mean age for adults was 33.63±10.76 years and for children it was 6.71±3.47 years. The household environment constituted the commonest site of burns (68%). Among all age groups and both genders, scalds were the commonest burns (42.48%), followed by flame burns (39%) and electrical burns (9.96%). The affected mean TBSA was 10.64±11.45% overall, while for the hospitalised subset of patients the mean TBSA was 38.04±15.18%. Most of the burns were partial thickness (67%). Inhalation injury was found among 149 (1.12%) patients. Most of the burns were non-intentional and only 96 (0.72%) were intentional. A total of 1405 patients (10.58%) were admitted while the remainder

  12. Burning experiments and late Paleozoic high O2 levels

    NASA Astrophysics Data System (ADS)

    Wildman, R.; Essenhigh, R.; Berner, R.; Hickey, L.; Wildman, C.

    2003-04-01

    The Paleozoic rise of land plants brought about increased burial of organic matter and a resulting increase in atmospheric oxygen concentrations. Levels as high as 30-35% O2 may have been reached during the Permo-Carboniferous (Berner and Canfield, 1989; Berner, 2001). However, burning experiments based solely on paper (Watson, 1978) have challenged these results, the claim being that if the oxygen made up more than 25% of the atmosphere, the frequency and intensity of forest fires would increase sufficiently to prevent the continued existence of plant life. Thus, since plants have persisted, it is possible that fires served as a negative feedback against excessive oxygen levels. An initial study of Paleozoic wildfire behavior via thermogravimetric analysis (TGA) was conducted under ambient and enriched oxygen conditions to simulate present and ancient atmospheres. The tests focused on natural fuels, specifically tree leaves and wood, tree fern fibers, and sphagnum peat-moss, simulating Permo-Carboniferous upland and swampland ecosystems, respectively. Three conclusions are: (1) enriched oxygen increases the rate of mass loss during burning; (2) fuel chemistry (cellulose vs. lignin) influences burning patterns; and (3) in geometrically heterogeneous fuels, geometry affects burning rate significantly. Both geometrically and chemically, paper resists fire poorly; thus, we found that it loses its mass at lower temperatures than forest materials and is therefore a poor proxy for Paleozoic ecosystems. Further study of Paleozoic wildfire spread behavior is currently being conducted. Fires are lit using pine dowels, which allow for reproducible fuel density. Steady-state, one-dimensional flame-spread is measured with thermocouples anchored two inches above the fuel bed. Both oxygen concentration of the air supply to the fire and moisture content of the fuels are varied, as we suspect that these are two main controls of wildfire spread. Burning fuels of varying moisture

  13. Alpha Heating and TN Burn in NIF Experiments

    NASA Astrophysics Data System (ADS)

    Cheng, Baolian; Kwan, Thomas; Wang, Yi-Ming; Merrill, Frank; Cerjan, Charlie; Batha, Steven

    2015-11-01

    Sustainable TN burn requires alpha-particle energy deposition in the hot fuel. Recently, we developed an analytic model to estimate the neutron yield generated by the alpha-particle energy deposited in the hot spot, in terms of the measured total neutron yield, the adiabat of the cold fuel and the peak implosion kinetic energy of the pusher. Our alpha heating model has been applied to a number of inertial confinement fusion capsule experiments performed at the National Ignition Facility (NIF). Our model predictions are consistent with the post-shot calibrated code simulations and experimental data. We have also studied the uncertainty and sensitivities of alpha heating on various physics parameters, such as the adiabat of cold fuel, total neutron yield and peak implosion velocity. Our analysis demonstrates that the alpha particle heating was appreciable in only high-foot experiments. Based on our work, we will discuss paths and parameters to reach ignition at NIF (LA-UR-15-25507). This work was performed under the auspices of the U.S. Department of Energy by the Los Alamos National Laboratory under Contract No. W-7405-ENG-36.

  14. Actinides-1981

    SciTech Connect

    Not Available

    1981-09-01

    Abstracts of 134 papers which were presented at the Actinides-1981 conference are presented. Approximately half of these papers deal with electronic structure of the actinides. Others deal with solid state chemistry, nuclear physic, thermodynamic properties, solution chemistry, and applied chemistry.

  15. Pakistani Experience of Childhood Burns in a Private Setup

    PubMed Central

    Ahmad, M.

    2010-01-01

    Summary Burns are the second leading cause of death in children. This study investigates the distribution and pattern of childhood burn injuries in a private setup. The study was conducted in Rawalpindi, Pakistan from January 2006 to December 2008. Only paediatric patients ≤ 12 years of age were included in the study. All paediatric burn patients (in- as well as out-patients) were included. A total of 44 patients were included (male-to-female ratio, 1.3 to 1) with 2.3% patients aged 1-3 years, 13.6% aged 4 6, 38.6% aged 7-9, and 45.5% aged 10-12. The mean age was 9.16 yr in males and 8.37 yr in females. Scald burns were the commonest kind of burn (43.2%), followed by flame burns (18.2%). In 6.8% of the patients, the burns were superficial, in 20.5% they were deep, and in 72.7% they were mixed. The majority of the patients had involvement of the hand with or without the forearm (47.7%). The mean hospital stay was 17.5 days. There was one mortality during the study period. PMID:21991192

  16. ABA Southern Region Burn disaster plan: the process of creating and experience with the ABA southern region burn disaster plan.

    PubMed

    Kearns, Randy D; Cairns, Bruce A; Hickerson, William L; Holmes, James H

    2014-01-01

    The Southern Region of the American Burn Association began to craft a regional plan to address a surge of burn-injured patients after a mass casualty event in 2004. Published in 2006, this plan has been tested through modeling, exercise, and actual events. This article focuses on the process of how the plan was created, how it was tested, and how it interfaces with other ongoing efforts on preparedness. One key to success regarding how people respond to a disaster can be traced to preexisting relationships and collaborations. These activities would include training or working together and building trust long before the crisis. Knowing who you can call and rely on when you need help, within the context of your plan, can be pivotal in successfully managing a disaster. This article describes how a coalition of burn center leaders came together. Their ongoing personal association has facilitated the development of planning activities and has kept the process dynamic. This article also includes several of the building blocks for developing a plan from creation to composition, implementation, and testing. The plan discussed here is an example of linking leadership, relationships, process, and documentation together. On the basis of these experiences, the authors believe these elements are present in other regions. The intent of this work is to share an experience and to offer it as a guide to aid others in their regional burn disaster planning efforts.

  17. ABA Southern Region Burn disaster plan: the process of creating and experience with the ABA southern region burn disaster plan.

    PubMed

    Kearns, Randy D; Cairns, Bruce A; Hickerson, William L; Holmes, James H

    2014-01-01

    The Southern Region of the American Burn Association began to craft a regional plan to address a surge of burn-injured patients after a mass casualty event in 2004. Published in 2006, this plan has been tested through modeling, exercise, and actual events. This article focuses on the process of how the plan was created, how it was tested, and how it interfaces with other ongoing efforts on preparedness. One key to success regarding how people respond to a disaster can be traced to preexisting relationships and collaborations. These activities would include training or working together and building trust long before the crisis. Knowing who you can call and rely on when you need help, within the context of your plan, can be pivotal in successfully managing a disaster. This article describes how a coalition of burn center leaders came together. Their ongoing personal association has facilitated the development of planning activities and has kept the process dynamic. This article also includes several of the building blocks for developing a plan from creation to composition, implementation, and testing. The plan discussed here is an example of linking leadership, relationships, process, and documentation together. On the basis of these experiences, the authors believe these elements are present in other regions. The intent of this work is to share an experience and to offer it as a guide to aid others in their regional burn disaster planning efforts. PMID:23666386

  18. Reliability of biomass burning estimates from savanna fires: Biomass burning in northern Australia during the 1999 Biomass Burning and Lightning Experiment B field campaign

    NASA Astrophysics Data System (ADS)

    Russell-Smith, Jeremy; Edwards, Andrew C.; Cook, Garry D.

    2003-02-01

    This paper estimates the two-daily extent of savanna burning and consumption of fine (grass and litter) fuels from an extensive 230,000 km2 region of northern Australia during August-September 1999 encompassing the Australian continental component of the Biomass Burning and Lightning Experiment B (BIBLE B) campaign [, 2002]. The extent of burning for the study region was derived from fire scar mapping of imagery from the advanced very high resolution radiometer (AVHRR) on board the National Oceanic and Atmospheric Administration (NOAA) satellite. The mapping was calibrated and verified with reference to one Landsat scene and associated aerial transect validation data. Fine fuel loads were estimated using published fuel accumulation relationships for major regional fuel types. It is estimated that more than 43,000 km2 was burnt during the 25 day study period, with about 19 Mt of fine (grass and litter) fuels. This paper examines assumptions and errors associated with these estimates. It is estimated from uncalibrated fire mapping derived from AVHRR imagery that 417,500 km2 of the northern Australian savanna was burnt in 1999, of which 136,405 km2, or 30%, occurred in the Northern Territory study region. Using generalized fuel accumulation equations, such biomass burning consumed an estimated 212.3 Mt of fine fuels, but no data are available for consumption of coarse fuels. This figure exceeds a recent estimate, based on fine fuels only, for the combined Australian savanna and temperate grassland biomass burning over the period 1990-1999 but is lower than past estimates derived from classification approaches. We conclude that (1) fire maps derived from coarse-resolution optical imagery can be applied relatively reliably to estimate the extent of savanna fires, generally with 70-80% confidence using the approach adopted here, over the major burning period in northern Australia and (2) substantial further field assessment and associated modeling of fuel accumulation

  19. AN INTEGRAL REACTOR PHYSICS EXPERIMENT TO INFER ACTINIDE CAPTURE CROSS-SECTIONS FROM THORIUM TO CALIFORNIUM WITH ACCELERATOR MASS SPECTROMETRY

    SciTech Connect

    G. Youinou; M. Salvatores; M. Paul; R. Pardo; G. Palmiotti; F. Kondev; G. Imel

    2010-04-01

    The principle of the proposed experiment is to irradiate very pure actinide samples in the Advanced Test Reactor (ATR) at INL and, after a given time, determine the amount of the different transmutation products. The determination of the nuclide densities before and after neutron irradiation will allow inference of effective neutron capture cross-sections. This approach has been used in the past and the novelty of this experiment is that the atom densities of the different transmutation products will be determined using the Accelerator Mass Spectroscopy (AMS) technique at the ATLAS facility located at ANL. It is currently planned to irradiate the following isotopes: 232Th, 235U, 236U, 238U, 237Np, 238Pu, 239Pu, 240Pu, 241Pu, 242Pu, 241Am, 243Am and 248Cm.

  20. Experience with banked skin in the Prague Burn Center.

    PubMed

    Broz, L; Vogtová, D; Königová, R

    1999-01-01

    Despite progress in materials science, the use of human allografts and xenografts of pig origin is in the Prague Burn Center among the preferred means of temporary burn wound cover since 1973. True closure is achieved only with living autografts or isografts (identical twins). The method for preparing fresh porcine grafts was introduced in Prague 25 years ago: dermoepidermal sheets are retrieved in strips, are treated with a lavage of chemotherapeutics and antibiotics, are spread onto sterile wet gauze and stored in Pétri dishes at 4 degrees centigrade in a refrigerator. Cellular viability is maintained for 10-14 days when transferred to patients. The Prague Skin Bank commenced its activity in 1986. The Protocol for the cryopreservation of skin was established: the pretreated skin is kept in aluminium vessels in containers with vapours of liquid nitrogen. Cryoprotective Medium is used with 15% glycerol. The skin viability has been verified by investigation of glucose metabolism. The production of fresh and long-term stored viable skin grafts has been increasing continuously and at present, the production represents 2 million square centimeters per year. About 15% of the harvest is distributed to other surgical and trauma departments. Any burn wound dressing may fail due to a failure to use them properly-lack of attention to the details in burn wound care can lead to disappointment.

  1. Hardening neutron spectrum for advanced actinide transmutation experiments in the ATR.

    PubMed

    Chang, G S; Ambrosek, R G

    2005-01-01

    The most effective method for transmuting long-lived isotopes contained in spent nuclear fuel into shorter-lived fission products is in a fast neutron spectrum reactor. In the absence of a fast test reactor in the United States, initial irradiation testing of candidate fuels can be performed in a thermal test reactor that has been modified to produce a test region with a hardened neutron spectrum. Such a test facility, with a spectrum similar but somewhat softer than that of the liquid-metal fast breeder reactor (LMFBR), has been constructed in the INEEL's Advanced Test Reactor (ATR). The radial fission power distribution of the actinide fuel pin, which is an important parameter in fission gas release modelling, needs to be accurately predicted and the hardened neutron spectrum in the ATR and the LMFBR fast neutron spectrum is compared. The comparison analyses in this study are performed using MCWO, a well-developed tool that couples the Monte Carlo transport code MCNP with the isotope depletion and build-up code ORIGEN-2. MCWO analysis yields time-dependent and neutron-spectrum-dependent minor actinide and Pu concentrations and detailed radial fission power profile calculations for a typical fast reactor (LMFBR) neutron spectrum and the hardened neutron spectrum test region in the ATR. The MCWO-calculated results indicate that the cadmium basket used in the advanced fuel test assembly in the ATR can effectively depress the linear heat generation rate in the experimental fuels and harden the neutron spectrum in the test region.

  2. Cross Sections for Neutron-induced Reactions on Actinide Targets Extracted from Surrogate Experiments: A Status Report

    SciTech Connect

    Escher, J E; Burke, J T; Dietrich, F S; Lesher, S R; Scielzo, N D; Thompson, I J; Younes, W

    2009-10-01

    The Surrogate nuclear reactions method, an indirect approach for determining cross sections for compound-nuclear reactions involving difficult-to-measure targets, is reviewed. Focusing on cross sections for neutron-induced reactions on actinides, we review the successes of past and present applications of the method and assess its uncertainties and limitations. The approximations used in the analyses of most experiments work reasonably well for (n,f) cross sections for neutron energies above 1-2 MeV, but lead to discrepancies for low-energy (n,f) reactions, as well as for (n,{gamma}) applications. Correcting for some of the effects neglected in the approximate analyses leads to improved (n,f) results. We outline steps that will further improve the accuracy and reliability of the Surrogate method and extend its applicability to reactions that cannot be approached with the present implementation of the method.

  3. Challenges of Transferring Burn Victims to Hospitals: Experiences of Emergency Medical Services Personnel.

    PubMed

    Khankeh, Hamid Reza; Froutan, Razieh; Fallahi-Khoshknab, Masoud; Ahmadi, Fazlollah; Norouzi, Kian

    2016-01-01

    A thorough understanding of experiences of Emergency Medical Services (EMS) personnel related to the field transfer of burn victims can be used as a prerequisite of quality improvement of pre-hospital clinical care for these kinds of victims. The aim of the present study was to explore the experiences of EMS personnel during transferring burn victims. In this qualitative research, content analysis was performed to explore the experiences and perceptions of a purposeful sample of Iranian EMS personnel (n = 32). Data collection continued until a point of saturation was reached. Data was collected using in-depth semi-structured interview and field observations and analyzed by qualitative inductive content analysis.After data analyzing from experiences of pre-hospital emergency personnel during transferring burn victims 7 subcategories were developed and classified into three main categories as challenges of transferring burn victim including; risks during patient transfer, restrictions in the admission of burn victims and uncertainties about patient referral. This study showed that different factors affect the quality of pre-hospital clinical services to the field transfer of burn victims that should be considered to improve the quality of pre-hospital clinical care of burn victims in dynamic programs. Further investigation is needed to explore the process of these crucial services. PMID:27241432

  4. Shall We Continue to Teach the Candle Burning Experiment at Lower Secondary Level?

    ERIC Educational Resources Information Center

    Dhindsa, Harkirat S.

    2005-01-01

    The candle burning experiment is usually conducted in lower secondary classes to prove the (about) 20% oxygen in air. The aim of this paper is to show that teachers misinterpret the results of the experiment to satisfy the objectives of teaching this experiment. However, when the results of this experiment are interpreted correctly, the objectives…

  5. Cardowan coal mine explosion: experience of a mass burns incident.

    PubMed

    Allister, C; Hamilton, G M

    1983-08-01

    A coal mine explosion 1700 feet (516 m) underground and two miles (3.2 km) from the pit head resulted in 40 casualties. Two hours elapsed between the explosion and the arrival of patients at hospital. Six patients suffered mechanical injuries, only one of which was life threatening. Thirty six suffered burns; in 18 over 15% of the total body surface area was affected. Nineteen patients had a mild respiratory upset requiring oxygen treatment. The average length of inpatient stay in those admitted was 24 days. Early assessment and treatment in the accident and emergency department was relatively simple because of the large proportion of burn injuries. Lack of communication between site and hospital made administration of the disaster difficult. PMID:6409324

  6. Sun tanning-related burns--a 3-year experience.

    PubMed

    Piccolo-Lobo, M S; Piccolo, N S; Piccolo-Daher, M T; Cardoso, V M

    1992-04-01

    A retrospective study has analyzed 562 sun-related burns out of 19,643 patients treated at our institution from 1 March 1988 to 28 February 1991. These patients were analysed according to sex, age, burn area, mode and length of treatment and outcome. Females, mainly adults, represented 60.8 per cent of all patients presenting burned due to sun bathing. There is a marked seasonal incidence, proportionally constant throughout these 3 years. The main causes of injury were sun only (36.7 per cent), sun plus fig leaf 'tea' tanning lotion (17.7 per cent) and lemon juice (17.7 per cent). Healing to normal skin appearance was achieved in 99.1 per cent, 0.7 per cent healed with scarring and one patient died due to massive sepsis. The effect of sunlight on skin and the process of 'sunburn' when using homemade plant-derived tanning lotions containing substances which can induce a photodermatitis reaction is also discussed.

  7. The dynamic experience of pain in burn patients: A phenomenological study.

    PubMed

    Pérez Boluda, M T; Morales Asencio, J M; Carrera Vela, A; García Mayor, S; León Campos, A; López Leiva, I; Rengel Díaz, C; Kaknani-Uttumchandani, S

    2016-08-01

    Although pain is one of the main sources of suffering during the acute phase and rehabilitation in burn patients, it remains as a major challenge for burn care, and clinical management not always correlates with the experience felt by patients. The aim of this study was to understand the experience of pain from people who has suffered severe burns, to identify personal strategies used to cope with this challenging event. A qualitative phenomenological study with purposive sampling was carried out with severe burn patients admitted to a Burn Unit. Through individual in-depth interviews, verbatim transcription and content analysis, two main categories were isolated: a dynamic and changing experience of pain, from the onset to the hospital discharge, and diverse strategies developed by patients to cope with pain, being distraction the most frequently used. Pain experienced acquires its maximum intensity during wound care, and divergent patients' opinions about sedation are present. This study highlights how understanding subjective experiences is an invaluable aid to improve care in pain assessment and management. Furthermore, it points out the need to guarantee patient involvement in the organization and improvement of burn care, inasmuch as traditional professional centered approach is not ensuring an optimal management.

  8. Bridging the experience gap: Burning tires in a utility boiler

    SciTech Connect

    Denhof, D.

    1993-03-01

    For many communities, a solution to waste tire management problems may be no farther than the nearest coal-fired utility or industrial boiler. Sending waste tires to be used as a fuel in existing boilers is one way communities can prevent tires from creating problems in landfills, or from growing into nuisances and potentially dangerous stockpiles while waiting for recycling markets to develop. For utilities, using tire-derived fuel can help control fuel costs and conserve coal. When the State of Wisconsin sought alternatives to disposing of waste tires in its landfills, Wisconsin Power & Light came forward to meet the challenge. Now, the electric utility is shredding and burning more than 1 million tires a year at its coal-fired generating station in southern Wisconsin.

  9. Advanced Burn Life Support for Day-to-Day Burn Injury Management and Disaster Preparedness: Stakeholder Experiences and Student Perceptions Following 56 Advanced Burn Life Support Courses.

    PubMed

    Kearns, Randy D; Ortiz-Pujols, Shiara M; Craig, Christopher K; Gusler, James R; Skarote, Mary Beth; Carter, Jeffery; Rezak-Alger, Amy; Cairns, Charles B; Lofald, Daniel; Hubble, Michael W; Holmes, James H; Lord, Graydon C; Helminiak, Clare; Cairns, Bruce A

    2015-01-01

    Educational programs for clinicians managing patients with burn injuries represent a critical aspect of burn disaster preparedness. Managing a disaster, which includes a surge of burn-injured patients, remains one of the more challenging aspects of disaster medicine. During a 6-year period that included the development of a burn surge disaster program for one state, a critical gap was recognized as public presentations were conducted across the state. This gap revealed an acute and greater than anticipated need to include burn care education as an integral part of comprehensive burn surge disaster preparedness. Many hospital and prehospital providers expressed concern with managing even a single, burn-injured patient. While multiple programs were considered, Advanced Burn Life Support (ABLS), a national standardized educational program was selected to help address this need. The curriculum includes initial care for the burn-injured patient as well as an overview of the burn centers role in the disaster preparedness community. After 4 years and 56 classes conducted across the state, a survey was developed including a section that measured the perceptions of those who completed the ABLS educational program. The study specifically examines questions including whether clinicians perceived changes in their burn care knowledge, skills and abilities, and burn disaster preparedness following completion of the program? including whether clinicians. PMID:25167372

  10. Integrated predictive modelling simulations of burning plasma experiment designs

    NASA Astrophysics Data System (ADS)

    Bateman, Glenn; Onjun, Thawatchai; Kritz, Arnold H.

    2003-11-01

    Models for the height of the pedestal at the edge of H-mode plasmas (Onjun T et al 2002 Phys. Plasmas 9 5018) are used together with the Multi-Mode core transport model (Bateman G et al 1998 Phys. Plasmas 5 1793) in the BALDUR integrated predictive modelling code to predict the performance of the ITER (Aymar A et al 2002 Plasma Phys. Control. Fusion 44 519), FIRE (Meade D M et al 2001 Fusion Technol. 39 336), and IGNITOR (Coppi B et al 2001 Nucl. Fusion 41 1253) fusion reactor designs. The simulation protocol used in this paper is tested by comparing predicted temperature and density profiles against experimental data from 33 H-mode discharges in the JET (Rebut P H et al 1985 Nucl. Fusion 25 1011) and DIII-D (Luxon J L et al 1985 Fusion Technol. 8 441) tokamaks. The sensitivities of the predictions are evaluated for the burning plasma experimental designs by using variations of the pedestal temperature model that are one standard deviation above and below the standard model. Simulations of the fusion reactor designs are carried out for scans in which the plasma density and auxiliary heating power are varied.

  11. Modeling of the Jack Rabbit Series of Experiments with a temperature-based reactive burn mode

    NASA Astrophysics Data System (ADS)

    Desbiens, Nicolas; Sorin, Remy; Dubois, Vincent

    2015-06-01

    A reactive burn model based on shocked explosive temperature has been presented at the previous joint AIRAPT/APS-SCCM in Seattle. It has been shown that the temperature of the unburnt shocked explosive is a good candidate to drive rate laws of decomposition. Such models are able to reproduce the evolution of the sensitivity of explosives with porosity. They also predict a drastic reduction of the reactivity in the case of multi-shock compression without any bolt-on desensitization model. In this work, we apply our temperature-based reactive burn model to the data of the Jack Rabbit Series of Experiments. Indeed, these experiments dedicated to the study of detonation wave corner turning and shock desensitization in LX-17 are harsh tests for reactive burn models. Details of our model together with preliminary results will be shown.

  12. Integra™ in burns reconstruction: Our experience and report of an unusual immunological reaction.

    PubMed

    Lohana, P; Hassan, S; Watson, S B

    2014-03-31

    Limited availability of autologous donor sites poses significant challenges for soft-tissue reconstruction in severe and complex burns. Integra™ is a bi-layered dermal regeneration template (DRT) which has played a significant role in soft tissue reconstruction since its initial use for full-thickness burn defects. The purpose of this study is to report our institutional experience of Integra™ in burns management over a 4-year period and highlight an unusual reaction to its second application. Twenty-four cases underwent Integra™ resurfacing for burn management from September 2007 to August 2011. Data on patient demographics, including co-morbidities, indications, operative data, complications, secondary reconstruction and outcomes were recorded. Integra™ was used in 24 patients on 37 anatomical sites. One patient died 3 weeks after injury and first stage of Integra™ application, and was therefore excluded from the study. Split-thickness skin grafting was performed within an average of 23 days (with a range of 7-55 days) and mean graft take was 87% (with a range of 75-100%). Five cases of local infection at the graft site were recorded. The average length of hospital stay was 47 days (with a range of 1-162 days). The mean follow-up time was 17 months (with a range of 9-34 months). Overall, our experience with DRT was mixed, that is to say we found it satisfactory with acute burns resurfacing but very good with secondary reconstruction. The main advantage of Integra™ is its immediate availability in unlimited quantities for soft-tissue reconstruction in major and complex burns. The main drawbacks are financial implications, twostage procedure, complex wound care and risk of infection. We believe that Integra™ can be considered as a promising modality in burns management.

  13. Review of D-T Experiments Relevant to Burning Plasma Issues

    SciTech Connect

    R.J. Hawryluk

    2001-12-21

    Progress in the performance of tokamak devices has enabled not only the production of significant bursts of fusion energy from deuterium-tritium (D-T) plasmas in the Tokamak Fusion Test Reactor (TFTR) and the Joint European Torus (JET) but, more importantly, the initial study of the physics of burning magnetically confined plasmas. The TFTR and JET, in conjunction with the worldwide fusion effort, have studied a broad range of topics including magnetohydrodynamic stability, transport, wave-particle interactions, the confinement of energetic particles, and plasma boundary interactions. The D-T experiments differ in three principal ways from previous experiments: isotope effects associated with the use of deuterium-tritium fuel, the presence of fusion-generated alpha particles, and technology issues associated with tritium handling and increased activation. The effect of deuterium-tritium fuel and the presence of alpha particles is reviewed and placed in the perspective of the much large r worldwide database using deuterium fuel and theoretical understanding. Both devices have contributed substantially to addressing the scientific and technical issues associated with burning plasmas. However, future burning plasma experiments will operate with larger ratios of alpha heating power to auxiliary power and will be able to access additional alpha-particle physics issues. The scientific opportunities for extending our understanding of burning plasmas beyond that provided by current experiments is described.

  14. Burning a Candle in a Vessel, a Simple Experiment with a Long History

    ERIC Educational Resources Information Center

    Vera, Francisco; Rivera, Rodrigo; Nunez, Cesar

    2011-01-01

    The experiment in which a candle is burned inside an inverted vessel partially immersed in water has a history of more than 2,200 years, but even nowadays it is common that students and teachers relate the change in volume of the enclosed air to its oxygen content. Contrary to what many people think, Lavoisier concluded that any change in volume…

  15. Inpatient peer support for adult burn survivors-a valuable resource: a phenomenological analysis of the Australian experience.

    PubMed

    Kornhaber, R; Wilson, A; Abu-Qamar, M; McLean, L; Vandervord, J

    2015-02-01

    Peer support has long been recognised as an essential component of a supportive network for people facing adversity. In particular, burn survivor peer support is a valuable and credible resource available to those rehabilitating from a severe burn. The aim of this study was to explore burn survivors' experiences of providing and receiving inpatient peer support to develop an in-depth understanding of the influence during the rehabilitation journey. In 2011, twenty-one burn survivors were recruited from four severe burn units across Australia. A qualitative phenomenological methodology was used to construct themes depicting survivors' experiences. Participants were selected through purposeful sampling, and data collected through in-depth individual semi-structured interviews. Data were analysed using Colaizzi's phenomenological method of data analysis. Central to burn rehabilitation was the notion of peer support having a significant impact on burn survivors' psychosocial rehabilitation. The emergent theme 'Burn Survivor Peer Support' identified five cluster themes: (1) Encouragement, inspiration and hope (2) Reassurance (3) The Importance of Timing (4) The Same Skin (5) Appropriate Matching. These findings demonstrate that peer support assists with fostering reassurance, hope and motivation in burn rehabilitation. A national network based on a clinician led inpatient burn survivor peer support programme could provide burn survivors across Australia, and in particular remote access locations, with the benefits of peer support necessary to endure the rehabilitation journey.

  16. Biomass Burning Airborne and Spaceborne Experiment in the Amazonas (BASE-A)

    NASA Technical Reports Server (NTRS)

    Kaufman, Y. J.; Setzer, A.; Ward, D.; Tanre, D.; Holben, B. N.; Menzel, P.; Pereira, M. C.; Rasmussen, R.

    1992-01-01

    Results are presented on measurements of the trace gas and particulate matter emissions due to biomass burning during deforestation and grassland fires in South America, conducted as part of the Biomass Burning Airborne and Spaceborne Experiment in the Amazonas in September 1989. Field observations by an instrumented aircraft were used to estimate concentrations of O3, CO2, CO, CH4, and particulate matter. Fires were observed from satellite imagery, and the smoke optical thickness, particle size, and profiles of the extinction coefficient were measured from the aircraft and from the ground. Four smoke plumes were sampled, three vertical profiles were measured, and extensive ground measurements of smoke optical characteristics were carried out for different smoke types. The simultaneous measurements of the trace gases, smoke particles, and the distribution of fires were used to correlate biomass burning with the elevated levels of ozone.

  17. Benefits of an outreach education coordinator: a burn center’s experience*

    PubMed Central

    Hollowed, K.A.; Travis, T.E.; Jordan, M.H.; Shupp, J.W.

    2015-01-01

    Summary Education of first responders and referring medical professionals is considered vital to high-quality burn care. Prior to 1999, the community education program at The Burn Center of MedStar Washington Hospital Center (MWHC) was staffed by ICU nurses who volunteered their time. As the program became more popular in the mid-1990s, the requests for lectures exceeded the capacity of a volunteer program. A request to hospital administration for a full-time education coordinator position was rejected in the climate of budget cut-backs and declining reimbursement. A business-oriented proposal, ultimately accepted, promised an increase in admissions, an improved payor mix, and an annual review of data to demonstrate the cost/benefit advantage. To advertise the creation of the coordinator position and education programs, letters were mailed to local fire departments, nursing schools and emergency departments. The response was positive, and, with a full-time coordinator, the requests were accommodated in a timely manner. Community education programs increased almost four-fold. Average annual admissions increased initially from 292 to 374 and have continued to increase, rising to 812 in fiscal year 2008. As expected, the average percent total body surface area burns decreased (from 10.8% to 6.9%), reflecting increased referral of smaller burns and, inferentially and per analysis, an improved payor mix. Most impressive was the increase in charitable donations, from an annual average of $27,500 before the position was created to an average of $183,000 annually thereafter. From this experience as well as the experience discovered by a national survey, there are desirable side effects of a full-time community burn education program coordinator, and the cost for The Burn Center at MWHC has been more than balanced by the benefits. PMID:27777550

  18. Preparation of actinide specimens for the US/UK joint experiment in the Dounreay Prototype Fast Reactor

    SciTech Connect

    Quinby, T C; Adair, H L; Kobisk, E H

    1982-05-01

    A joint research program involving the United States and the United Kingdom was initiated about four years ago for the purpose of studying the fuel behavior of higher actinides using in-core irradiation in the fast reactor at Dounreay, Scotland. Simultaneously, determination of integral cross sections of a wide variety of higher actinide isotopes (physics specimens) was proposed. Coincidental neutron flux and energy spectral measurements were to be made using vanadium encapsulated dosimetry materials in the immediate region of the fuel pellets and physics samples. The higher actinide samples chosen for the fuel study were /sup 241/Am and /sup 244/Cm in the forms of Am/sub 2/O/sub 3/, Cm/sub 2/O/sub 3/, and Am/sub 6/Cm(RE)/sub 7/O/sub 21/, where (RE) represents a mixture of lanthanides. Milligram quantities of actinide oxides of /sup 248/Cm, /sup 246/Cm, /sup 244/Cm, /sup 243/Cm, /sup 243/Am, /sup 241/Am, /sup 244/Pu, /sup 242/Pu, /sup 241/Pu, /sup 240/Pu, /sup 239/Pu, /sup 238/Pu, /sup 237/Np, /sup 238/U, /sup 236/U, /sup 235/U, /sup 234/U, /sup 233/U, /sup 232/Th, /sup 230/Th, and /sup 231/Pa were encapsulated to obtain nuclear cross section and reaction rate data for these materials.

  19. Column Experiments for Radionuclide Adsorption Studies of the Culebra Dolomite: Retardation Parameter Estimation for Non-Eluted Actinide Species

    SciTech Connect

    Brown, G.O.; Lucero, D.A.; Perkins, W.G.

    1999-01-01

    brines. No significant changes in transport behavior were observed for changes in brine. Hydraulic characteristics (i.e., apparent porosity and apparent dispersion coefficient) for the cores were obtained via experiments using conservative tracer `Na. Elution experiments carried out over periods of a few days with tracers `*U and %Np indicated that these tracers were weakly retarded as indicated by delayed elution of these species. Elution experiments with tracers `%, 24'Pu, and 24'Ani were performed, but no elution of any of these species was observed in any flow experiment to date, including experiments of up to two years duration. However, B-Core was subjected to tomographic analysis from which a retardation factor can be inferred for%. Moreover, the fact of non- elution for 24*Pu and 24'Am after more than two years brine flow through C-Core can be coupled with the minimum detectable activity for each of these species to compute minimum retardation factors in C-Core. The retardation factors for all three species can then be coupled with the apparent hydraulic characteristics to estimate an apparent minimum solutionhock distribution coefficient, &, for each actinide. The specific radionuclide isotopes used in these experiments were chosen to facilitate analysis. Even though these isotopes are not necessarily the same as those that are most important to WIPP performance, they are isotopes of the same elements, and . their chemical and transport properties are therefore identical to those of isotopes in the WIPP inventory. The retardation factors and & values deduced from experimental results strongly support the contention that sorption in the Culebra provides an effective barrier to release of Th, Pu, and Am during the regulatory period.

  20. Plutonium and minor actinide utilisation in a pebble-bed high temperature reactor

    SciTech Connect

    Petrov, B. Y.; Kuijper, J. C.; Oppe, J.; De Haas, J. B. M.

    2012-07-01

    This paper contains results of the analysis of the pebble-bed high temperature gas-cooled PUMA reactor loaded with plutonium and minor actinide (Pu/MA) fuel. Starting from knowledge and experience gained in the Euratom FP5 projects HTR-N and HTR-N1, this study aims at demonstrating the potential of high temperature reactors to utilize or transmute Pu/MA fuel. The work has been performed within the Euratom FP6 project PUMA. A number of different fuel types and fuel configurations have been analyzed and compared with respect to incineration performance and safety-related reactor parameters. The results show the excellent plutonium and minor actinide burning capabilities of the high temperature reactor. The largest degree of incineration is attained in the case of an HTR fuelled by pure plutonium fuel as it remains critical at very deep burnup of the discharged pebbles. Addition of minor actinides to the fuel leads to decrease of the achievable discharge burnup and therefore smaller fraction of actinides incinerated during reactor operation. The inert-matrix fuel design improves the transmutation performance of the reactor, while the 'wallpaper' fuel does not have advantage over the standard fuel design in this respect. After 100 years of decay following the fuel discharge, the total amount of actinides remains almost unchanged for all of the fuel types considered. Among the plutonium isotopes, only the amount of Pu-241 is reduced significantly due to its relatively short half-life. (authors)

  1. Burn Survivors' Experience of Core Outcomes during Return to Life: a Qualitative Study

    PubMed Central

    Zamanzadeh, Vahid; Valizadeh, Leila; Lotfi, Mojgan; Salehi, Feridoon

    2014-01-01

    Introduction: Burn is one of the main and common health problems that face the victims with significant challenges in their lives. The main purpose of caring and rehabilitating these people is returning them to their previous life situation. Thus, the present study was conducted with the purpose of determining the experience of burn survivors with regard to returning to life in order to be able to obtain new concepts of acceptable implications in the present cultural and religious context. Methods: The present study is a qualitative study that was conducted using qualitative content analysis and in-depth unstructured interviews with 15 burn survivors in 2012 and 2013 in Tabriz. Results: During the process of qualitative analysis, the content of the category "balance", as the core essence of the experience of participants, was extracted according to three sub-categories: a- the physical integration (physiological stability, saving the affected limb), b-connecting to the life stream (self-care, getting accustomed, normalization), and c- return to the existence (sense of inner satisfaction and excellence). Conclusion: The results of this study confirmed the physical, psychological and social scales introduced by other studies. Also proposed the concept "return to the existence", that can be measured by the emergence of a sense of inner satisfaction and excellence in the individual, as one of the key and determinant scales in returning the victims of burn to life. PMID:25717453

  2. The experience of scar management for adults with burns: An interpretative phenomenological analysis.

    PubMed

    Martin, C; Bonas, S; Shepherd, L; Hedges, E

    2016-09-01

    Burns can have both physical and psychological effects on individuals. Pressure garments and silicone gels are used to improve the aesthetic appearance and functions of the skin, but these treatments have been associated with various physical, emotional, sexual and social difficulties. Interpretative phenomenological analysis (IPA) was used to explore participants' experiences of scar management. IPA examines individual experiences before comparing results across cases, and is suited to capture the different ways in which individuals experience a phenomena as well as cautiously looking at patterns across cases. Eight burn patients who had experienced scar management, including pressure garments, were interviewed. Two superordinate themes were identified: Assimilation of Pressure Garment Identity, and Psychosocial Functions of the Pressure Garments. The findings offered insight into the positive and negative experiences of scar management, describing the diverse personal and social functions of the pressure garments and how they became integrated into participants' identities. By understanding the individual nature of these experiences, healthcare professionals can enhance support around these issues and potentially aid adherence to treatment. Further research with different demographic groups as well as for other burn treatments would be useful to develop and contextualise these findings.

  3. Plasma-wall interaction data needs critical to a Burning Core Experiment (BCX)

    SciTech Connect

    Not Available

    1985-11-01

    The Division of Development and Technology has sponsored a four day US-Japan workshop ''Plasma-Wall Interaction Data Needs Critical to a Burning Core Experiment (BCX)'', held at Sandia National Laboratories, Livermore, California on June 24 to 27, 1985. The workshop, which brought together fifty scientists and engineers from the United States, Japan, Germany, and Canada, considered the plasma-material interaction and high heat flux (PMI/HHF) issues for the next generation of magnetic fusion energy devices, the Burning Core Experiment (BCX). Materials options were ranked, and a strategy for future PMI/HHF research was formulated. The foundation for international collaboration and coordination of this research was also established. This volume contains the last three of the five technical sessions. The first of the three is on plasma materials interaction issues, the second is on research facilities and the third is from smaller working group meetings on graphite, beryllium, advanced materials and future collaborations.

  4. Microskin autografting in the treatment of burns over 70% of total body surface area: 14 years of clinical experience.

    PubMed

    Chen, Xu-Lin; Liang, Xun; Sun, Li; Wang, Fei; Liu, Sheng; Wang, Yong-Jie

    2011-09-01

    Despite the fact that early excision and grafting have significantly improved burn outcomes, the management of severely burned patients whose burn size exceeds 70% total body surface area (TBSA) still represents a big challenge for burn surgeons all over the world. During the period of 1997-2010 at our centre, aggressive excision and microskin autografting were performed in 63 severely burned patients. Their burn sizes ranged from 70% to 98% TBSA with a mean of 84.9%. The average full-thickness burn was 66.3% (range, 29-94%). Thirty patients had concomitant inhalation injury. Two to 7 days after burn, these patients underwent aggressive excisions ranging from 25% to 60% TBSA and transplantation of microskin autograft overlaid with allograft. The ratios of donor-site to recipient-site surface area were between 1:6 and 1:18. Signs of epithelialization were shown within 35-55 days. The wound healing rate was 74.9% (176/235), with 51.1% of cases (120/235) healing completely and 23.8% (56/235) improving. Microskin autografting yielded an overall survival rate of 63.5%; only 23 patients died. Our clinical experience in using the microskin autografting for burn coverage suggests that the technique is very effective in covering extensive burns, and that it is particularly useful when graft donor sites are very limited due to its high utilization rate of donor site. The factors affecting the outcome of microskin autografting are discussed herein.

  5. The meanings of quality of life: interpretative analysis based on experiences of people in burns rehabilitation.

    PubMed

    Costa, Maria Cristina Silva; Rossi, Lídia Aparecida; Lopes, Lívia Mara; Cioffi, Caroline Lopes

    2008-01-01

    This research aimed to interpret the meanings of quality of life, taking into consideration the meanings attributed by those who have undergone serious burns, their experiences and social/cultural background. We used the ethnographic method based on modern hermeneutics. Nineteen patients with burn sequelae, already discharged from the Burns Unit of the Ribeirão Preto Medical School Clinical Hospital participated in this study, along with their relatives. Participants belong to the working class, are between 18 to 50 years old and have been in rehabilitation for at least a year. Data were collected by direct observation and semi-structured interviews. The analysis was processed through the identification of units of meanings and construction of thematic nucleuses. Patients and relatives reported that quality of life had changed because of physical and psychological limitations caused by the burns. The meanings of quality of life are associated with the performance of social roles and are guided by family, work, normality, autonomy and social integration.

  6. Experience with Alloys Compatibility with Fuel and Coolant Salts and their Application to Molten Salt Actinide Recycler and Transmuter

    SciTech Connect

    Ignatiev, Victor; Surenkov, Aleksandr; Gnidoi, Ivan; Fedulov, Vladimir; Afonichkin, Valery; Bovet, Andrei; Subbotin, Vladimir; Panov, Aleksandr; Toropov, Andrei

    2006-07-01

    This paper summarizes results of recent work and the present state of knowledge about materials for molten salt reactors. The central focus is placed on the compatibility of container alloys with molten salt for Molten Salt Actinide Recycler and Transmuter. Preliminary results from recent thermal convection loop studies are presented. Methods for purification of molten salt composition and improvement of Ni- base container alloys compatibility by maintaining the salt at low redox potential are discussed. (authors)

  7. 33rd Actinide Separations Conference

    SciTech Connect

    McDonald, L M; Wilk, P A

    2009-05-04

    Welcome to the 33rd Actinide Separations Conference hosted this year by the Lawrence Livermore National Laboratory. This annual conference is centered on the idea of networking and communication with scientists from throughout the United States, Britain, France and Japan who have expertise in nuclear material processing. This conference forum provides an excellent opportunity for bringing together experts in the fields of chemistry, nuclear and chemical engineering, and actinide processing to present and discuss experiences, research results, testing and application of actinide separation processes. The exchange of information that will take place between you, and other subject matter experts from around the nation and across the international boundaries, is a critical tool to assist in solving both national and international problems associated with the processing of nuclear materials used for both defense and energy purposes, as well as for the safe disposition of excess nuclear material. Granlibakken is a dedicated conference facility and training campus that is set up to provide the venue that supports communication between scientists and engineers attending the 33rd Actinide Separations Conference. We believe that you will find that Granlibakken and the Lake Tahoe views provide an atmosphere that is stimulating for fruitful discussions between participants from both government and private industry. We thank the Lawrence Livermore National Laboratory and the United States Department of Energy for their support of this conference. We especially thank you, the participants and subject matter experts, for your involvement in the 33rd Actinide Separations Conference.

  8. Actinide Thermodynamics at Elevated Temperatures

    SciTech Connect

    Friese, Judah I.; Rao, Linfeng; Xia, Yuanxian; Bachelor, Paula P.; Tian, Guoxin

    2007-11-16

    The postclosure chemical environment in the proposed Yucca Mountain repository is expected to experience elevated temperatures. Predicting migration of actinides is possible if sufficient, reliable thermodynamic data on hydrolysis and complexation are available for these temperatures. Data are scarce and scattered for 25 degrees C, and nonexistent for elevated temperatures. This collaborative project between LBNL and PNNL collects thermodynamic data at elevated temperatures on actinide complexes with inorganic ligands that may be present in Yucca Mountain. The ligands include hydroxide, fluoride, sulfate, phosphate and carbonate. Thermodynamic parameters of complexation, including stability constants, enthalpy, entropy and heat capacity of complexation, are measured with a variety of techniques including solvent extraction, potentiometry, spectrophotometry and calorimetry

  9. Actinide sulfite tetrahydrate and actinide oxysulfite tetrahydrate

    SciTech Connect

    Baugh, D.; Watt, G.

    1980-07-08

    A compound is prepared that comprises an actinide sulfite tetrahydrate selected from the group consisting of uranium (IV) sulfite tetrahydrate and plutonium (IV) sulfite tetrahydrate. A compound is also prepared that comprises an actinide oxysulfite tetrahydrate selected from the group consisting of uranium (IV) oxysulfite tetrahydrate and plutonium (IV) oxysulfite tetrahydrate

  10. Ram Burn Observations (RAMBO)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Ram Burn Observations (RAMBO) is a Department of Defense experiment that observes shuttle Orbital Maneuvering System engine burns for the purpose of improving plume models. On STS-107 the appropriate sensors will observe selected rendezvous and orbit adjust burns.

  11. MANTRA: An Integral Reactor Physics Experiment to Infer Actinide Capture Cross-sections from Thorium to Californium with Accelerator Mass Spectrometry

    SciTech Connect

    G. Youinou; C. McGrath; G. Imel; M. Paul; R. Pardo; F. Kondev; M. Salvatores; G. Palmiotti

    2011-08-01

    The principle of the proposed experiment is to irradiate very pure actinide samples in the Advanced Test Reactor at INL and, after a given time, determine the amount of the different transmutation products. The determination of the nuclide densities before and after neutron irradiation will allow inference of effective neutron capture cross-sections. This approach has been used in the past and the novelty of this experiment is that the atom densities of the different transmutation products will be determined using the Accelerator Mass Spectrometry technique at the ATLAS facility located at ANL. It is currently planned to irradiate the following isotopes: 232Th, 235U, 236U, 238U, 237Np, 238Pu, 239Pu, 240Pu, 241Pu, 242Pu, 241Am, 243Am, 244Cm and 248Cm.

  12. Burning nuclear wastes in fusion reactors

    SciTech Connect

    Meldner, H.W.; Howard, W.M.

    1980-02-20

    We have studied actinide burn-up in ICF reactor pellets; i.e., 14 MeV neutron fission of the very long-lived actinides that pose storage problems. A major advantage of pellet fuel region burn-up is safety: only milligrams of highly toxic and active material need to be present in the fusion chamber, whereas blanket burn-up requires the continued presence of tons of actinides in a small volume. The actinide data tables required for Monte Carlo calculations of the burn-up of /sup 241/Am and /sup 243/Am are discussed in connection with a study of the sensitivity to cross section uncertainties. More accurate and complete cross sections are required for realistic quantitative calculations.

  13. Fiber scintillator/streak camera detector for burn history measurement in inertial confinement fusion experiment

    SciTech Connect

    Miyanaga, N.; Ohba, N.; Fujimoto, K.

    1997-01-01

    To measure the burn history in an inertial confinement fusion experiment, we have developed a new neutron detector based on plastic scintillation fibers. Twenty-five fiber scintillators were arranged in a geometry compensation configuration by which the time-of-flight difference of the neutrons is compensated by the transit time difference of light passing through the fibers. Each fiber scintillator is spliced individually to an ultraviolet optical fiber that is coupled to a streak camera. We have demonstrated a significant improvement of sensitivity compared with the usual bulk scintillator coupled to a bundle of the same ultraviolet fibers. {copyright} {ital 1997 American Institute of Physics.}

  14. Ground-based aerosol characterization during the South American Biomass Burning Analysis (SAMBBA) field experiment

    NASA Astrophysics Data System (ADS)

    Brito, J.; Rizzo, L. V.; Morgan, W. T.; Coe, H.; Johnson, B.; Haywood, J.; Longo, K.; Freitas, S.; Andreae, M. O.; Artaxo, P.

    2014-11-01

    This paper investigates the physical and chemical characteristics of aerosols at ground level at a site heavily impacted by biomass burning. The site is located near Porto Velho, Rondônia, in the southwestern part of the Brazilian Amazon rainforest, and was selected for the deployment of a large suite of instruments, among them an Aerosol Chemical Speciation Monitor. Our measurements were made during the South American Biomass Burning Analysis (SAMBBA) field experiment, which consisted of a combination of aircraft and ground-based measurements over Brazil, aimed to investigate the impacts of biomass burning emissions on climate, air quality, and numerical weather prediction over South America. The campaign took place during the dry season and the transition to the wet season in September/October 2012. During most of the campaign, the site was impacted by regional biomass burning pollution (average CO mixing ratio of 0.6 ppm), occasionally superimposed by intense (up to 2 ppm of CO), freshly emitted biomass burning plumes. Aerosol number concentrations ranged from ~1000 cm-3 to peaks of up to 35 000 cm-3 (during biomass burning (BB) events, corresponding to an average submicron mass mean concentrations of 13.7 μg m-3 and peak concentrations close to 100 μg m-3. Organic aerosol strongly dominated the submicron non-refractory composition, with an average concentration of 11.4 μg m-3. The inorganic species, NH4, SO4, NO3, and Cl, were observed, on average, at concentrations of 0.44, 0.34, 0.19, and 0.01 μg m-3, respectively. Equivalent black carbon (BCe) ranged from 0.2 to 5.5 μg m-3, with an average concentration of 1.3 μg m-3. During BB peaks, organics accounted for over 90% of total mass (submicron non-refractory plus BCe), among the highest values described in the literature. We examined the ageing of biomass burning organic aerosol (BBOA) using the changes in the H : C and O : C ratios, and found that throughout most of the aerosol processing (O : C &cong

  15. Actinide-ion sensor

    DOEpatents

    Li, Shelly X; Jue, Jan-fong; Herbst, Ronald Scott; Herrmann, Steven Douglas

    2015-01-13

    An apparatus for the real-time, in-situ monitoring of actinide-ion concentrations. A working electrolyte is positioned within the interior of a container. The working electrolyte is separated from a reference electrolyte by a separator. A working electrode is at least partially in contact with the working electrolyte. A reference electrode is at least partially in contact with the reference electrolyte. A voltmeter is electrically connected to the working electrode and the reference electrode. The working electrolyte comprises an actinide-ion of interest. The separator is ionically conductive to the actinide-ion of interest. The separator comprises an actinide, Zr, and Nb. Preferably, the actinide of the separator is Am or Np, more preferably Pu. In one embodiment, the actinide of the separator is the actinide of interest. In another embodiment, the separator further comprises P and O.

  16. Hole-Burning Spectroscopy on Excitonically Coupled Pigments in Proteins: Theory Meets Experiment

    PubMed Central

    2016-01-01

    A theory for the calculation of resonant and nonresonant hole-burning (HB) spectra of pigment–protein complexes is presented and applied to the water-soluble chlorophyll-binding protein (WSCP) from cauliflower. The theory is based on a non-Markovian line shape theory (Renger and MarcusJ. Chem. Phys.2002, 116, 9997) and includes exciton delocalization, vibrational sidebands, and lifetime broadening. An earlier approach by Reppert (J. Phys. Chem. Lett.2011, 2, 2716) is found to describe nonresonant HB spectra only. Here we present a theory that can be used for a quantitative description of HB data for both nonresonant and resonant burning conditions. We find that it is important to take into account the excess energy of the excitation in the HB process. Whereas excitation of the zero-phonon transition of the lowest exciton state, that is, resonant burning allows the protein to access only its conformational substates in the neighborhood of the preburn state, any higher excitation gives the protein full access to all conformations present in the original inhomogeneous ensemble. Application of the theory to recombinant WSCP from cauliflower, reconstituted with chlorophyll a or chlorophyll b, gives excellent agreement with experimental data by Pieper et al. (J. Phys. Chem. B2011, 115, 405321417356) and allows us to obtain an upper bound of the lifetime of the upper exciton state directly from the HB experiments in agreement with lifetimes measured recently in time domain 2D experiments by Alster et al. (J. Phys. Chem. B2014, 118, 352424627983). PMID:26811003

  17. Low Stretch PMMA Burning in Microgravity: Status of the Ground-Based Program and New ISS Glovebox Experiment SALSA

    NASA Technical Reports Server (NTRS)

    Olson, S. L.; T'ien, J. S.; Armstrong, J. B.

    2001-01-01

    The objective of this ground-based program is to study low stretch diffusion flames burning PMMA as the solid fuel to determine the relationship between buoyant low stretch burning in normal gravity and forced flow low stretch burning in microgravity. The low stretch is generated in normal gravity by using the buoyant convection induced by burning the bottom of a large radius of curvature sample. Low stretch is also generated using the Combustion Tunnel drop tower rig (2.2 and 5.2 second facilities), which provides a forced convective low velocity flow past smaller radius of curvature samples. Lastly, an ISS glovebox investigation is being developed to study low stretch burning of PMMA spheres to obtain long duration testing needed to accurately assess the flammability and burning characteristics of the material in microgravity. A comparison of microgravity experiment results with normal gravity test results allows us to establish a direct link between a material's burning characteristics in normal gravity (easily measured) with its burning characteristics in extraterrestrial environments, including microgravity forced convective environments. Theoretical predictions and recent experimental results indicate that it should be possible to understand a material's burning characteristics in the low stretch environment of spacecraft (non-buoyant air movement induced by fans and crew disturbances) by understanding its burning characteristics in an equivalent Earth-based low stretch environment (induced by normal gravity buoyancy). Similarly, Earth-based stretch environments can be made equivalent to those in Lunar- and Martian-surface stretch environments (which would induce partial-gravity buoyancy).

  18. Experience gained during the long term cultivation of keratinocytes for treatment of burns patients.

    PubMed

    Dragúňová, Jana; Kabát, Peter; Koller, Ján; Jarabinská, Valéria

    2012-08-01

    Both allogenic and autologous cultured skin cells have been used clinically on burn patients. In vitro cultivation of human keratinocytes has been routinely provided by the Central Tissue Bank in Bratislava since 1996, with an average annual production of around 7,000 cm(2). Keratinocytes have been cultivated using a version of the original by Rheinwald and Green (Cell 6:317-330, 1975) methodology which has been modified over time in our laboratory as we gained more experience with this serial passage system. We have observed that the growth of cultured keratinocytes depends on several important factors, including the timing of skin sample procurement, the method of skin sample procurement, the general condition of the patient, the quality and composition of the culture media and, to a lesser extent, the age of the patient. We aim to share our experience with other cell cultivation facilities. PMID:21847560

  19. Bushfire disaster burn casualty management: the Australian "Black Saturday" bushfire experience.

    PubMed

    Seifman, Marc; Ek, Edmund W; Menezes, Hana; Rozen, Warren M; Whitaker, Iain S; Cleland, Heather J

    2011-11-01

    Mass burn disasters are among the most difficult disasters to manage, with major burns requiring complex management in a multidisciplinary setting and specialist burns services having limited capacity to deal with large numbers of complex patients. There is a paucity of literature addressing health system responses to mass burn disasters resulting from wildfires, with the events of the "Black Saturday" disaster in the state of Victoria, Australia, able to provide a unique opportunity to draw lessons and increase awareness of key management issues arising in mass burn casualty disasters. The event comprised the worst natural disaster in the state's history and one of the worst wildfire disasters in world history, claiming 173 lives and costing more than AUD 4 billion. This article draws on the national burns disaster plan instituted, Australian Mass Casualty Burn Disaster Plan (AUSBURNPLAN), and details the management of mass burn cases through a systems-based perspective. PMID:22001422

  20. Actinide extraction methods

    DOEpatents

    Peterman, Dean R [Idaho Falls, ID; Klaehn, John R [Idaho Falls, ID; Harrup, Mason K [Idaho Falls, ID; Tillotson, Richard D [Moore, ID; Law, Jack D [Pocatello, ID

    2010-09-21

    Methods of separating actinides from lanthanides are disclosed. A regio-specific/stereo-specific dithiophosphinic acid having organic moieties is provided in an organic solvent that is then contacted with an acidic medium containing an actinide and a lanthanide. The method can extend to separating actinides from one another. Actinides are extracted as a complex with the dithiophosphinic acid. Separation compositions include an aqueous phase, an organic phase, dithiophosphinic acid, and at least one actinide. The compositions may include additional actinides and/or lanthanides. A method of producing a dithiophosphinic acid comprising at least two organic moieties selected from aromatics and alkyls, each moiety having at least one functional group is also disclosed. A source of sulfur is reacted with a halophosphine. An ammonium salt of the dithiophosphinic acid product is precipitated out of the reaction mixture. The precipitated salt is dissolved in ether. The ether is removed to yield the dithiophosphinic acid.

  1. Post-fire effects on hydrological and erodibility factors in a simulated burn and rainfall experiment

    NASA Astrophysics Data System (ADS)

    Keesstra, S. D.; Wittenberg, L.; Voogt, A.; Argaman, E.; Malkinson, D.

    2012-04-01

    Mediterranean forests are frequently subject to wildfires, inducing risks of runoff and loss of nutrient-rich topsoil. Post-fire causes for soil erosion are hard to separate. These mechanisms are spatially variable due to differences in vegetation density, litter composition, soil texture and structure, and fire intensity. However, the characteristics of soil and surface in the immediate post-fire period are of critical importance to the hydrological response and erosion susceptibility of the burned hillslope and catchment. The mentioned variation is still present in laboratory experiments, however a lot of it can be reduced by using homogeneous litter, uniform soil amounts and texture, controlled temperature and rain regimes and by replicating treatments. Moreover, fire and rain events can be simulated, enabling an imitation of a post-fire period. In this study we looked at post-fire observations for laboratory fire and rainfall (nozzle-type) simulation experiments to evaluate short-term effects of fire on soil hydrological and erodibility parameters by investigating (i) soil water repellency (WR) levels and distribution, (ii) surface cover features, and (iii) sat. hydraulic conductivity (Ksat), electrical conductivity and values of infiltration, runoff and erosion responses to simulated rain on control (bare and needle covered) and burned (with and without ash cover) samples. In the laboratory experiments we used a novel combination of techniques: (i) prepared trays of soil were manually burned; (ii) WR was measured before, in-between and after rainfall simulations; (iii) assessing of the degree and spatial variation for preferential surface flow; (iv) two rainfall simulations with drying period to simulate a part of a rainy season with cycles of wetting and drying (with its effects on soil hydrology, (re-)establishment hydrophobicity). The fire-induced surface WR in the lab, tested by grid-wise Water Drop Penetration tests, was moderate but decreased for all

  2. The Actinide Transition Revisited by Gutzwiller Approximation

    NASA Astrophysics Data System (ADS)

    Xu, Wenhu; Lanata, Nicola; Yao, Yongxin; Kotliar, Gabriel

    2015-03-01

    We revisit the problem of the actinide transition using the Gutzwiller approximation (GA) in combination with the local density approximation (LDA). In particular, we compute the equilibrium volumes of the actinide series and reproduce the abrupt change of density found experimentally near plutonium as a function of the atomic number. We discuss how this behavior relates with the electron correlations in the 5 f states, the lattice structure, and the spin-orbit interaction. Our results are in good agreement with the experiments.

  3. Research in actinide chemistry

    SciTech Connect

    Choppin, G.R.

    1993-01-01

    This research studies the behavior of the actinide elements in aqueous solution. The high radioactivity of the transuranium actinides limits the concentrations which can be studied and, consequently, limits the experimental techniques. However, oxidation state analogs (trivalent lanthanides, tetravalent thorium, and hexavalent uranium) do not suffer from these limitations. Behavior of actinides in the environment are a major USDOE concern, whether in connection with long-term releases from a repository, releases from stored defense wastes or accidental releases in reprocessing, etc. Principal goal of our research was expand the thermodynamic data base on complexation of actinides by natural ligands (e.g., OH[sup [minus

  4. Burning a Candle in a Vessel, a Simple Experiment with a Long History

    NASA Astrophysics Data System (ADS)

    Vera, Francisco; Rivera, Rodrigo; Núñez, César

    2011-09-01

    The experiment in which a candle is burned inside an inverted vessel partially immersed in water has a history of more than 2,200 years, but even nowadays it is common that students and teachers relate the change in volume of the enclosed air to its oxygen content. Contrary to what many people think, Lavoisier concluded that any change in volume in this experiment is negligible; moreover, the explanation relating oxygen consumption in the air with its change in volume is known to be wrong. In this work we briefly review the history behind the candle experiment and its relationship with some typical erroneous explanations. One of the key factors behind Lavoisier's success was the use of experiments carefully designed to test different hypotheses. Following these steps, we performed several closed volume experiments where the candle wick was replaced by a capillary stainless steel cylinder supported and heated by a nichrome filament connected to an external power supply. Our recorded experiments are displayed as web pages, designed with the purpose that the reader can easily visualize and analyze modern versions of Lavoisier's experiments. These experiments clearly show an initial phase of complete combustion, followed by a phase of incomplete combustion with elemental carbon or soot rising to the top of the vessel, and a final phase where the hot artificial wick only evaporates a white steam of wax that cannot ignite because no oxygen is left in the closed atmosphere. After either a complete or incomplete combustion of the oxygen, our experiments show that the final gas volume is nearly equal to the initial air volume.

  5. Characterization of scintillators for lost alpha diagnostics on burning plasma experiments

    SciTech Connect

    Nishiura, M.; Kubo, N.; Hirouchi, T.; Ido, T.; Nagasaka, T.; Mutoh, T.; Matsuyama, S.; Isobe, M.; Okamoto, A.; Shinto, K.; Kitajima, S.; Sasao, M.; Nakatsuka, M.; Fujioka, K.

    2006-10-15

    The characteristics of light output by ion beam irradiations under high ion fluxes have been measured for three kinds of scintillators: ZnS:Ag deposited on the glass plate, Y{sub 3}Al{sub 5}O{sub 12}:Ce powder stiffened with a binder, and Y{sub 3}Al{sub 5}O{sub 12}:Ce ceramics sintered at high temperature. The ion beam flux in the range from 10{sup 12} to 10{sup 13} ions/(cm{sup 2} s) is irradiated to simulate the burning plasma experiments. The decrease of light output has been observed by long time ion irradiation. The deterioration of ZnS:Ag deposited scintillator is most serious. The deterioration has been improved for the scintillators of Y{sub 3}Al{sub 5}O{sub 12}:Ce with a binder and that sintered. Their applications to ITER lost alpha diagnostics are discussed.

  6. POTENTIAL BENCHMARKS FOR ACTINIDE PRODUCTION IN HANFORD REACTORS

    SciTech Connect

    PUIGH RJ; TOFFER H

    2011-10-19

    A significant experimental program was conducted in the early Hanford reactors to understand the reactor production of actinides. These experiments were conducted with sufficient rigor, in some cases, to provide useful information that can be utilized today in development of benchmark experiments that may be used for the validation of present computer codes for the production of these actinides in low enriched uranium fuel.

  7. Actinide recovery process

    DOEpatents

    Muscatello, Anthony C.; Navratil, James D.; Saba, Mark T.

    1987-07-28

    Process for the removal of plutonium polymer and ionic actinides from aqueous solutions by absorption onto a solid extractant loaded on a solid inert support such as polystyrenedivinylbenzene. The absorbed actinides can then be recovered by incineration, by stripping with organic solvents, or by acid digestion. Preferred solid extractants are trioctylphosphine oxide and octylphenyl-N,N-diisobutylcarbamoylmethylphosphine oxide and the like.

  8. Overview of the South American Biomass Burning Analysis (SAMBBA) field experiment in Brazil during Sept - Oct 2012

    NASA Astrophysics Data System (ADS)

    Johnson, Ben; Haywood, Jim; Longo, Karla; Coe, Hugh; Artaxo, Paulo; Morgan, William; Freitas, Saulo

    2013-04-01

    The South American Biomass Burning Analysis (SAMBBA) is an international research project investigating the impacts of biomass burning emissions on climate, air quality and numerical weather prediction over South America. The project involves a combination of measurements and modelling activities to assess the role of biomass burning and biogenic emissions in the earth system. This international collaboration has been led by a partnership between the Met Office, the Brazilian National Institute for Space research (INPE), the University of Sao Paulo, and a consortium of UK Universities. The measurement program was headed by the deployment of UK's Facility for Airborne Atmospheric Measurements (FAAM) BAe-146 research aircraft over Brazil during the dry season of September - October 2012. This was co-ordinated with ground-based measurements operated by the University of Sao Paulo and INPE. This successful field experiment now provides an excellent source of observations to build our understanding of biomass burning processes and improve model simulations of biomass burning aerosols and their interactions with biogenic emissions, atmospheric chemistry, clouds, radiation, and the terrestrial biosphere. This talk will summarise the field experiment, including the aircraft measurements and ground-based observations made during the dry season of 2012. Preliminary results will highlight the range of biomass burning and biogenic emissions observed from tropical forest, deforested zones and scrub-land. Case studies will also show infra-red camera images of fire radiative output, the evolution of large smoke plumes and the variable composition of background aerosol and extensive haze layers across the region. The lidar data and aircraft profiles also highlight the prevalence of elevated aerosol layers observed at altitudes of 3 - 7km, presumed to be detrainment from large smoke plumes, pyrocumulus and mid-level convection. The ground-based observations also highlight the

  9. Measurements of CO in an aircraft experiment and their correlation with biomass burning and air mass origin in South America

    NASA Astrophysics Data System (ADS)

    Boian, C.; Kirchhoff, V. W. J. H.

    Carbon monoxide (CO) measurements are obtained in an aircraft experiment during 1-7 September 2000, conducted over Central Brazil in a special region of anticyclonic circulation. This is a typical transport regime during the dry season (July-September), when intense biomass burning occurs, and which gives origin to the transport of burning poluents from the source to distant regions. This aircraft experiment included in situ measurements of CO concentrations in three different scenarios: (1) areas of fresh biomass burning air masses, or source areas; (2) areas of aged biomass burning air masses; and (3) areas of clean air or pristine air masses. The largest CO concentrations were of the order of 450 ppbv in the source region near Conceicao do Araguaia (PA), and the smallest value near 100 ppbv, was found in pristine air masses, for example, near the northeast coastline (clean air, or background region). The observed concentrations were compared to the number of fire pixels seen by the AVHRR satellite instrument. Backward isentropic trajectories were used to determine the origin of the air masses at each sampling point. From the association of the observed CO mixing ratios, fire pixels and air mass trajectories, the previous scenarios may be subdivided as follows: (1a) source regions of biomass burning with large CO concentrations; (1b) regions with few local fire pixels and absence of contributions by transport. Areas with these characteristics include the northeast region of Brazil; (1c) regions close to the source region and strongly affected by transport (region of Para and Amazonas); (2) regions that have a consistent convergence of air masses, that have traveled over biomass burning areas during a few days (western part of the Cerrado region); (3a) Pristine air masses with origin from the ocean; (3b) regions with convergent transport that has passed over areas of no biomass burning, such as frontal weather systems in the southern regions.

  10. Thermodynamic Properties of Actinides and Actinide Compounds

    NASA Astrophysics Data System (ADS)

    Konings, Rudy J. M.; Morss, Lester R.; Fuger, Jean

    The necessity of obtaining accurate thermodynamic quantities for the actinide elements and their compounds was recognized at the outset of the Manhattan Project, when a dedicated team of scientists and engineers initiated the program to exploit nuclear energy for military purposes. Since the end of World War II, both fundamental and applied objectives have motivated a great deal of further study of actinide thermodynamics. This chapter brings together many research papers and critical reviews on this subject. It also seeks to assess, to systematize, and to predict important properties of the actinide elements, ions, and compounds, especially for species in which there is significant interest and for which there is an experimental basis for the prediction.

  11. Energetic particle physics in fusion research in preparation for burning plasma experiments

    NASA Astrophysics Data System (ADS)

    Gorelenkov, N. N.; Pinches, S. D.; Toi, K.

    2014-12-01

    The area of energetic particle (EP) physics in fusion research has been actively and extensively researched in recent decades. The progress achieved in advancing and understanding EP physics has been substantial since the last comprehensive review on this topic by Heidbrink and Sadler (1994 Nucl. Fusion 34 535). That review coincided with the start of deuterium-tritium (DT) experiments on the Tokamak Fusion Test Reactor (TFTR) and full scale fusion alphas physics studies. Fusion research in recent years has been influenced by EP physics in many ways including the limitations imposed by the ‘sea’ of Alfvén eigenmodes (AEs), in particular by the toroidicity-induced AE (TAE) modes and reversed shear AEs (RSAEs). In the present paper we attempt a broad review of the progress that has been made in EP physics in tokamaks and spherical tori since the first DT experiments on TFTR and JET (Joint European Torus), including stellarator/helical devices. Introductory discussions on the basic ingredients of EP physics, i.e., particle orbits in STs, fundamental diagnostic techniques of EPs and instabilities, wave particle resonances and others, are given to help understanding of the advanced topics of EP physics. At the end we cover important and interesting physics issues related to the burning plasma experiments such as ITER (International Thermonuclear Experimental Reactor).

  12. Energetic Particle Physics In Fusion Research In Preparation For Burning Plasma Experiments

    SciTech Connect

    Gorelenkov, Nikolai N

    2013-06-01

    The area of energetic particle (EP) physics of fusion research has been actively and extensively researched in recent decades. The progress achieved in advancing and understanding EP physics has been substantial since the last comprehensive review on this topic by W.W. Heidbrink and G.J. Sadler [1]. That review coincided with the start of deuterium-tritium (DT) experiments on Tokamak Fusion Test reactor (TFTR) and full scale fusion alphas physics studies. Fusion research in recent years has been influenced by EP physics in many ways including the limitations imposed by the "sea" of Alfven eigenmodes (AE) in particular by the toroidicityinduced AEs (TAE) modes and reversed shear Alfven (RSAE). In present paper we attempt a broad review of EP physics progress in tokamaks and spherical tori since the first DT experiments on TFTR and JET (Joint European Torus) including helical/stellarator devices. Introductory discussions on basic ingredients of EP physics, i.e. particle orbits in STs, fundamental diagnostic techniques of EPs and instabilities, wave particle resonances and others are given to help understanding the advanced topics of EP physics. At the end we cover important and interesting physics issues toward the burning plasma experiments such as ITER (International Thermonuclear Experimental Reactor).

  13. "Computational Modeling of Actinide Complexes"

    SciTech Connect

    Balasubramanian, K

    2007-03-07

    We will present our recent studies on computational actinide chemistry of complexes which are not only interesting from the standpoint of actinide coordination chemistry but also of relevance to environmental management of high-level nuclear wastes. We will be discussing our recent collaborative efforts with Professor Heino Nitsche of LBNL whose research group has been actively carrying out experimental studies on these species. Computations of actinide complexes are also quintessential to our understanding of the complexes found in geochemical, biochemical environments and actinide chemistry relevant to advanced nuclear systems. In particular we have been studying uranyl, plutonyl, and Cm(III) complexes are in aqueous solution. These studies are made with a variety of relativistic methods such as coupled cluster methods, DFT, and complete active space multi-configuration self-consistent-field (CASSCF) followed by large-scale CI computations and relativistic CI (RCI) computations up to 60 million configurations. Our computational studies on actinide complexes were motivated by ongoing EXAFS studies of speciated complexes in geo and biochemical environments carried out by Prof Heino Nitsche's group at Berkeley, Dr. David Clark at Los Alamos and Dr. Gibson's work on small actinide molecules at ORNL. The hydrolysis reactions of urnayl, neputyl and plutonyl complexes have received considerable attention due to their geochemical and biochemical importance but the results of free energies in solution and the mechanism of deprotonation have been topic of considerable uncertainty. We have computed deprotonating and migration of one water molecule from the first solvation shell to the second shell in UO{sub 2}(H{sub 2}O){sub 5}{sup 2+}, UO{sub 2}(H{sub 2}O){sub 5}{sup 2+}NpO{sub 2}(H{sub 2}O){sub 6}{sup +}, and PuO{sub 2}(H{sub 2}O){sub 5}{sup 2+} complexes. Our computed Gibbs free energy(7.27 kcal/m) in solution for the first time agrees with the experiment (7.1 kcal

  14. Molten salt reactors for burning dismantled weapons fuel

    SciTech Connect

    Gat, U.; Engel, J.R. ); Dodds, H.L. . Dept. of Nuclear Engineering)

    1992-12-01

    In this paper, the molten salt reactor (MSR) option for burning fissile fuel form dismantled weapons is examined. It is concluded that MSRs are potentially suitable for beneficial utilization of the dismantled fuel. the MSRs have the flexibility to utilize any fissile fuel in continuous operation with no special modifications, as demonstrated in the Molten Salt Reactor Experiment, while maintaining their economy. The MSRs further require a minimum of special fuel preparation and can tolerate denaturing and dilution of the fuel. Fuel shipments can be arbitrarily small, which may reduce the risk of diversion. The MSRs have inherent safety features that make them acceptable and attractive. They can burn a fuel type completely and convert it to other fuels. The MSRs also have the potential for burning the actinides and delivering the waste in an optimal form, thus contributing to the solution of one of the major remaining problems for deployment o nuclear power.

  15. Interactive effects of acupuncture on pain and distress in major burns: An experiment with rats.

    PubMed

    Abali, Ayse Ebru; Cabioglu, Tugrul; Ozdemir, Handan; Haberal, Mehmet

    2015-06-01

    This study sought to investigate the interactive effects of acupuncture on pain and distress and the local progress in the burn wound in an experimental major burn model. Forty-eight male Sprague-Dawley rats were divided into six groups: S group (sham/observation during 7 days after injury); SA group (sham/acupuncture/observation during 7 days after injury); B1 group (burns/observation during 1h after injury); BA1 group (burns/acupuncture/observation during 1 h after injury); B7 group (burns/observation during 7 days after injury); and BA7 group (burns/acupuncture/observation during 7 days after injury). Pain and distress scores were evaluated throughout the study. The amounts of neutrophils and mononuclear cells were evaluated semiquantitatively, and the number of microvessels was evaluated quantitatively. Our data indicated that the average pain score of BA7 group was significantly lower than the other study groups. Histopathologic investigations indicate that the amounts of neutrophil and mononuclear cell and numbers of microvessels in the unburned skin were higher in acupuncture-applied groups. The number of microvessels in burn wounds of BA7 group was significantly higher than that of the other groups. Our data suggest that acupuncture provides low pain and distress scores in experimental rat model, and it contributes to wound healing with an enhanced angiogenesis during the acute phase of burns. Future clinical and experimental studies should be conducted to discern the benefits from acupuncture in pain management of burn patients.

  16. An Overview of Regional Experiments on Biomass Burning Aerosols and Related Pollutants in Southeast Asia: From BASE-ASIA and the Dongsha Experiment to 7-SEAS

    NASA Technical Reports Server (NTRS)

    Lin, Neng-Huei; Tsay, Si-Chee; Maring, Hal B.; Yen, Ming-Cheng; Sheu, Guey-Rong; Wang, Sheng-Hsiang; Chi, Kai Hsien; Chuang, Ming-Tung; Ou-Yang, Chang-Feng; Fu, Joshua S.; Reid, Jeffrey S.; Lee, Chung-Te; Wang, Lin-Chi; Wang, Jia-Lin; Hsu, Christina N.; Sayer, Andrew M.; Holben, Brent N.; Chu, Yu-Chi; Nguyen, Xuan Anh; Sopajaree, Khajornsak; Chen, Shui-Jen; Cheng, Man-Ting; Tsuang, Ben-Jei; Tsai, Chuen-Jinn; Peng, Chi-Ming; Schnell, Russell C.; Conway, Tom; Chang, Chang-Tang; Lin, Kuen-Song; Tsai, Ying I.; Lee, Wen-Jhy; Chang, Shuenn-Chin; Liu, Jyh-Jian; Chang, Wei-Li; Huang, Shih-Jen; Lin, Tang-Huang; Liu, Gin-Rong

    2013-01-01

    By modulating the Earth-atmosphere energy, hydrological and biogeochemical cycles, and affecting regional-to-global weather and climate, biomass burning is recognized as one of the major factors affecting the global carbon cycle. However, few comprehensive and wide-ranging experiments have been conducted to characterize biomass-burning pollutants in Southeast Asia (SEA) or assess their regional impact on meteorology, the hydrological cycle, the radiative budget, or climate change. Recently, BASEASIA (Biomass-burning Aerosols in South-East Asia: Smoke Impact Assessment) and the 7-SEAS (7- South-East Asian Studies) Dongsha Experiment were conducted during the spring seasons of 2006 and 2010 in northern SEA, respectively, to characterize the chemical, physical, and radiative properties of biomass-burning emissions near the source regions, and assess their effects. This paper provides an overview of results from these two campaigns and related studies collected in this special issue, entitled Observation, modeling and impact studies of biomass burning and pollution in the SE Asian Environment. This volume includes 28 papers, which provide a synopsis of the experiments, regional weatherclimate, chemical characterization of biomass-burning aerosols and related pollutants in source and sink regions, the spatial distribution of air toxics (atmospheric mercury and dioxins) in source and remote areas, a characterization of aerosol physical, optical, and radiative properties, as well as modeling and impact studies. These studies, taken together, provide the first relatively complete dataset of aerosol chemistry and physical observations conducted in the sourcesink region in the northern SEA, with particular emphasis on the marine boundary layer and lower free troposphere (LFT). The data, analysis and modeling included in these papers advance our present knowledge of source characterization of biomass-burning pollutants near the source regions as well as the physical and

  17. Method for preparing actinide nitrides

    DOEpatents

    Bryan, G.H.; Cleveland, J.M.; Heiple, C.R.

    1975-12-01

    Actinide nitrides, and particularly plutonium and uranium nitrides, are prepared by reacting an ammonia solution of an actinide compound with an ammonia solution of a reactant or reductant metal, to form finely divided actinide nitride precipitate which may then be appropriately separated from the solution. The actinide nitride precipitate is particularly suitable for forming nuclear fuels.

  18. Experiment and Reactive-Burn Modeling in the RDX Based Explosive XTX 8004

    NASA Astrophysics Data System (ADS)

    Johnson, Carl; Murphy, Mike; Gustavsen, Rick; Jackson, Scott; Vincent, Samuel

    2015-06-01

    XTX 8004 consists of 80 wt. % cyclotrimethylenetrinitramine (RDX), and 20 wt. % Sylgard 182, a silicone rubber used as a binder. Nominal density is 1.5 g/cm3. Uncured XTX 8004 is putty like and can be molded or extruded. The XTX 8004 detonation product Hugoniot calibration was obtained from cylinder tests using a genetic algorithm approach to parameterize a Jones-Wilkins-Lee (JWL) equation of state. Additionally, we conducted four gas-gun experiments that were instrumented with embedded electromagnetic particle velocity gauges. These provided wave profiles to which we calibrated an Ignition and Growth reactive burn (IGRB) model in ALE3D for 1-D shock to detonation transitions. Further, acceptor and donor XTX 8004 were extruded into opposite sides of a monolithic polymethylmethacrylate (PMMA) block with a known thickness of PMMA forming the attenuator plate, the so-called monolithic gap test (MGT). Detonation and initiation in the XTX 8004 was recorded using multiple ultra-high-speed images of the position of the shock front in the PMMA. Input to the acceptor charge was estimated from stress wave profiles photographed inside the attenuator as well as with photonic Doppler velocimetry (PDV) measurements of the free surface velocity beneath the attenuator plate. Results were simulated using IGRB in ALE3D. Parameterization of IGRB to 1-D vs. 2-D experiments will be discussed.

  19. Experiment and Reactive-Burn Modeling in the RDX Based Explosive XTX 8004

    NASA Astrophysics Data System (ADS)

    Johnson, Carl; Murphy, Michael; Gustavsen, Richard

    2013-06-01

    XTX 8004 consists of 80 wt.% cyclotrimethylenetrinitramine (RDX), and 20 wt.% Sylgard 182, a silicone rubber used as a binder. Nominal density is 1.5 g/cm3. We conducted four gas-gun driven plate-impact experiments that were instrumented with embedded electromagnetic particle velocity gauges. These provided wave profiles to which we calibrated an Ignition and Growth reactive burn model in ALE3D. A reactant Hugoniot and Pop-plot parameters were also extracted from the data and model calibration. Initiation of XTX 8004 in divergent flow was studied using SWIFT and photonic Doppler velocimetry (PDV). We used a gap test geometry in which the donor and acceptor charges consisted of cylinders of XTX 8004 nominally 4.65 mm in diameter by 15 mm long. Acceptor and donor were extruded into polymethylmethacrylate (PMMA) blocks and separated by a brass attenuator plate. Detonation and re-initiation (or failure) in the XTX 8004 was recorded using multiple SWIFT images of the position of the shock front in the PMMA. Input to the acceptor charge was estimated from PDV measurements of the free surface velocity of the attenuator plate, and output of the acceptor charge was also measured using PDV. Parameterization of Ignition & Growth to 1-D vs. 2-D experiments will be discussed.

  20. PREFACE: Actinides 2009

    NASA Astrophysics Data System (ADS)

    Rao, Linfeng; Tobin, James G.; Shuh, David K.

    2010-07-01

    This volume of IOP Conference Series: Materials Science and Engineering consists of 98 papers that were presented at Actinides 2009, the 8th International Conference on Actinide Science held on 12-17 July 2009 in San Francisco, California, USA. This conference was jointly organized by Lawrence Livermore National Laboratory and Lawrence Berkeley National Laboratory. The Actinides conference series started in Baden-Baden, Germany (1975) and this first conference was followed by meetings at Asilomar, CA, USA (1981), Aix-en-Provence, France (1985), Tashkent, USSR (1989), Santa Fe, NM, USA (1993), Baden-Baden, Germany (1997), Hayama, Japan (2001), and Manchester, UK (2005). The Actinides conference series provides a regular venue for the most recent research results on the chemistry, physics, and technology of the actinides and heaviest elements. Actinides 2009 provided a forum spanning a diverse range of scientific topics, including fundamental materials science, chemistry, physics, environmental science, and nuclear fuels. Of particular importance was a focus on the key roles that basic actinide chemistry and physics research play in advancing the worldwide renaissance of nuclear energy. Editors Linfeng Rao Lawrence Berkeley National Laboratory (lrao@lbl.gov) James G Tobin Lawrence Livermore National Laboratory (tobin1@llnl.gov) David K Shuh Lawrence Berkeley National Laboratory (dkshuh@lbl.gov)

  1. Plutonium and ''minor'' actinides: safe sequestration [rapid communication

    NASA Astrophysics Data System (ADS)

    Ewing, Rodney C.

    2005-01-01

    The actinides exhibit a number of unique chemical and nuclear properties. Of particular interest are the man-made actinides (Np, Pu, Cm and Am) that are produced in significant enough quantities that they are a source of energy in fission reactions, a source of fissile material for nuclear weapons and of environmental concern because of their long half-lives and radiotoxicity. During the past 50 yr, over 1400 mT of Pu and substantial quantities of the "minor" actinides, such as Np, Am and Cm, have been generated in nuclear reactors. There are two basic strategies for the disposition of these elements: (1) to "burn" or transmute the actinides using nuclear reactors or accelerators; (2) to "sequester" the actinides in chemically durable, radiation-resistant materials that are suitable for geologic disposal. There has been substantial interest in the use of isometric pyrochlore, A 2B 2O 7 (A=rare earths; B=Ti, Zr, Sn and Hf), for the immobilization of actinides, particularly plutonium. Systematic studies of rare-earth pyrochlores have led to the discovery that certain compositions (B=Zr, Hf) are stable to very high doses of α-decay event damage. The radiation stability of these compositions is closely related to the structural distortions that occur for specific pyrochlore compositions and the electronic structure of the B-site cation. This understanding provides the basis for designing materials for the safe, long-term immobilization and sequestration of actinides.

  2. Burn injury in epileptic patients: an experience in a tertiary institute.

    PubMed

    Akhtar, M S; Ahmad, I; Khan, A H; Fahud Khurram, M; Haq, A

    2014-09-30

    The objective of this study was to evaluate the incidence, types and severity of burn injuries, including sites involved, morbidities, operative procedures, and their outcomes, to prevent or reduce the frequency and morbidity of such injuries in epileptic patients. This retrospective study was conducted at our centre between February 2008 and January 2012. The study included 54 patients who sustained burn injuries due to epileptic seizures, accounting for 1.3% of all burn admissions. All patients, irrespective of the severity of their injuries, were admitted to our centre, assessed, treated and educated regarding specific preventive measures. All study data were evaluated from patient medical records. Causes of burn injury were as follows: scald burns (30), contact with hot surfaces (12), electrical burns in the bathroom (6), and flame burns (6). Second degree burns were the most common (18 out of 54 patients) and third degree burns were the least common. Upper limb and trunk were the most common sites involved (36 out of 54 patients). Thirty patients required surgical intervention whereas the remainder was conservatively managed. Most of the injuries occurred in the age group between 30-37 years. Injuries occurred predominantly in females [42 females, 12 males; F:M=3.5:1]. The study revealed that patients with epilepsy should be categorized as a high risk group considering the sudden and unpredictable attack of epileptic seizures leading to loss of consciousness and accidental burn injuries. Early surgical intervention and targeting of all epileptic patients for education and instituting the specific preventive measures gives good outcomes. PMID:26170789

  3. Burn injury in epileptic patients: an experience in a tertiary institute

    PubMed Central

    Akhtar, M.S.; Ahmad, I.; Khan, A.H.; Fahud Khurram, M.; Haq, A.

    2014-01-01

    Summary The objective of this study was to evaluate the incidence, types and severity of burn injuries, including sites involved, morbidities, operative procedures, and their outcomes, to prevent or reduce the frequency and morbidity of such injuries in epileptic patients. This retrospective study was conducted at our centre between February 2008 and January 2012. The study included 54 patients who sustained burn injuries due to epileptic seizures, accounting for 1.3% of all burn admissions. All patients, irrespective of the severity of their injuries, were admitted to our centre, assessed, treated and educated regarding specific preventive measures. All study data were evaluated from patient medical records. Causes of burn injury were as follows: scald burns (30), contact with hot surfaces (12), electrical burns in the bathroom (6), and flame burns (6). Second degree burns were the most common (18 out of 54 patients) and third degree burns were the least common. Upper limb and trunk were the most common sites involved (36 out of 54 patients). Thirty patients required surgical intervention whereas the remainder was conservatively managed. Most of the injuries occurred in the age group between 30-37 years. Injuries occurred predominantly in females [42 females, 12 males; F:M=3.5:1]. The study revealed that patients with epilepsy should be categorized as a high risk group considering the sudden and unpredictable attack of epileptic seizures leading to loss of consciousness and accidental burn injuries. Early surgical intervention and targeting of all epileptic patients for education and instituting the specific preventive measures gives good outcomes. PMID:26170789

  4. Actinides in the Geosphere

    NASA Astrophysics Data System (ADS)

    Runde, Wolfgang; Neu, Mary P.

    Since the 1950s actinides have been used to benefit industry, science, health, and national security. The largest industrial application, electricity generation from uranium and thorium fuels, is growing worldwide. Thus, more actinides are being mined, produced, used and processed than ever before. The future of nuclear energy hinges on how these increasing amounts of actinides are contained in each stage of the fuel cycle, including disposition. In addition, uranium and plutonium were built up during the Cold War between the United States and the Former Soviet Union for defense purposes and nuclear energy.

  5. Five-year experience with burns from glass fireplace doors in the pediatric population.

    PubMed

    Baryza, Mary Jo; Hinson, Michelle; Conway, Jennifer; Ryan, Colleen M

    2013-01-01

    Burns from contact with glass doors of gas fireplaces have been previously reported. The purpose of this study is to examine the incidence and severity of this injury in our population. Patients were identified for inclusion in the retrospective chart review study using the National Trauma Registry of the American College of Surgeons (NTRACS) and our local outpatient database. Criteria for inclusion were burn injuries sustained from contact with fireplace glass doors treated at our pediatric burn center from 2007 through 2011. Fifty children met these criteria, including two children whose burns were caused by electric fireplace glass doors. BSA burned was 1.5 ± 1.5% (mean ± SD), range 0.5 to 10%. Age was 27.2 ± 27.3 months, range 8 months to 13 years. Forty-five children (90%) had hand burns; of these, 18 children had bilateral hand involvement. Facial burns were found in three children (6%), and eight children (16%) had other areas burned. One patient developed cellulitis. Two patients required surgery. Six children (12%) required hospitalization; mean length of stay was 5.8 ± 5 days, range 1 to 5 days. Although the number of inpatient admissions was relatively few, 329 outpatient visits and 309 rehabilitation visits were required for treatment of these children. Nineteen patients (38%) required splints and six patients (12%) required scar treatment with pressure garments. Burns from contact with fireplace glass doors are a recurring problem. Toddlers are most at risk. Directed preventive strategies including parent education, safety warnings, and design modifications such as temperature sensors and barrier screens could be potentially helpful in reducing the incidence of this injury.

  6. Experience from community based childhood burn prevention programme in Bangladesh: implication for low resource setting.

    PubMed

    Mashreky, S R; Rahman, A; Svanström, L; Linnan, M J; Shafinaz, S; Rahman, F

    2011-08-01

    A comprehensive community-based burn prevention framework was developed for rural Bangladesh taking into consideration the magnitude, consequences of burns, risk factors of childhood burn, health seeking behaviour of parents after a burn injury of a child and the perception of community people. This paper explains the comprehensive framework of the childhood burn prevention programme and describes its acceptability, feasibility and sustainability. A number of methodologies were adopted in developing the framework, such as, (i) building up relevant information on childhood burn and prevention methods, (ii) arranging workshops and consultation meetings with experts and related stakeholders and (iii) piloting components of the framework on a small scale. Lack of supervision of the children, hazardous environment at home and the low level awareness about childhood burn and other injuries were identified as the major attributes of childhood burn in Bangladesh. To address these factors "Triple S" strategies were identified for the prevention framework. These strategies are: Safe environment. Supervision. Skill development. According to these strategies, home safety, community crèche, school safety, formation of community groups and general awareness activities were identified as the different components of the childhood burn prevention framework in rural Bangladesh. The framework was piloted in a small scale to explore its feasibility acceptability and sustainability. The framework was found to be acceptable by the community. It is also expected to be feasible and sustainable as very low cost and locally available technology and resources were utilized in the framework. Large scale piloting is necessary to explore its effectiveness and ability to scale up all over the whole country.

  7. Actinide recovery process

    DOEpatents

    Muscatello, A.C.; Navratil, J.D.; Saba, M.T.

    1985-06-13

    Process for the removal of plutonium polymer and ionic actinides from aqueous solutions by absorption onto a solid extractant loaded on a solid inert support such as polystyrene-divinylbenzene. The absorbed actinides can then be recovered by incineration, by stripping with organic solvents, or by acid digestion. Preferred solid extractants are trioctylphosphine oxide and octylphenyl-N,N-diisobutylcarbamoylmethylphosphine oxide and the like. 2 tabs.

  8. PRODUCTION OF ACTINIDE METAL

    DOEpatents

    Knighton, J.B.

    1963-11-01

    A process of reducing actinide oxide to the metal with magnesium-zinc alloy in a flux of 5 mole% of magnesium fluoride and 95 mole% of magnesium chloride plus lithium, sodium, potassium, calcium, strontium, or barium chloride is presented. The flux contains at least 14 mole% of magnesium cation at 600-- 900 deg C in air. The formed magnesium-zinc-actinide alloy is separated from the magnesium-oxide-containing flux. (AEC)

  9. Thermochemistry of the actinides

    SciTech Connect

    Kleinschmidt, P.D.

    1993-10-01

    The measurement of equilibria by Knudsen effusion techniques and the enthalpy of formation of the actinide atoms is briefly discussed. Thermochemical data on the sublimation of the actinide fluorides is used to calculate the enthalpies of formation and entropies of the gaseous species. Estimates are made for enthalpies and entropies of the tetrafluorides and trifluorides for those systems where data is not available. The pressure of important species in the tetrafluoride sublimation processes is calculated based on this thermochemical data.

  10. Major burn injuries associated with Christmas celebrations: a 41-year experience from Switzerland

    PubMed Central

    Rohrer-Mirtschink, S.; Forster, N.; Giovanoli, P.; Guggenheim, M.

    2015-01-01

    Summary In Switzerland it is customary to light candles on Christmas trees and advent wreaths. This tradition leads to an increased risk of home fires. We reviewed the records of patients who sustained burn injuries from a lit Christmas tree or advent wreath during the Christmas holidays between January 1971 and January 2012. We treated 28 patients and observed 4 fatalities (mortality rate: 14%). 61% of the patients were male, 39% were female. The mean abbreviated burn severity index (ABSI) was 6.5 points in the group of the survivors and 10.8 points in the group of the non-survivors. The mean total body surface area burned (TBSA) for survivors was 18.9%, with 14.1% having full thickness burns; for the non-survivors the mean TBSA was 45.2%, with 38% having full thickness burns. The Mann-Whitney U-test showed a significant difference between the survivors and the fatalities concerning the mean total and full thickness burned body surface area (p value 0.009 and 0.012). More than sixty percent of the fires occurred in January and the most severe accidents were seen after January 4th. Despite Christmas decoration-associated fires being relatively uncommon, they tend to cause more serious injuries than regular household fires. We recommend that in countries where it is customary to set up flammable Christmas decorations, state-issued information pamphlets with instructions on fire safety conduct should be distributed. PMID:26668566

  11. Major burn injuries associated with Christmas celebrations: a 41-year experience from Switzerland.

    PubMed

    Rohrer-Mirtschink, S; Forster, N; Giovanoli, P; Guggenheim, M

    2015-03-31

    In Switzerland it is customary to light candles on Christmas trees and advent wreaths. This tradition leads to an increased risk of home fires. We reviewed the records of patients who sustained burn injuries from a lit Christmas tree or advent wreath during the Christmas holidays between January 1971 and January 2012. We treated 28 patients and observed 4 fatalities (mortality rate: 14%). 61% of the patients were male, 39% were female. The mean abbreviated burn severity index (ABSI) was 6.5 points in the group of the survivors and 10.8 points in the group of the non-survivors. The mean total body surface area burned (TBSA) for survivors was 18.9%, with 14.1% having full thickness burns; for the non-survivors the mean TBSA was 45.2%, with 38% having full thickness burns. The Mann-Whitney U-test showed a significant difference between the survivors and the fatalities concerning the mean total and full thickness burned body surface area (p value 0.009 and 0.012). More than sixty percent of the fires occurred in January and the most severe accidents were seen after January 4th. Despite Christmas decoration-associated fires being relatively uncommon, they tend to cause more serious injuries than regular household fires. We recommend that in countries where it is customary to set up flammable Christmas decorations, state-issued information pamphlets with instructions on fire safety conduct should be distributed.

  12. Survival from Burns in the New Millennium: 70 Years Experience from a Single Institution

    PubMed Central

    Tompkins, Ronald G.

    2015-01-01

    Objective This review explores the series of published analyses from Massachusetts General Hospital (MGH) to better understand how changes in medical specialization of burn medicine likely enabled the most important increase in survival from burns in the past 70 years. Background Seventy years ago, survival from the most serious burn injuries was not possible even in the most advanced countries until critical advances were introduced. Insights into those few medical advances that actually impacted survival might be better understood from the consideration of a continuous series of survival analyses over seven decades at MGH. Methods Mortality data from previously reported probit and logit analyses from thousands of patients treated at MGH were reviewed. A comparison of mortality from these prior mortality analyses from a more recent multi-center study and a national dataset was performed. Results The only giant leap forward in survival occurred during the 1970s with no improvement either during the preceding or subsequent 30-year intervals. Despite the many modern advances that have been added to the care of these patients since 1984, although these may have represented medical progress, these advances did not impact survival. Conclusions Survival rates from burn injury may have been maximized by current treatment approaches within medical centers of excellence in burn medicine. Further efforts to improve the burn survivor’s quality of life should ultimately have very favorable impact upon the long-term outcomes in these patients who now survive such devastating injuries. PMID:24670865

  13. Major burn injuries associated with Christmas celebrations: a 41-year experience from Switzerland.

    PubMed

    Rohrer-Mirtschink, S; Forster, N; Giovanoli, P; Guggenheim, M

    2015-03-31

    In Switzerland it is customary to light candles on Christmas trees and advent wreaths. This tradition leads to an increased risk of home fires. We reviewed the records of patients who sustained burn injuries from a lit Christmas tree or advent wreath during the Christmas holidays between January 1971 and January 2012. We treated 28 patients and observed 4 fatalities (mortality rate: 14%). 61% of the patients were male, 39% were female. The mean abbreviated burn severity index (ABSI) was 6.5 points in the group of the survivors and 10.8 points in the group of the non-survivors. The mean total body surface area burned (TBSA) for survivors was 18.9%, with 14.1% having full thickness burns; for the non-survivors the mean TBSA was 45.2%, with 38% having full thickness burns. The Mann-Whitney U-test showed a significant difference between the survivors and the fatalities concerning the mean total and full thickness burned body surface area (p value 0.009 and 0.012). More than sixty percent of the fires occurred in January and the most severe accidents were seen after January 4th. Despite Christmas decoration-associated fires being relatively uncommon, they tend to cause more serious injuries than regular household fires. We recommend that in countries where it is customary to set up flammable Christmas decorations, state-issued information pamphlets with instructions on fire safety conduct should be distributed. PMID:26668566

  14. Minior Actinide Doppler Coefficient Measurement Assessment

    SciTech Connect

    Nolan E. Hertel; Dwayne Blaylock

    2008-04-10

    The "Minor Actinide Doppler Coefficient Measurement Assessment" was a Department of Energy (DOE) U-NERI funded project intended to assess the viability of using either the FLATTOP or the COMET critical assembly to measure high temperature Doppler coefficients. The goal of the project was to calculate using the MCNP5 code the gram amounts of Np-237, Pu-238, Pu-239, Pu-241, AM-241, AM-242m, Am-243, and CM-244 needed to produce a 1E-5 in reactivity for a change in operating temperature 800C to 1000C. After determining the viability of using the assemblies and calculating the amounts of each actinide an experiment will be designed to verify the calculated results. The calculations and any doncuted experiments are designed to support the Advanced Fuel Cycle Initiative in conducting safety analysis of advanced fast reactor or acceoerator-driven transmutation systems with fuel containing high minor actinide content.

  15. Fabrication and Pre-irradiation Characterization of a Minor Actinide and Rare Earth Containing Fast Reactor Fuel Experiment for Irradiation in the Advanced Test Reactor

    SciTech Connect

    Timothy A. Hyde

    2012-06-01

    The United States Department of Energy, seeks to develop and demonstrate the technologies needed to transmute the long-lived transuranic actinide isotopes contained in spent nuclear fuel into shorter lived fission products, thereby decreasing the volume of material requiring disposal and reducing the long-term radiotoxicity and heat load of high-level waste sent to a geologic repository. This transmutation of the long lived actinides plutonium, neptunium, americium and curium can be accomplished by first separating them from spent Light Water Reactor fuel using a pyro-metalurgical process, then reprocessing them into new fuel with fresh uranium additions, and then transmuted to short lived nuclides in a liquid metal cooled fast reactor. An important component of the technology is developing actinide-bearing fuel forms containing plutonium, neptunium, americium and curium isotopes that meet the stringent requirements of reactor fuels and materials.

  16. Nonaqueous actinide hydride dissolution and production of actinide $beta$- diketonates

    DOEpatents

    Crisler, L.R.

    1975-11-11

    Actinide beta-diketonate complex molecular compounds are produced by reacting a beta-diketone compound with a hydride of the actinide material in a mixture of carbon tetrachloride and methanol. (auth)

  17. Demographic characteristics and outcome of burn patients requiring skin grafts: a tertiary hospital experience

    PubMed Central

    Shlash, Saud Othman Al; Madani, Jamal Omran Al; Deib, Jamal Ismail El; Alsubhi, Fatemah Suliman; Saifi, Sara Saud Al; Helmi, Ayman Mohammed Adel; Al-Mutairi, Sultan Khalaf; Khurram, Javed Akhtar

    2016-01-01

    Split thickness skin graft (STSG) and full thickness skin graft (FTSG) are the integral part of burn wound management. However the impact of these graft types on the outcome still remain a matter of controversy. The purpose of this study was to determine the demographic characteristics and outcome of graft surgery of the patients undergone STSG and FTSG at Plastic Surgery Department of Prince Sultan Military Medical City (PSMMC), Riyadh, Kingdom of Saudi Arabia. This retrospective study included 85 burn patients who received STSG (56 cases) and FTSG (29 cases) at PSMMC during 2010-2015. Demographic characteristics (age, gender, etiology of burn, and area of burn) and outcome (graft loss, graft contraction, skin pigmentation, altered sensation, infection rate and duration of hospital stay) were recorded among the patients who received STSG or FTSG. Out of 85 patients 50 patients were male and 35 female with a ratio of 1.42:1. The patients under the age of 10 years comprised the largest burn group with 28 cases (32.9%) out of total 85 patients. The number of patients above the age of 30 years was relatively smaller. Flame (49.3%) and scald (27%) burns constituted the majority of burn cases. The incidence of contraction among STSG (12.5%) and in FTSG (17.2%) cases was similar. Altered sensation was observed in 7.05% of STSG patients and 13.7% of FTSG cases. Loss of graft was observed in 16% of STSG and 20.6% of FTSG patients. The pigmentation was quite similar in STSG (21.4%) and FTSG (24. 1%). The hospitalization time in FTSG (28 days) patients was also comparable with STSG (26.9 days) group. This study showed that majority of the skin graft cases at PSMMC were male under the age of 30 years mostly affected by flame or scald burns. The outcome following STSG and FTSG surgery was comparable with no significant advantage of one over the other. It may be deduced that both STSG and FTSG have relative merits and demerits and either of these grafting procedure may be

  18. Use of Information Theory Concepts for Developing Contaminated Site Detection Method: Case for Fission Product and Actinides Accumulation Modeling

    SciTech Connect

    Harbachova, N.V.; Sharavarau, H.A.

    2006-07-01

    Information theory concepts and their fundamental importance for environmental pollution analysis in light of experience of Chernobyl accident in Belarus are discussed. An information and dynamic models of the radionuclide composition formation in the fuel of the Nuclear Power Plant are developed. With the use of code DECA numerical calculation of actinides (58 isotopes are included) and fission products (650 isotopes are included) activities has been carried out and their dependence with the fuel burn-up of the RBMK-type reactor have been investigated. (authors)

  19. Tangential excision of scalp burns: experience from the Bradford fire disaster.

    PubMed

    Dickson, W A; Sharpe, D T; Roberts, A H

    1988-04-01

    Tangential excision of deep dermal scalp burns does not appear to be widely practised. During the Bradford Football fire victims sustained mixed depth scalp burns. These were mainly as a result of radiant heat, although falling molten bitumen was the cause of injury in a few patients. Deep dermal or full thickness burns of the scalp were tangentially excised and skin grafted. One patient did not have a graft applied after tangential excision. The early results of graft take were satisfactory. Subsequently, however, 56 per cent required further grafting; the reasons for this are discussed. Ten months after the incident there is no difference in appearance between areas of primary grafting and areas of secondary healing.

  20. Study of Thermonuclear Alfven Instabilities in Next Step Burning Plasma Experiments

    SciTech Connect

    N.N. Gorelenkov; H.L. Berk; R. Budny; C.Z. Cheng; G.-Y. Fu; W.W. Heidbrink; G. Kramer; D. Meade; and R. Nazikian

    2002-07-02

    A study is presented for the stability of alpha-particle driven shear Alfven Eigenmodes (AE) for the normal parameters of the three major burning plasma proposals, ITER (International Thermonuclear Experimental Reactor), FIRE (Fusion Ignition Research Experiment), and IGNITOR (Ignited Torus). A study of the JET (Joint European Torus) plasma, where fusion alphas were generated in tritium experiments, is also included to attempt experimental validation of the numerical predictions. An analytic assessment of Toroidal AE (TAE) stability is first presented, where the alpha particle beta due to the fusion reaction rate and electron drag is simply and accurately estimated in 7-20 keV plasma temperature regime. In this assessment the hot particle drive is balanced against ion-Landau damping of the background deuterons and electron collision effects and stability boundaries are determined. Then two numerical studies of AE instability are presented. In one the High-n stability code HINST is used . This code is capable of predicting instabilities of low and moderately high frequency Alfven modes. HINST computes the non-perturbative solution of the Alfven eigenmodes including effects of ion finite Larmor radius, orbit width, trapped electrons etc. The stability calculations are repeated using the global code NOVAK. We show that for these tokamaks the spectrum of the least stable AE modes are TAE that appear at medium-/high-n numbers. In HINST TAEs are locally unstable due to the alphas pressure gradient in all the devices under the consideration except IGNITOR. However, NOVAK calculations show that the global mode structure enhances the damping mechanisms and produces stability in all configurations considered here. A serious question remains whether the perturbation theory used in NOVAK overestimates the stability predictions, so that it is premature to conclude that the nominal operation of all three proposals are stable to AEs. In addition NBI ions produce a strong

  1. Epidemiology and Outcome of Chemical Burn Patients Admitted in Burn Unit of JNMC Hospital, Aligarh Muslim University, Aligarh, Uttar Pradesh, India: A 5-year Experience

    PubMed Central

    Akhtar, Md Sohaib; Ahmad, Imran; Khurram, M. Fahud; Kanungo, Srikanta

    2015-01-01

    Aims and Objective: The objectives of this study were to evaluate the epidemiology, clinical variable of chemical burns, and their outcomes to prevent or reduce the frequency and morbidity of such injuries. Materials and Methods: A retrospective analysis was performed on all the patients with chemical burns admitted at author's center between November 2008 and December 2013. All the patients were evaluated in terms of age, sex, total body surface area, etiology, treatment given, morbidity, mortality, final outcome, and then educated regarding specific preventive measures. Results: A total of 96 patients (2.4% of total burn admissions) (42 males and 54 females) were admitted to our hospital with chemical burn injuries. Most of the patients were in the age group of 16–30 years. Incidence in females was slightly higher than in males. Acid was found to be the most common cause of injury. We found 55% patients admitted had <10% total body surface area (TBSA) involvement, 35% had burns involving between 11 and 20% TBSA, and 4% had burns involving 21–30% TBSA, and 6% had burns in >30% TBSA. Morbidity was noticed in the form of skin defect in 80% of cases, soft tissue defect with exposed tendon, bone, or vessels in 16% of cases, and 4% of patients developed contracture and hypertrophic scar. Eighty-six percent of patients required operative intervention. A total of three deaths (3%) were recorded. Conclusion: It was found that chemical burns, though not very common, are deeper burns and can be accidental or non-accidental, and the high-risk age group is 16–25 years. Chemical burns are largely preventable and if properly managed have a good outcome. PMID:25810999

  2. Actinides and Life's Origins.

    PubMed

    Adam, Zachary

    2007-12-01

    There are growing indications that life began in a radioactive beach environment. A geologic framework for the origin or support of life in a Hadean heavy mineral placer beach has been developed, based on the unique chemical properties of the lower-electronic actinides, which act as nuclear fissile and fertile fuels, radiolytic energy sources, oligomer catalysts, and coordinating ions (along with mineralogically associated lanthanides) for prototypical prebiotic homonuclear and dinuclear metalloenzymes. A four-factor nuclear reactor model was constructed to estimate how much uranium would have been required to initiate a sustainable fission reaction within a placer beach sand 4.3 billion years ago. It was calculated that about 1-8 weight percent of the sand would have to have been uraninite, depending on the weight percent, uranium enrichment, and quantity of neutron poisons present within the remaining placer minerals. Radiolysis experiments were conducted with various solvents with the use of uraniumand thorium-rich minerals (metatorbernite and monazite, respectively) as proxies for radioactive beach sand in contact with different carbon, hydrogen, oxygen, and nitrogen reactants. Radiation bombardment ranged in duration of exposure from 3 weeks to 6 months. Low levels of acetonitrile (estimated to be on the order of parts per billion in concentration) were conclusively identified in 2 setups and tentatively indicated in a 3(rd) by gas chromatography/mass spectrometry. These low levels have been interpreted within the context of a Hadean placer beach prebiotic framework to demonstrate the promise of investigating natural nuclear reactors as power production sites that might have assisted the origins of life on young rocky planets with a sufficiently differentiated crust/mantle structure. Future investigations are recommended to better quantify the complex relationships between energy release, radioactive grain size, fissionability, reactant phase, phosphorus

  3. Actinides and Life's Origins.

    PubMed

    Adam, Zachary

    2007-12-01

    There are growing indications that life began in a radioactive beach environment. A geologic framework for the origin or support of life in a Hadean heavy mineral placer beach has been developed, based on the unique chemical properties of the lower-electronic actinides, which act as nuclear fissile and fertile fuels, radiolytic energy sources, oligomer catalysts, and coordinating ions (along with mineralogically associated lanthanides) for prototypical prebiotic homonuclear and dinuclear metalloenzymes. A four-factor nuclear reactor model was constructed to estimate how much uranium would have been required to initiate a sustainable fission reaction within a placer beach sand 4.3 billion years ago. It was calculated that about 1-8 weight percent of the sand would have to have been uraninite, depending on the weight percent, uranium enrichment, and quantity of neutron poisons present within the remaining placer minerals. Radiolysis experiments were conducted with various solvents with the use of uraniumand thorium-rich minerals (metatorbernite and monazite, respectively) as proxies for radioactive beach sand in contact with different carbon, hydrogen, oxygen, and nitrogen reactants. Radiation bombardment ranged in duration of exposure from 3 weeks to 6 months. Low levels of acetonitrile (estimated to be on the order of parts per billion in concentration) were conclusively identified in 2 setups and tentatively indicated in a 3(rd) by gas chromatography/mass spectrometry. These low levels have been interpreted within the context of a Hadean placer beach prebiotic framework to demonstrate the promise of investigating natural nuclear reactors as power production sites that might have assisted the origins of life on young rocky planets with a sufficiently differentiated crust/mantle structure. Future investigations are recommended to better quantify the complex relationships between energy release, radioactive grain size, fissionability, reactant phase, phosphorus

  4. Burning Issue: Handling Household Burns

    MedlinePlus

    ... hot objects or liquid, fire, friction, the sun, electricity, or certain chemicals. Each year, about a half- ... infant or elderly. the burn was caused by electricity, which can lead to “invisible” burns. Burns Burns ...

  5. [EXPERIENCE OF THE RATIONAL ANTIBACTERIAL THERAPY CONDUCTION IN TREATMENT OF CHILDREN FOR THE BURN TRAUMA].

    PubMed

    Ponomarenko, E V; Skripnikova, Ya S; Mangurenko, O I

    2016-02-01

    Abstract The principles of rational antibacterial therapy in children for the burn trauma were analyzed. The results of the completed treatment of 808 children for the burn trauma in a Combustiological Department of Municipal clinical hospital of City of Zaporozhye were studied. In 326 (40.3%) children antibacterial therapy was conducted, including one antibiotic--in 268 (82.2%), two and more--in 37 (11.3%). The preparations were prescribed empirically, taking into account bacteriological profile of the Department and the patients premorbidity background present. Prescription of modern anticlostridial probiotics, containing stamms of Lactobacillus rhamnosus R0011 and Lactobacillus acedofilus R0052, on background of continuing antibacterial therapy, have constituted the effective measure of prophylaxis for the antibiotic-associated diarrhea, as the most frequent complication of antibacterial therapy.

  6. Assessment of fire emission inventories during the South American Biomass Burning Analysis (SAMBBA) experiment

    NASA Astrophysics Data System (ADS)

    Pereira, Gabriel; Siqueira, Ricardo; Rosário, Nilton E.; Longo, Karla L.; Freitas, Saulo R.; Cardozo, Francielle S.; Kaiser, Johannes W.; Wooster, Martin J.

    2016-06-01

    Fires associated with land use and land cover changes release large amounts of aerosols and trace gases into the atmosphere. Although several inventories of biomass burning emissions cover Brazil, there are still considerable uncertainties and differences among them. While most fire emission inventories utilize the parameters of burned area, vegetation fuel load, emission factors, and other parameters to estimate the biomass burned and its associated emissions, several more recent inventories apply an alternative method based on fire radiative power (FRP) observations to estimate the amount of biomass burned and the corresponding emissions of trace gases and aerosols. The Brazilian Biomass Burning Emission Model (3BEM) and the Fire Inventory from NCAR (FINN) are examples of the first, while the Brazilian Biomass Burning Emission Model with FRP assimilation (3BEM_FRP) and the Global Fire Assimilation System (GFAS) are examples of the latter. These four biomass burning emission inventories were used during the South American Biomass Burning Analysis (SAMBBA) field campaign. This paper analyzes and inter-compared them, focusing on eight regions in Brazil and the time period of 1 September-31 October 2012. Aerosol optical thickness (AOT550 nm) derived from measurements made by the Moderate Resolution Imaging Spectroradiometer (MODIS) operating on board the Terra and Aqua satellites is also applied to assess the inventories' consistency. The daily area-averaged pyrogenic carbon monoxide (CO) emission estimates exhibit significant linear correlations (r, p > 0.05 level, Student t test) between 3BEM and FINN and between 3BEM_ FRP and GFAS, with values of 0.86 and 0.85, respectively. These results indicate that emission estimates in this region derived via similar methods tend to agree with one other. However, they differ more from the estimates derived via the alternative approach. The evaluation of MODIS AOT550 nm indicates that model simulation driven by 3BEM and FINN

  7. Survey of whole air data from the second airborne Biomass Burning and Lightning Experiment using principal component analysis

    NASA Astrophysics Data System (ADS)

    Choi, Yunsoo; Elliott, Scott; Simpson, Isobel J.; Blake, Donald R.; Colman, Jonah J.; Dubey, Manvendra K.; Meinardi, Simone; Rowland, F. Sherwood; Shirai, Tomoko; Smith, Felisa A.

    2003-03-01

    Hydrocarbon and halocarbon measurements collected during the second airborne Biomass Burning and Lightning Experiment (BIBLE-B) were subjected to a principal component analysis (PCA), to test the capability for identifying intercorrelated compounds within a large whole air data set. The BIBLE expeditions have sought to quantify and understand the products of burning, electrical discharge, and general atmospheric chemical processes during flights arrayed along the western edge of the Pacific. Principal component analysis was found to offer a compact method for identifying the major modes of composition encountered in the regional whole air data set. Transecting the continental monsoon, urban and industrial tracers (e.g., combustion byproducts, chlorinated methanes and ethanes, xylenes, and longer chain alkanes) dominated the observed variability. Pentane enhancements reflected vehicular emissions. In general, ethyl and propyl nitrate groupings indicated oxidation under nitrogen oxide (NOx) rich conditions and hence city or lightning influences. Over the tropical ocean, methyl nitrate grouped with brominated compounds and sometimes with dimethyl sulfide and methyl iodide. Biomass burning signatures were observed during flights over the Australian continent. Strong indications of wetland anaerobics (methane) or liquefied petroleum gas leakage (propane) were conspicuous by their absence. When all flights were considered together, sources attributable to human activity emerged as the most important. We suggest that factor reductions in general and PCA in particular may soon play a vital role in the analysis of regional whole air data sets, as a complement to more familiar methods.

  8. A scale-up field experiment for the monitoring of a burning process using chemical, audio, and video sensors.

    PubMed

    Stavrakakis, P; Agapiou, A; Mikedi, K; Karma, S; Statheropoulos, M; Pallis, G C; Pappa, A

    2014-01-01

    Fires are becoming more violent and frequent resulting in major economic losses and long-lasting effects on communities and ecosystems; thus, efficient fire monitoring is becoming a necessity. A novel triple multi-sensor approach was developed for monitoring and studying the burning of dry forest fuel in an open field scheduled experiment; chemical, optical, and acoustical sensors were combined to record the fire spread. The results of this integrated field campaign for real-time monitoring of the fire event are presented and discussed. Chemical analysis, despite its limitations, corresponded to the burning process with a minor time delay. Nevertheless, the evolution profile of CO2, CO, NO, and O2 were detected and monitored. The chemical monitoring of smoke components enabled the observing of the different fire phases (flaming, smoldering) based on the emissions identified in each phase. The analysis of fire acoustical signals presented accurate and timely response to the fire event. In the same content, the use of a thermographic camera, for monitoring the biomass burning, was also considerable (both profiles of the intensities of average gray and red component greater than 230) and presented similar promising potentials to audio results. Further work is needed towards integrating sensors signals for automation purposes leading to potential applications in real situations.

  9. Experience with Morgan perfusion contact lens in treating eye infections and burns.

    PubMed

    Oppong, M C

    1975-09-01

    The effects of a new therapeutic perfusion contact lens upon heavy infections and severe burns had been observed in 30 cases. We conclude that this method is advantageous, where there is a shortage of nursing personnel. We also consider the advisability of instructing sick bay attendants in large factories and military personnel in the use of the contact lens in order to bridge the critical phase between injury and hospital treatment.

  10. Building a multidisciplinary team for burn treatment - Lessons learned from the Montreal tendon transfer experience.

    PubMed

    Karam, E; Lévesque, M C; Jacquemin, G; Delure, A; Robidoux, I; Laramée, M T; Odobescu, A; Harris, P G; Danino, A M

    2014-03-31

    Multidisciplinary teams (MDTs) represent a recognized component of care in the treatment of complex conditions such as burns. However, most institutions do not provide adequate support for the formation of these teams. Furthermore, the majority of specialists lack the managerial skills required to create a team and have difficulties finding the proper tools. Our objective is to provide an insight for health care professionals, who wish to form a MDT for burn treatment, on the challenges that are likely to be faced, and to identify key elements that may facilitate the establishment of such a project. The setting for this was a plastic surgery department and rehabilitation center at a national reference center. A qualitative analysis was performed on all correspondences related to our tetraplegia project, from 2006 to 2008. To guide our thematic analysis, we used a form of systems theory known as the complexity theory. The qualitative analysis was performed using the NVivo software (Version 8.0 QSR International Melbourne, Australia). Lastly, the data was organized in chronologic order. Three main themes emerged from the results: knowledge acquisition, project organizational setup and project steps design. These themes represented respectively 24%, 50% and 26% of all correspondences. Project steps design and knowledge acquisition correspondences increased significantly after the introduction of the mentor team to our network. We conclude that an early association with a mentor team is beneficial for the establishment of a MDT.

  11. Building a multidisciplinary team for burn treatment – Lessons learned from the Montreal tendon transfer experience

    PubMed Central

    Karam, E.; Lévesque, M.C.; Jacquemin, G.; Delure, A.; Robidoux, I.; Laramée, M.T.; Odobescu, A.; Harris, P.G..; Danino, A.M.

    2014-01-01

    Summary Multidisciplinary teams (MDTs) represent a recognized component of care in the treatment of complex conditions such as burns. However, most institutions do not provide adequate support for the formation of these teams. Furthermore, the majority of specialists lack the managerial skills required to create a team and have difficulties finding the proper tools. Our objective is to provide an insight for health care professionals, who wish to form a MDT for burn treatment, on the challenges that are likely to be faced, and to identify key elements that may facilitate the establishment of such a project. The setting for this was a plastic surgery department and rehabilitation center at a national reference center. A qualitative analysis was performed on all correspondences related to our tetraplegia project, from 2006 to 2008. To guide our thematic analysis, we used a form of systems theory known as the complexity theory. The qualitative analysis was performed using the NVivo software (Version 8.0 QSR International Melbourne, Australia). Lastly, the data was organized in chronologic order. Three main themes emerged from the results: knowledge acquisition, project organizational setup and project steps design. These themes represented respectively 24%, 50% and 26% of all correspondences. Project steps design and knowledge acquisition correspondences increased significantly after the introduction of the mentor team to our network. We conclude that an early association with a mentor team is beneficial for the establishment of a MDT. PMID:25249840

  12. Thin extractive membrane for monitoring actinides in aqueous streams.

    PubMed

    Chavan, Vivek; Paul, Sumana; Pandey, Ashok K; Kalsi, P C; Goswami, A

    2013-09-15

    Alpha spectrometry and solid state nuclear track detectors (SSNTDs) are used for monitoring ultra-trace amount of alpha emitting actinides in different aqueous streams. However, these techniques have limitations i.e. alpha spectrometry requires a preconcentration step and SSNTDs are not chemically selective. Therefore, a thin polymer inclusion membrane (PIM) supported on silanized glass was developed for preconcentraion and determination of ultra-trace concentration of actinides by α-spectrometry and SSNTDs. PIMs were formed by spin coating on hydrophobic glass slide or solvent casting to form thin and self-supported membranes, respectively. Sorption experiments indicated that uptakes of actinides in the PIM were highly dependent on acidity of solution i.e. Am(III) sorbed up to 0.1 molL(-1) HNO₃, U(VI) up to 0.5 molL(-1) HNO₃ and Pu(IV) from HNO₃ concentration as high as 4 molL(-1). A scheme was developed for selective sorption of target actinide in the PIM by adjusting acidity and oxidation state of actinide. The actinides sorbed in PIMs were quantified by alpha spectrometry and SSNTDs. For SSNTDs, neutron induced fission-fragment tracks and α-particle tracks were registered in Garware polyester and CR-39 for quantifications of natural uranium and α-emitting actinides ((241)Am/(239)Pu/(233)U), respectively. Finally, the membranes were tested to quantify Pu in 4 molL(-1) HNO3 solutions and synthetic urine samples.

  13. Actinide halide complexes

    SciTech Connect

    Avens, L.R.; Zwick, B.D.; Sattelberger, A.P.; Clark, D.L.; Watkin, J.G.

    1991-02-07

    A compound of the formula MX{sub n}L{sub m} wherein M = Th, Pu, Np,or Am thorium, X = a halide atom, n = 3 or 4, L is a coordinating ligand selected from the group consisting of aprotic Lewis bases having an oxygen-, nitrogen-, sulfur-, or phosphorus-donor, and m is 3 or 4 for monodentate ligands or is 2 for bidentate ligands, where n + m = 7 or 8 for monodentate ligands or 5 or 6 for bidentate ligands, a compound of the formula MX{sub n} wherein M, X, and n are as previously defined, and a process of preparing such actinide metal compounds including admixing the actinide metal in an aprotic Lewis base as a coordinating solvent in the presence of a halogen-containing oxidant, are provided.

  14. Novel Separation of Actinides

    SciTech Connect

    Mariella, R

    2011-02-17

    The separation of actinides and other elements of interest for nuclear forensics and threat reduction is currently performed using decades-old chemistries and ion-exchange columns. We propose to determine the technical feasibility of a novel method for separating actinide ions in solution. This method is based upon isotachophoresis (ITP), which has been applied in the purification of pharmaceuticals and other biochemical applications. This technique has the potential to separate inorganic ions more effectively than existing methods, which is key to analyzing very small samples. We will perform a quantitative assessment of the effectiveness of specific isotachophoretic approaches including predicting the physical and chemical properties, such as ion mobility, of inorganic ions under specific solvent conditions using a combination of ab initio calculations and semi-empirical methods. We expect to obtain a thorough understanding of the analytical systems parameters under which ITP is most effective for the separation of inorganic samples, including the influence of the double layer surrounding actinide ions, the Debye length for different ions and ion complexes, and Debye-Hueckel limits. Inorganic separations are key to nuclear forensics for countering terrorism and nuclear proliferation. If found to be feasible and potentially superior to currently used separation approaches, ITP could provide the conceptual basis for an improved means to separate samples of nuclear explosion debris for nuclear forensic analysis, in support of the Laboratory's missions in homeland and national security.

  15. Environmental speciation of actinides.

    PubMed

    Maher, Kate; Bargar, John R; Brown, Gordon E

    2013-04-01

    Although minor in abundance in Earth's crust (U, 2-4 ppm; Th, 10-15 ppm) and in seawater (U, 0.003 ppm; Th, 0.0007 ppm), light actinides (Th, Pa, U, Np, Pu, Am, and Cm) are important environmental contaminants associated with anthropogenic activities such as the mining and milling of uranium ores, generation of nuclear energy, and storage of legacy waste resulting from the manufacturing and testing of nuclear weapons. In this review, we discuss the abundance, production, and environmental sources of naturally occurring and some man-made light actinides. As is the case with other environmental contaminants, the solubility, transport properties, bioavailability, and toxicity of actinides are dependent on their speciation (composition, oxidation state, molecular-level structure, and nature of the phase in which the contaminant element or molecule occurs). We review the aqueous speciation of U, Np, and Pu as a function of pH and Eh, their interaction with common inorganic and organic ligands in natural waters, and some of the common U-containing minerals. We also discuss the interaction of U, Np, Pu, and Am solution complexes with common Earth materials, including minerals, colloids, gels, natural organic matter (NOM), and microbial organisms, based on simplified model system studies. These surface interactions can inhibit (e.g., sorption to mineral surfaces, formation of insoluble biominerals) or enhance (e.g., colloid-facilitated transport) the dispersal of light actinides in the biosphere and in some cases (e.g., interaction with dissimilatory metal-reducing bacteria, NOM, or Mn- and Fe-containing minerals) can modify the oxidation states and, consequently, the behavior of redox-sensitive light actinides (U, Np, and Pu). Finally, we review the speciation of U and Pu, their chemical transformations, and cleanup histories at several U.S. Department of Energy field sites that have been used to mill U ores, produce fissile materials for reactors and weapons, and store

  16. Environmental speciation of actinides.

    PubMed

    Maher, Kate; Bargar, John R; Brown, Gordon E

    2013-04-01

    Although minor in abundance in Earth's crust (U, 2-4 ppm; Th, 10-15 ppm) and in seawater (U, 0.003 ppm; Th, 0.0007 ppm), light actinides (Th, Pa, U, Np, Pu, Am, and Cm) are important environmental contaminants associated with anthropogenic activities such as the mining and milling of uranium ores, generation of nuclear energy, and storage of legacy waste resulting from the manufacturing and testing of nuclear weapons. In this review, we discuss the abundance, production, and environmental sources of naturally occurring and some man-made light actinides. As is the case with other environmental contaminants, the solubility, transport properties, bioavailability, and toxicity of actinides are dependent on their speciation (composition, oxidation state, molecular-level structure, and nature of the phase in which the contaminant element or molecule occurs). We review the aqueous speciation of U, Np, and Pu as a function of pH and Eh, their interaction with common inorganic and organic ligands in natural waters, and some of the common U-containing minerals. We also discuss the interaction of U, Np, Pu, and Am solution complexes with common Earth materials, including minerals, colloids, gels, natural organic matter (NOM), and microbial organisms, based on simplified model system studies. These surface interactions can inhibit (e.g., sorption to mineral surfaces, formation of insoluble biominerals) or enhance (e.g., colloid-facilitated transport) the dispersal of light actinides in the biosphere and in some cases (e.g., interaction with dissimilatory metal-reducing bacteria, NOM, or Mn- and Fe-containing minerals) can modify the oxidation states and, consequently, the behavior of redox-sensitive light actinides (U, Np, and Pu). Finally, we review the speciation of U and Pu, their chemical transformations, and cleanup histories at several U.S. Department of Energy field sites that have been used to mill U ores, produce fissile materials for reactors and weapons, and store

  17. Problem of soot aggregates separation and purification for Carbon isotopic composition analyses - burning experiment and real black layers from speleothems examples

    NASA Astrophysics Data System (ADS)

    Hercman, Helena; Zawidzki, Pawel; Majewska, Agata

    2015-04-01

    Burning products are often used as an indicator of fire or prehistoric men activities. When it consists of macroscopically visible black layer it may be studied by different methods. When it is dispersed within sediment it is necessary to apply method for burning product separation. Soot aggregates as a result of incomplete combustion of organic materials are most reliable indication of burning. Size of soot particles is too small to observe by optical microscopy. There are two main advantages of application of transmission electron microscopy (TEM) for investigations of samples formed as a result of organic materials (like wood) combustion. First, it makes possible to investigate not only morphology but also its interior structure. The carbon layers arrangement is characteristic for particles obtained from combustion processes, and it directly confirm that these particles were formed that way. And second, analysis of chemical composition using of EDS spectroscopy in transmission microscope are precise and it spatial resolution is about a few nanometers. Burning chamber for wood burning experiments was constructed. It allows wood burning with controlling of burning temperature, carbon isotopic composition in carbon dioxide of burning atmosphere and carbon dioxide originated during burning. Burning products are collected on the plates with controlling of plates material, temperature and distance from flame. Two types of samples were studied. The first type of samples consisted the products of recent wood burning. The second type of samples consisted of black layers collected from speleothems. Soot aggregates were chemically separated from other burning products collected on plates. Process of chemical separation and purity of soot material were tested by TEM observations. Isotopic carbon composition at each step of soot separation as well as original wood fragments was analysed at the Isotopic Laboratory for Dating and Palaeoenvironment Studies, Polish Academy of

  18. Overview of Asian Biomass Burning and Dust Aerosols Measured during the Dongsha Experiment in the Spring of 2010

    NASA Astrophysics Data System (ADS)

    Lin, N.; Tsay, S.; Wang, S.; Sheu, G.; Chi, K.; Lee, C.; Wang, J.

    2010-12-01

    The international campaign of Dongsha Experiment was conducted in the northern SE Asian region during March-May 2010. It is a pre-study of the Seven South East Asian Studies (7SEAS) which seeks to perform interdisciplinary research in the field of aerosol-meteorology and climate interaction in the Southeast Asian region, particularly for the impact of biomass burning on cloud, atmospheric radiation, hydrological cycle, and regional climate. Participating countries include Indonesia, Malaysia, Philippines, Singapore, Thailand, Taiwan, Vietnam, and USA (NASA, NRL, and NOAA). The main goals of Dongsha Experiment are (1) to develop the Dongsha Island (about 2 km2, 20°42'52" N, 116°43'51" E) in the South China Sea as an atmospheric observing platform of atmospheric chemistry, radiation and meteorological parameters, and (2) to characterize the chemical and physical properties of biomass burning aerosols in the northern SE Asian region. A monitoring network for ground-based measurements includes the Lulin Atmospheric Background Station (2,862 m MSL) in central Taiwan, Hen-Chun (coastal) in the very southern tip of Taiwan, Dongsha Island in South China Sea, Da Nang (near coastal region) in central Vietnam, and Chiang Mai (about 1,400 m, MSL) in northern Thailand. Besides, the Mobile Air Quality Station of Taiwan EPA and NASA/COMMIT were shipped to Dongsha Island for continuous measurements of CO, SO2, NOx, O3, and PM10, and aerosol optical and vertical profiles. Two Intensive Observation Periods (IOPs) for aerosol chemistry were conducted during 14-30 March and 10-20 April 2010, respectively. Ten aerosol samplers were deployed for each station for characterizing the compositions of PM2.5/PM10 (some for TSP) including water-soluble ions, metal elements, BC/OC, Hg and dioxins. Sampling tubes of VOCs were also deployed. Concurrent measurements with IOP-1, Taiwanese R/V also made a mission to South China Sea during 14-19 March. Enhanced sounding at Dongsha Island was

  19. Final Technical Progress Report Long term risk from actinides in the environment: Modes of mobility

    SciTech Connect

    Thomas B. Kirchner

    2002-03-22

    The key source of uncertainty in assessing actinide mobility is the relative importance of transport by: (1) wind erosion, (2) water erosion, and (3) vertical migration. Each of these three processes depends on several environmental factors and they compete with one another. A scientific assessment of the long-term risks associated with actinides in surface soils depends on better quantifying each of these three modes of mobility. The objective from our EMSP study was to quantify the mobility of soil actinides by wind erosion, water erosion, and vertical migration at three semiarid sites where actinide mobility is a key technical, social and legal issue. This EMSP project was the first to evaluate all three factors at a site. The approach has been to investigate both short- and long-term issues based on field and lab studies and model comparisons. Our results demonstrate the importance of incorporating threshold responses into a modeling framework that accounts for environmental factors and natural disturbances that trigger large changes in actinide mobility. The study measured erosional losses of sediment and fallout cesium (an actinide analogue) from field plots located near WIPP in 1998. The results highlight the large effect of burning as a disturbance on contaminant transport and mobility via runoff and erosion. The results show that runoff, erosion, and actinide transport are (1) strongly site specific-differences in radionuclide transport between WIPP and Rocky Flats differed by a factor of twelve because of soil and vegetation differences, and (2) are strongly impacted by disturbances such as fire, which can increase runoff, erosion, and actinide transport by more than an order of magnitude. In addition, a laboratory experiment using soil columns was conducted to investigate the vertical transport of contaminants in sandy soils. Nine columns of soil collected from the vicinity of the WIPP site were prepared. The column consisted of a piece of PVC pipe 20 cm

  20. Surrogate Reactions in the Actinide Region

    SciTech Connect

    Burke, J T; Bernstein, L A; Scielzo, N D; Bleuel, D L; Lesher, S R; Escher, J; Ahle, L; Dietrich, F S; Hoffman, R D; Norman, E B; Sheets, S A; Phair, L; Fallon, P; Clark, R M; Gibelin, J; Jewett, C; Lee, I Y; Macchiavelli, A O; McMahan, M A; Moretto, L G; Rodriguez-Vieitez, E; Wiedeking, M; Lyles, B F; Beausang, C W; Allmond, J M; Ai, H; Cizewski, J A; Hatarik, R; O'Malley, P D; Swan, T

    2008-01-30

    Over the past three years we have studied various surrogate reactions (d,p), ({sup 3}He,t), ({alpha},{alpha}{prime}) on several uranium isotopes {sup 234}U, {sup 235}U, {sup 236}U, and {sup 238}U. An overview of the STARS/LIBERACE surrogate research program as it pertains to the actinides is discussed. A summary of results to date will be presented along with a discussion of experimental difficulties encountered in surrogate experiments and future research directions.

  1. Measuring ignitability for in situ burning of oil spills weathered under Arctic conditions: from laboratory studies to large-scale field experiments.

    PubMed

    Fritt-Rasmussen, Janne; Brandvik, Per Johan

    2011-08-01

    This paper compares the ignitability of Troll B crude oil weathered under simulated Arctic conditions (0%, 50% and 90% ice cover). The experiments were performed in different scales at SINTEF's laboratories in Trondheim, field research station on Svalbard and in broken ice (70-90% ice cover) in the Barents Sea. Samples from the weathering experiments were tested for ignitability using the same laboratory burning cell. The measured ignitability from the experiments in these different scales showed a good agreement for samples with similar weathering. The ice conditions clearly affected the weathering process, and 70% ice or more reduces the weathering and allows a longer time window for in situ burning. The results from the Barents Sea revealed that weathering and ignitability can vary within an oil slick. This field use of the burning cell demonstrated that it can be used as an operational tool to monitor the ignitability of oil spills.

  2. PROCESS OF PRODUCING ACTINIDE METALS

    DOEpatents

    Magel, T.T.

    1959-07-14

    The preparation of actinide metals in workable, coherent form is described. In general, the objects of the invention are achieved by heating a mixture of an oxide and a halide of an actinide metal such as uranium with an alkali metal on alkaline earth metal reducing agent in the presence of iodine.

  3. Using Coupled Mesoscale Experiments and Simulations to Investigate High Burn-Up Oxide Fuel Thermal Conductivity

    NASA Astrophysics Data System (ADS)

    Teague, Melissa C.; Fromm, Bradley S.; Tonks, Michael R.; Field, David P.

    2014-12-01

    Nuclear energy is a mature technology with a small carbon footprint. However, work is needed to make current reactor technology more accident tolerant and to allow reactor fuel to be burned in a reactor for longer periods of time. Optimizing the reactor fuel performance is essentially a materials science problem. The current understanding of fuel microstructure have been limited by the difficulty in studying the structure and chemistry of irradiated fuel samples at the mesoscale. Here, we take advantage of recent advances in experimental capabilities to characterize the microstructure in 3D of irradiated mixed oxide (MOX) fuel taken from two radial positions in the fuel pellet. We also reconstruct these microstructures using Idaho National Laboratory's MARMOT code and calculate the impact of microstructure heterogeneities on the effective thermal conductivity using mesoscale heat conduction simulations. The thermal conductivities of both samples are higher than the bulk MOX thermal conductivity because of the formation of metallic precipitates and because we do not currently consider phonon scattering due to defects smaller than the experimental resolution. We also used the results to investigate the accuracy of simple thermal conductivity approximations and equations to convert 2D thermal conductivities to 3D. It was found that these approximations struggle to predict the complex thermal transport interactions between metal precipitates and voids.

  4. The impact of biomass burning on the tropospheric distribution of CO during the 1984 maps experiment

    SciTech Connect

    Saylor, R.D.; Easter, R.C.; Chapman, E.G.

    1996-12-31

    The purpose of the work reported here was to use a global, three-dimensional tropospheric chemistry model to analyze and evaluate carbon monoxide (CO) experimental data. The data was obtained from the Measurement of Air Pollution by Satellites (MAPS) program. The model was used to investigate the role of biomass burning on the global distribution of CO during early October 1984. Global simulations of CO emissions, transport, and chemistry were made using archived meteorological data. To allow direct comparison with the MAPS data, the model results were column-weighted. The model CO distribution had several similarities with the MAPS data. Major maxima of CO mixing ratios occur over southern Africa and South America in the model and in MAPS measurements. Modeled and MAPS CO values compare favorably over Europe and eastern Asia. A major difference between the modeled distribution and the MAPS data was the location of the maximum over South America. This difference may be the result of differences in actual emissions or may be due to differences in the location of modeled and actual convective activity. Another significant difference was that the model showed a distinct plume of CO emanating from eastern North America while the MAPS data does not. To further test the accuracy of the model simulation, the results were compared to three other measurements of CO data that were taken during the same time period or that should be representative of conditions in remote areas. 9 refs., 2 figs., 3 tabs.

  5. All-Russia Thermal Engineering Institute experience in using difficult to burn fuels in the power industry

    NASA Astrophysics Data System (ADS)

    Tugov, A. N.; Ryabov, G. A.; Shtegman, A. V.; Ryzhii, I. A.; Litun, D. S.

    2016-07-01

    This article presents the results of the research carried out at the All-Russia Thermal Engineering Institute (VTI) aimed at using saline coal, municipal solid waste and bark waste, sunflower husk, and nesting/ manure materials from poultry farms. The results of saline coal burning experience in Troitsk and Verkhny Tagil thermal power plants (TPP) show that when switching the boiler to this coal, it is necessary to take into account its operating reliability and environmental safety. Due to increased chlorine content in saline coal, the concentration of hydrogen chloride can make over 500 mg/m3. That this very fact causes the sharp increase of acidity in sludge and the resulting damage of hydraulic ash removal system equipment at these power stations has been proven. High concentration of HCl can trigger damage of the steam superheater due to high-temperature corrosion and result in a danger of low-temperature corrosion of air heating surfaces. Besides, increased HCl emissions worsen the environmental characteristics of the boiler operation on the whole. The data on waste-to-energy research for municipal solid waste (MSW) has been generalized. Based on the results of mastering various technologies of MSW thermal processing at special plants nos. 2 and 4 in Moscow, as well as laboratory, bench, and industrial studies, the principal technical solutions to be implemented in the modern domestic thermal power plant with the installed capacity of 24 MW and MSW as the primary fuel type has been developed. The experience of the VTI in burning various kinds of organic waste—bark waste, sunflower husk, and nesting/manure materials from poultry farms—has been analyzed.

  6. Actinide halide complexes

    DOEpatents

    Avens, Larry R.; Zwick, Bill D.; Sattelberger, Alfred P.; Clark, David L.; Watkin, John G.

    1992-01-01

    A compound of the formula MX.sub.n L.sub.m wherein M is a metal atom selected from the group consisting of thorium, plutonium, neptunium or americium, X is a halide atom, n is an integer selected from the group of three or four, L is a coordinating ligand selected from the group consisting of aprotic Lewis bases having an oxygen-, nitrogen-, sulfur-, or phosphorus-donor, and m is an integer selected from the group of three or four for monodentate ligands or is the integer two for bidentate ligands, where the sum of n+m equals seven or eight for monodentate ligands or five or six for bidentate ligands, a compound of the formula MX.sub.n wherein M, X, and n are as previously defined, and a process of preparing such actinide metal compounds including admixing the actinide metal in an aprotic Lewis base as a coordinating solvent in the presence of a halogen-containing oxidant, are provided.

  7. Actinide halide complexes

    DOEpatents

    Avens, L.R.; Zwick, B.D.; Sattelberger, A.P.; Clark, D.L.; Watkin, J.G.

    1992-11-24

    A compound is described of the formula MX[sub n]L[sub m] wherein M is a metal atom selected from the group consisting of thorium, plutonium, neptunium or americium, X is a halide atom, n is an integer selected from the group of three or four, L is a coordinating ligand selected from the group consisting of aprotic Lewis bases having an oxygen-, nitrogen-, sulfur-, or phosphorus-donor, and m is an integer selected from the group of three or four for monodentate ligands or is the integer two for bidentate ligands, where the sum of n+m equals seven or eight for monodentate ligands or five or six for bidentate ligands. A compound of the formula MX[sub n] wherein M, X, and n are as previously defined, and a process of preparing such actinide metal compounds are described including admixing the actinide metal in an aprotic Lewis base as a coordinating solvent in the presence of a halogen-containing oxidant.

  8. Burns and epilepsy.

    PubMed

    Berrocal, M

    1997-01-01

    This is a report of the first descriptive analytic study of a group of 183 burn patients, treated in the Burn Unit at the University Hospital of Cartagena, Colombia during the period since January 1985 until December 1990. There is presented experience with the selected group of 24 patients in whom the diagnosis of burn was associated with epilepsy. There is also analysed and described the gravity of the scars sequels, neurological disorders, the complication of the burn and an impact of this problem on the patient, his (her) family and the community. It is very important to report that there was found Neurocisticercosis in 66.6% of the group of burn patients with epilepsy, and it is probably the first risk factor of burn in this group.

  9. Chemical and light absorption properties of humic-like substances from biomass burning emissions under controlled combustion experiments

    NASA Astrophysics Data System (ADS)

    Park, Seung Shik; Yu, Jaemyeong

    2016-07-01

    PM2.5 samples from biomass burning (BB) emissions of three types - rice straw (RS), pine needles (PN), and sesame stems (SS) - were collected through laboratory-controlled combustion experiments and analyzed for the mass, organic and elemental carbon (OC and EC), water-soluble organic carbon (WSOC), humic-like substances (HULIS), and water soluble inorganic species (Na+, NH4+, K+, Ca2+, Mg2+, Cl-, NO3-, SO42-, and oxalate). The combustion experiments were carried out at smoldering conditions. Water-soluble HULIS in BB samples was isolated using a one-step solid phase extraction method, followed by quantification with a total organic carbon analyzer. This study aims to explore chemical and light absorption characteristics of HULIS from BB emissions. The contributions of HULIS (=1.94 × HULIS-C) to PM2.5 emissions were observed to be 29.5 ± 2.0, 15.3 ± 3.1, and 25.8 ± 4.0%, respectively, for RS, PN, and SS smoke samples. Contributions of HULIS-C to OC and WSOC for the RS, PN, and SS burning emissions were 0.26 ± 0.03 and 0.63 ± 0.05, 0.15 ± 0.04 and 0.36 ± 0.08, and 0.29 ± 0.08 and 0.51 ± 0.08, respectively. Light absorption by the water extracts from BB aerosols exhibited strong wavelength dependence, which is characteristic of brown carbon spectra with a sharply increasing absorption as wavelength decreases. The average absorption Ångström exponents (AAE) of the water extracts (WSOC) fitted between wavelengths of 300-400 nm were 8.3 (7.4-9.0), 7.4 (6.2-8.5), and 8.0 (7.1-9.3) for the RS, PN, and SS burning samples, which are comparable to the AAE values of BB samples reported in previous publications (e.g., field and laboratory chamber studies). The average mass absorption efficiencies of WSOC measured at 365 nm (MAE365) were 1.37 ± 0.23, 0.86 ± 0.09, and 1.38 ± 0.21 m2/gṡC for RS, PN, and SS burning aerosols, respectively. Correlations of total WSOC, hydrophilic WSOC (= total WSOC-HULIS-C), and HULIS-C concentrations in solution with the light

  10. Managing Inventories of Heavy Actinides

    SciTech Connect

    Wham, Robert M; Patton, Bradley D

    2011-01-01

    The Department of Energy (DOE) has stored a limited inventory of heavy actinides contained in irradiated targets, some partially processed, at the Savannah River Site (SRS) and Oak Ridge National Laboratory (ORNL). The 'heavy actinides' of interest include plutonium, americium, and curium isotopes; specifically 242Pu and 244Pu, 243Am, and 244/246/248Cm. No alternate supplies of these heavy actinides and no other capabilities for producing them are currently available. Some of these heavy actinide materials are important for use as feedstock for producing heavy isotopes and elements needed for research and commercial application. The rare isotope 244Pu is valuable for research, environmental safeguards, and nuclear forensics. Because the production of these heavy actinides was made possible only by the enormous investment of time and money associated with defense production efforts, the remaining inventories of these rare nuclear materials are an important part of the legacy of the Nuclear Weapons Program. Significant unique heavy actinide inventories reside in irradiated Mark-18A and Mark-42 targets at SRS and ORNL, with no plans to separate and store the isotopes for future use. Although the costs of preserving these heavy actinide materials would be considerable, for all practical purposes they are irreplaceable. The effort required to reproduce these heavy actinides today would likely cost billions of dollars and encompass a series of irradiation and chemical separation cycles for at least 50 years; thus, reproduction is virtually impossible. DOE has a limited window of opportunity to recover and preserve these heavy actinides before they are disposed of as waste. A path forward is presented to recover and manage these irreplaceable National Asset materials for future use in research, nuclear forensics, and other potential applications.

  11. Burns (image)

    MedlinePlus

    ... degree burns damage the outer layer of skin (epidermis) and cause pain, redness and swelling (erythema). Second degree burns damage the epidermis and the inner layer, the dermis, causing erythema ...

  12. Lightning burns.

    PubMed

    Russell, Katie W; Cochran, Amalia L; Mehta, Sagar T; Morris, Stephen E; McDevitt, Marion C

    2014-01-01

    We present the case of a lightning-strike victim. This case illustrates the importance of in-field care, appropriate referral to a burn center, and the tendency of lightning burns to progress to full-thickness injury.

  13. Factors affecting adherence to treatment and follow-up of burns in children: A single centre experience

    PubMed Central

    Sener, Mustafa Talip; Aydın, Osman Enver; Ançı, Yuksel; Kara, Murat; Tan, Onder; Kok, Ahmet Nezih

    2015-01-01

    Aim: Children are prone to burn injury. Burns can be seen as a part of child abuse. The aim of this study was to investigate the factors affecting adherence to the treatment of burn patients, and to emphasize the role of the physician in identifying children's non-accidental burn injuries. Materials and Methods: Children who were hospitalized in the burn unit were analyzed retrospectively. Results were assessed for significance using the Chi-square test. Results: A total of 189 patients were included. Some patients (n = 52; 27.5%) were discharged against medical advice (DAMA) before completion of treatment. Although we could not demonstrate a relationship between non-accidental etiology and DAMA group, it was significant that these patients did not contact the outpatient clinic after discharge. It was evident from records that two of these cases were abused. The reasoning of the parents in the DAMA group for the early discharge was siblings at home, financial and accommodation problems. Conclusion: Although burns in children commonly occur due to an accident, each burn case should be examined for a non-accidental etiology and findings suggesting abuse should be noted. Physicians should be alert for the detection of signs of burn related child abuse. PMID:26807393

  14. Environmental research on actinide elements

    SciTech Connect

    Pinder, J.E. III; Alberts, J.J.; McLeod, K.W.; Schreckhise, R.G.

    1987-08-01

    The papers synthesize the results of research sponsored by DOE's Office of Health and Environmental Research on the behavior of transuranic and actinide elements in the environment. Separate abstracts have been prepared for the 21 individual papers. (ACR)

  15. New Fashioned Book Burning.

    ERIC Educational Resources Information Center

    Gardner, Robert

    1997-01-01

    Reports on results of a teacher's experiment in book burning as a lesson accompanying the teaching of Ray Bradbury's "Fahrenheit 451." Discusses student reactions and the purpose of or justification for the experimental lesson. (TB)

  16. Aerosol hygroscopicity and cloud droplet activation of extracts of filters from biomass burning experiments

    NASA Astrophysics Data System (ADS)

    Carrico, Christian M.; Petters, Markus D.; Kreidenweis, Sonia M.; Collett, Jeffrey L.; Engling, Guenter; Malm, William C.

    2008-04-01

    In this laboratory closure study, we compare sub- and supersaturated water uptake properties for aerosol particles possessing a range of hygroscopicity. Measurements for water sub-saturated conditions used a hygroscopic tandem differential mobility analyzer (HTDMA). Simultaneously, measurements of particle critical supersaturation were conducted on the same sample stream with a continuous flow cloud condensation nuclei (CCN) counter. For these experiments, we used filter-collected samples of biomass smoke generated in the combustion of two common wildland fire fuels, western sagebrush and Alaskan duff core. Extractions of separate sections of the filter were performed using two solvents, ultrapure water and methanol. The extracts were subsequently atomized, producing aerosols having a range of hygroscopic responses. HTDMA and CCN measurements were fit to a single-parameter model of water uptake, in which the fit parameter is denoted κ, the hygroscopicity parameter. Here, for the four extracts we observed mean values of the hygroscopicity parameter of 0.06 < κ < 0.30, similar to the range found previously for numerous pure organic compounds. Particles generated from the aqueous extracts of the filters had consistently larger κ than methanol extracts, while western sagebrush extract aerosols κ exceeded those from Alaskan duff core. HTDMA- and CCN-derived values of κ for each experiment agreed within approximately 20%. Applicability of the κ-parameterization to other multicomponent aerosols relevant to the atmosphere remains to be tested.

  17. Laboratory studies of actinide metal-silicate fractionation

    NASA Technical Reports Server (NTRS)

    Jones, J. H.; Burnett, D. S.

    1980-01-01

    Actinide and Sm partition coefficients between silicate melt and several metallic phases have been measured. Under reducing conditions Si, Th, U and Pu can be reduced to metals from silicate melts and alloyed with a platinum-gold alloy. U and Pu enter a molten Pt-Si alloy with roughly equal affinity but U strongly partitions into the solid Pt. Th behaves qualitatively the same as Pu but is much less readily reduced than U, and Sm appears to remain unreduced. Experiments with Fe metal have shown that the partition coefficients of the actinides between Fe and silicate liquid are extremely low, suggesting a very low actinide concentration in planetary cores. Experiments show that platinum metals can efficiently fractionate actinides and fractionate actinides from lanthanides and this process may be relevant to the condensation behavior of these elements from the solar nebula. Pt-metal grains in Allende Ca-Al-rich inclusions appear to be U-poor, although the sub-class of Zr-bearing Pt metals may have high U contents.

  18. Simulating the transport and chemical evolution of biomass burning pollutants originating from Southeast Asia during 7-SEAS/2010 Dongsha experiment

    NASA Astrophysics Data System (ADS)

    Chuang, Ming-Tung; Fu, Joshua S.; Lin, Neng-Huei; Lee, Chung-Te; Gao, Yang; Wang, Sheng-Hsiang; Sheu, Guey-Rong; Hsiao, Ta-Chih; Wang, Jia-Lin; Yen, Ming-Cheng; Lin, Tang-Huang; Thongboonchoo, Narisara; Chen, Wei-Chen

    2015-07-01

    This study aimed to simulate the transport of biomass burning (BB) aerosol originating from Southeast Asia (SEA) during the Dongsha Experiment conducted from March 2010 to April 2010. Transport pathways were reanalyzed and steering flow in the mid-latitude areas and anticyclones in low-latitude areas were found to control the transport of BB plume after it was injected to a high atmosphere. For the 12 simulated and observed events at Mt. Lulin (2862 m MSL; 23°28‧07″ N, 120°52‧25″ E), the 72 h backward trajectories were all tracked back to southern China and northern Indochina, which were the locations of the largest BB fire activities in SEA. Chemical evolutions of BB pollutants along the moving trajectories showed that organic matter was always the dominant component in PM2.5, consistent with the observations at both near-source regions and Mt. Lulin. For nitrogen species, nearly all NOx molecules oxidized into HNO3, NO3-, PAN, and PANX in fires or near fires. The synchronic consumption of NOx, SO2, and NH3 explained the production of the major components of inorganic salts. In the moving BB plume, sulfate concentration increased with decreased nitrate concentration. Ratios of ammonium to PM2.5 and elemental carbon to PM2.5 remained nearly constant because additional sources were lacking.

  19. Aircraft observations of biomass burning emissions in the lower stratosphere during the Deep Convective Clouds and Chemistry Experiment (DC3)

    NASA Astrophysics Data System (ADS)

    Knapp, D. J.; Montzka, D.; Campos, T. L.; Flocke, F. M.; Stechman, D.; Farris, C.; Rooney, M.; Pan, L.; Apel, E. C.; Hornbrook, R. S.; Riemer, D. D.; Chen, D.; Huey, L. G.; Brock, C. A.; Froyd, K. D.; Liao, J.; Murphy, D. M.; Ryerson, T. B.; Dibb, J. E.; Scheuer, E. M.; Diskin, G. S.; Sachse, G. W.; Gao, R.; Langridge, J. M.; Hair, J. W.; Butler, C. F.; Fenn, M. A.; Fromm, M. D.; Lindsey, D.; Weinheimer, A. J.

    2012-12-01

    During test flights for the Deep Convective Clouds and Chemistry Experiment conducted in May and June of 2012, clear indications of biomass burning (BB) were observed in the Lower Stratosphere (LS). Enhancements in CO, aerosols, and CH3CN substantiate the impact of BB effluents on the studied air mass. A large complex of fires southwest of Lake Baikal in Russia had been observed to flare up significantly on May 7, 2012, leading to a strong Aerosol Index signature. The aerosol plume was tracked using AURA Ozone Monitoring Instrument (OMI) and Cloud-Aerosol LIDAR and Infrared Pathfinder Satellite Observations (CALIPSO) curtains from the Baikal area, over Northern Siberia, the Aleutian Islands, South Western Canada and ultimately to the DC3 flight study area on May 14, 2012. BB tracers were sampled from the NASA DC8 and the NSF GV aircraft over a lateral range of 600km and an altitude of approximately 11.7 km which is approximately 0.5 km to 1.0 km above the local cold point tropopause.

  20. Gunpowder-related burns.

    PubMed

    Navarro-Monzonis, A; Benito-Ruiz, J; Baena-Montilla, P; Mena-Yago, A; de la Cruz-Ferrer, L I

    1992-04-01

    Gunpowder misuse is a frequent cause of burn injury in our area. The injuries are mostly minor lesions which may be treated on an outpatient basis, the more serious injuries need surgical treatment. Experience of the management of these burns is reported by reviewing 123 clinical charts of patients admitted between 1983 and 1990. The most frequent victims are teenage males who are involved mainly in accidents in the street. The most serious burns followed work-related accidents, with a fatal outcome in 47 per cent of the patients. The serious burns are usually deep dermal or full skin thickness. A common pattern affects groins, genitalia, hypogastrium and hands, and are produced when fireworks ignite in the pockets of the patient's trousers. The management of these lesions does not differ from burns caused by other agents, although attention should be paid to the presence of associated lesions, chiefly to eyes, ears and hands, due to the shockwave and shrapnel. PMID:1590935

  1. Gunpowder-related burns.

    PubMed

    Navarro-Monzonis, A; Benito-Ruiz, J; Baena-Montilla, P; Mena-Yago, A; de la Cruz-Ferrer, L I

    1992-04-01

    Gunpowder misuse is a frequent cause of burn injury in our area. The injuries are mostly minor lesions which may be treated on an outpatient basis, the more serious injuries need surgical treatment. Experience of the management of these burns is reported by reviewing 123 clinical charts of patients admitted between 1983 and 1990. The most frequent victims are teenage males who are involved mainly in accidents in the street. The most serious burns followed work-related accidents, with a fatal outcome in 47 per cent of the patients. The serious burns are usually deep dermal or full skin thickness. A common pattern affects groins, genitalia, hypogastrium and hands, and are produced when fireworks ignite in the pockets of the patient's trousers. The management of these lesions does not differ from burns caused by other agents, although attention should be paid to the presence of associated lesions, chiefly to eyes, ears and hands, due to the shockwave and shrapnel.

  2. Tropospheric O3 over Indonesia during biomass burning events measured with GOME (Global Ozone Monitoring Experiment) and compared with backtrajectory calculation

    NASA Astrophysics Data System (ADS)

    Ladstaetter-Weissenmayer, A.; Meyer-Arnek, J.; Burrows, J. P.

    During the dry season, biomass burning is an important source of ozone precursors for the tropical troposphere, and ozone formation can occur in biomass burning plumes originating in Indonesia and northern Australia. Satellite based GOME (Global Ozone Measuring experiment) data are used to characterize the amount of tropospheric ozone production over this region during the El Niño event in September 1997 compared to a so called "normal" year 1998. Large scale biomass burning occurred over Kalimantan in 1997 caused by the absence of the northern monsoon rains, leading to significant increases in tropospheric ozone. Tropospheric ozone was determined from GOME data using the Tropospheric Excess Method (TEM). Backtrajectory calculations show that Indonesia is influenced every summer by the emissions of trace gases from biomass buring over northern Australia. But in 1997 over Indonesia an increasing of tropospheric ozone amounts can be observed caused by the fires over Indonesia itself as well as by northern Australia. The analysis of the measurements of BIBLE-A (Biomass Burning and Lightning Experiment) and using ATSR (Along the Track Scanning Radiometer) data show differences in the view to the intensity of fire counts and therefore in the amount of the emission of precursors of tropospheric ozone comparing September 1997 to September 1998.

  3. Ablative fractional photothermolysis for the treatment of hypertrophic burn scars in adult and pediatric patients: a single surgeon's experience.

    PubMed

    Khandelwal, Anjay; Yelvington, Miranda; Tang, Xinyu; Brown, Susan

    2014-01-01

    Many patients develop hypertrophic scarring after a burn injury. Numerous treatment modalities have been described and are currently in practice. Photothermolysis or laser therapy has been recently described as an adjunct for management of hypertrophic burn scars. This study is a retrospective chart review of adult and pediatric patients undergoing fractional photothermolysis at a verified burn center examining treatment parameters as well as pre- and post-Vancouver Scar Scale scores. Forty-four patients underwent fractional photothermolysis during the study period of 8 months. Mean pretreatment score was 7.6, and mean posttreatment score was 5.4. The mean decrease in score was 2.2, which was found to be statistically significant. There were no complications. Fractional photothermolysis is a safe and efficacious adjunct therapy for hypertrophic burn scars. Prospective trials would be beneficial to determine optimal therapeutic strategies.

  4. Thermodynamics of carbothermic synthesis of actinide mononitrides

    NASA Astrophysics Data System (ADS)

    Ogawa, Toru; Shirasu, Yoshiro; Minato, Kazuo; Serizawa, Hiroyuki

    1997-08-01

    Carbothermic synthesis will be further applied to the fabrication of nitride fuels containing minor actinides (MA) such as neptunium, americium and curium. A thorough understanding of the carbothermic synthesis of UN will be beneficial in the development of the MA-containing fuels. Thermodynamic analysis was carried out for conditions of practical interest in order to better understand the recent fabrication experiences. Two types of solution phases, oxynitride and carbonitride phases, were taken into account. The PuNO ternary isotherm was assessed for the modelling of M(C, N, O). With the understanding of the UN synthesis, the fabrication problems of Am-containing nitrides are discussed.

  5. Experimental Evaluation of Actinide Transport in a Fractured Granodiorite

    SciTech Connect

    Dittrich, Timothy M.; Reimus, Paul W.

    2015-03-16

    The objective of this study was to demonstrate and evaluate new experimental methods for quantifying the potential for actinide transport in deep fractured crystalline rock formations. We selected a fractured granodiorite at the Grimsel Test Site (GTS) in Switzerland as a model system because field experiments have already been conducted with uranium and additional field experiments using other actinides are planned at the site. Thus, working on this system provides a unique opportunity to compare lab experiment results with fieldscale observations. Rock cores drilled from the GTS were shipped to Los Alamos National Laboratory, characterized by x-ray diffraction and microscopy, and used in batch sorption and column breakthrough experiments. Solutions with pH 6.8 and 8.8 were tested. Solutions were switched to radionuclide-free synthetic Grimsel groundwater after near-steady actinide/colloid breakthrough occurred in column experiments. We are currently evaluating actinide adsorption/desorption rates as a function of water chemistry (initial focus on pH), with future testing planned to evaluate the influence of carbonate concentrations, flow rates, and mineralogy in solutions and suspensions with bentonite colloids. (auth)

  6. Kinetics of actinide complexation reactions

    SciTech Connect

    Nash, K.L.; Sullivan, J.C.

    1997-09-01

    Though the literature records extensive compilations of the thermodynamics of actinide complexation reactions, the kinetics of complex formation and dissociation reactions of actinide ions in aqueous solutions have not been extensively investigated. In light of the central role played by such reactions in actinide process and environmental chemistry, this situation is somewhat surprising. The authors report herein a summary of what is known about actinide complexation kinetics. The systems include actinide ions in the four principal oxidation states (III, IV, V, and VI) and complex formation and dissociation rates with both simple and complex ligands. Most of the work reported was conducted in acidic media, but a few address reactions in neutral and alkaline solutions. Complex formation reactions tend in general to be rapid, accessible only to rapid-scan and equilibrium perturbation techniques. Complex dissociation reactions exhibit a wider range of rates and are generally more accessible using standard analytical methods. Literature results are described and correlated with the known properties of the individual ions.

  7. A comparative analysis of advanced techniques for skin reconstruction with autologous keratinocyte culture in severely burned children: own experience

    PubMed Central

    Nessler, Michał B.; Drukala, Justyna; Bartoszewicz, Marzenna; Mądry, Ryszard

    2014-01-01

    Introduction The local treatment in burns larger than 50% of total body surface area is still the great challenge for surgeons. Aim This paper presents a review of different solutions for deep burn wound healing in children and the early outcomes of treatment with combined autologous cell culture technique. Material and methods For this study, 20 children aged between 4 and 12 years with 55–65% of TBSA III grade burn injury were analyzed. A skin sample, 1 cm × 1 cm in size, for keratinocyte cultivation, was taken on the day of the burn. After necrotic tissue excision, the covering of the burned area with an isolated meshed skin graft was carried out between day 4 and 7. After 7 days of keratinocyte cultivation, the mentioned areas were covered with cells from the culture. We divided the burned regions, according to the way of wound closure, into 3 groups each consisting of 15 treated regions of the body. We used meshed split thickness skin grafts (SSG group), cultured autologous keratinocytes (CAC group), and both techniques applied in one stage (SSG + CAC group). Results In the SSG group, the mean time for complete closure of wounds was 12.7 days. Wounds treated with CAC only needed a non-significantly longer time to heal – 14.2 days (p = 0.056) when compared to SSG. The shortest time to heal was observed in the group treated with SSG + CAC – 8.5 days, and it was significantly shorter when compared to the SSG and CAC groups (p < 0.001). Conclusions This study suggests that cultured keratinocytes obtained after short-time multiplication, combined with meshed autologous split thickness skin grafts, constitute the optimal wound closure in burned children. PMID:25097488

  8. Actinide geochemistry: from the molecular level to the real system.

    PubMed

    Geckeis, Horst; Rabung, Thomas

    2008-12-12

    Geochemical processes leading to either mobilization or retention of radionuclides in an aquifer system are significantly influenced by their interaction with rock, sediment and colloid surfaces. Therefore, a sound safety assessment of nuclear waste disposal requires the elucidation and quantification of those processes. State-of-the-art analytical techniques as e.g. laser- and X-ray spectroscopy are increasingly applied to study solid-liquid interface reactions to obtain molecular level speciation insight. We have studied the sorption of trivalent lanthanides and actinides onto aluminium oxides, hydroxides and purified clay minerals by the time-resolved laser fluorescence spectroscopy and X-ray-absorption spectroscopy. Chemical constitution and structure of surface bound actinides are proposed based on spectroscopic information. Open questions still remain with regard to the exact nature of mineral surface ligands and the mineral/water interface. Similarities of spectroscopic data obtained for M(III) sorbed onto gamma-alumina, and clay minerals suggest the formation of very comparable inner-sphere surface complexes such as S-O-An(III)(OH)x(2-x)(H2O)5-x at pH > 5. Those speciation data are found consistent with those predicted by surface complexation modelling. The applicability of data obtained for pure mineral phases to actinide sorption onto heterogeneously composed natural clay rock is examined by experiments and by geochemical modelling. Good agreement of experiment and model calculations is found for U(VI) and trivalent actinide/lanthanide sorption to natural clay rock. The agreement of spectroscopy, geochemical modelling and batch experiments with natural rock samples and purified minerals increases the reliability in model predictions. The assessment of colloid borne actinide migration observed in various laboratory and field studies calls for detailed information on actinide-colloid interaction. Kinetic stabilization of colloid bound actinides can be due

  9. Actinide geochemistry: from the molecular level to the real system.

    PubMed

    Geckeis, Horst; Rabung, Thomas

    2008-12-12

    Geochemical processes leading to either mobilization or retention of radionuclides in an aquifer system are significantly influenced by their interaction with rock, sediment and colloid surfaces. Therefore, a sound safety assessment of nuclear waste disposal requires the elucidation and quantification of those processes. State-of-the-art analytical techniques as e.g. laser- and X-ray spectroscopy are increasingly applied to study solid-liquid interface reactions to obtain molecular level speciation insight. We have studied the sorption of trivalent lanthanides and actinides onto aluminium oxides, hydroxides and purified clay minerals by the time-resolved laser fluorescence spectroscopy and X-ray-absorption spectroscopy. Chemical constitution and structure of surface bound actinides are proposed based on spectroscopic information. Open questions still remain with regard to the exact nature of mineral surface ligands and the mineral/water interface. Similarities of spectroscopic data obtained for M(III) sorbed onto gamma-alumina, and clay minerals suggest the formation of very comparable inner-sphere surface complexes such as S-O-An(III)(OH)x(2-x)(H2O)5-x at pH > 5. Those speciation data are found consistent with those predicted by surface complexation modelling. The applicability of data obtained for pure mineral phases to actinide sorption onto heterogeneously composed natural clay rock is examined by experiments and by geochemical modelling. Good agreement of experiment and model calculations is found for U(VI) and trivalent actinide/lanthanide sorption to natural clay rock. The agreement of spectroscopy, geochemical modelling and batch experiments with natural rock samples and purified minerals increases the reliability in model predictions. The assessment of colloid borne actinide migration observed in various laboratory and field studies calls for detailed information on actinide-colloid interaction. Kinetic stabilization of colloid bound actinides can be due

  10. FY2010 Annual Report for the Actinide Isomer Detection Project

    SciTech Connect

    Warren, Glen A.; Francy, Christopher J.; Ressler, Jennifer J.; Erikson, Luke E.; Miller, Erin A.; Hatarik, R.

    2011-01-01

    This project seeks to identify a new signature for actinide element detection in active interrogation. This technique works by exciting and identifying long-lived nuclear excited states (isomers) in the actinide isotopes and/or primary fission products. Observation of isomers in the fission products will provide a signature for fissile material. For the actinide isomers, the decay time and energy of the isomeric state is unique to a particular isotope, providing an unambiguous signature for Special Nuclear Materials (SNM). Future work will include a follow-up measurement scheduled for December 2010 at LBNL. Lessons learned from the July 2010 measurements will be incorporated into these new measurements. Analysis of both the July and December experiments will be completed in a few months. A research paper to be submitted to a peer-reviewed journal will be drafted if the conclusions from the measurements warrant publication.

  11. Nuclear waste forms for actinides

    PubMed Central

    Ewing, Rodney C.

    1999-01-01

    The disposition of actinides, most recently 239Pu from dismantled nuclear weapons, requires effective containment of waste generated by the nuclear fuel cycle. Because actinides (e.g., 239Pu and 237Np) are long-lived, they have a major impact on risk assessments of geologic repositories. Thus, demonstrable, long-term chemical and mechanical durability are essential properties of waste forms for the immobilization of actinides. Mineralogic and geologic studies provide excellent candidate phases for immobilization and a unique database that cannot be duplicated by a purely materials science approach. The “mineralogic approach” is illustrated by a discussion of zircon as a phase for the immobilization of excess weapons plutonium. PMID:10097054

  12. Actinide cation-cation complexes

    SciTech Connect

    Stoyer, N.J.; Seaborg, G.T.

    1994-12-01

    The +5 oxidation state of U, Np, Pu, and Am is a linear dioxo cation (AnO{sub 2}{sup +}) with a formal charge of +1. These cations form complexes with a variety of other cations, including actinide cations. Other oxidation states of actinides do not form these cation-cation complexes with any cation other than AnO{sub 2}{sup +}; therefore, cation-cation complexes indicate something unique about AnO{sub 2}{sup +} cations compared to actinide cations in general. The first cation-cation complex, NpO{sub 2}{sup +}{center_dot}UO{sub 2}{sup 2+}, was reported by Sullivan, Hindman, and Zielen in 1961. Of the four actinides that form AnO{sub 2}{sup +} species, the cation-cation complexes of NpO{sub 2}{sup +} have been studied most extensively while the other actinides have not. The only PuO{sub 2}{sup +} cation-cation complexes that have been studied are with Fe{sup 3+} and Cr{sup 3+} and neither one has had its equilibrium constant measured. Actinides have small molar absorptivities and cation-cation complexes have small equilibrium constants; therefore, to overcome these obstacles a sensitive technique is required. Spectroscopic techniques are used most often to study cation-cation complexes. Laser-Induced Photacoustic Spectroscopy equilibrium constants for the complexes NpO{sub 2}{sup +}{center_dot}UO{sub 2}{sup 2+}, NpO{sub 2}{sup +}{center_dot}Th{sup 4+}, PuO{sub 2}{sup +}{center_dot}UO{sub 2}{sup 2+}, and PuO{sub 2}{sup +}{center_dot}Th{sup 4+} at an ionic strength of 6 M using LIPAS are 2.4 {plus_minus} 0.2, 1.8 {plus_minus} 0.9, 2.2 {plus_minus} 1.5, and {approx}0.8 M{sup {minus}1}.

  13. Preliminary considerations concerning actinide solubilities

    SciTech Connect

    Newton, T.W.; Bayhurst, B.P.; Daniels, W.R.; Erdal, B.R.; Ogard, A.E.

    1980-01-01

    Work at the Los Alamos Scientific Laboratory on the fundamental solution chemistry of the actinides has thus far been confined to preliminary considerations of the problems involved in developing an understanding of the precipitation and dissolution behavior of actinide compounds under environmental conditions. Attempts have been made to calculate solubility as a function of Eh and pH using the appropriate thermodynamic data; results have been presented in terms of contour maps showing lines of constant solubility as a function of Eh and pH. Possible methods of control of the redox potential of rock-groundwater systems by the use of Eh buffers (redox couples) is presented.

  14. MANTA. An Integral Reactor Physics Experiment to Infer the Neutron Capture Cross Sections of Actinides and Fission Products in Fast and Epithermal Spectra

    SciTech Connect

    Youinou, Gilles Jean-Michel

    2015-10-01

    neutron irradiation allows to infer energy-integrated neutron cross sections, i.e. ∫₀σ(E)φ(E)dE, where φ(E) is the neutron flux “seen” by the sample. This approach, which is usually defined and led by reactor physicists, is referred to as integral and is the object of this report. These two sources of information, i.e. differential and integral, are complementary and are used by the nuclear physicists in charge of producing the evaluated nuclear data files used by the nuclear community (ENDF, JEFF…). The generation of accurate nuclear data files requires an iterative process involving reactor physicists and nuclear data evaluators. This experimental program has been funded by the ATR National Scientific User Facility (ATR-NSUF) and by the DOE Office of Science in the framework of the Recovery Act. It has been given the name MANTRA for Measurement of Actinides Neutron TRAnsmutation.

  15. Burning high-level TRU waste in fusion fission reactors

    NASA Astrophysics Data System (ADS)

    Shen, Yaosong

    2016-09-01

    Recently, the concept of actinide burning instead of a once-through fuel cycle for disposing spent nuclear fuel seems to get much more attention. A new method of burning high-level transuranic (TRU) waste combined with Thorium-Uranium (Th-U) fuel in the subcritical reactors driven by external fusion neutron sources is proposed in this paper. The thorium-based TRU fuel burns all of the long-lived actinides via a hard neutron spectrum while outputting power. A one-dimensional model of the reactor concept was built by means of the ONESN_BURN code with new data libraries. The numerical results included actinide radioactivity, biological hazard potential, and much higher burnup rate of high-level transuranic waste. The comparison of the fusion-fission reactor with the thermal reactor shows that the harder neutron spectrum is more efficient than the soft. The Th-U cycle produces less TRU, less radiotoxicity and fewer long-lived actinides. The Th-U cycle provides breeding of 233U with a long operation time (>20 years), hence significantly reducing the reactivity swing while improving safety and burnup.

  16. Method for fluorination of actinide fluorides and oxyfluorides using O/sub 2/F/sub 2/

    DOEpatents

    Eller, P.G.; Malm, J.G.; Penneman, R.A.

    1984-08-01

    The present invention relates generally to methods of fluorination and more particularly to the use of O/sub 2/F/sub 2/ for the preparation of actinide hexafluorides, and for the extraction of deposited actinides and fluorides and oxyfluorides thereof from reaction vessels. The experiments set forth hereinabove demonstrate that the room temperature or below use of O/sub 2/F/sub 2/ will be highly beneficial for the preparation of pure actinide hexafluorides from their respective tetrafluorides without traces of HF being present as occurs using other fluorinating agents: and decontamination of equipment previously exposed to actinides: e.g., walls, feed lines, etc.

  17. [Ocular burns].

    PubMed

    Merle, H; Gérard, M; Schrage, N

    2008-09-01

    Ocular or thermal burns account for 7.7%-18% of ocular trauma. The majority of victims are young. The burns occur in the setting of accidents at work or in the home, or during a physical attack. Chemical burns by strong acids or bases are responsible for the most serious injuries. Associated with the destruction of limbal stem cells, they present as recurrent epithelial ulcerations, chronic stromal ulcers, deep stromal revascularization, conjunctival overlap, or even corneal perforation. The initial clinical exam is sometimes difficult to perform in the presence of burning symptoms. Nevertheless, it enables the physician to classify the injury, establish a prognosis, and most importantly, guide the therapeutic management. The Roper-Hall modification of the Hughes classification system is the most widely utilized, broken down into stages based on the size of the stromal opacity and the extent of possible limbal ischemia. This classification is now favorably supplemented by those proposed by Dua and Wagoner, which are based on the extent of the limbal stem cell deficiency. The prognosis of the more serious forms of ocular burns has markedly improved over the last decade because of a better understanding of the physiology of the corneal epithelium. Surgical techniques aimed at restoring the destroyed limbal stem cells have altered the prognosis of severe corneal burns. In order to decrease the incidence of burns, prevention, particularly in industry, is essential. PMID:18971859

  18. Separations of actinides, lanthanides and other metals

    DOEpatents

    Smith, Barbara F.; Jarvinen, Gordon D.; Ensor, Dale D.

    1995-01-01

    An organic extracting solution comprised of a bis(acylpyrazolone or a substituted bis(acylpyrazolone) and an extraction method useful for separating certain elements of the actinide series of the periodic table having a valence of four from one other, and also from one or more of the substances in a group consisting of hexavalent actinides, trivalent actinides, trivalent lanthanides, trivalent iron, trivalent aluminum, divalent metals, and monovalent metals and also from one or more of the substances in a group consisting of hexavalent actinides, trivalent actinides, trivalent lanthanides, trivalent iron, trivalent aluminum, divalent metals, and monovalent metals and also useful for separating hexavalent actinides from one or more of the substances in a group consisting of trivalent actinides, trivalent lanthanides, trivalent iron, trivalent aluminum, divalent metals, and monovalent metals.

  19. Colloid-borne forms of tetravalent actinides: a brief review.

    PubMed

    Zänker, Harald; Hennig, Christoph

    2014-02-01

    Tetravalent actinides, An(IV), are usually assumed to be little mobile in near-neutral environmental waters because of their low solubility. However, there are certain geochemical scenarios during which mobilization of An(IV) in a colloid-borne (waterborne) form cannot be ruled out. A compilation of colloid-borne forms of tetravalent actinides described so far for laboratory experiments together with several examples of An(IV) colloids observed in field experiments and real-world scenarios are given. They are intended to be a knowledge base and a tool for those who have to interpret actinide behavior under environmental conditions. Synthetic colloids containing structural An(IV) and synthetic colloids carrying adsorbed An(IV) are considered. Their behavior is compared with the behavior of An(IV) colloids observed after the intentional or unintentional release of actinides into the environment. A list of knowledge gaps as to the behavior of An(IV) colloids is provided and items which need further research are highlighted.

  20. Biomass Burning

    NASA Technical Reports Server (NTRS)

    Levine, Joel S.; Cofer, Wesley R., III; Pinto, Joseph P.

    1993-01-01

    Biomass burning may be the overwhelming regional or continental-scale source of methane (CH4) as in tropical Africa and a significant global source of CH4. Our best estimate of present methane emissions from biomass burning is about 51.9 Tg/yr, or 10% of the annual methane emissions to the atmosphere. Increased frequency of fires that may result as the Earth warms up may result in increases in this source of atmospheric methane.

  1. ISS Update: Burning and Suppression of Solids

    NASA Video Gallery

    ISS Update Commentator Pat Ryan interviews Paul Ferkul, Principal Investigator for the Burning and Suppression of Solids (BASS) experiment, about performing combustion experiments in microgravity. ...

  2. Phenol burns and intoxications.

    PubMed

    Horch, R; Spilker, G; Stark, G B

    1994-02-01

    Phenol burns and intoxications are life-threatening injuries. Roughly 50 per cent of all reported cases have a fatal outcome. Only a small number of cases have been reported with high serum concentrations after phenol burns who survived. In our own experience a patient with 20.5 per cent total body surface area deep partial skin thickness phenol burns and serum concentrations of 17,400 micrograms/litre survived after immediate and repeated treatment of the scalds with polyethylene glycol (PEG) and silver sulphadiazine. A literature review of experiences with phenol intoxications reveals the advantages of PEG application. Questions on the need for enforced diuresis and haemodialysis as well as the initial treatment procedures are discussed. Advantages of different solutions for local therapy are reported.

  3. Safe management of actinides in the nuclear fuel cycle: Role of mineralogy

    NASA Astrophysics Data System (ADS)

    Ewing, Rodney C.

    2011-02-01

    During the past 60 years, more than 1800 metric tonnes of Pu, and substantial quantities of the "minor" actinides, such as Np, Am and Cm, have been generated in nuclear reactors. Some of these transuranium elements can be a source of energy in fission reactions (e.g., 239Pu), a source of fissile material for nuclear weapons (e.g., 239Pu and 237Np), and of environmental concern because of their long-half lives and radiotoxicity (e.g., 239Pu and 237Np). There are two basic strategies for the disposition of these heavy elements: (1) to "burn" or transmute the actinides using nuclear reactors or accelerators; (2) to "sequester" the actinides in chemically durable, radiation-resistant materials that are suitable for geologic disposal. There has been substantial interest in the use of actinide-bearing minerals, especially isometric pyrochlore, A 2B 2O 7 (A = rare earths; B = Ti, Zr, Sn, Hf), for the immobilization of actinides, particularly plutonium, both as inert matrix fuels and nuclear waste forms. Systematic studies of rare-earth pyrochlores have led to the discovery that certain compositions (B = Zr, Hf) are stable to very high doses of alpha-decay event damage. Recent developments in our understanding of the properties of heavy element solids have opened up new possibilities for the design of advanced nuclear fuels and waste forms.

  4. Citrate based ``TALSPEAK`` lanthanide-actinide separation process

    SciTech Connect

    Del Cul, G.D.; Bond, W.D.; Toth, L.M.; Davis, G.D.; Dai, S.; Metcalf, D.H.

    1994-09-01

    The potential hazard posed to future generations by long-lived radionuclides such as the transuranic elements (TRU) is perceived as a major problem associated with the use of nuclear power. TRU wastes have to remain isolated from the environment for ``geological`` periods of time. The costs of building, maintaining, and operating a ``geological TRU repository`` can be very high. Therefore, there are significant economical advantages in segregating the relatively low volume of TRU wastes from other nuclear wastes. The chemical behavior of lanthanides and actinides, 4f and 5f elements respectively, is rather similar. As a consequence, the separation of these two groups is difficult. The ``TALSPEAK`` process (Trivalent Actinide Lanthanide Separations by Phosphorus-reagent Extraction from Aqueous Complexes) is one of the few means available to separate the trivalent actinides from the lanthanides. The method is based on the preferential complexation of the trivalent actinides by an aminopolyacetic acid. Cold experiments showed that by using citric acid the deleterious effects produced by impurities such as zirconium are greatly reduced.

  5. Actinide abundances in ordinary chondrites

    NASA Technical Reports Server (NTRS)

    Hagee, B.; Bernatowicz, T. J.; Podosek, F. A.; Johnson, M. L.; Burnett, D. S.

    1990-01-01

    Measurements of actinide and light REE (LREE) abundances and of phosphate abundances in equilibrated ordinary chondrites were obtained and were used to define the Pu abundance in the solar system and to determine the degree of variation of actinide and LREE abundances. The results were also used to compare directly the Pu/U ratio with the earlier obtained ratio determined indirectly, as (Pu/Nd)x(Nd/U), assuming that Pu behaves chemically as a LREE. The data, combined with high-accuracy isotope-dilution data from the literature, show that the degree of gram-scale variability of the Th, U, and LREE abundances for equilibrated ordinary chondrites is a factor of 2-3 for absolute abundances and up to 50 percent for relative abundances. The observed variations are interpreted as reflecting the differences in the compositions and/or proportions of solar nebula components accreted to ordinary chondrite parent bodies.

  6. Process for recovering actinide values

    DOEpatents

    Horwitz, E. Philip; Mason, George W.

    1980-01-01

    A process for rendering actinide values recoverable from sodium carbonate scrub waste solutions containing these and other values along with organic compounds resulting from the radiolytic and hydrolytic degradation of neutral organophosphorous extractants such as tri-n butyl phosphate (TBP) and dihexyl-N,N-diethyl carbamylmethylene phosphonate (DHDECAMP) which have been used in the reprocessing of irradiated nuclear reactor fuels. The scrub waste solution is preferably made acidic with mineral acid, to form a feed solution which is then contacted with a water-immiscible, highly polar organic extractant which selectively extracts the degradation products from the feed solution. The feed solution can then be processed to recover the actinides for storage or recycled back into the high-level waste process stream. The extractant is recycled after stripping the degradation products with a neutral sodium carbonate solution.

  7. Actinide Recovery Method for Large Soil Samples

    SciTech Connect

    Maxwell, S.L. III; Nichols, S.

    1998-11-01

    A new Actinide Recovery Method has been developed by the Savannah River Site Central Laboratory to preconcentrate actinides in very large soil samples. Diphonix Resin(r) is used eliminate soil matrix interferences and preconcentrate actinides after soil leaching or soil fusion. A rapid microwave digestion technique is used to remove the actinides from the Diphonix Resin(r). After the resin digestion, the actinides are recovered in a small volume of nitric acid which can be easily loaded onto small extraction-chromatography columns, such as TEVA Resin(r), U-TEVA Resin(r) or TRU Resin(r) (Eichrom Industries). This method enables the application of small, selective extraction-columns to recover actinides from very large soil samples with high selectivity, consistent tracer recoveries and minimal liquid waste.

  8. Actinide Waste Forms and Radiation Effects

    NASA Astrophysics Data System (ADS)

    Ewing, R. C.; Weber, W. J.

    Over the past few decades, many studies of actinides in glasses and ceramics have been conducted that have contributed substantially to the increased understanding of actinide incorporation in solids and radiation effects due to actinide decay. These studies have included fundamental research on actinides in solids and applied research and development related to the immobilization of the high level wastes (HLW) from commercial nuclear power plants and processing of nuclear weapons materials, environmental restoration in the nuclear weapons complex, and the immobilization of weapons-grade plutonium as a result of disarmament activities. Thus, the immobilization of actinides has become a pressing issue for the twenty-first century (Ewing, 1999), and plutonium immobilization, in particular, has received considerable attention in the USA (Muller et al., 2002; Muller and Weber, 2001). The investigation of actinides and

  9. Fall MRS 2003: Actinides Symposium

    SciTech Connect

    Tobin, J

    2003-11-24

    {lg_bullet} The focus was on fundamental actinide science and its role. {lg_bullet} History- none except the Nuclear Waste Management Symposia {lg_bullet} Joint Sessions- none but we are open to it in the future. {lg_bullet} Tutorials- none but we are open to it in the future. {lg_bullet} 3 days: 16 Invited talks; 36 Contributed Talks; 10 Posters

  10. Long-term risk from actinides in the environment: Modes of mobility. 1998 annual progress report

    SciTech Connect

    Breshears, D.D.; Whicker, J.J.; Ibrahim, S.A.; Whicker, F.W.; Hakonson, T.E.

    1998-06-01

    'The mobility of actinides in surface soils is a key issue of concern at several DOE facilities in arid and semiarid environments, including Rocky Flats, Hanford, Nevada Test Site, Idaho National Engineering Laboratory, and Los Alamos National Laboratory and the Waste Isolation Pilot Plant (WIPP). Key sources of uncertainty in assessing Pu mobility are the magnitudes of mobility resulting from three modes of transport: (1) wind erosion, (2) water erosion, and (3) vertical migration. Each of these three processes depend on numerous environmental factors and they compete with one another, particularly for actinides in very shallow soils ({approximately} 1 mm). The overall goal of the study is to quantify the mobility of soil actinides from all three modes. The authors study is using field measurements, laboratory experiments, and ecological modeling to address these three processes at three DOE facilities where actinide kinetics are of concern: WIPP, Rocky Flats, and Hanford. Wind erosion is being measured with suite of monitoring equipment, water erosion is being studied with rainfall simulation experiments, vertical migration is being studied in controlled laboratory experiments, and the three processes are being integrated using ecological modeling. Estimates for clean up of soil actinides for the extensive tracts of DOE land range to hundreds of billion $ in the US. Without studies of these processes, unnecessary clean-up of these areas may waste billions of dollars and cause irreparable ecological damage through the soil removal. Further, the outcomes of litigation against DOE are dependent on quantifying the mobility of actinides in surface soils.'

  11. The INE-Beamline for actinide science at ANKA

    SciTech Connect

    Rothe, J.; Dardenne, K.; Denecke, M. A.; Kienzler, B.; Loeble, M.; Metz, V.; Steppert, M.; Vitova, T.; Geckeis, H.; Butorin, S.; Seibert, A.; Walther, C.

    2012-04-15

    Since its inauguration in 2005, the INE-Beamline for actinide research at the synchrotron source ANKA (KIT North Campus) provides dedicated instrumentation for x-ray spectroscopic characterization of actinide samples and other radioactive materials. R and D work at the beamline focuses on various aspects of nuclear waste disposal within INE's mission to provide the scientific basis for assessing long-term safety of a final nuclear waste repository. The INE-Beamline is accessible for the actinide and radiochemistry community through the ANKA proposal system and the European Union Integrated Infrastructure Initiative ACTINET-I3. Experiments with activities up to 1 x 10{sup +6} times the European exemption limit are feasible within a safe but flexible containment concept. Measurements with monochromatic radiation are performed at photon energies varying between {approx}2.1 keV (P K-edge) and {approx}25 keV (Pd K-edge), including the lanthanide L-edges and the actinide M- and L3-edges up to Cf. The close proximity of the INE-Beamline to INE controlled area labs offers infrastructure unique in Europe for the spectroscopic and microscopic characterization of actinide samples. The modular beamline design enables sufficient flexibility to adapt sample environments and detection systems to many scientific questions. The well-established bulk techniques x-ray absorption fine structure (XAFS) spectroscopy in transmission and fluorescence mode have been augmented by advanced methods using a microfocused beam, including (confocal) XAFS/x-ray fluorescence detection and a combination of (micro-)XAFS and (micro-)x-ray diffraction. Additional instrumentation for high energy-resolution x-ray emission spectroscopy has been successfully developed and tested.

  12. Biomass burning layers measured with an airborne Single Particle Soot Photometer (SP2) during the Deep Convective Clouds and Chemistry (DC3) experiment

    NASA Astrophysics Data System (ADS)

    Heimerl, K.; Weinzierl, B.; Minikin, A.; Sauer, D. N.; Fütterer, D.; Lichtenstern, M.; Schlager, H.; Schwarz, J. P.; Markovic, M. Z.; Perring, A. E.; Fahey, D. W.; Huntrieser, H.

    2013-12-01

    The 2012 wildfire season in the U.S. was one of the worst in the past decade. Coinciding with the period of intense wildfires in the western U.S., the Deep Convective Clouds and Chemistry (DC3) experiment took place in the central U.S. in May and June of 2012. Although the main goal of this experiment was to characterize chemical processes in and around thunderstorms, biomass burning plumes from wildfires were also measured during almost every flight. Measurements were performed with three different research aircraft (NCAR GV, NASA DC8 and DLR Falcon 20E), accompanied by ground based measurements with radars and radiosondes, and measurements of meteorological parameters and lightning. The instrumentation aboard the DLR Falcon included measurements of the trace gases NO, CO, O3, CO2, CH4, SO2, volatile organic compounds, and a variety of aerosol microphysical parameters. To cover a wide range of aerosol particle sizes, the DLR Falcon payload included optical particle counters (UHSAS-A, FSSP-300, FSSP-100, PCASP-100X/SPP-200 and Sky-OPC 1.129), a multi-channel CPC system for measuring total and non-volatile particle concentrations and, for absorbing particles, a three-wavelength PSAP and a Single Particle Soot Photometer (SP2). We will focus on the latter in this presentation. The SP2 measures both the mass of refractory black carbon (rBC) particles as well as their optical size, providing information about the mixing state of particles in the biomass burning layers. Most biomass burning layers were found between 3 and 8 km altitude. We will discuss measurements of plumes originating from New Mexico wildfires (Little Bear wildfire on June 11th of 2012 and Whitewater-Baldy wildfire on May 29th and 30th of 2012). Peaks of the rBC mass concentration in the plumes were as high as 2μg/m3, the fraction of rBC particles with thick coatings was higher than what is usually found in the boundary layer. During the Falcon transfer flights from Germany to the U.S. and back

  13. Burning Man

    ERIC Educational Resources Information Center

    Cech, Scott J.

    2006-01-01

    Former Baltimore cop and teacher Ed Burns isn't a masochist. The writer-producer for "The Wire," a critically applauded HBO series about life and death on the streets of Baltimore, is just feverishly trying to save public schools. He thinks American education is hopelessly screwed up, but that it's also the country's only hope. So it makes sense…

  14. Crystalline matrices for immobilization of actinides: Corrosion resistance in water

    NASA Astrophysics Data System (ADS)

    Yudintsev, S. V.; Aleksandrova, E. V.; Livshits, T. S.; Mal'kovskii, V. I.; Bychkova, Ya. V.; Tagirov, B. R.

    2014-10-01

    The rate of leaching of actinide-simulating rare-earth elements from two types of crystalline matrices consisting of titanate and titanozirconate phases was examined. The experiments were carried out at 95°C in distilled water. The rates of REE leaching from the samples were below 10-3 g/m2 day, which satisfied the requirements for the characteristics of matrices for immobilization of actinides. After passing the treated solutions through filters of 450 to 25 nm pore sizes, the REE content was changed slightly or not at all. This fact points to the minor role or to the absence of the colloidal form of REE in the solutions after the experiments.

  15. A case study of aerosol depletion in a biomass burning plume over Eastern Canada during the 2011 BORTAS field experiment

    NASA Astrophysics Data System (ADS)

    Franklin, J. E.; Drummond, J. R.; Griffin, D.; Pierce, J. R.; Waugh, D. L.; Palmer, P. I.; Parrington, M.; Lee, J. D.; Lewis, A. C.; Rickard, A. R.; Taylor, J. W.; Allan, J. D.; Coe, H.; Walker, K. A.; Chisholm, L.; Duck, T. J.; Hopper, J. T.; Blanchard, Y.; Gibson, M. D.; Curry, K. R.; Sakamoto, K. M.; Lesins, G.; Dan, L.; Kliever, J.; Saha, A.

    2014-02-01

    We present measurements of a long range smoke transport event recorded on 20-21 July 2011 over Halifax, Nova Scotia, Canada, during the Quantifying the impact of BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellites (BORTAS-B) campaign. Ground-based Fourier transform spectrometers and photometers detected air masses associated with large wildland fires burning in eastern Manitoba and western Ontario. We investigate a plume with high trace gas amounts but low amounts of particles that preceded and overlapped at the Halifax site with a second plume with high trace gas loadings and significant amounts of particulate material. We show that the first plume experienced a meteorological scavenging event but the second plume had not been similarly scavenged. This points to the necessity to account carefully for the plume history when considering long range transport since simultaneous or near-simultaneous times of arrival are not necessarily indicative of either similar trajectories or meteorological history. We investigate the origin of the scavenged plume, and the possibility of an aerosol wet deposition event occurring in the plume ~24 h prior to the measurements over Halifax. The region of lofting and scavenging is only monitored on an intermittent basis by the present observing network, and thus we must consider many different pieces of evidence in an effort to understand the early dynamics of the plume. Through this discussion we also demonstrate the value of having many simultaneous remote-sensing measurements in order to understand the physical and chemical behaviour of biomass burning plumes.

  16. A case study of aerosol scavenging in a biomass burning plume over eastern Canada during the 2011 BORTAS field experiment

    NASA Astrophysics Data System (ADS)

    Franklin, J. E.; Drummond, J. R.; Griffin, D.; Pierce, J. R.; Waugh, D. L.; Palmer, P. I.; Parrington, M.; Lee, J. D.; Lewis, A. C.; Rickard, A. R.; Taylor, J. W.; Allan, J. D.; Coe, H.; Walker, K. A.; Chisholm, L.; Duck, T. J.; Hopper, J. T.; Blanchard, Y.; Gibson, M. D.; Curry, K. R.; Sakamoto, K. M.; Lesins, G.; Dan, L.; Kliever, J.; Saha, A.

    2014-08-01

    We present measurements of a long-range smoke transport event recorded on 20-21 July 2011 over Halifax, Nova Scotia, Canada, during the Quantifying the impact of BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellites (BORTAS-B) campaign. Ground-based Fourier transform spectrometers and photometers detected air masses associated with large wildland fires burning in eastern Manitoba and western Ontario. We investigate a plume with high trace gas amounts but low amounts of particles that preceded and overlapped at the Halifax site with a second plume with high trace gas loadings and significant amounts of particulate material. We show that the first plume experienced a meteorological scavenging event, but the second plume had not been similarly scavenged. This points to the necessity to account carefully for the plume history when considering long-range transport since simultaneous or near-simultaneous times of arrival are not necessarily indicative of either similar trajectories or meteorological history. We investigate the origin of the scavenged plume, and the possibility of an aerosol wet deposition event occurring in the plume ~ 24 h prior to the measurements over Halifax. The region of lofting and scavenging is only monitored on an intermittent basis by the present observing network, and thus we must consider many different pieces of evidence in an effort to understand the early dynamics of the plume. Through this discussion we also demonstrate the value of having many simultaneous remote-sensing measurements in order to understand the physical and chemical behaviour of biomass burning plumes.

  17. Analysis of large soil samples for actinides

    DOEpatents

    Maxwell, III; Sherrod L.

    2009-03-24

    A method of analyzing relatively large soil samples for actinides by employing a separation process that includes cerium fluoride precipitation for removing the soil matrix and precipitates plutonium, americium, and curium with cerium and hydrofluoric acid followed by separating these actinides using chromatography cartridges.

  18. Prompt fission neutron spectra of actinides

    DOE PAGESBeta

    Capote, R.; Chen, Y. -J.; Hambsch, F. -J.; Kornilov, N. V.; Lestone, J. P.; Litaize, O.; Morillon, B.; Neudecker, D.; Oberstedt, S.; Ohsawa, T.; et al

    2016-01-06

    Here, the energy spectrum of prompt neutrons emitted in fission (PFNS) plays a very important role in nuclear science and technology. A Coordinated Research Project (CRP) "Evaluation of Prompt Fission Neutron Spectra of Actinides" was established by the IAEA Nuclear Data Section in 2009, with the major goal to produce new PFNS evaluations with uncertainties for actinide nuclei.

  19. Zirconium behaviour during electrorefining of actinide-zirconium alloy in molten LiCl-KCl on aluminium cathodes

    NASA Astrophysics Data System (ADS)

    Meier, R.; Souček, P.; Malmbeck, R.; Krachler, M.; Rodrigues, A.; Claux, B.; Glatz, J.-P.; Fanghänel, Th.

    2016-04-01

    A pyrochemical electrorefining process for the recovery of actinides from metallic nuclear fuel based on actinide-zirconium alloys (An-Zr) in a molten salt is being investigated. In this process actinides are group-selectively recovered on solid aluminium cathodes as An-Al alloys using a LiCl-KCl eutectic melt at a temperature of 450 °C. In the present study the electrochemical behaviour of zirconium during electrorefining was investigated. The maximum amount of actinides that can be oxidised without anodic co-dissolution of zirconium was determined at a selected constant cathodic current density. The experiment consisted of three steps to assess the different stages of the electrorefining process, each of which employing a fresh aluminium cathode. The results indicate that almost a complete dissolution of the actinides without co-dissolution of zirconium is possible under the applied experimental conditions.

  20. Actinide abundances in ordinary chondrites

    USGS Publications Warehouse

    Hagee, B.; Bernatowicz, T.J.; Podosek, F.A.; Johnson, M.L.; Burnett, D.S.; Tatsumoto, M.

    1990-01-01

    Measurements of 244Pu fission Xe, U, Th, and light REE (LREE) abundances, along with modal petrographic determinations of phosphate abundances, were carried out on equilibrated ordinary chondrites in order to define better the solar system Pu abundance and to determine the degree of variation of actinide and LREE abundances. Our data permit comparison of the directly measured Pu/ U ratio with that determined indirectly as (Pu/Nd) ?? (Nd/U) assuming that Pu behaves chemically as a LREE. Except for Guaren??a, and perhaps H chondrites in general, Pu concentrations are similar to that determined previously for St. Se??verin, although less precise because of higher trapped Xe contents. Trapped 130Xe 136Xe ratios appear to vary from meteorite to meteorite, but, relative to AVCC, all are similar in the sense of having less of the interstellar heavy Xe found in carbonaceous chondrite acid residues. The Pu/U and Pu/Nd ratios are consistent with previous data for St. Se??verin, but both tend to be slightly higher than those inferred from previous data on Angra dos Reis. Although significant variations exist, the distribution of our Th/U ratios, along with other precise isotope dilution data for ordinary chondrites, is rather symmetric about the CI chondrite value; however, actinide/(LREE) ratios are systematically lower than the CI value. Variations in actinide or LREE absolute and relative abundances are interpreted as reflecting differences in the proportions and/or compositions of more primitive components (chondrules and CAI materials?) incorporated into different regions of the ordinary chondrite parent bodies. The observed variations of Th/U, Nd/U, or Ce/U suggest that measurements of Pu/U on any single equilibrated ordinary chondrite specimen, such as St. Se??verin, should statistically be within ??20-30% of the average solar system value, although it is also clear that anomalous samples exist. ?? 1990.

  1. Minor Actinides Recycling in PWRs

    SciTech Connect

    Delpech, M.; Golfier, H.; Vasile, A.; Varaine, F.; Boucher, L.; Greneche, D.

    2006-07-01

    Recycling of minor actinides in current and near future PWR is considered as one of the options of the general waste management strategy. This paper presents the analysis of this option both from the core physics and fuel cycle point of view. A first indicator of the efficiency of different neutron spectra for transmutation purposes is the capture to fission cross sections ratio which is less favourable by a factor between 5 to 10 in PWRs compared to fast reactors. Another indicator presented is the production of high ranking isotopes like Curium, Berkelium or Californium in the thermal or epithermal spectrum conditions of PWR cores by successive neutron captures. The impact of the accumulation of this elements on the fabrication process of such PWR fuels strongly penalizes this option. The main constraint on minor actinides loadings in PWR (or fast reactors) fuels are related to their direct impact (or the impact of their transmutation products) on the reactivity coefficients, the reactivity control means and the core kinetics parameters. The main fuel cycle physical parameters like the neutron source, the alpha decay power, the gamma and neutrons dose rate and the criticality aspects are also affected. Recent neutronic calculations based on a reference core of the Evolutionary Pressurized Reactor (EPR), indicates typical maximum values of 1 % loadings. Different fuel design options for minor actinides transmutation purposes in PWRs are presented: UOX and MOX, homogeneous and heterogeneous assemblies. In this later case, Americium loading is concentrated in specific pins of a standard UOX assembly. Recycling of Neptunium in UOX and MOX fuels was also studied to improve the proliferation resistance of the fuel. The impact on the core physics and penalties on Uranium enrichment were underlined in this case. (authors)

  2. Separation of actinides from lanthanides

    DOEpatents

    Smith, Barbara F.; Jarvinen, Gordon D.; Ryan, Robert R.

    1989-01-01

    An organic extracting solution and an extraction method useful for separating elements of the actinide series of the periodic table from elements of the lanthanide series, where both are in trivalent form. The extracting solution consists of a primary ligand and a secondary ligand, preferably in an organic solvent. The primary ligand is a substituted monothio-1,3-dicarbonyl, which includes a substituted 4-acyl-2-pyrazolin-5-thione, such as 4-benzoyl-2,4-dihydro-5-methyl-2-phenyl-3H-pyrazol-3-thione (BMPPT). The secondary ligand is a substituted phosphine oxide, such as trioctylphosphine oxide (TOPO).

  3. Actinide co-conversion by internal gelation

    SciTech Connect

    Robisson, Anne-Charlotte; Dauby, Jacques; Dumont-Shintu, Corinne; Machon, Estelle; Grandjean, Stephane

    2007-07-01

    Suitable microstructures and homogenous microspheres of actinide compounds are of interest for future nuclear fuel or transmutation target concepts to prevent the generation and dispersal of actinide powder. Sol-gel routes are being investigated as one of the possible solutions for producing these compounds. Preliminary work is described involving internal gelation to synthesize mixed compounds including minor actinides, particularly mixed actinide or mixed actinide-inert element compounds. A parameter study is discussed to highlight the importance of the initial broth composition for obtaining gel microspheres without major defects (cracks, craters, etc.). In particular, conditions are defined to produce gel beads from Zr(IV)/Y(III)/Ce(III) or Zr(IV)/An(III) systems. After gelation, the heat treatment of these microspheres is described for the purpose of better understanding the formation of cracks after calcination and verifying the effective synthesis of an oxide solid-solution. (authors)

  4. Actinide ion sensor for pyroprocess monitoring

    DOEpatents

    Jue, Jan-fong; Li, Shelly X.

    2014-06-03

    An apparatus for real-time, in-situ monitoring of actinide ion concentrations which comprises a working electrode, a reference electrode, a container, a working electrolyte, a separator, a reference electrolyte, and a voltmeter. The container holds the working electrolyte. The voltmeter is electrically connected to the working electrode and the reference electrode and measures the voltage between those electrodes. The working electrode contacts the working electrolyte. The working electrolyte comprises an actinide ion of interest. The reference electrode contacts the reference electrolyte. The reference electrolyte is separated from the working electrolyte by the separator. The separator contacts both the working electrolyte and the reference electrolyte. The separator is ionically conductive to the actinide ion of interest. The reference electrolyte comprises a known concentration of the actinide ion of interest. The separator comprises a beta double prime alumina exchanged with the actinide ion of interest.

  5. Exploring actinide materials through synchrotron radiation techniques.

    PubMed

    Shi, Wei-Qun; Yuan, Li-Yong; Wang, Cong-Zhi; Wang, Lin; Mei, Lei; Xiao, Cheng-Liang; Zhang, Li; Li, Zi-Jie; Zhao, Yu-Liang; Chai, Zhi-Fang

    2014-12-10

    Synchrotron radiation (SR) based techniques have been utilized with increasing frequency in the past decade to explore the brilliant and challenging sciences of actinide-based materials. This trend is partially driven by the basic needs for multi-scale actinide speciation and bonding information and also the realistic needs for nuclear energy research. In this review, recent research progresses on actinide related materials by means of various SR techniques were selectively highlighted and summarized, with the emphasis on X-ray absorption spectroscopy, X-ray diffraction and scattering spectroscopy, which are powerful tools to characterize actinide materials. In addition, advanced SR techniques for exploring future advanced nuclear fuel cycles dealing with actinides are illustrated as well.

  6. Estimation of lifetime of carbonaceous aerosol from open crop residue burning during Mount Tai Experiment 2006 (MTX2006)

    NASA Astrophysics Data System (ADS)

    Pan, X. L.; Kanaya, Y.; Wang, Z. F.; Komazaki, Y.; Taketani, F.; Akimoto, H.; Pochanart, P.; Liu, Y.

    2012-06-01

    Studying the emission ratios of carbonaceous aerosols (element carbon, EC, and organic carbon, OC) from open biomass burning helps to reduce uncertainties in emission inventories and provides necessary constraints for model simulations. We measured apparent elemental carbon (ECa) and OC concentrations at the summit of Mount Tai (Mt. Tai) during intensive open crop residue burning (OCRB) episodes using a Sunset OCEC analyzer. Equivalent black carbon (BCe) concentrations were determined using a Multiple Angle Absorption Photometer (MAAP). In the fine particle mode, OC and EC showed strong correlations (r > 0.9) with carbon monoxide (CO). Footprint analysis using the FLEXPART_WRF model indicated that OCRB in central east China (CEC) had a significant influence on ambient carbonaceous aerosol loadings at the summit of Mt. Tai. ΔECa/ΔCO ratios resulting from OCRB plumes were 14.3 ± 1.0 ng m-3 ppbv-1 at Mt. Tai. This ratio was more than three times those resulting from urban pollution in CEC, demonstrating that significant concentrations of soot particles were released from OCRB. ΔOC/ΔCO ratio from fresh OCRB plumes was found to be 41.9 ± 2.6 ng m-3 ppbv-1 in PM1. The transport time of smoke particles was estimated using the FLEXPART_WRF tracer model by releasing inert particles from the ground layer inside geographical regions where large numbers of hotspots were detected by a MODIS satellite sensor. Fitting regressions using the e-folding exponential function indicated that the removal efficiency of OC (normalized to CO) was much larger than that of ECa mass, with mean lifetimes of 27 h (1.1 days) for OC and 105 h (4.3 days) for ECa, respectively. The lifetime of black carbon estimated for the OCRB events in east China was comparably lower than the values normally adopted in the transport models. Short lifetime of organic carbon highlighted the vulnerability of OC to cloud scavenging in the presence of water-soluble organic species from biomass combustion.

  7. AECL/US INERI - Development of Inert Matrix Fuels for Plutonium and Minor Actinide Management in Power Reactors -- Fuel Requirements and Down-Select Report

    SciTech Connect

    William Carmack; Randy D. Lee; Pavel Medvedev; Mitch Meyer; Michael Todosow; Holly B. Hamilton; Juan Nino; Simon Philpot; James Tulenko

    2005-06-01

    The U.S. Advanced Fuel Cycle Program and the Atomic Energy Canada Ltd (AECL) seek to develop and demonstrate the technologies needed to minimize the overall Pu and minor actinides present in the light water reactor (LWR) nuclear fuel cycles. It is proposed to reuse the Pu from LWR spent fuel both for the energy it contains and to decrease the hazard and proliferation impact resulting from storage of the Pu and minor actinides. The use of fuel compositions with a combination of U and Pu oxide (MOX) has been proposed as a way to recycle Pu and/or minor actinides in LWRs. It has also been proposed to replace the fertile U{sup 238} matrix of MOX with a fertile-free matrix (IMF) to reduce the production of Pu{sup 239} in the fuel system. It is important to demonstrate the performance of these fuels with the appropriate mixture of isotopes and determine what impact there might be from trace elements or contaminants. Previous work has already been done to look at weapons-grade (WG) Pu in the MOX configuration [1][2] and the reactor-grade (RG) Pu in a MOX configuration including small (4000 ppm additions of Neptunium). This program will add to the existing database by developing a wide variety of MOX fuel compositions along with new fuel compositions called inert-matrix fuel (IMF). The goal of this program is to determine the general fabrication and irradiation behavior of the proposed IMF fuel compositions. Successful performance of these compositions will lead to further selection and development of IMF for use in LWRs. This experiment will also test various inert matrix material compositions with and without quantities of the minor actinides Americium and Neptunium to determine feasibility of incorporation into the fuel matrices for destruction. There is interest in the U.S. and world-wide in the investigation of IMF (inert matrix fuels) for scenarios involving stabilization or burn down of plutonium in the fleet of existing commercial power reactors. IMF offer the

  8. Development of a remote bushing for actinide vitrification

    SciTech Connect

    Schumacher, R.F.; Ramsey, W.G.; Johnson, F.M.

    1996-12-31

    The Savannah River Site (SRS) and the Savannah River Technology Center (SRTC) are combining their existing experience in handling highly radioactive, special nuclear materials with commercial glass fiberization technology in order to assemble a small vitrification system for radioactive actinide solutions. The vitrification system or {open_quotes}brushing{close_quotes}, is fabricated from platinum-rhodium alloy and is based on early marble remelt fiberization technology. Advantages of this unique system include its relatively small size, reliable operation, geometrical safety (nuclear criticality), and high temperature capability. The bushing design should be capable of vitrifying a number of the actinide nuclear materials, including solutions of americium/curium, neptunium, and possibly plutonium. State of the art, mathematical and oil model studies are being combined with basic engineering evaluations to verify and improve the thermal and mechanical design concepts.

  9. Actinides in the Source of Cosmic Rays and the Present Interstellar Medium

    NASA Technical Reports Server (NTRS)

    Lingenfelter, R. E.; Higdon, J. C.; Kratz, K. -L.

    2003-01-01

    The abundances of the actinide elements in the cosmic rays can provide critical constraints on the major sites of their acceleration. Using recent calculations of the r-process yields in core collapse supernovae, we have determined the actinide abundances averaged over various assumed time intervals for their supernova generation and their cosmic-ray acceleration. Using standard Galactic chemical evolution models, we have also determined the expected actinide abundances in the present interstellar medium. From these two components, we have calculated the U/Th and other actinide abundances expected in the supernova-active cores of superbubbles, as a function of their ages and mean metallicity resulting from dilution with interstellar cloud debris. Then, using observations of the fractions of Galactic supernovae that occur in superbubbles and in the rest of the interstellar medium, we calculate the expected actinide abundances in cosmic rays accelerated by Galactic supernovae. We find that the current measurements of actinide/Pt-group and preliminary estimates of the UPuCm/Th ratio in cosmic rays are all consistent with the expected values if superbubble cores have mean metallicities of around 3 times solar. Such metallicities are quite comparable to the superbubble core metallicities inferred from other cosmic-ray observations. Future, more precise measurements of these ratios with experiments such as ECCO are needed to provide a better measure of the mean source metallicity sampled by the local Galactic cosmic rays. Measurements of the cosmic- ray actinide abundances have been favorably compared with the protosolar ratio, inferred from present solar system abundances, to infer that the cosmic rays are accelerated from the general interstellar medium. We suggest, however, that such an inference is not valid because the expected actinide abundances in the present interstellar medium are very different from the protosolar values, which sampled the interstellar medium

  10. Actinide solubility-controlling phases during the dissolution of phosphate ceramics

    NASA Astrophysics Data System (ADS)

    Du Fou de Kerdaniel, E.; Clavier, N.; Dacheux, N.; Terra, O.; Podor, R.

    2007-05-01

    Phosphate ceramics (britholites, monazite/brabantite solid solutions, thorium phosphate diphosphate, i.e. β-TPD, and associated β-TPD/monazite composites) are often considered as potential candidates to immobilize tri- and tetravalent actinides. In order to study the properties of such materials on the retention of actinides during aqueous alteration, phosphate-based neoformed phases were prepared using under- and over-saturation processes then extensively characterized (involving grazing XRD, EPMA, μ-Raman, IR or SEM). In over-saturation conditions, lanthanides (used as surrogates of trivalent actinides) are quickly precipitated as three hydrated forms (monazite, rhabdophane or xenotime) depending on the temperature, the heating time and the ionic radius of the element. Moreover, as already described for thorium, tetravalent actinides (Th, U, Np, Pu) are more often immobilized as phosphate hydrogenphosphate compounds. However, samples of (Ln,Ca,Th)-rhabdophane can also precipitate in the presence of large concentrations of calcium. Such neoformed phases were also precipitated at the surface of leached phosphate-based ceramics during under-saturation experiments. The associated thermodynamic solubility constants at infinite dilution were estimated. Due to their rapid precipitation and their very low solubility constants, these actinide phosphate solubility-controlling phases appear of significant interest in the field of the evaluation of the long-term performance of actinide-doped phosphate ceramics.

  11. Animal Models in Burn Research

    PubMed Central

    Abdullahi, A.; Amini-Nik, S.; Jeschke, M.G

    2014-01-01

    Burn injury is a severe form of trauma affecting more than two million people in North America each year. Burn trauma is not a single pathophysiological event but a devastating injury that causes structural and functional deficits in numerous organ systems. Due to its complexity and the involvement of multiple organs, in vitro experiments cannot capture this complexity nor address the pathophysiology. In the past two decades, a number of burn animal models have been developed to replicate the various aspects of burn injury; to elucidate the pathophysiology and explore potential treatment interventions. Understanding the advantages and limitations of these animal models is essential for the design and development of treatments that are clinically relevant to humans. This review paper aims to highlight the common animal models of burn injury in order to provide investigators with a better understanding of the benefits and limitations of these models for translational applications. While many animal models of burn exist, we limit our discussion to the skin healing of mouse, rat, and pig. Additionally, we briefly explain hypermetabolic characteristics of burn injury and the animal model utilized to study this phenomena. Finally, we discuss the economic costs associated with each of these models in order to guide decisions of choosing the appropriate animal model for burn research. PMID:24714880

  12. Global Burned Area and Biomass Burning Emissions from Small Fires

    NASA Technical Reports Server (NTRS)

    Randerson, J. T.; Chen, Y.; vanderWerf, G. R.; Rogers, B. M.; Morton, D. C.

    2012-01-01

    In several biomes, including croplands, wooded savannas, and tropical forests, many small fires occur each year that are well below the detection limit of the current generation of global burned area products derived from moderate resolution surface reflectance imagery. Although these fires often generate thermal anomalies that can be detected by satellites, their contributions to burned area and carbon fluxes have not been systematically quantified across different regions and continents. Here we developed a preliminary method for combining 1-km thermal anomalies (active fires) and 500 m burned area observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) to estimate the influence of these fires. In our approach, we calculated the number of active fires inside and outside of 500 m burn scars derived from reflectance data. We estimated small fire burned area by computing the difference normalized burn ratio (dNBR) for these two sets of active fires and then combining these observations with other information. In a final step, we used the Global Fire Emissions Database version 3 (GFED3) biogeochemical model to estimate the impact of these fires on biomass burning emissions. We found that the spatial distribution of active fires and 500 m burned areas were in close agreement in ecosystems that experience large fires, including savannas across southern Africa and Australia and boreal forests in North America and Eurasia. In other areas, however, we observed many active fires outside of burned area perimeters. Fire radiative power was lower for this class of active fires. Small fires substantially increased burned area in several continental-scale regions, including Equatorial Asia (157%), Central America (143%), and Southeast Asia (90%) during 2001-2010. Globally, accounting for small fires increased total burned area by approximately by 35%, from 345 Mha/yr to 464 Mha/yr. A formal quantification of uncertainties was not possible, but sensitivity

  13. Global burned area and biomass burning emissions from small fires

    NASA Astrophysics Data System (ADS)

    Randerson, J. T.; Chen, Y.; van der Werf, G. R.; Rogers, B. M.; Morton, D. C.

    2012-12-01

    In several biomes, including croplands, wooded savannas, and tropical forests, many small fires occur each year that are well below the detection limit of the current generation of global burned area products derived from moderate resolution surface reflectance imagery. Although these fires often generate thermal anomalies that can be detected by satellites, their contributions to burned area and carbon fluxes have not been systematically quantified across different regions and continents. Here we developed a preliminary method for combining 1-km thermal anomalies (active fires) and 500 m burned area observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) to estimate the influence of these fires. In our approach, we calculated the number of active fires inside and outside of 500 m burn scars derived from reflectance data. We estimated small fire burned area by computing the difference normalized burn ratio (dNBR) for these two sets of active fires and then combining these observations with other information. In a final step, we used the Global Fire Emissions Database version 3 (GFED3) biogeochemical model to estimate the impact of these fires on biomass burning emissions. We found that the spatial distribution of active fires and 500 m burned areas were in close agreement in ecosystems that experience large fires, including savannas across southern Africa and Australia and boreal forests in North America and Eurasia. In other areas, however, we observed many active fires outside of burned area perimeters. Fire radiative power was lower for this class of active fires. Small fires substantially increased burned area in several continental-scale regions, including Equatorial Asia (157%), Central America (143%), and Southeast Asia (90%) during 2001-2010. Globally, accounting for small fires increased total burned area by approximately by 35%, from 345 Mha/yr to 464 Mha/yr. A formal quantification of uncertainties was not possible, but sensitivity

  14. Vesicant burns.

    PubMed

    Mellor, S G; Rice, P; Cooper, G J

    1991-01-01

    (1) Of the 120,000 victims of sulphur mustard gas in World War I there were only 2-3% fatalities, and few long term effects. (2) The interactions of sulphur mustard with the skin are complete within a few minutes of exposure. Once the victim has been decontaminated there is no risk to the attendant and there is no active agent in the blister fluid. (3) The rate of wound healing is slow for sulphur mustard burns, but in general the wounds heal satisfactorily. (4) There is no specific therapy for poisoning by sulphur mustard.

  15. Experimental studies of actinides in molten salts

    SciTech Connect

    Reavis, J.G.

    1985-06-01

    This review stresses techniques used in studies of molten salts containing multigram amounts of actinides exhibiting intense alpha activity but little or no penetrating gamma radiation. The preponderance of studies have used halides because oxygen-containing actinide compounds (other than oxides) are generally unstable at high temperatures. Topics discussed here include special enclosures, materials problems, preparation and purification of actinide elements and compounds, and measurements of various properties of the molten volts. Property measurements discussed are phase relationships, vapor pressure, density, viscosity, absorption spectra, electromotive force, and conductance. 188 refs., 17 figs., 6 tabs.

  16. Decontamination of matrices containing actinide oxides

    SciTech Connect

    Villarreal, Robert

    1997-12-01

    There is provided a method for removing actinides and actinide oxides, particularly fired actinides, from soil and other contaminated matrices, comprising: (a) contacting a contaminated material with a solution of at least one inhibited fluoride and an acid to form a mixture; (b) heating the mixture of contaminated material and solution to a temperature in the range from about 30 C to about 90 C while stirring; (c) separating the solution from any undissolved matrix material in the mixture; (d) washing the undissolved matrix material to remove any residual materials; and (e) drying and returning the treated matrix material to the environment.

  17. Burn Resuscitation in the Austere Environment.

    PubMed

    Peck, Michael; Jeng, James; Moghazy, Amr

    2016-10-01

    Intravenous (IV) cannulation and sterile IV salt solutions may not be options in resource-limited settings (RLSs). This article presents recipes for fluid resuscitation in the aftermath of burns occurring in RLSs. Burns of 20% total body surface area (TBSA) can be resuscitated, and burns up to 40% TBSA can most likely be resuscitated, using oral resuscitation solutions (ORSs) with salt supplementation. Without IV therapy, fluid resuscitation for larger burns may only be possible with ORSs. Published global experience is limited, and the magnitude of burn injuries that successfully respond to World Health Organization ORSs is not well-described. PMID:27600127

  18. Subsurface interactions of actinide species and microorganisms : implications for the bioremediation of actinide-organic mixtures.

    SciTech Connect

    Banaszak, J.E.; Reed, D.T.; Rittmann, B.E.

    1999-02-12

    By reviewing how microorganisms interact with actinides in subsurface environments, we assess how bioremediation controls the fate of actinides. Actinides often are co-contaminants with strong organic chelators, chlorinated solvents, and fuel hydrocarbons. Bioremediation can immobilize the actinides, biodegrade the co-contaminants, or both. Actinides at the IV oxidation state are the least soluble, and microorganisms accelerate precipitation by altering the actinide's oxidation state or its speciation. We describe how microorganisms directly oxidize or reduce actinides and how microbiological reactions that biodegrade strong organic chelators, alter the pH, and consume or produce precipitating anions strongly affect actinide speciation and, therefore, mobility. We explain why inhibition caused by chemical or radiolytic toxicities uniquely affects microbial reactions. Due to the complex interactions of the microbiological and chemical phenomena, mathematical modeling is an essential tool for research on and application of bioremediation involving co-contamination with actinides. We describe the development of mathematical models that link microbiological and geochemical reactions. Throughout, we identify the key research needs.

  19. Actinide removal from spent salts

    DOEpatents

    Hsu, Peter C.; von Holtz, Erica H.; Hipple, David L.; Summers, Leslie J.; Adamson, Martyn G.

    2002-01-01

    A method for removing actinide contaminants (uranium and thorium) from the spent salt of a molten salt oxidation (MSO) reactor is described. Spent salt is removed from the reactor and analyzed to determine the contaminants present and the carbonate concentration. The salt is dissolved in water, and one or more reagents are added to precipitate the thorium as thorium oxide and/or the uranium as either uranium oxide or as a diuranate salt. The precipitated materials are filtered, dried and packaged for disposal as radioactive waste. About 90% of the thorium and/or uranium present is removed by filtration. After filtration, salt solutions having a carbonate concentration >20% can be dried and returned to the reactor for re-use. Salt solutions containing a carbonate concentration <20% require further clean-up using an ion exchange column, which yields salt solutions that contain less than 0.1 ppm of thorium or uranium.

  20. A literature review of actinide-carbonate mineral interactions

    SciTech Connect

    Stout, D.L.; Carroll, S.A.

    1993-10-01

    Chemical retardation of actinides in groundwater systems is a potentially important mechanism for assessing the performance of the Waste Isolation Pilot Plant (WIPP), a facility intended to demonstrate safe disposal of transuranic waste. Rigorous estimation of chemical retardation during transport through the Culebra Dolomite, a water-bearing unit overlying the WIPP, requires a mechanistic understanding of chemical reactions between dissolved elements and mineral surfaces. This report represents a first step toward this goal by examining the literature for pertinent experimental studies of actinide-carbonate interactions. A summary of existing models is given, along with the types of experiments on which these models are based. Articles pertaining to research into actinide interactions with carbonate minerals are summarized. Select articles involving trace element-carbonate mineral interactions are also reviewed and may serve as templates for future research. A bibliography of related articles is included. Americium(III), and its nonradioactive analog neodymium(III), partition strongly from aqueous solutions into carbonate minerals. Recent thermodynamic, kinetic, and surface studies show that Nd is preferentially removed from solution, forming a Nd-Ca carbonate solid solution. Neptunium(V) is rapidly removed from solution by carbonates. Plutonium incorporation into carbonates is complicated by multiple oxidation states. Little research has been done on the radium(H) and thorium(IV) carbonate systems. Removal of uranyl ion from solution by calcite is limited to monolayer surface coverage.

  1. Evaluation of Heterogeneous Options: Effects of MgO versus UO2 Matrix Selection for Minor Actinide Targets in a Sodium Fast Reactor

    SciTech Connect

    M. Pope; S. Bays; R. Ferrer

    2008-03-01

    The primary focus of this work was to compare MgO with UO2 as target matrix material options for burning minor actinides in a transmutation target within a sodium fast reactor. This analysis compared the transmutation performance of target assemblies having UO2 matrix to those having specifically MgO inert matrix.

  2. Disaster planning: the basics of creating a burn mass casualty disaster plan for a burn center.

    PubMed

    Kearns, Randy D; Conlon, Kathe M; Valenta, Andrea L; Lord, Graydon C; Cairns, Charles B; Holmes, James H; Johnson, Daryhl D; Matherly, Annette F; Sawyer, Dalton; Skarote, Mary Beth; Siler, Sean M; Helminiak, Radm Clare; Cairns, Bruce A

    2014-01-01

    In 2005, the American Burn Association published burn disaster guidelines. This work recognized that local and state assets are the most important resources in the initial 24- to 48-hour management of a burn disaster. Historical experiences suggest there is ample opportunity to improve local and state preparedness for a major burn disaster. This review will focus on the basics of developing a burn surge disaster plan for a mass casualty event. In the event of a disaster, burn centers must recognize their place in the context of local and state disaster plan activation. Planning for a burn center takes on three forms; institutional/intrafacility, interfacility/intrastate, and interstate/regional. Priorities for a burn disaster plan include: coordination, communication, triage, plan activation (trigger point), surge, and regional capacity. Capacity and capability of the plan should be modeled and exercised to determine limitations and identify breaking points. When there is more than one burn center in a given state or jurisdiction, close coordination and communication between the burn centers are essential for a successful response. Burn surge mass casualty planning at the facility and specialty planning levels, including a state burn surge disaster plan, must have interface points with governmental plans. Local, state, and federal governmental agencies have key roles and responsibilities in a burn mass casualty disaster. This work will include a framework and critical concepts any burn disaster planning effort should consider when developing future plans.

  3. Disaster planning: the basics of creating a burn mass casualty disaster plan for a burn center.

    PubMed

    Kearns, Randy D; Conlon, Kathe M; Valenta, Andrea L; Lord, Graydon C; Cairns, Charles B; Holmes, James H; Johnson, Daryhl D; Matherly, Annette F; Sawyer, Dalton; Skarote, Mary Beth; Siler, Sean M; Helminiak, Radm Clare; Cairns, Bruce A

    2014-01-01

    In 2005, the American Burn Association published burn disaster guidelines. This work recognized that local and state assets are the most important resources in the initial 24- to 48-hour management of a burn disaster. Historical experiences suggest there is ample opportunity to improve local and state preparedness for a major burn disaster. This review will focus on the basics of developing a burn surge disaster plan for a mass casualty event. In the event of a disaster, burn centers must recognize their place in the context of local and state disaster plan activation. Planning for a burn center takes on three forms; institutional/intrafacility, interfacility/intrastate, and interstate/regional. Priorities for a burn disaster plan include: coordination, communication, triage, plan activation (trigger point), surge, and regional capacity. Capacity and capability of the plan should be modeled and exercised to determine limitations and identify breaking points. When there is more than one burn center in a given state or jurisdiction, close coordination and communication between the burn centers are essential for a successful response. Burn surge mass casualty planning at the facility and specialty planning levels, including a state burn surge disaster plan, must have interface points with governmental plans. Local, state, and federal governmental agencies have key roles and responsibilities in a burn mass casualty disaster. This work will include a framework and critical concepts any burn disaster planning effort should consider when developing future plans. PMID:23877135

  4. MSFR TRU-burning potential and comparison with an SFR

    SciTech Connect

    Fiorina, C.; Cammi, A.; Franceschini, F.; Krepel, J.

    2013-07-01

    The objective of this work is to evaluate the Molten Salt Fast Reactor (MSFR) potential benefits in terms of transuranics (TRU) burning through a comparative analysis with a sodium-cooled FR. The comparison is based on TRU- and MA-burning rates, as well as on the in-core evolution of radiotoxicity and decay heat. Solubility issues limit the TRU-burning rate to 1/3 that achievable in traditional low-CR FRs (low-Conversion-Ratio Fast Reactors). The softer spectrum also determines notable radiotoxicity and decay heat of the equilibrium actinide inventory. On the other hand, the liquid fuel suggests the possibility of using a Pu-free feed composed only of Th and MA (Minor Actinides), thus maximizing the MA burning rate. This is generally not possible in traditional low-CR FRs due to safety deterioration and decay heat of reprocessed fuel. In addition, the high specific power and the lack of out-of-core cooling times foster a quick transition toward equilibrium, which improves the MSFR capability to burn an initial fissile loading, and makes the MSFR a promising system for a quick (i.e., in a reactor lifetime) transition from the current U-based fuel cycle to a novel closed Th cycle. (authors)

  5. Overview of actinide chemistry in the WIPP

    SciTech Connect

    Borkowski, Marian; Lucchini, Jean - Francois; Richmann, Michael K; Reed, Donald T; Khaing, Hnin; Swanson, Juliet

    2009-01-01

    The year 2009 celebrates 10 years of safe operations at the Waste Isolation Pilot Plant (WIPP), the only nuclear waste repository designated to dispose defense-related transuranic (TRU) waste in the United States. Many elements contributed to the success of this one-of-the-kind facility. One of the most important of these is the chemistry of the actinides under WIPP repository conditions. A reliable understanding of the potential release of actinides from the site to the accessible environment is important to the WIPP performance assessment (PA). The environmental chemistry of the major actinides disposed at the WIPP continues to be investigated as part of the ongoing recertification efforts of the WIPP project. This presentation provides an overview of the actinide chemistry for the WIPP repository conditions. The WIPP is a salt-based repository; therefore, the inflow of brine into the repository is minimized, due to the natural tendency of excavated salt to re-seal. Reducing anoxic conditions are expected in WIPP because of microbial activity and metal corrosion processes that consume the oxygen initially present. Should brine be introduced through an intrusion scenario, these same processes will re-establish reducing conditions. In the case of an intrusion scenario involving brine, the solubilization of actinides in brine is considered as a potential source of release to the accessible environment. The following key factors establish the concentrations of dissolved actinides under subsurface conditions: (1) Redox chemistry - The solubility of reduced actinides (III and IV oxidation states) is known to be significantly lower than the oxidized forms (V and/or VI oxidation states). In this context, the reducing conditions in the WIPP and the strong coupling of the chemistry for reduced metals and microbiological processes with actinides are important. (2) Complexation - For the anoxic, reducing and mildly basic brine systems in the WIPP, the most important

  6. Joint Actinide Shock Physics Experimental Research - JASPER

    ScienceCinema

    None

    2016-07-12

    Commonly known as JASPER the Joint Actinide Shock Physics Experimental Research facility is a two stage light gas gun used to study the behavior of plutonium and other materials under high pressures, temperatures, and strain rates.

  7. BWR Assembly Optimization for Minor Actinide Recycling

    SciTech Connect

    G. Ivan Maldonado; John M. Christenson; J.P. Renier; T.F. Marcille; J. Casal

    2010-03-22

    The Primary objective of the proposed project is to apply and extend the latest advancements in LWR fuel management optimization to the design of advanced boiling water reactor (BWR) fuel assemblies specifically for the recycling of minor actinides (MAs).

  8. Joint Actinide Shock Physics Experimental Research - JASPER

    SciTech Connect

    2014-10-31

    Commonly known as JASPER the Joint Actinide Shock Physics Experimental Research facility is a two stage light gas gun used to study the behavior of plutonium and other materials under high pressures, temperatures, and strain rates.

  9. Advanced Aqueous Separation Systems for Actinide Partitioning

    SciTech Connect

    Nash, Kenneth L.; Clark, Sue; Meier, G Patrick; Alexandratos, Spiro; Paine, Robert; Hancock, Robert; Ensor, Dale

    2012-03-21

    One of the most challenging aspects of advanced processing of spent nuclear fuel is the need to isolate transuranium elements from fission product lanthanides. This project expanded the scope of earlier investigations of americium (Am) partitioning from the lanthanides with the synthesis of new separations materials and a centralized focus on radiochemical characterization of the separation systems that could be developed based on these new materials. The primary objective of this program was to explore alternative materials for actinide separations and to link the design of new reagents for actinide separations to characterizations based on actinide chemistry. In the predominant trivalent oxidation state, the chemistry of lanthanides overlaps substantially with that of the trivalent actinides and their mutual separation is quite challenging.

  10. Preparation of actinide targets by electrodeposition

    NASA Astrophysics Data System (ADS)

    Trautmann, N.; Folger, H.

    1989-10-01

    Actinide targets with varying thicknesses on different substrates have been prepared by electrodeposition either from aqueous solutions or from solutions of their nitrates in isopropyl alcohol. With these techniques the actinides can be deposited almost quantitatively on various backing materials within 15 to 30 min. Targets of thorium, uranium, neptunium, plutonium, americium, curium and californium with areal densities from almost carrier-free up to 1.4 mg/cm 2 on thin beryllium, carbon, titanium, tantalum and platinum foils have been prepared. In most cases, prior to the deposition, the actinides had to be purified chemically and for some of them, due to the limited amount of material available, recycling procedures were required. Applications of actinide targets in heavy-ion reactions are briefly discussed.

  11. PREPARATION OF ACTINIDE-ALUMINUM ALLOYS

    DOEpatents

    Moore, R.H.

    1962-09-01

    BS>A process is given for preparing alloys of aluminum with plutonium, uranium, and/or thorium by chlorinating actinide oxide dissolved in molten alkali metal chloride with hydrochloric acid, chlorine, and/or phosgene, adding aluminum metal, and passing air and/or water vapor through the mass. Actinide metal is formed and alloyed with the aluminum. After cooling to solidification, the alloy is separated from the salt. (AEC)

  12. Transmutation of actinides in power reactors.

    PubMed

    Bergelson, B R; Gerasimov, A S; Tikhomirov, G V

    2005-01-01

    Power reactors can be used for partial short-term transmutation of radwaste. This transmutation is beneficial in terms of subsequent storage conditions for spent fuel in long-term storage facilities. CANDU-type reactors can transmute the main minor actinides from two or three reactors of the VVER-1000 type. A VVER-1000-type reactor can operate in a self-service mode with transmutation of its own actinides.

  13. Transmutation of actinides in power reactors.

    PubMed

    Bergelson, B R; Gerasimov, A S; Tikhomirov, G V

    2005-01-01

    Power reactors can be used for partial short-term transmutation of radwaste. This transmutation is beneficial in terms of subsequent storage conditions for spent fuel in long-term storage facilities. CANDU-type reactors can transmute the main minor actinides from two or three reactors of the VVER-1000 type. A VVER-1000-type reactor can operate in a self-service mode with transmutation of its own actinides. PMID:16604724

  14. Rehabilitation of the burn patient

    PubMed Central

    Procter, Fiona

    2010-01-01

    Rehabilitation is an essential and integral part of burn treatment. It is not something which takes place following healing of skin grafts or discharge from hospital; instead it is a process that starts from day one of admission and continues for months and sometimes years after the initial event. Burns rehabilitation is not something which is completed by one or two individuals but should be a team approach, incorporating the patient and when appropriate, their family. The term ‘Burns Rehabilitation’ incorporates the physical, psychological and social aspects of care and it is common for burn patients to experience difficulties in one or all of these areas following a burn injury. Burns can leave a patient with severely debilitating and deforming contractures, which can lead to significant disability when left untreated. The aims of burn rehabilitation are to minimise the adverse effects caused by the injury in terms of maintaining range of movement, minimising contracture development and impact of scarring, maximising functional ability, maximising psychological wellbeing, maximising social integration PMID:21321643

  15. Rapid determination of actinides in seawater samples

    DOE PAGESBeta

    Maxwell, Sherrod L.; Culligan, Brian K.; Hutchison, Jay B.; Utsey, Robin C.; McAlister, Daniel R.

    2014-03-09

    A new rapid method for the determination of actinides in seawater samples has been developed at the Savannah River National Laboratory. The actinides can be measured by alpha spectrometry or inductively-coupled plasma mass spectrometry. The new method employs novel pre-concentration steps to collect the actinide isotopes quickly from 80 L or more of seawater. Actinides are co-precipitated using an iron hydroxide co-precipitation step enhanced with Ti+3 reductant, followed by lanthanum fluoride co-precipitation. Stacked TEVA Resin and TRU Resin cartridges are used to rapidly separate Pu, U, and Np isotopes from seawater samples. TEVA Resin and DGA Resin were used tomore » separate and measure Pu, Am and Cm isotopes in seawater volumes up to 80 L. This robust method is ideal for emergency seawater samples following a radiological incident. It can also be used, however, for the routine analysis of seawater samples for oceanographic studies to enhance efficiency and productivity. In contrast, many current methods to determine actinides in seawater can take 1–2 weeks and provide chemical yields of ~30–60 %. This new sample preparation method can be performed in 4–8 h with tracer yields of ~85–95 %. By employing a rapid, robust sample preparation method with high chemical yields, less seawater is needed to achieve lower or comparable detection limits for actinide isotopes with less time and effort.« less

  16. Actinide recovery method -- Large soil samples

    SciTech Connect

    Maxwell , S.L. III

    2000-04-25

    There is a need to measure actinides in environmental samples with lower and lower detection limits, requiring larger sample sizes. This analysis is adversely affected by sample-matrix interferences, which make analyzing soil samples above five-grams very difficult. A new Actinide-Recovery Method has been developed by the Savannah River Site Central Laboratory to preconcentrate actinides from large-soil samples. Diphonix Resin (Eichrom Industries), a 1994 R and D 100 winner, is used to preconcentrate the actinides from large soil samples, which are bound powerfully to the resin's diphosphonic acid groups. A rapid microwave-digestion technique is used to remove the actinides from the Diphonix Resin, which effectively eliminates interfering matrix components from the soil matrix. The microwave-digestion technique is more effective and less tedious than catalyzed hydrogen peroxide digestions of the resin or digestion of diphosphonic stripping agents such as HEDPA. After resin digestion, the actinides are recovered in a small volume of nitric acid which can be loaded onto small extraction chromatography columns, such as TEVA Resin, U-TEVA Resin or TRU Resin (Eichrom Industries). Small, selective extraction columns do not generate large volumes of liquid waste and provide consistent tracer recoveries after soil matrix elimination.

  17. Actinide speciation in relation to biological processes.

    PubMed

    Ansoborlo, Eric; Prat, Odette; Moisy, Philippe; Den Auwer, Christophe; Guilbaud, Philippe; Carriere, M; Gouget, Barbara; Duffield, John; Doizi, Denis; Vercouter, Thomas; Moulin, Christophe; Moulin, Valérie

    2006-11-01

    In case of accidental release of radionuclides into the environment, actinides represent a severe health risk to human beings following internal contamination (inhalation, ingestion or wound). For a better understanding of the actinide behaviour in man (in term of metabolism, retention, excretion) and in specific biological systems (organs, cells or biochemical pathways), it is of prime importance to have a good knowledge of the relevant actinide solution chemistry and biochemistry, in particular of the thermodynamic constants needed for computing actinide speciation. To a large extent, speciation governs bioavailability and toxicity of elements and has a significant impact on the mechanisms by which toxics accumulate in cell compartments and organs and by which elements are transferred and transported from cell to cell. From another viewpoint, speciation is the prerequisite for the design and success of potential decorporation therapies. The purpose of this review is to present the state of the art of actinide knowledge within biological media. It is also to discuss how actinide speciation can be determined or predicted and to highlight the areas where information is lacking with the aim to encourage new research efforts.

  18. Recent progress in actinide borate chemistry

    SciTech Connect

    Wang, Shuao; Alekseev, Evgeny V.; Depmeier, Wulf; Albrecht-Schmitt, Thomas E.

    2011-01-01

    The use of molten boric acid as a reactive flux for synthesizing actinide borates has been developed in the past two years providing access to a remarkable array of exotic materials with both unusual structures and unprecedented properties. [ThB₅O₆(OH)₆][BO(OH)₂]·2.5H₂O possesses a cationic supertetrahedral structure and displays remarkable anion exchange properties with high selectivity for TcO4- Uranyl borates form noncentrosymmetric structures with extraordinarily rich topological relationships. Neptunium borates are often mixed-valent and yield rare examples of compounds with one metal in three different oxidation states. Plutonium borates display new coordination chemistry for trivalent actinides. Finally, americium borates show a dramatic departure from plutonium borates, and there are scant examples of families of actinides compounds that extend past plutonium to examine the bonding of later actinides. There are several grand challenges that this work addresses. The foremost of these challenges is the development of structure-property relationships in transuranium materials. A deep understanding of the materials chemistry of actinides will likely lead to the development of advanced waste forms for radionuclides present in nuclear waste that prevent their transport in the environment. This work may have also uncovered the solubility-limiting phases of actinides in some repositories, and allows for measurements on the stability of these materials.

  19. Recent progress in actinide borate chemistry.

    PubMed

    Wang, Shuao; Alekseev, Evgeny V; Depmeier, Wulf; Albrecht-Schmitt, Thomas E

    2011-10-21

    The use of molten boric acid as a reactive flux for synthesizing actinide borates has been developed in the past two years providing access to a remarkable array of exotic materials with both unusual structures and unprecedented properties. [ThB(5)O(6)(OH)(6)][BO(OH)(2)]·2.5H(2)O possesses a cationic supertetrahedral structure and displays remarkable anion exchange properties with high selectivity for TcO(4)(-). Uranyl borates form noncentrosymmetric structures with extraordinarily rich topological relationships. Neptunium borates are often mixed-valent and yield rare examples of compounds with one metal in three different oxidation states. Plutonium borates display new coordination chemistry for trivalent actinides. Finally, americium borates show a dramatic departure from plutonium borates, and there are scant examples of families of actinides compounds that extend past plutonium to examine the bonding of later actinides. There are several grand challenges that this work addresses. The foremost of these challenges is the development of structure-property relationships in transuranium materials. A deep understanding of the materials chemistry of actinides will likely lead to the development of advanced waste forms for radionuclides present in nuclear waste that prevent their transport in the environment. This work may have also uncovered the solubility-limiting phases of actinides in some repositories, and allows for measurements on the stability of these materials.

  20. Burning Mouth Syndrome and "Burning Mouth Syndrome".

    PubMed

    Rifkind, Jacob Bernard

    2016-03-01

    Burning mouth syndrome is distressing to both the patient and practitioner unable to determine the cause of the patient's symptoms. Burning mouth syndrome is a diagnosis of exclusion, which is used only after nutritional deficiencies, mucosal disease, fungal infections, hormonal disturbances and contact stomatitis have been ruled out. This article will explore the many causes and treatment of patients who present with a chief complaint of "my mouth burns," including symptomatic treatment for those with burning mouth syndrome. PMID:27209717

  1. Burning Mouth Syndrome and "Burning Mouth Syndrome".

    PubMed

    Rifkind, Jacob Bernard

    2016-03-01

    Burning mouth syndrome is distressing to both the patient and practitioner unable to determine the cause of the patient's symptoms. Burning mouth syndrome is a diagnosis of exclusion, which is used only after nutritional deficiencies, mucosal disease, fungal infections, hormonal disturbances and contact stomatitis have been ruled out. This article will explore the many causes and treatment of patients who present with a chief complaint of "my mouth burns," including symptomatic treatment for those with burning mouth syndrome.

  2. Titanium subhydride potassium perchlorate (TiH1.65/KClO4) burn rates from hybrid closed bomb-strand burner experiments.

    SciTech Connect

    Cooper, Marcia A.; Oliver, Michael S.

    2012-08-01

    A hybrid closed bomb-strand burner is used to measure the burning behavior of the titanium subhydride potassium perchlorate pyrotechnic with an equivalent hydrogen concentration of 1.65. This experimental facility allows for simultaneous measurement of the closed bomb pressure rise and pyrotechnic burn rate as detected by electrical break wires over a range of pressures. Strands were formed by pressing the pyrotechnic powders to bulk densities between 60% and 90% theoretical maximum density. The burn rate dependance on initial density and vessel pressure are measured. At all initial strand densities, the burn is observed to transition from conductive to convective burning within the strand. The measured vessel pressure history is further analyzed following the closed bomb analysis methods developed for solid propellants.

  3. Correlation and relativistic effects in actinide ions

    SciTech Connect

    Safronova, U. I.; Safronova, M. S.

    2011-11-15

    Wavelengths, line strengths, and transition rates are calculated for the multipole (E1, M1, E2, M2, E3, and M3) transitions between the excited 6s{sup 2}6p{sup 5}nl and 6s6p{sup 6}nl states and the ground 6s{sup 2}6p{sup 6} state in Ac{sup 3+}, Th{sup 4+}, and U{sup 6+} Rn-like ions. Relativistic many-body perturbation theory (RMBPT), including the Breit interaction, is used to evaluate energies and transition rates for multipole transitions in these hole-particle systems. The RMBPT method agrees with multiconfigurational Dirac-Fock (MCDF) calculations in lowest order, includes all second-order correlation corrections, and includes corrections from negative-energy states. The calculations start from a [Xe]4f{sup 14}5d{sup 10}6s{sup 2}6p{sup 6} Dirac-Fock potential. First-order perturbation theory is used to obtain intermediate-coupling coefficients, and second-order RMBPT is used to determine the matrix elements. Evaluated multipole matrix elements for transitions from excited states to the ground states are used to determine the line strengths, transition rates, and multipole polarizabilities. This work provides a number of yet unmeasured properties of these actinide ions for various applications and for benchmark tests of theory and experiment.

  4. Microbial transformations of actinides in the environment

    NASA Astrophysics Data System (ADS)

    Livens, F. R.; Al-Bokari, M.; Fomina, M.; Gadd, G. M.; Geissler, A.; Lloyd, J. R.; Renshaw, J. C.; Vaughan, D. J.

    2010-03-01

    The diversity of microorganisms is still far from understood, although many examples of the microbial biotransformation of stable, pollutant and radioactive elements, involving Bacteria, Archaea and Fungi, are known. In estuarine sediments from the Irish Sea basin, which have been labelled by low level effluent discharges, there is evidence of an annual cycle in Pu solubility, and microcosm experiments have demonstrated both shifts in the bacterial community and changes in Pu solubility as a result of changes in redox conditions. In the laboratory, redox transformation of both U and Pu by Geobacter sulfurreducens has been demonstrated and EXAFS spectroscopy has been used to understand the inability of G. sufurreducens to reduce Np(V). Fungi promote corrosion of metallic U alloy through production of a range of carboxylic acid metabolites, and are capable of translocating the dissolved U before precipitating it externally to the hyphae, as U(VI) phosphate phases. These examples illustrate the far-reaching but complex effects which microorganisms can have on actinide behaviour.

  5. Hair dryer burns in children.

    PubMed

    Prescott, P R

    1990-11-01

    Three children with burn injuries caused by home hair dryers are described. In one patient the injury was believed to be accidental, and in the other two cases the injuries were deliberately caused by a caretaker. The lack of prior experience with hair dryer burns initially led to suspicion of other causes. The characteristics of each case aided in the final determination of accidental vs nonaccidental injury. These cases prompted testing of home hair dryers to determine their heat output. At the highest heat settings, the dryers rapidly generated temperatures in excess of 110 degrees C. After the dryers were turned off, the protective grills maintained sufficient temperatures to cause full-thickness burns for up to 2 minutes. These cases and the results of testing demonstrate that hair dryers must be added to the list of known causes of accidental and nonaccidental burns in children.

  6. Development of a polar direct drive platform for mix and burn experiments on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Murphy, T. J.; Kyrala, G. A.; Krasheninnikova, N. S.; Bradley, P. A.; Cobble, J. A.; Tregillis, I. L.; Obrey, K. A. D.; Baumgaertel, J. A.; Hsu, S. C.; Shah, R. C.; Hakel, P.; Kline, J. L.; Schmitt, M. J.; Kanzleiter, R. J.; Batha, S. H.; Wallace, R. J.; Bhandarkar, S.; Fitzsimmons, P.; Hoppe, M.; Nikroo, A.; McKenty, P.

    2016-03-01

    Capsules driven with polar drive [1, 2] on the National Ignition Facility [3] are being used [4] to study mix in convergent geometry. In preparation for experiments that will utilize deuterated plastic shells with a pure tritium fill, hydrogen-filled capsules with copper- doped deuterated layers have been imploded on NIF to provide spectroscopic and nuclear measurements of capsule performance. Experiments have shown that the mix region, when composed of shell material doped with about 1% copper (by atom), reaches temperatures of about 2 keV, while undoped mixed regions reach about 3 keV. Based on the yield from these implosions, we estimate the thickness of CD that mixed into the gas as between about 0.25 and 0.43 μm of the inner capsule surface, corresponding to about 5 to 9 μg of material. Using 5 atm of tritium as the fill gas should result in over 1013 DT neutrons being produced, which is sufficient for neutron imaging [5].

  7. Quantum Chemical Studies of Actinides and Lanthanides: From Small Molecules to Nanoclusters

    NASA Astrophysics Data System (ADS)

    Vlaisavljevich, Bess

    Research into actinides is of high interest because of their potential applications as an energy source and for the environmental implications therein. Global concern has arisen since the development of the actinide concept in the 1940s led to the industrial scale use of the commercial nuclear energy cycle and nuclear weapons production. Large quantities of waste have been generated from these processes inspiring efforts to address fundamental questions in actinide science. In this regard, the objective of this work is to use theory to provide insight and predictions into actinide chemistry, where experimental work is extremely challenging because of the intrinsic difficulties of the experiments themselves and the safety issues associated with this type of chemistry. This thesis is a collection of theoretical studies of actinide chemistry falling into three categories: quantum chemical and matrix isolation studies of small molecules, the electronic structure of organoactinide systems, and uranyl peroxide nanoclusters and other solid state actinide compounds. The work herein not only spans a wide range of systems size but also investigates a range of chemical problems. Various quantum chemical approaches have been employed. Wave function-based methods have been used to study the electronic structure of actinide containing molecules of small to middle-size. Among these methods, the complete active space self consistent field (CASSCF) approach with corrections from second-order perturbation theory (CASPT2), the generalized active space SCF (GASSCF) approach, and Moller-Plesset second-order perturbation theory (MP2) have been employed. Likewise, density functional theory (DFT) has been used along with analysis tools like bond energy decomposition, bond orders, and Bader's Atoms in Molecules. From these quantum chemical results, comparison with experimentally obtained structures and spectra are made.

  8. Satellite Characterization of Biomass Burning: Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscope Study of Combustion Experiments

    NASA Astrophysics Data System (ADS)

    Padilla, D.; Steiner, J. C.

    2005-12-01

    Fourier Transform Infrared (FTIR) examination of the combustion products of selected forest materials using a meeker burner flame at temperatures up to 500 degrees Celsius produces a cluster of broad distinct peaks throughout the 400 to 4000 cm-1 wavenumber interval. Distinct bands bracketed by wavenumbers 400-700, 1500-1700, 2200-2400 and 3300-3600 cm-1 show variable intensity with an average difference between the least absorbing and most strongly absorbing species of approximately fifty percent. Given that spectral band differences of ten percent are within the range of modern satellite spectrometers, these band differences are of potential value for discriminating between fires that are impacting a range of vegetation types. Corresponding scanning electron microscope and energy dispersive micro-chemical (SEM/ED) analysis establishes that the evolved soot particles exhibit a characteristic rounded morphology, are carbon rich and host a wide range of adsorbed elements, including calcium, aluminum, potassium, silicon, sulfur and trace nitrogen. Combustion experiments involving leaves and branches as a subset of the biomass experiments at 200-500 degrees Celsius yield a similar broad background, but with peak shifts for maxima residing at less than 1700 cm-1. Additional peaks appear in the ranges 1438-1444, 875 and 713 cm-1. These peak are of potential use for discriminating between hot and smoldering fires, and between soot and smoke yields from green woods and whole-wood or lumber. The spectral shifts noted for low temperature smoldering conditions are in the vicinity of those cited for green vegetation and may not be resolved by present satellite platforms. Nevertheless, the experimental peak data set is of potential use for discriminating between a conflagration or accentuated fire and one characterized by smoldering at low temperature. SEM/ED analysis of the combusted leaf, branch, bark and various crown assemblages yields comparable morphological and

  9. Droplet burning at zero G

    NASA Technical Reports Server (NTRS)

    Williams, F. A.

    1978-01-01

    Questions of the importance and feasibility of performing experiments on droplet burning at zero gravity in Spacelab were studied. Information on the physics and chemistry of droplet combustion, with attention directed specifically to the chemical kinetics, heat and mass transfer, and fluid mechanics of the phenomena involved, are presented. The work was divided into three phases, the justification, the feasibility, and the conceptual development of a preliminary design. Results from the experiments performed revealed a few new facts concerning droplet burning, notably burning rates in excess of theoretical prediction and a phenomenon of flash extinction, both likely traceable to accumulation of carbon produced by gas-phase pyrolysis in the fuel-rich zone enclosed by the reaction surface. These experiments also showed that they were primarily due to timing difficulties.

  10. Nepal Ambient Monitoring and Source Testing Experiment (NAMaSTE): Emissions of particulate matter from wood and dung cooking fires, brick kilns, generators, trash and crop residue burning

    NASA Astrophysics Data System (ADS)

    Stone, Elizabeth; Jayarathne, Thilina; Stockwell, Chelsea; Christian, Ted; Bhave, Prakash; Siva Praveen, Puppala; Panday, Arnico; Adhikari, Sagar; Maharjan, Rashmi; Goetz, Doug; DeCarlo, Peter; Saikawa, Eri; Yokelson, Robert

    2016-04-01

    The Nepal Ambient Monitoring and Source Testing Experiment (NAMASTE) field campaign targeted the in situ characterization of widespread and under-sampled combustion sources. In Kathmandu and the Terai, southern Nepal's flat plains, samples of fine particulate matter (PM2.5) were collected from wood and dung cooking fires (n = 22), generators (n = 2), groundwater pumps (n = 2), clamp kilns (n = 3), zig-zag kilns (n = 3), trash burning (n = 4), one heating fire, and one crop residue fire. Co-located measurements of carbon dioxide, carbon monoxide, and volatile organic compounds allowed for the application of the carbon mass balance approach to estimate emission factors for PM2.5, elemental carbon, organic carbon, and water-soluble inorganic ions. Organic matter was chemically speciated using gas chromatography - mass spectrometry for polycyclic aromatic hydrocarbons, sterols, n-alkanes, hopanes, steranes, and levoglucosan, which accounted for 2-8% of the measured organic carbon. These data were used to develop molecular-marker based profiles for use in source apportionment modeling. This study provides quantitative emission factors for particulate matter and its constituents for many important combustion sources in Nepal and South Asia.

  11. Detection of Actinides via Nuclear Isomer De-Excitation

    SciTech Connect

    Francy, Christopher J.

    2009-07-01

    This dissertation discusses a data collection experiment within the Actinide Isomer Identification project (AID). The AID project is the investigation of an active interrogation technique that utilizes nuclear isomer production, with the goal of assisting in the interdiction of illicit nuclear materials. In an attempt to find and characterize isomers belonging to 235U and its fission fragments, a 232Th target was bombarded with a monoenergetic 6Li ion beam, operating at 45 MeV.

  12. Experimental and simulated assay of actinides in a real waste package

    NASA Astrophysics Data System (ADS)

    Saurel, N.; Capdevila, J. M.; Huot, N.; Gmar, M.

    2005-09-01

    The non-destructive control of nuclear wastes is important for their management and the non-proliferation. Among the methods using the nuclear radiation as an investigation, the Instrumental Photon Activation Analysis (IPAA) seems to be a promising way to quantify the masses of actinides present in bulky packages of nuclear waste. The IPAA method consists in irradiating actinides with photons of high energy to produce photofission reactions. The counting of the delayed neutrons, produced by these photofission reactions, allows to locate and to quantify the mass of actinides by tomography. At this end, we use a simulation tool named OPERA to obtain the information necessary for the tomographic restitution and an experimental installation based on a LINear ACcelerator (LINAC) to perform the measurements. The high-energy photons (11 MeV) are produced by Bremsstrahlung, thanks to a tungsten target placed in front of the LINAC. In this paper, we present the first experimental results obtained on a real package of nuclear waste. We establish that, for this waste package, the limit of detection, in terms of mass of actinides, is about 1 g. Furthermore, these results show the good agreement between the experiment and the simulation that provides a localization of actinides by tomography.

  13. Nonaqueous method for dissolving lanthanide and actinide metals

    DOEpatents

    Crisler, L.R.

    1975-11-11

    Lanthanide and actinide beta-diketonate complex molecular compounds are produced by reacting a beta-diketone compound with a lanthanide or actinide element in the elemental metallic state in a mixture of carbon tetrachloride and methanol.

  14. TUCS/phosphate mineralization of actinides

    SciTech Connect

    Nash, K.L.

    1997-10-01

    This program has as its objective the development of a new technology that combines cation exchange and mineralization to reduce the concentration of heavy metals (in particular actinides) in groundwaters. The treatment regimen must be compatible with the groundwater and soil, potentially using groundwater/soil components to aid in the immobilization process. The delivery system (probably a water-soluble chelating agent) should first concentrate the radionuclides then release the precipitating anion, which forms thermodynamically stable mineral phases, either with the target metal ions alone or in combination with matrix cations. This approach should generate thermodynamically stable mineral phases resistant to weathering. The chelating agent should decompose spontaneously with time, release the mineralizing agent, and leave a residue that does not interfere with mineral formation. For the actinides, the ideal compound probably will release phosphate, as actinide phosphate mineral phases are among the least soluble species for these metals. The most promising means of delivering the precipitant would be to use a water-soluble, hydrolytically unstable complexant that functions in the initial stages as a cation exchanger to concentrate the metal ions. As it decomposes, the chelating agent releases phosphate to foster formation of crystalline mineral phases. Because it involves only the application of inexpensive reagents, the method of phosphate mineralization promises to be an economical alternative for in situ immobilization of radionuclides (actinides in particular). The method relies on the inherent (thermodynamic) stability of actinide mineral phases.

  15. Partitioning of actinides from high-level waste streams of Purex process using mixtures of CMPO and TBP in dodecane

    SciTech Connect

    Mathur, J.N.; Murali, M.S.; Natarajan, P.R.; Badheka, L.P.; Banerji, A.; Ramanujam, A.; Dhami, P.S.; Gopalakrishnan, V.; Dhumwad, R.K.; Rao, M.K. )

    1993-01-01

    The extraction of actinides from high active aqueous raffinate waste (HAW) as well as high-level waste (HLW) solutions arising from Purex processing of thermal reactor fuels has been studied using a mixture of octyl(phenyl)-N,N-diisobutylcarbamoyl-methylphosphine oxide (CMPO) and TBP in dodecane. The results on the extraction and stripping of actinides, lanthanides, and other fission products are discussed. Optimum conditions are proposed for the efficient recovery of residual actinides from HAW and HLW streams by CMPO extraction followed by their selective stripping with suitable reagents. Experiments on the extraction and separation of actinides and lanthanides by CMPO in the presence of TBP in dodecane have also been carried out with U(VI) and Nd(III) to arrive at the limiting conditions for avoiding third-phase formation.

  16. Coyote series data report LLNL/NWC 1981 LNG spill tests dispersion, vapor burn, and rapid-phase-transition. Volume 1. [7 experiments with liquefied natural gas, 2 with liquid methane, and one with liquid nitrogen

    SciTech Connect

    Goldwire, H.C. Jr.; Rodean, H.C.; Cederwall, R.T.; Kansa, E.J.; Koopman, R.P.; McClure, J.W.; McRae, T.G.; Morris, L.K.; Kamppinen, L.; Kiefer, R.D.

    1983-10-01

    The Coyote series of liquefied natural gas (LNG) spill experiments was performed at the Naval Weapons Center (NWC), China Lake, California, during the summer and fall of 1981. These tests were a joint effort of the Lawrence Livermore National Laboratory (LLNL) and the NWC and were sponsored by the US Department of Energy (DOE) and the Gas Research Institute. There were ten Coyote experiments, five primarily for the study of vapor dispersion and burning vapor clouds, and five for investigating the occurrence of rapid-phase-transition (RPT) explosions. Each of the last four of the five RPT tests consisted of a series of three spills. Seven experiments were with LNG, two were with liquid methane (LCH/sub 4/), and one was with liquid nitrogen (LN/sub 2/). Three arrays of instrumentation were deployed. An array of RPT diagnostic instruments was concentrated at the spill pond and was operated during all of the tests, vapor burn as well as RPT. The wind-field array was operated during the last nine experiments to define the wind direction and speed in the area upwind and downwind of the spill pond. The gas-dispersion array was deployed mostly downwind of the spill pond to measure gas concentration, humidity, temperature, ground heat flux, infrared (IR) radiation, and flame-front passage during three of the vapor dispersion and burn experiments (Coyotes 3, 5, and 6). High-speed color motion pictures were taken during every test, and IR imagery (side and overhead) was obtained during some vapor-burn experiments. Data was obtained by radiometers during Coyotes 3, 6, and 7. This report presents a comprehensive selection of the data obtained. It does not include any data analysis except that required to determine the test conditions and the reliability of the data. Data analysis is to be reported in other publications. 19 references, 76 figures, 13 tables.

  17. Preparation of minor actinides targets or blankets by means of ionic exchange resin

    NASA Astrophysics Data System (ADS)

    Picart, S.; Mokhtari, H.; Ramière, I.; Jobelin, I.

    2010-03-01

    The conversion of minor actinides to fuel starting materials for transmutation in a closed nuclear cycle is a big challenge for the next decades and the development of Gen(IV) nuclear systems. Conversion routes are numerous, but one needs to prove that they can be adapted to handle minor actinides. One of them is called the resin process and is particularly attractive because it stands for a "dustless" process as it produces microspheres of oxide or carbide after thermal treatment of the loaded resin. The study presented herein focuses on the experiments and tests which enable us to optimize the fixation of minor actinides onto ionic exchange resin and their carbonization into oxide type materials.

  18. Ultratrace analysis of transuranic actinides by laser-induced fluorescence

    DOEpatents

    Miller, S.M.

    1983-10-31

    Ultratrace quantities of transuranic actinides are detected indirectly by their effect on the fluorescent emissions of a preselected fluorescent species. Transuranic actinides in a sample are coprecipitated with a host lattice material containing at least one preselected fluorescent species. The actinide either quenches or enhances the laser-induced fluorescence of the preselected fluorescent species. The degree of enhancement or quenching is quantitatively related to the concentration of actinide in the sample.

  19. Ultratrace analysis of transuranic actinides by laser-induced fluorescence

    DOEpatents

    Miller, Steven M.

    1988-01-01

    Ultratrace quantities of transuranic actinides are detected indirectly by their effect on the fluorescent emissions of a preselected fluorescent species. Transuranic actinides in a sample are coprecipitated with a host lattice material containing at least one preselected fluorescent species. The actinide either quenches or enhances the laser-induced fluorescence of the preselected fluorescent species. The degree of enhancement or quenching is quantitatively related to the concentration of actinide in the sample.

  20. U.S./EURATOM INERI - Development of Inert Matrix Fuels for Plutonium and Minor Actinide Management in LWRs -- Fuel Requirements and Down-Select Report

    SciTech Connect

    William Carmack; Randy Fielding; Pavel Medvedev; Mitch Meyer

    2005-08-01

    This report documents the first milestone of the International Nuclear Energy Research Initiative (INERI) U.S./Canada Joint Proposal entitled “Development of Inert Matrix Fuels for Plutonium and Minor Actinide Management in Power Reactors.” The milestone represents the assessment and preliminary study of a variety of fuels that hold promise as transmutation and minor actinide burning fuel compositions for light water reactors. The most promising fuels of interest to the participants on this INERI program have been selected for further study. These fuel compositions are discussed in this report.

  1. AECL/U.S. INERI - Development of Inert Matrix Fuels for Plutonium and Minor Actinide Management in Power Reactors Fuel Requirements and Down-Select Report

    SciTech Connect

    William Carmack; Randy Fielding; Pavel Medvedev; Mitch Meyer

    2005-08-01

    This report documents the first milestone of the International Nuclear Energy Research Initiative (INERI) U.S./Euratom Joint Proposal 1.8 entitled “Development of Inert Matrix Fuels for Plutonium and Minor Actinide Management in Light-Water Reactors.” The milestone represents the assessment and preliminary study of a variety of fuels that hold promise as transmutation and minor actinide burning fuel compositions for light-water reactors. The most promising fuels of interest to the participants on this INERI program have been selected for further study. These fuel compositions are discussed in this report.

  2. Complexation of Actinides in Solution: Thermodynamic Measurementsand Structural Characterization

    SciTech Connect

    Rao, L.

    2007-02-01

    This paper presents a brief introduction of the studies of actinide complexation in solution at Lawrence Berkeley National Laboratory. An integrated approach of thermodynamic measurements and structural characterization is taken to obtain fundamental understanding of actinide complexation in solution that is of importance in predicting the behavior of actinides in separation processes and environmental transport.

  3. The Actinide-Lanthanide Separation Process

    SciTech Connect

    Lumetta, Gregg J.; Gelis, Artem V.; Carter, Jennifer C.; Niver, Cynthia M.; Smoot, Margaret R.

    2014-02-21

    The Actinide-Lanthanide SEParation (ALSEP) process is described. The process uses an extractant phase consisting of either N,N,N',N'-tetraoctyldiglycolamide (TODGA) or N,N,N',N'-tetra(2 ethylhexyl)diglycolamide (T2EHDGA) combined with 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester (HEH[EHP]). The neutral TODGA or T2EHDGA serves to co-extract the trivalent actinide and lanthanide ions from nitric acid media. Switching the aqueous phase chemistry to a citrate buffered diethylenetriaminepentaacetic acid (DTPA) solution at pH 2.5 to 4 results in selective transfer of the actinides to the aqueous phase, thus resulting in separation of these two groups of elements.

  4. THEORY FOR THE XPS OF ACTINIDES

    SciTech Connect

    Bagus, Paul S.; Ilton, Eugene S.

    2013-08-01

    Two aspects of the electronic structure of actinide oxides that significantly affect the XPS spectra are described; these aspects are also important for the materials properties of the oxides. The two aspects considered are: (1) The spin-orbit coupling of the open 5f shell electrons in actinide cations and how this coupling affects the electronic structure. And, (2) the covalent character of the metal oxygen interaction in actinide compounds. Because of this covalent character, there are strong departures from the nominal oxidation states that are significantly larger in core-hole states than in the ground state. The consequences for the XPS of this covalent character are examined. A proper understanding of the way in which they influence the XPS makes it possible to use the XPS to correctly characterize the electronic structure of the oxides.

  5. Actinide separations by supported liquid membranes

    SciTech Connect

    Danesi, P.R.; Horwitz, E.P.; Rickert, P.; Chiarizia, R.

    1984-01-01

    The work has demonstrated that actinide removal from synthetic waste solutions using both flat-sheet and hollow-fiber SLM's is a feasible chemical process at the laboratory scale level. The process is characterized by the typical features of SLM's processes: very small quantities of extractant required; the potential for operations with high feed/strip volume ratios, resulting in a corresponding concentration factor of the actinides; and simplicity of operation. Major obstacles to the implementation of the SLM technology to the decontamination of liquid nuclear wastes are the probable low resistance of polypropylene supports to high radiation fields, which may prevent the application to high-level nuclear wastes; the unknown lifetime of the SLM; and the high Na content of the separated actinide solution.

  6. Microbial effects on sorption and transport of actinides in tuff samples from the Nevada Test Site and soils from McGuire AFB, NJ

    NASA Astrophysics Data System (ADS)

    Fisher, J. C.; Gostic, R.; Gostic, J.; Czerwinski, K.; Moser, D. P.

    2009-12-01

    The sorption and behavior of various actinides were examined for two sets of environmental samples. The Nevada Test Site (NTS) harbors a variety of radionuclides resulting from atomic weapons testing from the 1950s-1990s. Modeling the transport of radionuclides at the NTS is difficult because each detonation cavity is a unique environment with distinct hydrologic characteristics, chemical composition, and microbial community structure. McGuire AFB was the site of an explosion that resulted in the burning of a BOMARC nuclear missile and deposition of particles containing high-fired oxides of Am, Pu, and U in soils on the base. Analysis of the NTS samples focused on sorption/desorption of 233-U and 241-Am in the presence/absence of bacteria, and work on the BOMARC cores addressed the potential role of microorganisms in mediating particle degradation and movement. Batch experiments with various NTS tuff samples and strains of bacteria showed that sorption of actinides may be enhanced by >25% under certain conditions by bacteria. Sorption of 233-U was highly dependent on carbonate concentrations in the liquid matrix, while 241-Am was unaffected. Different bacterial species also affected sorption differently. Sorption kinetics for both actinides were rapid, with maximum sorption usually occurring within 4 hours. Actinides bound tightly to tuff and little desorption occurred in carbonate-free batch experiments. Column experiments showed that bacterial cultures in minimal salts buffer desorbed significantly more 233-U from tuff than low carbonate NTS water, but less than 30 mM bicarbonate buffer. Hot particles in the BOMARC cores were located using CT mapping and were extracted from the soil prior to analysis of core sections by gamma spectroscopy. Subcores for DNA extraction and culturing were collected from soil in direct contact with hot particles. The extracted particles consisted of a mixture of weapons-grade Pu, 241-Am and 235-U and ranged in activity from 5-66 k

  7. Actinide Lanthanide Separation Process – ALSEP

    SciTech Connect

    Gelis, Artem V.; Lumetta, Gregg J.

    2014-01-29

    Separation of the minor actinides (Am, Cm) from the lanthanides at an industrial scale remains a significant technical challenge for closing the nuclear fuel cycle. To increase the safety of used nuclear fuel (UNF) reprocessing, as well as reduce associated costs, a novel solvent extraction process has been developed. The process allows for partitioning minor actinides, lanthanides and fission products following uranium/plutonium/neptunium removal; minimizing the number of separation steps, flowsheets, chemical consumption, and waste. This new process, Actinide Lanthanide SEParation (ALSEP), uses an organic solvent consisting of a neutral diglycolamide extractant, either N,N,N',N'-tetra(2 ethylhexyl)diglycolamide (T2EHDGA) or N,N,N',N'-tetraoctyldiglycolamide (TODGA), and an acidic extractant 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester (HEH[EHP]), dissolved in an aliphatic diluent (e.g. n-dodecane). The An/Ln co-extraction is conducted from moderate-to-strong nitric acid, while the selective stripping of the minor actinides from the lanthanides is carried out using a polyaminocarboxylic acid/citrate buffered solution at pH anywhere between 3 and 4.5. The extraction and separation of the actinides from the fission products is very effective in a wide range of HNO3 concentrations and the minimum separation factors for lanthanide/Am exceed 30 for Nd/Am, reaching > 60 for Eu/Am under some conditions. The experimental results presented here demonstrate the great potential for a combined system, consisting of a neutral extractant such as T2EHDGA or TODGA, and an acidic extractant such as HEH[EHP], for separating the minor actinides from the lanthanides.

  8. The gastrointestinal absorption of the actinide elements.

    PubMed

    Harrison, J D

    1991-03-01

    The greatest uncertainty in dose estimates for the ingestion of long-lived, alpha-emitting isotopes of the actinide elements is in the values used for their fractional absorption from the gastrointestinal tract (f1 values). Recent years have seen a large increase in the available data on actinide absorption. Human data are reviewed here, together with animal data, to illustrate the effect on absorption of chemical form, incorporation into food materials, fasting and other dietary factors, and age at ingestion. The f1 values recommended by the International Commission on Radiological Protection, by an Expert Group of the Nuclear Energy Agency and by the National Radiological Protection Board are discussed.

  9. Elevated concentrations of actinides in mono lake.

    PubMed

    Anderson, R F; Bacon, M P; Brewer, P G

    1982-04-30

    Tetravalent thorium, pentavalent protactinium, hexavalent uranium, and plutonium (oxidation state uncertain) are present in much higher concentrations in Mono Lake, a saline, alkaline lake in eastern central California, than in seawater. Low ratios of actinium to protactinium and of americium to plutonium indicate that the concentrations of trivalent actinides are not similarly enhanced. The elevated concentrations of the ordinarily very insoluble actinides are maintained in solution by natural ligands, which inhibit their chemical removal from the water column, rather than by an unusually large rate of supply.

  10. Elevated concentrations of actinides in mono lake.

    PubMed

    Anderson, R F; Bacon, M P; Brewer, P G

    1982-04-30

    Tetravalent thorium, pentavalent protactinium, hexavalent uranium, and plutonium (oxidation state uncertain) are present in much higher concentrations in Mono Lake, a saline, alkaline lake in eastern central California, than in seawater. Low ratios of actinium to protactinium and of americium to plutonium indicate that the concentrations of trivalent actinides are not similarly enhanced. The elevated concentrations of the ordinarily very insoluble actinides are maintained in solution by natural ligands, which inhibit their chemical removal from the water column, rather than by an unusually large rate of supply. PMID:17735740

  11. Systematization of actinides using cluster analysis

    SciTech Connect

    Kopyrin, A.A.; Terent`eva, T.N.; Khramov, N.N.

    1994-11-01

    A representation of the actinides in multidimensional property space is proposed for systematization of these elements using cluster analysis. Literature data for their atomic properties are used. Owing to the wide variation of published ionization potentials, medians are used to estimate them. Vertical dendograms are used for classification on the basis of distances between the actinides in atomic-property space. The properties of actinium and lawrencium are furthest removed from the main group. Thorium and mendelevium exhibit individualized properties. A cluster based on the einsteinium-fermium pair is joined by californium.

  12. Strong correlations in actinide redox reactions.

    PubMed

    Horowitz, S E; Marston, J B

    2011-02-14

    Reduction-oxidation (redox) reactions of the redox couples An(VI)/An(V), An(V)/An(IV), and An(IV)/An(III), where An is an element in the family of early actinides (U, Np, and Pu), as well as Am(VI)/Am(V) and Am(V)/Am(III), are modeled by combining density functional theory with a generalized Anderson impurity model that accounts for the strong correlations between the 5f electrons. Diagonalization of the Anderson impurity model yields improved estimates for the redox potentials and the propensity of the actinide complexes to disproportionate.

  13. Strong correlations in actinide redox reactions

    NASA Astrophysics Data System (ADS)

    Horowitz, S. E.; Marston, J. B.

    2011-02-01

    Reduction-oxidation (redox) reactions of the redox couples An(VI)/An(V), An(V)/An(IV), and An(IV)/An(III), where An is an element in the family of early actinides (U, Np, and Pu), as well as Am(VI)/Am(V) and Am(V)/Am(III), are modeled by combining density functional theory with a generalized Anderson impurity model that accounts for the strong correlations between the 5f electrons. Diagonalization of the Anderson impurity model yields improved estimates for the redox potentials and the propensity of the actinide complexes to disproportionate.

  14. Stability of tetravalent actinides in perovskites

    SciTech Connect

    Williams, C.W.; Morss, L.R.; Choi, I.K.

    1983-01-01

    This paper reports the first determination of the enthalpy of formation of a complex actinide(IV) oxide: ..delta..H/sup 0//sub f/ (BaUO/sub 3/, s, 298 K) = -1690 +- 10 kJ mol/sup -1/. The preparation and properties of this and other actinide(IV) complex oxides are described and are compared with other perovskites BaMO/sub 3/. The relative stabilities of tetravalent and hexavalent uranium in various environments are compared in terms of the oxidation-reduction behavior of uranium in geological nuclear waste storage media; in perovskite, uranium(IV) is very unstable in comparison with uranium(VI).

  15. Laboratory actinide partitioning - Whitlockite/liquid and influence of actinide concentration levels

    NASA Technical Reports Server (NTRS)

    Benjamin, T. M.; Jones, J. H.; Heuser, W. R.; Burnett, D. S.

    1983-01-01

    The partition coefficients between synthetic whitlockite (beta Ca-phosphate) and coexisting silicate melts are determined for the actinide elements Th, U and Pu. Experiments were performed at 1 bar pressure and 1250 C at oxygen fugacities from 10 to the -8.5 to 10 to the -0.7 bars, and partitioning was determined from trace element radiography combined with conventional electron microprobe analysis. Results show Pu to be more readily incorporated into crystalline phases than U or Th under reducing conditions, which is attributed to the observation that Pu exists primarily in the trivalent state, while U and Th are tetravalent. Corrected partition coefficients for whitlockite of 3.6, less than or equal to 0.6, 1.2, 0.5 and less than or equal to 0.002 are estimated for Pu(+3), Pu(+4), Th(+4), U(+4) and U(+6), respectively. Experiments performed at trace levels and percent levels of UO2 indicate that Si is involved in U substitution in whitlockite, and show a reduced partition coefficient at higher concentrations of U that can be explained by effects on melt structure or the fraction of tetravalent U.

  16. Clinical forensic evidence in burns: rescuer burns.

    PubMed

    Kumar, Pramod; Gopal, Kirun; Ramnani, Sunil

    2006-12-01

    In the literature no systematic study is available on rescuer burn for victims of burn injury. This is a retrospective study of nine patients (five admitted and four outpatients) were treated in this hospital as rescuer burns in 3.5 years. All nine patients were males. Average age of the patient treated on outpatient basis was 47 years (ranging between 44 and 52) and total burn area ranged for 1-4%. Average age of the five patients treated on inpatient basis was 32.6 years (ranging between 30 and 34). The total burn area ranged from 14.5 to 38%. During the period of study, in addition to nine rescuer burns, one patient sustained burn before the rescue attempt due to the victim hugging the rescuer. Based on the study of patterns of burn, these patients were found to have three grades of burn injury: Grade 1--upper extremity involvement only. (A) only one upper extremity involvement, (B) both upper extremities involvement, Grade 2--upper extremity/extremities and face involvement, Grade 3--upper extremity/extremities, face-neck, adjacent chest and lower extremity involvement. PMID:17011132

  17. Factors Affecting the Stability of Matrix Materials for Actinides Transmutation and Conditioning

    SciTech Connect

    Rondinella, Vincenzo V.; Wiss, Thierry A.; Hiernaut, J-P; Lutique, Stphanie; Raison, P.; Staicu, D.; Weber, William J.; Fanghanel, T.

    2008-12-01

    The minimization of the long-term radiotoxicity of high level nuclear waste is an important criterion adopted for the development of advanced fuel cycles for the new generations of nuclear reactors. Pu recycling as fuel, and transmutation of Minor Actinides (MA: Np, Am, and in some concepts also Cm) in reactors and/or MA burners are the steps considered to achieve this goal. U-free compounds are considered as matrices for Pu, MA burning. In some cases, these matrices are envisaged also for the conditioning and immobilization of radionuclides in final disposal concepts. The list of properties of a good inert matrix includes good chemical compatibility with the actinides, easy and economical processes of fabrication and, if required, reprocessing, and good thermo-mechanical performance in-pile, in terms of thermal transport, swelling and high temperature stability. In addition, the material must retain the good properties under the cumulative effect of radiation damage, and fission product accumulation. Since good radiation resistance materials usually exhibit poor thermal transport, in some concepts the actinides are stabilized in a host phase (e.g. zirconia) dispersed in a high thermal conductivity matrix (either ceramic or metallic).

  18. Uncertainty analysis of thermocouple measurements used in normal and abnormal thermal environment experiments at Sandia's Radiant Heat Facility and Lurance Canyon Burn Site.

    SciTech Connect

    Nakos, James Thomas

    2004-04-01

    It would not be possible to confidently qualify weapon systems performance or validate computer codes without knowing the uncertainty of the experimental data used. This report provides uncertainty estimates associated with thermocouple data for temperature measurements from two of Sandia's large-scale thermal facilities. These two facilities (the Radiant Heat Facility (RHF) and the Lurance Canyon Burn Site (LCBS)) routinely gather data from normal and abnormal thermal environment experiments. They are managed by Fire Science & Technology Department 09132. Uncertainty analyses were performed for several thermocouple (TC) data acquisition systems (DASs) used at the RHF and LCBS. These analyses apply to Type K, chromel-alumel thermocouples of various types: fiberglass sheathed TC wire, mineral-insulated, metal-sheathed (MIMS) TC assemblies, and are easily extended to other TC materials (e.g., copper-constantan). Several DASs were analyzed: (1) A Hewlett-Packard (HP) 3852A system, and (2) several National Instrument (NI) systems. The uncertainty analyses were performed on the entire system from the TC to the DAS output file. Uncertainty sources include TC mounting errors, ANSI standard calibration uncertainty for Type K TC wire, potential errors due to temperature gradients inside connectors, extension wire uncertainty, DAS hardware uncertainties including noise, common mode rejection ratio, digital voltmeter accuracy, mV to temperature conversion, analog to digital conversion, and other possible sources. Typical results for 'normal' environments (e.g., maximum of 300-400 K) showed the total uncertainty to be about {+-}1% of the reading in absolute temperature. In high temperature or high heat flux ('abnormal') thermal environments, total uncertainties range up to {+-}2-3% of the reading (maximum of 1300 K). The higher uncertainties in abnormal thermal environments are caused by increased errors due to the effects of imperfect TC attachment to the test item. 'Best

  19. MINOR ACTINIDE SEPARATIONS USING ION EXCHANGERS OR IONIC LIQUIDS

    SciTech Connect

    Hobbs, D.; Visser, A.; Bridges, N.

    2011-09-20

    This project seeks to determine if (1) inorganic-based ion exchange materials or (2) electrochemical methods in ionic liquids can be exploited to provide effective Am and Cm separations. Specifically, we seek to understand the fundamental structural and chemical factors responsible for the selectivity of inorganic-based ion-exchange materials for actinide and lanthanide ions. Furthermore, we seek to determine whether ionic liquids can serve as the electrolyte that would enable formation of higher oxidation states of Am and other actinides. Experiments indicated that pH, presence of complexants and Am oxidation state exhibit significant influence on the uptake of actinides and lanthanides by layered sodium titanate and hybrid zirconium and tin phosphonate ion exchangers. The affinity of the ion exchangers increased with increasing pH. Greater selectivity among Ln(III) ions with sodium titanate materials occurs at a pH close to the isoelectric potential of the ion exchanger. The addition of DTPA decreased uptake of Am and Ln, whereas the addition of TPEN generally increases uptake of Am and Ln ions by sodium titanate. Testing confirmed two different methods for producing Am(IV) by oxidation of Am(III) in ionic liquids (ILs). Experimental results suggest that the unique coordination environment of ionic liquids inhibits the direct electrochemical oxidation of Am(III). The non-coordinating environment increases the oxidation potential to a higher value, while making it difficult to remove the inner coordination of water. Both confirmed cases of Am(IV) were from the in-situ formation of strong chemical oxidizers.

  20. Prompt Fission Neutron Spectra of Actinides

    SciTech Connect

    Capote, R; Chen, Y J; Hambsch, F J; Kornilov, N V; Lestone, J P; Litaize, O; Morillon, B; Neudecker, D; Oberstedt, S; Ohsawa, T; Smith, D. L.

    2016-01-01

    The energy spectrum of prompt neutrons emitted in fission (PFNS) plays a very important role in nuclear science and technology. A Coordinated Research Project (CRP) “Evaluation of Prompt Fission Neutron Spectra of Actinides”was established by the IAEA Nuclear Data Section in 2009, with the major goal to produce new PFNS evaluations with uncertainties for actinide nuclei. The following technical areas were addressed: (i) experiments and uncertainty quantification (UQ): New data for neutron-induced fission of 233U, 235U, 238U, and 239Pu have been measured, and older data have been compiled and reassessed. There is evidence from the experimental work of this CRP that a very small percentage of neutrons emitted in fission are actually scission neutrons; (ii) modeling: The Los Alamos model (LAM) continues to be the workhorse for PFNS evaluations. Monte Carlo models have been developed that describe the fission phenomena microscopically, but further development is needed to produce PFNS evaluations meeting the uncertainty targets; (iii) evaluation methodologies: PFNS evaluations rely on the use of the least-squares techniques for merging experimental and model data. Considerable insight was achieved on how to deal with the problem of too small uncertainties in PFNS evaluations. The importance of considering that all experimental PFNS data are “shape” data was stressed; (iv) PFNS evaluations: New evaluations, including covariance data, were generated for major actinides including 1) non-model GMA evaluations of the 235U(nth,f), 239Pu(nth,f), and 233U(nth,f) PFNS based exclusively on experimental data (0.02 ≤ E ≤ 10 MeV), which resulted in PFNS average energies E of 2.00±0.01, 2.073±0.010, and 2.030±0.013 MeV, respectively; 2) LAM evaluations of neutron-induced fission spectra on uranium and plutonium targets with improved UQ for incident energies from thermal up to 30 MeV; and 3) Point-by-Point calculations for 232Th, 234U and 237Np targets; and (v) data

  1. Rapid determination of actinides in asphalt samples

    DOE PAGESBeta

    Maxwell, Sherrod L.; Culligan, Brian K.; Hutchison, Jay B.

    2014-01-12

    A new rapid method for the determination of actinides in asphalt samples has been developed that can be used in emergency response situations or for routine analysis If a radiological dispersive device (RDD), Improvised Nuclear Device (IND) or a nuclear accident such as the accident at the Fukushima Nuclear Power Plant in March, 2011 occurs, there will be an urgent need for rapid analyses of many different environmental matrices, including asphalt materials, to support dose mitigation and environmental clean up. The new method for the determination of actinides in asphalt utilizes a rapid furnace step to destroy bitumen and organicsmore » present in the asphalt and sodium hydroxide fusion to digest the remaining sample. Sample preconcentration steps are used to collect the actinides and a new stacked TRU Resin + DGA Resin column method is employed to separate the actinide isotopes in the asphalt samples. The TRU Resin plus DGA Resin separation approach, which allows sequential separation of plutonium, uranium, americium and curium isotopes in asphalt samples, can be applied to soil samples as well.« less

  2. Actinide measurements by AMS using fluoride matrices

    NASA Astrophysics Data System (ADS)

    Cornett, R. J.; Kazi, Z. H.; Zhao, X.-L.; Chartrand, M. G.; Charles, R. J.; Kieser, W. E.

    2015-10-01

    Actinides can be measured by alpha spectroscopy (AS), mass spectroscopy or accelerator mass spectrometry (AMS). We tested a simple method to separate Pu and Am isotopes from the sample matrix using a single extraction chromatography column. The actinides in the column eluent were then measured by AS or AMS using a fluoride target matrix. Pu and Am were coprecipitated with NdF3. The strongest AMS beams of Pu and Am were produced when there was a large excess of fluoride donor atoms in the target and the NdF3 precipitates were diluted about 6-8 fold with PbF2. The measured concentrations of 239,240Pu and 241Am agreed with the concentrations in standards of known activity and with two IAEA certified reference materials. Measurements of 239,240Pu and 241Am made at A.E. Lalonde AMS Laboratory agree, within their statistical uncertainty, with independent measurements made using the IsoTrace AMS system. This work demonstrated that fluoride targets can produce reliable beams of actinide anions and that the measurement of actinides using fluorides agree with published values in certified reference materials.

  3. Actinide Targets for Neutron Cross Section Measurements

    SciTech Connect

    John D. Baker; Christopher A. McGrath

    2006-10-01

    The Advanced Fuel Cycle Initiative (AFCI) and the Generation IV Reactor Initiative have demonstrated a lack of detailed neutron cross-sections for certain "minor" actinides, those other than the most common (235U, 238U, and 239Pu). For some closed-fuel-cycle reactor designs more than 50% of reactivity will, at some point, be derived from "minor" actinides that currently have poorly known or in some cases not measured (n,?) and (n,f) cross sections. A program of measurements under AFCI has begun to correct this. One of the initial hurdles has been to produce well-characterized, highly isotopically enriched, and chemically pure actinide targets on thin backings. Using a combination of resurrected techniques and new developments, we have made a series of targets including highly enriched 239Pu, 240Pu, and 242Pu. Thus far, we have electrodeposited these actinide targets. In the future, we plan to study reductive distillation to achieve homogeneous, adherent targets on thin metal foils and polymer backings. As we move forward, separated isotopes become scarcer, and safety concerns become greater. The chemical purification and electodeposition techniques will be described.

  4. Actinide valences in xenotime and monazite

    NASA Astrophysics Data System (ADS)

    Vance, E. R.; Zhang, Y.; McLeod, T.; Davis, J.

    2011-02-01

    Tetravalent U, Np and Pu can be substituted by ceramic methods into the rare earth site of xenotime and monazite in air atmospheres using Ca ions as charge compensators, while no evidence of penta- or hexavalent actinide ions was found. Some Pu 3+ and Np 3+ can be incorporated in xenotime samples fired in a reducing atmosphere.

  5. Rapid determination of actinides in asphalt samples

    SciTech Connect

    Maxwell, Sherrod L.; Culligan, Brian K.; Hutchison, Jay B.

    2014-01-12

    A new rapid method for the determination of actinides in asphalt samples has been developed that can be used in emergency response situations or for routine analysis If a radiological dispersive device (RDD), Improvised Nuclear Device (IND) or a nuclear accident such as the accident at the Fukushima Nuclear Power Plant in March, 2011 occurs, there will be an urgent need for rapid analyses of many different environmental matrices, including asphalt materials, to support dose mitigation and environmental clean up. The new method for the determination of actinides in asphalt utilizes a rapid furnace step to destroy bitumen and organics present in the asphalt and sodium hydroxide fusion to digest the remaining sample. Sample preconcentration steps are used to collect the actinides and a new stacked TRU Resin + DGA Resin column method is employed to separate the actinide isotopes in the asphalt samples. The TRU Resin plus DGA Resin separation approach, which allows sequential separation of plutonium, uranium, americium and curium isotopes in asphalt samples, can be applied to soil samples as well.

  6. The Complete Burning of Weapons Grade Plutonium and Highly Enriched Uranium with (Laser Inertial Fusion-Fission Energy) LIFE Engine

    SciTech Connect

    Farmer, J C; Diaz de la Rubia, T; Moses, E

    2008-12-23

    The National Ignition Facility (NIF) project, a laser-based Inertial Confinement Fusion (ICF) experiment designed to achieve thermonuclear fusion ignition and burn in the laboratory, is under construction at the Lawrence Livermore National Laboratory (LLNL) and will be completed in April of 2009. Experiments designed to accomplish the NIF's goal will commence in late FY2010 utilizing laser energies of 1 to 1.3 MJ. Fusion yields of the order of 10 to 20 MJ are expected soon thereafter. Laser initiated fusion-fission (LIFE) engines have now been designed to produce nuclear power from natural or depleted uranium without isotopic enrichment, and from spent nuclear fuel from light water reactors without chemical separation into weapons-attractive actinide streams. A point-source of high-energy neutrons produced by laser-generated, thermonuclear fusion within a target is used to achieve ultra-deep burn-up of the fertile or fissile fuel in a sub-critical fission blanket. Fertile fuels including depleted uranium (DU), natural uranium (NatU), spent nuclear fuel (SNF), and thorium (Th) can be used. Fissile fuels such as low-enrichment uranium (LEU), excess weapons plutonium (WG-Pu), and excess highly-enriched uranium (HEU) may be used as well. Based upon preliminary analyses, it is believed that LIFE could help meet worldwide electricity needs in a safe and sustainable manner, while drastically shrinking the nation's and world's stockpile of spent nuclear fuel and excess weapons materials. LIFE takes advantage of the significant advances in laser-based inertial confinement fusion that are taking place at the NIF at LLNL where it is expected that thermonuclear ignition will be achieved in the 2010-2011 timeframe. Starting from as little as 300 to 500 MW of fusion power, a single LIFE engine will be able to generate 2000 to 3000 MWt in steady state for periods of years to decades, depending on the nuclear fuel and engine configuration. Because the fission blanket in a fusion

  7. Burning Rate Emulator

    NASA Video Gallery

    The Burning Rate Emulator is a gas fuel investigation attempting to emulate the burning of solids to improve our understanding of materials''flammability over a wide range of conditions. The approa...

  8. First Aid: Burns

    MedlinePlus

    ... You can get burned by heat, fire, radiation, sunlight, electricity, chemicals or hot or boiling water. There ... skin. The burned area will be sensitive to sunlight for up to one year, so you should ...

  9. Burns and Fire Safety

    MedlinePlus

    ... common among older children. 5 6 7 8 • Tap water burns most often occur in the bathroom and ... Feldman KW, Schaller RT, Feldman JA, McMillon M. Tap water scald burns in children. Pediatrics. 1978; 62(1): ...

  10. American Burn Association

    MedlinePlus

    ... and Activities Educational Resources Prevention Posters Awards FAQs Burn Awareness Week About IAC Accomplishments IAC Members IAC ... About Verification Verification Step by Step ACS Resources Burn Chapter Verification Criteria - Effective 1/1/2017 New! ...

  11. Assessment of SFR fuel pin performance codes under advanced fuel for minor actinide transmutation

    SciTech Connect

    Bouineau, V.; Lainet, M.; Chauvin, N.; Pelletier, M.

    2013-07-01

    Americium is a strong contributor to the long term radiotoxicity of high activity nuclear waste. Transmutation by irradiation in nuclear reactors of long-lived nuclides like {sup 241}Am is, therefore, an option for the reduction of radiotoxicity and residual power packages as well as the repository area. In the SUPERFACT Experiment four different oxide fuels containing high and low concentrations of {sup 237}Np and {sup 241}Am, representing the homogeneous and heterogeneous in-pile recycling concepts, were irradiated in the PHENIX reactor. The behavior of advanced fuel materials with minor actinide needs to be fully characterized, understood and modeled in order to optimize the design of this kind of fuel elements and to evaluate its performances. This paper assesses the current predictability of fuel performance codes TRANSURANUS and GERMINAL V2 on the basis of post irradiation examinations of the SUPERFACT experiment for pins with low minor actinide content. Their predictions have been compared to measured data in terms of geometrical changes of fuel and cladding, fission gases behavior and actinide and fission product distributions. The results are in good agreement with the experimental results, although improvements are also pointed out for further studies, especially if larger content of minor actinide will be taken into account in the codes. (authors)

  12. FY2011 Annual Report for the Actinide Isomer Detection Project

    SciTech Connect

    Warren, Glen A.; Francy, Christopher J.; Ressler, Jennifer J.; Erikson, Luke E.; Tatishvili, Gocha; Hatarik, R.

    2011-10-01

    This project seeks to identify a new signature for actinide element detection in active interrogation. This technique works by exciting and identifying long-lived nuclear excited states (isomers) in the actinide isotopes and/or primary fission products. Observation of isomers in the fission products will provide a signature for fissile material. For the actinide isomers, the decay time and energy of the isomeric state is unique to a particular isotope, providing an unambiguous signature for SNM. This project entails isomer identification and characterization and neutron population studies. This document summarizes activities from its third year - completion of the isomer identification characterization experiments and initialization of the neutron population experiments. The population and decay of the isomeric state in 235U remain elusive, although a number of candidate gamma rays have been identified. In the course of the experiments, a number of fission fragment isomers were populated and measured [Ressler 2010]. The decays from these isomers may also provide a suitable signature for the presence of fissile material. Several measurements were conducted throughout this project. This report focuses on the results of an experiment conducted collaboratively by PNNL, LLNL and LBNL in December 2010 at LBNL. The measurement involved measuring the gamma-rays emitted from an HEU target when bombarded with 11 MeV neutrons. This report discussed the analysis and resulting conclusions from those measurements. There was one strong candidate, at 1204 keV, of an isomeric signature of 235U. The half-life of the state is estimated to be 9.3 {mu}s. The measured time dependence fits the decay time structure very well. Other possible explanations for the 1204-keV state were investigated, but they could not explain the gamma ray. Unfortunately, the relatively limited statistics of the measurement limit, and the lack of understanding of some of the systematic of the experiment, limit

  13. Pediatric Burn Resuscitation.

    PubMed

    Palmieri, Tina L

    2016-10-01

    Children have unique physiologic, physical, psychological, and social needs compared with adults. Although adhering to the basic tenets of burn resuscitation, resuscitation of the burned child should be modified based on the child's age, physiology, and response to injury. This article outlines the unique characteristics of burned children and describes the fundamental principles of pediatric burn resuscitation in terms of airway, circulatory, neurologic, and cutaneous injury management. PMID:27600126

  14. Learn Not To Burn.

    ERIC Educational Resources Information Center

    English, Nancy; Hendricks, Charlotte M.

    1997-01-01

    Describes the "Learn Not to Burn Preschool Program," a low-cost fire safety awareness and burn prevention curriculum for young children. The program promotes eight burn prevention methods--including practicing an escape plan--using developmentally appropriate learning objectives to increase children's fire safety knowledge, skill, and…

  15. First Aid: Burns

    MedlinePlus

    ... Story" 5 Things to Know About Zika & Pregnancy First Aid: Burns KidsHealth > For Parents > First Aid: Burns Print A A A Text Size Scald ... THIS TOPIC Kitchen: Household Safety Checklist Fireworks Safety First Aid: Sunburn Firesetting Fire Safety Burns Household Safety: Preventing ...

  16. Workplace-related burns.

    PubMed

    Mian, M A H; Mullins, R F; Alam, B; Brandigi, C; Friedman, B C; Shaver, J R; Hassan, Z

    2011-06-30

    Introduction. The key element of a safe workplace for employees is the maintenance of fire safety. Thermal, chemical, and electrical burns are common types of burns at the workplace. This study assessed the epidemiology of work-related burn injuries on the basis of the workers treated in a regional burn centre. Methods. Two years' retrospective data (2005-2006) from the Trauma Registry of the American College of Surgeons of the Joseph M. Still Burn Center at Doctors Hospital in Augusta, Georgia, were collected and analysed. Results. During the time period studied, 2510 adult patients with acute burns were admitted; 384 cases (15%) were work-related. The average age of the patients was 37 yr (range, 15-72 yr). Males constituted the majority (90%) of workrelated burn injury admissions. The racial distribution was in accordance with the Centre's admission census. Industrial plant explosions accounted for the highest number of work-related burns and, relatively, a significant number of patients had chemical burns. The average length of hospital stay was 5.54 days. Only three patients did not have health insurance and four patients (1%) died. Conclusion. Burn injuries at the workplace predominantly occur among young male workers, and the study has shown that chemical burns are relatively frequent. This study functions as the basis for the evaluation of work-related burns and identification of the causes of these injuries to formulate adequate safety measures, especially for young, male employees working with chemicals.

  17. Chemical burn or reaction

    MedlinePlus

    Burn from chemicals ... in contact with the toxic substance Rash , blisters , burns on the skin Unconsciousness or other states of ... Make sure the cause of the burn has been removed. Try not to come ... yourself. If the chemical is dry, brush off any excess. Avoid ...

  18. Employment outcomes after burn injury: a comparison of those burned at work and those burned outside of work.

    PubMed

    Schneider, Jeffrey C; Bassi, Sharon; Ryan, Colleen M

    2011-01-01

    This study compares employment rates and barriers to return to work in subjects burned at work with those burned outside of work. Further, this study examines the influence of electrical etiology on return to work outcomes. The electronic records of burn survivors treated at a Regional Burn Center outpatient clinic from 2001 to 2007 were retrospectively reviewed. Inclusion criteria included employment at the time of burn injury and age of 18 years or older. Demographic and medical data were collected. Documentation of barriers to return to work was reviewed and classified into eight categories. Return to employment was grouped into four time intervals: 0 to 3, 3 to 6, 6 to 12, and greater than 12 months after injury. Logistic regression analysis was used to determine predictors of unemployment at greater than 1 year for subjects burned at work, outside of work, and those burned at work without electric injury. The authors identified 197 patients for inclusion in the study. Their age was 37 ± 0.8 years (mean ± SEM), and TBSA burned was 16 ± 1%. Fifty percent of subjects were burned at work. Electric etiology was seen only in those burned at work (n = 24). Forty-four percent (n = 43) of subjects injured at work remained unemployed at 1 year compared with 22% (n = 22) of subjects injured outside of work. The most frequent employment barriers included pain (72%), neurologic problems (62%), and psychiatric problems (53%) for those burned at work; and pain (63%), neurologic problems (59%), and impaired mobility (54%) for those burned outside of work. Significant predictors of unemployment at greater than 12 months included burn at work, pain, impaired mobility, other medical problems, and inpatient rehabilitation (P < .05). When the electrical injury subjects are removed from the analysis, significant predictors of unemployment at 12 months include burn at work, pain, inpatient rehabilitation, and length of stay (P < .05). Burn survivors experience multiple complex

  19. Experiments and analysis concerning the use of external burning to reduce aerospace vehicle transonic drag. Ph.D. Thesis - Maryland Univ., 1991

    NASA Technical Reports Server (NTRS)

    Trefny, Charles J.

    1992-01-01

    The external combustion of hydrogen to reduce transonic drag was investigated. A control volume analysis is developed and indicates that the specific impulse performance of external burning is competitive with other forms of airbreathing propulsion and depends on the fuel-air ratio, freestream Mach number, and the severity of the base drag. A method is presented for sizing fuel injectors for a desired fuel-air ratio in the unconfined stream. A two-dimensional Euler analysis is also presented which indicates that the total axial force generated by external burning depends on the total amount of energy input and is independent of the transverse and streamwise distribution of heat addition. Good agreement between the Euler and control volume analysis is demonstrated. Features of the inviscid external burning flowfield are discussed. Most notably, a strong compression forms at the sonic line within the burning stream which may induce separation of the plume and prevent realization of the full performance potential. An experimental program was conducted in a Mach 1.26 free-jet to demonstrate drag reduction on a simple expansion ramp geometry, and verify hydrogen-air stability limits at external burning conditions. Stable combustion appears feasible to Mach number of between 1.4 and 2 depending on the vehicle flight trajectory. Drag reduction is demonstrated on the expansion ramp at Mach 1.26; however, force levels showed little dependence on fuel pressure or altitude in contrast to control volume analysis predictions. Various facility interference mechanisms and scaling issues were studied and are discussed.

  20. Synthesis of actinide nitrides, phosphides, sulfides and oxides

    SciTech Connect

    Van Der Sluys, W.G.; Burns, C.J.; Smith, D.C.

    1991-04-02

    This invention is comprised of a process of preparing an actinide compound of the formula An{sub x}Z{sub y} wherein An is an actinide metal atom selected from the group consisting of thorium, uranium, plutonium, neptunium, and americium, x is selected from the group consisting of one, two or three, Z is a main group element atom selected from the group consisting of nitrogen, phosphorus, oxygen and sulfur and y is selected from the group consisting of one, two, three or four, by admixing an actinide organometallic precursor wherein said actinide is selected from the group consisting of thorium, uranium, plutonium, neptunium, and americium, a suitable solvent and a protic Lewis base selected from the group consisting of ammonia, phosphine, hydrogen sulfide and water, at temperatures and for time sufficient to form an intermediate actinide complex, heating said intermediate actinide complex at temperatures and for time sufficient to form the actinide compound, and a process of depositing a thin film of such an actinide compound, e.g., uranium mononitride, by subliming an actinide organometallic precursor, e.g., a uranium amide precursor, in the presence of an effective amount of a protic Lewis base, e.g., ammonia, within a reactor at temperatures and for time sufficient to form a thin film of the actinide compound, are disclosed.

  1. Synthesis of actinide nitrides, phosphides, sulfides and oxides

    DOEpatents

    Van Der Sluys, William G.; Burns, Carol J.; Smith, David C.

    1992-01-01

    A process of preparing an actinide compound of the formula An.sub.x Z.sub.y wherein An is an actinide metal atom selected from the group consisting of thorium, uranium, plutonium, neptunium, and americium, x is selected from the group consisting of one, two or three, Z is a main group element atom selected from the group consisting of nitrogen, phosphorus, oxygen and sulfur and y is selected from the group consisting of one, two, three or four, by admixing an actinide organometallic precursor wherein said actinide is selected from the group consisting of thorium, uranium, plutonium, neptunium, and americium, a suitable solvent and a protic Lewis base selected from the group consisting of ammonia, phosphine, hydrogen sulfide and water, at temperatures and for time sufficient to form an intermediate actinide complex, heating said intermediate actinide complex at temperatures and for time sufficient to form the actinide compound, and a process of depositing a thin film of such an actinide compound, e.g., uranium mononitride, by subliming an actinide organometallic precursor, e.g., a uranium amide precursor, in the presence of an effectgive amount of a protic Lewis base, e.g., ammonia, within a reactor at temperatures and for time sufficient to form a thin film of the actinide compound, are disclosed.

  2. Electrorecovery of actinides at room temperature

    SciTech Connect

    Stoll, Michael E; Oldham, Warren J; Costa, David A

    2008-01-01

    There are a large number of purification and processing operations involving actinide species that rely on high-temperature molten salts as the solvent medium. One such application is the electrorefining of impure actinide metals to provide high purity material for subsequent applications. There are some drawbacks to the electrodeposition of actinides in molten salts including relatively low yields, lack of accurate potential control, maintaining efficiency in a highly corrosive environment, and failed runs. With these issues in mind we have been investigating the electrodeposition of actinide metals, mainly uranium, from room temperature ionic liquids (RTILs) and relatively high-boiling organic solvents. The RTILs we have focused on are comprised of 1,3-dialkylimidazolium or quaternary ammonium cations and mainly the {sup -}N(SO{sub 2}CF{sub 3}){sub 2} anion [bis(trif1uoromethylsulfonyl)imide {equivalent_to} {sup -}NTf{sub 2}]. These materials represent a class of solvents that possess great potential for use in applications employing electrochemical procedures. In order to ascertain the feasibility of using RTILs for bulk electrodeposition of actinide metals our research team has been exploring the electron transfer behavior of simple coordination complexes of uranium dissolved in the RTIL solutions. More recently we have begun some fundamental electrochemical studies on the behavior of uranium and plutonium complexes in the organic solvents N-methylpyrrolidone (NMP) and dimethylsulfoxide (DMSO). Our most recent results concerning electrodeposition will be presented in this account. The electrochemical behavior of U(IV) and U(III) species in RTILs and the relatively low vapor pressure solvents NMP and DMSO is described. These studies have been ongoing in our laboratory to uncover conditions that will lead to the successful bulk electrodeposition of actinide metals at a working electrode surface at room temperature or slightly elevated temperatures. The RTILs we

  3. Patch burning: implications on water erosion and soil properties.

    PubMed

    Ozaslan Parlak, Altingul; Parlak, Mehmet; Blanco-Canqui, Humberto; Schacht, Walter H; Guretzky, John A; Mamo, Martha

    2015-05-01

    Patch burning can be a potential management tool to create grassland heterogeneity and enhance forage productivity and plant biodiversity, but its impacts on soil and environment have not been widely documented. In summer 2013, we studied the effect of time after patch burning (4 mo after burning [recently burned patches], 16 mo after burning [older burned patches], and unburned patches [control]) on vegetative cover, water erosion, and soil properties on a patch-burn experiment established in 2011 on a Yutan silty clay loam near Mead, NE. The recently burned patches had 29 ± 8.0% (mean ± SD) more bare ground, 21 ± 1.4% less canopy cover, and 40 ± 11% less litter cover than older burned and unburned patches. Bare ground and canopy cover did not differ between the older burned and unburned patches, indicating that vegetation recovered. Runoff depth from the older burned and recently burned patches was 2.8 times (19.6 ± 4.1 vs. 7.1 ± 3.0 mm [mean ± SD]) greater than the unburned patches. The recently burned patches had 4.5 times greater sediment loss (293 ± 89 vs. 65 ± 56 g m) and 3.8 times greater sediment-associated organic C loss (9.2 ± 2.0 vs. 2.4 ± 1.9 g m) than the older burned and unburned patches. The recently burned patches had increased daytime soil temperature but no differences in soil compaction and structural properties, dissolved nutrients, soil C, and total N concentration relative to older burned and unburned patches. Overall, recently burned patches can have reduced canopy and litter cover and increased water erosion, but soil properties may not differ from older burn or unburned patches under the conditions of this study.

  4. ENHANCED CHEMICAL CLEANING OF SRS WASTE TANKS TO IMPROVE ACTINIDE SOLUBILITY

    SciTech Connect

    Rudisill, T.; Thompson, M.

    2011-09-20

    Processes for the removal of residual sludge from SRS waste tanks have historically used solutions containing up to 0.9 M oxalic acid to dissolve the remaining material following sludge removal. The selection of this process was based on a comparison of a number of studies performed to evaluate the dissolution of residual sludge. In contrast, the dissolution of the actinide mass, which represents a very small fraction of the waste, has not been extensively studied. The Pu, Np, and Am in the sludge is reported to be present as hydrated and crystalline oxides. To identify aqueous solutions which have the potential to increase the solubility of the actinides, the alkaline and mildly acidic test solutions shown below were selected as candidates for use in a series of solubility experiments. The efficiency of the solutions in solubilizing the actinides was evaluated using a simulated sludge prepared by neutralizing a HNO{sub 3} solution containing Pu, Np, and Am. The hydroxide concentration was adjusted to a 1.2 M excess and the solids were allowed to age for several weeks prior to starting the experiments. The sludge was washed with 0.01 M NaOH to prepare the solids for use. Following the addition of an equal portion of the solids to each test solution, the concentrations of Pu, Np, and Am were measured as a function of time over a 792 h (33 day) period to provide a direct comparison of the efficiency of each solution in solubilizing the actinide elements. Although the composition of the sludge was limited to the hydrated actinide oxides (and did not contain other components of demonstrated importance), the results of the study provides guidance for the selection of solutions which should be evaluated in subsequent tests with a more realistic surrogate sludge and actual tank waste.

  5. A ten-year retrospective analysis of cement burns in a tertiary burns center.

    PubMed

    Alexander, William; Coghlan, Patrick; Greenwood, John

    2014-01-01

    Cement is extensively used both in the professional construction and "do-it-yourself" industries. Despite a number of small published series during the past 80 years highlighting its potential for harm, little seems to have been done to make consumers aware of its risks of causing serious burn injuries. The authors present 10 years of a tertiary adult burn center's experience with these burns, and highlight the significance of these burns on the active, working sector of society. Both professionals and part-time enthusiasts are affected, with burns of significant depth and subsequent impairment of normal functioning. The authors propose a better education system to highlight the risks and, in time, reduce the incidence of cement burns.

  6. The feasibility of electromagnetic actinide isotope separation in the European community

    NASA Astrophysics Data System (ADS)

    van den Berg, Max; Paulsen, Arno; Berthelot, Charles; Babeliowsky, Tom

    1985-06-01

    The production of actinide reference materials in the European Community depends in those cases in which electromagnetically enriched material is required on the supply from the USA Department of Energy/Oak Ridge National Laboratory (DOE/ORNL). A study carried out by the Central Bureau for Nuclear Measurements (CBNM) is based on the needs for actinide reference materials in the European Community (EC) as determined by a separate inquiry in 1977 and examines the conditions for the installation of an electromagnetic separation facility of appropriate size in the EC. From a compilation of all the information about the production, chemical purification and isotopic enrichment of all actinide nuclides needed in the EC those cases have been assessed for which the application of electromagnetic isotope separation is at present unavoided (but feasible with the glovebox technique). Base materials for this separation process are readily available within the EC with the exception of 244Pu. The production of 244Pu was experimentally studied and extrapolated to production scale. The use of this isotope as a spike material in mass spectrometric plutonium determination is shown to be uneconomic. An electromagnetic separator adapted in capacity to EC needs was designed. Special containments and facilities for handling the radioactive actinide elements are proposed. From the cost price of this facility and operational experience of a few EC laboratories the total running costs and the specific product costs for the EC needs are calculated.

  7. Microbial Transformations of Actinides and Other Radionuclides

    SciTech Connect

    Francis,A.J.; Dodge, C. J.

    2009-01-07

    Microorganisms can affect the stability and mobility of the actinides and other radionuclides released from nuclear fuel cycle and from nuclear fuel reprocessing plants. Under appropriate conditions, microorganisms can alter the chemical speciation, solubility and sorption properties and thus could increase or decrease the concentrations of radionuclides in solution in the environment and the bioavailability. Dissolution or immobilization of radionuclides is brought about by direct enzymatic action or indirect non-enzymatic action of microorganisms. Although the physical, chemical, and geochemical processes affecting dissolution, precipitation, and mobilization of radionuclides have been extensively investigated, we have only limited information on the effects of microbial processes and biochemical mechanisms which affect the stability and mobility of radionuclides. The mechanisms of microbial transformations of the major and minor actinides U, Pu, Cm, Am, Np, the fission products and other radionuclides such as Ra, Tc, I, Cs, Sr, under aerobic and anaerobic conditions in the presence of electron donors and acceptors are reviewed.

  8. Actinide phosphonate complexes in aqueous solutions

    SciTech Connect

    Nash, K.L.

    1993-10-01

    Complexes formed by actinides with carboxylic acids, polycarboxylic acids, and aminopolycarboxylic acids play a central role in both the basic and process chemistry of the actinides. Recent studies of f-element complexes with phosphonic acid ligands indicate that new ligands incorporating doubly ionizable phosphonate groups (-PO{sub 3}H{sub 2}) have many properties which are unique chemically, and promise more efficient separation processes for waste cleanup and environmental restoration. Simple diphosphonate ligands form much stronger complexes than isostructural carboxylates, often exhibiting higher solubility as well. In this manuscript recent studies of the thermodynamics and kinetics of f-element complexation by 1,1 and 1,2 diphosphonic acid ligands are described.

  9. Identification and Speciation of Actinides in the Environment

    NASA Astrophysics Data System (ADS)

    Degueldre, Claude

    All actinide isotopes are radioactive. Since the middle of the last century, new bactinide and transactinide isotopes have been artificially produced and the use of several of the naturally occurring actinide isotopes has increased. This production is due to the nuclear power industry and the military fabrication and use of nuclear weapons. These activities have created anxiety about the introduction of actinide elements into the environment. Consequently, environmental systems that contain or are exploited for natural actinides, or, are potentially contaminated by anthropogenic actinides, must be investigated. The analytical techniques introduced in this chapter are used, after sampling when required, to identify and quantify the actinide isotopes and to determine the species in which they are present.

  10. Pre-burn centre management of the airway in patients with face burns

    PubMed Central

    Costa Santos, D.; Barros, F.; Frazão, M.; Maia, M.

    2015-01-01

    Summary Face burns expose patients to a higher respiratory risk, and early prophylactic intubation before they enter the burn unit might be life-saving. However, unnecessary intubation may compromise their clinical evolution. Hence, the decision to perform pre-burn centre endotracheal intubation remains a clinical challenge. A retrospective study was developed to characterize the experience of the tertiary burn unit of the Hospital da Prelada with face burn patients arriving endotracheally-intubated between January 2009 and September 2013. Specific goals included assessment of whether these intubations were clinically appropriate and if these procedures determined significant changes in clinical course and outcome. A total of 136 patients were admitted to our burn centre with facial burns. 38.2% (n=52) of them arrived endotracheally-intubated, with 75% (n=39) intubated at the scene of the burn injury and 25% (n=13) in the emergency room because of the suspicion of smoke inhalation injury. In only 23% of the cases (n=12) was the lesion confirmed by bronchoscopy. The overall mortality rate was 12.5% (n=17): 3.6% (n=3) were patients who had not been subjected to pre-burn centre intubation, and 27% (n=14) were in the group of patients arriving intubated. A face burn is a warning sign of a possible upper airway injury, and pre-burn centre prophylactic intubation might be life-saving. However, unnecessary intubation may impair clinical evolution. Therefore, it is imperative that updated practice guidelines for pre-burn centre airway management are adhered to, and that these guidelines are subject to revision in order to improve airway management in burn patients. PMID:27777546

  11. Separation of Californium from other Actinides

    DOEpatents

    Mailen, J C; Ferris, L M

    1973-09-25

    A method is provided for separating californium from a fused fluoride composition containing californium and at least one element selected from the group consisting of plutonium, americium, curium, uranium, thorium, and protactinium which comprises contacting said fluoride composition with a liquid bismuth phase containing sufficient lithium or thorium to effect transfer of said actinides to the bismuth phase and then contacting the liquid bismuth phase with molten LiCl to effect selective transfer of californium to the chloride phase.

  12. In vitro removal of actinide (IV) ions

    DOEpatents

    Weitl, Frederick L.; Raymond, Kenneth N.

    1982-01-01

    A compound of the formula: ##STR1## wherein X is hydrogen or a conventional electron-withdrawing group, particularly --SO.sub.3 H or a salt thereof; n is 2, 3, or 4; m is 2, 3, or 4; and p is 2 or 3. The present compounds are useful as specific sequestering agents for actinide (IV) ions. Also described is a method for the 2,3-dihydroxybenzamidation of azaalkanes.

  13. Release of severe post-burn contracture of the first web space using the reverse posterior interosseous flap: Our experience with 12 cases.

    PubMed

    Kai, Shi; Zhao, Jingchun; Jin, Zhenghua; Wu, Weiwei; Yang, Ming; Wang, Yan; Xie, Chunhui; Yu, Jiaao

    2013-09-01

    We retrospectively assessed outcomes after treating severe contractures of the first web space from burns with the reverse posterior interosseous flaps (RPIF). Twelve consecutive patients (ages 18-58 years) with burns from 10% to 70% (mean, 30.1%) total body surface area and severe contractures of the first web space of the hand (initial thumb to index angles from 10° to 35° [mean, 23°]) underwent contracture release using the RPIF. Seventeen RPIFs were used, with sizes from 9cm×6cm to 14cm×10cm (mean area, 83.6cm(2)). The patients were followed for 5-26 months. All flaps survived completely, rapidly adapted to the recipient beds, and achieved good color and texture harmony. No early complications occurred. Fifteen donor sites were closed with skin grafts. Two donor sites were closed by direct suture. No paralysis of the posterior interosseous nerve was observed in these cases. At last follow-up the mean thumb to index angle was 78°, increasing the web length 260%. All patients regained fundamental hand functions. The RPIF is reliable and safe for releasing severe contractures of the first web space of the hand after burn, with distinct advantages over currently used alternative methods. PMID:23523223

  14. Release of severe post-burn contracture of the first web space using the reverse posterior interosseous flap: Our experience with 12 cases.

    PubMed

    Kai, Shi; Zhao, Jingchun; Jin, Zhenghua; Wu, Weiwei; Yang, Ming; Wang, Yan; Xie, Chunhui; Yu, Jiaao

    2013-09-01

    We retrospectively assessed outcomes after treating severe contractures of the first web space from burns with the reverse posterior interosseous flaps (RPIF). Twelve consecutive patients (ages 18-58 years) with burns from 10% to 70% (mean, 30.1%) total body surface area and severe contractures of the first web space of the hand (initial thumb to index angles from 10° to 35° [mean, 23°]) underwent contracture release using the RPIF. Seventeen RPIFs were used, with sizes from 9cm×6cm to 14cm×10cm (mean area, 83.6cm(2)). The patients were followed for 5-26 months. All flaps survived completely, rapidly adapted to the recipient beds, and achieved good color and texture harmony. No early complications occurred. Fifteen donor sites were closed with skin grafts. Two donor sites were closed by direct suture. No paralysis of the posterior interosseous nerve was observed in these cases. At last follow-up the mean thumb to index angle was 78°, increasing the web length 260%. All patients regained fundamental hand functions. The RPIF is reliable and safe for releasing severe contractures of the first web space of the hand after burn, with distinct advantages over currently used alternative methods.

  15. Triage and initial treatment of burns in the Gothenburg fire disaster 1998. On-call plastic surgeons' experiences and lessons learned.

    PubMed

    Gewalli, Fredrik; Fogdestam, Ingemar

    2003-01-01

    Just before midnight on the 29 October 1998 the on-call plastic surgeons were alarmed because of a fire accident thought to involve a few burned patients. Quite soon the information suggested an in-door fire disaster in which many of the 400 young people visiting a disco were caught by a rapidly spreading fire. A cross-sectional survey of the resulting overload, triage and initial treatment of burns was analysed. Two-hundred and thirteen patients were transported to the four hospitals in Gothenburg area and a total of 150 were admitted as inpatients, 73 to Sahlgrenska University Hospital. The initial organisation at the scene of the fire was seriously inadequate because of incorrect information about the number of casualties. As there was no triage officer the principle of "scoop and run" was practised, placing the major burden on the receiving hospitals. The emergency disaster plan in our hospital was not launched, because of misinformation and lack of communication. Early documentation in emergency case books was incomplete as the whole organisation was overloaded. Intubation or tracheostomy and escharotomy at the intensive care unit were not delayed. Triage for transportation to burns units was adequate.

  16. First experience using cultured epidermal autografts in Taiwan for burn victims of the Formosa Fun Coast Water Park explosion, as part of Japanese medical assistance.

    PubMed

    Matsumura, Hajime; Harunari, Nobuyuki; Ikeda, Hiroto

    2016-05-01

    On June 27, 2015, a flammable starch-based powder exploded at Formosa Fun Coast in Taipei, Taiwan, injuring 499 people, and more than 200 people were in critical condition with severe burns. Although a cultured epidermal autograft (CEA) was not approved or used in clinical practice, the Taiwan Food and Drug Administration requested a Japanese CEA manufacturer to donate CEA for the burn victims as part of international medical assistance. The authors cooperated in this project and participated in the patient selection, wound bed management for CEA, and technical assistance for CEA use. Here, we provide an overview of the project. Nine patients were enrolled, and two patients were excluded from the skin biopsy; seven skin biopsies were collected approximately 1 month after the disaster. The average TBSA% burned was 81.0%, and the mean age was 20.1 years. CEA was grafted in five patients; wound closure had been obtained in one patient, and one patient was severely ill at the time of grafting. The CEA was combined with a wide split auto mesh graft or patch graft. The mean re-epithelization rate at 4 weeks after the grafting was 84.2% by patient, and all of the patients survived. Although this project had many obstacles to overcome, CEA grafting was successful and contributed to wound closure and survival. PMID:26818956

  17. Preparation, properties, and some recent studies of the actinide metals

    SciTech Connect

    Haire, R.G.

    1985-01-01

    The actinide elements form a unique series of metals. The variation in their physial properties combined with the varying availability of the different elements offers a challenge to the preparative scientist. This article provides a brief review of selected methods used for preparing ..mu..g to kg amounts of the actinide metals and the properties of these metals. In addition, some recent studies on selected actinide metals are discussed. 62 refs.

  18. Actinide and lanthanide separation process (ALSEP)

    SciTech Connect

    Guelis, Artem V.

    2013-01-15

    The process of the invention is the separation of minor actinides from lanthanides in a fluid mixture comprising, fission products, lanthanides, minor actinides, rare earth elements, nitric acid and water by addition of an organic chelating aid to the fluid; extracting the fluid with a solvent comprising a first extractant, a second extractant and an organic diluent to form an organic extractant stream and an aqueous raffinate. Scrubbing the organic stream with a dicarboxylic acid and a chelating agent to form a scrubber discharge. The scrubber discharge is stripped with a simple buffering agent and a second chelating agent in the pH range of 2.5 to 6.1 to produce actinide and lanthanide streams and spent organic diluents. The first extractant is selected from bis(2-ethylhexyl)hydrogen phosphate (HDEHP) and mono(2-ethylhexyl)2-ethylhexyl phosphonate (HEH(EHP)) and the second extractant is selected from N,N,N,N-tetra-2-ethylhexyl diglycol amide (TEHDGA) and N,N,N',N'-tetraoctyl-3-oxapentanediamide (TODGA).

  19. Value of burnup credit beyond actinides

    SciTech Connect

    Lancaster, D.; Fuentes, E.; Kang, Chi

    1997-12-01

    DOE has submitted a topical report to the NRC justifying burnup credit based only on actinide isotopes (U-234, U-235, U-236, U-238, Pu-238, Pu-239, Pu-240, Pu-241, Pu-242, and Am-241). When this topical report is approved, it will allow a great deal of the commercial spent nuclear fuel to be transported in significantly higher capacity casks. A cost savings estimate for shipping fuel in 32 assembly (burnup credit) casks as opposed to 24 assembly (non-burnup credit) casks was previously presented. Since that time, more detailed calculations have been performed using the methodology presented in the Actinide-Only Burnup Credit Topical Report. Loading curves for derated casks have been generated using actinide-only burnup credit and are presented in this paper. The estimates of cost savings due to burnup credit for shipping fuel utilizing 32, 30, 28, and 24 assembly casks where only the 24 assembly cask does not burnup credit have been created and are discussed. 4 refs., 2 figs.

  20. Actinide behavior in a freshwater pond

    SciTech Connect

    Trabalka, J.R.; Bogle, M.A.; Scott, T.G.

    1983-01-01

    Long-term investigations of solution chemistry in an alkaline freshwater pond have revealed that actinide oxidation state behavior, particularly that of plutonium, is complex. The Pu(V,VI) fraction was predominant in solution, but it varied over the entire range reported from other natural aquatic environments, in this case, as a result of intrinsic biological and chemical cycles (redox and pH-dependent phenomena). A strong positive correlation between plutonium (Pu), but not uranium (U), and hydroxyl ion over the observation period, especially when both were known to be in higher oxidation states, was particularly notable. Coupled with other examples of divergent U and Pu behavior, this result suggests that Pu(V), or perhaps a mixture of Pu(V,VI), was the prevalent oxidation state in solution. Observations of trivalent actinide sorption behavior during an algal bloom, coupled with the association with a high-molecular weight (nominally 6000 to 10,000 mol wt) organic fraction in solution, indicate that solution-detritus cycling of organic carbon, in turn, may be the primary mechanism in amercium-curium (Am-Cm) cycling. Sorption by sedimentary materials appears to predominate over other factors controlling effective actinide solubility and may explain, at least partially, the absence of an expected strong positive correlation between carbonate and dissolved U. 49 references, 6 figures, 12 tables.

  1. Burn Injury and Explosions: An Australian Perspective

    PubMed Central

    Greenwood, John E.

    2009-01-01

    Objectives: Increasingly (but not exclusively), terrorist activity and the use of explosive devices have enjoyed the focus of the global media. This paper aims to bring a range of issues to attention, to highlight how burn injuries are sustained in such incidents and why burn injuries (and thus burn disasters) are so complicated to manage. Materials and Methods: The author's experience with burn injury caused during explosions and his involvement in burn disaster situations has been summarized to form the basis of the article. This has been expanded upon with discussion points which provide a strategy for planning for such events and by a broad sample of the literature. Results: Several strategies are suggested to facilitate planning for burn disasters and to illustrate to those not directly involved why forward planning is pivotal to success when these incidents occur. Conclusions: Disasters generating large numbers of burn-injured are relatively frequent. Explosive devices are widespread in their use both in military and increasingly in civilian fields. Encompassing a large range of aetiologies, geographical sites, populations, and resources; burn disaster management is difficult and planning essential. PMID:19834533

  2. Comparison of actinide production in traveling wave and pressurized water reactors

    SciTech Connect

    Osborne, A.G.; Smith, T.A.; Deinert, M.R.

    2013-07-01

    The geopolitical problems associated with civilian nuclear energy production arise in part from the accumulation of transuranics in spent nuclear fuel. A traveling wave reactor is a type of breed-burn reactor that could, if feasible, reduce the overall production of transuranics. In one possible configuration, a cylinder of natural or depleted uranium would be subjected to a fast neutron flux at one end. The neutrons would transmute the uranium, producing plutonium and higher actinides. Under the right conditions, the reactor could become critical, at which point a self-stabilizing fission wave would form and propagate down the length of the reactor cylinder. The neutrons from the fission wave would burn the fissile nuclides and transmute uranium ahead of the wave to produce additional fuel. Fission waves in uranium are driven largely by the production and fission of {sup 239}Pu. Simulations have shown that the fuel burnup can reach values greater than 400 MWd/kgIHM, before fission products poison the reaction. In this work we compare the production of plutonium and minor actinides produced in a fission wave to that of a UOX fueled light water reactor, both on an energy normalized basis. The nuclide concentrations in the spent traveling wave reactor fuel are computed using a one-group diffusion model and are verified using Monte Carlo simulations. In the case of the pressurized water reactor, a multi-group collision probability model is used to generate the nuclide quantities. We find that the traveling wave reactor produces about 0.187 g/MWd/kgIHM of transuranics compared to 0.413 g/MWd/kgIHM for a pressurized water reactor running fuel enriched to 4.95 % and burned to 50 MWd/kgIHM. (authors)

  3. Recovery of actinides from actinide-aluminium alloys by chlorination: Part II

    NASA Astrophysics Data System (ADS)

    Souček, P.; Cassayre, L.; Eloirdi, R.; Malmbeck, R.; Meier, R.; Nourry, C.; Claux, B.; Glatz, J.-P.

    2014-04-01

    A chlorination route is being investigated for recovery of actinides from actinide-aluminium alloys, which originate from pyrochemical recovery of actinides from spent metallic nuclear fuel by electrochemical methods in molten LiCl-KCl. In the present work, the most important steps of this route were experimentally tested using U-Pu-Al alloy prepared by electrodeposition of U and Pu on solid aluminium plate electrodes. The investigated processes were vacuum distillation for removal of the salt adhered on the electrode, chlorination of the alloy by chlorine gas and sublimation of the AlCl3 formed. The processes parameters were set on the base of a previous thermochemical study and an experimental work using pure UAl3 alloy. The present experimental results indicated high efficiency of salt distillation and chlorination steps, while the sublimation step should be further optimised.

  4. Bidentate organophosphorus solvent extraction process for actinide recovery and partition

    DOEpatents

    Schulz, Wallace W.

    1976-01-01

    A liquid-liquid extraction process for the recovery and partitioning of actinide values from acidic nuclear waste aqueous solutions, the actinide values including trivalent, tetravalent and hexavalent oxidation states is provided and includes the steps of contacting the aqueous solution with a bidentate organophosphorous extractant to extract essentially all of the actinide values into the organic phase. Thereafter the respective actinide fractions are selectively partitioned into separate aqueous solutions by contact with dilute nitric or nitric-hydrofluoric acid solutions. The hexavalent uranium is finally removed from the organic phase by contact with a dilute sodium carbonate solution.

  5. Impact of Including Higher Actinides in Fast Reactor Transmutation Analyses

    SciTech Connect

    B. Forget; M. Asgari; R. Ferrer; S. Bays

    2007-09-01

    Previous fast reactor transmutation studies generally disregarded higher mass minor actinides beyond Cm-246 due to various considerations including deficiencies in nuclear cross-section data. Although omission of these higher mass actinides does not significantly impact the neutronic calculations and fuel cycle performance parameters follow-on neutron dose calculations related to fuel recycling, transportation and handling are significantly impacted. This report shows that including the minor actinides in the equilibrium fast reactor calculations will increase the predicted neutron emission by about 30%. In addition a sensitivity study was initiated by comparing the impact of different cross-section evaluation file for representing these minor actinides.

  6. Development of the Actinide-Lanthanide Separation (ALSEP) Process

    SciTech Connect

    Lumetta, Gregg J.; Carter, Jennifer C.; Niver, Cynthia M.; Gelis, Artem V.

    2014-09-30

    Separating the minor actinide elements (Am and Cm) from acidic high-level raffinates arising from the reprocessing of irradiated nuclear fuel is an important step in closing the nuclear fuel cycle. Most proposed approaches to this problem involve two solvent extraction steps: 1) co-extraction of the trivalent lanthanides and actinides, followed by 2) separation of the actinides from the lanthanides. The objective of our work is to develop a single solvent-extraction process for isolating the minor actinide elements. We report here a solvent containing N,N,N',N'-tetra(2 ethylhexyl)diglycolamide (T2EHDGA) combined with 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester (HEH[EHP]) that can be used to separate the minor actinides in a single solvent-extraction process. T2EHDGA serves to co-extract the trivalent actinide and lanthanide ions from nitric acid solution. Switching the aqueous phase chemistry to a citrate buffered solution of N-(2-hydroxyethyl)ethylenediamine-N,N',N'-triacetic acid at pH 2.5 to 4 results in selective transfer of the actinides to the aqueous phase, thus affecting separation of the actinides from the lanthanides. Separation factors between the lanthanides and actinides are approximately 20 in the pH range of 3 to 4, and the distribution ratios are not highly dependent on the pH in this system.

  7. Several Flame Balls Burning

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Structure of Flameballs at Low Lewis Numbers (SOFBALL) experiments aboard the space shuttle in 1997 a series of sturningly successful burns. This sequence was taken during STS-94, July 12, 1997, MET:10/08:18 (approximate). It was thought these extremely dim flameballs (1/20 the power of a kitchen match) could last up to 200 seconds -- in fact, they can last for at least 500 seconds. This has ramifications in fuel-spray design in combustion engines, as well as fire safety in space. The SOFBALL principal investigator was Paul Ronney, University of Southern California, Los Angeles. The experiment was part of the space research investigations conducted during the Microgravity Science Laboratory-1R mission (STS-94, July 1-17 1997). Advanced combustion experiments will be a part of investigations planned for the International Space Station. (925KB, 9-second MPEG spanning 10 minutes, screen 320 x 240 pixels; downlinked video, higher quality not available) A still JPG composite of this movie is available at http://mix.msfc.nasa.gov/ABSTRACTS/MSFC-0300186.html.

  8. Pediatric cutaneous bleach burns.

    PubMed

    Lang, Cathleen; Cox, Matthew

    2013-07-01

    Bleach is a common household product which can cause caustic injuries. Its effects on mucosal tissues and the eye have been well-described in the literature. However, there is little information published regarding the appearance and effect of bleach on a child's skin. We report three children who sustained chemical burns after contact with bleach. All three children sustained accidental bleach burns while at home, and each child had a distinct brown discoloration to the skin from the injury. All three children had treatment and follow-up for their burns. Two of the children sustained more severe burns, which were extensive and required more time to heal. There was also long-term scarring associated with the severe burns. Like most burns, pain control is required until the injury heals.

  9. Pediatric cutaneous bleach burns.

    PubMed

    Lang, Cathleen; Cox, Matthew

    2013-07-01

    Bleach is a common household product which can cause caustic injuries. Its effects on mucosal tissues and the eye have been well-described in the literature. However, there is little information published regarding the appearance and effect of bleach on a child's skin. We report three children who sustained chemical burns after contact with bleach. All three children sustained accidental bleach burns while at home, and each child had a distinct brown discoloration to the skin from the injury. All three children had treatment and follow-up for their burns. Two of the children sustained more severe burns, which were extensive and required more time to heal. There was also long-term scarring associated with the severe burns. Like most burns, pain control is required until the injury heals. PMID:23545350

  10. Advanced Aqueous Separation Systems for Actinide Partitioning

    SciTech Connect

    Nash, Ken; Martin, Leigh; Lumetta, Gregg

    2015-04-02

    One of the most challenging aspects of advanced processing of used nuclear fuel is the separation of transplutonium actinides from fission product lanthanides. This separation is essential if actinide transmutation options are to be pursued in advanced fuel cycles, as lanthanides compete with actinides for neutrons in both thermal and fast reactors, thus limiting efficiency. The separation is difficult because the chemistry of Am3+ and Cm3+ is nearly identical to that of the trivalent lanthanides (Ln3+). The prior literature teaches that two approaches offer the greatest probability of devising a successful group separation process based on aqueous processes: 1) the application of complexing agents containing ligand donor atoms that are softer than oxygen (N, S, Cl-) or 2) changing the oxidation state of Am to the IV, V, or VI state to increase the essential differences between Am and lanthanide chemistry (an approach utilized in the PUREX process to selectively remove Pu4+ and UO22+ from fission products). The latter approach offers the additional benefit of enabling a separation of Am from Cm, as Cm(III) is resistant to oxidation and so can easily be made to follow the lanthanides. The fundamental limitations of these approaches are that 1) the soft(er) donor atoms that interact more strongly with actinide cations than lanthanides form substantially weaker bonds than oxygen atoms, thus necessitating modification of extraction conditions for adequate phase transfer efficiency, 2) soft donor reagents have been seen to suffer slow phase transfer kinetics and hydro-/radiolytic stability limitations and 3) the upper oxidation states of Am are all moderately strong oxidants, hence of only transient stability in media representative of conventional aqueous separations systems. There are examples in the literature of both approaches having been described. However, it is not clear at present that any extant process is sufficiently robust for application at the scale

  11. 'Therapeutic' burns (Maqua).

    PubMed

    Baruchin, A M

    1984-12-01

    Cauterization of the skin by a red-hot iron, a pinch of hot cinder or a burning coal, is a form of 'treatment' used by lay healers in some parts of Africa and the Middle East. The burns are limited to small circular areas, and are usually full-thickness skin loss. Most frequently, the patients do not seek medical treatment and the burns heal by secondary intention. Sometimes, however, disastrous complications such as infectious osteomyelitis, septicaemia and death may occur.

  12. Fission of actinide nuclei using multi-nucleon transfer reactions

    NASA Astrophysics Data System (ADS)

    Léguillon, Romain; Nishio, Katsuhisa; Hirose, Kentaro; Orlandi, Riccardo; Makii, Hiroyuki; Nishinaka, Ichiro; Ishii, Tetsuro; Tsukada, Kazuaki; Asai, Masato; Chiba, Satoshi; Ohtsuki, Tsutomu; Araki, Shohei; Watanabe, Yukinobu; Tatsuzawa, Ryotaro; Takaki, Naoyuki

    2014-09-01

    We are promoting a campaign to measure fission-fragment mass distributions for neutron-rich actinide nuclei populated by transfer reactions from their ground state up to an excitation energy of several tens MeV. We thus obtain the excitation energy dependence of the mass distribution. The experiment was carried out at the 20 MV JAEA tandem facility at Tokai. We report on the data obtained in the direct reaction 18 O + 232 Th . Transfer-channels and excitation energies of the fissioning nuclei were identified using silicon dE-E detectors located at forward angle. Two fission fragments were detected in coincidence using multi-wire proportional counters. Fission fragment masses were determined by kinematic consideration. We obtained the fission fragment mass distributions for 13 nuclei from actinium to uranium and some fission barrier heights. We are promoting a campaign to measure fission-fragment mass distributions for neutron-rich actinide nuclei populated by transfer reactions from their ground state up to an excitation energy of several tens MeV. We thus obtain the excitation energy dependence of the mass distribution. The experiment was carried out at the 20 MV JAEA tandem facility at Tokai. We report on the data obtained in the direct reaction 18 O + 232 Th . Transfer-channels and excitation energies of the fissioning nuclei were identified using silicon dE-E detectors located at forward angle. Two fission fragments were detected in coincidence using multi-wire proportional counters. Fission fragment masses were determined by kinematic consideration. We obtained the fission fragment mass distributions for 13 nuclei from actinium to uranium and some fission barrier heights. Present study is supported by the Ministry of Education, Culture, Sports, Science and Technology of Japan.

  13. Burn Wound Infections

    PubMed Central

    Church, Deirdre; Elsayed, Sameer; Reid, Owen; Winston, Brent; Lindsay, Robert

    2006-01-01

    Burns are one of the most common and devastating forms of trauma. Patients with serious thermal injury require immediate specialized care in order to minimize morbidity and mortality. Significant thermal injuries induce a state of immunosuppression that predisposes burn patients to infectious complications. A current summary of the classifications of burn wound infections, including their diagnosis, treatment, and prevention, is given. Early excision of the eschar has substantially decreased the incidence of invasive burn wound infection and secondary sepsis, but most deaths in severely burn-injured patients are still due to burn wound sepsis or complications due to inhalation injury. Burn patients are also at risk for developing sepsis secondary to pneumonia, catheter-related infections, and suppurative thrombophlebitis. The introduction of silver-impregnated devices (e.g., central lines and Foley urinary catheters) may reduce the incidence of nosocomial infections due to prolonged placement of these devices. Improved outcomes for severely burned patients have been attributed to medical advances in fluid resuscitation, nutritional support, pulmonary and burn wound care, and infection control practices. PMID:16614255

  14. Pediatric facial burns.

    PubMed

    Kung, Theodore A; Gosain, Arun K

    2008-07-01

    Despite major advances in the area of burn management, burn injury continues to be a leading cause of pediatric mortality and morbidity. Facial burns in particular are devastating to the affected child and result in numerous physical and psychosocial sequelae. Although many of the principles of adult burn management can be applied to a pediatric patient with facial burns, the surgeon must be cognizant of several important differences. Facial burns and subsequent scar formation can drastically affect the growth potential of a child's face. Structures such as the nose and teeth may become deformed due to abnormal external forces caused by contractures. Serious complications such as occlusion amblyopia and microstomia must be anticipated and urgently addressed to avert permanent consequences, whereas other reconstructive procedures can be delayed until scar maturation occurs. Furthermore, because young children are actively developing the concept of self, severe facial burns can alter a child's sense of identity and place the child at high risk for future emotional and psychologic disturbances. Surgical reconstruction of burn wounds should proceed only after thorough planning and may involve a variety of skin graft, flap, and tissue expansion techniques. The most favorable outcome is achieved when facial resurfacing is performed with respect to the aesthetic units of the face. Children with facial burns remain a considerable challenge to their caregivers, and these patients require long-term care by a multidisciplinary team of physicians and therapists to optimize functional, cosmetic, and psychosocial outcomes. PMID:18650717

  15. The burning question: does burning before flooding lower methyl mercury production and bioaccumulation?

    PubMed

    Mailman, Mariah; Bodaly, R A Drew

    2006-09-01

    Production of methyl mercury (MeHg) is elevated in new hydroelectric reservoirs because organic carbon stimulates methylation of inorganic mercury (Hg) stored in the terrestrial system. This can cause adverse health in fish and in organisms that eat fish. We expected that burning vegetation before flooding would decrease the amount of Hg and organic carbon and thereby lower MeHg production. We conducted a replicated field experiment to investigate the effects of burning vegetation and soil before flooding on MeHg production and bioaccumulation. Vegetation and soil were added to mesocosms in the following combinations: unburned vegetation and unburned soil (Fresh treatments), burned vegetation and unburned soil (Partial Burn treatments), and burned vegetation and burned soil (Complete Burn treatments). Controls had no added vegetation or soil. During combustion with propane torches, a large percentage of the total Hg (THg) and MeHg was lost from vegetation and soil. THg and MeHg concentrations were highest in the surface water of Fresh treatments, lower in Partial Burn treatments and lowest in Complete Burn treatments and controls. Differences in concentrations of MeHg in biota were consistent among treatments, but did not follow aqueous concentrations. On the final sample date, MeHg concentrations in biota of Controls and Partial Burn treatments were greater than in Complete Burn and Fresh treatments. The lack of relationship between MeHg in biota and MeHg in water may have been due to modification of the bioavailability of MeHg by dissolved organic matter as the ratios of MeHg in biota to water were inversely correlated with concentrations of dissolved organic carbon. Although burning before flooding decreased MeHg concentrations in the water, it did not lower MeHg accumulation in the lower food web.

  16. The burning question: does burning before flooding lower methyl mercury production and bioaccumulation?

    PubMed

    Mailman, Mariah; Bodaly, R A Drew

    2006-09-01

    Production of methyl mercury (MeHg) is elevated in new hydroelectric reservoirs because organic carbon stimulates methylation of inorganic mercury (Hg) stored in the terrestrial system. This can cause adverse health in fish and in organisms that eat fish. We expected that burning vegetation before flooding would decrease the amount of Hg and organic carbon and thereby lower MeHg production. We conducted a replicated field experiment to investigate the effects of burning vegetation and soil before flooding on MeHg production and bioaccumulation. Vegetation and soil were added to mesocosms in the following combinations: unburned vegetation and unburned soil (Fresh treatments), burned vegetation and unburned soil (Partial Burn treatments), and burned vegetation and burned soil (Complete Burn treatments). Controls had no added vegetation or soil. During combustion with propane torches, a large percentage of the total Hg (THg) and MeHg was lost from vegetation and soil. THg and MeHg concentrations were highest in the surface water of Fresh treatments, lower in Partial Burn treatments and lowest in Complete Burn treatments and controls. Differences in concentrations of MeHg in biota were consistent among treatments, but did not follow aqueous concentrations. On the final sample date, MeHg concentrations in biota of Controls and Partial Burn treatments were greater than in Complete Burn and Fresh treatments. The lack of relationship between MeHg in biota and MeHg in water may have been due to modification of the bioavailability of MeHg by dissolved organic matter as the ratios of MeHg in biota to water were inversely correlated with concentrations of dissolved organic carbon. Although burning before flooding decreased MeHg concentrations in the water, it did not lower MeHg accumulation in the lower food web. PMID:16263153

  17. Burns and military clothing.

    PubMed

    McLean, A D

    2001-02-01

    Burn injury is a ubiquitous threat in the military environment. The risks during combat are well recognised, but the handling of fuel, oil, munitions and other hot or flammable materials during peacetime deployment and training also imposes an inherent risk of accidental burn injury. Over the last hundred years, the burn threat in combat has ranged from nuclear weapons to small shoulder-launched missiles. Materials such as napalm and white phosphorus plainly present a risk of burn, but the threat extends to encompass personnel in vehicles attacked by anti-armour weapons, large missiles, fuel-air explosives and detonations/conflagrations on weapons platforms such as ships. Large numbers of burn casualties were caused at Pearl Harbor, in Hiroshima and Nagasaki, Vietnam, during the Arab/Israeli Wars and in the Falkland Islands conflict. The threat from burns is unlikely to diminish, indeed new developments in weapons seek to exploit the vulnerability of the serviceman and servicewoman to burns. Clothing can be a barrier to some types of burn--both inherently in the properties of the material, but also by trapping air between clothing layers. Conversely, ignition of the clothing may exacerbate a burn. There is hearsay that burnt clothing products within a wound may complicate the clinical management, or that materials that melt (thermoplastic materials) should not be worn if there is a burn threat. This paper explores the incidence of burn injury, the mechanisms of heat transfer to bare skin and skin covered by materials, and the published evidence for the complication of wound management by materials. Even light-weight combat clothing can offer significant protection to skin from short duration flash burns; the most vulnerable areas are the parts of the body not covered--face and hands. Multilayered combat clothing can offer significant protection for short periods from engulfment by flames; lightweight tropical wear with few layers offers little protection. Under

  18. Method for adding additional isotopes to actinide-only burnup credit

    SciTech Connect

    Lancaster, D.B.; Fuentes, E.; Kang, C.

    1998-01-01

    The Topical Report on Actinide-Only Burnup Credit for Pressurized Water Reactor Spent Nuclear Fuel Packages requires computer code validation to be performed against a benchmark set of chemical assays for isotopic concentration and against a benchmark set of critical experiments for package criticality. Both sets contain all the isotopes included in the methodology. The chemical assays used include the uranium and plutonium isotopes, while the critical experiments were composed of UO{sub 2} or MOX rods, covering the isotopes in the actinide only approach. Since other isotopes are not included in the validation benchmark sets, it would be necessary to justify both the content and worth of any additional isotope for which burnup credit is to be taken (i.e., both the concentration and criticality effect of each particular isotope must be validated). A method is proposed here that can be used for any number of additional isotopes. As does the actinide-only burnup credit methodology, this method makes use of chemical assay data to establish the conservatism in the prediction of each isotope`s concentration. Criticality validation is also performed using a benchmark set of UO{sub 2} and MOX critical experiments, where the additional isotopes are validated using worth experiments to conservatively account for any uncertainty in their cross sections. The remaining requirements (analysis and modeling parameters, loading criteria generation, and physical implementation and controls) are performed exactly as described in the actinide-only burnup credit methodology. This report provides insight into each particular requirement in the new methodology.

  19. Instrumented tube burns: theoretical and experimental observations

    SciTech Connect

    Yarrington, Cole Davis; Obrey, Stephen J; Foley, Timothy J; Son, Steven F

    2009-01-01

    The advent of widely available nanoscale energetic composites has resulted in a flurry of novel applications. One of these applications is the use of nanomaterials in energetic compositions. In compositions that exhibit high sensitivity to stimulus, these materials are often termed metastable intermolecular composites (MIC). More generally, these compositions are simply called nanoenergetics. Researchers have used many different experimental techniques to analyze the various properties of nanoenergetic systems. Among these various techniques, the confined tube burn is a simple experiment that is capable of obtaining much data related to the combustion of these materials. The purpose of this report is to review the current state of the confined tube burn experiment, including the drawbacks of the technique and possible remedies. As this report is intended to focus on the specific experimental technique, data from many different energetic materials, and experimental configurations will be presented. The qualitative and quantitative data that can be gathered using confined tube burn experiments include burning rates, total impulse, pressure rise rate, and burning rate differences between different detector types. All of these measurements lend insight into the combustion properties and mechanisms of specific nanoenergetics. Finally, certain data indicates a more complicated flow scenario which may need to be considered when developing burn tube models.

  20. Two Droplets Burning Side by Side

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Fiber-Supported Droplet Combustion (FSDC) experiment team got more than twice as many burns have been completed as were originally scheduled for STS-95. This image was taken July 12, 1997, MET:10/08:13 (approximate). As shown here, scientists were able to burn two droplets side by side, more closely mimicking behavior of burning fuel in an engine. This shows ignition of a single drop that subsequently burned while a fan blew through the chamber, giving the scientists data on burning with convection, but no buoyancy -- an important distinction when you're trying to solve a problem by breaking it into parts. FSDC-2 studied fundamental phenomena related to liquid fuel droplet combustion in air. Pure fuels and mixtures of fuels were burned as isolated single and dual droplets with and without forced air convection. The FSDC guest investigator was Forman Williams, University of California, San Diego. The experiment was part of the space research investigations conducted during the Microgravity Science Laboratory-1R mission (STS-94, July 1-17 1997). Advanced combustion experiments will be a part of investigations plarned for the International Space Station. (1.1 MB, 11-second MPEG, screen 320 x 240 pixels; downlinked video, higher quality not available) A still JPG composite of this movie is available at http://mix.msfc.nasa.gov/ABSTRACTS/MSFC-0300176.html.

  1. Study of actinide chemistry in saturated potassium fluoride solution

    NASA Technical Reports Server (NTRS)

    Cohen, D.; Thalmayer, C. E.

    1969-01-01

    Study concerning the chemistry of actinides in saturated KF solution included work with neptunium, uranium, and americium. Solubilities, absorption spectra, oxidation-reduction reactions, and solid compounds which can be produced in KF solution were examined. The information is used for preparation of various materials from salts of the actinides.

  2. Process for Making a Ceramic Composition for Immobilization of Actinides

    SciTech Connect

    Ebbinghaus, Bartley B.; Van Konynenburg, Richard A.; Vance, Eric R.; Stewart, Martin W.; Walls, Philip A.; Brummond, William Allen; Armantrout, Guy A.; Curtis, Paul G.; Hobson, Beverly F.; Farmer, Joseph; Herman, Connie Cicero; Herman, David Thomas

    1999-06-22

    Disclosed is a process for making a ceramic composition for the immobilization of actinides, particularly uranium and plutonium. The ceramic is a titanate material comprising pyrochlore, brannerite and rutile. The process comprises oxidizing the actinides, milling the oxides to a powder, blending them with ceramic precursors, cold pressing the blend and sintering the pressed material.

  3. Process for making a ceramic composition for immobilization of actinides

    DOEpatents

    Ebbinghaus, Bartley B.; Van Konynenburg, Richard A.; Vance, Eric R.; Stewart, Martin W.; Walls, Philip A.; Brummond, William Allen; Armantrout, Guy A.; Herman, Connie Cicero; Hobson, Beverly F.; Herman, David Thomas; Curtis, Paul G.; Farmer, Joseph

    2001-01-01

    Disclosed is a process for making a ceramic composition for the immobilization of actinides, particularly uranium and plutonium. The ceramic is a titanate material comprising pyrochlore, brannerite and rutile. The process comprises oxidizing the actinides, milling the oxides to a powder, blending them with ceramic precursors, cold pressing the blend and sintering the pressed material.

  4. Improved method for extracting lanthanides and actinides from acid solutions

    DOEpatents

    Horwitz, E.P.; Kalina, D.G.; Kaplan, L.; Mason, G.W.

    1983-07-26

    A process for the recovery of actinide and lanthanide values from aqueous acidic solutions uses a new series of neutral bi-functional extractants, the alkyl(phenyl)-N,N-dialkylcarbamoylmethylphosphine oxides. The process is suitable for the separation of actinide and lanthanide values from fission product values found together in high-level nuclear reprocessing waste solutions.

  5. Detailed calculations of minor actinide transmutation in a fast reactor

    SciTech Connect

    Takeda, Toshikazu

    2015-12-31

    The transmutation of minor actinides in a fast reactor is investigated by a new method to investigate the transmutation behavior of individual minor actinides. It is found that Np-237 and Am-241 mainly contributes to the transmutation rate though the transmutation behaviors are very different.

  6. Solid fuel burning stove

    SciTech Connect

    Good, L.D.

    1982-07-13

    A solid fuel burning stove includes a firebox having an insulated bottom chamber in which fuel is burned. The bottom chamber includes an insulated bottom surface and walls which provides for heat retention when fuel is burn therein thereby creating high temperatures. The bottom chamber of the firebox is divided from a top chamber by a horizontally extending baffle which directs flow of exhaust gases from the bottom to the top of the firebox. The exhaust gases are burned in the top portion of the firebox by means of the heat generated within the lower chamber and the introduction of fresh combustion air. This fresh combustion air is drawn in through an orificed pipe extending along the length of the firebox. After the gases are burned in the top portion of the stove, they are communicated to a heat saver including an inverted v-shaped flow diverter which reduces the velocity of the exiting gases and provides for greater recovery of heat therefrom. The stove in accordance with the invention provides for a two-stage burning process wherein solid fuel is burned in the first stage and the volatile gases released by the fuel are burned in the second stage. In this way, the fuel is consumed in a most efficient manner.

  7. Separation of actinides from LWR spent fuel using morten-salt based electrochemical processes.

    SciTech Connect

    Karell, E. J.; Gourishankar, K. V.; Smith, J. L.; Chow, L. S.; Redey, L. R.; Chemical Engineering

    2001-12-01

    Results are presented of work done at Argonne National Laboratory to develop a molten-salt-based electrochemical technology for extracting uranium and transuranic elements from spent light water reactor fuel. In this process, the actinide oxides in the spent fuel are reduced using lithium at 650{sup o}C in the presence of molten LiCl, yielding the corresponding actinides and Li{sub 2}O. The actinides are then extracted from the reduction product by means of electrorefining. Associated with the reduction step is an ancillary salt-recovery step designed to electrochemically reduce the Li{sub 2}O concentration of the salt and recover the lithium metal.Experiments were performed at the laboratory scale (50 to 150 g of fuel and 0.5 to 3.5 l of salt) and engineering scale (3.7 to 5.2 kg of fuel and 50 l of salt). Laboratory-scale experiments were designed to obtain information on the fundamental factors affecting process rates. Engineering-scale experiments were conducted to verify that the parameters controlling process scaleup are sufficiently understood, and to test equipment and operating concepts at or near full scale. All indications are that the electrochemical-based process should be workable at practical plant sizes.

  8. Separation of Actinides from LWR Spent Fuel Using Molten-Salt-Based Electrochemical Processes

    SciTech Connect

    Karell, Eric J.; Gourishankar, Karthick V.; Smith, James L.; Chow, Lorac S.; Redey, Laszlo

    2001-12-15

    Results are presented of work done at Argonne National Laboratory to develop a molten-salt-based electrochemical technology for extracting uranium and transuranic elements from spent light water reactor fuel. In this process, the actinide oxides in the spent fuel are reduced using lithium at 650 deg. C in the presence of molten LiCl, yielding the corresponding actinides and Li{sub 2}O. The actinides are then extracted from the reduction product by means of electrorefining. Associated with the reduction step is an ancillary salt-recovery step designed to electrochemically reduce the Li{sub 2}O concentration of the salt and recover the lithium metal.Experiments were performed at the laboratory scale (50 to 150 g of fuel and 0.5 to 3.5 l of salt) and engineering scale (3.7 to 5.2 kg of fuel and 50 l of salt). Laboratory-scale experiments were designed to obtain information on the fundamental factors affecting process rates. Engineering-scale experiments were conducted to verify that the parameters controlling process scaleup are sufficiently understood, and to test equipment and operating concepts at or near full scale. All indications are that the electrochemical-based process should be workable at practical plant sizes.

  9. Chemistry of lower valent actinide halides

    SciTech Connect

    Lau, K.H.; Hildenbrand, D.L.

    1992-01-01

    This research effort was concerned almost entirely with the first two members of the actinide series, thorium and uranium, although the work was later extended to some aspects of the neptunium-fluorine system in a collaborative program with Los Alamos National Laboratory. Detailed information about the lighter actinides will be helpful in modeling the properties of the heavier actinide compounds, which will be much more difficult to study experimentally. In this program, thermochemical information was obtained from high temperature equilibrium measurements made by effusion-beam mass spectrometry and by effusion-pressure techniques. Data were derived primarily from second-law analysis so as to avoid potential errors in third-law calculations resulting from uncertainties in spectroscopic and molecular constants. This approach has the additional advantage of yielding reaction entropies that can be checked for consistency with various molecular constant assignments for the species involved. In the U-F, U-Cl, and U-Br systems, all of the gaseous species UX, UX{sub 2}, UX{sub 3}, UX{sub 4}, and UX{sub 5}, where X represents the halogen, were identified and characterized; the corresponding species ThX, ThX{sub 2}, ThX{sub 3}, and ThX{sub 4} were studied in the Th-F, Th-Cl, and Th-Br systems. A number of oxyhalide species in the systems U-0-F, U-0-Cl, Th-0-F, and Th-O-Cl were studied thermochemically. Additionally, the sublimation thermodynamics of NpF{sub 4}(s) and NpO{sub 2}F{sub 2}(s) were studied by mass spectrometry.

  10. Critical issues in burn care.

    PubMed

    Holmes, James H

    2008-01-01

    Burn care, especially for serious burn injuries, represents a considerable challenge for the healthcare system. The American Burn Association has established a number of strategies for the management of burn patients and dedicates its efforts and resources to promoting and supporting burn-related research, education, care, rehabilitation, and prevention, often in collaboration with other organizations. The American Burn Association has recommended that patients with serious burns be referred to a designated burn center, ie, a hospital outfitted with specialized personnel and equipment dedicated to burn care. Burn centers have been operational for over 50 years, but the complexity and costs of providing specialized burn care have given rise to a number of critical administrative and political issues. These include logistical limitations imposed by the uneven national distribution of burn centers and a potential shortage of burn beds, both during everyday conditions and in the event of a mass disaster. Burn surgeon shortages have also been identified, stemming, in part, from a lack of specialized burn care training opportunities. There is currently a lack of quality outcome data to support evidence-based recommendations for burn care, and burn care centers are compromised by problems obtaining reimbursement for the care of uninsured and publicly insured out-of-state burn patients. Initiatives are underway to maintain efficient burn care facilities that are fully funded, easily accessible, and most importantly, provide optimal, evidence-based care on a daily basis, and are well-equipped to handle a surge of patients during a disaster situation.

  11. Critical issues in burn care.

    PubMed

    Holmes, James H

    2008-01-01

    Burn care, especially for serious burn injuries, represents a considerable challenge for the healthcare system. The American Burn Association has established a number of strategies for the management of burn patients and dedicates its efforts and resources to promoting and supporting burn-related research, education, care, rehabilitation, and prevention, often in collaboration with other organizations. The American Burn Association has recommended that patients with serious burns be referred to a designated burn center, ie, a hospital outfitted with specialized personnel and equipment dedicated to burn care. Burn centers have been operational for over 50 years, but the complexity and costs of providing specialized burn care have given rise to a number of critical administrative and political issues. These include logistical limitations imposed by the uneven national distribution of burn centers and a potential shortage of burn beds, both during everyday conditions and in the event of a mass disaster. Burn surgeon shortages have also been identified, stemming, in part, from a lack of specialized burn care training opportunities. There is currently a lack of quality outcome data to support evidence-based recommendations for burn care, and burn care centers are compromised by problems obtaining reimbursement for the care of uninsured and publicly insured out-of-state burn patients. Initiatives are underway to maintain efficient burn care facilities that are fully funded, easily accessible, and most importantly, provide optimal, evidence-based care on a daily basis, and are well-equipped to handle a surge of patients during a disaster situation. PMID:18997561

  12. Biomass burning a driver for global change

    SciTech Connect

    Levine, J.S.; Cofer, W.R. III; Cahoon, D.R. Jr.; Winstead, E.L.

    1995-03-01

    Recent research has identified another biospheric process that has instantaneous and longer term effects on the production of atmospheric gases: biomass burning. Biomass burning includes the burning of the world`s vegetation-forests, savannas. and agricultural lands, to clear the land and change its use. Only in the past decade have researchers realized the important contributions of biomass burning to the global budgets of many radiatively and chemically active gases - carbon dioxide, methane, nitric oxide, tropospheric ozone, methyl chloride - and elemental carbon particulates. International field experiments and satellite data are yielding a clearer understanding of this important global source of atmospheric gases and particulates. It is seen that in addition to being a significant instantaneous global source of atmospheric gases and particulates, burning enhances the biogenic emissions of nitric oxide and nitrous oxide from the world`s soils. Biomass burning affects the reflectivity and emissivity of the Earth`s surface as well as the hydrological cycle by changing rates of land evaporation and water runoff. For these reasons, it appears that biomass burning is a significant driver of global change. 20 refs., 4 figs., 2 tabs.

  13. Burning Mouth Syndrome.

    PubMed

    Kamala, K A; Sankethguddad, S; Sujith, S G; Tantradi, Praveena

    2016-01-01

    Burning mouth syndrome (BMS) is multifactorial in origin which is typically characterized by burning and painful sensation in an oral cavity demonstrating clinically normal mucosa. Although the cause of BMS is not known, a complex association of biological and psychological factors has been identified, suggesting the existence of a multifactorial etiology. As the symptom of oral burning is seen in various pathological conditions, it is essential for a clinician to be aware of how to differentiate between symptom of oral burning and BMS. An interdisciplinary and systematic approach is required for better patient management. The purpose of this study was to provide the practitioner with an understanding of the local, systemic, and psychosocial factors which may be responsible for oral burning associated with BMS, and review of treatment modalities, therefore providing a foundation for diagnosis and treatment of BMS. PMID:26962284

  14. Hand chemical burns.

    PubMed

    Robinson, Elliot P; Chhabra, A Bobby

    2015-03-01

    There is a vast and ever-expanding variety of potentially harmful chemicals in the military, industrial, and domestic landscape. Chemical burns make up a small proportion of all skin burns, yet they can cause substantial morbidity and mortality. Additionally, the hand and upper extremity are the most frequently involved parts of the body in chemical burns, and therefore these injuries may lead to severe temporary or permanent loss of function. Despite this fact, discussion of the care of these injuries is sparse in the hand surgery literature. Although most chemical burns require only first response and wound care, some require the attention of a specialist for surgical debridement and, occasionally, skin coverage and reconstruction. Exposure to certain chemicals carries the risk of substantial systemic toxicity and even mortality. Understanding the difference between thermal and chemical burns, as well as special considerations for specific compounds, will improve patient treatment outcomes.

  15. Burning Mouth Syndrome

    PubMed Central

    Kamala, KA; Sankethguddad, S; Sujith, SG; Tantradi, Praveena

    2016-01-01

    Burning mouth syndrome (BMS) is multifactorial in origin which is typically characterized by burning and painful sensation in an oral cavity demonstrating clinically normal mucosa. Although the cause of BMS is not known, a complex association of biological and psychological factors has been identified, suggesting the existence of a multifactorial etiology. As the symptom of oral burning is seen in various pathological conditions, it is essential for a clinician to be aware of how to differentiate between symptom of oral burning and BMS. An interdisciplinary and systematic approach is required for better patient management. The purpose of this study was to provide the practitioner with an understanding of the local, systemic, and psychosocial factors which may be responsible for oral burning associated with BMS, and review of treatment modalities, therefore providing a foundation for diagnosis and treatment of BMS. PMID:26962284

  16. Actinide management with commercial fast reactors

    NASA Astrophysics Data System (ADS)

    Ohki, Shigeo

    2015-12-01

    The capability of plutonium-breeding and minor-actinide (MA) transmutation in the Japanese commercial sodium-cooled fast reactor offers one of practical solutions for obtaining sustainable energy resources as well as reducing radioactive toxicity and inventory. The reference core design meets the requirement of flexible breeding ratio from 1.03 to 1.2. The MA transmutation amount has been evaluated as 50-100 kg/GWey if the MA content in fresh fuel is 3-5 wt%, where about 30-40% of initial MA can be transmuted in the discharged fuel.

  17. Multicoordinate ligands for actinide/lanthanide separations.

    PubMed

    Dam, Henk H; Reinhoudt, David N; Verboom, Willem

    2007-02-01

    In nuclear waste treatment processes there is a need for improved ligands for the separation of actinides (An(III)) and lanthanides (Ln(III)). Several research groups are involved in the design and synthesis of new An(III) ligands and in the confinement of these and existing An(III) ligands onto molecular platforms giving multicoordinate ligands. The preorganization of ligands considerably improves the An(III) extraction properties, which are largely dependent on the solubility and rigidity of the platform. This tutorial review summarizes the most important An(III) ligands with emphasis on the preorganization strategy using (macrocyclic) platforms.

  18. Status of nuclear data for actinides

    SciTech Connect

    Guzhovskii, B.Y.; Gorelov, V.P.; Grebennikov, A.N.

    1995-10-01

    Nuclear data required for transmutation problem include many actinide nuclei. In present paper the analysis of neutron fission, capture, (n,2n) and (n,3n) reaction cross sections at energy region from thermal point to 14 MeV was carried out for Th, Pa, U, Np, Pu, Am and Cm isotops using modern evaluated nuclear data libraries and handbooks of recommended nuclear data. Comparison of these data indicates on substantial discrepancies in different versions of files, that connect with quality and completeness of original experimental data.

  19. Radiation chemistry of aqueous solutions of actinides

    NASA Astrophysics Data System (ADS)

    Pikaev, Alexei K.; Shilov, Vladimir P.; Gogolev, Andrei V.

    1997-09-01

    The data on radiolytic transformations of ions of uranium, neptunium, plutonium, americium, curium and transcurium elements in aqueous solutions are generalised. The results of studies on the kinetics of fast reactions of these ions with primary products of water radiolysis (hydrated electron e-aq, H, OH, and O- radicals and H2O2), many inorganic (Cl2-, NO3, SO4-, CO3-, O3- etc.) and organic free radicals are analysed. The mechanism of γ- and α-radiolysis of solutions of actinide ions is discussed. The bibliography includes 183 references.

  20. Actinide management with commercial fast reactors

    SciTech Connect

    Ohki, Shigeo

    2015-12-31

    The capability of plutonium-breeding and minor-actinide (MA) transmutation in the Japanese commercial sodium-cooled fast reactor offers one of practical solutions for obtaining sustainable energy resources as well as reducing radioactive toxicity and inventory. The reference core design meets the requirement of flexible breeding ratio from 1.03 to 1.2. The MA transmutation amount has been evaluated as 50-100 kg/GW{sub e}y if the MA content in fresh fuel is 3-5 wt%, where about 30-40% of initial MA can be transmuted in the discharged fuel.

  1. Actinides and Rare Earths Topical Conference (Code AC)

    SciTech Connect

    Tobin, J G

    2009-11-24

    Actinide and the Rare Earth materials exhibit many unique and diverse physical, chemical and magnetic properties, in large part because of the complexity of their f electronic structure. This Topical Conference will focus upon the chemistry, physics and materials science in Lanthanide and Actinide materials, driven by 4f and 5f electronic structure. Particular emphasis will be placed upon 4f/5f magnetic structure, surface science and thin film properties. For the actinides, fundamental actinide science and its role in resolving technical challenges posed by actinide materials will be stressed. Both basic and applied experimental approaches, including synchrotron-radiation-based investigations, as well as theoretical modeling and computational simulations, are planned to be part of the Topical Conference. Of particular importance are the issues related to the potential renaissance in Nuclear Fuels, including synthesis, oxidation, corrosion, intermixing, stability in extreme environments, prediction of properties via benchmarked simulations, separation science, environmental impact and disposal of waste products.

  2. Actinide-Aluminate Speciation in Alkaline Radioactive Waste

    SciTech Connect

    Dr. David L. Clark; Dr. Alexander M. Fedosseev

    2001-12-21

    Investigation of behavior of actinides in alkaline media containing AL(III) showed that no aluminate complexes of actinides in oxidation states (IIII-VIII) were formed in alkaline solutions. At alkaline precipitation IPH (10-14) of actinides in presence of AL(III) formation of aluminate compounds is not observed. However, in precipitates contained actinides (IIV)<(VI), and to a lesser degree actinides (III), some interference of components takes place that is reflected in change of solid phase properties in comparison with pure components or their mechanical mixture. The interference decreases with rise of precipitation PH and at PH 14 is exhibited very feebly. In the case of NP(VII) the individual compound with AL(III) is obtained, however it is not aluminate of neptunium(VII), but neptunate of aluminium(III) similar to neptunates of other metals obtained earlier.

  3. Research in actinide chemistry. Progress report, 1990--1993

    SciTech Connect

    Choppin, G.R.

    1993-04-01

    This research studies the behavior of the actinide elements in aqueous solution. The high radioactivity of the transuranium actinides limits the concentrations which can be studied and, consequently, limits the experimental techniques. However, oxidation state analogs (trivalent lanthanides, tetravalent thorium, and hexavalent uranium) do not suffer from these limitations. Behavior of actinides in the environment are a major USDOE concern, whether in connection with long-term releases from a repository, releases from stored defense wastes or accidental releases in reprocessing, etc. Principal goal of our research was expand the thermodynamic data base on complexation of actinides by natural ligands (e.g., OH{sup {minus}}, CO{sub 3}{sup 2{minus}}, PO{sub 4}{sup 3{minus}}, humates). The research undertakes fundamental studies of actinide complexes which can increase understanding of the environmental behavior of these elements.

  4. Separation of actinides from lanthanides utilizing molten salt electrorefining

    SciTech Connect

    Grimmett, D.L.; Fusselman, S.P.; Roy, J.J.; Gay, R.L.; Krueger, C.L.; Storvick, T.S.; Inoue, T.; Hijikata, T.; Takahashi, N.

    1996-10-01

    TRUMP-S (TRansUranic Management through Pyropartitioning Separation) is a pyrochemical process being developed to separate actinides form fission products in nuclear waste. A key process step involving molten salt electrorefining to separate actinides from lanthanides has been studied on a laboratory scale. Electrorefining of U, Np, Pu, Am, and lanthanide mixtures from molten cadmium at 450 C to a solid cathode utilizing a molten chloride electrolyte resulted in > 99% removal of actinides from the molten cadmium and salt phases. Removal of the last few percent of actinides is accompanied by lowered cathodic current efficiency and some lanthanide codeposition. Actinide/lanthanide separation ratios on the cathode are ordered U > Np > Pu > Am and are consistent with predictions based on equilibrium potentials.

  5. Optimisation of composite metallic fuel for minor actinide transmutation in an accelerator-driven system

    NASA Astrophysics Data System (ADS)

    Uyttenhove, W.; Sobolev, V.; Maschek, W.

    2011-09-01

    A potential option for neutralization of minor actinides (MA) accumulated in spent nuclear fuel of light water reactors (LWRs) is their transmutation in dedicated accelerator-driven systems (ADS). A promising fuel candidate dedicated to MA transmutation is a CERMET composite with Mo metal matrix and (Pu, Np, Am, Cm)O 2-x fuel particles. Results of optimisation studies of the CERMET fuel targeting to increasing the MA transmutation efficiency of the EFIT (European Facility for Industrial Transmutation) core are presented. In the adopted strategy of MA burning the plutonium (Pu) balance of the core is minimized, allowing a reduction in the reactivity swing and the peak power form-factor deviation and an extension of the cycle duration. The MA/Pu ratio is used as a variable for the fuel optimisation studies. The efficiency of MA transmutation is close to the foreseen theoretical value of 42 kg TW -1 h -1 when level of Pu in the actinide mixture is about 40 wt.%. The obtained results are compared with the reference case of the EFIT core loaded with the composite CERCER fuel, where fuel particles are incorporated in a ceramic magnesia matrix. The results of this study offer additional information for the EFIT fuel selection.

  6. A decade of burn unit experience with Stevens-Johnson Syndrome/Toxic Epidermal Necrolysis: Clinical pathological diagnosis and risk factor awareness.

    PubMed

    Lim, Victoria M; Do, Annie; Berger, Timothy G; Nguyen, Austin H; DeWeese, Jeffrey; Malone, J David; Jordan, Kathleen; Hom, Fred; Tuffanelli, Lucia; Fillari, Paula; Siu, Shirley; Grossman, Richard

    2016-06-01

    Stevens-Johnson Syndrome (SJS)/Toxic Epidermal Necrolysis (TEN) is a rare and often fatal spectrum of mucocutaneous diseases usually attributable to severe adverse drug reactions. Burn units are referral centers for patients at the most extreme end of the disease continuum. Our burn center admits a much higher percentage of TEN (>30% BSA) cases than reported in most prior reviews. The purpose of this study was to analyze the diagnostic and prognostic value of variables collected on referred SJS/TEN patients. We retrospectively analyzed 94 patients admitted to our unit with a presumptive SJS/TEN diagnosis made in most cases by the referring center. Most of the diagnoses were clinical. Fifty of the 94 patients underwent biopsy when the clinical diagnosis was questionable. Of the 50 patients who underwent biopsy, 18 (36%) received an alternative diagnosis. Analysis was therefore limited to 76 patients, i.e. 44 patients felt to have firm clinical diagnoses plus 32 patients with diagnoses confirmed by biopsy. Mean age was 54.3 years (17-93) and overall gender ratio was 43 F vs. 33 M (56.6% vs. 43.4%). Mean LOS was 15.2 days (1-48) and overall mortality was 23.7% (18/76). Univariate analysis revealed percent body surface area (%BSA) did not show statistically significant association with mortality. Histopathological correlation for diagnosis is not standardized across institutions worldwide. Due to challenges in the diagnosis of SJS/TEN and the high incidence of error in clinical diagnosis, it is recommended that all patients with presumed SJS/TEN receive skin biopsies with H&E and direct immunofluorescence. We propose a diagnostic approach in order to address this need. Lack of association between %BSA and mortality suggests that all biopsy-proven SJS/TEN cases belong in specialty centers due to the unstable nature of the disease and risk for rapid progression. PMID:26847613

  7. Pediatric scalp burns: hair today, gone tomorrow?

    PubMed

    Menon, Seema; Jacques, Madeleine; Harvey, John G; Holland, Andrew J A

    2015-01-01

    Scalp burns in the pediatric population appear relatively uncommon, with most reported cases occurring in adults secondary to electrical burns. We reviewed our experience with the management of these injuries in children. A retrospective review was conducted at our institution from March 2004 to July 2011. Scalp burns were defined as any burn crossing over the hairline into the scalp region. During the 7-year 4-month study, there were 107 scalp burns, representing 1.8% of the 6074 burns treated at our institution during that time. The cause was scald in 97, contact in 4, flame in 3, friction in 2, and chemical in 1. The majority (n = 93, 87%) appeared superficial to mid-dermal, with an average time to complete healing of 10.3 days. The remaining 14 cases (13%) were mid-dermal to full thickness, with an average time to complete healing of 50.8 days. Grafting was required in 12 cases (11%). The mean time to grafting was 4 weeks (range, 2 weeks to 2.5 months). The main complication of scalp burns was alopecia, which occurred in all grafted sites as well as in 4 patients treated conservatively. There were no other complications after grafting and no cases of graft loss. In our pediatric series, scalp burns were most commonly caused by scald injuries and were superficial to mid-dermal in depth. These generally healed rapidly but occasionally resulted in alopecia. The management of deep dermal and full-thickness scalp burns remains challenging in children, with the decision to graft often delayed.

  8. Minor Actinide Recycle in Sodium Cooled Fast Reactors Using Heterogeneous Targets

    SciTech Connect

    Samuel Bays; Pavel Medvedev; Michael Pope; Rodolfo Ferrer; Benoit Forget; Mehdi Asgari

    2009-04-01

    This paper investigates the plausible design of transmutation target assemblies for minor actinides (MA) in Sodium Fast Reactors (SFR). A heterogeneous recycling strategy is investigated, whereby after each reactor pass, un-burned MAs from the targets are blended with MAs produced by the driver fuel and additional MAs from Spent Nuclear Fuel (SNF). A design iteration methodology was adopted for customizing the core design, target assembly design and matrix composition design. The overall design was constrained against allowable peak or maximum in-core performances. While respecting these criteria, the overall design was adjusted to reduce the total number of assemblies fabricated per refueling cycle. It was found that an inert metal-hydride MA-Zr-Hx target matrix gave the highest transmutation efficiency, thus allowing for the least number of targets to be fabricated per reactor cycle.

  9. Fabrication of advanced oxide fuels containing minor actinide for use in fast reactors

    SciTech Connect

    Miwa, Shuhei; Osaka, Masahiko; Tanaka, Kosuke; Ishi, Yohei; Yoshimochi, Hiroshi; Tanaka, Kenya

    2007-07-01

    R and D of advanced fuel containing minor actinide for use in fast reactors is described related to the composite fuel with MgO matrix. Fabrication tests of MgO composite fuels containing Am were done by a practical process that could be adapted to the presently used commercial manufacturing technology. Am-containing MgO composite fuels having good characteristics, i.e., having no defects, a high density, a homogeneous dispersion of host phase, were obtained. As related technology, burn-up characteristics of a fast reactor core loaded with the present MgO composite fuel were also analyzed, mainly in terms of core criticality. Furthermore, phase relations of MA oxide which was assumed to be contained in MgO matrix fuel were experimentally investigated. (authors)

  10. Erosive Burning Study Utilizing Ultrasonic Measurement Techniques

    NASA Technical Reports Server (NTRS)

    Furfaro, James A.

    2003-01-01

    A 6-segment subscale motor was developed to generate a range of internal environments from which multiple propellants could be characterized for erosive burning. The motor test bed was designed to provide a high Mach number, high mass flux environment. Propellant regression rates were monitored for each segment utilizing ultrasonic measurement techniques. These data were obtained for three propellants RSRM, ETM- 03, and Castor@ IVA, which span two propellant types, PBAN (polybutadiene acrylonitrile) and HTPB (hydroxyl terminated polybutadiene). The characterization of these propellants indicates a remarkably similar erosive burning response to the induced flow environment. Propellant burnrates for each type had a conventional response with respect to pressure up to a bulk flow velocity threshold. Each propellant, however, had a unique threshold at which it would experience an increase in observed propellant burn rate. Above the observed threshold each propellant again demonstrated a similar enhanced burn rate response corresponding to the local flow environment.

  11. Burn depth assessments by photoacoustic imaging and laser Doppler imaging.

    PubMed

    Ida, Taiichiro; Iwazaki, Hideaki; Kawaguchi, Yasushi; Kawauchi, Satoko; Ohkura, Tsuyako; Iwaya, Keiichi; Tsuda, Hitoshi; Saitoh, Daizoh; Sato, Shunichi; Iwai, Toshiaki

    2016-03-01

    Diagnosis of burn depths is crucial to determine the treatment plan for severe burn patients. However, an objective method for burn depth assessment has yet to be established, although a commercial laser Doppler imaging (LDI) system is used limitedly. We previously proposed burn depth assessment based on photoacoustic imaging (PAI), in which thermoelastic waves originating from blood under the burned tissue are detected, and we showed the validity of the method by experiments using rat models with three different burn depths: superficial dermal burn, deep dermal burn and deep burn. On the basis of those results, we recently developed a real-time PAI system for clinical burn diagnosis. Before starting a clinical trial, however, there is a need to reveal more detailed diagnostic characteristics, such as linearity and error, of the PAI system as well as to compare its characteristics with those of an LDI system. In this study, we prepared rat models with burns induced at six different temperatures from 70 to 98 °C, which showed a linear dependence of injury depth on the temperature. Using these models, we examined correlations of signals obtained by PAI and LDI with histologically determined injury depths and burn induction temperatures at 48 hours postburn. We found that the burn depths indicated by PAI were highly correlative with histologically determined injury depths (depths of viable vessels) as well as with burn induction temperatures. Perfusion values measured by LDI were less correlative with these parameters, especially for burns induced at higher temperatures, being attributable to the limited detectable depth for light involving a Doppler shift in tissue. In addition, the measurement errors in PAI were smaller than those in LDI. On the basis of these results, we will be able to start clinical studies using the present PAI system.

  12. Evaluation of actinide biosorption by microorganisms

    SciTech Connect

    Happel, A.M.

    1996-06-01

    Conventional methods for removing metals from aqueous solutions include chemical precipitation, chemical oxidation or reduction, ion exchange, reverse osmosis, electrochemical treatment and evaporation. The removal of radionuclides from aqueous waste streams has largely relied on ion exchange methods which can be prohibitively costly given increasingly stringent regulatory effluent limits. The use of microbial cells as biosorbants for heavy metals offers a potential alternative to existing methods for decontamination or recovery of heavy metals from a variety of industrial waste streams and contaminated ground waters. The toxicity and the extreme and variable conditions present in many radionuclide containing waste streams may preclude the use of living microorganisms and favor the use of non-living biomass for the removal of actinides from these waste streams. In the work presented here, we have examined the biosorption of uranium by non-living, non-metabolizing microbial biomass thus avoiding the problems associated with living systems. We are investigating biosorption with the long term goal of developing microbial technologies for the remediation of actinides.

  13. Fusion-Fission Burner for Transuranic Actinides

    NASA Astrophysics Data System (ADS)

    Choi, Chan

    2013-10-01

    The 14-MeV DT fusion neutron spectrum from mirror confinement fusion can provide a unique capability to transmute the transuranic isotopes from light water reactors (LWR). The transuranic (TRU) actinides, high-level radioactive wastes, from spent LWR fuel pose serious worldwide problem with long-term decay heat and radiotoxicity. However, ``transmuted'' TRU actinides can not only reduce the inventory of the TRU in the spent fuel repository but also generate additional energy. Typical commercial LWR fuel assemblies for BWR (boiling water reactor) and PWR (pressurized water reactor) measure its assembly lengths with 4.470 m and 4.059 m, respectively, while its corresponding fuel rod lengths are 4.064 m and 3.851 m. Mirror-based fusion reactor has inherently simple geometry for transmutation blanket with steady-state reactor operation. Recent development of gas-dynamic mirror configuration has additional attractive feature with reduced size in central plasma chamber, thus providing a unique capability for incorporating the spent fuel assemblies into transmutation blanket designs. The system parameters for the gas-dynamic mirror-based hybrid burner will be discussed.

  14. Actinide Solubility and Speciation in the WIPP

    SciTech Connect

    Reed, Donald T.

    2015-11-02

    The presentation begins with the role and need for nuclear repositories (overall concept, international updates (Sweden, Finland, France, China), US approach and current status), then moves on to the WIPP TRU repository concept (design, current status--safety incidents of February 5 and 14, 2014, path forward), and finally considers the WIPP safety case: dissolved actinide concentrations (overall approach, oxidation state distribution and redox control, solubility of actinides, colloidal contribution and microbial effects). The following conclusions are set forth: (1) International programs are moving forward, but at a very slow and somewhat sporadic pace. (2) In the United States, the Salt repository concept, from the perspective of the long-term safety case, remains a viable option for nuclear waste management despite the current operational issues/concerns. (3) Current model/PA prediction (WIPP example) are built on redundant conservatisms. These conservatisms are being addressed in the ongoing and future research to fill existing data gaps--redox control of plutonium by Fe(0, II), thorium (analog) solubility studies in simulated brine, contribution of intrinsic and biocolloids to the mobile concentration, and clarification of microbial ecology and effects.

  15. A many-body potential approach to modelling the thermomechanical properties of actinide oxides.

    PubMed

    Cooper, M W D; Rushton, M J D; Grimes, R W

    2014-03-12

    A many-body potential model for the description of actinide oxide systems, which is robust at high temperatures, is reported for the first time. The embedded atom method is used to describe many-body interactions ensuring good reproduction of a range of thermophysical properties (lattice parameter, bulk modulus, enthalpy and specific heat) between 300 and 3000 K for AmO2, CeO2, CmO2, NpO2, ThO2, PuO2 and UO2. Additionally, the model predicts a melting point for UO2 between 3000 and 3100 K, in close agreement with experiment. Oxygen-oxygen interactions are fixed across the actinide oxide series because it facilitates the modelling of oxide solid solutions. The new potential is also used to predict the energies of Schottky and Frenkel pair disorder processes.

  16. The ‘granite encapsulation’ route to the safe disposal of Pu and other actinides

    NASA Astrophysics Data System (ADS)

    Gibb, F. G. F.; Taylor, K. J.; Burakov, B. E.

    2008-03-01

    Waste actinides, including plutonium, present a long-term management problem and a serious security issue. Immobilisation in mineral or ceramic waste forms for interim storage is a widely proposed first step. The safest, most secure geological disposal for Pu is in very deep boreholes and we propose that the key step to combination of these immobilisation and disposal concepts is encapsulation of the waste form in cylinders of recrystallized granite. We discuss the underpinning science, focusing on experimental work, and consider implementation. Finally, we present and discuss analyses of zircon, UO 2 and Ce-doped cubic zirconia from high pressure and temperature experiments in granitic melts that demonstrate the viability of this solution and that actinides can be isolated from the environment for millions, maybe hundreds of millions, of years.

  17. Actinide production in the reaction of heavy ions with curium-248

    SciTech Connect

    Moody, K.J.

    1983-01-01

    Chemical experiments were performed to examine the usefulness of heavy ion transfer reactions in producing new, neutron-rich actinide nuclides. A general quasi-elastic to deep-inelastic mechanism is proposed, and the utility of this method as opposed to other methods (e.g. complete fusion) is discussed. The relative merits of various techniques of actinide target synthesis are discussed. A description is given of a target system designed to remove the large amounts of heat generated by the passage of a heavy ion beam through matter, thereby maximizing the beam intensity which can be safely used in an experiment. Also described is a general separation scheme for the actinide elements from protactinium (Z = 91) to mendelevium (Z = 101), and fast specific procedures for plutonium, americium and berkelium. The cross sections for the production of several nuclides from the bombardment of /sup 248/Cm with /sup 18/Kr and /sup 86/O, /sup 136/Xe projectiles at several energies near and below the Coulomb barrier were determined. The results are compared with yields from /sup 48/Ca and /sup 238/U bombardments of /sup 248/Cm. A preliminary, unsuccessful attempt to isolate /sup 247/Pu is outlined. The absolute ..gamma.. ray intensities from /sup 251/Bk decay, necessary for calculating the /sup 251/Bk cross section, are also determined.

  18. Nepal Ambient Monitoring and Source Testing Experiment (NAMaSTE): emissions of trace gases and light-absorbing carbon from wood and dung cooking fires, garbage and crop residue burning, brick kilns, and other sources

    NASA Astrophysics Data System (ADS)

    Stockwell, Chelsea E.; Christian, Ted J.; Goetz, J. Douglas; Jayarathne, Thilina; Bhave, Prakash V.; Praveen, Puppala S.; Adhikari, Sagar; Maharjan, Rashmi; DeCarlo, Peter F.; Stone, Elizabeth A.; Saikawa, Eri; Blake, Donald R.; Simpson, Isobel J.; Yokelson, Robert J.; Panday, Arnico K.

    2016-09-01

    The Nepal Ambient Monitoring and Source Testing Experiment (NAMaSTE) campaign took place in and around the Kathmandu Valley and in the Indo-Gangetic Plain (IGP) of southern Nepal during April 2015. The source characterization phase targeted numerous important but undersampled (and often inefficient) combustion sources that are widespread in the developing world such as cooking with a variety of stoves and solid fuels, brick kilns, open burning of municipal solid waste (a.k.a. trash or garbage burning), crop residue burning, generators, irrigation pumps, and motorcycles. NAMaSTE produced the first, or rare, measurements of aerosol optical properties, aerosol mass, and detailed trace gas chemistry for the emissions from many of the sources. This paper reports the trace gas and aerosol measurements obtained by Fourier transform infrared (FTIR) spectroscopy, whole-air sampling (WAS), and photoacoustic extinctiometers (PAX; 405 and 870 nm) based on field work with a moveable lab sampling authentic sources. The primary aerosol optical properties reported include emission factors (EFs) for scattering and absorption coefficients (EF Bscat, EF Babs, in m2 kg-1 fuel burned), single scattering albedos (SSAs), and absorption Ångström exponents (AAEs). From these data we estimate black and brown carbon (BC, BrC) emission factors (g kg-1 fuel burned). The trace gas measurements provide EFs (g kg-1) for CO2, CO, CH4, selected non-methane hydrocarbons up to C10, a large suite of oxygenated organic compounds, NH3, HCN, NOx, SO2, HCl, HF, etc. (up to ˜ 80 gases in all). The emissions varied significantly by source, and light absorption by both BrC and BC was important for many sources. The AAE for dung-fuel cooking fires (4.63 ± 0.68) was significantly higher than for wood-fuel cooking fires (3.01 ± 0.10). Dung-fuel cooking fires also emitted high levels of NH3 (3.00 ± 1.33 g kg-1), organic acids (7.66 ± 6.90 g kg-1), and HCN (2.01 ± 1.25 g kg-1), where the latter could

  19. Burn wound management.

    PubMed

    Davies, M R; Rode, H; Cywes, S; van der Riet, R L

    1981-01-01

    In this chapter the local therapy for burns is discussed. Between 400 and 500 children with burns are treated every year at the Red Cross War Memorial Children's Hospital in Cape Town, but in only 10% of them do the burns affect over 20% of the body surface. These latter patients are treated in special rooms equipped for intensive therapy. Open and closed methods of treatment for burns used in addition to early excision are compared. The first aim is early skin cover for areas with skin loss preserving as much function as possible and achieving the best possible cosmetic result. Local therapy must be atraumatic to prevent extension of the skin lesion. Bacterial contamination must be prevented as far as possible by keeping the wound clean. Emergency treatment and the course of wound healing up to the third week after the injury using the appropriate dressings are described. Early excision until the fifth day after the accident should be used mainly for burns of the hand, deep second degree burns of up to 10% of the body surface, deep second degree burns over the joints and deep second degree burns of the neck. It must be admitted that the depth of the burn can only be definitely estimated between the seventh and tenth day after the accident. If no autografts are available homografts or grafts from animals are used. The age of the patient, associated injuries, associated diseases and the extent of the burn all play a role in determining the prognosis. Furthermore endogenous bacterial infections, absorption of local therapeutic agents and the state of the surrounding skin do also influence the healing process. Finally the various local therapeutic agents like sulphamylon, silver sulphadiazine and betadine are discussed. A 0.05% solution of silver nitrate is also active against gram-negative infections. Skin transplants are disinfected with a solution containing one third 0.25% acetic acid, one third 3% cent hydrogen peroxide and one third saline. Hydrogen peroxide

  20. Burn injury in children.

    PubMed

    Zámecníková, I; Stĕtinský, J; Tymonová, J; Kadlcík, M

    2005-01-01

    The authors have analyzed the data files of 580 child patients up to 15 years of age who were hospitalized at the Burn Center of the FNsP Hospital in Ostrava in the years 1999 - 2003. The authors focused on mechanisms of burn injury in relation to the age of a child as well as extent, depth, localization, and local treatment of the injury. The data file was divided to four age groups: up to two years of age, 2 - 5 years of age, 5 - 10 years of age, and 10 - 15 years of age. As regards the mechanisms of injury, the authors have analyzed scalding by hot liquids, burns due to contact with a hot object, burns due to electric current, explosion, and injury caused by burning clothing. Injury by scalding prevails to a very significant degree in the youngest children. In the second age group the incidence of burn following contact with hot objects increases, as does the percentage of children injured by burning of clothing in children aged 5 - 10. The older children have increased prevalence of injuries caused by explosions. The greatest average extent of an injury is from burning of clothing. Most of the areas are burned deeply, localized in more areas of the body, and almost half of the cases required surgical intervention. Scalding comes second in terms of average extent of an injury. More than half of the injured areas are superficial, and areas of injury are different in the individual age groups. We addressed about a fifth of the cases surgically. The explosion of combustible materials caused a smaller extent of injury, on average, taking third place. The injuries were predominantly superficial, most commonly involving the head, trunk, and upper extremities. In none of the cases it was necessary for us to operate. Burn injuries caused by contact with hot objects are of a smaller extent. More than half of the burned areas are deep, localized most commonly in the upper extremities. Surgical intervention was necessary in more than half the cases. In terms of average

  1. Adapting to life after burn injury--reflections on care.

    PubMed

    Dahl, Oili; Wickman, Marie; Wengström, Yvonne

    2012-01-01

    A burn injury is an unforeseen event that means physical and psychological trauma for the person afflicted. The trauma experienced by different individuals varies greatly, as do perceived problems during care, rehabilitation, and throughout the remainder of life. The purpose of this study was to explore burn patients' experiences of adapting to life after burn injury to acquire a deeper understanding of the most important issues for patients when providing care during and after a burn injury. A qualitative approach was applied, and interviews were conducted with 12 adult burn patients (8 men and 4 women) 6 to 12 months postburn. The interviews were analyzed using Kvales' method for structuring analysis and comprised a close reading and interpretation of the texts. Analysis focused on the personal experiences of burn patients living after burn injury and treatment. Struggling with the consequences of burn injury and how patients perceived life today after treatment are important issues for adapting to life after burn injury. New experiences of a fragile body, coping with daily life, and reflections of burn care were also prominent themes. Patients with burn injuries need adequate repeated information about the plan for their care, about the physiological changes, and more support to handle the trauma event. The patients would also like to be more involved in their care. A program of support and preparatory work to help the patient to cope with the new bodily sensations and new body image is necessary and should begin during hospital care. A multidisciplinary team approach for pain treatment needs to be prioritized. In addition, multidisciplinary follow-up after burns need to include patients with minor burns. PMID:22210069

  2. Surface Complexation of Actinides with Iron Oxides: Implications for Radionuclide Transport in Near-Surface Aquifers

    NASA Astrophysics Data System (ADS)

    Jerden, J. L.; Kropf, A. J.; Tsai, Y.

    2005-12-01

    The surface complexation of actinides with iron oxides plays a key role in actinide transport and retardation in geosphere-biosphere systems. The development of accurate actinide transport models therefore requires a mechanistic understanding of surface complexation reactions (i.e. knowledge of chemical speciation at mineral/fluid interfaces). Iron oxides are particularly important actinide sorbents due to their pH dependent surface charges, relatively high surface areas and ubiquity in oxic and suboxic near-surface systems. In this paper we present results from field and laboratory investigations that elucidate the mechanisms involved in binding uranium and neptunium to iron oxide mineral substrates in near neutral groundwaters. The field study involved sampling and characterizing uranium-bearing groundwaters and solids from a saprolite aquifer overlying an unmined uranium deposit in the Virginia Piedmont. The groundwaters were analyzed by inductively coupled mass spectrometry and ion chromatography and the aquifer solids were analyzed by electron microprobe. The laboratory study involved a series of batch sorption tests in which U(VI) and Np(V) were reacted with goethite, hematite and magnetite in simulated groundwaters. The pH, ionic strength, aging time, and sorbent/sorbate ratios were varied in these experiments. The oxidation state and coordination environment of neptunium in solutions and sorbents from the batch tests were characterized by X-ray absorption spectroscopy (XAS) at the Advanced Photon Source, Argonne National Laboratory. Results from this work indicate that, in oxidizing near-surface aquifers, the dissolved concentration of uranium may be limited to less than 30 parts per billion due to uptake by iron oxide mineral coatings and the precipitation of sparingly soluble U(VI) phosphate minerals. Results from the batch adsorption tests showed that, in near neutral groundwaters, a significant fraction of the uranium and neptunium adsorbed as strongly

  3. SURFACE COMPLEXATION OF ACTINIDES WITH IRON OXIDES: IMPLICATIONS FOR RADIONUCLIDE TRANSPORT IN NEAR-SURFACE AQUIFERS

    SciTech Connect

    J.L. Jerden Jr.; A.J. Kropf; Y. Tsai

    2005-08-25

    The surface complexation of actinides with iron oxides plays a key role in actinide transport and retardation in geosphere-biosphere systems. The development of accurate actinide transport models therefore requires a mechanistic understanding of surface complexation reactions (i.e. knowledge of chemical speciation at mineral/fluid interfaces). Iron oxides are particularly important actinide sorbents due to their pH dependent surface charges, relatively high surface areas and ubiquity in oxic and suboxic near-surface systems. In this paper we present results from field and laboratory investigations that elucidate the mechanisms involved in binding uranium and neptunium to iron oxide mineral substrates in near neutral groundwaters. The field study involved sampling and characterizing uranium-bearing groundwaters and solids from a saprolite aquifer overlying an unmined uranium deposit in the Virginia Piedmont. The groundwaters were analyzed by inductively coupled mass spectrometry and ion chromatography and the aquifer solids were analyzed by electron microprobe. The laboratory study involved a series of batch sorption tests in which U(VI) and Np(V) were reacted with goethite, hematite and magnetite in simulated groundwaters. The pH, ionic strength, aging time, and sorbent/sorbate ratios were varied in these experiments. The oxidation state and coordination environment of neptunium in solutions and sorbents from the batch tests were characterized by X-ray absorption spectroscopy (XAS) at the Advanced Photon Source, Argonne National Laboratory. Results from this work indicate that, in oxidizing near-surface aquifers, the dissolved concentration of uranium may be limited to less than 30 parts per billion due to uptake by iron oxide mineral coatings and the precipitation of sparingly soluble U(VI) phosphate minerals. Results from the batch adsorption tests showed that, in near neutral groundwaters, a significant fraction of the uranium and neptunium adsorbed as strongly

  4. End point control of an actinide precipitation reactor

    SciTech Connect

    Muske, K.R.; Palmer, M.J.

    1997-10-01

    The actinide precipitation reactors in the nuclear materials processing facility at Los Alamos National Laboratory are used to remove actinides and other heavy metals from the effluent streams generated during the purification of plutonium. These effluent streams consist of hydrochloric acid solutions, ranging from one to five molar in concentration, in which actinides and other metals are dissolved. The actinides present are plutonium and americium. Typical actinide loadings range from one to five grams per liter. The most prevalent heavy metals are iron, chromium, and nickel that are due to stainless steel. Removal of these metals from solution is accomplished by hydroxide precipitation during the neutralization of the effluent. An end point control algorithm for the semi-batch actinide precipitation reactors at Los Alamos National Laboratory is described. The algorithm is based on an equilibrium solubility model of the chemical species in solution. This model is used to predict the amount of base hydroxide necessary to reach the end point of the actinide precipitation reaction. The model parameters are updated by on-line pH measurements.

  5. On the Suitability of Lanthanides as Actinide Analogs

    SciTech Connect

    Szigethy, Geza; Raymond, Kenneth N.

    2008-04-11

    With the current level of actinide materials used in civilian power generation and the need for safe and efficient methods for the chemical separation of these species from their daughter products and for long-term storage requirements, a detailed understanding of actinide chemistry is of great importance. Due to the unique bonding properties of the f-elements, the lanthanides are commonly used as structural and chemical models for the actinides, but differences in the bonding between these 4f and 5f elements has become a question of immediate applicability to separations technology. This brief overview of actinide coordination chemistry in the Raymond group at UC Berkeley/LBNL examines the validity of using lanthanide analogs as structural models for the actinides, with particular attention paid to single crystal X-ray diffraction structures. Although lanthanides are commonly accepted as reasonable analogs for the actinides, these comparisons suggest the careful study of actinide materials independent of their lanthanide analogs to be of utmost importance to present and future efforts in nuclear industries.

  6. Separation of actinides from spent nuclear fuel: A review.

    PubMed

    Veliscek-Carolan, Jessica

    2016-11-15

    This review summarises the methods currently available to extract radioactive actinide elements from solutions of spent nuclear fuel. This separation of actinides reduces the hazards associated with spent nuclear fuel, such as its radiotoxicity, volume and the amount of time required for its' radioactivity to return to naturally occurring levels. Separation of actinides from environmental water systems is also briefly discussed. The actinide elements typically found in spent nuclear fuel include uranium, plutonium and the minor actinides (americium, neptunium and curium). Separation methods for uranium and plutonium are reasonably well established. On the other hand separation of the minor actinides from lanthanide fission products also present in spent nuclear fuel is an ongoing challenge and an area of active research. Several separation methods for selective removal of these actinides from spent nuclear fuel will be described. These separation methods include solvent extraction, which is the most commonly used method for radiochemical separations, as well as the less developed but promising use of adsorption and ion-exchange materials. PMID:27427893

  7. Gas core reactors for actinide transmutation. [uranium hexafluoride

    NASA Technical Reports Server (NTRS)

    Clement, J. D.; Rust, J. H.; Wan, P. T.; Chow, S.

    1979-01-01

    The preliminary design of a uranium hexafluoride actinide transmutation reactor to convert long-lived actinide wastes to shorter-lived fission product wastes was analyzed. It is shown that externally moderated gas core reactors are ideal radiators. They provide an abundant supply of thermal neutrons and are insensitive to composition changes in the blanket. For the present reactor, an initial load of 6 metric tons of actinides is loaded. This is equivalent to the quantity produced by 300 LWR-years of operation. At the beginning, the core produces 2000 MWt while the blanket generates only 239 MWt. After four years of irradiation, the actinide mass is reduced to 3.9 metric tonnes. During this time, the blanket is becoming more fissile and its power rapidly approaches 1600 MWt. At the end of four years, continuous refueling of actinides is carried out and the actinide mass is held constant. Equilibrium is essentially achieved at the end of eight years. At equilibrium, the core is producing 1400 MWt and the blanket 1600 MWt. At this power level, the actinide destruction rate is equal to the production rate from 32 LWRs.

  8. Separation of actinides from spent nuclear fuel: A review.

    PubMed

    Veliscek-Carolan, Jessica

    2016-11-15

    This review summarises the methods currently available to extract radioactive actinide elements from solutions of spent nuclear fuel. This separation of actinides reduces the hazards associated with spent nuclear fuel, such as its radiotoxicity, volume and the amount of time required for its' radioactivity to return to naturally occurring levels. Separation of actinides from environmental water systems is also briefly discussed. The actinide elements typically found in spent nuclear fuel include uranium, plutonium and the minor actinides (americium, neptunium and curium). Separation methods for uranium and plutonium are reasonably well established. On the other hand separation of the minor actinides from lanthanide fission products also present in spent nuclear fuel is an ongoing challenge and an area of active research. Several separation methods for selective removal of these actinides from spent nuclear fuel will be described. These separation methods include solvent extraction, which is the most commonly used method for radiochemical separations, as well as the less developed but promising use of adsorption and ion-exchange materials.

  9. MOLECULAR SPECTROSCPY AND REACTIONS OF ACTINIDES IN THE GAS PHASE AND CRYOGENIC MATRICES

    SciTech Connect

    Heaven, Michael C.; Gibson, John K.; Marcalo, Joaquim

    2009-02-01

    In this chapter we review the spectroscopic data for actinide molecules and the reaction dynamics for atomic and molecular actinides that have been examined in the gas phase or in inert cryogenic matrices. The motivation for this type of investigation is that physical properties and reactions can be studied in the absence of external perturbations (gas phase) or under minimally perturbing conditions (cryogenic matrices). This information can be compared directly with the results from high-level theoretical models. The interplay between experiment and theory is critically important for advancing our understanding of actinide chemistry. For example, elucidation of the role of the 5f electrons in bonding and reactivity can only be achieved through the application of experimentally verified theoretical models. Theoretical calculations for the actinides are challenging due the large numbers of electrons that must be treated explicitly and the presence of strong relativistic effects. This topic has been reviewed in depth in Chapter 17 of this series. One of the goals of the experimental work described in this chapter has been to provide benchmark data that can be used to evaluate both empirical and ab initio theoretical models. While gas-phase data are the most suitable for comparison with theoretical calculations, there are technical difficulties entailed in generating workable densities of gas-phase actinide molecules that have limited the range of species that have been characterized. Many of the compounds of interest are refractory, and problems associated with the use of high temperature vapors have complicated measurements of spectra, ionization energies, and reactions. One approach that has proved to be especially valuable in overcoming this difficulty has been the use of pulsed laser ablation to generate plumes of vapor from refractory actinide-containing materials. The vapor is entrained in an inert gas, which can be used to cool the actinide species to room

  10. Infrared imaging of burn wounds to determine burn depth

    NASA Astrophysics Data System (ADS)

    Hargroder, Andrew G.; Davidson, James E., Sr.; Luther, Donald G.; Head, Jonathan F.

    1999-07-01

    Determination of burn wound depth is at present left to the surgeons visual examination. Many burn wounds are obviously, by visual inspection, superficial 2 degree burns or true 3 degree burns. However, those burn wounds that fall between the obvious depth burns are difficult to assess visually, and therefore wound depth determination often requires waiting 5 to 7 days postburn. Initially, 10 burn patients underwent IR imaging at various times during the evaluation of their burn wounds. These patients were followed to either healing or skin grafting. The IR images were then reviewed to determine their accuracy in determining the depth of the wound. IR imaging of burn wounds with focal plane staring array midrange IR systems appears promising in determination of burn depth one to two days postburn. This will allow clinical decision regarding operative or nonoperative intervention to be made earlier, thus decreasing hospital stays and time to healing.

  11. An Approach for Validating Actinide and Fission Product Burnup Credit Criticality Safety Analyses: Criticality (keff) Predictions

    DOE PAGESBeta

    Scaglione, John M.; Mueller, Don E.; Wagner, John C.

    2014-12-01

    One of the most important remaining challenges associated with expanded implementation of burnup credit in the United States is the validation of depletion and criticality calculations used in the safety evaluation—in particular, the availability and use of applicable measured data to support validation, especially for fission products (FPs). Applicants and regulatory reviewers have been constrained by both a scarcity of data and a lack of clear technical basis or approach for use of the data. In this study, this paper describes a validation approach for commercial spent nuclear fuel (SNF) criticality safety (keff) evaluations based on best-available data and methodsmore » and applies the approach for representative SNF storage and transport configurations/conditions to demonstrate its usage and applicability, as well as to provide reference bias results. The criticality validation approach utilizes not only available laboratory critical experiment (LCE) data from the International Handbook of Evaluated Criticality Safety Benchmark Experiments and the French Haut Taux de Combustion program to support validation of the principal actinides but also calculated sensitivities, nuclear data uncertainties, and limited available FP LCE data to predict and verify individual biases for relevant minor actinides and FPs. The results demonstrate that (a) sufficient critical experiment data exist to adequately validate keff calculations via conventional validation approaches for the primary actinides, (b) sensitivity-based critical experiment selection is more appropriate for generating accurate application model bias and uncertainty, and (c) calculated sensitivities and nuclear data uncertainties can be used for generating conservative estimates of bias for minor actinides and FPs. Results based on the SCALE 6.1 and the ENDF/B-VII.0 cross-section libraries indicate that a conservative estimate of the bias for the minor actinides and FPs is 1.5% of their worth within the

  12. Management of burn wounds.

    PubMed

    Schiestl, Clemens; Meuli, Martin; Trop, Marija; Neuhaus, Kathrin

    2013-10-01

    Small and moderate scalds in toddlers are still the most frequent thermal injuries the pediatric surgeons have to face today. Over the last years, surgical treatment of these patients has changed in many aspects. Due to new dressing materials and new surgical treatment strategies that are particularly suitable for children, today, far better functional and aesthetic long-term results are possible. While small and moderate thermal injuries can be treated in most European pediatric surgical departments, the severely burned child must be transferred to a specialized, ideally pediatric, burn center, where a well-trained multidisciplinary team under the leadership of a (ideally pediatric) burn surgeon cares for these highly demanding patients. In future, tissue engineered full thickness skin analogues will most likely play an important role, in pediatric burn as well as postburn reconstructive surgery.

  13. Burns (For Parents)

    MedlinePlus

    ... you drowsy, or in bed. Don't use fireworks or sparklers. Bathroom Set the thermostat on your ... For Kids For Parents MORE ON THIS TOPIC Fireworks Safety First Aid: Burns First Aid: Sunburn Sun ...

  14. Minor burns - aftercare

    MedlinePlus

    ... put a thin layer of ointment, such as petroleum jelly or aloe vera, on the burn. The ... is accredited by URAC, also known as the American Accreditation HealthCare Commission (www.urac.org). URAC's accreditation ...

  15. Atmospheric Effects of Biomass Burning

    NASA Technical Reports Server (NTRS)

    Thompson, Anne M.

    2000-01-01

    Biomass fires are both natural and anthropogenic in origin. The natural trigger is lightning, which leads to mid- and high-latitude fires and episodes of smoke and pollution associated with them. Lightning is also prominent in tropical regions when the dry season gives way to the wet season and lightning in convective systems ignites dry vegetation. Atmospheric consequences of biomass fires are complex. When considering the impacts of fires for a given ecosystem, inputs of fires must be compared to other process that emit trace gases and particles into the atmosphere. Other processes include industrial activity, fires for household purposes and biogenic sources which may themselves interact with fires. That is, fires may promote or restrict biogenic processes. Several books have presented various aspects of fire interactions with atmospheric chemistry and a cross-disciplinary review of a 1992 fire-oriented experiment appears in SAFARI: The Role of southern African Fires in Atmospheric and Ecological Environments. The IGAC/BIBEX core activity (see acronyms at end of Chapter) has sponsored field campaigns that integrate multiple aspects of fires ground-based measurements with an ecological perspective, atmospheric measurements with chemical and meteorological components, and remote sensing. This Chapter presents two aspects of biomass fires and the environment. Namely, the relationship between biomass burning and ozone is described, starting with a brief description of the chemical reactions involved and illustrative measurements and interpretation. Second, because of the need to observe biomass burning and its consequences globally, a summary of remote sensing approaches to the study of fires and trace gases is given. Examples in this Chapter are restricted to tropical burning for matters of brevity and because most burning activity globally is within this zone.

  16. Burn Depth Monitor

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Supra Medical Systems is successfully marketing a device that detects the depth of burn wounds in human skin. To develop the product, the companyused technology developed by NASA Langley physicists looking for better ultrasonic detection of small air bubbles and cracks in metal. The device is being marketed to burn wound analysis and treatment centers. Through a Space Act agreement, NASA and the company are also working to further develop ultrasonic instruments for new medical applications.

  17. Burn Depth Monitor

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Supra Medical Systems is successfully marketing a device that detects the depth of burn wounds in human skin. To develop the product, the company used technology developed by NASA Langley physicists looking for better ultrasonic detection of small air bubbles and cracks in metal. The device is being marketed to burn wound analysis and treatment centers. Through a Space Act agreement, NASA and the company are also working to further develop ultrasonic instruments for new medical applications

  18. Burn Depth Monitor

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Supra Medical Systems is successfully marketing a device that detects the depth of burn wounds in human skin. To develop the product, the company used technology developed by NASA Langley physicists looking for better ultrasonic detection of small air bubbles and cracks in metal. The device is being marketed to burn wound analysis and treatment centers. Through a Space Act agreement, NASA and the company are also working to further develop ultrasonic instruments for new medical applications.

  19. Accidental burns during surgery.

    PubMed

    Demir, Erhan; O'Dey, Dan Mon; Pallua, Norbert

    2006-01-01

    The purpose of this report is to increase awareness of intraoperative burns during standard procedures, to discuss their possible causes and warning signs and to provide recommendations for prevention and procedures to follow after their occurrence. A total of 19 patients associated with intraoperative burn accidents were treated surgically and analyzed after a mean follow-up of 5 +/- 3.5 months. Review included retrospective patient chart analysis, clinical examination, and technical device and equipment testing. A total of 15 patients recently underwent cardiac surgery, and 4 pediatric patients recovered after standard surgical procedures. A total of 15 patients had superficial and 4 presented with deep dermal or full-thickness burns. The average injured TBSA was 2.1 +/- 1% (range, 0.5-4%). Delay between primary surgery and consultation of plastic surgeons was 4.5 +/- 3.4 days. A total of 44% required surgery, including débridment, skin grafting or musculocutaneous gluteus maximus flaps, and the remaining patients were treated conservatively. Successful durable soft-tissue coverage of the burn region was achieved in 18 patients, and 1 patient died after a course of pneumonia. Technical analysis demonstrated one malfunctioning electrosurgical device, one incorrect positioned neutral electrode, three incidents occurred after moisture under the negative electrode, eight burns occurred during surgery while fluid or blood created alternate current pathways, five accidents were chemical burns after skin preparation with Betadine solution, and in one case, the cause was not clear. The surgical team should pay more attention to the probability of burns during surgery. Early patient examination and immediate involvement of plastic and burn surgeons may prevent further complications or ease handling after the occurrence.

  20. 5f-electron localization in the actinide metals: thorides, actinides and the Mott transition

    NASA Astrophysics Data System (ADS)

    Lawson, A. C.

    2016-03-01

    For the light actinides Ac-Cm, the numbers of localized and itinerant 5f-electrons are determined by comparing various estimates of the f-electron counts. At least one itinerant f-electron is found for each element, Pa-Cm. These results resolve certain disagreements among electron counts determined by different methods and are consistent with the Mott transition model and with the picture of the 5f-electrons' dual nature.

  1. Chemistry of tetravalent actinide phosphates-Part I

    SciTech Connect

    Brandel, V. . E-mail: vbrandel@neuf.fr; Dacheux, N. . E-mail: dacheux@ipno.in2p3.fr

    2004-12-01

    The chemistry and crystal structure of phosphates of tetravalent cations, including that of actinides was reviewed several times up to 1985. Later, new compounds were synthesized and characterized. In more recent studies, it was found that some of previously reported phases, especially those of thorium, uranium and neptunium, were wrongly identified. In the light of these new facts an update review and classification of the tetravalent actinide phosphates is proposed in the two parts of this paper. Their crystal structure and some chemical properties are also compared to non-actinide cation phosphates.

  2. Engineering-Scale Distillation of Cadmium for Actinide Recovery

    SciTech Connect

    J.C. Price; D. Vaden; R.W. Benedict

    2007-10-01

    During the recovery of actinide products from spent nuclear fuel, cadmium is separated from the actinide products by a distillation process. Distillation occurs in an induction-heated furnace called a cathode processor capable of processing kilogram quantities of cadmium. Operating parameters have been established for sufficient recovery of the cadmium based on mass balance and product purity. A cadmium distillation rate similar to previous investigators has also been determined. The development of cadmium distillation for spent fuel treatment enhances the capabilities for actinide recovery processes.

  3. Process to remove actinides from soil using magnetic separation

    DOEpatents

    Avens, Larry R.; Hill, Dallas D.; Prenger, F. Coyne; Stewart, Walter F.; Tolt, Thomas L.; Worl, Laura A.

    1996-01-01

    A process of separating actinide-containing components from an admixture including forming a slurry including actinide-containing components within an admixture, said slurry including a dispersion-promoting surfactant, adjusting the pH of the slurry to within a desired range, and, passing said slurry through a pretreated matrix material, said matrix material adapted to generate high magnetic field gradients upon the application of a strong magnetic field exceeding about 0.1 Tesla whereupon a portion of said actinide-containing components are separated from said slurry and remain adhered upon said matrix material is provided.

  4. An emergency bioassay method for actinides in urine.

    PubMed

    Dai, Xiongxin; Kramer-Tremblay, Sheila

    2011-08-01

    A rapid bioassay method has been developed for the sequential measurements of actinides in human urine samples. The method involves actinide separation from a urine matrix by co-precipitation with hydrous titanium oxide (HTiO), followed by anion exchange and extraction chromatography column purification, and final counting by alpha spectrometry after cerium fluoride micro-precipitation. The minimal detectable activities for the method were determined to be 20 mBq L(-1) or less for plutonium, uranium, americium and curium isotopes, with an 8-h sample turn-around time. Spike tests showed that this method would meet the requirements for actinide bioassay following a radiation emergency.

  5. Separating the Minor Actinides Through Advances in Selective Coordination Chemistry

    SciTech Connect

    Lumetta, Gregg J.; Braley, Jenifer C.; Sinkov, Sergey I.; Carter, Jennifer C.

    2012-08-22

    This report describes work conducted at the Pacific Northwest National Laboratory (PNNL) in Fiscal Year (FY) 2012 under the auspices of the Sigma Team for Minor Actinide Separation, funded by the U.S. Department of Energy Office of Nuclear Energy. Researchers at PNNL and Argonne National Laboratory (ANL) are investigating a simplified solvent extraction system for providing a single-step process to separate the minor actinide elements from acidic high-level liquid waste (HLW), including separating the minor actinides from the lanthanide fission products.

  6. Hydrothermal Synthesis and Crystal Structures of Actinide Compounds

    NASA Astrophysics Data System (ADS)

    Runde, Wolfgang; Neu, Mary P.

    Since the 1950s actinides have been used to benefit industry, science, health, and national security. The largest industrial application, electricity generation from uranium and thorium fuels, is growing worldwide. Thus, more actinides are being mined, produced, used and processed than ever before. The future of nuclear energy hinges on how these increasing amounts of actinides are contained in each stage of the fuel cycle, including disposition. In addition, uranium and plutonium were built up during the Cold War between the United States and the Former Soviet Union for defense purposes and nuclear energy. These stockpiles have been significantly reduced in the last decade.

  7. Separations and Actinide Science -- 2005 Roadmap

    SciTech Connect

    Not Available

    2005-09-01

    The Separations and Actinide Science Roadmap presents a vision to establish a separations and actinide science research (SASR) base composed of people, facilities, and collaborations and provides new and innovative nuclear fuel cycle solutions to nuclear technology issues that preclude nuclear proliferation. This enabling science base will play a key role in ensuring that Idaho National Laboratory (INL) achieves its long-term vision of revitalizing nuclear energy by providing needed technologies to ensure our nation's energy sustainability and security. To that end, this roadmap suggests a 10-year journey to build a strong SASR technical capability with a clear mission to support nuclear technology development. If nuclear technology is to be used to satisfy the expected growth in U.S. electrical energy demand, the once-through fuel cycle currently in use should be reconsidered. Although the once-through fuel cycle is cost-effective and uranium is inexpensive, a once-through fuel cycle requires long-term disposal to protect the environment and public from long-lived radioactive species. The lack of a current disposal option (i.e., a licensed repository) has resulted in accumulation of more than 50,000 metric tons of spent nuclear fuel. The process required to transition the current once-through fuel cycle to full-recycle will require considerable time and significant technical advancement. INL's extensive expertise in aqueous separations will be used to develop advanced separations processes. Computational chemistry will be expanded to support development of future processing options. In the intermediate stage of this transition, reprocessing options will be deployed, waste forms with higher loading densities and greater stability will be developed, and transmutation of long-lived fission products will be explored. SASR will support these activities using its actinide science and aqueous separations expertise. In the final stage, full recycle will be enabled by

  8. Mechanical hole-burning spectroscopy: Demonstration of hole burning in the terminal relaxation regime

    NASA Astrophysics Data System (ADS)

    Shi, Xiangfu; McKenna, Gregory B.

    2006-01-01

    We have developed a mechanical spectral hole-burning (MSHB) scheme that is analogous to dielectric and magnetic spectral hole-burning techniques. Previous dielectric nonresonant spectral hole-burning experiments have been performed close to the glass temperatures of glass-forming materials and interpreted in terms of dynamic heterogeneity. The present study focuses on polymeric systems far above the glass temperature and in the terminal (reptation) regime. Theoretically, we examine Kaye-Bernstein-Kearsley-Zapas and Bernstein-Shokooh nonlinear viscoelastic constitutive models, which do not invoke an explicit heterogeneous dynamics for the relaxation response, to study MSHB, and find that both models fail to capture the subtle mechanical holes observed in the experiments. Experimentally, we successfully burned mechanical holes and show that the hole intensities vary as a function of “waiting time” and pump amplitude. The results suggest that MSHB is a potentially powerful tool with which to examine the dynamics of complex fluids.

  9. Ball lightning burn.

    PubMed

    Selvaggi, Gennaro; Monstrey, Stan; von Heimburg, Dennis; Hamdi, Mustapha; Van Landuyt, Koen; Blondeel, Phillip

    2003-05-01

    Ball lightning is a rare physical phenomenon, which is not yet completely explained. It is similar to lightning but with different, peculiar characteristics. It can be considered a mix of fire and electricity, concentrated in a fireball with a diameter of 20-cm that most commonly appears suddenly, even in indoor conditions, during a thunderstorm. It moves quickly for several meters, can change direction, and ultimately disappears. During a great storm, a 28-year-old man and his 5-year-old daughter sustained burn wounds after ball lightning came from the outdoors through a chimney. These two patients demonstrated signs of fire and electrical injuries. The father, who lost consciousness, sustained superficial second-degree burn wounds bilaterally on the zygomatic area and deep second-degree burn wounds on his right hand (total body surface area, 4%). His daughter demonstrated superficial second-degree burn wounds on the left part of the face and deep second-degree and third-degree burn wounds (total body surface area, 30%) on the left neck, both upper arms, and the back. In this article, the authors report the first two cases of burn injuries resulting from ball lightning contact indoors. The literature on this rare phenomenon is reviewed to elucidate the nature of ball lightning. Emphasis is placed on the nature of injuries after ball lightning contact, the therapy used, and the long-term complications.

  10. Ball lightning burn.

    PubMed

    Selvaggi, Gennaro; Monstrey, Stan; von Heimburg, Dennis; Hamdi, Mustapha; Van Landuyt, Koen; Blondeel, Phillip

    2003-05-01

    Ball lightning is a rare physical phenomenon, which is not yet completely explained. It is similar to lightning but with different, peculiar characteristics. It can be considered a mix of fire and electricity, concentrated in a fireball with a diameter of 20-cm that most commonly appears suddenly, even in indoor conditions, during a thunderstorm. It moves quickly for several meters, can change direction, and ultimately disappears. During a great storm, a 28-year-old man and his 5-year-old daughter sustained burn wounds after ball lightning came from the outdoors through a chimney. These two patients demonstrated signs of fire and electrical injuries. The father, who lost consciousness, sustained superficial second-degree burn wounds bilaterally on the zygomatic area and deep second-degree burn wounds on his right hand (total body surface area, 4%). His daughter demonstrated superficial second-degree burn wounds on the left part of the face and deep second-degree and third-degree burn wounds (total body surface area, 30%) on the left neck, both upper arms, and the back. In this article, the authors report the first two cases of burn injuries resulting from ball lightning contact indoors. The literature on this rare phenomenon is reviewed to elucidate the nature of ball lightning. Emphasis is placed on the nature of injuries after ball lightning contact, the therapy used, and the long-term complications. PMID:12792547

  11. PBXN-110 Burn Rate Estimate

    SciTech Connect

    Glascoe, E

    2008-08-11

    It is estimated that PBXN-110 will burn laminarly with a burn function of B = (0.6-1.3)*P{sup 1.0} (B is the burn rate in mm/s and P is pressure in MPa). This paper provides a brief discussion of how this burn behavior was estimated.

  12. Multispectral Imaging Of Burn Wounds

    NASA Astrophysics Data System (ADS)

    Afromowitz, Martin A.; Callis, James B.; Heimbach, David M.; DeSoto, Larry A.; Norton, Mary K.

    1988-06-01

    This research program successfully developed a real-time video imaging system (the Imaging Burn Depth Indicator, or IBDI) which can discriminate areas of burn wounds expected to heal in three weeks or less from the day of injury from those areas not expected to heal in that time period. The analysis can be performed on or about the third day post-burn on debrided burn wounds. Early evaluation of burn healing probability is a crucial factor in the decision to tangentially excise the burn wound. The IBDI measures the reflectivity of the burn wound in the red, green, and near infrared wavelength bands, which data correlate with burn healing probability. The instrument uses an algorithm established in an earlier study to translate the optical data into burn healing probabilities. The IBDI produces two types of images: a true-color image of the burn and a false-color image of the burn. The false-color image consists of up to four colors, each of which indicates a distinct range of probability that the area of the burn so colored will heal within 21 days. Over 100 burn wound sites were studied. Burn sites were evaluated on day three post-burn by our instrument and by the attending physician. Of 55 sites considered to be of intermediate depth, the IBDI predicted the healing outcome accurately in 84% of the cases. By comparison, the predictions of burn surgeons supervising the care of these patients were accurate in 62% of the cases.

  13. The media glorifying burns: a hindrance to burn prevention.

    PubMed

    Greenhalgh, David G; Palmieri, Tina L

    2003-01-01

    The media have a profound influence on the actions of children and adults. Burns and burn prevention tend to be ignored or even mocked. The purpose of this presentation is to reveal the callousness of the media in its dealings with burns and burn prevention. Printed materials with a relationship to burns, risk of burning, or disrespect for the consequences of burns were collected. The materials were tabulated into four categories: comics, advertisements (ads), articles that made light of burns, and television shows that portrayed behavior that would risk burn injury. Most burn-related materials were found in comics or advertisements. Several comics made light of high-risk behavior with flames, scald injury, contact injury, or burns. In addition, several advertisements showed people on fire or actions that could easily lead to burns. Several articles and televisions shows portrayed high-risk behavior that, in some instances, led to copycat injuries. Flames are frequently used to sell items that target adolescent boys or young men. The high incidence injuries that frequent this population parallel the high-risk behaviors portrayed by the media. The media portrays flames and high-risk behavior for burn injury as being cool, funny, and without consequence. The use of flames on clothing and recreational equipment (skateboards, hot rods) particularly targets the high-risk adolescent male. The burn community should make the media aware of the harm it causes with its callous depiction and glorification of burns.

  14. Conceptual design of minor actinides burner with an accelerator-driven subcritical system.

    SciTech Connect

    Cao, Y.; Gohar, Y.

    2011-11-04

    In the environmental impact study of the Yucca Mountain nuclear waste repository, the limit of spent nuclear fuel (SNF) for disposal is assessed at 70,000 metric tons of heavy metal (MTHM), among which 63,000 MTHM are the projected SNF discharge from U.S. commercial nuclear power plants though 2011. Within the 70,000 MTHM of SNF in storage, approximately 115 tons would be minor actinides (MAs) and 585 tons would be plutonium. This study describes the conceptual design of an accelerator-driven subcritical (ADS) system intended to utilize (burn) the 115 tons of MAs. The ADS system consists of a subcritical fission blanket where the MAs fuel will be burned, a spallation neutron source to drive the fission blanket, and a radiation shield to reduce the radiation dose to an acceptable level. The spallation neutrons are generated from the interaction of a 1 GeV proton beam with a lead-bismuth eutectic (LBE) or liquid lead target. In this concept, the fission blanket consists of a liquid mobile fuel and the fuel carrier can be LBE, liquid lead, or molten salt. The actinide fuel materials are dissolved, mixed, or suspended in the liquid fuel carrier. Therefore, fresh fuel can be fed into the fission blanket to adjust its reactivity and to control system power during operation. Monte Carlo analyses were performed to determine the overall parameters of an ADS system utilizing LBE as an example. Steady-state Monte Carlo simulations were studied for three fission blanket configurations that are similar except that the loaded amount of actinide fuel in the LBE is either 5, 7, or 10% of the total volume of the blanket, respectively. The neutron multiplication factor values of the three configurations are all approximately 0.98 and the MA initial inventories are each approximately 10 tons. Monte Carlo burnup simulations using the MCB5 code were performed to analyze the performance of the three conceptual ADS systems. Preliminary burnup analysis shows that all three conceptual ADS

  15. [Invasive yeast infections in severely burned patients].

    PubMed

    Renau, Ana Isabel; García-Vidal, Carolina; Salavert, Miguel

    2016-01-01

    Currently, there are few studies on candidaemia in the severely burned patient. These patients share the same risk factors for invasive fungal infections as other critically ill patients, but have certain characteristics that make them particularly susceptible. These include the loss of skin barrier due to extensive burns, fungal colonisation of the latter, and the use of hydrotherapy or other topical therapies (occasionally with antimicrobials). In addition, the increased survival rate achieved in recent decades in critically burned patients due to the advances in treatment has led to the increase of invasive Candida infections. This explains the growing interest in making an earlier and more accurate diagnosis, as well as more effective treatments to reduce morbidity and mortality of candidaemia in severe burned patients. A review is presented on all aspects of the burned patient, including the predisposition and risk factors for invasive candidiasis, pathogenesis of candidaemia, underlying immunodeficiency, local epidemiology and antifungal susceptibility, evolution and prognostic factors, as well as other non-Candida yeast infections. Finally, we include specific data on our local experience in the management of candidaemia in severe burned patients, which may serve to quantify the problem, place it in context, and offer a realistic perspective.

  16. Epilepsy and Full-Thickness Burns

    PubMed Central

    Botan, A.

    2010-01-01

    Summary This paper presents various aspects of severe burns involving epileptic patients, who may suffer dramatic accidents during seizure attacks. Epileptics may fall onto an open fire or hot surface (e.g. a kitchen range) and they may upset containers full of boiling liquids, suffering deep burns and scalds. In our experience in this field, the most commonly affected body areas are the face and hands, the trunk, and the lower limbs. All such injuries are full-thickness burns, owing to the very long contact of the skin surface with the lesional agent. Three cases are presented of epileptics with severe burns who were admitted to the Burn Unit of Targu Mures Teaching Hospital, Romania, where they were hospitalized; conservative debridement using polyurethanefoam (PUR-foam) dressings was the standard procedure, which all the patients received. Split-thickness skin grafting was the final method for closing the granulating bed resulting from the conservative debridement. We have found that conservative debridement using PUR-foam dressings is a cheaper and more reliable alternative than sharp debridement (which may remove healthy tissue at the same time as burn eschars). PMID:21991200

  17. [Invasive yeast infections in severely burned patients].

    PubMed

    Renau, Ana Isabel; García-Vidal, Carolina; Salavert, Miguel

    2016-01-01

    Currently, there are few studies on candidaemia in the severely burned patient. These patients share the same risk factors for invasive fungal infections as other critically ill patients, but have certain characteristics that make them particularly susceptible. These include the loss of skin barrier due to extensive burns, fungal colonisation of the latter, and the use of hydrotherapy or other topical therapies (occasionally with antimicrobials). In addition, the increased survival rate achieved in recent decades in critically burned patients due to the advances in treatment has led to the increase of invasive Candida infections. This explains the growing interest in making an earlier and more accurate diagnosis, as well as more effective treatments to reduce morbidity and mortality of candidaemia in severe burned patients. A review is presented on all aspects of the burned patient, including the predisposition and risk factors for invasive candidiasis, pathogenesis of candidaemia, underlying immunodeficiency, local epidemiology and antifungal susceptibility, evolution and prognostic factors, as well as other non-Candida yeast infections. Finally, we include specific data on our local experience in the management of candidaemia in severe burned patients, which may serve to quantify the problem, place it in context, and offer a realistic perspective. PMID:27395025

  18. Alcohol intoxication and post-burn complications.

    PubMed

    Choudhry, Mashkoor A; Chaudry, Irshad H

    2006-01-01

    Results from the studies discussed in this article suggest that alcohol (EtOH) intoxication is a major public health problem. While the effects of injury and EtOH intoxication independent of each other have been studied in detail, only few studies have evaluated the effect of a combined insult of EtOH intoxication and burn injury on host defense. An analysis of the studies conducted in the clinical setting suggests that intoxicated patients require frequent intubations, experience delayed wound healing and longer hospital stay. Furthermore, there is a greater risk of mortality in these patients compared to those who sustained injuries in the absence of EtOH intoxication. On the other hand, there are a few studies that do not support this notion. The results obtained in experimental models clearly suggest that acute EtOH intoxication before burn injury impairs host defense and increases susceptibility to infection. Additionally, experimental data from our laboratory also indicate that EtOH intoxication before burn injury suppresses intestinal immune defense, impairs gut barrier functions and increases bacterial growth. This results in increased bacterial translocation in EtOH and burn injury. In addition, a decrease in cardiac function is also reported following a combined insult of EtOH intoxication and burn injury. Altogether, these findings suggest that EtOH intoxication before burn injury diminishes host resistance resulting in increased susceptibility to infection. Moreover, the findings of a higher incidence of infectious complications in burn and trauma patients who sustained injury in the presence of EtOH compared to those in its absence suggest that EtOH intoxication at the time of injury is a risk factor. Therefore blood EtOH should be monitored in burn/trauma patients at the time of admission in the emergency room.

  19. Theoretical atomic volumes of the light actinides

    SciTech Connect

    Jones, M. D.; Boettger, J. C.; Albers, R. C.; Singh, D. J.

    2000-02-15

    The zero-pressure zero-temperature equilibrium volumes and bulk moduli are calculated for the light actinides Th through Pu using two independent all-electron, full-potential, electronic-structure methods: the full-potential linear augmented-plane-wave method and the linear combinations of Gaussian-type orbitals-fitting function method. The results produced by these two distinctly different electronic-structure techniques are in good agreement with each other, but differ significantly from previously published calculations using the full-potential linear muffin-tin-orbital (FP-LMTO) method. The theoretically calculated equilibrium volumes are in some cases nearly 10% larger than the previous FP-LMTO calculations, bringing them much closer to the experimentally observed volumes. We also discuss the anomalous upturn in equilibrium volume seen experimentally for {alpha}-Pu. (c) 2000 The American Physical Society.

  20. Complexation of actinides with derivatives of oxydiaceticacid

    SciTech Connect

    Rao, Linfeng; Tian, Guoxin

    2006-01-04

    Complexation of Np(V), U(VI) and Nd(III) with dimethyl-3-oxa-glutaramic acid (DMOGA) and tetramethyl-3-oxa-glutaramide (TMOGA) was studied in comparison with the complexation with oxydiacetic acid (ODA). Stability constants and enthalpy of complexation were determined by potentiometry, spectrophotometry and calorimetry. Thermodynamic parameters, in conjunction with structural information of solid compounds, indicate that DMOGA and TMOGA form tridentate complexes with the ether-oxygen participating in bonding with actinide/lanthanide ions. The trends in the stability constants, enthalpy and entropy of complexation are discussed in terms of the difference in the hydration of the amide groups and carboxylate groups and the difference in the charge density of the metal ions.

  1. Actinide Packaging and Storage Facility (APSF)

    SciTech Connect

    Lavietes, A.D.

    1999-10-01

    The Actinide Packaging and Storage Facility (APSF) was designed to provide long-term storage of radionuclides. Task A.229 defined the requirement for a small, low-power radiation detection capability. This detection system was to be deployed as a component of an autonomously guided vehicle (AGV) located within the storage vault of the facility and necessarily had to exhibit the qualities of low maintenance, long lifetime, and stable performance typically required of unattended monitoring systems. The detection system would interface directly with the on-board computer developed as part of the AGV under a separate task. The overall task for this system would be to provide isotopic identification of the material stored within this facility.

  2. Assessment of photochemical applications to specific stages in Savannah River Plant actinide reprocessing streams

    SciTech Connect

    Toth, L.M.; Bell, J.T.; Mailen, J.C.; Dodson, K.E.

    1986-01-01

    The application of photochemical redox methods has been evaluated as a means of separating actinides in Purex reprocessing streams. This chemistry promises to eliminate many of the chemical reagents which are otherwise necessary to effect valence control of such actinides as plutonium and neptunium. The most promising processing stages of the Savannah River Plant reprocessing facility for feasibility testing of the photochemical method appear to be those in which the concentrations of the actinides in question are the lowest, thus minimizing the required amount of absorbed light. Although neptunium valence control appears to be feasible through the photochemical generation of nitrite ion, the urgency for its control is secondary to that of plutonium. Therefore, the Purex ''2nd-U-cycle feed'' stage has been selected as the top priority for testing the photochemical technique. The chemistry initially involves the photoreduction of U(VI) to U(IV), which in turn reduces Pu(IV) to Pu(III). The results of preliminary experiments on nitrate ion and uranyl ion photoreduction are also given. With less than 100 W of absorbed power, the rates of NO/sub 2//sup -/ and U/sup 4 +/ generation, respectively, appear ample to handle process requirements. 14 refs., 3 figs., 5 tabs.

  3. Actinide cross section program at ORELA

    SciTech Connect

    Dabbs, J. W.T.

    1980-01-01

    The actinide cross section program at ORELA, the Oak Ridge Electron Linear Accelerator, is aimed at obtaining accurate neutron cross sections (primarily fission, capture, and total) for actinide nuclides which occur in fission reactors. Such cross sections, measured as a function of neutron energy over as wide a range of energies as feasible, comprise a data base that permits calculated predictions of the formation and removal of these nuclides in reactors. The present program is funded by the Division of Basic Energy Sciences of DOE, and has components in several divisions at ORNL. For intensively ..cap alpha..-active nuclides, many of the existing fission cross section data have been provided by underground explosions. New measurement techniques, developed at ORELA, now permit linac measurements on fissionable nuclides with alpha half-lives as short as 28 years. Capture and capture-plus-fission measurements utilize scintillation detectors (of capture ..gamma.. rays and fission neutrons) in which pulse shape discrimination plays an important role. Total cross sections can be measured at ORELA on samples of only a few milligrams. A simultaneous program of chemical and isotopic analyses of samples irradiated in EBR-II is in progress to provide benchmarks for the existing differential measurements. These analyses are being studied with updated versions of ORIGEN and with sensitivity determinations. Calculations of the sensitivity to cross section changes of various aspects of the nuclear fuel cycle are also being made. Even in this relatively mature field, many cross sections still require improvements to provide an adequate data base. Examples of recent techniques and measurements are presented. 12 figures, 3 tables.

  4. Comparative Photoemission Study of Actinide (Am, Pu, Np and U) Metals, Nitrides, and Hydrides

    SciTech Connect

    Gouder, Thomas; Seibert, Alice; Rebizant, Jean; Huber, Frank; Havela, Ladislav

    2007-07-01

    Core-level and valence-band spectra of Pu and the other early actinide compounds show remarkable systematics, which can be understood in the framework of final state screening. We compare the early actinide (U, Np, Pu and Am) metals, nitrides and hydrides and a few other specific compounds (PuSe, PuS, PuCx, PuSix) prepared as thin films by sputter deposition. In choosing these systems, we combine inherent 5f band narrowing, due to 5f orbital contraction throughout the actinide series, with variations of the chemical environment in the compounds. Goal of this work was to learn more on the electronic structure of the early actinide systems and to achieve the correct interpretation of their photoemission spectra. The highly correlated nature of the 5f states in systems, which are on the verge to localization, makes this a challenging task, because of the peculiar interplay between ground state DOS and final-state effects. Their influence can be estimated by doing systematic studies on systems with different (5f) bandwidths. We conclude on the basis of such systematic experiments that final-state effects due to strong e-e correlations in narrow 5f-band systems lead to multiplet like structures, analogous to those observed in the case of systems with localized electron states. Such observations in essentially band-like 5f-systems was first surprising, but the astonishing similarity of photoemission spectra of very different chemical systems (e.g. PuSe, Pu{sub 2}C{sub 3}..) points to a common origin, relating them to atomic features rather than material dependent density of states (DOS) features. (authors)

  5. Actinide targets for the synthesis of super-heavy elements

    DOE PAGESBeta

    Roberto, J.; Alexander, Charles W.; Boll, Rose Ann; Ezold, Julie G.; Felker, Leslie Kevin; Rykaczewski, Krzysztof Piotr; Hogle, Susan L.

    2015-06-18

    Since 2000, six new super-heavy elements with atomic numbers 113 through 118 have been synthesized in hot fusion reactions of 48Ca beams on actinide targets. These target materials, including 242Pu, 244Pu, 243Am, 245Cm, 248Cm, 249Cf, and 249Bk, are available in very limited quantities and require specialized production and processing facilities resident in only a few research centers worldwide. This report describes the production and chemical processing of heavy actinide materials for super-heavy element research, current availabilities of these materials, and related target fabrication techniques. The impact of actinide materials in super-heavy element discovery is reviewed, and strategies for enhancing themore » production of rare actinides including 249Bk, 251Cf, and 254Es are described.« less

  6. Actinide targets for the synthesis of super-heavy elements

    SciTech Connect

    Roberto, J.; Alexander, Charles W.; Boll, Rose Ann; Ezold, Julie G.; Felker, Leslie Kevin; Rykaczewski, Krzysztof Piotr; Hogle, Susan L.

    2015-06-18

    Since 2000, six new super-heavy elements with atomic numbers 113 through 118 have been synthesized in hot fusion reactions of 48Ca beams on actinide targets. These target materials, including 242Pu, 244Pu, 243Am, 245Cm, 248Cm, 249Cf, and 249Bk, are available in very limited quantities and require specialized production and processing facilities resident in only a few research centers worldwide. This report describes the production and chemical processing of heavy actinide materials for super-heavy element research, current availabilities of these materials, and related target fabrication techniques. The impact of actinide materials in super-heavy element discovery is reviewed, and strategies for enhancing the production of rare actinides including 249Bk, 251Cf, and 254Es are described.

  7. Separation of Minor Actinides from Lanthanides by Dithiophosphinic Acid Extractants

    SciTech Connect

    D. R. Peterman; M. R. Greenhalgh; R. D. Tillotson; J. R. Klaehn; M. K. Harrup; T. A. Luther; J. D. Law; L. M. Daniels

    2008-09-01

    The selective extraction of the minor actinides (Am(III) and Cm(III)) from the lanthanides is an important part of advanced reprocessing of spent nuclear fuel. This separation would allow the Am/Cm to be fabricated into targets and recycled to a reactor and the lanthanides to be dispositioned. This separation is difficult to accomplish due to the similarities in the chemical properties of the trivalent actinides and lanthanides. Research efforts at the Idaho National Laboratory have identified an innovative synthetic pathway yielding new regiospecific dithiophosphinic acid (DPAH) extractants. The synthesis provides DPAH derivatives that can address the issues concerning minor actinide separation and extractant stability. For this work, two new symmetric DPAH extractants have been prepared. The use of these extractants for the separation of minor actinides from lanthanides will be discussed.

  8. Actinide targets for the synthesis of super-heavy elements

    NASA Astrophysics Data System (ADS)

    Roberto, J. B.; Alexander, C. W.; Boll, R. A.; Burns, J. D.; Ezold, J. G.; Felker, L. K.; Hogle, S. L.; Rykaczewski, K. P.

    2015-12-01

    Since 2000, six new super-heavy elements with atomic numbers 113 through 118 have been synthesized in hot fusion reactions of 48Ca beams on actinide targets. These target materials, including 242Pu, 244Pu, 243Am, 245Cm, 248Cm, 249Cf, and 249Bk, are available in very limited quantities and require specialized production and processing facilities resident in only a few research centers worldwide. This report describes the production and chemical processing of heavy actinide materials for super-heavy element research, current availabilities of these materials, and related target fabrication techniques. The impact of actinide materials in super-heavy element discovery is reviewed, and strategies for enhancing the production of rare actinides including 249Bk, 251Cf, and 254Es are described.

  9. Nitrated Secondary Organic Tracer Compounds in Biomass Burning Smoke

    NASA Astrophysics Data System (ADS)

    Iinuma, Y.; Böge, O.; Gräfe, R.; Herrmann, H.

    2010-12-01

    Natural and human-initiated biomass burning releases large amounts of gases and particles into the atmosphere, impacting climate, environment and affecting public health. Several hundreds of compounds are emitted from biomass burning and these compounds largely originate from the pyrolysis of biopolymers such as lignin, cellulose and hemicellulose. Some of compounds are known to be specific to biomass burning and widely recognized as tracer compounds that can be used to identify the presence of biomass burning PM. Detailed chemical analysis of biomass burning influenced PM samples often reveals the presence compounds that correlated well with levoglucosan, a known biomass burning tracer compound. In particular, nitrated aromatic compounds correlated very well with levoglucosan, indicating that biomass burning as a source for this class of compounds. In the present study, we present evidence for the presence of biomass burning originating secondary organic aerosol (BSOA) compounds in biomass burning influenced ambient PM. These BSOA compounds are typically nitrated aromatic compounds that are produced in the oxidation of precursor compounds in the presence of NOx. The precursor identification was performed from a series of aerosol chamber experiments. m-Cresol, which is emitted from biomass burning at significant levels, is found to be a major precursor compounds for nitrated BSOA compounds found in the ambient PM. We estimate that the total concentrations of these compounds in the ambient PM are comparable to biogenic SOA compounds in winter months, indicating the BSOA contributes important amounts to the regional organic aerosol loading.

  10. [Changes in mesenteric microcirculation in rats following repeated skin burns].

    PubMed

    Shtykhno, Iu M

    1976-07-01

    Acute experiments were conducted on rats; repeated extensive burn of a convalescent who formerly sustained the burn disease was better tolerated, led tono fatal outcome and was accompanied by moderate microcirculatory disturbances. The smae burn was accompanied in intact rats by a severe shock followed by death, intravascular aggregation of erythrocytes and significant microcirculatory disturbances leading to disturbance of tissue nutrition. It is supposed that the results obtained could serve as an indirect proof that toxemia played an important role in the genesis of intravascular aggregation of erythrocytes in burn shock.

  11. Selective Media for Actinide Collection and Pre-Concentration: Results of FY 2006 Studies

    SciTech Connect

    Lumetta, Gregg J.; Addleman, Raymond S.; Hay, Benjamin P.; Hubler, Timothy L.; Levitskaia, Tatiana G.; Sinkov, Sergey I.; Snow, Lanee A.; Warner, Marvin G.; Latesky, Stanley L.

    2006-11-17

    3] > 0.3 M. Preliminary results suggest that the Kl?ui resins can separate Pu(IV) from sample solutions containing high concentrations of competing ions. Conceptual protocols for recovery of the Pu from the resin for subsequent analysis have been proposed, but further work is needed to perfect these techniques. Work on this subject will be continued in FY 2007. Automated laboratory equipment (in conjunction with Task 3 of the NA-22 Automation Project) will be used in FY 2007 to improve the efficiency of these experiments. The sorption of actinide ions on self-assembled monolayer on mesoporous supports materials containing diphosphonate groups was also investigated. These materials also showed a very high affinity for tetravalent actinides, and they also sorbed U(VI) fairly strongly. Computational Ligand Design An extended MM3 molecular mechanics model was developed for calculating the structures of Kl?ui ligand complexes. This laid the groundwork necessary to perform the computer-aided design of bis-Kl?ui architectures tailored for Pu(IV) complexation. Calculated structures of the Kl?ui ligand complexes [Pu(Kl?ui)2(OH2)2]2+ and [Fe(Kl?ui)2]+ indicate a ''bent'' sandwich arrangement of the Kl?ui ligands in the Pu(IV) complex, whereas the Fe(III) complex prefers a ''linear'' octahedral arrangement of the two Kl?ui ligands. This offers the possibility that two Kl?ui ligands can be tethered together to form a material with very high binding affinity for Pu(IV) over Fe(III). The next step in the design process is to use de novo molecule building software (HostDesigner) to identify potential candidate architectures.

  12. One-group fission cross sections for plutonium and minor actinides inserted in calculated neutron spectra of fast reactor cooled with lead-208 or lead-bismuth eutectic

    SciTech Connect

    Khorasanov, G. L.; Blokhin, A. I.

    2012-07-01

    The paper is dedicated to one-group fission cross sections of Pu and MA in LFRs spectra with the aim to increase these values by choosing a coolant which hardens neutron spectra. It is shown that replacement of coolant from Pb-Bi with Pb-208 in the fast reactor RBEC-M, designed in Russia, leads to increasing the core mean neutron energy. As concerns fuel Pu isotopes, their one-group fission cross sections become slightly changed, while more dramatically Am-241 one-group fission cross section is changed. Another situation occurs in the lateral blanket containing small quantities of minor actinides. It is shown that as a result of lateral blanket mean neutron energy hardening the one-group fission cross sections of Np-237, Am-241 and Am-243 increases up to 8-11%. This result allows reducing the time of minor actinides burning in FRs. (authors)

  13. Applicability of RELAP5-3D for Thermal-Hydraulic Analyses of a Sodium-Cooled Actinide Burner Test Reactor

    SciTech Connect

    C. B. Davis

    2006-07-01

    The Actinide Burner Test Reactor (ABTR) is envisioned as a sodium-cooled, fast reactor that will burn the actinides generated in light water reactors to reduce nuclear waste and ease proliferation concerns. The RELAP5-3D computer code is being considered as the thermal-hydraulic system code to support the development of the ABTR. An evaluation was performed to determine the applicability of RELAP5-3D for the analysis of a sodium-cooled fast reactor. The applicability evaluation consisted of several steps, including identifying the important transients and phenomena expected in the ABTR, identifying the models and correlations that affect the code’s calculation of the important phenomena, and evaluating the applicability of the important models and correlations for calculating the important phenomena expected in the ABTR. The applicability evaluation identified code improvements and additional models needed to simulate the ABTR. The accuracy of the calculated thermodynamic and transport properties for sodium was also evaluated.

  14. Nucleosynthesis of neutron-rich heavy nuclei during explosive helium burning in a 15 solar-mass supernova

    NASA Technical Reports Server (NTRS)

    Blake, J. B.; Woosley, S. E.; Weaver, T. A.; Schramm, D. N.

    1980-01-01

    The production of heavy nuclei during explosive helium burning has been calculated using the Weaver and Woosley self-consistent model of a complete 15 solar-mass star and the n-process code of Blake and Schramm. It was found that the resulting neutron-rich heavy nuclei are not produced in the relative abundances of solar-system r-process material (such as a Pt peak) nor are any actinides produced. Basically insufficient neutrons are available.

  15. Instant release fraction and matrix release of high burn-up UO2 spent nuclear fuel: Effect of high burn-up structure and leaching solution composition

    NASA Astrophysics Data System (ADS)

    Serrano-Purroy, D.; Clarens, F.; González-Robles, E.; Glatz, J. P.; Wegen, D. H.; de Pablo, J.; Casas, I.; Giménez, J.; Martínez-Esparza, A.

    2012-08-01

    Two weak points in Performance Assessment (PA) exercises regarding the alteration of Spent Nuclear Fuel (SNF) are the contribution of the so-called Instant Release Fraction (IRF) and the effect of High Burn-Up Structure (HBS). This manuscript focuses on the effect of HBS in matrix (long term) and instant release of a Pressurised Water Reactor (PWR) SNF irradiated in a commercial reactor with a mean Burn-Up (BU) of 60 GWd/tU. In order to study the HBS contribution, two samples from different radial positions have been prepared. One from the centre of the SNF, labelled CORE, and one from the periphery, enriched with HBS and labelled OUT. Static leaching experiments have been carried out with two synthetic leaching solutions: bicarbonate (BIC) and Bentonitic Granitic Groundwater (BGW), and in all cases under oxidising conditions. IRF values have been calculated from the determined Fraction of Inventory in Aqueous Phase (FIAP). In all studied cases, some radionuclides (RN): Rb, Sr and Cs, have shown higher release rates than uranium, especially at the beginning of the experiment, and have been considered as IRF. Redox sensitive RN like Mo and Tc have been found to dissolve slightly faster than uranium and further studies might be needed to confirm if they can also be considered part of the IRF. Most of the remaining studied RN, mainly actinides and lanthanides, have been found to dissolve congruently with the uranium matrix. Finally, Zr, Ru and Rh presented lower release rates than the matrix. Higher matrix release has been determined for CORE than for OUT samples showing that the formation of HBS might have a protective effect against the oxidative corrosion of the SNF. On the contrary, no significant differences have been observed between the two studied leaching solutions (BIC and BGW). Two different IRF contributions have been determined. One corresponding to the fraction of inventory segregated in the external open grain boundaries, directly available to water and

  16. Feet sunk in molten aluminium: The burn and its prevention.

    PubMed

    Alonso-Peña, David; Arnáiz-García, María Elena; Valero-Gasalla, Javier Luis; Arnáiz-García, Ana María; Campillo-Campaña, Ramón; Alonso-Peña, Javier; González-Santos, Jose María; Fernández-Díaz, Alaska Leonor; Arnáiz, Javier

    2015-08-01

    Nowadays, despite improvements in safety rules and inspections in the metal industry, foundry workers are not free from burn accidents. Injuries caused by molten metals include burns secondary to molten iron, aluminium, zinc, copper, brass, bronze, manganese, lead and steel. Molten aluminium is one of the most common causative agents of burns (60%); however, only a few publications exist concerning injuries from molten aluminium. The main mechanisms of lesion from molten aluminium include direct contact of the molten metal with the skin or through safety apparel, or when the metal splash burns through the pants and rolls downward along the leg. Herein, we report three cases of deep dermal burns after 'soaking' the foot in liquid aluminium and its evolutive features. This paper aims to show our experience in the management of burns due to molten aluminium. We describe the current management principles and the key features of injury prevention.

  17. Actinide Source Term Program, position paper. Revision 1

    SciTech Connect

    Novak, C.F.; Papenguth, H.W.; Crafts, C.C.; Dhooge, N.J.

    1994-11-15

    The Actinide Source Term represents the quantity of actinides that could be mobilized within WIPP brines and could migrate with the brines away from the disposal room vicinity. This document presents the various proposed methods for estimating this source term, with a particular focus on defining these methods and evaluating the defensibility of the models for mobile actinide concentrations. The conclusions reached in this document are: the 92 PA {open_quotes}expert panel{close_quotes} model for mobile actinide concentrations is not defensible; and, although it is extremely conservative, the {open_quotes}inventory limits{close_quotes} model is the only existing defensible model for the actinide source term. The model effort in progress, {open_quotes}chemical modeling of mobile actinide concentrations{close_quotes}, supported by a laboratory effort that is also in progress, is designed to provide a reasonable description of the system and be scientifically realistic and supplant the {open_quotes}Inventory limits{close_quotes} model.

  18. Colloidal behavior of actinides in an oligotrophic lake

    SciTech Connect

    Orlandini, K.A.; Penrose, W.R.; Findlay, M.W. ); Harvey, B.R.; Lovett, M.B. )

    1990-05-01

    Understanding the speciation of low levels of actinides from fallout and from local sources in freshwater systems is important if the authors are to predict their distributions in the environment. Since these materials make excellent tracers for determining sedimentation rates and other environmental parameters, it is important to determine their physical and chemical properties in relatively pristine systems. Reported here are the results of actinide analyses in an artificial, oligotrophic lake in northwest Wales, United Kingdom, which is used as a source of cooling water for a nuclear power plant. The concentrations of the actinide elements plutonium, americium, thorium, and curium, and their distributions among different colloidal sizes were determined. The majority of the actinides in the (nominal 100,000 MW) or 100-nm pore sizes; the actinides appeared to be bound reversibly to colloidal material of unknown composition. The two environmentally stable oxidation states of plutonium, IV and V, could be separated by ultrafiltration. These results indicate that submicron colloidal material can dominate the aqueous properties of actinides.

  19. Analysis of the Gas Core Actinide Transmutation Reactor (GCATR)

    NASA Technical Reports Server (NTRS)

    Clement, J. D.; Rust, J. H.

    1977-01-01

    Design power plant studies were carried out for two applications of the plasma core reactor: (1) As a breeder reactor, (2) As a reactor able to transmute actinides effectively. In addition to the above applications the reactor produced electrical power with a high efficiency. A reactor subsystem was designed for each of the two applications. For the breeder reactor, neutronics calculations were carried out for a U-233 plasma core with a molten salt breeding blanket. A reactor was designed with a low critical mass (less than a few hundred kilograms U-233) and a breeding ratio of 1.01. The plasma core actinide transmutation reactor was designed to transmute the nuclear waste from conventional LWR's. The spent fuel is reprocessed during which 100% of Np, Am, Cm, and higher actinides are separated from the other components. These actinides are then manufactured as oxides into zirconium clad fuel rods and charged as fuel assemblies in the reflector region of the plasma core actinide transmutation reactor. In the equilibrium cycle, about 7% of the actinides are directly fissioned away, while about 31% are removed by reprocessing.

  20. Comparative studies of actinide and sub-actinide fission cross section calculation from MCNP6 and TALYS

    SciTech Connect

    Perkasa, Y. S.; Waris, A. Kurniadi, R. Su'ud, Z.

    2014-09-30

    Comparative studies of actinide and sub-actinide fission cross section calculation from MCNP6 and TALYS have been conducted. In this work, fission cross section resulted from MCNP6 prediction will be compared with result from TALYS calculation. MCNP6 with its event generator CEM03.03 and LAQGSM03.03 have been validated and verified for several intermediate and heavy nuclides fission reaction data and also has a good agreement with experimental data for fission reaction that induced by photons, pions, and nucleons at energy from several ten of MeV to about 1 TeV. The calculation that induced within TALYS will be focused mainly to several hundred MeV for actinide and sub-actinide nuclides and will be compared with MCNP6 code and several experimental data from other evaluator.

  1. The interaction of actinide and lanthanide ions with hemoglobin and its relevance to human and environmental toxicology.

    PubMed

    Kumar, Amit; Ali, Manjoor; Ningthoujam, Raghumani S; Gaikwad, Pallavi; Kumar, Mukesh; Nath, Bimalendu B; Pandey, Badri N

    2016-04-15

    Due to increasing use of lanthanides/actinides in nuclear and civil applications, understanding the impact of these metal ions on human health and environment is a growing concern. Hemoglobin (Hb), which occurs in all the kingdom of living organism, is the most abundant protein in human blood. In present study, effect of lanthanides and actinides [thorium: Th(IV), uranium: U(VI), lanthanum: La(III), cerium: Ce(III) and (IV)] on the structure and function of Hb has been investigated. Results showed that these metal ions, except Ce(IV) interacted with carbonyl and amide groups of Hb, which resulted in the loss of its alpha-helix conformation. However, beyond 75μM, these ions affected heme moiety. Metal-heme interaction was found to affect oxygen-binding of Hb, which seems to be governed by their closeness with the charge-to-ionic-radius ratio of iron(III). Consistently, Ce(IV) being closest to iron(III), exhibited a greater effect on heme. Binding constant and binding stoichiometry of Th(IV) were higher than that of U(VI). Experiments using aquatic midge Chironomus (possessing human homologous Hb) and human blood, further validated metal-Hb interaction and associated toxicity. Thus, present study provides a biochemical basis to understand the actinide/lanthanide-induced interference in heme, which may have significant implications for the medical and environmental management of lanthanides/actinides toxicity. PMID:26799219

  2. Burning trees and bridges

    NASA Technical Reports Server (NTRS)

    Levine, Joel S.

    1990-01-01

    Most burning of biomass is the result of human activity, and on a global scale it is increasing. Tropospheric concentrations of CO2, CO, CH4, non-methane hydrocarbons, and ozone are all increasing with time; global biomass burning may make an important contribution to this increase and thus to potential global climate change. The nitrogen cycle also can have important climatic effects. Nitrous oxide put into the atmosphere by biomass burning is a greenhouse gas 250 times more powerful (molecule for molecule) than carbon dioxide. Nitric oxide, as well as being a photochemical precursor of ozone, a major pollutant in the troposphere, produces nitric acid, the fastest-growing component of acid rain. Hence, the new bridge in the nitrogen cycle is of more than mere technical interest.

  3. Burning mouth syndrome.

    PubMed

    Jimson, Sudha; Rajesh, E; Krupaa, R Jayasri; Kasthuri, M

    2015-04-01

    Burning mouth syndrome (BMS) is a complex disorder that is characterized by warm or burning sensation in the oral mucosa without changes on physical examination. It occurs more commonly in middle-aged and elderly women and often affects the tip of the tongue, lateral borders, lips, hard and soft palate. This condition is probably of multi-factorial origin, often idiopathic, and its etiopathogensis is unknown. BMS can be classified into two clinical forms namely primary and secondary BMS. As a result, a multidisciplinary approach is required for better control of the symptoms. In addition, psychotherapy and behavioral feedback may also help eliminate the BMS symptoms. PMID:26015707

  4. Rocket plume burn hazard.

    PubMed

    Stoll, A M; Piergallini, J R; Chianta, M A

    1980-05-01

    By use of miniature rocket engines, the burn hazard posed by exposure to ejection seat rocket plume flames was determined in the anaesthetized rat. A reference chart is provided for predicting equivalent effects in human skin based on extrapolation of earlier direct measurements of heat input for rat and human burns. The chart is intended to be used in conjunction with thermocouple temperature measurements of the plume environment for design and modification of escape seat system to avoid thermal injury on ejection from multiplace aircraft. PMID:7387571

  5. Wood burning stove

    SciTech Connect

    Bruce, R.F.; Byrd, W.W.

    1980-01-08

    This is a stove primarily for the burning of wood, but also capable of burning other combustible materials. The stove is characterized by a unique combustion chamber, together with a recirculating combustion chamber and baffle for more perfect combustion and characterized by a heat radiating chamber which may be closed so as to be used as an oven, and by a unique damper placement in combination with the exhaust flue pipe so adapted as to automatically activate in order to cool the flue pipe in the event it should exceed safe heat limits.

  6. Thermodynamic and Structural Investigation of Synthetic Actinide-Peptide Scaffolds.

    PubMed

    Safi, Samir; Jeanson, Aurélie; Roques, Jérome; Solari, Pier Lorenzo; Charnay-Pouget, Florence; Den Auwer, Christophe; Creff, Gaëlle; Aitken, David J; Simoni, Eric

    2016-01-19

    The complexation of uranium and europium, in oxidation states +VI and +III, respectively, was investigated with pertinent bio-inorganic systems. Three aspartate-rich pentapeptides with different structural properties were selected for study to rationalize the structure-affinity relationships. Thermodynamic results, crosschecked by both isothermal titration calorimetry and time-resolved laser fluorescence spectroscopy, showed different affinity depending on the peptide for both Eu(III) and U(VI). The thermodynamic aspects were correlated to structural predictions, which were acquired by density functional theory quantum chemical calculations and from IR and extended X-ray absorption fine structure experiments. The combination of these microscopic properties revealed that carbonyl-metal interactions affected the entropy in the case of europium, while the larger uranyl cation was mostly affected by preorganization and steric effects, so that the affinity was enhanced through enthalpy. The approach described here revealed various microscopic aspects governing peptide actinide affinity. Highlighting these mechanisms should certainly contribute to the rational synthesis of higher affinity biomimetic aspartic ligands.

  7. Hydrothermal Methods as a New Way of Actinide Phosphate Preparation

    SciTech Connect

    Clavier, Nicolas; Wallez, Gilles; Quarton, Michel

    2007-07-01

    Precipitation processes driven in hydrothermal conditions were applied to the preparation of phosphate-based ceramics. In particular, three systems composed by a crystallized precursor linked with a high temperature compound were examined: M(OH)PO{sub 4} / M{sub 2}O(PO{sub 4}){sub 2} (M = Th, U), MPO{sub 4} 0.5 H{sub 2}O / MPO{sub 4} (M = La - Dy), and Th{sub 2-x/2}An{sub x/2}(PO{sub 4}){sub 2}(HPO{sub 4}) H{sub 2}O / {beta}-Th{sub 4-x}An{sub x}(PO{sub 4}){sub 4}P{sub 2}O{sub 7} (M = U, Np, Pu). A significant improvement of several physico-chemical properties of the powders, especially in the sintering capability and the homogeneity of the final solids, was evidenced when starting from the precursors. Furthermore, these phases were also found to control the solubility of lanthanides and actinides during leaching experiments when reaching the saturation conditions in the solution. (authors)

  8. Actinide-specific complexing agents: their structural and solution chemistry

    SciTech Connect

    Raymond, K.N.; Freeman, G.E.; Kappel, M.J.

    1983-07-01

    The synthesis of a series of tetracatecholate ligands designed to be specific for Pu(IV) and other actinide(IV) ions has been achieved. Although these compounds are very effective as in vivo plutonium removal agents, potentiometric and voltammetric data indicate that at neutral pH full complexation of the Pu(IV) ion by all four catecholate groups does not occur. Spectroscopic results indicate that the tetracatecholates, 3,4,3-LICAMS and 3,4,3-LICAMC, complex Am(III). The Am(IV)/(III)-catecholate couple (where catecholate = 3,4,3-LICAMS or 3,4,3-LICAMC) is not observed, but may not be observable due to the large currents associated with ligand oxidation. However, within the potential range where ligand oxidation does not occur, these experiments indicate that the reduction potential of free Am(IV)/(III) is probably greater than or equal to + 2.6 V vs NHE or higher. Proof of the complexation of americium in the trivalent oxidation state by 3,4,3-LICAMS and 3,4,3-LICAMC elimates the possibility of tetracatholates stabilizing Am(IV) in vivo.

  9. On the valence fluctuation in the early actinide metals

    DOE PAGESBeta

    Soderlind, P.; Landa, A.; Tobin, J. G.; Allen, P.; Medling, S.; Booth, C. H.; Bauer, E. D.; Cooley, J. C.; Sokaras, D.; Weng, T. -C.; et al

    2015-12-15

    In this study, recent X-ray measurements suggest a degree of valence fluctuation in plutonium and uranium intermetallics. We are applying a novel scheme, in conjunction with density functional theory, to predict 5f configuration fractions of states with valence fluctuations for the early actinide metals. For this purpose we perform constrained integer f-occupation calculations for the α phases of uranium, neptunium, and plutonium metals. For plutonium we also investigate the δ phase. The model predicts uranium and neptunium to be dominated by the f3 and f4 configurations, respectively, with only minor contributions from other configurations. For plutonium (both α and δmore » phase) the scenario is dramatically different. Here, the calculations predict a relatively even distribution between three valence configurations. The δ phase has a greater configuration fraction of f6 compared to that of the α phase. The theory is consistent with the interpretations of modern X-ray experiments and we present resonant X-ray emission spectroscopy results for α-uranium.« less

  10. On the valence fluctuation in the early actinide metals

    SciTech Connect

    Soderlind, P.; Landa, A.; Tobin, J. G.; Allen, P.; Medling, S.; Booth, C. H.; Bauer, E. D.; Cooley, J. C.; Sokaras, D.; Weng, T. -C.; Nordlund, D.

    2015-12-15

    In this study, recent X-ray measurements suggest a degree of valence fluctuation in plutonium and uranium intermetallics. We are applying a novel scheme, in conjunction with density functional theory, to predict 5f configuration fractions of states with valence fluctuations for the early actinide metals. For this purpose we perform constrained integer f-occupation calculations for the α phases of uranium, neptunium, and plutonium metals. For plutonium we also investigate the δ phase. The model predicts uranium and neptunium to be dominated by the f3 and f4 configurations, respectively, with only minor contributions from other configurations. For plutonium (both α and δ phase) the scenario is dramatically different. Here, the calculations predict a relatively even distribution between three valence configurations. The δ phase has a greater configuration fraction of f6 compared to that of the α phase. The theory is consistent with the interpretations of modern X-ray experiments and we present resonant X-ray emission spectroscopy results for α-uranium.

  11. Management of acute burns and burn shock resuscitation.

    PubMed

    Faldmo, L; Kravitz, M

    1993-05-01

    Initial management of minor and moderate, uncomplicated burn injury focuses on wound management and patient comfort. Initial management of patients with major burn injury requires airway support, fluid resuscitation for burn shock, treatment for associated trauma and preexisting medical conditions, management of adynamic ileus, and initial wound treatment. Fluid resuscitation, based on assessment of the extent and depth of burn injury, requires administration of intravenous fluids using resuscitation formula guidelines for the initial 24 hours after injury. Inhalation injury complicates flame burns and increases morbidity and mortality. Electrical injury places patients at risk for cardiac arrest, metabolic acidosis, and myoglobinuria. Circumferential full-thickness burns to extremities compromise circulation and require escharotomy or fasciotomy. Circumferential torso burns compromise air exchange and cardiac return. Loss of skin function places patients at risk for hypothermia, fluid and electrolyte imbalances, and systemic sepsis. The first 24 hours after burn injury require aggressive medical management to assure survival and minimize complications. PMID:8489882

  12. Reactions of actinide ions with ethylene oxide.

    PubMed

    Gibson, J K

    2001-03-01

    Naked and oxo-ligated actinide (An) monopositive ions were reacted with ethylene oxide, cyclo-C(2)H(4)O (EtO). Along with An = U, Np, Pu and Am, ions of two lanthanide (Ln) elements, Ln = Tb and Tm, were studied for comparison. Metal and metal oxide ions, M(+), MO(+) and MO(2)(+), were generated by laser ablation and immediately reacted with EtO. Unreacted and product ions were detected by time-of-flight mass spectrometry. It was apparent that the overall reaction cross-sections decreased in the order U(+) > or = Np(+) > Pu(+) > Am(+). A primary reaction channel for each studied metal was the formation of MO(+) from M(+), in accord with the expected exothermicity of oxygen abstraction from EtO. For U, Np and Pu, the dioxides were also major products, indicating OAn(+)--O dissociation energies of at least 350 kJ mol(-1), the energy required for O-atom abstraction from EtO. For Am, Tb and Tm, the dioxides were only very minor products, reflecting the stabilities of the trivalent states and resistance to oxidation to higher valence states; the structures/bonding in these MO(2)(+) are intriguing given that the formal pentavalent bonding state is effectively unattainable. It was demonstrated that EtO, unlike more thermochemically favorable but kinetically restricted O-donors, is effective at achieving facile oxidation of actinide metal ions to the monoxide, and to the dioxide if the second O-abstraction reaction is exothermic. Several intriguing minor products were also identified, most of which incorporate metal--oxygen bonding and are attributed to the oxophilicity of the f-block elements; the contrast to the behavior of first-row d-block transition elements is striking in this regard. Particularly noteworthy was the formation of MH(4)(+) (and MOH(4)(+)), evidently via abstraction of all four H atoms from a single C(2)H(4)O molecule; the structures/bonding in these novel 'hydride' species are indeterminate and warrant further attention.

  13. Healing burns using atmospheric pressure plasma irradiation

    NASA Astrophysics Data System (ADS)

    Hirata, Takamichi; Kishimoto, Takumi; Tsutsui, Chihiro; Kanai, Takao; Mori, Akira

    2014-01-01

    An experiment testing the effects of plasma irradiation with an atmospheric-pressure plasma (APP) reactor on rats given burns showed no evidence of electric shock injuries upon pathology inspection of the irradiated skin surface. In fact, the observed evidence of healing and improvement of the burns suggested healing effects from plasma irradiation. The quantities of neovascular vessels in the living tissues at 7 days were 9.2 ± 0.77 mm-2 without treatment and 18.4 ± 2.9 mm-2 after plasma irradiation.

  14. Fat burn X: burning more than fat.

    PubMed

    Hannabass, Kyle; Olsen, Kevin Robert

    2016-01-01

    A 50-year-old man presented with a 2-day history of bilateral lower extremity cramping and dark urine. The patient was found to have a creatine phosphokinase (CPK) elevated of up to 2306 U/L, a serum uric acid of 9.7 mg/dL and 101 red blood cell's per high-powered field on urinalysis. On questioning, the patient endorsed daily exercise with free weights. There were no changes in his regular exercise and medication regimen, no muscle trauma, no recent drug use and no illness. The patient did mention using a new fat burner known as 'Fat Burn X', which he had begun taking 2 days prior to the onset of his muscle cramps. The patient was given normal saline intravenous fluid resuscitation for 48 h with resultant normalisation of his CPK and creatinine, and was discharged with primary care follow-up.

  15. Accumulative eschar after burn.

    PubMed

    Ma, Fushun

    2016-02-01

    Eschar formation is a potential sequela of burn injuries. Definitive management may include escharectomy and eschar debridement. After eschar removal, the wound can be covered with a skin graft or reepithelialization. For prolonged refractory eschar on the fingertips, topical use of rb-bFGF after debridement can achieve an optimal outcome.

  16. Burning Your Own CDs.

    ERIC Educational Resources Information Center

    Ekhaml, Leticia

    2001-01-01

    Discusses the use of CDs (Compact Disks) for backing up data as an alternative to using floppy disks and explains how to burn, or record, a CD. Topics include differences between CD-R (CD-Recordable) and CD-RW (CD-Rewritable); advantages of CD-R and CD-RW; selecting a CD burner; technology trends; and care of CDs. (LRW)

  17. The Burn Wound Microenvironment

    PubMed Central

    Rose, Lloyd F.; Chan, Rodney K.

    2016-01-01

    Significance: While the survival rate of the severely burned patient has improved significantly, relatively little progress has been made in treatment or prevention of burn-induced long-term sequelae, such as contraction and fibrosis. Recent Advances: Our knowledge of the molecular pathways involved in burn wounds has increased dramatically, and technological advances now allow large-scale genomic studies, providing a global view of wound healing processes. Critical Issues: Translating findings from a large number of in vitro and preclinical animal studies into clinical practice represents a gap in our understanding, and the failures of a number of clinical trials suggest that targeting single pathways or cytokines may not be the best approach. Significant opportunities for improvement exist. Future Directions: Study of the underlying molecular influences of burn wound healing progression will undoubtedly continue as an active research focus. Increasing our knowledge of these processes will identify additional therapeutic targets, supporting informed clinical studies that translate into clinical relevance and practice. PMID:26989577

  18. The Earth Could Burn.

    ERIC Educational Resources Information Center

    Yarrow, Ruth

    1982-01-01

    Environmental educators are worried about the ultimate ecological threat--nuclear war, which could burn thousands of square miles, sterilize the soil, destroy 70 percent of the ozone layer letting in lethal ultraviolet rays, and cause severe radiation sickness. Educators must inform themselves, teach others, contact government representatives, and…

  19. Log-burning stove

    SciTech Connect

    Choate, J.R.

    1982-11-23

    A log-burning stove having a stove door with an angled plate element secured thereto, the top portion of the plate element deflecting combustion gases inwardly to the combustion chamber, and the lower portion deflecting draft air inwardly and downwardly into the combustion chamber, the plate element also forming a log-support and log-sliding surface.

  20. TIRES, OPEN BURNING

    EPA Science Inventory

    The chapter describes available information on the health effects from open burning of rubber tires. It concentrates on the three known sources of detailed measurements: (1) a small-scale emissions characterization study performed by the U.S. EPA in a facility designed to simulat...

  1. Fast burn booster technology

    NASA Astrophysics Data System (ADS)

    Burnett, Jimmy; McCain, J. W.

    1992-05-01

    Advances in solid rocket booster motors in the Solid Propellant Booster Development (SPBD) Program are addressed. The technologies discussed include cheaper nondetonable versatile burn rate propellant, advanced performance tapered composite case, lower-cost lighter-weight nozzles, laser ignition, and improved combustion modelling and performance. The demonstration of these technologies in a series of motor static tests is reviewed.

  2. [Burn injuries and mental health].

    PubMed

    Palmu, Raimo; Vuola, Jyrki

    2016-01-01

    Currently a large proportion of patients with severe burn injuries survive. This gives increasing challenges also for psychological recovery after the trauma. More than half of burn patients have mental disorders already before the burn injury but also patients who previously had no mental disorders may suffer from them. Some of the hospitalize burn patients have injuries due to suicidal attempts. Only a small proportion of burn patients receive appropriate psychiatric care although psychosocial interventions specifically planned for burn victims exist. More frequent screening of symtoms of mental disorders and psychiatric consultation, also after acute care in hospital, could lead to better management of post-burn psychiatric care as well as better management of the burn treatment and rehabilitation itself. PMID:27089616

  3. [Burns in an aeronautic environment].

    PubMed

    Rigotti, G

    1979-10-27

    Following an examination of the aetiology of burns in aeronautic environments, the physiopathology, classification and general and local treatment of the burn case is discussed. Special mention is then made of aircraft as an extremely useful means of transport.

  4. Actinides AMS at CIRCE in Caserta (Italy)

    NASA Astrophysics Data System (ADS)

    De Cesare, M.; Gialanella, L.; Rogalla, D.; Petraglia, A.; Guan, Y.; De Cesare, N.; D'Onofrio, A.; Quinto, F.; Roca, V.; Sabbarese, C.; Terrasi, F.

    2010-04-01

    The operation of Nuclear Power Plants and atmospheric tests of nuclear weapons performed in the past, together with production, transport and reprocessing of nuclear fuel, lead to the release into the environment of a wide range of radioactive nuclides, such as uranium, plutonium, fission and activation products. These nuclides are present in the environment at ultra trace levels. Their detection requires sensitive techniques like AMS (Accelerator Mass Spectrometry). In order to perform isotopic ratio measurements of the longer-lived actinides, e.g., of 236U relative to the primary 238U and various Pu isotopes relative to 239Pu, an upgrade of the CIRCE accelerator (Center for Isotopic Research on Cultural and Environmental Heritage) in Caserta, Italy, is underway. In this paper we report on the results of simulations aiming to define the best ion optics and to understand the origin of possible measurement background. The design of a high resolution TOF- E (Time of Flight-Energy) detector system is described, which will be used to identify the rare isotopes among interfering background signals.

  5. Synthesis of crystalline ceramics for actinide immobilisation

    SciTech Connect

    Burakov, B.; Gribova, V.; Kitsay, A.; Ojovan, M.; Hyatt, N.C.; Stennett, M.C.

    2007-07-01

    Methods for the synthesis of ceramic wasteforms for the immobilization of actinides are common to those for non-radioactive ceramics: hot uniaxial pressing (HUP); hot isostatic pressing (HIP); cold pressing followed by sintering; melting (for some specific ceramics, such as garnet/perovskite composites). Synthesis of ceramics doped with radionuclides is characterized with some important considerations: all the radionuclides should be incorporated into crystalline structure of durable host-phases in the form of solid solutions and no separate phases of radionuclides should be present in the matrix of final ceramic wasteform; all procedures of starting precursor preparation and ceramic synthesis should follow safety requirements of nuclear industry. Synthesis methods that avoid the use of very high temperatures and pressures and are easily accomplished within the environment of a glove-box or hot cell are preferable. Knowledge transfer between the V. G. Khlopin Radium Institute (KRI, Russia) and Immobilisation Science Laboratory (ISL, UK) was facilitated in the framework of a joint project supported by UK Royal Society. In order to introduce methods of precursor preparation and ceramic synthesis we selected well-known procedures readily deployable in radiochemical processing plants. We accounted that training should include main types of ceramic wasteforms which are currently discussed for industrial applications. (authors)

  6. Electrochemical decontamination system for actinide processing gloveboxes

    SciTech Connect

    Wedman, D.E.; Lugo, J.L.; Ford, D.K.; Nelson, T.O.; Trujillo, V.L.; Martinez, H.E.

    1998-03-01

    An electrolytic decontamination technology has been developed and successfully demonstrated at Los Alamos National Laboratory (LANL) for the decontamination of actinide processing gloveboxes. The technique decontaminates the interior surfaces of stainless steel gloveboxes utilizing a process similar to electropolishing. The decontamination device is compact and transportable allowing it to be placed entirely within the glovebox line. In this way, decontamination does not require the operator to wear any additional personal protective equipment and there is no need for additional air handling or containment systems. Decontamination prior to glovebox decommissioning reduces the potential for worker exposure and environmental releases during the decommissioning, transport, and size reduction procedures which follow. The goal of this effort is to reduce contamination levels of alpha emitting nuclides for a resultant reduction in waste level category from High Level Transuranic (TRU) to low Specific Activity (LSA, less than or equal 100 nCi/g). This reduction in category results in a 95% reduction in disposal and disposition costs for the decontaminated gloveboxes. The resulting contamination levels following decontamination by this method are generally five orders of magnitude below the LSA specification. Additionally, the sodium sulfate based electrolyte utilized in the process is fully recyclable which results in the minimum of secondary waste. The process bas been implemented on seven gloveboxes within LANL`s Plutonium Facility at Technical Area 55. Of these gloveboxes, two have been discarded as low level waste items and the remaining five have been reused.

  7. Fusion Techniques for the Oxidation of Refractory Actinide Oxides

    SciTech Connect

    Rudisill, T.S.

    1999-04-15

    Small-scale experiments were performed to demonstrate the feasibility of fusing refractory actinide oxides with a series of materials commonly used to decompose minerals, glasses, and other refractories as a pretreatment to dissolution and subsequent recovery operations. In these experiments, 1-2 g of plutonium or neptunium oxide (PuO2 or NpO2) were calcined at 900 degrees Celsius, mixed and heated with the fusing reagent(s), and dissolved. For refractory PuO2, the most effective material tested was a lithium carbonate (Li2CO3)/sodium tetraborate (Na2B4O7) mixture which aided in the recovery of 90 percent of the plutonium. The fused product was identified as a lithium plutonate (Li3PuO4) by x-ray diffraction. The use of a Li2CO3/Na2B4O7 mixture to solubilize high-fired NpO2 was not as effective as demonstrated for refractory PuO2. In a small-scale experiment, 25 percent of the NpO2 was oxidized to a neptunium (VI) species that dissolved in nitric acid. The remaining neptunium was then easily recovered from the residue by fusing with sodium peroxide (Na2O2). Approximately 70 percent of the neptunium dissolved in water to yield a basic solution of neptunium (VII). The remainder was recovered as a neptunium (VI) solution by dissolving the residue in 8M nitric acid. In subsequent experiments with Na2O2, the ratio of neptunium (VII) to (VI) was shown to be a function of the fusion temperature, with higher temperatures (greater than approximately 400 degrees C) favoring the formation of neptunium (VII). The fusion of an actual plutonium-containing residue with Na2O2 and subsequent dissolution was performed to demonstrate the feasibility of a pretreatment process on a larger scale. Sodium peroxide was chosen due

  8. Labeling proteins via hole burning of their aromatic amino acids: pressure tuning spectroscopy of BPTI.

    PubMed Central

    Stübner, Markus; Hecht, Christoph; Friedrich, Josef

    2002-01-01

    We demonstrate hole burning on a protein by using an intrinsic aromatic amino acid as a probe. The protein is bovine pancreatic trypsin inhibitor (BPTI), the labeled amino acid is tyrosine. Only one of the four tyrosines could be burned. As an application we present pressure tuning experiments from which the local compressibility around the burned tyrosine probe is determined. PMID:12496122

  9. Investigation of the elastic, hardness, and thermodynamic properties of actinide oxides

    NASA Astrophysics Data System (ADS)

    Huang, Wen; Chen, Haichuan

    2014-09-01

    The elastic and thermodynamic properties of actinide oxides (AO2) compounds have been investigated by using the first-principle density functional theory (DFT) within the generalized gradient approximation (GGA). The calculated lattice constants of AO2 are in agreement with the available experiments data. The calculated elastic constants reveal that all AO2 compounds are mechanically stable. The shear modulus, Young's modulus, Poisson's ratio σ, the ratio B/G and the anisotropy factor are also calculated. Finally, the Vickers hardness, Debye temperature, melting point and thermal conductivity have been predicted.

  10. Biomass Burning Data and Information

    Atmospheric Science Data Center

    2015-04-21

    Biomass Burning Data and Information This data set represents ... geographical and temporal distribution of total amount of biomass burned. These data may be used in general circulation models (GCMs) and ... models of the atmosphere. Project Title:  Biomass Burning Discipline:  Tropospheric Chemistry ...

  11. The overall patterns of burns

    PubMed Central

    Almoghrabi, A.; Abu Shaban, N.

    2011-01-01

    Summary Burn patterns differ across the whole world and not only in relation to lack of education, overcrowding, and poverty. Cultures, habits, traditions, psychiatric illness, and epilepsy are strongly correlated to burn patterns. However, burns may also occur because of specific religious beliefs and activities, social events and festivals, traditional medical practices, occupational activities, and war. PMID:22639565

  12. PGN Prescribed Burn Research Summary

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Since 1997, we have been studying the effects of prescribed burns conducted during late winter on shortgrass steppe on the Pawnee National Grassland. During 1997 – 2002, we studied burns on the western (Crow Valley) portion of the Pawnee by comparing plant growth on burns conducted by the Forest Ser...

  13. 40 CFR 49.10411 - Permits for general open burning, agricultural burning, and forestry and silvicultural burning.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Permits for general open burning, agricultural burning, and forestry and silvicultural burning. 49.10411 Section 49.10411 Protection of... for general open burning, agricultural burning, and forestry and silvicultural burning. (a)...

  14. Burn epidemiology and cost of medication in paediatric burn patients.

    PubMed

    Koç, Zeliha; Sağlam, Zeynep

    2012-09-01

    Burns are common injuries that cause problems to societies throughout the world. In order to reduce the cost of burn treatment in children, it is extremely important to determine the burn epidemiology and the cost of medicines used in burn treatment. The present study used a retrospective design, with data collected from medical records of 140 paediatric patients admitted to a burn centre between 1 January 2009 and 31 December 2009. Medical records were examined to determine burn epidemiology, medication administered, dosage, and duration of use. Descriptive statistical analysis was completed for all variables; chi-square was used to examine the relationship between certain variables. It was found that 62.7% of paediatric burns occur in the kitchen, with 70.7% involving boiling water; 55.7% of cases resulted in third-degree burns, 19.3% required grafting, and mean duration of hospital stay was 27.5 ± 1.2 days. Medication costs varied between $1.38 US dollars (USD) and $14,159.09, total drug cost was $46,148.03 and average cost per patient was $329.63. In this study, the medication cost for burn patients was found to be relatively high, with antibiotics comprising the vast majority of medication expenditure. Most paediatric burns are preventable, so it is vital to educate families about potential household hazards that can be addressed to reduce the risk of a burn. Programmes are also recommended to reduce costs and the inappropriate prescribing of medication.

  15. Is proportion burned severely related to daily area burned?

    NASA Astrophysics Data System (ADS)

    Birch, Donovan S.; Morgan, Penelope; Kolden, Crystal A.; Hudak, Andrew T.; Smith, Alistair M. S.

    2014-05-01

    The ecological effects of forest fires burning with high severity are long-lived and have the greatest impact on vegetation successional trajectories, as compared to low-to-moderate severity fires. The primary drivers of high severity fire are unclear, but it has been hypothesized that wind-driven, large fire-growth days play a significant role, particularly on large fires in forested ecosystems. Here, we examined the relative proportion of classified burn severity for individual daily areas burned that occurred during 42 large forest fires in central Idaho and western Montana from 2005 to 2007 and 2011. Using infrared perimeter data for wildfires with five or more consecutive days of mapped perimeters, we delineated 2697 individual daily areas burned from which we calculated the proportions of each of three burn severity classes (high, moderate, and low) using the differenced normalized burn ratio as mapped for large fires by the Monitoring Trends in Burn Severity project. We found that the proportion of high burn severity was weakly correlated (Kendall τ = 0.299) with size of daily area burned (DAB). Burn severity was highly variable, even for the largest (95th percentile) in DAB, suggesting that other variables than fire extent influence the ecological effects of fires. We suggest that these results do not support the prioritization of large runs during fire rehabilitation efforts, since the underlying assumption in this prioritization is a positive relationship between severity and area burned in a day.

  16. Crystal growth methods dedicated to low solubility actinide oxalates

    NASA Astrophysics Data System (ADS)

    Tamain, C.; Arab-Chapelet, B.; Rivenet, M.; Grandjean, S.; Abraham, F.

    2016-04-01

    Two novel crystal growth syntheses dedicated to low solubility actinide-oxalate systems and adapted to glove box handling are described. These methods based on the use of precursors of either actinide metal or oxalic acid have been optimized on lanthanide systems (analogue of actinides(III)) and then assessed on real actinide systems. They allow the synthesis of several actinide oxalate single crystals, Am2(C2O4)3(H2O)3·xH2O, Th(C2O4)2·6H2O, M2+x[PuIV2-xPuIIIx(C2O4)5]·nH2O and M1-x[PuIII1-xPuIVx(C2O4)2·H2O]·nH2O. It is the first time that these well-known compounds are formed by crystal growth methods, thus enabling direct structural studies on transuranic element systems and acquisition of basic data beyond deductions from isomorphic (or not) lanthanide compounds. Characterizations by X-ray diffraction, UV-visible solid spectroscopy, demonstrate the potentialities of these two crystal growth methods to obtain oxalate compounds.

  17. Theoretical investigation on multiple bonds in terminal actinide nitride complexes.

    PubMed

    Wu, Qun-Yan; Wang, Cong-Zhi; Lan, Jian-Hui; Xiao, Cheng-Liang; Wang, Xiang-Ke; Zhao, Yu-Liang; Chai, Zhi-Fang; Shi, Wei-Qun

    2014-09-15

    A series of actinide (An) species of L-An-N compounds [An = Pa-Pu, L = [N(CH2CH2NSiPr(i)3)3](3-), Pr(i) = CH(CH3)2] have been investigated using scalar relativistic density functional theory (DFT) without considering spin-orbit coupling effects. The ground state geometric and electronic structures and natural bond orbital (NBO) analysis of actinide compounds were studied systematically in neutral and anionic forms. It was found that with increasing actinide atomic number, the bond length of terminal multiple An-N1 bond decreases, in accordance with the actinide contraction. The Mayer bond order of An-N1 decreases gradually from An = Pa to Pu, which indicates a decrease in bond strength. The terminal multiple bond for L-An-N compounds contains one σ and two π molecular orbitals, and the contributions of the 6d orbital to covalency are larger in magnitude than the 5f orbital based on NBO analysis and topological analysis of electron density. This work may help in understanding of the bonding nature of An-N multiple bonds and elucidating the trends and electronic structure changes across the actinide series. It can also shed light on the construction of novel An-N multiple bonds.

  18. Siderocalin-mediated recognition, sensitization, and cellular uptake of actinides.

    PubMed

    Allred, Benjamin E; Rupert, Peter B; Gauny, Stacey S; An, Dahlia D; Ralston, Corie Y; Sturzbecher-Hoehne, Manuel; Strong, Roland K; Abergel, Rebecca J

    2015-08-18

    Synthetic radionuclides, such as the transuranic actinides plutonium, americium, and curium, present severe health threats as contaminants, and understanding the scope of the biochemical interactions involved in actinide transport is instrumental in managing human contamination. Here we show that siderocalin, a mammalian siderophore-binding protein from the lipocalin family, specifically binds lanthanide and actinide complexes through molecular recognition of the ligands chelating the metal ions. Using crystallography, we structurally characterized the resulting siderocalin-transuranic actinide complexes, providing unprecedented insights into the biological coordination of heavy radioelements. In controlled in vitro assays, we found that intracellular plutonium uptake can occur through siderocalin-mediated endocytosis. We also demonstrated that siderocalin can act as a synergistic antenna to sensitize the luminescence of trivalent lanthanide and actinide ions in ternary protein-ligand complexes, dramatically increasing the brightness and efficiency of intramolecular energy transfer processes that give rise to metal luminescence. Our results identify siderocalin as a potential player in the biological trafficking of f elements, but through a secondary ligand-based metal sequestration mechanism. Beyond elucidating contamination pathways, this work is a starting point for the design of two-stage biomimetic platforms for photoluminescence, separation, and transport applications.

  19. Siderocalin-mediated recognition, sensitization, and cellular uptake of actinides

    PubMed Central

    Allred, Benjamin E.; Rupert, Peter B.; Gauny, Stacey S.; An, Dahlia D.; Ralston, Corie Y.; Sturzbecher-Hoehne, Manuel; Strong, Roland K.; Abergel, Rebecca J.

    2015-01-01

    Synthetic radionuclides, such as the transuranic actinides plutonium, americium, and curium, present severe health threats as contaminants, and understanding the scope of the biochemical interactions involved in actinide transport is instrumental in managing human contamination. Here we show that siderocalin, a mammalian siderophore-binding protein from the lipocalin family, specifically binds lanthanide and actinide complexes through molecular recognition of the ligands chelating the metal ions. Using crystallography, we structurally characterized the resulting siderocalin–transuranic actinide complexes, providing unprecedented insights into the biological coordination of heavy radioelements. In controlled in vitro assays, we found that intracellular plutonium uptake can occur through siderocalin-mediated endocytosis. We also demonstrated that siderocalin can act as a synergistic antenna to sensitize the luminescence of trivalent lanthanide and actinide ions in ternary protein–ligand complexes, dramatically increasing the brightness and efficiency of intramolecular energy transfer processes that give rise to metal luminescence. Our results identify siderocalin as a potential player in the biological trafficking of f elements, but through a secondary ligand-based metal sequestration mechanism. Beyond elucidating contamination pathways, this work is a starting point for the design of two-stage biomimetic platforms for photoluminescence, separation, and transport applications. PMID:26240330

  20. Siderocalin-mediated recognition, sensitization, and cellular uptake of actinides.

    PubMed

    Allred, Benjamin E; Rupert, Peter B; Gauny, Stacey S; An, Dahlia D; Ralston, Corie Y; Sturzbecher-Hoehne, Manuel; Strong, Roland K; Abergel, Rebecca J

    2015-08-18

    Synthetic radionuclides, such as the transuranic actinides plutonium, americium, and curium, present severe health threats as contaminants, and understanding the scope of the biochemical interactions involved in actinide transport is instrumental in managing human contamination. Here we show that siderocalin, a mammalian siderophore-binding protein from the lipocalin family, specifically binds lanthanide and actinide complexes through molecular recognition of the ligands chelating the metal ions. Using crystallography, we structurally characterized the resulting siderocalin-transuranic actinide complexes, providing unprecedented insights into the biological coordination of heavy radioelements. In controlled in vitro assays, we found that intracellular plutonium uptake can occur through siderocalin-mediated endocytosis. We also demonstrated that siderocalin can act as a synergistic antenna to sensitize the luminescence of trivalent lanthanide and actinide ions in ternary protein-ligand complexes, dramatically increasing the brightness and efficiency of intramolecular energy transfer processes that give rise to metal luminescence. Our results identify siderocalin as a potential player in the biological trafficking of f elements, but through a secondary ligand-based metal sequestration mechanism. Beyond elucidating contamination pathways, this work is a starting point for the design of two-stage biomimetic platforms for photoluminescence, separation, and transport applications. PMID:26240330